
Collaborations in Service
Engineering:

Modeling, Analysis and Execution

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2008

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Telematics

Humberto Nicolás Castejón

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Telematics

© Humberto Nicolás Castejón

ISBN 978-82-471-1275-5 (printed ver.)
ISBN 978-82-471-1276-2 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:287

Printed by NTNU-trykk

Para Nicolás y Olimpia, mis padres, con todo mi amor

Los d́ıas que pasan,
Las luces del alba,
Mi alma, mi cuerpo, mi voz, no sirven de nada
Qué no daŕıa yo por tener tu mirada,
Por ser como siempre los dos
Mientras todo cambia
Porque yo sin ti no soy nada
Sin ti no soy nada
Sin ti no soy nada

Amaral

Abstract

The development of distributed reactive systems is a complex and error-prone pro-
cess. These systems consist of many separate autonomous components that operate
concurrently and continuously interact with each other and with the environment
in order to deliver services to the end-users. These systems are becoming more and
more sophisticated, providing an ever expanding portfolio of services. In many cases
new and customizable services are considered the key to increased revenues. Being
able to rapidly develop and incrementally deploy such services, while avoiding un-
desired interactions with already existing services, therefore becomes strategically
important.

In this thesis we present a service-oriented and model-driven approach to engi-
neering distributed reactive systems. The approach integrates model creation and
analysis tightly. Services are explicitly modeled as collaborations between roles,
using UML 2 collaborations. These offer powerful means to structure and reuse
crosscutting system behavior, and to provide a high-level overview of it. Complex
collaborations can be composed from more elementary ones, whose behavior can be
completely described using sequence diagrams. The full behavior of a composite
collaboration can in turn be described using a choreography graph, which defines the
global execution ordering of its sub-collaborations.For each service collaboration, the
state machine behavior of its roles can be automatically synthesized. These roles are
then assigned to the components that will play them. The subsequent composition
and coordination of such roles to form complete component behavior may call for
human assistance.

Having confidence in the correctness of the models being created is important.
For that reason we identify some good practices in service modeling. We also propose
early analysis techniques that help to uncover undesired or overlooked behaviors at
two critical points during the modeling process. First, each service model is analyzed
separately in search of realizability problems. That is, pathologies that may cause the
joint behavior of the set of distributed roles synthesized from the service model to be
different from the global behavior specified in the model. We provide algorithms to
detect some realizability problems. Moreover, we discuss the actual nature of those
problems and their underlying causes. This is important not only to adopt the most
appropriate resolution when problems are detected, but also to avoid them in the
first place. Second, the potential interactions between the roles that any component
may play are analyzed, in order to adopt appropriate coordination measures.

iii

iv

Finally, we recognize that service discovery and adaptation, and service per-
sonalization based on the service context and end-user preferences are increasingly
important mechanisms. In this area we present policy-based mechanisms to allow
personalization of services and runtime adaptation.

Acknowledgments

I would like to express my most sincere gratitude to all the people that in one or
another way have contributed to make this thesis a reality. First of all I would like
to thank Rolv Bræk, my supervisor. He is an outstanding researcher and has been a
continuous source of inspiration for me. I admire his profound knowledge of systems
and services engineering, as well as his capacity to analyze problems. I also admire
him as a person: his kindness, his love for nature and his ability to see the positive
side of things. He is such a wonderful person! He believed in me from the very
beginning of this “trip”, and was always there to encourage and support me in the
difficult moments. For all this and much more ... tusen hjertelig takk Rolv! Thanks
also to Turid, his wife, for all the good moments we have shared on the conference
trips.

Special thanks go to Gregor von Bochmann, whom I had the luck to collabo-
rate with during the last part of my PhD, and to the members of my committee,
Prof. Tarja Systä, Prof. Joachim Fischer and Prof. Peter Herrmann, for gracefully
accepting to review this work.

I am thankful to Jacqueline Floch and Josip Zoric for his support. I am also
grateful to all my colleagues at the Department of Telematics for creating such a
wonderful working environment. In particular, I would like to thank Randi and
Mona for making simple all the administrative work, as well as P̊al and Asbjørn for
being always there when my computer was refusing to run. I am also thankful to my
fellow doctoral students Frank, Fritjof, Haldor, Judith, Mazen, Paramai, Richard,
Shanshan and Sune for many interesting discussions. Paramai and Mazen have also
been great friends with whom to talk. I enjoyed a lot sharing office with Richard
Sanders, while he was finishing his own PhD. He has always been supportive. Cyril
Carrez, my officemate during the last years, deserves a special mention (well, do not
believe it much; you know, I am just trying to be polite). He has always been a
great source of help, and has provided me with very useful feedback on initial drafts
of this document. I believe that working is much better when combined with fun,
and we probably had the most funny office in the whole department! Merci Cyril!

Working far from home in a foreign country can be difficult at times. Fortunately
I have been lucky to have a wonderful group of friends that made me feel like at
home. I thank Chin Yu, Tore, Dionne, Dani, Esther, Øyvind, Sara, Markus, and the
new team members, Eĺıas and Ivar, for all the great moments we have had together.
A big Gracias! goes to Javi. He has been a true friend, always there, listening to
me in the good and the bad moments. I am also extremely grateful to Sigmund, for

v

vi

being like a father for me in Trondheim, and to Anne Lise.
My family deserves the biggest of the acknowledgments. Quiero dar las gracias

a mi madre, por no parar un momento de preocuparse por mi bienestar y por
cuidarme en la distancia. Y a mi padre, por recordarme que no debo rendirme; por
acompañarme d́ıa a d́ıa desde alĺı arriba y darme fuerzas. Mis hermanos, cuñados
y sobrinos saben que soy parco en palabras. Por eso no es de extrañar que ahora
me falten para agradecerles todo el cariño, el apoyo y los ánimos que me han dado
durante todos estos años. ¡Gracias a todos!

Mil gracias a mi mujer Ruth por su constante apoyo en los momentos dif́ıciles y
por demostrarme que el verdadero amor es desinteresado. Esta tesis es en gran parte
suya, pues sin ella a mi lado no lo hubiese logrado. Gracias tambien a mi pequeña
brujilla, Ruth Astrid. Aunque ella aún no lo sabe, me ha ayudado much́ısimo durante
los ultimos meses, pues sus sonrisas al llegar a casa recompensaban todo el esfuerzo
de los largos d́ıas de trabajo.

Finally, I thank God for placing all these people on my way.

Contents

Abstract iii

Acknowledgments v

List of Figures xi

I Overview 1

1 Introduction 3
1.1 The Notion of Service . 3
1.2 Service Models and Design Models 6
1.3 Contributions . 9
1.4 Current Status of Tool Support . 11
1.5 Outline . 11

2 A Service Engineering Approach 13
2.1 The overall idea . 13
2.2 Service modeling . 16

2.2.1 Behavioral interpretation of the specification 24
2.3 Realizability of a Service Model . 25
2.4 Service role synthesis . 26
2.5 System composition . 27

3 Related Work 33
3.1 Work on service modeling . 33
3.2 Work on synthesis . 35
3.3 Work on realizability and implied scenarios 37

4 Summary of the papers 39

5 Conclusions 43
5.1 Summary and Discussion . 43
5.2 Limitations and Future work . 47

vii

viii Contents

References 49

II Research Papers 57

6 Paper 1 61
6.1 Introduction . 63
6.2 Goal-Oriented Service Collaborations 64
6.3 UCMs for Describing the Goal-based Progress of Collaborations and

their Inter-Relationships . 66
6.3.1 Basic UCM Notation . 68
6.3.2 Dependency Patterns . 69

6.4 Towards Automatic Synthesis of State-Machines 73
6.4.1 An Example . 74

6.5 Related Work and Discussion . 76
6.6 Conclusions . 78
References . 79
6.A Synthesizing Algorithm . 81

7 Paper 2 85
7.1 Introduction . 87

7.1.1 Structure of the Paper . 90
7.2 Collaborations, Goals and Semantic Interfaces 90

7.2.1 Collaboration Structure . 90
7.2.2 Collaboration Goals . 91
7.2.3 Collaboration Behavior . 91
7.2.4 Semantic Interfaces and Compatibility 93

7.3 Composition from Collaborations . 95
7.3.1 Composition of Two-party Services and Semantic Interfaces

from Two-party Collaborations 95
7.3.2 Composition of Multi-party Services 97
7.3.3 Towards Class Design . 99

7.4 Discussion . 100
7.4.1 Related Work . 100
7.4.2 Further Work . 100

7.5 Conclusion . 101
References . 101

8 Paper 3 105
8.1 Introduction . 107

8.1.1 Contributions and outline . 108
8.2 Understanding Collaborations . 109
8.3 Service Specification with Collaborations 110

8.3.1 Case Study: A Transportation Service 110
8.3.2 The Specification Approach in Detail 110

8.4 Service Specification Validation: Detection of Implied Scenarios . . . 114

Contents ix

8.5 Related Work . 118
8.6 Discussion And Conclusions . 118
8.7 Acknowledgements . 119
References . 119
8.A Remarks to the Paper . 120

8.A.1 TransportService Collaboration Diagram 120
8.A.2 Undetected Implied Scenarios 121

9 Paper 4 123
9.1 Introduction . 125
9.2 Collaboration Goal Sequences . 127

9.2.1 Syntax for Goal Sequences . 128
9.2.2 Semantics for Goal Sequences 130

9.3 Detection of Implied Scenarios . 137
9.4 Related Work . 140
9.5 Discussion And Conclusions . 141
References . 141

10 Paper 5 143
10.1 Introduction . 145
10.2 Using Collaborations to Model Services 148

10.2.1 A case study: TeleConsultation 148
10.2.2 Collaboration structure . 149
10.2.3 Collaboration behavior: Choreography 151
10.2.4 The nature of collaborations 151
10.2.5 Notation . 154

10.3 Ordering operators for choreography 156
10.3.1 Realization problems . 156
10.3.2 Sequence . 158
10.3.3 Alternatives . 163
10.3.4 Merge . 169
10.3.5 Loop . 170
10.3.6 Concurrency . 170
10.3.7 Interruption . 171
10.3.8 Activity invocation . 172
10.3.9 Related work on realizability 172
10.3.10System composition . 173

10.4 Going from collaborations to component designs 174
10.4.1 Protocol derivation from service specification 174
10.4.2 Protocol derivation for Petri-nets 175
10.4.3 Semi-automatic designs of collaborations 176

10.5 Conclusions . 176
References . 176
10.A Remarks to the Paper . 182

11 Paper 6 185

x Contents

11.1 Introduction . 187
11.1.1 Outline . 190

11.2 Service Specification Approach: An Example 191
11.3 Syntax and Semantics of Choreographies 193

11.3.1 Syntax and Semantics for Sequence Diagrams 193
11.3.2 Syntax and Semantics for Choreography Graphs 197

11.4 Realizability of Choreographies . 205
11.4.1 Sequential Composition . 205
11.4.2 Alternative Composition . 211
11.4.3 Interruption . 215
11.4.4 Parallel Composition . 216
11.4.5 Conflicts between Concurrent Collaboration Instances 216

11.5 Algorithms . 217
11.5.1 Detection of Race Conditions 218
11.5.2 Detection of Ambiguous and Race Propagation 245

11.6 Conclusions . 263
References . 263
11.A Propositions and Proofs . 267

11.A.1 Race Conditions in Send-Causal Sequence Diagrams 268
11.B Automata Theory . 269

11.B.1 Converting an FSA into a regular expression 270
11.B.2 Eliminating ε-transitions . 271

12 Paper 7 273
12.1 Introduction . 275
12.2 Agent and Role Based Service Architecture 276

12.2.1 Agents as System Components 277
12.2.2 UML Collaborations as Services and Roles as Service Compo-

nents . 277
12.2.3 Dynamic Role Binding . 279

12.3 Governing Service Execution with Policies 280
12.3.1 Role-binding and Collaboration Policies 281
12.3.2 Feature Selection Policies . 282

12.4 Conclusion . 284
References . 285

III Appendices 289

A Synthesis of Role State Machines 291
A.1 Synthesis from UML 2 Sequence Diagrams 293
A.2 Synthesis from Choreography Graphs 299

List of Figures

1.1 Services related to system components 5
1.2 Service-oriented development: how to model services and derive system

components? . 6
1.3 Collaboration-oriented development . 8

2.1 Service Engineering Approach . 14
2.2 UML collaborations for (a) the Invite service feature and (b) the Basic-

Call service . 17
2.3 UML Collaboration for the TeleConsultation service 21
2.4 Choreography of TeleConsultation . 23
2.5 (a) Non-local choice; (b) Implied scenario 26
2.6 System diagram for the telecommunication system 28
2.7 (a) Generic binding of roles to a system component type. (b) Illustration

of generic role instantiation at runtime 28
2.8 System diagram for the teleconsultation system 31

6.1 UML 2.0 Collaboration for UserLogon Service 65
6.2 UCMs for the UserLogon Service . 67
6.3 Sequential Dependencies . 69
6.4 Partial Goal Dependency (I) . 71
6.5 Partial Goal Dependency (II) . 72
6.6 Projection of Interactions into Collaboration Roles 75
6.7 Synthesized State-machine for TerminalClientSession 77

7.1 Service engineering overview . 89
7.2 The UserCall service specified as a collaboration with a goal expression 90
7.3 State machine diagram for collaboration UserCall 92
7.4 State machine diagram for UserCall with role states and service goal

expression (UML enhancement illustrating role states in collaboration
states) . 92

7.5 Sequence diagram for collaboration Invite 93
7.6 Binding roles to component classes in a collaboration use 94
7.7 UserCall composed of elementary features (subordinate collaboration

uses) . 95
7.8 Overview of the subordinate collaboration uses of UserCall 96

xi

xii List of Figures

7.9 The collaboration UserCallWithTransfer 97
7.10 Goal sequence for UserCallWithTransfer with related component struc-

ture . 98
7.11 Service composed of elementary services 99

8.1 Transport service specified as a UML 2.0 collaboration (Step 3 of the
specification approach) . 112

8.2 Goal sequence for TransportService . 113
8.3 Interaction diagrams for the TransportService’s sub-collaborations . . . 114
8.4 Sub-role sequences for (a) Vehicle and (b) Terminal ; (c) Cross-product

of Terminal ’s sequences . 116
8.5 (a) Revised version of the TransportService collaboration diagram;

(b) System diagram for the transportation system 122

9.1 (a) Transport service as a UML 2.0 collaboration; (b) Sequence diagrams
for BuyTicket and VehArrival sub-collaborations; (c) Service-goal tree for
BuyTicket . 126

9.2 Goal sequence for the TransportService collaboration 128
9.3 Mapping of goal sequence elements to HCPN elements 132
9.4 Nets for the TransportService case study 134

10.1 Collaboration oriented development . 147
10.2 Activity diagrams describing a TeleConsultation 149
10.3 Roles and sub-collaborations in the hospital visit 150
10.4 Choreography for the TeleConsultation collaboration. 152
10.5 Alternative notations for role binding . 155
10.6 Problematic weak sequential compositions 159
10.7 A sequence diagram for the voice collaboration illustrating mixed initia-

tives with common goals . 164
10.8 (a) Example of a non-local choice; (b) Non-local choice where a mixed

initiative conflict cannot be detected; (c) Non-local choice where a mixed
initiative conflict can be detected; (d) Possible scenario resulting from (a) 165

10.9 Choices with (a) ambiguous propagation and (b) race propagation; (c)
Behavior implied by (b) . 168

10.10(a) Choice with race propagation; (b) Unfolding of (a); (c) Behavior
implied by (a) . 169

10.11Actors with role bindings . 174

11.1 Collaboration oriented development . 189
11.2 UML collaboration for the ShuttleService 191
11.3 Sequence diagrams describing some elementary collaborations of Shuttle-

Service . 192
11.4 Choreography of ShuttleService . 192
11.5 Some basic sequence diagrams (with conflicts) 194
11.6 Example of sequential and parallel composition of activities in a chore-

ography graph. 201

List of Figures xiii

11.7 Examples of interrupting composition of activities in a choreography graph.202
11.8 Examples of invocation composition of activities in a choreography graph. 204
11.9 Weak Sequence Problems . 207
11.10Competing-initiatives choice . 212
11.11(a) Non-deterministic and (b) Race choice propagation; (c) Behavior im-

plied by (b) . 214
11.12Replacement of collaborations with behavior described by several posets 218
11.13Races with send-causal and weakly-causal compositions 221
11.14Examples of combinations of merge and decision nodes in a choreography

graph . 223
11.15Properly nested fork and join nodes in a choreography graph 223
11.16Two examples of loops in a choreography graph 236
11.17(a) Choice (ch1) with race propagation; (b) Automaton describing the

significant part of R2 ’s behavior in (a) for detection of race propagation 249
11.18Behavior of role p in v0 . 253
11.19(a) FSA for the choreography of Fig. 11.17(a); (b) FSA resulting after

eliminating all ε-transitions in (a); (c) FSA resulting after eliminating all
non-initial and non-final states in (b) . 271

12.1 Service Oriented Architecture . 277
12.2 The UserCall Service as a UML 2.0 Collaboration 278
12.3 Role Request Pattern . 280
12.4 Role Binding . 283

A.1 Mapping of an activity into an HFSM 294
A.2 Composition of state machines . 296
A.3 Illustration of mapping of fork-join pairs into an HFSM 300
A.4 (a) Mutual invocation; (b) Simple invocation; (c) State machines for each

of the activities in (b); (d) State machine resulting from the invocation
composition in (b) . 301

A.5 (a) Interruption composition; (b) Partial mapping of (a) into an HFSM;
(c) Complete mapping of (a) into an HFSM 302

Part I

Overview

1

Introduction

The development of distributed reactive systems is a complex and error-prone pro-
cess. Reactive systems are characterized by being continuously running and re-
sponding to stimuli from their environment [HP85]. When they are distributed they
consist of many logically and/or physically separated autonomous components that
operate concurrently and interact with each other and the environment in order
to deliver services to the end-users. Typical examples include telecommunication
systems, as well as automotive, avionics, process control or home automation sys-
tems. These systems are becoming more and more sophisticated and omnipresent
in everyday life, providing an ever expanding portfolio of services being increasingly
interconnected with each other. This is specially true for systems serving human
beings, such as telecommunication systems, where new and customizable services
are considered the key to increased revenues. Being able to rapidly develop and in-
crementally deploy such services, while avoiding undesired interactions with already
existing services, therefore becomes strategically important. As a contribution to
achieving this we offer a modeling approach where individual services are specified
separately and then composed into full system functionality. The approach enables
the behavior models to be analyzed at different stages to ensure the system behav-
ior is the intended one. We have also proposed policy-based mechanisms to allow
personalization of services and runtime adaptation.

