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Abstract

Grain boundaries are typical crystal defects, which to a large extent determines the

macroscopic properties of the material. In order to control these properties and design

new materials, detailed knowledge about the atomic structure of such defects is es-

sential. As atomic resolution has become routinely available in scanning transmission

electron microscopy (STEM), tools for obtaining three-dimensional (3-D) information

from the projection data are valuable.

In this thesis, a method for 3-D reconstruction of the atomic structure in crystal grain

boundaries is developed. The method is based on tomographic reconstruction from

images acquired by high-angle annular dark field (HAADF) STEM. Through application

on a model grain boundary in yttrium-stabilized zirconia (YSZ), an important material

in energy applications, the method was demonstrated to accurately determine the 3-D

positions of all atoms in the structure from only three projection images. This revealed

information about the grain boundary structure that has not previously been available,

providing details that could not be identified in the projected images alone. A precision

of 4 pm was reached, estimated from comparison with the well-known bulk structure

of YSZ. Moreover, as the developed reconstruction method enables direct 3-D structure

retrieval from experimental images, it provides an accurate atomic scale model which

can serve as an ideal starting point for further theoretical investigations.

Methods for preparing the experimental images are also developed, including distor-

tion correction, noise reduction and atom column localization, crucial for an accurate

reconstruction. These, together with the tomographic reconstruction method, are im-

plemented in Python. A tutorial is written to illustrate how to use the code, included in

the appendices of this thesis, contributing to making tomography an easily accessible

tool in GB research.
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Samandrag

Korngrenser er typiske defekter i krystallar som i stor grad bestemmer dei fysiske eigen-

skapane materialet har. For å kunne kontrollere desse eigenskapane og utvikle nye ma-

terialar er kunnskap om strukturen i slike defekter svært viktig. Med atom-nivå op-

pløysing tilgjengeleg i skanning transmisjonselektronmikroskopi (STEM) er verkty som

gir moglegheit til å få tre-dimensjonal informasjon frå projeksjonsdataane verdifulle.

I denne masteroppgåva har ei metode for 3-D rekonstruering av atomstrukturen i krys-

tallkorngrenser blitt utvikla. Metoden er basert på tomografisk rekonstruksjon frå bilder

tatt med høgvinkel annular darkfield STEM (HAADF-STEM). Gjennom å rekonstruere

ein modell av ei korngrense i yttria-stabilisert zirkonia (YSZ), eit viktig materiale med

bruksområder blant anna innan energi, blir det demonstrert at metoden kan bestemme

posisjonane til alle atoma frå så få som tre bilder. Dette gav ny informasjon om struk-

turen i korngrensa som ikkje var mogleg å sjå i dei 2-D projeksjonsbilda åleine. Presisjo-

nen den rekonstruerte strukturen er målt til 4 pm, estimert ved å samanlikne strukturen

med den teoretiske strukturen til ein enkeltkrystall av YSZ. Vidare, sidan metoden gjer

det mogleg å trekke 3-D informasjon direkte utifrå exsperimentelle bilder, gir den ein

atom-skala modell som er eit godt utgangspunkt for vidare teoretisk utforsking.

Metoder er også utvikla for å behandle dei eksperimentelle bilda, med korreksjon av feil

frå forstyrringar under bildetakinga, støyredusering og lokalisering av atom-kolonner,

som er viktige steg for å få til ein nøyaktig rekonstruksjon. Alle metodane er imple-

menterte i Python og ein skildring av korleis bruke koden er inkludert i appendix, noko

som kan bidra til å gjere tomografi til eit lett tilgjengeleg verkty i korngrenseforsking.
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Chapter 1

Introduction

1.1 Motivation

In nature, perfect crystals are rare. Real materials contain defects like dislocations, in-

terfaces and point defects, having important ramifications for the macroscopic prop-

erties of the material[1]. One common type of crystal defects are grain boundaries, de-

fined as the interface between adjacent single crystals, or grains. With an atomic struc-

ture and chemical composition often very different from that of the single crystal, grain

boundaries have exhibited unusual properties, both mechanically[2], chemically[3] and

electrically[4, 5], having great impact on the behaviour of many technologically impor-

tant materials. In materials engineering, one seeks to tailor the type of grain boundaries

occurring in a material, enabling design and development of high-performance mate-

rials. To achieve this, fundamental knowledge about grain boundary effects is essential,

which is the reason why this has been a major area of focus for researchers during the

past century[6].

The transmission electron microscope (TEM) is a powerful tool in materials characteri-

zation, contributing to countless discoveries since its invention by Max Knoll and Ernst

Ruska in 1931[7]. In particular, high-angle annular dark field scanning TEM (HAADF-

STEM) has become popular due to its intuitively interpretable images[8]. With major

improvents in resolution in recent years, sub-Ångström resolution has been reached[9],

1
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enabling imaging of individual atom column in crystals, as illustrated in Figure 1.1. The

atomic structure in some types of grain boundaries can also be imaged through fabri-

cation of a bicrystal, where the relative orientation of two grains is controlled to design

a particular GB model with geometry suitable for STEM imaging.

Inevitably, as HAADF-STEM images are 2-D projections of a 3-D structure, much of the

structural information is lost. However, by combining projections from several direc-

tions, it is possible to retrieve the information and reconstruct the 3-D structure. This

is the challenge in tomography, which has found widespread applications in medicine,

physical sciences, biology and engineering. In material science, atomic electron to-

mography (AET) has been used for 3-D determination of the atomic structure in ma-

terials, with successful application to crystals, and defects like stacking faults, disloca-

tions, chemical order/disorder and to determine the shape and chemical structure of

nanoparticles[10, 11, 12, 13, 14, 15]. Similarly to conventional tomography, the resolu-

tion of AET is limited by the number of projection images, and hence, the technique

is most useful when imaging from numerous directions is possible. This is not the

case when studying high-angle grain boundaries in bicrystals, as will be discussed in

more detail in the following chapters. A new method for 3-D reconstruction is therefore

needed.

The atomic structure retrieved by tomographic reconstruction can further be used as

input to theoretical calculations. Calculations from first principles refers to starting

from the very fundamental atomic interactions, with density functional theory (DFT)[16]

being one common method. Computer simulations based on e.g. Monte Carlo (MC)

methods or molecular dynacims (MD)[17] are another approach to investigating ma-

terial properties through simulation of the behaviour of the constituents of the ma-

terial. However, such theoretical calculations rely heavily on average atomic models

extracted from crystallography[15], limiting the performance when defects are present.

An experiment-based initial 3-D model of the material would be valuable, serving as a

suitable starting point for providing more realistic calculation results, going beyond the

average crystallographic models.
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Yttrium-stabilized zirconia (YSZ) is an important ceramic material with applications in

devices for energy storage and conversion. YSZ is commonly used as an electrolyte in

e.g. solid oxide fuel cells and solid-state batteries due to its high ionic conductivity and

low electron conductivity which is essential in an electrolyte material, in combination

with high thermal and chemical stability[18, 19]. The material has therefore been sub-

jected to extensive studies through the last decades, concluding that grain boundaries

within the material play a significant role, strongly affecting the overall performance of

the device. In particular, ionic transport across grain boundaries is reported to be signif-

icantly reduced compared to in the grain interior, an effect attributed to the segregation

of dopant yttrium atoms to the GB region[20, 21]. This phenomenon has gained much

interest, with studies performed to investigate the driving forces behind the segregation

through atomistic simulations[22].

1 nm

Figure 1.1: Atomic resolution HAADF-STEM image of a Σ5{310}/[001] grain boundary in YSZ
along the [001] zone axis. Bright dots are columns of Y and Zr atoms. Image obtained by Bin Feng
at the Crystal Interface Laboratory, University of Tokyo.

Obtaining detailed knowledge of the atomic structure in the GB region is seen as key

to understand and control the properties of a material[23]. The main focus throughout

this thesis is therefore been to establish a method for high-accuracy determination of

the atomic structure in grain boundaries. This will be done through combining the

atomic resolution available in HAADF-STEM imaging with principles from tomography.
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The main objectives are:

1. Development of a method for 3-D tomographic reconstruction of crystal grain

boundaries from HAAADF-STEM images at atomic resolution, including estab-

lishing techniques for preparation of the experimental images

2. Determination of the atomic structure of a Σ5{310}/[001] grain boundary model

in YSZ through application of the developed reconstruction method

3. Write code covering the complete process of grain boundary reconstruction, in-

cluding image preparation, making the developed the method easily accessible

to others.

The Crystal Interface Laboratory, University of Tokyo, is conducting fundamental re-

search on property generating mechanisms in materials, with one area of focus being

the effects from interfaces and defects within ceramics.The work presented in this the-

sis is the first attempt to use tomography for 3-D structural characterization in this re-

search environment. Therefore, the focus throughout the thesis will be on establishing

a general framework for applying this technique in grain boundary research. This work

should provide a future reference on tomographic reconstruction from atomic resolu-

tion images at the Crystal Interface Laboratory.

1.2 Structure of the Report

The outline of the rest of the thesis is as follows. Chapter 2 provides theory and back-

ground on some important topics for understanding the motivation for the work in

this thesis, starting with an introduction to crystals and grain boundaries and their im-

plications for macroscopic material properties. The fundamental principles of STEM

imaging are introduced, with focus on HAADF-STEM and EDX, two techniques that

are employed to obtained the experimental data utilized in this work. In particular,

imaging of crystal lattices and defects is discussed. Thereafter, the concept of tomo-

graphic reconstruction is explained in order to provide the reader with the knowledge

needed to follow the main steps of the reconstruction method that is developed. De-

tails of this method are provided in Chapter 4, with a step-by-step illustration through
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the application on a YZS grain boundary model. In Chapter 5, the final results from the

reconstruction of the grain boundary model is presented, along with an evaluation of

the developed method, commenting on accuracy of the results, current limitations and

possible improvements. Finally, concluding remarks are made in Chapter 6, summariz-

ing the report and highlighting the most important results, before suggestions are given

for further work on the topic of the thesis in Chapter 7.
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Chapter 2

Theory and Background

This chapter is divided into four parts, introducing some central topics of this thesis.

Firstly, a brief introduction to crystallography is given, as the nature of crystal defects

are best explained with respect to the perfect crystal structure. Terminology that will

be useful throughout the thesis is defined. Thereafter, the concept of grain boundaries

is explained and their implications for macroscopic material properties are discussed.

The transmission electron microscopy (TEM) and some techniques for material charac-

terization is described, with emphasis on high-angle annular dark field scanning TEM.

In combination with tomography, this technique can provide atomic resolution struc-

tural information in three dimensions, as will be discussed in the final section. Current

limitations are outlined, demonstrating the need for a new method for 3-D reconstruc-

tion of grain boundaries.

2.1 Crystallography

Much of the following text is based on elements from the work of Kelly in Crystallog-

raphy and Crystal Defects[24] and Kittel in Introduction to Solid State Physics[25]. For

more comprehensive discussion on the topics introduced in the following, the reader is

referred to these texts.

A crystal can be described as a set of atoms (or ions) arranged in a perfectly ordered

7
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periodic structure consisting of several smaller identical units. The primitive unit cell is

the smallest possible unit which can be repeated to cover the whole structure without

overlapping. Each of these units can be related to exactly one point in the Bravais lattice

of the crystal. The Bravais lattice is spanned by the following vector,

~Rhkl = h~a1 +k~a2 + l~a3, (2.1)

meaning that with the origin placed in one point of the lattice, all other points can be

reached by this vector where h, k and l are integers and~ai are the primitive vectors. The

lengths |~ai | are often referred to as the lattice parameters. This way, the Bravais lattice

contains all the crystal lattice points which have identical geometrical surroundings.

With u j , v j and w j being fractions < 1, the primitive unit can be described by a set of

basis coordinate vectors~r j = u j~a1 + v j~a2 +w j~a3, locating all the j constituents of the

unit cell with respect to the associated Bravais lattice point. All atoms in the crystal can

then be reached by the vector ~Rhkl +~r j .

The angles between the primitive vectors are denoted (α,β,γ). Cubic structures have

α = β = γ = 90° and equal length of the primitive vectors |~a1| = |~a2| = |~a3|, simply de-

noted a. Within the cubic crystal system, there are Bravais lattices called simple cubic

(SC), face-centered cubic (FCC) and body-centered (BCC), referring to the placement of

lattice points, as illustrated in Figure 2.1. With different combinations of angles (α,β,γ)

and primitive vector lengths (|~a1|, |~a2|, |~a3|), in 7 different crystal systems can be de-

scribed containing in total 14 different Bravais lattices, see e.g. [24] pp. 26–28 for a

complete overview.

|~a1| = |~a2| = |~a3|
α=β= γ= 90°
CUBIC

Simple Body-centered Face-centered

Figure 2.1: Schematic illustration of the cubic crystal system, 3 of the 14 Bravais lattices, see [24]
pp. 26–28 for a complete overview. Figure adapted from here.
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A lattice plane is denoted by (hkl ), where the integers h, k and l are called Miller in-

dices. By convention, the indices are written in lowest terms, that is, with 1 as greatest

common divisor. The indices refer to the reciprocal of the intersections between the

plane and the three axes spanned out by the primitive vectors ~ai , see Figure 2.2. A neg-

ative index is denoted with a bar above the number. A set of equal planes are denoted

with curly brackets, {hkl }. For instance, the six sides of a SC structure are all equivalent

by symmetry, and would be denoted {100}.

~a1

~a3

~a2
~r1

~r0 = 0

Figure 2.2: A simple cubic (SC) unit cell with basis~r0 = 0 (red atom) and~r1 = 0.5~a1 +0.5~a2 (grey
atom) in a Bravais lattice. Each point in the lattice is filled with a red atom. The indicated plane
cuts the axes at a1 = 0.5, a2 = 0.5 and a3 =∞ with resiprocals 1

a1
= 2, 1

a2
= 2 and 1

a3
= 0. Dividing

by 2 gives the Miller indices h = 1, k = 1 and l = 0.

Directions within the lattice are denoted by vectors [hkl ] which are parallel to ~Rhkl of

Equation (2.1). When viewing a crystal lattice along some specific directions, the atoms

will line up in columns, referring to a row of atoms along the viewing directions. These

directions are termed zone axes of high-symmetry directions. As an example, Figure 2.3

shows an FCC lattice observed in the [100], [110], [111] and [456] directions, with lower

indices resulting in more space between atom columns normal to the view direction.

The interplanar spacing d in a cubic structure with lattice parameter a is given by

d = ap
h2 +k2 + l 2

. (2.2)

The angle φ between two planes can be found from the dot product of the normalized
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Figure 2.3: An FCC lattice observed in the high-symmetry directions [100], [110], [111] and [456],
from left to right, showing how low-index orientations have a bigger distance between atom
columns normal to the view direction.

normal vectors, n̂1 and n̂2, as given by

cosφ= n̂1 · n̂2 = h1h2 +k1k2 + l1l2√
h2

1 +k2
1 + l 2

1

√
h2

2 +k2
2 + l 2

2

. (2.3)

2.2 Grain Boundaries in a Polycrystalline Material

A polycrystalline material is an aggregate of several single crystals, or grains, of differ-

ent size and orientation. Sizes can vary from a few nanometers to several millimeters[6].

The region between these crystals is called the grain boundary (GB). This region is in-

teresting because it has important ramifications for the macroscopic properties of the

material, whether it is metallic, intermetallic or ceramic[26]. For example, GB resistiv-

ity is observed to be at least one order of magnitude larger than in the bulk in some

ceramics[21]. Furthermore, mechanical characteristic like deformation resistance[27]

and crack propagation[28] is thought to be directly linked to the specific structure and

type of bonding in the GB region. Studies have shown a close relation between the GB

structure and ionic conductivity[29] and with thermal stability[30]. In the design and

development of new high performance materials, one seeks to tailor the type of grain

boundaries occurring in order to control the macroscopic properties. To achieve this,

fundamental knowledge about the GB effects is essential, which is the reason why this

has been extensively studied by researchers during the past century[6].
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2.2.1 Grain Boundary Characterization

Grain boundaries can be divided into categories depending on the misorientation an-

gle between the two adjacent grains. The main types are the tilt GB and the twist GB,

for which the rotation axis is parallel and perpendicular to the GB plane, respectively, as

illustrated in Figure 2.4. In nature, a mix of the two types is the most common. Consid-

ering whether the misorientation angle is below or above about 15°, the grain boundary

is said to be a low-angle or high-angle grain boundary (LAGB or HAGB). For HAGBs,

some specific angles lead to atomically well-matched grain boundaries with low inter-

facial energy, making them particularly stable[31]. These grain boundaries occur when

the grains are rotated so that some lattice sites overlap, forming a bigger coincidence site

lattice (CSL)[32]. They are therefore referred to as CSL grain boundaries. The GB atoms

form a periodic pattern of so-called GB units. Figure 2.5((a)-(d)) shows some examples

of symmetric tilt HAGBs with GB units indicated by overlaid atoms. In 2.5(e), a LAGB

with 2θ = 5° is shown. A periodic array of dislocations are formed to compensate for the

strain induced by the misorientation, but no characteristic GB units are formed as for

the HAGB.

2θ

(a)

2θ

(b)

Figure 2.4: Illustration of how crystal grains are combined in a (a) tilt and (b) twist grain boundary
with misorientation angle 2θ. The rotation axis is parallel and normal to the GB plane (blue),
respectively.

The Σ value of a CSL GB is defined as the ratio of the total number of lattice sites to

the number of coincidence sites, as illustrated in Figure 2.6. A low Σ value is therefore

corresponding to a GB with a high number of common lattice sites, or common atoms.

An LAGB is Σ1, as all atom sites in the GB are shared. It should be noted that the CSL

theory is a simplified geometrical description. In reality, if it is energetically favorable,
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a b c d e

Figure 2.5: Examples of symmetric tilt HAGBs and LAGB in yttrium-stabilized zirconia (YSZ).
(a)- (d) are HAADF-STEM images of CSL HAGBs with 2 GB units indicated by overlayed atoms,
Σ5{310}/[001] GB, Σ5{210}/[001]/ GB, Σ9{221}/[110] GB and Σ{510}/[001] GB, respectively. (e) is
a HRTEM image of a 2θ = 5° LAGB with dislocations indicated by arrows appearing periodically
along the GB plane. Scale bars are 1 nm. Images are reprinted with permission from [33] ((a)- (d))
and [34] ((e)).

relaxation mechanisms will lead to rearrangement of the GB atoms[31].

For a symmetric pure tilt GB, the orientation of the crystals are equal, only mirrored

about the GB plane. In this case, when referring to a specific GB geometry, it is com-

mon to specify the Σ value, the tilt axis (rotation axis in Figure 2.4) and the GB plane. As

an example, a symmetric tilt Σ5{310}/[001] in a cubic crystal structure has a GB plane

with Miller indices 3,1 and 0, and the tilt axis [001] is parallel to the third primitive vec-

tor ~a3. The misorientation angle can be found from Equation (2.3) with n̂1 = [310] and

n̂2 = [31̄0] as normal vectors to the GB plane in each grain, giving 2θ = 36.87°.

2.2.2 Yttrium Stabilized Zirconia

For the electrolyte in electrochemical ceramic devices such as solid oxide fuel and elec-

trolyser cells (SOCs), high ionic conductivity and electrical resistivity are important fea-

tures determining the overall performance of the device. One widely used material that

fits these characteristics is Yttrium-stabilized cubic Zirconia (YSZ)[18].

At room temperature, pure zirconia is stable in a monoclinic phase. At elevated tem-
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yβ

xβ

xα

yα

Figure 2.6: Illustration of the Σ notation. In this pure twist GB, lattice β is rotated an angle 2θ =
36.87° with respect to lattice α about the tilt axis normal to the paper plane. The blue square
contains 25 lattice sites from each lattice, 5 of which are overlapping (marked with blue circles).
This gives a ratio of 5 and therefore a Σ5 CSL GB. Figure adapted from [31].

peratures, transitions into tetragonal (1170°) and cubic (2350°) phases are observed,

accompanied by significant volume changes[35]. To avoid this behaviour, zirconia can

be stabilized in its cubic phase by adding covalent or trivalent dopant atoms before

cooling it down to room temperature. For zirconia to be used in SOFs, yttria (Y2O3) is

the most widespread choice[19]. Yttrium ions (Y3+) substitutionally replace zirconium

ions (Zr4+) in the cation lattice, as illustrated in Figure 2.7. In this process, oxygen va-

cancies VO of O2− are generated to maintain charge neutrality, one per two Y3+. These

oxygen vacancies are the key factor facilitating the oxygen ion conductivity in YSZ[36].

In Kröger-Vink notation[37], the reaction is written

Y2O3 2 Y′
Zr + VO + 3 O×

O. (2.4)

Here, Y′
Zr denotes an Y atom in a Zr lattice site with a single negative charge, VO is an

oxygen vacancy with double positive charge while O×
O are O atoms in O lattice sites with

a neutral charge. Consequently, YSZ has a cubic fluorite structure, with the cations

(Zr4+ and Y3+) forming a face-centered cubic (FCC) lattice, while the anions (O or VO)

occupy all tetrahedral sites. In the notation established above, this corresponds to an
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FCC Bravais lattice with basis of one cation at~r1 = 0 and one anion at~r2 = a
[ 1

4
1
4

1
4

]
and

~r3 =−a
[ 1

4
1
4

1
4

]
.

Figure 2.7: Adding Yttria (Y2O3) to Zirconia (ZrO2) stabilizes the cubic structure. Dopant atoms
substitutionally replace Zr in the cation lattice. Oxygen vacancies are introduced to maintain
charge neutrality, facilitating oxygen ion conductivity.

Grain Boundary Segregation

A grain boundary is an extended structural defect, creating a difference in the stan-

dard chemical potential between the dislocation core and the bulk (grain interior). This

gives rise to the phenomena called grain boundary segregation (GBS), referring to how

dopant atoms tend to move towards the GB region in some GB types. An example of

direct observation by EDX of yttrium segregation to the GB in YSZ is shown in Figure

2.8, as reported by Feng et. al. in [38]. The oxygen vacancy distribution is found to also

be affected, and as this is the key parameter permitting ionic transport within the mate-

rial, GBS has great implications for YSZ as an electrolyte material[33, 39]. As the macro-

scopic geometry of the GB is found to directly affect the segregation process, detailed

knowledge about the 3-D structure in the GB region is essential to fully understand the

segregation behavior and its influence on properties in zirconia ceramics[34].

2.2.3 Theoretical Calculations

To understand the nature of a grain boundary, one must study the collective behavior of

the atoms in the near-GB region. The atom-atom interactions determine both atomic

structure and physical properties of a material, e.g. how atoms in a crystalline mate-

rial prefer to arrange themselves in particular highly regular grids, or the creation of

periodic dislocations to compensate for internal strain. A general approach is to create

a simple analytic function describing the potential energy of a set of atoms N atoms,
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Figure 2.8: EDX maps from a Σ3{111}/[110] GB in YZS, showing (a) the Zr K map and (b) the Y
K map. The GB is indicated by the arrow. The intensities are homogeneous in the bulk region,
showing that the Y3+ are homogeneously distributed. For the GB region, the Y intensity increases
while Zr intensity decreases, indicating GB segregation. Figure reprinted from [38] with permis-
sion (Supplementary Figure 1).

V (r1,r2, ...,rN ). The force ~fi on an atom i is then given by the negative derivative of this

potential with respect to its position[40],

~fi =−∂V (r1...,rN )

∂~ri
. (2.5)

The parameters of this potential function can be estimated either from analysis of suit-

able experimental data or from first principles simulations.

Calculations from first principles or ab inito refer to starting from the very fundamen-

tal interatomic interactions. A rigorous treatment of an atom-atom interaction involves

considerations of the quantum mechanical motion and interaction of electrons, and

should consequently be based on a solution of Shrödinger’s equation describing the

time-evolution of a physical system. Among the first principles methods is density

functional theory (DFT)[16] in which the electron density is modelled by functionals.

Such calculations are very computationally demanding, and are in practice feasible

only for systems consisting of a relatively small amount of atoms. Still, is it important to

appreciate how this theory provides the basis for constructing simplified, but efficient

models needed for investigating large-scale problems.

Given a model of the interatomic potentials, bulk properties of a material or surface and

dislocation phenomena can be simulated. In atomistic simulations based on Monte
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Carlo (MC) methods, one seeks to mimic the random nature of a collection of interact-

ing atoms in thermal equilibrium, as described by Bolztmann’s statistics[41]. This de-

scribes the probability of finding a system in a specific state or configuration depending

on its energy. Random moves are suggested, and the acceptance probability P depends

in the resulting change in total energy ∆Etot of the atom configuration[22],

P =


1 ∆Etot < 0

exp
(
− ∆Etot

kB T

)
∆Etot ≥ 0,

(2.6)

where kB is Boltzmann’s constant and T is the system temperature. While the Monte

Carlo methods create artificial trajectories, molecular dynamics (MD) tries to simulate

"true" dynamics, in principle by numerical integration of Newton’s third law relating

the force ~fi on an atom of mass m to the resulting acceleration ~ai in the familiar equa-

tion ~fi = m~ai , all while maintaining energy conservation[17].

Atomistic simulation has proven useful in studying the grain boundary segregation phe-

nomena by investigating the driving forces and identifying energetically favorable spa-

tial configurations. Through simulations with MC[42] or an MC-MD combination[43]

for a symmetric tilt Σ5{310}[001] GB model in YSZ, dopant Y atoms are found so segre-

gate preferentially to specific GB sites. Such findings can be further supported if experi-

mental data from the same structure is available. For the results to be directly compara-

ble to experiments, however, it is important that the exact same structure is considered.

The choice of GB to study is often one of the geometrically simple CSL GBs introduced

earlier, as these contain a repeating pattern of dislocations so that calculations over only

one of the units is necessary, hence confining the problem to a relatively small region. A

small structure cell is essential in theoretical calculations to reduce the computational

cost. In addition, periodic boundary conditions can be constructed, removing the ef-

fect of artificial surfaces otherwise affecting the calculation results[17].

In all of the techniques discussed so far, an initial model resembling a realistic GB con-

figuration is essential. The routine approach is to manually rotate, cut and paste to-
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gether to grains, each with an ideal lattice structure resembling the bulk of the material

one wishes to study (see e.g. [44, 43, 38, 34, 42]). Subsequently, rigid body translations

are performed, i.e. adjusting the relative position of the grains, and atoms that end

up too close are deleted. After this, the most likely position of each individual atom

is calculated by minimizing the total structure energy. A variety of options for energy

minimization algorithms exits, including static lattice calculations, genetic algorithms

or simulated annealing (see e.g. [17]). The success of this step, and hence all the follow-

ing simulation results, depends on a good initial structure. Ideally, an initial structure

should be obtained directly from experimental images, as this would make calculation

results directly comparable to experimental observations.

