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Summary

This project explores the prospect of fundamental causal set events and whether or not
there exist classes of fundamental event types. By considering so-called Feynman posets,
where each vertex has a maximum degeneracy of three, this project aims to initiate the
study by introducing vertex degeneracy as a defining property of fundamental events. The
natural next step is to generalize by constructing posets containing n-degenerate vertices.

The first part of the project includes a classical growth model that simply constructs
a sample of Feynman posets subject to no dynamic constrictions. In the second part, an
action principle was introduced to drive the construction process away from the entropic
space of posets and towards the most manifoldlike posets in the subspace of Feynman
posets, if they exist. Unfortunately, the action-driven growth algorithm suffers from seri-
ous conceptual and implementational defects and offers little more than insights into what
not to do when calculating the action on a causal set and does not produce interesting
posets at this stage. However, the algorithm may prove useful in further studies under
different contexts.

The analysis includes statistical considerations of poset height, level structure, total or-
dering fractions, and poset d-rigidity (a test for the existence of local regions and therefore
a condition for manifoldlikeness). The analysis also includes results from coarse-graining
the posets at a number of different levels. Finally, this document also provides an insight
on internal interval observables within each poset along with Hasse diagrams of selected
subintervals.

In addition to the computational study of Feynman posets, this document includes an
expansive (although far from exhaustive) review of literature on causal sets, a discussion on
the philosophical approaches to the study, and a technical discussion on several theoretical
obstacles that arise in the study. Of critical importance are the scripts that were developed
to carry out the project, which have been made publicly available for further study and
are presently being improved through new releases. It is hoped that the literature review
provided by this document proves useful for prospective causal set researchers in the future
as well.

This study provides partial evidence for the manifoldlikeness of some Feynman posets.
So-called no holes posets satisfy several manifoldlikeness conditions, including the agree-
ment of dimension estimators and the existence of local regions at larger scales after
coarse-graining. On the other hand, the so-called holes posets are found to be more di-
verse and preliminary investigations reveal no manifoldlikeness at this stage. While the
results for the no holes posets are encouraging, a conclusive statement awaits further study
with more tests for manifoldlikeness.




Preface

An adventure lacking in prospect or a rush made blindly, however, would in most cases

end in failure. The adventure that really trains the theory and leads to correct cognition

must have an accurate prospect more than anything else. The perspective adventure, even

if it fails, is able to teach certainly lessons from the failure and secures the success in the
next adventure.

- Shoichi Sakata, 1948

I don’t know how radical you are, or how radical I am. I am certainly not radical
enough. One can never be radical enough; that is, one must always try to be as radical as
reality itself.

- V.I. Lenin
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Units and Conventions

This document will use natural units, i.e. the speed of light, the gravitational constant, and
the Planck constant are set to unity:

I
—_

c

G

h
unless otherwise specified.

This document uses the spacelike metric signature convention,
(_7 +a +7 +7 )

Throughout this document, the terms Minkowski spacetime and Lorentzian manifold
will frequently be used interchangeably. The Lorentzian manifold is typically defined as
any manifold with the above signature, while Minkowski spacetime is typically defined to
be a flat Lorentzian manifold with the metric

1.0 0 0
(o 10 0
=119 0 1 0

0 00 1

in four dimensions. Since this document makes explicit reference to whether or not the
manifold in question is flat or curved, this convention will not be observed.
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Introduction

This chapter will deal with quantum gravity in general and some of the justifications be-
hind the causal set approach to quantum gravity, including a brief background in general
relativity and Einstein’s field equations to motivate the project. Following a philosophical
overview of the methodology of the field, the last section will provide an orientation for
the project and outlines the remaining sections.