In this chapter we first explain the concept of service, which is central to our
work. We then discuss our motivation for this work and identify a series of research
questions. A summary of the main contributions is thereafter presented, followed
by the current status of tool support and a general outline of the thesis.

1.1 The Notion of Service

The service concept has been widely used in the telecommunications domain since
the early 80’s. Nowadays, service-orientation is gaining popularity in the software
community at large as a new paradigm to ease the development of distributed in-
formation systems and business applications. Unfortunately, despite its wide use,
there is not a well-established and common notion of the term “service”.

The following example may help to understand the notion of service used in this
thesis. Consider a 3G mobile phone terminal that can be used to access services
such as videoconference calls, multiplayer games or remote banking. An obvious
observation is that this terminal behaves differently in each of these services. For

3

4 CHAPTER 1. INTRODUCTION

example, it adopts the role of gamer in the multiplayer game, while it behaves as
bank-client in the remote banking service. Moreover, the terminal may not always
behave the same within a given service: in a videoconference call, for example, it
will play the role of caller, when its end-user initiates the call, or the role of callee,
if its end-user is invited to join a call. A second observation is that none of these
services are possible without the joint effort of several system components1, which
collaborate in order to achieve the service’s goal. For example, a videoconference call
involves two or more mobile phones, as well as a number of specialized network nodes
required to establish and terminate the call, and to transmit the audio and video
signals between the terminals. All these system components collaborate in order
to allow the end-users to see and talk to each other, which is the videoconference’s
goal.

From the above example one can see that, at a high level of abstraction, a ser-
vice can be understood as an identified functionality provided by a system to its
end-users, with the intention of delivering some value to them. The complete func-
tionality or behavior of a system arises from the composition of all the services
provided by that system. A service is therefore a partial system functionality. This
view of service agrees with the common understanding of service in everyday life,
that is, a non-material good that is offered by a provider to a consumer, and that
generates some value to the latter. This notion of service has long been used in
the telecommunications domain to structure the functionality of telecommunication
systems and networks. A service is seen as a set of features (i.e. increments of func-
tionality [BDC+89, Zav01]) that end-users can access and be charged for. A similar
notion of service can also be found in the area of communication protocols, where the
service concept is used as an abstraction mechanism to better manage the complexity
of protocol design. Here, a service specification describes the observable end-to-end
behavior provided by a system to its end-users [BS80, VL85]. Within the software
engineering community the understanding of the service concept is slightly different.
In middleware technologies, such as Jini or CORBA, a service is seen as a function or
operation that can be invoked on a software component. In the service-oriented com-
puting (SOC) and service-oriented architecture (SOA) domains a service is normally
understood as a software application that can be accessed through a well-defined,
public interface. These notions of service are rather implementation-oriented, and
consider services as small pieces of functionality provided by software components
and applications.

The notion of service discussed above considers a system as a black-box that
provides services to its end-users, but nothing is said about how those services are
actually provided. The 3G-phone example reveals, however, that service provision-
ing involves several system components, which collaborate in order to achieve the
purpose or goal of the service. Even in the case of a client-server type of service,
the service is not possible without the collaboration of a client and a server. This
has been recognized by several authors (e.g. [Bræ99, BKM07]) and is sometimes

1In this thesis the term “system component” is used in an abstract sense to mean an identified
active object, process, agent or logical entity that has an autonomous behavior and is able to
interact with other system components by means of message passing.

1.1. THE NOTION OF SERVICE 5

Service 1

Sys.
Comp. 1

Service 3

Service 2

Composition
within a system
component

Composition
within a service

service role

Sys.
Comp. 2

Sys.
Comp. 3

Sys.
Comp. 4

Sys.
Comp. 5

Figure 1.1: Services related to system components

referred to as the “crosscutting” nature of services [FK01, KM03]. We may there-
fore define a service as a partial system functionality with value for the system’s
end-users and that arises from the collaboration among system components and en-
vironment entities. The problem with this definition is that it ties services to system
components, so that specifying the behavior of services requires specifying the be-
havior of system components. This is unfortunate since there is not a one-to-one
relationship between services and system components. As already revealed by our
3G example, system components may participate in the provision of several different
services, either simultaneously or alternatingly. This means that, in the most gen-
eral case, the behavior of services is composed from partial component behaviors,
while the behavior of components is composed from partial service behaviors, as
illustrated in Fig. 1.1. The ability to specify services independently of particular
system designs or implementations is highly desirable. Separation between services
and system components can be achieved with the notion of service role, understood
as the part that a system component plays in a service.

Based on the above discussion we consider the following definition of service:

Definition 1.1. A service is an identified functionality with value for the service
users, which is provided in a collaboration among service roles played by system
components and/or service users.

Definition 1.2. A service role is the part a system component or service users plays
in a service [Bræ99].

We note that this definition of service resembles the definition used in [San07]. In
that work a service is defined as a collaboration between service roles that provides
functionality to the end-users or environment. The main emphasis is therefore on
the collaborating nature of services. In the definition presented here the emphasis is
on functionality, considering collaboration among service roles as a necessary vehicle
to provide such functionality.

6 CHAPTER 1. INTRODUCTION

State Machine-based
Design Models

C 1 C 2 C 3 C 4

Service Models

Design synthesis ???

Implementation
&

Execution

Code generation

???

Figure 1.2: Service-oriented development: how to model services and derive system
components?

1.2 Service Models and Design Models

For several decades now it has been a common practice to design distributed re-
active systems in terms of loosely coupled components modeled as communicating
state machines (see e.g. [Boc78, Bræ79]). The advantages of this approach are
well-known: state machines allow a precise and complete description of the reactive
behavior of components, they can be automatically analyzed, and can serve as input
for the automatic generation of code. Modeling a reactive system in this way, from a
set of end-user requirements, may however be challenging and error-prone. Require-
ments are normally given from a global point of view, and not from the point of view
of individual system components. They describe how end-users access the system’s
services, and how the system components interact to provide those services. De-
scribing the complete behavior of system components from such requirements is not
straightforward. The reason is simple: as we mentioned in Section 1.1, there is not
a one-to-one relationship between system components and services, thus modeling
the behavior of a service does not amount to modeling the behavior of a component.
Having a clear understanding of the collaborative behavior of components is essential
to ensure the correctness of their behaviors and, thereby, of the services they help
to provide. In order to support flexible and compositional service engineering there
is a need to model services explicitly and independently of particular component
designs, and to support the composition of components from service models. Figure
1.2 shows our vision of a service-oriented modeling approach where services models
are first created, describing services explicitly, and thereafter used to synthesize the
behavior of the individual system components. A set of questions arises concerning
how services can best be modeled, how the behavior of system components can be
synthesized and how to be sure that the behavior specified by the design model is
exactly the behavior specified by the service models.

1.2. SERVICE MODELS AND DESIGN MODELS 7

Interaction diagrams (e.g. MSCs [IT99] or UML sequence diagrams [OMG07])
are useful and popular means to capture collaborative behavior in the form of mes-
sage exchanges between components. They have proven to be valuable during the
early stages of the development process, and have found their way into numerous
methodologies. While interaction diagrams are obvious candidates for the modeling
of services, there are some drawbacks with their use. Because of the large number
of possible execution traces in real systems, they are normally not used to define
complete behaviors, but only exemplary scenarios. In many cases scenarios partially
overlap, and the relationships among them are not clearly described. Assessing the
completeness and consistency of a set of scenarios can therefore be difficult. We have
asked ourselves if there are better ways to model services. Is it possible to model
service behavior more completely? Can it be done in a structured way without re-
vealing more interaction detail than necessary? Can services be modeled as reusable
building blocks, such that services can be composed from more elementary ones?

A central hypothesis for the work presented in this thesis has been that UML
2 collaborations2 [OMG07] provide useful mechanisms to give positive answers to
the above questions. UML 2 collaborations fit nicely with the concept of service as
it was defined in Section 1.1. They define a structure of partial object behaviors,
called roles, and enable a precise definition of collaborative behavior using a variety
of notations, such as interaction diagrams, state machines or activity diagrams.
Collaboration roles can be bound to the roles of other enclosing collaborations and
to system components by means of collaboration uses (see Fig. 2.2 on page 17). In
this way, collaborations can be used as reusable building blocks for the compositional
specification of services. This leads to the following research question:

RQ1: How can UML 2 collaborations be utilized to model service behav-
ior in a complete and modular way?

We have found that decomposition of collaborations tend to result in elementary
collaborations associated with interfaces. The behavior of such elementary collabo-
rations can be completely described using, for example, interaction diagrams. The
full behavior of a composite collaboration can then be specified with a choreography
graph defining the global execution ordering of its sub-collaborations. Figure 1.3
illustrates key elements of a collaboration-oriented approach to service engineering:

• Service models are used to separately specify the global behavior of services.
UML collaborations are used to define services and service features3. Sequence
diagrams are used to describe the behavior of elementary collaboration and
choreography graphs for specifying the global behavior of composite service
collaborations.

2Collaborations are new modeling elements in the UML family. They were introduced in version
2.0 of the UML standard [OMG05]. UML 2 collaborations should not be mistaken with UML 1.x
collaboration diagrams, which are now called communication diagrams.

3Service features are normally understood as increments of functionality that are added to a
base service. In this thesis we do not make such distinction between base service and features.
We understand service features as elementary services (i.e. providing less functionality) and model
them in the same way as services.

8 CHAPTER 1. INTRODUCTION

C 1 C 2 C 3 C 4

Collaboration-oriented
Service Models

Design synthesis

Code generation

S1.1 S1.2

Service2

Service1

Service3

State Machine-based
Design Models

Implementation
&

Execution

Figure 1.3: Collaboration-oriented development

• Design models describe the system structure, as well as the complete local
behavior of each system component type. Asynchronously communicating
state machines are used at this level.

• Implementations consist of executable code that is automatically generated
from the design models.

• Execution platforms are the systems where software processes are executed to
provide services. Such platforms may provide mechanisms for the dynamic
selection and execution of roles based on, for example, the context situation
and user preferences.

A crucial step in the approach outlined in Fig. 1.3 is the transition from a service
model to a design model. In this step the collaboration roles are bound to system
components. The behavior of these components is then synthesized as a composition
of role behaviors. This step faces a fundamental problem. It may happen that the
synthesized components behave correctly from their local points of view (i.e. as
specified in the service model), but their joint behavior leads to scenarios that are
not explicitly specified by the service model (i.e. implied scenarios). This is known
as the realizability problem. A number of authors have studied the problems of
realizability and implied scenarios (e.g. [AEY00, UKM04]). Still, we believe that a
better understanding of the actual nature of these problems has been missing, as well
as guidelines to avoid them in the first place, without compromising the expressive
power of specification approaches. We have therefore asked ourselves: What kind

1.3. CONTRIBUTIONS 9

of realizability problems may arise? What is the nature of these problems and what
are their consequences? Is it possible to detect them by analyzing the service model?
What are the possible solutions?

Building on the hypothesis that UML 2 collaborations provide a useful basis for
service modeling, we have formulated the following research question:

RQ2: Can choreographies help to uncover realizability problems by study-
ing the composition operators used to order elementary collabora-
tions?

The design models in Fig. 1.3 manages the associations that are possible between
the system components, and the roles that these components may play. In many
systems the structure of collaborating components is rather dynamic however. Links
between components are created and deleted dynamically in order to provide service
functionality. Only if such links can be created and if components can play appro-
priate roles, the service can actually be provided. This is what we call dynamic
role binding. Consider, for example, a telephone call service. A call will only be
successful if a link between two specific terminals (i.e. not whatever terminals) can
be established. But not only that. The terminals must be able to execute the re-
quired roles for the call service, namely caller and callee. If the user being contacted
is busy, his terminal may not be able to execute the callee role and the call will
not succeed. Dynamic role binding encompasses increasingly important mechanisms
such as service discovery and adaptation, and service personalization based on the
service context and user preferences. Hardcoded mechanisms are often not flexible
enough to control the process of dynamic role binding. We have asked ourselves how
that flexibility can be achieved:

RQ3: How can the dynamic role binding process be made as generic,
flexible and scalable as possible?

1.3 Contributions

This thesis has contributions in three areas: (1) system and service modeling; (2)
analysis of service and design models; and (3) service execution. In the following we
summarize the main contributions on each of these areas.

System and Service Modeling

The following contributions address research question RQ1:

• Clarification of the nature of services (Section 1.1 and Paper 2).

• An approach to service-oriented and model-driven specification and design of
distributed reactive systems (Chapter 2 and Papers 3 and 2). The approach
models services explicitly using UML 2 collaborations, and enables the state
machine-based behavior of individual system components to be automatically
derived. The approach is compositional in nature and promotes separation of
concerns.

10 CHAPTER 1. INTRODUCTION

• A notation to define the choreography of a composite collaboration, that is,
the global execution ordering of its sub-collaborations, which effectively spec-
ifies the full behavior of the composite collaboration (Papers 3 and 6). Two
formal semantics are given: one based on high-level coloured Petri-nets that
represents the intended behavior (Paper 4); and one based on partial orders
that represents the actual behavior (Paper 6).

• Guidelines to break-down the complexity of the modeling process and to min-
imize the amount of conflicts in the models (Chapter 2 and Paper 5).

• An algorithm for the synthesis of flat role state-machines from choreographies
described with Use Case Maps (Paper 1), and an algorithm for the synthesis
of hierarchical role state-machines from choreographies described with activity
diagrams (Appendix A in Part III).

Model Analysis

The following contributions address research question RQ2:

• Study of realizability problems for service models based on collaborations and
choreographies. This includes:

– A classification of the realizability problems in terms of choreography
composition operators (Paper 5)

– An analysis of the actual nature of the different realizability problems
(Paper 5)

– A discussion of possible solutions and their suitability (Paper 5)

– Algorithms for the detection of some realizability problems (Paper 6)

• A technique for the detection of unexpected behaviors arising from unfore-
seen interactions between simultaneous occurrences4 of service collaborations
(Papers 3 and 4).

Service Execution

The following contribution addresses research question RQ3:

• A study of dynamic role binding mechanisms, and a policy-based framework
for managing it (Paper 7).

4Collaborations cannot be instantiated in UML, so we cannot talk about instances of a col-
laboration. In the rest of this thesis we will therefore use the term “collaboration occurrence” to
denote that a set of system components are interacting as specified by a collaboration. We will
also use the term “service occurrence” in a similar fashion, to denote that the service functionality
is being delivered or provided to the end-users of the service.

1.4. CURRENT STATUS OF TOOL SUPPORT 11

1.4 Current Status of Tool Support

In the following we discuss the implementation status for the solutions presented in
this thesis.

System and Service Modeling

In principle, any UML 2 complaint tool may be used for modeling services as pro-
posed in this thesis. Nevertheless, we have experimented with the TOPCASED
CASE environment [TOP] in order to automatically generate a customized graphi-
cal editor with support for the adornments that we propose for UML 2 collaborations
and activity diagrams. The results are satisfactory but still in a primitive stage.

Regarding the synthesis of state machines, there is currently not automated
support.

Model Analysis

Currently there is no tool support for the analysis techniques proposed in this thesis.
We believe, however, that they could be implemented with reasonable effort and
time, given the level of detail of the algorithms proposed in Paper 6, and the simple
mapping to Petri Nets proposed in Paper 4.

Service Execution

A prototype of the proposed policy-based and service-oriented architecture has been
implemented as part of [Pha05].

1.5 Outline

This thesis is organized into three main parts. The main body of the thesis’ work
is presented in Part II as a collection of papers, and is complemented with some
additional material in the appendix of Part III. Part I presents an overview of the
work in Parts II and III and is further structured as follows:

• Chapter 1 (this chapter) presents the motivation for the service engineering
approach investigated in this thesis. A series of research questions is identified
and a summary of the main contributions is provided.

• Chapter 2 provides an overview of the proposed service engineering approach,
placing the work presented in Parts II and III within a common framework.

• Chapter 3 provides an overview of some related work.

• Chapter 4 gives a short summary of each of the papers included in Part II.

• Chapter 5 summarizes and discusses the work, identifying some limitations
and possible extensions.

2

A Service Engineering Approach

In this chapter we present a service engineering approach for the development of re-
active systems. First, in Section 2.1 we introduce the main lines of the approach and
motivate the principles behind it with help of an example. In the following sections
we explain in more detail each of the main activities integrating the approach.

2.1 The overall idea

Jackson’s problem frames approach to the development of software systems [Jac05]
advocates decomposing realistic problems into more elementary subproblems that
fit into classes of problems for which a solution is known. Each sub-problem is then
analyzed and described separately, without paying attention to their dependencies
and eventual interactions. It is at the very end that the solutions to the subprob-
lems are composed. At this stage, composition concerns may arise (i.e. interactions
between the subproblems due to dependencies may be identified). Such concerns
may uncover issues with requirements that were not initially visible, and may de-
mand a revision of the subproblems. These underlying principles of the Jackson’s
approach are also at the heart of our approach. We believe that trying to handle
all aspects of a system at once during the specification process is unrealistic, even
for small systems. We therefore advocate breaking down the complexity of system
specification and design by decomposing the system’s functionality using services,
roles and components, and treating their potential dependencies as a composition
problem. We also advocate for an early analysis of the specification, so that poten-
tial flaws can be detected and resolved before the system is completely designed and
implemented.

