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Abstract

Simulation is a flexible means for assessment of the quality of service offered by atele-
communication system. However, when very strict requirements are put on the quality of
service, the simulation becomes inefficient because the performance depends on rare
eventsto occur. A rare event is, for instance, acell loss or a system breakdown. A simu-
lation technique that speeds up the experiments must be added. Various techniques are
known from the literature and they should be combined to achieve additional speedups.
The most efficient speedup techniques for systems dependent on rare events, are impor-
tance sampling and RESTART.

The importance sampling techniqueis very sensitive to the change of the underlying sim-
ulation process. Thisis denoted the biasing of the simulation parameters. In thisthesis,
explicit expressions of the variance of importance sampling estimates and the likelihood
ratio are developed for an M/M/1/N queue. The study of how the variance expressions
vary as the biasing changes, demonstrates that the importance sampling is very efficient
in anarrow region, and that the variance is unbounded outside. It is also observed that,
seemingly, the likelihood ratio and its variance may be used as an indication of the accu-
racy of simulation results, in combination with the variance of the estimate itself.

Neither importance sampling nor RESTART are easily applied to multidimensional mod-
els, e.g. amodd of atelecommunication network with avariety of different users. In this
thesis, the focus is on how to do importance sampling simulations of telecommunication
networks with balanced utilisation of the resources. A network system are described by a
multidimensional model. The balanced resource utilisation implies that the system per-
formanceis not given by asingle bottleneck. Hence, previous approaches for importance
sampling biasing are no longer efficient. The reason isthat they assume that the perform-
ance of asingle resource significantly constrains the system performance, and under this
assumption, the parameters can be biased with respect to the bottleneck resource only.
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A new adaptive biasing technique is defined for dynamically setting up the simulation
parameters in the importance sampling experiment. Thisisthe major contribution of this
thesis, and it has been successfully applied to several networks. The basicideaisto change
the simulation parameters to make the simulation process move toward the parts of the
state space where the most important rare events occur. Because thisimportance depends
on the current state o , the change of parametersis adapted to the state changesin thesim-
ulation process.

The networks used for feasibility demonstration are offered traffic from (i) userswith dif-
ferent resource capacities and traffic parameters, (ii) users with and without aternative
routing strategies, and (iii) users with different preemptive priority levels and a network
with alink failure. The simulation results are validated by comparison with exact results,
rough dimensioning rules, and correctness indicators given by the observed likelihood
ratio.
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1
| ntroduction

1.1 Background and motivation

Today’s society has become very dependent on telecommunication systems in everyday
life. A network breakdown may cause severe consequences, even in a short breakdown
period. For instance, AT& T experienced a breakdown in 1990 that reduced the capacity
to the half of long distance, international, and toll free calls all over the U.S.A. for more
than 9 hours[Fit90]. A direct consequence of this dependency isthat the userswill expect
and should require that the quality of the services offered by atelecommunication system
must be high. Hence, the network operators and service providers must make sure that the
network are adjusted to the changes in the number of subscribers, in the offered services,
and in the service usage patterns. A sufficient number of network resources must be avail-
able, and “intelligent” access and routing procedures must be applied. Furthermore, the
communication must be reliable and secure. However, for the user thisis a trade-off
between the quality of service and the price heis paying, and for the providers between
therevenue and cost. Thisimpliesthat itisnot in theinterest of the network operatorsand
service providers to add more resources or dependability mechanisms than absolutely
necessary in order to reduce the cost to aminimum. This has becomeincreasingly impor-
tant now after the opening of the telecom market where a strong competition between
different providersisintroduced. It isvery important, both for the users and the providers,
to be able to evaluate a network with respect to performance measures like the blocking
probability, loss, resource utilisation and availability, mean time to failure, grade of serv-
ice, end-to-end delays, etc. Such measures are important input to obtain optimal
dimensioning, to provide fair and robust access mechanisms, sufficient redundancy, opti-
mal routing strategies, etc.

To evaluate the performance of the network systems, amodel isrequired. Thismodel must
include the mechanisms described above, in addition to the users that offer traffic to the
network. The users are characterised by attributes like arrival rate, call duration, priority
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level, origin and destination nodes, connection routing, bandwidth requirements, etc.
Users with the same attributes constitute a group denoted a user type. Since the number
of attributesarelarge, the number of different user typeswill becomelarge. Each user type
will typically be modelled separately, and be represented by adimension in the state space
of the model. Hence, the model of a network is multidimensional with alarge number of
dimensions. The property of interest in a network isrelated to the users utilisation of the
network resources such as links and nodes. The capacity of these resources imposes
restrictions to the model as boundaries in the state space. Examples of resources are a
communication channel on alink, the bandwidth of alink, etc. To be able to distinguish
between the users with different quality of service requirements, a preemptive priority
mechanism is needed. This adds new complexity to the model, and it become even more
complex when the users are given alternative routes through the network.

In awell engineered network, the resource utilisation isfairly balanced. Thisimplies that
in the multidimensional model of a network, al boundaries must be considered when the
system performance is evaluated. This makes the model large and complex, and hence
numerical solutions become intractable. Another challenge, with respect to performance
evaluation, isdueto the usersrestrictive quality of service requirements. For instance, the
cell lossratioin ATM should bevery small, lessthan <10°°. When conducti ng simulations
and measurements on such systems, this means that a very large number of events, e.g.
cell arrivals, will be simulated or observed, between every occurrence of the events of
importance to the network performance, e.g. theloss of a cell. The events of interest is
denoted rare events because they are very unlikely to occur. When evaluating perform-
ance measures dependent on rare events, the simulations and measurements will be
inefficient because of the enormous overhead between every event of interest.

The rare eventsin a multidimensional model with several boundaries, impose a number
of new challenges to the performance evaluation which makes the traditional means
insufficient:

- Analytical (numerical) analysis. The computations may be very effectiveif the size of
the model is moderate. The modelling requires a high level of abstraction, which
involves considerable efforts, skills, and system knowledge to make a tractable and
realistic model. For computer and communication networks, queuing models are typi-
cally applied for performance evaluation [Lav83]. However, when the size and
complexity of the performance models of telecom systemsislarge, thisisaformidable,
and in many cases, unattainable task. Another pitfall isthe risk of making oversimpli-
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Figure1.1: System example of a typical complexity.

- rerouting on overload and link/node failure

fied assumptions with the result that the model no longer reflects the true nature of the
system. Hence, the analytic solution is limited to models with specific structures,
which can be solved (numerically) when the size of the model is moderate.

- Smulations: To build performance modelsfor simulations, extensive knowledge of the
system isrequired. But, compared to the analytic approach, the models are more flex-
iblein the sense that arbitrary levels of detail are included. This meansthat all details
that affect the performance of interest areincluded, but nothing more. Computations of
these models, i.e. the simulations, are normally more demanding than analytic (numer-
ical) computations. Systems with strict quality of service requirements, and high
network performance, are even more demanding. The reason is simply that the system
has a high event activity (e.g. many packet arrivals, or call setups) relative to the occur-
rence of service degradation (e.g. loss of packets, or call blocking). Hence, an
enormous number of events must be simulated for each rare event that influences the
performance measure. Several rare events are required to achieve a certain confidence
in the estimates.
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- Measurements. No modelling is required, but areal system, or at least a prototype,
must exist. This adds a considerable cost to the experiment. M easurements are limited
to evaluation of the properties that can be recorded by the equipment. Furthermore, it
isdifficult to control the measurement, both with respect to the load offered to the sys-
tem, and the internal state of the system. As a consequence of this, it is difficult to
reproduce the results from a measurement experiment. In a controlled laboratory, for
instance the B-1ab at the Norwegian Telecom Research [Orm91], it is possible to
reduce these limitations to some extent. The B-lab has defined a test environment
where ATM (Asynchronous Transfer Mode) equipment is offered artificial, but realis-
tic, traffic by the Synthesized Traffic Generator (STG) [HMM93]. The evaluation of
properties dependent on rare eventsissstill aproblem, even if the number of events gen-
erated per time unit is normally much higher in a measurement experiment than it is
for simulations.

In thisthesis, the simulation approach is taken because of its flexibility and expressive
modelling power. The main focusis speedup techniquesfor simulation of the network per-
formance dependent on rare events in the multidimensional model with several
boundaries.

1.2 Speedup simulation techniques

Several techniques are known in the literature that will reduce the required simulation
time more or less significantly. A speedup simulation technique refers to any technique
that reduces the computational effort, compared to direct simulations, that is required to
produce an estimate with a specific level of accuracy. Figure 1.2 identifies some tech-
niques that are applied to speedup discrete event simulations:

- Parallel and distributed simulation,

- Hybrid techniques,

- Variance reduction by use of correlation,
- Rare event provoking techniques.

These techniques will be presented in chapter 2. The techniques are not mutually exclu-
sive, and hence they can, and should, be combined to achieve additional speedup.
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Figure 1.2 : An overview of speed-up simulation techniques.

1.3 Rare event smulation of network models

For the purpose of speeding up the simulations of networks with rare events, arare event
provoking approach must be applied. Infigure 1.3, an example of asimulation speedupis
given which compares direct simulation with importance sampling. A significant speedup
in simulation efficiency is observed.

Two techniques have been described in the literature with a speedup similar to this:

- RESTARTY/splitting: the simulation process is split when visiting a state related to a
certain threshold. At this state, severa replicas of the process are generated.

- Importance sampling: the parameters of the simulation process are changed to make
therare eventslessrare.

The techniques apply two different approaches to manipulate the underlying simulation
process. The differences between RESTART and importance sampling will briefly be
described in chapter 2. In addition, afew simulation comparisons are made between sep-
arate experiments of RESTART and importance sampling, and the combination of the
two.

1. REpetitive Simulaiton Trials After Reaching Thresholds (RESTART).
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Figure 1.3 : Speedup of importance sampling over direct simulation.

The impressive speedups reported in the literature are mainly observations made from
simulations on simple, one dimensional models. To the author’s best knowledge, no
results have yet been reported on efficient simulation of rare events in network systems
with balanced utilisation of the resources. With such models, both the rare event provok-
ing techniques face severe problems:

- RESTART/splitting: at what states should the simulation process be split, and how
many replicas should be made?

- Importance sampling: how can the parameters of the simulation process be changed
when the rare events occur in very different parts of the state space?

Thefocusinthisthesisis on application of importance sampling in network systemswith
balanced utilisation of the resources. The basics of how to change the parameters of the
simulation process in asimple model is presented in chapter 3. The new and adaptive
parameter biasing is presented in chapter 5. In chapter 6, thisbasing isapplied to network
systems that are modelled by the framework described in chapter 4.
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1.4 Main focus of research in thisthesis

Inthisthesisit is assumed that discrete event simulations are conducted. The underlying
simulation process is a continuous time Markov chain, which can be substituted by an
embedded discrete time Markov chain for simulation of steady state behaviour.

Asmentioned in section 1.1, amodel of atelecommunication network is a multidimen-
sional model becauseanumber of userswith different traffic parametersand requirements
have to be considered. The network resourcesintroduce the boundaries of the model. The
system performance is associate with these boundaries. When the resource utilisation is
balanced, the biasing of importance sampling parametersisno longer trivial. Theresearch
focusin thisthesisin on application of importance sampling simulation of rare eventsin
multidimensional models with balanced resource utilisation.

To describe the telecommunication network, a modelling framework is required. Itis
assumed that a set of user types are responsible for the traffic offered to the network. They
have different traffic parameters, different preemptive priorities, alternative routing strat-
egies, and can be exposed to link or node failures. Furthermore, it is assumed that a call
from one of the users, sets up a connection, which is either acircuit switched connection
in a connection-oriented network, or an equivalent bandwidth in a connection-less
network.

Within this framework, a new, adaptive biasing technique is devel oped, that enables the
use of importance sampling in multidimensional models with balanced utilisation of the
resources. Several simulation experiments are conducted to demonstrate the feasibility of
this technique.

1.5 Other importance sampling applications

In addition to the main focus summarised in the previous section, the author has been
involved in two other activities where importance sampling is applied:

1. Framework for accel erated measurements and simulation of ATM equipment. Several
speedup techniques were combined, and importance sampling was applied to change
the parameters of the traffic sources offering load to test ATM equipment. The source
models used in the Synthesized Traffic Generator (STG) [HMM93] are described over
severa time scales, see [Hel95]. It isthe burst level parameters that are changed to
increase the load offered to the ATM equipment. The equipment initself is unchanged
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becauseit is not accessible. Thismeansthat internal buffer capacities and servicerates
cannot be altered. The framework istested by simulations and is not yet implemented
on the STG. The result of thiswork is reported in [HH94].

2. Multiplexing of MPEG coded video sources. A new trace driven simulation technique
is developed which is prepared for evaluation of cell lossesin ATM buffers loaded by
alarge number of heterogeneous MPEG coded video sources. Statistically firm results
are obtained, within a reasonable computation effort and time, by applying a special
importance sampling approach. The properties of the technique are examined and com-
pared to a previously suggested stratified sampling technique. The capabilities of the
technique are demonstrated by simulation of 76 sources of nineteen different MPEG
VBR video source types with cell lossesin the 10 - 1012 domain. The results of this
work are reported in [AHH96]. A reprint of this paper is given in appendix A for the
sake of completeness. A description can aso be found in [And97].

As mentioned above, importance sampling biasing is very model dependent. In general,
it isnot feasible to use previous results to new systems, unless the same modelling frame-
work is applied.

1.6 Guidetothethess

Chapter 2 gives a brief overview of some of the speedup simulation techniques that are
applicable to discrete event simulations. The overview isnot limited to rare event ssimula-
tion techniques because it is known that several simulation techniques should be
combined to increase the speedup.

Importance sampling is the rare event simulation technique that has been given the main
focusin thisthesis. In chapter 3, the technique is briefly described, and a detailed discus-
sion is given on the main challenge to make importance sampling efficient, namely the
change of measure or biasing of the simulation parameters. The known, asymptotically
optimal, change of measures that exist for simple models are briefly mentioned.

However, for more complicated models, e.g. models of communication networks, current
importance sampling biasing do not suffice. In chapter 4, adescription is given of aflex-
ible modelling framework which allows both traffic and dependability aspectsto be
included. Chapter 5 describes anew, adaptive parameter biasing that enables efficient sim-
ulation of such networks.
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CHAPTER 1 CHAPTER 7
network
analytic simulations
solutions CHAPTER 2 APPENDIX A with RESTART
parallel other applications CHAPTER 4 more sensitivity
simulation (ATM, MPEG) ) analysis of
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i dependabili ihili combination of
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p g sampling parameter comparison of
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variance reduction mgggzﬂens‘onal sampling biasing importance sampling
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¥ - CHAPTER 5 generalisation of the
;/ simulation process

measurements

Figure1.4: An outline of the thesis.

In chapter 6, the feasibility of the modelling framework and the adaptive biasing is dem-
onstrated on a few network models. The users have different service requirements, they
have preemptive prioritiesto alow quality of service differentiation, and the network pro-
vides alternative routing to some users when the primary routeis blocked. A routeis
blocked either when an overload has occurred, or after alink or node failure.

Still, some work remains on the details in the adaptive technique, but also on learning
more about the feasibility of thisapproach. A list of further work and concluding remarks
isfound in chapter 7.

Theimportance sampling is applied to speedup the simulation of amultiplexer of MPEG
coded video sources. A paper was written on thiswork which is reprinted in appendix A
for the sake of completeness. The results was ajoint effort with Prof. Bjarne Helvik,
NTNU, and Dr. Ragnar Andreassen, Telenor R&D.

A list of symbolsand notations used in this thesis can be found in appendix B along with
an overview of the concepts of the modelling framework presented in chapter 4. The other
appendices describe details in the derivation of expressions and plots used in the main
parts of the thesis.
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1 Introduction
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Speedup techniquesfor discrete event
simulations

Several techniques have been proposed in the literature for speeding up simulation exper-
iments. This chapter gives a brief overview of some of these techniques applicable to
discrete event simulations.

Of particular interest aretechniquesfor speeding up simulation of systemswith properties
dependent on rare events. This chapter is not limited to the rare event provoking tech-
niques, but also includes other techniques that can be combined and give increased
speedup This chapter is based on [Hee95c] and [Heed7h].

2.1 Settings

For description of the various techniques in this chapter, the general settings and the
required notation are introduced.

The performance evaluation is steady state blocking and system unavailability. Let the
property of interest be denoted y . Thisisthe expected valuey = E(g(g)) of aresponse
function g(s) , taking samples, s from the density distribution f(g) .

Example 2.1: Consider asingle server queue. The property of interest, v, isthe proba
bility of blocking in abusy period of this queue. A busy period isthe time between two
time epochs where the queue is empty. A sample s, isthe observed sequence of call
arrivals and departures during busy period r . The response function g(s,) is1if the
queueis blocked in the r th busy period and O otherwise.

The samples are independent and identically distributed. In a regenerative simulation a
sample s isasequence of n, events congtituting the r th regenerative cycle, i.e.

-11-
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s = {oiko (21)

where g, isthe system state after event i . An unbiased estimate of y isthen:

7= %{Ei ,96) (2.2)

where R isthe number of samples s. An event iseither an arrival or departure of an entity
(e.g. acustomer) to the queue. The variance of thisestimate ¥ is:

- 1
Varg(y) = gvary((s,) - (2.3)
As an example, consider the problem of estimating y = P(A), where A isaspecific

event. If P(A) « 1 then A isdenoted arare event. Consider A to be e.g. the event that the
number of customersin asingle server queue reach the capacity N during abusy period.

Substituting g(g) by |,(A) in (2.2), then:

V= F%Ei A (2.4)

where

1 if event A hasoccuredin cycler
(A = . : (2.9)
0 otherwise
This can also be expressed as
1L(A) = I(5, €9y (26)

which gives the relation between the subspace Q, where the rare events of interest are
observed, and the r th sample. This Q, isdenoted atarget subspace. A visitto Q, isthe
event A of interest. For details on the simulation process and the modelling framework,
see the description in chapter 4. In appendix B, alist of concepts and symbolsis given.

Example2.2: Consider the queue from example 2.1. The system state, o , isthe number

of customersin the system at a given point in time. The regenerative state spaceisthe



2.1 Settings 13

empty system, Q, = {0}, while the target subspace isthe full system, Q; = {N}.
Each simulated cycle starts and ends in the regenerative state, i.e. 9, = @, = {0}

It can easily be shown that y isan unbiased estimator of y (the samples s, and hence the
events A, are independent, see (2.6)):

E@) = E(EST__1(A) = 257 E(1,(A) = ZR-P(A) = 7. (27)
Thevarianceis:
Var,(§) = éVarf(lr(A)) = Y—(lT;—Y-). 2.8)

To retain acertain relative error of the estimates, consider the square of the relative error,
Var(y)/E;(y)? < ¢. When y changes, the following number of samples R is required:

R=

o =

(Yl - 1) . (2.9)

Hence, R« 1/y, and the simulation efficiency drops dramatically asy decreases.

As asecond example, consider the problem of estimating the steady state probability of
state Q; . Recall that A isabinomial event that tekes on values O or 1, and hence the
following estimate applies (“ Renewal theorem™)

5 = E(ty) _ E(ty|A) - P(A)
" E() E(r)

(2.10)

where E(t,) isthe expected timein state ©, inacycle, and E(t) isthe expected cycle
time. This estimator depends on observations of the same events A as equation (2.4).
Hence, (2.10) meets the same challenges as (2.4) with respect to simulation efficiency.

The simulation efficiency is defined in terms of the CPU time and the variance. The fol-
lowing measurement will be used in this thesis (the reciprocal of the measure used
in [Hee95a] and in (A.16)):

m = 1/(tg, V() (2.12)
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where t.,, isthe CPU time required to obtain an estimate y with variance Var(y) . In
some sections, an index is added to this estimator to indicate the method used to obtain
this estimate, e.g. RESTART (R), importance sampling (1S).

2.2 Theneed of speedup simulation

Simulation is considered to be a flexible means for performance evaluation of complex
data and tel ecommunication networks. However, when the networks have very strict qual-
ity of service requirements, the direct simulation approach is very inefficient. The reason
isthat the performance measure, e.g. the cell loss probability, depends on rare events to
occur, e.g. cell losses (in ATM with probability typically less than < 10_9).

1000
Erlang loss system, M/M/N/N
100 ¢
*
= \ SIMULATION RESULTS
= Interpolated - The ratio between the
g 10l speedup ratio _~ efficiency of direct and
2 ~ importance sampling
3 simulations
&
L B
0.1L
le-07 le-06 le-05 0.0001 0.001 0.01 0.1 1

Exact blocking [log]

Figure2.1: Speedup of importance sampling over direct simulation.

Figure 2.1 illustrates the speedup of importance sampling over direct simulation on asim-
ple Erlang | oss system. The number of samplesrequired for direct ssimulation to retain the
same confidence level of the estimates, increases exponentially as the probability of the
rare event increases. Using importance sampling (with optimal parameters) the required
number isunchanged aslong asthe model sizeisunchanged, and hence asignificant spee-
dup is observed. Note that already at aloss probability of approximately 5%, importance
sampling will, in this example, increase the efficiency.
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Importance sampling is not always this efficient, and hence other techniques must also be
considered, either as alternatives, as supplements or in combination with importance
sampling.

2.3 Overview

This chapter contains several techniques that increase the simulation efficiency, m, rela-
tive to an ordinary discrete event simulation experiment. Two orthogonal approaches
exist, and the different effect on the original discrete sequence of eventsisillustrated in
figure 2.2(a):

rare event, A

Nl

t
-
(a) original problem
A rare events
t
(b) increase number of events per time unit
A rare events —#
t
-

(c) increase number rare events
Figure 2.2 : Illustration of sequence of events over real simulation time scale for

different speedup approaches.

1. Increase the number of events per time units, either by using a faster machine, see
figure 2.2(b), or doing computationsin parallel on several processors.
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2. Decrease the simulation overhead, i.e. increase the relative number of events of inter-
ests, by exploitation of some statistical property of the simulation model, see
figure 2.2(c).

In the following sections, afew of the known speedup techniques are included and key
references are given. All techniques belong to either of the two orthogonal approaches
above. Figure 1.2 contains an overview of the categories used in this chapter:

- Parallel and distributed simulation exploits either specia hardware and software, or
the existence of acluster of workstationsin the organisation. These techniques require
some extra administration, apart from expert skillsin parallel programming. Hence,
only rather computer demanding problems should consider a parallel and distributed
simulation approach.

- Hybrid techniques combine analytic results with simulation experiments of sub-
problems.

- Variance reduction by use of correlation takes advantage of a known correlation
between output and input samples, or introduces such correlation by a controlled sim-
ulation setup. This correlation enables variance reduction. These techniques are not
efficient enough when the estimates depend on rare events to occur, but can be com-
bined with other techniques.

- Rare event provoking techniques include importance sampling and RESTART/split-
ting. Both techniques increase the frequency of the rare events of interest, but apply
two different approaches.

For surveys on variance reductions and speedup simulations, see e.g. [FLS88, KM88,
McG92, Hee9d5¢c, Heed7h].

2.4 Parallel and distributed ssmulation

In many computer environments, alarge number of processors are available, either asa
cluster of workstations or amultiprocessor machine architecture. The parallel and distrib-
uted simulation techniques exploit such a multiprocessor environment to increase the
simulation speedup. The speedupsaredueto anincreasein the number of events per time
unit, seefigure 2.2(b). The speedup islimited by the number of processors, P, and the tech-
nique applied [Lin94]:
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e PADS- Pardlel And Distributed Smulation splits the sequential simulation process
into parallel subprocesses which are distributed on P processors,

* PIRS- Parallel Independent Replicated Smulation makes P independent replications
of the sequential simulation process and runs each of them on P separate processors.

These two different approaches areillustrated in figure 2.3.

PADS

PIRS

Figure2.3: PADSvs. PIRS

24.1 Parallel And Distributed Simulation (PADS)

The PADS identifies sub-modelsin the sequential simulation model which can be evalu-
ated in parallel on different processors, e.g. in a network model each queue, trunkline or
user type can be considered as separate parallel sub-models. In general, itisnot simpleto
identify sub-models that can be run in parallel as separate processes and give significant
over direct simulation. The problem isthat they are not independent, and hence the proc-
esses are slowed down due to delay at interaction points. Several techniques for handling
these synchronizations are proposed [Fuj90, KM 88]:

- Conservative synchronisation approaches assume that al synchronisation pointsresult
in an interaction (e.g. exchange of data), and hence the processes cannot proceed until
the slowest process has catched up [KRWW93].
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- Optimistic synchronisation approaches, e.g. used in the Time Warp technique [Jef85],
assume that no potential synchronisation point actually resultsin an interaction and
hence the sequence will proceed immediately. If it is discovered that an interaction
should have taken place, the subprocess(es) must roll back.

- Timedriven approaches differ from the event driven approaches above [LR85]. A glo-
bal clock isincremented on fixed timeinstancesrather than on events. In synchronized
networks this has shown a significant speedup.

Due to the slowdown caused by synchronisation, irrespective of which approach that is
taken, the total speedup will aways be less than the number of processors involved, <P,

2.4.2 Paralle Independent Replicated Simulation (PIRYS)

Every stochastic simulation experiment need a number of independent observations to
obtain acertain confidence of the estimates. PIRSisaframework to get more observations
in shorter time simply by distributing several replicas of the sequential simulation process
on P processors. Apart from the gathering of data from different machines, and the post-
processing of the final report, the speedup will be P, equal to the number of processors

applied.

2.4.3 Prosand cons

The obvious conclusion from the following pros and conslist is that PIRS has awide
applicability in stochastic simulation experiments, while PADS should limit its applica-
tionsto real time simulations with extensive computation need, such as training
simulationsfor pilot education. See[Lin94] for some comments on PADS, and [NH97]
for aframework assisting parallelisation of sequential simulation processes.

2.5 Hybrid techniques

A hybrid technique is any technique that combines analytic results with simulation. Two
main approaches exist [FLS88, KM 88, LO88]:

- Conditional sampling - uses simulation to provide conditionsto a given analytic
model.
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Table 2.1: Pros and cons for PADS and PIRS.

PADS PIRS
Special hardware? Can be exploited Not applicable
Special software? Required Not required
Expert skills required? Both in parallel programming Simulation only

and simulation

Amount of processing Should be large to advocate investment Any size

of given problem

Speed up <P ~P

- Decomposition - identifies independent sub-models (in time or space) for which sepa-
rate evaluations by means of analytic and simulation approaches are possible.

Both approaches attempt to use analytic results to reduce the variance. They are very
model dependent, and the flexibility of simulation models might be reduced to adjust to
analytic model assumptions.

25.1 Conditional sampling

In conditional sampling, a mathematical approach is taken to reduce the variance by a
known functional relation between two random variables, i.e. conditional arguments, con-
ditional expectation, and substructures of the random variables and system response.

Let the expected system response, g(s) from (2.2), be known if afixed value of the sto-
chastic variable X isgiven, i.e. E(g(s|X = X)) . It can be shown that if y is estimated by
taking samples X from h(x) and using the following estimator:

Ves = F%Ei LEE(s[X = X)) (212

the varianceisreduced compared to the direct estimator from (2.2). The estimator is unbi-
ased as the expectation is E(7ce) = Eq(Ef(9(s|X = X)) = E¢(g()) = v-

The variance is[LO88]:

Var(ice) = Van(E(glsX = X)) = S[Var (a(9) - Ey(Var (g X)]. (213)
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Subtracting (2.13) from (2.3):

Var (§) - Var(fcs) = ZE(Var (g(s|X) = 0 (2.14)

then Var(y) = Var,(Ycs) . and hence the variance of -5 is aways less than or equal to
the variance of y . Unfortunately, it is often impossible, or at least very difficult, to find a
suitable conditioning quantity.

2.5.2 Decomposition

Alternatively, an engineering approach can be taken where the model is decomposed into
sub-models, either in time or space. The basic ideaisto identify sub-models that need to
be evaluated only once, either by analytic solutions or by simulation. The speedup is
partly dueto the use of analytic resultsinstead of simulations, but mainly dueto the reduc-
tion of simulation overhead since unnecessary repeated simulations of subsystem are
avoided. Figure 2.4 illustrates ahierarchical decomposition over two different timescales.
This gives a speedup because unnecessary repeated simulations on low time granularity
levels can be avoided, and hence the overhead is reduced.

XO | Xl:X

-

Figure 2.4 . Hierarchical decomposition of systemwith different time granularity.

Example2.3: The X; infigure 2.4 can be considered to be the number usersthat are sta-
tistically multiplexed on avirtual connection (VC) in ATM. The users are transmitting
for aperiod of typically seconds or minutes. X, can be considered to be the number of
ATM cellsthat aretransmitted on thisVC, given anumber X; = x usersbeing active.
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On a 155 Mbps channel, the cell period isin order of w-sec. This means that an enor-
mous number of cell periods are generated between every change in the number of
multiplexed users.

A sample s consists of two parts: one part from sub-modelswith agiven (analytic) result,
S, and another part from simulation models, s,. The sampling distribution is now
f(s, S9 - To simplify, assume product form, i.e the sub-models to be independent:

f(sp 89 = falsy) sy (2.15)

An unbiased estimator for v is:

Vhp = ézf _,9((82),) - 9((s9),) (2.16)
with variance
Var, (o) = EIVar; (0(s) + Var (0(s))] = ZVar, (g(s)) (217)

where Varfa(g(ga)) = 0 because g(s,) isafixed responsefrom an analytic result. Hence,
equation (2.17) shows that some of the variance reduction is achieved through the use of
fixed system response for parts of the system model, instead of only simulations.

2.6 Variancereduction by use of correlation

The traditional variance reduction techniques exploit a known or introduced correlation
in input and output samples. The most familiar ones are often described in general text-
books of simulations, [LO88, BFS87]:

- Antithetic variates - form output samples as the mean value of two complementary
negatively correlated input samples.

- Common random numbers - use the same sequence of input samplesto induce acorre-
lation in the output samples, particularly suitable for performing comparison
simulations.

- Control variables - reduce the variance by relating the quantity of interest to astrongly
correlated random variable with a known expectation.
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The common challenge for all these techniquesisto gain sufficient insight in the system
behaviour to be able to identify correlated controls, and to foresee the consequences of
introducing correlation. If negative correlation is expected, but positive correlation is
experienced, theresult isavarianceincreaseinstead of decrease. Thisisaseriousproblem
for antithetic variates and common random numbers when these are applied to network
models of realistic complexity. Thereasonisthat it isvery hard to establish arelationship
between the input samples and the output (response) samples[Hee95c]. Hence, in thefol-
lowing section, only control variables will be described in more detail.

2.6.1 Control variables

Consider g(s) and C(g) to be two dependent (through s) random variables (system
responses) obtained in a simulation experiment. C(g) isacontrol variable introduced to
reduce the variance of the quantity of interest, g(s) .

Example2.4: Infigure 2.5, an example of pairsof g(s,) and C(g,) are plotted asafunc-
tionof asample, s,. The g(s,) = C(s,) + &, , where C(x) = 1+ cos(nix/10), s is
taken from auniform distribution (0, 100), and the error term isuniformly distributed
€~ U(-0.330.33).

The use of control variablesis efficient when the quantity of interest and the controls are
strongly correlated as they are in figure 2.5. This means that they have correlated error
terms. If the control variableisfar fromits (known) expectation, then the quantity of inter-
est can also be assumed to be far from its (unknown) mean.

It must be possibleto determine the expected value of the control variable, 6. = E(C(g)),
either by analytic results, by some approximation, or estimated by simulation. An unbi-
ased estimator using linear control isthen:

fov = 5 (a(s)+ B (C(5)~6c)) (218)
with variance [LOB88]:
Var(Vey) = fle[Varf(g@)) + B2Var((C(9)) + 2BCov(g(9), C(9)]. (2.19)

The unknown factor § is chosen to minimise the variance, i.e.
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Figure 2.5 : Joint plot of the property of interest and the control variable.

d n

3Vailcy) = 02> = ~Covy(gls). C(s)/ Var(C(s)- (2.20)
Severa control variable techniques apply [LO88]:

- Smplelinear control, i.e. equation (2.18) with p = -1,

- Regression adjusted controls, i.e. equation (2.18),

- Multiplecontrols, i.e. several control variables are applied, where the control variables
should be independent to obtain additional variance reduction.

- Non-linear controls, i.e. the control variable(s) and the property of interest are not lin-
early related. An example of an unbiased estimator using non-linear control is:

Tev RE (9(s) + B(C(s,) —02)) (2.21)

with variance [LO88]:
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Var (o) = SIVar (o(9) + B*Var (CAs)) + 26Cov, (09, CHs )] (222)

The problem with application of control variablesisthat it is difficult to identify controls
that are both correlated to the property of interest, and have a known expectation that is
easily obtained.

Example 2.5: (example 2.4 continued). The plot in figure 2.5 is part of an experiment of
R = 100 sampleswhere the estimated correlation factor between g(s) and C(g) is
p(g(s), C(s)) = 0.96. Inthat specific case, the variance wasreduced by afactor of 15.5
by using ¥\, instead of ¥ from equation (2.2).

The techniques that reduce the variance by use of correlation are not applicable when the
estimatesrely on rare eventsto happen, i.e. P(A) « 1. Thereason is that these techniques
do not change the probability of event A. Hence, if A isarare event, aset containing only
0’s might be the result of a simulation. Then, the variance cannot be further reduced and
the simulation efficiency is not increased.

2.7 RareEvent Provoking

With arare event provoking technique the speedup is due to changesin the statistical
behaviour such that the rare events A are provoked to occur more often. Two main
approaches exists:

- RESTARTYimportance splitting - identify subspaces from which it is more likely to
observe A, and then make replicas of the sequencesthat reach these subspaces by split-
ting the smulation process.

- Importance sampling - changes the stochastic process to generate sequences of events
which make the rare events of interest less rare. The basics of thistechniqueis
described in most textbook of simulation that includes a chapter on variance reduction,
e.g. [LO88, BFS87].

This section describes these two techniques and shows how they can be combined. Fur-
thermore, this section describes how the underlying sampling distributions are affected by
RESTART and importance sampling. In section 2.8, examples of the use of RESTART,

1. REpetitive Simulation Trials After Reaching Thresholds (RESTART).
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importance sampling, and the combination of the two, are demonstrated on an M/M/1/N
queue and a shared buffer.

2.71 RESTART

Thebasicideaof RESTART isto identify subspacesfrom whichitismorelikely to reach
thetarget subspace, i.e. wheretherare event A occurs. These subspaces are considered to
be threshol ds. Every time the process reaches athreshold, the current sequence s, is split
in anumber of replicas, all continuing from the splitting state. In this way, the number of
rare events will increase, dependent on the number of RESTART thresholds defined and
the number of replicas generated. Figure 2.6 illustrates the splitting and restarts of events
as anew threshold is reached.