2.3 Transmission Electron Microscopy

A transmission electron microscope (TEM) makes use of the dual particle-wave behav-

ior of electrons to generate images, diffraction patterns and different kinds of spec-

tra from a specimen, providing high-resolution structural and analytical information.

With its versatility and atomic resolution available for some operational modes, TEM

has become an indispensible tool in material science, condensed matter physics and

engineering[8]. In this section, the physical concepts behind the microscope are dis-

cussed, with focus on high-angle annular dark-field scanning TEM (HAADF-STEM).

2.3.1 The Transmission Electron Microscope

Much of this section is based on the book "Transmission Electron Microscopy" by Williams

and Carter[45]. Citations are omitted in this section for readability.

In some ways, a TEM can be compared to the familiar optical microscope, as many

of the principles they operate through are similar. The ultimate goal is the same; to

achieve a clear image of the object being investigated. There are however some im-

portant differences, making the TEM much more complex and versatile. In the optical

microscope, visible light is directed through curved glass lenses, which focus the light

by means of refraction. In TEM, electrons are used in stead of light, and the focusing
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is done by electromagnetic coils creating a magnetic field interacting with the charged

electrons by means of the magnetic Lorenz force. Another main characteristic of the

TEM lies in the word transmission. The electrons forming the image is transmitted

through, instead of reflected by, the specimen. The electrons simultaneously display

both wave and particle characteristics when interacting with the sample, generating a

variety of signals that can reveal information about the structure and chemical com-

position of the sample at hand. The concept of matter behaving like waves was first

proposed by Louis de Broglie in 1924. The wavelength λ and the momentum p of a

massive particle are related by the Planck constant h as follows,

λ= h

p
. (2.7)

Inside the TEM, the electron is accelerated by a voltage V , giving it a kinetic energy

Ek = eV where e is the elementary charge. At operation voltages above 100 kV, the speed

of the electrons is more than half the speed of light. Therefore, relativistic effects must

be taken into account. The total energy E of the particle can be expressed in terms of

its momentum p, its rest mass m0 and the speed of light c,

E =
√

p2c2 +m2
oc4. (2.8)

The total energy can also be expressed as the kinetic energy plus the rest energy,

Ek = E −m0c2. (2.9)

Combining this with Equation (2.7), we get the following expression relating the applied

voltage V with the wavelength of the electron,

λ= h[
2m0Ek

(
1+ Ek

2m0c2

)]1/2
. (2.10)

Similarly to the image resolution of an optical microscope, which is limited by the wave-

length of visible light as stated by the classic Rayleigh criteria, the wavelength associated

with the high-energy electrons is the limiting factor for the resolution in TEM. There-
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fore, a similar criteria exists for the theoretically best resolution δ achievable using elec-

trons, stated in terms of the associated wavelength as follows[46],

δ≈ 1.22λ

β
, (2.11)

where β is the semi-angle of collection of the magnifying lens. However, an imper-

fect electron source leads to a spread in the energy of the emitted electrons, leading

to a resolution lower than what is promised by Equation (2.11). Furthermore, intrinsic

imperfections of lenses gives rise to chromatic and spherical aberrations, with names

referring to the analogy with aberrations in optical lenses. The effects of imperfections

in the electron source can be reduced by energy filtering, and apertures reducing the

width of the beam can be used to partly compensate for the poor lenses. Moreover, with

the recent development of special lenses correcting the aberration, sub-Ångström reso-

lution is now routinely available. The current record for spacial resolution is 40.5 pm[9],

achieved by Morishita et. al. with a 300 kV aberration corrected STEM.

2.3.2 Image Formation in STEM

Developed by Crewe and coworkers[47], scanning TEM (STEM) is a special TEM oper-

ation mode where a focused electron beam, or probe, is scanned across the sample in

a line-by-line, pixel-by-pixel manner, dwelling a millisecond or two at each site. This

gives a serial data acquisition, as opposed to in conventional TEM, where a station-

ary parallel beam illuminates the sample. In state-of-the-art instruments, the electron

probe can have atomic-scale dimensions, wich is part of what enables the high spatial

resolution[48]. The STEM operation mode gives rise to a wide range of signals. Figure

2.9 summarizes the most important signals providing information on the sample chem-

istry and structure. Spectroscopic images can be formed by measuring energy loss in

the transmitted electrons (electron energy loss spectroscopy (EELS)[49]) or by register-

ing the characteristic X-rays emitted from the sample (energy-dispersive X-ray spec-

troscopy (EDX), demonstrated at atomic resolution in [50]). These techniques enables

the electron configuration of the constituent elements and chemical composition of the

sample or to be revealed. Either way, the scanning technique with a focused probe in

STEM provides a straight-forward way to relate the measured signal to specific sites in
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the specimen.

α

Specimen

Transmitted
electrons

Annular 
detector

Incident electron probe

Characteristic X-rays

β1

β2

Backscattered electrons

Secondary electrons

Auger electrons

Visible photons

Bremsstrahlung X-rays

Figure 2.9: Some of the signals generated in STEM. α is the probe-forming aperture semi-angle,
while β1 and β2 are inner and outer detector angles, respectively. Figures combined and adapted
from [45] p. 7 and p. 380.

Electron scattering refers to how the negatively charges electron may be deflected by

electrons or the nucleus of atoms in the specimen[45]. The scattered electron beam

might be coherent or incoherent, depending on the nature of the electron-specimen

interaction. Annular detectors of with specific inner and outer angles (β1 and β2 in

Figure 2.9, respectively) can be used to selectively detect parts of the signal. Typi-

cal ranges of detector angles are 0–10 mrad for bright field (BF), 10–50 mrad for an-

nular dark field (ADF) and above 50 mrad for high-angle (HA)ADF detectors[45]. For

BF imaging, mainly coherently scattered electrons are detected, resulting in so-called

phase-contrast images, where the contrast is dependent on the phase associated with

the wave function of the electrons in the beam[48]. The wave functions might inter-

fere, leading to an unintuitive image contrast that must be interpreted by means of

simulation[51]. The idea of leaving the coherently scattered electrons and only collect

incoherently scattered electrons at higher angles was proposed by Howie[52], leading

to the development of the high-angle annular detector. With a HAADF detector, the

image is formed by mainly collecting the electrons scattered incoherently (Rutherford

scattering and thermal diffuse scattering (TDS)). The result, a so-called Z-contrast im-

age, is highly sensitive to the atomic number of the atoms in the sample[53]. Unlike in
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phase-contrast imaging, this technique provides an intuitively interpretable image, as

no reversals in image contrast occur[54].

The probability that an electron is scattered through an angle θ into a solid angle dΩ

depends on the scattering cross-section of the atoms it encounters. The Rutherford scat-

tering cross-section is defined as follows[45],

σR (θ) = Z 2λ4
R

64π4a4
0

dΩ(
sin2

(
θ
2

)
+ θ2

0
4

) (2.12)

Here, Z is the atomic number of the scattering species. Relativistic effects are taken into

account by using the relativistic wavelength of the electron λR and the Bohr radius a0

(≈ 0.0529nm). With E0 as the electron energy in keV, θ0 = 0.117Z 1/3p
E0

describes how the

negative electron cloud screens the positively charged nucleus. If the scattering angle

is higher than θ0, the electron-electron interaction can be neglected. In that case, the

Rutherford cross-section, and hence its contribution to the intensity of the signal I , is

proportional to Z 2, as seen in the equation above. At lower angles, where the screening

of the nucleus can not be neglected, the intensity dependency ranges from Z 2 down

to Z 3/2[55]. While the Rutherford scattering does not sufficiently describe the wave-

nature of the electron beam, which is relevant for the signal intensity at low angles, it is

useful when considering high-angle scattering. Equation (2.12) is however only valid at

operating voltages lower than 300–400 keV and for lighter elements (Z < 30)[45].

In addition to Rutherford scattering, thermal diffuse scattering (TDS) (electrons scat-

tered by phonons) also contributes to the intensity in a Z-contrast image[8]. This scat-

tering depends on the Debye-Waller factor, varying with atom species as well as struc-

ture configuration[56, 57]. The relation between signal intensity and atomic number

is therefore better described by I ∝ Zγ where γ is a factor that depends on the ob-

served sample, but also on the specific experimental conditions. As an example, with

24.5 mrad probe semi-angle, 24.5 pA probe current and HAADF detector range of 54–

270 mrad, the atomic column intensity is approximately proportional to Z 1.7[58].
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The incoherent image formation in HAADF-STEM can be modelled as follows. With the

STEM probe at position~ri , j = [xi , y j ], the expected image intensity fi , j in the pixel (i , j )

can be written mathematically as a convolution between an object function, represent-

ing the crystal lattice of the specimen, and the probe intensity function as follows[53],

fi , j (ρ) = f (~ri , j ;ρ) =O(~ri , j ;ρ)∗P (~ri , j ) (2.13)

Here, O(~ri , j ;ρ) is the object function, which depends on the structure parameters ζ,

and P (~ri , j ) the probe intensity function. The crystal lattice can be modelled as a su-

perposition of Gaussian peaks, one for each atom column, giving the following object

function,

O(~ri , j ;ρ) = κ+
M∑

m=1

Am

2πσxmσym

e
−
(

(x−µxm )2

2σ2
xm

+ (y−µym )2

2σ2
ym

)
. (2.14)

Hence, the unknown structure parameters denoted by ζ are the amplitudes Am ,standard

deviations (σxm ,σym ) and the peak centers (µxm , µym ) corresponding to atomic column

positions. κ is a constant background. The probe intensity P (~ri , j ) depends on probe

parameters like the acceleration voltage, aberration coefficients, defocus and the ob-

jective aperture semi-angle.

With this incoherent imaging model, there is no interference between electron waves

scattered from different atoms or atomic columns. The intensity in each column can

therefore be interpreted separately, allowing for quantitative image analysis methods.

This assumes a strong channeling effect, referring to how the electrons in the beam are

thought to propagate through the sample. When the probe is located above an atom

column it "channels" down the column, leading to a peak in the signal intensity at

this position. When located between columns, the beam spreads, leading to a reduced

intensity[59]. This has proven to be a safe assumption in zone-axes directions where the

atom column distance is sufficiently big. However, if so-called cross-talk is present, the

intensity in one column is no longer independent of the intensity of others. While the

channeling usually ensures that the probe is focused along one atom column at a time,

some intensity might be transferred to neighboring columns in thicher samples, or for a

higher-index zone axis where atomic columns are too close[48]. As an example, in [60],
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Van Aert et. al. use multi-slice image simulations[55] to investigate the phenomenon in

aluminum. They show that the assumption of independent column intensities is valid

for two low-index zone axis, [100] and [101̄], up to a sample thickness of about 50 nm,

while cross-talk was notable even at 10 nm for zone axis [411].

Random Noise

The deviation from the theoretically expected image intensity described by Equation

(2.13) can be described approximately by the addition of a stochastic function to the

object function. By doing so, the noise is assumed to be additive. This can be done only

if the noise is independent of the expected signal. This is a valid assumption for the so-

called shot noise, originating from fluctuations in the electron beam due to the random

nature of electrons.[61]. The number of electrons N hitting a specific area during the

time T follows the Poisson distribution with a standard deviation of nearly
p

N A better

signal-to-noise ratio (SNR) can therefore be achieved by averaging over many images of

the same object.

Image Distortions

The sequential pixel-by-pixel image acquisition technique of STEM provides an intu-

itive image interpretation. However, in combination with atomic scale magnification,

the price to pay is a high sensitivity to movements of the sample, as induced by dis-

turbances in the instrument or the environment like mechanical or acoustic vibrations

or electromagnetic interference[62]. If these factors result in sample drift, the recorded

image may appear stretched or skewed, and therefore exhibiting unreliable lattice pa-

rameters. In the case of a constant or sufficiently slowly varying drift rate1, simple ge-

ometric considerations might be used to compensate for the drift, e.g. by the use of an

Affine transformation estimated from the similarity between the distorted image and

reference image generated from a priori knowledge of the sample[64]. Details of this

technique is found in Appendix A. This is similar to what is done in [65], where a poly-

nomial warping of a distorted HAADF-STEM image is estimated from a quantitative

high-resolution TEM (HRTEM) image of the same sample area. If the drift rate is not

1Drift rate change ≈< 0.005Hz is sufficiently slow, according to [63]
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continuous, non-rigid registration must be considered, see e.g. [63, 58]. A slow scan

(longer total frame time) makes the sample drift distortions more prominent, hence, a

fast scan is desirable.

2.4 Tomography

Over the last 50 years, 3-D reconstruction from projections is a problem that has gained

interest in a large variety of scientific fields. One important version of the problem

is found in medicine, where the emergence of computed tomography (CT) has revo-

lutionized the field of diagnostic radiology since its development began in the early

1970’s[66]. In a CT scan, multiple X-ray projection images are made, from which the

density distribution within the human body is obtained. The same fundamental re-

construction process has been utilized in many fields within medicine, as well as in

science and engineering. The resolution of X-ray tomography is however limited by the

wave-length of the X-rays. In combination with poor lenses, the resolution has never ex-

ceeded 2µm[67]. However, tomographic reconstruction at atomic resolution is under

development using HAADF-STEM, providing new applications in 3-D material char-

acterization. In this section, the mathematical background of tomography and tomo-

graphic reconstruction is introduced, along with examples of its application in material

structure characterization.

2.4.1 Tomographic Imaging and Reconstruction

The main challenge of tomographic reconstruction is to obtain an estimate of the den-

sity distribution within an object based on a finite number of projections. Johann Radon

laid the mathematical foundation for tomographic imaging already in 1917[68], intro-

ducing what is later known as the Radon transform R. If a function f (x, y) represents the

intensity distribution in an image, the Radon transform of the image would correspond

to projections, or line integrals across the image from all directions, along all possible

lines L with unit length d s,

R f =
∫

L
f (x, y)ds. (2.15)

The inverse Radon transformation would bring back the original image. However, it is
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evident that in practice, the experimental projections of the object will be discrete, and

so forth the reconstruction ends up imperfect. Aim of tomographic reconstruction is

therefore to provide the best possible estimation of the original image from the limited

information available[66].

The geometry of the problem is illustrated in Figure 2.10, giving the following relation

for a line traversing the imaged object through the coordinates (x, y) at an angle θ and

distance s from the origin,

s = x cosθ+ y sinθ. (2.16)

From this, we can find the following expression for the projection line,

y(x; s,θ) =−x cotθ+ s

sinθ
. (2.17)

The projection p(s,θ) gives the value of the line integral of the object density distribu-

tion function f (x, y) along this line.

y

x

s

θ

f(x,y)

Figure 2.10: Visualization of the Radon transform. The function f (x, y) represents the density
distribution within the object. The gray area illustrates the values of the line integrals of the object
in the direction normal to s. The line integrals for all possible lines at all angles θ gives the Radon
transform R f . Figure inspired by [67] p. 416.

Direct Back-Projection

All available tomographic reconstruction algorithms are in some sense approximations

of the inverse Radon transform. As a first guess, we can do nothing better than assuming

that the density distribution f (x, y) is evenly distributed across the object. This is called
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direct back-projection (DBP). Given that the beam enters the object at t1 and exits at t2,

this is given as

g (x, y ; s,θ) = p(s,θ)

t2 − t1
. (2.18)

Doing the back-projection for all values of x, y , s and θ, we obtain the direct back-

projected image g , a smeared-out version of the original image. Figure 2.11 shows this

approach being applied to a simple phantom image directly available in Matlab. 180

projections are made with 1° increments. The collection of projections is called a sino-

gram, shown in Figure 2.11b, where one vertical column of pixels corresponds to one

projection. The resulting DPB image appears blurry, but features of the original im-

age are visible. Further on, several methods exist to improve the reconstruction result,

depending on the application. One option is to filter the projected data prior to recon-

struction, yielding so-called filtered back-projection (FBP) (see e.g. [69]).

(a) Original image (b) Sinogram (c) DBP image

Figure 2.11: Illustration of direct back-projection (DBP). Units of all axes are pixels. The original
image in (a) is a phantom image available in Matlab. (b) shows the sinogram, where each vertical
column of pixels corresponds to one projection of the original image, one for each projection
angle. Each pixel in one vertical column can be interpreted as the integral of the image along one
projection "ray", illustrated by stippled lined in Figure 2.10 for one angle θ. The result of direct
back-projection is shown in (c), appearing as a blurry version of the original image.

Iterative Reconstruction Algorithms

Tomographic reconstruction can be described mathematically as the reconstruction of

an object x from its 2-D projections b, acquired by a projection operator A. An iterative
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tomographic reconstruction method is then based on solving the following least-square

minimization problem by incremental improvements,

x̂ = argmin
x

∥∥Ax −b
∥∥2

2 , (2.19)

where ‖u‖2 = (Σi u2
i )1/2 is the l2-norm of u. Starting with an initial 3-D reconstruc-

tion x1, a 2-D re-projection Ax1 is made, and compared to the original 2-D projec-

tion images b. The difference is called the projection error, and solving the problem

stated in Equation (2.19) corresponds to minimizing this error. Examples of common

algorithms that implement this in different ways are the simultaneous iterative recon-

struction technique (SIRT)[70], the algebraic reconstruction technique (ART)[71] and

its variant the simultaneous ART (SART)[72]. When the available projection data is

noisy or limited, either in terms of number of projections or projection angle range,

these iterative reconstruction algoritms have proven more suitable than the simple FBP[10].

3-D Tomography

A tomographic tilt series is obtained by rotating the sample about one or more rotation

axes2 and obtaining a series of 2-D projection images normal to these axes. If a sin-

gle axis geometry is used, that is, projections are made while rotating the object about

one axis only, the mathematical reconstruction problem reduces to a set of two- di-

mensional ones. The reconstruction can then be done in slices which are normal to the

rotation axis (see e.g. [73]).

The Projection Criterion

Images obtained with a conventional visible light camera will have intensities depend-

ing on the surface of the imaged object, making them unsuitable for tomographic re-

construction. In order for 3-D reconstruction to be feasible, the images must contain

information on the object interior as well. This is known as the projection criterion. This

is the case in X-ray tomography, where the image intensity is proportional to the sample

density and thickness. In ADF-STEM imaging, the contribution of an atom to the image

2Tilt axis is the common term for this - however, since this word is used earlier in this report to denote the
orientation of grains in a grain boundary, the word rotation axis will instead be used.
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intensity is proportional to Zγ. To a first approximation, the image intensity is therefore

proportional to an integral of Zγ through the sample along the beam direction[74]. In

both cases, the resulting image is a 2-D projection of the object at hand, meaning that

both techniques are well-suited for 3-D reconstruction.

2.4.2 Tomography for 3-D Material Characterization

Several different techniques have been reported to give a successful tomographic re-

construction of crystal structures at the atomic scale. In particular, the atomic arrange-

ment in nanoparticles has been widely studied, as their small size (in the nm range)

makes them suitable from STEM observation from multiple directions. This has lead to

the development of several approaches aiming for atom-by-atom structure determina-

tion. The method most similar to conventional tomography is termed atomic election

tomography (AET), requiring a high number of projections over an as wide as possible

range. In [11], a gold nanoparticle with a diameter of 10 nm was reconstructed from

55 projections, overcoming the missing wedge-problem in the data sampling through

equally sloped tomography (EST)[75]. Not all atoms could be resolved, but information

about lattice parameters and grain orientation could be obtained. A similar approach

was used 13 years later, when Yang et. al. reconstructed a 8.4 nm FePt nanoparticle

using 68 ADF-STEM images over a tilt range from −65.6° to 64.0°[15]. The generalized

Fourier iterative reconstruction (GENFIRE)[76] algorithm was used, iterating between

real and Fourier space while enforcing physical constraints like a tight particle bound-

ary. This is found to tackle the missing wedge-problem well. The big difference in the

atomic number of Fe (ZFe = 26) and Pt (ZPt = 78) leas to a big difference in intensity in

the ADF-STEM images, making it possible to distinguish the atom types. This approach

could not be applied to e.g. YSZ, as the atomic numbers ZZr = 40 and ZY = 39 leads to

too little difference in image contrast for Zr and Y atoms.

While AET requires a high number of projections, other techniques are developed that

utilize only a very few high-symmetry zone axis projections. In [14], Goris et. al. uses a

method based on compressed sensing (CS) for reconstruction of a gold nanorod from

only four zone-axis projections. Compressed sensing electron tomography (CS-ET),



2.4. TOMOGRAPHY 29

which yields a sparse reconstruction with typically few nonzero elements, is described

more in detail in [77]. Discrete tomography (DT) for electron tomography was devel-

oped and applied to a simulated gold nanoarticle in [78], giving an atomic resolution

reconstruction from only 3 projection images. DT deals with the challenge of recon-

structing images containing only a few pixel values[79, 80]. Algorithms are often highly

problem-specific, designed to take into account as much prior knowledge as possible.

Therefore, far fewer projections are needed, compared to conventional tomography.

DT was also utilized in [60] for a real silver nanoparticle (diameter 3 nm) within an

aluminum matrix from only two projections. The number of atoms in each column is

counted based on the intensity of the HAADF-STEM image, before a DT algorithm is

applied to find the most likely arrangement of the atoms. In this approach, all atoms

are assumed to fit rigidly on a pre-determined crystal lattice. While this may be a good

assumption for a particle embedded in a supporting matrix, the method would fail to

reconstruct possible structural deviations for a free-standing particle. Moreover, for the

atom counting to work, a simple relation between image intensity and sample density

is required. This is not always the case, e.g. near crystal defects[81, 23].

Image Alignment

Good alignment of the projection images in the tilt series is crucial for achieving an

accurate 3-D reconstruction. In electron tomography, one conventional alignment ap-

proach is based on fiducial markers[82, 67]. High contrast particles such as colloidal

gold beads are fixed within the field of view together with the sample of interest, creat-

ing a reference throughout the data set for translational alignment as well as for correct-

ing image rotation or magnification change that might be present in the tilt series. This

method can however not achieve atomic precision due to the size of the markers[11].

Another common method is based on cross-correlation between consecutive projec-

tion images[83]. When applied to already rotationally aligned images, this process is

straight-forward. First, the change of scale normal to the tilt axis is adjusted for, based

on the known difference in image acquisition angle (tilt). Then, the potential rela-
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tive translation simply corresponds to the peak of the cross-correlation function be-

tween the two images, indicating the highest similarity. The process is repeated for each

pair of consecutive images. This method does however require a dense tilt series with

small difference in acquisition angle, so that consecutive projection images are similar

enough for the 2-D cross-correlation to give a meaningful result.

In [11], another approach for image alignment is implemented, based on the fact that

the center of mass in all projection images should coincide with that of the 3-D imaged

object. This method is also employed in [14] for a gold nanorod. This would however

not work unless the boundary of the object is contained within each projection image,

as for small nanoparticles.

None of the methods discussed here would provide more than a coarse initial align-

ment, which should futher be adjusted. This can be done iteratively by aligning the

images to re-projections of the reconstructed structure[10].



Chapter 3

Experimental Data

In Chapter 4, the 3-D reconstruction method will be explained and demonstrated by

applying it to HAADF-STEM images of a symmetric tiltΣ5{310}/[001] grain boundary in

yttria-stabilized cubic zirconia (YSZ). In this chapter, it is therefore explained how the

sample was prepared and how the experimental images were obtained. This work was

performed by Bin Feng and Ryo Ishikawa, assistant professors at the Crystal Interface

Laboratory at the University of Tokyo. In the following, the details of the experimental

method are presented to give the reader a complete overview. The experimental images

presented in the final section are the starting for the 3-D reconstruction. A clear idea

about the sample geometry and how the images were obtained is important, as this is

key to how we can interpret the final reconstruction results.

3.1 The Bicrystal Model

In ceramic material research, the fabrication of bicrystals is a common way to design

grain boundary models with a specific geometry. Two single crystals are carefully cut

and joined, e.g. by diffusion bonding[84], creating a well-bonded artificial grain bound-

ary. The process is illustrated in Figure 3.1. This enables systematic studies relating the

grain boundary properties to its geometry, and results can be compared to previous re-

search in a more direct manner. When high-angle GBs are studied, the CSL GBs are a

common choice as these provide a clearly defined GB structure. For atomic resolution

31
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STEM observation, pure tilt GBs are the most suitable. The bicrystal method has been

applied in several studies, see e.g. [85, 86, 87, 34, 38, 88].

[100]
θ

[100]θ

Heat

Figure 3.1: Illustration of the bicrystal method, creating a symmetric tiltΣ5{310}/[001] GB model.
Two single crystals are rotated about the [001] tilt axis, 2θ = 36.8°, and cut at a {310} plane. During
diffusion bonding at high temperature, the GB atoms will rearrange to lower the interface energy.

To obtain good experimental images, the crystal must be observed in high-symmetry

directions so that atom columns are clearly distinguishable. The GB plane must be

observed edge-on to avoid overlap of the two sides of the bicrystal in the projection

images, as illustrated in Figure 3.2. The included table lists the crystal orientations for

which images were obtained, along with corresponding rotation angle about the [310]

axis normal to the GB plane.

3.2 Experimental Images and Details

3.2.0.1 Sample Preparation

The YSZ bicrystal studied in this thesis was fabricated by joining two single crystals of

composition ZrO2- 9.6 mol% Y2O3 at 1600 ◦C for 15 hours in air. From this, TEM sam-

Direction Rotation angle β
[001] 0°
[13̄4] 38.3°
[13̄2] 57.7°
[13̄0] 90°

[001]

[310]

[13x]

[130]

{310}  
grain boundary plane

 β

rotation axis

[310]

Figure 3.2 & Table 3.0: The bicrystal containing the GB model is rotated about the [310] axis and
observed in four high-symmetry directions, always edge-on the {310} GB plane .
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ples were prepared by first cutting thin slices of the bicrystal, so that the surface normal

align with the desired observation direction. The samples were further thinned by me-

chanical polishing and Ar-ion beam milling, creating small holes along the GB. Near

the edge of a hole, a suitable site for STEM observation can be found where the sample

thickness is about 30 nm.

3.2.0.2 HAADF-STEM

High-angle annular dark-field (HAADF) STEM images were taken with the detection an-

gle of 68–280 mrad (JEM-ARM200CF and JEM-ARM300F GRAND ARM, JEOL Co. Ltd).

Several fast scans were performed to reduce effects from sample drift. Then the im-

ages were aligned using cross-correlation and averaged (same procedure as described

in [89]). The resulting images are shown in Figure 3.3. Throughout the rest of the thesis,

the images will be referred to as "Image [hkl ]" with [hkl ] referring to the observation

direction.