Figure 2.1 illustrates our approach to service engineering. It is an iterative ap-
proach consisting of fives main activities:

1. Service modeling: A service model is created for each individual service to
be provided by the system under development. Each service is modeled as a
UML collaboration defining the structure of roles needed for the service, and
its decomposition into elementary collaborations. The complete behavior of
elementary collaborations is specified with sequence diagrams, while the global
behavior of the service collaboration is described with a choreography graph
describing the execution ordering of its sub-collaborations.

13

14 CHAPTER 2. A SERVICE ENGINEERING APPROACH

Service Role SMs

ServiceRole3
ServiceRole2

ServiceRole1

s2:SubService2SR1 SR3

s1:SubService1 SR2

Service
Role1

Service
Role3

Service
Role2

Service1

s1:SubService1

s3:SubService3

s2:SubService2

Service Models

SR1

s3:SubService3SR1 SR2

R1 R2

m2

m1

System
Composition

Problem
Domain

Implementation
&

Execution

Design Model

System

Type3

SR2

SR1

Type2

SR2

SR1

Type1

SR2

SR1

s1:Service1

s2:Service2

c2:Type2[*]

SR3

c3:Type3[1]

SR6

c1:Type1[*]

SR2

SR1

SR5

Role
Synthesis

Service
Modeling

Role
Interaction
Analysis

Realizability
Analysis

Figure 2.1: Service Engineering Approach

2. Realizability analysis: Each service model is analyzed in search of realiz-
ability problems. The aim is to ensure that the service model does not imply
behaviors that are not explicitly specified, but that may arise in the design
model.

3. Service role synthesis: For each service model, the local behaviors of its
service roles are automatically synthesized in the form of state machines. The
choreography graph and sequence diagrams are used as input for the synthesis.

4. System composition: The system structure is specified in terms of system
components (with type and multiplicity) and their relationships. The complete
behavior of each system component type is designed as a composition of the
service roles that it may play. To determine the correct way of coordinating
the role behaviors, an analysis of potential interactions is necessary (see next
activity).

2.1. THE OVERALL IDEA 15

5. Role interactions analysis: A system component may simultaneously par-
ticipate in different service collaborations, as well as in several occurrences
of the same service collaboration. We analyze whether undesired interactions
may arise between the roles that the system component may play in simul-
taneous service collaborations. The results of this analysis will dictate how
role behaviors should be coordinated and composed into system component
behaviors (see previous activity).
The final goal of this activity and the previous one is to design system com-
ponents so that they can play appropriate roles in each service collaboration
they participate in, without undesired interactions with other running roles.
This can be seen as a problem of dynamic role binding, and policies may be
defined to govern such role binding.

As a motivation for our approach we consider a simplified telecommunication system
that offers a so-called BasicCall service, for peer-to-peer calls between users. This
system consists of many peer components that may both initiate and accept calls, so
multiple simultaneous calls are possible (i.e. multiple occurrences of the BasicCall
service may coexist). Since this is a version of a well-known system (i.e. the PSTN
and derivatives), some of the problems or “special” requirements that have to be
considered during the specification and design process are already well-known. For
example, it is known that a user may try to call another user who is already involved
in a call (i.e. is busy). Two a-priori independent calls will then interact. Such
particular interaction may seem obvious, but this is only because there already exists
enough knowledge about this specific type of system. Foreseeing similar interactions
in new systems might not be so easy, however. The service engineering approach
proposed in this thesis is intended to help identify such interactions.

In order to make the specification and design process more manageable, we focus
initially on the specification of one “isolated” occurrence of the BasicCall service.
The possibility of having multiple simultaneous occurrences of BasicCall, and the
potential interactions that may exist among them will be treated during system
composition. The BasicCall service can be described as a collaboration between
two service roles, namely caller and callee. The caller role defines the properties
and behavior that a component must exhibit in order to initiate a call, talk and
possibly disconnect. Similarly, the callee role defines the properties and behavior
required from any component in order to accept an incoming call, talk and possibly
disconnect.

Once the BasicCall collaboration has been completely specified, a realizability
check may be performed to ensure that the service model does not imply behaviors
that are not explicitly specified. If any realizability problem is detected, we may
decide to modify the service model in order to solve it or we may opt for resolving
the problem during the system composition process. Once the realizability analysis
is finished, and eventual modifications to the service model are made, the design of
the system components is undertaken. First, the behavior of the caller and callee
roles is synthesized using the information provided by the BasicCall ’s service model.
Thereafter the roles need to be assigned to the system components that will execute
them. For the sake of simplicity, we assume there is only one type of component

16 CHAPTER 2. A SERVICE ENGINEERING APPROACH

in the telecommunication system, namely UserAgent. Any instance of UserAgent
should be able to initiate, as well as to accept calls, so both roles of BasicCall
should be bound to the UserAgent type. The behavior of any UserAgent instance
would therefore be a composition of the behaviors of the caller and callee roles.
At this point we need to consider whether multiple occurrences of BasicCall may
be running simultaneously, and whether they may interfere with each other. If so,
they must be coordinated to avoid undesired behaviors. In the telecommunication
system, simultaneous occurrences of BasicCall may interact in several ways. For
example, given that there will be multiple instances of UserAgent in the system,
a UserAgent that is already playing a role in a call may be requested to play a
callee role in another call. Both roles will make use of a limited resource: the end-
user; so their executions will certainly interfere with each other. Dealing with such
interactions may require adopting appropriate design decisions or even modifying
the specification of BasicCall. We consider this a natural step that helps us to
better understand and document the intricacies of the system under development.
In [Jac05], talking about the problem frames approach, Jackson mentions that “if
the deferred composition concerns then prove to demand substantial reworking of the
subproblems to be composed, this is not a disadvantage of the separation: it is rather
an indication that dealing simultaneously with the subproblems and their composition
concerns would have been very difficult”. We totally agree with this reasoning.

In the following sections we take a closer look at each of the activities of the
proposed service engineering approach. Since the system composition and role in-
teractions analysis are tightly integrated, we discuss them in the same section.

2.2 Service modeling

Assuming that a set of services have been identified from the requirements, the
focus in this activity is on modeling each of those services using a combination of
UML collaborations, activity diagrams and sequence diagrams. In the system to
be, many occurrences of each service may, in general, happen either sequentially
or simultaneously, and may sometimes need to be coordinated in order to prevent
undesired interactions between them. We initially abstract away from these issues
and just focus on modeling one single, “isolated” occurrence of each service.

Inspired by the work of Sanders [San07], we have chosen UML 2 collaborations
[OMG07] as the modeling element to represent and structurally decompose services.
UML collaborations are structured classifiers. As such they define a structure of
roles that collaborate to accomplish a task, or achieve a goal. This includes the
communication paths, specified by means of connectors, that should exist between
any pair of objects playing the roles in order for the collaboration to happen. Figure
2.2(a) shows the diagram for an Invite collaboration. This diagram specifies that two
roles, Inviter and Invitee, are needed to establish an Invite collaboration, and that a
communication path must exist between the system components playing these roles.
UML collaborations are also behaviored classifiers, and may therefore have associ-
ated behavior. An interesting feature of collaborations is that they can be defined
in terms of other smaller collaborations, thus allowing a compositional specification

2.2. SERVICE MODELING 17

talker talker

disc_er
disc_ee

BasicCall

inviter invitee
i:invite

t:talk

disc_ee
disc_er

d2:disconnectd1:disconnect

Caller Callee

Collaboration role

Collaboration use

Invitee role (from the
Invite collaboration) is
bound to the Callee role

Connector

Invite

Inviter Invitee

(a) (b)

Figure 2.2: UML collaborations for (a) the Invite service feature and (b) the Basic-
Call service

of services. This is done by binding the roles of a (sub-)collaboration to the roles
of a containing collaboration by means of collaboration uses. Figure 2.2(b) shows a
UML 2 collaboration representing the BasicCall service. This collaboration consists
of two roles, Caller and Callee, which may engage in a series of sub-collaborations.
These sub-collaborations are represented as collaboration-uses, and their roles are
bound to the Caller and Callee roles. For example, the Invitee role of the Invite
collaboration has been bound to the Callee role. This means that any object play-
ing the Callee role in BasicCall should have the properties and behavior specified
for the Invitee role. For a more detailed discussion about the suitability of UML
collaborations for service modeling we refer the reader to Paper 2 and to [San07].

The specification of a service collaboration can be divided into 5 steps:

1. Identification of the roles needed to provide the service.

2. Identification of the sub-collaborations in which the service roles may engage.

3. Structural composition of the sub-collaborations identified in the previous step.

4. Description of the global service behavior by specifying the order in which the
sub-collaborations should be executed.

5. Description of the behavior of each sub-collaboration.

We detail each of these steps in the following.

Identification of service roles. As a first step we have to identify the service
roles needed to provide the service. This follows from the problem domain and the
logical architecture of the service execution environment. Each role specifies the
properties and behavior that a component should have in order to participate in one
single occurrence of the service under specification. Focusing on roles rather than
on components has some advantages:

18 CHAPTER 2. A SERVICE ENGINEERING APPROACH

1. it allows to describe the service behavior independently of particular system
components or final implementations, so that role behaviors can be reused as
part of many component behaviors;

2. it also allows to consider synthesis of component behavior as a problem of role
binding and composition, where assumptions about coordination of roles are
made explicit.

As we already discussed, for the BasicCall service we can identify two roles, namely
caller and callee. We note that in some cases there will be a one-to-one relation
between service roles and system components, but this might not always be the
case (e.g. in our telecommunication system, a system component may play both the
caller and callee roles of the BasicCall service). It is therefore important to abstract
away from particular components in the system and rather focus on the properties
and behavior that they should have to participate in the service. Note however that
taking a minimum of logical (but not physical) architectural aspects into account
might still be necessary and beneficial for the identification of roles [Zav03].

Identification of sub-collaborations. While one may try to describe the com-
plete behavior of a service collaboration with sequence diagrams, this may rapidly
become a difficult task. The underlying reason is that the number of possible
event orderings is normally very high, even for moderately complex services. One
can address this problem by decomposing a service collaboration into smaller sub-
collaborations. A useful decomposition results in more manageable collaborations
whose behavior can be completely described with sequence diagrams. A side effect
will be a larger set of smaller collaborations and a reduced cross-cutting overview,
which may be considered as a drawback. We believe, however, that the benefits
of such decomposition outweigh its disadvantages. Decomposition helps to focus
separately on, and better understand, the different aspects of the service. Moreover,
the need for later (re-)composition of the sub-collaborations’ behaviors brings an
opportunity to improve the service model, since the relationships and dependencies
between the different sub-collaborations must be explicitly specified. This helps to
increase the understanding of the global service behavior, and can be exploited in
the analysis of the service model. Finally, smaller self-contained collaborations tend
to be more reusable.

A question arises concerning how a useful decomposition can be achieved. Al-
though there is not (yet) a golden rule that can be obeyed, we have identified some
useful decomposition criteria. In general, it helps to think in terms of interfaces
and goals. One can start by identifying the interactions that service roles maintain
with each other (i.e. the interactions that happen on the interfaces between any
pair of roles). Rather than thinking about detailed interactions, one should think
about the purpose or goal of those interactions. It also helps to think of the global
states and/or phases that the service goes through, since these phases are normally
the result of executing one or more sub-collaborations (see Paper 2). For example,
the BasicCall service will go through several phases, such as inviting, talking and
disconnecting, which could be described as separate sub-collaborations associated

2.2. SERVICE MODELING 19

with the interface between caller and callee (see Fig. 2.2(b)). In general, each sub-
collaboration should have at least one main goal (concrete and meaningful), and
may have zero or more alternative secondary goals. Sub-collaborations with more
than one main goal could normally be further decomposed. For example, the main
goal of the Invite collaboration in Fig. 2.2(a) would be to establish a connection
between the components playing the inviter and invitee roles. When Invite is used
as part of BasicCall, such goal becomes a sub-goal of BasicCall. In that context
Invite’s main goal can be seen as connecting the components playing the caller and
callee roles, so the end-users can talk. However, achieving this goal might not always
be possible (e.g. because the callee is busy). In that case an alternative secondary
goal would be to notify the caller and take some alternative actions.

To drive the decomposition process it also helps to identify the independent
autonomous initiatives that roles may take to trigger services or service features, and
describe the service collaboration they trigger separately. Being independent, such
initiatives may happen simultaneously leading to the interleaving of the sequences of
events that they trigger. By describing the behavior triggered by each initiative in a
separate collaboration, the interleaving of events that need to be explicitly described
in each collaboration gets reduced. This leads, in many cases, to purely sequential
collaborations. The interleaving of events becomes clear when the different obtained
collaborations are composed together using a choreography graph.

Decomposing in terms of goals, interfaces and initiatives naturally leads to two-
party collaborations with one main goal, and whose roles define interface behavior.
In general, these collaboration will only have one initiating role (i.e. a role able
to initiate the collaboration), which is highly desirable. We note, however, that
in some cases one may prefer collaborations with more than two roles and/or with
more than one initiating role. Whenever two or more two-party collaborations pur-
sue the same goal and require tight coordination of their behaviors, merging them
into one single collaboration may be advisable. In cases where more than one role
may independently initiate interactions having the same goal, we should consider
creating one single collaboration where the initiatives taken by the roles to start the
collaboration are properly and explicitly coordinated.

Definition of collaboration structure. We model the service structurally as
a UML collaboration, describing the structure of roles taking part in the sub-
collaborations identified in the previous step. Each sub-collaboration is represented
as a collaboration use and its roles are bound to the roles of the main service collab-
oration. The result is a collaboration showing the sub-collaborations in which each
service role is involved, and the sub-role(s) that it plays in them. See Fig. 2.2 for
the BasicCall collaboration.

Collaboration choreography construction. At this point we know the sub-
collaborations that service roles must participate in order to provide the service.
We know the purpose (i.e. goal) of those sub-collaborations, and we may even know
their detailed behavior if, for example, we were reusing any predefined collaboration.
We do not know yet, however, the order in which these sub-collaborations should

20 CHAPTER 2. A SERVICE ENGINEERING APPROACH

be executed, so that their global, joint behavior matches the intended behavior for
the service collaboration. In the SOA paradigm the description of the distributed
sequencing and timing of services is called a choreography [Erl05]. We adopt this
term and refer to the execution ordering (i.e. behavioral composition) of the sub-
collaborations of a composite collaboration as a choreography.

In Paper 1 we used Use Case Maps [BC96, Buh98] to specify choreographies,
while in Papers 3 and 4 we used so-called goal sequence diagrams, which are inspired
by UML activity diagrams. In Papers 6 and 5, as well as in the examples that follow
in the rest of this text, actual UML activity diagrams have been used. We note,
however, that our use of activity diagrams is not completely compliant with the
UML standard, as explained in Appendix 10.A on page 182.

The specific notation used to specify choreographies is a secondary concern, as
long as it is expressive enough to describe the most common orderings or com-
positions that we can find among collaborations. We have identified five types of
compositions that allow to describe the most usual orderings between any two col-
laborations, C1 and C2:

• Sequential composition: C2 is executed after C1(i.e. C2 is causally depen-
dent on C1).

• Parallel composition: C1 and C2 are executed concurrently (i.e. C1and C2
are independent).

• Alternative composition: Either C1 or C2 is executed (i.e. C1and C2 are
mutually-exclusive).

• Invocation composition: C1, after reaching a point in its execution where
a predicate pred holds, invokes C2. C1 then is suspended and waits for C2 to
execute all or part of its behavior before resuming. This normally represent
a goal dependency between C1 and C2, such that C1 can only achieve its own
goal if C2 achieves its corresponding one.

• Interruption composition: C2 interrupts C1.

A choreography graph provides an overview of the phases that a service goes through.
Each activity in the graph represents a service phase where a certain sub-collaboration
takes place. Building the choreography graph provides an opportunity to explicitly
specify the ordering of sub-collaborations, which in turn enables the detection of
unforeseen interactions between them.

With the choreography we are describing how the initiatives that service roles
take to start sub-collaborations are to be coordinated at runtime. We may associate
a triggering event with each collaboration. A collaboration would then be initiated
if it is enabled (i.e. the necessary pre-condition for it to be executed is true) and
its triggering event is observed. The triggering event of a collaboration may be the
termination of another collaboration. It may also be an external system event (e.g.
some user input) or a time-out that is not part of the collaboration being modeled.
In these cases the role initiating the collaboration may seem to take spontaneously,

2.2. SERVICE MODELING 21

Patient

Doctor

Receptionist

pc

dc

ar

ad

TeleConsultation

pr
rrr:registration

c:consultation av:available

asr

asd

as:assignment

Figure 2.3: UML Collaboration for the TeleConsultation service

and on its own, an initiative to start the collaboration. It is crucial to coordinate
these autonomous initiatives properly. Otherwise, unexpected behaviors may arise
(see Section 2.3).

To build the choreography graph of a service collaboration it is important to
identify service roles having the ability to take autonomous, independent initiatives
leading to the execution of one or more sub-collaborations. In the case of purely
sequential services, where only one service role can take the initiative to interact with
the other roles, the choreography graph becomes simpler. It essentially describes
one single thread of control where the different sub-collaborations follow each other
sequentially.

