
Efficient simulation of
network performance by

importance sampling

Poul E. Heegaard

Submitted to the
Norwegian University of Science and Technology

in partial fulfilment of the requirements
 for the degree of Doktor Ingeniør,

May 1998.



ii



iii

To Kristine,
Helene and Solveig



iv



- v -

Abstract

Simulation is a flexible means for assessment of the quality of service offered by a tele-

communication system. However, when very strict requirements are put on the quality of

service, the simulation becomes inefficient because the performance depends on rare

events to occur. A rare event is, for instance, a cell loss or a system breakdown. A simu-

lation technique that speeds up the experiments must be added. Various techniques are

known from the literature and they should be combined to achieve additional speedups.

The most efficient speedup techniques for systems dependent on rare events, are impor-

tance sampling and RESTART.

The importance sampling technique is very sensitive to the change of the underlying sim-

ulation process. This is denoted the biasing of the simulation parameters. In this thesis,

explicit expressions of the variance of importance sampling estimates and the likelihood

ratio are developed for an M/M/1/N queue. The study of how the variance expressions

vary as the biasing changes, demonstrates that the importance sampling is very efficient

in a narrow region, and that the variance is unbounded outside. It is also observed that,

seemingly, the likelihood ratio and its variance may be used as an indication of the accu-

racy of simulation results, in combination with the variance of the estimate itself.

Neither importance sampling nor RESTART are easily applied to multidimensional mod-

els, e.g. a model of a telecommunication network with a variety of different users. In this

thesis, the focus is on how to do importance sampling simulations of telecommunication

networks with balanced utilisation of the resources. A network system are described by a

multidimensional model. The balanced resource utilisation implies that the system per-

formance is not given by a single bottleneck. Hence, previous approaches for importance

sampling biasing are no longer efficient. The reason is that they assume that the perform-

ance of a single resource significantly constrains the system performance, and under this

assumption, the parameters can be biased with respect to the bottleneck resource only.
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A new adaptive biasing technique is defined for dynamically setting up the simulation

parameters in the importance sampling experiment. This is the major contribution of this

thesis, and it has been successfully applied to several networks. The basic idea is to change

the simulation parameters to make the simulation process move toward the parts of the

state space where the most important rare events occur. Because this importance depends

on the current state , the change of parameters is adapted to the state changes in the sim-

ulation process.

The networks used for feasibility demonstration are offered traffic from (i) users with dif-

ferent resource capacities and traffic parameters, (ii) users with and without alternative

routing strategies, and (iii) users with different preemptive priority levels and a network

with a link failure. The simulation results are validated by comparison with exact results,

rough dimensioning rules, and correctness indicators given by the observed likelihood

ratio.

ω
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1

Introduction

1.1 Background and motivation

Today’s society has become very dependent on telecommunication systems in everyday

life. A network breakdown may cause severe consequences, even in a short breakdown

period. For instance, AT&T experienced a breakdown in 1990 that reduced the capacity

to the half of long distance, international, and toll free calls all over the U.S.A. for more

than 9 hours [Fit90]. A direct consequence of this dependency is that the users will expect

and should require that the quality of the services offered by a telecommunication system

must be high. Hence, the network operators and service providers must make sure that the

network are adjusted to the changes in the number of subscribers, in the offered services,

and in the service usage patterns. A sufficient number of network resources must be avail-

able, and “intelligent” access and routing procedures must be applied. Furthermore, the

communication must be reliable and secure. However, for the user this is a trade-off

between the quality of service and the price he is paying, and for the providers between

the revenue and cost. This implies that it is not in the interest of the network operators and

service providers to add more resources or dependability mechanisms than absolutely

necessary in order to reduce the cost to a minimum. This has become increasingly impor-

tant now after the opening of the telecom market where a strong competition between

different providers is introduced. It is very important, both for the users and the providers,

to be able to evaluate a network with respect to performance measures like the blocking

probability, loss, resource utilisation and availability, mean time to failure, grade of serv-

ice, end-to-end delays, etc. Such measures are important input to obtain optimal

dimensioning, to provide fair and robust access mechanisms, sufficient redundancy, opti-

mal routing strategies, etc.

To evaluate the performance of the network systems, a model is required. This model must

include the mechanisms described above, in addition to the users that offer traffic to the

network. The users are characterised by attributes like arrival rate, call duration, priority
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level, origin and destination nodes, connection routing, bandwidth requirements, etc.

Users with the same attributes constitute a group denoted a user type. Since the number

of attributes are large, the number of different user types will become large. Each user type

will typically be modelled separately, and be represented by a dimension in the state space

of the model. Hence, the model of a network is multidimensional with a large number of

dimensions. The property of interest in a network is related to the users utilisation of the

network resources such as links and nodes. The capacity of these resources imposes

restrictions to the model as boundaries in the state space. Examples of resources are a

communication channel on a link, the bandwidth of a link, etc. To be able to distinguish

between the users with different quality of service requirements, a preemptive priority

mechanism is needed. This adds new complexity to the model, and it become even more

complex when the users are given alternative routes through the network.

In a well engineered network, the resource utilisation is fairly balanced. This implies that

in the multidimensional model of a network, all boundaries must be considered when the

system performance is evaluated. This makes the model large and complex, and hence

numerical solutions become intractable. Another challenge, with respect to performance

evaluation, is due to the users restrictive quality of service requirements. For instance, the

cell loss ratio in ATM should be very small, less than <10-9. When conducting simulations

and measurements on such systems, this means that a very large number of events, e.g.

cell arrivals, will be simulated or observed, between every occurrence of the events of

importance to the network performance, e.g. the loss of a cell. The events of interest is

denoted rare events because they are very unlikely to occur. When evaluating perform-

ance measures dependent on rare events, the simulations and measurements will be

inefficient because of the enormous overhead between every event of interest.

The rare events in a multidimensional model with several boundaries, impose a number

of new challenges to the performance evaluation which makes the traditional means

insufficient:

- Analytical (numerical) analysis: The computations may be very effective if the size of

the model is moderate. The modelling requires a high level of abstraction, which

involves considerable efforts, skills, and system knowledge to make a tractable and

realistic model. For computer and communication networks, queuing models are typi-

cally applied for performance evaluation [Lav83]. However, when the size and

complexity of the performance models of telecom systems is large, this is a formidable,

and in many cases, unattainable task. Another pitfall is the risk of making oversimpli-
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fied assumptions with the result that the model no longer reflects the true nature of the

system. Hence, the analytic solution is limited to models with specific structures,

which can be solved (numerically) when the size of the model is moderate.

- Simulations: To build performance models for simulations, extensive knowledge of the

system is required. But, compared to the analytic approach, the models are more flex-

ible in the sense that arbitrary levels of detail are included. This means that all details

that affect the performance of interest are included, but nothing more. Computations of

these models, i.e. the simulations, are normally more demanding than analytic (numer-

ical) computations. Systems with strict quality of service requirements, and high

network performance, are even more demanding. The reason is simply that the system

has a high event activity (e.g. many packet arrivals, or call setups) relative to the occur-

rence of service degradation (e.g. loss of packets, or call blocking). Hence, an

enormous number of events must be simulated for each rare event that influences the

performance measure. Several rare events are required to achieve a certain confidence

in the estimates.
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Figure 1.1 :  System example of a typical complexity.
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- Measurements: No modelling is required, but a real system, or at least a prototype,

must exist. This adds a considerable cost to the experiment. Measurements are limited

to evaluation of the properties that can be recorded by the equipment. Furthermore, it

is difficult to control the measurement, both with respect to the load offered to the sys-

tem, and the internal state of the system. As a consequence of this, it is difficult to

reproduce the results from a measurement experiment. In a controlled laboratory, for

instance the B-lab at the Norwegian Telecom Research [Orm91], it is possible to

reduce these limitations to some extent. The B-lab has defined a test environment

where ATM (Asynchronous Transfer Mode) equipment is offered artificial, but realis-

tic, traffic by the Synthesized Traffic Generator (STG) [HMM93]. The evaluation of

properties dependent on rare events is still a problem, even if the number of events gen-

erated per time unit is normally much higher in a measurement experiment than it is

for simulations.

In this thesis, the simulation approach is taken because of its flexibility and expressive

modelling power. The main focus is speedup techniques for simulation of the network per-

formance dependent on rare events in the multidimensional model with several

boundaries.

1.2 Speedup simulation techniques

Several techniques are known in the literature that will reduce the required simulation

time more or less significantly. A speedup simulation technique refers to any technique

that reduces the computational effort, compared to direct simulations, that is required to

produce an estimate with a specific level of accuracy. Figure 1.2 identifies some tech-

niques that are applied to speedup discrete event simulations:

- Parallel and distributed simulation,

- Hybrid techniques,

- Variance reduction by use of correlation,

- Rare event provoking techniques.

These techniques will be presented in chapter 2. The techniques are not mutually exclu-

sive, and hence they can, and should, be combined to achieve additional speedup.
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1.3 Rare event simulation of network models

For the purpose of speeding up the simulations of networks with rare events, a rare event

provoking approach must be applied. In figure 1.3, an example of a simulation speedup is

given which compares direct simulation with importance sampling. A significant speedup

in simulation efficiency is observed.

Two techniques have been described in the literature with a speedup similar to this:

- RESTART1/splitting: the simulation process is split when visiting a state related to a

certain threshold. At this state, several replicas of the process are generated.

- Importance sampling: the parameters of the simulation process are changed to make

the rare events less rare.

The techniques apply two different approaches to manipulate the underlying simulation

process. The differences between RESTART and importance sampling will briefly be

described in chapter 2. In addition, a few simulation comparisons are made between sep-

arate experiments of RESTART and importance sampling, and the combination of the

two.

1. REpetitive Simulaiton Trials After Reaching Thresholds (RESTART).

Simulation modelParallel and
distributed simulation

Hybrid techniques

Rare event provoking
Variance reduction

Figure 1.2 :  An overview of speed-up simulation techniques.

by use of correlation
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The impressive speedups reported in the literature are mainly observations made from

simulations on simple, one dimensional models. To the author’s best knowledge, no

results have yet been reported on efficient simulation of rare events in network systems

with balanced utilisation of the resources. With such models, both the rare event provok-

ing techniques face severe problems:

- RESTART/splitting: at what states should the simulation process be split, and how

many replicas should be made?

- Importance sampling: how can the parameters of the simulation process be changed

when the rare events occur in very different parts of the state space?

The focus in this thesis is on application of importance sampling in network systems with

balanced utilisation of the resources. The basics of how to change the parameters of the

simulation process in a simple model is presented in chapter 3. The new and adaptive

parameter biasing is presented in chapter 5. In chapter 6, this basing is applied to network

systems that are modelled by the framework described in chapter 4.
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Figure 1.3 :  Speedup of importance sampling over direct simulation.
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1.4 Main focus of research in this thesis

In this thesis it is assumed that discrete event simulations are conducted. The underlying

simulation process is a continuous time Markov chain, which can be substituted by an

embedded discrete time Markov chain for simulation of steady state behaviour.

As mentioned in section 1.1, a model of a telecommunication network is a multidimen-

sional model because a number of users with different traffic parameters and requirements

have to be considered. The network resources introduce the boundaries of the model. The

system performance is associate with these boundaries. When the resource utilisation is

balanced, the biasing of importance sampling parameters is no longer trivial. The research

focus in this thesis in on application of importance sampling simulation of rare events in

multidimensional models with balanced resource utilisation.

To describe the telecommunication network, a modelling framework is required. It is

assumed that a set of user types are responsible for the traffic offered to the network. They

have different traffic parameters, different preemptive priorities, alternative routing strat-

egies, and can be exposed to link or node failures. Furthermore, it is assumed that a call

from one of the users, sets up a connection, which is either a circuit switched connection

in a connection-oriented network, or an equivalent bandwidth in a connection-less

network.

Within this framework, a new, adaptive biasing technique is developed, that enables the

use of importance sampling in multidimensional models with balanced utilisation of the

resources. Several simulation experiments are conducted to demonstrate the feasibility of

this technique.

1.5 Other importance sampling applications

In addition to the main focus summarised in the previous section, the author has been

involved in two other activities where importance sampling is applied:

1. Framework for accelerated measurements and simulation of ATM equipment. Several

speedup techniques were combined, and importance sampling was applied to change

the parameters of the traffic sources offering load to test ATM equipment. The source

models used in the Synthesized Traffic Generator (STG) [HMM93] are described over

several time scales, see [Hel95]. It is the burst level parameters that are changed to

increase the load offered to the ATM equipment. The equipment in itself is unchanged
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because it is not accessible. This means that internal buffer capacities and service rates

cannot be altered. The framework is tested by simulations and is not yet implemented

on the STG. The result of this work is reported in [HH94].

2. Multiplexing of MPEG coded video sources. A new trace driven simulation technique

is developed which is prepared for evaluation of cell losses in ATM buffers loaded by

a large number of heterogeneous MPEG coded video sources. Statistically firm results

are obtained, within a reasonable computation effort and time, by applying a special

importance sampling approach. The properties of the technique are examined and com-

pared to a previously suggested stratified sampling technique. The capabilities of the

technique are demonstrated by simulation of 76 sources of nineteen different MPEG

VBR video source types with cell losses in the 10-9 - 10-12 domain. The results of this

work are reported in [AHH96]. A reprint of this paper is given in appendix A for the

sake of completeness. A description can also be found in [And97].

As mentioned above, importance sampling biasing is very model dependent. In general,

it is not feasible to use previous results to new systems, unless the same modelling frame-

work is applied.

1.6 Guide to the thesis

Chapter 2 gives a brief overview of some of the speedup simulation techniques that are

applicable to discrete event simulations. The overview is not limited to rare event simula-

tion techniques because it is known that several simulation techniques should be

combined to increase the speedup.

Importance sampling is the rare event simulation technique that has been given the main

focus in this thesis. In chapter 3, the technique is briefly described, and a detailed discus-

sion is given on the main challenge to make importance sampling efficient, namely the

change of measure or biasing of the simulation parameters. The known, asymptotically

optimal, change of measures that exist for simple models are briefly mentioned.

However, for more complicated models, e.g. models of communication networks, current

importance sampling biasing do not suffice. In chapter 4, a description is given of a flex-

ible modelling framework which allows both traffic and dependability aspects to be

included. Chapter 5 describes a new, adaptive parameter biasing that enables efficient sim-

ulation of such networks.
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In chapter 6, the feasibility of the modelling framework and the adaptive biasing is dem-

onstrated on a few network models. The users have different service requirements, they

have preemptive priorities to allow quality of service differentiation, and the network pro-

vides alternative routing to some users when the primary route is blocked. A route is

blocked either when an overload has occurred, or after a link or node failure.

Still, some work remains on the details in the adaptive technique, but also on learning

more about the feasibility of this approach. A list of further work and concluding remarks

is found in chapter 7.

The importance sampling is applied to speedup the simulation of a multiplexer of MPEG

coded video sources. A paper was written on this work which is reprinted in appendix A

for the sake of completeness. The results was a joint effort with Prof. Bjarne Helvik,

NTNU, and Dr. Ragnar Andreassen, Telenor R&D.

A list of symbols and notations used in this thesis can be found in appendix B along with

an overview of the concepts of the modelling framework presented in chapter 4. The other

appendices describe details in the derivation of expressions and plots used in the main

parts of the thesis.
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2

Speedup techniques for discrete event
simulations

Several techniques have been proposed in the literature for speeding up simulation exper-

iments. This chapter gives a brief overview of some of these techniques applicable to

discrete event simulations.

Of particular interest are techniques for speeding up simulation of systems with properties

dependent on rare events. This chapter is not limited to the rare event provoking tech-

niques, but also includes other techniques that can be combined and give increased

speedup This chapter is based on [Hee95c] and [Hee97b].

2.1 Settings

For description of the various techniques in this chapter, the general settings and the

required notation are introduced.

The performance evaluation is steady state blocking and system unavailability. Let the

property of interest be denoted . This is the expected value  of a response

function , taking samples,  from the density distribution .

Example 2.1: Consider a single server queue. The property of interest, , is the proba-

bility of blocking in a busy period of this queue. A busy period is the time between two

time epochs where the queue is empty. A sample  is the observed sequence of call

arrivals and departures during busy period . The response function  is 1 if the

queue is blocked in the th busy period and 0 otherwise.

The samples are independent and identically distributed. In a regenerative simulation a

sample  is a sequence of  events constituting the th regenerative cycle, i.e.

γ γ E g s
˜

( )( )=

g s
˜

( ) s
˜

f s
˜

( )

γ

s
˜r

r g s
˜r( )

r

s
˜

nr r
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,  (2.1)

where  is the system state after event . An unbiased estimate of  is then:

 (2.2)

where  is the number of samples . An event is either an arrival or departure of an entity

(e.g. a customer) to the queue. The variance of this estimate  is:

.  (2.3)

As an example, consider the problem of estimating , where  is a specific

event. If  then  is denoted a rare event. Consider  to be e.g. the event that the

number of customers in a single server queue reach the capacity  during a busy period.

Substituting  by  in (2.2), then:

 (2.4)

where

.  (2.5)

This can also be expressed as

.  (2.6)

which gives the relation between the subspace  where the rare events of interest are

observed, and the th sample. This  is denoted a target subspace. A visit to  is the

event  of interest. For details on the simulation process and the modelling framework,

see the description in chapter 4. In appendix B, a list of concepts and symbols is given.

Example 2.2: Consider the queue from example 2.1. The system state, , is the number

of customers in the system at a given point in time. The regenerative state space is the

s
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empty system, , while the target subspace is the full system, .

Each simulated cycle starts and ends in the regenerative state, i.e.

It can easily be shown that  is an unbiased estimator of  (the samples , and hence the

events , are independent, see (2.6)):

.  (2.7)

The variance is:

.  (2.8)

To retain a certain relative error of the estimates, consider the square of the relative error,

. When  changes, the following number of samples  is required:

.  (2.9)

Hence, , and the simulation efficiency drops dramatically as  decreases.

As a second example, consider the problem of estimating the steady state probability of

state . Recall that  is a binomial event that takes on values  or , and hence the

following estimate applies (“Renewal theorem”)

 (2.10)

where  is the expected time in state  in a cycle, and  is the expected cycle

time. This estimator depends on observations of the same events  as equation (2.4).

Hence, (2.10) meets the same challenges as (2.4) with respect to simulation efficiency.

The simulation efficiency is defined in terms of the CPU time and the variance. The fol-

lowing measurement will be used in this thesis (the reciprocal of the measure used

in [Hee95a] and in (A.16)):

 (2.11)
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where  is the CPU time required to obtain an estimate  with variance . In

some sections, an index is added to this estimator to indicate the method used to obtain

this estimate, e.g. RESTART (R), importance sampling (IS).

2.2 The need of speedup simulation

Simulation is considered to be a flexible means for performance evaluation of complex

data and telecommunication networks. However, when the networks have very strict qual-

ity of service requirements, the direct simulation approach is very inefficient. The reason

is that the performance measure, e.g. the cell loss probability, depends on rare events to

occur, e.g. cell losses (in ATM with probability typically less than < ).

Figure 2.1 illustrates the speedup of importance sampling over direct simulation on a sim-

ple Erlang loss system. The number of samples required for direct simulation to retain the

same confidence level of the estimates, increases exponentially as the probability of the

rare event increases. Using importance sampling (with optimal parameters) the required

number is unchanged as long as the model size is unchanged, and hence a significant spee-

dup is observed. Note that already at a loss probability of approximately 5%, importance

sampling will, in this example, increase the efficiency.
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Figure 2.1 :   Speedup of importance sampling over direct simulation.
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Importance sampling is not always this efficient, and hence other techniques must also be

considered, either as alternatives, as supplements or in combination with importance

sampling.

2.3 Overview

This chapter contains several techniques that increase the simulation efficiency, , rela-

tive to an ordinary discrete event simulation experiment. Two orthogonal approaches

exist, and the different effect on the original discrete sequence of events is illustrated in

figure 2.2(a):

1. Increase the number of events per time units, either by using a faster machine, see

figure 2.2(b), or doing computations in parallel on several processors.

m

t

rare event, A

t

rare events

t

rare events

(a) original problem

(b) increase number of events per time unit

(c) increase number rare events

Figure 2.2 :  Illustration of sequence of events over real simulation time scale for
different speedup approaches.
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2. Decrease the simulation overhead, i.e. increase the relative number of events of inter-

ests, by exploitation of some statistical property of the simulation model, see

figure 2.2(c).

In the following sections, a few of the known speedup techniques are included and key

references are given. All techniques belong to either of the two orthogonal approaches

above. Figure 1.2 contains an overview of the categories used in this chapter:

- Parallel and distributed simulation exploits either special hardware and software, or

the existence of a cluster of workstations in the organisation. These techniques require

some extra administration, apart from expert skills in parallel programming. Hence,

only rather computer demanding problems should consider a parallel and distributed

simulation approach.

- Hybrid techniques combine analytic results with simulation experiments of sub-

problems.

- Variance reduction by use of correlation takes advantage of a known correlation

between output and input samples, or introduces such correlation by a controlled sim-

ulation setup. This correlation enables variance reduction. These techniques are not

efficient enough when the estimates depend on rare events to occur, but can be com-

bined with other techniques.

- Rare event provoking techniques include importance sampling and RESTART/split-

ting. Both techniques increase the frequency of the rare events of interest, but apply

two different approaches.

For surveys on variance reductions and speedup simulations, see e.g. [FLS88, KM88,

McG92, Hee95c, Hee97b].

2.4 Parallel and distributed simulation

In many computer environments, a large number of processors are available, either as a

cluster of workstations or a multiprocessor machine architecture. The parallel and distrib-

uted simulation techniques exploit such a multiprocessor environment to increase the

simulation speedup.   The speedups are due to an increase in the number of events per time

unit, see figure 2.2(b). The speedup is limited by the number of processors, P, and the tech-

nique applied [Lin94]:
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• PADS - Parallel And Distributed Simulation splits the sequential simulation process

into parallel subprocesses which are distributed on P processors,

• PIRS - Parallel Independent Replicated Simulation makes P independent replications

of the sequential simulation process and runs each of them on P separate processors.

These two different approaches are illustrated in figure 2.3.

2.4.1 Parallel And Distributed Simulation (PADS)

The PADS identifies sub-models in the sequential simulation model which can be evalu-

ated in parallel on different processors, e.g. in a network model each queue, trunkline or

user type can be considered as separate parallel sub-models. In general, it is not simple to

identify sub-models that can be run in parallel as separate processes and give significant

over direct simulation. The problem is that they are not independent, and hence the proc-

esses are slowed down due to delay at interaction points. Several techniques for handling

these synchronizations are proposed [Fuj90, KM88]:

- Conservative synchronisation approaches assume that all synchronisation points result

in an interaction (e.g. exchange of data), and hence the processes cannot proceed until

the slowest process has catched up [KRWW93].

PADS

PIRS

1

1 P

P

2 P

1

Figure 2.3 :  PADS vs. PIRS.



18 2   Speedup techniques for discrete event simulations

- Optimistic synchronisation approaches, e.g. used in the Time Warp technique [Jef85],

assume that no potential synchronisation point actually results in an interaction and

hence the sequence will proceed immediately. If it is discovered that an interaction

should have taken place, the subprocess(es) must roll back.

- Time driven approaches differ from the event driven approaches above [LR85]. A glo-

bal clock is incremented on fixed time instances rather than on events. In synchronized

networks this has shown a significant speedup.

Due to the slowdown caused by synchronisation, irrespective of which approach that is

taken, the total speedup will always be less than the number of processors involved, <P.

2.4.2 Parallel Independent Replicated Simulation (PIRS)

Every stochastic simulation experiment need a number of independent observations to

obtain a certain confidence of the estimates. PIRS is a framework to get more observations

in shorter time simply by distributing several replicas of the sequential simulation process

on P processors. Apart from the gathering of data from different machines, and the post-

processing of the final report, the speedup will be P, equal to the number of processors

applied.

2.4.3 Pros and cons

The obvious conclusion from the following pros and cons list is that PIRS has a wide

applicability in stochastic simulation experiments, while PADS should limit its applica-

tions to real time simulations with extensive computation need, such as training

simulations for pilot education.   See [Lin94] for some comments on PADS, and [NH97]

for a framework assisting parallelisation of sequential simulation processes.

2.5 Hybrid techniques

A hybrid technique is any technique that combines analytic results with simulation. Two

main approaches exist [FLS88, KM88, LO88]:

- Conditional sampling - uses simulation to provide conditions to a given analytic

model.
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- Decomposition - identifies independent sub-models (in time or space) for which sepa-

rate evaluations by means of analytic and simulation approaches are possible.

Both approaches attempt to use analytic results to reduce the variance. They are very

model dependent, and the flexibility of simulation models might be reduced to adjust to

analytic model assumptions.

2.5.1 Conditional sampling

In conditional sampling, a mathematical approach is taken to reduce the variance by a

known functional relation between two random variables, i.e. conditional arguments, con-

ditional expectation, and substructures of the random variables and system response.

Let the expected system response,  from (2.2), be known if a fixed value of the sto-

chastic variable  is given, i.e. . It can be shown that if  is estimated by

taking samples  from  and using the following estimator:

 (2.12)

the variance is reduced compared to the direct estimator from (2.2). The estimator is unbi-

ased as the expectation is .

The variance is [LO88]:

.  (2.13)

Table 2.1:  Pros and cons for PADS and PIRS.

PADS PIRS

Special hardware? Can be exploited Not applicable

Special software? Required Not required

Expert skills required? Both in parallel programming

and simulation

Simulation only

Amount of processing

of given problem

Should be large to advocate investment Any size

Speed up <P ≈P
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Subtracting (2.13) from (2.3):

 (2.14)

then , and hence the variance of  is always less than or equal to

the variance of . Unfortunately, it is often impossible, or at least very difficult, to find a

suitable conditioning quantity.

2.5.2 Decomposition

Alternatively, an engineering approach can be taken where the model is decomposed into

sub-models, either in time or space. The basic idea is to identify sub-models that need to

be evaluated only once, either by analytic solutions or by simulation. The speedup is

partly due to the use of analytic results instead of simulations, but mainly due to the reduc-

tion of simulation overhead since unnecessary repeated simulations of subsystem are

avoided. Figure 2.4 illustrates a hierarchical decomposition over two different time scales.

This gives a speedup because unnecessary repeated simulations on low time granularity

levels can be avoided, and hence the overhead is reduced.

Example 2.3: The  in figure 2.4 can be considered to be the number users that are sta-

tistically multiplexed on a virtual connection (VC) in ATM. The users are transmitting

for a period of typically seconds or minutes.  can be considered to be the number of

ATM cells that are transmitted on this VC, given a number  users being active.
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Figure 2.4 :  Hierarchical decomposition of system with different time granularity.
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On a 155 Mbps channel, the cell period is in order of -sec. This means that an enor-

mous number of cell periods are generated between every change in the number of

multiplexed users.

A sample  consists of two parts: one part from sub-models with a given (analytic) result,

, and another part from simulation models, . The sampling distribution is now

. To simplify, assume product form, i.e the sub-models to be independent:

.  (2.15)

An unbiased estimator for  is:

 (2.16)

with variance

 (2.17)

where  because  is a fixed response from an analytic result. Hence,

equation (2.17) shows that some of the variance reduction is achieved through the use of

fixed system response for parts of the system model, instead of only simulations.

2.6 Variance reduction by use of correlation

The traditional variance reduction techniques exploit a known or introduced correlation

in input and output samples. The most familiar ones are often described in general text-

books of simulations, [LO88, BFS87]:

- Antithetic variates - form output samples as the mean value of two complementary

negatively correlated input samples.

- Common random numbers - use the same sequence of input samples to induce a corre-

lation in the output samples, particularly suitable for performing comparison

simulations.

- Control variables - reduce the variance by relating the quantity of interest to a strongly

correlated random variable with a known expectation.
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The common challenge for all these techniques is to gain sufficient insight in the system

behaviour to be able to identify correlated controls, and to foresee the consequences of

introducing correlation. If negative correlation is expected, but positive correlation is

experienced, the result is a variance increase instead of decrease. This is a serious problem

for antithetic variates and common random numbers when these are applied to network

models of realistic complexity. The reason is that it is very hard to establish a relationship

between the input samples and the output (response) samples [Hee95c]. Hence, in the fol-

lowing section, only control variables will be described in more detail.

2.6.1 Control variables

Consider  and  to be two dependent (through ) random variables (system

responses) obtained in a simulation experiment.  is a control variable introduced to

reduce the variance of the quantity of interest, .

Example 2.4: In figure 2.5, an example of pairs of  and  are plotted as a func-

tion of a sample, . The , where ,  is

taken from a uniform distribution , and the error term is uniformly distributed

.

The use of control variables is efficient when the quantity of interest and the controls are

strongly correlated as they are in figure 2.5. This means that they have correlated error

terms. If the control variable is far from its (known) expectation, then the quantity of inter-

est can also be assumed to be far from its (unknown) mean.

It must be possible to determine the expected value of the control variable, ,

either by analytic results, by some approximation, or estimated by simulation. An unbi-

ased estimator using linear control is then:

 (2.18)

with variance [LO88]:

.  (2.19)

The unknown factor  is chosen to minimise the variance, i.e.
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 => .  (2.20)

Several control variable techniques apply [LO88]:

- Simple linear control, i.e. equation (2.18) with ,

- Regression adjusted controls, i.e. equation (2.18),

- Multiple controls, i.e. several control variables are applied, where the control variables

should be independent to obtain additional variance reduction.

- Non-linear controls, i.e. the control variable(s) and the property of interest are not lin-

early related. An example of an unbiased estimator using non-linear control is:

 (2.21)

with variance [LO88]:

Figure 2.5 :  Joint plot of the property of interest and the control variable.
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.  (2.22)

The problem with application of control variables is that it is difficult to identify controls

that are both correlated to the property of interest, and have a known expectation that is

easily obtained.

Example 2.5: (example 2.4 continued). The plot in figure 2.5 is part of an experiment of

 samples where the estimated correlation factor between  and  is

. In that specific case, the variance was reduced by a factor of 15.5

by using  instead of  from equation (2.2).

The techniques that reduce the variance by use of correlation are not applicable when the

estimates rely on rare events to happen, i.e. . The reason is that these techniques

do not change the probability of event . Hence, if  is a rare event, a set containing only

0’s might be the result of a simulation. Then, the variance cannot be further reduced and

the simulation efficiency is not increased.