Threshold states

Event A=A

A M

QlMﬁ """""""

912 ------------------------------------
Event A

Qpp .. .00 -

Q >

Renewal state

Figure 2.6 : RESTART with splitting at M thresholds.
Consider the event A to betherare event of interest. Let A; bethe event that state Q; is
visited during cycle s, . Q;; isthe state space condtituting threshold i .

For simplicity, substitute g(s) by 1(A) in (2.2). Furthermore, define p, = P(Ai‘Ai_l).
Now, y = P(A) can be expressed as (by Bayes formula):

Y = P1P2---Pym - (223
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The basic regenerative cycle is the sequence of events, without splitting, that starts from
the renewal state Q. This cycle returns azero-one function I (A;) whichissetto 1if
event A, occurs, i.e. threshold Q,, isreached, and O otherwise. If threshold 1 isreached,
i.e event A; hasoccurred, then R; new replicas of the sequence are generated. Each rep-
licaisreturning | (A, | {A1}),r = 1,...,R;. At the nested step m, the corresponding
definitionis I, (Ay[{Ay, ..., Ap_11}) , whichisthe zero-one function returning 1if event
A, occurs before returning to Q,, and given that events A, through A, _, have
occurred. Otherwise, I () = 0.

Let A; = {A, ..., A} betheevent that al events A, through A; have occurred. An
unbiased estimator for y isthen, see [GHSZ96]:

~ 1 Ry 1 R, 1 Ry
iR = ﬁlzrlzl|r1(A1)§22r2:1|r2(A2‘A1)...R—MErM:1IrM(AM‘AM_l)
1 R R (2.24)
= Rl,“RMEH:1”'EI’M:1|r1(A1)”'|rM(AM‘AM_1)
with variance
M
1-p;

- 2

Var = J ) 205

To optimise the RESTART speedup, the variance Var(y ) is minimised subject to
[VA*94, GHSZ96, Kel96, SG94]:

- R, - the number of replicas at each threshold => recommended R, = 1/p;.
- M - the number of thresholds => chosentogive p, = p = el forali = 1.., M.
Q,; - the threshold definition => chosen in accordance to the criteriafor M.

RESTART isaflexible and robust approach applicable to transient and steady state
simulations [VAVA94]. However, the variance reduction (gain) drops dramatically if R;
isfar from optimal [Kel96]. Defining thresholds, Q; , becomes difficult when the dimen-
sionality and size of the simulated model islarge, and there is no symmetry that can be
exploited.
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Defining the optimal set of thresholdsis generally a great challenge when the simulation
model increasesin dimensionality. A multidimensional state space, resultsin multidimen-
sional thresholds, and ahuge number of replicas must be generated to get arepresentative
sample at each level. In [GHSZ97], it is pointed out that, except for specific models, it is
impossibletoidentify an optimal splitting of the simulation processin amultidimensional
model.

2.7.2 Importance sampling

Importance sampling changes the dynamics of the simulation model. The dynamics must
be changed to increase the number of rare events of interests. Let f(g) betheoriginal sam-
pling distribution where s is, for instance, a sample path as will be defined in

section 4.3.3. Thissampling distribution is changed to anew distribution f*(g) . If g(g) is
the property of interest, the original problem isthat the probability of observing g(s) > 0
isvery small when taking samplesfrom f(g) . This probability should be significantly
increased with samplesfrom f *(g) . The observations made must be corrected becausethe
samples s arefrom f*(s) and not f(g).

The property of interest y = E(g(s)) can now be rewritten:

RLCORDYCICEDLL FAACELNCCRIC) (2.26)

where L(g) = f(g)/ f*(s) isdenotedthelikelihood ratio. Observethat the expected value
of the observations under f is equal to the expected value of the observations under f*
corrected for bias by the likelihood ratio, E(g(g)) = E;.(9(9) - L(9)) -

An unbiased estimator for v, taking samples s from f*(g), is:

Tis = Rzr—lg( ) L(S) (2.27)
with variance
Va(yg = Varﬁ(g(S)L(S)) = R E.((9®LO -7)?)- (2.28)

The optimal change of measure is given by the f*(g) that minimisesthis Var(y,g), i.e.
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g(eL(® -y = 0. (2.29)

However, this depends on knowledge of the unknown property of interest, y. Neverthe-
less, (2.26) and (2.29) give general guidelines:

- if g(s) f(s) > 0 then f*(g) > 0 (from (2.26)),

- g(9f(s) = yf*(s) whichimpliesthat the sampling should be in proportion to the
origina importance and likelihood of the samples, i.e g(s) f(s) « f*(g) (from (2.29)).

Because the efficiency of importance sampling is observed to be rather sensitive to the
change of measure, alot of work is done to obtain optimal, or at least good, ssimulation
parameters. In chapter 3, afurther treatment of importance sampling and its change of
measure will be given, see also [Hei95] which includes an extensive and excellent survey
on selecting f*(g).

2.7.3 Combination of importance sampling and RESTART

Importance sampling and RESTART can be combined by changing the sampling distribu-
tion of the RESTART estimate, see [CHS95] for asimilar idea.

An unbiased estimate of y = P(A) for the combination is:

- _ 1 R, Ru
VIsiR= ﬁEu ) 1...ErM I ADL (8 )1 (A Ay Ly (5, [Aw 1)

(2.30)

with variance [CHS95]:

Var(lAM—l' pw)

Var(jsr) = Var(iy) (2.31)

(P1Py-.- Py 1) Var(py,) + Var(iy_1) - E(pey)

where I; and p, are defined as:

T 1 Rl R\
i = Rl,,,RiErﬁl“'Eri=1'fl(Al)Lf1(§f1)'“'ri(Ai\Ai—l)"fi@n\Ai—1)’ (2.32)

b = %Eﬁz (A A DL (8 A D) (2.33)
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Astheresultsin section 2.8.2.2 indicate, the optimal parameters of importance sampling
and RESTART should probably not be obtained separately when the two techniques are
combined. Instead,

- the parameter biasing of importance sampling in combination with RESTART should
be less than the optimal change of measure in a separate importance sampling experi-
ment, and

- the number of thresholds of RESTART, and the number of replications given by this,
should be less than the optimal number obtained without considering importance
sampling.

2.7.4 Different impact on sampling distribution

As described in the previous section, both RESTART and importance sampling manipu-
late the underlying sampling density distribution of s. To demonstrate how the two
approaches affect the underlying distribution, a probability measureis defined to describe
their ability to provoke rare events. Such ameasure is not easy to obtain in the genera
case. Instead, consider regenerative simulation of a specific M/M/1/N example wherethe
probability of blocking isthe property of interest. A rareeventisobserved inall simulated
cyclesthat includes avisit to state N. Thisimpliesthat if the maximum state visited dur-
ingacyclei islessthan N, no rare events are observed. The probability of state i being
the maximum state visited during acycle, or sample path, s, with n, eventsis denoted
P, (i=1..,N):

-
1

i Pr{rw(gr) = i} = Pr{(w, =i) A (@.=i), (x=1,...,n)}. (2.34)

Thisprobability isapplied to describe the differencein the two approaches RESTART and
importance sampling. The P, is provides agood indication of how well the two tech-
nigques succeed in “pushing” the simulation process towards the targets. In appendix C,
the explicit expressions of P;, valid for an M/M/1/N model, are given for direct, impor-
tance sampling, RESTART and combined simulations.

The probabilities P; areplotted for i = 1, ..., N for direct, importance sampling, and
RESTART in figure 2.7. The following observations are made:
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- RESTART increasestherare event probability by increasing the probability of thetarget
state PV significantly (P{R) isthe probability measure P; under the RESTART sam-
pling distribution). However, observe that the P(R) is also increased significantly
relativeto the original distribution for all statesi > Q4 , i.e. after thefirst threshold. As
the number of thresholds M increases, the probability measure tends to converge
towards astraight line. When M = N, each state in the chain is athreshold, and then
P(R) - 1/M isauniform distribution.

- Importance sampling with optimal parametersis close to the original distribution for
al statesi < N, while P{|S (P{'S) isthe probability measure P; under theimportance
sampling distribution) is increased significantly, and more than for RESTART,

P{S = PV If the sampled sequence s under optimal importance sampling does not
hit state N, then P{!S) < P; . From figure 2.7 it is observed that the ratio P, /P(1S)
seems to be constant. Thisis confirmed analytically in appendix C wheretheratio is
determined to be P;/P{'S) = u/A, forali = 1,...,N—1. Thisisthe sane asthe
BIAS-factor under optimal biasing, see section 3.3.3.1. For non-optimal importance
sampling the ratio is not constant, and the P({(S) isrelatively less at state N. For all
intermediate states, 1 <i < N, asignificant increase to P{!S) is observed. Thisissim-
ilar to what was observed for the RESTART.

Eventhoughtheplotsof P, (i) infigure 2.7 are generated based on avery simple model,
it is expected that the principal differencesthat are observed are of ageneral nature.

2.8 Experiments

In [Hee95a, Hee95¢, Hee97b], afew comparisons between importance sampling and
RESTART on asimple M/M/1/N are reported. In these results, importance sampling with
an optimal change of measure will always be at least as good, normally far better, than
RESTART with optimal splitting. However, if a non-optimal change of measure is used,
then RESTART is sometimes better.

In this section, comparisons between importance sampling, RESTART, and the combina-
tion of the two, are made by simulations of an M/M/1/N queue. Furthermore, simulations
are also carried out on amodel of ashared buffer offered traffic from K user types. When
al traffic types are (nearly) equal, the model is said to be symmetric or balanced. Thishas
previously been pointed out to be challenging for importance sampling with respect to
obtaining optimal change of measure [PW89, Fra93].
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Figure2.7: Plotsof P;, the probability of state i being the maximum state visited
inacyclein a simulation of an M/M/1/N queue with A =0.33, u=1, N=20.
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2.8.1 Simulation setup

Inall experiments, the property of interest isthe steady state blocking probability obtained
by the estimate in (2.10). Each experiment is a regenerative simulation of R cycles.

The mean values and their variance are estimated from the results obtained from 20 inde-
pendent experiments applying the replication technique [LO88, BFS87].

2.8.2 Singleserver queue, M/M/L/N

For asingle server queue with Poisson arrivals (A ) and exponential servicetimes (u1),
it straightforward to obtain exact results. Furthermore, RESTART has well defined opti-
mal thresholds and number of replications, and importance sampling has a known
asymptotically optimal change of measure. A state space model of thissystemisgivenin
figure 2.8.

P12=M(M+u)

OROBOE=NO=
W W

) S »> Mt w S target, Q;={N}

Figure 2.8 : Model of a single server queue, M/M/1/N.

2.8.2.1 Optimal importance sampling vs. optimal RESTART

Optimal importance sampling impliesthat the change of measure minimisesthe variance
of ¥, in (2.28). When simulating steady state behaviour in Markov models, the change
of measure need only to change the transition probabilities,

Arrival probability at state i : P¥ii+1 = M/(M* +u*) and
Departure probability at state i: p* j_; = 1—p* j+1.

The optimal choice of parameters for importance sampling simulation of an M/M/L/N
queue is to interchange the transition probabilities, see [CFM83, PW89],

P*ii+1 = P i1 ad p* i_1 = p; .1 This and other changes of measure, will be
discussed in further details in the following chapter.
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Figure2.9: The simulation efficiency for direct and rare event provoking simulations.
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Optimal RESTART requires the relative probability between two thresholds to be

p; = e for all thresholds. The number of replicasshould beascloseto R, = 1/p; as
possible [VA*94]. In a state space model with afew states, it is difficult to set up the
RESTART experiment because the optimal threshold islikely to be between two states.
Seethe discussionin e.g. [Kel96] where R; = (p; . - p;)~Y/? isproposed as an
alternative.

In addition to asmall examplewith N = 7, alarger onewith N = 86 isstudied. The
larger example isincluded for two reasons:

- the asymptotic optimal change of measure for importance sampling is expected to be
inaccurate for small N,

- theoptimal number of thresholds of RESTART isnot aninteger and henceit isdifficult
to fit the thresholds in a small model.

Theresultsin figure 2.9(a) and (b) show the simulation efficiency of direct ssmulation,
importance sampling, and RESTART for different blocking probabilities:

- Direct simulation: as expected from (2.9), the efficiency is proportional to P(N) .
- RESTART: the efficiency is proportional to logP(N) .

- Importance sampling: the efficiency is proportional to logP(N) L but with less slope
than for RESTART.

- Forthelargesystemwith N = 86, al techniquesareinefficient at high load and hence
for high blocking probability. Thisisbecause the regenerative simulation experiments
use the “empty system” state as the renewal state. Hence, arenewal isarare event. In
the network simulation examplein chapter 6, an alternative renewal stateis applied to
eliminate this problem.

The results show that importance sampling with optimal biasing is always at least as effi-
cient as RESTART, normally far better. Even though the results are from experiments on
asimple M/M/L/N queue only, thisis expected aso to be true for more general models.

To quote Dr. Phil Heidel berger’scomment on the statement “whenever an optimal change

1. Theefficiency of both importance sampling and RESTART areindependent of therarity only if the number
of eventsin each sampleis not included in the efficiency measure.
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of measure exists for importance sampling, it is always as least as good as RESTART,
normally far better”, he wrote that [Nic97]: “This pretty much HAS to be true since you
can’t do better than optimal in ANY situation (or much better than asymptotically optimal
in rare event simulations).”. However, to qualify this statement, afew experiments of
other, more general models with optimal biasing, are left as further work.

2.8.2.2 Importance sampling, RESTART and the combination

A series of experiments are carried out where importance sampling and RESTART are
compared and combined. The experiments are using the same M/M/1/N examplesasin
the previous sections. The parameter biasing of importance sampling isvaried for the pur-
pose of demonstrating that RESTART, in separate simulations or in combination with
importance sampling, is more efficient than importance sampling when the biasing is far
from optimal.

Let the scaling of the arrival probability vary from no change, up to the optimal change,

P*i,i+1€ [P i+1 Py i_1]- A seriesof experimentsarecarried out onan M/M/L/N queue
withN = 10, A = 0.1,and u = 1.RESTART and importance sampling are combined,
and the number of thresholds and the p*; ; ,; arevaried. The scaled arrival probability is
varied from original parametersto optimal parameters, p*; ;. ; €[0.09, 0.91].

The second experiment appliesthe same M/M/L/N queue, now withN = 20, A = 0.33,
andu = 1.Forthisexample, p*; ;1 €[0.25, 0.75]. Thenumber of thresholdsisvaried
from 1 up to 10. The optimal number of thresholds, if only RESTART was applied, is 10.

Infigures 2.10 and 1.5, a selection of the experiments, which produced the best resultsin
3 different regions, are plotted.

- Region 1: RESTART isthe most efficient,
- Region 2: RESTART combined with importance sampling is the most efficient,
- Region 3: Importance sampling is the most efficient.

Recall from section 2.7.4 where the differences between RESTART and importance sam-
pling were discussed with respect to their impact on the sampling distribution. Consider
the two samplesin figure 2.11 marked with acircle. At these points, the simulation effi-
ciency is almost the same for RESTART and importance sampling. The P(R) and P(!S)
areplottedforal i = 1, ..., N. Note the strong resemblance.
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Figure2.10: Importance sampling has best performance even if the change of
measure is less than optimal.

2.8.3 K traffic typeswith shared buffer

Experiments are conducted on a shared buffer offered traffic from K user types. The kth
user has arrival rate A, and adedicated server with servicerate p, . Infigure 2.12, the
mapping from this system to a model with multiple dimensions, is described by the gen-
era state, @, in the multidimensional state space, Q . All transitions out of the state

® = {0}, w,, ..., wg } aredescribed. 1 = {0,0,...,1, ...} isanindex vector of size
K where element k is 1, and O elsewhere. The state space is truncated where when the
system capacity isreached, i.e. when all N positions in the shared buffer are occupied.
The quantity of interest is the probability of blocking, i.e. P(x€ Q).

When A, = A and w, = u for al k, the resulting state space is said to be symmetric or
balanced. Observe that thisis not the same as a superposition of traffic generators (with
rate kA ) to an M/M/1/N queue. The reason is that the model assumes dedicated servers
to each generator. This meansthat the server rate of the queue is dependent in the current
combination of usersin g . If the parameter biasing in importance sampling is based on
ignorance of the service rate dependence on the system state, atoo strong biasing will

occur. Thisisknown from [PW89, Fra93], and will be treated in more detail in chapter 3.
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Figure2.12 : Shared buffer model with the general multidimensional state.

In figure 2.13, the simulation efficiency vs. the number of traffic types K, is plotted for
importance sampling and RESTART. The simulation parameters are chosen to have a
blocking probability less than 107 for all values of K.
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Figure 2.13: Comparison of importance sampling and RESTART for number of
dimensions K.
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The results shows that in symmetric or balanced multidimensional state spaces, impor-
tance sampling is only more efficient than RESTART in the single dimensional case.
RESTART is ableto exploit the symmetry in the state space for easy definition of good
thresholds in this model, but thisis not generally the case. Hence, it is expected that
RESTART will be less efficient than importance sampling in a non-symmetric model
where the dimensions are different and with several boundariesin the state space.

2.9 Closing comments

This chapter contains abrief overview of 4 different categories of speedup techniquesfor
discrete event simulation. They are not mutually exclusive, and hence should be combined
whenever possible. An example of a successful combination can be found in [HH94],
where an accel erated measurement and simulation technique for ATM traffic isdescribed.
This technique combines, control variables, importance sampling, and parallel independ-
ent replicated simulations. Later, a hybrid technique isincluded to reduce the simulation
overhead by exploitation of a known regularity in the traffic pattern.

Parallel simulation can be applied for any simulation problem involving a certain amount
of computations, including rare event simulations. For simulation experiments where a
large number of replicas are needed, it is recommended to run the sequential simulation
processesin parallel on several processors. In contrast to this, the sequential simulation
process can identify and distribute parallel sub-processes. However, this requires expert
skillsin parallel programming, accessto special hardware and software, and will result in
less speedup than to run sequential processesin paralel.

Both hybrid and variance reduction techniques are model dependent and require insight
in the problem at hand. If not, it is not possible to identify submodels with analytic solu-
tions, or to identify correlation between samples that can be exploited for variance
reduction. Thisis ageneral chalenge, and not related to rare event ssmulation.

Rare event provoking techniques are very efficient because they directly manipulate the
dynamics of the simulation process with respect to the rare events of interest. However,
they require good insight in the statistical properties of the model, particularly to obtain
the simulation parameters involved in making the techniques as efficient as possible.

The emphasisin this section has been on rare event provoking techniques. The differences
between RESTART and importance sampling have been pointed out, and a comparison
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and combination of these two techniques are made. The experiments were conducted on
asimple M/M/1/N system. Importance sampling with optimal change of measure is
always more efficient than RESTART. Adding RESTART thresholds to importance sam-
pling will not improve the speedup unless the change of measure is far from the optimal.
Even though the results are from experiments on asimple M/M/1/N queue only, thisis
also expected to be true for more general models. However, to qualify this statement,
numerous experiments on more general models, with optimal biasing, should be con-
ducted. Thisisleft as further work.

RESTART and importance sampling are basically different. Their impact on the underly-
ing sampling distribution of an M/M/1/N model is described in this chapter. The study
demonstrates that for some parameter values, the RESTART and importance sampling
have very similar impact on the sampling distribution. Hence, for this combination, the
simulation efficiency was almost equal. These observations are expected to be valid for a
broader class of models than M/M/L/N.

Previously, it has been pointed out that importance sampling, using the change of measure
obtained by results of large deviation theory, is not efficient in symmetric models with
multiple dimensions. The experiments in this chapter confirm this, and also demonstrate
that the use of RESTART instead is at least as efficient because the symmetry can be
exploited. However, for general models with multiple dimensions and no symmetry, itis
not easy to set up an efficient RESTART simulation. RESTART will suffer from problems
with defining thresholds due to state explosion. In[GHSZ97], it is pointed out that, except
for specific models, it isimpossible to identify an optimal splitting of the simulation proc-
essin amultidimensional model. The reason can be explained with reference to

figure 2.14 which is adopted from [GHSZ97]. The rare events of interest are observed
when the process reaches threshold A. The most likely path from the origin to this thresh-
old passes through an intermediate threshold B in b’. Correspondingly, the most likely
path from origin to thisintermediate threshold endsin state b. b and b’ are only the same
state for symmetric models like the one in section 2.8.3. Hence, care must be taken when
establishing thresholds in multidimensional models. The remaining question is how
robust the RESTART is, that means how efficient is the simulations, when a sub-optimal
path is followed?

RESTART will also experience a significant decrease in the efficiency because a huge
number of visitsto each threshold is required to obtain a representative sample. In con-
trast, importance sampling is, to a certain extent, in these models able to exploit the
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Figure 2.14 : The most likely path to the intermediate set B hits B at b, but the most
likely path to the final set A hits B at b’. Figure adapted from [ GHSZ97].
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identified differences. Efficient simulation can then be established, aswill be described in

chapter 5.
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Change of measurein importance
sampling

In the previous chapter, an overview of a number of speedup simulation techniques was
given. Thischapter containsdetail s of importance sampling, whichissuitablefor efficient
simulation of probabilities of rare, but important, events. A brief overview isgiven of pre-
vious approaches to make importance sampling efficient and robust. In addition, an easy
to implement way of changing the simulation parametersis presented. It isalso described
how this parameter biasing is done in a multidimensional model with a single resource
constraint. For several constraints, the new, adaptive biasing is required. This approach
will be described in chapter 5. At the end of this chapter, a summary is given of the most
important observations made from quite afew simulation experiments on both smple and
multidimensional models. The heuristics based on these observations are al so discussed.

3.1 Thechange of measure

Importance sampling was briefly introduced in chapter 2.7.2, where the principles and
equations were given. The basic equation for the expected value of the property g(s) is
repeated for convenience (from (2.26)):

v = Eq(9(®) = ;Sg(s) f() = ;Sg(s)% f(9) = E.(9() - L(9)- (3.1)
This chapter deals with the change of measure from the original sampling distribution
f(s) to anew distribution f*(g). As pointed out in chapter 2.7.2, thisisthe main chal-
lenge with respect to making importance sampling efficient and robust. The only
restriction to the probability density f*(s) observed from equation (2.26) is that
f*(g) > 0 for al samples s where g(s) f(s) = 0. Thismeansthat the samples s with apos-
itive probability f(s) > 0 and anon-zero contribution g(s) , must have a positive
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probability alsointhe new distribution, f*(s). Thisisanecessary condition which serves
asaguideline for choosing f*(g). The efficiency of the following importance sampling
estimate (from (2.27))

f(s)
f*(s;)

s = éErR:lg(sr) = %{Eleg(sr)L@r) (3.2)

is dependent on an appropriate choice of the new distribution. An unfortunate choice of
f*(s) may cause the variance of ¥, to be larger than the variance of the estimates
obtained by direct simulation. For some f*(g) , the variance may beinfinite, aswill bedis-

cussed in section 3.5. Hence, it iscrucial to find agood f#*(g). The optimal f*(s) isthe
one that minimises the variance of y,5 (from (2.28))

Va9 = 2Var(goL(9) = AE.(9ELE -1)?). 33

Thevarianceisminimised to Var(y,s) = 0 when g(s) f(s) = y f*(g) . But, thisrequires
knowledge of vy, the property of interest. Anyhow, this observation may serve as aguide-
line stating that g(g) f(g) « f*(g). This makes efficient application of importance
sampling very model specific.

Example 3.1: To demonstrate the effect of different changes of measure, a simple sto-
chastic model with 3 different alternatives of f*(g) isintroduced as an example. The
samples s are taken from a one dimensional Poisson processwithrate A = 1/v,i.e.
f(s) = e 'v°/sl. Observethat in this example the sampleisascalar s and not avec-
tor s. The property of interest isthe probability of observing samples s greater than a
certain threshold a.,i.e.y = P(s>a).If v = 10 and thethresholdis a = 30, then
the exact valueisy = 7.98x10°°. Hence, to obtain estimates of y with confidence
1-¢ = 0.95 by direct smulation, approximately R=1/¢ - 1/y = 25x10° samples
must be taken from f(s), according to (2.9) in section 2.1.

Instead, importance sampling should be applied to increase the efficiency. But, what
should the change of measure be? Generally, any probability density function applies
that isdefined inthe non-zero region of v, i.e. that fulfilsthe requirementsof f*(s) > 0
if g(s) f(s) > 0. Three different changes of measure are proposed in this example.

i. Poisson distribution, fp*(s) , with rate v¥ = 1/o.. Thisis an efficient change of
parameter for atruncated Poisson distribution, see [Kel86, Man96c].
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ii. Binomial distribution, f,*(s), withn = 60 and p = 0.5. The binomial distribu-
tion approaches Poisson for large n, the parameters are chosentogiven- p = «a,
i.e. to have the same expected mean as f p*(s) .

iii. Discrete uniform distribution, f *(s), with n = 60, i.e. defined on the same
domain as the Binomial distribution, s = 0, ..., n.

The guideline from variance minimisation of y g stated that f*(s) should be propor-
tional to g(s) f(s) . Inthisexample g(s) = 1 for all samples s> o, which means that
f#(s) should be proportional to f(s) for s> a.. Figure 3.1 showsaplot of the original
density and the densities of the three new distributions. Figure 3.1(a) shows the densi-
ties over the complete range [0,60], while figure 3.1(b) plots the re-normalised
logarithmic densities over [ 30, 60], the subrange above the threshold o . The latter is
included to compare the shapes of the densities in the region where the rare events
occur. The Poisson and binomial distributionshavetheir modes centred at the threshold
a.. The original, Poisson, and binomia distributions are monotonically decreasing in
s> o. In contrast, al samples s> o in the discrete uniform distribution are equally
likely, i.e. f *(s) isnot proportional to g(s) f(s) where g(s) > 0.

The estimates v,5 and their standard error?, SY|5’ areincluded in table 3.1. The exper-
imentsinclude 1000 samplesfrom each of the 3 distributions. Asexpected, the uniform
distribution, which isnot proportional to g(s) f(s) ofor s> o, hasthe poorest standard
error. Table 3.1 also includes the time, t, taken to generate 1000 samples of each dis-
tribution, and the efficiency measure, m, from (2.11). Taking the efficiency of the
sampling algorithm into account, the uniform distribution is close to being the best
aternative (whichisthe Binomial distribution) for this example. Sampling from aPois-
son distribution is time consuming in the Mathematica implementation [Wol91].

Table 3.1: Different change of measure.

Distribution, f*(X) 715 [10F] S [10°8] t2 mP [10'6] | exact, y [10]
Poisson, A=0.1 8.59 0.69 95.8 | 0.0219 7.98

Binomial, n=60, p=0.5 7.47 0.47 26.1 | 0.1724

Discrete uniform, n=60 | 8.07 1.28 3.9 0.1563

a. Time taken to generate 1000 samples by Mathematica.
b. The efficiency measure from (2.11), (S%IS )7L,

1. See appendix B.3.
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Figure 3.1: The density functions for the original Poisson, f(s), Poisson with biased
rate, f *(s), Binomial, f*(s), and discrete uniform, f *(s), distributions. Figure (a)
showstherange[0,60], while (b) showsthe logarithmic densitiesfor therange[30,60].
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The example shows two things. First that importance sampling can apply a change of
measure f*(s) from various distributions, and is not limited to distributions within the
same family of distributions as the original (here Poisson). Furthermore, the resultsin
table 3.1 demonstrate that not only the variance reduction, but also the efficiency of the
sample generating algorithm, should be considered when choosing “the best f#*(s)” for
the problem at hand.

3.2 Thesimulation process

In this chapter, importance sampling is applied on asimulation process that is assumed to
be a continuous time Markov chain (CTMC). This section presents the details and restric-
tionsthat are necessary to understand the parameter biasing introduced in section 3.4. A

more general view of the simulation processwill be givenin chapter 4, wherethe building
blocks of the framework for network models are presented.

Let X(t) beaK-dimensional continuous time Markov chain (CTMC), defined on a sam-
plespace’ QK = {0, 1, ..., N}K. Thestatechangesin X(t) aredenoted events” and take
place at embedded pointsin time. A single transition affects only one dimension at a

time’. If ty, ty, ..., t,, are n embedded points, then X(t) can be made discretein time by

Xi = X(t) = {wy, 0g, -, 0 i}, Wherei = 1,....n. (34)

Thisisadiscrete time Markov chain (DTMC). After event i itisequal to X(t;) at embed-
ded point t;. The X; can be expressed by recursion,

Xi = X_1%4;. (35)

Z; istherandom event variable that can take on any (feasibl€) integer valuein one of the
K dimensions. An event ise.g. acall arrival, a service completion, a component failure.
In section 3.4.2, a possible implementation of importance sampling change of measureis
described. This chapter limits the event variable to be defined on {-1,1}, in either of the

K dimensions?,

1. Adding resource limitations to the model, e.g. finite buffer capacity, the feasible region of QX will be
reduced, e.g. acommon resource limitations will cut the corners of this state cube.

2. See chapter 4 for arefinement of the event definition.

3. When preemptive priorities are introduced in chapter 4, thisis no longer true.

4. Theindex vector of size K is 1 = {0, ..., 1, ...,0} whereelement k is1, and O elsewhere.
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-1, with probability gy, Yk
Z, = { ’ (3.6)

1 with probability p,;, Yk
In chapter 4, amore general view of the simulation processis given.

In the following sections, an overview of the change of measure on X(t) isgiven. When
estimating steady state properties, the simulations are conducted on the discrete time
Markov chain conversion X, . The expected state sojourn (holding) times are used instead
of sampling these. Thiswill always give avariance reduction compared to simulations on
the original X(t) . This also applies to simulation of semi-Markov processes [GSHG92].

3.3 Change of measurein dependability and traffic models

Asdemonstrated in previous section, the efficiency of importance sampling is sensitiveto
the choice of the new sampling distribution f*(g) . Infigure 3.2, the sensitivity to different
parametersisdemonstrated by resultsfrom simulations on an M/M/1/N queue with block-
ing probabilitiesin order of 109, Thefi gure shows atypical situation where the precision
of the estimator decreases and its variance increases on both sides of the optimal change
of measure. The lesson learned from this figureis that for optimal parameters, or param-
eters close to these, very good results can be obtained. Otherwise, importance sampling
may produce poor results. Section 3.5 will return to thisand show how the theoretical var-
iance of the estimates rapidly increases (to infinity) on both sides of the optimal change
of measure, f* gy . Inamore complex model, such asanetwork mode!, similar behaviour
is observed. The difference is that the shaded region of figure 3.2 will be narrower, and
hence, it is even more important to have good means to obtain optimal parameters.

The optimal change of measureisnot easy to obtain. A lot of work has been done on defin-
ing (asymptotically) optimal solutions, exact or by pre-simulations. In this section, a brief
summary is given, and for a comprehensive survey the reader is referred to [Hei95].

3.3.1 Dependability vs. traffic models

A number of different approachesis proposed for obtaining efficient importance sampling
simulations. The solutions are dependent on the nature of the problem. Models describing
dependability (or reliability) and traffic (or queuing) aspects are basically very different.
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Figure 3.2: Importance sampling efficiency is dependent on the change of measure.

« Dependability model - the events of interest are typically system failures caused by
occurrence of a(small) number of element or component failures during a (short)
period of time, e.g. the restoration time of the first failure. If each of the component
failures are unlikely to happen in the observation period, the system failureisarare
event.

« Trafficmodel - the events of interest aretypically buffer overflow or trunkline blocking.
These events are due to a (large) number of simultaneous call arrivalsin a service
period. It isnot asingle call arrival in a service period that is the rare event, but the
occurrence of alarge number of simultaneous call arrivals. This becomes arare event
when the queue or trunk line capacity are large, and/or the offered load is low and
server distributions are heavy tailed.

To demonstrate the different limiting behaviour of the dependability and traffic models,
consider abasic event with probability €. A basic event is, in a dependability model, a
component failure during arestoration period, and in atraffic model, arrival of acall ina
service period. Let the number of basic events leading to the rare event of interest be n.
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Assume that the probability of rare events are exponential in the number of basic event,
¢". This probability goesto 0 in two different ways:

- Independability models:  ¢" — 0 ase — 0 if n isconstant, or
- Intraffic models: ¢"—>0asn—oande<1.

Example 3.2: Thedifferenceisillustrated in figure 3.3. A sequence of basic eventsis
leading to arare event of interest within a specified observation period, T = 1000. In
the dependability model, asystem failureis observed after afew basic events, whilein
thetraffic model alarge number of basic eventsisleading to the occurrence of blocking
or overflow.

Thisis the main reason why an optimal, or at least good, change of measure in atraffic
model does not necessarily directly apply in a dependability model, and vice versa. For
instance, one of the optimal solutions for the traffic models assumes a large number of
basic events to substitute the discrete sequence of events by a continuous trajectory. This
approximation is required to apply asymptotic results from the large deviation theory. In
a dependability model with small n, this approximation istoo rough.

3.3.2 Approachesfor dependability models

The change of measure in dependability modelsis normally done by changing either the
failure rates, the restoration or repair times, or the observation period. The rare event of
interest istypically the system failure caused by occurrence of a specific combination (or
seguence) of component failures. Inareal sized system the number of componentsislarge
and so also the number of different system failure modes. In general, the objective of the
change of parametersisto sample the most likely paths to failures. This meansthat the
most important system failure modes must be identified, and their corresponding
seguence of events leading to thisfailure.

3.3.21 Simplefailurebiasing

A straightforward approach is the simple failure biasing, thoroughly treated in [Nak94].

Thefailure and repair rates are scaled by acommon factor, denoted p in thissection. The
ideaistoincreasethefrequency of failuresby increasing thefailurerates and reducing the
repair ratesin proportion to the original rates. Let the original failure and repair rates for
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Figure3.3: Therare eventsin a dependability model occur typically after a small
number of basic events, while in traffic models the number of basic events that

resultsin arare event islarge.

component k at state @ be denoted A, (@) and w,(w) , respectively. The simple failure
biasing changes the failure rates to A, *(w) and repair ratesto u, *(w) asfollows:

MH@) = M@) - P/ Y Mdw)

(@) = w(w) - (1-p)/ Y wlw)-

(3.7

Example 3.3: Consider acomponent k which iseither “ok” or “defect”. Thefailure and

repair rates are;

A
M) = {Ok

(0
wlw) = {Mk

o = ok
@ = defect’
® = ok
@ = defect’

Accordingto[Hei95], thefactor p istypically 0.25 < p < 0.9. However, figure 3.4 shows
the results from simulations of the same 2 component parallel system that was used
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in [CG87]. Thesimulation resultswith error barsindicate that afactor p* = 0.99 should
be chosen, not p* = 0.50 aswas recommended in [CG87].
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2
o 1 p*
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p‘k

Figure 3.4 : Theeffect of failure biasing on the example from [ CG87]. The optimal
change of measure isABIAS= (w/A)-h = u = 0.9901. (A=0.01, u=1.0).