In the more general case services may have several service roles able to take
independent autonomous initiatives. The associated choreography will then have
several concurrent threads of control that need to be properly coordinated. In these
cases it is often difficult to consider all initiatives at once. Instead, one may first
consider each initiative separately, and build a partial choreography graph with
the sub-collaborations that are directly or indirectly triggered by that initiative.
Once this is done for all initiatives, the resulting partial choreographies can be
composed. An example of a system providing a TeleConsultation service will help
to understand this idea. The system consists of multiple patients and doctors, as
well as one receptionist. Doctors notify their availability to the receptionist at the
beginning of their shift, as well as after each consultation with a patient (available
sub-collaboration). The patients can call the receptionist in order to get remote
assistance from one of the doctors (registration sub-collaboration). If a doctor is
available when a patient calls, the receptionist transfers the call to that doctor
(assignment sub-collaboration). If no doctor is available, the patient will have to
call again later. An occurrence of the TeleConsultation service will involve three
roles, namely Patient, Receptionist and Doctor (see Fig. 2.31). The Receptionist role
is rather passive, and does not take any autonomous initiative to interact with the
other roles. Note that although Receptionist starts the assignment sub-collaboration

1The solid circles and bars beside the roles are respectively used to identify the role that initiate
and terminate each collaboration. They are not standard UML.

22 CHAPTER 2. A SERVICE ENGINEERING APPROACH

to transfer the patient call to a doctor, this is not the result of an autonomous
initiative. This behavior is triggered by the termination of registration. The Patient
and Doctor roles may, on the other hand, behave pro-actively. The Patient role may
take an autonomous initiative to interact with the Receptionist via the registration
sub-collaboration. After this, the assignment and consultation sub-collaborations
will be executed, if a doctor is available. This behavior can be described with the
choreography in Fig. 2.4(a)2. This choreography describes a partial view of the
TeleConsultation service. It only describes the service behavior that is triggered by
the Patient role. The Doctor role may also take an autonomous initiative to notify
its availability to the Receptionist via the available sub-collaboration. Thereafter
it may participate in the assignment and consultation sub-collaborations. This is
described in the choreography of Fig. 2.4(b), which specifies the service behavior
that is triggered by the Doctor role. This choreography also gives a partial view
of the TeleConsultation service, which is complementary to the view offered by the
choreography in Fig. 2.4(a). To obtain the complete view of the service we can
merge these two partial choreographies. The result is the global choreography in
Fig. 2.4(c). To obtain this choreography we note that some activities in the partial
choreographies may execute concurrently (i.e. in any order). This is the case of
registration (see Fig. 2.4(a)), which may be executed concurrently with available
(see Fig. 2.4(b)). These activities should be composed in parallel in the global
choreography. On the other hand, there are activities in both partial choreographies
that refer to the same occurrence of a sub-collaboration, namely assignment and
consultation. In the global choreography graph, the concurrent flows of control that
the partial choreographies describe should be merged for the execution of these two
activities.

Specification of elementary collaboration behavior. In the previous step the
behavior of the composite service collaboration has been specified as a choreography
of its sub-collaborations. To complete the service specification one needs to describe
the behavior of each of those sub-collaborations. Some sub-collaborations may be
composed of other smaller sub-collaborations. In that case, their behavior would also
be given by a choreography. To specify the complete behavior (at the interaction
level) of so-called elementary sub-collaborations (i.e. sub-collaborations that are
not further decomposed), we propose to use UML 2 sequence diagrams, since they
have proven to be a popular and useful notation for the description of collaborative
behavior. Each role in the collaboration will be represented as a lifeline in the
sequence diagram. Continuations may be used to identify states in the collaboration
or in the role behaviors. These could then be used to relate the sequence diagram
behavior with the pins of activities in the choreography graph (see Papers 1 and 3).

2This is an activity diagram where each activity has been adorned with the collaboration use
executed on that activity. The solid circles and bars beside the roles are respectively used to
identify the role(s) that initiate and terminate each collaboration.

2.2. SERVICE MODELING 23

as:assignmentR D

c:consultationP D

availableunavailable

r:registrationP R a:availableR D

(c)

as:assignmentR D

as:assignmentR D

a:availableR D

c:consultationP D

c:consultationP D

availableunavailable

r:registrationP R

(a) (b)

Figure 2.4: Choreography of TeleConsultation: (a) from the point of view of the
Patient role; (b) from the point of view of the Doctor role; (c) global view

24 CHAPTER 2. A SERVICE ENGINEERING APPROACH

2.2.1 Behavioral interpretation of the specification

In this section we try to clarify how the behavior of collaborations and choreographies
should be interpreted.

In [Krü00] Krüger distinguishes four possible interpretations of sequence dia-
grams with respect to what properties of the system under specification they de-
scribe: the existential, the universal, the exact and the negated interpretations. The
existential interpretation considers that sequence diagrams specify scenarios. That
is, they describe behavior (i.e. orderings of events) that may, but need not occur
during the execution of the system (i.e. it should be possible in at least one run of the
system). Other arbitrary behaviors are allowed before, during and after the specified
behavior. The universal interpretation considers that the behavior described by a
sequence diagram should occur in all executions of the system, but does not prevent
other behaviors to also happen before, during or after the interactions described by
the sequence diagram. The exact interpretation considers that the system should
behave exactly as described by the sequence diagram. Other behaviors than the one
specified are explicitly prohibited. Finally, the negated interpretation considers that
sequence diagrams describe unwanted behavior.

In our approach, the sequence diagrams that describe the behavior of elementary
collaborations describe the exact and complete behavior (at the abstract interaction
level) of those elementary collaborations. In the same way, the choreographies de-
scribing the behavior of composite collaborations describe the exact and complete
behavior of those composite collaborations. Let us discuss in some more detail what
this means. As mentioned, we assume that the sequence diagram associated with
an elementary collaboration describes the exact and complete behavior – with all
possible outcomes – of that collaboration. Recall that a collaboration describes in-
teractions between roles (not components). This means that the roles should behave
exactly as described by the sequence diagram. As we know, we can compose collab-
orations. When we do this, the behavior of each sub-collaboration is interpreted as
partial behavior from the point of view of the composite collaboration. That is, the
behavior of a collaboration is complete if considered in isolation, but is partial in the
context of a containing collaboration. It may happen that when two collaborations
are composed, their behaviors are interleaved. This may seem to contradict the
exact interpretation of the behavior of individual collaborations. It does not, how-
ever. The roles of each individual collaboration will observe the behavior exactly as
specified for them. It is at the level of a composite role that the behaviors of several
sub-roles may be interleaved.

This dichotomy between partial and complete behavior is a nice feature of col-
laborations. We can describe them completely, but since we describe the behavior
of roles, and not the behavior of components, they still can be considered as partial
behavior.

2.3. REALIZABILITY OF A SERVICE MODEL 25

2.3 Realizability of a Service Model

A service model specifies the overall behavior of a service described as a collabora-
tion between service roles. At the system design level, the service roles are assigned
to the system components that will execute them. The local behavior of each com-
ponent can then be obtained, in the form of a state machine, by projecting the
global behavior described by the service model onto the given component (i.e. onto
the service roles that will execute). We say that the design model obtained in this
way is directly realized from the service model. If the behavior of a directly re-
alized design model (i.e. the joint behavior of the synthesized system components)
is equivalent to the overall behavior defined by the service model, we say that the
service model is directly realizable. Unfortunately, not all service models are di-
rectly realizable. Consider, for example, the BasicCall service previously discussed.
In this service, once connected and talking, both service roles can take the initiative
to disconnect. This behavior may be specified as a choice between two disconnec-
tion collaborations, one of them initiated by the caller role, the other initiated by
the callee role (see the partial choreography graph in Fig. 2.5(a)). Now consider
two UserAgents, A and B, that respectively play the caller and callee roles in one
occurrence of BasicCall. Assuming that the choreography of Fig. 2.5(a) describes
the intended behavior for BasicCall, the two UserAgents should execute either col-
laboration disc1 or collaboration disc2. However, a scenario is possible where both
UserAgents simultaneously initiate the disconnection, that is, A initiates collabora-
tion disc1 and B initiates collaboration disc1 (see Fig. 2.5(b)). The problem is that
neither A nor B have enough information about the global system state, that is,
they do not know whether the other component has already initiated a disconnec-
tion before they decide to initiate it. Both UserAgents are behaving correctly from
their local points of view (i.e. according to the caller and callee roles as specified by
the choreography). However, from a global point of view the resulting scenario does
not correspond to either collaboration disc1 or collaboration disc2. Such scenario
is not explicitly described by the choreography, but is implied [AEY00]. As pointed
out in [UKM04], implied scenarios may correspond to unwanted behaviors, such as
deadlocks, but they may also represent acceptable behaviors that were overlooked
during the requirements elicitation process. In both cases it is important to detect
their presence, so that they can be handled correctly.

The problem of realizability of MSC-based specifications has received consider-
able attention during the last years (see Section 3.3). Some authors have focused on
studying the complexity of checking whether a specification is realizable, and have
proposed restricted classes of HMSCs for which realizability can be decided. These
classes of HMSCs are usually too restrictive, and do not allow to specify behaviors
that are common and useful in many services (e.g. non-local choices of competing
initiatives – see Paper 5). Other authors focus on the detection of implied scenar-
ios, which are the effects of realizability problems (i.e. the behaviors that can be
observed in a realized system as a consequence of a realizability problem). We have
sought to find the underlying causes that lead to realizability problems. We believe
that knowing the nature of those problems helps to avoid them, and to find a correct

26 CHAPTER 2. A SERVICE ENGINEERING APPROACH

Caller Callee

hangup

ack

disc1

hangup hangup

(a) (b)

A B

Caller Callee

hangup

ack

disc2

Figure 2.5: (a) Non-local choice; (b) Implied scenario

solution when they cannot be avoided. We studied this using the notion of direct
realizability. This is a strict notion of realizability that requires the service roles
to be synthesized without adding extra coordination messages or message contents,
and requires the joint behavior of the service roles to be deadlock-free. In some
cases a specification might become directly realizable by adding extra coordination
messages or additional data in messages. Some authors have studied notions of re-
alizability where this is done by default. We consider these measures as solutions
to realizability problems, which could be adopted by the designer when necessary,
depending on the specific service requirements.

In Paper 5 we have discussed under which circumstances a choreography is di-
rectly realizable. For each composition operator, we have studied the problems of
direct realizability that may occur, how they may be detected, and what kind of
additional mechanisms could be introduced into the direct realization of a chore-
ography in order to assure that the resulting distributed behavior conforms to the
choreography’s specified behavior. These mechanisms include the addition of extra
coordination messages in the behaviors of the service roles, as well as additional
data in some messages. Provided we know which service roles initiate and terminate
each sub-collaboration in a choreography, we are in many situations able to identify
problems just by looking at the order that the choreography defines for those sub-
collaborations without considering the detailed interactions. In other cases, we are
able to identify potential problems at the choreography level, but need to consider
detailed interactions of the sub-collaborations to determine whether the problems
actually exist. In Paper 6 we present algorithms for the detection of some of the
realizability problems.

2.4 Service role synthesis

After the service modeling activity is finished, we have a complete model (at the
abstract interaction level) of the global behavior of one service occurrence. We are,
however, ultimately interested in the complete local behaviors of the service roles,
which will be assigned to system components for execution. For a given service role,
its local behavior can be automatically synthesized in the form of a state machine
from the information provided by the choreography graph and the sequence diagrams

2.5. SYSTEM COMPOSITION 27

describing the detailed behavior of elementary collaborations. The intuitive idea is
the following:

1. First the behavior of each collaboration in the choreography graph (described
by a sequence diagram) is projected on the lifeline of the specific service role
(i.e. the actions of other service roles are ignored)

2. Then, the behaviors obtained in the previous step are composed following the
ordering defined by the choreography for the collaborations.

Role synthesis from Use Case Maps-based choreographies was discussed in Paper
1. In the Appendix A on Part III, we discuss the generation of hierarchical state
machines for roles from activity diagram-based choreographies.

If realizability problems were discovered during the analysis of the service model,
additional coordination constructs (e.g. sending or receiving actions) may be added
to the directly synthesized state machines in order to ensure proper coordination
between the service roles.

2.5 System composition

During the service modeling phase, the focus was on specifying the services offered
by the system under development. In the system composition phase the focus is on
designing the complete behavior of each of the system components, which collaborate
to provide the previously modeled services. In order to design the behavior of a
system component it is necessary to know:

• the service collaborations in which the component participates, and the role(s)
it plays in them;

• whether the component may simultaneously participate in multiple occur-
rences of a given service collaboration; and

• whether the roles played by the component may interact in unexpected ways
if executed concurrently.

In the following we discuss these three issues in more detail.

System diagram. A so-called system diagram can be used to show the system
structure (i.e. the system components and their relationships), the services provided
by the system, and the assignment of service roles to system components. A system
diagram is essentially a UML structured class with inner parts, where the structured
class represents the system itself, and the internal parts represent the system com-
ponents, with type and multiplicity. Connectors between the parts may be used to
describe communication relationships between the system components. The services
provided by the system are represented by collaboration uses defining the appropri-
ate binding of service roles to parts (i.e. system components). Figure 2.6 shows

28 CHAPTER 2. A SERVICE ENGINEERING APPROACH

TelecommunicationSystem

caller

b:BasicCall

callee

:UserAgent[*]

Figure 2.6: System diagram for the telecommunication system

c:CType

Rsn

R

s1:Service1

1

p
sn

Rsn

R

sn:Service1

1

p
sn

Rs1

R

s1:Service1

1

p
s1

Rsn

R

sn:ServiceN

1

q
sn

Rsn

R

sn:ServiceN

1

q
sn

Rsn

R

sn:ServiceN

1

q
sn

CType

Rs1

R

s1:Service1

1

p
s1

Rsn

R

sn:ServiceN

1

q
sn

(a) (b)

Figure 2.7: (a) Generic binding of roles to a system component type. (b) Illustration
of generic role instantiation at runtime

the system diagram for the telecommunication system. It has one internal part of
type UserAgent, which has an unbounded multiplicity. The BasicCall service that
this system provides has been represented as a collaboration use that binds both
roles of BasicCall, namely caller and callee, to the UserAgent part. This diagram
expresses that the telecommunication system consists of a set of components of type
UserAgent, which may collaborate, playing either the caller or the callee role, to
provide a BasicCall service.

We note that, in general, a system component may participate in different service
collaborations, playing one or more roles in each of them, as illustrated in Fig. 2.7(a).

Simultaneous collaboration occurrences. Sometimes, a system component
may simultaneously participate (or at least be requested to do so) in several oc-
currences of a given service collaboration. For example, in the telecommunication
system a UserAgent may be requested to join an occurrence of the BasicCall collab-
oration when it is already participating in another occurrence of that collaboration.
The behavior of the component should then be designed so that the component is
able to execute multiple instances of a given role type, as illustrated in Fig. 2.7(b).

2.5. SYSTEM COMPOSITION 29

This may be achieved, to a large extent, by adding extra coordination functionality
to the system component, outside the role behaviors. For example, a controller state
machine may be used to deal with requests for starting new roles (e.g. using a generic
role request mechanism as the one discussed in Paper 7). For each granted request
the controller state machine would create a dedicated instance of the appropriate
role state machine. This is a generic solution to handle multiple service sessions, as
explained in [BH93].

System components that may simultaneously participate (or be requested to do
so) in multiple occurrences of a given service collaboration can be identified by
analyzing the multiplicities of parts in the system diagram. For this, it is important
to differentiate between initiating roles (i.e. roles performing the first actions in
a collaboration) and non-initiating (or offered) roles (i.e. roles whose behavior in
a collaboration starts with a message reception). The following two cases can be
differentiated:

• A system component c1 plays one or more non-initiating/offered roles in a ser-
vice collaboration, and that collaboration can be initiated by a system com-
ponent c2 that has multiplicity greater than one (i.e. multiple instances of
such component may exist). Different instances of c2 may simultaneously ini-
tiate several occurrences of the service collaboration and c1 may be requested
to join all of them. We note that c1 cannot prevent such requests from being
made and will have to handle them in one or another way. Consider, for exam-
ple, our telecommunication system. According to the system diagram in Fig.
2.6, there are multiple UserAgents in the system with the ability to initiate,
possibly simultaneously, a BasicCall collaboration by executing the initiating
caller role. A given UserAgent may then receive multiple concurrent requests
to play the non-initiating callee role. A question arises whether a UserAgent
should be allowed to play several roles simultaneously. Would that make any
sense? And if several roles are executed concurrently, is it possible that these
roles interact in undesired ways?

• A system component plays one or more initiating roles whose execution is
triggered by an external system event. It is then possible that a system com-
ponent that is already participating in an occurrence of a collaboration tries
to initiate a new collaboration occurrence in response to an external event.
Of course, whether this may actually happen in practice depends on the ac-
tual system domain, that is, on how the environment may actually behave.
Consider again our telecommunication system. The caller role is an initiating
role whose execution is triggered by an external event, namely the end-user
initiating a call. Obviously, the actions of an end-user cannot be controlled, so
a decision should be made on how to deal with the possibility of an end-user
initiating a call while its UserAgent is already busy participating in a Bas-
icCall occurrence. If we consider that such end-user behavior is acceptable,
we should design UserAgents so that they can simultaneously execute multi-
ple instances of the caller role. Otherwise, UserAgents should be designed to
reject (or ignore) the end-user initiative to start a new call.

30 CHAPTER 2. A SERVICE ENGINEERING APPROACH

Unexpected role interactions. In the service modeling phase, services were
modeled separately, and only one isolated occurrence of each service was considered.
Potential dependencies (e.g. via shared resources) between different services, and
between different occurrences of a service, were not taken into account during the
service modeling phase, but should be considered at this stage.

We have identified two cases in which roles simultaneously played by a system
component in different service collaborations, or in different occurrences of the same
service collaboration, may interact in unexpected ways:

• If two roles concurrently played in different collaborations accept messages
with the same signature, a message may be consumed by a role that is not
the intended receptor (i.e. the message may be consumed in a service or
occurrence of a service to which the message does not belong). This kind of
interactions may be easily avoided by marking messages with the id of the
service occurrence/session that they belong to.