1.1 Quantum Gravity

The search for a “theory of everything” is perhaps the most highly anticipated development
in the field today, whether it is a subsequent task underlying Grand Unification or a goal
in its own right. It suffices to say that one of the biggest embarrassments in physics is the
incompatibility of two equally empirical properties of our universe: general relativity and
quantum field theory. Unifying gravity with the three other forces has been a task since
the late 1970s and is a noble, if not lofty, pursuit if we are to finally move beyond the
Standard Model and into Planck’s realm. Yet, for this author, the pursuit for this “theory
of everything” seems a little premature, just as it was at the turn of the last century. More
explicitly formulated, making general relativity and quantum field theory agree means
having a theory of gravity that does not break down on the small scales that hold for the
other forces in quantum field theory. How could we ever hope to achieve this so-called
“theory of everything” if we do not start with the first step? That first step is quantum
gravity.

What is quantum gravity? Most definitions are fairly straightforward, although it must
be noted that the specific formulation will favor different approaches. This project will
adapt David Reid’s working definition:
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quantum gravity is a theory that describes the structure of spacetime and
the effects of spacetime structure down to sub-Planckian scales for systems
containing any number of occupied states [44].

Perhaps the most contentious part of Reid’s definition is that the theory must describe
“the structure of spacetime and the effects of spacetime structure”. It favors those ap-
proaches that place primacy on geometry as the property from which the gravitational
force arises, unlike approaches like string theory that propose fundamental gravitational
“bosons” that define the interaction, rather than identifying the geometry itself as the car-
rier of the gravitational force. Moreover, the diction of structure evokes imagery of fun-
damental point-like discreteness, in contrast to Causal Dynamical Triangulation. Taking
general relativity seriously means entertaining its literal interpretation, that gravity is ge-
ometry. While most of the literature simply cites the metric tensor g,,,, and the Einstein
field equations and calls it a day, this document will trace this logic in more detail, de-
spite its tedium, but stopping short of fully deriving the Einstein field equations. It is so
fundamental to the argument behind causal sets that this author believes that it is worth
the effort. It will also help to provide a clear understanding of the tools that are so cen-
tral to causal set theory outlined in Chapter 2. The following discussion on the Einstein
field equations and how the gravitational field arises from the source it describes follows
Hartle [26].

1.1.1 Einstein Field Equations

The Einstein field equations are given by
1
R, — §R9W + Ag =871, (1.1)

where I, is the Ricci curvature tensor, R is the Ricci scalar curvature, g, is the met-
ric tensor, A is the cosmological constant, and 7}, is the stress-energy tensor. Before
going further, it’s worth noting that the field equations express the fundamental principle
that gravity is geometry. On the left-hand side of Equation (1.1), R,,, R, and g, all
characterize the geometry, while T},,, on the right-hand side serves as the source for the
gravitational field. In turn:

The metric tensor is given by the line element,

ds? = —guv dat da”

= —400 dt2 — J11 d.’L‘2 — g22 dy2 — 333 dZ2 — ... (12)

where dx* gives the infinitesimal displacements between two points in the metric space
for the coordinates labeled by i and ds is the line element. The line element can be thought
of as the length of some curve defining the trajectory between the two points in the metric
space.

The Ricci curvature tensor is given by

ory, ory
_ j12% Y 5 )
R = 527 = 50 + 1060, = T, (1.3)
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where I, the Christoffel symbols, define the geodesic equation, describing the trajectory
of a particle in curved spacetime:

d2z# , da” da?

ds2 "7 ds ds (14
If one imagines a collection of points in spacetime that form some closed object with
some volume, then R, expresses the rate of change of that object’s volume along its line
element as it moves through the metric space.

The Ricci curvature tensor is generalized by the Riemann curvature tensor, and the
former may be derived by taking the trace of the latter:

R/»W = Ra#au = gaﬁROé#BV (15)

Physically, one may think of the Riemann tensor as describing not only the rate of change
of the volume of our ball of test points, but also its shape. In a completely empty re-
gion of spacetime, R,, = 0, but the Riemann curvature tensor is, in general, nonzero.
The details will not be given in this document, but the Riemann curvature tensor can be
decomposed into three parts; in an empty region of spacetime, all but one—the Weyl ten-
sor—vanish. While the other two parts encompass gravitational effects from immediate
non-gravitational forces and matter, the Weyl tensor encodes information about “every-
thing else” that may contribute to the curvature of the region (e.g. gravitational waves).
This is introduced only to emphasize that “empty spacetime” should not be thought of as
equivalently flat spacetime.

