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Abstract

In this thesis we study the chiral phase transition of two-flavor QCD, employing the quark-meson (QM)
effective model. The first part of the text covers some of the fundamentals of thermal field theory. We
then introduce the QM model and derive an effective potential for the order parameter of the chiral
transition. This is used to map out a phase diagram in the plane of temperature and baryon chemical
potential in the chiral limit, using the large-Nc-approximation at one-loop. We find that the results are,
qualitatively, in line with the current wisdom on the subject.
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Notation and Conventions

• The Minkowski metric is ηµν = diag(1,−1,−1,−1).

• The Einstein summation convention is used, where one upper and one lower Greek index imply
summation with the Minkowski metric, e.g. ∂µAµ = ηµν∂µAν .

• Repeated lower Greek indices imply summation with the Euclidean metric δµν .

• Repeated Latin indices imply summation of spatial components, e.g. kixi = k ·x.

• Natural units are used, i.e. kB = c =h̄ = 1 where kB, c and h̄ are the Boltzmann constant, speed of
light and reduced Planck constant, respectively.
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1. Introduction

The theory of quantum chromodynamics (QCD) turned out to be one of the great successes of 20th
century particle physics. For one thing, the theory beautifully makes order out of the seemingly messy
multitude of hadrons which have been discovered through the years, classifying them according to their
quark content. The theory has been verified time and again by experiment, and holds a firm place in
the Standard Model of particle physics [1]. However, while the predictions of the theory seem to hold
up, it can be very difficult to extract predictions from it in the first place. One area of research which
is currently being explored is the phase structure of QCD [2]. In most of the Universe we see around
us, quarks appear only in bound states - in particular in the form of neutrons and protons. However, if
matter is heated up to very high temperatures, or compressed to high densities, entirely different phases
of matter may result. In the very early universe, it is believed that a phase of matter known as quark-
gluon plasma permeated space. It is possible that exotic phases of quark matter still exist, possibly inside
the extremely dense cores of neutron stars [3]. Experimentally, the most direct way of studying quark
matter is by the use of high-energy particle colliders. For example, at the Relativistic Heavy-Ion Collider
at Brookhaven National Laboratory, quark-gluon plasma has been created through the collision of gold
ions [4].

Standard perturbation theory, while very useful when working with, e.g., the electroweak interaction,
has limited applicability in QCD. Many important advances in the understanding of quark matter have
been made through one of two approaches: one of them is lattice QCD, which is a brute-force numerical
method operating with discretized spacetime. This method is limited by the computing power which is
required, and fails at finite baryon chemical potential due to the so-called sign problem [5]. Another
approach is the construction of effective models. In this thesis, we will examine one of the simpler
models, the quark-meson (QM) model, and map out its phase diagram in the plane of temperature and
baryon chemical potential. But first, we will establish some of the basics of thermal field theory. The
derivations given in the coming sections (3-9) are mostly based on refs. [6] and [7]

2. Symmetries in Field Theories

The subject of symmetry is an important one in physics in general, and in field theories in particular.
Often, much information about a physical system can be extracted from its symmetry properties alone.
This is in large part thanks to a theorem proved by Emmy Noether in 1915, which relates continuous
symmetries to conservation laws.

2.1. Noether’s Theorem

We will outline a proof of the theorem in classical field theory. For a generalization to quantum field
theory, see e.g. ref. [6]. Assume a set of fields φa(xµ ), a = 1,2..n is described by the Lagrangian density
L (φa,∂µφa). According to classical field theory, the field configuration which is realized is one which
extremizes the action

S =
∫

d4xL . (1)

Using variational calculus, one can derive the Euler-Lagrange equations,

∂µ

∂L

∂ (∂µφa)
− ∂L

∂φa
= 0. (2)
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Assume now that there exists a continuous set of transformations of the fields, labeled by some parameter
α , which leaves the action invariant. For an infinitesimal α , we can write such a transformation as

φa→ φa +αδφa, (3)

where δφa generally depends on the spatial coordinates xµ as well as the fields φa. The corresponding
change in the Lagrangian is written

L →L +αδL . (4)

If δL = 0, then clearly S is invariant. A more general condition on δL is that it is a four-divergence,
i.e. it can be written as

δL = ∂µMµ (5)

Then , using the divergence theorem, the change in the action is a boundary term,

δS =
∫

d4x∂µMµ =
∫

boundary
MµdSµ , (6)

where dSµ is the surface element. When appropriate boundary conditions are imposed (usually the
boundary is taken to infinity and the fields are assumed to fall off sufficiently fast so that boundary terms
vanish), this term is zero. We have

δL =
∂L

∂φa
δφa +

∂L

∂ (∂µφa)
δ (∂µφa). (7)

Using partial integration, the last term can be written

∂µ

[
∂L

∂ (∂µφa)
δφa

]
−∂µ

[
∂L

∂ (∂µφa)

]
δφa. (8)

We then have

0 = δL −∂µMµ = ∂µ

[
∂L

∂ (∂µφa)
δφa−Mµ

]
+

[
∂L

∂φa
−∂µ

∂L

∂ (∂µφa)

]
δφa. (9)

Since the last bracket vanishes by the Euler-Lagrange equation, the current

Jµ =
∂L

∂ (∂µφa)
δφa−Mµ (10)

is conserved. The theorem can be generalized to quantum field theory, see for example ref. [6].

2.2. Spontaneous symmetry breaking and Goldstone’s theorem

If a symmetry of the action is not respected by the ground state of the system, that symmetry is
said to be spontaneously broken. Goldstone’s theorem states that in the case of a continuous broken
symmetry, massless bosons (called Goldstone bosons) will appear. The number of such bosons is equal
to the number of broken generators of the symmetry. We will see an example of this in the section on the
quark-meson model. For a detailed discussion and proof of the theorem, see ref. [6].
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3. The path integral formulation of the partition function

The canonical partition function of a one-particle system at inverse temperature β is given by

Z(β ) = Tr
(

e−βH
)
=
∫

dq〈q|e−βH |q〉 (11)

where |q〉 is some orthonormal basis. Here, H is the Hamiltonian of the system, which is assumed to be
of the form

H =
p2

2m
+V (q), (12)

where p is the momentum operator conjugate to q. We can write

Z(β ) =
∫

dq〈q|
(
e−H∆τ

)N |q〉 , (13)

where ∆τ = β/N. Inserting the completeness relation 1 =
∫

dq j |q j〉〈q j| N−1 times, we obtain

Z(β ) =
N

∏
j=1

∫
dq j 〈q1|e−H∆τ |qN−1〉〈qN−1|e−H∆τ |qN−2〉 . . .〈q2|e−H∆τ |q1〉 , (14)

where q1 = q. We will take the limit ∆τ → 0 eventually. Expanding to first order in ∆τ , we can write

〈q j+1|e−H∆τ |q j〉= 〈q j+1|1−H∆τ|q j〉= 〈q j+1|q j〉−∆τ 〈q j+1|
p2

2m
+V (q j)|q j〉 , (15)

where we used V (q) |q j〉=V (q j) |q j〉. We then insert a complete set of momentum states, 1=
∫ d p j

2π
|p j〉〈p j|.

〈q j+1|e−H∆τ |q j〉=
∫ d p j

2π

[
〈q j+1|p j〉〈p j|q j〉−∆τ 〈q j+1|

p2

2m
+V (q j)|p j〉〈p j|q j〉

]
(16)

=
∫ d p j

2π

[
1−∆τ

(
p2

j

2m
+V (q j)

)]
〈q j+1|p j〉〈p j|q j〉 (17)

=
∫ d p j

2π

[
1−∆τ

(
p2

j

2m
+V (q j)

)]
eip j(q j+1−q j), (18)

using 〈q|p〉= eipq. Using 1−H∆τ ≈ e−H∆τ to first order in ∆τ , the above expression becomes

〈q j+1|e−H∆τ |q j〉=
∫ d p j

2π
exp

[
∆τ

(
ip jq̇ j−

p2
j

2m
−V (q j)

)]
, (19)

where q̇ j = (q j+1−q j)/∆τ . We now have

(20)
Z(β ) =

N

∏
n=1

(∫
dqn

) N

∏
n=1

(∫ d pn

2π

)
× exp∆τ

(
ipN−1q̇N−1 −

p2
N−1

2m
−V (qN−1)

)
. . .exp∆τ

(
ip0q̇0 −

p2
0

2m
−V (q0)

)
.
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Putting the exponentials together and renaming q j→ q(τ j) with τ j = ( j−1)∆τ:

(21)Z(β ) =
N

∏
n=1

(∫
dq(τn)

) N

∏
n=1

(∫ d p(τn)

2π

)
exp∆τ

N

∑
n=1

(
ip(τn)q̇(τn)−

p(τn)
2

2m
−V (q(τn))

)
We can now take the limit ∆τ → 0, and the argument of the exponential becomes a Riemann integral,
with q̇ = dq/dτ . The integrals over pn and qn become a path integral in phase space,

N

∏
n=1

∫
dqn

N

∏
m=1

∫ d pm

2π
→
∫

Dq
∫

D p, (22)

giving

Z(β ) =
∫

Dq
∫

D pexp
{∫

β

0
dτ [ipq̇−H(p,q)]

}
(23)

where the path integral runs over all paths satisfying the boundary condition q(β ) = q(0). This is the
Hamiltonian, or phase space, version of the path integral. The path integral can also be expressed in con-
figuration space, by carrying out the momentum integrals in (20), which are simply Gaussian integrals:∫ d pn

2π
exp∆τ

(
ipnq̇n−

p2
n

2m

)
=

√
m

2π∆τ
e−∆τ

1
2 mq̇2

. (24)

Inserting (24) into (20) and defining

∫
Dq = lim

∆τ→0

[√
m

2π∆τ

N

∏
n=1

(∫ √ m
2π∆τ

dqn

)]
, (25)

we obtain

Z(β ) =
∫

Dqexp
{
−
∫

β

0
dτ

[
1
2

mq̇(t)2 +V (q(t))
]}

(26)

We recognise the Euclidean action from classical mechanics,

SE =
∫

dtLE(t), (27)

with t the time and
LE =

1
2

mq̇2 +V (q) (28)

the Euclidean Lagrangian. Thus we can write

Z(β ) =
∫

Dqe−SE [q] (29)

The result can be easily generalised to a system of N particles, with

H =
N

∑
n=1

p2
n

2m
+U(q1, . . . ,qN). (30)
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The derivation proceeds in the same way, using instead 1 = ∏
N
n=1 (

∫
dqn) |q1, . . . ,qN〉〈q1, ...,qN | etc. The

partition function becomes

Z(β ) =
∫ N

∏
n=1

Dqn exp

[
−
∫

β

0
dτ

N

∑
j=1

1
2

mq̇2
j +U(q, . . . ,qN)

]
(31)