• Role interactions are also possible due to shared resources. For example, the
roles being simultaneously played by a UserAgent in our telecommunication
system would be sharing a limited resource, that is, the end-user (represented
in the system by the UserAgent itself). Since human beings are normally not
able to maintain multiple conversations simultaneously, the access to the end-
user should be coordinated. One may then decide that UserAgents should
reject all incoming requests to play a callee role if they are already busy play-
ing another role. Alternatively one may decide that UserAgents should place
such requests into some sort of waiting queue. In both cases UserAgents may
be designed with a controller state machine in charge of handling incoming call
requests, and creating (or selecting, if already running) a callee state machine
to deal with granted requests. The specification of the BasicCall service may
need to be modified to adapt the caller and callee roles to both the rejection
and queue scenarios.
The teleconsultation system also provides examples of role interactions due
to shared resources. Consider the ReceptionistAgent component in the sys-
tem diagram of Fig. 2.8. This system component should behave according to
the Receptionist service role in the TeleConsultation collaboration. In addi-
tion, the ReceptionistAgent should be able to deal with concurrent invitations
to join several occurrences of the TeleConsultation collaboration. This results
from the fact that there are potentially many PatientAgents and DoctorAgents
that play initiating roles, so they may take independent initiatives to inter-
act with the ReceptionistAgent. In order to decide how the ReceptionistAgent
component should handle multiple initiatives coming from PatientAgents and
DoctorAgents it is important to analyze their potential interactions. On one
hand, the ReceptionistAgent is a shared resource from the point of view of the
PatientAgent components, which will be competing for that resource. On the
other hand, the ultimate goal of PatientAgents is to contact a DoctorAgent,
so DoctorAgents are also shared resources from the point of view of Patient-
Agents, and the ReceptionistAgent should act as a kind of resource allocator.

2.5. SYSTEM COMPOSITION 31

TeleConsultationSystem

Patient

Receptionist

tc:TeleConsultation
:Patient
Agent[*]

Doctor

:Receptionist
Agent

:Doctor
Agent[*]

Figure 2.8: System diagram for the teleconsultation system

What happens if the ReceptionistAgent is already busy with a PatientAgent
and receives a request, from another PatientAgent, to join a new occurrence
of TeleConsultation? The answer depends on the actual service requirements.
For example, one may decide to reject such request. This corresponds to what
happens in the choreography of Fig. 2.4 when there are not available Doctor-
Agents. Alternatively, one may decide to place the request in a waiting queue.
In this case we may need two queues, one for PatientAgents not yet attended
by the ReceptionistAgent, and other for PatientAgents already attended by
the ReceptionistAgent but waiting for a DoctorAgent to become available. As
we have seen with the telecommunication and teleconsultation examples, role
interactions due to shared resources can sometimes be easily identified by in-
specting the system diagram. In other cases the interactions may not be so
obvious and might be difficult to detect. In Papers 3 and 4 we presented an
automatic detection technique based on the joint analysis of the sequences
of (sub-)roles that a system component may play in different collaboration
occurrences, and on the use of pre- and post-conditions associated to roles.

Dynamic Role Binding. So far we have discussed the design of system com-
ponents so that they can participate, possibly simultaneously, in several service
collaborations of the same or of different type. The challenge is to design the system
components so that they are able to execute the appropriate role(s) in each service
collaboration without undesired interactions with other roles. This can be seen as a
problem of dynamic role binding3. In general, to bind a role to a system component,
so that the latter executes it, some conditions should hold. From a strictly technical
point of view, these conditions may be more or less intrinsic to the role (i.e. they
should always hold, regardless of the context in which the role is executed), or they
may depend on the current situation in terms of other active roles and be necessary
to avoid undesired interactions with these other roles. The users of a system may
also have their own preferences about when a system component may play a certain

3“Binding” is here taken to mean that the role is allowed to execute as part of a collaboration
involving other roles it interacts with. Another term could be role linking or invocation.

32 CHAPTER 2. A SERVICE ENGINEERING APPROACH

role (e.g. in the telecommunication system, a user may not want its associated User-
Agent to play a callee role after 10 pm). In general, user profiles, as well as service
context and dependencies may be taken into account when making the decision to
bind a role. In Paper 7 we discussed the use of policies to control the binding of roles
to system components, in an attempt to make this process as general, scalable and
flexible as possible. A policy framework was proposed with three types of policies,
namely

• Role-binding policies, aimed at constraining the binding itself of roles to system
components;

• Collaboration policies, to express constraints that should hold for a service
collaboration as a whole when running; and

• Feature-selection policies, to control the triggering of context-dependent ser-
vice features.

3

Related Work

3.1 Work on service modeling

A number of service-oriented modeling approaches have been proposed in recent
years, such as [KGM+04, DGS04, KKKR05, KH06, KBH07, ZZL07]. Krüger et al.
[KGM+04] recognize, as we do, that service behavior emerge from the collaboration
between roles played by components. They propose a scenario-based approach to
service engineering consisting of several steps. First, use cases are used to provide a
large-scale, scenario-based view of the system. From the use cases, sets of roles and
services are identified. Service structure and role bindings are described with, so-
called, role and deployment domain models, while the detailed behavior of services,
and their relationships, are specified with an extended MSC language [Krü00]. A
special operator called join is used to compose service scenarios with overlapping in-
teraction patterns. This operator synchronizes the service scenarios on their shared
messages, and otherwise interleaves non-shared messages. In our approach we pro-
pose a concise encapsulation of service functionality, so that no overlapping exists
between the behaviors of any two service collaborations. While the use of the join
operator may lead to more compact models, it hides subtle dependencies that may
exist between the services. In our approach, such dependencies must be explicitly
specified. We believe this contributes to a better understanding of the specification
and to the detection of potential conflicts.

Deubler et al. [DGS04] also suggest a combination of use-cases and sequence
diagrams for service specification, but do not recognize the crosscutting nature of
services. They rather consider services to be “small self-contained functional entities
responsible for a number of activities belonging together”.

The works in [KKKR05], with focus on modeling web service collaboration pro-
tocols, and in [KH06, KBH07, San07, ZZL07], with focus on modeling distributed
reactive systems, are all based on UML 2 collaborations, which are used to specify
structural properties of services. The main differences between these works, and
our own, lie on how behavioral aspects are described. Kramler et al. [KKKR05]
use activity diagrams to specify the behavior of elementary collaborations in terms
of (web service) transactions. Each transaction is in turn described by another ac-
tivity diagram, or by a sequence diagram. However the authors do not address
the composition and choreography of collaborations, which is a central part in our
work. Kraemer et al. [KH06, KBH07] also use activity diagrams to specify both
the behavior of elementary collaborations and their composition. In their activity

33

34 CHAPTER 3. RELATED WORK

diagrams each elementary collaboration is represented with a unique call behavior
action, which may be (re)visited by a control token multiple times. In our approach,
the choreography graph is intended to describe the evolution of a service by showing
the phases it goes through. The same elementary collaboration may take place in dif-
ferent phases, so several call behavior actions in the choreography graph may refer to
the same elementary collaboration. Our choreography graphs may therefore be seen
as an unfolding of the activity diagrams of Kraemer et al. In [San07] Sanders propose
to use so-called collaboration goal sequences, based on UML interaction overview
diagrams, in order to describe the runtime ordering of the sub-collaborations of a
main composite service collaboration. The intention is to show the order in which
the goals of the individual collaborations has to be achieved in order for the main
service goal to be fulfilled. Invocation and interrupting composition of collaborations
are not supported. Zhang et al. [ZZL07] also use UML interaction overview dia-
grams to describe the composition of sequence diagrams specifying the behavior of
elementary two-party collaborations. As in the case of [San07], they do not support
invocation and interrupting composition of collaborations.

Other modeling approaches have been suggested that, despite not being service-
oriented, may well be used for service modeling. Rößler et al. [RGG01] suggest a
collaboration-based specification approach for distributed systems. They created a
specific language, CoSDL, to describe both the behavior of collaborations and their
composition. CoSDL is highly inspired by SDL, so it fails to provide the high-level
service view offered by UML collaborations and choreographies. Amyot [Amy01]
proposes a methodology to specify services using a combination of Use Case Maps,
to describe scenarios and their relationships, and LOTOS, for formal validation of the
specification. In Paper 1 we also used Use Case Maps, but rather than to describe
scenarios, we used them to describe the choreography of collaborations. Whittle
[Whi07] introduces Use Case Charts, a precise notation that allows specifying use
cases at three levels of abstraction. First, the relationships between use cases are
specified with an extended UML activity diagram. Each individual use case is then
described as a collection of scenarios, whose relationships are again described with
an extended UML activity diagram. Finally, the behavior of each scenario is detailed
with a sequence diagram. Use Case Charts are able to describe sequential, concurrent
and alternative relationships between scenarios/use cases, as well as preemption and
suspension. Negative behaviors can also be described. Use Case Charts pursue the
same goal as the choreographies presented in this work, that is, specify explicitly the
relationships between “pieces” of crosscutting behavior. The main difference from
our approach lies in the way such “pieces” of crosscutting behavior are structured
and interpreted. Use Case Charts specify relationships between existential scenarios,
which may partially overlap. We specify relationships between collaborations, which
describe the complete and exact crosscutting behavior needed to achieve a certain
goal.

3.2. WORK ON SYNTHESIS 35

3.2 Work on synthesis

The synthesis problem, as considered in this thesis, is related to the work on synthe-
sis of communication protocols from service specifications (see [PS91] for a survey).
In this context a service specification describes the actions that are executed at dif-
ferent ”service access points”, as well as their temporal order. The goal is then to
derive the messages that the different system components must exchange to provide
the specified service (i.e. to guarantee that the service actions are executed in the
specified order). The assumption in protocol synthesis is that the service specifica-
tion is complete. The problem is then to properly coordinate the system components
to provide the exact specified behavior.

More recently, a considerable amount of work has been devoted to the synthe-
sis of component behaviors from scenario-based specifications (see [AE03, LDD06]
for a survey and comparison). The most obvious difference between the proposed
approaches is the choice they make regarding the source scenario notation (e.g.
(H)MSCs, LSCs, UML sequence diagrams) and the target construction model (e.g.
UML and ROOM statecharts, SDL state-machines, Label Transition Systems(LTSs)).
Although this choice may look as a matter of taste, it has important implications
on the synthesis process and its final result. Recall that the goal of the synthesis
process is to obtain a distributed implementation able to behave according to the
specified behavior. For that a synthesis algorithm has to put together the slices of
behavior that each component executes in each one of the source scenarios. The
quality of the result (i.e. whether the synthesized components behave as specified
both locally and globally), as well as the complexity of the process will therefore
depend on the completeness of information provided by the specification (i.e. sce-
narios and their relationships) and the assumptions made about the communication
service used by the target model (i.e. synchronous/asynchronous communication,
one or several input buffers per component).

Some of the synthesis approaches that have been proposed take as input a set
of scenarios without any extra information about their relationships. This is the
case for [KM94, MS01, HK02, BSL04, HKP05, BHS05, SD06]. Both [KM94] and
[MS01] consider as input for their algorithms a set a plain scenarios, described
with either trace diagrams [KM94] or sequence diagrams [MS01]. In both cases
the scenarios represent examples of system execution. The proposed algorithms
compose the behavior of the source scenarios by inferring and merging common
states based on sent and received messages. In [KM94], which proposes a fully
automatic approach, states that are logically different may be merged, resulting in
overgeneralized state machines (i.e. with more behavior than the specified one). To
avoid such overgeneralization, [MS01] requires interaction with the designer to accept
or reject the conjectures made by its learning algorithm. The synthesis approaches
presented in [HK02], [BSL04] and [SD06] consider LSCs as the scenario notation.
LSCs allow to specify both universal and existential scenarios. Universal scenarios
describe behavior that must occur in all system executions (i.e. is mandatory), while
existential scenarios describe behavior that may occur in a given system execution
(i.e. is optional). Both types of scenarios allow additional events not present in

36 CHAPTER 3. RELATED WORK

the scenarios to happen before, after and between those events contained in the
scenarios. This is a main difference with other synthesis approaches, which normally
interpret scenarios as describing the exact behavior of the participating components
at a given time (i.e. no other behavior can happen). The use of both existential
and universal scenarios, and the absence of explicit mechanisms to inter-relate the
scenarios makes the synthesis from LSCs a complex task. To reduce such complexity
the authors of [HK02] propose an alternative approach in [HKP05], which requires
the interaction of the designer. The authors of [BSL04] also propose a more efficient
algorithm in [BHS05]. This new algorithm is sound, but not complete. This means
that it may fail to synthesize specifications that are realizable, but any synthesized
system will be correct. To guarantee that the joint behavior of the synthesized
components is according to the specified one, [HK02] allow components to share all
their information with each other, and [BSL04] assumes every component can sense
every event in the system. Both approaches are however unrealistic. [HKP05] and
[SD06] add synchronization messages to guarantee that the distributed components
remain coordinated on the transitions between scenarios. The algorithm in [BHS05]
will stop if the specified behavior cannot be properly distributed without additional
messages or data.

Like the approaches discussed above, the synthesis algorithms presented in
[KGSB99], [WS00] and [KEK01] take as input a set of unordered scenarios. How-
ever, they require the designer to provide extra information that can be used to relate
the source scenarios by identifying common states in them. In [KGSB99] state infor-
mation is directly included in the input MSCs by means of conditions. Both [WS00]
and [KEK01] use pre- and post-conditions, expressed in OCL, to give semantic to
the messages of UML 1.4 sequence diagrams and collaboration diagrams1. The algo-
rithm of [KEK01] is able to detect and avoid situations leading to overgeneralization
of the synthesized components.

A third group of synthesis approaches takes as input for their algorithms scenarios
that have been explicitly composed by the designer [LMR98, MZ99, UKM03, ZHJ04].
Both [LMR98], [MZ99] and [UKM03] use HMSCs to compose a set of MSCs from
which ROOM statecharts, SDL state-machines, or LTSs, respectively, are synthe-
sized. The work in [UKM03] also allows states to be identified in the MSCs by means
of conditions. The work in [ZHJ04] considers UML 2 sequence diagrams as the sce-
nario notation, and exploits the composition operators that this notation offers to
compose basic sequence diagrams. Reference [LMR98] (and presumably [ZHJ04])
requires the composed scenarios to be mutually exclusive (i.e. the same event cannot
be contained in two scenarios), while this is not required by [MZ99] and [UKM03].
Common to all these works is that the joint behavior of the components that are
synthesized may differ from the specified one.

We have proposed a synthesis approach that is able to generate hierarchical state
machines from a choreography of collaborations, which defines the runtime order-
ing of such collaborations. In this respect our approach is similar to other synthesis
methods that require explicit composition of scenarios. However, we consider collab-
orations describing complete and exact behavior, rather than existential scenarios.

1These are called communication diagrams in UML 2

3.3. WORK ON REALIZABILITY AND IMPLIED SCENARIOS 37

Our synthesis algorithm does not try to avoid implied scenarios. It rather assumes
as input a realizable choreography (i.e. the choreography have already been ana-
lyzed in search of realizability problems). Our algorithm is strongly influenced by
the work of Whittle [WJ06], who has also presented an algorithm able to generate
hierarchical state machines from Use Case Charts. Kraemer et al. [KH07, KBH07]
have described an algorithm that transforms activity diagrams describing collabo-
rations into state machines. Our synthesis algorithm also take as input an activity
diagram (i.e. the choreography graph), but this diagram specifies only the relation-
ships between collaborations, whose detailed behavior is described using sequence
diagrams.

3.3 Work on realizability and implied scenarios

The realizability of specifications of reactive systems was first studied, in general
terms, in [ALW89]. In the context of MSC-based specifications it was first consid-
ered in [AEY00], where the authors relate the problem of realizability to the notion
of implied scenarios. They consider a specification given as a set of MSCs describing
asynchronous interactions, and analyze it to check if it implies any non-specified
MSC. Intuitively, a realizable specification does not contain implied scenarios. The
authors propose two notions of realizability, depending on whether the realization
is required to be deadlock-free (safe realizability) or not (weak realizability). This
work was extended in [AEY05] to consider realizability of bounded HMSCs [AY99].
Reference [Loh03] extends in turn the work of [AEY05] and provides some complex-
ity results for the class of globally-cooperative HMSCs [Mor02, GMSZ06], which is
less restrictive than the class of bounded HMSCs. Realizability of HMSCs with syn-
chronous communication is considered in [UKM04]. The authors present a technique
to detect implied scenarios from a specification describing both positive, as well as
negative scenarios. The realizability notion considered in [AEY05] and [Loh03] does
not allow adding data into messages or adding extra synchronization messages. This
is seen as a very restrictive notion of realizability by some authors, who propose
a notion of realizability where additional data can be incorporated into messages
[MKS00, BM03, GMSZ06]. The authors of [MKS00] study safe realizability, with
additional message contents, of regular (finite state) HMSCs with FIFO channels.
This work is extended in [BM03], where non-FIFO communication is considered.
The authors identify a subclass of HMSCs, so-called coherent HMSCs, which are
safely realizable with additional message contents. However, checking whether an
HMSC is coherent is in general hard. [GMSZ06] discusses two classes of unbounded
HMSCs that are always realizable with data. In particular, they show that so-called
local-choice HMSCs are always safely realizable with additional message contents.
The authors, however, fail to explain precisely how the message contents should be
generated, as we explained in Paper 5. Moreover, with this class of HMSCs some
useful and common behaviors cannot be specified. A subclass of local-choice HMSCs
that are safely realizable without additional message contents was studied in [HJ00].

38 CHAPTER 3. RELATED WORK

Other authors have studied conditions for realizability of Compositional MSCs
[MRW06] and pathologies in HMSCs [BAL97, Hél01] and UML sequence diagrams
[BBJ+05] that prevent their realization.