In HAADF-STEM observation, it is difficult to image light and heavy atoms at the same

time, as the signal intensity scales approximately with Z 2. In YZS, with atomic numbers

ZZr = 40, ZY = 39 and ZO = 8, the cations Z r and Y will clearly dominate. Observing the

crystal along [001], the projected distance (normal to the view direction) between oxy-

gen columns and neighbouring cation columns is 0.36nm. Although this is within the

resolution limit, the oxygen is not detectable due to the large tail form the zirconium

scattering profile, as discussed in [23]. We therefore consider only the cation lattice for

the 3-D reconstruction.
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1 nm

(a) [001]

1 nm

(b) [13̄4]

1 nm

(c) [13̄2]

1 nm

(d) [13̄0]

Figure 3.3: HAADF-STEM images of theΣ5{310}/[001] GB in YSZ in several zone axis orientations,
as indicated in the subcaption. Images were aquired with detection angle 68–280 mrad on JEM-
ARM200CF and JEM-ARM300F GRAND ARM, JEOL Co. Ltd, by Bin Feng and Ryo Ishikawa.



Chapter 4

The 3-D Reconstruction Method

In this chapter, a method developed to reconstruct the 3-D atomic structure of a crystal

grain boundary is presented. The method is based on tomographic reconstruction from

atomic resolution HAADF-STEM images. In addition, all steps for preparing the exper-

imental images are explained. Firstly, a brief overview is given. Thereafter, each step is

explained more in detail, with examples from the application on the bicrystal model of a

symmetric tilt Σ5[001]/{310} grain boundary in YSZ. Code is developed in Python for all

image preparation steps, as well as the reconstruction process, and added in Appendix

C. Details on the implementation are included in Appendix B, written as a tutorial with

examples of how to use the code.

4.1 Work Flow

1. Preparing the Experimental HAADF-STEM Images

(a) Geometric correction of image distortions

Affine transformations are applied to the original experimental image to

correct distortions from sample drift during imaging.

(b) Scaling

Finding the pixel/nm ratio from theoretical distance between atom planes.

35
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(c) Noise reduction by image averaging

The images are averaged over several GB units to reduce noise. Optimal

image template shifts are determined by cross-correlation.

(d) Identify positions of atom columns

Determining atom column positions by fitting a 2-D elliptical Gaussian func-

tion to each intensity peak.

2. Iterative Tomographic Reconstruction

(a) Create initial 3-D structure from two images

Tomographic reconstruction by direct back-projection

(b) Image alignment refinement

Image alignment by iterative re-projection and reconstruction

(c) Add another image

A third image is added and aligned to the re-projection of the reconstruction

from two images

(d) Reconstruction from three images

Step 2a and Step 2b are repeated, with the image alignment refinement ap-

plied to the third image only

(e) Reconstruction from more images

Step 2c and onward are repeated to add more images, one by one.

4.2 Part 1: Preparing the HAADF-STEM Images

An accurate 3-D reconstruction is fully dependent on accurate determination of the

positions of atom columns in the 2-D projection images. This is the purpose of this

preliminary image preparing procedure.

4.2.1 Step 1a: Geometric Correction of Image Distortions

As discussed in Section 2.3.2, the pixel-by-pixel image recording in STEM mode might

render an image of a crystal lattice that appears to be stretched or skewed due to sam-
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ple drift during imaging. From knowledge of the theoretical lattice structure for the bulk

region of the sample, the effect from the sample drift can be determined and compen-

sated for. A set of coordinates (xt , yt ) describing the theoretical atom column positions

can be used to form a reference lattice describing the "target" of the image correction.

Another set of corresponding atom columns at coordinates (xc , yc ) must be identified

in the distorted image. From the difference between these two sets of points, the image

distortion is quantified and the distorted image can be corrected. An affine transfor-

mation is well-suited for this task, which can be a combination of translation, rotation,

scaling and/or shearing. Generally, such transformation can be expressed as a linear

mapping B followed by a translation~t as follows,

~p ′ = B~p +~t . (4.1)

Here, ~p is the position of a pixel in the distorted image at coordinates (x, y), and ~p ′ is

the resulting position after the transformation, at coordinates (x ′, y ′), while B and~t are

defined as follows,

B =

a11 a12

a21 a22

 , ~t =

a13

a23

 . (4.2)

Now, the coefficients (a11, ..., a23) can be chosen so that the transformation makes the

best possible correction of the image distortion. The goal is for the atom positions in

the resulting corrected image to be as similar as possible to the reference lattice. To es-

timate this optimal affine transformation, the least-squares method is used. A detailed

explanation of the implementation of the coefficient estimation and how these relate

to scaling, rotation, shear and translation of the image can be found in Appendix A. As

a summary, the image distortion correction goes as follows:

1. Identify atom column positions in the distorted image, (xc , yc ).

2. Create reference lattice from theoretical atom column positions in the bulk, (xt , yt ).

3. Match the points (xc , yc ) and (xt , yt )

4. Estimate and apply the optimal affine transformation taking atom columns at
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(xc , yc ) to coordinates (x ′
c , y ′

c ) which minimizes the distance to (xt , yt ) in a least-

squares sense.

4.2.1.1 Identifying Atom Column Positions

The first step is to identify the coordinates of N atom columns in the distorted image,

(x j
c , y j

c ) where j = 1,2, ..., N . First, initial peaks are found from local maxima in inten-

sity, with a criterion on minimum pixel distance ensuring that each atom column is

only included once. Thereafter, the peak positions are refined by fitting a 2-D Gaussian

function to a small area around the peak. An example of initial and resulting peak posi-

tions are shown in Figure 4.1, showing the improvement after the position refinement.

Further details are given later, in Section 4.2.4.

(a) (b)

Figure 4.1: Image [001], example of the atom column position determination. (a) Initial peaks
are found from local maxima in intensity. (b) Peak positions are refined by fitting a 2-D Gaussian
function to each atom column. Axes in pixels.

4.2.1.2 Create 2-D Reference Lattices

Next, reference lattices with M theoretical atom column positions are generated, with

coordinates (xi
t , y i

t ) where i = 1,2, ..., M . Such reference lattices with an ideal bulk pat-

tern can easily be created from 2-D projections of a set of 3-D points in the same struc-

ture as the bulk of the bicrystal being studied. In our example, the YSZ, the cation lat-

tice has an FCC structure (see Section 2.2.2). Figure 4.2 shows the four reference lattices
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used for the right side of the GB plane. For the left side, the reference lattices are mir-

rored about the xp axis.

0 10 20

z

−30

−20

−10

0

10

20

x
p

Projection angle 0 ◦

0 10 20

z

Projection angle 38.3 ◦

0 10 20

z

Projection angle 57.7 ◦

0 10 20

z

Projection angle 90 ◦

Figure 4.2: Reference lattices representing the theoretical bulk structure of an FCC structure with
lattice parameter a = 5.17Å, used for estimating the affine transformation for image distortion
correction. Both axis are in Ångström (Å).

4.2.1.3 Match Atom Column Positions and Reference Lattice Points

The affine transformation estimation requires the two sets of points to be matched.

That is, each point (xt , yt ) in the reference lattice must be linked to the corresponding

atom column position (xc , yc ) in the experimental image. This is done by first scaling

and translating the reference lattice to overlap with the atom columns in the experi-

mental image, see Figure 4.3. Thereafter, for each point in the reference lattice, it is

linked to the atom column which is within a distance dmi n/2, if any. dmi n is the smallest

distance between two neighboring points within the reference lattice. The point here is

that each column in the reference lattice is matched with maximum one column in the

image. Furthermore, not all atom columns are used in the transformation estimation.

As an example, in Figure 4.3, the blue dots of the reference lattice that ends up below

the image (xp coordinate less than 0) does not have corresponding atom columns in

the image within a distance dmi n/2, and are therefore not included. Furthermore, only

atoms at least three atom planes from the GB plane are used to avoid effects from pos-

sible lattice distortions in vicinity of the GB.
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Figure 4.3: Matching between refined atom column positions (red) and reference lattice points
(blue). The affine transformation estimation requires the points to be paired together, one red
and one blue. Atom columns within 3 atom planes from the GB are ignored. Pairs are made from
the rest of the points if the mutual distance is smaller than a criterion dmi n .

4.2.1.4 Estimate and Apply the Optimal Affine Transformation

The optimal affine transformation minimizes the difference between the transformed

atom column coordinates (x ′
c , y ′

c ) and the corresponding reference lattice column coor-

dinates (xt , yt ). Estimating these coefficients corresponds to minimizing the residuals

rk ,

R =∑
k

rk =
√√√√ 1

K

K∑
k=1

[
(x ′k

c −xk
t )2 + (y ′k

c − yk
t )2

]
. (4.3)

Here, K is the number of atom column pairs identified in the previous step. This corre-

sponds to solving the least-squares problem

argmin
B,~t

∥∥∥(
B~pc +~t

)−~pt

∥∥∥2
, (4.4)

see Equation (4.1) for an explanation of the symbols.

When preparing the bicrystal sample, the aim is to create a sample that is perfectly sym-

metric about the GB plane. However, slight deviations in the rotation about the tilt axis

(normal to the rotation axis z) can occur. Also, one side might be translated with re-

spect to the other. Because of this, the reference lattice must be fitted to the two sides

of the crystal separately. In practice, two affine transformation matrices are estimated,
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one for each side. The average of the two is then applied to the full image to correct the

distortions.

Figure 4.4 shows Image [001] before and after the averaged affine transformation is ap-

plied. Straight lines (atom planes) are preserved, while angles and distances between

points are changed. The result is atom columns nicely arranged in a square grid, as is

expected in the [001] projection of a crystalline sample with FCC structure.

(a) Original image be-
fore affine transforma-
tion

(b) After affine transfor-
mation

Figure 4.4: Image [001] (a) before and (b) after affine transformation. The red lines makes it clear
how much the atom planes in the uncorrected image deviates from the theoretical square grid.
The plane {310}, indicated by a purple dashed line, is vertical in both images. This makes it clear
that e.g. rotation alone would not have been sufficient to compensate for distortions from the
imaging process. Instead, a combination of rotation, scaling and shearing was needed, combined
in an affine transformation.

4.2.2 Step 1b: Scaling

In the matching between image and reference lattice described above, the size of the

reference lattice is changed to roughly match the image. Thereafter, the images is scaled

to match the reference lattice size, as part of the affine transformation. Since the the-

oretical distances between atoms in the reference lattice (ideal lattice projection) are

known, we can now read the nm-to-pixel ratio of the image directly from this.
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4.2.3 Step 1c: Noise Reduction by Image Averaging

One fundamental characteristic of the electron microscope is the unavoidable statis-

tical fluctuations in the number of electrons counted by the detector, so-called shot

noise. In Section 2.3.2, arguments are made that this type of noise can be reduced by

averaging over several images. In this case, with a highly regular lattice structure with

GB units appearing periodically, we can instead average over sections within the same

image containing one such unit each. This way, the signal-to-noise ratio (SNR) is greatly

enhanced. Another advantage of this approach is that any possible differences between

the individual GB units are averaged out. Theoretically, the GB units are identical, but

slight deviations might occur in practice. As we are interested in describing the general

structure of the Σ5 GB at hand, this image averaging is key to reduce any randomly oc-

curring structural irregularities.

First, the GB unit locations must be identified. This is done by pattern recognition us-

ing cross-correlation (similar to [90]). The idea is to copy a small section of the image

containing the GB unit, called a template, for then to slide it across the image while

measuring the "similarity" of the template and the region of the image currently over-

lapping. Such measure of similarity can be given in terms of the cross-correlation func-

tion (CCF), defined as follows,

CC F (x, y) =
∑

x′
∑

y ′
[
i (x ′, y ′)−〈i (x ′, y ′)〉] · [t (x ′−x, y ′− y)−〈t〉]√∑

x′
∑

y ′
[
i (x ′, y ′)−〈i (x ′, y ′)〉]2 ∑

x′
∑

y ′
[
t (x ′−x, y ′− y)−〈t〉]2

(4.5)

Here, i (x ′, y ′) is the image and t (x ′, y ′) is the template. Angle brackets denotes averag-

ing. Figure 4.5 illustrates the concept for shifting the template along one axis, corre-

sponding to keeping x fixed and let y go from 0 to ymax (image size in pixels). Figure

4.6 shows the experimental images before and after averaging.

4.2.4 Step 1d: Identify 2-D Positions of Atom Columns

This part of the algorithm is similar to the atom column identification described for

Step 1a (Section 4.2.1.1), i.e. by Gaussian fitting to locating intensity peaks, only now

applied to the distortion-corrected and averaged images. Some more details of the al-
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Figure 4.5: Illustration of cross-correlation between the full image [001] and a smaller section of
the image (template, in red frame) containing one GB unit. (b), (c) and (d) show three snapshots
from when the template is shifted vertically across the image and the cross-correlation is mea-
sured. (a) shows the cross-correlation function (CCF) between template and image, calculated
with Equation (4.5). Blue circles marks the local maxima indicating a good match between image
and template, corresponding to locations of other GB units. Red stars indicates the three posi-
tions of the iamge section illustrated in (b) local maximum - good match, (c) local minimum -
not a good match, and (d) local maximum - good match.

(a) Image [001] (b) Image [13̄4] (c) Image [13̄2] (d) Image [13̄0]

(e) Averaged over
4 GB units

(f ) Averaged over
5 GB units

(g) Averaged over
7 GB units

(h) Averaged over
5 GB units

Figure 4.6: Sections of HAADF-STEM images of the YSZ bicrystal, illustrating the effect of image
averaging (Step 1c). (a)-(d): Original images. (e)-(h): Noise is reduced by averaging over several
grain boundary units.

gorithm are included in the following.

Initial Atom Column Positions: Max Intensity

This part of the code finds all peaks in intensity above a specified level Il , calculated as
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e.g. 80 % of the maximum intensity in the image, at a minimum pixel distance dmi n .

Both parameters are adjusted so that all atom columns are identified. Peaks on the

edges of the image are ignored.

Starting with the pixel of maximum intensity, its coordinates (x1, y1) are added to the

peak list. Thereafter, the pixel and the area within a radius of dmi n is set to zero. This

avoids peaks corresponding to the same atom column appearing in the list several

times. The image is searched again and a new pixel is now found as the one with the

highest intensity. It is added to the list and set to zero, along with the neighboring pix-

els. This is repeated until no more pixels are found with an intensity above the specified

level Il .

Refining Atom Column Positions: 2-D Gaussian Fit

The peak positions are refined by performing 2-D Gaussian fitting to a small area of size

rg ×rg around each intensity peak, as illustrated for one atom column in Figure 4.7. The

Gaussian function is defined as follows,

f (x, y) = A

2πσ2 e
−
(

(x−x0)2

2σ2 + (y−y0)2

2σ2

)
(4.6)

Here, A is the peak amplitude and σ is the standard deviation, related to the width of

the peak, and (x0, y0) is the center of the fitted Gaussian function. The parameters A, σ,

x0 and y0 are estimated in a least-squares sense[91]. The new peak position is set to the

center position of the fitted Gaussian function, (x0, y0). The process is repeated until

positions are stable. The result for all four images is shown in Figure 4.8. This will be

the starting point for the 3-D reconstruction.

4.3 Part 2: Iterative Tomographic Reconstruction

The following reconstruction process will not be performed with the full experimental

images, as is common for tomographic reconstruction. Instead, only the coordinates

of the atom column positions will be used, as determined in the final step of the im-
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Figure 4.7: Atom column position refinement by iterative 2-D Gaussian fitting. (a) Original in-
tensity distribution in an area of fixed size rg × rg centered at one intensity peak. The pixel of
maximum intensity is the initial atom column position. (b) The fitted Gaussian function. The
center of the Gaussian function is set as the new atom column position. A new Gaussian fitting
is done, this time to an area of size rg × rg centered at the new position. This process is repeated
until the new position does not deviate much from the old, meaning that a stable position is
found.

age preparation part. In practice, these coordinates are an efficient "summary" of the

projection images, containing all the information relevant for reconstructing the 3-D

structure. This approach exploits the sparse nature of a crystal lattice, greatly reducing

the amount of input information to the reconstruction process and thereby reducing

an otherwise extensive computational task. This and other advantages that follows the

proposed method will be discussed in more detail in Chapter 5. Therefore, in the follow-

ing, the word "image" refers to the set of 2-D atom column positions identified within

each experimental image.

As illustrated in Figure 4.9, the main steps in the 3-D reconstruction algorithm are as

follows.

2. Reconstruction of the 3-D Atomic Structure

(a) Create initial 3-D structure by direct back-projection

(b) Perform alignment refinement by iterative re-projection and reconstruc-

tion

(c) Add image by aligning it to re-projection in a new direction
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1 nm

(a) Image [001]

1 nm

(b) Image [13̄4]

1 nm

(c) Image [13̄2]

1 nm

(d) Image [13̄0]

Figure 4.8: Distortion-corrected, scaled and averaged experimental HAADF-STEM images with
red dots showing atom column coordinates that will be used in the 3-D structure reconstruction.
Each image is 3.4 nm wide, centered about the GB plane. These coordinates are the starting point
for the 3-D reconstruction.

(d) Repeat Step 2a and Step 2b

(e) Repeat Step 2c and onward to add more images

In brief, the reconstruction is done by introducing one image at a time, and for each

new image, an iterative process of image alignment through reconstruction and re-

projection is performed repeatedly until a certain criterion is reached. Before describ-
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Step 2a:
Initial reconstruction with 2 images. Four poten-
tial atoms (pink) is identified in the overlap be-
tween the re-projection stripes.

(Step 2b:
Image alignment refinement is illustrated sepa-
rately in Figure 4.12)

Im
age 3 Repro

jected

im
age

Step 2c:
Re-projection of initial structure in direction 3.
Image 3 is aligned to the re-projected image.

(Repeating Step 2b:
Image alignment refinement)

Image 1

Im
ag

e
2

Im
age 3

Repeating Step 2a:
Reconstruction with three images. With addi-
tional information from image 3, two atoms are
removed. The stripes from all three images over-
lap in only two sites, leaving two potential atoms
(red).

Figure 4.9: Algorithm 2 for tomographic reconstruction, illustration for one slice parallel to the
GB plane.
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ing each step of the algorithm in detail, some general concepts are explained. In the

following, the 2-D projection images will be referred to as "image n", where n is an in-

teger 1, 2, 3 etc., referring to the order in which the images are introduced to the recon-

struction process. Each of the images are projections of the sample along a projection

direction which can be described by the angle θn that the sample is rotated about the

rotation axis z. Atom columns in image n will have the coordinates (xpn , z) where p

stands for projection, referring to an axis normal to the projection direction for this im-

age and normal to the rotation axis, see Figure 4.10 for an illustration. A more detailed

description is given in the following.

Finding atom positions in 3-D from projections

Consider an atom column in image 1 at coordinates (xp1, z0). From this information

alone, its constituent atoms can be positioned anywhere along a line in the x y-plane

described by the following equation,

xp1 = x cosθ1 + y si nθ1. (4.7)

This equation similar to Equation (2.17) and the concept of direct back-propagation in-

troduced in Section 2.4. In image 2, these atoms will be part of different atom columns.

Consider one of these columns at coordinates (xp2, z0). This gives us a second equation

for a line in the x y-plane,

xp2 = x cosθ2 + y si nθ2. (4.8)

From this, the intersection of the two lines at (xi , yi ) can be found. Again, the reader is

referred to Figure 4.10. In this intersection, there could be an atom, contributing to the

intensity in both images 1 and 2. That is, if there is an atom contributing to the inten-

sity of both columns, this is the position. Therefore, this pair of coordinates is added to

the list of possible 3-D atom positions, along with z0. Depending on the complexity of

the atomic structure of the sample, more images might be needed to confirm of discard

this position as an actual atom site.
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Figure 4.10: Direct back-propagation. If the two stippled lines are within a distance 2ra in the z
direction (normal to the paper plane), the lines are considered to overlap. The intersection of the
lines is then considered a possible atom location. Symbols are explained in the text.

Taking experimental errors into account

As briefly discussed in Section 2.3.2 and elaborated later in Chapter 5, due to the na-

ture of the imaging technique, HAADF-STEM images might misrepresent the sample

structure due to cross-talk and de-channeling effects. In addition, errors that are not

sufficiently compensated for in the image preparation part might lead to inaccurate

determination of the 2-D atom column positions. To account for all this, a parameter

ra is introduced, called the atom column radius, representing the uncertainty of the

atom column position (xp , z). In the implementation of the reconstruction algorithm,

all lines within a distance 2ra of each other in the z directions are therefore considered

to overlap, and hence representing a possible atom position.

Initial image alignment

In Section 2.4.2, it is concluded that a good image alignment is a central part for a

high-accuracy 3-D reconstruction. Some methods for aligning the tomographic tilt se-

ries are discussed, including methods based fiducial markers, on cross-correlation be-

tween consecutive images (requiring small angle incrementations) or on considering
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the center-of-mass of the sample. However, none of these approaches are applicable

to the YSZ bicrystal example due to the special sample geometry and the low number

of projection images. Instead, the alignment is done iteratively by aligning one image

at a time to a re-projection of the reconstructed structure. More details are included

later. Firstly, an initial coarse image alignment is needed. It is realized that due to the

simple crystal lattice structure with well-spaced atom columns, the initial image align-

ment only need to be within ra for the iterative alignment procedure to relax towards

the optimal image alignment. In this example, the GB plane can be easily identified in

all images, and is therefore chosen as a common starting point.

4.3.1 Step 2a: Reconstruction From Two Images

In general, the Nn atom column positions in image n are listed as pairs of coordinates

(x j
pn , z j

n) where 0 ≤ j ≤ Nn . The first step of the reconstruction algorithm considers all

atom columns in image 1 and 2.

For all N1 and N2 atom columns in image 1 and 2 at positions (x j
p1, z j

1 ) and (x j
p2, z j

2 ), if

the distance along the z axis is less than 2∗ ra , the intersection (xi , yi ) in x y-plane is

calculated and added to list of possible atom positions. The corresponding z coordi-

nate is set as the mean value of the two image coordinates, zi = (z1i + z2i )/2. The list of

3-D coordinates is the initial reconstructed structure.

Now, the question is how to determine the uncertainties ra in the images. The best

way to do this is by trial and error. Since the bulk structure of the crystal is known, the

number (or positions) of atoms in the bulk region of the initial reconstruction can be

looked at to get an indication of whether the choice of ra is too high or too low. As an

example, Figure 4.11 shows a reconstruction of the YSZ bicrystal with images [001] and

[13̄0] viewed from directions [001] and [13̄0], in addition to direction [13̄4]. Figure 4.8

can be used as a reference for the reader of how the bulk structure should look. Figure

4.11a illustrates a low value for ra at 0.08 Å, where some atoms are missing in the re-

construction. This is not easy to see from the [001] direction, but is clearly visible when

the structure is rotated to directions [13̄0] and [13̄4]. In 4.11b, all columns are filled, but
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in addition, and a few excess atoms appear. While the extra atoms are difficult to spot

in directions [001] and [13̄0] (from which the reconstruction was made), only visible in

some slightly widened atom columns. In the [13̄4] direction, however, the extra atoms

are easy to spot as they appear between the atom columns rows, in sites that clearly

does not agree with an FCC bulk structure. These excess aotms will therefore be eas-

ily eliminated in subsequent steps of the reconstruction algorithm, when adding more

images to the process. As for the first example with too few atoms in the bulk, however,

the empty atom sites will remain empty throughout the reconstruction process. A good

rule of thumb is therefore to choose ra high enough to ensure that all atom sites are

filled, on the expense of some extra atoms in other bulk sites.

For this GB geometry, the spacing between bulk atom columns along the z direction is

0.81 Å. If the uncertainty ra exceeds half of this value, neighboring columns will over-

lap, making many extra atoms turn up in the reconstruction, as seen in 4.11c. However,

due to the low density of atom columns in the GB region, no additional atoms appear

here from this increase in ra . This illustrates the obvious point, that the more dense the

structure is, the higher accuracy is needed in the projection images for tomographic re-

construction from a low number of projections to work.

Another important point is that if the GB region is less dense that the bulk, as judged

from the projection images, choosing a value of ra high enough to fill the bulk region

will also ensure that all GB atoms are detected. At the other hand, if the opposite is the

case, where the GB region appears to have a higher density, a higher value of ra might

be needed.

4.3.2 Step 2b: Refinement of Image Alignment

After the initial reconstruction from two images, the relative alignment of the two im-

ages can be adjusted by comparing one image with re-projections of the reconstruction

in the same direction as this image is taken from. This image alignment refinement is

done in an iterative manner as follows:

1. Re-project the initial structure to one image direction
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Figure 4.11: Illustration of how the parameter ra affects the reconstruction result. Each row
shows the same structure viewed from directions [001], [13̄0] and [13̄4], from left to right. The
values used for ra are 0.08 Å in (a), 0.3 Å in (b) and 0.45 Å in (c). In (a), some atoms are missing in
the bulk region, indicating that ra was chosen too low. In (b), all columns in the bulk are filled. in
addition, some columns seem to have doubled in width in directions [001] and [13̄0], appearing
as extra atom between rows in direction [13̄4]. Finally, in (c), ra is chosen higher than half the
vertical spacing between bulk atom columns (0.81 Å), making columns overlap and the space be-
tween rows in direction [13̄4] nearly filled with excess atoms. Interestingly, even with a high value
for ra and many extra atoms turning up in the bulk, the GB region remains unchanged. This is
because of the low density of atoms in this region, so that even with a high level of uncertainty,
the lines for each atom column does not overlap with neighboring atom columns.

2. Calculate the center-of-mass (CM) for the re-projection and for the image

3. Align the image to the re-projection so that the CM coincide
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4. Perform new reconstruction

5. Repeat until the difference in center-of-mass positions stabilizes on a low level

The first iteration of the refinement process is illustrated in Figure 4.12. After a few iter-

ations, the CM positions of the image and re-projection will not differ much, indicating

that the optimal image alignment is found. Note however that in this illustration, the

difference between initial image position and re-projection (4.12a) is strongly exagger-

ated to demonstrate the concept, with a difference in CM positions of 0.2 Å. In practice,

the initial shifts are in order 0.01 Å, and reduced to below 1 % of this in three iterations.
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Figure 4.12: Illustration of one iteration in the image alignment refinement procedure, (a) before
and (b) after shifting the image. Red dots are atom column positions in Image [13̄0] with a red
star indicating the center-of-mass (CM) of these points. Blue dots (with CM in blue star) are the
atom positions in the structure reconstructed from Image [001] and Image [13̄0], re-projected in
the [13̄0] direction. Figure (a) shows the initial image position. In (b), the image is moved so that
the CM positions coincide. With this new image position, a new reconstruction can be made,
and thereafter a new re-projection to further adjust the image alignment. After a few iterations,
a stable image position is reached, considered as the optimal image alignment. Note that the
difference in initial CM positions in (a) are exaggerated in this illustration.