From here we can associate a point in space with each particle, q̂n→ φ(xn), and then take the continuum
limit so that every point in space is associated with a field operator φ(x). The details can be found in
standard texts on quantum field theory, such as [8]. The Euclidean Lagrangian of a real scalar field is

LE =
∫

d3xLE =
∫

d3x
[

1
2

∂µφ∂µφ +
1
2

m2
φ

2 +V (φ)

]
, (32)

and the path integral takes the form

Z(β , j) =
∫

Dφ exp
{
−
∫

β

0
dτ

∫
d3x [LE + Jφ ]

}
. (33)

where a source term J(τ,x)φ(τ,x) was added. The path integral runs over all field configurations satis-
fying the boundary conditions, the first of which is φ(β ,x) = φ(0,x). We also require that for |x|→ ∞,
φ(τ,x) vanishes sufficiently fast so that boundary terms vanish when integrating the action by parts.
The path integral of Minkowskian quantum field theory can be constructed in the same way from the
transition amplitude

F(q f , t f ;qi, ti) = 〈q f |e−iH(tF−ti)|qi〉= 〈q f , t f |qi, ti〉 (34)

which gives the probability amplitude for a particle in state qi at time ti to be found in the state q f at time
t f . Here, |qi〉 is an eigenstate of the operator q in the Schrödinger picture, whereas |qi, ti〉 is an eigenstate
of the operator q(ti) in the Heisenberg picture. The path integral becomes

F [J] = 〈0,∞|0,−∞〉J =
∫

Dφ eiS+
∫

d4xJφ , (35)

where S is the Minkowskian action

S =
∫

d4xL (x) =
∫

d4x
[

1
2

∂
µ

φ∂µφ − 1
2

m2
φ

2−V (φ)

]
(36)

and L is the Lagrangian density of the field, related to the Euclidean Lagrangian through LE(τ) =
−L (t→−iτ). The path integral runs over all field configurations that vanish sufficiently fast at infinity.
Comparing (11) and (34), we have

Z(β ) =
∫

dqF(q,−iβ ;q,0). (37)

The partition function can be obtained from F by letting t → −iτ and imposing periodic boundary
conditions on the field. This amounts to replacing the Minkowskian action S with the Euclidean action
SE . For a Lorentz-invariant action the substitution t→−iτ will only affect objects like ∂ µφ∂µφ , so that
this change corresponds to replacing the Minkowski metric with the Euclidean one: ηµν →−δµν .
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4. The free scalar field at finite temperature

A free real scalar field is described by the partition function

Z(β ,J) =
∫

Dφ exp−
∫

β

0
dτ

∫
d3x
[

1
2
(∂τφ)2 +

1
2
(∇φ)2 +

1
2

m2
φ

2 + Jφ

]
. (38)

After integration by parts, where the boundary terms vanish due to the boundary conditions on φ , this
becomes

Z(β ,J) =
∫

Dφ exp
[
−
∫

β

0
dτ

∫
d3xφ

(
−1

2
∂

2
τ −

1
2

∇
2 +

1
2

m2
)

φ + Jφ

]
. (39)

Going back to discrete space, viewing φ and J as column vectors and (−∂ 2
τ −∇2 +m2) as a symmetric

matrix A, this integral is of the form ∫
dN

φe−
1
2 φ T Aφ+JT φ . (40)

After the substitution φ = X−A−1J, this reads∫
dNXe−

1
2 XT AX+JT A−1J (41)

which can be solved by a variable transformation X = OY where O is some orthogonal matrix diagonal-
ising A. ∫

dNY e−
1
2Y T DY =

N

∏
j=1

√
2π

D j j
=

√
(2π)N

det(A)
= (2π)

N
2 e−Trln(A), (42)

with D = OT AO. The operator in (39) can be diagonalised by an expansion in Fourier modes:

φ(x,τ) =

√
V
β

∞

∑
n=−∞

∫ d3k
(2π)3 φ(ωn,k)ei(ωnτ+kx), (43)

using box normalization with V the volume. Here the boundary conditions imply ωn = 2nπ/β , known
as the bosonic Matsubara frequencies. This is not an orthogonal transformation, but a unitary one. Since
φ(x,τ) is real, the Fourier coefficients satisfy

φ(−ωn,−k) = φ
∗(ωn,k), (44)

The action becomes

SE =
V
2β

∫
β

0

∫
d3x

∞

∑
n,m=−∞

∫ d3k
(2π)3

∫ d3q
(2π)3 φ(ωm,q)ei(ωmτ+qx) [−(iωn)

2− (ik)2 +m2]
φ(ωn,k)ei(ωnτ+kx).

(45)

Using (44) and ∫
β

0
ei(ωn−ωm)τ = βδmn,

1
(2π)3

∫
d3xei(k−q)x) = δ

(3)(k−q), (46)

gives

SE =
1
2

V
∞

∑
n=∞

∫ d3k
(2π)3 φ

∗(ωn,k)
(
ω

2
n +ω

2
k
)

φ(ωn,k). (47)
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where ωk =
√

k2 +m2. Note that the action is independent of the phase of φ(ωn,k). When making
the variable transformation (43) in (39), we can essentially use this to integrate out the phase, giving a
constant prefactor in the partition function. For a more rigorous treatment, see ref. [7]. The result is

Z(β ,0) ∝

∫
D |φ |(ωn,k)exp

[
−V

∞

∑
n=∞

∫ d3k
(2π)3

1
2
(ωn,k)

(
ω

2
n +ω

2
k
)
|φ |2(ωn,k)

]
, (48)

We can now use (42), and obtain

− lnZ(β ) =
1
2

V
∞

∑
n=−∞

∫ d3k
(2π)3 ln

(
ω

2
n +ω

2
k
)
. (49)

We will carry out the sum over ωn first. Clearly, this series is divergent, since the terms grow without
bound. However, it can be split into a finite part dependent on β and ωk, and an infinite constant term
which is not physically relevant. To extract the relevant part, we differentiate with respect to ωk:

(50)
∂

∂ωk

∞

∑
n =−∞

ln
(
ω

2
n + ω

2
k
)
=

∞

∑
n=−∞

2ωk

ω2
n + ω2

k

In evaluating sums over the bosonic Matsubara frequencies, one can often use

coth(z) =
∞

∑
n=−∞

z
(πn)2 + z2 (51)

in some way. In this case we get the result directly,

∞

∑
n=−∞

2ωk

(2πn/β )2 +ω2
k
= β coth

(1
2 βωk

)
. (52)

Integrating this with respect to ωk gives

1
2

βωk + ln
(

1− e−βωk
)
+ constant (53)

The constant is dimensionless and independent of ωk. Since the only parameter it could depend on is β ,
which is dimensionful, it is also independent on β , and we simply discard it.

F ≡− 1
βV

lnZ(β ) =
∫ d3k

(2π)3

[
ωk

2
+

1
β

ln
(

1− e−βωk
)]

. (54)

The first term, which is divergent, is the zero-point energy density E , i.e. the sum of the ground state
energies of all excitation modes. The remaining term determines the thermodynamic properties of the
system. In the ultrarelativistic limit m = 0, this can be evaluated analytically:

F = E +
1

2π2β

∫
∞

0
k2dk ln

(
1− e−βk

)
= E − π2

90β 4 . (55)

To include the source term, we need the continuous space version of the factor eJT A−1J in (41). We
will only need the special case β → ∞. The matrix product then takes the form

JT A−1J→
∫

d4x
∫

d4x′J(x)D(x,x′)J(x′), (56)
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with D(x,x′) a Green function of the operator −∂ 2
τ −∇2 +m2 =−∂µ∂µ +m2. Due to translation invari-

ance, we can write D(x,x′) = D(x− x′,0)≡ D(x− x′). D(x) satisfies

(−∂µ∂µ +m2)D(x) = δ
(4)(x). (57)

Taking the Fourier transform of this equation, we get∫ d4k
(2π)4 (−∂µ∂µ +m2)eikµ xµ D(k) =

∫ d4k
(2π)4 eikµ xµ (58)

=⇒ (k2 +m2)D(k) = 1 (59)

D(k) =
1

k2 +m2 (60)

Thus,

Z(β ,J) = Z(β ,0)exp
[
−
∫

d4xd4x′J(x)D(x− x′)J(x′)
]
, (61)

or, alternatively,

Z(β ,J) = Z(β ,0)exp
[
−
∫ d4k

(2π)4 J∗(k)D(k)J(k)
]
. (62)

5. The partition function for fermions

To describe particles that obey Fermi statistics, we start again from a simple system. As is well
known, the simple harmonic oscillator

H =
p2

2m
+

1
2

mω
2q2, (63)

which can be thought of as the 0 + 1 dimensional version of a free scalar field, with φ(t,x)→ φ(t,0) =
q(t), can be described in terms of the bosonic creation and annihilation operators

a =

√
mω

2

(
q+

i
mω

p
)

(64)

a† =

√
mω

2

(
q− i

mω
p
)

(65)

with the commutation relations
[a,a†] = 1, [a,a] = [a†,a†] = 0. (66)

The Hamiltonian is

H =
1
2

ω(a†a+aa†) = ω

(
1
2
+a†a

)
, (67)

furnishing the orthonormal basis |n〉 with

a |n〉=
√

n |n−1〉 , (68)

a† |n〉=
√

n+1 |n+1〉 , (69)

a†a |n〉= n |n〉 . (70)
12



To get the fermionic version of this, we replace the bosonic creation and annilhilation operators with
fermionic ones, satisfying instead the anticommutation relations

{c,c†}= 1,{c,c}= {c†,c†}= 0. (71)

We define the ground state through
c |0〉= 0, (72)

and a one-particle state
|1〉= c† |0〉 . (73)

Here we have already exhausted the Hilbert space, since

c† |1〉= (c†)2 |0〉= 0, (74)

c |1〉= cc† |0〉= (1− c†c) |0〉= |0〉 . (75)

To derive a path-integral representation of the partition function of this system, we need completeness
relations similar to

1 =
∫

dq |q〉〈q| . (76)

For this we will need to introduce Grassmann variables.

5.1. Grassmann variables

A complex (as opposed to real) Grassmann algebra A is generated by n Grassmann variables η1, . . . ,ηn

with the properties:

{ηi,η j}= 0, (77)

in particular, η2
i = 0.

αη1 +βη2 ∈A , (78)

where α , β are arbitrary complex numbers.

ηiη j ∈A . (79)

Note that a product of an even number of generators does not in general anticommute with other variables,
for example {ηiη j,ηk}= 2ηiη jηk 6= 0 if i, j and k are distinct.