Our work on realizability has been quite pragmatic. We have focused on study-
ing the problems that make a collaboration-oriented service model non-realizable.
We have done this by studying the way collaborations can be composed in chore-
ography graphs and the problems that may arise from the composition. We have
analyzed the actual nature of realizability problems, which has allowed us to dis-
cuss appropriate solutions for them. In our study, we have considered the notion
of direct-realizability, where no additional synchronization messages or additional
message contents are added to realize the system. We consider such measures as
solutions to realizability problems that should be applied depending on each specific
situation, possibly guided by a designer.

4

Summary of the papers

In this chapter we provide a short overview of each of the papers included in Part
II and specify this author’s contribution to each of them. These papers document
the main results of this thesis work.

Paper 1: Humberto Nicolás Castejón. Synthesizing state-machine behavior from
UML collaborations and Use Case Maps. In Proc. 12th SDL Forum,
volume 3530 of LNCS, pages 339-359. Springer, June 2005.

This paper presents our first attempt at using UML 2 collaborations for compo-
sitional service specification. Through a small case study, we show how a service
can be described as a collaboration consisting of other subordinate collaborations.
We then discuss the importance of explicitly describing the dependencies between
those sub-collaborations, and show how Use Case Maps (UCMs) can be used for this
purpose. UCMs describe the causal flow of behavior of a system by ordering the sys-
tem’s responsibilities (e.g. tasks, actions, etc) along a path, and by linking causes
(e.g. pre-conditions or triggering events) to effects (e.g. post-conditions). In the
paper, UCMs are used to describe the progress of individual collaborations in terms
of achievement of their service goals, and to relate different collaborations. Patterns
for sequential dependencies, and for goal dependencies (i.e. cases where a collabo-
ration depends on the success of other collaboration(s) in order to achieve its own
goal) are given. Finally, we present an algorithm to synthesize the state-machine
behavior of service roles from the joint information provided by UML collaborations,
sequence diagrams (describing the behavior of elementary collaborations) and UCM
diagrams.

Contribution of this thesis’ author : Sole author.

Paper 2: Richard Torbjørn Sanders, Humberto Nicolás Castejón, Frank Alexan-
der Kraemer, and Rolv Bræk. Using UML 2.0 collaborations for com-
positional service specification. In Proc. ACM/IEEE 8th Intl. Conf.
on Model Driven Engineering Languages and Systems (MoDELS’05),
volume 3713 of LNCS, pages 460-475. Springer, October 2005.

This paper studies the suitability of UML 2 collaborations for model-driven ser-
vice engineering. Collaborations are shown to have many interesting properties for
the compositional specification of services. The paper shows how the structure of

39

40 CHAPTER 4. SUMMARY OF THE PAPERS

services can be described with collaborations, and how the behavior of a collabo-
ration can be specified at different levels of abstraction for the purpose of service
specification. The composition of collaborations is discussed, and so-called (collab-
oration) goal sequence diagrams are presented to describe relationships between the
sub-collaborations of a large collaboration. The concept of choreography, used in
this thesis, and the concept of goal sequence, as presented in the paper, are closely
related. The goal sequences presented in the paper can be seen as choreographies
that describe only the ordering of sub-collaborations needed to achieve the goal
of a service collaboration (i.e. goal sequences do not describe complete behavior).
UML interaction overview diagrams are proposed in the paper to describe goal se-
quences. Interrupting and invocation compositions of collaborations can therefore
not be specified.

Contribution of this thesis’ author : The paper was written in close collaboration
with the three other authors. This author was responsible for approximately 30%
of the work.

Paper 3: Humberto Nicolás Castejón and Rolv Bræk. A collaboration-based ap-
proach to service specification and detection of implied scenarios. In
Proc. of 5th Int. Workshop on Scenarios and State Machines: Models,
Algorithms and Tools (SCESM’06). ACM Press, May 2006.

This paper presents a service modeling approach based on UML 2 collaborations.
A central element in this approach are, again, collaboration goal sequences, whose
original syntax and semantics are modified and extended, so that collaboration invo-
cation relationships can be described. In the second part of the paper we show how
implied scenarios can be detected in collaboration-based specifications by analysing
sequences of roles extracted from the collaboration goal sequence diagram. In the
paper, role sequences are first analyzed individually. The implied scenarios detected
this way follow from realizability problems associated with one individual occurrence
of a service collaboration. The proposed analysis fails to detect all realizability prob-
lems (see Appendix A in the paper). A more complete study of these problems is
presented in Paper 5. The second analysis technique proposed in the paper is able
to detect implied scenarios resulting from the unexpected interaction of several con-
current collaboration occurrences (of the same or different collaboration type).

Contribution of this thesis’ author : Main author, responsible for approximately 90%
of the work.

Paper 4: Humberto Nicolás Castejón and Rolv Bræk. Formalizing collaboration
goal sequences for service choreography. In Proc. 26th IFIP WG 6.1
Intl. Conf. on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of LNCS, pages 275-291. Springer, Septem-
ber 2006.

41

This paper extends the work in Paper 3 by providing formal syntax and semantics to
collaboration goal sequences. Formal semantics is given by mapping goal sequences
to hierarchical coloured Petri-nets (HCPNs). This allows to use general purpose
tools available for HCPNs for the detection of implied scenarios.

Contribution of this thesis’ author : Main author, responsible for approximately 90%
of the work.

Paper 5: Humberto Nicolás Castejón, Gregor von Bochmann, and Rolv Bræk.
Using collaborations in the development of distributed services. Tech-
nical report, Avantel 2/2008 ISSN 1503-4097, NTNU, February 2008.
This is an extended and revised version of: Humberto Nicolás Castejón,
Gregor von Bochmann, and Rolv Bræk. Realizability of collaboration-
based service specifications1. In Proc. 14th Asia-Pacific Soft. Eng.
Conf. (APSEC’07). IEEE Computer Society, December 2007.

The paper discusses the use of collaborations in the development of services. It
provides a discussion on the semantics of service collaborations, as well as possible
notations for describing collaboration choreographies, with an emphasis on identify-
ing concepts that allow specifying and analyzing the high level service flow without
prematurely binding the detailed interactions. A main contribution of this paper
is an extensive analysis of the type of realizability problems that may appear in
choreography-based service specifications. Realizability problems are classified in
terms of the composition operators that can be used in a choreography. The ac-
tual nature of these problems, as well as possible solutions, are discussed. Design
guidelines are also provided. The paper ends with a discussion on the derivation of
component behaviors from choreography-based service specifications.

Contribution of this thesis’ author : The paper was written in close collaboration
with the two other authors. This author was responsible for approximately 60% of
the work, and main contributor to Section 3 (i.e. the study of realizability).

Paper 6: Humberto Nicolás Castejón, Gregor von Bochmann, and Rolv Bræk. In-
vestigating the realizability of collaboration-based service specifications.
Technical report, Avantel 3/2007 ISSN 1503-4097, NTNU, September
2007.

This paper has two main contributions. The first contribution is a formal syntax for
choreography graphs and sequence diagrams, as well as a formal semantics based on
partial orders. In particular, formal semantics are provided for sequential, parallel,
alternative, invocation and interruption compositions of collaborations. The second
contribution is a set of algorithms for the detection of race conditions and choice
propagation problems in a choreography. The paper presents also a preliminary

1Contribution of this thesis’ author to the APSEC paper : Main author, responsible for approx-
imately 90% of the work.

42 CHAPTER 4. SUMMARY OF THE PAPERS

version of our work on realizability problems. The reader may skip this part (i.e.
Section 4 of the paper) in favor of Paper 5.

Contribution of this thesis’ author : Main author, responsible for approximately 90%
of the work.

Paper 7: Humberto Nicolás Castejón and Rolv Bræk. Dynamic role binding in a
service oriented architecture. In Proc. IFIP Intl. Conf. on Intelligence
in Communication Systems (INTELLCOMM’05), volume 190 of IFIP
International Federation for Information Processing. Springer, October
2005.

This paper discusses mechanisms to achieve modularity and flexibility in the de-
ployment and execution of services. The paper recognizes that service modularity
requires a separation between service roles (i.e. service logic) and system com-
ponents. It then identifies the process of dynamic role binding (i.e. dynamically
creating and releasing links between system components that execute appropriate
service roles) as crucial to achieve such separation, while being able to handle con-
text dependency, personalization, resource limitations and compatibility validation.
A service-oriented architecture is presented that supports service modularity and
dynamic role binding. This architecture provides a natural way to structure service-
execution policies for flexible management of the dynamic role binding process. A
policy framework is introduced.

Contribution of this thesis’ author : The paper was written in close collaboration,
with this thesis’ author as the main author, responsible for approximately 75% of
the work.

5

Conclusions

In this thesis we have presented a service-oriented and model-driven approach to
engineering distributed reactive systems. The approach integrates model creation
and analysis tightly, resulting in an iterative process where the understanding of the
modeled behavior, as well as the confidence in its correctness, increases with each
iteration.

In the following we summarize and discuss the work that has been done. There-
after we identify limitations and suggests directions for future work.

5.1 Summary and Discussion

We summarize and discuss here our results on three specific areas: service modeling,
service analysis and the problem of dynamic role binding.

Service Modeling

In the proposed modeling approach the behavior of a system is first decomposed
in terms of the services that the system provides. Each of these services is then
modeled separately. UML 2 collaborations are used to represent an individual oc-
currence of each service as a structure of collaborating service roles, which interact
to achieve the service’s goal. Complex service collaborations are decomposed into
sub-collaborations representing more elementary services or service features. Such
decomposition tend to result in elementary collaborations associated with interfaces,
whose behavior can be completely described using sequence diagrams. The full be-
havior of a composite collaboration is described by means of a choreography graph,
which defines the global execution ordering of its sub-collaborations. The service
models are then used as input for the construction of a design model, which describes
the system architecture, as well as the complete local behavior of each system com-
ponent type. For that purpose the system is modeled as a UML structured class,
where the inner parts, with type and multiplicity, represent the system components,
and the connectors between the parts represent the communication channels. The
complete local behavior of each system component type is obtained in two steps.
First, for each service model the local behavior of each service role is automatically
synthesized in the form of a communicating state machine. Thereafter, roles are
assigned to the component types that will play them. The complete local behavior
of each component type is then designed as a composition of the roles it plays. At

43

44 CHAPTER 5. CONCLUSIONS

this point, the need for coordination mechanisms between different role instances
and types is considered, in case a component may participate in multiple concurrent
occurrences of the same service, or of different services.

The main motivation for our work in this area has been twofold. First, most
traditional modeling approaches do not model services explicitly. They rather focus
on the behavior of system components. However, as we showed in the Introduction
chapter, the behavior of these components depends on the services they are involved
in (recall that service functionality arises from the interaction among components).
Having a clear and explicit view of services is thus crucial for a flexible and efficient
engineering of reactive systems. After all, reactive systems exist to provide services
to their environment [WJ01]. In our modeling approach, services are explicitly mod-
eled as UML 2 collaborations, and the behavior of components is semi-automatically
derived from the service models. Our work is therefore related to other approaches
where component behavior is (semi-)automatically synthesized from scenarios (e.g.
MSC or sequence diagrams) describing crosscutting system behavior. Collabora-
tions offer powerful means to structure and reuse such crosscutting behavior, and to
provide a high-level overview of it. In the early stages of the development process
they allow to focus on the main purpose or goal of the interactions to take place in
the system, without getting buried in the details of those interactions. Moreover,
some unexpected behaviors can already be detected by analysing the choreography
of collaborations, without considering the detailed behavior of those collaborations.

The second reason that motivated our work was the usability of current modeling
methods. Formal semantics is a highly desirable property of any modeling language
or approach. It makes the meaning of the created models precise, so they can be
automatically analyzed. However, industry practitioners usually find formal meth-
ods difficult to learn and use, and often resort to informal methods, such as UML.
The result are imprecise models that usually contain implementation details and are
hard to analyze [Hei98, Hei05]. In addition, there is also a general lack of guidelines
for the construction of correct and high-quality models. Our work tries to address
these issues in several ways. On one hand, we use UML elements for the construc-
tion of service and design models1, but we have sought to give a precise semantics
to these models. On the other hand, our modeling approach aims to be constructive
(i.e. aims to generate systems without errors) rather than corrective (i.e. aims to
detect and correct the errors that are nonetheless made) [BH93]. To achieve this
goal it is important to break down the complexity of the modeling process, and to
generate models that are easy to understand by humans. We do this by applying
the well-known principles of separation of concerns, abstraction and modularity at
different levels:

• System behavior is decomposed into services, and services are in turn decom-
posed into more elementary services or service features. Services and service
features are then modeled separately. This allow to focus at any time on the

1We use UML collaborations, sequence diagrams and state machines. We also use activity
diagrams to describe choreographies, although in a way that is not completely compliant with the
UML standard, as explained in Appendix 10.A on page 182.

5.1. SUMMARY AND DISCUSSION 45

behavior that is needed to achieve a certain goal. An explicit (re-)composition
of the services and service features is then required, which forces one to high-
light dependencies and to detect possible interactions between services.

• Services are modeled independently of the components that provide them.
For each service we focus on the role behaviors that are needed to provide
such service, and abstract away from the actual system components that will
eventually execute those roles.

• In a system, potentially many occurrences of the same service may simulta-
neously coexist. Initially, we abstract away from this possibility, and focus
on modeling one isolated occurrence of each service, that is, only the role be-
haviors needed for an occurrence of a service are modeled. It is during the
construction of the design model that we deal with the possibility of having
multiple concurrent occurrences of the service running in the system.

The proposed modeling approach has been applied to different use cases with pos-
itive results. In some cases, we had some a priori understanding of the services
being modeled, and the potential problems that we could face during their specifi-
cation and design. We could then test the ability of our approach to identify the
known problems. In other cases, we undertook the modeling process of some ser-
vices starting from a rough description of their requirements. We were then able
to gain a better understanding of the service functionality during the construction
of the service models, and to detect problems that were a priori unknown. While
these results helped build confidence in the practical value of our modeling approach,
a more comprehensive evaluation of the approach by means of industrial size case
studies is still needed.

Service Analysis

The modeling approach presented in this thesis has its place in the early stages of
the development cycle, where the set of requirements of the system under develop-
ment may not yet be complete. We have therefore investigated techniques for early
analysis of the service and design models that help to discover undesired behaviors,
as well as acceptable behaviors that were overlooked while studying the problem
domain.

The proposed analysis approach is closely tied to the modeling approach and its
inherent separation of concerns. First, each individual service model is analyzed in
search of realizability problems. Then, during the construction of the design model,
potential interactions between the roles that any component may play are analyzed
and coordination measures taken.

The realizability analysis assumes a situation where the service roles synthesized
from a service model are executed by distributed system components communicating
by means of asynchronous message passing. It then determines whether the joint be-
havior of the set of service roles exactly corresponds to the global behavior specified
by the service model. Realizability problems lead to implied scenarios [AEY00], that

46 CHAPTER 5. CONCLUSIONS

is, behaviors that are not explicitly specified in the service model. Some authors have
proposed techniques to find implied scenarios in MSC-based specifications. These
techniques are able to determine whether there exist a realizability problem in a
specification and to eventually show the consequences of such problem. They fail,
however, to determine the nature or cause of the problem. We believe that having
a clear understanding of the actual nature of realizability problems is essential, not
only to adopt the most appropriate resolution when they are detected, but also to
avoid them in the first place. This has motivated us to investigate, for each pos-
sible way of composing collaborations in a choreography, the realizability problems
that may arise and the underlying reasons leading to them. We have also discussed
possible ways to resolve them, and a set of algorithms have been proposed to detect
realizability problems.

In the proposed modeling approach, service collaborations are modeled sepa-
rately without initially considering any potential dependencies between them (e.g.
due to shared resources). Moreover, in order to model each service collaboration
explicitly only one occurrence of the collaboration is considered. In some cases,
however, the final system should allow multiple occurrences of the same collabora-
tion to run simultaneously. Those collaboration occurrences might not be totally
independent. Therefore, if a system component is to play roles in different service
collaborations and/or in multiple occurrences of the same service collaboration, un-
expected interactions between those roles may arise. Such interactions should be
detected before the role behaviors are composed into the full behavior of the system
component. To deal with them, appropriate coordination mechanisms may need to
be added to the component’s behavior, and the original service models may need
to be modified. As Jackson points out in [Jac05] in the context of problem frames,
we believe this is not a disadvantage of the proposed separation of concerns, but
rather an indication that dealing with all dependencies from the beginning would
have been very difficult. In this thesis we have proposed an automatic method to
detect role interactions due to shared resources. This method makes use of pre- and
post-conditions associated with role executions, and does not require the detailed
behavior of roles to be specified.

Dynamic Role Binding

Service discovery and adaptation, and service personalization based on the service
context and end-user preferences are increasingly important mechanisms. These
mechanisms require system components to learn new behavior or adapt their cur-
rent one according to the context and user preferences. This can be achieved by
letting system components dynamically select the appropriate roles to be executed
as part of a service. We call this dynamic role binding. We have proposed a service-
oriented architecture and a policy framework where policies can be used to control
the dynamic binding of roles to system components. These policies allow to express
constraints that need to be satisfied for a role to be executed. They also allow to
select alternative roles when those constraints cannot be satisfied. A prototype of
the proposed policy-based and service-oriented architecture has been implemented
as part of [Pha05].

5.2. LIMITATIONS AND FUTURE WORK 47

5.2 Limitations and Future work

The modeling approach presented in this thesis could be extended in several direc-
tions:

• Data handling. Although the approach covers the synthesis of role behaviors,
the focus is on control and interactions (i.e. message exchanges), while data
handling is abstracted away. The state machines that are synthesized should
therefore be considered as early prototypes for simulation purposes. To obtain
more realistic state machines we need to add support for boolean conditions
and data operations in the description of elementary collaborations, and extend
the synthesis algorithm accordingly.