2.7 Rare Event Provoking

With a rare event provoking technique the speedup is due to changes in the statistical

behaviour such that the rare events  are provoked to occur more often. Two main

approaches exists:

- RESTART1/importance splitting - identify subspaces from which it is more likely to

observe , and then make replicas of the sequences that reach these subspaces by split-

ting the simulation process.

- Importance sampling - changes the stochastic process to generate sequences of events

which make the rare events of interest less rare. The basics of this technique is

described in most textbook of simulation that includes a chapter on variance reduction,

e.g. [LO88, BFS87].

This section describes these two techniques and shows how they can be combined. Fur-

thermore, this section describes how the underlying sampling distributions are affected by

RESTART and importance sampling. In section 2.8, examples of the use of RESTART,

1. REpetitive Simulation Trials After Reaching Thresholds (RESTART).
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importance sampling, and the combination of the two, are demonstrated on an M/M/1/N

queue and a shared buffer.

2.7.1 RESTART

The basic idea of RESTART is to identify subspaces from which it is more likely to reach

the target subspace, i.e. where the rare event  occurs. These subspaces are considered to

be thresholds. Every time the process reaches a threshold, the current sequence  is split

in a number of replicas, all continuing from the splitting state. In this way, the number of

rare events will increase, dependent on the number of RESTART thresholds defined and

the number of replicas generated. Figure 2.6 illustrates the splitting and restarts of events

as a new threshold is reached.

Consider the event  to be the rare event of interest. Let  be the event that state  is

visited during cycle .  is the state space constituting threshold .

For simplicity, substitute  by  in (2.2). Furthermore, define .

Now,  can be expressed as (by Bayes formula):

.  (2.23)

A

s
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Figure 2.6 :  RESTART with splitting at M thresholds.
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The basic regenerative cycle is the sequence of events, without splitting, that starts from

the renewal state . This cycle returns a zero-one function  which is set to 1 if

event  occurs, i.e. threshold  is reached, and 0 otherwise. If threshold 1 is reached,

i.e. event  has occurred, then  new replicas of the sequence are generated. Each rep-

lica is returning , . At the nested step , the corresponding

definition is , which is the zero-one function returning 1 if event

 occurs before returning to , and given that events  through  have

occurred. Otherwise, .

Let  be the event that all events  through  have occurred. An

unbiased estimator for  is then, see [GHSZ96]:

 (2.24)

with variance

.  (2.25)

To optimise the RESTART speedup, the variance  is minimised subject to

[VA+94, GHSZ96, Kel96, SG94]:

-  - the number of replicas at each threshold => recommended .

-  - the number of thresholds => chosen to give  for all .

-  - the threshold definition => chosen in accordance to the criteria for .

RESTART is a flexible and robust approach applicable to transient and steady state

simulations [VAVA94]. However, the variance reduction (gain) drops dramatically if

is far from optimal [Kel96]. Defining thresholds, , becomes difficult when the dimen-

sionality and size of the simulated model is large, and there is no symmetry that can be

exploited.
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Defining the optimal set of thresholds is generally a great challenge when the simulation

model increases in dimensionality. A multidimensional state space, results in multidimen-

sional thresholds, and a huge number of replicas must be generated to get a representative

sample at each level. In [GHSZ97], it is pointed out that, except for specific models, it is

impossible to identify an optimal splitting of the simulation process in a multidimensional

model.

2.7.2 Importance sampling

Importance sampling changes the dynamics of the simulation model. The dynamics must

be changed to increase the number of rare events of interests. Let  be the original sam-

pling distribution where  is, for instance, a sample path as will be defined in

section 4.3.3. This sampling distribution is changed to a new distribution . If  is

the property of interest, the original problem is that the probability of observing

is very small when taking samples from . This probability should be significantly

increased with samples from . The observations made must be corrected because the

samples  are from  and not .

The property of interest  can now be rewritten:

 (2.26)

where  is denoted the likelihood ratio. Observe that the expected value

of the observations under  is equal to the expected value of the observations under

corrected for bias by the likelihood ratio, .

An unbiased estimator for , taking samples  from , is:

 (2.27)

with variance

.  (2.28)

The optimal change of measure is given by the  that minimises this , i.e.
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.  (2.29)

However, this depends on knowledge of the unknown property of interest, . Neverthe-
less, (2.26) and (2.29) give general guidelines:

- if  then  (from (2.26)),

-  which implies that the sampling should be in proportion to the

original importance and likelihood of the samples, i.e  (from (2.29)).

Because the efficiency of importance sampling is observed to be rather sensitive to the

change of measure, a lot of work is done to obtain optimal, or at least good, simulation

parameters. In chapter 3, a further treatment of importance sampling and its change of

measure will be given, see also [Hei95] which includes an extensive and excellent survey

on selecting .

2.7.3 Combination of importance sampling and RESTART

Importance sampling and RESTART can be combined by changing the sampling distribu-

tion of the RESTART estimate, see [CHS95] for a similar idea.

An unbiased estimate of  for the combination is:

 (2.30)

with variance [CHS95]:

 (2.31)

where  and  are defined as:

,  (2.32)

.  (2.33)
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As the results in section 2.8.2.2 indicate, the optimal parameters of importance sampling

and RESTART should probably not be obtained separately when the two techniques are

combined. Instead,

- the parameter biasing of importance sampling in combination with RESTART should

be less than the optimal change of measure in a separate importance sampling experi-

ment, and

- the number of thresholds of RESTART, and the number of replications given by this,

should be less than the optimal number obtained without considering importance

sampling.

2.7.4 Different impact on sampling distribution

As described in the previous section, both RESTART and importance sampling manipu-

late the underlying sampling density distribution of . To demonstrate how the two

approaches affect the underlying distribution, a probability measure is defined to describe

their ability to provoke rare events. Such a measure is not easy to obtain in the general

case. Instead, consider regenerative simulation of a specific M/M/1/N example where the

probability of blocking is the property of interest. A rare event is observed in all simulated

cycles that includes a visit to state . This implies that if the maximum state visited dur-

ing a cycle  is less than , no rare events are observed. The probability of state  being

the maximum state visited during a cycle, or sample path,  with  events is denoted

 ( ):

.  (2.34)

This probability is applied to describe the difference in the two approaches RESTART and

importance sampling. The  is provides a good indication of how well the two tech-

niques succeed in “pushing” the simulation process towards the targets. In appendix C,

the explicit expressions of , valid for an M/M/1/N model, are given for direct, impor-

tance sampling, RESTART and combined simulations.

The probabilities  are plotted for  for direct, importance sampling, and

RESTART in figure 2.7. The following observations are made:
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- RESTART increases the rare event probability by increasing the probability of the target

state  significantly (  is the probability measure  under the RESTART sam-

pling distribution). However, observe that the is also increased significantly

relative to the original distribution for all states , i.e. after the first threshold. As

the number of thresholds  increases, the probability measure tends to converge

towards a straight line. When , each state in the chain is a threshold, and then

 is a uniform distribution.

- Importance sampling with optimal parameters is close to the original distribution for

all states , while  (  is the probability measure  under the importance

sampling distribution) is increased significantly, and more than for RESTART,

. If the sampled sequence  under optimal importance sampling does not

hit state , then . From figure 2.7 it is observed that the ratio

seems to be constant. This is confirmed analytically in appendix C where the ratio is

determined to be , for all . This is the same as the

-factor under optimal biasing, see section 3.3.3.1. For non-optimal importance

sampling the ratio is not constant, and the  is relatively less at state . For all

intermediate states, , a significant increase to  is observed. This is sim-

ilar to what was observed for the RESTART.

Even though the plots of  in figure 2.7 are generated based on a very simple model,

it is expected that the principal differences that are observed are of a general nature.

2.8 Experiments

In [Hee95a, Hee95c, Hee97b], a few comparisons between importance sampling and

RESTART on a simple M/M/1/N are reported. In these results, importance sampling with

an optimal change of measure will always be at least as good, normally far better, than

RESTART with optimal splitting. However, if a non-optimal change of measure is used,

then RESTART is sometimes better.

In this section, comparisons between importance sampling, RESTART, and the combina-

tion of the two, are made by simulations of an M/M/1/N queue. Furthermore, simulations

are also carried out on a model of a shared buffer offered traffic from  user types. When

all traffic types are (nearly) equal, the model is said to be symmetric or balanced. This has

previously been pointed out to be challenging for importance sampling with respect to

obtaining optimal change of measure [PW89, Fra93].
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Figure 2.7 :  Plots of , the probability of state  being the maximum state visited
in a cycle in a simulation of an M/M/1/N queue with =0.33, =1, N=20.
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2.8.1 Simulation setup

In all experiments, the property of interest is the steady state blocking probability obtained

by the estimate in (2.10). Each experiment is a regenerative simulation of  cycles.

The mean values and their variance are estimated from the results obtained from 20 inde-

pendent experiments applying the replication technique [LO88, BFS87].

2.8.2 Single server queue, M/M/1/N

For a single server queue with Poisson arrivals ( ) and exponential service times ( ),

it straightforward to obtain exact results. Furthermore, RESTART has well defined opti-

mal thresholds and number of replications, and importance sampling has a known

asymptotically optimal change of measure. A state space model of this system is given in

figure 2.8.

2.8.2.1 Optimal importance sampling vs. optimal RESTART

Optimal importance sampling implies that the change of measure minimises the variance

of  in (2.28). When simulating steady state behaviour in Markov models, the change

of measure need only to change the transition probabilities,

Arrival probability at state :  and

Departure probability at state : .

The optimal choice of parameters for importance sampling simulation of an M/M/1/N

queue is to interchange the transition probabilities, see [CFM83, PW89],

 and  This, and other changes of measure, will be

discussed in further details in the following chapter.

R
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Figure 2.8 :  Model of a single server queue, M/M/1/N.
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Figure 2.9 :  The simulation efficiency for direct and rare event provoking simulations.
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Optimal RESTART requires the relative probability between two thresholds to be

 for all thresholds. The number of replicas should be as close to  as

possible [VA+94]. In a state space model with a few states, it is difficult to set up the

RESTART experiment because the optimal threshold is likely to be between two states.

See the discussion in e.g. [Kel96] where  is proposed as an

alternative.

In addition to a small example with , a larger one with  is studied. The

larger example is included for two reasons:

- the asymptotic optimal change of measure for importance sampling is expected to be

inaccurate for small ,

- the optimal number of thresholds of RESTART is not an integer and hence it is difficult

to fit the thresholds in a small model.

The results in figure 2.9(a) and (b) show the simulation efficiency of direct simulation,

importance sampling, and RESTART for different blocking probabilities:

- Direct simulation: as expected from (2.9), the efficiency is proportional to .

- RESTART: the efficiency is proportional to 1.

- Importance sampling: the efficiency is proportional to 1, but with less slope

than for RESTART.

- For the large system with , all techniques are inefficient at high load and hence

for high blocking probability. This is because the regenerative simulation experiments

use the “empty system” state as the renewal state. Hence, a renewal is a rare event. In

the network simulation example in chapter 6, an alternative renewal state is applied to

eliminate this problem.

The results show that importance sampling with optimal biasing is always at least as effi-

cient as RESTART, normally far better. Even though the results are from experiments on

a simple M/M/1/N queue only, this is expected also to be true for more general models.

To quote Dr. Phil Heidelberger’s comment on the statement “whenever an optimal change

1. The efficiency of both importance sampling and RESTART are independent of the rarity only if the number
of events in each sample is not included in the efficiency measure.
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of measure exists for importance sampling, it is always as least as good as RESTART,

normally far better”, he wrote that [Nic97]: “This pretty much HAS to be true since you

can’t do better than optimal in ANY situation (or much better than asymptotically optimal

in rare event simulations).”. However, to qualify this statement, a few experiments of

other, more general models with optimal biasing, are left as further work.

2.8.2.2 Importance sampling, RESTART and the combination

A series of experiments are carried out where importance sampling and RESTART are

compared and combined. The experiments are using the same M/M/1/N examples as in

the previous sections. The parameter biasing of importance sampling is varied for the pur-

pose of demonstrating that RESTART, in separate simulations or in combination with

importance sampling, is more efficient than importance sampling when the biasing is far

from optimal.

Let the scaling of the arrival probability vary from no change, up to the optimal change,

. A series of experiments are carried out on an M/M/1/N queue

with , , and . RESTART and importance sampling are combined,

and the number of thresholds and the  are varied. The scaled arrival probability is

varied from original parameters to optimal parameters, .

The second experiment applies the same M/M/1/N queue, now with , ,

and . For this example, . The number of thresholds is varied

from 1 up to 10. The optimal number of thresholds, if only RESTART was applied, is 10.

In figures 2.10 and 1.5, a selection of the experiments, which produced the best results in

3 different regions, are plotted.

- Region 1: RESTART is the most efficient,

- Region 2: RESTART combined with importance sampling is the most efficient,

- Region 3: Importance sampling is the most efficient.

Recall from section 2.7.4 where the differences between RESTART and importance sam-

pling were discussed with respect to their impact on the sampling distribution. Consider

the two samples in figure 2.11 marked with a circle. At these points, the simulation effi-

ciency is almost the same for RESTART and importance sampling. The  and

are plotted for all . Note the strong resemblance.

p∗i i 1+, pi i 1+, pi i 1–,,[ ]∈

N 10= λ 0.1= µ 1=

p∗i i 1+,

p∗i i 1+, 0.09 0.91,[ ]∈

N 20= λ 0.33=

µ 1= p∗i i 1+, 0.25 0.75,[ ]∈

Pi
R( ) Pi

IS( )

i 1 … N, ,=



36 2   Speedup techniques for discrete event simulations

2.8.3 K traffic types with shared buffer

Experiments are conducted on a shared buffer offered traffic from  user types. The th

user has arrival rate  and a dedicated server with service rate . In figure 2.12, the

mapping from this system to a model with multiple dimensions, is described by the gen-

eral state, , in the multidimensional state space, . All transitions out of the state

 are described.  is an index vector of size

 where element  is 1, and 0 elsewhere. The state space is truncated where when the

system capacity is reached, i.e. when all  positions in the shared buffer are occupied.

The quantity of interest is the probability of blocking, i.e. .

When  and  for all , the resulting state space is said to be symmetric or

balanced. Observe that this is not the same as a superposition of traffic generators (with

rate ) to an M/M/1/N queue. The reason is that the model assumes dedicated servers

to each generator. This means that the server rate of the queue is dependent in the current

combination of users in . If the parameter biasing in importance sampling is based on

ignorance of the service rate dependence on the system state, a too strong biasing will

occur. This is known from [PW89, Fra93], and will be treated in more detail in chapter 3.

Figure 2.10 :  Importance sampling has best performance even if the change of
measure is less than optimal.
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Figure 2.11 :  Importance sampling has best performance even if the change of
measure is less than optimal. In the lower figure, the probabilities  are plotted
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In figure 2.13, the simulation efficiency vs. the number of traffic types , is plotted for

importance sampling and RESTART. The simulation parameters are chosen to have a

blocking probability less than  for all values of .
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Figure 2.12 :  Shared buffer model with the general multidimensional state.
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Figure 2.13 :  Comparison of importance sampling and RESTART for number of
dimensions K.
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The results shows that in symmetric or balanced multidimensional state spaces, impor-

tance sampling is only more efficient than RESTART in the single dimensional case.

RESTART is able to exploit the symmetry in the state space for easy definition of good

thresholds in this model, but this is not generally the case. Hence, it is expected that

RESTART will be less efficient than importance sampling in a non-symmetric model

where the dimensions are different and with several boundaries in the state space.

2.9 Closing comments

This chapter contains a brief overview of 4 different categories of speedup techniques for

discrete event simulation. They are not mutually exclusive, and hence should be combined

whenever possible. An example of a successful combination can be found in [HH94],

where an accelerated measurement and simulation technique for ATM traffic is described.

This technique combines, control variables, importance sampling, and parallel independ-

ent replicated simulations. Later, a hybrid technique is included to reduce the simulation

overhead by exploitation of a known regularity in the traffic pattern.

Parallel simulation can be applied for any simulation problem involving a certain amount

of computations, including rare event simulations. For simulation experiments where a

large number of replicas are needed, it is recommended to run the sequential simulation

processes in parallel on several processors. In contrast to this, the sequential simulation

process can identify and distribute parallel sub-processes. However, this requires expert

skills in parallel programming, access to special hardware and software, and will result in

less speedup than to run sequential processes in parallel.

Both hybrid and variance reduction techniques are model dependent and require insight

in the problem at hand. If not, it is not possible to identify submodels with analytic solu-

tions, or to identify correlation between samples that can be exploited for variance

reduction. This is a general challenge, and not related to rare event simulation.

Rare event provoking techniques are very efficient because they directly manipulate the

dynamics of the simulation process with respect to the rare events of interest. However,

they require good insight in the statistical properties of the model, particularly to obtain

the simulation parameters involved in making the techniques as efficient as possible.

The emphasis in this section has been on rare event provoking techniques. The differences

between RESTART and importance sampling have been pointed out, and a comparison
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and combination of these two techniques are made. The experiments were conducted on

a simple M/M/1/N system. Importance sampling with optimal change of measure is

always more efficient than RESTART. Adding RESTART thresholds to importance sam-

pling will not improve the speedup unless the change of measure is far from the optimal.

Even though the results are from experiments on a simple M/M/1/N queue only, this is

also expected to be true for more general models. However, to qualify this statement,

numerous experiments on more general models, with optimal biasing, should be con-

ducted. This is left as further work.

RESTART and importance sampling are basically different. Their impact on the underly-

ing sampling distribution of an M/M/1/N model is described in this chapter. The study

demonstrates that for some parameter values, the RESTART and importance sampling

have very similar impact on the sampling distribution. Hence, for this combination, the

simulation efficiency was almost equal. These observations are expected to be valid for a

broader class of models than M/M/1/N.

Previously, it has been pointed out that importance sampling, using the change of measure

obtained by results of large deviation theory, is not efficient in symmetric models with

multiple dimensions. The experiments in this chapter confirm this, and also demonstrate

that the use of RESTART instead is at least as efficient because the symmetry can be

exploited. However, for general models with multiple dimensions and no symmetry, it is

not easy to set up an efficient RESTART simulation. RESTART will suffer from problems

with defining thresholds due to state explosion. In [GHSZ97], it is pointed out that, except

for specific models, it is impossible to identify an optimal splitting of the simulation proc-

ess in a multidimensional model. The reason can be explained with reference to

figure 2.14 which is adopted from [GHSZ97]. The rare events of interest are observed

when the process reaches threshold A. The most likely path from the origin to this thresh-

old passes through an intermediate threshold B in b’. Correspondingly, the most likely

path from origin to this intermediate threshold ends in state b. b and b’ are only the same

state for symmetric models like the one in section 2.8.3. Hence, care must be taken when

establishing thresholds in multidimensional models. The remaining question is how

robust the RESTART is, that means how efficient is the simulations, when a sub-optimal

path is followed?

RESTART will also experience a significant decrease in the efficiency because a huge

number of visits to each threshold is required to obtain a representative sample. In con-

trast, importance sampling is, to a certain extent, in these models able to exploit the
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identified differences. Efficient simulation can then be established, as will be described in

chapter 5.

B

A

a

b
b’

Figure 2.14 :  The most likely path to the intermediate set B hits B at b, but the most
likely path to the final set A hits B at b’. Figure adapted from [GHSZ97].
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3

Change of measure in importance
sampling

In the previous chapter, an overview of a number of speedup simulation techniques was

given. This chapter contains details of importance sampling, which is suitable for efficient

simulation of probabilities of rare, but important, events. A brief overview is given of pre-

vious approaches to make importance sampling efficient and robust. In addition, an easy

to implement way of changing the simulation parameters is presented. It is also described

how this parameter biasing is done in a multidimensional model with a single resource

constraint. For several constraints, the new, adaptive biasing is required. This approach

will be described in chapter 5. At the end of this chapter, a summary is given of the most

important observations made from quite a few simulation experiments on both simple and

multidimensional models. The heuristics based on these observations are also discussed.

3.1 The change of measure

Importance sampling was briefly introduced in chapter 2.7.2, where the principles and

equations were given. The basic equation for the expected value of the property  is

repeated for convenience (from (2.26)):

.  (3.1)

This chapter deals with the change of measure from the original sampling distribution

 to a new distribution . As pointed out in chapter 2.7.2, this is the main chal-

lenge with respect to making importance sampling efficient and robust. The only

restriction to the probability density  observed from equation (2.26) is that

 for all samples  where . This means that the samples  with a pos-

itive probability  and a non-zero contribution , must have a positive
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probability also in the new distribution, . This is a necessary condition which serves

as a guideline for choosing . The efficiency of the following importance sampling

estimate (from (2.27))

 (3.2)

is dependent on an appropriate choice of the new distribution. An unfortunate choice of

 may cause the variance of  to be larger than the variance of the estimates

obtained by direct simulation. For some , the variance may be infinite, as will be dis-

cussed in section 3.5. Hence, it is crucial to find a good . The optimal  is the

one that minimises the variance of  (from (2.28))

.  (3.3)

The variance is minimised to  when . But, this requires

knowledge of , the property of interest. Anyhow, this observation may serve as a guide-

line stating that . This makes efficient application of importance

sampling very model specific.

Example 3.1: To demonstrate the effect of different changes of measure, a simple sto-

chastic model with 3 different alternatives of  is introduced as an example. The

samples  are taken from a one dimensional Poisson process with rate , i.e.

. Observe that in this example the sample is a scalar  and not a vec-

tor . The property of interest is the probability of observing samples  greater than a

certain threshold , i.e. . If  and the threshold is , then

the exact value is . Hence, to obtain estimates of  with confidence

 by direct simulation, approximately  samples

must be taken from , according to (2.9) in section 2.1.

Instead, importance sampling should be applied to increase the efficiency. But, what

should the change of measure be? Generally, any probability density function applies

that is defined in the non-zero region of , i.e. that fulfils the requirements of

if . Three different changes of measure are proposed in this example.

i. Poisson distribution, , with rate . This is an efficient change of

parameter for a truncated Poisson distribution, see [Kel86, Man96c].
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ii. Binomial distribution, , with  and . The binomial distribu-

tion approaches Poisson for large , the parameters are chosen to give ,

i.e. to have the same expected mean as .

iii. Discrete uniform distribution, , with , i.e. defined on the same

domain as the Binomial distribution, .

The guideline from variance minimisation of  stated that  should be propor-

tional to . In this example  for all samples , which means that

 should be proportional to  for . Figure 3.1 shows a plot of the original

density and the densities of the three new distributions. Figure 3.1(a) shows the densi-

ties over the complete range [0,60], while figure 3.1(b) plots the re-normalised

logarithmic densities over [ ], the subrange above the threshold . The latter is

included to compare the shapes of the densities in the region where the rare events

occur. The Poisson and binomial distributions have their modes centred at the threshold

. The original, Poisson, and binomial distributions are monotonically decreasing in

. In contrast, all samples  in the discrete uniform distribution are equally

likely, i.e.  is not proportional to  where .

The estimates  and their standard error1, , are included in table 3.1. The exper-

iments include 1000 samples from each of the 3 distributions. As expected, the uniform

distribution, which is not proportional to o for , has the poorest standard

error. Table 3.1 also includes the time, , taken to generate 1000 samples of each dis-

tribution, and the efficiency measure, , from (2.11). Taking the efficiency of the

sampling algorithm into account, the uniform distribution is close to being the best

alternative (which is the Binomial distribution) for this example. Sampling from a Pois-

son distribution is time consuming in the Mathematica implementation [Wol91].

1. See appendix B.3.

a. Time taken to generate 1000 samples by Mathematica.
b. The efficiency measure from (2.11), .

Table 3.1:  Different change of measure.

Distribution,  [10-8]  [10-8] ta b [1016] exact,  [10-8]

Poisson, λ=0.1 8.59 0.69 95.8 0.0219 7.98

Binomial, n=60, p=0.5 7.47 0.47 26.1 0.1724

Discrete uniform, n=60 8.07 1.28 3.9 0.1563
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Figure 3.1 :  The density functions for the original Poisson, , Poisson with biased
rate, , Binomial, , and discrete uniform, , distributions. Figure (a)
shows the range [0,60], while (b) shows the logarithmic densities for the range [30,60].
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The example shows two things. First that importance sampling can apply a change of

measure  from various distributions, and is not limited to distributions within the

same family of distributions as the original (here Poisson). Furthermore, the results in

table 3.1 demonstrate that not only the variance reduction, but also the efficiency of the

sample generating algorithm, should be considered when choosing “the best ” for

the problem at hand.

3.2 The simulation process

In this chapter, importance sampling is applied on a simulation process that is assumed to

be a continuous time Markov chain (CTMC). This section presents the details and restric-

tions that are necessary to understand the parameter biasing introduced in section 3.4. A

more general view of the simulation process will be given in chapter 4, where the building

blocks of the framework for network models are presented.

Let  be a -dimensional continuous time Markov chain (CTMC), defined on a sam-

ple space1 . The state changes in  are denoted events2 and take

place at embedded points in time. A single transition affects only one dimension at a

time3. If  are  embedded points, then  can be made discrete in time by

, where .  (3.4)

This is a discrete time Markov chain (DTMC). After event  it is equal to  at embed-

ded point . The  can be expressed by recursion,

.  (3.5)

 is the random event variable that can take on any (feasible) integer value in one of the

 dimensions. An event is e.g. a call arrival, a service completion, a component failure.

In section 3.4.2, a possible implementation of importance sampling change of measure is

described. This chapter limits the event variable to be defined on {-1,1}, in either of the

 dimensions4,

1. Adding resource limitations to the model, e.g. finite buffer capacity, the feasible region of  will be
reduced, e.g. a common resource limitations will cut the corners of this state cube.

2. See chapter 4 for a refinement of the event definition.
3. When preemptive priorities are introduced in chapter 4, this is no longer true.
4. The index vector of size  is  where element  is 1, and 0 elsewhere.
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.  (3.6)

In chapter 4, a more general view of the simulation process is given.

In the following sections, an overview of the change of measure on  is given. When

estimating steady state properties, the simulations are conducted on the discrete time

Markov chain conversion . The expected state sojourn (holding) times are used instead

of sampling these. This will always give a variance reduction compared to simulations on

the original . This also applies to simulation of semi-Markov processes [GSHG92].

3.3 Change of measure in dependability and traffic models

As demonstrated in previous section, the efficiency of importance sampling is sensitive to

the choice of the new sampling distribution . In figure 3.2, the sensitivity to different

parameters is demonstrated by results from simulations on an M/M/1/N queue with block-

ing probabilities in order of 10-9. The figure shows a typical situation where the precision

of the estimator decreases and its variance increases on both sides of the optimal change

of measure. The lesson learned from this figure is that for optimal parameters, or param-

eters close to these, very good results can be obtained. Otherwise, importance sampling

may produce poor results. Section 3.5 will return to this and show how the theoretical var-

iance of the estimates rapidly increases (to infinity) on both sides of the optimal change

of measure, . In a more complex model, such as a network model, similar behaviour

is observed. The difference is that the shaded region of figure 3.2 will be narrower, and

hence, it is even more important to have good means to obtain optimal parameters.

The optimal change of measure is not easy to obtain. A lot of work has been done on defin-

ing (asymptotically) optimal solutions, exact or by pre-simulations. In this section, a brief

summary is given, and for a comprehensive survey the reader is referred to [Hei95].

3.3.1 Dependability vs. traffic models

A number of different approaches is proposed for obtaining efficient importance sampling

simulations. The solutions are dependent on the nature of the problem. Models describing

dependability (or reliability) and traffic (or queuing) aspects are basically very different.
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• Dependability model - the events of interest are typically system failures caused by

occurrence of a (small) number of element or component failures during a (short)

period of time, e.g. the restoration time of the first failure. If each of the component

failures are unlikely to happen in the observation period, the system failure is a rare

event.

• Traffic model - the events of interest are typically buffer overflow or trunkline blocking.

These events are due to a (large) number of simultaneous call arrivals in a service

period. It is not a single call arrival in a service period that is the rare event, but the

occurrence of a large number of simultaneous call arrivals. This becomes a rare event

when the queue or trunk line capacity are large, and/or the offered load is low and

server distributions are heavy tailed.

To demonstrate the different limiting behaviour of the dependability and traffic models,

consider a basic event with probability . A basic event is, in a dependability model, a

component failure during a restoration period, and in a traffic model, arrival of a call in a

service period. Let the number of basic events leading to the rare event of interest be .
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Assume that the probability of rare events are exponential in the number of basic event,

. This probability goes to 0 in two different ways:

- In dependability models:  as  if  is constant, or

- In traffic models:  as  and .

Example 3.2: The difference is illustrated in figure 3.3. A sequence of basic events is

leading to a rare event of interest within a specified observation period, . In

the dependability model, a system failure is observed after a few basic events, while in

the traffic model a large number of basic events is leading to the occurrence of blocking

or overflow.

This is the main reason why an optimal, or at least good, change of measure in a traffic

model does not necessarily directly apply in a dependability model, and vice versa. For

instance, one of the optimal solutions for the traffic models assumes a large number of

basic events to substitute the discrete sequence of events by a continuous trajectory. This

approximation is required to apply asymptotic results from the large deviation theory. In

a dependability model with small , this approximation is too rough.

3.3.2 Approaches for dependability models

The change of measure in dependability models is normally done by changing either the

failure rates, the restoration or repair times, or the observation period. The rare event of

interest is typically the system failure caused by occurrence of a specific combination (or

sequence) of component failures. In a real sized system the number of components is large

and so also the number of different system failure modes. In general, the objective of the

change of parameters is to sample the most likely paths to failures. This means that the

most important system failure modes must be identified, and their corresponding

sequence of events leading to this failure.

3.3.2.1 Simple failure biasing

A straightforward approach is the simple failure biasing, thoroughly treated in [Nak94].

The failure and repair rates are scaled by a common factor, denoted  in this section. The

idea is to increase the frequency of failures by increasing the failure rates and reducing the

repair rates in proportion to the original rates. Let the original failure and repair rates for
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component  at state  be denoted  and , respectively. The simple failure

biasing changes the failure rates to  and repair rates to  as follows:

.  (3.7)

Example 3.3: Consider a component  which is either “ok” or “defect”. The failure and

repair rates are:

,

.