Functions of Grassmann variables are given in terms of power series, such as

f (η1) = f0 + f1η1, (80)

g(η1,η2) = g0 +g1η1 +g2η2 +ga12η1η2, (81)

where all higher order terms vanish. Differentiation can be defined as acting ’from the left’, with

∂g
∂η1

= g1 +g12η2, (82)

∂g
∂η2

= g2−g12η1. (83)
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Integration can be defined as equivalent to differentiation, with∫
dη [a f (η)+bg(η)] = a

∫
dη f (η)+b

∫
dηg(η), (84)∫

dη = 0, (85)∫
dηη = 1, (86)

with multiple integrals evaluated as follows:∫
dη2dη1g(η1,η2) =

∫
dη2

(∫
dη1g(η1,η2)

)
= g12 =

∂

∂η2

∂

∂η1
g. (87)

Thus the infinitesimals dηi also behave as Grassmann variables, with e.g.∫
dη1dη2 =−

∫
dη2dη1. (88)

A useful integral is ∫
dη
∗dηe−aη∗η =

∫
dη
∗dη(1−aη

∗
η) = a, (89)

which generalises to ∫
dn

η
∗dn

ηe−η∗T Aη = det(A). (90)

Returning to the fermionic oscillator, we now introduce a Grassmann algebra generated by the two
elements η and η∗. We define these variables to also anticommute with c and c†. We then define

|η〉= e−ηc† |0〉= (1−ηc†) |0〉 , (91)

〈η |= 〈0|e−cη∗ = 〈0|(1− cη
∗), (92)

which are eigenstates of c and c†, respectively:

c |η〉= η |0〉= η |η〉 , (93)

〈η |c† = 〈0|η∗ = 〈η |η∗. (94)

We then have

〈η |0〉= 〈0|η〉= 1,

〈1|η〉=−η ,〈η |1〉=−η
∗,

〈η1|η2〉= (〈0|− 〈1|η∗1 )(|0〉−η2 |1〉) = 1+η
∗
1 η2 = eη∗1 η2 .

(95)

The identity operator can be written∫
dη
∗dηe−η∗η |η〉〈η |=

∫
dη
∗dη(1−η

∗
η)(1−ηc†) |0〉〈0|(1− cη

∗)

= |0〉〈0|
∫

dη
∗dηηη

∗+
∫

dη
∗dηηc† |0〉〈0|cη

∗

= |0〉〈0|+ |1〉〈1| , (96)
14



Similarly, the trace of the operator A can be written as∫
dη
∗dηe−η∗η 〈−η |A|η〉

=
∫

dη
∗dηe−η∗η 〈−η |A|η〉〈−η |

(
|0〉〈0|A00 + |0〉〈1|A01 + |1〉〈0|A10 + |1〉〈1|A11

)
|η〉

= A00 +A11 = Tr(A), (97)

where the last line is checked by inserting (95). The partition function can now be formulated in the
same way as before,

Z = Tr
(

e−βH
)
=
∫

dη
∗dηe−η∗η 〈−η |e−βH |η〉=

∫
dη
∗dηe−η∗η 〈−η |e−H∆τ . . .e−H∆τ |η〉 , (98)

with ∆τ = β/N. We then insert 1 =
∫

dη∗i dηie−η∗i ηi |ηi〉〈ηi| between the exponentials:

Z =
N

∏
i=1

∫
dη
∗
i dηi 〈ηi+1|e−H∆τ |ηi〉 (99)

where η1 ≡ η , ηN+1 ≡−η . Working to first order in ∆τ ,

〈ηi|e−H∆τ|ηi−1 |ηi−1〉= 〈ηi|1−∆τH(c†,c)|ηi−1〉= eη∗i ηi−1 (1−∆τH(η∗i ,ηi−1) = eη∗i ηi−1−∆τH(η∗i ,ηi−1),
(100)

using (95). The exponent here only contains even powers of anticommuting numbers (in general the
Hamiltonian cannot contain odd powers of fermionic operators since it must be Hermitian), so that
eaeb = ea+b holds. Thus,

Z =
N

∏
i=1

∫
dη
∗
i dηi exp

{[
−

N

∑
j=1

(
η
∗
j+1(η j+1−η j)+∆τH(η∗j+1η j)

)]}
. (101)

After taking the limit ∆τ → 0 with η j→ η(τ j), τ j = j∆τ etc, we get

Z =
∫

Dη
∗Dηe−SE (102)

with

SE =
∫

β

0
dτ

{
η
∗(τ)∂τη(τ)+H [η∗(τ),η(τ)]

}
, (103)

where the boundary conditions on the path integral are now

η(β ) =−η(0) (104)

η
∗(β ) =−η

∗(0). (105)

For a system of several particles the anticommutation relations are

{ci,c j}= {c†
i ,c

†
j}= 0,{ci,c

†
j}= δi j. (106)

The generalisation of (102) to several particles and from there to a quantum field is completely analogous
to the bosonic case.
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6. The free Dirac field at finite temperature

A free fermion field is described by the Lagrangian density

L = ψ̄ (iγν
∂ν −m)ψ, (107)

where ψ is a Dirac spinor field, γµ are gamma matrices, satisfying the anticommutation relations {γµ ,γν}=
2ηµν , and ψ̄ = ψ†γ0. This Lagrangian density has a continuous symmetry, as it is invariant under the
global phase transformation

ψ → e−iα
ψ = ψ− iαψ +O(α2) = ψ +αδψ +O(α2), (108)

ψ
†→ eiα

ψ
† = ψ

† + iαψ
† +O(α2) = ψ

† +αδψ
† +O(α2) (109)

where α is any real number. Noether’s theorem gives the conserved current

jν = δψ
† ∂L

∂ (∂νψ†)
+

∂L

∂ (∂νψ)
δψ = ψ̄γ

ν
ψ. (110)

The corresponding conserved charge is

Q≡
∫

d3x j0 =
∫

d3xψ̄γ
0
ψ, (111)

which corresponds to the number of particles minus the number of antiparticles. To study systems with
an abundance of particles we must replace the canonical ensemble by the grand canonical one, letting

H→ H−µQ (112)

in (11), where µ is the chemical potential conjugate to Q. The Hamiltonian density is

H = ∂0(ψ̄)π̄ +π∂0ψ−L −µ j0, (113)

where

π =
∂L

∂ (∂0ψ)
= iψ̄γ

0 = iψ† (114)

π̄ =
∂L

∂ (∂0ψ̄)
= 0, (115)

giving
H =−iπγ

0 (iγ i
∂i +m

)
ψ + iπψ = ψ̄

(
iγ i

∂i +m−µγ
0)

ψ. (116)

The Euclidean Lagrangian density corresponding to this Hamiltonian is

LE = ψ̄
(
γ

0
∂τ + iγ i

∂i +m−µγ
0)

ψ. (117)

Defining the Euclidean gamma matrices as

γ̃0 = γ
0, γ̃ j =−iγ j, (118)

with
{γ̃µ , γ̃ν}= 2δµν , γ̃

†
µ = γ̃µ , (119)
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this can be written
LE = ψ̄ (γ̃ν∂ν +m−µγ̃0)ψ = ψ̄

(
/∂ +m−µγ̃0

)
ψ, (120)

where we have introduced the Feynman slash, /a = γµaµ .
The partition function for the free fermion field is

Z(β ,µ) =
∫

Dψ
†Dψe−SE , (121)

where ψ,ψ† are now Grassmann valued and antiperiodic in time,

ψ(β ) =−ψ(0), (122)

ψ
†(β ) =−ψ

†(0). (123)

Taking space to be a cube of volume V = L3 and imposing periodic boundary conditions, ψ(0,y,z) =
ψ(L,y,z) etc, we can expand the fields in Fourier modes,

ψ(τ,x) =

√
1

βV

∞

∑
n=−∞

∑
k

ψ(ωn,k)ei(ωnτ+kx), (124)

ψ
†(τ,x) =

√
1

βV

∞

∑
n=−∞

∑
k

ψ
†(ωn,k)e−i(ωnτ+kx). (125)

Here ωn are the fermionic Matsubara frequencies, which are restricted to the form ωn = (2n+ 1)π/β

by (122) and (123). The wavevectors take all values of the form k = 2π

L (n1,n2,n3), with ni ∈ Z. The
Euclidean action can now be written

SE = ∑
n

∑
k

ψ̄(ωn,k)(iγ̃0ωn + iγ̃γγk+m−µγ̃0)ψ(ωn,k) (126)

= ∑
p

ψ̄(p)(iγ̃ν pν +m)ψ(p)≡∑
p

ψ̄(p)Dpψ(p), (127)

where p = (ωn + iµ,k). Viewing ψ , ψ† as row and column vectors respectively, the action takes the
form

SE =
(
ψ̄(p1) ψ̄(p2) ψ̄(p3) . . .

)


Dp1 0 0 . . .
0 Dp2 0 . . .
0 0 Dp3 . . .
...

...
...

. . .




ψ(p1)
ψ(p2)
ψ(p3)

...

≡ ψ̄Dψ, (128)

in shorthand notation. The determinant of the matrix D is

det(D) = ∏
p

det(Dp). (129)

In the Dirac representation, the gamma matrices are given by

γ̃0 =

(
1 0
0 −1

)
, γ̃ j =

(
0 −iσ j

iσ j 0

)
, (130)

17



where σ j are the Pauli matrices. In this representation, the matrix Dp becomes

Dp =

(
iωn−µ +m k ·σσσ
−k ·σσσ −iωn +µ +m

)
=

(
A B
C D

)
.

All the 2×2 submatrices in this matrix commute with each other, and it can be shown that the determinant
is simply detDp = det(AD−BC). Using {σ i,σ j}= 2δi j,

−BC = kik jσ
i
σ

j =
1
2

kik j(σ
i
σ

j +σ
j
σ

i) = k2. (131)

Thus,

det(Dp) =
[
(iωn−µ +m)(−iωn +µ +m)+k2]2 (132)

=
[
(ωn + iµ)2 +ω

2
k
]2
, (133)

where the overall square comes from det(a · In) = an, where In is the n× n identity matrix. Using (90),
the grand potential can now be expressed as

−βΩ(β ,µ) = ln(Z) = ln
[
det(D)

]
= ∑

p
ln
[
det(Dp)

]
(134)

→ 2V ∑
n

∫ d3k
(2π)3 ln

[
(ωn + iµ)2 +ω

2
k
]
, (135)

after taking the limit of infinite volume. Comparing with (49) there is an overall minus sign, and a factor
of 4 corresponding to the four degrees of freedom of the Dirac field (two particle and antiparticle spin
DOFs). The sum now runs over the fermionic Matsubara frequencies, which pick up an imaginary part
from the chemical potential. To sum the series we use the same approach as before, using in this case

tanh
( z

2

)
=

∞

∑
n=−∞

2z
z2 +(2n+1)2π2 . (136)

For µ = 0 this gives directly

∂

∂ωk
∑
n

ln(ω2
n +ω

2
k) = ∑

n

2ωk

ω2
n +ω2

k
= β tanh

(
βωk

2

)
. (137)

For µ 6= 0 the sum can be evaluated using the following method. We define

f (z) =
2ωk

ω2
k− (z−µ)2 , (138)

g(z) =
β

2
tanh

(
β z
2

)
=

∞

∑
n=∞

z
z2 +ω2

n
(139)

As is clear from (139), g(z) has simple poles with residue 1 at z = iωn for all n ∈ Z, and is analytic
everywhere else. Using the residue theorem,

S≡
∞

∑
n=∞

2ωk

ω2
k +ω2

n
=

∞

∑
n=∞

f (iωn) = ∑
z=iωn

Res[ f (z)g(z)] =
1

2πi

∮
C

f (z)g(z), (140)
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Figure 1: This integration contour, with the radius of the semicircles taken to infinity, can replace a counterclockwise contour
"enclosing" the imaginary axis, if the integrand falls off more rapidly than 1

|z| .

where C is a contour enclosing the imaginary axis. Since f (z)g(z) falls off faster than 1/z, this contour
can be replaced by two clockwise contours as shown in figure 1, where the semicircular parts give
vanishing contributions to the integrals when the radius is sent to infinity. f (z) has two poles in the area
enclosed by these contours: at z = µ±ωk, with residues −1 and 1.