• Synthesis of full component behavior. While the behavior of roles can be au-
tomatically synthesized from a choreography graph, building the complete be-
havior of system components, as a composition of coordinated roles, has to
be done manually. In cases where the roles are completely independent, this
might be as simple as creating a state machine with several orthogonal regions
and adding the state machine behavior of each role to one of the orthogonal
regions. In other cases mechanisms to coordinate the roles behaviors may need
to be added, such as a controller state machine that would decide whether or
not to instantiate the role state machines when requested. We believe that, for
a given domain, a number of useful coordination patterns could be identified.
It would then be possible for a designer to select the most appropriate pattern
from a library, and have it automatically instantiated and composed with the
role behaviors to build the complete behavior of components.

• Incremental specification and refinement. In this thesis we have considered
that services and components’ behavior are modeled from scratch. This may
however not always be the case in real projects. It would be interesting to
study how functionality can be incrementally added to an existing service
model in a modular way, and how that functionality can be incrementally
deployed. Finding rules for systematic refinement of collaboration behavior
is also an interesting area for future work. Here, the work on refinement of
MSCs done by Krüger [Krü00], and the work on refinement of UML interaction
diagrams done as part of the STAIRS method [Run07, HHRS05] may be used
as a starting point.

• Partial choreography views. For complex choreography graphs it could be
handy to work with partial views of the graph, each of them describing the
global collaboration behavior from the point of view of a given role (as il-
lustrated with the TeleConsultation example). For an effective use of views,
mechanisms for automatically checking the consistency between several partial
views and for merging them are needed.

48 CHAPTER 5. CONCLUSIONS

The work on realizability could also be extended on several directions:

• Algorithms. The algorithms for the detection of race conditions and ambigu-
ous/race propagation should be extended to detect those problems in the pres-
ence of interrupting and invocation compositions. Support for a more compo-
sitional analysis should also be investigated. The current algorithms assume
that the collaborations referred to in the choreography graphs are elementary.
If this is not the case, they require the choreography graph to be flattened.

• Automatic resolution of conflicts. In this thesis we have already identified and
discussed some possible solutions for the different realizability problems. We
envision a library of domain-specific solutions, from which a designer could
choose the most appropriate. Work needs to be done on how to add the reso-
lution behavior into the service and/or design models, so it can be considered
during the automatic synthesis of component behavior.

In the area of dynamic role binding there also some possible extensions:

• Granularity of feature-selection policies. In the current implementation of the
service-oriented and policy-based architecture discussed in Paper 7, feature-
selection policies are used to replace the requested roles with other alternative
roles. Another interesting approach would be to use those policies to enable
or disable specific parts of the behavior of a (composite) role.

In general, work has to be done in all the aforementioned areas in order to implement
the proposed solutions. We envision a tool that allows the modeling of services
as explained in this thesis, the analysis of the created models and the automatic
generation of state machines.

References

[AE03] Daniel Amyot and Armin Eberlein. An evaluation of scenario nota-
tions and construction approaches for telecommunication systems devel-
opment. Telecommunication Systems, 24(1):61–94, 2003.

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of
message sequence charts. In Proc. of the 22nd Int. Conf. on Software
Engineering (ICSE’00), 2000. ACM Press.

[AEY05] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizabil-
ity and verification of MSC graphs. Theoretical Computer Science,
331(1):97–114, 2005.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design
and analysis of computer algorithms. Addison-Wesley, 1974.

[ALW89] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unre-
alizable specifications of reactive systems. In Proc. of the 16th Intl. Collo-
quium on Automata, Languages and Programming (ICALP’89), volume
372 of LNCS, pages 1–17, 1989. Springer.

[Amy01] Daniel Amyot. Specification and Validation of Telecommunications Sys-
tems with Use Case Maps and LOTOS. PhD thesis, School of Informa-
tion Technology and Engineering (SITE), University of Ottawa, Septem-
ber 2001.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message se-
quence charts. In Proc. of the 10th Intl. Conf. on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 114–129, 1999. Springer.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic detection of process
divergence and non-local choice in message sequence charts. In Proc. of
the 2nd Int. Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), volume 1217 of LNCS, pages 259–274,
1997. Springer.

[BBJ+05] Paul Baker, Paul Bristow, Clive Jervis, David King, Robert Thom-
son, Bill Mitchell, and Simon Burton. Detecting and resolving seman-

49

50 REFERENCES

tic pathologies in uml sequence diagrams. In Proc. of the 10th Euro-
pean software engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engineering
(ESEC/FSE-13), pages 50–59, 2005. ACM Press.

[BC96] R. J. A. Buhr and R. S. Casselman. Use case maps for object-oriented
systems. Prentice-Hall, Inc., 1996.

[BDC+89] T.F. Bowen, F.S. Dworack, C.H. Chow, N. Griffeth, G.E. Herman, and
Y.J. Lin. The feature interaction problem in telecommunications sys-
tems. In Proc. of the 7th Int’l Conf. Soft. Eng. for Telecommunications
Switching Systems (SETSS’89), pages 59–62, 1989.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems. An
object-oriented methodology using SDL. Prentice Hall, Englewood Cliffs,
NJ, 1993.

[BHS05] Yves Bontemps, Patrick Heymans, and Pierre-Yves Schobbens.
Lightweight formal methods for scenario-based software engineering. In
Proc. of the 2003 Intl. Dagstuhl Work. on Scenarios: Models, Transfor-
mations and Tools, volume 3466 of LNCS, pages 174–192, 2005. Springer.

[BKM07] Manfred Broy, Ingolf H. Krüger, and Michael Meisinger. A formal model
of services. ACM Transactions on Software Engineering and Methodol-
ogy, 16(1):5, 2007.

[BM03] Nicolas Baudru and Rémi Morin. Safe implementability of regular
message sequence chart specifications. In Proc. of the 4th ACIS Intl.
Conf. on Soft. Eng., Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD’03), pages 210–217, 2003.

[Boc78] Gregor Bochmann. Finite state description of communication protocols.
Computer Networks, 2:361–372, 1978.

[Bræ79] Rolv Bræk. Unified system modeling and implementation. In Proc. of
the International Switching Symposium (ISS). ISS Committee, 1979.

[Bræ99] Rolv Bræk. Using roles with types and objects for service development.
In proc. of the IFIP TC6 WG6.7 5th International Conference on In-
telligence in Networks (SMARTNET), volume 160 of IFIP Conference
Proceedings, pages 265–278, Pathumthani, Thailand, 1999. Kluwer.

[BS80] Gregor Bochmann and Carl A. Sunshine. Formal methods in communi-
cation protocol design. IEEE Transactions on Communications, 28(4),
April 1980.

[BSL04] Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Synthesis
of open reactive systems from scenario-based specifications. Fundamenta
Informaticae, 62(2):139–169, July 2004.

51

[Buh98] R. J. A. Buhr. Use case maps as architectural entities for complex
systems. IEEE Transactions of Software Engineering, 24(12):1131–1155,
1998.

[DGS04] Martin Deubler, Johannes Grünbauer, and Chris Salzmann. Towards
a model-based and incremental development process for service-based
systems. In Proc. of the IASTED Intl. Conf. on Software Engineer-
ing (IASTED SE’04), pages 183–188. IASTED/ACTA Press, February
2004.

[Erl05] Thomas Erl. Service Oriented Architecture: Concepts, Technology and
Design. Number ISBN 0-13-185858-0. Prentice Hall, 2005.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular verification of
collaboration-based software designs. In Proc. of the 8th Euro-
pean software engineering conference held jointly with 9th ACM SIG-
SOFT international symposium on Foundations of software engineering
(ESEC/FSE-9), pages 152–163, 2001. ACM Press.

[GMSZ06] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-
state high-level mscs: Model-checking and realizability. Journal of Com-
puter and System Sciences, 72(4):617–647, 2006.

[Hei98] Constance L. Heitmeyer. On the need for practical formal methods.
In Proc. of the 5th Intl. Symp. on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’98), volume 1486 of LNCS, pages 18–
26, 1998. Springer.

[Hei05] Constance L. Heitmeyer. A panacea or academic poppycock: Formal
methods revisited. In proc. of the 9th IEEE Intl. Symp. on High Assur-
ance Systems Engineering (HASE’05), pages 3–7, 2005.

[Hél01] Löıc Hélouët. Some pathological message sequence charts, and how to
detect them. In Proc. of the 10th Intl. SDL Forum, volume 2078 of
LNCS, pages 348–364, 2001. Springer.

[HHRS05] Øystein Haugen, Knut Husa, Ragnhild Runde, and Ketil Stølen.
STAIRS towards formal design with sequence diagrams. Software and
Systems Modeling, 4(4):355–357, November 2005.

[HJ00] Löıc Hélouët and Claude Jard. Conditions for synthesis of communicat-
ing automata from HMSCs. In Proc. of the 5th Intl. Workshop on For-
mal Methods for Industrial Critical Systems (FMICS’00). GMD FOKUS,
2000.

[HK02] David Harel and Hillel Kugler. Synthesizing state-based object systems
from LSC specifications. Intl. Journal of Foundations of Computer Sci-
ence, 13(1):5–51, 2002.

52 REFERENCES

[HKP05] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Gen-
erating statechart models from scenario-based requirements. In Formal
Methods in Software and Systems Modeling, volume 3393 of LNCS, pages
309–324, 2005. Springer.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems, volume
13 of Nato Asi Series F: Computer And Systems Sciences, pages 477–
498, 1985. Springer.

[IT99] ITU-T. ITU Recommendation Z.Z.120: ”Message Sequence Chart
(MSC-2000)”. ITU, Geneva, 1999.

[Jac05] Michael Jackson. Problem frames and software engineering. Information
& Software Technology, 47(14):903–912, 2005.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthesiz-
ing components with sessions from collaboration-oriented service speci-
fications. In Proc. of the 13th Intl. SDL Forum, volume 4745 of LNCS,
pages 166–185, Paris, 2007. Springer.

[KEK01] Ismäıl Khriss, Mohammed Elkoutbi, and Rudolf K. Keller. Automatic
synthesis of behavioral object specifications from scenarios. Journal of
Integrated Design & Process Science, 5(3):53–77, 2001.

[KGM+04] Ingolf H. Krüger, Diwaker Gupta, Reena Mathew, Praveen Moorthy,
Walter Phillips, Sabine Rittmann, and Jaswinder Ahluwalia. Towards
a process and tool-chain for service-oriented automotive software engi-
neering. In Proc. of the ICSE 2004 Workshop on Software Engineering
for Automotive Systems (SEAS), 2004.

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs
to statecharts. In Proc. of the IFIP WG10.3/WG10.5 Intl. workshop
on Distributed and parallel embedded systems (DIPES’98), pages 61–71.
Kluwer Academic Publishers, 1999.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service specification
by composition of collaborations–an example. In Proc. of the 2nd
Intl. Workshop on Service Composition (SERCOMP’06), pages 129–133,
2006. IEEE CS.

[KH07] Frank A. Kraemer and Peter Herrmann. Transforming collaborative
service specifications into eficiently executable state machines. In Proc.
of the 6th Intl. Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT’07), volume 7 of Electronic Communications of
the EASST, 2007.

[KKKR05] Gerhard Kramler, Elisabeth Kapsammer, Gerti Kappel, and Werner
Retschitzegger. Towards using UML 2 for modelling web service col-
laboration protocols. In Proc. of the 1st Intl. Conf. on Interoperability
of Enterprise Software and Applications (INTEROP-ESA’05), 2005.

53

[KM94] Kai Koskimies and Erkki Mäkinen. Automatic synthesis of state
machines from trace diagrams. Software - Practice and Experience,
24(7):643–658, 1994.

[KM03] Ingolf H. Krüger and Reena Mathew. Component synthesis from service
specifications. In proc. of the 2003 Intl. Dagstuhl Workshop on Scenar-
ios: Models, Transformations and Tools, volume 3466 of LNCS, pages
255–277, 2005. Springer.

[Krü00] Ingolf H. Krüger. Distributed system design with message sequence
charts. PhD thesis, Institut für Informatik, Technische Universität
München, 2000.

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative sur-
vey of scenario-based to state-based model synthesis approaches. In
Proc. of the 5th Intl. workshop on Scenarios and State Machines: mod-
els, algorithms, and tools (SCESM’06), pages 5–12, 2006. ACM Press.

[LMR98] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM models
from message sequence chart specifications. Technical report, Dept. of
Electrical and Computer Engineering, April 1998.

[Loh03] Markus Lohrey. Realizability of high-level message sequence charts: clos-
ing the gaps. Theoretical Computer Science, 309(1-3):529–554, 2003.

[MKS00] Madhavan Mukund, K. Narayan Kumar, and Milind A. Sohoni. Syn-
thesizing distributed finite-state systems from MSCs. In Proc. of the
11th Intl. Conf. on Concurrency Theory (CONCUR’00), volume 1877
of LNCS, pages 521–535. Springer, 2000.

[Mor02] Rémi Morin. Recognizable sets of message sequence charts. In proc. of
the 19th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’02), volume 2285 of LNCS, pages 523–534, 2002.

[MRW06] Arjan Mooij, Judi Romijn, and Wieger Wesselink. Realizability crite-
ria for compositional msc. In Proc. of the 11th Intl. Conf. on Alge-
braic Methodology and Software Technology (AMAST’06), volume 4019
of LNCS. Springer, 2006.

[MS01] Erkki Mäkinen and Tarja Systä. MAS - an interactive synthesizer to
support behavioral modelling in UML. In Proc. of the 23rd Intl. Conf. on
Software Engineering (ICSE’01), pages 15–24. IEEE Computer Society,
2001.

[MZ99] Nikolai Mansurov and D. Zhukov. Automatic synthesis of SDL models
in use case methodology. In proc. of the 9th Intl. SDL Forum (SDL’99),
pages 225–240. Elsevier, 1999.

[OMG05] Object Management Group (OMG). UML 2.0 Superstructure Spec., July
2005.

54 REFERENCES

[OMG07] Object Management Group (OMG). UML 2.1.1 Superstructure Spec.,
February 2007.

[Pha05] Quoc Tuan Pham. Policy-based service personalization. Master’s thesis,
Dept. of Telematics, Norwegian University of Science and Technology
(NTNU), 2005.

[PS91] Robert L. Probert and Kassem Saleh. Synthesis of communication
protocols: Survey and assessment. IEEE Transactions on Computers,
40(4):468–476, 1991.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Proc. of the 10th Intl. SDL Forum
(SDL’01), volume 2078 of LNCS, pages 72–89. Springer-Verlag, 2001.

[Run07] Ragnhild Kobro Runde. STAIRS – Understanding and Developing Spec-
ifications Expressed as UML Interaction Diagrams. PhD thesis, Faculty
of Mathematics and Natural Sciences, University of Oslo, 2007.

[San07] Richard Sanders. Collaborations, Semantic Interfaces and Service Goals
– a new way forward for Service Engineering. PhD thesis, Department
of Telematics, Norwegian Univ. Science and Technology, Trondheim,
Norway, March 2007.

[SD06] Jun Sun and Jin Song Dong. Design synthesis from interaction and
state-based specifications. IEEE Transactions on Software Engineering,
32(6):349–364, 2006.

[TOP] TOPCASED project. URL: http://www.topcased.org.

[UKM03] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral
models from scenarios. IEEE Transactions on Software Engineering,
29(2):99–115, 2003.

[UKM04] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Incremental elaboration
of scenario-based specifications and behavior models using implied sce-
narios. ACM Transactions on Software Engineering and Methodology,
13(1):37–85, 2004.

[VL85] Chris A. Vissers and Luigi Logrippo. The importance of the service
concept in the design of data communications protocols. In Proc. of
the IFIP WG6.1 5th Intl. Conf. on Protocol Specification, Testing and
Verification, pages 3–17. North-Holland Publishing Co., 1985.

[Whi07] Jon Whittle. Precise specification of use case scenarios. In Proc. of the
10th Intl. Conf. on Fundamental Approaches to Software Engineering
(FASE’07), volume 4422 of LNCS, pages 170–184, 2007. Springer

55

[WJ01] Roel Wieringa and David N. Jansen. Techniques for reactive system de-
sign: The tools in TRADE. In Proc. of the 13th Intl. Conf. on Advanced
Information Systems Engineering (CAiSE’01), volume 2068 of LNCS,
pages 93–107, 2001. Springer-Verlag.

[WJ06] Jon Whittle and Praveen K. Jayaraman. Generating hierarchical state
machines from use case charts. In Proc. of the 14th IEEE Intl. Conf. on
Requirements Engineering (RE’06), 2006.

[WS00] Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In Proc. of the 22nd Intl. Conf. on Software Engineering
(ICSE’00), pages 314–323. ACM Press, 2000.

[Zav01] Pamela Zave. Feature-oriented description, formal methods, and DFC.
In Proc. of the FIREworks Workshop on Language Constructs for De-
scribing Features, pages 11–26. Springer-Verlag, 2001.

[Zav03] Pamela Zave. Feature disambiguation. In Proc. of Feature Interactions
in Telecommunications and Software Systems VII, pages 3–9, Ottawa,
Canada, 2003.

[ZHJ04] Tewfik Ziadi, Löıc Hélouët, and Jean-Marc Jézéquel. Revisiting state-
chart synthesis with an algebraic approach. In Proc. of the 26th Intl.
Conf. on Software Engineering (ICSE’04), pages 242–251, 2004.

[ZZL07] Pengcheng Zhang, Yu Zhou, and Bixin Li. A service-oriented method-
ology supporting automatic synthesis and verification of component
behavior model. In Proc. of the 8th ACIS Intl. Conf. on Soft.Eng.,
Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD’07), pages 511–516. IEEE Computer Society, 2007.