4.3.3 Step 2c: Adding a Third Image

Now, to add the next image, the reconstructed structure is re-projected in the direc-

tion that this new image was taken from. The alignment of the new image to this re-

projection is similar to the CM alignment described above, with one vital difference –

the re-projected structure and the new image might contain a different number of atom

columns. Therefore, it is important to only take corresponding atom columns into ac-

count when calculating the re-projection CM, as illustrated in Figure 4.13. In this figure,

a reconstruction from Image [001] and Image [13̄0] is re-projected in the [13̄4] direction

and plotted with Image [13̄4]. Many more atoms are seen both in the bulk and in the

GB region of re-projection. It is important that only atom columns that appear in both
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image and reconstruction, marked in yellow in Figure 4.13a, are included when calcu-

lating the CM positions, so that the excess atoms in the reconstruction does not affect

the alignment. Corresponding atom columns, one in the image and one in the recon-

struction, are identified as the nearest neighbor column within some distance da , set to

e.g. half of the smallest theoretical atom distance in this projection.
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Figure 4.13: Illustration Step 2c, adding a new image. Image [13̄4] (red dots) is aligned to the
re-projection of the structure reconstructed from Image [001] and Image [13̄0] (blue dots). (a)
Before alignment. Only corresponding atoms are included in the CM calculation, as indicated
in yellow, meaning that excess atoms in the bulk and GB are ignored, along with the part of the
reconstruction that is bigger than the image. (b) The image is shifted so that its CM (red start)
align with that of the re-projection (blue star), giving a much better overlap between image and
re-projection.

4.3.4 Step 2d: Reconstruction From Three Images

Tomographic reconstruction with three images is done pair-wise. A list of intersections

for lines from atom columns in two and two images are computed, leaving us with three

lists of intersections, or possible atom positions. A "true" atom would be placed within

an atom column in all three images, and hence give rise to three intersections at this

atom site. See Figure 4.14 for an illustration. As an example, referring again to Figure

4.13, the excess atoms in the GB region in the reconstruction from Image [001] and Im-

age [13̄0] are on the list of intersections from these two images, but would not be on the

[001]-[13̄4] or [13̄0]-[13̄4] lists. Thus, these atoms would not turn up in the reconstruc-

tion from all three images.
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(a) (b) (c) (d)

Figure 4.14: Illustration of reconstruction from three images, with the paper plane corresponding
to the x y-plane. Lines in one color represents the back-projection from one image. Intersections
(marked with dots) from two and two images are computed, as shown in figure (a), (b) and (c).
In (d), lines from all images and all intersections are plotted together, and sites with intersections
from all three image-pairs are marked with a black circle. This circle can illustrate the parameter
di . If three intersections lies within a circle of this diameter, the site can be considered a possible
atom position, see Figure 4.15.

If three intersections are "close enough", as defined by a 3-D distance limit di giving

room for some error, they are considered as an atom position in the new structure. The

atom position coordinates are calculated as the center-of-mass of the three intersec-

tions. The parameter di is related to the atom column radius ra , introduced earlier as

representing the uncertainty in the 2-D coordinates of the atom positions, as well as the

projection angles. This is illustrated in Figure 4.15, showing back-projected lines from

image 1, 2 and 3 with atom column radiuses ra1, ra2 and ra2. With image 1 and 2 at 0°

and 90° and image image 3 at an angle θ, the relation to di is as follows,

di = ra1

sinθ
+ ra2

cosθ
+ ra3

sinθcosθ
. (4.9)

As an example, with image 3 at an angle θ = 38.3° and atom column radiuses ra1 = ra2 =
ra2 = 0.3Å gives di = 1.5Å. Furthermore, as noticed from Figure 4.14d, the value of di

can vary a lot without causing any changes to the final structure. This agrees with the

discussion above on how to find a suitable value for ra , concluding that the rules for

choosing this value are not very strict. Plotting one layer (in the x y plane) of the struc-

ture, similar to what is shown in this figure, can help when investigating how big the

variations in intersection positions are, and hence, how big the value of di must be to

detect all atom positions.
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Figure 4.15: Illustration of the geometric relationship between di , ra and projection angles. The
three black lines are back-projected lines from images 1, 2 and 3 at angles 0°, θ and 90° with
respect to a vertical axis. The blue region centered around each line represents the uncertainty in
each atom column position in 2-D, and has a width ra1, ra2 and ra3 (ra1,2,3 for short) for image 1,
2 and 3, respectively. The smaller figures on the right side illustrate the two "worst case scenarios"
where the line intersections are at a maximum distance. The dashed circle with diameter di
shows that the two intersections along the line from image 3 have the biggest distance, as the
third intersection lies within this circle. The distance di is related to ra1,2,3 through Equation
(4.9), which is obtained from geometrical considerations of this figure. The tree terms in the
equation gives one segment each of the distance di , marked in the figure with red, green and
yellow. The length of the segments are found from ra1,2,3 by realizing that all the angles indicated
by a curved line corresponds geometrically to the angle θ.

Next, Step 2b is repeated, refining the alignment of image 3 with respect to the re-

projection in direction 3, using center-of-mass of common atoms as described in Sec-

tion 4.3.2. If more images are to be added, Step 2c, 2d and 2b are repeated for each new

image.



Chapter 5

Results and Discussion

In this chapter, results are presented from the application of the developed reconstruc-

tion method to the yttria-stabilized zirconia bicrystal model of a symmetric tiltΣ5[100]/{310}

grain boundary. Firstly, precision in the reconstruction results are discussed and inten-

sities in the experimental images are looked at. Thereafter, more general comments on

the reconstruction method follows, with respect to how many projection images to use,

The reconstruction results are discussed in terms of new discoveries related to the ma-

terial structure of this grain boundary. Thereafter, a more general discussion of the de-

veloped method follows, including comments on accuracy, limitations, applicability to

other problems and possible improvements.

5.1 3-D Atomic Structure of the YSZ Bicrystal Model

Figure 5.1 shows the result from the 3-D reconstruction of theΣ5[100]/{310} grain bound-

ary from HAADF-STEM images. This structure was created using only three of the im-

ages, from directions [001], [13̄4] and [13̄0] corresponding to rotation angles 0°, 38.3°

and 90° about the rotation axis normal to the GB plane (z axis). In Figure 5.2, the re-

constructed structure is re-projected in four directions and plotted on top of the cor-

responding image, showing a very good agreement with the experimental images. The

fourth image, Image [13̄2] at rotation angle 57.7° is included to substantiate the struc-

ture of the reconstructed 3-D model.

57
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Figure 5.1: The reconstructed structure seen from four directions, 3 by 3 unit cells. The sub-
caption indicates the approximate view direction - the structure is further rotated 1° about the
rotation axis and vertical axis for better 3-D visualization. The two GB atom layers are indicated
with arrows.
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The reconstructed structure closely resembles a perfect FCC lattice, but with two atom

layers exhibiting a very different atom arrangement. These two layers, indicated by

arrows in Figure 5.1, will in the following be referred to as the GB layers. A plane in the

center between the two GB layers is defined as the the GB plane.

1 nm

(a) Image [001]

1 nm

(b) Image [13̄4]

1 nm

(c) Image [13̄2]

1 nm

(d) Image [13̄0]

Figure 5.2: The result of the 3-D reconstruction from three images. Re-projections of the 3-D
structure in four directions are plotted in purple on the corresponding HAADF-STEM image.
Good agreement between reconstructed structure and image is seen. The images in (a), (b) and
(d) were used in the reconstruction, while the image in (c) was not used.
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5.1.1 Comparison with a perfect FCC lattice

The cation lattice in YZS is known to have an FCC structure. In the following, the pre-

cision of the reconstructed structure is evaluated in terms of interatomic distances and

atom position displacements with a perfect FCC lattice as a reference. However, only

the bulk region of the reconstructed structure can be directly compared with an ideal

lattice, as the true atom positions in the GB region are not known. Therefore, firstly, a

clear definition of the GB region must be found.

5.1.1.1 Determining the width of the GB region

The structure in the bulk region of the structure closely resembles a perfect FCC lattice,

while a slight compression normal to the GB plane is observed in the atom layers in the

vicinity of the GB. To visualize this, the structure is plotted viewed from four directions

in Figure 5.3, with colors indicating the projected distance to the nearest neighboring

(NN) column. Based on the observed structural deviations, the GB region is defined to

be 10 nm wide, including five layers on each side of the GB plane.

5.1.1.2 Precision

Precision is the statistical spread in repeated measurements. In [92], Bals et. al. define

precision in experimental images as the standard deviation (s.d.) in measurements of

atom column separations. Using this definition, the precision in the four experimental

images after distortion correction and image averaging (Steps 1a and 1c in the image

preparation part) is found to be 4–5 pm. The position of each column was determined

by Gaussian fit (Step 1d), and the precision estimated from the distances between these

positions. Only atom columns in the bulk are included, ignoring 5 atom layers on each

side of the GB plane to avoid any contribution form variations in bond lengths in this

region.

The same measure of precision can be used for the reconstructed structure in 3-D. Mea-

suring the distance between atom positions in 3-D, the s. d. is 4 pm, agreeing well with

the precision measured in the experimental images which were the starting point for
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(a) [001] (b) [13̄4]

(c) [13̄2] (d) [13̄0]

Figure 5.3: Plots of atom column distances in the reconstructed structure in four directions. Col-
ors indicate projected distance to nearest neighboring (NN) atom column (distance normal to the
view direction). Units of axes and colorbar are Ångstrom. The grey lines marks the 6th vertical
layer of atoms from the GB plane, at about 5.3 Å on each side of the GB plane. The bulk region out-
side these lines has a homogeneous color, indicating even spacing between atom columns. The
layers between the grey lines and the two GB layers have slightly smaller NN distances, hence the
darker color. From this observation, the GB region is determined to be 10 Å wide.

the reconstruction. Again, the GB region is not included in the precision estimation.

The mean value of the distance to NN atoms is 3.65 Å. This is in accordance with the

theoretical value of a perfect FCC structure with lattice parameter a = 5.170Å, where

each atom has 12 NN atoms at a distance 3.656 Å.

Another way to assess precision in the reconstructed structure is to measure the mean

value of atom displacements from a perfect FCC lattice. For one side of the GB re-

gion at a time, a perfect FCC lattice is fitted to the structure by minimizing the root-

mean-square displacement between reference lattice points and atoms (similar to the

approach in [58] for displacement estimation in 2-D). The mean value of displacements

for atoms from the perfect FCC lattice is found to be 6 pm, slightly higher than the s.d.

precision measure of 4 pm. For comparison, Yang et. al. estimates a 3-D precision
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of 22 pm for tomographic reconstruction of a 8.4 nm FePt nanoparticle[15]. This re-

construction was done from 68 ADF-STEM projection images using atomic electron

tomography (AET).

5.1.2 Atom Column Densities

Figure 5.4 shows a schematic illustration of the atom column densities. The bulk atom

columns within one image all have the same number of atoms (density), and are there-

fore plotted in the same color. In the GB layers, some density variations are seen. A

brighter color indicates columns with half the density (Figure 5.4a and 5.4c), while a

darker color indicates double density (Figure 5.4b). Furthermore, a thorough analysis

of how the atom columns in the different projections are linked gives increased con-

fidence in the reconstructed structure. In Figure 5.4d, the circle with dashed line in-

dicates an "empty" atom column, giving rise to the prominent zig-zag pattern along

the GB in Image [13̄0] (Figure 5.2d). This empty column is found to be the reason for

the half-filled columns when observing the structure from the other directions. If the

columns marked with a dashed circle in Figures 5.4a, 5.4b and 5.4c was filled to have

the same density as the other columns in the GB, this would give fully filled columns in

the positions of the dashed circles in Figure 5.4d. However, these columns are without

doubt empty, as seen in the experimental image in Figure 5.2d.

The GB structure was further investigated by trying out different atom arrangements.

For example, by deleting the half-filled column appearing in Figure 5.4c, columns in

other projections disappeared. The same happened when deleting every other atom in

the double-filled GB columns in Figure 5.4b. Trying out different cases like this leads

to the conclusion that the observed density difference in the GB (half-filled or double-

filled columns) has to be true. In fact, the arrangement of atoms in the reconstructed

structure is found to be the only configuration matching all projection images. This

gives a high confidence in the reconstruction result.
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5.1.3 Image Intensities

The intensity profile of the two GB layers are plotted in Figure 5.5, along with the HAADF-

STEM image smoothed by Gaussian convolution. As discussed in Chapter 2, although

the intensity in a Z-contrast image has a straight-forward relation with the atomic num-

ber of the scattering specimen, one should be careful about directly interpreting the

intensity near defects like a grain boundary. However, when the 3-D structure and col-

umn densities are known, a more detailed discussion is meaningful.

Firstly, a general trend of decreasing intensity closer to the GB is observed in all images

in Figure 5.5. According to McGibbon et. al. in [93], reduction in intensity near defects

like a GB can be caused by de-channeling for the electron probe, as a result of local

strain effects in the defect. One exception from this trend is seen in Figure 5.5b, where

every other GB atom column have a strong intensity similar to columns in the bulk.

However, as revealed by the reconstruction, the density of these columns are twice as

high as in the bulk, explaining why the intensity not lower, despite the prominent de-

channeling.

In [81], Findlay et. al. investigates the weakened intensity in the GB region through

with image simulations, assuming that strain in the GB region induces distortions in

atom positions. Starting out with an ideal structure, the atoms in the GB layers are

randomly displaced laterally, in the plane normal to the projection direction. The dis-

placements are normally distributed. With a standard deviation of 0.3 Å, intensities

in the experimental images are reproduced. Comments are made that such displace-

ments are larger than what can be expected to be caused by strain alone. Vacancies

(missing atoms) are suggested to further reduce the intensity, as indicated in previous

reports[94]. Differences in the Debye-Waller factor in different atom columns might

also affect the intensity[57].

In both Figures 5.5a and 5.5b, the trend is that every other GB column has a lower in-

tensity, agreeing well with the atom column density as illustrated in Figures 5.4a and

5.4b, respectively. In Figure 5.5c, the profile plots show slightly skewed peaks, and for
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the right GB layer, a "shoulder" in the peak is evident, indicating the presence of a sec-

ond column, although the two columns can not be clearly distinguished. From the 3-D

structure, it is found that the projected distance between these two columns (10 pm) is

similar to the column distances in the bulk (0.12 nm). However, one column has half

the density. This is likely to be the reason why they in the HAADF-STEM image in-

stead appear as one enlarged peak. The total intensity is still weaker than for most bulk

columns, but stronger than for the bulk columns nearest to the GB.

In Figure 5.5d, the plot shows a significant difference in HAADF-STEM image intensity

between the GB atom columns, although the 3-D reconstruction has revealed that the

density of the columns is the same. Looking at the projected distances between atom

columns in Figure 5.3d, it is noticed that the atom columns with high intensity has a

much smaller distance to the nearest neighbour. This may allow for intensity transfer

through the cross-talk phenomena[48], which can explain the difference in intensity in

the GB atom columns. A similar observation is made for Figure 5.3a - the distance to

nearest neighbor column is smaller for the half-density GB column than for the other

GB column. Therefore, intensity contribution from other columns through cross-talk

may contribute to even out the intensity differences seen in the profile plot in Figure

5.5a.

5.2 The Reconstruction Method

5.2.1 "Points and lines" approach vs "full image" approach

This approach exploits the sparse nature of the object that is to be reconstructed. Due

to the fact that most of the volume in a crystal is empty, the amount of information ac-

tually needed to successfully determine the crystal structure very small. Furthermore,

because of the highly ordered structure of a crystal, the information needed for the re-

construction can be efficiently summarized in only a few points. By modelling the im-

age intensity as a set of 2-D Gaussian functions, one for each atom column, the image

can be described by the parameters of these Gaussian functions (see Section 2.3.2 and

Equation (2.14)). Furthermore, as we in this method only need to consider the position
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of the atom columns in 2-D, the coordinates of the peak centers (µxm , µym ) are suffi-

cient, leaving us with a set of M pairs of coordinates of M atom columns summarizing

the HAADF-STEM projection image.

This approach has several advantages. Firstly, the computation time is reduced. Inten-

sity values in L × M pixels are converted to a list of N pairs of coordinates needed to

describe the positions of N atom columns, greatly reducing the amount of information

considered from each projection image. As an example, direct back-projection with

two images of size H ×H pixels requires H 4 computations, adding the intensity of each

pixel to corresponding voxels in the 3-D reconstruction volume[66]. Thereafter, the re-

construction volume of e.g. H × H × H voxels must be searched and possible atoms

identified from intensity peaks in 3-D. In contrast, for the method considering only M

pair of coordinates from each image, the only calculations needed are a quick reach

for which coordinates are sufficiently close in the z direction, before intersections are

calculated for two and two lines fulfilling this requirement. These intersections are all

possible atom positions (see Section 4.3).

Another important advantage is that no discretization of the reconstruction volume is

needed, removing one main source of error in conventional tomography[66]. The re-

construction volume consist of a discrete set of voxels, and each pixel in a projection

image is linked to a ray of voxels. Several methods exist for calculating how to weigh

the intensity from different pixels in different voxels, but in any case, errors are in-

evitably introduced from approximations that must be made due to the discrete nature

of the problem . For the approach with points and lines instead of images, however,

the possible atom position coordinates (line intersections) are not locked to at fixed

grid. Furthermore, the accuracy in the calculated position can be more directly ac-

cessed through the uncertainty in the 2-D atom column positions in each image.

5.2.2 How many images are needed?

The number of images required for a successful reconstruction depends on the com-

plexity of the structure studied. For the YZS example used in this thesis, three images
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were enough to fully determine all atom positions with high confidence. For the FCC

bulk region, as little as two images were needed. It was however of importance which

images were used - images [001] and [13̄0] successfully reproduced the FCC bulk, while

combinations including [13̄4] or [13̄2] failed. This demonstrates that not only the num-

ber of projection images, but also the projection angles are is of importance.

Figure 5.6 shows the input images (first row) along with three structures (A, B and C)

reconstructed from different combinations of input images. The second row in the fig-

ure shows structure A, reconstructed from images [001] and [13̄0], demonstrating that

the bulk region is reproduced while the GB layers contains too many atoms. This is ev-

ident when viewing the structure from directions [13̄4] and [13̄2]. This makes it clear

that more image are needed in the reconstruction process. The third row in the figure

shows structure B, reconstructed from images [001], [13̄0] and [13̄4]. This is the struc-

ture studied in more detail earlier in this chapter. The final structure C is reconstructed

from images [001], [13̄0] and [13̄2]. This structure displays a slightly poorer agreement

with the experimental images compared to structure B, as seen in the GB atom columns

indicated with yellow circles. The biggest difference between B and C is however seen

in the columns circled in red. While the number of encircled atoms are the same in B

and C, they are shifted so that they appear as two separate columns in B, while merged

into one column in C.

The reason for this is seen in the input image (green frame) used in the reconstruction

of C, but not in B. In the experimental image (Image [13̄2]), what appears as elongated

atom columns in the GB was interpreted as single columns. In discussions earlier in

this chapter, arguments were made that this is in reality two separate columns, appear-

ing as one due to the nature of the imaging technique. Now, another strong indication

towards the single column being an image artefact is found, seeing that this interpreta-

tion leads to poorer agreement with the experimental images. Hence, we can conclude

that structure B is the true representation of the YSZ bicrystal sample.

Using a minimum number of experimental images is an advantage in many ways. Ac-

quiring a good-quality sub-angstrom HAADF-STEM image is a challenging task, even
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with state-of-the-art microscopes available. In addition, both imaging and sample prepa-

ration are a time-consuming processes. Reconstruction from as few images as possible

is therefore very welcomed. With the developed method, the experimental images can

be acquired and added to the reconstruction process one by one. An initial structure

can be made and revised, before concluding whether another image is necessary or not.

In contrast, in conventional tomography, a high number of images is usually desired

to increase the resolution and accuracy of the reconstruction[66]. When dealing with

HAADF-STEM images of crystal lattices, however, as illustrated in this section, adding

more images could lead to a worse reconstruction result if the experimental images are

misrepresenting the sample structure.

5.2.3 Limitations

It is important to note that the result of the reconstruction is an averaged structure,

assuming all structure units are identical. This assumption is what allows for recon-

struction from images acquired from what in practice is four different samples. The as-

sumption is further applied in the image preparation part when averaging the images

over several structure units to improve the SNR ratio and hence the image precision.

Furthermore, the imaging technique itself provides averaged images, as the HAADF-

STEM image is a projection of the sample. Atoms are is other words not observed indi-

vidually. An intensity peak in the experimental image is the accumulated signals from

all atoms within one column, which in our 30 nm thick YSZ samples corresponds to 30-

60 atoms depending on the view direction. Hence, the resulting atom column positions

used in the reconstruction are average positions, failing to describe any slight displace-

ments by individual atoms. Moreover, vacancies (empty atom sites) are not detected.

In summary, any structural irregularities with periodicity larger than one structure unit

will not be accurately represented in the reconstruction result.

5.2.4 Possible Improvements

• Improve experimental image precision by non-rigid registration.

The precision in the experimental images were measured to 4–5 pm, the exact
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same level as what was measured in ADF-STEM images in [95, 96], obtained by

image averaging. Several experimental images were aquired and matched by

cross-correlation, similar to the technique used for our experimental technique.

However, in [58], Yankovich et. al. reported to reach sub-picometer precision in

HAADF-STEM images with a method based on non-rigid registration[97, 63, 98].

This method compensates for image distortions during imaging, increasing the

SNR ratio which is usually the limiting factor for the precision. To compare, the

rigid registration (our method) applied to the same images resulted in 4–5 pm

precision, similar to our result. It is therefore likely that to apply non-rigid regis-

tration would improve the precision in our experimental images.

• Improvements in 2-D atom column identification.

Both before and after image distortion correction and image averaging, atom col-

umn positions are determined by fitting a 2-D Gaussian function to intensity

peaks. However, in the current version of the code, the Gaussian functions are

fitted one-by-one to a fixed set of pixels around each atom column. This way, in-

tensity from neighbouring columns might affect the position determination. Ide-

ally, all Gaussians should be fitted simultaneously, using e.g. Mixture Models[99].

This should be easy to incorporate to the peak-finding algorithm as implementa-

tions are available in e.g. Scikit-learn[100], see 1.

• Include functionality for optimizing the uncertainty parameter ra automati-

cally.

In the reconstruction algorithm, the parameter ra (and thereby di ) accounts for

uncertainty in the 2-D atom column position in the input image. A suitable value

is found by visual inspection of the reconstructed structure to check whether

atoms were missing in the bulk region. This can be automated by comparing

the reconstruction to a reference lattice in 3-D directly.Moreover, in the current

version of the code, the same value for ra is used for all atom columns. Allowing

for bigger uncertainty in user-specified columns makes the method more flexible

in coping with errors from the experimental images. While the result would be

1http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html
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identical, these two improvements would simplify the reconstruction process as

less manual input would be needed.
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(a) Image [001] (b) Image [13̄4] (c) Image [13̄2] (d) Image [13̄0]

Figure 5.4: Atom column densities. While all atom columns in the bulk have the same density
(pink color), some variations are seen in the GB layers. Brighter colored columns have half the
density ((a) and (c)), darker colored columns have double density ((b)). If the columns marked
with a dashed circle in (a)-(c) was filled to have the same density as the other columns in the GB,
this would give a fully filled column in the position of the dashed circle in (d). This column is
however clearly empty, as seen in Figure 5.2d. From this and other considerations it is concluded
that the reconstructed structure is the only atom arrangement that matches all projection images.



5.2. THE RECONSTRUCTION METHOD 71

01 0 1

(a) Image [001]

01 0 1

(b) Image [13̄4]

01 0 1

(c) Image [13̄2]

01 0 1

(d) Image [13̄0]

(e)

Figure 5.5: Gaussian convoluted experimental images with profile plots of the intensity in the GB
layers. Black lines indicate where the profile plot is made from, with the left line corresponding
to the profile plot to the left of the image etc. The intensity roughly follows a trend with higher
intensity in higher-density columns, see Figure 5.4 for a schematic density plot. Horizontal axes
of the profile plots show the relative intensity along the line. The color bar in (d) indicates relative
intensities for all images.
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C

B

A

Figure 5.6: Input images (first row), together with three structures reconstructed from different
combinations of input images. Each row of images in a black frame, marked A, B and C, is one
structure viewed from four directions. The colored squares to the left indicated which of the in-
put images were used in the reconstruction of each structure. In structure A (from input images
in red and blue frames), excess atoms are seen in the GB region, clearly not matching with the
experimental images in yellow and green frames. Red circles indicate the biggest difference be-
tween structure B and C, stemming from the input image in green frame. Yellow circles indicate
sites where structure B exhibit a better match with experimental images than structure C.
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Conclusion

In this thesis, a new method for 3-D reconstruction at atomic resolution for crystal grain

boundaries has been presented, based on tomographic reconstruction from very few

HAADF-STEM images. The method was applied to a bicrystal model of a symmetric

tilt Σ5{310}/[001] grain boundary in yttria-stabilized zirconia. Through this work, it is

demonstrated that by using the atom column positions in images from only three di-

rections, it is possible to accurately determine the 3-D position of all atoms in the grain

boundary structure, revealing structural information that is not apparent in the 2-D

projection data alone.

Code is written to take care of every step in the process of reconstruction, from raw ex-

perimental images to the final reconstructed 3-D structure with all atom positions de-

termined. How to use the code is illustrated in a tutorial included in the appendices. In

Chapter 4 each step of the process is explained in detail. In the first part, techniques for

preparing the experimental images are presented. Distortion from sample drift during

imaging is corrected by applying an affine transformation to the image, estimated from

knowledge on the ideal FCC bulk structure. Noise is reduced by averaging the images

over several grain boundary units. Finally, the atom column positions are determined

by fitting a 2-D Gaussian function to each intensity peak in the image. Thereafter, the

algorithm for finding 3-D atom positions is explained. Due to the highly regular struc-

ture of a crystal, in combination with the fact that most of the volume is empty space,

73
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the amount of information needed to reconstruct the structure is very small. This is

exploited in the new approach applied in this method, where instead of using the full

experimental images, only the 2-D coordinates of atom column are used in the recon-

struction process. Compared to conventional tomography, one big advantage is that no

discretization of the reconstruction volume is needed, removing one source of error. In

addition, the computation time is reduced and the image alignment process simplified.