S =− ∑
z=µ±ωk

Res[ f g(z)] = g(µ +ωk)−g(µ−ωk) =
β

2

[
tanh

β (ωk +µ)

2
+ tanh

β (ωk−µ)

2

]
(141)

This can be integrated:∫
dωkS = ln

{
cosh

[
β

2
(ωk−µ)

]}
+ ln

{
cosh

[
β

2
(ωk +µ)

]}
+ constant

= βωk + ln
[
1+ e−β (ωk−µ)

]
+ ln

[
1+ e−β (ωk+µ)

]
+ constant, (142)

where we again discard the integration constant. Thus the grand potential per unit of volume is

Ω

V
=− 1

βV
lnZ =−2

∫ d3k
(2π)3

{
ωk +

1
β

ln
[
1+ e−β (ωk−µ)

]
+

1
β

ln
[
1+ e−β (ωk+µ)

]}
(143)

where the first term is again the zero-point energy.

6.1. Source terms
In the same way as in the scalar field case, we can incorporate source terms in the Lagrangian. In

this case, we need two independent spinor field sources η and η̄ :

LE →LE + η̄ψ + ψ̄η . (144)

Analogously to (61) and (62), this leads to

Z(β ,µ,η , η̄) = Z(β ,µ,0,0)exp
[∫

d4xd4x′η̄(x)S(x− x′)η(x′)
]
, (145)
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if we take the temperature and chemical potential to be zero. The propagator S(x− x′) is then a Green
function of the operator /∂ +m, whose Fourier transform satisfies

(i/p+m)S(p) = 1 (146)

=⇒ (−i/p+m)(i/p+m)S(p) = (−i/p+m) (147)

S(p) =
−i/p+m
p2 +m2 ≡

1
i/p+m

, (148)

where the last expression is a convenient shorthand.

7. Spontaneous symmetry breaking

If a Lagrangian obeys a symmetry that is not respected in the ground state of the system, that sym-
metry is said to be spontaneously broken. A simple example in field theory is found in the following
Lagrangian density:

L =
1
2

∂
µ

φ∂µφ − 1
2

m2
φ

2− λ

4!
φ

4 ≡ 1
2

∂
µ

φ∂µφ −V (φ) (149)

where φ is a real scalar field and m2 > 0. We note that the Lagrangian density is invariant under the
transformation φ → −φ . If m2 > 0, the last term can be treated as a perturbation (for small λ ), with
the zeroth order expansion in λ corresponding to a free field.For m2 negative, however, removing the
last term in (149) leads to a Hamiltonian density which is not bounded from below, allowing arbitrarily
negative energies. Thus, another approach is necessary. V (φ) has a local maximum at φ = 0, and global
minima at φ = ±

√
−6m2/λ ≡ ±φ0. Classically, a field with this Lagrangian density has two ground

states, φ(x) =±φ0. It makes sense to quantise the field about a classical ground state, setting

φ = φ0 + φ̃ . (150)

Written in terms of φ̃ , the Lagrangian density becomes

L =−3
2

m4

λ
+

1
2

∂
µ

φ̃∂µ φ̃ +2m2
φ̃

2−
√
−λm2

6
φ̃

3− 1
4!

λ φ̃
4 (151)

=−3
2

m4

λ
+L0(φ̃)+O(

√
λ ) (152)

where

L0 =
1
2

∂
µ

φ̃∂µ φ̃ +2m2
φ̃

2 (153)

is the Lagrangian density of a free field with squared mass −4m2. This can be treated perturbatively. In
the ground state we have the expectation value 〈φ̃〉 = 0 (in general the expectation value of a quantum
field obeys the classical field equations (see [6], p. 197-198)). The ground state is then not invariant
under the transformation φ →−φ .

At finite temperature, one can approximate the partition function by performing the path integral
analogue of Laplace’s method on Z. If φ0 is a field that extremizes the action (i.e. a classical field), then
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the action can be written

SE [φ ] = SE [φ0 + φ̃ ] =
∫

β

0
dτ

∫
d3x
[

1
2

∂µ φ̃∂µ φ̃ +V (φ0)+
1
2

V ′′(φ0)φ̃
2 +

1
6

V ′′′(φ0)φ̃
3 . . .

]
(154)

≡
∫

β

0
dτ

∫
d3xVeff(φ0) = βVVeff(φ0) (155)

where Ve f f (φ0) is known as the effective potential. In the next-to-lowest order approximation, terms of
order φ̃ 3 are neglected, giving

Z ≈
∫

D φ̃exp
{
−
∫

β

0
dτ

∫
d3x
[

∂µ φ̃∂µ φ̃ +V (φ0)+
1
2

V ′′(φ0)φ̃
2
]}

(156)

In the language of Feynman diagrams, this is the one-loop order of a loop expansion. For details, an
introductory textbook on Quantum Field Theory, such as ref. [8], can be consulted. For the potential in
(149) we have

V ′′(φ0) = m2 +
1
2

λφ
2
0 . (157)

The effective potential in this approximation can be computed using the result (54). However the diver-
gent term must be dealt with, which we will now proceed to do.

8. The zero-point energy of the free scalar field

We now return to the zero-point energy

E =
1
2

∫ d3k
(2π)3

√
m2 +k2 =

1
2

∫ dΩ

(2π)3

∫
dkk2

√
m2 + k2

=
4π

2(2π)3

∫
dkk2

√
m2 + k2 (158)

of equation (54). This integral is UV divergent. However, there are ways, called regularization schemes,
of making sense of such expressions. The idea is to introduce a parameter, called a regulator, so that the
divergent integral is a special case of an otherwise finite expression. For example, if we imagine that our
theory is valid only up to some finite momentum scale Λ, we could try making the replacement

E =
1

(2π)2

∫
∞

0
dkk2

√
m2 + k2→ 1

(2π)2

∫
Λ

0
dkk2

√
m2 + k2

=
Λ4

(2π)2 f (m/Λ), (159)

where

f (x) =
∫ 1

0
dyy2

√
y2 + x2 =

1
8

{
(2+ x2)

√
1+ x2− x4

[
ln

(
1
x
+

√
1
x2 +1

)]}
. (160)

Another regularization scheme, known as dimensional regularization, is less intuitive but ultimately more
useful. The idea, first introduced into quantum field theory by ’t Hooft and Veltmann in 1973 [9], is to, by
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analytic continuation, promote the dimension of the integral to a continuous complex variable d = 3−2ε .
The original integral is viewed as the ε → 0 limit of this expression.

E → 1
2

Λ
2ε

∫ ddk
(2π)d

√
m2 +k2 =

Sd−1

(2π)d
1
2

Λ
2ε

∫
dkkd−1

√
m2 + k2

=
S2−2ε

(2π)3−2ε

1
2

m4
(

Λ

m

)2ε ∫
dxx2−2ε

√
x2 +1

=
S2−2ε

(2π)3−2ε

1
4

m4
(

Λ

m

)2ε ∫
dtt

1
2−ε
√

t +1, (161)

The renormalization scale Λ has dimension mass and ensures that [E ] = [m4]. Sd−1 is the surface area of
a unit sphere in d- dimensional space, which is given by

Sd−1 =
2π

d
2

Γ
(d

2

) . (162)

The integral in (161) can be computed using an integral representation of Euler’s beta function,

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

=
∫

∞

0
dt

tx−1

(1+ t)x+y , (163)

where Γ is the gamma function. We will need the following results:

Γ(−1/2) =−2
√

π, (164)

Γ(−2+ ε) =
1

2ε
+

3
4
− 1

2
γE +O(ε), (165)

where γE ≈ 0.578 is the Euler-Mascheroni constant. This yields,

E =
1
4

m4
(

Λ

m

)2ε S2−2ε

(2π)3−2ε

∫
dt

t
1
2−ε

(1+ t)−
1
2

=
1
4

m4
(

Λ

m

)2ε 2π
3
2−ε

(2π)3−2εΓ
(3

2 − ε
) Γ
(3

2 − ε
)

Γ(−2+ ε)

Γ
(
−1

2

)
=− 1

32π2 m4
(

4πΛ2

m2

)ε

Γ(−2+ ε). (166)

Expanding in ε , we obtain:

E =− 1
32π2 m4

[
1+ εln

(
4πΛ2

m2

)
+O(ε2)

][
1

2ε
+

3
4
− 1

2
γE +O(ε)

]
=− 1

64π2 m4
[

1
ε
+ ln

(
4πΛ2

m2

)
− γE +

3
2
+O(ε)

]
. (167)

The rescaling

Λ
2→ eγE

4π
Λ

2 (168)
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is convenient, and known as the modified minimal subtraction (or MS) scheme. With this, we get the
more compact expression

E =− 1
64π2 m4

[
1
ε
+ ln

(
Λ2

m2

)
+

3
2

]
, (169)

where we have discarded terms of order ε . At this point we are ready to compute the effective poten-
tial for the field from the previous section, by making the substitution m2 → V ′′(φ0) in (54). The full
expression is

Veff(φ0,Λ) =
1
2

m2
φ

2
0 +

1
4!

λφ
4
0 −

1
64π2

[
m4 +λm2

φ
2
0 +

1
4

λ
2
φ

4
0

][
1
ε
+ ln

(
Λ2

m2 + 1
2 λφ 2

0

)
+

3
2

]

+
1
β

∫ d3k
(2π)3 ln

(
1− e−βω̃k

)
, (170)

where ω̃k =
√

k2 +m2 + 1
2 λφ 2

0 . It can be shown [6] that the approximation made in (156) amounts to
making a series expansion to first order in the Planck constant. If the Planck constant was included
explicitly in (156), the quantum corrections to the classical potential, Veff(φ0)−V (φ0), would carry a
factor of h̄. To eliminate the divergent terms in (170), the mass and coupling constant are renormalised
as follows:

m2→ m2 +δm2 = m2 +
λm2h̄
32π2ε

+O(h̄2), (171)

λ → λ +δλ = λ +
3λ 2h̄

32π2ε
+O(h̄2). (172)

We did not previously include a constant term in the Lagrangian, but the last divergent term is removed
by adding a constant vacuum energy term E0 to the Lagrangian density and renormalizing this as

E0→ E0 +δE0 = E+
m4h̄

64π2ε
+O(h̄2) (173)

When the renormalized parameters are inserted in the Lagrangian, the divergent terms in (170) disappear,
whereas the remainder of the expression remains unchanged to first order in h̄.