According to [Hei95], the factor  is typically . However, figure 3.4 shows

the results from simulations of the same 2 component parallel system that was used
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Figure 3.3 :  The rare events in a dependability model occur typically after a small
number of basic events, while in traffic models the number of basic events that

results in a rare event is large.
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in [CG87]. The simulation results with error bars indicate that a factor  should

be chosen, not  as was recommended in [CG87].

The simple failure biasing is efficient when the system is balanced, i.e. the number of fail-

ure transitions to a system failure is the same for all component types. It is proven

[HSN94, Nak94], that simple failure biasing has bounded relative error1, ,

i.e. a fixed number of samples is required to estimate  to a certain level of confidence,

irrespective of the probability of the rare event of interest.

3.3.2.2 Balanced failure biasing

For an example of an unbalanced system, consider the system in figure 3.5 taken from

[Hei95]. The system consist of 2 component types. The system failure occurs either as a

result of 1 failure of type 1, or 3 failures of type 2. Let the failure rate of type 1 be , and

for type 2, . Assume that no repair actions take place. Hence, the system is denoted

unbalanced because the dependability, e.g. measured by the MTFF, is dominated by fail-

ures of the single component. However, when , simulation by use of simple

failure biasing, will most frequently generate a path towards the 3 component failure. This

1. Relative error is the ratio between standard error and sample mean, , see appendix B.3.
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is not the most likely path. Application of simple biasing may result in estimates having

unbounded relative error.

Instead, balanced failure biasing is proposed [GSHG92]. Uniform weights are now put

on the failure rates of the different component types, i.e.:

.  (3.8)

This means that after scaling, the failure rates are equal for each of the  component

types. The repair rates are scaled similar to the simple failure biasing case, see (3.7). Now,

the most likely path in the example of figure 3.5 will be sampled more frequently during

simulation. However, when simulating a balanced system, simple failure biasing is more

efficient than balanced biasing, e.g. see results in [LS95].

3.3.2.3 Pre-simulations for determination of the p-factor

The optimal scaling factor  from (3.7) and (3.8), is not easy to obtain analytically. In

some cases it is considered to be impossible. Instead, [DT93] proposes an experimental

approach where a series of short pre-simulations is conducted for different . The relative

error, , is plotted for different , like for instance in figure 3.2. The optimal value

of , is the factor providing the minimum relative error. An optimisation technique, based

on the simulated annealing technique, is applied to the series of results to determine the

optimal factor from the experimental data. Consider, for instance, the results plotted in

Figure 3.5 :  Example of unbalanced system, taken from [Hei95].
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figure 3.2 to be estimates obtained from a series of pre-simulations. Then, a  factor

within the shaded region would have been chosen as the optimal .

3.3.2.4 Failure distance biasing

The failure biasing approaches in (3.7) and (3.8), propose a fixed scaling factor  for the

entire simulation experiment. An alternative approach is called failure distance

biasing [Car91]. The scaling factor is changed during the experiment and is adapted to the

current state of the system. The idea is to change the failure rates to give most weight to

the components involved in the system failure which is closest to the current state. Closest

in the sense that it is involving the least number of failure events/transitions to a system

failure. When these components are determined from the fault tree of the system and the

current state, the transition rates are changed using an “on-the-fly” optimisation, see

[Car91] for details.

The adaptive parameter biasing technique, that will be described in chapter 5, is inspired

by this failure distance biasing. However, instead of counting the number of transitions to

each system failure, the new idea is to assign probabilities to each sequence of transitions

from the current state up to a given system failure, and also consider the value of the con-

tribution to the system dependability given that this failure has occurred.

3.3.3 Approaches for traffic models

As pointed out in section 3.3.1, the rare events in traffic models occur as a result of a large

number of basic events. The sequence of events is denoted a path. In chapter 4, the con-

cept of a path is presented together with other details of the modelling framework, see also

appendix B for an overview. Typically, very efficient simulations are achieved when an

optimal change of measure is available. On the other hand, changing to parameters far

from the optimal, poor simulation results are produced.

3.3.3.1 Borovkov heuristics applied to GI/GI/1

A few (asymptotically) optimal changes of measures exist for a limited class of models.

This section will focus on one model in particular, the general single server queue, GI/GI/

1/N. The optimal change of measure is obtained by the use of results from the large devi-

ation theory, see [Buc90] for a rigorous description. This result is one of the fundaments

of the adaptive technique that will be proposed in chapter 5.

p

p

p
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Let  be the sample mean of  samples  taken from the distribution , where

. Roughly, combining Cramér’s theorem with Chernoff bounds [Buc90,

RME96], the probability of this sample mean being greater than or equal to a certain value

, is:

 (3.9)

where the Cramér’s transform or the entropy function is:

.  (3.10)

 is the moment generating function of .

Example 3.4: If , i.e. the exponential distribution, the moment generating

function is , and then the Cramér’s transform becomes

. In [RME96] more examples are given.

In figure 3.6 the Cramér’s transform for the exponential distribution with mean value 10

( ) is plotted. Observe the exponential increase on both sides of the mean value.

Equation (3.9) describes how the probability decreases as the sample mean deviates from

the expected value.

In [PW89], (3.9) was heuristically applied to obtain an asymptotically optimal change of

measure for GI/GI/1 and tandem queues, using the following reasoning. The queue is

observed over a period of time (0,T]. The queue is empty at time , and reaches the

capacity  for the first time at , without returning to empty for  in (0,T]. The

observed arrival and departure rates in this interval are constant and denoted  and ,

respectively. The queue grows with a rate  ( ) and reaches  at time , i.e.

. The probability of observing an arrival rate of  over an interval (0,T],

is equal to the probability of observing a mean interarrival of  in  samples. The

Cramér’s theorem now applies, substituting  and  into (3.9). Corre-

spondingly for the observed departure rate . The probability of observing  and  is

then, substituting  by :

 (3.11)

where the  is the Cramér’s transform for the arrival distribution.
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The objective is to maximise  with respect to  and , which is the same as min-

imising the exponent of (3.11), without the constant term :

.  (3.12)

Example 3.5: Consider an M/M/1/N queue where the objective is to estimate the proba-

bility of reaching the buffer capacity . The Cramér’s transforms is

substituted into (3.12)

.
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Figure 3.6 :  The Cramér’s transform for the exponential distribution with rate λ=1/10.
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The  is plotted in figure 3.7 for different values of  and . The non-trivial1

solution to , is the interchange of the original arrival and departure rates:

 and

.  (3.13)

The result in example 3.5 is well known and has also been derived by use of slow-random

walk, [CFM83]. This assumes that  is large to make the sequence of arrival and depar-

tures a continuous trajectory in the state space. The arrival and departure rates need not be

constant over the entire trajectory as was assumed in the heuristics described above. The

relation between this and slow-random walk approach is given in [PW89].

3.3.3.2 Change of measure based on large deviation results

Most of the work on successful application of importance sampling to traffic models has

used large deviation results to determine (asymptotically) optimal changes of measure.

The results from [CFM83, PW89] for the GI/G1/1 queue are extended to multi-server

queues in [Sad91, KW92, KW93, Man95]. Similar results are obtained for Erlang loss

systems with batch arrivals [Man96b] and for fluid flow models [Man96a].

1. The trivial solution is to substitute the original parameters, and .
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The extension of the results to tandem queues are only efficient if the load on queues is

significantly dominated by a single queue, [PW89, GK95, FA94]. Otherwise, using the

scaling as proposed by application of large deviation, will result in an inefficient simula-

tion. In [GK95], conditions are developed for the applicability of results. For Jackson

networks [Fra93], it is required that the performance is constrained by a single queue or

node.

Generally, in a well engineered network, the resource utilisation is balanced, which means

that no single bottleneck dominates the system performance. This implies that using the

results mentioned above will not give an efficient simulation. For some specific (and

small) network structures, large deviation results exists, for example intrees [CHJS92],

and feedforward network [Maj97]. However, these results are not applicable to more gen-

eral topologies with balanced utilisation of resources. Hence, an engineering approach is

developed, which combines previous large deviation results with the ideas of failure dis-

tance biasing [Car91]. This adaptive biasing approach will be described in Chapter 5, and

is also published in [Hee97a, Hee98].

Large deviation results are applied to set up efficient importance sampling simulation of

the cell loss ratio in packet switched network like the ATM, see [CHS95] and for consec-

utive cell losses in ATM [NH95].

The following section introduces a scaling of the parameters similar to the failure biasing

of section 3.3.2, that will be used in the remaining of this thesis. The scaling is denoted

parameter biasing, and its use is demonstrated on a few models.

3.4 The change of measure

For easy implementation of the large deviation results to simulations with importance

sampling, this section will introduce a scaling of the arrival and departure rates of the sim-

ulation model, . This parameter biasing is applied to several queuing and Erlang loss

models. The relation between these biasing factors, and the optimal change of measure

obtained by large deviation results, is described.

3.4.1 The change of transition rates

The change of measure refers to the change of the sampling distribution from  to

. The biasing approach described in this section, applies to , or its embedded

process . When simulating the steady state properties, only the event probabilities in

X
˜

t( )

f s
˜

( )

f∗ s
˜

( ) X
˜

t( )

X
˜ i
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 will be changed. This is described in section 3.4.1.1. When transient properties are of

interest, the  is simulated. Then both the underlying event probabilities and the state

sojourn times are changed. The latter is described in section 3.4.1.2.

3.4.1.1 The sample path distribution

Let  be the sample representing a sequence of events, e.g. arrivals and departures in the

. The original arrival and departure rates for dimension  are denoted,  and

 respectively. The distribution of the sample path  is defined as:

 with  (3.14)

The  is the regeneration state space, as was mentioned in section 2.1 and will be

described in more details in section 4.3. The normalisation factor is

.

Changing the  means changing the transition rates with respect to determination

of . The new sampling distribution is:

 with

 (3.15)

now .

The likelihood ratio from equation (2.26) is

.  (3.16)

3.4.1.2 The state sojourn times

While simulating transient properties, the change of arrival and departure rates will also

affect the state sojourn time distribution. The  is the simulation time at embedded
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point , and  is the sampled time between two embedded points  and ,

i.e. the state sojourn time of state . The likelihood ratio is now:

 (3.17)

where  is given in (3.16).

In the following section, a scaling factor of the arrival and departure rates is introduced.

3.4.2 Biasing the parameters

A common factor is applied to scale up the arrival rates and to scale down the departure

rates of the simulation model. The factor is denoted BIAS factor in this paper. With state

dependent rates, the BIAS-factor will also be state dependent, , i.e. the biasing

will change as the system state changes. Furthermore, if the system can observe rare

events in  different queues, an individual BIAS factor must be assigned for every ,

. Finally, the BIAS factor may depend on the resource requirements

assigned to an event triggered by the traffic type described by generator , .

The BIAS factor is:

.  (3.18)

The following sections give the heuristics for choosing the BIAS factor in a few applica-

tion examples.

3.4.2.1 Biasing in one dimensional models

An optimal change of measure exists for a GI/GI/1, see e.g. [PW89]. For an M/M/1 queue,

the optimal change of measure has an explicit form:

 and .  (3.19)

Substituting (3.19) into (3.18), gives a state independent biasing:

.  (3.20)
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3.4.2.2 Biasing in multidimensional models

Recall from section 2.8.3, that a model with a shared buffer was described. Generally, a

network model will consist of  shared buffers. Each of the  traffic types that are offer-

ing traffic to this network, will request capacity from an arbitrary set of buffers. From

section 3.2, it is known that the simulation process, , operates on the state space .

The objective is to force this process towards either of  different subspaces,  where

rare events of interest occur. Each of these subspaces corresponds to a shared buffer. In

section 2.1 these subspace are denoted target subspaces, whilst chapter 4 describes the

complete framework for modelling networks.

To explain the approach that is applied for biasing the parameters in such a model, an

alternative interpretation of the optimal biasing in (3.13) is given in terms of drift in the

simulation process. At current state  the process experiences a positive drift towards

each , denoted , ( ). The total positive drift towards  is induced

by the dimensions , i.e. all dimensions which have a transition that moves the proc-

ess closer to . The positive and negative drifts are defined as follows (  is the number

of resources of type  requested by the traffic type , see chapter 4 and appendix B):

.  (3.21)

In the importance sampling distribution, , the positive drift must be increased to

make the rare events of interest to occur more often. The heuristics, based on the result

in (3.19), is that the positive drift under an importance sampling model, , should

be interchanged with the total negative drift under the original model, , for every

state , namely:

.  (3.22)

One possible non-trivial solution to (3.22) is the following  factor:

.  (3.23)
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To ensure that the drift towards the target is never reduced, the BIAS-factor must be

greater than or equal to 11 for every state , and hence the following is used:

.  (3.24)

By letting , then (3.24) becomes , and the

result in (3.20) is recognised.

The  factor is applied to scale the arrival and departure rates of all ,

using (3.18), as follows:

,

.  (3.25)

This will induce a positive drift in the simulation process towards a specific target sub-

space .

3.4.2.3 Biasing in loss systems

Biasing in Erlang loss systems is a special case of the shared buffer model. Now, a buffer

is a set of trunklines, and the arrival and departure rates are:

,

, ( )  (3.26)

where  is the number of dedicated servers for type  traffic (in the shared buffer model

). For this specific system, an alternative scaling is described in [Kel86, Man96c]

which is efficient when the number of trunklines is large. This section shows the relation

between the scaling in the two approaches.

1. The BIAS factor may be allowed to take values below 1 if the objective is e.g. to force the process towards
an empty system. In a large system, reaching empty system is a rare event which can be provoked by impor-
tance sampling. In this thesis, the empty state is not necessarily applied to complete the regenerative cycle,
see description in chapter 6.
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The approach in [Kel86, Man96c] is scaling the traffic load, i.e. the ratio , offered to

the system. According to [Man96c] the solution is:

 (3.27)

where  satisfies . The  is the capacity of

resource type , e.g. the number of channels in trunkline .

To compare with the use of BIAS factors, substitute the arrival and departure rates

from (3.26) into (3.23):

.  (3.28)

Then, the difference in two scaling approaches from (3.27) and (3.28) is given by compar-

ing the two factors:

 versus .  (3.29)

The scaling in (3.27) is state independent but dependent on the resource requirements,

, while (3.28) is only state dependent. A few simulations have been carried out to com-

pare the two approaches. For large models, (3.27) is most efficient, while (3.28) is the

most efficient for small models.

3.5 Heuristics and observations

A large number of simulation experiments with importance sampling is conducted on a

variety of models. In chapter 6, simulations of complex, multidimensional network exam-

ples are reported. The heuristics presented in this section are based on observations from

these simulations, in addition to simulations of simple one and two dimensional models.

These models are studied because their analytic solutions are easily obtained, and com-

parisons between analytic and simulation results can be made.

This section contains three main results. Firstly, the experience with the use of the

observed likelihood ratio as indication of goodness of simulation results is presented. It is

observed that when the simulations produce good and stable estimates of the property of

interest, the corresponding observed likelihood ratio is close to 1 (its expected value) and
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with a small relative error. Secondly, it is observed from the basic equation of importance

sampling, that it is possible to let  for every sample  where .

This is implemented and tested on a few examples. It was discovered that a variance

reduction was not guaranteed. Thirdly, the relation between the variance of the estimates

and the changes in the BIAS factor is examined. In a model of an M/M/1/N queue, it is

feasible to establish the bounds of a stable region of the BIAS factor. Outside this region,

the variance is unbounded (infinite). This serves as an explanation to the observed simu-

lation behaviour when (too) large BIAS factors have been applied. It has been observed

that simulation of a finite number of replications under heavy biasing, will frequently

result in a sample mean which is much less than the expected value. The reason is that the

samples are found to be taken from a heavy tailed distribution.

All theoretical results used in this section are described in details in appendix D. The

results are valid for models that are described in section 3.2. For one dimensional Markov

chains the variance expressions can be rearranged to enable efficient calculations in large

models. Appendix D includes numerical results from 3 different one dimensional models,

and 1 example of a two dimensional model.

It is important to keep in mind that this section only addresses the accuracy of the impor-

tance sampling estimates with respect to the change of measure. No discussions relative

to simulation stopping rules, simulation run length, transient periods, block vs. regenera-

tive simulation, etc. are included. This is outside the scope of this thesis and the interested

reader is referred to any textbook on simulation, e.g. [BFS87, LO88, BCN96].

3.5.1 The use of likelihood ratio for validation

As for all types of simulation, it is essential to ensure that the results of an importance

sampling simulation are good. With good it is traditionally meant to produce accurate esti-

mates close to the expected value. When the true values cannot be established elsewhere,

neither through analytic solutions nor running a direct simulation, some indication of the

goodness of the importance sampling estimates is required. It is important to note that a

useful estimate in rare event simulations may be an estimate that is within the same order

of magnitude as the expected value. This is generally a much weaker requirement to what

a good simulation result is than the traditional one.

It has been discovered that some simulation results which apparently are good, because

the relative error was low, have estimates that are much less than the expected value. This
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is an observation that tells the simulation analyst that precautions must be taken when the

expected value is not known. An incorrect conclusion about the correctness of estimates

may be drawn if only the sample mean and its relative error are considered for validation

of results. Figure 3.8 includes typical observations of the sample mean and its standard

error produced by importance sampling simulations using a too strong parameter biasing.

The estimates are all much below the exact value. Hence, the key point is to discover when

a too strong biasing is applied, and some indication of this is required.

Recall from (3.2) that  is obtained by observing several samples of the product of the

property  and the likelihood ratio . Intuitively, this indicates that the observed

likelihood ratio in a simulation can serve as an indication of how precise and stable

is. The expected value of the likelihood ratio is known for every change of measure and

model, namely . Hence, the observed mean value should be close to 1, .

The variance of  is dependent on the BIAS factor as the results in appendix D.7 demon-

strates. The standard error of  is small when the BIAS factors are greater than 1

(BIAS=1 is direct simulation where the likelihood ratio is always 1 with standard error

equal to 0). The standard error increases slowly with increasing BIAS factor. Above the

optimal value of the BIAS factor, and then a rapid increase is observed. This means that

a too strong biasing is possible to discover by studying the likelihood ratio.
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Example 3.6: Consider an M/M/1/N queue with an arrival rate  and departure

rate . The capacity is . A series of simulations are conducted for differ-

ent BIAS factors and the results are plotted in figure 3.9. The mean observed likelihood

ratio  is plotted with the standard error, , as error bars. The optimal change of

measure is . At , the observed likelihood ratio is

 with . The same is observed for the BIAS factors below this

optimal value. For some BIAS factor > , the typically observed likelihood

ratio is  with , and in some rare cases is  with .

The same effect as observed in this example, is observed in many other importance sam-

pling simulations. To explain this, consider the theoretical variance of the likelihood ratio,

, given in (D.38). The value of  for different parameter biasing, is added

as plot 2 in figure 3.9. The  shows a rapid increase when the BIAS factor becomes

larger than the optimal value. Outside the stable region, the bounds are given in

section 3.5.3, the variance grows to infinity. This implies that when the BIAS is too large,

an infinite number of samples must be taken to estimate a likelihood ratio close to 1, i.e.

the likelihood ratio follows a heavy tailed distribution.

From figure 3.2:
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Figure 3.9 :  The observed likelihood ratio drops below the expected value when
biasing outside the stable region is applied
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Figure 3.9 also includes the analytic variance of  (plot 3), and the conditional likeli-

hood ratio, given that a visit to state  is observed,  (plot 4). These two plots

show that the variance increases rapidly on both sides of the . From (3.2), it is

observed that the  is strongly correlated with the conditional likelihood ratio. This

means that for estimators like , the conditional likelihood ratio contains the same

information as the  with respect to the variance.

In figure 3.10, the probability density for the likelihood ratio is plotted for the model in

figure 3.9 for a specific BIAS=20. This is a biasing outside the stable region. The plot

shows the relation between a specific observed value of the likelihood ratio and its prob-

ability. This is obtained by considering all possible paths from the origin (the regenerative

state ) to the target subspace ( ) of an M/M/1/N queue. The most likely

path contains  arrivals and no departures, the second most likely path contains

arrivals and 1 departure. The “extra” arrival and departure constitutes a loop in the Markov

chain in figure 3.12. Each plot to the left in figure 3.10, represents the relation between the

likelihood ratio for a path with  loops and absorption in , and the corresponding

probability of this path. In figure 3.11(a) and (c) the underlying data of these plots are

given. To the right in figure 3.10, the plots of the corresponding relation between the like-

lihood ratio and its probability for the paths with  loops and absorption in state 0. This is

the paths where no visits to the target subspace are observed. In figure 3.11(b) and (d) the

underlying data of these plots are given.

The most important observation is that the density of the likelihood ratio is heavy tailed.

Evidently, from figure 3.11, it becomes even more heavy tailed when the BIAS factor

increases beyond the stable range. In a heavy tailed distribution, a very large number of

samples are required to obtain a sample mean that is close to the expected value1.

Example 3.7: Taking sample paths  from a heavy tailed distribution causes problems

with estimations of the properties of interest. The majority of samples in a simulation

experiment will then be a direct path from the origin at state 0 up to state N. Obviously,

the likelihood ratio  has the same value when the sample path  is the same. The

sample mean, , will become much less than 1, and the standard error of sample mean

will be small. However, once in a while (very rarely), a sample path with no visits to

state N is observed. These paths have a (very) large contribution to the estimate of the

1. The Pareto distribution is an example of a heavy tailed distribution which, for some parameters, has no
finite expectation.
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likelihood ratio. Now, the  may be close to 1 due to this single contribution, but the

corresponding standard error will be large.

If the likelihood ratio follows a heavy tailed distribution, then the same will be the case

for the estimates of the property of interest. This is expected to be the case under more

general model assumptions based on observations from simulation of other, more com-

plex, systems. In figure 3.11 the details behind figure 3.10 are given, illustrating that the

distribution becomes increasingly heavy tailed as the BIAS factor increases.

To summarise, consider the following two cases.

Case 1: The likelihood ratio is  with :

==> this indicates that the estimate  is good if its relative error .

Case 2: The likelihood ratio is  or :

==> this indicates that the estimate  is poor even if the .
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Figure 3.10 :  The sampling distribution of the likelihood ratio is heavy tailed in
the region where too strong biasing is applied. The plot is for an M/M1/N system

with λ=0.15,µ=1.0, N=10 with , number of loops j=0,...,5.BIAS 20=
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The analytical results from the models in appendix D, confirm that the indication in case 1

is correct. The same has also been observed for a more complex model, see example 3.8.

However, it does not provide the requested guarantee in the general case, see the counter

example 3.9 below.

Example 3.8: Consider the non-trivial network example in section 6.3 with 10 user types

and 12 nodes. The call blocking is estimated very accurate compared to the exact val-

ues. In this example  with  and , which

confirms the indication in case 1.

Example 3.9: Recall the shared buffer example from section 2.8.3 with  user types with

identical load. Consider one plot in this example where  and . The

likelihood ratio is  with relative error . The relative differ-

ence between the true value and the estimator, , i.e. more than 4

times the standard error. Hence, the estimates is not very accurate even though the rel-

ative error is low, . Note, however, that for engineering purposes this

 may still be of some value because the estimate is in correct order of

magnitude ( ).

Case 2 is analytically confirmed on M/M/1/N queues and shared buffer models in

appendix D. All results from simulation experiments, including more complex models,

give reason to believe that this generally holds. However, the opposite is not necessarily

true. For instance, a direct simulation gives poor estimates, but in this case the  and

.

3.5.2 Conditional return transition to regenerative sub-states

The only restriction for choosing  given by (3.1), is that the new density must be

 for all samples  where . As a direct consequence, this means

that it is possible to let  for all samples where , even if the orig-

inal distribution  for this sample.

This can be exploited in simulation of regenerative cycles. A sample paths  is a regener-

ative cycle that starts and ends in , see figure 3.12. All paths which do not include

a visit to  should be disabled. The disabling is implemented simply by making

the transition back to  dependent on whether a visit to  is observed or not. The tran-

sition back to  completes a regenerative cycles which is the observation period, or

sample, of the simulation. In figure 3.12 below, this is illustrated by a one dimensional

L 0.984= r.e. L( ) 0.0067= r.e. γ̂ IS( ) 0.0308=

K

K 6= λ 0.30=

L 0.948= r.e. L( ) 0.011=

γ γ̂ IS–( ) Sγ̂ IS
⁄ 4.21=

r.e. γ̂ IS( ) 0.161=

γ̂ IS

10
10–

L 1=

r.e. L( ) 0=

f∗ s
˜

( )

f∗ s
˜

( ) 0> s
˜

f s
˜

( ) g s
˜

( )⋅ 0≠

f∗ s
˜

( ) 0= f s
˜

( ) g s
˜

( )⋅ 0=

f s
˜

( ) 0>

s
˜

Ω
˜ 0 0=

Ω
˜ 1 N=

Ω
˜ 0 Ω

˜ 1

Ω
˜ 0



70 3   Change of measure in importance sampling

Markov chain. The state transition probability between state 1 and the regenerative state

0, is assigned to 0 as long as no visit to the target subspace  is observed. Then the tran-

sition probability between state 1 and 2 is 1. This implies that for all sampled paths, a rare

event will be observed, because at least one visit to  will be included before the cycle is

completed.
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Figure 3.11 :  The observed likelihood ratio has very large variability as the BIAS factor
increases outside the stable region. (plot of M/M1/N system with λ=0.15,µ=1.0, N=10).
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Simulation experiments have been conducted with a condition on the state transition back

to the regenerative state. Denote this approach conditional, and the approach where no

paths are disabled unconditional. Figure 3.13 shows the relative error  of the esti-

mates  for the conditional and unconditional cases. A minor variance reduction is

observed for all BIAS factors in the conditional case. However, in other simulation exper-

iments a variance increase is observed for some BIAS factors. To explain why variance

reduction is not guaranteed in the conditional case, consider the variance expression of

 from (D.41):

.  (3.30)

In the conditional case, the probability of visiting state  in a cycle is , and

now (3.30) is:

.  (3.31)

This implies that a comparison of the variance of the conditional versus unconditional

case is the same as comparing the variance of the importance sampling estimates

 and the variance of the conditional likelihood ratio, given a visit to state ,

. This is known from appendix D where explicit expressions are developed.

Figure D.7 shows that only for small systems, e.g. with , a variance reduction is

observed  for all BIAS factors. For larger systems,

this inequality holds only for biasing close to the optimal BIAS factor.

In conclusion, it is not generally recommended to disable any paths, e.g. put conditions

on the state transition back to , because this does not give significant variance reduc-

tion, and it may cause a variance increase.

3.5.3 The stable region of the BIAS factor

As demonstrated in section 3.5.1, the variance of the likelihood ratio and the estimate of

, are very sensitive to the change of measure. The same has been observed in many

importance sampling simulations. In this section, the upper bound of the parameter bias-

ing is determined for M/M1/N queues. Beyond this upper bound, the variance grows to

infinity. The lower bound of the biasing region is direct simulation, i.e. BIAS=1.
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In appendix D, the variance of the likelihood ratio in a single dimensional Markov chain

is derived. As a part of the derivation, it was observed that the following condition must

be fulfilled

 (3.32)
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for all . The  and  are the arrival and departure probabilities under orig-

inal distribution, respectively, and the  and  are the corresponding probability under

importance sampling distributions:

 and

 (3.33)

To ensure  then

 (3.34)

is a sufficient (but not necessary) condition, see section D.4.3 for details. Hence,

substituting (3.32) into (3.34), the variance is finite when:

.  (3.35)

For the specific example given in figure 3.9, the numerical upper bound is

.

In a general system, it is very difficult to obtain similar expressions to provide an exact

maximum limit of the BIAS factor on an explicit form. However, it is likely that the var-

iance of the estimates grows to infinity also in more complex models. Case 2 in

section 3.5.1 provides an indication that can serve as a means for detecting that the biasing

of the importance sampling parameters is too strong.

3.6 Closing comments

This chapter introduces the basics of the importance sampling and contains a brief over-

view of some approximations for the change of measure. The focus is on approaches and

results that are of importance to the adaptive parameter biasing that will be presented in

chapter 5. In an example, it was demonstrated that the change of measure in importance

sampling can be any distribution that fulfils the requirements of  for all samples

 where . It was also pointed out, in the same example, that the computational

complexity of the sampling algorithm should be considered in obtaining the “optimal

change of measure”.

To change the sampling distribution in a Markov simulation, a BIAS factor is defined to

scale the arrival and departure rates of the simulation processes. A few examples of the
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use of this BIAS factor are included, and the relation to previously known biasing results

are established. An extension of this BIAS factor is proposed for scaling in multidimen-

sional models. This result is essential for the adaptive biasing technique in chapter 5.

The experiments reported in this chapter are based on simulations of simple models which

can be compared with analytic results. These experiments, combined with the results of

simulations of other more complex models, see chapter 6, can be summarised as follows:

1. The density of the likelihood ratio is heavy tailed. This means that a very large number

of samples are required to obtain a sample mean that is close to the expected value.

2. It is not recommended to disable the transition back to  as part of the importance

sampling strategy. This reason is that this never gives significant variance reduction,

and it may cause a variance increase.

3. In a general system, it is very difficult to obtain similar explicit expression to provide

an exact maximum limit of the BIAS factor. However, it is likely that the variance of

the estimate grows to infinity for a too strong biasing also for more complex models.

Hence, it is very important to have a good indication of whether the biasing is too

strong or not.

As an heuristic based on observations in 1 and 3, the observed likelihood ratio is proposed

to serve as an indication of the accuracy of the importance sampling estimates.

Ω
˜ 0
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4

Modelling framework for network
simulations

In the previous chapter, a brief overview is given of some approaches for changing the

measure of importance sampling. Most of them are valid for simple models only. In this

thesis, network systems and their corresponding multidimensional models are the main

focus. This chapter presents the details of the framework that will be applied for model-

ling traffic and dependability aspects of a communication network.

In section 4.1, a typical network is used as an example to motivate the various aspects of

the framework that will be presented in section 4.3. The assumptions made regarding the

underlying stochastic process are given in section 4.2. Section 4.4 summarises the mod-

elling concepts and comments on what the challenges are with respect to the use of

importance sampling simulation on models with multiple dimensions. The modelling

concepts presented in this chapter are based on [Hee95b], and the extensions in [Hee97a,

Hee98].