The final reconstructed Σ5{310}/[001] GB model was obtained from images in three

high-symmetry directions [001], [13̄4] and [13̄0], corresponding to rotation angles 0°,

38.3° and 90°. A 3-D precision of 4 pm was estimated by comparing the bulk of the

reconstruction with an ideal FCC lattice, the same level as for the experimental input

images.

A detailed study of the different GB atom sites lead to high confidence in the recon-

structed structure. The atom arrangement in the reconstruction is found to be only pos-

sible configuration matching all four projection images. Furthermore, interesting ob-

servations were done when closely examining HAADF-STEM image intensities. Cross-

talk and de-channeling effects are clearly present, as atom columns with the same den-

sity appeared with big differences in intensity, comparable to the differences found be-

tween atom columns where one had half the density of the other.

Reconstruction from few images is a great advantage as HAADF-STEM imaging is a

challenging task as well as a time-consuming procedure. With this method, only two

images were sufficient to successfully reconstruct the FCC lattice of the YSZ bulk, while

three images were needed to determine all atom positions in the GB region. The recon-

struction result provided new insight to the atomic structure of aΣ5 GB, as well demon-

strating that tomography in combination with HAADF-STEM imaging holds great promise

for future GB structure characterization.
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Further Work

The developed method should be applicable to all grain boundary structures that can

be directly imaged at atomic resolution from several directions. For HAADF-STEM,

pure tilt grain boundaries are a good choice, but other coincidence-site lattice (CSL)

GBs could also be good candidates. Therefore, the natural first step in further work

would be to use the method to reconstruct other grain boundary structures.

In Chapter 5, some qualitative discussion was made on the intensity in the HAADF-

STEM images. A more in-depth analysis of the image intensity in the GB region could

further be done. With detailed knowledge about the 3-D structure, effects like de-channeling

and cross-talk can be studied, e.g. through image simulations[94], possibly leading to a

better understanding of the image formation in HAADF-STEM and the imaging of de-

fects.

Figure 7.1 shows the EDX mapping of Y in the YSZ bicrystal with projections of the re-

constructed structure plotted on top. The color of the atom columns indicates the con-

centration, extracted by using the reconstructed structure as a reference to determine

the precise location of atom columns within each image. While the initial concentration

of Y in the bulk was about 19 %, this EDX mapping shows concentrations up to 55 %,

clearly demonstrating that grain boundary segregation (GBS)has occurred. In further

work, it would be interesting to map the concentration information to 3-D, identify-
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ing preferential atom sites for GBS. An approach with discrete tomography (DT) could

be tried. The grain boundary phenomena could further be studied through theoretical

simulations using e.g. MC or MD. This has previously been done for ideal (CSL) lattices

with a simple geometry[44, 42, 22]. However, with the reconstructed structure as an

initial structure in the simulation, the results could be more directly compared to the

concentrations determined by EDX. Figure 7.2 shows the reconstructed structure ex-

panded to contain two grain boundary planes in order to establish periodic boundary

conditions. Oxygen atoms are added so that the ratio to cations is 2:1.
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Figure 7.1: Yttrium concentrations in the YSZ bicrystal extracted from EDX images, showing that
Y atoms segregate preferentially to specific GB sites. In further work, it would be interesting to
use the concentrations to identify Y atom positions in 3-D, revealing information about the grain
boundary segregation phenomena in YSZ.
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Figure 7.2: The reconstructed structure of YSZ to be used in simulation studies of GBS. Screen-
shot from visualization in VESTA.
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Appendix A

Affine Transformation for Image

Distortion Correction

As discussed in Section 2.3.2, sample drift during STEM imaging can lead to a distorted

image. In Section 4.2.1, an affine transformation is applied to correct this distortion.

Such transformations preserve straight lines, parallel lines remain parallel, while angles

between lines and distances between points might change. In brief, the least-squares

method is used to estimate the transformation giving the best fit between a set of points

in the transformed image and points in a template generated from the theoretical bulk

parameters of the sample.

Using homogeneous coordinates, an affine transformation relating a pair of 2-D co-

ordinates (x, y) with another set (x ′, y ′) can be expressed as a matrix multiplication as

follows[101],

~v ′ = A~v , (A.1)

with

~v ′ =


x ′

y ′

1

 , ~v =


x

y

1

 , A =


a11 a12 a13

a21 a22 a23

0 0 1

 (A.2)

The transformation can be a combination of any of the following operations, illustrated
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in Figure A.1,

Pure translation: A =


1 0 tx

0 1 ty

0 0 1

 . (A.3a)

Pure scaling: A =


sx 0 0

0 sy 0

0 0 1

 . (A.3b)

Pure rotation: A =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 . (A.3c)

Pure shear, x-direction: A =


1 tanφx 0

0 1 0

0 0 1

 . (A.3d)

Pure shear, y-direction: A =


1 0 0

tanφy 1 0

0 0 1

 . (A.3e)

θ

φx φy
sx

sy

tx

ty

Figure A.1: Illustration of the affine transformations in Equations (A.3)(a)-(e), from left to right
illustrating translation, scaling, rotation and shear in x and y directions.

A.1 Implementation

The image distortion correction is based on the affine transformation estimation as im-

plemented in scikit-image[102]. This is an open source image processing library for the
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Python programming language. The 2-D affine transformation in the classskimage.transform.AffineTransform()1

is defined as follows,

x ′ = a11 ∗x +a12 ∗ y +a13 = sx x cosθ− sy y sin(θ+φ)+ tx (A.4)

y ′ = a21 ∗x +a22 ∗ y +a23 = sx x sinθ+ sy y cos(θ+φ)+ ty (A.5)

Here, sx and sy are scale coefficients in the x and y directions and tx and ty are com-

ponents of the translation vector. The rotation and shear angle is denoted θ and φ,

respectively. Only shear in the x direction is included. From these equations, the effect

of the transformation can be calculated from of the matrix coefficients as follows,

tx = a13, ty = a23, (A.6)

Sx =
√

a2
11 +a2

21, Sy = −a12

sin
(

arctan
(−a12

b22

)) , (A.7)

θ = arctan
( a21

a11

)
, φ=−arctan

( a12

a22

)
−arctan

( a21

a11

)
. (A.8)

Least Squares Method

In general, since the affine transformation is defined by 6 constants, it is possible to de-

termine the transformation from 6 points in total, that is, any three points in the input

image and the corresponding three points in the output image. In practice, for image

corrections, it is however common that many more points are measured, and e.g. the

least-squares method can be used to find the best fitting transformation. The details of

this method are explained in the following.

Since the coefficients in Equations (A.4) appears linearly, the problem can be re-written

as

B~β= 0, (A.9)

1http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.

AffineTransform

http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.AffineTransform
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.AffineTransform
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where

B =

x y 1 0 0 0 −y ′

0 0 0 x y 1 −x ′,


βᵀ = [

a11, a12, a13, a21, a22, a23,cn
]

The transformation matrix coefficients are found by calculating the coefficients giving

the best fitted transformation between two set of N 2-D coordinate pairs (xi , yi ) and

(x ′
i , y ′

i ) where i = 1,2, ..., N . In the skimage implementation, this is done by solving a

total least-squares problem[103], allowing for errors both in the template and image

coordinates. This corresponds to minimizing the 2-norm
∥∥∥B~β

∥∥∥2
under the constraint

that
∣∣∣~β∣∣∣ = 1. This is ensured by the normalizing coefficient cn . For clarity, written in

terms of the transformation matrix A, the total least-squares problem can be written as

argmin
A

∥∥∥∥ 1

cn
Ax −x ′

∥∥∥∥2

. (A.10)



Appendix B

Python Package: Grain Boundary

Reconstruction

This appendix provides an overview of the implementation of methods for 3-D recon-

struction of a crystal grain boundary from atomic resolution HAADF-STEM images. A

tutorial is provided on how to use the package grain_boundary_reconstruction

for image preparation. The steps described in Chapter 4 are followed. Again, images

from the bicrystal model of a Σ5{310}/[001] GB is used to demonstrate the process. The

code is included in Appendix C as well as in the zip-file attatched to this thesis contain-

ing the full Python package.

B.1 Code Organization

All code included in Appendix C are function definitions, which can be accessed by

loading them into a script. As the reconstruction process requires manual input in all

steps, it is highly recommended to use an IDE (interactive development environment)

where code can be executed section-by-section, e.g. Spyder1 or Jupyter Notebook2. De-

pending on their main area of use, functions are grouped into modules. This is the

Pythonic word for a file where function definitions are gathered and saved for later use.

1https://github.com/spyder-ide
2http://jupyter.org/
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When the module is imported in the beginning of a script, all its constituent functions

are made available.

All module files are placed within a folder named grain_boundary_reconstruction

together with an __init__.py-file. This makes the Python interpret the folder as a

package, containing several modules, scrip files and test data.

In the subfolder named test_data_folder, original HAADF-STEM images from the

YSZ bicrystal example are found. In addition, images are saved here from the different

steps in the preparation process. Atom column coordinated are also stored. All files

in the folder can be retrieved by functions in the test_data module. In this tutorial,

images will be retrieved from here for each new step in the image preparation part. By

doing so, the reader can try out each step separately and in any order.

Package:

grain_boundary_reconstruction

Modules (with link to code in Appendix C):

• tools (C.0.0.1)

Functions for plotting, read and write files etc.

• test_data (C.0.0.2)

Functions for retrieving files in test_data_folder.

• peakFinder (C.0.0.3)

Functions for identifying intensity maxima and Gaussian fitting.

• geometric_correction (C.0.0.4)

Functions related to image distortion correction.

• noise_reduction (C.0.0.5)

Functions for creating templates, cross-correlation, averaging.

• reconstruction (C.0.0.6)

Functions for finding 3-D atom positions and image alignment

Subfolders in test_data_folder:
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• original_images_sigma5

• original_images_atompos

• affined_images

• averaged_images

• averaged_images_atompos

• averaged_images_atompos_scaled

• ideal_3D_structure

• rec_structures

B.2 Tutorial: Image Preparation

The first step in reconstructing a GB structure is to prepare the experimental HAADF-

STEM images. This tutorial shows how to do this from scratch, following the steps de-

scribed in 4.2:

1. Preparing the experimental HAADF-STEM images

(a) Geometric correction of image distortions

(b) Scaling

(c) Noise reduction by image averaging

(d) Identify positions of atom columns

(e) Initial image alignment along the rotation axis

Step 1a: Geometric Correction of Image Distortions

The first step in the image preparation is to correct distortions form sample drift during

the imaging process. This is done by applying an affine transformation to the image, es-

timated from matching the distorted atom column positions with a template generated

from theoretical bulk parameters. For more details, see Section 4.2.1.

1. Identify atom column positions

2. Create ideal bulk template

3. Match template and atom columns

4. Estimate affine transformation
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Original HAADF-STEM images from the YSZ bicrystal are included in the moduletest_data

and are loaded into a list of NumPy 2-D arrays.

import grain_boundary_reconstruction . test_data as test_data
import grain_boundary_reconstruction . tools as tools

i m a g e s _ o r i g i n a l _ l i s t = test_data . get_original_images ( ) #returns four
example images in a l i s t of numpy arrays

for i in range ( 0 , 4 ) :
image = i m a g e s _ o r i g i n a l _ l i s t [ i ]
tools . plot_image_array ( image , axis =False ) # plots 2−D array

(a) Image [001] (b) Image [13̄4] (c) Image [13̄2] (d) Image [13̄0]

Figure B.1: Original experimental HAADF-STEM images of the YSZ bicrystal from the module
test_data.

1. Identifying Atom Column Positions

Throughout the image preparation part of this tutorial, the methods will be demon-

strated by application to Image [001]. The positions of the atom columns in the exper-

imental image is found by identifying all image intensity peaks above a specified limit,

with a criterion of minimum distance.

import grain_boundary_reconstruction . geometric_correction as corr
import grain_boundary_reconstruction . peakFinder as peakFinder

image = i m a g e s _ o r i g i n a l _ l i s t [ 0 ]

#parameters to be adjusted :
l o w e r _ i n t e n s i t y _ l i m i t _ f a c t o r =0.8 # f a c t o r of max image i n t e n s i t y in percent
minimum_distance=12 #minimum peak distance in p i x e l s

i n i t i a l _ p e a k s _ d f = peakFinder . find_maxima ( image ,
lower_intensi ty_l imit_factor , minimum_distance , plot=True )

The result is seen in Figure B.2. Not all columns are identified with this choice of param-

eterslower_intensity_limit_factor andminimum_distance. However, in this ini-

tial step, only (some of) the bulk atom column positions are needed. The coordinates
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Figure B.2: Initial peaks

are stored in a pandas DataFrame in attributes z and x_pr o j referring to axis normal

to and parallel with the GB plane, respectively.

i n i t i a l _ p e a k s _ d f
Out [ 1 ] :

z x_proj
0 115 42
1 105 100
. . . . . . . .
289 216 278
290 196 294

[291 rows x 2 columns ]

Next, the initial peak positions are refined by fitting a 2-D Gaussian function to an area

if size (2×atomr adi us)2. This is repeated until the peak positions appear to be stable,

i.e. are not moving much from one iteration to the next.

atomradius=10
refined_peaks_df = peakFinder . fit_gaussians_to_maxima ( image ,

i ni t i a l _ peak s_ df , atomradius )
Out [ 2 ] :
Number of atoms detected : 291
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(a) Initial peaks (b) Refined first time (c) Refined second time

Figure B.3: Peak refinement. In each figure, blue dots indicates the peaks found in the previous
step, and red dots show refined positions. Second refinement gives little change in peak positions,
meaning that a stable position is found.

2. Create Ideal Bulk Template

Next, we want to match these image points with points from a template with the wanted

structure. The template is created by performing 2-D projections of the 3-D ideal struc-

ture seen in Figure B.4. A DataFrame with coordinates of an ideal FCC structure can be

found in the test_data module. this structure is rotated and cut so that the GB plane

{310} is normal to the z axis.

ideal_bulk_df = test_data . get_ideal_bulk ( )
tools . plot3Dstructure ( ideal_bulk_df , markerSize =10 , panes=True , f i g S i z e =

( 6 , 6 ) , xlim=None, ylim =None, zlim=None, alpha =0.7)

2-D templates are then created from projections in directions corresponding to the ex-

perimental images, plotted in Figure B.5. Since the sample is a symmetric-tilt GB model,

templates for the right and left side of the GB plane are identical copies except for mir-

rored z coordinates.

projection_angles_deg = [ 0 , 38.3 , 57.7 , 90]
# creating l i s t of template DataFrames for each side of the GB plane :
t e m p l a t e _ l i s t _ l e f t = corr . create_bulk_templates ( ideal_bulk_df ,

projection_angles_deg , side= ’ l e f t ’ )
t e m p l a t e _ l i s t _ r i g h t = corr . create_bulk_templates ( ideal_bulk_df ,

projection_angles_deg , side= ’ r i g h t ’ )

Match template and atom columns

The goal is now to match the template and the atom columns in the original image. Ini-

tially, we match one layer (edge layer) of atom columns. Left and right side is considered
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Figure B.4: Plot of ideal FCC structure from test_data.
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Figure B.5: Left-side templates created from 2-D projections of the ideal FCC structure in Figure
B.4. Axes unit is Å.

separately. First, left side:

#load atom column positions found in the o r i g i n a l images
re f i ned_pe aks_l is t =test_data . get_refined_peaks_original ( )
refined_peaks_df= r ef ine d_peaks_ l i s t [ i ]

side= ’ l e f t ’

## e x t r a c t layer from template
template_df= t e m p l a t e _ l i s t _ l e f t [ i ]



90 APPENDIX B. PYTHON PACKAGE: GRAIN BOUNDARY RECONSTRUCTION

a=5.17
dz_theor=a /(2*np . sqrt (10) )
template_edge_df= corr . f ind_layer ( template_df , side , dz=dz_theor )
tools . plot_2D_df ( template_df , withAxis=True , f i g S i z e =(4 ,4) , markerSize =

5 , color= ’b ’ )
p l t . s c a t t e r ( template_edge_df . z , template_edge_df . x_proj , s =10 , color= ’ gold ’

)

## e x t r a c t layer from image
z_layer_image_df= corr . f ind_layer ( refined_peaks_df , side , dz=atomradius /2)

tools . plot_image_array ( image )
p l t . s c a t t e r ( refined_peaks_df . z , refined_peaks_df . x_proj , s =6 , color= ’ r ’ )
p l t . s c a t t e r ( z_layer_image_df . z , z_layer_image_df . x_proj , s =20 , color= ’ gold ’

)

We now find the scaling and translation that must be done to the template to match it

to the initial points in the image. Note - here, we simultaneously get the scale of the

image! The variable scale_factor_x_proj printed below is the pixel-to-Ångstrom

ratio of the image. This is calculated from the few atom columns chosen in at this step.

Remember, when we later perform the affine transformation on the image, the whole

image is scaled to fit this template. Hence, this is the correct image scale, after the affine

transformation is applied.

scale_factor_x_proj , translation_x_proj , t ranslat ion_z = corr .
match_initial_points ( template_edge_df , z_layer_image_df , match_atoms= ’
a l l ’ )

scale_factor_x_proj
Out [ 3 ] :
10.17110651592613

# Scaling and t r a n s l a t i n g template :
template_scaled_df = template_df . copy ( )
template_scaled_df *= s c a l e _ f a c t o r
template_scaled_df . x_proj+=translat ion_x_proj
template_scaled_df . z+=translat ion_z

tools . plot_image_array ( image )
p l t . s c a t t e r ( refined_peaks_df . z , refined_peaks_df . x_proj , color= ’ r ’ , s =10)
p l t . s c a t t e r ( template_scaled_df . z , template_scaled_df . x_proj , color= ’b ’ , s

=10 )

Figure B.6 shows the result of the initial matching. Now the template must be cut so

that no atoms on the wrong side of the GB is included in the affine transformation asti-

mation. Then, the atom columns in the template are paired - in the affine transforma-

tion estimation, we must know which atom columns we want to match. The function

match_two_point_sets() returns two DataFrames that the index of the atom points
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Figure B.6: Matching template to image by finding the scale and translation needed to move the
yellow dots marked in (a) to corresponding red dots in (b). The result is shown in (c). This plot
makes the deviation from an ideal structure obvious. Axis in (a) have the unit Ångstrom while (b)
and (c) has pixels.

match. That is, first row in template_matched_df and first row in image_matched_df

are one "pair".

#Cut template
max_z_value=190
template_scaled_df=template_scaled_df . i x [ template_scaled_df . z<max_z_value ] .

copy ( )

template_matched_df , image_matched_df = corr . match_two_point_sets (
template_scaled_df , refined_peaks_df , plot=True )

The Affine matrix coefficients can now be estimated, usingtransform.estimate_transform()

inskimage[102] - see Appendix A for details on this implementation. From thegeometric_correction

module:

def estimate_affine_matrix ( template_matched_df , image_matched_df ) :
’ ’ ’ estimate a f f i n e transformation matrix . Returns matrix as numpy array

’ ’ ’
src = template_matched_df . as_matrix ( [ ’ z ’ , ’ x_proj ’ ] )
dst = image_matched_df . as_matrix ( [ ’ z ’ , ’ x_proj ’ ] )
tform = transform . estimate_transform ( ’ a f f i n e ’ , src , dst )
aff ine_matrix=np . array ( tform . params )
return aff ine_matrix

In the main file:

a f f i n e _ m a t r i x _ l e f t = corr . estimate_affine_matrix ( template_matched_df ,
image_matched_df )

affine_matrix_oneside
Out [ 4 ] :
array ( [ [ 0.98118532 , −0.01226085 , 0.67416634] ,

[ 0.01673407 , 0.99936376 , −0.38301461] ,
[ 0 . , 0 . , 1 . ] ] )
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The effect of the transformation can be calculated from of the matrix coefficients, see

Equations (A.6):

corr . g e t _ c o e f f i n i e n t s ( a f f i n e _ m a t r i x _ l e f t )
Out [ 5 ] :
Rotation angle T : 0.977082 degrees

Shear angle C ( x−shear ) : −0.274175 degrees

Scale f a c t o r s [ sx , sy ] :
[0.981328 , 0.999439]

Translation vector [ tx , ty ] :
[0.674166 , −0.383015]

Returns [ sx , sy , T , C, tx , ty ]

##APPLY
image_transformed = corr . apply_affine_transform ( a f f i n e _ m a t r i x _ l e f t , image )

# plot image and transformed image with templates
tools . plot_image_array ( image )
p l t . s c a t t e r ( image_matched_df . z , image_matched_df . x_proj , s =4 , color= ’ r ’ ,

l a be l =" Original atom column positions " )
p l t . s c a t t e r ( template_matched_df . z , template_matched_df . x_proj , s =4 , color= ’

b ’ , l a be l ="Template" )
p l t . legend ( )
tools . plot_image_array ( image_transformed )
p l t . s c a t t e r ( template_matched_df . z , template_matched_df . x_proj , s =4 , color= ’

b ’ , l a be l ="Template" )
p l t . legend ( )

Figure B.7 shows affine_matrix_left applied to the image. As we see from the rota-

tion angle calculated from the coefficients, a 0.977° rotation was needed to match the

template, which has a vertical {310} plane. In the production of the bicrystal sample,

the aim for the misorientation angle between the two single crystals was 2θ = 18.43°, as

this will give the {310} GB plane. Some small deviation in the angle might howevever be

present. Therefore, the whole process should be repeated for the right side of the bulk,

giving a second affine matrix affine_matrix_right. This is not shown here. The av-

erage of the two matrices is the transformation that is finally applied to the image:

# Calculate average a f f i n e transform
affine_matrix_avg =( af f ine_matr ix_r ight+ a f f i n e _ m a t r i x _ l e f t ) /2
##APPLY
image_transformed = corr . apply_affine_transform ( affine_matrix_avg , image )
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Figure B.7: Image (a) before and (b) after affine transformaiton, plotted along with original atom
positions (red) and template (blue) to see the improvement.

Step 1c: Noise reduction by image averaging

For noise reduction, the image is averaged over several GB units, which are located us-

ing cross-correlation between the image and a smaller section of the same image, called

a template, see Figure B.8a.

import grain_boundary_reconstruction . noise_reduction as nr

#get l i s t of images as 2−D arrays ( from . png)
images_aff ined_l ist = nr . get_affined_images ( )
i =0
image = images_aff ined_l ist [ i ]

##get indices ( s h i f t s in p i x e l s ) for cross−correlat ion maxima
max_ind = nr . cross_correlation_along_GB ( image , plot=True , template_height

=50)

Figure B.8b shows the calculated cross-correlation function (CCF). The maxima cor-

responds to high similarity between image and template. The four highest peaks are

chosen and the image is averaged over these locations, resulting in the image shown in

Figure B.9.

##choose which peaks/ s h i f t s to make averaged image from
peaks=np . array ( [ 2 , 5 , 8 , 1 1 ] )
s h i f t s = max_ind [ peaks ]
averaged_image_height=150
averaged_image , no_units = nr . create_averaged_image ( image , s h i f t s ,

averaged_image_height )
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Figure B.8: Cross-correlation between image and template. The cross-correlation function (CCF)
in (b) is calculated from Equation (4.5). The horizontal axis has units in pixels, indicating the shift
of the template across the image along the vertical axis.

tools . plot_image_array ( averaged_image )
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Figure B.9: Image [001] averaged over 4 GB units.

Step 1d: Identify positions of atom columns

This step is similar to some of the steps in Section B.2. Here, some code and output is

repeated to show the improvement of peak stability after image averaging. Now, the pa-

rameters Il (lower_intensity_limit_factor) and dmi n (minimum_distance) must

be adjusted so that all peaks are identified.

images_averaged_list = test_data . get_averaged_images ( ) #returns l i s t of
images as 2−D arrays ( from . t i f )

i =0
image = i m a g e s _ o r i g i n a l _ l i s t [ i ]

#parameters to be adjusted :
l o w e r _ i n t e n s i t y _ l i m i t _ f a c t o r =0.5 # f a c t o r of max image i n t e n s i t y in percent
minimum_distance=12 #minimum peak distance in p i x e l s
i n i t i a l _ p e a k s _ d f = peakFinder . find_maxima ( image ,

lower_intensi ty_l imit_factor , minimum_distance )
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atomradius=12
#refinement of i n i t i a l peaks
refined_peaks_df = peakFinder . fit_gaussians_to_maxima ( image ,

i ni t i a l _ peak s_ df , atomradius , i t e r a t i o n s =4)

Out [ 5 ] :
Number of atoms detected : 118
Average position move: 1.08901286832
Number of atoms detected : 118
Average position move: 0.710460552915
Number of atoms detected : 117
Average position move: 0.36802426967
Number of atoms detected : 117
Average position move: 0.418488885613

The peak-refining function prints "Average position move", which tells how many pixels

each peak position is changed on average. This is seen to stabilize at around 0.4 pixels.

One atom close to the edge disappears, which is why "Number of atoms detected" goes

from 118 to 117.
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Figure B.10: Image [001] with initial peaks (blue) and refined peaks(red)

The atom column positions are plotted on top of the image in Figure B.10. These co-

ordinates, along with the coordinates for atom column positions in Image [13̄4], Image

[13̄2] and Image [13̄0], is the starting point for the 3-D reconstruction.
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Appendix C

Code

C.0.0.1 tools.py

"""
### tools . py ###

Tools for plott ing , reading and writing f i l e s , kernel density estimation ,
NN distances , matching point s e t s for RMSD estimation etc .