9. Quantum Chromodynamics

The theory known as Quantum Chromodynamics is regarded as a fundamental theory of the strong
interaction. In this section we will give a minimal summary of some of its properties; in particular the
symmetries of the theory, which provide the justification for the use of the model which will be studied
in the next section.

The building blocks of the theory are quarks, which are fermions, and gluons, which are gauge
bosons. The gauge group of QCD is SU(3) (or more generally, SU(Nc) if one allows for an arbitrary
number of colors). That is to say, a quark field has three (Nc) components,

ψ =

ψ1
ψ2
ψ3

 . (174)
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The Lagrangian is invariant under global SU(3) transformations on these components, and by introducing
a gauge field, the gluon field, it is made to be invariant under local transformations as well. The gluon
field has eight components, one for each of the generators of SU(3). There are six different flavors
(discovered so far) of quarks, divided into three generations: the up and down quarks are relatively
light (their masses are approximately 2 and 5 MeV, respectively), and are the constituents of protons and
neutrons. Progressively heavier are the strange, charm, bottom and top quarks, with masses ranging from
∼ 95 MeV to∼ 170 GeV [10]. Since the mimimum energy required to create a particle is proportional to
its mass, it is possible to neglect the heavier quarks in a low-energy approximation. The (Minkowskian)
Lagrangian density of the theory can be written as [11]

LQCD = ψ̄i
[
i(γµDµ)i j−mδi j

]
ψ j−

1
4

Ga
µνGµν

a . (175)

Here, the indices i, j correspond to the three components of the quark field. The index a runs from 1 to
8, corresponding to the eight components of the gluon field. Dµ is the covariant derivative

(Dµ)i j = ∂µδi j− ig(Ta)i jAa, (176)

with Aa the gluon field, Ta the eight generators of SU(3), and g a dimensionless coupling constant. Ga
µν

is the gluon field strength tensor, defined as

Ga
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν , (177)

with f abc the structure constants of SU(3), satisfying

[T a,T b] = f abcT c. (178)

The Lagrangian is invariant under simultaneous transformations

ψ → eiαa(x)T a
ψ

ψ̄ → ψ̄e−iαa(x)T a

Aa
µ → Aa

µ −
1
g

∂µα
a(x), (179)

where α(x) is an arbitrary phase.

9.1. Color charge, confinement and asymptotic freedom
We can associate a conserved charge with the strong interaction, known as color charge. The three

components of the quark field each correspond to one of the colors red, green and blue. Quarks carry one
unit of color, whereas antiquarks carry one unit of "anticolor" ("antired", etc.). Gluons carry one unit of
color and one unit of anticolor. To get a color-neutral composite, we can either combine one unit of each
color ("red + green + blue = white"), or a unit of one color with a unit of the corresponding anticolor.
It turns out that QCD has a property known as confinement, which means that quarks and gluons never
appear as isolated particles, and are only found in color-neutral bound states. Three quarks make a
baryon, such as the proton and neutron, whereas a quark-antiquark pair constitute a meson. This is related
to the property known as asymptotic freedom: The coupling between quarks and gluons increases at low
energies (i.e. when the center-of-mass energy of two interacting particles is low), and approaches zero
as the energy approaches infinity. This means that the attractive force between two quarks in a hadron
becomes increasingly strong when the distance between them increases (large distance corresponds to
low energy), and an infinite amount of energy would be required to remove a single quark completely
from a hadron, or completely separate the quark-antiquark pair in a pion.
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9.2. Flavor symmetry

If we have several quark flavors, the quark field ψ becomes a multiplet,

ψ =

u
d
...

 , (180)

and the mass term in (175) becomes a diagonal matrix of quark masses, m = diag(mu,md , . . . ,). We
will be concerned with the low-energy approximation, including only the up and down quarks. In this
case, the Lagrangian has an approximate flavor symmetry: if the masses of the up and down quarks
were precisely equal, U(2) transformations of the flavor doublet would leave the Lagrangian invariant.
There is also an approximate chiral symmetry: We can decompose a fermion field into left-handed and
right-handed components, ψ = ψR +ψL, where

ψR =
1
2
(1+ γ5)ψ,

ψL =
1
2
(1− γ5)ψ. (181)

where γ5 = γ1γ2γ3γ0. For massless fermions, these components correspond to particles with positive and
negative helicity, respectively [6]. Writing (175) in terms of these components, we have

LQCD = ψ̄Rii(γµDµ)i jψR j + ψ̄Lii(γµDµ)i jψL j−m(ψ̄RiψLi + ψ̄LiψRi)−
1
4

Ga
µνGµν

a . (182)

If not for the mass term, the chiral components would decouple in the Lagrangian, and we could make
U(2) transformations on the chiral components independently. The symmetry group U(2)L×U(2)R can
be decomposed into SU(2)L×SU(2)R×U(1)V ×U(1)A (V for vector and A for axial), when the chiral
components transform independently under SU(2). Under U(1)V , the fields transform as follows:

ψL→ eiα
ψL, ψR→ eiα

ψR. (183)

And under U(1)A,
ψL→ eiβ

ψL, ψR→ e−iβ
ψR. (184)

The U(1)A symmetry, while an exact symmetry at the classical level (in the case of vanishing quark
masses), turns out not to be an exact symmetry of the quantum field theory due to a so-called anomaly
[12]. Therefore, the flavor symmetry group of this model in the limit of vanishing quark masses is
SU(2)L×SU(2)R×U(1)V .

While the masses of the up and down quarks are in reality finite and different, they are small enough
to consider chiral symmetry an approximate symmetry of the Lagrangian. As it turns out, this symmetry
is spontaneously broken down to SU(2)V ×U(1)V in the vacuum by the formation of a quark condensate,
a nonzero expectation value 〈ψ̄ψ〉. According to Goldstone’s theorem, there should appear massless
bosons in the energy spectrum. They are known as pions. However, since the symmetry which is being
broken is not an exact one, the pions are not in fact massless; they do, however have relatively small
masses, and are classified as pseudo-Goldstone bosons.
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Figure 2: This diagram shows what the qualitative form of the QCD phase diagram, in the plane of temperature and baryon
chemical potential, is thought to be, as pieced together by different means of research.

9.3. The phases of QCD

The current understanding of the QCD phase diagram is summarized in figure 2 [13]. At low temper-
ature and quark chemical potential, quarks and gluons are confined in bound states (hadrons), and chiral
symmetry is spontaneously broken. When the temperature increases, the coupling between the particles
decreases, and it is expected that a phase transition will occur at some point, leading to a phase known as
quark-gluon plasma, where the quarks and gluons are deconfined and asymptotically free, and approx-
imate chiral symmetry is restored. At low densities (corresponding to low baryon chemical potential),
this transition is a crossover, whereas at a sufficiently high density one expects to find a critical point,
beyond which the phase transition is discontinuous (first-order). At low temperature and high density, the
hadrons become increasingly closely packed together. At sufficiently high densities, the hadrons are ex-
pected to merge with a each other, leading to a phase of deconfined quarks and gluons. It is expected that
a phase of matter may result in which the quarks form Cooper-pairs, leading to a color-superconducting
phase of matter known as the color-flavor-locked (CFL) phase [14]. In the area between the hadronic and
CFL phase, several distinct phases of QCD have been hypothesized. This is currently a blooming area of
research [2].

It is generally very difficult to treat QCD analytically. Therefore, many of the results on its phase
structure are obtained in other ways. An important method is known as lattice QCD, which is a numerical
method based on the discretization of spacetime. One of its main limitations, known as the sign problem,
makes this method unfeasible at large baryon chemical potential [5]. Another approach is the use of
effective models. In the next section we turn to such a model.

10. Quark-Meson Model

In this section we will use the main results we have obtained so far to study the so-called quark-
meson (QM) model (also known as the linear sigma model coupled to quarks, or LSMq). It was originally
proposed by Yukawa [15] as a model of the interactions between nucleons through exchange of pions. In
later years, this model has also been used as an effective model of QCD at low energies. By construction,
it has an SU(2)×SU(2)×U(1) symmetry which is broken down to SU(2)×U(1)in the vacuum, as is the
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case in two-flavor QCD. Therefore, it can be used to model the chiral phase transition of QCD, i.e. the
transition between phases of broken and unbroken chiral symmetry. The model includes the quarks as
massless fermions coupled to a four-component scalar field. In this model, the quarks are not confined,
but there exists an extension of the model, the Polyakov-quark-meson model, which incorporates quark
confinement [16].

The Euclidean Lagrangian density is given by

LE = Lmeson +Lquark +LYukawa, (185)

where

Lmeson =
1
2

∂µφi∂µφi +
1
2

m2
φiφi +

1
4!

λ (φiφi)
2−hσ , (186)

Lquark = ψ̄(/∂ −µγ0)ψ, (187)

LYukawa = gψ̄(σ + iγ5~τ ·~π)ψ, (188)

where i = 1,2,3,4, and

(φ1,φ2,φ3,φ4) = (σ ,π0,π1,π2) = (σ ,~π). (189)

ψ =

(
u
d

)
(190)

is an isospin doublet, with u and d the up and down quarks (in Yukawa’s model, the proton and neutron),
with no bare mass. µ = diag(µu,µd) is the quark chemical potential. ~τ = (τ1,τ2,τ3) are the Pauli
matrices, acting on the isospin indices of ψ .

The quark sector of the Lagrangian is invariant under U(2) transformations, which decompose into
SU(2)×U(1), in isospin space. Without a quark mass term, the left- and right-chiral components de-
couple, and Lquark becomes invariant under U(2)L×U(2)R ∼ SU(2)L× SU(2)R×U(1)V ×U(1)A. In
addition, the quark fields belong to the fundamental representation of the group SU(Nc), where Nc is the
number of colors. while in QCD this symmetry is a local one, we leave it as a global symmetry in this
model.