4.1 A typical network

Figure 4.1 shows the topology of a fictitious communication network covering most of

Norway. This network will serve as an example to motivate the framework and to illustrate

the various modelling concepts introduced.

The network, which may be regarded as a backbone, consists of 6 nodes that are intercon-

nected by 10 links. The links contain the resources that are requested by the users that are

offering traffic to this network. The network transports a traffic mixture from users with

very different requirements, such as telephony, data transfer, cable-TV, Internet applica-

tions like email, web-browsing, and file transfer. This means that the users have different

capacity requirements. They also require different quality of service, ranging from accept-
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ing no delay or no loss of information, to (almost) no limits regarding the quality of

service tolerance, e.g. “World Wide Wait”. The price they are willing to pay should be in

proportion to their requirements. The integration of such traffic requires a priority mech-

anism to distinguish between the users. This is important in overload situations where the

users that are paying a high price for some guaranteed service must be given priority. As

will be presented in the following, a preemptive priority mechanism will be introduced.

The high priority users are given access to preempt the low priority users when insufficient

capacity is available. The preempted calls are not resumed but are lost.

The basic building blocks of the modelling framework will be described in section 4.3. A

key concept, defined in section 4.3.1, is the generator which is a collection of users with

equal attributes. The user attributes are the traffic parameters (arrival rate and holding

time, population size, resource capacity, etc.) and the network routing. The routing of a

specific user is described as a sequence of links from which capacity is requested to setup

a connection to a destination node.
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Figure 4.1 :  A fictitious backbone network covering Norway.



4.1  A typical network 77

To increase the quality of service that is offered by a network, a topology should be spec-

ified to make route redundancy feasible. This means that a pair of access nodes is

interconnected by at least two link disjoint routes, see figure 4.1 for a topology example.

The modelling framework defines a mechanism that allows the users to have alternate

routes which may be invoked when the primary route is unavailable. A route is unavailable

either due to traffic overload, or because either of the links of nodes along the route have

failed.

The framework is also prepared for modelling of dependability aspects like link and node

failures. This allows evaluation of a system considering both dependability and traffic

aspects simultaneously. In section 4.3.6, a few comments on the applicability of the

framework are made.

A performance analysis of steady state properties, typically includes:

- probability of blocking of a user with a specific priority level ,

- fraction of calls disconnected due to overload,

- fraction of calls disconnected due to a link or node failure,

- resource utilisation of the various links,

- number of rerouting events,

- etc.

The network has users with very high quality of service requirements. Hence, the per-

formance measures depend on the occurrence of rare events like call blocking, rerouting,

disconnections, etc. In the following chapter, an adaptive parameter biasing is described

which makes the use of importance sampling simulation feasible to systems that are mod-

elled by the framework presented in this chapter.

The underlying simulation process is briefly presented in section 4.2. When introducing

importance sampling to increase the number of the rare events, this process must be

changed, see description in chapter 3 for simple models. In chapter 5, a new, adaptive

biasing will be introduced.

p
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4.2 The simulation process

In its most general form, the model presented in this chapter is prepared for a simulation

process like the generalised semi Markov process (GSMP) , see the

description in [Gly89, Dam93]. This process operates on the system state, . At certain

time epochs, an event is generated that triggers a possible change in the system state

according to the state transition or event probabilities. The process stays in this new state

for a certain amount of time, according to some lifetime distribution. The events in GSMP

will occur at embedded points, but these need not be renewal points.

To simplify the importance sampling strategy in the following chapter, a less general sim-

ulation process is applied. The same process is described in section 3.2 and the description

is repeated in this section for the sake of completeness. It is assumed that every embedded

point, where the events occur, is a renewal point. Hence, the simulation process

 is a -dimensional continuous time Markov chain (CTMC). It is

defined on a discrete state space1 . (When this is not ambiguous,

the superscript  is removed). The events in  take place at embedded points in time.

Let  be  embedded points, and then  can be discretizised in time by:

, where .  (4.1)

The process  is a discrete time Markov chain (DTMC) where the  is the

state occupancy after event . The  can be expressed by the following recursion,

 (4.2)

where  is the random event variable that describes the possible transitions out of state ,

i.e. what events that can occur at this state. The example below shows a regular expression

of the . In a model with preemptive priorities, the event variable becomes more com-

plex, see example 4.4.

Example 4.1: Let an event affect only one dimension at a time. Thus, the event variable

will assign values of either -1 or +1 in one of the  dimensions, and the following reg-

ular expression applies2:

1. Adding resource limitations to the model, e.g. finite buffer capacity, the feasible region of  will be
reduced, e.g. a common resource limitations will cut the corners of this state cube.

2. The index vector of size , , is 1 at position  and 0 elsewhere.
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 (4.3)

The  and  are the state dependent transition probabilities.

In a two dimensional model, , like the example in figure 4.2, the process is oper-

ating on the state space . The system states are

changed at every event according to (4.2) and by use of the following event variable:

 (4.4)

The event probabilities,  and , , depend on the system state  after

event .

All simulations of steady state properties, e.g. call blocking probabilities, are conducted

on the discrete time Markov chain (DTMC),  conversion of the continuous time

Markov chain (CTDM), . The expected lifetimes (state sojourn times) are used

instead of a random sample from the lifetime distribution. This will always reduce the var-

iance compared to simulations on the original , [GSHG92]. But, simulations of

transient properties require that the continuous process  is applied.

4.3 Flexible simulation model framework

This section describes the flexible modelling framework. Section 4.3.1 presents the basic

building blocks constituting a model. The system state of the model is defined on a state

space as given in section 4.3.2. In section 4.3.3, it is described how the simulation process

from the previous section operates on the model. The boundaries of the state space, as

imposed by the resource capacities, are defined as target subspaces in section 4.3.4.
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The flexibility of the framework is discussed in section 4.3.6 where the applicability to

modelling of dependability aspects are presented. Finally, in section 4.3.7, the extensions

to the framework are described, adding preemptive priority and rerouting mechanisms.

Figure 4.2 shows an example of the mapping between a sub-system of the example in

figure 4.1, and its state space description.

Example 4.2: Consider node 1, 5, and 6 of the example in figure 4.1. Traffic is offered

from two different user types. Type 1 generates calls from node 5 to 1, via node 6. This

means that channels, or bandwidth, from link 10 and 3 are required. Correspondingly,

user type 2 sets up connections between node 1 and 6, via node 5. Now, resources from

link 2 and 10 are required. Link 10 is then a common resource constraint for user type 1

and 2, in addition to the individual constraints given by link 3 and 2, respectively. The

state space model is given to the right in the figure. Each traffic type corresponds to a

dimension, and each link is a boundary that restricts the state space expansion.

4.3.1 Building blocks

The basic building blocks of the model are the generators of entities which request

resources from resource pools. Figure 4.2 shows an example with generators added to

Figure 4.2 :  The mapping of a system example to a state space model.
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node 1 and 5 in the network example of figure 4.1. The resulting state space description

is also included in the figure.

The building blocks are defined as follows:

Resource pool: a finite set of identical and interchangeable resources (e.g. a link in a net-

work is considered to be a pool of channels, where the channels are resources):

-  is the total capacity of pool , e.g. the number of channels or the total bandwidth

on a link.

-  is the set of generators with pool  as a constraint (see

below for definition of ).

Entity, , : an item that holds  resources from pool , (e.g. a connection

generated by generator  between A and B parties holds  channels from each link

along the route between A and B).

Generator (of entities): a component which explicitly models a process that generates

the events operating on the entities:

-  is an entity from generator ,

-  is the state dependent arrival rate of generator ,

-  is the population size,

-  is the state dependent departure rate of generator ,

-  is the number of servers for generator  entities,

-  is the capacity requested from pool  by entities of generator ,

- is the routing set, a fixed set of resource pools.

The capacity  requested by an entity , is in a connection-oriented network consid-

ered to be either a fixed number of communication channels on link , or a specific

fraction of the total bandwidth . In a connection-less network, e.g. ATM or Internet,

the  is the equivalent bandwidth for an accepted call on link .
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The relations between the basic building blocks and

- network aspects like topology, resource capacities and service rates,

- traffic aspects of the users, including parameters like arrival rates, capacity constraints,

priority, etc.

are described table 4.1. Observe that the topology of the network model is implicitly

defined through the sets  and . Note also that the departure rates  are associated

with the generators as part of the traffic model. This is because  is considered to be

the mean duration of a call or the mean repair time.

4.3.2 The state space

The global state space, , consists of a set of system states, , defined as follows:

System state, , a representation of the number of entities at any time, i.e.

where  is the number of entities of generator , (e.g.  is the number of end-

to-end connections of source type ).

The number of generators is the same as the number of dimensions in the state space. This

means that in a model with  generators, the state space description has  dimensions.

The boundaries of the state space are determined by the relations between the generators

and the resource pools, given as the routing sets, , and the resource pool capacity, .

Table 4.1:  Relations between traffic and network models and the basic building blocks.

Queueing network model Generator, Resource pool,

Network model Routing set, Resource pool capacity,

Generator constraint set,

Traffic model Population size,

Arrival rate,

Number of servers,

Departure rate,

Capacity requirement,
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4.3.3 The model dynamics

The dynamics of the model are given by the underlying simulation process that operates

on  as described in section 4.2. During the simulation experiment, a sample path is con-

structed that consists of a sequence of events, where:

Event: an occurrence that triggers a request or release of  resources (e.g. a connection

attempt is an event that requests  resources). A request event results in a new entity if

sufficient number of resources are available for all . A release event removes an

entity.

Path, : any sequence of events, where  is the system state

after event  and  is the total number of events in path . A regenerative cycle is a path

where , where  is the regenerative state. Figure 4.3 gives an example

of a sample path.

Observe that a request event not necessarily results in a change in the system state. For

instance, if a new call arrives to a loss system where all trunks are occupied, the call is

rejected. The call arrival is a request event. The system state holds the number of calls of

each type, and it will not be updated. The request is nevertheless considered to be an event,

because it may be a part of the statistics, e.g. counting the number of lost calls.
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Generally, each event in a path causes the system state  to be updated according to the

event variable  and the corresponding event probabilities. For example,  is the prob-

ability of a request of an event .

4.3.4 The target

This chapter only considers performance measures dependent on the network constraints

given by the resource pool capacities, e.g. time blocking, rerouting probability, etc. Esti-

mation of these properties requires observations of visits to a subspace , denoted target

subspace .

Target subspace, : a subspace of  where the remaining capacity of resource pool

is less than the maximum capacity requested by the generators in . This means that at

least one of the generators in  is blocked:

.  (4.5)

An alternative and simplified definition can be given by considering the number of

resources occupied of pool :

.  (4.6)

Observe that  is uniquely determined from , but the opposite is not possible because

 contains no details about the entity permutations in . Many combinations of entities

will result in the same number of allocated resources, , i.e. each number in  will have

a mapping to several system states in .

Rare event: a visit to a target when the probability of this event is low, .

Single target model: is a network with only one (dominating) resource pool.

Multiple target model: is a network with several pools that have significant contributions

to the property of interest.
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4.3.5 State dependent transition rates

State dependent transition rates redefine the arrival and departure rates to  and

, respectively. This is a restriction of the general definition in section 4.3.1. This

implies that the transition rates of a specific generator are dependent on the state of this

generator only. The following functional relations apply for the arrival and departure

rates:

,  (4.7)

.  (4.8)

The restrictions are made to simplify the adaptive algorithm in the following chapter.

Example 4.3: An M/M/1/N queue has only one generator, . The arrival process

is Poisson, i.e. with infinite number of sources, , and constant arrival rates,

. The queue have a single server, , and exponential service times

with rate , active in all states where at least one customer is

present .

4.3.6 Application to dependability modelling

An example of the generality of the framework is given in table 4.2. This illustrates how

to model both traffic and dependability aspects of the network example from figure 4.1.

For instance, observe that a link failure is modelled as a generator where each event

requests the entire capacity of a link.

The concepts were originally defined for traffic models, but are later observed to be suit-

able also for modelling dependability aspects:

- A link failure is modelled as a generator where each event requests the entire capacity

of a link.

- Failure propagation can be modelled by making the failure rate of a generator depend-

ent on state changes in other generators. This require a more general definition of state

dependent rates than was described in section 4.3.5.
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- Common mode failures, a fault that may cause several failures is modelled by applica-

tion of routing sets. All links that are included in the routing set will fail on occurrence

of a single event.

- A node failure is modelled by defining all adjacent links as resource pools and includ-

ing them in the  of the failure generator .

- A partial failure or graceful degradation of a resource is where a failure affects parts

of a link or node. This can be modelled by describing the failure process with more than

two states (“ok” and “defect”), and where each event will affect some fraction of the

resource pool, i.e .

As described in section 4.1, integration of users with different quality of service require-

ments is only possible when the model has some preemptive priority mechanism.

Otherwise it is not possible to distinguish between the users. Furthermore, a preemptive

priority mechanism is also required to model the failure events which are preemptive by

nature. Without such a mechanism, for instance, the failure events that affect link  are not

able to preempt the entities that occupy the resources of link , and the failure will be

rejected.

Alternative routing should be provided to model redundancy, e.g. to let high priority users

change its routing if the primary route is overloaded or disconnected due to a link or node

failure.

Preemptive priority and rerouting mechanisms are described as extensions to the frame-

work in the following section.

a. In a partial link or node failure the capacity is reduced, not blocked, and the .

Table 4.2:  Mapping of discrete event model concepts and simulation models,
an example.

concepts traffic simulation model dependability simulation model

entity connection failure

generator source type link or node failure type

request event connection arrival failure of a link or node

release event connection completion repair of a link or node

capacity requirement a

quantity of interest blocking probability unavailability

Φk k
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4.3.7 Model extensions

This section includes descriptions of the extensions added to the framework to handle

preemptive priority and rerouting mechanisms.

4.3.7.1 Preemptive priority

Preemptive priority implies that a request event from a generator with a high priority level

are allowed to preempt an entity with a lower priority level.

-  is the priority level of generator , where  is the highest priority level.

Observe that if  then generator  has higher priority and may preempt entities

coming from generator .

-  is the generator constraint set where the generators with priority level  have

resource  as a constraint.

-  is the target subspace for priority level .

.  (4.9)

In figure 4.4 it is shown how the preemptions add new transitions to the state space. With

no spare capacity on arrival of a high priority event, two simultaneous updates take place:

- a sufficient number of entities with low priority is identified and disconnected, hence

the corresponding  is decreased,

- the arriving high priority entity from generator  increases  by 1.

This means that arrival of an entity will in some cases affect more than one generator

because low priority entities are preempted and removed from the state vector, .

Example 4.4: The model in figure 4.4 has two traffic generators with different priority

levels. Generator 2 has higher priority than generator 1,  and . Entities

from generator 1 will be preempted on arrival of a new entity from generator 2 if all

resources of link 1 are occupied (here ). Let the state after event  be

. This is a state in , the

target subspace of priority level 1, which in this example is involving generator 1 only.
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The target subspace for priority level 0, involving generator 2 only, is

. The event variable for  is:

 (4.10)

This means that when an entity from generator  arrives in state , one of

the two entities of generator  must be preempted. Thus, the state is changed from

 to .

4.3.7.2 Rerouting

Rerouting sets are defined to allow the generator  to allocate resources from an alterna-

tive set of resources.

-  is the number of rerouting alternatives for generator .

-  is the set of alternative routes for generator .

2

1

New transitions due

generator 2: high priority

ge
ne

ra
to

r 
1:

 lo
w

 p
rio

rit
y

to preemptionp2=1

p1=2

resource
pool 1

Ω1
(2)

Ω1
(1)

Figure 4.4 :  Influence on state transitions by adding preemptive priority, an example.
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-  is the extended system state, where  is the number

of entities of generator  that follows the th route, ( ).

-  is the target subspace of :

.  (4.11)

A generator switches to an alternative route only if the primary route  is not avail-

able. The alternative routes are checked in sequence from  up to  until a route

with sufficient capacity on all links is found. If no route is available, a blocking has

occurred, i.e. a visit to one, or several, target subspaces, , is observed.

Example 4.5: Consider a network with 2 nodes and 2 links. Traffic is offered by two user

types, modelled by generator 1 and 2. The primary route for generator 1 is link 1,

, and for generator 2 it is link 2, . With no rerouting, the situ-
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ation is as described in figure 4.5(a). The generators have independent resource

constraints. An overlap between the two target subspaces is only present when the total

capacity both links are independently, and simultaneously occupied. The target sub-

space of the two links are:

 (4.12)

Now, let generator 2 have an alternative route on link 1, . The two genera-

tors compete for the capacity on link 1 when link 2 is not available. The situation is

described in figure 4.5(b), showing that the state space is extended. The new states are

added to describe the situation when entities from generator 2 occupy resources on

link 1. It is assumed that generator 2 will not preempt entities from generator 1 when

an alternative route is chosen. The target subspaces with rerouting are:

 (4.13)

In this case, by definition, lost traffic generator 2 is not due to blocking on link 2 only.

4.4 Closing comments

This chapter introduces the basic building blocks of a flexible framework for the model-

ling of communication networks. The concepts of generators and resource pools are

introduced. A generator can be interpreted as, for instance, a collection of users with the

same attributes, while a resource pool may be considered as communication channels on

a link. These concepts were originally defined for traffic models, but is later also used for

modelling of dependability aspects like link or node failure.

The communication network is assumed to handle a mixture of traffic stemming from

users with very different resource capacity and quality of service requirements. To be able

to distinguish between users, and to provide different quality of service to them, a preemp-

tive priority mechanism is introduced. Furthermore, to increase the offered quality of

service, a mechanism for switching between alternate routes is provided to the users. This

means that if the network topology has link disjoint routes between the end nodes, a user

may switch to an alternate route if the primary route is occupied or disconnected. The

description of rerouting given in this chapter, does not combine this with preemptive pri-
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orities. This is done to clarify the presentation. The framework is defined to let a high

priority generator preempt a low priority entity when conflicts occur after a rerouting. It

is no conceptual difference between arrival of a rerouted entity and an entity following the

primary route. The preemptive priority and rerouting mechanisms are also crucial for

modelling of link or node failures.

The simulation process that adds the dynamics to the model, is assumed to be a continuous

time Markov chain, CTMC. A discrete time Markov chain, DTMC is embedded on this

process. All simulations of steady state properties can use the discrete process with the

expected state sojourn times instead of taking samples from a distribution. Simulations of

transient properties require that the continuous process is used.

The modelling framework may use more general processes than the CTMC, for instance

a generalised semi Markov process, GSMP, as described in [Gly89]. In this process, the

events take place at embedded points which are not necessarily renewal points. The event

variables  from (4.3) are far more complicated. Alternatively, defining a DTMC proc-

ess embedded on all events of the GSMP, and not only on the renewals, the importance

sampling strategy will be far more complicated, see e.g [GSHG92].

A model of a real-sized, well-engineered network, is large and multidimensional. The

model is not easily reduced when the resource utilisation is balanced, i.e. with no signifi-

cant bottleneck. This is also a problem with respect to definition of the parameters for

importance sampling simulation. A rare event of interest may occur in several links in the

network. In the following chapter, this is discussed in further detail and a new adaptive

strategy for changing the parameters is proposed.

Z
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5

Adaptive parameter biasing in impor-
tance sampling

This chapter presents the adaptive change of measure that applies to the models described

in chapter 4. As will be addressed in section 5.1, these models pose new challenges to the

change of measure, or parameter basing, in importance sampling. Hence, previous pro-

posed approaches do not longer suffice. The general ideas of the adaptive biasing are

presented in section 5.2, and section 5.3 adds details. In section 5.4, the robustness of the

adaptive biasing is commented. The idea was first presented in [Hee95b], and later

improved in [Hee96] and further generalised in [Hee97a]. The description given in this

chapter can also be found in [Hee98]. For applicability to networks, see the feasibility

studies in chapter 6.

5.1 The challenge of parameter biasing in network models

The variance of the importance sampling estimate is given in (3.3) in chapter 3. There it

was pointed out that the optimal change of measure is the  that minimises this vari-

ance, . The variance is 0 when . Unfortunately, this involves

the unknown property of interest, . This minimum variance restriction, however, serves

as a general guideline implying:

.  (5.1)

This means that the new distribution  should be proportional to the importance of

sample  to minimise the variance of . The importance of the sample  is the product

of the original sampling distribution, , and the contribution, .

Now, consider a multidimensional network model involving  resource pools. The prop-

erty of interest is associated with these pools. In the model a target subspace  is

defined for each pool in which the rare events, that contributes to the property of interest,
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occur. Each sampled path  has  contributions, , one for each target subspace.

Returning to the guideline of (5.1), it is heuristically assumed that the optimal change of

measure should be proportional to the importance of each of these  targets:

.  (5.2)

This is only possible to achieve when the system model has one of the following two

properties:

1. A single dominating target. This means that there exists a target  where, for all (at

least the most likely) sample paths, : , . Then the optimal

change of measure can be approximated by using the optimal change of measure with

respect to the target . This approach has been used, for instance, in tandem

queues [PW89] and loss networks [Man96c].

2. Single visit paths. When a sample path never includes visits to more than one target, i.e.

, ,  (5.3)

then the  replications of a simulation experiment can be divided into  independent

stratas, see [Fra93]. Each strata contains  replications where the change of

measure is relative to target . The optimal strata probability is

 where . This is computationally

demanding in a multidimensional model.

In a more realistic system, the target subspaces will be overlapping and the single visit

condition from (5.3) will no longer be satisfied. Now, using an approach based on (5.3),

the estimates of the system performance are biased because .

An alternative approach, see section 3.4.2.2, is reversion of the drift including all  gen-

erators, irrespective of the target subspaces in the model. This increases the positive drift

towards all target subspaces simultaneously, at least the drift towards the regeneration

subspace, . This approach has shown poor performance through a series of simulation

experiments. It seems like with no indication of “best direction” to change the drift of the

simulation process, the sampled path tends to follow an unlikely path to a rare event.

Example 5.1: (continued from example 4.2). To demonstrate why the two approxima-

tions above will fail in a balanced network, consider evaluation of the model of

figure 4.2. The property of interest is the probability that either of the two generators
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is blocked. The blocking is due to insufficient capacity on link (resource pool) 2, 3

or 10. Let the total blocking be  and the blocking of pool  be , . Now,

make the following assumptions about the exact blocking probabilities, ,

, and . Observe that . First, let the

importance sampling simulation change the drift towards pool  because this has the

largest blocking probability, . Then, an accurate estimate  of

the blocking on pool 3 is obtained. However, the result of this simulation is that the

overall blocking estimate is  because only visits to  are provoked. Instead,

importance sampling combined with stratified sampling is applied as described in

approach 2. Good and accurate estimates of , , and  are likely to be obtained,

but the  estimate is unbiased because the condition in (5.3) is

violated.

A well engineered network has a balanced utilisation of the resources in the system. This

means that the overall property of interest, e.g. the call blocking, will in practice be deter-

mined by restrictions imposed by more than one resource pool. Furthermore, the resource

pools are shared between several generators, as defined in the routing set . The

assumption from (5.3) is no longer valid. To overcome this limitation, a new parameter

biasing strategy is proposed that guides the simulation process to focus on the most impor-

tant targets at every step along a simulated path. This will be described in the following

section.

5.2 General idea of the adaptive parameter biasing

The general idea of the biasing is to adapt the change of measure to every state along the

simulated path , and to induce a positive drift towards the most important target seen

from the current state, .

The importance of a target  is generally defined as:

.  (5.4)

This can be interpreted as the expected contribution  from target  to the property of

interest, . Observe that in a realistic system the , because the sin-

gle target visit condition from (5.3) is violated, see example 5.1. The importance of

target , given that a specific state  is visited in , is defined as
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.  (5.5)

The ideas are implemented in the following steps:

1. Estimate the importance  for all targets  at current state . An estimate of this

importance is presented in section 5.3.2. The relative importance is denoted the target

distribution, and estimated by .

2. Sample a tentative target from the estimated target distribution, , ( ).

3. Change the measure by changing the rates of the generators  as was described

in (3.25), according to the tentative target  that was sampled in the previous step.

4. Sample the next event in the simulation process, , using the biased parameters from

step 3.

Example 5.2: (continued from example 5.1). After a few events in the simulated path, the

current state is . The positive drifts towards the target subspaces under the

original sampling distribution are

 (5.6)

The importance of each target is estimated to be1:

 (5.7)

which results in the following target distribution:

 (5.8)

1.  All numerical values are freely chosen to demonstrate the point of a balanced network, not a result of esti-
mations using a set of specific parameters, although it could have been.
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This means that at state , the change of measure is, with probability 0.40,

reversion of the drift towards pool 1. The BIAS factor scales the arrival and departure

rates as described in (3.25), and is . With

probability 0.25, the drift is reversed towards pool 2, and with probability 0.35 towards

pool 10. In the latter case, the arrival and departure rates of both generators are scaled.

This implies that the drift toward pool 2 and 3 is also increased, in addition to pool 10.

However, the BIAS factor is not the same as  and :

.  (5.9)

In [Car91], an idea similar to the adaptive biasing was presented, denoted failure distance

biasing. In this biasing strategy, the importance, , is the minimum number of transi-

tions from the current state up to a system failure mode  (which is the target). This is, in

general, not a very precise estimate of (5.4). A more computational demanding change of

measure is applied in failure distance biasing than in (3.25).

It is important to emphasise that the target distribution obtained in step 1 above, is only

used in step 2 to decide which target should be in focus for the next change of measure in

step 3. This implicit influence on the simulation process dynamics is assumed to make the

simulation efficiency less sensitive to the accuracy of the target distribution estimate. If,

instead, the  had been used as an estimate of the event probabilities from section 3.2

directly, it is expected that the simulation efficiency would have been far more sensitive

to the accuracy. In section 5.4, a few comments are made on the robustness and weakness

of the target distribution estimate, and the effect on the simulation efficiency.

The computation of  will significantly influence the total computational overhead

added to the simulations by the adaptive strategy. The reason is that the estimation must

be repeated for every step along the simulated path, because the relative importance will

change as the system state changes.

Example 5.3: To see why the importance changes, consider the example in figure 5.1.

This shows a state space consisting of 3 target sub-spaces. The sub-spaces are made

disjoint to simplify the illustration. The contour lines represent the “iso-likelihoods” of

each target, i.e. every state at a specific contour line has the same conditional target

likelihood. The contour intervals are logarithmic with base 10, i.e. the iso-likelihoods

represent probabilities at every order of magnitude, i.e. .
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The sampled path depicted in the figure, , demonstrates how the

relative importance changes. At  all targets have the same importance. This means

that the next target to be in focus will be chosen from a uniform distribution, see the

histogram next to the system state . Stepping to , the situation is changed. Now

the process has approached target 1, and the target distribution reflects this by increas-

ing the probability of target 1 relative to the targets 2 and 3. This means that the most

likely sampling distribution is now optimal with respect to target 1, . Corre-

spondingly, at state  and , the most likely targets are 2 and 3, respectively. The

change of measure at state  can be expressed as:

 (5.10)
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Figure 5.1 :  Changes in target distribution illustrated by iso-likelihood curves along
an unlikely path in the subspace.
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Even if target 1 is the target with the greatest importance at state , it is possible that

the sampling from the target distribution results in a change of measure with a drift

towards one of the two other targets. Furthermore, even with a simulation process that

has an expected positive drift towards target 1, the next event in the sampled path may

move the process towards target 2 or 3, or even back to the regenerative state. The path

in figure 5.1 is, in fact, an example of a very unlikely path where the simulation process

in neither of the states moves in the direction of the most important target.

It is not a trivial matter to determine the target importance and the corresponding target

distribution. In general, the conditional iso-likelihoods do not have the nice circular con-

tour lines as the example in figure 5.1. The following section describes an estimate of the

target distribution, .

5.3 Target distribution

Several algorithms and approximations to the target distribution, , have been pro-

posed since the adaptive biasing was first introduced, see [Hee95b, Hee96, Hee97a].

Common for all these, is that the target distribution is the relative target importance, i.e.

.  (5.11)

The target importance  is given in (5.5). An approximation of the target distribu-

tion, , must be:

1. sufficiently close to the exact target distribution of (5.11),

2. robust to changes in parameters and state space structures, and

3. computationally efficient.

Observe that the estimate of the target distribution depends on the estimates of the rela-

tive, and not the absolute importance. This can, under some conditions, be exploited to

significantly reduce the computational effort, as described in the following.

5.3.1 Simplified estimate of target importance

The importance of a target consists of an infinite number of contributions from sample

paths, , as given in (5.5). Not all samples have (significant) contributions to target .
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Hence, an approximation of the importance is proposed where only the  largest contri-

butions are included:

.  (5.12)

 is the sample path  with the th largest contribution to the importance of target .

Observe that the approximation in (5.12) is systematically underestimating the exact

value. But, recall that the target distribution depends on good estimates of the relative, and

not the absolute, importance. The simplest approximation is then to let , which

means that only the path with the largest importance, , is included. The target distri-

bution is then approximated by:

.  (5.13)

To obtain an estimate of the target importance in (5.13), it is required to identify the most

important sample path, , which includes both the current state , and at least one visit

to the target subspace . A subpath of the complete path, , as was defined in

section 4.3.2, will be identified. This subpath includes only the sequence of events from

 to the first entrance to the target subspace . A large number of sample paths has to

be considered to identify this subpath, because the importance of a path consists of the

product of both the likelihood and contribution. Instead of including both the likelihood

and the contribution simultaneously, the following estimate is proposed:

 (5.14)

where the likelihood, , and the contribution, , are estimated separately. In

section 5.3.2, it is described how the target likelihood is established. The contribution

associated with this subpath is briefly presented in section 5.3.3.

The estimation of the target importance are in the following presented for a single target

only. It must be repeated for all  to provide an estimate of the target distribu-

tion, and finally substituting (5.14) for each target  in the estimate of the target

distribution in (5.13).
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5.3.2 Target likelihood

To provide an estimate of the target likelihood,  in (5.14), a subpath from the current

state  up to a the first entrance to the target subspace  must be identified. Define this

subpath, consisting of  events:

.  (5.15)

Event  is generated by , i.e. one of the generators constrained by resource pool .