In the context of Equation (1.4), it is also natural to define the Christoffel symbols with
respect to the metric tensor:

1
Lo = 59" (v g5u + Ougsv — sgu) (1.6)
where the notation
0
Oy = 7— 1.7
H 81:“ ( )

has been introduced and will be used throughout the remainder of this document.

The second term on the left-hand side of Equation (1.1) must be a rank two tensor,
which can be constructed from the scalar curvature and the metric tensor." The former is
the scalar analogue of the Ricci curvature tensor and assigns a value corresponding to this
change at each point (furthermore, it is the trace of the Ricci curvature tensor and can thus
also be expressed in terms of Christoffel symbols).

As for the last term on the left-hand side of Equation (1.1), for the purposes of this
project, A, the cosmological constant, will be interpreted as vacuum contributions to the

Uf this addition seems ad hoc, it’s because it is in this treatment. As promised, I will not derive the Einstein
field equations in this space, but only briefly mention that without this term, the field equations would violate
conservation of energy and momentum. A full(er) treatment is given in [40]. Furthermore, Lovelock’s Theorem
states that this is the only possible form for this second “conservation-preserving” term [11].
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stress-energy tensor and will be subsumed into the term on the right-hand side,? such that
Equation (1.1) now reads:

1
R, — ing =8nT},, (1.8)

The stress-energy tensor, 7}, expresses the total energy and momentum density and
flux in spacetime. More specifically, it is the contribution of all matter, radiation, and any
other non-gravitational fields. E.g. for some fluid, the contravariant stress-energy tensor is
given by

T = putu” (1.9)

where p is the energy density and u* is the four-velocity of the fluid.
Finally, using the Einstein field tensor defined by

1
Gu = Ry — §R9W (1.10)

the Einstein field equations reduce to the simple form

G, = 87T, (1.11)

The Stress-Energy Tensor as a Source for Gravitational Fields

If the stress energy tensor is truly the source of gravitational fields, then the Einstein field
equations should reduce to the Newtonian field equation for gravity in the limit of an
approximately flat geometry and nonrelativistic matter:

G =871y, Einstein Field Equations
V2® = 47p  Newtonian Field Equation for Gravity

where & is the (Newtonian) gravitational potential and in this context, p is the mass density.
The limit of an approximately flat geometry implies a weak gravitational field, such
that the metric can be approximated by 7,,,, the metric for a flat geometry,

-1 0 0 0
0 1 0 0
=10 0 1 0 (1.12)
0 0 01
plus a small metric perturbation, h,,, (z):
Guw = Mw + Iy () =
—-(1+29) 0 0 0
0 (1-29) 0 0
0 0 (1-29) 0 (1.13)
0 0 0 (1-29)

2This is justified because it satisfies local energy-momentum conservation, VT, = 0 where V,, is the
covariant derivative. Alternatively, one may impose A = 0 and define the Einstein tensor without this term,
which is the typical treatment in the literature and reflected here in Equation (1.10).

4
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Inserting this expansion into the Einstein tensor, Equation (1.10), and using Equa-
tion (1.6) gives [26]

G = Gop = 2V + O(®?) (1.14)

The Newtonian limit also implies that the stress energy is dominated by rest energy,
because for nonrelativistic matter, v < ¢, and to maintain consistency with the weak field
approximation, p, the rest energy density, must also be small. Then v* = (1, 0) and
using Equation (1.9), the first order of the stress energy tensor is simply

T =T% = p (1.15)

Lowering the indices for the stress-energy tensor and inserting these into the Einstein
field equations, Equation (1.11),

V20 = 4dnp (1.16)

The result is the linearized gravitational field equation, equivalent to the Newtonian
field equations for gravity.
In analogy to electromagnetism, compare the field equations:

V2® = 4mp Linearized gravitational field equation
Gy = 81Ty, Einstein’s Field Equations
V FH = A4rJY Maxwell’s Equations
where in the latter equation, g = % and in natural units, e = /o is the charge of

an electron, h = 2wh = 1 is Planck’s constant, and « is the fine structure constant, i.e.
Ho = 2.