Lmeson alone is known as the O(4) linear sigma model. Note that when h = 0 this Lagrangian is
invariant under O(4) transformations. When m2 is negative, this symmetry is broken in the vacuum,
which only respects O(3) symmetry. When h 6= 0 the symmetry is explicitly broken in the Lagrangian.
O(4) is locally isomorphic to SU(2)×SU(2). For U,V ∈ SU(2) the transformation

σ + i~π ·~τ →V (σ + i~π ·~τ)U−1 = σ
′+ i~π ′ ·~τ (191)

leaves Lmeson invariant, since

σ
′2 +~π ′

2
∝ det(σ ′+ i~π ′ ·~τ) = det(V )det(σ + i~π ·~τ)det(U−1) = det(σ + i~π ·~τ) (192)

with σ ′,~π ′ real given real σ ,~π 1. In terms of the chiral fields, the interaction term is

LYukawa = gψ̄L(σ − iγ5~τ ·~π)ψR +gψ̄R(σ + iγ5~τ ·~π)ψL (193)

1This follows from the fact that any 2× 2 unitary matrix can be written U = aI +~b ·~τ with a,~b real, and the fact that the
product of two unitary matrices is unitary.
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Clearly, the transformation

ψR→UψR,

ψL→V ψL, (194)

σ + i~π ·~τ →V (σ + i~π ·~τ)U−1

leaves the full Lagrangian invariant when h = 0. We can also make U(1)V transformations, however
the U(1)A symmetry is not respected by the interaction term. Thus the symmetry group of the full
Lagrangian with h = 0 is SU(2)L×SU(2)R×U(1)V .

We will treat this model in the same way as the single scalar field. In general, the expectation
value of the four-component scalar field can point in any direction in φ -space. However, by making the
appropriate transformation (191), we can always ensure that it points in the σ direction. Thus, without
loss of generality, we can set

σ = φ0 + σ̃ , (195)

such that
〈σ̃〉= 〈~π〉= 0. (196)

The expectation value of the σ field in this model corresponds to the chiral condensate 〈ψ̄ψ〉 of QCD
[17]. Making the same approximation as earlier, we keep only the terms quadratic in the quantum fields
σ̃ and ~π . This leaves us with

Lmeson ≈
1
2

m2
φ

2
0 +

1
4!

λφ
4
0 −hφ0 +

1
2

∂µ σ̃∂µ σ̃ +
1
2

(
m2 +

1
2

λφ
2
0

)
σ̃

2 +
1
2

∂µ~π∂µ~π +
1
2

(
m2 +

1
6

λφ
2
0

)
~π2

≡V (φ0)+
1
2

∂µ σ̃∂µ σ̃ +
1
2

m2
σ σ̃

2 +
1
2

∂µ~π∂µ~π +
1
2

m2
π
~π2, (197)

and

LYukawa ≈ gψ̄φ0ψ, (198)

so that

Lquark +LYukawa ≈ ψ̄(γµ∂µ −µγ0 +gφ0)ψ

= ψ̄(γµ∂µ −µγ0 +mq)ψ. (199)

When φ0 6= 0, the quarks acquire an effective mass mq = gφ0, which mixes the left and right chiral
components and leads to the breaking of chiral symmetry. That is, SU(2)L×SU(2)R×U(1)V is broken
down to SU(2)×U(1)V . Note that if h = 0, then in the vacuum, we have 〈σ〉=

√
−6m2, which is the

minimum of the tree-level potential. Thus the pion mass m2
π = m2 + 1

6 φ 2
0 is zero. Since SU(2) has three

generators, and there are three pions, this is in accordance with Goldstone’s theorem.
Using equations (??) and (170), the effective potential for φ0 can now be found. The contribution

from the sigma field is

Vσ (φ0,Λ) =−
1

64π2 m4
σ

[
1
ε
+ ln

(
Λ2

m2
σ

)
+

3
2

]
+

1
β

∫ d3k
(2π)3 ln

{
1− exp [−βωσ (k)]

}
, (200)

where the dispersion relation is

ωσ (k) =
√

m2
σ +k2. (201)
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The contribution from each pion field is identical, and found by making the substitution mσ → mπ in
(200). Their sum is

Vπ(φ0,Λ) =−
3

64π2 m4
π

[
1
ε
+ ln

(
Λ2

m2
π

)
+

3
2

]
+

3
β

∫ d3k
(2π)3 ln{1− exp [−βωπ(k)]} . (202)

From (??) and (169) we get the fermion contribution. The factor of Nc comes from the contribution of
each color component.

Vq(φ0,Λ) =
Nc

8π2 m4
q

[
1
ε
+ ln

(
Λ2

m2
q

)
+

3
2

]

− 2Nc

β
∑

f=u,d

∫ d3k
(2π)3

(
ln
{

1+ exp
[
−β (ωψ(k)−µ f )

]}
+ ln

{
1+ exp

[
−β (ωψ(k)+µ f )

]})
.

(203)

Collecting the divergent terms, we get

Veff(φ0,Λ) =−
1

64π2ε
m4

σ −
3

64π2ε
m4

π +
Nc

8π2ε
m4

q +O(ε0) (204)

=− m4

16π2ε
− λm2

32π2ε
φ

2
0 +

[
− λ 2

192π2ε
+

Ncg4

8π2ε

]
φ

4
0 +O(ε0) (205)

These are, as before, eliminated by renormalizing the vacuum energy, meson masses and the coupling
constant, with the counterterms

δE =
m4

16π2ε
, (206)

δm2 =
λm2

16π2ε
, (207)

δλ =
λ 2

8π2ε
− 3Ncg4

2π2ε
. (208)

After renormalization, the one-loop effective potential of the model is

Veff(φ0,Λ) =
1
2

m2
φ

2
0 +

λ

4!
φ

4
0 −hφ0−

1
64π2 m4

σ

[
ln
(

Λ2

m2
σ

)
+

3
2

]
− 3

64π2 m4
π

[
ln
(

Λ2

m2
π

)
+

3
2

]
+

Nc

8π2 m4
q

[
ln

(
Λ2

m2
q

)
+

3
2

]

+
1
β

∫ d3k
(2π)3

(
ln{1− exp [−βωσ (k)]}3ln{1− exp [−βωπ(k)]}

)
−2Nc

β
∑

f=u,d

∫ d3k
(2π)3

(
ln
{

1+ exp
[
−β (ωψ(k)−µ f )

]}
+ ln

{
1+ exp

[
−β (ωψ(k)+µ f )

]})
. (209)
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10.1. Large-Nc-approximation

One problem we now face is that the meson masses

m2
σ = m2 +

1
2

λφ
2
0 ,

m2
π = m2 +

1
6

λφ
2
0 ,

are negative for values of φ0 below the classical minimum of the potential, saddling the potential in
(209) with an imaginary part. The interpretation of this is related to the instability of certain states, as
is discussed in ref. [18]. The simplest way to handle this problem is to neglect the imaginary terms
altogether. One approximation one could make in order to make (209) less unwieldy is called the large-
Nc-approximation. In the limit of large Nc, the terms in (209) coming from the quantum and thermal
fluctuations of the meson fields should become negligible, and we are left with

Veff(φ0,Λ) =
1
2

m2
φ

2
0 +

λ

4!
φ

4
0 −hφ0 +

Nc

8π2 m4
q

[
ln

(
Λ2

m2
q

)
+

3
2

]

− 2Nc

β
∑

f=u,d

∫ d3k
(2π)3 ln

{
1+ exp

[
−β (ωψ(k)−µ f )

]}
− 2Nc

β
∑

f=u,d

∫ d3k
(2π)3 ln

{
1+ exp

[
−β (ωψ(k)+µ f )

]}
. (210)

It should be noted that when the meson fluctuations are neglected, the potential is unbounded from below
due to the term

Nc

8π2 m4
qln

(
Λ2

m2
q

)
∼−φ

4lnφ
2
0 , (211)

which dominates for large φ0 and becomes arbitrarily large and negative. When the meson fluctuations
are included there are terms of the same form of the opposite sign, and depending on the parameters used,
these terms may stabilize the potential. In any case, if the potential is calculated to all orders, it must be
bounded from below for the vacuum to be stable. In general, the quantum corrections become large for
increasing φ0, and we expect that higher order corrections are needed at higher φ0. We will assume that
our approximation is valid for low φ0, say 0 < φ0 < φm. For our purposes, the quantity of interest is the
value of φ0 which minimizes the effective potential. If this value is less than φm, the approximation can
be used.

In the vacuum, T = µu = µd = 0, we have fπ = φ0, where fπ = 93 MeV is the pion decay constant
[19]. From the tree level potential, the four independent parameters of the model, m2, λ , g and h can be
related to physical quantities as follows:

m2 =
1
2
(
3m2

π −m2
σ

)
,

λ =
3(m2

σ −m2
π)

f 2
π

,

g =
mq

fπ

,

h = fπm2
π . (212)
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Matching parameters at tree level when working at one-loop order in the effective potential, as in
eqs. (212) is commonly done in the literature. However, this is not quite correct, since the expressions
for the sigma and pion masses, in tems of the parameters of the model, are modified at one-loop order.
For a discussion of this, see ref. [20]. With this approximation, the minimum of the effective potential in
the vacuum is dependent on the renormalization scale Λ. Since we require that the minimum remains at
φ0 = fπ , this fixes Λ at a particular value:

dVeff(φ0)

dφ0

∣∣∣∣
φ0= fπ

=
dV0(φ0)

dφ0

∣∣∣∣
φ0= fπ

+
gNc

2π2 m3
q

[
ln

Λ2

m2
q
+1

]
= 0. (213)

Since the tree-level potential already has its minimum at φ0 = fπ , the first term vanishes, and the condition
on Λ is

ln
Λ2

g2 f 2
π

+1 = 0, (214)

or Λ = e−
1
2 mq.

Determining the values of the input parameters mq and mσ is not trivial. mσ is, in principle, a measur-
able physical quantity. However, several candidate scalar particles have been observed experimentally,
and it is not clear which one should be identified with the σ particle [21]. In some sense, therefore, the
sigma mass can be regarded as a free parameter of the model. We will take as a starting point the value
mσ = 800 MeV, which is often used in this model, and look at how varying this value affects the results.

mq, the effective quark mass, does not correspond directly to a measurable physical quantity. It can
be related to the value of the quark condensate in the vacuum [22], which, although not measurable, can,
in principle, be computed in lattice simulations. A reasonable estimate is 300 MeV [23], about one third
of the mass of a nucleon.

Since up and down quarks are not quite massless, pions have finite but relatively small masses of
approximately 140 MeV, earning them the name pseudo-Goldstone bosons. Had the up and down quarks
been massless, the pions would have been proper massless Goldstone bosons. Rather than using the
physical pion masses, we will work in the chiral limit, h = 0, which means the pions are massless in the
vacuum. From this point, we will set Nc = 3, as is the case in QCD. We will work with a finite quark
chemical potential µ = 1

2(µd +µu) =
1
3 µB, where µB is the baryon chemical potential, and set the isospin

chemical potential µI =
1
2(µd−µu) to zero.