The simplefailure biasing is efficient when the system isbalanced, i.e. the number of fail-
ure transitions to a system failure is the same for all component types. It is proven
[HSN94, Nak94], that simple failure biasing has bounded relative errorl, re(y,g <,
i.e. afixed number of samplesisrequired to estimate y,5 to acertain level of confidence,
irrespective of the probability of the rare event of interest.

3.3.2.2 Balanced failurebiasing

For an example of an unbalanced system, consider the system in figure 3.5 taken from
[Hei95]. The system consist of 2 component types. The system failure occurs either as a
result of 1 failureof type 1, or 3 failures of type 2. Let thefailure rate of type 1 be e? , and
for type 2, £ . Assume that no repair actions take place. Hence, the system is denoted
unbalanced because the dependability, e.g. measured by the MTFF, is dominated by fail-
ures of the single component. However, when €2 « € « 1, simulation by use of simple
failurebiasing, will most frequently generate a path towardsthe 3 component failure. This

1. Relative error is the ratio between standard error and sample mean, r.e.(X) = &X/ X, see appendix B.3.
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is not the most likely path. Application of simple biasing may result in estimates having
unbounded relative error.

o{ib+{zfo =
CrveeT || 3
L} 4 [
T TYPE2
(a) Block diagram structure (b) State space model

Figure 3.5 : Example of unbalanced system, taken from[Hei95].

Instead, balanced failure biasing is proposed [GSHG92]. Uniform weights are now put
on the failure rates of the different component types, i.e.:

M) = M) p/K
(@) = (@) - (1=p)/ Y u(w). (3.8)

This means that after scaling, the failure rates are equal for each of the K component
types. Therepair rates are scaled similar to the simplefailure biasing case, see (3.7). Now,
the most likely path in the example of figure 3.5 will be sampled more frequently during
simulation. However, when simulating a balanced system, simple failure biasing is more
efficient than balanced biasing, e.g. seeresultsin [LS95].

3.3.2.3 Pre-simulationsfor determination of the p-factor

The optimal scaling factor p from (3.7) and (3.8), is not easy to obtain analytically. In
some cases it is considered to be impossible. Instead, [DT93] proposes an experimental
approach where aseries of short pre-simulationsis conducted for different p. Therelative
error, r.e.(y,g) , isplotted for different p, likefor instancein figure 3.2. The optimal value
of p, isthefactor providing the minimum relative error. An optimisation technique, based
on the simulated annealing technique, is applied to the series of results to determine the
optimal factor from the experimental data. Consider, for instance, the results plotted in
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figure 3.2 to be estimates obtained from a series of pre-simulations. Then, a p factor
within the shaded region would have been chosen as the optimal p.

3.3.24 Failuredistance biasing

The failure biasing approachesin (3.7) and (3.8), propose a fixed scaling factor p for the
entire simulation experiment. An alternative approach is called failure distance

biasing [Car91]. The scaling factor is changed during the experiment and is adapted to the
current state of the system. The ideais to change the failure rates to give most weight to
the componentsinvolved in the system failurewhich is closest to the current state. Closest
in the sense that it isinvolving the least number of failure eventg/transitions to a system
failure. When these components are determined from the fault tree of the system and the
current state, the transition rates are changed using an “on-the-fly” optimisation, see
[Car91] for details.

The adaptive parameter biasing technique, that will be described in chapter 5, isinspired
by thisfailure distance biasing. However, instead of counting the number of transitionsto
each system failure, the new ideaisto assign probabilities to each sequence of transitions
from the current state up to a given system failure, and also consider the value of the con-
tribution to the system dependability given that this failure has occurred.

3.3.3 Approachesfor traffic models

Aspointed out in section 3.3.1, therare eventsin traffic models occur asaresult of alarge
number of basic events. The sequence of events is denoted a path. In chapter 4, the con-
cept of apath ispresented together with other details of the modelling framework, seealso
appendix B for an overview. Typicaly, very efficient simulations are achieved when an
optimal change of measure is available. On the other hand, changing to parameters far
from the optimal, poor simulation results are produced.

3.3.3.1 Borovkov heuristics applied to GI/Gl/1

A few (asymptotically) optimal changes of measures exist for alimited class of models.
This section will focus on one model in particular, the general single server queue, GI/GI/
1/N. The optimal change of measure is obtained by the use of results from the large devi-
ation theory, see [Buc90] for arigorous description. This result is one of the fundaments
of the adaptive technique that will be proposed in chapter 5.
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Let S,/n bethe sample mean of n samples s taken from the distribution (s), where
S, = E:‘ - 1S; - Roughly, combining Cramér’s theorem with Chernoff bounds [Buc90,
RME96], the probability of this sample mean being greater than or equal to acertain value

y,is

P(S,/n=y)~e " (3.9)

where the Cramér’s transform or the entropy function is:

I(y) = sup, (6y—logM(6)). (3.10)

M(6) isthe moment generating function of f(s).

Example3.4: If f(s) = ke’xs, i.e. the exponential distribution, the moment generating
functionis M(6) = E(e5®) = A/(h—a), and then the Cramér’s transform becomes
I(y) = Ay—1—logAy. In [RME96] more examples are given.

In figure 3.6 the Cramér’s transform for the exponentia distribution with mean value 10
(A = 1/10)isplotted. Observethe exponential increase on both sides of the mean value.
Equation (3.9) describes how the probability decreases as the sample mean deviates from
the expected value.

In [PW89], (3.9) was heuristically applied to obtain an asymptotically optimal change of
measure for GI/GI/1 and tandem queues, using the following reasoning. The queueis
observed over aperiod of time (0,T]. The queueisempty attimet = 0, and reachesthe
capacity N for thefirsttimeat t = T, without returning to empty for t in (0,T]. The
observed arrival and departure rates in thisinterval are constant and denoted A" and ',
respectively. The queue growswith arate A' —u' (A'> u') andreaches N attime T, i.e.
N = T(A'—u'). The probability of observing an arrival rate of A' over aninterval (0,T],
is equal to the probability of observing amean interarrival of 1/\' in A'T samples. The
Cramér’s theorem now applies, substitutingy = 1/A' and n = A'T into (3.9). Corre-
spondingly for the observed departure rate w'. The probability of observing A' and u' is
then, substituting T by N/(A'—u'):

ML/ + Wi (L/)
o0 ) = e—T(}\'Ih(l/)\')+M'IM(l/u.')) _ e_ I ST (3.11)

wherethe I, (1/)\) isthe Cramér’s transform for the arrival distribution.
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Figure 3.6 : The Cramér’stransform for the exponential distribution with rate A=1/10.

Theobjectiveisto maximise p(A', u) withrespectto A" and u', whichisthe sameasmin-
imising the exponent of (3.11), without the constant term —N :

ML/ + il (1/W)

Y (3.12)

B, w) =

Example 3.5: Consider an M/M/1/N queue where the objective is to estimate the proba-
bility of reaching the buffer capacity N. The Cramér’stransformsis

L, (1/N)
1,(1/w)

A/N —1—logh/ N

w/w'—1-logun/w
substituted into (3.12)

A=A =MNlogh/A +u—u'—u'logu/w

B0V, w) = o
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The B(\', u) isplottedinfigure 3.7 for different valuesof A' and w'. The non-trivial 1
solutionto min(B(A, u")), istheinterchange of the original arrival and departure rates:

A=A = uand

w = u* = A (3.13)

Theresult in example 3.5iswell known and has also been derived by use of slow-random
walk, [CFM83]. Thisassumesthat N islarge to make the sequence of arrival and depar-
tures a continuoustrajectory in the state space. The arrival and departure rates need not be
constant over the entire trgjectory as was assumed in the heuristics described above. The
relation between this and slow-random walk approach is given in [PW89].

BV, VRN X \ The exponent is minimised at (A* ,u*)
) // N\

A \
/ \ /\
/ \ \ \ / \
/ \ \ /
/ \ \ \ / .
/ \ /N / "\

245}

2.4t

2.35}

0.7

Figure3.7: Theexponent B(A', u") for various A" and u' whereA = 0.1 andu = 1.

3.3.3.2 Change of measure based on large deviation results

Most of the work on successful application of importance sampling to traffic models has
used large deviation results to determine (asymptotically) optimal changes of measure.
The results from [CFM83, PW89] for the GI/G1/1 queue are extended to multi-server
queuesin [Sad9l, KW92, KW93, Man95]. Similar results are obtained for Erlang loss
systems with batch arrivals [Man96b] and for fluid flow models [Man96d].

1. Thetrivial solution isto substitute the original parameters, A' = Aand u' = u.
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The extension of the results to tandem queues are only efficient if the load on queuesis
significantly dominated by a single queue, [PW89, GK95, FA94]. Otherwise, using the
scaling as proposed by application of large deviation, will result in an inefficient simula-
tion. In[GK95], conditions are developed for the applicability of results. For Jackson
networks [Fra93], it is required that the performance is constrained by a single queue or
node.

Generally, inawell engineered network, the resource utilisation isbalanced, which means
that no single bottleneck dominates the system performance. Thisimplies that using the
results mentioned above will not give an efficient simulation. For some specific (and
small) network structures, large deviation results exists, for example intrees [CHJS92],
and feedforward network [M g 97]. However, these results are not applicable to more gen-
era topologieswith balanced utilisation of resources. Hence, an engineering approach is
developed, which combines previous large deviation results with the ideas of failure dis-
tance biasing [Car91]. This adaptive biasing approach will be described in Chapter 5, and
isalso published in [Hee97a, Hee98].

Large deviation results are applied to set up efficient importance sampling simulation of
the cell loss ratio in packet switched network like the ATM, see [CHS95] and for consec-
utive cell lossesin ATM [NH95].

The following section introduces a scaling of the parameters similar to the failure biasing
of section 3.3.2, that will be used in the remaining of thisthesis. The scaling is denoted
parameter biasing, and its use is demonstrated on a few models.

3.4 Thechange of measure

For easy implementation of the large deviation results to simulations with importance
sampling, this section will introduce ascaling of the arrival and departure rates of the sim-
ulation model, X(t) . This parameter biasing is applied to several queuing and Erlang loss
models. The relation between these biasing factors, and the optimal change of measure
obtained by large deviation results, is described.

34.1 Thechangeof transition rates

The change of measure refers to the change of the sampling distribution from f(g) to
f*(g) . The biasing approach described in this section, appliesto X(t), or its embedded
process X; . When simulating the steady state properties, only the event probabilitiesin
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Z; will be changed. Thisis described in section 3.4.1.1. When transient properties are of
interest, the X(t) issimulated. Then both the underlying event probabilities and the state
sojourn times are changed. The latter is described in section 3.4.1.2.

3.4.1.1 Thesample path distribution

Let s be the sample representing a sequence of events, e.g. arrivals and departuresin the
X;. Theorigina arrival and departure rates for dimension k are denoted, A, (@) and
w(w) respectively. The distribution of the sample path f(g) is defined as:

MR/Gx) Ty =X+
f(9) = H Py, o, WithPy v = i %)/ G(%) ify=x-1Any&Q; (3.14)
Vioes i .
1 if yeQ,

The Q, isthe regeneration state space, as was mentioned in section 2.1 and will be
described in more details in section 4.3. The normalisation factor is

G = Fieo 1 M+ oo -

Changing the f(s) means changing the transition rates with respect to determination
of Py v The new sampling distribution is:

fx(g) = P*% Gine with
V(w, E58)
M)/Gry Ty = X+
Py = du(¥)/G*(%) ify=x-1ry&Q, (3.15)
1 ifyeQ,

now G*(x) = N A + Yo 1)

The likelihood ratio from equation (2.26) is

I P P
_ fe _ V(i €s) P Wi _ Di> Qi+
L = g = Moo coPron., [[voecom (316)
(5) V((yi €5) ©is Wis1 ©is Wi+1

3.4.1.2 Thestate sojourn times

While simulating transient properties, the change of arrival and departure rates will also
affect the state sojourn time distribution. The t; isthe simulation time at embedded
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point i, and (t;, ; —t;) isthe sampled time between two embedded pointsi and i + 1,
i.e. the state sojourn time of state ¢, . The likelihood ratio is now:

G(@i)e_G((LJ.)(ti +1—1)

€9 G¥(g)e S @)(t-1-t)

Lt(§) = L(§) : HV((Q. (317)

where L(g) isgivenin (3.16).

In the following section, a scaling factor of the arrival and departure rates is introduced.

3.4.2 Biasingthe parameters

A common factor is applied to scale up the arrival rates and to scale down the departure
rates of the simulation model. The factor is denoted BIAS factor in this paper. With state
dependent rates, the BIAS-factor will also be state dependent, BIAS(y) , i.e. the biasing
will change as the system state changes. Furthermore, if the system can observe rare
eventsin J different queues, an individua BIAS factor must be assigned for every j,
BIASJ-(@) . Finally, the BIAS factor may depend on the resource reguirements Cyi
assigned to an event triggered by the traffic type described by generator k, BIASkj(@) .
The BIASfactor is:

Mi(w) = M) - BlASkj((LJ)
wi(w) = wlw)/BIAS(w)- (318)

The following sections give the heuristics for choosing the BIAS factor in afew applica-
tion examples.

3.4.2.1 Biasingin onedimensional models

Anoptimal change of measureexistsfor aGl/Gl/1, seee.g. [PW89]. For an M/M/1 queue,
the optimal change of measure has an explicit form:

A = wand pr = A, (3.19)
Substituting (3.19) into (3.18), gives a state independent biasing:

BIAS,;(w) = BIAS = A/u. (3.20)
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3.4.2.2 Biasingin multidimensional models

Recall from section 2.8.3, that a model with a shared buffer was described. Generally, a
network model will consist of J shared buffers. Each of the K traffic typesthat are offer-
ing traffic to this network, will request capacity from an arbitrary set of buffers. From
section 3.2, it is known that the simulation process, X(t) , operates on the state space Q .
The objectiveisto force this process towards either of J different subspaces, Q i where
rare events of interest occur. Each of these subspaces corresponds to a shared buffer. In
section 2.1 these subspace are denoted target subspaces, whilst chapter 4 describes the

complete framework for modelling networks.

To explain the approach that is applied for biasing the parameters in such amodel, an
aternative interpretation of the optimal biasing in (3.13) is given in terms of drift in the
simulation process. At current state ¢ the process experiences a positive drift towards
each Q. denoted 6j+(@) ,(j = 1,...,J). Thetota positive drift towards Q; isinduced
by thedimensionsk & T’ i i.e. al dimensionswhich have atransition that movesthe proc-
esscloserto Q i The positive and negative drifts are defined asfollows (ckj isthe number
of resources of type j requested by the traffic type k, see chapter 4 and appendix B):

6j+((9) = Eke r, Cyj M)

6j.((29) = Eke T, Cyi () - (3:21)
In the importance sampling distribution, f*(g), the positive drift must be increased to
make the rare events of interest to occur more often. The heuristics, based on the result
in (3.19), isthat the positive drift under an importance sampling model, & j+*(@) , should

be interchanged with the total negative drift under the original model, & J-_((9) , for every
state @ , namely:

0 (w) = Ekerl CiMe(w) = Ekerlckjuk(@) = d;.()
0, *(w) = Eker,- Ciju (@) = Ekerjckj)“k(@) = 8j4(w). 822

One possible non-trivial solution to (3.22) isthe following BIAS factor:

D L ()

BIAS,(w) = BIAS(w) = Sher Sd@) )
S ~ -

(3.23)
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To ensure that the drift towards the target is never reduced, the BIAS-factor must be
greater than or equal to 11 for every state ¢ , and hence the following is used:

6,’-(@)

BIASk]((y) = max(l, m
JH=

) (3.24)

By letting K = 1, then (3.24) becomes BIAS;(®) = u (w)/Aq(w) = u/A, andthe
result in (3.20) is recognised.

The BIASkJ-(@) factor is applied to scale the arrival and departure rates of all k € Ly,
using (3.18), asfollows:

. M(w) - BIAS () if (kET,)
M) = {K o
k() otherwise
/BIAS,; i )
W) = {uk(w) (W) if (k e.r ) | 325
w(w) otherwise

Thiswill induce a positive drift in the simulation process towards a specific target sub-
space ;.

3.4.2.3 Biasingin loss systems

Biasing in Erlang loss systemsisaspecial case of the shared buffer model. Now, a buffer
isaset of trunklines, and the arrival and departure rates are:

}‘k(@) = M
w(w) = min(oy, Suy, (§c>1) (3.26)

where S_isthe number of dedicated serversfor type k traffic (in the shared buffer model
S, = 1). For this specific system, an aternative scaling is described in [Kel86, Man96c]
which is efficient when the number of trunklinesislarge. This section showstherelation
between the scaling in the two approaches.

1. The BIASfactor may be allowed to take valuesbelow 1 if the objectiveis e.g. to force the process towards
an empty system. Inalarge system, reaching empty systemisarare event which can be provoked by impor-
tance sampling. In thisthesis, the empty stateis not necessarily applied to complete the regenerative cycle,
see description in chapter 6.
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The approach in [Kel86, Man96c] is scaling thetraffic load, i.e. theratio A/, offered to
the system. According to [Man96c] the solution is:

M/ = (/me (3.27)

—Cy;

I * X . .
where x; satisfies EV(kerj)ij}‘k/“k' e ' = Nj. The N; isthe capacity of
resourcetype j, e.g. the number of channelsin trunkline j .

To compare with the use of BIAS factors, substitute the arrival and departure rates
from (3.26) into (3.23):

M)/ i) = (M@)/ 1 (@)BIAS (@) = ( JBIAS|(@). (328)

K
(min(wy, Suy)
Then, the difference in two scaling approaches from (3.27) and (3.28) isgiven by compar-
ing the two factors:

_ij .

e ¥ versus BIASJ-Z(QJ)/ min(o,, S) - (3.29)

Thescalingin (3.27) is state independent but dependent on the resource requirements,
Cyj while (3.28) isonly state dependent. A few simulations have been carried out to com-
pare the two approaches. For large models, (3.27) is most efficient, while (3.28) isthe
most efficient for small models.

3.5 Heuristics and observations

A large number of simulation experiments with importance sampling is conducted on a
variety of models. In chapter 6, simulations of complex, multidimensional network exam-
ples are reported. The heuristics presented in this section are based on observations from
these simulations, in addition to simulations of simple one and two dimensional models.
These models are studied because their analytic solutions are easily obtained, and com-
parisons between analytic and simulation results can be made.

This section contains three main results. Firstly, the experience with the use of the

observed likelihood ratio asindication of goodness of simulation resultsis presented. Itis
observed that when the simulations produce good and stable estimates of the property of
interest, the corresponding observed likelihood ratio is closeto 1 (its expected value) and
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with asmall relative error. Secondly, it is observed from the basic equation of importance
sampling, that it is possibleto let f*(s) = O for every sample s where g(s) f(s) = O.
Thisisimplemented and tested on afew examples. It was discovered that a variance
reduction was not guaranteed. Thirdly, the relation between the variance of the estimates
and the changes in the BIAS factor is examined. In amodel of an M/M/L/N queue, itis
feasible to establish the bounds of a stable region of the BIAS factor. Outside thisregion,
the variance is unbounded (infinite). This serves as an explanation to the observed simu-
lation behaviour when (too) large BIAS factors have been applied. It has been observed
that simulation of afinite number of replications under heavy biasing, will frequently
result in asample mean which is much less than the expected value. The reason isthat the
samples are found to be taken from a heavy tailed distribution.

All theoretical results used in this section are described in detailsin appendix D. The
resultsarevalid for modelsthat are described in section 3.2. For one dimensional Markov
chains the variance expressions can be rearranged to enable efficient calculationsin large
models. Appendix D includes numerical resultsfrom 3 different one dimensional models,
and 1 example of atwo dimensional model.

It isimportant to keep in mind that this section only addresses the accuracy of the impor-
tance sampling estimates with respect to the change of measure. No discussions relative
to simulation stopping rules, simulation run length, transient periods, block vs. regenera-
tivesimulation, etc. areincluded. Thisis outside the scope of thisthesisand the interested
reader is referred to any textbook on simulation, e.g. [BFS87, LO88, BCN96].

3.5.1 Theuseof likelihood ratio for validation

Asfor dl types of simulation, it is essential to ensure that the results of an importance
sampling simulation are good. With good it istraditionally meant to produce accurate esti-
mates close to the expected value. When the true values cannot be established elsewhere,
neither through analytic solutions nor running a direct simulation, some indication of the
goodness of the importance sampling estimates is required. It isimportant to note that a
useful estimate in rare event simulations may be an estimate that is within the same order
of magnitude asthe expected value. Thisis generally amuch weaker requirement to what
agood simulation result is than the traditional one.

It has been discovered that some simulation results which apparently are good, because
the relative error was low, have estimates that are much less than the expected value. This



3.5 Heuristics and observations 65

isan observation that tells the simulation analyst that precautions must be taken when the
expected value is not known. An incorrect conclusion about the correctness of estimates
may be drawn if only the sample mean and its relative error are considered for validation
of results. Figure 3.8 includes typical observations of the sample mean and its standard
error produced by importance sampling simulations using atoo strong parameter biasing.
The estimates are all much bel ow the exact value. Hence, the key point isto discover when
atoo strong biasing is applied, and some indication of thisis required.

1e-07
exact value, E[y]
5e-08 |
4e-08 |
simulation result when
3008 l / overbiasing the parameters
} t
2e-08 t+ { }
1e-08

1 2 3 4 5 6 7 8 9 10

Figure 3.8 : When the parameter biasing istoo strong, the estimated mean is often
observed to be below the exact value but has small relative error.

Recall from (3.2) that ¥, is obtained by observing several samples of the product of the
property g(s) and thelikelihood ratio L(s) . Intuitively, thisindicates that the observed
likelihood ratio in a simulation can serve as an indication of how precise and stable 7,5
is. The expected value of the likelihood ratio is known for every change of measure and
model, namely E(L) = 1. Hence, the observed mean value should becloseto 1, L = 1.
Thevariance of L isdependent on the BIAS factor asthe resultsin appendix D.7 demon-
strates. The standard error of L issmall when the BIAS factors are greater than 1
(BIAS=1 isdirect simulation where the likelihood ratio is always 1 with standard error
equal to 0). The standard error increases slowly with increasing BIAS factor. Above the
optimal value of the BIAS factor, and then arapid increase is observed. This means that
atoo strong biasing is possible to discover by studying the likelihood ratio.
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Figure 3.9 : The observed likelihood ratio drops bel ow the expected value when
biasing outside the stable region is applied
(all results are from an M/M/L/N queue with A=0.15, u=1.0, N=10).

Example 3.6: Consider an M/M/L/N queue with an arrival rate A = 0.15 and departure
rate u = 1. ThecapacityisN = 10. A seriesof simulations are conducted for differ-
ent BIASfactorsand theresultsare plotted infigure 3.9. The mean observed likelihood
ratio L is plotted with the standard error, SL , as error bars. The optimal change of

measureis BIAS,

= w/h = 6.67. At BIAS

opt the observed likelihood ratio is

L~1 withre(lL) = S./L « 1. Thesameis observed for the BIAS factors below this

optimal value. For some BIAS factor > BIAS,

opt

the typically observed likelihood

ratiois L <1 with r.e(L) « 1, and in somerarecasesis L = 1 withr.e(L) > 1.

The same effect as observed in this example, is observed in many other importance sam-
pling simulations. To explain this, consider the theoretical variance of thelikelihood ratio,
Var(L), givenin (D.38). Thevaueof Var(L) for different parameter biasing, is added
asplot 2infigure 3.9. The Var(L) showsarapidincrease when the BIAS factor becomes
larger than the optimal value. Outside the stable region, the bounds are given in

section 3.5.3, thevariance grows to infinity. Thisimpliesthat when the BIASistoo large,
an infinite number of samples must be taken to estimate a likelihood ratio closeto 1, i.e.
the likelihood ratio follows a heavy tailed distribution.
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Figure 3.9 aso includes the analytic variance of v, (plot 3), and the conditional likeli-
hood ratio, given that avisit to state N is observed, Var(L|N) (plot 4). These two plots
show that the variance increases rapidly on both sides of the BIAS,,; - From (3.2),itis
observed that the y,5 is strongly correlated with the conditional likelihood ratio. This
means that for estimatorslike y,g, the conditional likelihood ratio contains the same
information as the y,5 with respect to the variance.

In figure 3.10, the probability density for the likelihood ratio is plotted for the model in
figure 3.9 for a specific BIAS=20. Thisis a biasing outside the stable region. The plot
shows the relation between a specific observed value of the likelihood ratio and its prob-
ability. Thisisobtained by considering all possible pathsfrom the origin (the regenerative
state Q, = 0) to the target subspace (£, = N) of an M/M/1/N queue. The most likely
path contains N arrivals and no departures, the second most likely path contains N + 1
arrivalsand 1 departure. The* extra” arrival and departure constitutesaloop in the Markov
chaininfigure 3.12. Each plot totheleft infigure 3.10, representsthe rel ation between the
likelihood ratio for apathwith i loopsand absorptionin ; = N, andthe corresponding
probability of this path. In figure 3.11(a) and (c) the underlying data of these plots are
given. To theright in figure 3.10, the plots of the corresponding relation between the like-
lihood ratio and its probability for the pathswith i loopsand absorptionin state 0. Thisis
the paths where no visits to the target subspace are observed. In figure 3.11(b) and (d) the
underlying data of these plots are given.

The most important observation is that the density of the likelihood ratio is heavy tailed.
Evidently, from figure 3.11, it becomes even more heavy tailed when the BIAS factor
increases beyond the stable range. In aheavy tailed distribution, a very large number of
samples are required to obtain a sample mean that is close to the expected valuel.

Example 3.7: Taking sample paths s from a heavy tailed distribution causes problems
with estimations of the properties of interest. The mgjority of samplesin asimulation
experiment will then beadirect path from the origin at state 0 up to state N. Obviously,
the likelihood ratio L(s) has the same value when the sample path s isthe same. The
samplemean, L, will become much lessthan 1, and the standard error of sample mean
will be small. However, oncein awhile (very rarely), a sample path with no visits to
state N is observed. These paths have a (very) large contribution to the estimate of the

1. The Pareto distribution is an example of a heavy tailed distribution which, for some parameters, has no
finite expectation.
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likelihood ratio. Now, the L may be closeto 1 dueto this single contribution, but the
corresponding standard error will be large.

If the likelihood ratio follows a heavy tailed distribution, then the same will be the case
for the estimates of the property of interest. Thisis expected to be the case under more
general model assumptions based on observations from simulation of other, more com-
plex, systems. In figure 3.11 the details behind figure 3.10 are given, illustrating that the
distribution becomes increasingly heavy tailed asthe BIAS factor increases.

1&0@
J\ the most probable likelihood ratio is observed
&, inadirect path from state O to state N
1e-02 " 2loops, absorption in state N <& 0loops, absorption in statg 0
© " o
R & 1loop, absorptionin gate 0
le-04 N "
® .

= - % 2 loops, absorptidn in state 0
X © 5loops, absorption in state N R

1le-06 N

@
1e-08 @
©
le-10

1e-08 1e-06 1e-04 1e-02 1e+00 1e+02 le+04 1e+06
likelihood ratio L

Figure3.10: Thesampling distribution of the likelihood ratio isheavy tailed in
theregion wheretoo strong biasing isapplied. Theplot isfor an M/ML/N system
with A=0.15,u=1.0, N=10 with BIAS = 20, number of loopsj=0....,5.

To summarise, consider the following two cases.
Case 1: Thelikelihood ratiois L = 1 with r.e.(L) « 1:
==> thisindicates that the estimate y,5 is good if itsrelative error r.e.(y,g) « 1.
Case 2: Thelikelihood ratiois L « 1 or r.e(L) > 1:

==> thisindicates that the estimate y,5 is poor evenif ther.e.(y,g) « 1.
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Theanalytical resultsfrom the modelsin appendix D, confirm that theindicationin case 1
is correct. The same has al so been observed for amore complex model, see example 3.8.
However, it does not provide the requested guarantee in the general case, see the counter
example 3.9 below.

Example 3.8: Consider the non-trivial network examplein section 6.3 with 10 user types
and 12 nodes. The call blocking is estimated very accurate compared to the exact val-
ues. Inthisexample L = 0.984 withr.e.(L) = 0.0067 andr.e.(f;g) = 0.0308,which
confirmsthe indication in case 1.

Example 3.9: Recall the shared buffer examplefrom section 2.8.3with K user typeswith
identical load. Consider one plot in thisexamplewhere K = 6 and A = 0.30. The
likelihood ratiois L = 0.948 with relative error r.e(L) = 0.011. The relative differ-
ence between the true value and the estimator, (y —7 1s)/S; . = 4.21,i.e. morethan 4
times the standard error. Hence, the estimatesis not very accurate even though the rel-
ativeerrorislow, r.e(y,s) = 0.161. Note, however, that for engineering purposesthis
¥, may still be of some value because the estimate is in correct order of
magnitude ( 107 ).

Case 2 isanalytically confirmed on M/M/1/N queues and shared buffer modelsin
appendix D. All results from simulation experiments, including more complex models,
give reason to believe that this generally holds. However, the opposite is not necessarily
true. For instance, adirect simulation gives poor estimates, butinthiscasethe L = 1 and
re(L) = 0.

3.5.2 Conditional return transition to regener ative sub-states

The only restriction for choosing f*(s) given by (3.1), is that the new density must be
f*(s) > 0 for all samples s where f(s) - g(s) = 0. Asadirect consequence, this means
that itispossibletolet f*(s) = O for al sampleswhere f(g) - g(s) = 0, evenif theorig-
inal distribution f(g) > O for this sample.

This can be exploited in simulation of regenerative cycles. A sample paths s isaregener-
ative cyclethat startsand endsin Q, = 0, seefigure 3.12. All pathswhich do not include
avisitto Q; = N should be disabled. The disabling isimplemented simply by making
thetransition back to , dependent on whether avisitto Q, isobserved or not. The tran-
sition back to Q, completes a regenerative cycles which is the observation period, or
sample, of the simulation. In figure 3.12 below, thisisillustrated by a one dimensional
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(a) The probability of absorption in state N.

3 Change of measure in importance sampling

(c) The probability of absorption in state 0.
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(b) The conditional likelihood ratio given
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Figure3.11: Theobserved likelihood ratio hasvery large variability asthe BIASfactor

increases outside the stable region. (plot of M/ML/N systemwith A=0.15,u=1.0, N=10).
Markov chain. The state transition probability between state 1 and the regenerative state
0, isassigned to 0 as long as no visit to the target subspace N is observed. Then the tran-
sition probability between state 1 and 2is 1. Thisimpliesthat for all sampled paths, arare
event will be observed, because at |east onevisit to N will beincluded beforethe cycleis
completed.

P12 = 1-010
1 V. /p—\ . . °
- - Vfi/@\i/ _____
010 = g-l(state N visited)

Figure3.12: Smple Markov chain with conditional return to regenerative state.
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Simulation experiments have been conducted with a condition on the state transition back
to the regenerative state. Denote this approach conditional, and the approach where no
paths are disabled unconditional. Figure 3.13 showstherelative error r.e.(y,g) of the esti-
mates y,g for the conditional and unconditional cases. A minor variance reduction is
observed for all BIASfactorsin the conditional case. However, in other simulation exper-
iments a variance increase is observed for some BIAS factors. To explain why variance
reduction is not guaranteed in the conditional case, consider the variance expression of
¥,s from (D.41):

Var(f,g) = E(L2[N)p*(N) - (E(L|N)p*(N))? = E(L?|N)p*(N) —v2. (3:30)

In the conditional case, the probability of visiting state N inacycleis p*(N) = 1, and
now (3.30) is:

Var (7,9 = E(L2|N)~(E(L|N))? = Var(L|N). (3.31)

Thisimplies that a comparison of the variance of the conditional versus unconditional
case is the same as comparing the variance of the importance sampling estimates
Var(y,g) and the variance of the conditional likelihood ratio, given avisit to state N,
Var(L|N). Thisis known from appendix D where explicit expressions are devel oped.
Figure D.7 showsthat only for small systems, e.g. with N = 10, avariance reduction is
observed Var(y,g) > Var(L|N) = Var (Y, for all BIASfactors. For |larger systems,
thisinequality holds only for biasing close to the optimal BIAS factor.

In conclusion, it is not generally recommended to disable any paths, e.g. put conditions
on the state transition back to ,, because this does not give significant variance reduc-
tion, and it may cause a variance increase.

3.5.3 Thestableregion of the BIAS factor

Asdemonstrated in section 3.5.1, the variance of the likelihood ratio and the estimate of
Yy, are very sensitive to the change of measure. The same has been observed in many
importance sampling simulations. In this section, the upper bound of the parameter bias-
ing is determined for M/M1/N queues. Beyond this upper bound, the variance grows to
infinity. The lower bound of the biasing region is direct simulation, i.e. BIAS=1.
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Figure3.13: Smulation resultsfor two modelswhere variance reduction is achieved
by using conditional transition to Q, instead of unconditional transition.

In appendix D, the variance of the likelihood ratio in a single dimensional Markov chain

is derived. Asapart of the derivation, it was observed that the following condition must
be fulfilled

d,(v) = 4((p)?/ p*g*)cos?(va/N) < 1 (3.32
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fordl v = 1,...,N. The p and gq arethe arrival and departure probabilities under orig-
inal distribution, respectively, and the p* and g* arethe corresponding probability under
importance sampling distributions:

p* = A*/(A* + u*) and
gt = 1-p* (3.33)

To ensure E(L2|N) < o then

max(9o(v)) = ¢5(1) <1 (3.34)

isasufficient (but not necessary) condition, see section D.4.3 for details. Hence,
substituting (3.32) into (3.34), the variance is finite when:

4((pa)?/ p*q*)cos?(n/N) < 1. (3.35)

For the specific example given in figure 3.9, the numerical upper bound is
BIAS = 11.38.

In agenera system, it is very difficult to obtain similar expressions to provide an exact
maximum limit of the BIAS factor on an explicit form. However, it islikely that the var-
iance of the estimates grows to infinity also in more complex models. Case 2 in

section 3.5.1 provides an indication that can serve asameansfor detecting that the biasing
of the importance sampling parameters is too strong.