Every event in  is assumed to be an arrival of an entity. No release events are

included because  should represent the most likely sequence of events to the target.

An entity from generator  is allocating  resources. The state  after event  in

 is given by the following recursion:

 (5.16)

where  is an index vector of size  where element  is 1, and

all other elements are 0. Observe from (5.16) that the subpath is uniquely determined by

the current state  and the sequence given by .

The events in the subpath  are generating a sequence of resource allocations. Let

denote the number of resources from pool  allocated at state . The number of resources

at the state  after event , is . The  can be described as a sequence of ’s

instead of, or in addition to, the  from (5.16). Since the  contains only arrivals,

then  for all . To simplify the following description, let the

index  on  be omitted. Then  becomes , and  becomes . This is unambigu-

ous because in this section only the subpath to target  is described.

Recall from section 4.3.4, the target subspace was defined in terms of the system states on

the state space , but also in a simpler form in terms of the number resources, :

.  (5.17)

This is derived from the  definition in section 4.3.4. For the purpose of searching for

the most likely subpath, it is convenient to use this description of the target subspace. The

sequence of resource allocations in a specific subpath, starting from , is:
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.  (5.18)

The number of resource allocations of the last state in the subpath is .

In appendix E an efficient search algorithm is described where the maximum likelihood of

a subpath from current state  up to a state with  resources. The maximum likelihood

is denoted , and is obtained for every . The algorithm exploits the Markov

properties of the simulation process to successively determine the  by reuse of previous

values, . As input, the search algorithm requires:

- the current state, ,

- the generators which are constrained by pool , ,

- the target subspace, either given as  or .

The algorithm also returns the specific path  that is associated with each ,

( ).

Assume that a set of  is provided by the search algorithm. Then, the target likelihood

will be assigned to any of the  where . This represents the likelihood of a sub-

path from current state up to a state where the number of allocated resources  is in the

target subspace.

The maximum likelihood is:

 (5.19)

while, the maximum importance is estimated by taking the contribution, given by the end

state of the subpath, into account (see section 5.3.3 for estimation of target contribution):

.  (5.20)

The estimate from (5.20) is substituted in (5.13) to determine the target distribution.

Introducing the rerouting and preemptive priority mechanisms will only affect the input

arguments to the search algorithm. The following two sections briefly describe what the

arguments should be.
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5.3.2.1 Target likelihood with rerouting

The mechanism for alternative routing was described in section 4.3.6. The routing sets

, were extended. The  set depends on the current state through the given routing:

 (5.21)

where  ( ) is the index of the route used by generator  in state .

The current number of allocated resources from pool , , is changed according to the

extended system state description in section 4.3.6:

.  (5.22)

Let the  in (5.21), the  as defined in section 4.3.6, and the  from (5.22) be the input

arguments to the search algorithm. This will provide the requested set of  for

. The target subspace  is defined by using (5.21) in (5.17), and the target

likelihood and importance are determined by (5.19) and (5.20), respectively.

This approach will provoke the rare events that cause blocking on the current route of a

generator only, even if the generator has several alternative routes that all have to be

blocked for the generator to be blocked. This can be justified by the following example.

Example 5.4: Consider a generator  with a secondary route, . At the start of a

regenerative cycle, the simulation parameters are biased to provoke a blocking in the

primary route, . When this route is blocked, generator  will route new calls via

the secondary route, . Now, the rare events in the targets  will be provoked.

Since the generator is not able to use the secondary route before the primary is blocked,

it makes no sense to provoke rare events in the secondary route when the primary route

is not blocked.

5.3.2.2 Target likelihood with preemptive priority

In a model with several preemptive priority levels, the search algorithm is applied to deter-

mine a subpath for each priority level, . Each subpath includes the generators in

that have a specific priority level , or higher. Although it is the likelihood of the subpath

of priority level  that shall be determined, the generators with higher priority than  have
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to be included because they cannot be preempted like the low priority generators have

been. Let  be the set of generators which has priority , or higher:

.  (5.23)

The corresponding initial resource allocations are:

.  (5.24)

Since the subpath  is associated with priority level , the target subspace must be

defined as the subspace where generators of priority level  is blocked:

 (5.25)

where  is the set of generators with priority

level .

Now, as input to the search algorithm, use  from (5.23), and  from (5.24). The

algorithm will then provide a set of  for . It is not necessary to include

some sophisticated preemption priority mechanism into the search algorithm because the

lower priority generators are already removed from . The target likelihood, , and

the importance, , for priority level , are obtained by substituting  by

in (5.19) and (5.20), respectively.

The final target likelihood and importance are determined by taking the maximum likeli-

hood and importance over the different priority levels:

,  (5.26)
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5.3.3 Target contribution

The target contribution is the property of interest, , observed by using the subpath

 instead of a complete path . For instance, if the steady state probability of target

 is the property of interest, then

 (5.28)

is the contribution, i.e. the expected sojourn time in the first visited state in the target

subspace.

5.4 Closing comments

This chapter presents the ideas of an adaptive parameter biasing for importance sampling.

The goal is to change the drift of the simulation process. The process should move towards

the parts of the state space where the most important rare events occur. These subspaces

are denoted target subspaces. A measure is provided to guide the process to change the

drift towards the most important of these target subspace. However, this importance will

not be the same in every state of the state space. This means that some measure of the tar-

get importance must be developed that adaptively adjusts to the current state of the

simulation process. The ideas, and an implementation of these, are described in this

chapter.

The requested measure of target importance is denoted the target distribution. Generally,

it is not feasible to obtain the exact distribution, at least it cannot be done efficiently. Thus,

a rough, but efficient, approximation of the target distribution is proposed. This target dis-

tribution will demonstrate its feasibility on several network examples in the following

chapter.

The estimated target distribution has changed several times since the adaptive biasing was

first introduced. Even the simulation results presented in the first approach produced accu-

rate estimates in reasonable time. This is an indication of that the adaptive biasing is rather

robust with respect to the accuracy of the target distribution estimate.

The target distribution changes for every event in the simulated sample path. However, the

change is not significant for every event so the same  is applicable for several events.

In the network simulations in the following chapter, the distribution is only recalculated
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when the accumulated sample path probability, see (3.14), has changed more than one

order of magnitude.

Some additional work can be done on the adaptive biasing. The target distribution can be

further tested on new models to get increased insight in what the strengths and weaknesses

are. It is also interesting to make a computational profile of the efficiency of each step in

the adaptive strategy for new models. This to see which parts of the approach that is the

most computer demanding, and to determine the total computational overhead introduced

by the adaptive biasing. See example 6.2 for a simulation profile from a network system.



- 107 -

6

Importance sampling in network
simulations

This chapter contains the results of several network simulations. The purpose of these

experiments is to demonstrate the feasibility of the adaptive parameter biasing proposed

in the previous chapter. In section 6.1 an overview of the simulation experiments and their

objectives is given. The regenerative simulation setup applied to the network simulations

are presented in section 6.2. The simulation results and observations are given in

sections 6.3-6.5, while section 6.6 summarises the experiments and proposes new

experiments.

6.1 Simulation objectives

It is important to keep in mind that the main purpose of the simulation experiments in this

chapter is to demonstrate the feasibility of the adaptive technique, rather than to provide

insight in the properties of a specific communication network. The examples are all ficti-

tious networks which are described by the modelling framework of chapter 4. Both the

preemptive priority and the rerouting mechanisms are included in the examples.

The objective is to demonstrate the feasibility of the proposed adaptive strategy. For this

purpose, the following 3 network examples are constructed:

- Case 1: No priority nor alternative routing.

When all the generators have the same priority and have a fixed routing, it is feasible

to obtain exact blocking probabilities, e.g. by the convolution method [Ive87], when the

model is of moderate size. Hence, the simulation results from this case can be com-

pared with exact values. The efficiency and precision of the simulation method are

demonstrated.
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- Case2: Improving the quality of service by rerouting.

This case demonstrates the use of rerouting. Two simulation series are produced, one

with, and one without, an alternative (secondary) route. The improvement of the qual-

ity of service in terms of reduced call blocking is estimated.

- Case 3: Disturbing low priority traffic.

To demonstrate the use of the preemptive priority mechanism, low priority traffic is

added to the case 2. Three simulation series are produced where the blocking probabil-

ities of low priority traffic are estimated. First the network is simulated with only low

priority traffic generators, then mixed with high priority traffic, and finally mixed with

both high priority traffic and affected by link failures.

In all three cases, the quantities of interest are the blocking probabilities of all, or a selec-

tion of, user types, i.e. the generators. No exact solutions are analytically provided for the

models in case 2 and 3. Instead, the rough blocking approximation from appendix F is

applied for comparisons. The approximation assumes individual blocking on each link

which is expected to result in an upper bound of the blocking probabilities. In addition,

the importance sampling estimates are compared to the estimates obtained from the direct

simulations given in appendix G.

The results from the experiments are found in sections 6.3-6.5.

6.2 Regenerative simulation of large models

When conducting a simulation experiment with importance sampling it is recommended

to divide the experiment into independent regenerative cycles for the stability of results.

A regenerative state, or subspace, must be defined. For dependability models and very

small traffic models, this is normally a single state like the state “system intact” or “empty

system”. However, for real-sized traffic models, choosing a single regenerative state will

make the expected regenerative cycle period too long.

This chapter uses a regenerative box of  dimensions, denoted . Within this box, a

regenerative cycle starts and ends. The box consists of the equilibrium states of the sys-

tem, i.e. the sub-state space in which the simulation process spends most of its time.

Furthermore, the regenerative box must be disjoint with all target subspaces,

, for all . This is because no observations with respect to a target are

K Ω
˜ 0

Ω
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recorded when the simulation process is within . A similar concept denoted load

cycles was applied in [HH94], also similar to the A-cycles in [GHNS93, LC96].

Let  be the steady state probability of generator  having  entities. The accumulated

probability is . The  and  are estimated by short pre-sim-

ulations. An upper and lower boundary are defined for each dimension, or generator, of

the regeneration box. Let  denote the state that corresponds to the -quantile in the

estimated steady state distribution for generator , defined as

.  (6.1)

The upper quantile of the regenerative box is , while  is the

lower quantile. The  is 0.33 for all experiments in this chapter.

Example 6.1: The regenerative box is identified from the pre-simulations of case 3.1 in

section 6.5. Now, using , the upper quantile is  and the lower

quantile . Hence, the corresponding states that give the boundaries of the

regenerative box are obtained from the estimates  and ,

- upper bound: ,

- lower bound: .

The concepts of the regenerative box and the expected cycle time related to it, are not

known in advance. Hence, a pre-simulation is required, consisting of the following

phases:

1. Regenerative box identification is made by a block simulation experiment where the

equilibrium states are identified.

2. Relative distribution of the states within the regenerative box is obtained by a second

block simulation.

3. Regenerative cycle estimation. The cycle time is defined as the time between two

departures from the regenerative box (identified after phase 1). Each cycle starts in an

arbitrary state within , sampled from the box distribution estimated in phase 2. Oth-

erwise, the cycles will not be independent.
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The pre-simulations should be, and typically are, much less computer demanding than the

main simulation. This will, of course, depend on the termination rule used in the pre-sim-

ulation. Block simulations are used for identification of the regeneration box and for

estimation of the steady state distribution inside this box. The number of events that con-

stitutes the transient period, which is removed, must be defined, in addition to the number

of simulated events in the steady state behaviour. In this chapter, the number of events in

the transient and steady state periods are determined experimentally. The third pre-simu-

lation, where the regenerative cycles are estimated, continues until the relative error of the

cycle estimate is approximately 1-2%. The main simulation, where importance sampling

and the adaptive parameter biasing are applied, is termination when the estimates have a

relative error of approximately 10-15%.

Example 6.2:

As a typical example, consider the total simulation time (1300.7 sec) of case 2 in

section 6.4. The time elapsed at the different phases is distributed as follows:

i. Regenerative box identification 4.2 sec (0.3%) {50,000 events}

ii. Regenerative box distribution 17.7 sec (1.4%) {50,000 events}
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TRANSIENT
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Figure 6.1 :   A regenerative cycle in the state space of example 4.2 which includes a
visit to the target subspace of pool 10.
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iii. Regenerative cycle estimation 21.8 sec (1.7%) {10,000 cycles}

iv. Importance sampling main simulation 1257.0 sec (96.6%) {100,000 cycles}

The complete algorithm of the main simulation consists of the following steps (see

figure 6.1 for an example of a cycle):

- Sample an initial state (state A) according to the relative distribution of the states

within the regenerative box.

- Start a regenerative cycle at the first departure from the box (state B) and switch to the

importance sampling parameters.

- Turn off importance sampling biasing if a visit to a target is observed (state C).

- End the cycle at first return to the regenerative box (state D). This will save simulation

time without loss of target observations. No targets can be observed inside the regen-

erative box, i.e. in the remaining of the regenerative cycle (from state D to state E in

the figure). Hence, the sub-path from D to E can be considered as simulation overhead

that can be removed.

6.3 Case 1: No priority nor alternative routing

When all the generators have the same priority and no routing alternatives, it is feasible to

obtain exact blocking probabilities for a model of moderate size, for instance by the con-

volution method [Ive87]. The simulation results in this case are compared with exact

values which will demonstrate the efficiency and precision of the method. This case and

the results are also presented in [Hee96, Hee97a].

6.3.1 Generators and resource pools

The network consists of 8 nodes that are interconnected by 12 links. The topology is

described in figure 6.2. Each link is modelled as a resource pool, see table 6.1.

The network is offered traffic from  different user types, modelled as generators.

A call setup generates an entity that requires  resources of link . In this case,

for all links in the routing set, . Recall from chapter 4 that the routing set contains

the sequence of resource pools that models the fixed route between the origin and desti-

K 10=

ckj j ckj ck=

j Φk∈
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nation node of a connection. The complete set of attributes of all  generators is

given in table 6.2.

Example 6.3:

Consider generator . This is a model of the user type that is generating connec-

tions between node 2 and 6 via node 8 and 5, see the topology in figure 6.2. The

connection requests  channel from each of the links 3, 5 and 8, and hence the

routing set becomes .

6.3.2 Simulation setup

The regenerative box is identified by conducting two pre-simulations of 10000 events

each. First, the accumulative steady state probabilities  of each generator  are esti-

mated. Then the steady state distribution is estimated, given a state inside the regenerative

box. The box is defined by using the  quantile in the estimated  distribution

with .
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Figure 6.2 :  Topology of system case 1.
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The cycle time is estimated from simulation of 10000 regenerative cycles. The property

of interest, i.e. the blocking probabilities, are estimated by conducting a regenerative sim-

ulation experiment with 50000 cycles. The pre-simulations are conducted only once,

while the main simulations, where the properties of interest are estimated, are replicated

20 times.

Table 6.1:  The resource pools of case 1.

1 {1,6,7} 20

2 {2,7} 12

3 {1,2,4,8} 22

4 {2,8} 12

5 {2,3,4} 15

6 {1,3,10} 23

7 {1,5,9,10} 25

8 {4} 7

9 {6} 6

10 {5,6} 7

11 {9} 12

12 {8,10} 26

Table 6.2:  The generators of case 1.

1 0.03 ∞ 1.0 5 4 0 {1,3,6,7}

2 0.05 ∞ 1.0 12 1 0 {4,5,3,2}

3 0.03 ∞ 1.0 5 3 0 {5,6}

4 0.06 ∞ 1.0 7 1 0 {3,5,8}

5 0.07 ∞ 1.0 7 1 0 {10,7}

6 0.04 ∞ 1.0 6 1 0 {9,1,10}

7 0.04 ∞ 1.0 6 2 0 {1,2}

8 0.01 ∞ 1.0 4 3 0 {4,12,3}

9 0.05 ∞ 1.0 6 2 0 {11,7}

10 0.04 ∞ 1.0 7 3 0 {12,6,7}

j Γ j N j

k λk Mk µk Sk ck pk Φk0
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6.3.3 Results

The exact blocking probabilities are provided by Prof. V. B. Iversen who has used his con-

volution method [Ive87]. This method is rather computer intensive for networks of the

size of case 1. The computation effort increases exponentially when new links or source

types are added. According to Prof. V. B. Iversen, the exact solution required more than 9

hours of CPU time on a HP735 (100 Mhz) WS, and more than 55 Mbytes of memory.

In contrast, each replication of the simulation experiment required less than 10 minutes of

CPU-time on an Axil320 (120 Mhz) WS. The computational complexity of the simulation

approach is .

The simulation results with 95% error bars are plotted in figure 6.3 together with the exact

results.

6.3.4 Observations

The most important observations made in this simulation study are:
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Figure 6.3 :  The call blocking for all generators are close to the exact values.
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1. The estimated loss probabilities show good agreement with the exact values for all

generators.

2. The generators with the largest blocking probabilities, (generator 1,3 and 8) have the

best precision.

3. Compared to simulation, the calculation of exact values are computer intensive.

4. All estimates are within ~10% relative to the exact values. The 95% confidence interval

includes the exact values for all source types, except generators 5 and 9.

5. The mean observed likelihood ratio is close to the expected value 1,  with

standard error . See section 3.5.1 for discussion of the observed likeli-

hood ratio used for validation of the importance sampling estimates.

6.4 Case2: Improving the quality of service by rerouting

This case demonstrates the use of rerouting caused by traffic overload on the primary

route. Two simulation series are produced, one with an alternative (secondary) route, and

one with only a primary route. The improvement in the quality of service by adding an

alternative route, is estimated by means of the reduced blocking probability for each

generator.

The rough approach used for dimensioning of the network capacities, and to identify the

primary and secondary routes, is presented in appendix F.

6.4.1 Generators and resource pools

The network consists of 6 nodes interconnected by 10 links. The topology is described in

figure 6.4. The resource pools that model the links are described in table 6.3. The  sets

include the generators that have resource pool  in their primary route .

The network is offered traffic from  generators. All attributes of the generators

are listed in table 6.4. Observe that two alternative routes are defined in the table,  and

. The route , , is the primary route. As long as sufficient capacity is avail-

able on all links in , this route is chosen. When an overload situation occurs, two

alternative strategies can be used:
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- Case 2.1: arriving calls are lost, or

- Case 2.2: arriving calls are connected via the secondary route, , .

The simulation experiments in this section compare the blocking probability in case 2.1

and 2.2.

The capacity required by each entity is, in this case,  for all links in both routing

sets, , ( ).

3

5

4

6

2

1
10

9

2

3

4

5

6

78

1

Figure 6.4 :  Topology of system case 2 and 3.

r 1= Φk1

ckj ck=

j Φkr∈ r 0 1,=



6.4  Case2: Improving the quality of service by rerouting 117

Table 6.3:  The resource pools of case 2.

1 {1,2,3,9} 33

2 {4,6,18} 33

3 {5,9} 37

4 {2,3,6,7} 27

5 {8} 25

6 {3,7,10,13,14} 30

7 {11,13} 28

8 {12,14} 30

9 {-} 21

10 {15} 37

Table 6.4:  The generators of case 2.

1 0.16 ∞ 1.0 16 4 1 {1} {2,5}

2 0.19 ∞ 1.0 16 4 1 {1,4} {3,8}

3 0.14 ∞ 1.0 16 4 1 {1,4,6} {2,9}

4 0.39 ∞ 1.0 16 4 1 {2} {3,10}

5 0.28 ∞ 1.0 15 4 1 {3} {2,10}

6 0.20 ∞ 1.0 13 4 1 {4} {1,3,8}

7 0.15 ∞ 1.0 15 4 1 {4,6} {5,9}

8 0.41 ∞ 1.0 12 4 1 {5} {1,2}

9 0.30 ∞ 1.0 18 4 1 {1,3} {2,10}

10 0.18 ∞ 1.0 15 4 1 {6} {7,9}

11 0.48 ∞ 1.0 14 4 1 {7} {8,10}

12 0.35 ∞ 1.0 15 4 1 {8} {1,3,4}

13 0.36 ∞ 1.0 15 4 1 {6,7} {9}

14 0.26 ∞ 1.0 15 4 1 {6,8} {9,10}

15 0.72 ∞ 1.0 18 4 1 {10} {2,3}

j Γ j N j
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6.4.2 Simulation setup

The regenerative box is identified by conducting two pre-simulations of 50000 events

each. First, the accumulative steady state probabilities  of each generator  are esti-

mated. Then the steady state distribution is estimated, given a state inside the regenerative

box. The box is defined by using the  quantile in the estimated  distribution

with .

The cycle time is estimated from simulation of 10000 regenerative cycles. The property

of interest, i.e. blocking probabilities, is estimated by conducting a regenerative simula-

tion experiment with 100000 cycles, both of the model with primary route only, and the

model with secondary routes.

6.4.3 Results

No exact results have been established for comparison with the simulation results. How-

ever, to get an indication of the correctness of the simulation results, the blocking criteria

used in the network dimensioning is added to the plot in figures 6.5(a). In appendix F the

details are given. In addition, recall from section 3.5.1, that the observed likelihood ratio

may serve as an indication.

The simulation of the model with primary route only, was running for 21 min. 40.7 sec on

a Sun Ultra 1 (167Mhz), while with secondary route for 1 hour 21 min. 2.8 sec. The sim-

ulation results are presented in figure 6.5 where the blocking of case 2.1 and 2.2 are given.

The reduction in the blocking probabilities by introduction of the alternative routes is

given in figure 6.6. This plot is obtained by taking the ratio between the estimated block-

ing in case 2.2 and case 2.1. Two experiments without importance sampling are conducted

to calculate the speedup between direct and importance sampling simulation. The detailed

results are given in appendix G.

6.4.4 Observations

The most important observations made in this simulation study are:

1. All simulated blocking probabilities are close to the approximation obtained in

appendix F.

2. The observations are most accurate for the largest blocking probabilities.

Pk i( ) k
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Figure 6.5 :   The blocking probabilities of generator 1-15 are significantly
reduced for all generators by inclusion of a secondary route, see figure 6.6 for the

reduction factor. All observations below 1e-10, if any, are removed.
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3. In the current example where sufficient capacity is available for rerouting purposes,

switching to an alternative route on overload will significantly improve the perform-

ance as reduced blocking probabilities.

4. The mean observed likelihood ratio is not far from its expected value, , for

both experiments:

-  with standard error ,

-  with standard error .

This indicates that the simulation results are accurate.

5. A significant speedup is observed in the network with rerouting where the blocking

probability is in the order of . Counting the number of cycles, a speedup of

approximately 650 is observed, and including the simulation overhead introduced by

Figure 6.6 :   The reduction in the blocking probabilities is significant all generators
when a secondary route is introduced.

All observations below 1e-10, if any, are removed.
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the adaptive strategy, the speedup is approximately 50. In the case with no rerouting,

where the blocking is in the order of , no speedup is observed. Tables G.1-G.2

contain more details.

6.5 Case 3: Disturbing low priority traffic

To demonstrate the use of the preemptive priority mechanism, low priority traffic is added

to the case 2. Three simulation series are produced where the blocking probabilities of low

priority traffic are estimated. First the network is simulated with only low priority traffic

generators, then mixed with high priority traffic, and finally mixed with both high priority

traffic and affected by link failures.

The rough approach used for dimensioning of the network capacities, and to identify the

primary and secondary routes, are presented in appendix F.

This case and the results are previously presented in [Hee98].

6.5.1 Generators and resource pools

The network consists of 6 nodes interconnected by 10 links. The topology is described in

figure 6.4. The resource pools that model the links are described in table 6.5.

Table 6.5:  The resource pools of case 3.

1 {1,2,3,9,21,23,27,31,32} 33

2 {4,6,16,18,20,23,24,30,31} 33

3 {5,9,17,19,21,27,30} 37

4 {2,3,6,7,27} 27

5 {8,16,22} 25

6 {3,7,10,13,14} 30

7 {11,13,25} 28

8 {12,14,17,21,26} 30

9 {18,22,25,28,29} 21

10 {15,19,20,24,26,29} 37

10 4–

j Γ j N j
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The network is offered both low and high priority traffic from 32 generators connecting

all 10 nodes. The high priority end-to-end connections use the alternative route when the

primary route is either congested or disconnected on arrival of new entities. The corre-

sponding low priority end-to-end connections, have their primary (and only) route along

the secondary route of the high priority connections. High priority traffic may preempt

low priority connections, and the disconnected calls are lost. A link failure is considered

to be a high priority “call” which is preempting all connections on a link and allocating

the entire link capacity, .

The 32 generators are: 15 high priority generators with bursty traffic ( ), 15 low pri-

ority traffic generators with smooth traffic ( ), 1 low priority generator with busty

traffic ( ), and a generator of link 1 failure where , i.e. all channels on

link 1, . The channel capacities are, N={33, 33, 37, 27, 25, 30, 28, 30, 21, 37}. Gener-

ators 1-15 are the same as the generators used in case 2 in section 6.4. Their attributes are

given in table 6.4, while the new generators 16-32 are defined in table 6.6.

6.5.2 Simulation setup

The regenerative box is identified by conducting two pre-simulations of 50000 events

each. First, the accumulative steady state probabilities  of each generator  are esti-

mated. Then the steady state distribution is estimated, given a state inside the regenerative

box. The box is defined by using the  quantile in the estimated  distribution

with .

The cycle time is estimated from simulation of 10000 regenerative cycles. The property

of interest, i.e. blocking probabilities, is estimated by conducting three different regener-

ative simulation experiments:

- Case 3.1: Low priority traffic only: simulated by 100000 cycles.

- Case 3.2: Low priority mixed with high priority traffic: simulated by 10000 cycles.

- Case 3.3: Low priority mixed with high priority traffic and exposed to link failures:

simulated by 10000 cycles.

In all experiments the importance sampling biasing is defined to change parameters with

respect to provoke the rare events associated with generator 23 and 31. This means that

the importance sampling parameters are switched off when blocking is observed in either

N j
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generator 23 or 31. The generator 23 and 31 are chosen because they have the same route

and priority level, but have different resource requirements, .

6.5.3 Results

No exact results have been established for comparison with the simulation results. How-

ever, to get an indication of the correctness of the simulation results, the blocking criteria

from appendix F are added to figures 6.8-6.9. In addition, recall from section 3.5.1, that

the observed likelihood ratio may serve as an indication.

The simulations of the model with only low priority traffic was running for 51 min.

56.1 sec on a Sun Ultra 1 (167Mhz). With high priority traffic added, the simulation time

was 1 hour 31 min. 57.4 sec, while with link failure it was 1 hour 31 min. 27.0 sec. For

calculation of the speedup between direct and importance sampling simulation, a series of

Table 6.6:  The generators 16-32 of case 3. The generators 1-15 are the same as in
case 2, see table 6.4 for their attributes.

16 0.64 ∞ 1.0 33 1 2 {2,5} -

17 0.76 ∞ 1.0 37 1 2 {3,8} -

18 0.57 ∞ 1.0 33 1 2 {2,9} -

19 1.57 ∞ 1.0 37 1 2 {3,10} -

20 1.14 ∞ 1.0 37 1 2 {2,10} -

21 0.80 ∞ 1.0 37 1 2 {1,3,8} -

22 0.60 ∞ 1.0 25 1 2 {5,9} -

23 1.65 ∞ 1.0 33 1 2 {1,2} -

24 1.19 ∞ 1.0 37 1 2 {2,10} -

25 0.71 ∞ 1.0 28 1 2 {7,9} -

26 1.94 ∞ 1.0 37 1 2 {8,10} -

27 1.41 ∞ 1.0 37 1 2 {1,3,4} -

28 1.45 ∞ 1.0 21 1 2 {9} -

29 1.05 ∞ 1.0 37 1 2 {9,10} -

30 2.90 ∞ 1.0 37 1 2 {2,3} -

31 0.55 ∞ 1.0 11 3 2 {1,2} -

32 1e-6 1 0.1 1 33 0 {1} -

k λk Mk µk Sk ck pk Φk0 Φk1

c23 c31≠
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experiments without importance sampling are conducted. The detailed results are given in

appendix G.

The simulation results of case 3.1 and 3.2 are presented in the figures 6.7 and 6.8. The

blocking probabilities of all low priority traffic generators are included. In figure 6.9, the

blocking probabilities are given for generator 23 and 31.

6.5.4 Observations

The most important observations made in this simulation study are:

1. The simulated blocking of generator 23 and 31 is less than the approximated blocking

obtained by neglecting correlations between the links. It is expected that the rough

approach produces conservative values because this assumption is not realistic.

2. The accuracy of the estimates of generator 23 and 31 is at least as good as the other

estimates. This is as expected because the importance sampling experiment was set up

to provoke rare events which involve generator 23 or 31.

Figure 6.7 :  Plot of blocking probabilities in case 3.1.
All observations below 1e-10, if any, are removed.

Upper bounds of blocking

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bl
oc

ki
ng

 p
ro

ba
bi

lit
ie

s

generators



6.5  Case 3: Disturbing low priority traffic 125

3. The mean observed likelihood ratio for the three cases are

-  with standard error .

-  with standard error .

-  with standard error .

This indicates that the simulation results are likely to be correct, at least for case 3.1

and maybe for 3.2. while the biasing applied in case 3.3 is perhaps slightly too large?

The reason may be that the failure process gives too large contribution to the likelihood

ratio?

4. A tremendous speedup is observed in case 3.1 comparing the relative error of the esti-

mated blocking of generator 23 and 31. The sample mean  from the direct simulation

experiments were more than 1 order of magnitude less than the importance sampling

estimates, . The importance sampling estimates were in the same order of magni-

tude as the approximate blocking values given in table F.7 in appendix F. Hence, the

Figure 6.8 :  Plot of blocking probabilities in case 3.2.
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speedups given by the efficiency measures in (2.11) are misleading as an indication of

the speedup given by importance sampling. In cases 3.2 and 3.3, where the blocking

probabilities are in the order of , no speedup are observed.

6.6 Closing comments

This chapter demonstrates the feasibility of the simulation framework with importance

sampling and the adaptive parameter biasing proposed in chapter 5. The simulation results

show that it is feasible to use this framework to conduct network simulations where the

users have different service requirements, preemptive priorities, and may switch to an

alternative route when the primary route is blocked.