In figure 3, the normalized effective potential

Ṽeff(φ0)≡ [Veff(φ0)−Veff(0)]/ f 4
π (215)

is plotted for µ = T = 0. The function has a local minimum at φ0 = 93MeV, followed by an increase,
before it eventually turns around. We will focus only on the local minimum, assuming that it corresponds
to the global minimum of the true potential when all corrections are included. Whether or not, and under
which circumstances, this can be justified is not a trivial question. If we lower the value of mσ , the
resulting effective potential looks discouraging (figure 4). At mσ = 600 MeV, the potential just barely
admits a local minimum at φ0 = 93 MeV, and at mσ = 500 MeV this minimum has been replaced by a
local maximum, so the condition that Veff has a minimum at 93 MeV cannot be enforced. From this it can
be concluded that, to the extent that our approximation is useful, its validity depends on the parameters
used.
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Figure 3: The normalized one-loop effective potential Ṽeff(φ0) at zero temperature.

10.2. The phase diagram

As mentioned, the symmetry group SU(2)L× SU(2)R×U(1)V of the model in the chiral limit, i.e.
with h = 0, is broken down to SU(2)V ×U(1)V in the vacuum due to the nonvanishing expectation value
of the σ field. If we increase the temperature, the system becomes increasingly disordered and we should
expect this expectation value to vanish at some point, restoring the symmetry. Numerically, it was found
that the temperature Tc at which this occurs is 168.1 MeV. The phase transition is continuous, as 〈σ〉,
given by the minimum of the potential, approaches zero continuously. Figure 5 shows the normalized
potential V ′eff(φ0) plotted as a function of φ0 for increasing values of T . For T < Tc the potential has
a minimum at finite φ0, which moves toward the origin while becoming shallower as T increases. At
T = Tc this minimum reaches the origin.

It may be interesting at this point to compare these findings with the behavior of the corresponding
classical field, i.e. the effective potential without the quantum corrections. When this term is not in-
cluded, it is found that a discontinuous, or first-order phase transition occurs at T = 173.6 MeV. This can
be seen in figure 6: At the critical temperature, the potential has two degenerate minima, one at the origin
and one at φ0 ≈ 50 MeV. Apparently, quantum fluctuations in this case have the effect of displacing the
critical temperature slightly and changing the order of the transition.

Next, we investigate what happens at T = 0, µ 6= 0. It turns out that in this case, the phase transition
is first-order whether quantum fluctuations are included or not. The behavior of the one-loop potential
around the critical chemical potential is shown in figure 7. The critical chemical potential at zero tem-
perature is found to be µc = 316.7 MeV. When the vacuum fluctuation term is not included, the critical
chemical potential is µc = 343.4 MeV. Again, quantum fluctuations cause the system to more easily
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Figure 4: The normalized one-loop effective potential Ṽeff(φ0) at zero temperature, for three different values of mσ : mσ = 700
MeV (blue curve), mσ = 600 MeV (red curve), and mσ = 500 MeV (yellow curve).

transition into a less ordered phase, as one might expect.
The next step is to map out the phase diagram in the entire µ−T plane. By numerically computing

the critical chemical potential at a set of temperatures, the phase diagram in figure 8 (blue line) was
produced. Solid and dashed lines correspond to first- and second-order phase transitions, respectively.
The point where the solid and dashed line meet (known as a critical point) is at (T,µ) = (69,278) MeV.
If the critical point is approached along the full line, the value of 〈σ〉 just inside the line decreases
continuously from its value at zero temperature, which is about 93 MeV, to zero. The phase diagram
which results when vacuum fluctuations are excluded is shown as the red line in fig. 8. Comparing this
to the blue line, the main differences are in the order of the phase transition, and the location of the phase
line. In the former case, the phase line is located slightly further from the origin throughout the diagram.

Figure 9 shows phase diagrams computed at various values of the sigma mass. Clearly, the value
of mσ strongly influences the shape of the phase line. At sufficiently high mσ , the phase transition is
second-order along the entire phase line.

10.3. Comparison with results from lattice QCD
In order to judge the results we have obtained, the ideal test would be comparison with experiment.

However, it is at present not feasible to create quark matter in thermal equilibrium in a laboratory. The
next best thing, then, is to turn to lattice QCD. As mentioned, this method is limited by the sign problem,
and cannot be used at large baryon chemical potential. However, the chiral transition at µB = 0 has been
studied extensively. In ref. [24], the chiral transition of two-flavor QCD in the chiral limit (corresponding
to a vanishing mass term in eq. (175)) was studied, and the transition was found to be of second order
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Figure 5: The normalized effective potential Ṽeff as a function of φ0, at zero chemical potential and three different temperatures:
T = Tc = 168.1 MeV (red), T = Tc−10 MeV (blue) and T = Tc +10 MeV (yellow). A second-order phase transition occurs at
T = Tc.

with an estimated transition temperature of 171 MeV. When compared with our results, this suggests a
value of mσ close to 800 MeV; in fact, perfect agreement is found by adjusting mσ to the value 814 MeV.

When physical quark masses are used, the transition at µB = 0 is found to be a crossover. That is to
say, the chiral condensate approaches zero as the temperature increases, but never vanishes completely.
In this case there is no critical temperature, but a "pseudocritical" temperature is commonly defined as the
inflection point of the chiral condensate as a function of temperature. With three quark flavors (up, down
and strange) with physical quark masses, the pseudocritical temperature defined this way was computed
in refs. [25] and [26], finding the values 157 and 155 MeV, respectively.
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Figure 6: The normalized potential Ṽeff, without the vacuum fluctuation term, as a function of φ0, at zero chemical potential and
three different temperatures: T = Tc = 173.6 MeV (red), T = Tc−5 MeV (blue), and T = Tc +5 MeV (yellow). A first-order
phase transition occurs at T = Tc.
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Figure 7: The normalized effective potential Ṽeff as a function of φ0, at zero temperature and three different chemical potentials:
µ = µc = 316.7 MeV (red), µ = µc−5 MeV (blue) and µ = µc +5 MeV (yellow).
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Figure 8: The phase diagram in the µ-T plane in the one-loop (blue) and classical (red) approximation. under the phase line,
the expectation value of the σ field is nonzero, and chiral symmetry is broken. A dashed line indicates a continuous phase
transition, whereas a full line indicates a first-order transition. The two meet at a critical point at (T,µ) = (69,278) MeV
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Figure 9: Phase lines computed from the one-loop effective potential with mσ = 1000 MeV (green), mσ = 800 MeV (blue),
and mσ = 600 MeV (red).
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11. Conclusion and Outlook

In this thesis we have studied the quark-meson model in one of its simplest forms; at one-loop order
in the chiral limit and in the large-Nc approximation. The phase diagrams that were produced appear to
qualitatively agree with the one shown in figure 2, with a second-order transition in place of the crossover.
A natural next step would be to move away from the chiral limit, and use the physical value for the pion
mass. We can then expect to find a crossover where there was previously a second-order transition, as
can be seen by making a Taylor expansion of the effective potential in the chiral limit:

Veff(φ0) = a(T,µ)φ 2
0 +b(T,µ)φ 4

0 . . . . (216)

A second-order phase transition occurs at a point where a(T,µ) changes sign. In the case of finite pion
mass, the potential takes the form

Veff(φ0) =−hφ0 +a(T,µ)φ 2
0 +b(T,µ)φ 4

0 . . . , (217)

and the minimum of the potential will always be at finite φ0. first-order transitions can still occur in this
case, with 〈σ〉 jumping from a large to smaller but finite value. We have seen an example of how quan-
tum fluctuations can influence the properties of the phase diagram, in particular the order of the phase
transition. This indicates that - not unexpectedly - a classical treatment of the model is insufficient to ob-
tain a qualitatively accurate representation of the phase diagram. By neglecting the vacuum fluctuations
of the mesons, we may have discarded important information, and so incorporating these could change
the picture.

The situation regarding the mass of the sigma particle is still somewhat unclear, and this is a question
which may be clarified in the coming years. Until then, one could in the context of the QM model regard
the sigma mass as a free parameter, which can be adjusted to fit the data. Our results suggest a value
around 814 MeV, when compared to relevant results from lattice QCD.

A clear weakness of the QM model is that it does not incorporate quark confinement in any way.
An important extension of the QM model is known as the Polyakov-quark-meson (PQM) model. For
an introduction, see ref. [16]. In QCD, is possible to construct an operator whose expectation value
serves as an order parameter for confinement; i.e. the confined phase is characterized by a finite value
of this parameter, whereas it is zero in a deconfined phase. This operator is known as the (color trace
of the) Polyakov loop. This can be incorporated into the QM model, and the chiral and deconfinement
transitions can be modeled simultaneously. Results indicate that these two transitions roughly coincide
in the entire µ−T plane [16][27].
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12. Appendix: MATLAB code

This appendix contains the code which was used for numerical calculations.
The following function computes the normalized effective potential, inputs are the value of φ0, the

quark chemical potentials µu and µd , a boolean value which determines whether the vacuum fluctuation
term is included, and the sigma mass.

1 f u n c t i o n V = Veff ( f i , T , mu1 , mu2 , vacuum , msigma )
2 f p i = 9 3 ;
3 mq = 300 ;
4 Lambda = mq∗ exp ( 1 / 2 ) ;
5 mpi = 0 ; % The s c r i p t was w r i t t e n so as t o be a b l e t o accommodate a

f i n i t e p ion mass , t h i s was n o t used .
6 m2 = 1 / 2 ∗ ( msigma ^ 2 3∗mpi ^2 ) ;
7 lambda = 3 / f p i ^2∗ ( msigma ^ 2 mpi ^2 ) ;
8 h = f p i ∗mpi ^ 2 ;
9 g = mq / f p i ;

10 i f f i > 0
11 V = 1/2∗m2∗ f i ^2 + lambda /24∗ f i ^4 h∗ f i + vacuum ∗ 3 / 8 / p i ^2∗g ^4∗ f i ^4∗ (

l o g ( Lambda ^ 2 / ( g ^2∗ f i ^2 ) ) + 3 / 2 ) + Vte rmisk ( T , mu1 , f i , g ) + Vte rmisk ( T ,
mu2 , f i , g ) ;

12 e l s e
13 V = Vte rmisk ( T , mu1 , f i , g ) + Vte rmisk ( T , mu2 , f i , g ) ;
14 end
15 V = V/ f p i ^ 4 ;
16 end

The following function computes the thermal contribution to the effective potential:

1 f u n c t i o n V = Vte rmisk ( T , mu , f i , g )
2 argument = @( k ) 3 ∗T / p i ^2∗k . ^ 2 . ∗ l o g (1+ exp ( ( s q r t ( k . ^2+ g ^ 2 .∗ f i ^2 ) mu) /

T ) ) 3 . ∗ T / p i ^ 2 .∗ k . ^ 2 . ∗ l o g (1+ exp ( ( s q r t ( k . ^2+ g ^ 2 .∗ f i ^2 ) +mu) / T ) ) ;
3 argument2 = @( k ) 3 / p i ^2∗k . ^ 2 . ∗ ( s q r t (mu . ^ 2 ) s q r t ( k . ^2+ g ^2∗ f i ^2 ) ) ;
4 f e r m i v e k t o r = 0 ;
5 i f mu^2 > g ^2∗ f i ^2
6 f e r m i v e k t o r = s q r t (mu ^ 2 g ^2∗ f i ^2 ) ;
7 end
8 i f T > 0
9 V = quad ( argument , 0 , I n f ) ;

10 e l s e
11 V = quad ( argument2 , 0 , f e r m i v e k t o r ) ;
12 end
13 end

The following function plots Ṽeff(φ0) for given values of µ and T .