"""
import matplotlib . pyplot as p l t
import pandas as pd
import numpy as np
from mpl_toolkits . mplot3d import proj3d
from sklearn . c l u s t e r import DBSCAN
import time
from scipy import ndimage
from sklearn . neighbors import KDTree
from sklearn . neighbors import KernelDensity
import random

#####

def plot_image_array ( image , axi s =True , f i l t e r _ f a c t o r =0 , t i t l e =False ,
f igHeight =5 , cmap= ’ Greys_r ’ ) :
’ ’ ’ Plot image array ’ ’ ’
x=np . arange ( 0 , np . shape ( image ) [ 1 ] )
y=np . arange ( 0 , np . shape ( image ) [ 0 ] )
X , Y=np . meshgrid ( x , y )
imratio=image . shape [ 0 ] / image . shape [ 1 ]
f i g , ax = p l t . subplots ( 1 , f i g s i z e =( figHeight , imratio * figHeight ) )
image_fi l tered= ndimage . f i l t e r s . g a u s s i a n _ f i l t e r (np . asarray ( image ) ,

f i l t e r _ f a c t o r )
ax . pcolormesh (X , Y , image_fi ltered , cmap=cmap)
p l t . axi s ( ’ equal ’ )
p l t . subplots_adjust ( l e f t =0.12 , r i g h t =0.99 , bottom=0.12 , top =0.99 ,

wspace=0 , hspace=0)

97
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p l t . x label ( ’ $z$ ’ )
p l t . y label ( ’ $x_p$ ’ )

i f ax is i s not True :
p l t . axi s ( ’ o f f ’ )
p l t . subplots_adjust ( l e f t =0 , r i g h t =1 , bottom=0 , top =1 , wspace=0 ,

hspace=0)

i f t i t l e i s not False :
p l t . subplots_adjust ( l e f t =0.12 , r i g h t =0.99 , bottom=0.12 , top =0.9 ,

wspace=0 , hspace=0)
p l t . t i t l e ( t i t l e )

return f i g , ax

def plot_2D_df ( projection_2D_df , withAxis=True , f i g S i z e =(4 ,4) , markerSize
= 10 , color= ’b ’ ) :
’ ’ ’ Plot 2D reprojection ’ ’ ’
f i g , ax = p l t . subplots ( f i g s i z e = f i g S i z e )
ax . s c a t t e r ( projection_2D_df . z , projection_2D_df . x_proj , s=markerSize ,

color=color )
ax . axis ( ’ equal ’ )
#ax . set_ylim ( ax . get_ylim ( ) [ : : −1 ] )

i f withAxis :
ax . s e t _ x l a b e l ( ’ z ’ )
ax . s e t _ y l a b e l ( ’ x_proj ’ )
f i g . subplots_adjust ( l e f t =0.16 , r i g h t =0.98 , bottom=0.11 , top =0.98 ,

wspace=0 , hspace=0)
else :

ax . axis ( ’ o f f ’ )
f i g . subplots_adjust ( l e f t =0 , r i g h t =1 , bottom=0 , top =1 , wspace=0 ,

hspace=0)

def plot3Dstructure ( atompos_df , df_2=None, markerSize =10 , view_dir =0 ,
orthogonal=True , linewidths =0.5 , elev =0 , panes=False , f i g S i z e = ( 6 , 6 ) ,
xlim=None, ylim =None, zlim=None, alpha =0.7 , colors=None, c = [ 0 , 0 , 1 ] , c2
= [ 1 , 0 , 0 ] ) :
xlim = xlim or [np . min( atompos_df . x ) ,np .max( atompos_df . x ) ]
ylim = ylim or [np . min( atompos_df . y ) ,np .max( atompos_df . y ) ]
zlim = zlim or [np . min( atompos_df . z ) ,np .max( atompos_df . z ) ] #bestemmer

u t i f r a a df s i z e OR arguments

def axisEqual3D ( ax ) :
extents = np . array ( [ g e t a t t r ( ax , ’ get_ { } lim ’ . format (dim) ) ( ) for dim

in ’ xyz ’ ] )
sz = extents [ : , 1 ] − extents [ : , 0 ]
centers = np .mean( extents , axis =1)
maxsize = max( abs ( sz ) )
r = maxsize/2
for ctr , dim in zip ( centers , ’ xyz ’ ) :

g e t a t t r ( ax , ’ set_ { } lim ’ . format (dim) ) ( c t r − r , c t r + r )

i f orthogonal :
def orthogonal_proj ( zfront , zback ) :

a = ( zfront+zback ) /( zfront−zback )
b = −2*( zfront * zback ) /( zfront−zback )
return np . array ( [ [ 1 , 0 , 0 , 0 ] ,
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[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , a , b ] ,
[ 0 , 0 , 0 , zback ] ] )

proj3d . persp_transformation = orthogonal_proj

i f colors i s not None :
i f colors== ’ pair ’ :

colors = [ p l t .cm. Spectral ( each ) for each in np . linspace ( 0 , 1 ,
len ( atompos_df . z ) ) ]

random . s h u f f l e ( colors )
rgba_colors=colors
rgba_colors_2=colors

else :
rgba_colors = np . zeros ( ( atompos_df . shape [ 0 ] , 4 ) )
rgba_colors [ : , 0 ] = c [ 0 ] #red
rgba_colors [ : , 1 ] = c [ 1 ] #green
rgba_colors [ : , 2 ] = c [ 2 ] #blue
alphas =np . ones ( atompos_df . shape [ 0 ] ) * alpha
rgba_colors [ : , 3] = alphas

i f df_2 i s not None :
i f colors i s None :

rgba_colors_2 = np . zeros ( ( df_2 . shape [ 0 ] , 4 ) )
rgba_colors_2 [ : , 0 ] = c2 [ 0 ] #red
rgba_colors_2 [ : , 1 ] = c2 [ 1 ] #green
rgba_colors_2 [ : , 2 ] = c2 [ 2 ] #blue
alphas =np . ones ( df_2 . shape [ 0 ] ) * alpha
rgba_colors_2 [ : , 3] = alphas

f i g = p l t . f i g u r e ( f i g s i z e = f i g S i z e )
ax = f i g . add_subplot (111 , projection= ’ 3d ’ )
ax . view_init ( elev=elev , azim=270+view_dir )
ax . s c a t t e r ( atompos_df . x ,

atompos_df . y ,
atompos_df . z ,
s=markerSize , marker= ’o ’ , c=rgba_colors , edgecolors= ’ k ’ ,

l inewidths=linewidths , zdir= ’ z ’ )

i f df_2 i s not None :
ax . s c a t t e r ( df_2 . x ,

df_2 . y ,
df_2 . z ,
s=markerSize , marker= ’o ’ , c=rgba_colors_2 , edgecolors= ’ r ’

, l inewidths=linewidths , zdir= ’ z ’ )

#####Layout####
ax . set_xlim3d ( xlim )
ax . set_ylim3d ( ylim )
ax . set_zlim3d ( zlim )
axisEqual3D ( ax )
p l t . subplots_adjust ( l e f t =0 , r i g h t =1 , bottom=0 , top =1 , wspace=0 , hspace

=0)

i f panes==False :
#Get r id of panes
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ax . w_xaxis . set_pane_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
ax . w_yaxis . set_pane_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
ax . w_zaxis . set_pane_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
# Get r id of the spines
ax . w_xaxis . l i n e . set_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
ax . w_yaxis . l i n e . set_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
ax . w_zaxis . l i n e . set_color ( ( 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 ) )
# Get r id of the t i c k s
ax . s e t _ x t i c k s ( [ ] )
ax . s e t _ y t i c k s ( [ ] )
ax . s e t _ z t i c k s ( [ ] )

e lse :
ax . s e t _ x l a b e l ( ’ $x$ ’ )
ax . s e t _ y l a b e l ( ’ $y$ ’ )
ax . s e t _ z l a b e l ( ’ $z$ ’ )

return f i g , ax

def find_projected_coordinates ( atompos_df , proj_angle , s i d e _ t i l t =0) :
’ ’ ’ Takes df with l i s t of 3D coordinates ( x_in , y_in , z_in ) where z

axis i s normal to GB plane
Returns df with 2D coordinates ( x_proj , z_in ) , a projection in wanted

direction proj_angle ( input in degrees ) ’ ’ ’

# projecting matrix
theta = np . deg2rad ( proj_angle )
# Projection matrix
P = np . array ( [ [ np . cos ( theta ) , np . sin ( theta ) , 0 ] , [ 0 , 0 , 1 ] ] )
# using equation x_proj = x \cos \ theta + y \ sin \ theta . z=z .

# t i l t about x_proj axis − matrix
cos=np . cos (np . deg2rad ( s i d e _ t i l t ) )
sin=np . sin (np . deg2rad ( s i d e _ t i l t ) )
ux=np . cos ( theta )
uy=np . sin ( theta )
uz=0

R_x_proj = np . array ( [ [ cos+ux*ux*(1−cos ) , ux*uy*(1−cos )−uz* sin , ux*uz*(1−
cos ) +uy* sin ] ,

[ ux*uy*(1−cos )−uz* sin , cos+uy*uy*(1−cos ) , uy*uz*(1−cos ) +
ux* sin ] ,

[ ux*uz*(1−cos )−uy* sin , ux*uz*(1−cos ) +ux* sin , cos+uz*uz

*(1−cos ) ] ] )

xyz = np . array ( atompos_df . as_matrix ( [ ’ x ’ , ’ y ’ , ’ z ’ ] ) ) . T

# rotate
x , y , z=R_x_proj xyz
# project
x_proj , z = P np . array ( [ x , y , z ] )
projection_df = pd . DataFrame ( { ’ x_proj ’ : x_proj , ’ z ’ : z } )
return projection_df

def get_column ( structure_df , coord_z , coord_x_proj , angle_deg , radius =0.2) :
’ ’ ’ returns df with atoms in the column speci f ied in coords =[ x_proj , z ]

in projectionimage ’ ’ ’
a=5.17
dz=a /(2*np . sqrt (10) )
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#get r i g h t layer
column_df = structure_df [ structure_df . z<coord_z+dz / 2 ] . copy ( )
column_df =column_df . drop ( column_df . index [ column_df . z<coord_z−dz / 2 ] )

# t e s t a l l e atom i t h i s layer , sjekk om dei er naert nok using equation
x_proj = x \cos \ theta + y \ sin \ theta

for ind in column_df . index :
x=column_df . x [ ind ]
y=column_df . y [ ind ]
x_proj = x *np . cos (np . deg2rad ( angle_deg ) ) + y *np . sin (np . deg2rad (

angle_deg ) )

i f abs ( x_proj−coord_x_proj ) >radius :
column_df=column_df . drop ( ind )

return column_df

def cluster_2D_projection ( atompos_proj_df , max_dist ) : #atompos_proj_df has
x_proj , z−coordinates
’ ’ ’ Performs c l u s t e r i n g on 2D projected df ,
returns center_df with s i x e s ad labe ’ ’ ’

t ime_start=time . time ( )
z = np . array ( atompos_proj_df . z )
x_proj = np . array ( atompos_proj_df . x_proj )

X2d = np . array ( [ [ z [ i ] , x_proj [ i ] ] for i in range ( 0 , len ( z ) ) ] )
db = DBSCAN( eps=max_dist , min_samples=1) . f i t (X2d)

l a b e l s =db . labels_
# Number of c l u s t e r s in labels , ignoring noise i f present .
n_clusters_ = len ( set ( l a b e l s ) ) − (1 i f −1 in l a b e l s else 0)

##Reknar ut center som CM av kvar c l u s t e r . .
c e n t e r _ l i s t = [ ]
for i in range ( 0 , n_clusters_ ) :

atom=X2d [ l a b e l s == i ]
s i z e s = np .sum( l a b e l s == i )
x_proj_mean = np .mean(atom [ : , 1 ] )
z_mean = np .mean(atom [ : , 0 ] )
dict1 = { ’ x_proj ’ : x_proj_mean , ’ z ’ : z_mean , ’ s i z e s ’ : s izes , ’ labe ’

: i }
c e n t e r _ l i s t . append( dict1 )

center_db_df = pd . DataFrame ( c e n t e r _ l i s t , columns=[ ’ x_proj ’ , ’ z ’ , ’ s i z e s
’ , ’ labe ’ ] )

print ( "Found %d c l u s t e r s \n Clustering on %d points \n Time : %f minutes
\n " %(n_clusters_ , X2d . shape [ 0 ] , ( time . time ( )−t ime_start ) /60 ) )

return center_db_df

def label_2D_projection ( atompos_proj_df , max_dist ) :
’ ’ ’ Performs c l u s t e r i n g on 2D projected df ,
returns copy of df in with l a b e l s labe and s i z e s of c l u s t e r ’ ’ ’

z = np . array ( atompos_proj_df . z )
x_proj = np . array ( atompos_proj_df . x_proj )

X2d = np . array ( [ [ z [ i ] , x_proj [ i ] ] for i in range ( 0 , len ( z ) ) ] )
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db = DBSCAN( eps=max_dist , min_samples=1) . f i t (X2d)

l a b e l s =db . labels_

s i z e s _ l i s t = [ ]
for i in range ( 0 , len ( l a b e l s ) ) :

s i z e s = np .sum( l a b e l s == l a b e l s [ i ] )
s i z e s _ l i s t . append( s i z e s )

atompos_proj_df_with_labels=atompos_proj_df . copy ( )
atompos_proj_df_with_labels [ ’ labe ’ ]= l a b e l s
atompos_proj_df_with_labels [ ’ s i z e s ’ ]= s i z e s _ l i s t
return atompos_proj_df_with_labels

def cluster_3D ( overlap_df , minsample=1 , max_dist = 2) :
’ ’ ’ Returns DataFrame with c l u s t e r s found by DBSCAN ’ ’ ’

X3d = np . array ( [ np . array ( overlap_df . z ) , np . array ( overlap_df . y ) , np .
array ( overlap_df . x ) ] ) . T

db = DBSCAN( eps=max_dist , min_samples=minsample ) . f i t (X3d) ###kan evt
j u s t e r e min_samples t i l mykje hoegare ! max s i z e rundt 80 (90) paa
atoma

l a b e l s =db . labels_
# Number of c l u s t e r s in labels , ignoring noise i f present .
n_clusters_ = len ( set ( l a b e l s ) ) − (1 i f −1 in l a b e l s else 0)

##Reknar ut center som CM av kvar c l u s t e r
c e n t e r _ l i s t = [ ]
for i in range ( 0 , n_clusters_ ) :

atom=X3d [ l a b e l s == i ]
s i z e s = np .sum( l a b e l s == i )
z_mean = np .mean(atom [ : , 0 ] )
y_mean = np .mean(atom [ : , 1 ] )
x_mean = np .mean(atom [ : , 2 ] )
dict1 = { ’atom ’ : ’ Zr ’ , ’ x ’ : x_mean , ’ y ’ : y_mean , ’ z ’ : z_mean , ’

s i z e s ’ : s i z e s }
c e n t e r _ l i s t . append( dict1 )

center_db_df = pd . DataFrame ( c e n t e r _ l i s t , columns=[ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ,
’ s i z e s ’ ] )

print ( "Found %d c l u s t e r s \n Clustering on %d points \n Minsample= %d \n
" %(n_clusters_ , overlap_df . z . size , minsample ) )

return center_db_df

def printXYZ ( center_db_df , filename , s i z e s =True , header=None) : #tek inn df
med x , y , z , s i z e . filename uten extention
’ ’ ’ Takes filename without extention . creates df with x , y , z , s i z e s

entries , i f s i z e s =true . . . . ’ ’ ’
# h e l l e r lage func for aa lage xyz om t i l crystalmakervennlege f i l e r (

utan s i z e s ) seinare
f i l e = open( filename+ ’ . xyz ’ , ’w’ )

no_atoms=len ( center_db_df . z )
f i l e . write ( s t r ( no_atoms ) + " \n" ) #numbers of atoms

#to avoid index mistakes
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xs=np . array ( center_db_df . x )
ys=np . array ( center_db_df . y )
zs=np . array ( center_db_df . z )
atoms=np . array ( center_db_df . atom)

i f s i z e s :
header = header i f header i s not None else " Reconstruction , xyz−

f i l e with s i z e "
f i l e . write ( header+" \n" )
col_names_line = "atom x y z s i z e s "
f i l e . write ( col_names_line+" \n" )
s i z e s =np . array ( center_db_df . s i z e s )

for i in range ( no_atoms ) :
pos_line = atoms [ i ]+ " %f %f %f %d\n" %(xs [ i ] , ys [ i ] , zs [ i ] ,

s i z e s [ i ] )
f i l e . write ( pos_line )

else :
header = header i f header i s not None else " Reconstruction , xyz−

f i l e without s i z e "
f i l e . write ( header+" \n" )
col_names_line = "atom x y z"
f i l e . write ( col_names_line+" \n" )
for i in range ( no_atoms ) :

pos_line = atoms [ i ]+ " %f %f %f \n" %(xs [ i ] , ys [ i ] , zs [ i ] )
f i l e . write ( pos_line )

f i l e . close ( )

def readXYZ (name, path=None, print_col_names=True ) :
’ ’ ’ Takes filename without extentions , with atomname x y z and maybe

s i z e . ’ ’ ’

filename = path+ ’ / ’+name i f path i s not None else name

f = open( filename+ ’ . xyz ’ , ’ r ’ )
for i in range ( 3 ) :

l i n e = f . readline ( )
f . close ( )

i f len ( l i n e . s p l i t ( ’ ’ ) ) == 5 :
atompos_df = pd . read_csv ( filename+ ’ . xyz ’ , sep=" " , header =2 ,

index_col=False , names = [ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ s i z e s ’ ] )
e l i f len ( l i n e . s p l i t ( ’ ’ ) ) == 4 :

atompos_df = pd . read_csv ( filename+ ’ . xyz ’ , sep=" " , header =2 ,
index_col=False , names = [ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ] )

e lse :
print ( ’Check f i l e format ’ )
atompos_df = 0

i f print_col_names :
print ( atompos_df . columns )

return atompos_df

def printCIF ( filename , ideal_df , cel l_length_a , cell_length_b ,
cel l_ length_c ) :
’ ’ ’ Takes xyz , transform to c i f f i l e s with f r a c t i o n coordinates . ’ ’ ’

x_min = np . min( ideal_df . x )
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y_min = np . min( ideal_df . y )
z_min = np . min( ideal_df . z )
angle =90.0

f i l e = open( filename+ ’ . c i f ’ , ’w’ )
f i l e . write ( " data_ci f \n" )
f i l e . write ( " _cel l_length_a \ t%f \n"%(cel l_ length_a ) )
f i l e . write ( " _cell_length_b \ t%f \n"%(cel l_length_b ) )
f i l e . write ( " _cel l_ length_c \ t%f \n"%(cel l_ length_c ) )
f i l e . write ( " _cell_angle_alpha \ t%f \n"%(angle ) )
f i l e . write ( " _cell_angle_beta \ t%f \n"%(angle ) )
f i l e . write ( "_cell_angle_gamma\ t%f \n"%(angle ) )
f i l e . write ( " loop_\n" )
f i l e . write ( " _atom_site_label \n" )
f i l e . write ( " _atom_site_fract_x \n" )
f i l e . write ( " _atom_site_fract_y \n" )
f i l e . write ( " _atom_site_fract_z \n" )

atoms=np . array ( ideal_df . atom)
xs=np . array ( ideal_df . x )
ys=np . array ( ideal_df . y )
zs=np . array ( ideal_df . z )

for i in range ( len ( ideal_df . index ) ) :
f i l e . write ( atoms [ i ]+ " \ t%f \ t%f \ t%f \n"%(( xs [ i ]−x_min ) / cel l_length_a ,

( ys [ i ]−y_min ) / cell_length_b ,
( zs [ i ]−z_min ) /( cel l_ length_c ) ) )

f i l e . close ( )
print ( " F i l e created : \ n"+filename )

def clusterCIF ( atompos_df , cel l_length_a , cell_length_b , cel l_length_c ,
minsample=1 , max_dist =0.0001) :
’ ’ ’ takes big df , creates unit with speci f ied c e l l lengths . This gives

many atoms in the same spot . Does c l u s t e r i n g before printing to c i f
− f i l e . ’ ’ ’

r e a l _ r e c _ f r a c t _ d f = atompos_df . copy ( )
x_min=np . min( r e a l _ r e c _ f r a c t _ d f . x )
y_min=np . min( r e a l _ r e c _ f r a c t _ d f . y )
z_min=np . min( r e a l _ r e c _ f r a c t _ d f . z )

r e a l _ r e c _ f r a c t _ d f . x = ( r e a l _ r e c _ f r a c t _ d f . x−x_min ) /( cel l_ length_a )
r e a l _ r e c _ f r a c t _ d f . y = ( r e a l _ r e c _ f r a c t _ d f . y−y_min ) / ( cel l_length_b )
r e a l _ r e c _ f r a c t _ d f . z = ( r e a l _ r e c _ f r a c t _ d f . z−z_min ) /( cel l_ length_c ) # j u s t

to avoid weird edges
b i t _ d f = r e a l _ r e c _ f r a c t _ d f . copy ( )

n_x_units= i n t (np .max( r e a l _ r e c _ f r a c t _ d f . x ) +1)
n_y_units= i n t (np .max( r e a l _ r e c _ f r a c t _ d f . y ) +1)

for i in range ( 1 , n_x_units ) :
unit_inds = [np . array (np . array ( [ r e a l _ r e c _ f r a c t _ d f . x <( i +1) ] ) *np .

array ( [ r e a l _ r e c _ f r a c t _ d f . x>= i ] ) ) ] [ 0 ] [ 0 ]
b i t _ d f . x [ unit_inds ] = r e a l _ r e c _ f r a c t _ d f . x [ unit_inds]− i

for i in range ( 1 , n_y_units ) :
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unit_inds = [np . array (np . array ( [ r e a l _ r e c _ f r a c t _ d f . y <( i +1) ] ) *np .
array ( [ r e a l _ r e c _ f r a c t _ d f . y>= i ] ) ) ] [ 0 ] [ 0 ]

b i t _ d f . y [ unit_inds ] = r e a l _ r e c _ f r a c t _ d f . y [ unit_inds]− i

real_rec_clustered_df = cluster_3D ( bit_df , minsample=minsample ,
max_dist=max_dist )

real_rec_clustered_df . x =( real_rec_clustered_df . x * ( cel l_ length_a ) +x_min )
real_rec_clustered_df . y=( real_rec_clustered_df . y * ( cel l_length_b ) +y_min )
real_rec_clustered_df . z =( real_rec_clustered_df . z * ( cel l_ length_c ) +z_min )
return real_rec_clustered_df

def readCIF ( filename , n_units =1) :
’ ’ ’ takes big df , creates unit with speci f ied c e l l lengths . This gives

many atoms in the same spot . Does c l u s t e r i n g before printing to c i f
− f i l e . ’ ’ ’

f = open( filename+ ’ . c i f ’ , ’ r ’ )
l i n e = f . readline ( )
l i n e = f . readline ( )
cel l_ length_x= f l o a t ( l i n e . s p l i t ( ’ \ t ’ ) [ 1 ] [ : −1 ] )
l i n e = f . readline ( )
cel l_ length_y= f l o a t ( l i n e . s p l i t ( ’ \ t ’ ) [ 1 ] [ : −1 ] )
l i n e = f . readline ( )
cel l_ length_z= f l o a t ( l i n e . s p l i t ( ’ \ t ’ ) [ 1 ] [ : −1 ] )
f . close ( )

atompos_df = pd . read_csv ( filename+ ’ . c i f ’ , sep=" \ t " , header=11 ,
index_col=False , names = [ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ] )

atompos_df . x*= cel l_ length_x
atompos_df . y*= cel l_ length_y
atompos_df . z*= cel l_ length_z

#multiply
unit_df_big=atompos_df . copy ( )
for i in range ( 0 , n_units ) :

for j in range ( 0 , n_units ) :
shi f ted_unit_df=atompos_df . copy ( )
shif ted_unit_df . x+= i * cel l_ length_x
shif ted_unit_df . y+= j * cel l_ length_y

unit_df_big=pd . concat ( [ unit_df_big , shi f ted_unit_df ] )

#remove overlapping atoms
minsample=1 # c l u s t e r : find mean i f three i n t e r s e c t i o n s are close .
unit_df_big_clustered = cluster_3D ( unit_df_big , minsample , max_dist

=0.01)
return unit_df_big_clustered

def rotate_3D ( atompos_df , rotation_angle_deg =90 , center_x=None, center_z=
None) :
’ ’ ’ T i l t i n g c r y s t a l . Takes angle ( in deg ) atompos . df with columns x , y ,

z , and rotates about center of df ( rotation axis y )
z_r = z_0 \cos \ theta_r − x_0 \ sin \ theta_r
x_r = x_0 \cos \ theta_r + z_0 \ sin \ theta_r
$z_0 , x_0$ i s input coordinates and $\ theta_r$ i s the rotation angle

about the center of the image .
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’ ’ ’
atompo_df=atompos_df . copy ( )

# s h i f t or igin to center of image
center_x = center_x i f center_x i s not None else np .mean( atompo_df . x )
center_z = center_z i f center_z i s not None else np .mean( atompo_df . z )

atompo_df . x=atompo_df . x−center_x
atompo_df . z=atompo_df . z−center_z

theta_rotate = np . deg2rad ( rotation_angle_deg )

A = np . array ( [ [ np . cos ( theta_rotate ) , −np . sin ( theta_rotate ) ] ,
[np . sin ( theta_rotate ) , np . cos ( theta_rotate ) ] ] )

# calculated rotated point coordinates
w = np . array ( [ atompo_df . z , atompo_df . x ] )
w_rotated = np . l i n a l g . solve (A ,w)
# s h i f t or igin back
atompos_rotated_df = pd . DataFrame ( { ’ x ’ : w_rotated [1]+ center_x , ’ y ’ : np .

array ( atompo_df . y ) , ’ z ’ : w_rotated [0]+ center_z , } )
return atompos_rotated_df

def match_two_point_sets_3D ( template_df , image_df , plot=False ) :
’ ’ ’ Point pair : one in template_df and one in image_df CLOSER than

smal lest_dist /2 ( smallest d i s t within template )
returns dfs matched by index . Template input must be scaled and matched

. ’ ’ ’

template_array = template_df . as_matrix ( columns = [ ’ x ’ , ’ y ’ , ’ z ’ ] )
kdt = KDTree( template_array , metric= ’ euclidean ’ )
dist , inds = kdt . query ( [ [ template_array [ 0 ] [ 0 ] , template_array [ 0 ] [ 1 ] ,

template_array [ 0 ] [ 2 ] ] ] , k=3)
# smallest distance within template : Use h a l f t h i s as l i m i t for NN
smal lest_dist = d i s t [ 0 ] [ 1 ]
image_array = image_df . as_matrix ( columns = [ ’ x ’ , ’ y ’ , ’ z ’ ] )
kdt = KDTree( image_array , metric= ’ euclidean ’ )

# i t e r a t e over a l l atoms in template . find nearest neighbour in the
image peaks . IF clore enough , add to l i s t .