Importance sampling provides good and stable estimates when it is incorporated in regen-

erative simulation. The definition of the regenerative state is critical for the efficiency of

the regenerative simulations. Hence, the experiments in this chapter defines, by pre-sim-

ulations, a regenerative box where the most likely states are included. A regenerative cycle

starts and ends from this set of states. Further work should be done to determine the

number of events that need to be simulated in the pre-simulations of the regenerative box.
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The sensitivity to the -factor which defines the size of the box, should also be further

examined.

Although some of the simulation results gave interesting insight in specific properties of

the systems used as examples, this was not the objective of this study. Hence, only the

observations that demonstrate the feasibility of the importance sampling strategy are

commented.

- In importance sampling simulation, the rare events of interest should occur in propor-

tion to the probability of the targets. This means that the properties of interest with the

largest value, or that are visited most frequently, will have the most precise estimate.

The simulation results in this chapter show this behaviour.

- The original simulation parameters are reinstated when one of the specified rare events

of interest is observed. The properties that depend on these rare events will have the

most accurate estimates, while other properties are “by-products” and will generally

have less accurate estimates.

Example 6.4: Consider the blocking in generator  to be the property to be estimated.

All state subspaces,  where  are defined as targets. The importance sampling

biasing is switched off when a visit to any of the ,  is observed. The proper-

ties of generator , and other generators dependent on these , will be precisely

estimated. Other properties may also be observed, but will, because the importance

sampling setup is not prepared for this, produce less precise estimates.

- When the simulations produce accurate estimates, it is observed that the sampled mean

of the likelihood ratio is close to its expected value 1.

Further experiments should be conducted to gain more experience with the adaptive bias-

ing. Of particular interest are for instance:

- Further simulation experiments on models with a known exact solution, or a good

approximation. This is required to get additional insight in the behaviour of the simu-

lation strategy, e.g. what is the observed mean likelihood ratio in the case of correct and

incorrect simulation results.

- Further simulations of models that combine dependability and traffic properties, e.g.

similar to case 3.3.

ε
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- Further simulations of other properties than the blocking probabilities, both steady

state and transient properties.

Application of alternative rare event techniques to networks with the characteristics given

in this chapter should be investigated. The RESTART technique proposed in [VAVA91] is

an approach that has proven to be an efficient means for rare event simulations. However,

the problem with defining RESTART states in a multidimensional model, see chapter 2,

must be solved. In [GHSZ97] it is proven that, except for very specific models, it is not

possible to define RESTART states in multidimensional models so that the most likely

simulated path is the same as the optimal path from origin to the target. The remaining

question is how robust and efficient is a sub-optimal definition of RESTART states?

In chapter 2, a combination of importance sampling and RESTART was briefly men-

tioned. In the network models it may be possible to define RESTART states associated

with “meta events” like rerouting, disconnection, failure, etc., and to RESTART simula-

tions with importance sampling parameters from these states.
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7

Conclusions

When the network has very strict quality of service requirements, a traditional, direct sim-

ulation approach becomes too inefficient to be of practical use, and a speedup technique

like importance sampling or RESTART must be applied. In this thesis, simulation with

importance sampling is used for performance evaluation of network models with balanced

utilisation of resources.

The main challenge with importance sampling is to determine the best way of changing

the underlying simulation process. This biasing of the simulation parameters is very

model specific, which means that previous results does not necessarily apply to new mod-

els. Optimal parameter biasing is known only for a few, simple models. The importance

sampling efficiency is sensitive to the parameter biasing. Importance sampling is very effi-

cient when optimal, or close to optimal, biasing is applied, while the variance of the

estimates becomes unbounded when the biasing is too strong.

To incorporate importance sampling in simulation of a network with balanced utilisation

of resources, previous strategies for biasing the simulation parameters are no longer effi-

cient. Hence, a new adaptive parameter biasing has been developed, and its feasibility is

demonstrated on several network examples. This, and other contributions, are listed in the

following section. Section 7.2 discusses further work.

7.1 Main contributions

The main contribution of this thesis is the description of a new adaptive biasing of the

importance sampling parameters. With this biasing, importance sampling can be applied

to multidimensional models, e.g. descriptions of telecommunication networks with bal-

anced utilisation of resources. The adaptive biasing removes the unrealistic constraint that

the system performance is dominated by single bottleneck. Previous strategies are based

on such an assumption which simplifies the biasing significantly.
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A new, flexible framework is defined for modelling both dependability and traffic aspects

of communication networks. The adaptive biasing applies to models described within this

framework.

Several network examples are defined and their performance is evaluated by importance

sampling simulations. These experiments serve as demonstration of the feasibility of the

adaptive biasing. The network examples include users with different resource require-

ments, alternative routing strategies, and preemptive priorities. One of the examples also

includes one link failure process. The simulation results are compared with exact results

when they are available, or with approximate results used for dimensioning of the network

examples. The comparison shows that the results from the importance sampling simula-

tion are fairly good.

A heuristic that is derived from the general study of importance sampling, proposes that

the observed likelihood ratio may serve as an indication of the accuracy of the simulation

results. Explicit expressions of the variance of the importance sampling estimates and the

likelihood ratio are developed for an M/M/1/N queue. The study of these variance expres-

sions under different importance sampling parameter biasing, shows that the variance is

(close to) 0 when the biasing is (close to) optimal. However, the variance is infinite when

the biasing is outside a stable region. The exact bounds of this region have been estab-

lished for M/M/1/N models. It is observed, both by theoretical analysis of a simple

systems and from the network simulations, that when the importance sampling estimates

are close to its true value, the mean observed likelihood ratio is close to its expected

value 1 and has low variance.

Although, importance sampling has been the main focus, the thesis contains a brief over-

view of a broader range of speedup simulation techniques. Some of them may be

combined to achieve an additional speedup. A brief comparison between the two rare

event provoking techniques, RESTART and importance sampling, is included. Impor-

tance sampling with optimal parameters will always be at least as good as RESTART,

typically far better. However, optimal importance sampling parameters are only known for

a limited class of models. Several experiments were conducted to compare RESTART and

a non-optimal importance sampling. The result was that for some parameters a small add-

tional speedup was observed compared to using either RESTART or importance sampling

separately.
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Another successful application of importance sampling is demonstrated. Importance sam-

pling is applied in a trace driven simulation of a multiplex of MPEG coded video streams.

The simulation results are compared with another approach based on stratified sampling,

and with direct simulation. The comparison shows that importance sampling provides a

significant speedup.

7.2 Further work

Several directions for further research can be given, both regarding the adaptive biasing

technique, and on other approaches to rare event network simulations.

The adaptive parameter biasing ought to be further tested on additional networks. Other

measures, dependent on rare events, than the blocking probability should also be exam-

ined. For this purpose, real sized networks should be described where the quantities of

interest are known, either from analytic (numerical) solutions, or from measurements.

New guidelines should be developed to set up importance sampling simulations. For

instance, the use of the observed likelihood ratio as indication of correctness in simulation

results should be further investigated.

The influence on the simulation efficiency of adding the adaptive technique should be fur-

ther investigated. It has been observed that the target distribution estimate is less precise

for some model parameters, and an increased understanding should be developed to deter-

mine when the estimate is good, and what to do when it is not. This could lead to the need

for improvements of the target distribution estimates. However, it is strongly believed that

the basic idea of the adaptive technique is an efficient approach that should be applied

when conducting importance sampling simulations of multidimensional models.

The adaptive biasing of importance sampling is developed under the assumption of a con-

tinuous time Markov chain. It is expected that the model framework and the adaptive

biasing can be generalised, for instance, to a generalised semi-Markov process. In non-

Markovian models, importance sampling can be applied using a uniformisation technique

as described in [HSN94].

To get a more complete picture of rare event simulation of network models, alternative

techniques like RESTART should be investigated. This requires that the problem with

defining optimal thresholds in multidimensional models is solved. The experimental

series should be defined to include both a series of separate RESTART experiments for
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comparison with importance sampling, and a series where RESTART and importance

sampling are combined.
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Appendix A

Importance sampling in trace-driven
MPEG simulation1

Ragnar Andreassen, Telenor R&D

Poul E. Heegaard and Bjarne E. Helvik,
Norwegian University of Science and Technology, Department of Telematics

Abstract

The ISO/ITU standard MPEG is expected to be of extensive use for the transfer of video/

moving pictures traffic in the coming ATM high capacity networks. This traffic will stem

from both multimedia services like teleconferencing and video distribution. Hence,

MPEG encoded video will be a salient constituent of the overall traffic. The encoding

causes large and abrupt shifts in the transferred rate at the frame borders and induce strong

periodic components, i.e. it generates a traffic pattern that is difficult to handle with a guar-

anteed QoS and a sufficiently large multiplexing gain. All methods, both analytical and

simulation, proposed up to now for evaluation ATM systems under this traffic has substan-

tial shortcomings when cell losses in the order of 10-9 is required. This paper introduces

a new trace driven simulation technique for cell losses in ATM buffers loaded by a large

number of heterogeneous sources. Statistically firm results are obtained, within a reason-

able computation effort/time, by applying a special importance sampling approach. The

properties of the technique is examined and compared to a previously suggested stratified

sampling technique. The capabilities of the technique is demonstrated by simulation of 76

sources of nineteen different MPEG VBR video source types with cell losses in the 10-9 -

10-12 domain.

1. This is a joint work with Dr. R. Andreassen and Prof. B. E. Helvik, conducted during the winter 95-96.
This chapter is a re-formatted reprint of [AHH96]. Some of the results are also published in [And97].
Observe that the notation and concepts are not consistent in every aspect with the rest of the thesis. How-
ever, the appendix is self-contained and at the beginning of this paper a complete list of notation is given.
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A.1 Introduction

A substantial part of the information that will be transferred in the coming ATM based

high capacity networks will be related to moving pictures/video. This will stem from a

wide range of applications for entertainment, e.g. video on demand, and professional use,

e.g. computer supported cooperative work (CSCW). With its ability for low cost, real

time, variable bitrate transfer, ATM is the enabling technology for this medium. MPEG is

the broadly accepted standard for transfer of moving pictures/video [LG91, Tud95]. Due

to how spatial and temporal redundancy in the pictures are removed in the MPEG encod-

ing and how interpolation is carried out, see section A.2, the resulting information flow is

highly variable, changes abruptly at frame borders and has a certain periodicity. Further-

more, it has, as all VBR encoded video streams, large medium and long term

autocorrelation. All of these properties makes it difficult to perform a stochastic multi-

plexing with a calculated trade-off between a (high) channel utilization and information/

cell loss.

With traffic from MPEG encoded sources as a substantial constituent of the overall traffic

in the network, it is of major importance to handle this trade off. Analytical models exist,

which will give reasonable results in the special cases of homogeneous frame-synchro-

nised sources [AER95, And96]. However, homogeneity is an unrealistic simplifying

assumption, and as the number of sources increases, the assumption of frame synchroni-

sation will give far too pessimistic results. Considering simulation, several publications

describe parametric statistical simulation models, which in certain respects and to various

degrees reproduce properties of real sources [HDMI95, JLS96, KSH95, RMR94]. While

such models offer insight into the statistical nature of video sources, they have a limited

ability to encompass all the aspects of a real MPEG source. Hence, our work is based on

trace driven simulations, i.e. the information transfer requirements from real MPEG

sources are used as input, obtaining more precise results.

Anyhow, at the quality of service (QoS) levels aimed at in ATM networks, direct simula-

tion will fail to produce valuable results, irrespective of whether it is model based or trace

driven. This is due to the scarcity of ATM cell losses. Direct simulation of load scenarios

yielding a cell loss rate in the order of 10-9 and less, requires years of simulation time

before a firm statistical basis is obtained. Simulation speed-up techniques are mandatory.

For trace driven simulations, this line of attack was started by using the method of strati-

fied sampling as presented in [AER95, And96]. That approach, however, is restricted to
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homogeneous sources and suffers from ‘state explosion’ as the number of sources

increases. Another general speed-up approach for source model based ATM simulation

and measurements is presented in [HH94]. This approach utilizes a combination of impor-

tance sampling and control variables. As pointed out above, model based simulation fails

to reflect the properties of MPEG sources sufficiently accurate. Furthermore, for stable

results, also this approach requires rather homogeneous sources.

In the current work, a new trace driven simulation model based on importance sampling

(IS) is presented. This approach enables assessments of low cell loss probabilities, it does

not require frame alignments and is well suited for load scenarios with heterogeneous

MPEG video sources. A presentation is given in section A.3. A comparison of this and the

approach based on stratified sampling is found in section A.4. In section A.5 use of impor-

tance sampling based, trace driven simulation is demonstrated before section A.6

concludes the paper. First, however, a brief introduction to MPEG coding necessary for

the rest of the paper, is given in section A.2.

A.2 MPEG coding

For a general introduction of MPEG coding principles, it is referred to the available liter-

ature, e.g. [LG91, Tud95]. However, mainly to introduce the terms used, a very brief

introduction to some MPEG coding concepts is given here. In MPEG compression, both

spatial and temporal redundancy is removed. The spatial redundancy is reduced by using

transforms and entropy coding, and the temporal redundancy is reduced by motion com-

pensation and differential information encoding. The latter mechanism is enabled by the

definition of three different types of frames:

I-Frames: Intraframes, only intra-frame encoding is used, i.e. only spatial redundancy is

removed. I-frames are typically the largest.

P-Frames: Predicted frames; temporal redundancy is removed by reference to the previ-

ous I or P frame. P-frames are typically the second largest.

B-Frames: Interpolated or bidirectionally predicted frames; temporal redundancy is re-

moved with reference to the previous and/or subsequent I or P frame. B-frames

are typically the smallest.
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The frame types are arranged in a systematic and periodic manner to form groups of pic-

tures (GOPs).

As illustrated in figure A.1, a GOP is headed by an I-frame and the alterations of B and P

frames form sub-cycles in the periodic structure. A fairly usual GOP-pattern (which is

also employed by the sources used in the current work) is “. . . IBBPBBPBBPBB . . .”. It

is seen that MPEG traffic has an activity at the burst level which is governed by frames of

a constant duration. This is common to most video sources. The major difference lies in

that the frames which follow each other in the periodic GOP are of a different kind with

a basically different information content, and a smooth transition over the frames cannot

be assumed.

An important coding parameter of the MPEG coding algorithm is the quantization param-

eter (q), which basically regulates the degree of information loss, and hence the

coarseness of the decoded pictures. Active use of the q-parameter during encoding may

be employed as a flow regulation mechanism. In the sequences used here, fixed quality

video is investigated, and the q-parameter is set at a constant value for each frame type.

To exploit the nature of frame referencing, the I-frames that start the GOP is given the fin-

est encoding, the P-frames a medium degree encoding, and the B-frames that are not

further referenced are given the coarsest encoding.

Forward Predictions

Bidirectional Predictions

Figure A.1:  Example of the basic structure of an MPEG encoded video sequence.

Increasing time

BB B BBBBBI P P P
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A.3 Importance sampling for heterogeneous MPEG sources

A.3.1 General idea

Direct simulation of the cell loss ratio of a multiplex of MPEG sources, as illustrated in

figure A.2, becomes very inefficient when the ratio becomes small (typically  and

less). Importance sampling is introduced to increase this efficiency by increasing the

number of cell losses, i.e. to make multiplex-patterns where overloads are more likely. A

straight forward heuristics is to sample a starting frame position for each source according

to the relative load of each (I, B or P) frame of the film sequence. In addition, a load selec-

tion of the allowed starting frame positions is made in order to ensure that the total number

of cells generated at the starting frame position exceeds the server capacity.

This section will describe these ideas in more details. First, some basic concepts and nota-

tions are introduced and importance sampling described. For simplicity, the speed-up

strategy is described for homogenous sources with synchronised film-sequences. Finally,

generalisations to heterogeneous and synchronised MPEG sources are given.

A.3.2 Basics and notation

Before the importance sampling strategy is introduced the basic MPEG multiplexing sim-

ulation set-up is described, see figure A.2. Necessary notation and basic concepts are also

included. Note that for notation simplicity, only the special case of homogenous sources

10
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Figure A.2:  MPEG multiplexing.
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and synchronised film sequences are described here. This means that the frames arrive

simultaneously to the multiplexers of figure A.2, and that they all stem from the same

film-sequence. In section A.3.4.2 and A.3.7, generalisations are described.

A.3.2.1 General notations

Number of frames in a sequence.

Number of sources.

 (the modulo  addition).

 (an identity-vector, implicitly of size ).

 (indicator function)

A.3.2.2 Trace driven simulation

The simulation of multiplexed MPEG sources is done by sampling a starting position in

the film sequence for each source , in sequence from  to . This ordered set of starting

positions, and generally a synchronised or aligned frame-positions, are denoted a frame

constellation, . The system response  is the number of cell losses which are determin-

N

M

a b⊕ a b 1–+( )mod N( ) 1+= N

1
˜

1 1 … 1, , ,{ }= M

I x( )
1 if x>0

0 otherwise



=

1 2 3 j N-1 N

1 2 3 j N-1 N

source 1

Figure A.3:  Basic concepts related to trace driven simulation of multiplexed
homogeneous MPEG sources.
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istically given by tracing through the  frames in the multiplex of film sequences starting

each source at the position given by .

 Frame constellation (ordered set)

 The frame constellation at frame position identifier  (see figure A.3).

System response of .

 Number of cells in frames given by constellation .

 Maximum number of cells in a frame.

 Set of frame positions having more than  cells.

Number of cells served during a frame period (excl. buffer-length).

Buffer capacity.

A.3.2.3 Concept of alignments

The sampling of a starting frame constellation can be viewed as a sampling of a film

sequence alignment, because the relative position between the  sources is constant

throughout the entire sequence. This means, that the same alignment can be sampled as a

result of sampling any of the frame constellations this alignment consists of. However, the

system response will, due to an initial transient caused by buffers, for high loads be

slightly dependent on the starting frame constellation.

An alignment constituted by the specific frame constellation  is then:

 (A.1)

and , for all  to , is the alignment number  with either (non-specified)

frame constellation in  as the starting constellation. Observe that  different rotations

of the alignment depicted in figure A.3 will result in the same alignment. Whenever a ref-

erence to the starting frame constellation is needed, the index refers to the first source,

called frame position identifier as indicated in figure A.3.
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Note that even if there exists several permutations of the order of MPEG sources (a source

corresponds to a vector of film-sequence pointers in figure A.3), and that each of them will

give identical response, it is, however, essential that each permutation constitutes a unique

alignment. This assumption is necessary to make a simple sampling algorithm, see

section A.3.6.

A.3.2.4 Alignment probabilities

The probability of sampling the alignment  with an offset position  relative to the

frame position identifier is denoted . Hence, the probability of an alignment  is

. The original sampling distribution is uniform, i.e.

 (A.2)

System response is obtained under the assumption of a deterministic intra-frame cell

arrival process. With this assumption, and noting that a large number of cells will arrive

during a frame epoch, response is determined by multiplexer states at frame arrival

instants. If service before cell arrival is assumed, the following recursion relation apply:

 (A.3)

Hence, the system response is ( ):

 (A.4)

with expectations . Hence, an unbiased estimator for  direct sim-

ulation experiments is:

 (A.5)

where the alignment  is sampled according to the uniform distribution of (A.2).
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A.3.3 Importance sampling fundamentals

Importance sampling have been used with success to yield speed-up in rare event simula-

tion, see [Hei95] for an excellent overview. In MPEG simulation cell losses are rare events

which will require extremely long simulation periods to obtain stable estimates.

The theoretical fundamentals of importance sampling can shortly be described by the fol-

lowing. Consider  as an observation of the quantity of interest to be a function

where  is sampled from . Non-zero values of  are rarely observed in a direct sim-

ulation. The basic idea is simply to change the underlying sampling distribution to

to make  more likely to occur and where the following relation hold:

 (A.6)

where  is the likelihood ratio between  and . Thus, the property of inter-

est  can be estimated by taking  samples from , accumulate , and use the

following unbiased estimator:

 (A.7)

The main challenge is to choose a new distribution, , that minimizes the variance to

this estimator, . If an unsuited distribution is used, it is observed that simulation is inef-

ficient and is producing inaccurate results, see e.g. [DT93].

In MPEG simulation let  be an alignment  of film sequences originally sampled from

a uniform distribution, , and let  be the number of cells lost, see (A.4). The

following section will discuss heuristics specific for the MPEG sources which determine

the new sample distribution .

A.3.4 Changing the sampling distribution

A.3.4.1 Heuristics

In a trace driven simulator for MPEG sources, the alignments are sampled according to a

uniform distribution. When a large number of frames in the sequence have few cells, and/
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or the overall mean load are low, this will result in an enormous number of

observations.

Importance sampling seeks to reduce this problem by increasing the frequency of align-

ments having . This objective is achieved by changing the  by the following

heuristics:

1. Load distribution: Sample the starting (frame) position of each of the multiplexed

sources proportional to its load, instead of the uniform distribution, see figure A.4. This

will provoke the heavy load frames to coincide in an alignment.

2. Load selection: The conditional starting position of source  are restricted to those

which makes an overload (and hence cell loss) feasible.

A.3.4.2 Alignment probabilities

Because an alignment is selected through sampling of one of its frame constellations, the

alignment probability  is as the sum of frame constellation probabilities, .

Let  be the set of frame positions having more than  cells. Then, the

change of frame constellation probabilities to , according to the heuristics from

section A.3.4.1, can be expressed as:

Y l 0=

Y 0> f∗ X( )

1

0
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Figure A.4:  Cumulative load distribution.
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In sequence =1 to  do1:

Let

 (A.8)

and finally

 (A.9)

This operation is -complex and is the most critical operation in the algorithm with

respect to computer efficiency. However, if the film-sequence is sorted by frame size in

decreasing order, and the frame references to the original unsorted sequence are known,

the evaluation can be reduced to a -complex operation, see [And97].

Eq. (A.8) can easily be generalised to heterogeneous sources. The number of cells at

frame position , , must be generalised to  where the new index  refer to the

film-sequence type. This is simply substituted into (A.8). However, to avoid the frame

constellation sampling to be biased, the sequence of which sources are sampled, must be

randomly ordered2.

A.3.5 The loss likelihood

The likelihood ratio is the ratio between the alignment probabilities in (A.2) and (A.9):

 (A.10)

A.3.6 Algorithm

The complete algorithm can be described as follows:

Requirement:

1. The frame space is reduced for every source, dependent on the accumulated load of the frames sampled by
the previous sources, and the maximum load which is possible to obtain by the remaining sources.

2. In the homogeneous case, this sequence is fixed, i.e. the frame position of source 1 is always sampled first,
then 2, and finally source .
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/* repeat the following to obtain frame constellation probabilities */
For  {

 from (A.8)
}

/* sample an offset from to reduce the effect of the buffer transients */

/* add this offset to all sources */

/* tract all  frame positions in the sampled alignment */
For  {

if  {
/* update system response, see (A.4) */

/* update alignment probability according to (A.8) */

}
}
/* calculate the loss likelihood according to (A.10) */

/* update statistics of the observation  */

This algorithm is repeated  times, and  is estimated by (A.7).

A.3.7 Non-synchronized sources

In establishing equation (A.3), the assumption was made that frames from different

sources arrive simultaneously at the multiplexer. When this assumption is removed, each

source will in addition to the frame starting point also be associated with a specific frame

phase. Such a generalisation will influence both calculations of system response and like-

lihood ratio.

A.3.7.1 Revised multiplexing model

System response may still be determined by system states at frame arrival instants, but

now frame arrivals are spread throughout a frame epoch according to the frame phases of

sources. Hence, the following generalisation of the recursion in (A.3) applies:

 (A.11)

where  is the number of cells served during the j’th fixed rate interval.
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A.3.7.2 Revised likelihood ratio

Consider that when multiplexing video sources, the smoothest compound source is

obtained when frame phases are evenly spaced in the frame period. In this scenario, each

of the M sources may occupy one of M distinct and different frame phases, so in a

sequence of length N, there will then be  discrete starting points which can be cho-

sen in  ways. The uniformly distributed probability of choosing any alignment is

then given by

 (A.12)

The probability of choosing a specific phase-constellation is 1/M!, so the biased alignment

probability may be expressed as

 (A.13)

Here fi denotes the phase of source i. The likelihood ratio of the l’th alignment will then

be:

 (A.14)

Letting the number of discrete phase values increase, a Riemann sum can be formed such

that the likelihood ratio in the limit of continuously varying frame phases can be expressed

as

 (A.15)

Here Tf denotes the frame duration, the sum in the last term is performed over all fixed-

rate intervals in the simulation sequence and  is the length of the i’th fixed-rate inter-

val relative to the frame duration. It should be noted that the complexity of calculations

for unsynchronised sources is a factor M higher than for unsynchronised sources.
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A.4 Speed-up techniques for homogenous MPEG sources

In previous work [AER95], an alternative speed-up technique for MPEG simulation was

applied, which was based on the use of stratified sampling, see e.g. [LO88] for an intro-

duction.

This section compares the importance sampling with stratified sampling and the direct

simulation approach for application to a multiplex of MPEG video sources. The compar-

isons are made based on an efficiency measure , considering both the variability  and

the CPU-time consumption , over  experiments, see [Hee95]. Note that the most effi-

cient technique will have the lowest measure1.

 (A.16)

1. Observe that this efficiency measure is the reciprocal of the measure in (2.11).

Figure A.5:  Comparison of direct simulation, importance sampling and stratified sam-
pling with respect to the efficiency measure. Note that all values are in the logarithmic

scale.
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The comparison was carried out for two film sequences, MrBean and Bond, having dif-

ferent characteristics, see table A.1. A representative sample of the results are presented

in figure A.5 showing the efficiency measure in a logarithmic scale for the three

approaches. The main observations are:

1. For high load values, direct simulation is always better than importance sampling and

at least as good as stratified sampling. For high loads the are no rare events associated

with the estimates, and the additional computer cost introduced by a speed-up tech-

nique is wasted.

2. For a small number of sources, stratified sampling is at least as good as importance

sampling.

3. Importance sampling is better that stratified sampling even for a small number of

sources of film-sequences having rather low maximum to mean ratio ( ) like the

Bond sequence.

The relative efficiency of importance sampling to stratified sampling are illustrated in

figure A.6, using load of 0.25 on the MrBean film-sequence and varying the number of

sources from n=5 to 12.

4. Importance sampling is better than stratified sampling when the number of sources

become large.
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Figure A.6:  Efficiency comparison as the number of sources increases.
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As presented in [AER95], the stratified sampling model assumes synchronized and

homogenous sources, while importance sampling does not have these restrictions. Hence,

in the following section, importance sampling will be used to speed-up the simulation of

heterogeneous sources

A.5 Multiplexing of heterogeneous MPEG sources

A collection of 19 sequences of diverse content will be used in the calculations to come.

The statistics was produced at the University of Würzburg. Tematic content and some traf-

fic characteristics of the traces are described in [Ros95].

A.5.1 Source characteristics

The material was captured via analog VHS video-format, and can be characterized as

fairly low quality / low bitrate video. The sequences are 40,000 frames long, the picture

format 288 lines by 384 pels, and the quantization parameter triplet is given by qi, qp, qb

= 10, 14, 18. Table A.1 summarizes some static traffic characteristics of sources.

In the table, Smax, S, v, refers to sample maximum, mean and coefficient of variation

respectively. Indices I, P, B refers to the sequences formed by partitioning the original

sequence after frame types. In the second last column is shown the relative sizes of I-

frames versus P and B frames, which may be taken as a measure of the success of temporal

redundancy removal in the different sequences, see section A.2. The unit of the numbers

is a cell, where a cell payload of 44 bytes is assumed.

What is immediately obvious from the above table is the great diversity of statistical prop-

erties of the sources. The sources are similar in that they use the same coding parameters

and picture format, and were retrieved in the same way from analog video tape. So, even

as the sequences contained the same amount of data before the coding took place, the out-

come varies widely both with respect to mean bitrate, burstiness (peak/mean-rate) and

variability. It may also be seen that the relative sizes of I-frames versus PB-frames vary

from a factor three to about a factor eight, reflecting the various outcomes of temporal

redundancy removal. Analyses of temporal properties of selected sources [And96,Ros95]

show source diversities also in the temporal domain. No single source or source model can

reasonably reflect the above diversity of properties, so the MPEG multiplexing perform-

ance analyses based on single source types will lack in statistical significance.
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A.5.2 Simulation experiments

In the simulation experiments, the number of simultaneous sources was regulated by mul-

tiplying the number of each source type, giving multiplexing scenarios with multiples of

19 sources. Each calculation is based on 5000 independent simulations, and in figures,

error-bars indicate the obtained 95% confidence intervals. Simulation runs lasted from

some hours for the lowest loss probabilities / least number of sources, up to several days

per point for the largest number of sources and the highest loss probabilities. We have con-

centrated on multiplexers with moderately sized buffers.

Results from the simulation experiments are presented in figure A.7.

Table A.1:  Non-temporal statistical characteristics of sources.

Source S v SI vI SP vP SB vB SPB SI/SPB Smax /S

MrBean 50.1 1.17 213.5 0.26 51.9 0.78 29.0 0.66 35.3 6.1 13.0

Asterix 63.5 0.90 202.0 0.27 77.1 0.60 41.1 0.67 50.9 4.0 6.6

Atp 62.2 0.93 215.1 0.29 75.8 0.55 38.0 0.48 48.3 4.5 8.7

Bond 69.1 1.06 236.6 0.31 117.7 0.49 29.9 0.40 53.8 4.4 10.1

Dino 37.2 1.13 156.5 0.21 41.1 0.67 20.8 0.61 26.3 5.9 9.2

Fuss 77.1 0.96 224.9 0.32 135.0 0.48 36.9 0.48 63.6 3.5 6.9

Lambs 20.8 1.53 108.0 0.34  21.1 1.08 9.7 0.93 12.8 8.4 18.4

Movie2 40.6 1.32 163.8 0.37 66.8 0.74 15.4 0.84 29.4 5.6 12.1

Mtv 69.9 0.94 198.5 0.35 111.7 0.55 38.2 0.69 58.2 3.4 9.3

Mtv_2 56.2 1.08 174.4 0.41 71.1 0.86 35.8 0.99 45.4 3.8 12.7

News 43.6 1.27 200.6 0.30 43.9 0.82 23.9 0.60 29.4 6.8 12.4

Race 87.4 0.69 225.1 0.26 108.5 0.48 62.2 0.46 74.8 3.0 6.6

Sbowl 66.8 0.80 193.0 0.28 88.9 0.47 42.7 0.51 55.3 3.5 6.0

Simpsons 52.8 1.11 210.4 0.26 61.2 0.73 29.9 0.67 38.4 5.5 12.9

Soccerwm 71.3 0.85 201.5 0.36 93.8 0.58 46.6 0.61 59.5 3.4 7.6

Star2 26.5 1.39 125.0 0.32 28.8 0.94 13.3 0.91 17.5 7.1 13.4

Talk_2 50.9 1.02 209.6 0.18 50.8 0.46 31.1 0.32 36.5 5.7 7.4

Talk 41.3 1.14 183.9 0.16 42.1 0.59 23.2 0.43 28.3 6.5 7.3

Term 31.0 0.93 106.2 0.22 40.1 0.51 18.1 0.60 24.1 4.4 7.3
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A frequently cited QoS objective for ATM-networks is a cell loss probability of 10-9.