1 f u n c t i o n V e f f p l o t t (mu , T , s t a r t , s l u t t , N, vacuum , msigma ) %s t a r t , s l u t t , N
g i v e t h e r a n g e of f i and t h e number o f p o i n t s t o p l o t .

2 f i = l i n s p a c e ( s t a r t , s l u t t ,N) ;
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3 V = l i n s p a c e ( s t a r t , s l u t t ,N) ;
4 V0 = Veff ( 0 , T , mu , mu , vacuum , msigma ) ;
5 f o r i = 1 :N
6 V( i ) = Veff ( f i ( i ) ,T , mu , mu , vacuum , msigma ) ;
7 end
8 p l o t ( f i ,V V0 , ’ LineWidth ’ , 1 . 4 ) ;
9 ax = gca ;

10 ax . XAxisLoca t ion = ’ o r i g i n ’ ;
11 ax . YAxisLoca t ion = ’ o r i g i n ’ ;
12 x l a b e l ( ’ $ \ ph i_0$ (MeV) ’ , ’ i n t e r p r e t e r ’ , ’ LaTex ’ , ’ F o n t S i z e ’ , 2 0 )
13 y l a b e l ( ’ $ \ t i l d e {V}_{ e f f }$ ’ , ’ i n t e r p r e t e r ’ , ’ LaTex ’ , ’ F o n t S i z e ’ , 2 0 )
14

15 end

This recursive function computes the critical chemical potential for a given value of T :

1 f u n c t i o n mu_c = muc ( T , vacuum , mi , max , r e s o l u t i o n , msigma )
2 mu_c = 1 ;
3 i f max mi < 0 . 1
4 mu_c = ( mi+max ) / 2 ;
5 e l s e
6 f i = l i n s p a c e ( 0 , 9 3 , r e s o l u t i o n ) ;
7 V = f i ;
8 mu = ( mi + max ) / 2 ;
9 f o r i = 1 : r e s o l u t i o n

10 V( i ) = Veff ( f i ( i ) ,T , mu , mu , vacuum , msigma ) ;
11 end
12 f o r j = 2 : r e s o l u t i o n
13 i f V( j ) < V( 1 )
14 mu_c = muc ( T , vacuum , mu , max , r e s o l u t i o n , msigma ) ;
15 b r e a k ;
16 end
17 end
18 i f mu_c == 1
19 mu_c = muc ( T , vacuum , mi , mu , r e s o l u t i o n , msigma ) ;
20 end
21 end
22 end

This function computes the critical temperature for a given value of µ:

1 f u n c t i o n T_c = t c (mu , vacuum , mi , max , r e s o l u t i o n , msigma )
2 T_c = 1 ;
3 i f max mi < 0 . 1
4 T_c = ( mi+max ) / 2 ;
5 e l s e
6 f i = l i n s p a c e ( 0 , 9 3 , r e s o l u t i o n ) ;
7 V = f i ;
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8 T = ( mi + max ) / 2 ;
9 f o r i = 1 : r e s o l u t i o n

10 V( i ) = Veff ( f i ( i ) ,T , mu , mu , vacuum , msigma ) ;
11 end
12 f o r j = 2 : r e s o l u t i o n
13 i f V( j ) < V( 1 )
14 T_c = t c (mu , vacuum , T , max , r e s o l u t i o n , msigma ) ;
15 b r e a k ;
16 end
17 end
18 i f T_c == 1
19 T_c = t c (mu , vacuum , mi , T , r e s o l u t i o n , msigma ) ;
20 end
21 end
22 end

The following function plots the phase diagram for a given value of mσ . The temperature at the critical
point is given as input, and is found by plotting the potential at various points along the phase line and
judging the order of the transition by inspection.

1 f u n c t i o n p h a s e d i a g r a m ( n , T_c , vacuum , msigma , c o l o r )
2 Tmax = t c ( 0 , vacuum , 0 , 1 0 0 0 , 5 0 , msigma ) ;
3 N = c e i l ( n∗T_c / Tmax ) ;
4 M = n N;
5 Ts = l i n s p a c e ( 0 , T_c ,N) ;
6 Tf = l i n s p a c e ( T_c , Tmax ,M) ;
7 mus = z e r o s ( 1 ,N) ;
8 muf = z e r o s ( 1 ,M) ;
9 r e s = 5 0 ;

10 f o r i = 1 :N
11 mus ( i ) = muc ( Ts ( i ) , vacuum , 0 , 1 0 0 0 , r e s , msigma ) ;
12 end
13 f o r i = 1 :M
14 muf ( i ) = muc ( Tf ( i ) , vacuum , 0 , 1 0 0 0 , r e s , msigma ) ;
15 end
16 p l o t ( mus , Ts , c o l o r , ’ LineWidth ’ , 1 . 4 )
17 ho ld on
18 p l o t ( muf , Tf , s t r c a t ( c o l o r , ’ ’ ) , ’ LineWidth ’ , 1 . 4 )
19 ax = gca ;
20 ax . XAxisLoca t ion = ’ o r i g i n ’ ;
21 ax . YAxisLoca t ion = ’ o r i g i n ’ ;
22 x l a b e l ( ’ $ \ mu$ (MeV) ’ , ’ i n t e r p r e t e r ’ , ’ LaTex ’ , ’ F o n t S i z e ’ , 2 0 )
23 y l a b e l ( ’ $T$ (MeV) ’ , ’ i n t e r p r e t e r ’ , ’ LaTex ’ , ’ F o n t S i z e ’ , 2 0 )

42



13. References

[1] H.J. Lipkin, Quark models and quark phenomenology, arXiv:hep-ph/9301246 (1992)
[2] K. Fukushima, T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. (2011) Phys. 74, 014001.
[3] H. Heiselberg and M. Hjorth-Jensen, Phases of dense matter in neutron stars, Phys. Rept. 328 (2000) 237–327,

arXiv:nucl-th/9902033
[4] P. Stankus, (ed. ), D. Silvermyr, (ed. ), S. Sorensen, (ed. ), and V. Greene, (ed. ), Ultrarelativistic nucleus nucleus colli-

sions. Proceedings, 21st International Conference, Quark matter, Knoxville, USA, March 30-April 4, 2009, Nucl. Phys.
A830 (2009) 1c–968c.

[5] S. Muroya et.al., Lattice QCD at Finite Density - An introductory review, arXiv:hep-lat/0306031
[6] Michael Kachelriess: From the Hubble to the Planck Scale: An Introduction to Quantum Fields

(http://web.phys.ntnu.no/ mika/cpp1.16.pdf) (2015)
[7] Mikko Laine: Basics of Thermal Field Theory (2015)
[8] A. Zee: Quantum Field Theory in a Nutshell, 2nd Edition (2010)
[9]

[10] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) G. ’t Hooft, M. Veltman, Regularization and renormal-
ization of gauge fields, Nuclear Physics B 44 (1): 189–213 (1972)

[11] A. Khodjamirian, Quantum Chromodynamics and Hadrons: an Elementary Introduction, arXiv:hep-ph/0403145 (2004)
[12] B.L. Ioffe, Axial anomaly: the modern status, Int.J.Mod.Phys.A21:6249-6266,2006
[13] M. G. Alford, K. Rajagopal, T. Schaefer, A. Schmitt, Color superconductivity in dense quark matter, arXiv:0709.4635

[hep-ph] (2007)
[14] K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, arXiv:hep-ph/0011333.
[15] H. Yukawa, Proc. Phys.-Math. Soc. Jpn, 17, 48 (1935)
[16] B-J. Schaefer, J.M. Pawlowski, J. Wambach, The Phase Structure of the Polyakov Quark-Meson Model, arXiv:0704.3234

[hep-ph] (2007)
[17] A. Goyal, M. Dahiya, Chiral symmetry in linear Sigma model in magnetic environment, arXiv:hep-ph/9906367 (1999)
[18] E.J. Weinberg, A. Wu, Understanding complex perturbative effective potentials, Phys. Rev. D 36, 2474 (1987)
[19] C. Itzykson, J. Zuber, Quantum Field Theory, p. 543
[20] J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD in a magnetic field, Rev. Mod. Phys. 88, 025001 (2016)
[21] A. Heinz, S. Struber, F. Giacosa, D.H. Rischke, Role of the tetraquark in the chiral phase transition, arXiv:0805.1134

[hep-ph]
[22] L. R. Baboukhadia, V. Elias, M. D. Scadron, Linear Sigma Model Linkage with Nonperturbative QCD, arXiv:hep-

ph/9708431 (1997)
[23] M. D. Scadron, F. Kleefeld, G. Rupp, Constituent and current quark masses at low chiral energies, arXiv:0710.2273

[hep-ph] (2007)
[24] CP-PACS Collaboration, Phase structure and critical temperature of two-flavor QCD with a renormalization group im-

proved gauge action and clover improved Wilson quark action, arXiv:hep-lat/0008011 (2000)
[25] Wuppertal-Budapest Collaboration, Transition temperature and the equation of state from lattice QCD, Wuppertal-

Budapest results, arXiv:1109.5032 [hep-lat] (2011)
[26] Y. Aoki, Sz. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, The QCD transition temperature: results with

physical masses in the continuum limit II, arXiv:0903.4155 [hep-lat] (2009)
[27] C.S. Fischer, J. Luecker, J.A. Mueller, Chiral and deconfinement phase transitions of two-flavour QCD at finite tempera-

ture and chemical potential, arXiv:1104.1564 [hep-ph] (2011)

43


	Introduction
	Symmetries in Field Theories
	Noether's Theorem
	Spontaneous symmetry breaking and Goldstone's theorem

	The path integral formulation of the partition function
	The free scalar field at finite temperature
	The partition function for fermions
	Grassmann variables

	The free Dirac field at finite temperature
	Source terms

	Spontaneous symmetry breaking
	The zero-point energy of the free scalar field
	Quantum Chromodynamics
	Color charge, confinement and asymptotic freedom
	Flavor symmetry
	The phases of QCD

	Quark-Meson Model
	Large-N_c-approximation
	The phase diagram
	Comparison with results from lattice QCD

	Conclusion and Outlook
	Appendix: MATLAB code
	References