3.6 Closing comments

This chapter introduces the basics of the importance sampling and contains a brief over-
view of some approximations for the change of measure. The focusis on approaches and
results that are of importance to the adaptive parameter biasing that will be presented in
chapter 5. In an example, it was demonstrated that the change of measure in importance
sampling can be any distribution that fulfilsthe requirements of f#*(s) > 0 for al samples
s where f(5)g(s) = 0. It wasalso pointed out, inthe same exampl e, that the computational
complexity of the sampling algorithm should be considered in obtaining the “optimal
change of measure”.

To change the sampling distribution in a Markov simulation, a BIAS factor is defined to
scale the arrival and departure rates of the simulation processes. A few examples of the
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use of this BIAS factor areincluded, and the relation to previously known biasing results
are established. An extension of this BIAS factor is proposed for scaling in multidimen-
sional models. Thisresult is essential for the adaptive biasing technique in chapter 5.

The experimentsreported in this chapter are based on simulations of simple modelswhich
can be compared with analytic results. These experiments, combined with the results of
simulations of other more complex models, see chapter 6, can be summarised as follows:

1. Thedensity of thelikelihood ratio is heavy tailed. This meansthat avery large number
of samples are required to obtain a sample mean that is close to the expected value.

2. Itisnot recommended to disable the transition back to &, as part of the importance
sampling strategy. This reason is that this never gives significant variance reduction,
and it may cause a variance increase.

3. Inageneral system, it is very difficult to obtain similar explicit expression to provide
an exact maximum limit of the BIAS factor. However, it islikely that the variance of
the estimate grows to infinity for atoo strong biasing aso for more complex models.
Hence, it is very important to have a good indication of whether the biasing istoo
strong or not.

Asan heuristic based on observationsin 1 and 3, the observed likelihood ratio is proposed
to serve as an indication of the accuracy of the importance sampling estimates.
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M odelling framewor k for networ k
simulations

In the previous chapter, a brief overview is given of some approaches for changing the
measure of importance sampling. Most of them are valid for simple models only. In this
thesis, network systems and their corresponding multidimensional models are the main
focus. This chapter presents the details of the framework that will be applied for model-
ling traffic and dependability aspects of a communication network.

In section 4.1, atypica network is used as an example to motivate the various aspects of
the framework that will be presented in section 4.3. The assumptions made regarding the
underlying stochastic process are given in section 4.2. Section 4.4 summarises the mod-
elling concepts and comments on what the challenges are with respect to the use of
importance sampling simulation on models with multiple dimensions. The modelling
concepts presented in this chapter are based on [Hee95b], and the extensionsin [Hee973,
Hee93].

4.1 A typical network

Figure 4.1 shows the topology of a fictitious communication network covering most of
Norway. Thisnetwork will serve asan exampleto motivate theframework and toillustrate
the various modelling concepts introduced.

The network, which may be regarded as a backbone, consists of 6 nodesthat are intercon-
nected by 10 links. Thelinks contain the resourcesthat are requested by the usersthat are
offering traffic to this network. The network transports a traffic mixture from users with
very different requirements, such as telephony, data transfer, cable-TV, Internet applica-
tions like email, web-browsing, and file transfer. This meansthat the users have different
capacity requirements. They a so require different quality of service, ranging from accept-
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- Node i

— = Linkj

- service classes
- quality-of service requirements
- preemptive priority level

- rerouting on overload and failure

@0 - link and node failure

Figure4.1: Afictitious backbone network covering Norway.

ing no delay or no loss of information, to (almost) no limits regarding the quality of
service tolerance, e.g. “World Wide Wait”. The price they are willing to pay should bein
proportion to their requirements. The integration of such traffic requires a priority mech-
anism to distinguish between the users. Thisisimportant in overload situationswhere the
users that are paying a high price for some guaranteed service must be given priority. As
will be presented in the following, a preemptive priority mechanism will be introduced.
Thehigh priority usersare given accessto preempt thelow priority userswheninsufficient
capacity is available. The preempted calls are not resumed but are lost.

The basic building blocks of the modelling framework will be described in section 4.3. A
key concept, defined in section 4.3.1, is the generator which isa collection of users with
equal attributes. The user attributes are the traffic parameters (arrival rate and holding
time, population size, resource capacity, etc.) and the network routing. The routing of a
specific user is described as a sequence of links from which capacity isrequested to setup
a connection to a destination node.
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To increase the quality of servicethat is offered by a network, atopology should be spec-
ified to make route redundancy feasible. This meansthat a pair of access nodesis
interconnected by at least two link digjoint routes, see figure 4.1 for atopology example.
The modelling framework defines a mechanism that allows the users to have alternate
routeswhich may beinvoked when the primary routeisunavailable. A routeisunavailable
either due to traffic overload, or because either of the links of nodes along the route have
failed.

Theframework isalso prepared for modelling of dependability aspectslike link and node
failures. This alows evaluation of a system considering both dependability and traffic
aspects simultaneously. In section 4.3.6, afew comments on the applicability of the
framework are made.

A performance analysis of steady state properties, typically includes:

probability of blocking of auser with a specific priority level p,
- fraction of calls disconnected due to overload,

- fraction of calls disconnected due to alink or node failure,

- resource utilisation of the various links,

- number of rerouting events,

- €tc.

The network has users with very high quality of service requirements. Hence, the per-
formance measures depend on the occurrence of rare eventslike call blocking, rerouting,
disconnections, etc. In the following chapter, an adaptive parameter biasing is described
which makes the use of importance sampling simulation feasible to systemsthat are mod-
elled by the framework presented in this chapter.

The underlying simulation process is briefly presented in section 4.2. When introducing
importance sampling to increase the number of the rare events, this process must be
changed, see description in chapter 3 for simple models. In chapter 5, a new, adaptive
biasing will be introduced.
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4.2 Thesimulation process

In its most general form, the model presented in this chapter is prepared for asimulation
process like the generalised semi Markov process (GSMP) { X(t);(t=0)}, seethe
descriptionin[Gly89, Dam93]. Thisprocess operates on the system state, g(t) . At certain
time epochs, an event is generated that triggers a possible change in the system state
according to the state transition or event probabilities. The process staysin this new state
for acertain amount of time, according to somelifetime distribution. The eventsin GSMP
will occur at embedded points, but these need not be renewal points.

To simplify the importance sampling strategy in the following chapter, aless general sim-
ulation processisapplied. The same processisdescribed in section 3.2 and the description
isrepeated in this section for the sake of completeness. It is assumed that every embedded
point, where the events occur, is arenewal point. Hence, the simulation process
{X();(2K,t=0)} isaK-dimensional continuous time Markov chain (CTMC). Itis
defined on adiscrete state space* QK = {0, 1, ..., M, }K . (When thisis not ambiguous,
the superscript K isremoved). The eventsin X(t) take place at embedded pointsintime.
Let tg, ty, ..., t, be n embedded points, and then X(t) can be discretizised in time by:

Xi = X(t) = {wg 0p4 ..o 0k}, wherei = 1,...,n. (4.1)

Theprocess { X;;(Q, i > 0)} isadiscretetime Markov chain (DTMC) wherethe ¢, isthe
state occupancy after event i . The X; can be expressed by the following recursion,

X; = X, _1+Z, (4.2)

where Z; istherandom event variablethat describesthe possibletransitionsout of state i,
i.e. what eventsthat can occur at this state. The example below showsaregular expression
of the Z; . In amodel with preemptive priorities, the event variable becomes more com-
plex, see example 4.4.

Example 4.1: Let an event affect only one dimension at atime. Thus, the event variable
will assign values of either -1 or +1in one of the K dimensions, and the following reg-
ular expression applies’:

1. Adding resource limitations to the model, e.g. finite buffer capacity, the feasible region of QX will be
reduced, e.g. acommon resource limitations will cut the corners of this state cube.
2. Theindex vector of size K , 1 = {0,...,1,...,0},is1at position k and O elsewhere.
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1 with probability qy.;, Yk
Z=11 with probability py., Vk (4.3)
0 with probability 1 — EVK( Pri + Oii)

The g,; and p,; arethe state dependent transition probabilities.

Inatwo dimensional model, K = 2, liketheexampleinfigure 4.2, the processis oper-
ating onthe state space Q2 = {0, 1, ...,M;} x {0, 1, ..., M, } . The system states are
changed at every event according to (4.2) and by use of the following event variable:

{_1> 0} ql;i
{1, 0} Py
zo= 101}y (4.4)
{0, 1} P2;i
{0, 0} 1-(qg; + Py + 025 * P2;)

The event probabilities, q,; and py.;, k = 1, 2, depend on the system state ¢; after
event i.

All simulations of steady state properties, e.g. call blocking probabilities, are conducted
on the discrete time Markov chain (DTMC), X; conversion of the continuous time
Markov chain (CTDM), X(t;) . The expected lifetimes (state sojourn times) are used
instead of arandom sample from the lifetime distribution. Thiswill always reduce the var-
iance compared to simulations on the original X(t;) , [GSHG92]. But, simulations of

transient properties require that the continuous process X(t;) is applied.

4.3 Flexible ssmulation model framewor k

This section describes the flexible modelling framework. Section 4.3.1 presentsthe basic
building blocks constituting a model. The system state of the model is defined on a state
spaceasgivenin section 4.3.2. In section 4.3.3, it isdescribed how the simulation process
from the previous section operates on the model. The boundaries of the state space, as
imposed by the resource capacities, are defined as target subspaces in section 4.3.4.
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The flexibility of the framework is discussed in section 4.3.6 where the applicability to
modelling of dependability aspects are presented. Finally, in section 4.3.7, the extensions
to the framework are described, adding preemptive priority and rerouting mechanisms.

Figure 4.2 shows an example of the mapping between a sub-system of the examplein
figure 4.1, and its state space description.

generator

blocking
of pool 2

P
o — L

generator 2

Figure 4.2 : The mapping of a system example to a state space model.

Example 4.2: Consider node 1, 5, and 6 of the examplein figure 4.1. Traffic is offered
from two different user types. Type 1 generates callsfrom node 5to 1, vianode 6. This
means that channels, or bandwidth, from link 10 and 3 are required. Correspondingly,
user type 2 sets up connections between node 1 and 6, vianode 5. Now, resourcesfrom
link 2 and 10 arerequired. Link 10 isthen acommon resource constraint for user type 1
and 2, in addition to the individual constraints given by link 3 and 2, respectively. The
state space model is given to the right in the figure. Each traffic type correspondsto a
dimension, and each link is a boundary that restricts the state space expansion.

4.3.1 Building blocks

The basic building blocks of the model are the K generators of entities which request
resources from J resource pools. Figure 4.2 shows an example with generators added to
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node 1 and 5 in the network example of figure 4.1. The resulting state space description
isaso included in the figure.

The building blocks are defined as follows:

Resource pooal: afinite set of identical and interchangeable resources (e.g. alink in anet-
work is considered to be a pool of channels, where the channels are resources):

- N isthetotal capacity of pool j, e.g. the number of channels or the total bandwidth
onalink.

- Iy = {k\ckj >0 1<k=<K} istheset of generators with pool j asaconstraint (see
below for definition of ¢,;).

Entity, ., k = 1, ..., K:anitemthat holds Cyj resourcesfrom pool j, (e.g. aconnection
generated by generator k between A and B parties holds Cy channels from each link j
along the route between A and B).

Generator (of entities): acomponent which explicitly models a process that generates
the events operating on the entities:

- g isanentity from generator K,

- M (o) isthe state dependent arrival rate of generator k,

- M, isthe population size,

- w(w) isthe state dependent departure rate of generator k,

- S isthe number of serversfor generator k entities,

- Gy is the capacity requested from pool j by entities of generator Kk,

- o = {j Cg>0nls]js< J} istherouting set, afixed set of resource poals.

The capacity Cyj requested by an entity e, , isin a connection-oriented network consid-
ered to be either afixed number of communication channelsonlink j, or a specific
fraction of the total bandwidth N j-In a connection-less network, e.g. ATM or Internet,
the Cyj is the equivalent bandwidth for an accepted call onlink j .
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The relations between the basic building blocks and
- network aspects like topology, resource capacities and service rates,

- traffic aspects of the users, including parameterslike arrival rates, capacity constraints,
priority, etc.

are described table 4.1. Observe that the topology of the network model isimplicitly
defined through the sets @, and I’ j- Note also that the departure rates , are associated
with the generators as part of the traffic model. Thisis because u; ! is considered to be
the mean duration of a call or the mean repair time.

Table 4.1: Relations between traffic and network models and the basic building blocks.

Queueing network model Generator, K Resource pool,

Network model Routing set, @, Resource pool capacity, Nj

Generator constraint set, I' i

Traffic model Population size, Mk
Arrival rate, Ay
Number of servers, §,

Departure rate, Wi

Capacity requirement, Cyj

4.3.2 Thestate space

The global state space, , consists of a set of system states, @ € Q, defined as follows:

System state, ¢ = {mk}l'fz 1 » arepresentation of the number of entitiesat any time, i.e.
where w, = #g, isthe number of entities of generator k, (e.g. #¢, isthe number of end-
to-end connections of source type k).

The number of generatorsisthe same asthe number of dimensionsin the state space. This
means that in amodel with K generators, the state space description has K dimensions.
The boundaries of the state space are determined by the relations between the generators
and the resource pools, given as the routing sets, ¢, and the resource pool capacity, N i
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4.3.3 Themodel dynamics

The dynamics of the model are given by the underlying simulation process that operates
on Q asdescribed in section 4.2. During the simulation experiment, a sample path is con-
structed that consists of a sequence of events, where:

Event: an occurrence that triggers arequest or release of Cyj resources (e.g. aconnection
attempt is an event that requests Cy; resources). A request event resultsin anew entity if
sufficient number of resources are available for al j € @, . A release event removes an
entity.

Path,s = {®g ®4, .-, ©,_1, @, ) : 8Ny sequence of events, where ¢, isthe system state
after event i and n isthe total number of eventsin path s. A regenerative cycleisapath
where (0, = @) € L, Where @, istheregenerative state. Figure 4.3 gives an example
of a sample path.

Request event:
arrival of entity e,

Release entity:
departure of entity e,

Figure 4.3: The sequence of events constituting a sample path.

Observe that arequest event not necessarily resultsin a change in the system state. For
instance, if anew call arrivesto aloss system where al trunks are occupied, the call is
rejected. The call arrival isarequest event. The system state holds the number of calls of
eachtype, andit will not be updated. The request isneverthel ess considered to be an event,
because it may be a part of the statistics, e.g. counting the number of lost calls.
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Generally, each event in a path causes the system state ¢, to be updated according to the
event variable Z; and the corresponding event probabilities. For example, p,; isthe prob-
ability of arequest of an event e, .

434 Thetarget

This chapter only considers performance measures dependent on the network constraints
given by the resource pool capacities, e.g. time blocking, rerouting probability, etc. Esti-
mation of these properties requires observations of visitsto asubspace Q i denoted target
subspace j .

Target subspace, Q i asubspace of Q where the remaining capacity of resource pool |
isless than the maximum capacity requested by the generatorsin T’ e This means that at
least one of the generatorsin T’ j is blocked:

Q= {@(Eker, WGy > NJ_@a%(j(ij))}‘ (4.5)

An dternative and simplified definition can be given by considering the number of
resources occupied of pool j:

B = {x(Nj—(IEnEa%(_(ckj)<x$Nj))}. (4.6)

Observethat B J- isuniquely determined from Q2 i but the oppositeis not possible because
B; contains no details about the entity permutationsin ¢ . Many combinations of entities
will result in the same number of all ocated resources, X, i.e. each number in B; will have
amapping to several system statesin Q.

Rare event: avisit to atarget when the probability of this event is low, P(Qj) «1.
Single target model: is anetwork with only one (dominating) resource pool.

Multipletarget model: isanetwork with several poolsthat have significant contributions
to the property of interest.
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435 Statedependent transition rates

State dependent transition rates redefine the arrival and departure rates to A, (w,) and
w(w) , respectively. Thisis arestriction of the general definition in section 4.3.1. This
implies that the transition rates of a specific generator are dependent on the state of this
generator only. The following functional relations apply for the arrival and departure
rates:

_ _ (M —w A My <
M) = Mdond = {kk otherwise’ 7
(@) = wlwy) = min(w,, S)uy. (4.8)

The restrictions are made to simplify the adaptive algorithm in the following chapter.

Example 4.3: An M/M/1/N queue has only one generator, K = 1. The arrival process
is Poisson, i.e. with infinite number of sources, M, = o, and constant arrival rates,
Aq(w;) = . Thequeuehaveasingleserver, S; = 1, and exponential servicetimes
withrate pq(wq) = wq, activein all states where at least one customer is
present w, > 0.

4.3.6 Application to dependability modelling

An example of the generality of the framework is given in table 4.2. Thisillustrates how
to model both traffic and dependability aspects of the network example from figure 4.1.
For instance, observe that alink failure is modelled as a generator where each event
reguests the entire capacity of alink.

The concepts were originally defined for traffic models, but are later observed to be suit-
able also for modelling dependability aspects:

- Alinkfailureis modelled as a generator where each event requests the entire capacity
of alink.

- Failure propagation can be modelled by making the failure rate of agenerator depend-
ent on state changesin other generators. This require amore general definition of state
dependent rates than was described in section 4.3.5.



86 4 Modelling framework for network simulations

- Common mode failures, afault that may cause several failuresis modelled by applica
tion of routing sets. All linksthat are included in the routing set will fail on occurrence
of asingle event.

- A nodefailureis modelled by defining all adjacent links as resource pools and includ-
ing them in the @, of the failure generator k.

- A partial failure or graceful degradation of aresource iswhere afailure affects parts
of alink or node. This can be modelled by describing thefailure processwith morethan
two states (“ok” and “defect”), and where each event will affect some fraction of the
resource pool, i.e ¢ < N;.

As described in section 4.1, integration of users with different quality of service require-
mentsis only possible when the model has some preemptive priority mechanism.
Otherwise it is not possible to distinguish between the users. Furthermore, a preemptive
priority mechanism is aso required to model the failure events which are preemptive by
nature. Without such amechanism, for instance, thefailure eventsthat affect link j arenot
able to preempt the entities that occupy the resources of link j, and the failure will be
rejected.

Alternative routing should be provided to model redundancy, e.g. to let high priority users
changeitsrouting if the primary route is overloaded or disconnected dueto alink or node
failure.

Table 4.2: Mapping of discrete event model concepts and simulation models,

an example.
concepts traffic simulation model dependability simulation model
entity connection failure
generator source type link or node failure type
request event connection arrival failure of a link or node
release event connection completion repair of a link or node
capacity requirement 1< Cj = NJ- Cy = N]- a
guantity of interest blocking probability unavailability

a. In a partial link or node failure the capacity is reduced, not blocked, and the Cyj < NJ- .

Preemptive priority and rerouting mechanisms are described as extensions to the frame-
work in the following section.
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437 Mode extensions

This section includes descriptions of the extensions added to the framework to handle
preemptive priority and rerouting mechanisms.

4.3.7.1 Preemptivepriority

Preemptive priority impliesthat arequest event from agenerator with ahigh priority level
are allowed to preempt an entity with alower priority level.

- py isthepriority level of generator k, where p = O isthe highest priority level.
Observethat if p; < p; then generator i has higher priority and may preempt entities
coming from generator j .

- FE P isthe generator constraint set where the generators with priority level p have
resource j asaconstraint.

- Qﬁp) isthe target subspace for priority level p.

) _
Q= {%’Ekergm‘”kckj > Nj‘k@?)g(m(ckj)}- (49

Infigure 4.4 it is shown how the preemptions add new transitions to the state space. With
no spare capacity on arrival of ahigh priority event, two simultaneous updates take place:

- asufficient number of entities with low priority isidentified and disconnected, hence
the corresponding #e is decreased,

- thearriving high priority entity from generator k increases #e, by 1.

This meansthat arrival of an entity will in some cases affect more than one generator
because low priority entities are preempted and removed from the state vector, @ .

Example 4.4: The modé in figure 4.4 has two traffic generators with different priority
levels. Generator 2 has higher priority than generator 1, p, = 0 and p; = 1. Entities
from generator 1 will be preempted on arrival of a new entity from generator 2 if all
resources of link 1 are occupied (here Cij = Cy = 1). Let the state after event i be
o, = {2, 2}. Thisisastatein Q{V = {{4,0}, {3,1}, {2 2}, {1,3}, {0,4}}, the
target subspace of priority level 1, whichin thisexampleisinvolving generator 1 only.
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Figure 4.4 : Influence on state transitions by adding preemptive priority, an example.

Thetarget subspace for priority level 0, involving generator 2 only, is
Q{9 = {{0,4}}. Theevent variablefor g, is:

{_1’ 0} q]_;i
0,0 1-(0q; i |
z - {0, 0} (Qy; * O + P2si) (4.10)
{O> _l} qz;i
{_15 1} p2;i

This means that when an entity from generator 2 arrivesin state ; = {2, 2}, one of
the two entities of generator 1 must be preempted. Thus, the state is changed from
o = {22} tow,,,; = {1 3}.

4.3.7.2 Rerouting

Rerouting sets are defined to allow the generator k to allocate resources from an alterna-
tive set of resources.

- Ry isthe number of rerouting aternatives for generator k.

- @y = {Pyp, ..., Pyg } isthe set of dlternative routes for generator k.
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- @ = {{og} K., istheextended system state, where o, = #e,, isthenumber
of entities of generator k that followsthe rthroute, (r = O, ..., R).

- Q isthe target subspace of j :

_ K Ry
Qi = {(9Ek:lzrzozjecbk,mkfckiENJ}' (4.11)
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Figure 4.5 : Influence on state space limitations by adding rerouting, an example.

A generator switches to an aternative route only if the primary route r = 0 isnot avail-
able. The aternative routes are checked in sequence from r = 1 upto R, until aroute
with sufficient capacity on al linksisfound. If no route is available, a blocking has
occurred, i.e. avisit to one, or several, target subspaces, Q T is observed.

Example4.5: Consider anetwork with 2 nodesand 2 links. Traffic isoffered by two user
types, modelled by generator 1 and 2. The primary route for generator 1islink 1,
@, = {1}, and for generator 2itislink 2, ®,, = {2} . With no rerouting, the situ-
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ation is as described in figure 4.5(a). The generators have independent resource
congtraints. An overlap between the two target subspacesisonly present when thetotal
capacity both links are independently, and simultaneously occupied. The target sub-
space of the two links are:

{305, {3,1},{3,2},{3,3}, {3, 4}}

2,
Q {0,4},{1,4},{2,4},{3,4}} (4.12)

{
{

Now, let generator 2 have an aternative routeon link 1, ®,; = {1} . Thetwo genera-
tors compete for the capacity on link 1 when link 2 is not available. The situation is
described in figure 4.5(b), showing that the state space is extended. The new states are
added to describe the situation when entities from generator 2 occupy resources on
link 1. It is assumed that generator 2 will not preempt entities from generator 1 when
an aternative route is chosen. The target subspaces with rerouting are:

;)
I

1= {{3.0}, {31}, {32}, {3,3}, {3, 4}, {2, 5}, {1, 6}, {0, 7}}
,= O (4.13)

0
I

In this case, by definition, lost traffic generator 2 is not due to blocking on link 2 only.

4.4 Closing comments

This chapter introduces the basic building blocks of aflexible framework for the model-
ling of communication networks. The concepts of generators and resource pools are
introduced. A generator can beinterpreted as, for instance, a collection of users with the
same attributes, while a resource pool may be considered as communication channels on
alink. These concepts were originally defined for traffic models, but is later also used for
modelling of dependability aspectslike link or node failure.

The communication network is assumed to handle a mixture of traffic stemming from
userswith very different resource capacity and quality of servicerequirements. To beable
to distingui sh between users, and to provide different quality of serviceto them, apreemp-
tive priority mechanism isintroduced. Furthermore, to increase the offered quality of
service, amechanism for switching between alternate routesis provided to the users. This
means that if the network topology has link digjoint routes between the end nodes, a user
may switch to an aternate route if the primary routeis occupied or disconnected. The
description of rerouting given in this chapter, does not combine this with preemptive pri-
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orities. Thisis done to clarify the presentation. The framework is defined to let ahigh
priority generator preempt alow priority entity when conflicts occur after arerouting. It
isno conceptual difference between arrival of arerouted entity and an entity following the
primary route. The preemptive priority and rerouting mechanisms are also crucial for
modelling of link or node failures.

The simulation processthat adds the dynamicsto the model, isassumed to be acontinuous
time Markov chain, CTMC. A discrete time Markov chain, DTMC is embedded on this
process. All simulations of steady state properties can use the discrete process with the
expected state sojourn timesinstead of taking samples from adistribution. Simulations of
transient properties require that the continuous processis used.

The modelling framework may use more general processes than the CTMC, for instance
ageneralised semi Markov process, GSVIP, as described in [Gly89]. In this process, the
eventstake place at embedded points which are not necessarily renewal points. The event
variables Z,, from (4.3) are far more complicated. Alternatively, defining aDTMC proc-
ess embedded on all events of the GSMP, and not only on the renewals, the importance
sampling strategy will be far more complicated, see e.g [GSHG92].

A model of areal-sized, well-engineered network, is large and multidimensional. The
model is not easily reduced when the resource utilisation is balanced, i.e. with no signifi-
cant bottleneck. Thisis aso a problem with respect to definition of the parameters for
importance sampling simulation. A rare event of interest may occur in severa linksinthe
network. In the following chapter, thisis discussed in further detail and a new adaptive
strategy for changing the parameters is proposed.
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Adaptive parameter biasing in impor -
tance sampling

This chapter presents the adaptive change of measure that appliesto the models described
in chapter 4. Aswill be addressed in section 5.1, these model s pose hew challengesto the
change of measure, or parameter basing, in importance sampling. Hence, previous pro-
posed approaches do not longer suffice. The general ideas of the adaptive biasing are
presented in section 5.2, and section 5.3 adds details. In section 5.4, the robustness of the
adaptive biasing is commented. The ideawasfirst presented in [Hee95b], and later
improved in [Hee96] and further generalised in [Hee97a]. The description given in this
chapter can also be found in [Hee98]. For applicability to networks, see the feasibility
studies in chapter 6.

5.1 Thechallenge of parameter biasing in network models

The variance of the importance sampling estimateis given in (3.3) in chapter 3. Thereit
was pointed out that the optimal change of measureisthe f*(s) that minimises this vari-
ance, Var(y,g) . ThevarianceisOwhen g(g) f(s) = vy f*(g) . Unfortunately, thisinvolves
the unknown property of interest, y . This minimum variance restriction, however, serves
asagenera guidelineimplying:

a9 f(g) = f*(9). (5.1)

This means that the new distribution f*(s) should be proportional to the importance of
sample s to minimise the variance of ¥,5. Theimportance of the sample s isthe product
of the original sampling distribution, f(g), and the contribution, g(g) .

Now, consider a multidimensional network model involving J resource pools. The prop-
erty of interest is associated with these pools. In the model atarget subspace Q j cQis
defined for each pool in which the rare events, that contributes to the property of interest,

-03-
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occur. Each sampled path s has J contributions, g J-(§) , one for each target subspace.
Returning to the guideline of (5.1), it is heuristically assumed that the optimal change of
measure should be proportional to the importance of each of these J targets:

9;(9) f(g) = f;*(9). (5.2)

Thisis only possible to achieve when the system model has one of the following two
properties:

1. Asingledominating target. This meansthat there existsatarget j .., where, for al (at
least the most likely) sample paths, s: gjmax(g) > gj(§) » VJ # jmax- Then the optimal
change of measure can be approximated by using the optimal change of measure with
respect to the target j ... This approach has been used, for instance, in tandem
gueues [PW89] and loss networks [Man96c].

2. Snglevisit paths. When asample path never includesvisitsto morethan onetarget, i.e.
9;(9) - gi(s) = 0, Vj=i, Vs (5.3)

then the R replications of a simulation experiment can be divided into J independent
stratas, see[Fra93]. Each stratacontains R = p;-R replications where the change of
measure is relative to target j . The optimal strata probability is

p; = G- Ev§gj(§)f(§) whereG = Ef: 1Evg‘gj(g,)f(g) . Thisiscomputationally
demanding in a multidimensional model.

In amore realistic system, the target subspaces will be overlapping and the single visit
condition from (5.3) will no longer be satisfied. Now, using an approach based on (5.3),
the estimates of the system performance are biased because Ef -.9 J-(5) f(s)>a(9f(9).
An dternative approach, see section 3.4.2.2, isreversion of the drift including all K gen-
erators, irrespective of the target subspaces in the model. This increases the positive drift
towards all target subspaces simultaneously, at least the drift towards the regeneration
subspace, . Thisapproach has shown poor performance through a series of simulation
experiments. It seems like with no indication of “best direction” to change the drift of the
simulation process, the sampled path tends to follow an unlikely path to arare event.

Example 5.1: (continued from example 4.2). To demonstrate why the two approxima-
tions above will fail in abalanced network, consider evaluation of the model of
figure 4.2. The property of interest is the probability that either of the two generators
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is blocked. The blocking is due to insufficient capacity on link (resource pool) 2, 3

or 10. Let thetotal blocking be y and the blocking of pool j be y i j = 2,3,10. Now,
make the following assumptions about the exact blocking probabilities, y = 107,
Y5 = Y10 = 5-108,andy; = 6- 10_8.Observethaty =Y, Y3+ V0. First, letthe
importance sampling simulation change the drift towards pool 3 because this has the
largest blocking probability, y4 = max(y,, Y3, Y410 - Then, an accurate estimate ¥ 5 of
the blocking on pool 3 is obtained. However, the result of this simulation is that the
overall blocking estimate is ¥ = y 5 because only visitsto © are provoked. Instead,
importance sampling combined with stratified sampling is applied as described in
approach 2. Good and accurate estimates of ¥, 4, and y o arelikely to be obtained,
butthey = v, + 7953+ 7o estimate is unbiased because the conditionin (5.3) is
violated.

A well engineered network has abalanced utilisation of the resourcesin the system. This
means that the overall property of interest, e.g. the call blocking, will in practice be deter-
mined by restrictionsimposed by more than one resource pool. Furthermore, the resource
pools are shared between several generators, as defined in the routing set @, . The
assumption from (5.3) isno longer valid. To overcome this limitation, a new parameter
biasing strategy is proposed that guides the simulation processto focus on the most impor-
tant targets at every step along asimulated path. Thiswill be described in the following
section.

5.2 General idea of the adaptive parameter biasing

The general idea of the biasing isto adapt the change of measure to every state along the
simulated path s, and to induce a positive drift towards the most important target seen
from the current state, ¢ .

The importance of atarget j isgeneraly defined as:

H; = EV§QJ(§)f(§) = E¢(r)- (54)

This can be interpreted as the expected contribution Vi fromtarget j to the property of
interest, y. Observe that in arealistic systemthe E(y) = Ef _ 1Ef(yj) , because the sin-
gletarget visit condition from (5.3) is violated, see example 5.1. The importance of
target j, given that a specific state  isvisited in g, isdefined as
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@) = S 0eg 9O 1O (55)

The ideas are implemented in the following steps:

1

Estimate theimportance H j(w) forall targets j at current state ¢ . An estimate of this
importanceis presented in section 5.3.2. The relative importance is denoted the target
distribution, and estimated by p;(¢) = Hj(@)/[Ef _Hj)].

Sample atentative target from the estimated target distribution, pj((g),(j =1..3J).

Change the measure by changing the rates of the generators k €T’ j aswas described
in (3.25), according to the tentative target j that was sampled in the previous step.

Sample the next event in the simulation process, X

X; » using the biased parameters from
step 3.

Example5.2: (continued from example 5.1). After afew eventsin the simulated path, the

current stateis @ = {1, 1}. The positive drifts towards the target subspaces under the
original sampling distribution are

do.(w) = cpp Mq(D)
d3.(w) = Cp3- A1)
8104(@) = Cy10° Ma(D) + 10 hfD) (56)

The importance of each target is estimated to be:

Halw) = 25
Halw) = 4.0
Hio(w) = 35 (5.7)

which resultsin the following target distribution:

Py(w) = 0.25
Ps(w) = 0.40
Pio(w) = 0.35 (5.8)

1. All numerical values are freely chosen to demonstrate the point of abalanced network, not aresult of esti-
mations using a set of specific parameters, although it could have been.
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Thismeansthat at state 9 = {1, 1}, the change of measureis, with probability 0.40,
reversion of the drift towards pool 1. The BIAS factor scalesthe arrival and departure
ratesasdescribedin (3.25), andis BIAS;(@) = 85.(0)/95.(w) = uy(1)/Ay(1). With
probability 0.25, the drift is reversed towards pool 2, and with probability 0.35 towards
pool 10. Inthe latter case, the arrival and departure rates of both generators are scaled.
Thisimpliesthat the drift toward pool 2 and 3 isalso increased, in addition to pool 10.
However, the BIAS factor is not the same as BIAS,(p) and BIAS;(y)

010.(W) _ C110° uq(1) +Cp 10" ux(1)

BIAS () = 810+(®@)  Cri0 M) +Cop Ay(D)

(5.9)

In[Car91], anideasimilar to the adaptive biasing was presented, denoted failure distance
biasing. In this biasing strategy, the importance, H i is the minimum number of transi-
tions from the current state up to asystem failure mode j (whichisthetarget). Thisis, in
general, not avery precise estimate of (5.4). A more computational demanding change of
measure is applied in failure distance biasing than in (3.25).

It isimportant to emphasise that the target distribution obtained in step 1 above, isonly
used in step 2 to decide which target should bein focus for the next change of measurein
step 3. Thisimplicit influence on the simulation process dynamicsis assumed to makethe
simulation efficiency less sensitive to the accuracy of the target distribution estimate. If,
instead, the p j((p) had been used as an estimate of the event probabilitiesfrom section 3.2
directly, it is expected that the simulation efficiency would have been far more sensitive
to the accuracy. In section 5.4, afew comments are made on the robustness and weakness
of the target distribution estimate, and the effect on the simulation efficiency.

The computation of p J-(@) will significantly influence the total computational overhead
added to the simulations by the adaptive strategy. The reason is that the estimation must
be repeated for every step along the simulated path, because the relative importance will
change as the system state changes.

Example 5.3: To see why the importance changes, consider the examplein figure 5.1.
This shows a state space consisting of 3 target sub-spaces. The sub-spaces are made
disioint to simplify theillustration. The contour lines represent the “iso-likelihoods’ of
each target, i.e. every state at a specific contour line has the same conditional target
likelihood. The contour intervals are logarithmic with base 10, i.e. the iso-likelihoods
represent probabilities at every order of magnitude, i.e. 101, 102, 1073, ....
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Figure5.1: Changesintarget distribution illustrated by iso-likelihood curves along
an unlikely path in the subspace.