Towards a Fundamental Unit of Spacetime

Order + Number = Geometry
- Rafael Sorkin

As JV is the source of electromagnetic fields, T}, is the source of gravitational fields.
As FM is the electromagnetic field, g,,,, is the gravitational potential,® identically char-
acterizing the geometry of some spacetime. For some spacetime geometry—perhaps one
like the familiar 4-dimensional, smooth, connected Lorentzian manifold that describes our
own universe-~what could be more fundamental than its causal structure? What more is
needed to specify the geometry than a light cone at each and every point? This is an in-
stance of the causal metric hypothesis, a term introduced by Dribus which states that “the
observed properties of the physical universe arise from causal relationships between pairs
of events, or more generally, from causal relationships among families of events,” and fur-
thermore that “the hypothesis takes the familiar relationship between cause and effect to
be the fundamental building block of this structure [19].”

3N.B., not G v nor Ry, In Maxwell’s equations, the left-hand side is the derivative of F'*¥. Lovelock’s
Theorem implies that the only possible solution is proportional to the metric tensor, g, [11]. The gravitational
field is a more complicated matter involving the so-called exterior derivative in mathematics, but this is more
than is needed for this document.




Chapter 1. Introduction

This exposition places certain demands on causal set theory. As long as the action
is approximately extremized such that the scale can be compared to the continuum limit,
causal sets must [39] :

1. Give a spacetime dimension of 4 at the continuum limit.
2. Produce a light cone given by the metric according to g, dz*dxz” < 0 everywhere.
3. Satisfy R, = 0 in a vacuum.

1.1.2 Malament’s Theorem and Kleitman-Rothschild

This account of the story does little justice to the history. A theorem by David Malament
states

Suppose (M, g) and (M’, g') are spacetimes and f : M — M’ is a bijection
where both f and f~! preserve future directed continuous timelike curves.
Then f is a conformal isometry [37].

Malament furthermore concludes in a corollary that the causal structure (represented by
ordered sets—a mathematical object) is enough to recover the spacetime geometry up to a
conformal factor. This is often referred to as the Hauptvermutung, or central conjecture
of causal set theory. It served as the motivation for Rafael Sorkin’s aforementioned claim:
“Order plus Number equals Geometry”, where order is the binary relation on a causal set,
i.e. Malament’s family of curves, while the number is a volume corresponding to the above
missing conformal factor. In his 1978 preprint, Myrheim suggests a counting measure as a
means of quantifying volume by proposing the assumption of a discrete spacetime [41]. By
taking an arbitrary region of spacetime as the starting point, it has been possible to model
causal sets that are approximated by the continuous Lorentz manifold in a process referred
to as sprinkling. Sprinkling has been the leading strategy for developing the kinematic
tools needed to describe causet observables.

Pedestrian experience informs us that space and time are continuous, yet the discrete-
ness of its fundamental units is central to causal set theory. These units are proposed to
be Planckian, and we therefore expect the dynamics to be governed by an action principle
as in quantum mechanics. In the same way a continuous drop of water approximates an
abundance of discrete atoms, spacetime approximates the causal set; in the same way the
classical trajectory arises from an infinite sum over its absurd (and reasonable) paths, the
familiar manifold arises from a sum over of causal structures that look nothing like it. The
task that lies before causal set theory is thus to develop 1) an analagous quantum mea-
sure that assigns to each spacetime structure an amplitude and 2) a configuration space of
causal sets to sum over.

The main obstacle in this endeavor is the Kleitman-Rothschild Theorem, which states
that the proportion of non-manifoldlike topologies on ordered sets containing /N elements
approaches 1 in the asymptotic limit, N — o0, and furthermore that this dominant space
of sets contains three-layered configurations (more specifically, sets with roughly half of
the events in the middle layer) [33, 32]. Such sets are often referred to as Kleitman-
Rothschild orders, or KR orders. Needless to say, such sets are decisively not like space-
time because they represent an infrared universe that is extremely vast while being ex-
tremely short-lived. The Kleitman-Rothschild theorem is the key contributor to what is
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known as the Entropy problem in causal set theory. It has also been shown in [55, 43] that
there exist a subdominant entropic space of two- and four-layered orders that for similar
reasons are non-manifoldlike.