Hence, results in figure A.7 are presented for the region between 10-12 and 10-6. Even

though these probabilities are low from a networking perspective, it should be noted that

these numbers are very high compared to the absolute minimum loss probability of the

multiplexed sources, occurring if all sources send their maximum sized frame simultane-

ously, i.e. giving a loss probability of less than 1/40.000M. Our calculations are based on

several thousand non-zero observations, and have a high level of confidence.

In [KSH95] and [RMR94] considerable statistic multiplexing gains for MPEG sources

were reported. These analyses were based on of single MPEG source types in high loss

regions. From the rightmost column of table A.1, it can be seen that burstiness of sources

vary between 6 and 18, so by the methods presented here, we have been able to confirm

that even for the low loss probability regions of heterogeneous multiplexed sources, there

is a good potential for statistical multiplexing.

As load increases to certain levels, the sampling bias will tend to destabilize the system,

giving poor confidence as a result. This may be observed for the highest loss value of

M=76, B=500. For high loss probabilities, direct simulation will, however, be possible.
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Figure A.7:  Loss probabilities of multiplexed sources, 95% confidence intervals.
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As number of sources increases, obtaining good result will be correspondingly more dif-

ficult, and the multiplexing 76 sources represents what we estimated as the maximum

reasonable complexity with the current choice of parameters. The method is sensitive to

buffer lengths, because the load selection algorithm does not include buffer when irrele-

vant samples are excluded. Hence, analysing a larger number of sources should be feasible

for shorter buffer lengths.

Considering the multiplexing scenarios, the link rates necessary to accommodate the dif-

ferent number of sources at a loss probability objective of 10-9 is calculated by linear

interpolation and presented in table A.2. In the calculations, a video frame rate of 25

frames per second is assumed.

The low bitrate / low quality of the sources allows a fairly large number of sources to be

multiplexed even at moderate link rates, thus giving reasonable levels of utilisation.

Acquiring similar data for other video qualities will require further investigations.

A.6 Conclusions

Assessing ATM multiplexing performance at the lower cell loss objectives have for a long

time been a general problem. There are several factors contributing to the difficulty of

such calculations. Many data sources, and MPEG video sources specifically, are of a com-

plex statistical nature, and will not easily yield to analytical analysis. Using parametric

simulation models, there is the problem of capturing essential source properties and the

added problem of obtaining results of significance for the rarely occurring events. Both in

simulation modelling and analytical analysis, there is the problem of modelling the diver-

sity of video sources.

In the current work, we have described a method that will solve the above problems. We

have based our method on using the statistical material in a direct manner, and in obtaining

good results, the availability of sufficient amount of statistical material is crucial. As

MPEG coders become more readily available, the availability of statistical material will

Table A.2:  Multiplexer dimensioning

Number of sources
Compound source
rate

Link rate, B = 200 Link rate, B = 500

M = 57 32.4 Mbit/s 53.7 Mbit/s 50.2 Mbit/s

M = 76 43.2 Mbit/s 63.7 Mbit/s 60.6 Mbit/s
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be abundant, and the method may be applied to any desired mix of sources. Although the

current focus has been on MPEG sources, the method is applicable for all sources with a

constant duration framing property.

As no known methods exist for obtaining optimal biasing strategies for the importance

sampling calculations, the employed sampling heuristics uses the knowledge of the char-

acteristics of MPEG source to provoke overloads (and cell losses). The heuristics are

based on a combination of likely contributions to cell losses from the individual frames,

and a systematic exclusion of irrelevant samples.

The usefulness of the method is demonstrated by giving, to the authors knowledge, the

most reliable MPEG multiplexing performance data published to date.
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Appendix B

List of symbols, estimators and concepts

This appendix includes a list of symbols used in this thesis, and an overview over the mod-

elling concepts described in chapter 4.

B.1 List of symbols

B.1.1 Property

property of interest,

original estimate of ,

importance sampling estimate of ,

RESTART estimate of .

B.1.2 Distributions

sample, e.g. sample path ,

observed property of interest,

original sampling distribution,

importance sampling distribution.

γ

γ̂ γ

γ̂ IS γ

γ̂R γ

s
˜

s
˜

ω
˜ i{ }

i 0=
n

=

g s
˜

( )

f s
˜

( )

f∗ s
˜

( )
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B.1.3 System state

global state space, implicit of  dimensions, ,

 system state , ,

system state  after event ,

target subspace , ( , ),

regenerative subspace, .

B.1.4 Building blocks

Resource pools

number of resource pools,

number of resources in pool , (resource pool capacity),

set of generators with pool  as a constraint.

Generators

number of generators,

entity from generator ,

routing set, (a fixed set of resource pools),

(state dependent) arrival rate,

population size,

(state dependent) departure rate,

number of servers for generator  entities,

capacity that entities from generator  requires from pool ,

Ω
˜

K Ω
˜

K

ω
˜

ωk{ }k 1=
K= ωk #ek= ω

˜
Ω
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∈
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˜ i ω

˜
i

Ω
˜ j j Ω

˜ j Ω
˜
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˜ 0 Ω
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J

N j j

Γ j j

K

ek k
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λk ω
˜
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priority level of generator ,  is the highest priority level,

number of rerouting alternatives for generator .

B.1.5 Target subspace

target subspace  expressed in terms of the system states,

target subspace  expressed in terms of blocking positions in pool ,

target distribution ( ), at specific state ,

importance of target  ( ), at specific state .

B.1.6 Simulation process

state of continuous time Markov process at time ,

state of discrete time Markov process at embedded point  at time ,

event variable describing possible next states of the process .

B.1.7 Most likely path to a target

the most likely subpath from current state  up to .

number of events in ,

sequence of generators constituting the subpath ,

generator of the ‘th event in , ,

number of resource allocated,

initial number of resource allocated at current state ,

system state  where the sum of allocated resources, ,

pk k p 0=

Rk k

Ω
˜ j j

B j j j

p j ω˜
( ) j 1 … J, ,= ω
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H j ω˜
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˜

X
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X
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Z
˜ i X

˜ i
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( ) ω

˜
Ω
˜ j

n j σ j ω˜
( )

k
˜

k1 k2 … kn, , ,{ }=

σ j ω˜
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ki i σ j ω˜
( ) k Γ j∈

x

x0 ω
˜

ω
˜
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ωkckjk Γ j∈∑ x=
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probability contribution from generator  to state ,

normalisation constant from generator  at state ,

normalisation constant at state ,

probability of allocation of  resources (from pool ).

B.2 Indexation

index vector of size  which is 1 at position  and 0 elsewhere.

some property (of interest),

property  under importance sampling distribution,

th sample of ,

property  of generator ,

property  of resource pool ,

property  at priority level ,

property  after event ,

 or

property  with  resources allocated.

B.3 Estimators

number of replicas in a simulation experiment.

Sample mean:

αxk k x

Gxk k x

Gx x

πx x j

1
˜ k

0 … 1 … 0, , , ,{ }=

K k

X

X∗ X

Xr r X

Xk X k

X j X j

X p( ) X p

Xi X i

Xx X x( )

X x

R

X
1
R
--- Xrr 1=

R
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Sample variance:

Standard error (of sample mean):

Relative error:

B.4 Modelling concepts

Resource pool: a finite set of identical and interchangeable resources. The capacity of the

pools is , .

Entity, , : an item that holds  resources from pool

Event: an occurrence that trigger a request or release of  resources.

Generator (of entities): a component which explicitly models processes generating the

events that operates on the entities.

System state,  (  is the global state space): a representation of the current number

of entities at any time, i.e.  where .

Path: any sequence of events , where  is the system state

after event  and  is the total number of events in path .

Target, : a subset of  where the capacity  of resource pool  is exceeded.

Rare event: a visit to the target when , i.e. a visit is unlikely to happen.

Single target model: a model with only one (dominating) resource pool.
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Multiple target model: a model with several pools with significant contributions to the

quantity of interest.



- 169 -

Appendix C

Probability of the maximum state in a
sample path

This appendix presents the details for the probabilities  that are used in section 2.7.4.

C.1 Settings

Let  denote the th regenerative simulation cycle, or a sample path, defined as

. The probability of state  being the maximum state visited in

is in (2.34) defined as:

 (C.1)

To derive , the probability of visiting state  in  is required:

 (C.2)

Explicit expressions for  and  are presented in this appendix for an M/M/1/N queue.

The Markov process  is described in section 3.2, and in a more general form in

section 4.2. For an M/M/1/N queue, the event variable  at event  in the recursive

expression in (4.2) is:

 (C.3)

for . Initially,  with probability 1.

To derive , the first step analysis [CM65] is applied. The following equations are estab-

lished for every state  in the queuing model:

Pi

s
˜r r

s
˜r ω

˜ 0 ω
˜ 1 … ω

˜ nr
, , ,{ }= i s

˜r

Pi Pr s
˜r( )

r∀
max i={ } Pr ω

˜ x i=( ) ω
˜ x i≤( ) x 1 … nr, ,=( ),∧{ }= =

Pi i s
˜

Qi Pr ω
˜ x i= x∃ 1 … nr, ,=( ),{ }=

Pi Qi

X
˜

t( )

Z
˜ x x

Z
˜ x

1–

1



=
with probability µ µ λ+( )⁄

with probability λ µ λ+( )⁄

x 1 … nr, ,= Z
˜ 0 1=

Qi

i 1 … N 1–, ,=



170 Appendix C   Probability of the maximum state in a sample path

 (C.4)

where  and  for . After some manipulations,

 (C.5)

This probability is essential for the derivation of the probabilities .

C.2 Direct simulation

The original distribution  is derived directly from (C.5). Recall from (C.2) that  is

the probability of visiting state  in .  is the probability of state  is the maximum state

in , i.e. state  is visited in  but not state :

.  (C.6)

C.3 RESTART

 are the probabilities  in the RESTART distribution. To explain how  are deter-

mined, recall the basic regenerative cycle (or sample path) from section 2.7.1. This is the

path that consists of a sequence of events that starts from, and ends in, the renewal state

 and contains no splitting of the simulation process. This is the simulation process

under the original distribution. The maximum probabilities in the basic path is the  from

(C.6). This means that for all maximum states  below the first threshold state the maxi-

mum probabilities for optimal and RESTART distributions are equal, except for a

normalisation constant that is introduced later. For maximum states  above the first

threshold, the number of replications will influence the . In figure C.1 an example is

plotted including two intermediate thresholds states. At threshold 1 at state 4,  replica-

tions of the simulation process are made from this threshold state. This implies that the

probability of a maximum state above the threshold state are increased by a factor of .

The same is repeated at every threshold state.
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Let  be the th threshold state with respect to target subspace . The number of rep-

lications at every threshold  is denoted . The probabilities can then be

expressed as:

 (C.7)

or in a more compact notation

 (C.8)

where the normalisation constant  satisfies .
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Figure C.1:  The maximum state probabilities in the RESTART distribution is a prod-
uct of the probabilities in the original distribution, , and the number of replications

made at every threshold.
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C.4 Importance sampling

 are the probabilities  in the importance sampling distribution. The maximum

state distribution for importance sampling is derived simply by scaling the arrival and

departure rates as described in section 3.4.2. The new rates are substituted in

.  (C.9)

With optimal scaling , then .

Thus, substitute  by  in (C.6) then:

.  (C.10)

C.5 Importance sampling combined with RESTART

 are the probabilities  in the importance sampling combined with RESTART

distribution. These are derived by substituting  by  from (C.10) in (C.8). Then, the

following expression applies:

 (C.11)

where the normalisation constant  satisfies .
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C.6 Constant ratio between direct and optimal importance sampling

The ratio between the maximum state probabilities in original and optimal importance

sampling distributions, , are observed from the figures in section 2.7.4 to be con-

stant for all . This constant can be determined analytically:

 (C.12)

Hence, the constant ratio is equal to the optimal -factor, see section 3.3.3.1.

For other biasing than optimal, the ratio  is not constant.
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Appendix D

Analytic variance of the importance sam-
pling estimates and the likelihood ratio

This appendix provides the formulas necessary to produce the plots in chapter 3.5. These

plots show the variance of the conditional and unconditional likelihood ratio, and of the

importance sampling estimate, .

D.1 Model assumptions

The formulas in this appendix are developed under assumption of simple random walks.

The -dimensional simulation process  is described in section 3.2, and in a more

general form in section 4.2. The recursive expression for the embedded process  given

in (4.2) is.

 (D.1)

where  is the random event variable. With absorption barriers at origin and at resource

capacity , the expression in (D.1) is changed to:

 (D.2)

where , i.e. the sum of the state variables at embedded point .
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Example D.1: For , the event variable becomes (where ):

 (D.3)

and the recursion from (D.2) is:

.  (D.4)

Figure D.1 illustrates how a one dimensional random walk on a  states Markov

chain looks like.

The likelihood ratio, , and the property of interest , are both associated with a sam-

ple path  (or cycle), see (3.2). A sample path consists of  observations of the process

 between two arrivals to empty system, i.e. where  and  and  for

all . A sample path  is also referred to as a cycle because it represents a

regenerative cycle in the Markov chain model.

D.2 Contents of appendix

Expression for the following properties are given in this appendix:

the probability of absorption in state  after  events in a sample path starting

from state , see definition in (D.5) and expressions in (D.8) and (D.12).

the probability of absorption in state  after  events in a sample path starting

from state , see expressions in (D.9) and (D.13).

K 1= p q+ 1=

Zn
1–

1



=
with probability q

with probability p

Xn

Xn 1– Zn+

Xn 1–



=
0 Xn 1– N< <( )

Xn 1– 0≤ Xn 1– N≥∧

N 1+

0 1 2 N-1
1 p p p

q q q q

Figure D.1:  Simple N+1 state Markov chain model of an M/M/1/N queue.
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the first order expectation of the likelihood ratio, given absorption in state ,

see (D.30).

the second order expectation of the likelihood ratio, given absorption in state

, see (D.32).

the variance of the likelihood ratio, given absorption in state , see (D.35).

the first order expectation of the likelihood ratio, given absorption in state ,

see (D.33).

the second order expectation of the likelihood ratio, given absorption in state

, see (D.34).

the variance of the likelihood ratio, given absorption in state , see (D.36).

the first order expectation of the likelihood ratio, see (D.37).

the variance of the likelihood ratio, see (D.38).

the variance of the importance sampling estimate, see (D.41).

Section D.3.1 presents a recursive formula for , and D.3.2 includes a closed form

expression from [CM65]. Observe that the original expressions from the book [CM65]

has been corrected for a missing factor.

In section D.4, the expectation and variance of the conditional likelihood ratio, given a

visit to state , are described in an explicit form by simplifications of the . The

variance of  easily follows from  and .

As a part of the derivation of the expression , a convergence condition to ensure

finite variance was established for single dimensional model in section D.4.3. An explicit

expression for the upper bounds of the BIAS factor is derived.

By application of Kroenecker algebra, see [Les88] for a brief overview, the probability

matrix can be extended to a multidimensional model. This makes the recursive formulas

from section D.3.1 and D.4.2 applicable to multidimensional models. In section D.6 the

extension to a two dimensional model is described.

E L N( ) N

E L
2

N( )

N

Var L N( ) N

E L 0( ) 0

E L
2

0( )

0

Var L 0( ) 0

E L( )

Var L( )

Var γ̂ IS( )

p i N,( )

N p n N,( )

γ̂ IS E L N( ) Var L N( )

Var L N( )



178 Appendix D   Analytic variance of the importance sampling estimates and the likelihood ratio

In section D.7, the formulas are used on a few examples of one and two dimensional

models.

D.3 The probability of absorption in state N

An expression of  is established in this section. A recursive equation which is valid

for both single and multidimensional models is described. The calculation of  are

computer demanding, and hence for single dimensional models an alternative and explicit

expression for efficient calculations is derived.

D.3.1 The probability matrix approach

With reference to the model in figure D.1, the probability of visiting state  for the first

time after  events in a sample path, , given start in state , is:

.  (D.5)

This is the same as the probability of reaching the state  after  events in a Markov

chain with absorbing barriers at state  and , given start in state . Figure D.2 intro-

duces absorbing barriers at state 0 and  in the model from figure D.1

Let  be the transition probability matrix for the model in figure D.2:

.  (D.6)

p i N,( )

p i N,( )

N

i s
˜

0

p i N,( ) Pr Xi N= 0 X< j N< j 1 … i, 1–,=( ),( ) X0 0=( )∧{ }=

N i 1–

0 N 1

N

0 1 2 N-1
p p p

q
q q q

Figure D.2:  Absorbing barriers at state 0 and N in the model of figure D.1.
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By Kroenecker algebra, described in section D.6, a transition probability matrix  can be

generated for multidimensional models, which makes the results in the following applica-

ble also to these models. The probability distribution on  after event  is given by:

.  (D.7)

The initial condition for one dimensional model is , i.e. .

Now:

 for ,  (D.8)

, for ,  (D.9)

where the latter is the corresponding probability of reaching the absorbing state 0 in

events, given start in state 1.

The asymptotic probabilities after a large number of events  are (  and

):

,  (D.10)

.  (D.11)

These recursive formulas are computer demanding, and hence an explicit expression is

required as the size of the model grows, i.e.  become larger.

D.3.2 The Cox and Miller formula

In [CM65], explicit expressions for (D.8)-(D.11) are found, valid for an one dimensional

Markov chain. The absorbing barriers are defined at state  and . In the model from

figure D.2 this corresponds to  and , i.e. a renumbering of the entire

state space  by -1. Section 2.2 in [CM65] contains an error in (22) on page 32. A factor

 is missing. Hence, the corrected formulas are included in this section for the sake

of completeness, using  and  as absorbing barriers, and assuming that

:
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 for ,  (D.12)

, for ,  (D.13)

where  and .

Furthermore, if :

 (for : ),  (D.14)

 (for : ).  (D.15)

D.3.3 The conditional probabilities

Normalization of  and  by  and , respectively, gives the following

conditional probabilities:

,  (D.16)

.  (D.17)

These are the probabilities of absorption after  events, given start in state 1, and absorp-

tion in state N and 0, respectively.

D.3.4 Importance sampling probabilities

The notation  is applied in the following to represent the probability of reaching

the absorbing state  in  events, where  or . Under the importance sampling

distribution the arrival and departure probabilities,  and , are substituted by  and

, and  is denoted .
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D.4 The variance of the likelihood ratio

Through a series of simulation experiments it has been observed that the variance of the

likelihood ratio changes significantly as the scaling of the importance sampling parame-

ters changes, i.e. as the BIAS factor from section 3.4.2 changes. Expression for the

variance of the likelihood ratio is therefore developed to investigate how this variance

changes and how it relates to the change in the variance of the , see section D.5.

D.4.1 The likelihood ratio after i events and absorption in state  for a simple
chain

Let the model still be a one dimensional Markov chain with constant rates and with two

absorbing barriers. The observed likelihood ratio in a sample path is given by the number

of events  from the initial state  and to the absorptions state. The importance sam-

pling strategy turns off the biasing when the target state  is reached, and hence the

remaining sequence from state  and back to  will not affect the accumulated likelihood

ratio. The likelihood ratio consists of two factors, one contribution associated with the

direct path from initial state  to the given absorbing state, either  or . The second con-

tribution is from an arbitrary number  of arrival and departure events between the

transient states of the model, i.e. the states . These arrival and departure

events are denoted loops. Observe that each loop consists of two events.

Let  denote the likelihood ratio given  loops and absorption in state :

 for ,  (D.18)

 for .  (D.19)

The factor  in (D.18) is the contribution to the likelihood ratio from a direct

path from the initial state  up to the absorption state . The factor  is

the corresponding contribution where loops are observed before reaching state . For

 the  loops corresponds to  events from initial state . This implies

that (D.18) is defined only for . Correspondingly,

from (D.19), the factor  is the contribution of the direct (a single event) path from

state  to absorption in state , and  is, as in (D.18), the contribution
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from  loops. The number of events are , and hence (D.19) is defined for

.

D.4.2 First and second order expectations; the probability matrix approach

In section D.3.1, the original model was described by the transition probability matrix

from (D.6). The corresponding matrix under importance sampling parameters is:

.  (D.20)

For multidimensional Markov models, a corresponding matrix  can be generated by

Kroenecker algebra.

Let  be the initial likelihood vector. The likelihood vector after

events in the Markov chain is given by the following recursive matrix operations:

 (similar to (D.7)).  (D.21)

The square likelihood vector is:

.  (D.22)

The first order expectation of  is obtained from  after infinite number of events:

 (D.23)

and the second order expectation of  from  is:

.  (D.24)
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Correspondingly, the first and second order expectations for the likelihood ratio given

return to state 0 before reaching state , are:

,  (D.25)

.  (D.26)

For practical numerical calculations of (D.23) to (D.25), only a finite number of events

is included. This means that the results are approximations. For BIAS factors close to 1,

they converge after a few events, and the approximation is good. But, for higher BIAS the

convergence is very slow, if converging at all, and a very large number of events have to

be included to get a good approximation. The calculation become very computer

demanding.

Instead, an explicit expression should be applied whenever available. For one dimensional

Markov model, such an expression can be obtained using the equations in section D.3.2.

This makes it possible to determine the upper bounds of the BIAS factor where the vari-

ance is finite, i.e.  converges.

D.4.3 First and second order expectations; one dimensional model

The expectation of the likelihood ratio is given by combining the expression obtained in

the previous sections.

D.4.3.1 First order expectation; absorption in state N

The first order expectation of  is:

.  (D.27)

Recall form section D.3.2 that:

 (D.28)

N

E L 0( ) Λ0
∞( ) Π0

∞( )⁄=

E L2 0( ) Λ0
2 ∞( )

Π0
∞( )⁄=

i

E L2 N( )

L N

E L N( ) L j N( ) p∗ N 1– 2 j+ N( )( )
j 0=

∞

∑ L j N( )
p∗ N 1– 2 j+ N,( )

p∗ N( )
-------------------------------------------

j 0=

∞

∑= =

αν x( ) 1–( )ν 1+ xνπ
N

--------- 
  νπ

N
------ 
 sinsin⋅=



184 Appendix D   Analytic variance of the importance sampling estimates and the likelihood ratio

and observe that:

.  (D.29)

Then, substituting (D.12) and (D.18) in (D.27), and rearrange the order of summation:

 (D.30)

where the factor  is independent of the change of measure.

D.4.3.2 Convergence condition 1; absorption in state N

To ensure a finite expectation, , the factor  for all . Observe that

the maximum is , where

- , and

-  because .

Then, . This means that the expectation is

finite  for all .

D.4.3.3 Second order expectation; absorption in state N

Correspondingly, the second order expectation of  is:
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 (D.31)

Substituting (D.12) and (D.19) in (D.31), and rearranging the order of summation, after

some manipulations the following expression is obtained:

.  (D.32)

The factor  is dependent

on the change of measure, i.e. the convergence of the second order expectation is depend-

ent on the BIAS factor chosen.

D.4.3.4 Convergence condition 2; absorption in state N

To ensure the second order expectation to be finite, , the factor , or

. Then, the convergence requirement, , is

, i.e. for some change of measure the second order expectation (and the

corresponding variance) is infinite! This implies that the variance of the likelihood ratio,

and the importance sampling estimate, is infinite for some change of measure.

Figure D.3 shows a plot of the  for different BIAS factors in 3 different one dimen-

sional models. The shaded areas are the stable regions of the BIAS factor where the

second order expectation is finite. It can been observed from the figure that the stable

region become narrower as the model size, , increases. This indicates that, as the model

increases, it is increasingly important to have good methods to obtain an change of impor-

tance sampling parameters that is close to the optimal. Furthermore, it can be observed

from figure D.3 that the optimal BIAS factor, (BIAS= , obtained by use of the large

deviation results, see section 3.4.2.1), is closer to the upper than the lower bound of this

stable region.
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Figure D.3:  The factor  must be less than 1 to obtain , i.e the
shaded area indicates the stable region of the BIAS factor.
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D.4.3.5 Absorption in state 0

The first and second order expectations of  are derived similar to the expressions

of :

,  (D.33)

.  (D.34)

The convergence conditions for these two sums are the same as conditions 1 and 2 from

sections D.4.3.2 and D.4.3.4, respectively.

D.4.4 The variance of the conditional likelihood ratio

The variance of the conditional likelihood ratio, given absorption in state  or  are:

,  (D.35)

.  (D.36)

D.4.5 The variance of the unconditional likelihood ratio

The expectation and variance of the unconditional likelihood ratio are:

,  (D.37)

.  (D.38)
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D.5 The variance of the importance sampling estimate

Assume that the property of interest is:

The observations  in the estimator of  from (3.2) are considered to be a product of

two dependent stochastic variables, , and . The properties of  are known from the

inference in section D.4, while  are variates taken from a binomial distribution with

.

The th order expectations of the observation  are obtained by conditioning on the

 variates:

 (D.39)

The expectation of  is then:

 (D.40)

and the variance:

.  (D.41)

The same expressions were derived and presented in [CTS93].

D.6 The transition probability matrix for 2 dimensional model

As mentioned in the previous sections, the transition probability matrix of the one dimen-

sional model can be extended to a matrix for multidimensional model by Kroenecker

algebra1. In this section the details of an extension to a 2 dimensional matrix are

described.

1. For a short introduction see [Les88].
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First, recall the following elements of Kroenecker algebra. Let  and  be two matrices

of order . The Kroenecker product is a matrix of order  of the form:

.  (D.42)

The Kroenecker sum is, where  is an  identity matrix:

.  (D.43)

Now, define the transition rate matrix of order  for the one dimensional model with-

out absorption in figure D.1:

.  (D.44)

By Kroenecker sum, two one dimensional models can be combined into a two dimen-

sional model, generating a transition rate matrix of order:

.  (D.45)

The  contains the transition rates between all states in the state space given in

figure D.4 below. The matrix must be modified to introduce absorption states at the origin

where the sample path starts and end, and at the target subspace. The target subspace is

defined by all states where the sum exceeds the resource capacity , . The

resulting state space after modification is given in figure D.5. By repeating the operations

in (D.45), and the modifications afterwards, a probability matrix can be generated for

models with dimensionality higher than 2.

The transition probability matrix  is assigned to the  after normalising each

row of this matrix. This  is substituted in (D.9) to derive the probability distributions.
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Figure D.4:  The state space after full expansion of a single dimensional ran-
dom walk into a 2 dimensional random walk by Kroenecker sum.
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Figure D.5:  The modifications of the state space of figure D.4 considering
absorption and common resource restriction at N.
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D.7 M/M/1/N model examples

D.7.1 Model description

This section contains numerical values from 3 one dimensional and 1 two dimensional

models. Several plots are generated to illustrate how the variance of the likelihood ratio

and the importance sampling estimate changes as the BIAS factor changes.

Three one dimensional models are defined:

Model I: Single M/M/1/N with λ=0.15, µ=1, N=10,

Model II: Single M/M/1/N with λ=0.7, µ=1, N=50,

Model III: Single M/M/1/N with λ=0.9, µ=1, N=200.

The BIASing in these analytical one dimensional model are the same as proposed in

section 3.4.2.1. In addition, a two dimensional model is defined:

Model VI: Shared buffer N=10 (see figure D.5), two user types with λ=0.15, µ=1.

The analytic model for this two dimensional model assumes a constant BIAS factor for

all states, ignoring boundary conditions. In the simulations, the BIASing that was pro-

posed in section 3.4.2.2 is used. The BIAS factor alternates between two values, one at

the border, , and another at the interior of the state space

(where both user types have at least one entity), . These BIAS

factors are a result of reversion of the drift in their respective states.

D.7.2 Observations

Several of observations are made from the study of the variance plots in figure D.6

to D.11. The observations are valid for the model described in section D.1. However, from

network simulation results, it is expected that some of the following observations are typ-

ical, and valid also for more complex systems.

BIAS µ 2λ( )⁄ 3.333= =

BIAS µ λ⁄ 6.667= =
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- The variance of the unconditional likelihood ratio, , in figure D.6 shows a rapid

increase as the BIAS factor approaches the upper bound of the stable region, see

section D.4.3. Observe that the optimal BIAS is closer to the upper than the lower

bound. Furthermore, the optimal BIAS is not equal to the BIAS factor that gives the

minimum variance of the .

- The variance of the conditional likelihood ratio, , given that a visit to state

 is observed, is plotted for Model I-III in figure D.7. The details in the region close

to the minimum variance are plotted in figure D.8 (logarithmic scale) and figure D.9

(linear scale). The  increases rapidly on both sides of the minimum variance.

The variance is 0 at the optimal BIAS factor because the likelihood ratio is constant,

independent of the sample path, given absorption in state .

- The  for the 2 dimensional model given in figure D.10, has no significant

minimum similar to what was observed for the one dimensional model. The reason is

that no BIAS factor results in a likelihood ratio that is constant and independent of the

sample path.

- Figures D.7 to D.9 compare the  and . In a region close to the opti-

mal BIAS, the variance . This region becomes narrower as the

model size increases. Outside the region,  for all models.

- Let BIASminL be the BIAS factor for which the  is at its minimum value, and

BIASminγ the corresponding for minimum . In figures D.7 to D.9 it is

observed that BIASminL < BIASminγ for all models. However, the difference between

these two BIAS factors becomes smaller when the model size increases.

- In figure D.11, the recursive formula is plotted for a finite number of events. This

approximation of  and  is fairly good in the stable region. But, in the

region where the  is unbounded, the approximation fails. This is similar to

what will be observed in a simulation experiment where only a finite number of sam-

ples are taken. This means that the sample variance is a poor approximation of the

 when too strong biasing is applied. See comments in section 3.5.1 where

sampling from a heavy tailed distribution is discussed.