The sampled path depicted inthefigure, s = {wg, ©4, ©,, w5}, demonstrates how the
relative importance changes. At @, al targets have the same importance. This means
that the next target to bein focus will be chosen from a uniform distribution, see the
histogram next to the system state w,. Stepping to g, , the situation is changed. Now
the process has approached target 1, and the target distribution reflects this by increas-
ing the probability of target 1 relative to the targets 2 and 3. This means that the most
likely sampling distribution is now optimal with respect to target 1, f,*(g) . Corre-
spondingly, at state @, and g, the most likely targets are 2 and 3, respectively. The
change of measure at state ¢ can be expressed as:

f,1%(9) with probability p,(w)
f#(g) = 1 f,%(9 with probability p,(w) (5.10)
f3*(9) with probability ps(w)
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Evenif target 1isthetarget with the greatest importance at state g, , it is possible that
the sampling from the target distribution results in a change of measure with a drift
towards one of the two other targets. Furthermore, even with asimulation process that
has an expected positive drift towards target 1, the next event in the sampled path may
move the process towards target 2 or 3, or even back to the regenerative state. The path
infigure 5.1is, infact, an example of avery unlikely path where the simulation process
in neither of the states movesin the direction of the most important target.

It isnot atrivial matter to determine the target importance and the corresponding target
distribution. In general, the conditional iso-likelihoods do not have the nice circular con-
tour lines asthe example in figure 5.1. The following section describes an estimate of the
target distribution, p;(w).

5.3 Target distribution

Several algorithms and approximations to the target distribution, p j(w) , have been pro-
posed since the adaptive biasing was first introduced, see [Hee95b, Hee96, Hee974].
Common for al these, is that the target distribution is the relative target importance, i.e.

pi(@) = Hi)/[3 - Hj@)]. (5.11)

The target importance H () isgivenin (5.5). An approximation of the target distribu-
tion, pj(m), must be:

1. sufficiently close to the exact target distribution of (5.11),
2. robust to changes in parameters and state space structures, and
3. computationally efficient.

Observe that the estimate of the target distribution depends on the estimates of the rela-
tive, and not the absolute importance. This can, under some conditions, be exploited to
significantly reduce the computational effort, as described in the following.

5.3.1 Simplified estimate of target importance

The importance of atarget consists of an infinite number of contributions from sample
paths, s, asgivenin (5.5). Not all samples have (significant) contributionsto target j .
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Hence, an approximation of the importance is proposed where only the n largest contri-
butions are included:

H (@) = S o8 f(siD) = H(w). (512)

§}i) isthe sample path s with the i th largest contribution to the importance of target j .
Observe that the approximation in (5.12) is systematically underestimating the exact
value. But, recall that the target distribution depends on good estimates of therelative, and
not the absolute, importance. The simplest approximation isthentolet n = 1, which
means that only the path with the largest importance, 5}1) , isincluded. The target distri-
bution is then approximated by:

B ~Hi @)/ 13- H @)1 (5.13)

To obtain an estimate of the target importancein (5.13), it isrequired to identify the most
important sample path, 551) , which includes both the current state  , and at | east onevisit
to the target subspace Q i A subpath of the complete path, s, aswas defined in

section 4.3.2, will be identified. This subpath includes only the sequence of events from
o tothefirst entrance to the target subspace Q i A large number of sample paths hasto
be considered to identify this subpath, because the importance of a path consists of the
product of both the likelihood and contribution. Instead of including both the likelihood
and the contribution simultaneously, the following estimate is proposed:

AfD@) = Fi(@) - g (5.14)

where the likelihood, T‘j(@) , and the contribution, § J-((,p) , are estimated separately. In
section 5.3.2, it is described how the target likelihood is established. The contribution
associated with this subpath is briefly presented in section 5.3.3.

The estimation of the target importance are in the following presented for a single target
only. It must berepeated for all j = 1, ..., J to provide an estimate of the target distribu-
tion, and finally substituting (5.14) for each target j in the estimate of the target
distribution in (5.13).
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5.3.2 Target likelihood

To providean estimate of thetarget likelihood, f j(w) in (5.14), asubpath fromthe current
state @ up to athefirst entranceto the target subspace Q j must beidentified. Definethis
subpath, consisting of n j events:

9j(@) = {@i](0y = @) A (0, EQ) A (0 QT <N} (5.15)

Event i isgenerated by k; €', i.e. oneof the generators constrained by resource pool j .
Every event in gj((y) is assumed to be an arrival of an entity. No release events are
included because ¢ j(cp) should represent the most likely sequence of eventsto the target.
An entity from generator k; is allocating Cyj resources. The state @; after event i in

g j(cg) is given by the following recursion:

i
W = W 1+,j:ki = @+2|=1}k, (5.16)

where 1, = {0,0,...,1,...,0} isanindex vector of size K where element k is 1, and
al other elements are 0. Observe from (5.16) that the subpath is uniquely determined by
the current state 9 and the sequence givenby k = {k;, ks, ... }.

Theeventsin the subpath g j((y) are generating a sequence of resource allocations. Let X
denote the number of resourcesfrom pool j allocated at state ¢ . The number of resources
atthe state o, after eventi, is (Xi)i .The Qj(cp) can be described as a sequence of (Xj)i 's
instead of, or in addition to, the g; from (5.16). Sincethe g ]-((p) contains only arrivals,
then (Xi)i > (Xj)i—l forali = 1,...,n.. Tosimplify the following description, let the
index j on X be omitted. Then X; becomes x, and (Xj)i becomes x; . This is unambigu-
ous because in this section only the subpath to target j is described.

Recall from section 4.3.4, the target subspace was defined in terms of the system stateson
the state space Q i but also in asimpler form in terms of the number resources, x:

Thisis derived from the Q i definition in section 4.3.4. For the purpose of searching for
the most likely subpath, it is convenient to use this description of the target subspace. The
sequence of resource allocations in a specific subpath, starting from X, is:
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[
X, = Xg+ El Sk (5.18)
The number of resource alocations of the last state in the subpath is Xn € Bj.

In appendix E an efficient search algorithm i s described where the maximum likelihood of
a subpath from current state @ up to a state with x resources. The maximum likelihood

isdenoted mt, , and is obtained for every x, < x = N;. The algorithm exploits the Markov
properties of the simulation processto successively determinethe i, by reuse of previous
values, m, _ o AS input, the search algorithm requires:

- thecurrent state, @,
- thegenerators which are constrained by pool j, kET i
- thetarget subspace, either given as Q j or B;.

The agorithm also returns the specific path gj((y) thet is associated with each wt, ,
(x =X+ 1, ...,Nj).

Assume that aset of &, isprovided by the search agorithm. Then, the target likelihood
will be assigned to any of the t, where x € B;- This represents the likelihood of a sub-
path from current state up to a state where the number of allocated resources x isin the
target subspace.

The maximum likelihood is:
filw) = ma () (5.19)

while, the maximumimportance is estimated by taking the contribution, given by the end
state of the subpath, into account (see section 5.3.3 for estimation of target contribution):

ﬂj(l)(@) = max (m, - gj(@(x)))_ (5.20)

The estimate from (5.20) is substituted in (5.13) to determine the target distribution.

Introducing the rerouting and preemptive priority mechanisms will only affect the input
arguments to the search algorithm. The following two sections briefly describe what the
arguments should be.
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5.3.2.1 Target likelihood with rerouting

The mechanism for aternative routing was described in section 4.3.6. The routing sets
®, , wereextended. The I’ j et depends on the current state through the given routing:

L = {kjjE®y } (5.21)
wherer, (0=r, =<R,)istheindex of the route used by generator k in state ¢ .

The current number of allocated resources from pool j, X, is changed according to the
extended system state description in section 4.3.6:

o = 2:=1E?2021e¢krwkrcm- (5.22)

Letthe’ j in (5.21), the o asdefinedin section 4.3.6, and the x, from (5.22) betheinput
arguments to the search algorithm. Thiswill provide the requested set of =, for
Xg<X=Nj. The target subspace B i is defined by using (5.21) in (5.17), and the target
likelihood and importance are determined by (5.19) and (5.20), respectively.

This approach will provoke the rare events that cause blocking on the current route of a
generator only, even if the generator has several aternative routesthat all have to be
blocked for the generator to be blocked. This can be justified by the following example.

Example5.4: Consider agenerator k with asecondary route, R, = 1. Atthestart of a
regenerative cycle, the simulation parameters are biased to provoke a blocking in the
primary route, ®,,. When this route is blocked, generator k will route new callsvia
the secondary route, @, ; . Now, therareeventsinthetargets j € @, ; will be provoked.
Sincethe generator isnot ableto use the secondary route before the primary isblocked,
it makes no senseto provoke rare eventsin the secondary route when the primary route
is not blocked.

5.3.2.2 Target likelihood with preemptive priority

Inamodel with several preemptive priority levels, the search algorithmis applied to deter-
mine a subpath for each priority level, o{P). Each subpath includes the generatorsin T,

that have a specific priority level p, or higher. Although it isthe likelihood of the subpath
of priority level p that shall be determined, the generatorswith higher priority than p have
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to be included because they cannot be preempted like the low priority generators have
been. Let T'{P) C T'; be the set of generators which has priority p, or higher:

T = [KI(pe=P) A JE D). (5.23)

The corresponding initial resource allocations are:

(p) _
Xy = Eker‘p’wkckj' (5.24)
J

Since the subpath o{P) is associated with priority level p, the target subspace must be
defined as the subspace where generators of priority level p isblocked:

(p) _
B:" = x\(N- - max ck-> <x=N; (5.25)
) { ) ke (@ -r{P~Y) ) )

where Fﬁp)—rgp_l) = {k|(py = p) A j E®,} isthe set of generators with priority
level p.

Now, asinput to the search algorithm, use I'{P) from (5.23), and x{P) from (5.24). The
algorithm will then provide aset of w{P) for x(P) < x < N; . It isnot necessary to include
some sophisticated preemption priority mechanism into the search algorithm because the
lower priority generatorsare aready removed from F} P), Thetarget likelihood, f }p) ,and
the importance, H{P, for priority level p, are obtained by substituting ., by wt{P)

in (5.19) and (5.20), respectively.

The final target likelihood and importance are determined by taking the maximum likeli-
hood and importance over the different priority levels:

Fitw) = max(fi™), (5.26)

AD(w) = max(ASP). (5.27)
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5.3.3 Target contribution

The target contribution is the property of interest, g(s) , observed by using the subpath
g j((y) instead of a complete path s. For instance, if the steady state probability of target
j isthe property of interest, then

8,(@) = 9gi(@) = (Sr_ o) + o)) (5.28)

is the contribution, i.e. the expected sojourn time in the first visited state in the target
subspace.

5.4 Closing comments

Thischapter presentsthe ideas of an adaptive parameter biasing for importance sampling.
Thegoal isto changethedrift of the simulation process. The process should movetowards
the parts of the state space where the most important rare events occur. These subspaces
are denoted target subspaces. A measure is provided to guide the process to change the
drift towards the most important of these target subspace. However, thisimportance will
not be the samein every state of the state space. This means that some measure of the tar-
get importance must be devel oped that adaptively adjusts to the current state of the
simulation process. The ideas, and an implementation of these, are described in this
chapter.

The requested measure of target importance is denoted the target distribution. Generally,
itisnot feasibleto obtain the exact distribution, at least it cannot be done efficiently. Thus,
arough, but efficient, approximation of thetarget distribution is proposed. Thistarget dis-
tribution will demonstrate its feasibility on several network examplesin the following
chapter.

The estimated target distribution has changed several times since the adaptive biasing was
first introduced. Even the simulation results presented in the first approach produced accu-
rate estimatesin reasonabletime. Thisisanindication of that the adaptivebiasingisrather
robust with respect to the accuracy of the target distribution estimate.

Thetarget distribution changesfor every event in the simulated sample path. However, the
changeisnot significant for every event sothesame p j(cp) isapplicablefor several events.
In the network simulations in the following chapter, the distribution is only recal culated
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when the accumulated sampl e path probability, see (3.14), has changed more than one
order of magnitude.

Some additional work can be done on the adaptive biasing. The target distribution can be
further tested on new modelsto get increased insight in what the strengths and weaknesses
are. It isaso interesting to make a computational profile of the efficiency of each stepin
the adaptive strategy for new models. This to see which parts of the approach that isthe
most computer demanding, and to determine the total computational overhead introduced
by the adaptive biasing. See example 6.2 for asimulation profile from a network system.
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| mportance sampling in network
simulations

This chapter contains the results of several network simulations. The purpose of these
experiments is to demonstrate the feasibility of the adaptive parameter biasing proposed
inthe previous chapter. In section 6.1 an overview of the simulation experiments and their
objectivesis given. The regenerative simulation setup applied to the network simulations
are presented in section 6.2. The simulation results and observations are given in
sections 6.3-6.5, while section 6.6 summarises the experiments and proposes new
experiments.

6.1 Simulation objectives

It isimportant to keep in mind that the main purpose of the simulation experimentsin this
chapter isto demonstrate the feasibility of the adaptive technique, rather than to provide
insight in the properties of a specific communication network. The examples are all ficti-
tious networks which are described by the modelling framework of chapter 4. Both the
preemptive priority and the rerouting mechanisms are included in the examples.

The objective isto demonstrate the feasibility of the proposed adaptive strategy. For this
purpose, the following 3 network examples are constructed:

- Case 1: No priority nor alternative routing.
When all the generators have the same priority and have afixed routing, it isfeasible
to obtain exact blocking probabilities, e.g. by the convolution method [Ive87], whenthe
model is of moderate size. Hence, the simulation results from this case can be com-
pared with exact values. The efficiency and precision of the simulation method are
demonstrated.

- 107 -
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- Case2: Improving the quality of service by rerouting.
This case demonstrates the use of rerouting. Two simulation series are produced, one
with, and one without, an aternative (secondary) route. The improvement of the qual-
ity of service in terms of reduced call blocking is estimated.

- Case 3: Disturbing low priority traffic.
To demonstrate the use of the preemptive priority mechanism, low priority trafficis
added to the case 2. Three simulation series are produced where the blocking probabil -
ities of low priority traffic are estimated. First the network is simulated with only low
priority traffic generators, then mixed with high priority traffic, and finally mixed with
both high priority traffic and affected by link failures.

In al three cases, the quantities of interest are the blocking probabilities of all, or aselec-
tion of, user types, i.e. the generators. No exact solutions are analytically provided for the
modelsin case 2 and 3. Instead, the rough blocking approximation from appendix F is
applied for comparisons. The approximation assumes individual blocking on each link
which is expected to result in an upper bound of the blocking probabilities. In addition,
the importance sampling estimates are compared to the estimates obtained from the direct
simulations given in appendix G.

The results from the experiments are found in sections 6.3-6.5.

6.2 Regenerative simulation of large models

When conducting a simulation experiment with importance sampling it is recommended
to divide the experiment into independent regenerative cycles for the stability of results.
A regenerative state, or subspace, must be defined. For dependability models and very
small traffic models, thisisnormally asingle state likethe state “ system intact” or “empty
system”. However, for real-sized traffic models, choosing a single regenerative state will
make the expected regenerative cycle period too long.

This chapter uses a regenerative box of K dimensions, denoted Q. Within this box, a
regenerative cycle starts and ends. The box consists of the equilibrium states of the sys-
tem, i.e. the sub-state space in which the simulation process spends most of itstime.
Furthermore, the regenerative box must be disjoint with all target subspaces,

QAR = @, foral j. Thisis because no observations with respect to atarget are
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recorded when the simulation process iswithin . A similar concept denoted load
cycleswas applied in [HH94], also similar to the A-cyclesin [GHNS93, LC96].

Let p,(i) bethesteady state probability of generator k having i entities. Theaccumulated
probability is P, (i) = E: -0 p(l) . The p(i) and P,(i) are estimated by short pre-sim-
ulations. An upper and lower boundary are defined for each dimension, or generator, of
the regeneration box. Let (") denote the state that corresponds to the u-quantile in the
estimated steady state distribution for generator k, defined as

ofW = {i|(Pi) susPyi+1))}. (6.1)

The upper quantile of the regenerative box isu, = 0.50 + ¢, whileu_ = 0.50—¢ isthe
lower quantile. The ¢ is0.33 for all experimentsin this chapter.

Example 6.1: The regenerative box isidentified from the pre-simulations of case 3.1in
section 6.5. Now, using ¢ = 0.33, the upper quantileis u, = 0.83 and the lower
guantile u_ = 0.17. Hence, the corresponding states that give the boundaries of the
regenerative box are obtained from the estimates p, (i) and Pu(),

- upper bound: ") = {1,2,1,3,2,21,2,2,1,3,2,3,2, 4,1},
- lower bound: ") = {0,0,0,0,0,0,0,0,0,0,1,0,0,0, 1, 0}.

The concepts of the regenerative box and the expected cycle time related to it, are not
known in advance. Hence, a pre-simulation is required, consisting of the following
phases:

1. Regenerative box identification is made by a block simulation experiment where the
equilibrium states are identified.

2. Relative distribution of the states within the regenerative box is obtained by a second
block simulation.

3. Regenerative cycle estimation. The cycle time is defined as the time between two
departures from the regenerative box (identified after phase 1). Each cycle startsin an
arbitrary state within Q,, sampled from the box distribution estimated in phase 2. Oth-
erwise, the cycles will not be independent.
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Figure6.1: Aregenerative cyclein the state space of example 4.2 which includes a
visit to the target subspace of pool 10.

The pre-simulations should be, and typically are, much less computer demanding than the
main simulation. Thiswill, of course, depend on the termination rule used in the pre-sim-
ulation. Block simulations are used for identification of the regeneration box and for
estimation of the steady state distribution inside this box. The number of events that con-
stitutesthe transient period, which is removed, must be defined, in addition to the number
of simulated eventsin the steady state behaviour. In this chapter, the number of eventsin
the transient and steady state periods are determined experimentally. The third pre-simu-
lation, wherethe regenerative cycles are estimated, continues until therelative error of the
cycle estimate is approximately 1-2%. The main simulation, where importance sampling
and the adaptive parameter biasing are applied, is termination when the estimates have a
relative error of approximately 10-15%.

Example 6.2:
Asatypical example, consider the total simulation time (1300.7 sec) of case 2 in
section 6.4. The time elapsed at the different phasesis distributed as follows:

i. Regenerative box identification 4.2sec (0.3%) {50,000 events}

ii. Regenerative box distribution 17.7sec (14%) {50,000 events}
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iii. Regenerative cycle estimation 21.8sec (1.7%) {10,000 cycles}
iv. Importance sampling main simulation 1257.0sec  (96.6%) {100,000 cycles}

The compl ete algorithm of the main simulation consists of the following steps (see
figure 6.1 for an example of acycle):

- Sampleaninitia state (state A) according to the relative distribution of the states
within the regenerative box.

- Start aregenerative cycle at thefirst departure from the box (state B) and switch to the
importance sampling parameters.

- Turn off importance sampling biasing if avisit to atarget is observed (state C).

- Endthecycleat first return to the regenerative box (state D). Thiswill save simulation
time without loss of target observations. No targets can be observed inside the regen-
erative box, i.e. in the remaining of the regenerative cycle (from state D to state E in
the figure). Hence, the sub-path from D to E can be considered as simul ation overhead
that can be removed.

6.3 Case 1. No priority nor alternativerouting

When all the generators have the same priority and no routing aternatives, it isfeasibleto
obtain exact blocking probabilities for amodel of moderate size, for instance by the con-
volution method [1ve87]. The simulation results in this case are compared with exact
values which will demonstrate the efficiency and precision of the method. This case and
the results are also presented in [Hee96, Hee974].

6.3.1 Generatorsand resource pools

The network consists of 8 nodes that are interconnected by 12 links. The topology is
described in figure 6.2. Each link is modelled as aresource pool, seetable 6.1.

The network is offered traffic from K = 10 different user types, modelled as generators.
A call setup generates an entity that requires Cyj resourcesof link j . Inthiscase, Cy = Ck
for al linksin therouting set, j € @, . Recall from chapter 4 that the routing set contains
the sequence of resource pools that models the fixed route between the origin and desti-
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Figure 6.2 : Topology of system case 1.

nation node of a connection. The complete set of attributes of all K = 10 generatorsis
givenin table 6.2.

Example 6.3:
Consider generator k = 4. Thisisamodel of the user type that is generating connec-
tions between node 2 and 6 via node 8 and 5, see the topology in figure 6.2. The
connection requests ¢, = 1 channel from each of thelinks 3, 5 and 8, and hence the
routing set becomes @, = {3, 5, 8}.

6.3.2 Simulation setup

The regenerative box isidentified by conducting two pre-simulations of 10000 events
each. First, the accumulative steady state probabilities P (i) of each generator k are esti-
mated. Then the steady state distribution is estimated, given astateinside the regenerative
box. The box is defined by using the 0.5 = ¢ quantilein the estimated Py(i) distribution
with ¢ = 0.33.
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Table 6.1: The resource pools of case 1.

113

J T LYy

1 {1,6,7} 20

2 2,7 12

3 {1,2,4,8} 22

4 {2.8} 12

5 {2,3,4} 15

6 {1,3,10} 23

7 {1,5,9,10} 25

8 {4 7

9 {6} 6

10 {5,6} 7

11 {9} 12

12 {8,10} 26
Table 6.2: The generators of case 1.

k My My Uk S Ck Px Py

1 0.03 ® 1.0 5 4 0 {1,3,6,7}

2 0.05 ® 1.0 12 1 0 {4,5,3,2}

3 0.03 ® 1.0 5 3 0 {5,6}

4 0.06 ® 1.0 7 1 0 {3,5,8}

5 0.07 ® 1.0 7 1 0 {10,7}

6 0.04 ® 1.0 6 1 0 {9,1,10}

7 0.04 ® 1.0 6 2 0 1,2

8 0.01 ® 1.0 4 3 0 {4,12,3}

9 0.05 ® 1.0 6 2 0 {11,7}

10 0.04 ® 1.0 7 3 0 {12,6,7}

The cycletimeis estimated from simulation of 10000 regenerative cycles. The property
of interest, i.e. the blocking probabilities, are estimated by conducting aregenerative sim-
ulation experiment with 50000 cycles. The pre-simulations are conducted only once,
while the main simulations, where the properties of interest are estimated, are replicated

20 times.
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6.3.3 Results

The exact blocking probabilities are provided by Prof. V. B. Iversen who has used his con-
volution method [1ve87]. This method is rather computer intensive for networks of the
size of case 1. The computation effort increases exponentially when new links or source
types are added. According to Prof. V. B. lversen, the exact solution required morethan 9
hours of CPU time on a HP735 (100 Mhz) WS, and more than 55 Mbytes of memory.

In contrast, each replication of the simulation experiment required less than 10 minutes of
CPU-time on an Axil320 (120 Mhz) WS. The computational complexity of thesimulation
approach is O(K - J).

The simulation resultswith 95% error barsare plotted in figure 6.3 together with the exact
results.

1e-07

1e-08
g simulation results with error bars
3
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0 1 2 3 4 5 6 7 8 9 10
generators

Figure6.3: The call blocking for all generators are close to the exact values.

6.3.4 Observations

The most important observations made in this simulation study are:
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1. The estimated loss probabilities show good agreement with the exact values for all
generators.

2. The generators with the largest blocking probabilities, (generator 1,3 and 8) have the
best precision.

3. Compared to simulation, the calculation of exact values are computer intensive.

4. All estimates arewithin ~10% relative to the exact val ues. The 95% confidenceinterval
includes the exact values for all source types, except generators 5 and 9.

5. The mean observed likelihood ratio is close to the expected value 1, L = 0.988 with
standard error ST_ = 0.00659 . See section 3.5.1 for discussion of the observed likeli-
hood ratio used for validation of the importance sampling estimates.

6.4 Case2: Improving the quality of service by rerouting

This case demonstrates the use of rerouting caused by traffic overload on the primary
route. Two simulation series are produced, one with an alternative (secondary) route, and
one with only a primary route. The improvement in the quality of service by adding an
alternative route, is estimated by means of the reduced blocking probability for each
generator.

The rough approach used for dimensioning of the network capacities, and to identify the
primary and secondary routes, is presented in appendix F.

6.4.1 Generatorsand resource pools

The network consists of 6 nodes interconnected by 10 links. Thetopology is described in
figure 6.4. The resource pools that model the links are described intable 6.3. The T'; sets
include the generators that have resource pool j in their primary route @, .

The network is offered traffic from K = 15 generators. All attributes of the generators
arelisted intable 6.4. Observe that two alternative routes are defined in the table, @, and
®, ;. Therouter = 0, @, isthe primary route. Aslong as sufficient capacity is avail-
ableon dl linksin ®,, thisroute is chosen. When an overload situation occurs, two
alternative strategies can be used:



116 6 Importance sampling in network simulations

Figure 6.4 : Topology of system case 2 and 3.

- Case2.1: arriving calsarelost, or
- Case 2.2 arriving calls are connected via the secondary route, r = 1, @, .

The simulation experiments in this section compare the blocking probability in case 2.1
and 2.2.

The capacity required by each entity is, in this case, Cy = Ck for all linksin both routing
sets, jED,,, (r = 0,1).
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Table 6.3: The resource pools of case 2.
j I N;
1 {1,2,3,9 33
2 {4,6,18} 33
3 {5,9} 37
4 {2,3,6,7} 27
5 {8} 25
6 {3,7,10,13,14} 30
7 {11,13} 28
8 {12,14} 30
9 -} 21
10 {15} 37
Table 6.4: The generators of case 2.
k Mg My Uy SR Ck Pk @y @yq
1 0.16 0 1.0 16 4 1 {1} {2,5}
2 0.19 o 1.0 16 4 1 1,4 3,8}
3 0.14 £ 1.0 16 4 1 {1,4,6} | {2,9
4 0.39 0 1.0 16 4 1 {2} {3,10}
5 0.28 o 1.0 15 4 1 {3} {2,10}
6 0.20 £ 1.0 13 4 1 {4} {1,3,8}
7 0.15 0 1.0 15 4 1 {4,6} {5,9
8 0.41 o 1.0 12 4 1 {5} 1,2
9 0.30 £ 1.0 18 4 1 {1,3} {2,10}
10 0.18 0 1.0 15 4 1 {6} {7,9
11 0.48 o 1.0 14 4 1 " {8,10}
12 0.35 £ 1.0 15 4 1 {8} {1,3,4}
13 0.36 o 1.0 15 4 1 6,7} {9}
14 0.26 o 1.0 15 4 1 {6,8} {9,10}
15 0.72 o 1.0 18 4 1 {10} {2,3}
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6.4.2 Simulation setup

The regenerative box isidentified by conducting two pre-simulations of 50000 events
each. First, the accumulative steady state probabilities P (i) of each generator k are esti-
mated. Then the steady state distribution is estimated, given astateinside the regenerative
box. The box is defined by using the 0.5 + ¢ quantilein the estimated P(i) distribution
with e = 0.33.

The cycletimeis estimated from simulation of 10000 regenerative cycles. The property
of interest, i.e. blocking probabilities, is estimated by conducting a regenerative simula-
tion experiment with 100000 cycles, both of the model with primary route only, and the
model with secondary routes.

6.4.3 Resaults

No exact results have been established for comparison with the simulation results. How-
ever, to get an indication of the correctness of the simulation results, the blocking criteria
used in the network dimensioning is added to the plot in figures 6.5(a). In appendix F the
details are given. In addition, recall from section 3.5.1, that the observed likelihood ratio
may serve as an indication.

The simulation of the model with primary route only, was running for 21 min. 40.7 secon
aSun Ultra 1 (167Mhz), while with secondary route for 1 hour 21 min. 2.8 sec. The sim-
ulation results are presented in figure 6.5 wherethe blocking of case 2.1 and 2.2 are given.
The reduction in the blocking probabilities by introduction of the alternative routesis
giveninfigure 6.6. This plot is obtained by taking the ratio between the estimated block-
ingin case 2.2 and case 2.1. Two experimentswithout importance sampling are conducted
to cal cul ate the speedup between direct and importance sampling simulation. The detailed
results are given in appendix G.

6.4.4 Observations

The most important observations made in this simulation study are:

1. All smulated blocking probabilities are close to the approximation obtained in
appendix F.

2. The observations are most accurate for the largest blocking probabilities.
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Figure 6.6 : The reduction in the blocking probabilitiesis significant all generators
when a secondary route is introduced.
All observations below 1e-10, if any, are removed.

3. Inthe current example where sufficient capacity is available for rerouting purposes,
switching to an aternative route on overload will significantly improve the perform-
ance as reduced blocking probabilities.

4. The mean observed likelihood ratio is not far from its expected value, E(L) = 1, for
both experiments:

- L = 0.898 with standard error SL 0.00407,

-L 0.00574.

0.941 with standard error SL

This indicates that the simulation results are accurate.

5. A significant speedup is observed in the network with rerouting where the blocking
probability isin the order of 10~7. Counting the number of cycles, a speedup of
approximately 650 is observed, and including the simulation overhead introduced by



6.5 Case 3: Disturbing low priority traffic 121

the adaptive strategy, the speedup is approximately 50. In the case with no rerouting,
where the blocking isin the order of 10~4, no speedup is observed. Tables G.1-G.2
contain more details.

6.5 Case 3: Disturbing low priority traffic

To demonstrate the use of the preemptive priority mechanism, low priority trafficisadded
tothe case 2. Three simulation seriesare produced where the blocking probabilities of low
priority traffic are estimated. First the network is simulated with only low priority traffic
generators, then mixed with high priority traffic, and finally mixed with both high priority
traffic and affected by link failures.

The rough approach used for dimensioning of the network capacities, and to identify the
primary and secondary routes, are presented in appendix F.

This case and the results are previously presented in [Hee98].

6.5.1 Generatorsand resource pools

The network consists of 6 nodes interconnected by 10 links. The topology is described in
figure 6.4. The resource pools that model the links are described in table 6.5.

Table 6.5: The resource pools of case 3.

j T N;
1 {1,2,3,9,21,23,27,31,32} 33
2 {4,6,16,18,20,23,24,30,31} 33
3 {5,9,17,19,21,27,30} 37
4 (2.3,6,7,27} 27
5 (8,16,22} 25
6 (3,7,10,13,14} 30
7 {11,13,25} 28
8 {12,14,17,21,26} 30
9 {18,22,25,28,29} 21
10 {15,19,20,24,26,29} 37
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The network is offered both low and high priority traffic from 32 generators connecting
all 10 nodes. The high priority end-to-end connections use the alternative route when the
primary route is either congested or disconnected on arrival of new entities. The corre-
sponding low priority end-to-end connections, have their primary (and only) route along
the secondary route of the high priority connections. High priority traffic may preempt
low priority connections, and the disconnected calls are lost. A link failure is considered
to be ahigh priority “call” which is preempting all connections on alink and allocating
the entire link capacity, N i

The 32 generatorsare: 15 high priority generatorswith bursty traffic (¢, = 4), 15low pri-
ority traffic generators with smooth traffic (¢, = 1), 1 low priority generator with busty
traffic (¢, = 3), and agenerator of link 1 failurewhere ¢, = 33, i.e. al channelson
link 1, N . The channel capacities are, N={ 33, 33, 37, 27, 25, 30, 28, 30, 21, 37}. Gener-
ators 1-15 are the same as the generators used in case 2 in section 6.4. Their attributes are
given in table 6.4, while the new generators 16-32 are defined in table 6.6.

6.5.2 Simulation setup

The regenerative box isidentified by conducting two pre-simulations of 50000 events
each. First, the accumulative steady state probabilities P (i) of each generator k are esti-
mated. Then the steady state distribution is estimated, given astateinside the regenerative
box. The box is defined by using the 0.5 + ¢ quantilein the estimated P(i) distribution
with e = 0.33.

The cycletimeis estimated from simulation of 10000 regenerative cycles. The property
of interest, i.e. blocking probabilities, is estimated by conducting three different regener-
ative simulation experiments:

- Case 3.1: Low priority traffic only: simulated by 100000 cycles.
- Case 3.2: Low priority mixed with high priority traffic: simulated by 10000 cycles.

- Case 3.3: Low priority mixed with high priority traffic and exposed to link failures:
simulated by 10000 cycles.

In all experiments the importance sampling biasing is defined to change parameters with
respect to provoke the rare events associated with generator 23 and 31. This means that
the importance sampling parameters are switched off when blocking is observed in either
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Table 6.6: The generators 16-32 of case 3. The generators 1-15 are the same asin
case 2, seetable 6.4 for their attributes.

K Mg My Uy K Ck Pk @y @yq
16 0.64 P 1.0 33 1 2 {2,5}
17 0.76 % 1.0 37 1 2 (3,8}
18 0.57 P 1.0 33 1 2 2,9}
19 1.57 P 1.0 37 1 2 {3,10}
20 1.14 % 1.0 37 1 2 {2,10}
21 0.80 P 1.0 37 1 2 {1,3,8}
22 0.60 P 1.0 25 1 2 {5,9}
23 1.65 % 1.0 33 1 2 {1,2}
24 1.19 P 1.0 37 1 2 {2,10}
25 0.71 P 1.0 28 1 2 {7,9}
26 1.94 % 1.0 37 1 2 {8,10}
27 1.41 P 1.0 37 1 2 {1,3,4}
28 1.45 P 1.0 21 1 2 {9}

29 1.05 % 1.0 37 1 2 {9,10}
30 2.90 P 1.0 37 1 2 2,3}
31 0.55 P 1.0 11 3 2 {1,2}
32 1e-6 1 0.1 1 33 0 {1}

generator 23 or 31. The generator 23 and 31 are chosen because they have the same route
and priority level, but have different resource requirements, Cyq = Cq; .

6.5.3 Results

No exact results have been established for comparison with the simulation results. How-
ever, to get an indication of the correctness of the simulation results, the blocking criteria
from appendix F are added to figures 6.8-6.9. In addition, recall from section 3.5.1, that
the observed likelihood ratio may serve as an indication.

The simulations of the model with only low priority traffic was running for 51 min.

56.1 sec on aSun Ultra 1 (167Mhz). With high priority traffic added, the simulation time
was 1 hour 31 min. 57.4 sec, while with link failure it was 1 hour 31 min. 27.0 sec. For
calculation of the speedup between direct and importance sampling simulation, a series of
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experiments without importance sampling are conducted. The detailed resultsaregivenin
appendix G.

The simulation results of case 3.1 and 3.2 are presented in the figures 6.7 and 6.8. The
blocking probabilities of all low priority traffic generators are included. In figure 6.9, the
blocking probabilities are given for generator 23 and 31.
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Figure 6.7 : Plot of blocking probabilitiesin case 3.1.
All observations below 1e-10, if any, are removed.

6.5.4 Observations

The most important observations made in this simulation study are:

1. The simulated blocking of generator 23 and 31 isless than the approximated blocking
obtained by neglecting correlations between the links. It is expected that the rough
approach produces conservative val ues because this assumption is not realistic.