1.2 Dialectics of Nature*

Quantum gravity is a difficult idea for us to grasp. It combines the unobservability of sub-
Planckian nature with our sense of familiarity with the strangeness of quantum physics;
the lack of empirical results has given causal set theory the stigma of being a “solution
without a problem”, and this has been enough for many to claim that the theory evolves in
an entirely different manner than the rest of scientific development. In much of the sem-
inal literature on causal set theory (see e.g. [7]), Taketani’s Doctrine of the Three Stages
of Scientific Development has been cited in an effort to organize the theory, with notable
adjustments made to reflect the perceived uniqueness of quantum gravity in physics. Trac-
ing Taketani’s three stages back to its inspiration, one finds that there is nothing particular
about causal set theory in the development of our understanding of nature. There are two
reasons for correcting this position.

The first is that the study of quantum gravity needs more discipline. The historical
approaches to causal set theory amount to little more than (expertly) groping in the dark,
and causal set theory is in turn just one of dozens of approaches to quantum gravity. Even
this project is not exempt from this dilemma. This is not necessarily a bad thing, but even
when a fuse is blown in one’s house, there is an implicit strategy for navigating around
the room in search for a flashlight or better yet: the circuit breaker. Taketani’s three stages
embody this strategy in physics and there are therefore one of two ways to move forward:
we ensure that they are well understood and take them seriously, or we fundamentally
reorganize our strategy.

Feynman is purported to have said that “the philosophy of science is as useful to sci-
entists as ornithology is to birds”. Although the apocryphal retort is admittedly salient, no
squabbles between physicists and philosphers could ever supersede Marx’s timeless jibe
on both: “Philosophers have hitherto only inferpreted the world in various ways; the point
is to change it”” In other words, to lift a line from Dribus, “physics should seek not to
prescribe what may be, but to describe what is [20].” We would do well to keep this in
mind when we search for some theory for our structure, lest we discover that we have
found little more than our theory for some structure. Thus, the second reason: that “we
must clearly distinguish physics itself from interpretations of physics given by physicists.
They often state things which are different from what they have done,” as Sakata affirms
in [62].

“4Readers allergic to political and/or philosophical discourse may skip this section, but the author implores
those who entertain its contents to consider the following appeals to ethos before evaluating its kairos: 1) this
philosophy of science is cited in much of the literature in causal set theory, particularly the seminal literature
on the topic; in some places it is even used to define terms, as in [44, 7, 8, 50, 38], and 2) Taketani Mitsuo, the
author of this philosophy of science, was an important contributor to the discovery of the meson, a development
he cited when establishing this interpretation of Marxist dialectics.
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1.2.1 Dialectic Materialism

In addition to being a renowned physicist, Taketani was a Marxist and his approach was
explicitly grounded in dialectic materialism. The triad thesis, antithesis, synthesis (read:
a phenomenon, its logical negation, their reconciliation), revealed first by Hegel, is the
backbone of both Taketani and Marx’s scientific approach. To apply it to causal sets, we
must make a brief detour.

From Hegel arise three laws of dialectics:

1. The law of the unity and conflict of opposites. An object exists only insofar as it is the
realization of the unity of opposites, i.e. for each thesis there exists a contradictory
antithesis: the logical negation of the thesis.

2. The law of the passage of quantitative changes into qualitative changes. The conflict
between opposites is never in perfect balance, which gives rise to small quantitative
changes to the object. Over time, these quantitative changes abruptly give way to
a qualitative change in the synthesis of contradictions to form a new thesis with its
own antithesis.

3. The law of the negation of the negation. The original antithesis that negated the
original thesis is itself negated. After cyclces of synthesis, the dialectic process
has returned the original thesis, now governed by new laws of development. While
Hegelian dialectics maintain that there is an “ultimate” negation of the negation—a
deterministic Absolute to end all conflicts of opposites’ ,dialectic materialism states
that the absence of conflict is the absence of existence.