template_points_with_neighbour = [ ]
image_points_with_neighbour = [ ]
for atom_ind in template_df . index :

dist , inds = kdt . query ( [ [ template_df . x [ atom_ind ] , template_df . y
[ atom_ind ] , template_df . z [ atom_ind ] ] ] , k=1)

i f d i s t [ 0 ] [ 0 ] < smal lest_dist / 2 :
dict_template = { ’ x ’ : template_df . x [ atom_ind ] , ’ y ’ :

template_df . y [ atom_ind ] , ’ z ’ : template_df . z [ atom_ind ] }
dict_image = { ’ x ’ : image_array [ inds [ 0 ] [ 0 ] ] [ 0 ] , ’ y ’ :

image_array [ inds [ 0 ] [ 0 ] ] [ 1 ] , ’ z ’ : image_array [ inds
[ 0 ] [ 0 ] ] [ 2 ] }

template_points_with_neighbour . append( dict_template )
image_points_with_neighbour . append( dict_image )

template_matched_df = pd . DataFrame ( template_points_with_neighbour ,
columns=[ ’ x ’ , ’ y ’ , ’ z ’ ] )
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image_matched_df = pd . DataFrame ( image_points_with_neighbour , columns=[ ’
x ’ , ’ y ’ , ’ z ’ ] )

colors = [ p l t .cm. Spectral ( each )
for each in np . linspace ( 0 , 1 , len ( image_matched_df . z ) ) ]

random . s h u f f l e ( colors

i f plot :
f i g , ax = plot3Dstructure ( image_matched_df , df_2=

template_matched_df , colors=colors )
return template_matched_df , image_matched_df

def rms_3D( df1 , df2 ) :
’ ’ ’ c a l c u l a te s the RMSE between two s e t s of 3D data points ’ ’ ’
return np . sqrt ( np .sum( ( df1 . z−df2 . z ) **2 + ( df1 . x−df2 . x ) **2 +( df1 . y−df2

. y ) **2 ) / len ( df1 . z ) )

def kde1D( x , bandwidth =0.01) :
’ ’ ’ plots gaussian kernel density of 1D array ’ ’ ’

X=np . array ( x )
X = X . reshape ([ −1 ,1])
s ize_x=np .max( x )−np . min( x )
X_plot = np . linspace (np . min( x )−size_x * 0 . 0 5 , np .max( x ) +size_x * 0 . 0 5 ,

1000) [ : , None]
# Gaussian KDE
kde = KernelDensity ( kernel= ’ gaussian ’ , bandwidth=bandwidth ) . f i t (X)

# score_samples ( ) returns the log−l ikel ihood of the samples
log_dens = kde . score_samples ( X_plot )
z = np . exp ( log_dens )

f i g , ax = p l t . subplots ( 1 )
ax . f i l l ( X_plot [ : , 0 ] , z , fc = ’ #AAAAFF ’ )
return f i g , ax

def kde2D( x , y , bandwidth , xbins=100 j , ybins=100 j , ** kwargs ) :
""" Build 2D kernel density estimate (KDE) . """

# create grid of sample locations ( default : 100x100 )
xx , yy = np . mgrid [ x . min ( ) : x .max( ) : xbins ,

y . min ( ) : y .max( ) : ybins ]

xy_sample = np . vstack ( [ yy . ravel ( ) , xx . ravel ( ) ] ) . T
xy_train = np . vstack ( [ y , x ] ) . T
# Gaussian KDE
kde = KernelDensity ( kernel= ’ gaussian ’ , bandwidth=bandwidth , ** kwargs )
kde . f i t ( xy_train )

# score_samples ( ) returns the log−l ikel ihood of the samples
z = np . exp ( kde . score_samples ( xy_sample ) )
return xx , yy , np . reshape ( z , xx . shape )

def kde3D( x , y , z , bandwidth =0.01 , xbins=100 j , ybins=100 j , zbins=100 j , **
kwargs ) :
""" Build 2D kernel density estimate (KDE) . """

# create grid of sample locations ( default : 100x100 )
xx , yy , zz = np . mgrid [ x . min ( ) : x .max( ) : xbins ,
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y . min ( ) : y .max( ) : ybins ,
z . min ( ) : z .max( ) : zbins ]

xyz_sample = np . vstack ( [ zz . ravel ( ) , yy . ravel ( ) , xx . ravel ( ) ] ) . T
xyz_train = np . vstack ( [ z , y , x ] ) . T
# Gaussian KDE
kde_skl = KernelDensity ( kernel= ’ gaussian ’ , bandwidth=bandwidth , **

kwargs )
kde_skl . f i t ( xyz_train )

# score_samples ( ) returns the log−l ikel ihood of the samples
z = np . exp ( kde_skl . score_samples ( xyz_sample ) )
return xx , yy , zz , np . reshape ( z , xx . shape )

def investigate_neighbours_2D ( atompos_df , plot_kde=True , max_dist =2 ,
nhood_size =10 , MIN_dist=0 , n_neighbours=None) :
’ ’ ’ Returns array of nearest neighbours distances . ’ ’ ’

atompos_array = atompos_df . as_matrix ( columns = [ ’ x_proj ’ , ’ z ’ ] )
kdt = KDTree( atompos_array , metric= ’ euclidean ’ )
n_neighbours=n_neighbours i f n_neighbours i s not None else len (

atompos_df . z )

d i s t _ a r r =np . array ( [ ] )
for i in range ( 0 , len ( atompos_df . z ) ) :

dist , ind = kdt . query ( [ atompos_array [ i ] ] , k=n_neighbours )
d i s t = d i s t [ 0 ]
d i s t = d i s t [ 1 : ]
d i s t = d i s t [ dist <nhood_size ]
d i s t = d i s t [ dist >MIN_dist ]
d i s t _ a r r = np . concatenate ( ( di st_ arr , d i s t ) )

i f plot_kde :
f i g , ax=kde1D( dist_arr , bandwidth =0.01)

return layer_db_df , d i s t _ a r r

def investigate_neighbours_3D ( atompos_df , check_sub_df=None, p l o t _ h i s t =
False , plot_kde=True , dbin = 1 , max_dist =2 , MIN_dist=0 , nhood_size =10 ,
n_neighbours =5) :
’ ’ ’ Plots histogram with a l l neighbour distances , and layer means
Returns layer_db_df with mean and std of each " layer " of neighbours
i f check_sub_df i s input , only these atoms are checked . ’ ’ ’

atompos_array = atompos_df . as_matrix ( columns = [ ’ x ’ , ’ y ’ , ’ z ’ ] )
kdt = KDTree( atompos_array , metric= ’ euclidean ’ )
n_neighbours=n_neighbours i f n_neighbours i s not None else len (

atompos_df . z )

d i s t _ a r r =np . array ( [ ] )

i f check_sub_df i s not None :
check_array = check_sub_df . as_matrix ( columns = [ ’ x ’ , ’ y ’ , ’ z ’ ] )
for i in range ( 0 , len ( check_sub_df . z ) ) :

dist , ind = kdt . query ( [ check_array [ i ] ] , k=( n_neighbours +1) )
d i s t = d i s t [ 0 ]
d i s t = d i s t [ dist <nhood_size ]
d i s t = d i s t [ dist >MIN_dist ]
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d i s t _ a r r = np . concatenate ( ( di st_ arr , d i s t [ 1 : ] ) )
e lse :

for i in range ( 0 , len ( atompos_df . z ) ) :
dist , ind = kdt . query ( [ atompos_array [ i ] ] , k=( n_neighbours +1) )
d i s t = d i s t [ 0 ]
d i s t = d i s t [ 1 : ]
d i s t = d i s t [ dist <nhood_size ]
d i s t = d i s t [ dist >MIN_dist ]
d i s t _ a r r = np . concatenate ( ( di st_ arr , d i s t ) )

i f p l o t _ h i s t :
p l t . f i g u r e ( )
p l t . h i s t ( dist_arr , bins=np . arange (np . min( d i s t _ a r r ) , np .max( d i s t _ a r r

) , dbin ) )

####bruke 1D DBSCAN paa di st_arr , returnere array med means
X2d = np . zeros ( ( len ( d i s t _ a r r ) , 2) )
X2d [ : , 0 ] = d i s t _ a r r # . reshape ( 1 , −1)

db = DBSCAN( eps=max_dist , min_samples=1) . f i t (X2d)

l a b e l s =db . labels_
# Number of c l u s t e r s in labels , ignoring noise i f present .
n_clusters_ = len ( set ( l a b e l s ) ) − (1 i f −1 in l a b e l s else 0)

##Reknar ut center som CM av kvar c l u s t e r . .
l a y e r _ l i s t = [ ]
for i in range ( 0 , n_clusters_ ) :

layer = X2d [ l a b e l s == i ]
no_atoms=len ( layer [ : , 0 ] )
mean = np .mean( layer [ : , 0 ] )
std = np . std ( layer [ : , 0 ] )
dict1 = { ’ layer_dist_mean ’ : mean, ’ l a y e r _ d i s t _ s t d ’ : std , ’no_atoms ’

: no_atoms }
l a y e r _ l i s t . append( dict1 )

layer_db_df = pd . DataFrame ( l a y e r _ l i s t , columns=[ ’ layer_dist_mean ’ , ’
l a y e r _ d i s t _ s t d ’ , ’no_atoms ’ ] )

#add to histogram
i f p l o t _ h i s t :

p l t . s c a t t e r ( layer_db_df . layer_dist_mean , np . zeros ( len ( l a y e r _ l i s t ) ) ,
s =20 , color= ’ r ’ )

i f plot_kde :
f i g , ax=kde1D( d i s t _ a r r )
i f p l o t _ h i s t :

ax . s c a t t e r ( layer_db_df . layer_dist_mean , np . zeros ( len ( l a y e r _ l i s t
) ) , s =20 , color= ’ r ’ )

return layer_db_df , d i s t _ a r r

C.0.0.2 test_data.py

"""
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### test_data . py ###

Functions for r e t r i e v i n g data from the folder test_data_folder . F i l e s were
stored here for each step in the reconstruction process . Current
directory should be set within the grain_boundary_reconstruction folder
. I f not , following l i n e should be changed in get−functions :

path_dir = os . getcwd ( )
"""
from skimage import io
import os
import matplotlib . pyplot as p l t
from scipy import ndimage
import pandas as pd
import numpy as np

import grain_boundary_reconstruction . tools as tools

#####

def get_original_images ( ) :
’ ’ ’ returns l i s t of arrays containing o r i g i n a l images ’ ’ ’
path_dir = os . getcwd ( )
path_images=r ’ test_data_folder \\ original_images_sigma5 ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+path_images )
images_l ist = [ io . imread ( path_dir+ ’ \\ ’+path_images+ ’ \\ ’+filename ,

as_grey=True ) for filename in f i l e n a m e _ l i s t ]
return images_l ist

def get_refined_peaks_original ( ) :
’ ’ ’ returns l i s t of df ’ s containing refined peak positions for averaged

images .
This i s the s t a r t i n g point for the 3−D reconstruction . ’ ’ ’
path_dir = os . getcwd ( )
path_peaks=r ’ test_data_folder \\\ original_images_atompos ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+path_peaks )
p e a k s _ l i s t = [pd . DataFrame (np . load ( path_dir+ ’ \\ ’+path_peaks+ ’ \\ ’+

filename ) , columns=[ ’ z ’ , ’ x_proj ’ ] ) for filename in f i l e n a m e _ l i s t ]
return p e a k s _ l i s t

def get_affined_images ( ) :
’ ’ ’ returns l i s t of arrays containing aff ined images ’ ’ ’
path_dir = os . getcwd ( )
path_images=r ’ affined_images ’
images_l ist = [ ]
for i in range ( 0 , 5 ) :

filename= ’ affined_avg_img ’+ s t r ( i ) + ’ . png ’
image_arr=io . imread ( path_dir+ ’ \\ ’+path_images+ ’ \\ ’+filename ,

as_grey=True )
images_l ist . append(np . array ( image_arr , dtype= f l o a t ) )

return images_l ist

def get_averaged_images ( ) :
’ ’ ’ returns l i s t of arrays containing averaged images ’ ’ ’
path_dir = os . getcwd ( )
path_images=r ’ test_data_folder \\ averaged_images ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+path_images )
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images_l ist = [ io . imread ( path_dir+ ’ \\ ’+path_images+ ’ \\ ’+filename ,
as_grey=True ) for filename in f i l e n a m e _ l i s t ]

return images_l ist

def get_refined_peaks_avg ( ) :
’ ’ ’ returns l i s t of df ’ s containing refined peak positions for averaged

images .
This i s the s t a r t i n g point for the 3−D reconstruction . ’ ’ ’
path_dir = os . getcwd ( )
path_peaks=r ’ test_data_folder \\ averaged_images_atompos ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+path_peaks )
p e a k s _ l i s t = [pd . DataFrame (np . load ( path_dir+ ’ \\ ’+path_peaks+ ’ \\ ’+

filename ) , columns=[ ’ z ’ , ’ x_proj ’ ] ) for filename in f i l e n a m e _ l i s t ]
return p e a k s _ l i s t

def get_refined_peaks_avg_scaled ( ) :
’ ’ ’ returns l i s t of df ’ s containing refined peak positions for averaged

images .
This i s the s t a r t i n g point for the 3−D reconstruction . ’ ’ ’
path_dir = os . getcwd ( )
path_peaks=r ’ test_data_folder \\ averaged_images_atompos_scaled ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+path_peaks )
p e a k s _ l i s t = [pd . DataFrame (np . load ( path_dir+ ’ \\ ’+path_peaks+ ’ \\ ’+

filename ) , columns=[ ’ z ’ , ’ x_proj ’ ] ) for filename in f i l e n a m e _ l i s t ]
return p e a k s _ l i s t

def get_reconstructed_from_cif ( image_inds , n_units =1) :
’ ’ ’ returns the structure ’ rec . from image inds from c i f− f i l e ’ ’ ’
images_ind_str = ’ _images_ ’
for ind in image_inds :

images_ind_str +=( s t r ( ind ) + ’ _ ’ )

path_dir = os . getcwd ( )
p a t h _ f i l e s =r ’ reconstructions ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+ p a t h _ f i l e s )
check=0
# find filename that contains image_inds_str
f i lename_start = ’ Reconstruction_REAL_ ’+images_ind_str+ ’ atomradius_ ’
for filename in f i l e n a m e _ l i s t :

i f filename [ 0 : len ( f i lename_start ) ]== fi lename_start :
i f filename [−3:]== ’ c i f ’ :

d f _ c i f = tools . readCIF ( path_dir+ ’ \\ ’+ p a t h _ f i l e s + ’ \\ ’+
filename [ : −4] , n_units=n_units )

check=1
i f check==0:

print ( ’ F i l e not found ! ’ )
d f _ c i f =0

return d f _ c i f

def get_reconstructed_from_xyz ( image_inds ) :
’ ’ ’ returns the structure ’ rec . from image inds from c i f− f i l e ’ ’ ’
images_ind_str = ’ _images_ ’
for ind in image_inds :

images_ind_str +=( s t r ( ind ) + ’ _ ’ )
path_dir = os . getcwd ( )
p a t h _ f i l e s =r ’ reconstructions ’
f i l e n a m e _ l i s t = os . l i s t d i r ( path_dir+ ’ \\ ’+ p a t h _ f i l e s )
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check=0
# find filename that contains image_inds_str
f i lename_start = ’ Reconstruction_REAL_ ’+images_ind_str+ ’ atomradius_ ’
for filename in f i l e n a m e _ l i s t :

i f filename [ 0 : len ( f i lename_start ) ]== fi lename_start :
i f filename [−3:]== ’ xyz ’ :

df_from_xyz = tools . readXYZ ( path_dir+ ’ \\ ’+ p a t h _ f i l e s + ’ \\ ’+
filename [ : −4 ] )

check=1
i f check==0:

print ( ’ F i l e not found ! ’ )
return df_from_xyz

def get_ideal_bulk ( ) :
’ ’ ’ Returns ideal bulk ’ ’ ’

pd . options .mode. chained_assignment = None # default = ’warn ’ #get r id of
warning

path=r ’ test_data_folder \\ ideal_3D_structure ’
fi lename_ideal= ’ half_sigma5 . xyz ’
ideal_df = pd . read_csv ( path+ ’ \\ ’+filename_ideal , sep=" " , header =1 ,

names = [ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ] )
ideal_out = ideal_df [ [ ’ x ’ , ’ y ’ , ’ z ’ ] ]
return ideal_out

def get_reconstructed_structure ( n_units =3) :
’ ’ ’ Returns reconstructed structure as multiples of r e a l clustered CIF−

f i l e . . . ’ ’ ’
filename= ’ real_rec_ ’+ s t r ( n_units ) + ’ units . xyz ’
path= ’ test_data_folder ’
return pd . read_csv ( path+ ’ \\ ’+filename , delimiter= ’ ’ , header =2 , names=[

’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ] )

def get_angles_deg ( ) :
’ ’ ’ Calculate rotation angles from l a t t i c e direct ions ’ ’ ’
dirZone = np . array ( [ 0 , 0 , 1 ] )
dir38 = np . array ( [ 1 , −3, 4 ] )
dir58 = np . array ( [ 1 , −3, 2 ] )
dir90 = np . array ( [ 1 , −3, 0 ] )
theta38 = np . rad2deg (np . arccos ( (np .sum( dirZone * dir38 ) ) /( np . sqrt (np .

sum( dirZone * * 2 ) ) * np . sqrt (np .sum( dir38 * * 2 ) ) ) ) )
theta58 = np . rad2deg (np . arccos ( (np .sum( dirZone * dir58 ) ) /( np . sqrt (np .

sum( dirZone * * 2 ) ) * np . sqrt (np .sum( dir58 * * 2 ) ) ) ) )
angles_deg = [ 0 . 0 , theta38 , theta58 , 9 0 . 0 ]
return angles_deg

def get_EDX_images ( ) :
’ ’ ’ returns two l i s t s of arrays containing o r i g i n a l EDX images ,
Zr and Y ’ ’ ’
path_images=r ’ original_EDX_images_sigma5 ’ ##should be in

grain_boundar_reconstruction folder ! ! !
names_Zr =[ ’ zone_Zr K ’ , ’ 38_Zr K ’ , ’ 58_Zr K ’ , ’ 90_Zr K ’ ]
names_Y =[ ’ zone_Y K ’ , ’ 38_Y K ’ , ’ 58_Y K ’ , ’ 90_Y K ’ ]
EDX_df_list_Zr = [ ]
EDX_df_list_Y = [ ]
for i in range ( 0 , len ( names_Zr ) ) :

name=names_Zr [ i ]
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EDX_df = pd . read_csv ( path_images+ ’ \\ ’+name+ ’ . csv ’ , sep=" , " , header
=None)

EDX_df_list_Zr . append( EDX_df )
name=names_Y[ i ]
EDX_df = pd . read_csv ( path_images+ ’ \\ ’+name+ ’ . csv ’ , sep=" , " , header

=None)
EDX_df_list_Y . append( EDX_df )

return EDX_df_list_Zr , EDX_df_list_Y

def plot_EDX_subplot ( f i l t e r _ f a c t o r =0) :
EDX_df_list_Zr , EDX_df_list_Y = get_EDX_images ( )

f i g , axs = p l t . subplots ( 4 , 3 , f i g s i z e =(15 , 6) )
f i g . subplots_adjust ( top =0.97 ,

bottom =0.0 ,
l e f t =0.0 ,
r i g h t =1.0 ,
hspace =0.085 ,
wspace =0.0)

X , Y = np . meshgrid ( range ( 0 , EDX_df_list_Zr [ 0 ] . shape [ 0 ] ) , range ( 0 ,
EDX_df_list_Zr [ 0 ] . shape [ 1 ] ) )

axs = axs . ravel ( )
ind=−1
for i in [ 0 , 3 , 6 , 9 ] :

ind+=1
EDX_df_both = EDX_df_list_Zr [ ind ] + EDX_df_list_Y [ ind ]
intensity_both = ndimage . f i l t e r s . g a u s s i a n _ f i l t e r (np . asarray (

EDX_df_both ) , f i l t e r _ f a c t o r )
axs [ i ] . pcolormesh (X , Y , intensity_both ) # , cmap= ’ Greys_r ’ , vmin=vmin ,

vmax=vmax)
axs [ i ] . s e t _ t i t l e ( "Sum Y and Zr image "+ s t r ( ind ) )
axs [ i ] . ax is ( ’ equal ’ )
axs [ i ] . ax is ( ’ o f f ’ )
EDX_df_Zr = EDX_df_list_Zr [ ind ]
intensity_Zr = ndimage . f i l t e r s . g a u s s i a n _ f i l t e r (np . asarray ( EDX_df_Zr

) , f i l t e r _ f a c t o r )
axs [ i + 1 ] . pcolormesh (X , Y , intensity_Zr ) # , cmap= ’ Greys_r ’ , vmin=vmin ,

vmax=vmax)
axs [ i + 1 ] . s e t _ t i t l e ( "Zr image "+ s t r ( ind ) )
axs [ i + 1 ] . axis ( ’ equal ’ )
axs [ i + 1 ] . axis ( ’ o f f ’ )
EDX_df_Y = EDX_df_list_Y [ ind ]
intensity_Y = ndimage . f i l t e r s . g a u s s i a n _ f i l t e r (np . asarray ( EDX_df_Y ) ,

f i l t e r _ f a c t o r )
axs [ i + 2 ] . pcolormesh (X , Y , intensity_Y ) # , cmap= ’ Greys_r ’ , vmin=vmin ,

vmax=vmax)
axs [ i + 2 ] . s e t _ t i t l e ( "Y image "+ s t r ( ind ) )
axs [ i + 2 ] . axis ( ’ equal ’ )
axs [ i + 2 ] . axis ( ’ o f f ’ )

def get_visual_guess_GB_z_list ( average=False ) :
’ ’ ’ returns l i s t of v i s u a l GB positions ’ ’ ’
i f average :

ut = np . array ( [ [ 1 9 4 , 214] , [405 , 450] , [467 , 511] , [248 , 2 6 2 ] ] )
e lse :

ut = np . array ( [ [ 1 9 8 , 214] , [405 , 450] , [473 , 520] , [248 , 2 6 2 ] ] )
return ut
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def refine_GB_z_values_and_find_x_proj_unit_dist ( atompos_df_list ,
visual_guess_GB_z_list , dz=5 , plot=False ) :
’ ’ ’ Takes i n i t i a l guess for GB position , returns mean z−values of the

atom l a y e r s indicated ’ ’ ’

visual_guess_GB_z_list_refined = [ ]
u n i t _ x _ p r o j _ d i s t _ l i s t = [ ]
for i in range ( 0 , 4 ) :

pos_df = atompos_df_list [ i ]
GB_L_z = visual_guess_GB_z_list [ i ] [ 0 ]
GB_R_z = visual_guess_GB_z_list [ i ] [ 1 ]
GB_L_inds =[np . array (np . array ( [ pos_df . z <(GB_L_z+dz ) ] ) *np . array ( [

pos_df . z >(GB_L_z−dz ) ] ) ) ] [ 0 ] [ 0 ]
GB_R_inds =[np . array (np . array ( [ pos_df . z <(GB_R_z+dz ) ] ) *np . array ( [

pos_df . z >(GB_R_z−dz ) ] ) ) ] [ 0 ] [ 0 ]
GB_L_z_refined = np .mean( pos_df . z [ GB_L_inds ] )
GB_R_z_refined = np .mean( pos_df . z [ GB_R_inds ] )

visual_guess_GB_z_list_refined . append ( [ GB_L_z_refined ,
GB_R_z_refined ] )

i f plot :
p l t . f i g u r e ( )
p l t . s c a t t e r ( pos_df . z , pos_df . x_proj , s =10 , color= ’b ’ , l a be l = ’

bulk atoms ’ )
p l t . s c a t t e r ( pos_df . z [ GB_L_inds ] , pos_df . x_proj [ GB_L_inds ] , s

=4 , color= ’ r ’ , l a be l = ’ l e f t GB layer ’ )
p l t . s c a t t e r ( pos_df . z [ GB_R_inds ] , pos_df . x_proj [ GB_R_inds ] , s

=4 , color= ’ y ’ , l a be l = ’ r i g h t GB layer ’ )
p l t . axi s ( ’ equal ’ )
p l t . legend ( )

#Find distance between GB units
x_vals = sorted (np . array ( pos_df . x_proj [ GB_L_inds ] ) )

i f len ( x_vals ) <2:
print ( ’Too few GB atoms found ’ )

e lse :
GB_unit_2_atom_x=x_vals [ 0 ]
i f i ==0:

GB_unit_1_atom_x=x_vals [ 2 ]
i f i ==1:

GB_unit_1_atom_x=x_vals [ 1 ]
i f i ==2:

GB_unit_1_atom_x=x_vals [ 1 ]
i f i ==3:

GB_unit_1_atom_x=x_vals [ 3 ]

unit_x_proj_dist = abs ( GB_unit_2_atom_x−GB_unit_1_atom_x )
u n i t _ x _ p r o j _ d i s t _ l i s t . append( unit_x_proj_dist )

return visual_guess_GB_z_list_refined , u n i t _ x _ p r o j _ d i s t _ l i s t

def g e t _ s c a l e _ f a c t o r s ( ) :
’ ’ ’ returns scale f a c t o r s ( px−to−angstrom r a t i o ) for aff ined images (

should be same as for averaged images ) . ’ ’ ’
path_dir = os . getcwd ( )
path=r ’ test_data_folder ’



115

s c a l e _ f a c t o r s = np . load ( path_dir+ ’ \\ ’+path+ ’ \\ scale_factors_avg . npy ’ )
return s c a l e _ f a c t o r s

C.0.0.3 peakFinder.py

"""
### peakFinder . py ###

Functions for finding i n t e n s i t y peaks and f i t t i n g 2−D Gaussian function to
the data

"""
import pandas as pd
import numpy as np
from scipy import optimize

#####

def find_maxima ( image , lower_intensity_l imit_factor , minimum_distance ) :
’ ’ ’ return a l l maxima above l o w e r _ i n t e n s i t y _ l i m i t _ f a c t o r ( f a c t o r of image

max) , IF distance bigger than min_dist
atoms clores to the edge than 1 atom radius are ignored ’ ’ ’

#add zero padding (2* atomradius ) to remove problem with atoms at edges
image_copy = np . zeros ( ( ( image . shape [ 0 ] + minimum_distance *4) , ( image .

shape [ 1 ] + minimum_distance *4) ) )
image_copy [ minimum_distance*2:−minimum_distance *2 , minimum_distance*2:−

minimum_distance *2 ] += image
max_list = [ ]
lower_intensi ty_l imit = l o w e r _ i n t e n s i t y _ l i m i t _ f a c t o r *np .max( image )
y_size , x_size=image . shape

peak_found=True
while peak_found==True :

i f np .max( image_copy ) >lower_intensi ty_l imit :
y_max , x_max = np . unravel_index (np . argmax ( image_copy ) ,

image_copy . shape ) # find the match
##Brute force : ser area around peak to zero , find next max
image_copy [ y_max−minimum_distance : y_max+minimum_distance , x_max