2. The accuracy of the estimates of generator 23 and 31 is at least as good as the other
estimates. Thisis as expected because the importance sampling experiment was set up
to provoke rare events which involve generator 23 or 31.
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Figure 6.8 : Plot of blocking probabilitiesin case 3.2.

3. The mean observed likelihood ratio for the three cases are

- L31 = 1.01 with standard error SLM = 0.067.
- L3 = 0.885 with standard error §;,, = 0.098.
- L33 = 0.742 with standard error §;,, = 0.073.

Thisindicates that the simulation results are likely to be correct, at least for case 3.1
and maybe for 3.2. while the biasing applied in case 3.3 is perhaps dlightly too large?
Thereason may bethat the failure process givestoo large contribution to the likelihood
ratio?

4. A tremendous speedup is observed in case 3.1 comparing the relative error of the esti-
mated blocking of generator 23 and 31. The samplemean y from thedirect simulation
experiments were more than 1 order of magnitude less than the importance sampling
estimates, y,5. The importance sampling estimates were in the same order of magni-
tude as the approximate blocking values given in table F.7 in appendix F. Hence, the
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Figure 6.9 : The blocking of smooth and bursty low priority traffic exposed to
influence by high priority traffic with and without link failures.

speedups given by the efficiency measuresin (2.11) are misleading as an indication of
the speedup given by importance sampling. In cases 3.2 and 3.3, where the blocking
probabilities are in the order of 10~4, no speedup are observed.

6.6 Closing comments

This chapter demonstrates the feasibility of the simulation framework with importance
sampling and the adaptive parameter biasing proposed in chapter 5. The simulation results
show that it is feasible to use this framework to conduct network simulations where the
users have different service requirements, preemptive priorities, and may switch to an
alternative route when the primary route is blocked.

Importance sampling provides good and stable estimateswhen it isincorporated in regen-
erative simulation. The definition of the regenerative state is critical for the efficiency of
the regenerative simulations. Hence, the experiments in this chapter defines, by pre-sim-
ulations, aregenerative box wherethe most likely statesareincluded. A regenerative cycle
starts and ends from this set of states. Further work should be done to determine the
number of eventsthat need to be simulated in the pre-simulations of the regenerative box.
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The sensitivity to the ¢ -factor which defines the size of the box, should also be further
examined.

Although some of the simulation results gave interesting insight in specific properties of
the systems used as examples, this was not the objective of this study. Hence, only the
observations that demonstrate the feasibility of the importance sampling strategy are
commented.

- Inimportance sampling simulation, the rare events of interest should occur in propor-
tion to the probability of the targets. This means that the properties of interest with the
largest value, or that are visited most frequently, will have the most precise estimate.
The simulation results in this chapter show this behaviour.

- Theorigina simulation parameters are reinstated when one of the specified rare events
of interest is observed. The properties that depend on these rare events will have the
most accurate estimates, while other properties are “by-products’ and will generally
have |ess accurate estimates.

Example 6.4: Consider the blocking in generator k to be the property to be estimated.
All state subspaces, Q i where | € @, aredefined astargets. Theimportance sampling
biasing is switched off when avisit to any of the Q. j € @, isobserved. The proper-
ties of generator k, and other generators dependent on these Q i will be precisely
estimated. Other properties may also be observed, but will, because the importance
sampling setup is not prepared for this, produce less precise estimates.

- When the simulations produce accurate estimates, it is observed that the sampled mean
of thelikelihood ratio is close to its expected value 1.

Further experiments should be conducted to gain more experience with the adaptive bias-
ing. Of particular interest are for instance:

- Further simulation experiments on models with a known exact solution, or agood
approximation. Thisisrequired to get additional insight in the behaviour of the simu-
lation strategy, e.g. what isthe observed mean likelihood ratio in the case of correct and
incorrect simulation results.

- Further simulations of models that combine dependability and traffic properties, e.g.
similar to case 3.3.
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- Further smulations of other properties than the blocking probabilities, both steady
state and transient properties.

Application of aternative rare event techniques to networkswith the characteristics given
in this chapter should beinvestigated. The RESTART technique proposed in [VAVA9]] is
an approach that has proven to be an efficient means for rare event simulations. However,
the problem with defining RESTART states in a multidimensional model, see chapter 2,
must be solved. In [GHSZ97] it is proven that, except for very specific models, it is not
possible to define RESTART states in multidimensional models so that the most likely
simulated path is the same as the optimal path from origin to the target. The remaining
guestion is how robust and efficient is a sub-optimal definition of RESTART states?

In chapter 2, acombination of importance sampling and RESTART was briefly men-
tioned. In the network models it may be possible to define RESTART states associated
with “meta events’ like rerouting, disconnection, failure, etc., and to RESTART simula-
tions with importance sampling parameters from these states.



7
Conclusions

When the network hasvery strict quality of service requirements, atraditional, direct sim-
ulation approach becomes too inefficient to be of practical use, and a speedup technique
like importance sampling or RESTART must be applied. In thisthesis, simulation with
importance sampling isused for performance eval uation of network model swith balanced
utilisation of resources.

The main challenge with importance sampling is to determine the best way of changing
the underlying simulation process. This biasing of the simulation parametersis very
model specific, which meansthat previous results does not necessarily apply to new mod-
els. Optimal parameter biasing is known only for afew, simple models. The importance
sampling efficiency is sensitive to the parameter biasing. Importance sampling isvery effi-
cient when optimal, or close to optimal, biasing is applied, while the variance of the
estimates becomes unbounded when the biasing is too strong.

To incorporate importance sampling in simulation of a network with balanced utilisation
of resources, previous strategies for biasing the simulation parameters are no longer effi-
cient. Hence, a new adaptive parameter biasing has been developed, and its feasibility is
demonstrated on several network examples. This, and other contributions, arelisted in the
following section. Section 7.2 discusses further work.

7.1 Main contributions

The main contribution of thisthesisis the description of a new adaptive biasing of the
importance sampling parameters. With this biasing, importance sampling can be applied
to multidimensional models, e.g. descriptions of telecommunication networks with bal -
anced utilisation of resources. The adaptive biasing removesthe unrealistic constraint that
the system performance is dominated by single bottleneck. Previous strategies are based
on such an assumption which simplifies the biasing significantly.

-129 -
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A new, flexible framework is defined for modelling both dependability and traffic aspects
of communication networks. The adaptive biasing appliesto model s described within this
framework.

Several network examples are defined and their performance is evaluated by importance
sampling simulations. These experiments serve as demonstration of the feasibility of the
adaptive biasing. The network examples include users with different resource require-
ments, alternative routing strategies, and preemptive priorities. One of the examples also
includes one link failure process. The simulation results are compared with exact results
when they are available, or with approximate results used for dimensioning of the network
examples. The comparison shows that the results from the importance sampling simula-
tion are fairly good.

A heuristic that is derived from the genera study of importance sampling, proposes that
the observed likelihood ratio may serve as an indication of the accuracy of the simulation
results. Explicit expressions of the variance of the importance sampling estimates and the
likelihood ratio are developed for an M/M/L/N queue. The study of these variance expres-
sions under different importance sampling parameter biasing, shows that the variance is
(closeto) 0 when the biasing is (close to) optimal. However, the variance is infinite when
the biasing is outside a stable region. The exact bounds of this region have been estab-
lished for M/M/L/N models. It is observed, both by theoretical analysis of asimple
systems and from the network simulations, that when the importance sampling estimates
are close to its true value, the mean observed likelihood ratio is close to its expected
value 1 and has low variance.

Although, importance sampling has been the main focus, the thesis contains a brief over-
view of abroader range of speedup simulation techniques. Some of them may be
combined to achieve an additional speedup. A brief comparison between the two rare
event provoking techniques, RESTART and importance sampling, is included. Impor-
tance sampling with optimal parameters will always be at least as good as RESTART,
typically far better. However, optimal importance sampling parametersare only known for
alimited class of models. Several experimentswere conducted to compare RESTART and
anon-optimal importance sampling. The result was that for some parameters asmall add-
tional speedup was observed compared to using either RESTART or importance sampling

separately.
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Another successful application of importance sampling is demonstrated. |mportance sam-
pling isapplied in atrace driven simulation of amultiplex of MPEG coded video streams.
The simulation results are compared with another approach based on stratified sampling,

and with direct simulation. The comparison shows that importance sampling provides a

significant speedup.

7.2 Further work

Several directions for further research can be given, both regarding the adaptive biasing
technique, and on other approaches to rare event network simulations.

The adaptive parameter biasing ought to be further tested on additional networks. Other
measures, dependent on rare events, than the blocking probability should also be exam-
ined. For this purpose, real sized networks should be described where the quantities of
interest are known, either from analytic (numerical) solutions, or from measurements.

New guidelines should be developed to set up importance sampling simulations. For
instance, the use of the observed likelihood ratio asindication of correctnessin simulation
results should be further investigated.

Theinfluence on the simulation efficiency of adding the adaptive technique should be fur-
ther investigated. It has been observed that the target distribution estimate is |ess precise
for some model parameters, and an increased understanding should be devel oped to deter-
mine when the estimate is good, and what to do when itisnot. This could lead to the need
for improvements of the target distribution estimates. However, it isstrongly believed that
the basic idea of the adaptive technique is an efficient approach that should be applied
when conducting importance sampling simulations of multidimensional models.

The adaptive biasing of importance sampling is devel oped under the assumption of acon-
tinuous time Markov chain. It is expected that the model framework and the adaptive
biasing can be generalised, for instance, to a generalised semi-Markov process. In non-
Markovian models, importance sampling can be applied using a uniformisation technique
as described in [HSN94].

To get a more complete picture of rare event simulation of network models, aternative
techniques like RESTART should be investigated. This requires that the problem with
defining optimal thresholds in multidimensional modelsis solved. The experimental
series should be defined to include both a series of separate RESTART experiments for
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comparison with importance sampling, and a series where RESTART and importance
sampling are combined.
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| mportance sampling in trace-driven
M PEG simulation?

Ragnar Andreassen, Telenor R&D

Poul E. Heegaard and Bjarne E. Helvik,
Norwegian University of Science and Technology, Department of Telematics

Abstract

The ISO/ITU standard MPEG is expected to be of extensive use for the transfer of video/
moving picturestraffic in the coming ATM high capacity networks. Thistraffic will stem
from both multimedia services like teleconferencing and video distribution. Hence,
MPEG encoded video will be a salient constituent of the overall traffic. The encoding
causeslarge and abrupt shiftsin thetransferred rate at the frame borders and induce strong
periodic components, i.e. it generates atraffic pattern that is difficult to handlewith aguar-
anteed QoS and a sufficiently large multiplexing gain. All methods, both analytical and
simulation, proposed up to now for evaluation ATM systems under thistraffic has substan-
tial shortcomings when cell losses in the order of 109%is required. This paper introduces
anew trace driven simulation technique for cell lossesin ATM buffersloaded by alarge
number of heterogeneous sources. Statistically firm results are obtained, within a reason-
able computation effort/time, by applying a special importance sampling approach. The
properties of the techniqueis examined and compared to apreviously suggested stratified
sampling technique. The capabilities of the techniqueisdemonstrated by simulation of 76
sources of nineteen different MPEG VBR video source types with cell lossesin the 1079 -
102 domain.

1. Thisisajoint work with Dr. R. Andreassen and Prof. B. E. Helvik, conducted during the winter 95-96.
This chapter is are-formatted reprint of [AHH96]. Some of the results are also published in [And97].
Observe that the notation and concepts are not consistent in every aspect with the rest of the thesis. How-
ever, the appendix is self-contained and at the beginning of this paper a complete list of notation is given.
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A.1 Introduction

A substantial part of the information that will be transferred in the coming ATM based
high capacity networks will be related to moving pictures/video. Thiswill stem from a
wide range of applicationsfor entertainment, e.g. video on demand, and professional use,
e.g. computer supported cooperative work (CSCW). With its ability for low cost, real
time, variable bitrate transfer, ATM isthe enabling technology for this medium. MPEG is
the broadly accepted standard for transfer of moving pictures/video [LG91, Tud95]. Due
to how spatial and temporal redundancy in the pictures are removed in the MPEG encod-
ing and how interpolation is carried out, see section A.2, theresulting information flow is
highly variable, changes abruptly at frame borders and has a certain periodicity. Further-
more, it has, asall VBR encoded video streams, large medium and long term
autocorrelation. All of these properties makes it difficult to perform a stochastic multi-
plexing with a calculated trade-off between a (high) channel utilization and information/
cell loss.

With traffic from MPEG encoded sources as asubstantial constituent of the overall traffic
in the network, it is of major importance to handle thistrade off. Analytical models exist,
which will give reasonable results in the special cases of homogeneous frame-synchro-
nised sources [AER95, And96]. However, homogeneity is an unrealistic simplifying
assumption, and as the number of sources increases, the assumption of frame synchroni-
sation will give far too pessimistic results. Considering simulation, several publications
describe parametric statistical simulation models, which in certain respectsand to various
degrees reproduce properties of real sources [HDMI195, JLS96, KSH95, RMR94]. While
such models offer insight into the statistical nature of video sources, they have alimited
ability to encompass al the aspects of areal MPEG source. Hence, our work is based on
trace driven simulations, i.e. the information transfer requirements from real MPEG
sources are used as input, obtaining more precise results.

Anyhow, at the quality of service (QoS) levelsaimed at in ATM networks, direct simula-
tionwill fail to produce valuable results, irrespective of whether it ismodel based or trace
driven. Thisis dueto the scarcity of ATM cell losses. Direct simulation of load scenarios
yielding acell loss rate in the order of 10 and less, requires years of simulation time

before afirm statistical basisis obtained. Simulation speed-up techniques are mandatory.

For trace driven simulations, thisline of attack was started by using the method of strati-
fied sampling as presented in [AER95, And96]. That approach, however, is restricted to



A.2 MPEG coding 143

homogeneous sources and suffers from ‘ state explosion’ as the number of sources
increases. Another general speed-up approach for source model based ATM simulation
and measurementsispresented in [HH94]. This approach utilizes acombination of impor-
tance sampling and control variables. As pointed out above, model based simulation fails
to reflect the properties of MPEG sources sufficiently accurate. Furthermore, for stable
results, also this approach requires rather homogeneous sources.

In the current work, a new trace driven simulation model based on importance sampling
(IS) is presented. This approach enables assessments of low cell loss probabilities, it does
not require frame alignments and is well suited for load scenarios with heterogeneous
MPEG video sources. A presentationisgivenin section A.3. A comparison of thisand the
approach based on stratified sampling isfound in section A.4. In section A.5 use of impor-
tance sampling based, trace driven simulation is demonstrated before section A.6
concludes the paper. First, however, a brief introduction to MPEG coding necessary for
the rest of the paper, is given in section A.2.

A.2 MPEG coding

For ageneral introduction of MPEG coding principles, it isreferred to the available liter-
ature, e.g. [LG91, Tud95]. However, mainly to introduce the terms used, a very brief
introduction to some MPEG coding conceptsis given here. In MPEG compression, both
spatial and temporal redundancy isremoved. The spatial redundancy is reduced by using
transforms and entropy coding, and the temporal redundancy is reduced by motion com-
pensation and differentia information encoding. The latter mechanism is enabled by the
definition of three different types of frames:

I-Frames: Intraframes, only intra-frame encoding is used, i.e. only spatial redundancy is
removed. |-frames are typically the largest.

P-Frames: Predicted frames; tempora redundancy is removed by reference to the previ-
ous| or P frame. P-frames are typically the second largest.

B-Frames: Interpolated or bidirectionally predicted frames; tempora redundancy is re-
moved with reference to the previous and/or subsequent | or P frame. B-frames
aretypically the smallest.
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The frame types are arranged in a systematic and periodic manner to form groups of pic-
tures (GOPs).

Forward Predictions

Bidirectional Predictions ———— Increasing time ——————p»

Figure A.1: Example of the basic structure of an MPEG encoded video sequence.

Asillustrated in figure A.1, a GOP is headed by an I-frame and the aterations of B and P
frames form sub-cycles in the periodic structure. A fairly usual GOP-pattern (which is
also employed by the sources used in the current work) is“. .. IBBPBBPBBPBB .. .". It
is seen that MPEG traffic has an activity at the burst level which is governed by frames of
aconstant duration. Thisis common to most video sources. The mgjor differenceliesin
that the frames which follow each other in the periodic GOP are of a different kind with
abasicaly different information content, and a smooth transition over the frames cannot
be assumed.

An important coding parameter of the MPEG coding a gorithm isthe quantization param-
eter (q), which basically regulates the degree of information loss, and hence the
coarseness of the decoded pictures. Active use of the g-parameter during encoding may
be employed as a flow regulation mechanism. In the sequences used here, fixed quality
video isinvestigated, and the g-parameter is set at a constant value for each frame type.
To exploit the nature of frame referencing, the |-frames that start the GOP is given thefin-
est encoding, the P-frames a medium degree encoding, and the B-frames that are not
further referenced are given the coarsest encoding.
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A.3 Importance sampling for heterogeneous M PEG sour ces

A.3.1 Generalidea

Direct simulation of the cell lossratio of a multiplex of MPEG sources, asillustrated in
figure A.2, becomes very inefficient when the ratio becomes small (typically 10~ and
less). Importance sampling is introduced to increase this efficiency by increasing the
number of cell losses, i.e. to make multiplex-patterns where overloads are more likely. A
straight forward heuristicsisto sampleastarting frame position for each source according
totherelative load of each (I, B or P) frame of the film sequence. In addition, aload selec-
tion of the allowed starting frame positionsis madein order to ensurethat the total number
of cells generated at the starting frame position exceeds the server capacity.

#cells
. synchronised at frame start

source 1

.. B BP..

source M

.. B BP..

Figure A.2: MPEG multiplexing.

This section will describe theseideasin more details. First, some basic concepts and nota-
tions are introduced and importance sampling described. For simplicity, the speed-up
strategy is described for homogenous sources with synchronised film-sequences. Finally,
generalisations to heterogeneous and synchronised MPEG sources are given.

A.3.2 Basicsand notation

Before theimportance sampling strategy isintroduced the basic MPEG multiplexing sim-
ulation set-up is described, seefigure A.2. Necessary notation and basic concepts are also
included. Note that for notation simplicity, only the special case of homogenous sources
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and synchronised film sequences are described here. This means that the frames arrive
simultaneoudly to the multiplexers of figure A.2, and that they al stem from the same
film-segquence. In section A.3.4.2 and A.3.7, generalisations are described.

A.3.2.1 General notations

N Number of frames in a sequence.

M Number of sources.

a®b = (a+b-1)mod(N) +1 (themodulo N addition).
1=1{11,..,1} (anidentity-vector, implicitly of size M).

1 if x>0
[(x) = _ (indicator function)
0 otherwise

A.3.2.2 Tracedriven simulation

frame position identifier
1 2@? i N-1 N
fil i f )
im pos”(‘)tgrrseol o || K(Dtky (1)@ - - - - - -

film sequence frame constellation,

‘ ‘ ‘ ..... ‘* ‘ ..... ‘ 4‘ . ‘ ‘ f k; = (kD). ... k(M)}
1 2 3 : j N-1 N
film poérc])tfrrcseol]\‘/l kl?M ______ KMk (M) - - - - -

Figure A.3: Basic conceptsrelated to trace driven simulation of multiplexed
homogeneous MPEG sources.

The simulation of multiplexed MPEG sources is done by sampling a starting position in
the film sequencefor each source i, in sequencefrom 1 to M . Thisordered set of starting
positions, and generally a synchronised or aligned frame-positions, are denoted a frame
constellation, k. The system response Y isthe number of cell losses which are determin-



A.3 Importance sampling for heterogeneous MPEG sources 147

istically given by tracing through the N framesin the multiplex of film sequences starting
each source at the position given by k.

k = {k(2), ..., k(M)} Frame constellation (ordered set)

ki = k; @ j -1 Theframe constellation at frame position identifier j (seefigureA.3).
Y(A) Systemresponseof A.

X = {Xk(l), Xk(M)} Number of cellsin frames given by constellation k.

Xnax = krr}zfo}{Xk} Maximum number of cellsin aframe.
ISEEN

J(¥) = {i|(X;>Xx)} Setof frame positions having more than x cells.
d Number of cells served during aframe period (excl. buffer-length).

B Buffer capacity.

A.3.2.3 Concept of alignments

The sampling of a starting frame constellation can be viewed as a sampling of afilm
seguence alignment, because the relative position between the M sources is constant
throughout the entire sequence. This means, that the same alignment can be sampled asa
result of sampling any of the frame constellations this alignment consists of. However, the
system response will, due to an initial transient caused by buffers, for high loads be
dlightly dependent on the starting frame constellation.

An alignment constituted by the specific frame constellation k isthen:

AY = (Kk®1 .. k®(N-1)1} (A1)

and A = Al(l“(‘),forall i = 1toN,istheaignment number | with either (non-specified)

frame congtellationin A, asthe starting constellation. Observethat N different rotations
of the alignment depicted in figure A.3 will result in the same alignment. Whenever aref-
erence to the starting frame constellation is needed, the index refersto thefirst source,
called frame position identifier asindicated in figure A.3.
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Notethat evenif there exists several permutations of the order of MPEG sources (asource
correspondsto avector of film-sequence pointersin figure A.3), and that each of them will
giveidentical response, itis, however, essential that each permutation constitutesaunique
alignment. This assumption is necessary to make a simple sampling algorithm, see
section A.3.6.

A.3.2.4 Alignment probabilities

The probability of sampling the alignment A, with an offset position j relative to the
frame position identifier is denoted P(l, j) . Hence, the probability of an alignment A, is
P(I) = E:\': 1P(l, J). Theoriginal sampling distribution is uniform, i.e.

PO) = 3 PO = 3 = M (A.2)

System response is obtained under the assumption of a deterministic intra-frame cell
arrival process. With this assumption, and noting that alarge number of cellswill arrive
during a frame epoch, response is determined by multiplexer states at frame arrival
instants. If service before cell arrival is assumed, the following recursion relation apply:

n; = Max(Min(nj_1+(>~(L(j *1-d),B-1),0) (A.3)
Hence, the system responseis(n, = 0):
Y() = L Max(n;_; + (X, - 1-d)—(B-1),0) (A.4)

with expectations E(Y) = Ew Y()P(l) . Hence, an unbiased estimator for n direct sim-
ulation experimentsis:

- 1wn
Y= oS Y0) (A.5)

where the alignment A, is sampled according to the uniform distribution of (A.2).
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A.3.3 Importance sampling fundamentals

Importance sampling have been used with successto yield speed-up in rare event simula-
tion, see[Hei95] for an excellent overview. In MPEG simulation cell lossesarerare events
which will require extremely long simulation periods to obtain stable estimates.

Thetheoretical fundamentals of importance sampling can shortly be described by the fol-
lowing. Consider Y as an observation of the quantity of interest to be a function g(X)
where X issampled from f(X) . Non-zero valuesof Y arerarely observed in adirect sim-
ulation. Thebasic ideais simply to change the underlying sampling distribution to f*(X)
to make Y more likely to occur and where the following relation hold:

Ef(Y) = E¢(9(X) = Ep(Y - 1(X)/15(X)) = Ef.(Y - A(X)) (A.6)

where A(X) isthelikelihood ratio between f(X) and f#*(X). Thus, the property of inter-
est Y can be estimated by taking R samplesfrom f*(X), accumulate A(X), and use the
following unbiased estimator:

o _ 1 R
Y = B Er _ 1Yr “A(X,) (A7)

The main challenge is to choose a new distribution, f*, that minimizes the variance to
this estimator, Y . If an unsuited distribution is used, it is observed that simulation isinef-
ficient and is producing inaccurate results, see e.qg. [DT93].

INnMPEG simulation let X bean alignment A, of film sequences originally sampled from
auniformdistribution, f(x),andlet Y = Y(I) bethe number of cellslost, see (A.4). The
following section will discuss heuristics specific for the MPEG sources which determine
the new sample distribution f*(X).

A.3.4 Changing the sampling distribution

A.3.4.1 Heuristics

In atrace driven simulator for MPEG sources, the alignments are sampled according to a
uniform distribution. When alarge number of framesin the sequence have few cells, and/
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or the overall mean load are low, thiswill result in an enormous number of Y, = 0
observations.

Importance sampling seeks to reduce this problem by increasing the frequency of aign-
ments having Y > 0. This objective is achieved by changing the f*(X) by the following
heuristics:

1. Load distribution: Sample the starting (frame) position of each of the multiplexed
sources proportional toitsload, instead of the uniform distribution, seefigure A.4. This
will provoke the heavy load frames to coincide in an alignment.

A

1r v
4 simulation
(original distribution)
Importance sampling
(load distribution)
relative load of frame j
0

j 40000 frames

Figure A.4: Cumulative load distribution.

2. Load selection: The conditional starting position of source i are restricted to those
which makes an overload (and hence cell loss) feasible.

A.3.4.2 Alignment probabilities

Because an alignment is selected through sampling of one of its frame constellations, the
alignment probability P(l) is asthe sum of frame constellation probabilities, P(l, j) .

Let J(x) = {i|(X;>X)} betheset of frame positionshaving morethan x cells. Then, the
change of frame constellation probabilitiesto P*(l, j), according to the heuristics from
section A.3.4.1, can be expressed as:
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In sequence i =1to M do':

_ i-1 :
Letx; = d=>"2 X (my = (M =1)X g

Pl J) = (ij(i) ‘ |(Xi))/[EmEJ(Xi)ij(m)] (A8)
and finally
M
P(l.j) = T]P*(. ) (A.9)

i=1

This operation is O(N) -complex and is the most critical operation in the algorithm with
respect to computer efficiency. However, if the film-sequence is sorted by frame sizein
decreasing order, and the frame references to the original unsorted sequence are known,
the evaluation can be reduced to a O(1) -complex operation, see [And97].

Eq. (A.8) can easily be generalised to heterogeneous sources. The number of cells at
frame position i, X;, must be generalised to Xi(f) wherethe new index (f) refer to the
film-sequence type. Thisis simply substituted into (A.8). However, to avoid the frame
constellation sampling to be biased, the sequence of which sources are sampled, must be
randomly ordered?.

A.35 Thelosslikelihood

The likelihood ratio is the ratio between the alignment probabilitiesin (A.2) and (A.9):

N .
Ay = RO o 2= POD Nt

! : . (A.10)
ORI (5 I YL ()

A.3.6 Algorithm

The compl ete algorithm can be described as follows:

Requirement: MX ., =B

1. Theframe space s reduced for every source, dependent on the accumulated load of the frames sampled by
the previous sources, and the maximum load which is possible to obtain by the remaining sources.

2. In the homogeneous case, this sequenceisfixed, i.e. the frame position of source 1 is always sampled first,
then 2, and finally source M .
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/* repeat the following to obtain frame constellation probabilities */
For i =1,...M {
k(i) < P*(l, j) from (A 8)

}
P(l, j) = H?ﬂlpﬁa, )
€

/* sanpl n offset from kto reduce the effect of the buffer transients */

U< U(,N)

/* add this offset to all sources */

k=koU-1)

/* tract all N frame positions in the sanpled alignnent */
For j=1,..,N {

if lossat I5j>0 {
/* update system response, see (A 4) */
Y = Y +lossat lgj
/* update alignnment probability according to (A 8) */
Px(l) = P*(I) + P(l, )
}
/* calculate the loss likelihood according to (A 10) */

A(l) = P(l)/P=(l)
/* update statistics of the observation Y-A(l) */

This agorithm isrepeated R times, and Y is estimated by (A.7).

A.3.7 Non-synchronized sources

In establishing equation (A.3), the assumption was made that frames from different
sources arrive simultaneously at the multiplexer. When this assumption is removed, each
source will in addition to the frame starting point also be associated with a specific frame
phase. Such a generalisation will influence both cal culations of system response and like-
lihood ratio.

A.3.7.1 Revised multiplexing model

System response may <till be determined by system states at frame arrival instants, but
now frame arrival s are spread throughout a frame epoch according to the frame phases of
sources. Hence, the following generalisation of the recursion in (A.3) applies:

o

n; = Max(Min(n;_,+--X -1-d,B-1),0) (A.11)

d "

where d j isthe number of cells served during the j’th fixed rate interval.



A.3 Importance sampling for heterogeneous MPEG sources 153

A.3.7.2 Revised likelihood ratio

Consider that when multiplexing video sources, the smoothest compound source is
obtained when frame phases are evenly spaced in the frame period. In this scenario, each
of the M sources may occupy one of M distinct and different frame phases, soin a
sequence of length N, there will then be N - M discrete starting points which can be cho-
senin Mt - N ways. Theuniformly distributed probability of choosing any alignment is
then given by

N-M

P() = !
M

= 1/[(M-1)-N""1 (A.12)

M

The probability of choosing aspecific phase-constellationis 1/M!, so the biased alignment
probability may be expressed as

N - N-M

M .
PO =5 3 P00 = g 3 TP L‘ :ﬂf‘J) (A13)
=1 i=1

j

Here f; denotes the phase of sourcei. The likelihood ratio of the I'th alignment will then
be:

M-1
AQy = MN__— (A.14)

N-M 5% -
=1 P(.1)

L etting the number of discrete phase valuesincrease, a Riemann sum can be formed such
that thelikelihood ratio in thelimit of continuously varying frame phases can be expressed
as

NT; -1
_ (yM-11 " — (M1 ps di\
AQ) = [N 7 { P (I,t)dt) = (N EP (I,ti)a> (A.15)

Here T; denotes the frame duration, the sum in the last term is performed over all fixed-
rateintervalsin the simulation sequence and d;/d isthelength of thei’th fixed-rate inter-
val relative to the frame duration. It should be noted that the complexity of calculations
for unsynchronised sources is afactor M higher than for unsynchronised sources.
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A.4  Speed-up techniquesfor homogenous M PEG sources

In previous work [AER95], an alternative speed-up technique for MPEG simulation was
applied, which was based on the use of stratified sampling, see e.g. [LO88] for an intro-
duction.

— (&) MrBean, n=6 sources (b) bond, n=6 sources
B3
(@]
o2 bufferlength, B=253
I 4
— 1
s E
5’ > load
1 o
2
-3 e .
stratified sampling
——— direct simulation
4 —4— 4+— &~ jmportance sampling
3
4
2
E’ =
S - E
o [<)
-1 ke)
-2

(c) MrBean, n=10 sources (d) bond, n=10 sources

Figure A.5: Comparison of direct simulation, importance sampling and stratified sam-
pling with respect to the efficiency measure. Note that all values are in the logarithmic
scale.

This section compares the importance sampling with stratified sampling and the direct
simulation approach for application to a multiplex of MPEG video sources. The compar-
isons are made based on an efficiency measure m, considering both the variability o® and
the CPU-time consumption t cpu OVer r experiments, see[Hee95]. Note that the most effi-
cient technique will have the lowest measure’.

m = o2/r-t (A.16)

cpu

1. Observe that this efficiency measure is the reciprocal of the measurein (2.11).
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The comparison was carried out for two film sequences, MrBean and Bond, having dif-
ferent characteristics, seetable A.1. A representative sample of the results are presented
in figure A.5 showing the efficiency measure in alogarithmic scale for the three
approaches. The main observations are:

1. For high load values, direct simulation is always better than importance sampling and
at least as good as stratified sampling. For high loads the are no rare events associated
with the estimates, and the additional computer cost introduced by a speed-up tech-
nigue is wasted.

2. For asmall number of sources, stratified sampling is at least as good as importance
sampling.

3. Importance sampling is better that stratified sampling even for a small number of
sources of film-sequences having rather low maximumto meanratio (S, /' S) likethe
Bond sequence.

stratified sampling -

log[m]

MrBean, load = 0.25, loss < 10
Figure A.6: Efficiency comparison as the number of sources increases.
The relative efficiency of importance sampling to stratified sampling areillustrated in

figure A.6, using load of 0.25 on the MrBean film-sequence and varying the number of
sources from n=5 to 12.

4. Importance sampling is better than stratified sampling when the number of sources
become large.
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As presented in [AER95], the stratified sampling model assumes synchronized and
homogenous sources, whileimportance sampling does not have these restrictions. Hence,
in the following section, importance sampling will be used to speed-up the simulation of
heterogeneous sources

A.5 Multiplexing of heterogeneous M PEG sources

A collection of 19 sequences of diverse content will be used in the calculations to come.
The statistics was produced at the University of Wirzburg. Tematic content and sometraf-
fic characteristics of the traces are described in [Ros95].

A.5.1 Sourcecharacteristics

The material was captured viaanalog VHS video-format, and can be characterized as
fairly low quality / low bitrate video. The sequences are 40,000 frames long, the picture
format 288 lines by 384 pels, and the quantization parameter triplet is given by ¢, dp, g
=10, 14, 18. Table A.1 summarizes some static traffic characteristics of sources.

Inthetable, Sya S, v, refers to sample maximum, mean and coefficient of variation
respectively. Indices |, P, B refers to the sequences formed by partitioning the original
seguence after frame types. In the second last column is shown the relative sizes of |-
framesversus P and B frames, which may betaken asameasure of the success of temporal
redundancy removal in the different sequences, see section A.2. The unit of the numbers
isacel, where acell payload of 44 bytesis assumed.

What isimmediately obvious from the above tableisthe great diversity of statistical prop-
erties of the sources. The sources are similar in that they use the same coding parameters
and picture format, and were retrieved in the same way from analog video tape. So, even
as the sequences contained the same amount of data before the coding took place, the out-
come varies widely both with respect to mean bitrate, burstiness (peak/mean-rate) and
variability. It may also be seen that the relative sizes of |-frames versus PB-frames vary
from afactor three to about a factor eight, reflecting the various outcomes of temporal
redundancy removal. Analyses of temporal properties of selected sources [And96,Ros95]
show source diversitiesal so in thetemporal domain. No single source or source model can
reasonably reflect the above diversity of properties, so the MPEG multiplexing perform-
ance analyses based on single source types will lack in statistical significance.
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Table A.1: Non-temporal statistical characteristics of sources.