While Hegel’s concept of the Absolute is deterministic, dialectic materialism is stochas-
tic (although decidedly not Markovian) and the dialectic process never terminates. The
Hegelian dialectic is idealist, in that the process is driven by the Spirit. On the other hand,
dialectic materialism declares that the laws of motion are strictly material. In Das Kapital,
Marx writes

The mystification which dialectic suffers in Hegel’s hands, by no means pre-
vents him from being the first to present its general form of working in a
comprehensive and conscious manner. With him it is standing on its head. It
must be turned right side up again, if you would discover the rational kernel
within the mystical shell...

My dialectic method is not only different from the Hegelian, but is its direct
opposite. To Hegel, the life-process of the human brain, i.e. the process of
thinking, which, under the name of ‘the Idea’, he even transforms into an
independent subject, is the demiurgos of the real world, and the real world is
only the external, phenomenal form of ‘the Idea’. With me, on the contrary,
the ideal is nothing else than the material world reflected by the human mind,
and translated into forms of thought.

In summary, the dialectic materialism adapted by Taketani is just that: 1) material,
such that phenomena exist independently of the knowledge of nature and 2) dialectic,

SIncidentally, Hegel himself claimed that this Absolute was the Prussian monarchy.
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such that theory is no more than the “temporary, relative, approximate character of [the]
milestones in the knowledge of nature”. As Lenin describes it in his Materialism and
Empirio-Criticism, “The electron is as inexhaustible as the atom, nature is infinite, but it
infinitely exists [58].”

The sharpest resolution of dialectics today is Maoist dialectics,® from which just one
additional law must be presented: the distinction between the principal contradictions and
secondary contradictions. “If in any process there are a number of contradictions, one of
them must be the principal contradiction playing the leading and decisive role, while the
rest occupy a secondary and subordinate position.” According to Mao, “the principal and
the non-principal aspects of a contradiction transform themselves into each other and the
nature of the thing changes accordingly [60].”

Consider, e.g. a train. For a steam engine, the primary contradiction is the friction
between the wheels and the track, while air resistance is only secondary. Its motion is
the unity of opposites: the friction that enables acceleration and the very same force that
simultaneously hinders it. The synthesis of this unity of opposites is realized by the Ma-
glev. Yet, this gives rise to another unity of opposites; the friction between the train and
the tracks (whether mechanical or electromagnetic drag) becomes secondary, while air re-
sistance becomes primary. This process continues ad infinitum, with vactrains, and so on!
Critically, the motion of this development is driven at all points by the frictional force,
only taking different forms with each successive synthesis. Likewise, the Maglev does
not move faster than the steam engine because the mind wills it: it moves faster because
the objective material conditions allow it. Perhaps some new form of transportation arises
that is entirely frictionless: a negation of the negation (although, as physicists, we ought
to agree with Lenin in that nature is infinite). Even then, this mode of transportation exists
only as a unity of opposites, and the dialectic continues according to new rules.

I have surely not done justice to these principles. The preceding background is de-
signed only to give a very rough outline for the basis of the methodology used in several
fields, but in particular in causal set theory. Although I would sincerely like to expand this
discussion, this document is simply not the space for an in-depth discussion on the matter.
Readers who are interested in this topic can refer to the supplementary bibliography pro-
vided at the end of this document. Without further ado, I will demonstrate the relevance
for the patient reader who may be wondering where this digression is going.

1.2.2 Taketani’s Three Stages

Sakata describes Taketani’s stages in the following manner:

The first is the phenomenological stage [thesis] in which the [object] is de-
scribed as it is. The second is the substantialistic stage [antithesis] in which
it is investigated what structure the object has. The third is the essentialistic
stage [synthesis] in which it is clarified by what interactions and under what
laws of motion the object moves [62].

SIncidentally, Taketani could very well have been a Maoist, at least philosophically speaking. The two come
to an identical conclusion almost concurrently, but likely semi-independently (the former in January 1936; the
latter in August 1937): that the unity of contradictions is the only