−minimum_distance : x_max+minimum_distance ] = 0
#remove padding in saved coordinate
dict1 = { ’ z ’ : x_max−minimum_distance *2 , ’ x_proj ’ : y_max−

minimum_distance*2 }
# i f not on edge , add to l i s t :
i f dict1 [ ’ z ’ ] >minimum_distance and dict1 [ ’ z ’ ] < x_size−

minimum_distance :
i f dict1 [ ’ x_proj ’ ] >minimum_distance and dict1 [ ’ x_proj ’ ] <

y_size−minimum_distance :
max_list . append( dict1 )

e lse :
peak_found=False

maxima_df = pd . DataFrame ( max_list , columns=[ ’ z ’ , ’ x_proj ’ ] )
print ( "Number of atoms detected : "+ s t r ( ( len ( maxima_df . z ) ) ) )
print ( " I n t e n s i t y l e v e l minimum: "+ s t r ( l o w e r _ i n t e n s i t y _ l i m i t _ f a c t o r *100)

+" % of max i n t e n s i t y " )
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return maxima_df

def gaussian ( amplitude , mu_x, mu_y, sigma_x , sigma_y ) :
""" Returns a gaussian function with the given parameters """
return lambda x , y : amplitude *np . exp (

−(((mu_x−x ) /sigma_x ) * * 2 + ( (mu_y−y ) /sigma_y ) * * 2 ) /2)

def moments( data ) :
""" Returns ( amplitude , x , y , sigma_x , sigma_y )
the gaussian parameters of a 2D d i s t r i b u t i o n by calculat ing i t s
moments """
t o t a l = data .sum( )
X , Y = np . indices ( data . shape )
x = (X* data ) .sum( ) / t o t a l
y = (Y* data ) .sum( ) / t o t a l
col = data [ : , i n t ( y ) ]
sigma_x = np . sqrt (np . abs ( ( np . arange ( col . s i z e )−y ) **2* col ) .sum( ) / col .sum

( ) )
row = data [ i n t ( x ) , : ]
sigma_y = np . sqrt (np . abs ( ( np . arange (row . s i z e )−x ) **2*row) .sum( ) /row .sum

( ) )
amplitude = data .max( )
return amplitude , x , y , sigma_x , sigma_y

def f i t g a u s s i a n ( data ) :
""" Returns ( amplitude , x , y , sigma_x , sigma_y )
the gaussian parameters of a 2D d i s t r i b u t i o n found by least−squares f i t

"""
params = moments( data )
errorfunc = lambda p : np . ravel ( gaussian ( *p) ( *np . indices ( data . shape ) ) −

data )
params_bestfit , success = optimize . l eastsq ( errorfunc , params )
return params_bestfit

def fit_gaussians_to_maxima ( image , ini t i a l _pe ak s_d f , atomradius , i t e r a t i o n s
=1 , i n t e n s i t y =False ) :
’ ’ ’ Gaussian f i t to square box of the image of s i z e 2* atomradius around

each i n i t i a l peak position ’ ’ ’
#add padding to avoid problems at edges
image_copy = np . zeros ( ( ( image . shape [ 0 ] + atomradius *4) , ( image . shape [ 1 ]

+ atomradius *4) ) )
image_copy [ atomradius*2:−atomradius *2 , atomradius*2:−atomradius *2 ] +=

image
p o s i t i o n s _ r e f i n e d _ l i s t = [ ]
y_size , x_size=image . shape

move_list = [ ]
for ind , x , y in zip ( i n i t i a l _ p e a k s _ d f . index , i n i t i a l _ p e a k s _ d f . z ,

i n i t i a l _ p e a k s _ d f . x_proj ) :
#choose area ( atomradius ) x ( atomradius ) around each peak for

gaussian f i t t i n g
atom_snip = image_copy [ i n t ( y+atomradius ) : i n t ( y+atomradius *3) , i n t ( x

+atomradius ) : i n t ( x+atomradius *3) ] . copy ( )
params = f i t g a u s s i a n ( atom_snip )
( amplitude , y_gauss , x_gauss , sigma_x , sigma_y ) = params
move= np . sqrt ( ( y_gauss−atomradius ) **2 + ( x_gauss−atomradius ) * * 2 )
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i f move<5: #ignore those atoms that go very f a r ( jumps out of image )
move_list . append(move)

i f i n t e n s i t y :
dict1 = { ’ z ’ : x_gauss−atomradius+x , ’ x_proj ’ : y_gauss−

atomradius+y , ’ i n t e n s i t y ’ : amplitude } #remove padding
else :

dict1 = { ’ z ’ : x_gauss−atomradius+x , ’ x_proj ’ : y_gauss−
atomradius+y } #remove padding

# i f not on edge , add to l i s t :
i f dict1 [ ’ z ’ ] >atomradius and dict1 [ ’ z ’ ] < x_size−atomradius :

i f dict1 [ ’ x_proj ’ ] >atomradius and dict1 [ ’ x_proj ’ ] < y_size−
atomradius :
p o s i t i o n s _ r e f i n e d _ l i s t . append( dict1 )

i f i n t e n s i t y :
maxima_refined_df = pd . DataFrame ( p o s i t i o n s _ r e f i n e d _ l i s t , columns=[ ’

z ’ , ’ x_proj ’ , ’ i n t e n s i t y ’ ] )
e lse :

maxima_refined_df = pd . DataFrame ( p o s i t i o n s _ r e f i n e d _ l i s t , columns=[ ’
z ’ , ’ x_proj ’ ] )

print ( "Number of atoms detected : "+ s t r ( ( len ( maxima_refined_df . z ) ) ) )
print ( "Average position move: "+ s t r (np .mean( move_list ) ) )
#return maxima_refined_CM_df
for i t in range ( i t e r a t i o n s −1) :

maxima_refined_df=fit_gaussians_to_maxima ( image , maxima_refined_df ,
atomradius , i t e r a t i o n s =1 , i n t e n s i t y = i n t e n s i t y )

return maxima_refined_df

C.0.0.4 geometric_correction.py

"""
### geometric_correction . py ###

Functions for correction of image d i s t o r t i o n by estimating an affime
transformation from an FCC reference l a t t i c e ( template )

"""
import matplotlib . pyplot as p l t
import pandas as pd
import numpy as np
from sklearn . neighbors import KDTree
import random
from skimage import transform

import grain_boundary_reconstruction . tools as tools

#####

def create_bulk_templates ( ideal_bulk_df , projection_angles_deg , side= ’ l e f t ’
) :
’ ’ ’ returns l i s t of dataframes with templates created from projections

of the ideal bulk structure .
GB plane set to 0 on z−axis . ’ ’ ’
template_l is t = [ ]
for proj_angle in projection_angles_deg :

ideal_bulk_df_proj = tools . find_projected_coordinates ( ideal_bulk_df
, proj_angle )
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max_dist =0.1
ideal_bulk_df_proj_clustered = tools . cluster_2D_projection (

ideal_bulk_df_proj , max_dist )

## S h i f t GB to 0
i f side== ’ l e f t ’ :

ideal_bulk_df_proj_clustered . z *= −1
ideal_bulk_df_proj_clustered . z −= np .max(

ideal_bulk_df_proj_clustered . z )
i f side== ’ r i g h t ’ :

ideal_bulk_df_proj_clustered . z −= np . min(
ideal_bulk_df_proj_clustered . z )

template_l is t . append( ideal_bulk_df_proj_clustered )
return template_l is t

def f ind_layer ( refined_peaks_df , side , dz=5) :
’ ’ ’ returns df with layer atoms , at l e a s t 3 stk ’ ’ ’
i f side== ’ l e f t ’ :

z_layer_image_df = refined_peaks_df . i x [ refined_peaks_df . z <(np . min(
refined_peaks_df . z ) +dz ) ]

i t =0
while len ( z_layer_image_df ) <3:# t e s t next layer

i t +=1
z_layer_image_df = refined_peaks_df . i x [ refined_peaks_df . z <(np .

min( refined_peaks_df . z ) + i t *dz ) ]
z_layer_image_df = z_layer_image_df . i x [ z_layer_image_df . z >=(np .

min( z_layer_image_df . z ) +( i t −1)*dz ) ]

i f side== ’ r i g h t ’ :
z_layer_image_df = refined_peaks_df . i x [ refined_peaks_df . z >(np .max(

refined_peaks_df . z )−dz /2) ]
i t =0
while len ( z_layer_image_df ) <3:# t e s t next layer

i t +=1
z_layer_image_df = refined_peaks_df . i x [ refined_peaks_df . z >(np .

max( refined_peaks_df . z )− i t *dz ) ]
z_layer_image_df = z_layer_image_df . i x [ z_layer_image_df . z <=(np .

max( z_layer_image_df . z )−( i t −1)*dz ) ]
return z_layer_image_df

def match_initial_points ( template_edge_df , z_layer_image_df , match_atoms=
None, atoms_im=None, atoms_temp=None) :
’ ’ ’ match_atoms : l i s t of numbers in template to match with f i r s t atoms

in image .
i f ’ a l l ’ , no gaps in image atoms , a l l atoms used ’ ’ ’
sorted_im = z_layer_image_df . sort_values ( ’ x_proj ’ ) . copy ( )
sorted_im . index=np . arange ( 0 , len ( sorted_im . index ) )
sorted_tem = template_edge_df . sort_values ( ’ x_proj ’ ) . copy ( )
sorted_tem . index=np . arange ( 0 , len ( sorted_tem . index ) )

i f match_atoms== ’ a l l ’ :
shortest=len ( sorted_tem . index ) i f len ( sorted_tem . index ) <=len (

sorted_im . index ) else len ( sorted_im . index )
atoms_im = np . arange ( 0 , shortest )
atoms_temp = np . arange ( 0 , shortest )
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im_points = sorted_im . i x [np . array ( atoms_im ) ] . copy ( )
tem_points = sorted_tem . i x [np . array ( atoms_temp ) ] . copy ( )
scale_factor_x_proj = abs (np .max( im_points . x_proj )−np . min( im_points .

x_proj ) ) /abs (np .max( tem_points . x_proj )−np . min( tem_points . x_proj ) )
scaled_tem = tem_points * scale_factor_x_proj

translat ion_x_proj = np . min( im_points . x_proj )−np . min( scaled_tem . x_proj )
translat ion_z = im_points . z [np . argmin ( im_points . x_proj ) ] − scaled_tem . z

[np . argmin ( scaled_tem . x_proj ) ]

return scale_factor_x_proj , translation_x_proj , translat ion_z

def match_two_point_sets ( template_df , image_df , min_dist=None, plot=False ) :
’ ’ ’ Point pair : one in template_df and one in image_df CLOSER than

smal lest_dist /2 ( smallest d i s t within template )
returns dfs matched by index . Template input must be scaled and matched

. ’ ’ ’
template_array = template_df . as_matrix ( columns = [ ’ x_proj ’ , ’ z ’ ] )
kdt = KDTree( template_array , metric= ’ euclidean ’ )
dist , inds = kdt . query ( [ [ template_array [ 0 ] [ 0 ] , template_array [ 0 ] [ 1 ] ] ] , k

=3)

# smallest distance within template : Use h a l f t h i s as l i m i t for NN
smal lest_dist = min_dist i f min_dist i s not None else d i s t [ 0 ] [ 1 ]

image_array = image_df . as_matrix ( columns = [ ’ x_proj ’ , ’ z ’ ] )
kdt = KDTree( image_array , metric= ’ euclidean ’ )

# i t e r a t e over a l l atoms in template . find nearest neighbour in the
image peaks . IF clore enough , add to l i s t .

template_points_with_neighbour = [ ]
image_points_with_neighbour = [ ]
for atom_ind in template_df . index :

dist , inds = kdt . query ( [ [ template_df . x_proj [ atom_ind ] ,
template_df . z [ atom_ind ] ] ] , k=1)

i f d i s t [ 0 ] [ 0 ] < smal lest_dist / 2 :
dict_template = { ’ z ’ : template_df . z [ atom_ind ] , ’ x_proj ’ :

template_df . x_proj [ atom_ind ] }
dict_image = { ’ z ’ : image_array [ inds [ 0 ] [ 0 ] ] [ 1 ] , ’ x_proj ’ :

image_array [ inds [ 0 ] [ 0 ] ] [ 0 ] }

template_points_with_neighbour . append( dict_template )
image_points_with_neighbour . append( dict_image )

template_matched_df = pd . DataFrame ( template_points_with_neighbour ,
columns=[ ’ z ’ , ’ x_proj ’ ] )

image_matched_df = pd . DataFrame ( image_points_with_neighbour , columns=[ ’
z ’ , ’ x_proj ’ ] )

colors = [ p l t .cm. Spectral ( each )
for each in np . linspace ( 0 , 1 , len ( image_matched_df . z ) ) ]

random . s h u f f l e ( colors )

i f plot :
f i g , ax = p l t . subplots ( )
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for i in template_matched_df . index :

ax . s c a t t e r ( template_matched_df . z [ i ] , template_matched_df . x_proj
[ i ] , color=tuple ( colors [ i ] ) )

ax . s c a t t e r ( image_matched_df . z [ i ] , image_matched_df . x_proj [ i ] ,
color=tuple ( colors [ i ] ) )

p l t . x label ( ’ z ’ )
p l t . y label ( ’ x_proj ’ )
ax . axis ( ’ equal ’ )
ax . set_ylim ( ax . get_ylim ( ) [ : : −1 ] )

return template_matched_df , image_matched_df

def g e t _ c o e f f i n i e n t s ( aff ine_matrix ) :
’ ’ ’ calculated c o e f f i c i e n t s from a f f i n e matrix :

A = np . arrar ( [ [ a0 , a1 , a2 ] ,
[ b0 , b1 , b2 ] ] )

t r a n s l a t i o n vector t = [ a2 , b2 ] = [ tx , ty ]
a0=sx cos (T)
a1=−sy sin (T + C) #C i s shear angle , T i s rotation angle
b0 = sx sin (T)
b1 = sy sin (T + C)
’ ’ ’
[ a0 , a1 , a2 , b0 , b1 , b2 ] = aff ine_matrix . ravel ( ) [ 0 : 6 ]

# t r a n s l a t i o n
tx , ty = a2 , b2
# scal ing
sx = np . sqrt ( a0 **2 + b0 * * 2 )
# rotation angle
T = np . arctan ( b0/a0 )
#shear angle
C = np . arctan(−a1/b1 ) −T
sy = −a1/np . sin (T+C) #=b1/np . cos (T+C)

print ( ’ Rotation angle T : %f degrees \n ’%(np . rad2deg (T) ) )
print ( ’ Shear angle C ( x−shear ) : %f degrees \n ’%(np . rad2deg (C) ) )
print ( ’ Scale f a c t o r s [ sx , sy ] : \n [%f , %f ] \n ’%(sx , sy ) )
print ( ’ Translation vector [ tx , ty ] : \n [%f , %f ] \n ’%(tx , ty ) )
print ( ’ Returns [ sx , sy , T , C, tx , ty ] \n ’ )
return [ sx , sy , T , C, tx , ty ]

####Perform a f f i n e transformation

def estimate_affine_matrix ( template_matched_df , image_matched_df ) :
’ ’ ’ estimate a f f i n e transformation matrix . Returns matrix as numpy array

’ ’ ’
src = template_matched_df . as_matrix ( [ ’ z ’ , ’ x_proj ’ ] )
dst = image_matched_df . as_matrix ( [ ’ z ’ , ’ x_proj ’ ] )
tform = transform . estimate_transform ( ’ a f f i n e ’ , src , dst ) #same ! #

handlar vel berre om aa faa ut r e t t type matrix
print ( ’ Transformation matrix : \n ’ )
print ( tform . params )
aff ine_matrix=np . array ( tform . params )
return aff ine_matrix
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def apply_affine_transform ( affine_matrix , image ) :
’ ’ ’ takes image as array , matrix as array , applies transformation from

matrix , returns image as array ’ ’ ’
tform = transform . AffineTransform ( aff ine_matrix )
# Normalize image to between 0 and 255
image_for_aff = ( ( image−image . min ( ) ) / ( image .max( )−image . min ( ) ) ) *225
warped = transform . warp ( image_for_aff , tform , preserve_range=True ) # ,

output_shape =(50 , 300) )
return warped

C.0.0.5 noise_reduction.py

"""
### noise_reduction . py ###

Functions for image averaging by cross−correlat ion to reduce noise
"""
import numpy as np
import matplotlib . pyplot as p l t
import matplotlib . patches as patches
from skimage . feature import match_template
from scipy . s ignal import argrelextrema
from statsmodels . nonparametric . smoothers_lowess import lowess

import grain_boundary_reconstruction . tools as tools

#####

def generate_template ( image , template_height =100) :
’ ’ ’ creates image_snip = image without edges
creates template covering f u l l width ’ ’ ’
template_start_x=0 # change to ignore edges
template_start_y=0 # change to ignore edges
template_size =[image . shape[1]−2* template_start_x , template_height ]
snip_size =[ template_size [ 0 ] , image . shape [ 0 ] ]

# create template
template=image [ template_start_y : ( template_start_y+template_size [ 1 ] ) ,

template_start_x : ( template_start_x+template_size [ 0 ] ) ] ##using
almost f u l l width , only 1 GB unit height

## create image with same width as template , f u l l height #remove edges
image_snip=image [ 0 : snip_size [ 1 ] , template_start_x : ( template_start_x+

template_size [ 0 ] ) ]
return image_snip , template

def cross_correlation_along_GB ( image , plot=True , template_height =100 ,
scatter_peaks=None) :
’ ’ ’ Creates a template within image , s h i f t s i f v e r t i c a l l y across the

image and ca l cu l a t e s cross−correlat ion function (CCF) .
returns indices for maxima ’ ’ ’
image_snip , template = generate_template ( image , template_height=

template_height )
CCF_GB = match_template ( image_snip , template )
# f i l t e r i n g to easier find peaks
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CCF_GB_filtered = lowess (CCF_GB[ : , 0 ] , range ( 0 , np . shape (CCF_GB [ : , 0 ] ) [ 0 ]
) , f r a c = 0.04) [ : , 1 ] # f r a c =im_df . s i g n a l _ f i l t e r i n g _ f r a c [ ind ] ) [ : , 1 ]

max_ind = argrelextrema (np . array ( CCF_GB_filtered ) , np . greater ) [ 0 ]

i f plot :
f i g , ax =tools . plot_image_array ( image_snip )
#frame template
rect = patches . Rectangle ( ( 1 , 1 ) , image_snip . shape[1]−3 ,

template_height , linewidth =2 , edgecolor= ’ r ’ , facecolor= ’none ’ )
ax . add_patch ( rect )
p l t . f i g u r e ( )
p l t . plot ( CCF_GB_filtered , color= ’ k ’ , linewidth =0.5)
p l t . s c a t t e r ( max_ind , [ CCF_GB_filtered [ ind ] for ind in max_ind ] ,

color= ’b ’ )
i f scatter_peaks i s not None :

p l t . s c a t t e r ( max_ind [ scatter_peaks ] , [ CCF_GB_filtered [ ind ] for
ind in max_ind [ scatter_peaks ] ] , color= ’ r ’ , marker= ’ * ’ )

return max_ind

def create_averaged_image ( image , s h i f t s , averaged_image_height ) :
’ ’ ’ returns image averaged over units at image positions indicated by

s h i f t s ’ ’ ’
image_snip , template = generate_template ( image )
image_averaged=np . zeros ( ( averaged_image_height , image_snip . shape [ 1 ] ) )
no_units=1
for s h i f t in s h i f t s :

i f s h i f t +averaged_image_height <image_snip . shape [ 0 ] : #ensure that
indices are wiithin image
template_shifted=image_snip [ s h i f t : s h i f t +averaged_image_height ,

: ]
image_averaged+=template_shifted
no_units+=1

print ( ’ Image averaged over %d units ’%no_units )
return image_averaged , no_units

C.0.0.6 reconstruction.py

"""
### reconstruction . py ###

Functions for 3−D reconstruction from l i n e s and image alignment
"""
import pandas as pd
import numpy as np
from sklearn . neighbors import KDTree
import matplotlib . pyplot as p l t

import grain_boundary_reconstruction . tools as tools

#####

def find_atoms_from_lines ( im1pos_df , im2pos_df , angles , atomradius ) :
’ ’ ’ Takes two df med a t t r i b u t e s x_proj , z , one for each image ( f e r d i g

aligna ) , and finds i n t e r s e c t i o n s . .
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"atomradius " : overlap i f distance between l i n e r are l e s s than 2*
atomradius

angles =[a1 , a2 ] ’ ’ ’

A = np . array ( [ [ np . cos (np . deg2rad ( angles [ 0 ] ) ) , np . sin (np . deg2rad ( angles
[ 0 ] ) ) ] ,
[np . cos (np . deg2rad ( angles [ 1 ] ) ) , np . sin (np . deg2rad ( angles [ 1 ] ) ) ] ] )

#deg2rad g i r rounding errors , s e t t e r derfor lave t a l t i l 0 her
A[A < 7e−17] = 0

coords_3D_list = [ ]
for i in im1pos_df . index : #range ( 0 , len ( im1pos_df . z ) ) :

for j in im2pos_df . index : #range ( 0 , len ( im2pos_df . z ) ) :
z _ d i s t = np . abs ( im1pos_df . z [ i ]−im2pos_df . z [ j ] )

i f z _ d i s t <2*atomradius : #overlap
z_out = ( im1pos_df . z [ i ]+ im2pos_df . z [ j ] ) /2
w = np . array ( [ im1pos_df . x_proj [ i ] , im2pos_df . x_proj [ j ] ] )
v = np . l i n a l g . solve (A ,w)
dict1 = { ’atom ’ : ’ Zr ’ , ’ x ’ : v [ 0 ] , ’ y ’ : v [ 1 ] , ’ z ’ : z_out }
coords_3D_list . append( dict1 )

pos_3D_df = pd . DataFrame ( coords_3D_list , columns=[ ’atom ’ , ’ x ’ , ’ y ’ , ’ z ’ ] )
return pos_3D_df

def find_atoms_from_lines_many_images ( atompos_df_list , a n g l e _ l i s t ,
atomradius , max_dist_intersections=None) :
’ ’ ’ Takes l i s t of MINIMUM 2 df med a t t r i b u t e s x_proj , z , one for each

image ( f e r d i g aligna ) , and finds i n t e r s e c t i o n s . .
"atomradius " : overlap i f distance between l i n e r are l e s s than 2*

atomradius
angles =[a1 , a2 , a3 ]
Uses e . find_atoms_from_lines and e . c l u s t e r ’ ’ ’
max_dist_intersections = max_dist_intersections i f

max_dist_intersections i s not None else atomradius

no_df = len ( atompos_df_list ) #minimum2 !

p a i r s _ l i s t = [ ]

# i , j =[0 ,1]
##no_df = 2
for i in range ( 0 , no_df ) :

for j in range ( i , no_df ) :
i f i ! = j :

print ( ’ Images combined : ’+ s t r ( i ) + ’ and ’+ s t r ( j ) )

pos_3D_df_pair = find_atoms_from_lines ( atompos_df_list [ i ] ,
atompos_df_list [ j ] , [ a n g l e _ l i s t [ i ] , a n g l e _ l i s t [ j ] ] ,
atomradius )

print ( ’Number of atoms found : ’+ s t r ( len ( pos_3D_df_pair ) ) )
p a i r s _ l i s t . append( pos_3D_df_pair )

#combine
a l l _ d f = pd . concat ( p a i r s _ l i s t )
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#3D c l u s t e r i ng
i f no_df >2:

minsample=no_df # c l u s t e r : find mean i f three i n t e r s e c t i o n s are
close . . .

pos_3D_df = tools . cluster_3D ( a l l _ d f , minsample , max_dist=
max_dist_intersections , maxsize=no_df )

#pos_3D_df = c l u s t e r ( a l l _ d f , minsample , max_dist=
max_dist_intersections )

# tools . plot3Dstructure ( pos_3D_df )
e lse :

pos_3D_df= a l l _ d f
return pos_3D_df

def align_image_to_reprojection ( reproj_cluster_df , image_df , i nt e r v al , dx ,
d_NN_proj_row , plot=True ) :
’ ’ ’ Finds how much image_df should be moved to minimize mean d i s t to

reprojected image atoms ’ ’ ’
#check within each layer only . and only i f nn i s l e s s than dv/2 to

ensure that not next row nn i s used ( i f atoms are missing )

##IF we make sure the i n t e r v a l i s l e s s than d_NN_proj : can use NN in
combined image with both reproj and image_adjust !

# for each atom in image+adjust , check i f i t has NN

image_adjusted_df = image_df . copy ( )
image_adjusted_df_bulk = pd . concat ( [ image_adjusted_df [ image_adjusted_df

. z <−0.5] , image_adjusted_df [ image_adjusted_df . z > 2 . 5 ] ] )

image_adjusted_df_bulk . x_proj+= i n t e r v a l [ 0 ] # set image to f i r s t t e s t
position

atompos_array = repro j_ cl uster _df . as_matrix ( columns = [ ’ x_proj ’ , ’ z ’ ] )

mean_list = [ ]
for adj in np . arange ( i n t e r v a l [ 0 ] , i n t e r v a l [ 1 ] , dx ) :

image_adjusted_df_bulk . x_proj+=dx #move image slowly upwards

NN_dist_l ist = [ ]
for atom_ind in image_adjusted_df_bulk . index :

kdt = KDTree( atompos_array , metric= ’ euclidean ’ )
dist , inds = kdt . query ( [ [ image_adjusted_df_bulk . x_proj [ atom_ind

] , image_adjusted_df_bulk . z [ atom_ind ] ] ] , k=1)
# dist , inds = kdt . query ( [ [ 0 , 0 ] ] , k=1)

NN_dist_l ist . append( d i s t [ 0 ] [ 0 ] )
NN_dist_array=np . array ( NN_dist_l ist )
mean_list . append(np .mean( NN_dist_array [ NN_dist_array <d_NN_proj_row

] ) ) # j u s t to remove the edge atoms . . .

i f plot :
p l t . f i g u r e ( )
p l t . s c a t t e r (np . arange ( i n t e r v a l [ 0 ] , i n t e r v a l [ 1 ] , dx ) , mean_list )

minimizing_adj = np . arange ( i n t e r v a l [ 0 ] , i n t e r v a l [ 1 ] , dx ) [np . argmin (
mean_list ) ]
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print ( ’ Image s h i f t minimizing mean distance to nearest neighbour : %.2 f ’
%(minimizing_adj ) )

print ( ’Mean distance to nearest neighbour : %.2 f ’%(np . min( mean_list ) ) )

i f plot :
p l t . f i g u r e ( )
p l t . s c a t t e r ( r eproj _clu ste r_df . z , reproj _clu ster_df . x_proj , s =10 ,

color= ’b ’ )
p l t . s c a t t e r ( image_adjusted_df . z , image_adjusted_df . x_proj+

minimizing_adj , s =5 , color= ’ r ’ )
p l t . t i t l e ( ’ Image s h i f t e d %.2 f v e r t i c a l l y ’%(minimizing_adj ) )

return minimizing_adj
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