Source S v S, v Sp Vp Sg | VB Spg | SYSpg | Smax /S
MrBean 50.1 | 1.17 | 213.5 | 0.26 | 51.9 0.78 | 29.0 | 0.66 | 35.3 | 6.1 13.0
Asterix 63.5 | 0.90 | 202.0 | 0.27 | 77.1 0.60 | 41.1 | 0.67 | 50.9 | 4.0 6.6
Atp 62.2 | 0.93 | 2151 | 0.29 | 75.8 0.55 | 38.0 | 0.48 | 48.3 | 4.5 8.7
Bond 69.1 | 1.06 | 236.6 | 0.31 | 117.7 | 0.49 | 29.9 | 0.40 | 53.8 | 4.4 10.1
Dino 37.2 | 1.13 | 1565 | 0.21 | 41.1 | 0.67 | 20.8 | 0.61 | 26.3 | 5.9 9.2
Fuss 77.1 | 0.96 | 2249 | 0.32 | 135.0 | 0.48 | 36.9 | 0.48 | 63.6 | 3.5 6.9
Lambs 20.8 | 1.53 | 108.0 | 0.34 | 21.1 | 1.08 | 9.7 | 093 | 12.8 | 8.4 18.4
Movie2 40.6 | 1.32 | 163.8 | 0.37 | 66.8 | 0.74 | 154 | 0.84 | 29.4 | 5.6 12.1
Mtv 69.9 | 0.94 | 1985 | 0.35 | 111.7 | 0.55 | 38.2 | 0.69 | 58.2 | 3.4 9.3
Mtv_2 56.2 | 1.08 | 1744 | 0.41 | 71.1 | 0.86 | 35.8 | 0.99 | 454 | 3.8 12.7
News 43.6 | 1.27 | 200.6 | 0.30 | 43.9 0.82 | 239 | 0.60 | 29.4 | 6.8 12.4
Race 87.4 | 0.69 | 225.1 | 0.26 | 108.5 | 0.48 | 62.2 | 0.46 | 74.8 | 3.0 6.6
Sbowl 66.8 | 0.80 | 193.0 | 0.28 | 88.9 0.47 | 42.7 | 0.51 | 55.3 | 3.5 6.0
Simpsons | 52.8 | 1.11 | 210.4 | 0.26 | 61.2 0.73 | 299 | 0.67 | 384 | 55 12.9
Soccerwm | 71.3 | 0.85 | 201.5 | 0.36 | 93.8 0.58 | 46.6 | 0.61 | 59.5 | 3.4 7.6
Star2 265 | 1.39 | 1250 | 0.32 | 28.8 | 0.94 | 13.3 | 091 | 175 | 7.1 13.4
Talk_2 50.9 | 1.02 | 209.6 | 0.18 | 50.8 | 0.46 | 31.1 | 0.32 | 36.5 | 5.7 7.4
Talk 413 | 1.14 | 183.9 | 0.16 | 42.1 | 059 | 232 | 043 | 283 | 6.5 7.3
Term 31.0 | 093 | 106.2 | 0.22 | 40.1 | 0.51 | 18.1 | 0.60 | 24.1 | 4.4 7.3

A.5.2 Simulation experiments

In the simulation experiments, the number of simultaneous sources was regulated by mul-
tiplying the number of each source type, giving multiplexing scenarios with multiples of
19 sources. Each calculation is based on 5000 independent simulations, and in figures,
error-bars indicate the obtained 95% confidence intervals. Simulation runs lasted from
some hours for the lowest |oss probabilities / least number of sources, up to severa days
per point for thelargest number of sources and the highest |oss probabilities. We have con-

centrated on multiplexers with moderately sized buffers.

Results from the simulation experiments are presented in figure A.7.
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Figure A.7: Loss probabilities of multiplexed sources, 95% confidence intervals.

A frequently cited QoS objective for ATM-networks is a cell loss probability of 10°°.
Hence, resultsin figure A.7 are presented for the region between 1022 and 10°. Even
though these probabilities are low from a networking perspective, it should be noted that
these numbers are very high compared to the absolute minimum loss probability of the
multiplexed sources, occurring if all sources send their maximum sized frame simultane-
ously, i.e. giving aloss probability of less than 1/40.000M. Our calculations are based on
severa thousand non-zero observations, and have a high level of confidence.

In [KSH95] and [RMR94] considerable statistic multiplexing gains for MPEG sources
were reported. These analyses were based on of single MPEG source typesin high loss
regions. From the rightmost column of table A.1, it can be seen that burstiness of sources
vary between 6 and 18, so by the methods presented here, we have been able to confirm
that even for thelow | oss probability regions of heterogeneous multiplexed sources, there
isagood potential for statistical multiplexing.

Asload increases to certain levels, the sampling bias will tend to destabilize the system,
giving poor confidence as aresult. This may be observed for the highest loss value of
M=76, B=500. For high loss probabilities, direct simulation will, however, be possible.
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As number of sources increases, obtaining good result will be correspondingly more dif-
ficult, and the multiplexing 76 sources represents what we estimated as the maximum
reasonable complexity with the current choice of parameters. The method is sensitive to
buffer lengths, because the load selection algorithm does not include buffer when irrele-
vant samplesareexcluded. Hence, analysing alarger number of sourcesshould befeasible
for shorter buffer lengths.

Considering the multiplexing scenarios, the link rates necessary to accommodate the dif-
ferent number of sources at aloss probability objective of 109 is calculated by linear
interpolation and presented in table A.2. In the calculations, avideo frame rate of 25
frames per second is assumed.

Table A.2: Multiplexer dimensioning

Compound source

Number of sources

rate

Link rate, B = 200

Link rate, B = 500

M =57

32.4 Mbit/s

53.7 Mbit/s

50.2 Mbit/s

M =76

43.2 Mbit/s

63.7 Mbit/s

60.6 Mbit/s

The low bitrate/ low quality of the sources allows afairly large number of sourcesto be
multiplexed even at moderate link rates, thus giving reasonable levels of utilisation.
Acquiring similar data for other video qualities will require further investigations.

A.6 Conclusions

Assessing ATM multiplexing performance at the lower cell loss objectives havefor along
time been a general problem. There are several factors contributing to the difficulty of
such calculations. Many data sources, and MPEG video sources specifically, are of acom-
plex statistical nature, and will not easily yield to analytical analysis. Using parametric
simulation models, there is the problem of capturing essential source properties and the
added problem of obtaining results of significancefor therarely occurring events. Bothin
simulation modelling and analytical analysis, there isthe problem of modelling the diver-
sity of video sources.

In the current work, we have described a method that will solve the above problems. We
have based our method on using the statistical material inadirect manner, andin obtaining
good results, the availability of sufficient amount of statistical material is crucia. As
MPEG coders become more readily available, the availability of statistical material will
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be abundant, and the method may be applied to any desired mix of sources. Although the
current focus has been on MPEG sources, the method is applicable for all sourceswith a
constant duration framing property.

As no known methods exist for obtaining optimal biasing strategies for the importance
sampling calculations, the employed sampling heuristics uses the knowledge of the char-
acteristics of MPEG source to provoke overloads (and cell losses). The heuristics are
based on a combination of likely contributions to cell losses from the individual frames,
and a systematic exclusion of irrelevant samples.

The usefulness of the method is demonstrated by giving, to the authors knowledge, the
most reliable MPEG multiplexing performance data published to date.
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Appendix B

List of symbols, estimators and concepts

Thisappendix includesalist of symbolsused inthisthesis, and an overview over the mod-
elling concepts described in chapter 4.

B.1

B.1.1

List of symbols

Property

property of interest,
original estimate of v,
importance sampling estimate of vy,

RESTART estimate of .

Distributions

n
i=0’

sample, e.g. samplepath s = {w;}
observed property of interest,
original sampling distribution,

importance sampling distribution.

- 163 -
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B.1.3 System state

Q global state space, implicit of K dimensions, QX ,
w = {o K. system state wy = #e, 9 EQ,

; system state @ after event i,

Q; targetsubspacej,(gjcg,j =1..J),

Lo regenerative subspace, (25 C Q) A (o N Q; = ).

B.1.4 Building blocks

Resource pools

J number of resource poals,

N; number of resourcesin pool j, (resource pool capacity),
T set of generators with pool j asa constraint.
Generators

K number of generators,

€ entity from generator k,

D routing set, (afixed set of resource pools),
M(w) (state dependent) arrival rate,

M population size,

w(w) (state dependent) departure rate,

S number of servers for generator k entities,

capacity that entities from generator k reguires from pool j,



B.1 List of symbols

P priority level of generator k, p = 0 isthe highest priority level,

Ry number of rerouting alternatives for generator k.

B.1.5 Target subspace

Q; target subspace j expressed in terms of the system states,

B; target subspace j expressed in terms of blocking positionsin poal j,

pj((y) target distribution (j = 1, ..., J), a specific state ¢ ,

Hj(cg) importanceof target j (j = 1, ...,J), a specific state @ .

B.1.6 Simulation process

X(t)  state of continuoustime Markov processat time't,

X state of discrete time Markov process at embedded point i attimet;,

Z event variable describing possible next states of the process X; .

B.1.7 Most likely path to a target

o j((y) the most likely subpath from current state ¢ up to Q i

n; number of eventsin Oj(cp) ,

k = {kp, Ky, .. Ky}
sequence of generators constituting the subpath o J-((g) ,

ki generator of the i ‘th eventin oj((p), kEFj,
X number of resource allocated,
Xo initial number of resource allocated at current state @,

(x) .=
W system state @ where the sum of allocated resources, Eke r WGy = X,
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Oy probability contribution from generator k to state x,
G,  normalisation constant from generator k at state x,
normalisation constant at state x,

T, probability of alocation of x resources (from pool j).

B.2 Indexation

1 = {0,...,1,...,0}
index vector of size K whichis 1 at position k and 0 elsewhere.

X some property (of interest),
X property X under importance sampling distribution,
X, r th sample of X,

Xy property X of generator k,

X property X of resource pool j,
X(P)  property X at priority level p,
property X after event i,

X, or X
property X with x resources allocated.

B.3 Estimators

R number of replicasin asimulation experiment.

Sample mean:

o _ 1QR
X= F22r=1xr
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Sample variance:

Si - R%lerz 1(Xr %)’

Standard error (of sample mean):

SX =, /S/R
Relative error:
re(X) = S./X

B.4  Modédling concepts

Resour ce pool: afinite set of identical and interchangeable resources. The capacity of the
poolsis Nj, j=1..J.

Entity, e, k = 1, ..., K: anitem that holds Cy resources from pool j
Event: an occurrence that trigger arequest or release of ¢ resources.

Generator (of entities): a component which explicitly models processes generating the
events that operates on the entities.

System state, ¢ € Q (Q istheglobal state space): arepresentation of the current number
of entitiesat any time, i.e. @ = {w,, ..., g} where w, = #e,.

Path: any sequence of events s = {@y, ©4, .., W,,_1> ©,} » Where @, isthe system state
after event i and n isthetotal number of eventsin path s.

Target, Q;: asubset of Q where the capacity N J- of resource pool j isexceeded.
Rare event: avisit to the target when P(Qj) «1,i.e avistisunlikely to happen.

Singletarget model: amodel with only one (dominating) resource pool.
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Multiple target model: a model with several pools with significant contributions to the
quantity of interest.



Appendix C

Probability of the maximum statein a
sample path

This appendix presents the details for the probabilities P; that are used in section 2.7.4.

C.1  Settings

Let s, denote the r th regenerative simulation cycle, or asample path, defined as
S = {wgp ©p - (pnr} . The probability of state i being the maximum state visitedin s,
isin (2.34) defined as:

P, = Pr{nefax(g,r) =i} = Pr{(o, =) A (w,=i),(x=1,..,n)} (C.y
r
To derive P;, the probability of visiting state i in g isrequired:
Q = Pr{o,=i,(Ix=1,...,n)} (C.2)

Explicit expressionsfor P; and Q; are presented in this appendix for an M/M/1/N queue.
The Markov process X(t) isdescribed in section 3.2, and in amore general formin
section 4.2. For an M/M/1/N queue, the event variable Z, at event x in the recursive
expressionin (4.2) is:.

Z =

~X

{—l with probability w/(u + &) (C3)

1 with probability A/ (u + A)
for x = 1,...,n, . Initidly, Z, = 1 with probability 1.
To derive Q; , thefirst step analysis [CM65] is applied. The following equations are estab-

lished for every statei = 1, ..., N—1 inthe queuing model:
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Q = uQj 1 +AQi_4 (C.4)

where Q, = 1 and Q; = O for i > N. After some manipulations,

Q= MAZL o1 N (C5)

"' -1

This probability is essential for the derivation of the probabilities P, .

C.2 Direct smulation

The original distribution P; is derived directly from (C.5). Recall from (C.2) that Q; is
the probability of visiting state i in s. P; isthe probability of state i isthe maximum state
ins,i.e statei isvisitedin s but not state i + 1:

p. = {Qi_Qi+1 .05i<N. €6
Q i =N

C.3 RESTART

P(R) arethe probabilities P; inthe RESTART distribution. To explain how P{R) are deter-
mined, recall the basic regenerative cycle (or sample path) from section 2.7.1. Thisisthe
path that consists of a sequence of eventsthat starts from, and endsin, the renewal state
Q, and contains no splitting of the simulation process. This is the simulation process
under the original distribution. The maximum probabilitiesinthe basic path isthe P; from
(C.6). Thismeansthat for all maximum states i below the first threshold state the maxi-
mum probabilities for optimal and RESTART distributions are equal, except for a
normalisation constant that is introduced later. For maximum states i above the first
threshold, the number of replicationswill influencethe P(R). Infigure C.1 an exampleis
plotted including two intermediate threshol ds states. At threshold 1 at state 4, R, replica-
tions of the simulation process are made from this threshold state. Thisimplies that the
probability of a maximum state above the threshold state are increased by afactor of R; .
The same is repeated at every threshold state.
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14

12
first threshold

second threshold

basic cycle, P;

0.8

PR
]
R

0.6

0.4

0.2

0

1 2 3 4 5 6 RO 7 8 9 10
Q10=20 Q1 maximum state i Q2

Figure C.1: The maximum state probabilities in the RESTART distribution is a prod-
uct of the probabilitiesin the original distribution,P;, and the number of replications
made at every threshold.

Let Q, j bethe j th threshold state with respect to target subspace €, . The number of rep-
lications at every threshold m = 0, ..., M isdenoted R,. The probabilities can then be
expressed as:

Ry Q=i<Qy

pR - p /. Ro Ry Qpy=i<Qp C7)
I I Ry'Ri Ry Qpp=i<Q

or in amore compact notation

PR =P/GT[L,R  (Qun_1=i<Qp)a(l<m<M) (C.8)

where the normalisation constant G satisfies EN OPi(R) =1.
| =
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C.4 Importance sampling

P(IS) are the probabilities P; in the importance sampling distribution. The maximum
state distribution for importance sampling is derived simply by scaling the arrival and
departure rates as described in section 3.4.2. The new rates are substituted in

we/h =1 _ u/(MBIAS?) -1

Q¥ = i —. (C.9)
(we/h) =1 (w/(LBIAS?)) —1
With optimal scaling BIAS = /A, then Q% = (A/u—1)/((A/n) —1).
Thus, substitute Q; by Q*; in (C.6) then:
(C.10)

pi(IS):{Q*_Q*Hl .Osi<N.
Q* i=N

C.5 Importance sampling combined with RESTART

P(IS+R) are the probabilities P; in the importance sampling combined with RESTART
distribution. These are derived by substituting P; by P{'S) from (C.10) in (C.8). Then, the
following expression applies:

PIS*R) = PI9/G* - TTL R (@um_1=i<Qum)a(l<m<M) (C1Y)

where the normalisation constant G* satisfies ElN_ o P{IS*+R) = 1,
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C.6  Constant ratio between direct and optimal importance sampling

The ratio between the maximum state probabilitiesin original and optimal importance
sampling distributions, P;/P{'S), are observed from the figuresin section 2.7.4 to be con-
stant for all 1 <i < N. This constant can be determined analytically:

P Q-Qi;
PIS) "~ Q¥ —Q¥ 44
_ WA=D/(w/A) =1 = (WA =1)/((w/n) 1)
O/u=1)/((/w) 1) = (h/u—=1)/((/w) T =1)
:(u/x—n-[l/((u/x)—) 1/ (wn) 1))
|+1

(/u-1)-[1/((v/w) 1) =1/ ((n/w) T =1)]
_w ((WA=1) - (W) ()i =1) - (/)i +1-1)) (€12
(M/u=1)- (/Wi (WA —1) - (w/A)+1-1))
o (wAh =) (A= (W) ()it -1)
o (/u=1)- (WA =1) - (1-(A/w)i*1)  w/h
u_ (wWA-1)
}\ (Mu=21)-u/\

bl

5=

=
A
Hence, the constant ratio is equal to the optimal BIAS-factor, see section 3.3.3.1.

For other biasing than optimal, theratio P;/P(!S) is not constant.
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Appendix D

Analytic variance of the importance sam-
pling estimates and the likelihood ratio

This appendix provides the formulas necessary to produce the plotsin chapter 3.5. These
plots show the variance of the conditional and unconditional likelihood ratio, and of the
importance sampling estimate, ¥,s.

D.1 Modd assumptions

The formulasin this appendix are devel oped under assumption of simple random walks.
The K -dimensional simulation process X(t) isdescribed in section 3.2, and in amore
general formin section 4.2. The recursive expression for the embedded process X, given
in(4.2)is.

+Z (D.1)
where Z  isthe random event variable. With absorption barriers at origin and at resource

capacity N, the expressionin (D.1) is changed to:

Xn_1+2 (0<[Xy_q <N)
Nn:{ n-1 n ‘ n 1‘ (D.Z)

‘Xn—l‘ =0n ‘Xn—l‘ =N

= _ ;W 1.6 the sum of the state variables at embedded point n.
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ExampleD.1: For K = 1, the event variable becomes (where p+q = 1):

-1 ith probabilit
z, = o 03
1 with probability p
and the recursion from (D.2) is:
X _+Z (0<X <N)
X, =) "t "t . (D.4)
Xn_1 Xp_1=0AaX,_1=N

Figure D.1illustrates how a one dimensional random walk ona N + 1 states Markov
chain looks like.

Xo=0
OBOBOR HO,
> 4 1

>4 w4

Figure D.1: Smple N+1 state Markov chain model of an M/M/L/N queue.

Thelikelihood ratio, L(s), and the property of interest y, are both associated with a sam-
ple path s (or cycle), see (3.2). A sample path consists of n observations of the process
X; between two arrivalsto empty system, i.e. where X, = 0 and X, = 0 and X; > 0 for
ali =1,...,n—-1. Asamplepath s isaso referred to as a cycle because it represents a
regenerative cycle in the Markov chain model.

D.2 Contentsof appendix

Expression for the following properties are given in this appendix:

p(i, N) the probability of absorptionin state N after i eventsin asample path starting
from state 0, see definition in (D.5) and expressionsin (D.8) and (D.12).

p(i, 0) the probability of absorptionin state O after i eventsin asample path starting
from state 1, see expressionsin (D.9) and (D.13).
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E(L|N) the first order expectation of the likelihood ratio, given absorptionin state N,
see (D.30).

E(Lz\ N) thesecond order expectation of the likelihood ratio, given absorption in state
N, see (D.32).

Var(L|N) thevariance of the likelihood ratio, given absorption in state N, see (D.35).

E(L|0) the first order expectation of the likelihood ratio, given absorptionin state O,
see (D.33).

E(LZ\O) the second order expectation of the likelihood ratio, given absorption in state
0, see (D.34).

Var(L|0) thevariance of the likelihood ratio, given absorption in state 0, see (D.36).
E(L) the first order expectation of the likelihood ratio, see (D.37).

Var(L) the variance of the likelihood ratio, see (D.38).

Var(y,g) thevariance of theimportance sampling estimate, see (D.41).

Section D.3.1 presents arecursive formulafor p(i, N), and D.3.2 includes aclosed form
expression from [CM65]. Observe that the original expressions from the book [CM65]
has been corrected for amissing factor.

In section D.4, the expectation and variance of the conditional likelihood ratio, given a
visit to state N, are described in an explicit form by simplifications of the p(n, N). The
variance of y,g easily followsfrom E(L|N) and Var(L|N).

Asapart of thederivation of the expression Var (L |N) , aconvergence condition to ensure
finite variance was established for single dimensional model in section D.4.3. An explicit
expression for the upper bounds of the BIAS factor is derived.

By application of Kroenecker algebra, see [Les88] for a brief overview, the probability
matrix can be extended to a multidimensional model. This makes the recursive formulas
from section D.3.1 and D.4.2 applicable to multidimensional models. In section D.6 the
extension to atwo dimensional model is described.
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In section D.7, the formulas are used on afew examples of one and two dimensional
models.

D.3  The probability of absorption in state N

Anexpressionof p(i, N) isestablishedin thissection. A recursive equation whichisvalid
for both single and multidimensional modelsis described. The calculation of p(i, N) are
computer demanding, and hence for single dimensional modelsan alternative and explicit
expression for efficient calculationsis derived.

D.3.1 The probability matrix approach

With reference to the model in figure D.1, the probability of visiting state N for the first
time after i eventsin asample path, s, given start in state 0, is:

p(i, N) = Pr{X; = N‘(O< Xi<N,(j=1..i-1) (X, = 0)}. (D.5)
Thisisthe same as the probability of reaching the state N after i — 1 eventsin aMarkov
chain with absorbing barriers at state 0 and N, given start in state 1. Figure D.2 intro-

duces absorbing barriers at state 0 and N in the model from figure D.1

XO:]‘

FigureDD.2: Absorbing barriers at state 0 and N in the model of figure D.1.

Let P bethetransition probability matrix for the model in figure D.2:

100..0
qO0p..O0
P=1 ... : (D.6)
0...g0p
0..001
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By Kroenecker algebra, described in section D.6, atransition probability matrix P can be
generated for multidimensional models, which makes the resultsin the following applica
ble also to these models. The probability distribution on Q after event i isgiven by:

O P (D.7)

Theinitial condition for onedimensional model is X, = 1,i.e. II(® = {0,1,0,...,0}.

Now:

1
=z

pGi, Ny = ) — ;™" for i (D.8)

p(i,0) = M) -1y ™ for i

1
Nl

(D.9)

where the latter is the corresponding probability of reaching the absorbing state O in i
events, given start in state 1.

The asymptotic probabilities after alarge number of events i are(HgO) = 0 and
0) _ Ay
Imy" = 0):

e
pN) = 3 my -y = (D.10)

© i i—1 ©
pO = 37 1g’-mg Y = mg”. (D.11)

These recursive formulas are computer demanding, and hence an explicit expression is
required as the size of the model grows, i.e. N become larger.

D.3.2 TheCox and Miller formula

In[CM65], explicit expressions for (D.8)-(D.11) are found, valid for an one dimensional
Markov chain. The absorbing barriers are defined at state —b and a. In the model from
figure D.2 thiscorrespondsto —b = —1 and a = N —1, i.e. arenumbering of the entire
state space @ by -1. Section 2.2 in [CM65] contains an error in (22) on page 32. A factor
4./pq ismissing. Hence, the corrected formulas are included in this section for the sake
of completeness,using—b = —1 anda = N — 1 asabsorbing barriers, and assuming that
p+q=1:



180 Appendix D Analytic variance of the importance sampling estimates and the likelihood ratio

N-1
. _2Jpg [P\ 2 . N-10,(1) .
pai, N) = =0 (a> Evzlsi—l fori = N-1,..., (D.12)
A%
: _2Jpg (9 1/2. N-10,(N-1) o
p(i, 0) = N (p) v=l_———s{,—1 Jfori = 1, ..., (D.13)

where a(x) = (-1)Y*1- sin(%)sin(%) and's, = 1/(2./pq - cos(v/N)).

Furthermore, if p=q:

p(N) = pN—lﬁ (for p = q: p(N) = 1/N), (D.14)

pN-1_gN-1
p(0) = QW (for p = g: p(0) = (N=1)/N). (D.15)
D.3.3 Theconditional probabilities

Normalization of p(i, N) and p(i, 0) by p(N) and p(0), respectively, givesthefollowing
conditional probabilities:

H —_ p(la N)

p(i|N) = UK (D.16)
1 — p(|,0)

p@i|0) = __p(O) . (D.17)

These are the probabilities of absorption after i events, given start in state 1, and absorp-
tionin state N and O, respectively.

D.3.4 Importance sampling probabilities

The notation p(i, w) isappliedin the following to represent the probability of reaching
the absorbing state o ini events, where ® = 0 or N. Under the importance sampling
distribution the arrival and departure probabilities, p and q, are substituted by p* and
g*, and p(i, w) isdenoted p*(i, w).
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D.4 Thevariance of thelikelihood ratio

Through a series of simulation experiments it has been observed that the variance of the
likelihood ratio changes significantly as the scaling of the importance sampling parame-
ters changes, i.e. asthe BIAS factor from section 3.4.2 changes. Expression for the
variance of the likelihood ratio is therefore devel oped to investigate how this variance
changes and how it relates to the change in the variance of the y,5, see section D.5.

D.4.1 Thelikelihood ratio after i eventsand absorption in state w for a simple
chain

Let the model still be aone dimensional Markov chain with constant rates and with two
absorbing barriers. The observed likelihood ratio in asample path is given by the number
of events i — 1 from theinitial state 1 and to the absorptions state. The importance sam-
pling strategy turns off the biasing when the target state N is reached, and hence the
remaining sequence from state N and back to 0 will not affect the accumul ated likelihood
ratio. The likelihood ratio consists of two factors, one contribution associated with the
direct pathfrominitial state 1 to the given absorbing state, either O or N . The second con-
tribution is from an arbitrary number j of arrival and departure events between the
transient states of themodel, i.e. thestates 1, ..., N — 1. These arrival and departure
events are denoted loops. Observe that each loop consists of two events.

Let L|(j, w) denotethelikelihood ratio given j loops and absorption in state o :

L|(j,N) = (p—Z)N_l-<pfg*)j forj = 0,..., 0, (D.18)
L|(j,0) = (%)(%)J for j = 0,..., . (D.19)

Thefactor (p/p*)N—1 in (D.18) isthe contribution to the likelihood ratio from a direct
path from the initial state 1 up to the absorption state N. The factor ((pq)/(p*qg*))! is
the corresponding contribution where j loops are observed before reaching state N . For
L|(j, N) thej loopscorrespondstoi = N + 2j eventsfrominitial state 1. Thisimplies
that (D.18) isdefinedonly fori = N—1, N+ 1, N+ 3, ... . Correspondingly,

from (D.19), thefactor (q/g*) isthe contribution of the direct (a single event) path from
state 1 to absorption in state 0, and ((pq)/(p*qg*))! is, asin (D.18), the contribution
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from j loops. The number of eventsarei = 1+ 2j, and hence (D.19) is defined for
i=1305,...

D.4.2 First and second order expectations; the probability matrix approach

In section D.3.1, the original model was described by the transition probability matrix P
from (D.6). The corresponding matrix under importance sampling parametersis:

100 ..0

px = _ (D.20)

For multidimensional Markov models, a corresponding matrix P* can be generated by
Kroenecker algebra.

Let AO = {0,1,0,...,0} betheinitia likelihood vector. The likelihood vector after i
eventsin the Markov chain is given by the following recursive matrix operations:

A = A“‘l)xp%e* = A" Y p = A9% P (smilarto (D.7)). (D.21)
The square likelihood vector is.
(i) (i-1_(P\%0. i-y_ P 2 (P o\
A" = (A2 =)"pr = (A2 =p = (AO)Y’x(=p) . (D.22
("7 = 2" x () B = (49T xR = (A (ZB) . 022

Thefirst order expectation of L|N isobtained from A() after infinite number of events:
_ A () ()
E(LIN) = AR /11y (D.23)
and the second order expectation of L|N from (Az)m is:

EQL2N) = A2 /m. (D.24)
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Correspondingly, the first and second order expectations for the likelihood ratio given
return to state O before reaching state N, are:

EL|o) = AS/ml?, (D.25)
EL20) = A2 /mi. (D.26)

For practical numerical calculations of (D.23) to (D.25), only afinite number of events i
isincluded. This means that the results are approximations. For BIAS factors closeto 1,
they converge after afew events, and the approximation is good. But, for higher BIASthe
convergence isvery slow, if converging at all, and avery large number of events have to
be included to get a good approximation. The cal culation become very computer
demanding.

Instead, an explicit expression should be applied whenever available. For one dimensional
Markov model, such an expression can be obtained using the equationsin section D.3.2.
This makes it possible to determine the upper bounds of the BIAS factor where the vari-
anceisfinite, i.e. E(L2|N) converges.

D.4.3 First and second order expectations; one dimensional model

The expectation of the likelihood ratio is given by combining the expression obtained in
the previous sections.

D.4.3.1 First order expectation; absorption in state N

Thefirst order expectation of L|N is:

©

ELIN) = 3 LGIN)(P(N-1+2j[N) = 3 L(j|N
i=o i=o

)p*(N—1+2j, N)

. (D.27
p*(N) (27

Recall form section D.3.2 that:

a,(x) = (-1)v+1- sin(’%’“)s‘n(%‘) (D.28)



184 Appendix D Analytic variance of the importance sampling estimates and the likelihood ratio

and observe that:

st, = 1/(24p*g* - cos(vn/N)). (D.29)

Then, substituting (D.12) and (D.18) in (D.27), and rearrange the order of summation:

E(L|N) =

|
[N
\g!
N
=l
>
3
*
—
=]
~—
z
|
fu
—
=}
O

i/p* NT_l N-1 o, (1)
) lor) S

% Ok N-1 uw N-1 (xv(l)
) 6T 6

N p*(N) o p*qg* vzl(s*v)N—1+2j—1

i Zzi?N;E(p*q*)E O‘V(l)(4p*q*)iCOSN_2+2i(V”/N) (>0

_ (2p)N-t i
= p*(N)E o, (1) cosN =2(var/N) Eocpl(v)

N
- S EL(N) S (D cost -2(va/N)/ (1= 94(v))

where the factor ¢,(v) = 4pgcos?(va/N) isindependent of the change of measure.

D.4.3.2 Convergence condition 1; absorptionin state N

To ensure afinite expectation, E(L|N) < o, the factor ¢,(v) <1 for al v . Observe that
the maximum is max(¢4(v)) = max(4pq) - max(cos?(vz/N)), where

- max(cos?(vr/N)) = cos?(n/N) = cos?((N-1)n/N) <1, and
- max(4pqg) = 4max(pq) = 4-1/4 = 1 becauseO<p=1-q=1.

Then, max(¢,(v)) = ¢,(1) = 1- cos?(n/N) < 1. This means that the expectation is
finite E(L|N) <o forall v.

D.4.3.3 Second order expectation; absorption in state N

Correspondingly, the second order expectation of L|N is:
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00

EQL2N) = 3 LGINZps(N-1+2j|N) = 3 L(j|N

)2p*(N —1+2j,
o =0 P*(N)

N) (D.31)

Substituting (D.12) and (D.19) in (D.31), and rearranging the order of summation, after
some manipulations the following expression is obtained:

21Ny = 2PN p\NTIGN-1 -2 _
E(L2|N) = N (p*) 3 Dot -2(va/N) /(1= 9,(v) . (D32)
Thefactor ¢,(v) = ¢,(v) - (pq)/ p*o* = 4((pq)2/ p*o*)cos?(vr/N) isdependent
on the change of measure, i.e. the convergence of the second order expectation is depend-
ent on the BIAS factor chosen.

D.4.3.4 Convergence condition 2; absorption in state N

To ensure the second order expectation to befinite, E(L2|N) < ¢, thefactor ¢,(v) < 1, or
max(9p,(v)) = ¢,(1) < 1. Then, the convergence requirement, E(L?|N) < o, is

4(pq)? < p*g*, i.e. for some change of measure the second order expectation (and the
corresponding variance) isinfinite! Thisimpliesthat the variance of the likelihood ratio,
and the importance sampling estimate, isinfinite for some change of measure.

Figure D.3 shows a plot of the ¢,(1) for different BIAS factorsin 3 different one dimen-
sional models. The shaded areas are the stable regions of the BIAS factor where the
second order expectation isfinite. It can been observed from the figure that the stable
region become narrower asthe model size, N, increases. Thisindicatesthat, asthe model
increases, it isincreasingly important to have good methods to obtain an change of impor-
tance sampling parameters that is close to the optimal. Furthermore, it can be observed
from figure D.3 that the optimal BIAS factor, (BIAS=u/\, obtained by use of the large
deviation results, see section 3.4.2.1), is closer to the upper than the lower bound of this
stable region.
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Figure D.3: Thefactor ¢,(1) must belessthan 1 to obtain E(L4|N) < o, i.ethe
shaded area indicates the stable region of the BIASfactor.
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D.4.3.5 Absorption in state O

Thefirst and second order expectations of L|0 are derived similar to the expressions
of L|N:

E(L[0) = s S (N =D/ (1 ,0). (D.33)
E(L2|0) = ﬁ L SN =D/ (). (D.34)

The convergence conditions for these two sums are the same as conditions 1 and 2 from
sections D.4.3.2 and D.4.3.4, respectively.

D.44 Thevariance of the conditional likelihood ratio

The variance of the conditional likelihood ratio, given absorption in state 0 or N are:
Var(L|N) = E(L2|N)—E(L|N)2, (D.35)
Var(L|0) = E(L2|0) - E(L|0)2. (D.36)

D.45 Thevariance of the unconditional likelihood ratio

The expectation and variance of the unconditional likelihood ratio are;

E(L) = E(LIN)p*(N) + E(L|O)p*(0) = p(N) +p(0) = 1, (D.37)

Var(L)

(E(LZ|N)p*(N) + E(LZ(0) p(0)) ~ EQL)”*
E(L2|N) p(N) + E(L20) p*(0) ~ 1

(D.38)
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D.5 Thevariance of the importance sampling estimate

Assume that the property of interest is:

1 state N isvisited in a sample path s
9@ = .

0 otherwise
Theobservations L, Z, inthe estimator of y from (3.2) are considered to be a product of
two dependent stochastic variables, L, , and Z, . The propertiesof L, areknown from the
inference in section D.4, while Z, are variates taken from abinomial distribution with

p* = Pre(g(g) >0) = p*(Z=1) = p*(N).

The nth order expectations of the observation L, Z, are obtained by conditioning on the
Z, variates:

E(L,Z)") = E(L,Z,)"|Z = )p*(Z = 1) + E((L,Z)"|(Z = 0) p*(Z = 0) 039
= E(LP|N)p*(N) '
The expectation of 7,5 = (1/R)E\7,rLrZr isthen:
EGi9 = EGS, L,Z) = E(L,Z) = E( [N)P*(N) = p(N) = y (D.40)
and the variance:
Var(j9 = E(LZN)p*(N) - (E(L,|N)p*(N))? = E(LZN)p*(N)-y2.  (D.41)

The same expressions were derived and presented in [CTS93].

D.6  Thetransition probability matrix for 2 dimensional model

Asmentioned in the previous sections, the transition probability matrix of the one dimen-
sional model can be extended to a matrix for multidimensional model by Kroenecker

a gebral. In this section the details of an extension to a2 dimensional matrix are
described.