Var L( )

Var L( )

Var L N( )

N

Var L N( )

N

Var L N( )

Var L N( ) Var γ̂ IS( )

Var L N( ) Var γ̂ IS( )<

Var L N( ) Var γ̂ IS( )≥

Var L N( )

Var γ̂ IS( )

E L N( ) Var L N( )

Var L N( )
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Figure D.6:  The mean value and variance of the unconditional likelihood ratio.

Model III: {λ=0.9,µ=1,N=200}

Model II: {λ=07,µ=1,N=50}

Model I: {λ=015,µ=1,N=10}
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Figure D.7:  The comparison of the variance for the IS estimate and the likelihood ratio,
given in a logarithmic scale.
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Model II: {λ=07,µ=1,N=50}
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Figure D.8:  Details close to the infimum of the comparison of the variance for the IS
estimate and the likelihood ratio, given in a linear scale.

Model III: {λ=0.9,µ=1,N=200}

Model II: {λ=07,µ=1,N=50}
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Figure D.9:  Details close to the infimum of the comparison of the variance for the IS
estimate and the likelihood ratio, given in a logarithmic scale.

Model III: {λ=0.9,µ=1,N=200}

Model II: {λ=07,µ=1,N=50}

Model I: {λ=015,µ=1,N=10}
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Figure D.10:  The comparison of the variance for the IS estimate and the likelihood
ratio for the 2 dimensional shared buffer model. The BIAS factors used in simulations

of the model, at the interior and at the border of the state space, are added.

Model IV: {2x{λ=015,µ=1}, N=10}
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Figure D.11:  The mean value and variance of the conditional likelihood ratio
obtained by the recursive formula with a finite number of events (i.e. an approxima-

tion, observe what happens outside the stable region).
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Appendix E

Search for the most likely subpath

This appendix describes the details of an efficient algorithm used for obtaining the most

likely subpath from current state up to the first entrance to a given target subspace. The

basic idea of estimating the target likelihood by this subpath is given in chapter 5.3.

The search algorithm returns the likelihood , ( ) of a subpath as a func-

tion of

- current state, ,

- generators  in ,

- target subspace,  and .

The notation used is listed in section B.1.7. The details of the search algorithm are pre-

sented in section E.1, while numerical examples are given in section E.2.

E.1 The search algorithm

To explain how the search algorithm works, it is important to realise that  is a subpath

in the multidimensional Markov chain, , spanned by the generators in . This subpath

may be mapped to an one dimensional Markov chain, see figure E.1 for an example. It is

convenient to define the subpath in terms of the number of resource allocations, , in addi-

tion to the system states. This means that the target subspace definition , has an

analogous definition in terms of , see section 4.3.4:

.  (E.1)

πx x x0 … N j, ,=

ω
˜

k Γ j

Ω
˜ j B j

σ

Ω
˜

Γ j

x

Ω
˜ j

x

B j x N j ckjk Γ j∈
min x N j≤<( )–

 
 
 

=
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The search algorithm inspects the subpaths that includes only arrival events from current

state , because departure events will reduce the accumulated likelihood of a subpath

with a given end state. The objective is to identify the most likely subpath from  up to

a system state where the number of resource allocations are , .

The Markov properties of the underlying simulation process make it possible to derive this

subpath from the previously derived subpaths. The states where each generator

have one entity less, and therefore holds  resources less, must be considered. For each

generator, the contribution to the probability  of the state having  resources, is derived

from , i.e. the state with  resources. The probabilities are determined from

the balance equations between the states with  and  resource. In figure E.2 an

example is given that illustrates the balance between a state with  resources and the

states with  and  resources.

Let  be defined as the system state  where  resources are allocated, then the bal-

ance equation is defined as follows:

 (E.2)

λ1 λ1 λ1 λ1 λ1 λ1

3µ12µ1µ1 6µ15µ14µ1

λ2

µ2 λ1 λ1 λ1 λ1
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5µ2

λ2
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µ22µ1µ1
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Figure E.1:  The sequence  can be considered as a one dimensional Markov chain
in the 2 dimensional Markov chain spanned by the generators in .
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where  is a probability measure for each generator  in the state with  resource. This

is derived by solving the equations in (E.2). The measure  is interpreted as the contri-

bution to the probability of having  resources when the latest arrival of an entity was

from generator . The probability of  resources is denoted  and it is the maximum of

the s over the  in . With this approach it is not necessary to follow every subpath

from  up to , only to determine the most likely path up to a state with  resources.

This subpath is then repeatedly extended, starting from  and ending at  in unit

steps1.

The following algorithm is proposed to obtain the  ( ):

1. Initialise; .

The search starts from current state  with  resources allocated.

The unnormalised probability measures and the corresponding normalisation constant,

are  and ; , respectively, and .

2. Continue; .

For every step, the probability measure for each generator is obtained by solution of

the balance equations in (E.2).

1. If the greatest common devisor (gcd) of the  for the generators in  is greater than 1, all resource
counters ( , , and the ) are scale by the  before invoking the search algorithm.

αxk k x

αxk

x

k x πx

αxk k Γ j

ω
˜

Ω
˜ j x

x x0= N j

Figure E.2:  The steady state balance between a state with x resources allocated,
and the states with one entity less of generator k1 and k2, respectively.
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 and

; .

The generator that has the largest contribution trigger the event leading to . The

generator  is denoted  and is identified by comparison of the normalised contribu-

tions, , where  is the  with the maximum contribution:

.

The unnormalised probability of  is assigned to the probability measure of the ,

 with the corresponding constant . The system state associated

with  is obtained by adding 1 entity from generator  to the system state associated

with :

.

3. Terminate; .

When the search is completed, a  exists for every . The most likely

and the most important subpath is assigned as described in section 5.3.

E.2 Numerical examples

To demonstrate the use of this algorithm, a model with  generators and

resource pool (target) is included. The state space description is given in figure E.3, while

the model parameters are given in table E.1. The figure shows the resulting subpaths from

3 different starting states, .

Table E.1:  Parameters for the generators in the model with .

Generator,

1 1 ∞ 1 10 1

2 0.1 ∞ 1 5 2
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The results of the search algorithm are given in tables E.2 to E.4. To identify the most

likely, or important, subpaths, the following target subspace is applied:

 (E.3)

Example E.1: The search starts from the current state , with the .

The probabilities , ( ), are given in table E.2. The most likely subpath

is the maximum of  and . The corresponding subpath, , is given by the system

states  (the entries in table E.2 that are not marked with an asterisk). Figure E.4

includes the subpath that is entering the target subspace at  ( ).

Example E.2: The search starts from the current state , with . The

probabilities , ( ), are given in table E.3. Figure E.4 includes the sub-

path that is entering the target subspace at , .

Example E.3: The search starts from the current state , with . The

probabilities , ( ), are given in table E.4. Figure E.4 includes the sub-

path that is entering the target subspace at , .

Example E.4: In this example the two generators have different priority levels.

Generator 2 can preempt entities from generator 1. Figure E.4 shows the new state

Table E.2:  Search for a subpath from {0,0} for the example in figure E.3.
The most likely target is .

(the entries marked with an asterisk are not a part of the most likely sub-path).

0 {0, 0} - 1 1 1

1 {1,0} 1 1 2 0.5

2 {2,0} 1 0.5 2.5 0.2

3* {3,0} 1 0.167 2.67 0.0625

4 {2,1} 2 0.05 2.55 1.96e-2

5 {3,1} 1 1.67e-2 2.57 6.49e-3

6* {4,1} 1 4.17e-3 2.57 1.62e-3

7 {3,2} 2 8.33e-4 2.57 3.25e-4

8 {4,2} 1 2.08e-4 2.57 8.11e-5

9 {5,2} 1 4.17e-5 2.57 1.62e-5

10* {4, 3} 2 6.94e-6 2.57 2.70e-6

B1 x 8 x 10≤<( ){ } 9 10,{ }= =

ω
˜

0 0,{ }= x0 0=

πx x 0 … 10, ,=

π9 π10 σ

ω
˜

x( )

x 9= ω
˜

9( ) 5 2,{ }=

max π9 π10,( ) π9=

x ω
˜

x( ) kx πx Gx πx Gx⁄

ω
˜

1 2,{ }= x0 5=

πx x 5 … 10, ,=

x 9= ω
˜

9( ) 5 2,{ }=

ω
˜

5 0,{ }= x0 5=

πx x 5 … 10, ,=

x 9= ω
˜

9( ) 5 2,{ }=
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transitions that are added to the model in figure E.3. The search algorithm is invoked

twice, once for each priority level:

i. High priority ( ): Find the most likely subpath with  and

 ( ). Table E.5 includes the  when current state is

. This corresponds to starting from  since only generator

2 is included in  and the generator 1 entities will be preempted.

ii. Low priority ( ): Find the most likely subpath with  and

 ( ).

Table E.6 includes the  when current state is .

The most likely subpath from state {3,1} is found by comparison of the  and .

Table E.3:  Search for a subpath from {1,2} for the example in figure E.3.
The most likely target is .

(the entries marked with an asterisk are not a part of the most likely sub-path).

5 {1,2} - 1 1 1

6 {2,2} 1 0.5 1.5 3.33e-1

7 {3,2} 1 0.167 1.67 1.00e-1

8 {4,2} 1 4.17e-2 1.71 2.44e-2

9 {5, 2} 1 8.33e-3 1.71 4.85e-3

10* {4,3} 2 1.39e-3 1.72 8.12e-4

Table E.4:  Search for a subpath from {5,0} for the example in figure E.3.
The most likely target is .

(the entries marked with an asterisk are not a part of the most likely sub-path).

5 {5,0} - 1 1 1

6* {6,0} 1 0.167 1.167 0.143

7 {5,1} 2 0.1 1.1 9.09e-2

8* {6,1} 1 1.67e-2 1.12 1.50e-2

9 {5,2} 2 5.00e-3 1.11 4.52e-3

10* {6,2} 1 8.33e-4 1.11 7.53e-4

max π9 π10,( ) π9=

x ω
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x ω
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x( ) kx πx Gx πx Gx⁄
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Table E.5:  Search for a subpath from {3,1} for priority level .
The most likely target is .

(the entries marked with an asterisk are not a part of the most likely sub-path).

2 {0,1} - 1 1 1

4 {0,2} 2 0.05 1.05 0.0476

6 {0,3} 2 1.67e-3 1.0517 1.58e-3

8 {0,4} 2 4.17e-5 1.0517 3.96e-5

10 {0,5} 2 8.33e-7 1.0517 7.92e-7

λ1 λ1 λ1 λ1 λ1 λ1

3µ12µ1µ1 6µ15µ14µ1

λ2
µ2 λ1 λ1 λ1 λ1
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Most likely subpath from state {0,0}
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1,2 2.2 3,2
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5,1
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Target subspace, Ω1+
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λ1 λ1 λ2

µ22µ1µ1

λ1 λ2 λ1 λ1

3µ1 5µ14µ12µ2
0,0 1,0 2,0 2,1 3,1 3,2 4,2 5,2

From {1,2}:
λ1 λ1 λ1

3µ12µ1µ1

λ1

4µ1
1,2 2,2 3,2 4,2 5,2
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λ2 λ2
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Figure E.3:  The most likely path in a 2 dimensional state space, given 3 different
starting states. See tables E.2-E.4 for parameters and details.
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Table E.6:  Search for subpath from {3,1} for priority level .
The most likely target is .

(the entries marked with an asterisk are not a part of the most likely sub-path).

5 {3,1} - 1 1 1

6* {4,1} 1 0.25 1.25 0.2

7 {3,2} 2 0.05 1.05 4.76e-2

8 {4,2} 1 1.25e-2 1.0625 1.18e-2

9* {5,2} 1 2.50e-3 1.065 2.35e-3

10 {4,3} 2 4.17e-4 1.063 3.92e-4

λ1 λ1 λ1 λ1 λ1 λ1

3µ12µ1µ1 6µ15µ14µ1

λ2
µ2 λ1 λ1 λ1 λ1

7µ1 10µ19µ18µ1

2µ2

λ2

λ2

λ2

3µ2

4µ2

5µ2

λ2

0,0 1,0 2,0

0,1

0,2

Blocking state for generator 1

Blocking state for generator 1 and 2

1,2 2.2 3,2

3,12,1

4,2

5,0

5,1

Target subspace, Ω1
(1)+

Figure E.4:  Most likely subpaths from state {3,1} in a model with two priority levels.
One path for each priority level.

Target subspace, Ω1
(0)

Preemption of
low priority entities

Most likely subpath from state {3,1}
for priority p=1.

Most likely subpath from state {3,1}
for priority p=0. (same as searching from
state {0,1} because generator 1 entities
are preempted).
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Appendix F

Rough dimensioning of network resources

In chapter 6, two simulation experiments were conducted on a system originated from the

network example depicted in figure F.1 below. In this appendix, the routing and dimen-

sioning of this network are described.

It is emphasised that the example is a fictitious network although the map and the popu-

lation assumptions made later are related to a specific country, namely Norway.

3
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2

1
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9

2

3

4

5
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78

1

i

j

Node i

Link j

Figure F.1:  Map of nodes and link connection.
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F.1 Topology

The network comprises 6 nodes and 10 links, the topology is given in figure F.1. Table F.1

contains the naming of the 6 nodes and the provinces (no: fylke) served by these.The traf-

fic load on each node is assumed to be dependent on the total population served by the

nodes. A population vector is placed in column to the right in table F.1.

F.2 Routing

Figure F.1 shows the numbering of the 6 nodes and the 10 links interconnecting these

nodes. At least 2 link disjoint routes between all nodes exists.

Primary and secondary routes are established after first assigning cost factors to each link,

and then finding the minimum cost between every pair of nodes. The cost consists of the

following factors:

- Topology factor - extra costs are added for fjords and mountains (high enterprise costs).

- Distance factor - measured (air route) distance between the end nodes of a link.

- Population factor - extra costs are added in proportion to the population served by the

end node of a link (heuristics: avoid a link adjacent to a heavy loaded node).

Hence, cost factor = topology*distance*population factor. The cost factors used in the

reference example are given in table F.2.

The primary routes between each pair of nodes in the network are the routes having the

minimum cost. The routes are the same in both directions. The secondary routes are link

Table F.1:  Node names and placements, and the population vector.

Node Name Provinces served Population vector [1000]

1 Stavanger Rogaland, Vest-Agder 504

2 Bergen Hordaland, Sogn- og Fjordane 530

3 Trondheim Møre- og Romsdal, Sør-Trøndelag, Nord-Trøndelag 624

4 Tromsø Nordland, Troms, Finnmark 468

5 Oslo Hedemark, Oppland, Akershus,Oslo 1287

6 Larvik Østfold, Vestfold, Buskerud, Telemark, Aust-Agder 933
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disjoint from the primary routes, and they are found by removing the primary route and

finding the minimum route among the remaining. Such a procedure will not necessary find

the optimal pair of primary and secondary routes with respect to the minimum cost. How-

ever, optimal routing strategies are not the topic in this thesis, so for the purpose of

establishing a reference example this procedure is sufficient. The primary and secondary

routes that are included in tables F.3 and F.4, respectively, are obtained by use of bulid-in

functions in Mathematica [Wol91]. For example, the primary route between node 2 and 5

is via link 5, while the secondary route is via links 1 and 2.

F.3 Traffic matrix

The traffic matrix below contains the traffic  between all end nodes in the net-

work. The traffic in table F.5 is assumed to be proportional to the sum of the population

associated with the end nodes, see the population vector in table F.1.

Table F.2:  Link cost factors.

Link Topology factor Distance factor Population factor Total cost

1 2.3 1.5 61.46 212.05

2 4.4 1 149.25 656.71

3 3.3 1 108.20 357.06

4 6.2 1.5 76.10 707.71

5 4.4 1 156.95 690.59

6 11.7 1 67.20 786.19

7 5.8 1 184.79 1071.77

8 6.9 1 133.96 924.33

9 16.8 1 138.59 2328.33

10 1.5 1 276.29 414.44

Table F.3:  The links of the primary routes between node  and .

from i to j 2 3 4 5 6

1 1 1, 4 1, 4, 6 2 3

2 4 4, 6 5 1, 3

3 6 7 8

4 6, 7 6, 8

5 10

i j

ρ λ µ⁄=
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The traffic offered is scaled in accordance to the resource capacity, . For instance, the

high priority traffic has  for all  and . This means that the traffic  in table F.1

must be reduced by a factor of 4, e.g. the traffic between node 2 and 5 is 1.65/4 = 0.41.

The high and low priority traffic offered to each of the links are given in table F.6. The

traffic values are derived from table F.5 and the routing sets.

Table F.4:  The links of the secondary routes between node  and .

from i to j 2 3 4 5 6

1 2, 5 3, 8 2, 9 3, 10 2, 10

2 1, 3, 8 5, 9 1, 2 5, 10

3 7, 9 8, 10 4, 1, 3

4 9 9, 10

5 2, 3

Table F.5:  End to end traffic between node  and .

from i to j 2 3 4 5 6

1 0.64 0.76 0.57 1.57 1.14

2 0.80 0.60 1.65 1.19

3 0.71 1.94 1.41

4 1.45 1.05

5 2.90

Table F.6:  The high and low priority traffic on each link.

link, high priority traffic low priority traffic proposed link capacity,

1 0.79 3.85 33

2 0.39 6.90 33

3 0.58 7.43 37

4 0.68 1.41 27

5 0.41 2.44 25

6 1.10 0 30

7 0.85 0.70 28

8 0.62 3.50 30

9 0 4.38 21

10 0.72 6.89 37

i j

i j

ckj

ckj 4= k j ρij

j N j
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F.4 Rough link dimensioning

Based on the traffic in table F.5, and the primary routes of table F.3, the traffic on each link

can be summarised, see table F.6. The table also includes the proposed capacity of each

link.

In tables F.9-F.11, rough estimates of the blocking probabilities for each generator are

included, using the resource capacities from table F.6. The estimates are established by

ignoring the correlation between the blocking on different links. Hence, it is assumed that

each link can be studied separately. Each entry in tables F.9-F.11 is obtained under this

assumption and by application of Iversen’s convolution method [Ive87]. The final esti-

mates of the blocking of generator  are assigned to the sum of the blocking at each link

in along its route. This is a rough, but fair approximation when the blocking probabilities

are very low (<1e-06). Some of the values in tables F.10-F.11 are larger than 1e-06, and it

is therefore assumed that these estimates are larger than the true value. Hence, these

blocking probabilities may serve as an upper bound for the blocking estimates obtained

by simulations in chapter 6.

In the tables F.7 and F.8, estimates of the blocking in the case 3.1 and 3.2 in chapter 6 are

given.

Table F.7:  An estimate of the blocking probabilities for case 3.1 in chapter 6:
low priority traffic only.

pool 1 pool 2  = pool 1 + pool 2

23 3.21e-09 7.87e-07 7.90e-07

31 3.02e-08 6.05e-06 6.08e-06

Table F.8:  An estimate of the blocking probabilities for case 3.2 in chapter 6:
Mixed with high priority traffic.

pool 1 pool 2  = pool 1 + pool 2

23 3.13e-05 1.41e-04 1.72e-04

31 1.62e-04 7.13e-04 8.76e-04

k

k Σ

k Σ
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F.4.1 Approximate blocking in the high priority traffic generators

Table F.9:  A rough estimate of the blocking probabilities.

pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10

1 1.71e-6 0 0 0 0 0 0 0 0 0 1.71e-6

2 1.71e-6 0 0 6.96e-5 0 0 0 0 0 0 7.13e-5

3 1.71e-6 0 0 6.96e-5 0 1.22e-4 0 0 0 0 1.93e-4

4 0 2.02e-7 0 0 0 0 0 0 0 0 2.02e-7

5 0 0 1.15e-8 0 0 0 0 0 0 0 1.15e-8

6 0 0 0 6.96e-5 0 0 0 0 0 0 6.96e-5

7 0 0 0 6.96e-5 0 1.22e-4 0 0 0 0 1.92e-4

8 0 0 0 0 4.38e-6 0 0 0 0 0 4.38e-6

9 1.71e-6 0 1.15e-8 0 0 0 0 0 0 0 1.72e-6

10 0 0 0 0 0 1.22e-4 0 0 0 0 1.22e-4

11 0 0 0 0 0 0 2.53e-5 0 0 0 2.53e-5

12 0 0 0 0 0 0 0 3.39e-6 0 0 3.39e-6

13 0 0 0 0 0 1.22e-4 2.53e-5 0 0 0 1.47e-4

14 0 0 0 0 0 1.22e-4 0 3.3e-6 0 0 1.25e-4

15 0 0 0 0 0 0 0 0 0 6.97e-8 6.97e-8

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure F.2:  Plot of the summarised blocking for generator 1-15 from table F.9.
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F.4.2 Approximate blocking in the low priority traffic generators

Table F.10:  A rough estimate of the blocking probabilities.

pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10

16 0 7.87e-07 0 0 4.04e-24 0 0 0 0 0 7.87e-07

17 0 0 7.56e-15 0 0 0 0 2.39e-18 0 0 7.56e-15

18 0 7.87e-07 0 0 0 0 0 0 7.25e-09 0 7.94e-07

19 0 0 7.56e-15 0 0 0 0 0 0 7.64e-16 8.32e-15

20 0 7.87e-07 0 0 0 0 0 0 0 7.64e-16 7.87e-07

21 3.21e-09 0 7.56e-15 0 0 0 0 2.39e-18 0 0 3.21e-09

22 0 0 0 0 4.04e-24 0 0 0 7.25e-09 0 7.25e-09

23 3.21e-09 7.87e-07 0 0 0 0 0 0 0 0 7.90e-07

24 0 7.87e-07 0 0 0 0 0 0 0 7.64e-16 7.87e-07

25 0 0 0 0 0 0 1.10e-34 0 7.25e-09 0 7.25e-09

26 0 0 0 0 0 0 0 2.39e-18 0 7.64e-16 7.66e-16

27 3.21e-09 0 7.56e-15 2.40e-25 0 0 0 0 0 0 3.21e-09

28 0 0 0 0 0 0 0 0 7.25e-09 0 7.25e-09

29 0 0 0 0 0 0 0 0 7.25e-09 7.64e-16 7.25e-09

30 0 7.87e-07 7.56e-15 0 0 0 0 0 0 0 7.87e-07

31 3.02e-08 6.05e-06 0 0 0 0 0 0 0 0 6.08e-06

Figure F.3:  Plot of the summarised blocking for generator 16-31 from table F.10.
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F.4.3 Approximate blocking in the low priority traffic generators mixed with high
priority traffic

Table F.11:  A rough estimate of the blocking probabilities.

pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10

16 0 1.41e-04 0 0 2.03e-06 0 0 0 0 0 1.43e-04

17 0 0 1.29e-06 0 0 0 0 4.55e-06 0 0 5.84e-06

18 0 1.41e-04 0 0 0 0 0 0 7.25e-09 0 1.41e-04

19 0 0 1.29e-06 0 0 0 0 0 0 2.72e-06 4.02e-06

20 0 1.41e-04 0 0 0 0 0 0 0 2.72e-06 1.44e-04

21 3.13e-05 0 1.29e-06 0 0 0 0 4.55e-06 0 0 3.72e-05

22 0 0 0 0 2.03e-06 0 0 0 7.25e-09 0 2.04e-06

23 3.13e-05 1.41e-04 0 0 0 0 0 0 0 0 1.72e-04

24 0 1.41e-04 0 0 0 0 0 0 0 2.72e-06 1.44e-04

25 0 0 0 0 0 0 1.35e-05 0 7.25e-09 0 1.35e-05

26 0 0 0 0 0 0 0 4.55e-06 0 2.72e-06 7.27e-06

27 3.13e-05 0 1.29e-06 8.27e-06 0 0 0 0 0 0 4.09e-05

28 0 0 0 0 0 0 0 0 7.25e-09 0 7.25e-09

29 0 0 0 0 0 0 0 0 7.25e-09 2.72e-06 2.73e-06

30 0 1.41e-04 1.29e-06 0 0 0 0 0 0 0 1.42e-04

31 1.62e-04 7.13e-04 0 0 0 0 0 0 0 0 8.76e-04

Figure F.4:  Plot of the summarised blocking for generator 16-31 from table F.11.
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Appendix G

Details from the simulations of the system
examples in chapter 6

This appendix contains some details of the direct and importance sampling simulations

reported in chapter 6. The results provide the basis for computing the speedups. The tables

contain the following:

the estimated property of interest from (2.2),

the standard error of , i.e. the square root of (2.3),

the fraction of regenerative cycles where non-zero observations of the property

of interest are made,

the number of regenerative cycles,

the elapsed CPU time,

the efficiency measure where the simulation overhead introduced by importance

sampling is not included.

the efficiency measure from (2.11).

The speedups given in the tables are the ratio between the efficiency measures for direct

and importance sampling simulations.

Only a few comments on the validity of the estimates and the corresponding speedups are

included in the following.
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G.1 Case 2.1: Arriving calls are lost

G.2 Case 2.2: Arriving calls are connected via secondary route

G.3 Case 3.1: Low priority traffic only

In this case the blocking probabilities are in the order of . A direct simulation exper-

iment including 75 million cycles was conducted. After more than 5 CPU days, the

estimates were more than 1 order of magnitude less than the importance sampling esti-

mates. The importance sampling estimates were in the same order of magnitude as the

approximate blocking values given in table F.7 in appendix F. Hence, the speedups given

in tables G.3 and G.4, are misleading as an indication of the speedup given by importance

sampling.

Using the relative error in the efficiency measures  and , instead of the sample var-

iance, a tremendous speedup is observed, see tables G.5 and G.6.

Table G.1:  Detailed results and speedups.

Type [sec.]

Direct 2.18e-04 7.90e-06 2.45e-03 500000 1.11e+03 3.20e+04 1.44e+07

IS 1.80e-04 9.00e-06 5.71e-01 100000 1.05e+03 1.23e+05 1.18e+07

Speedup 3.85e+00 8.17e-01

Table G.2:  Detailed results and speedups.

Type [sec.]

Direct 8.10e-07 2.10e-07 1.47e-05 1500000 4.81e+03 1.51e+07 4.71e+09

IS 3.14e-07 3.20e-08 4.32e-02 100000 4.01e+03 9.77e+09 2.43e+11

Speedup 6.46e+02 5.16e+01

Table G.3:  Detailed results and speedups, generator 23.

Type [sec.]

Direct 6.81e-09 2.49e-09 2.27e-07 75000000 4.40e+05 2.15e+09 3.66e+11

IS 2.70e-07 1.86e-08 1.14e-01 100000 2.53e+03 2.89e+10 1.14e+12

Speedup 1.35e+01 3.12e+00

γ̂ Sγ̂ z¬ R t mR m

γ̂ Sγ̂ z¬ R t mR m

10 7–

γ̂ Sγ̂ z¬ R t mR m

mR m
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G.4 Case 3.2: Low priority mixed with high priority traffic

Table G.4:  Detailed results and speedups, generator 31.

Type [sec.]

Direct 7.05e-08 1.10e-08 9.47e-07 75000000 4.40e+05 1.11e+08 1.89e+10

IS 2.41e-06 1.84e-07 4.50e-01 100000 2.53e+03 2.95e+08 1.17e+10

Speedup 2.67e+00 6.20e-01

Table G.5:  Detailed results and relative error speedups, generator 23.

Type [sec.]

Direct 6.81e-09 2.49e-09 2.27e-07 75000000 4.40e+05 9.96e-08 1.70e-05

IS 2.70e-07 1.86e-08 1.14e-01 100000 2.53e+03 2.11e-03 8.33e-02

Speedup 2.12e+04 4.91e+03

Table G.6:  Detailed results and relative error speedups, generator 31.

Type [sec.]

Direct 7.05e-08 1.10e-08 9.47e-07 75000000 4.40e+05 5.50e-07 9.37e-05

IS 2.41e-06 1.84e-07 4.50e-01 100000 2.53e+03 1.72e-03 6.78e-02

Speedup 3.12e+03 7.24e+02

Table G.7:  Detailed results and speedups, generator 23.

Type [sec.]

Direct 1.60e-05 1.90e-06 7.67e-04 150000 4.99e+03 1.85e+06 5.55e+07

IS 2.95e-05 7.10e-06 2.18e-01 10000 4.92e+03 1.98e+06 4.03e+06

Speedup 1.07e+00 7.25e-02

Table G.8:  Detailed results and speedups, generator 31.

Type [sec.]

Direct 7.99e-05 5.80e-06 2.56e-03 150000 4.99e+03 1.98e+05 5.96e+06

IS 1.22e-04 1.90e-05 5.63e-01 10000 4.92e+03 2.77e+05 5.62e+05

Speedup 1.40e+00 9.44e-02

γ̂ Sγ̂ z¬ R t mR m

γ̂ Sγ̂ z¬ R t mR m

γ̂ Sγ̂ z¬ R t mR m

γ̂ Sγ̂ z¬ R t mR m

γ̂ Sγ̂ z¬ R t mR m
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G.5 Case 3.3: Low priority mixed with high priority traffic and
exposed to link failures

Observe that the direct simulation approach produced the same estimates in cases 3.2 and

3.3. However, the CPU time is increased by 5.4% because the state space is increase from

 to  dimensions. In the direct simulation of case 3.3, no link failures were

observed.

Table G.9:  Detailed results and speedups, generator 23.

Type [sec.]

Direct 1.60e-05 1.90e-06 7.67e-04 150000 5.26e+03 1.85e+06 5.26e+07

IS 2.10e-05 5.00e-06 2.28e-01 10000 4.94e+03 4.00e+06 8.10e+06

Speedup 2.17e+00 1.54e-01

Table G.10:  Detailed results and speedups, generator 31.

Type [sec.]

Direct 7.99e-05 5.80e-06 2.56e-03 150000 5.26e+03 1.98e+05 5.65e+06

IS 1.48e-04 5.00e-05 5.48e-01 10000 4.94e+03 4.00e+04 8.10e+04

Speedup 2.02e-01 1.43e-02

γ̂ Sγ̂ z¬ R t mR m

K 31= K 32=

γ̂ Sγ̂ z¬ R t mR m