1. For ashort introduction see [Les88].
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First, recall the following elements of Kroenecker algebra. Let A and B be two matrices
of order n x n. The Kroenecker product is amatrix of order n2 x n2 of the form:

a;B apB ... a,B

a,B a,,B ... a,,B

A®B = . (D.42)
a BayB...a,B
The Kroenecker sumis, where |, isan nx n identity matrix:
A®B = A®|, +1,®B. (D.43)

Now, define the transition rate matrix of order n x n for the one dimensional model with-
out absorption in figure D.1:

0AO0..0
woOXr..O

Quxn = | oo . : (D.44)
0..pu 0 A
0..0uo

By Kroenecker sum, two one dimensional models can be combined into atwo dimen-
sional model, generating a transition rate matrix of order:

anxnzzann®9nxn:ann®|~n+|~n®9nxn' (D-45)

The Q.. .. containsthetransition rates between all statesin the state space givenin
figure D.4 below. The matrix must be modified to introduce absorption states at the origin
where the sample path starts and end, and at the target subspace. The target subspaceis
defined by all states where the sum exceeds the resource capacity N, o, + w, = N. The
resulting state space after modification isgiven in figure D.5. By repeating the operations
in (D.45), and the modifications afterwards, a probability matrix can be generated for
models with dimensionality higher than 2.

Thetransition probability matrix P isassigned tothe mod(Q,,, ,) after normalising each
row of this matrix. This P is substituted in (D.9) to derive the probability distributions.



190 Appendix D Analytic variance of the importance sampling estimates and the likelihood ratio
N
T T
P11 T T
Q(nxn) I
T TTT
1 OO0 ‘—’?
BRI
0 1 N

Figure D.4: The state space after full expansion of a single dimensional ran-
domwalk into a 2 dimensional random walk by Kroenecker sum.

mod (Q(nxn))
1
regenerative
stgte target subspace
0

Figure D.5: The modifications of the state space of figure D.4 considering
absorption and common resource restriction at N.
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D.7 M/M/1/N model examples

D.7.1 Modéd description

This section contains numerical values from 3 one dimensional and 1 two dimensional
models. Several plots are generated to illustrate how the variance of the likelihood ratio
and the importance sampling estimate changes as the BIAS factor changes.

Three one dimensional models are defined:
Model I: Single M/M/1/N with A=0.15, u=1, N=10,
Model II:  Single M/M/L/N with A=0.7, u=1, N=50,
Model 111:  Single M/M/1/N with A=0.9, u=1, N=200.

The BIASing in these analytical one dimensional model are the same as proposed in
section 3.4.2.1. In addition, atwo dimensional model is defined:

Model VI:  Shared buffer N=10 (see figure D.5), two user types with A=0.15, u=1.

The analytic model for this two dimensional model assumes a constant BIAS factor for
all states, ignoring boundary conditions. In the simulations, the BIASing that was pro-
posed in section 3.4.2.2 isused. The BIAS factor alternates between two values, one at
the border, BIAS = u/(2A) = 3.333, and ancther at the interior of the state space
(where both user types have at least one entity), BIAS = u/A = 6.667. These BIAS
factors are aresult of reversion of the drift in their respective states.

D.7.2 Observations

Several of observations are made from the study of the variance plotsin figure D.6

to D.11. Theobservationsarevalid for the model described in section D.1. However, from
network simulation results, it is expected that some of the following observations are typ-
ical, and valid also for more complex systems.
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- Thevariance of the unconditional likelihood ratio, Var (L), infigure D.6 showsarapid
increase as the BIAS factor approaches the upper bound of the stable region, see
section D.4.3. Observe that the optimal BIAS is closer to the upper than the lower
bound. Furthermore, the optimal BIAS is not equal to the BIAS factor that gives the
minimum variance of the Var(L) .

- The variance of the conditional likelihood ratio, Var(L|N), given that avisit to state
N isobserved, is plotted for Model I-111 infigure D.7. The details in the region close
to the minimum variance are plotted in figure D.8 (logarithmic scale) and figure D.9
(linear scale). The Var (L |N) increasesrapidly on both sides of the minimum variance.
Thevarianceis 0 at the optimal BIAS factor because the likelihood ratio is constant,
independent of the sample path, given absorption in state N .

- The Var(L|N) for the 2 dimensional model given in figure D.10, has no significant
minimum similar to what was observed for the one dimensional model. The reason is
that no BIASfactor resultsin alikelihood ratio that is constant and independent of the
sample path.

- FiguresD.7to D.9 comparethe Var(L|N) and Var(y,g) . Inaregion closeto the opti-
mal BIAS, the variance Var(L|N) < Var(y,g) . This region becomes narrower as the
model size increases. Outside theregion, Var(L|N) = Var(y,g) for al models.

- LetBIAS,; betheBIASfactor for whichthe Var(L|N) isat itsminimum value, and
BIA Sy the corresponding for minimum Var(y,g) . InfiguresD.7to D.9itis
observed that BIASy;in. < BIASy,, for all models. However, the difference between
these two BIAS factors becomes smaller when the model size increases.

- Infigure D.11, the recursive formulais plotted for afinite number of events. This
approximation of E(L|N) and Var(L|N) isfairly goodin the stableregion. But, inthe
region where the Var(L|N) isunbounded, the approximation fails. Thisis similar to
what will be observed in a simulation experiment where only afinite number of sam-
ples are taken. This means that the sample variance is a poor approximation of the
Var(L|N) when too strong biasing is applied. See commentsin section 3.5.1 where
sampling from a heavy tailed distribution is discussed.
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Figure D.6: The mean value and variance of the unconditional likelihood ratio.
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Figure D.7: The comparison of the variance for the | Sestimate and the likelihood ratio,
given in a logarithmic scale.
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Figure D.8: Details close to the infimum of the comparison of the variance for the IS
estimate and the likelihood ratio, given in a linear scale.
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Model IV: {2x{A=015,u=1}, N=10}
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Figure D.10: The comparison of the variance for the I S estimate and the likelihood
ratio for the 2 dimensional shared buffer model. The BIASfactors used in simulations
of the model, at the interior and at the border of the state space, are added.
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Figure D.11: The mean value and variance of the conditional likelihood ratio
obtained by the recursive formula with a finite number of events (i.e. an approxima-
tion, observe what happens outside the stable region).
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Appendix E
Search for the most likely subpath

This appendix describes the details of an efficient algorithm used for obtaining the most
likely subpath from current state up to the first entrance to a given target subspace. The
basic idea of estimating the target likelihood by this subpath is given in chapter 5.3.

The search algorithm returns the likelihood &, , (X = Xy, ..., N; ) of asubpath as afunc-
tion of

- current state, @,
- generators Kk in Ly,
- target subspace, Q. and B;-

The notation used is listed in section B.1.7. The details of the search algorithm are pre-
sented in section E.1, while numerical examples are given in section E.2.

E.1  Thesearch algorithm

To explain how the search algorithm works, it isimportant to realise that ¢ is asubpath
inthe multidimensional Markov chain, , spanned by the generatorsin I' e This subpath
may be mapped to an one dimensional Markov chain, seefigure E.1 for an example. Itis
convenient to define the subpath in terms of the number of resource allocations, x, in addi-
tion to the system states. This means that the target subspace definition Q i has an
analogous definition in terms of X, see section 4.3.4:

B; = {xNj—(@chkj<x$ Nj)}. (E.D

- 199 -
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Figure E.1: The seguence k can be considered as a one dimensional Markov chain
in the 2 dimensional Markov chain spanned by the generatorsin ;.

The search algorithm inspects the subpaths that includes only arrival eventsfrom current
state @ , because departure events will reduce the accumulated likelihood of a subpath
with agiven end state. The objective isto identify the most likely subpath from @ up to
asystem state where the number of resource alocationsare x, x = Xg, ..., N e
TheMarkov propertiesof theunderlying simulation process makeit possibleto derivethis
subpath from the previously derived subpaths. The states where each generator k €T’ j
have one entity less, and therefore holds c,; resources less, must be considered. For each
generator, the contribution to the probability m, of the state having x resources, isderived
from mt, _ Gy’ i.e. the state with x — ¢, resources. The probabilities are determined from
the balance equations between the states with x and x — Cy; resource. In figure E.2 an
exampleis given that illustrates the balance between a state with x resources and the

stateswith x— ¢, ; and X—c; ; resources.

Let ™) be defined as the system state ¢ where x resources are allocated, then the bal-
ance equation is defined as follows:
T

M@ W) = g (@ W + 1) (E2)

X—Cy
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where o, isaprobability measure for each generator k inthe statewith x resource. This
is derived by solving the equationsin (E.2). The measure a.,, isinterpreted as the contri-
bution to the probability of having x resources when the latest arrival of an entity was
from generator k. The probability of x resourcesisdenoted wt, and it isthe maximum of
the o soverthek in T’ e With this approach it is not necessary to follow every subpath
from @ upto Q i only to determine the most likely path up to a state with x resources.
This subpath is then repeatedly extended, starting from x = x, and ending at N i inunit
stepst.

number of
resources allocated

Figure E.2: The steady state balance between a state with x resources all ocated,
and the states with one entity less of generator k; and kj, respectively.
The following algorithm is proposed to obtain the m, (X = Xg, X+ 1, ..., N; ):
L Initiadise; X = X,.

The search starts from current state ¢ with X, = Ek r ) Cy; resources allocated.
The unnormalised probability measuresand the correspondl ng normalisation constant,
aeay = 1andG, = 1; V(kET)), respectively, and m, = 1.

2. Continue; x = x+1.

For every step, the probability measure for each generator is obtained by solution of
the balance equationsin (E.2).

1. If the greatest common devisor (gcd) of the ¢,; for the generatorsin I'; is greater than 1, all resource
counters(C 0 N; , and the Cyj ) are scale by the gcd((:kJ beforemvofq ng the search algorithm.
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3.

E.

To

Oy = Tx—cy kk(@(x_ckj))/u((@(x_ckj) + l'k) and

Gy =6G

X—C

L F i V(KET)).

The generator that has the largest contribution trigger the event leading to ¢(*). The
generator Kk isdenoted k, and isidentified by comparison of the normalised contribu-
tions, a.,, /G,y , where k, isthe k with the maximum contribution:

ke = {K|(0t/ Gye) = MaX(etyy/ Gyy) A KETj}.

The unnormalised probability of x is assigned to the probability measure of the k,,

x = Oy Withthe corresponding constant G, = G, . The system state associated
with x is obtained by adding 1 entity from generator k, to the system state associated
with x — Crj-

T

w(X—Ckxj

p® = '+ L.
Terminate; X = Nj.

When the search is completed, a m, existsfor every x = X, ..., N;. The most likely
and the most important subpath is assigned as described in section 5.3.

2  Numerical examples

demonstrate the use of this algorithm, amodel with K = 2 generatorsand J = 1

resource pool (target) isincluded. The state space descriptionisgivenin figure E.3, while
themodel parametersare given intable E.1. The figure shows the resulting subpaths from
3 different starting states, @ .

Table E.1: Parameters for the generatorsin the model with N; = 10.

Generator, K Ay M Wy S Cy1

1

1 o0 1 10 1

2

0.1 © 1 5 2
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The results of the search algorithm are given in tables E.2 to E.4. To identify the most
likely, or important, subpaths, the following target subspaceis applied:

B, = {x|(8<x=10)} = {9,10} (E.3)

Example E.1: The search starts from the current state ¢ = {0, 0}, with the x; = 0.
The probabilities mt,, (x = 0, ..., 10), aregivenin table E.2. The most likely subpath
isthe maximum of mg and mt,,. The corresponding subpath, o, isgiven by the system
states (X (the entriesin table E.2 that are not marked with an asterisk). Figure E.4
includes the subpath that is entering the target subspaceat x = 9 (% = {5,2}).

Table E.2: Search for a subpath from {0,0} for the example in figure E.3.

The most likely target is max(rtg, 15) = mg.
(the entries marked with an asterisk are not a part of the most likely sub-path).

X w®) Ky o G, n,/G,
0 {0, 0} - 1 1 1

1 (1,0} 1 1 2 05

2 (2,0} 1 05 25 0.2

3* {3,0} 1 0.167 2.67 0.0625

4 2.1} 2 0.05 2.55 1.96e-2
5 {3,1} 1 1.67e-2 2.57 6.49e-3
6* {4,1} 1 4.17e-3 2.57 1.62e-3
7 (3.2} 2 8.33¢-4 2.57 3.25¢-4
8 {4,2} 1 2.08e-4 2.57 8.11e-5
9 {5,2} 1 4.17e-5 2.57 1.62e-5
10* (4,3} 2 6.94-6 257 2.70e-6

Example E.2: The search starts from the current state ¢ = {1, 2}, with x; = 5. The
probabilities ., (x = 5, ..., 10), are given in table E.3. Figure E.4 includes the sub-
path that is entering the target subspaceat x = 9, (9 = {5, 2}.

Example E.3: The search starts from the current state ¢ = {5, 0}, with x; = 5. The
probabilities x,, (x = 5, ..., 10), are given in table E.4. Figure E.4 includes the sub-
path that is entering the target subspaceat x = 9, (9 = {5, 2}.

Example E.4: Inthis example the two generators have different priority levels.
Generator 2 can preempt entities from generator 1. Figure E.4 shows the new state
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Table E.3: Search for a subpath from {1,2} for the examplein figure E.3.
The most likely target is max(rtg, m1p) = mg.
(the entries marked with an asterisk are not a part of the most likely sub-path).

X ™ Ky T, G, n,/ Gy
5 {1,2} - 1 1 1

6 2.2} 1 05 15 3.33e-1
7 3.2} 1 0.167 1.67 1.00e-1
8 {4,2} 1 4.17e-2 1.71 2.44e-2
9 {5, 2} 1 8.33e-3 1.71 4.85e-3
10* (4,3} 2 1.39¢-3 172 8.12e-4

Table E.4: Search for a subpath from {5,0} for the examplein figure E.3.
The most likely target is max(rtg, m1p) = mg.
(the entries marked with an asterisk are not a part of the most likely sub-path).

X @™ K, T, G, n, /Gy
5 {5,0} - 1 1 1

6* {6,0} 1 0.167 1.167 0.143

7 (5.1} 2 0.1 11 9.09-2
8* {6,1} 1 1.67e-2 1.12 1.50e-2
9 {5,2} 2 5.00e-3 1.11 4.52e-3
10* (6,2} 1 8.33e-4 111 7.53e-4

transitions that are added to the model in figure E.3. The search agorithm isinvoked
twice, once for each priority level:

i. High priority (p = 0): Find the most likely subpath with I'{%) = {2} and
B{® = {10} ({? = {0,5}). Table E.5includesthe w{? when current stateis
@ = {3,1}. Thiscorrespondsto starting from ¢ = {0, 1} since only generator
2isincluded in T{® and the generator 1 entities will be preempted.

ii. Low priority (p = 1): Find the most likely subpath with I'{?) = {1, 2} and
B{Y = {10} (Y = {{0,5}, {2 4}, {4, 3}, {6,2}, {8,1},{10,0}}).
Table E.6 includes the (") when current stateis ¢ = {3, 1}.

Themost likely subpath from state{ 3,1} isfound by comparison of the ={3) and m{}) .
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O Blocking state for generator 2
. Blocking state for generator 1 and 2
7»2. @ + O Target subspace, Q;
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Figure E.3: The most likely path in a 2 dimensional state space, given 3 different
starting states. See tables E.2-E.4 for parameters and details.

Table E.5: Search for a subpath from {3,1} for priority level p = 0.
The most likely target is w{3) .
(the entries marked with an asterisk are not a part of the most likely sub-path).

X o™ Ky T, G, n, /Gy
2 0,1} } 1 1 1

4 {0,2} 2 0.05 1.05 0.0476
6 {0,3} 2 1.67e-3 1.0517 1.58e-3
8 {0,4} 2 4.17e-5 1.0517 3.96e-5
10 {0,5} 2 8.33e-7 1.0517 7.92e-7
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Most likely subpath from state {3,1} (O Blocking state for generator 1
for priority p=0. (same as searching from ]
state {0,1} because generator 1 entities . Blocking state for generator 1 and 2

are preempted).
}\Zx* 3 @ Target subspace, 2,©

@ + O Target subspace, Q;

Most likely subpath from state {3,1}
for priority p=1.

Preemption of
N low priority entities

N
A N » y
Twy 8uy uq 10wy

Figure E.4: Most likely subpaths from state {3,1} in a model with two priority levels.
One path for each priority level.

Table E.6: Search for subpath from {3,1} for priority level p = 0.
The most likely target is w3 .
(the entries marked with an asterisk are not a part of the most likely sub-path).

X o™ Ky T, G, n, /Gy
5 (3,1} - 1 1 1

6* 4,1} 1 0.25 1.25 0.2

7 {3,2} 2 0.05 1.05 4.76e-2
8 {4,2} 1 1.25e-2 1.0625 1.18e-2
9* 5,2} 1 2.50e-3 1.065 2.35¢-3
10 {4,3} 2 4.17e-4 1.063 3.92e-4




Appendix F

Rough dimensioning of networ k resour ces

In chapter 6, two simulation experiments were conducted on asystem originated from the
network example depicted in figure F.1 below. In this appendix, the routing and dimen-
sioning of this network are described.

n Nodei
— j— Linkj

Figure F.1: Map of nodes and link connection.

It is emphasised that the exampleis afictitious network athough the map and the popu-
|ation assumptions made later are related to a specific country, namely Norway.

- 207 -
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F1  Topology

The network comprises 6 nodesand 10 links, thetopology isgiveninfigure F.1. Table F.1
contains the naming of the 6 nodes and the provinces (no: fylke) served by these.The traf-
fic load on each node is assumed to be dependent on the total population served by the
nodes. A population vector is placed in column to the right in table F.1.

Table F.1: Node names and placements, and the population vector.

Node | Name Provinces served Population vector [1000]
1 Stavanger | Rogaland, Vest-Agder 504

2 Bergen Hordaland, Sogn- og Fjordane 530

3 Trondheim | Mgre- og Romsdal, Ser-Trendelag, Nord-Trendelag 624

4 Tromsg Nordland, Troms, Finnmark 468

5 Oslo Hedemark, Oppland, Akershus,Oslo 1287

6 Larvik @stfold, Vestfold, Buskerud, Telemark, Aust-Agder 933

F.2  Routing

Figure F.1 shows the numbering of the 6 nodes and the 10 links interconnecting these
nodes. At least 2 link digjoint routes between all nodes exists.

Primary and secondary routes are established after first assigning cost factorsto each link,
and then finding the minimum cost between every pair of nodes. The cost consists of the
following factors:

- Topology factor - extracosts are added for fjords and mountains (high enterprise costs).
- Distance factor - measured (air route) distance between the end nodes of alink.

- Population factor - extra costs are added in proportion to the popul ation served by the
end node of alink (heuristics: avoid alink adjacent to a heavy loaded node).

Hence, cost factor = topology* distance* population factor. The cost factors used in the
reference example are given in table F.2.

The primary routes between each pair of nodes in the network are the routes having the
minimum cost. The routes are the same in both directions. The secondary routes are link
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Table F.2: Link cost factors.

Link Topology factor Distance factor Population factor Total cost
1 2.3 1.5 61.46 212.05
2 4.4 1 149.25 656.71
3 3.3 1 108.20 357.06
4 6.2 1.5 76.10 707.71
5 4.4 1 156.95 690.59
6 11.7 1 67.20 786.19
7 5.8 1 184.79 1071.77
8 6.9 1 133.96 924.33
9 16.8 1 138.59 2328.33
10 1.5 1 276.29 414.44

digoint from the primary routes, and they are found by removing the primary route and
finding the minimum route among the remaining. Such aprocedurewill not necessary find
the optimal pair of primary and secondary routes with respect to the minimum cost. How-
ever, optimal routing strategies are not the topic in thisthesis, so for the purpose of
establishing areference example this procedure is sufficient. The primary and secondary
routesthat areincluded in tables F.3 and F.4, respectively, are obtained by use of bulid-in
functionsin Mathematica [Wol91]. For example, the primary route between node 2 and 5
isvialink 5, while the secondary routeisvialinks 1 and 2.

Table F.3: The links of the primary routes between node i and j .

fromito]j 2 3 4 5 6

1 1 1,4 1,4,6 2 3

2 4 4,6 5 1,3
3 6 7 8

4 6,7 6,8
5 10

F.3 Traffic matrix

The traffic matrix below contains the traffic p = A/ between all end nodes in the net-
work. The traffic in table F.5 is assumed to be proportional to the sum of the population
associated with the end nodes, see the population vector in table F.1.
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Table F.4: The links of the secondary routes between node i and j .

fromito]j 2 3 4 5 6

1 2,5 3,8 2,9 3,10 2,10

2 1,3,8 59 1,2 5,10

3 7,9 8, 10 4,1,3

4 9 9,10

5 2,3

Table F.5: End to end traffic between node i and j .

fromito]j 2 3 4 5 6

1 0.64 0.76 0.57 1.57 1.14

2 0.80 0.60 1.65 1.19

3 0.71 1.94 1.41

4 1.45 1.05

5 2.90

The traffic offered is scaled in accordance to the resource capacity, Cy - For instance, the
high priority traffic has Gy = 4 foral k and j . Thismeansthat thetraffic Pij intable F.1
must be reduced by afactor of 4, e.g. the traffic between node 2 and 5is 1.65/4 = 0.41.

The high and low priority traffic offered to each of thelinks are givenin table F.6. The
traffic values are derived from table F.5 and the routing sets.

Table F.6: The high and low priority traffic on each link.

link, ] high priority traffic low priority traffic proposed link capacity, N
1 0.79 3.85 33
2 0.39 6.90 33
3 0.58 7.43 37
4 0.68 141 27
5 0.41 2.44 25
6 1.10 0 30
7 0.85 0.70 28
8 0.62 3.50 30
9 0 4.38 21
10 0.72 6.89 37
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F4  Rough link dimensioning

Based onthetraffic in table F.5, and the primary routes of table F.3, thetraffic on each link
can be summarised, seetable F.6. The table also includes the proposed capacity of each
link.

In tables F.9-F.11, rough estimates of the blocking probabilities for each generator are
included, using the resource capacities from table F.6. The estimates are established by
ignoring the correlation between the blocking on different links. Hence, it isassumed that
each link can be studied separately. Each entry in tables F.9-F.11 is obtained under this
assumption and by application of Iversen’s convolution method [Ive87]. The final esti-
mates of the blocking of generator k are assigned to the sum of the blocking at each link
inalong itsroute. Thisisarough, but fair approximation when the blocking probabilities
arevery low (<1e-06). Some of the valuesin tables F.10-F.11 arelarger than 1e-06, and it
is therefore assumed that these estimates are larger than the true value. Hence, these
blocking probabilities may serve as an upper bound for the blocking estimates obtained
by simulations in chapter 6.

Inthetables F.7 and F.8, estimates of the blocking in the case 3.1 and 3.2 in chapter 6 are
given.

Table F7: An estimate of the blocking probabilities for case 3.1 in chapter 6:
low priority traffic only.

k pool 1 pool 2 3 =pool 1 + pool 2
23 3.21e-09 7.87e-07 7.90e-07
31 3.02e-08 6.05e-06 6.08e-06

Table F.8: An estimate of the blocking probabilities for case 3.2 in chapter 6:

Mixed with high priority traffic.

k pool 1 pool 2 3 =pool 1 + pool 2
23 3.13e-05 1.41e-04 1.72e-04
31 1.62e-04 7.13e-04 8.76e-04
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F4.1  Approximate blockingin the high priority traffic generators
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Figure F.2: Plot of the summarised blocking for generator 1-15 fromtable F.9.
Table F.9: A rough estimate of the blocking probabilities.
k pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10 2
1 1.71e-6 0 0 0 0 0 0 0 0 0 1.71e-6
2 1.71e-6 0 0 6.96e-5 0 0 0 0 0 0 7.13e-5
3 1.71e-6 0 0 6.96e-5 0 1.22e-4 0 0 0 0 1.93e-4
4 0 2.02e-7 0 0 0 0 0 0 0 0 2.02e-7
5 0 0 1.15e-8 0 0 0 0 0 0 0 1.15e-8
6 0 0 0 6.96e-5 0 0 0 0 0 0 6.96e-5
7 0 0 0 6.96e-5 0 1.22e-4 0 0 0 0 1.92e-4
8 0 0 0 0 4.38e-6 0 0 0 0 0 4.38e-6
9 1.71e-6 0 1.15e-8 0 0 0 0 0 0 0 1.72e-6
10 0 0 0 0 0 1.22e-4 0 0 0 0 1.22e-4
11 0 0 0 0 0 0 2.53e-5 0 0 0 2.53e-5
12 0 0 0 0 0 0 0 3.39%e-6 0 0 3.39%-6
13 0 0 0 0 0 1.22e-4 2.53e-5 0 0 0 1.47e-4
14 0 0 0 0 0 1.22e-4 0 3.3e-6 0 0 1.25e-4
15 0 0 0 0 0 0 0 0 0 6.97e-8 6.97e-8
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Figure F.3: Plot of the summarised blocking for generator 16-31 fromtable F.10.

Table F.10: A rough estimate of the blocking probabilities.

k pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10 %

16 0 7.87-07 0 0 4.0de-24 0 0 0 0 0 7.87e-07
17 0 0 7.56e-15 0 0 0 0 2.3%-18 0 0 7.56e-15
18 0 7.87e-07 0 0 0 0 0 0 7.25e-09 0 7.94e-07
19 0 0 7.56e-15 0 0 0 0 0 0 7.64e-16 8.32e-15
20 0 7.87e-07 0 0 0 0 0 0 0 7.64e-16 7.87e-07
21 3.21e-09 0 7.56e-15 0 0 0 0 2.3%-18 0 0 3.21e-09
22 0 0 0 0 4.04e-24 0 0 0 7.25e-09 0 7.25e-09
23 3.21e-09 7.87e-07 0 0 0 0 0 0 0 0 7.90e-07
24 0 7.87e-07 0 0 0 0 0 0 0 7.64e-16 7.87e-07
25 0 0 0 0 0 0 1.10e-34 0 7.25e-09 0 7.25e-09
26 0 0 0 0 0 0 0 2.39%-18 0 7.64e-16 7.66e-16
27 3.21e-09 0 7.56e-15 2.40e-25 0 0 0 0 0 0 3.21e-09
28 0 0 0 0 0 0 0 0 7.25e-09 0 7.25e-09
29 0 0 0 0 0 0 0 0 7.25e-09 7.64e-16 7.25e-09
30 0 7.87e-07 7.56e-15 0 0 0 0 0 0 0 7.87e-07
31 3.02e-08 6.05e-06 0 0 0 0 0 0 0 0 6.08e-06
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F4.3 Approximateblockinginthelow priority traffic generator smixed with high
priority traffic
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Figure F.4: Plot of the summarised blocking for generator 16-31 fromtable F.11.
Table F.11: A rough estimate of the blocking probabilities.

k pool 1 pool 2 pool 3 pool 4 pool 5 pool 6 pool 7 pool 8 pool 9 pool 10 3

16 0 141e-04 0 0 2.03e-06 0 0 0 0 0 143004
17 0 0 1.29e-06 0 0 0 0 4.55e-06 0 0 5.84e-06
18 0 1.41e-04 0 0 0 0 0 0 7.25e-09 0 1.41e-04
19 0 0 1.29e-06 0 0 0 0 0 0 2.72e-06 4.02e-06
20 0 1.41e-04 0 0 0 0 0 0 0 2.72e-06 1.44e-04
21 3.13e-05 0 1.29e-06 0 0 0 0 4.55e-06 0 0 3.72e-05
22 0 0 0 0 2.03e-06 0 0 0 7.25e-09 0 2.04e-06
23 3.13e-05 1.41e-04 0 0 0 0 0 0 0 0 1.72e-04
24 0 1.41e-04 0 0 0 0 0 0 0 2.72e-06 1.44e-04
25 0 0 0 0 0 0 1.35e-05 0 7.25e-09 0 1.35e-05
26 0 0 0 0 0 0 0 4.55e-06 0 2.72e-06 7.27e-06
27 3.13e-05 0 1.29e-06 8.27e-06 0 0 0 0 0 0 4.09e-05
28 0 0 0 0 0 0 0 0 7.25e-09 0 7.25e-09
29 0 0 0 0 0 0 0 0 7.25e-09 2.72e-06 2.73e-06
30 0 1.41e-04 1.29e-06 0 0 0 0 0 0 0 1.42e-04
31 1.62e-04 7.13e-04 0 0 0 0 0 0 0 0 8.76e-04




Appendix G

Details from the ssmulations of the system
examplesin chapter 6

This appendix contains some details of the direct and importance sampling simulations
reported in chapter 6. Theresults providethe basisfor computing the speedups. Thetables
contain the following:

¥ the estimated property of interest from (2.2),

S = JVa(y)

the standard error of 7, i.e. the square root of (2.3),

-z the fraction of regenerative cycles where non-zero observations of the property
of interest are made,

R the number of regenerative cycles,

t the elapsed CPU time,

mg =1/ (S?2 ‘R)
the efficiency measure where the simulation overhead introduced by importance
sampling is not included.

m the efficiency measure from (2.11).

The speedups given in the tables are the ratio between the efficiency measures for direct
and importance sampling simulations.

Only afew comments on the validity of the estimates and the corresponding speedups are
included in the following.
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G.1 Case2.l: Arrivingcallsarelost
Table G.1: Detailed results and speedups.

Type Y SY V4 R t [sec.] mg m

Direct 2.18e-04 | 7.90e-06 | 2.45e-03 | 500000 | 1.11e+03 | 3.20e+04 | 1.44e+07
IS 1.80e-04 | 9.00e-06 | 5.71e-01 | 100000 | 1.05e+03 | 1.23e+05 | 1.18e+07
Speedup 3.85e+00 | 8.17e-01

G.2 Case2.2: Arriving callsare connected via secondary route

Table G.2: Detailed results and speedups.

Type y % -z R t [sec] Mg m

Direct 8.10e-07 | 2.10e-07 | 1.47e-05 | 1500000 | 4.81e+03 | 1.51e+07 | 4.71e+09

IS 3.14e-07 | 3.20e-08 | 4.32e-02 | 100000 | 4.01e+03 | 9.77e+09 | 2.43e+11

Speedup 6.46e+02 | 5.16e+01

G.3 Case3.1: Low priority traffic only

In this case the blocking probabilities arein the order of 10~7. A direct simulation exper-
iment including 75 million cycles was conducted. After more than 5 CPU days, the
estimates were more than 1 order of magnitude less than the importance sampling esti-
mates. The importance sampling estimates were in the same order of magnitude as the
approximate blocking values given in table F.7 in appendix F. Hence, the speedups given
intables G.3 and G.4, are misleading as an indication of the speedup given by importance
sampling.

Table G.3: Detailed results and speedups, generator 23.

Type y SY -z R t [sec.] Mg m

Direct 6.81e-09 | 2.49e-09 | 2.27e-07 | 75000000 | 4.40e+05 | 2.15e+09 | 3.66e+11

IS 2.70e-07 | 1.86e-08 | 1.14e-01 | 100000 2.53e+03 | 2.89e+10 | 1.14e+12

Speedup 1.35e+01 | 3.12e+00

Using the relative error in the efficiency measures mg and m, instead of the sample var-
iance, atremendous speedup is observed, seetables G.5 and G.6.



G.4 Case 3.2: Low priority mixed with high priority traffic

Table G.4: Detailed results and speedups, generator 31.
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Type ¥ SY -z R t [sec] mg m

Direct 7.05e-08 | 1.10e-08 | 9.47e-07 | 75000000 | 4.40e+05 | 1.11e+08 | 1.89e+10
IS 2.41e-06 | 1.84e-07 | 4.50e-01 | 100000 2.53e+03 | 2.95e+08 | 1.17e+10
Speedup 2.67e+00 | 6.20e-01

Table G.5: Detailed results and relative error speedups, generator 23.

Type Y S? -z R t [sec.] mg m

Direct 6.81e-09 | 2.49e-09 | 2.27e-07 | 75000000 | 4.40e+05 | 9.96e-08 | 1.70e-05
IS 2.70e-07 | 1.86e-08 | 1.14e-01 | 100000 2.53e+03 | 2.11e-03 | 8.33e-02
Speedup 2.12e+04 | 4.91e+03

Table G.6: Detailed results and relative error

speedups, generator 31.

Type ¥ S«{ -z R t [sec.] mg m
Direct 7.05e-08 | 1.10e-08 | 9.47e-07 | 75000000 | 4.40e+05 | 5.50e-07 | 9.37e-05
IS 2.41e-06 | 1.84e-07 | 4.50e-01 | 100000 2.53e+03 | 1.72e-03 | 6.78e-02
Speedup 3.12e+03 | 7.24e+02
G.4 Case3.2: Low priority mixed with high priority traffic
Table G.7: Detailed results and speedups, generator 23.
Type Y SY -z R t [sec.] Mg m
Direct 1.60e-05 | 1.90e-06 | 7.67e-04 | 150000 | 4.99e+03 | 1.85e+06 | 5.55e+07
IS 2.95e-05 | 7.10e-06 | 2.18e-01 | 10000 | 4.92e+03 | 1.98e+06 | 4.03e+06
Speedup 1.07e+00 | 7.25e-02
Table G.8: Detailed results and speedups, generator 31.
Type Y S? -z R t [sec.] mg m
Direct 7.99e-05 | 5.80e-06 | 2.56e-03 | 150000 | 4.99e+03 | 1.98e+05 | 5.96e+06
IS 1.22e-04 | 1.90e-05 | 5.63e-01 | 10000 | 4.92e+03 | 2.77e+05 | 5.62e+05
Speedup 1.40e+00 | 9.44e-02
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G.5 Case3.3: Low priority mixed with high priority traffic and
exposed to link failures

Table G.9: Detailed results and speedups, generator 23.

Type ¥ SY -z R t [sec] mg m

Direct 1.60e-05 | 1.90e-06 | 7.67e-04 | 150000 | 5.26e+03 | 1.85e+06 | 5.26e+07
IS 2.10e-05 | 5.00e-06 | 2.28e-01 | 10000 4.94e+03 | 4.00e+06 | 8.10e+06
Speedup 2.17e+00 | 1.54e-01

Observe that the direct simulation approach produced the same estimatesin cases 3.2 and
3.3. However, the CPU timeisincreased by 5.4% because the state spaceisincrease from
K = 31toK = 32 dimensions. Inthedirect simulation of case 3.3, no link failureswere

observed.
Table G.10: Detailed results and speedups, generator 31.
Type ¥ SY -z R t [sec.] Mg m

Direct 7.99e-05 | 5.80e-06 | 2.56e-03 | 150000 | 5.26e+03 | 1.98e+05 | 5.65e+06

IS 1.48e-04 | 5.00e-05 | 5.48e-01 | 10000 | 4.94e+03 | 4.00e+04 | 8.10e+04
2.02e-01 | 1.43e-02

Speedup