Part II

Research Papers

59

A series of papers representing the main body of the thesis’ work is presented in
the following. Papers 1 to 4, as well as Paper 7 were all published in international,
peer-reviewed conferences. Papers 5 and 6 were published as technical reports.
These two reports complement and/or extend the work of a paper (not included
here) that was published in the international, per-reviewed APSEC’07 conference.

The format of the papers has been adapted to be included in this thesis, but
the papers’ content has not been modified and is presented here as it was originally
published. An exception is Paper 6, where a minor error has been corrected and an
endnote added to inform the reader. In other papers we have added extra material
at the beginning or the end to clarify some issues.

6

Paper 1

Synthesizing state-machine behavior from UML

collaborations and Use Case Maps

By Humberto Nicolás Castejón.

Published in the Proceedings of the 12th International SDL Forum, volume 3530 of
LNCS, pages 339-359. Springer, June 2005.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/11506843 24

61

Synthesizing State-machine Behaviour from UML
Collaborations and Use Case Maps

Humberto Nicolás Castejón Mart́ınez
NTNU, Department of Telematics, N-7491 Trondheim, Norway

humberto.castejon@item.ntnu.no

Abstract

Telecommunication services are provided as the joint effort of components,
which collaborate in order to achieve the goal(s) of the service. UML2.0
collaborations can be used to model services. Furthermore, they allow ser-
vices to be described modularly and incrementally, since collaborations can
be composed of subordinate collaborations. For such an approach to work, it
is necessary to capture the exact dependencies between the subordinate col-
laborations. This paper presents the results of an experiment on using Use
Case Maps (UCMs) for describing those dependencies, and for synthesizing
the state-machine behaviour of service components from the joint information
provided by the UML collaborations and the UCM diagrams.

6.1 Introduction

Telecommunication services are provided as the joint effort of active objects, which
collaborate in order to achieve a goal for their environment. Initiatives may originate
from any side, be simultaneous and possibly conflicting. This is what makes tele-
services interesting, but at the same time particularly challenging to design.

Traditional service engineering approaches have been object-oriented. They have
focused on modeling the total behaviour of objects, normally in terms of state-
machines. The disadvantage of focusing on the complete behaviour of objects is that
we only get a partial view of the services we want to design, which makes it difficult
to understand and analyze them. Since telecommunication services are the result of
collaborations among objects pursuing a goal, a collaboration-oriented approach to
service engineering seems more suitable [RGG01, FK01]. A collaboration view helps
to see the service as a whole, to define what roles are played by which objects, and
to express what service goal combinations must be met for the successful provision
of the service.

64 CHAPTER 6. PAPER 1

UML2.0 collaborations [OMG04, RJB04] are intended to describe partial func-
tionalities involving interactions among participating roles played by objects. There-
fore, they fit well with our understanding of service. An interesting characteristic of
UML collaborations is that they can be bound to a specific context, becoming col-
laboration uses, which in turn can be used in the definition of larger collaborations.
This feature enables a compositional and incremental design of services, which is de-
sirable, but which will only succeed if the dependencies between the collaborations
that are composed are explicitly captured [BC01].

This paper presents our approach to incremental service modeling using UML2.0
collaborations and motivates the need for explicitly expressing collaboration de-
pendencies in this approach (see Sect. 6.2). It continues with the results of an
experiment on using Use Case Maps (UCMs) [BC96, Buh98] for describing such de-
pendencies (see Sect. 6.3) and synthesizing the state-machine behaviour of service
components from the joint information provided by the UML collaborations and the
UCM diagrams (see Sect. 6.4). The paper finishes with a comparison between our
synthesis approach and other existing work (see Sect. 6.5), and with a summary of
the presented work (see Sect. 6.6).

6.2 Goal-Oriented Service Collaborations

In our service engineering approach we model services by means of UML2.0 collabo-
rations. They describe a structure of roles that collaborate to collectively accomplish
some task, that is, to achieve some goal. The collaboration roles specify the proper-
ties that object instances must have in order to participate in the collaboration. The
UML standard allows to associate behaviour with collaborations in several forms,
like, for example, as sequence diagrams involving the collaborating roles, and as
state-machines for the roles. Since our approach is collaboration-oriented, we pre-
fer to describe the behaviour of collaborations as sequence diagrams that show the
interactions between roles, rather than using state-machines for the roles.

Fig. 6.1 shows a UML collaboration diagram describing a UserLogon service.
From the diagram we can see that there are five roles involved in the collaboration
(represented by boxes). We can also see the relationships that are needed between
these roles to achieve the goal of the collaboration. For example, Terminal is associ-
ated with TerminalClientSession, which in turn is a part of TerminalAgent and it is
associated with UserTerminalSession. The diagram also shows one interesting aspect
of UML collaborations: they can contain other sub-collaborations in their definition,
expressed as collaboration uses. When this happens, the roles of the collaboration
uses are bound to the roles of the container collaboration (e.g. rr1 ’s requested role
is bound to TerminalAgent). Collaboration uses enable a modular design with small
collaborations as units of reuse. Modularity is a well-proven approach to break
down the complexity of systems; here we use it to structure services. It also pro-
motes separation of concerns and reuse. These aspects are reflected in the UserLogon
collaboration, which contains four sub-collaborations, namely rr1, rr2, lo and ua.
The two first, rr1and rr2, are instances of a RoleRequest collaboration, while lo and
ua are instances of a Logon and a UserAuthenticate collaboration, respectively. We

SYNTHESIZING STATE-MACHINE BEHAVIOUR 65

Terminal

Terminal
Agent

Terminal
ClientSession

UserAgent

UserTerminal
Session

rr1:Role
Request

requestor

requested

invoked

rr2:Role
Request

requestor invoked

requested

ua:User
Authenticate

lo:Logon

 loTerm loAgent uaAgentuaTerm

UserLogOn

s_goal.loggedOn =
loTerm.s_goal:loggedOn

loAgent.s_goal:loggedOn

s_goal.userLoggedOn =
rr1.s_goal:playing
 rr2.s_goal:playing

 ua.s_goal:authenticated
 lo.s_goal:loggedOn

Collaboration

Collaboration
Use

Collaboration Use
role

Collaboration
role

Figure 6.1: UML 2.0 Collaboration for UserLogon Service

can see that the RoleRequest collaboration has been reused. We also appreciate how
separation of concerns has been achieved by separately defining the interactions be-
tween Terminal and TerminalClientSession, and between TerminalClientSession and
UserTerminalSession. Indeed, although logon and authentication protocols are re-
lated, they are not exactly the same. For example, it may be perfectly possible for
two different logon protocols to make use of the same authentication protocol.

We have just seen the benefits of defining collaborations in terms of other smaller
collaborations. However, when looking at Fig. 6.1 we can guess how UserLogon
works, but we do not exactly know how it does it. Even if we know how each of
the four small sub-collaborations works in isolation, we do not know how they work
together. Does rr1 happen before lo or afterwards? Does lo finish before ua starts
or do they overlap? Can lo succeed with independence of what happens to ua or
does it depend on its result? These are questions that we have to answer if we
really aim at composing collaborations, and we can do it by explicitly describing the
dependencies between collaborations, that is, their inter-relationships.

Sanders [SB04] has proposed associating goals with services considered as collab-
orations as a means to express liveness properties. Event goals (e goals) are desired
events, while state goals (s goals) are properties of collaboration global states that
we wish to reach and entail combinations of role goals. Sanders found that service
goals may also be used to express the dependencies that exist between collabora-
tions. These goals become then synchronization points between collaborations. For
example, we may say that when rr1 ’s goal is achieved, lo is enabled, that is, it can
happen. Following this approach the problem of showing the dependencies between
collaborations turns into the problem of showing the dependencies between their
goals, but we still miss a good solution to show such dependencies. Sanders, for
example, defined the goal of UserLogon (s goal:userLoggedOn) as a logical AND-
operation over the goals of its subordinate collaborations, as depicted in Fig. 6.1.
However, while such an expression reveals that UserLogon only succeeds if all its

66 CHAPTER 6. PAPER 1

subordinate collaborations also succeed, it still does not tell us the order in which the
collaboration goals are achieved. To overcome that limitation Sanders also experi-
mented with several UML concepts to describe goal dependencies, such as activity
diagrams and interaction overview diagrams. These diagrams are good at express-
ing sequential and parallel relationships, but they do not meet all our needs, since
they fail to express finer relationships between intermediate goals, as those existing
when two collaborations overlap. For example, in UML activity diagrams activities
can be nested, so if we represent collaborations as activities, it would be possible to
show (to some extent) that, for example, lo only succeeds if ua also succeeds, by
nesting ua inside lo. However it does not seem possible to show, for example, that
a collaboration starts, after certain time enables a second collaboration, and from
then on both run in parallel (see Fig. 6.3c).

Since UML diagrams do not meet all our needs, we have analysed Use Case Maps
to see if they offer better support for expressing goal dependencies, since they are
well known for their ability to explicitly capture inter-scenario relationships. The
result has been promising, since we have been able to successfully describe several
types of dependencies. Moreover, we have experimented with the synthesis of state-
machines for collaboration roles using the UCM information to guide the process,
and the results are again promising. We take a closer look at these two aspects in
the next sections.

6.3 UCMs for Describing the Goal-based

Progress of Collaborations and their

Inter-Relationships

Use Case Maps (UCMs) [BC96, Buh98] are a scenario-based graphical notation used
to describe causal relationships between responsibilities (e.g. tasks, actions, etc),
which may be bound to abstract components. Basically, UCMs order responsibilities
along a path and link causes (e.g. preconditions or triggering events) to effects (e.g.
post-conditions). With UCMs several scenarios can be easily integrated in a single
diagram. This is quite useful for showing interactions between the scenarios and
understanding their combined behaviour.

In Sect. 6.2 we argued that the dependencies between collaborations can be
expressed in terms of their goals. That is, by relating the event and state goals of
different collaborations we can effectively capture their inter-relationships. Our aim
is to use UCMs to:

1. describe the goal-based progress of each collaboration (i.e. the causal relation-
ships between its event and state goals) in isolation;

2. integrate the individual UCMs into more elaborated diagrams that show the
dependencies between the individual collaborations.

An example is given in Fig. 6.2, where separated UCMs for the RoleRequest, User-
Authenticate and Logon collaborations are shown on the upper-side, and their in-

SYNTHESIZING STATE-MACHINE BEHAVIOUR 67

rr.start rr.s_goal:playing

rr.fail

(a) UCM for RoleRequest and Plug-in for rr1 and
rr2 stubs

(b) UCM for UserAuthenticate and Plug-in for
ua stub

ua.start

ua.fail
ua.s_goal:

userAuthenticated

lo.start lo.s_goal: loggedOn
lo.e_goal:

logonRequested

lo.fail

(c) UCM for Logon

(d) UCM for UserLogon

IN1 IN1
OUT1OUT1

OUT2

UserLogon.fail

OUT2

loCCrr1
UserLogon.start

UserLogon.s_goal:
userLoggedOn

(e) Plug-in for loCC stub

lo.start

lo.s_goal:
loggedOn

IN1

lo.e_goal:
logonRequested

OUT1 IN1

OUT2 OUT2

OUT1

[ua.s_goal:
userAuthenticated]

[rr2.fail OR ua.fail]
lo.fail

rr2 ua

rr1's binding:

{(IN1,rr1.start),
(OUT1,rr1.s_goal:playing),
(OUT2,rr1.fail)}

rr2's binding:

{(IN1,rr2.start),
(OUT1,rr2.s_goal:playing),
(OUT2,rr2.fail)}

ua's binding:

{(IN1,ua.start),
(OUT1,ua.s_goal:userAuthenticated),
(OUT2,ua.fail)}

loCC's binding:

{(IN1,lo.start),
(OUT1,lo.s_goal:loggedOn),
(OUT2,lo.fail)}

rr2_ua_WP

Start-point

Waiting-places

Responsibility

Stub

End-point

Condition

Figure 6.2: UCMs for the UserLogon Service

tegration into more complex UCMs for the UserLogon collaboration is shown on
lower-side. We will explain the dependencies expressed by these UCMs in Sect.
6.3.2, but before we will briefly explain the basic UCM elements and how we use
them.

68 CHAPTER 6. PAPER 1

6.3.1 Basic UCM Notation

It is not the scope of this paper to explain how UCMs work, so we will just briefly
explain the UCM notational elements needed to understand the figures and concepts
presented here. Those notational elements are highlighted in Fig. 6.2. For a more
detailed explanation of them, and of UCMs in general, please refer to [BC96, Buh98].

In the UCM notation paths (depicted as lines) represent scenario flows, so we
have used them to represent the lifeline of collaborations. They connect start-
points with responsibilities and end-points. A start-point (labeled with «collabora-
tion name.start») is a pre-condition or triggering cause that symbolizes the begin-
ning of a collaboration, while an end-point is a post-condition representing one of its
possible outcomes in terms of achievement or not of its goal(s). End-points represent-
ing achievement of state goals are labeled with «collaboration name.s goal:goal name»,
while those representing failure are labeled with «collaboration name.fail». Fig. 6.2a
exemplifies the use of these notational elements. The figure shows a simple collab-
oration that, after starting, it can reach any of two final states: one representing
the achievement of its goal (labeled rr.s goal:playing); the representing failure on
achieving its goal (labeled rr.fail).

Responsibilities are intended to represent generic tasks or actions. We use them,
however, to represent event goals, that is, to show that collaboration achieve some
progress (see Fig. 6.2c). Therefore, we interpret responsibilities as “tasks to achieve
some progress”. We understand that this use of responsibilities is not completely
rigorous, but we think it is acceptable1.

Static stubs can be used to better structure a large diagram. They are containers
for sub-maps (called plug-ins) and, in our approach, represent collaboration uses.
This is an elegant way of representing the composition of a collaboration from other
subordinate collaborations. An example of the use of stubs can be seen in Fig. 6.2d,
where the UserLogon collaboration is composed of two other collaborations, namely
rr1 and loCC. The plug-ins for these collaborations are shown in Figs. 6.2a and
6.2e respectively. Fig. 6.2d (at the sides) also shows how the bindings between the
inputs and outputs of a stub and the start- and end-points of its plug-in are defined.

Waiting places are points where the path waits for an event to happen (e.g. an
arrival along a tangentially connected path or a connected end-point). They con-
stitute points where interactions with the environment or other paths can happen,
so they can be used to couple collaborations and so express causal dependencies
between them. As guard conditions for waiting places we use logical expressions in
terms of event and/or state goals of the triggering collaboration. The use of waiting
places is illustrated in Fig. 6.2e, where two waiting places are shown. The first one
(to the left) is activated when there is an arrival on the lo’s path, that is, after lo
achieves logonRequested progress. When this happens, the collaboration represented
by the rr2 stub is enabled. The second waiting place (to the right) is used to make
the lo collaboration wait for the outcome of ua and/or rr2.

AND-/OR- forks and joins can be used to, respectively, split and merge paths.

1If this interpretation was not acceptable we may use open waiting places (see [BC96]) instead
of responsibilities

SYNTHESIZING STATE-MACHINE BEHAVIOUR 69

6.3.2 Dependency Patterns

A side-effect of decomposing the interactions between components into small col-
laborations is, as we have already pointed out, that the dependencies between the
resulting collaborations must be explicitly captured. The majority of these depen-
dencies can be classified as: sequential dependencies, if they impose a temporal
ordering between collaborations; or as goal dependencies, if the goal of a collabora-
tion depend on the goal(s) of other collaboration(s).

We can express collaboration dependencies using UCMs. To do it, we have
to couple the UCMs that represent each individual collaboration according to the
patterns that we present below.

Sequential Dependencies.

Sequential dependencies impose a temporal ordering between collaborations. If a
collaboration c2 depends sequentially on other collaboration c1, we say that c1
enables c2. Two UCM patterns can be used to express sequential dependencies
between collaborations. The selection of the appropriate pattern is made according
to the nature of the condition that enables the dependent collaboration.

If the collaboration c2 is enabled when c1 achieves (or not) its goal, the appro-
priate end-point of c1 is connected with the start-point of c2 (see Fig. 6.3a). In
situations where stubs are used to represent collaborations, the appropriate output
of the “enabling” stub is interconnected with the input of the “enabled” stub (see
Figs. 6.3b and 6.2d).

(b)

(a)

IN1 OUT1 IN1 OUT1

OUT3 OUT2OUT2 OUT3

c1 c2

c1.s_goal:g1

c2.start

(c)

c1.start

c1.s_goal:
g1

c1.e_goal:
e1

c1.fail2
c1.fail1

c2

c1.e_goal:
e2

c2.s_goal:
g1

c2.fail2c2.fail1enabling_point

IN1 OUT1

OUT2
OUT3

Figure 6.3: Sequential Dependencies

If the collaboration c2 is enabled when c1 achieves some progress (i.e. reaches
an event goal), the start-point of c2 is tangentially connected to the path of c1, just
after the responsibility representing the event goal that enables c2. Note that if a
stub is used to represent c2, its start-point is not directly connected to the path of
c1. However, this connection happens indirectly through an auxiliary path with its
start-point connected tangentially to c1 ’s path, and its end-point merged with the
input of the stub. This is shown in Fig. 6.3c, where c2, represented by a stub, is

70 CHAPTER 6. PAPER 1

enabled when c1 achieves event goal e1 (setting its value to true). Note also that
in order for the interconnection to be effective, the enabling point waiting place2

must have its guard condition set to c1.e goal:e1 == true. After c2 is enabled, both
collaborations, c1 and c2, run concurrently.

Goal Dependencies.

A goal dependency exists when a collaboration depends on the success of other
collaboration(s) in order to achieve its own goal(s). This dependency can be either
total or partial. When a collaboration C has no own behaviour, but its behaviour
has been completely specified by reusing other collaborations, we talk about total
goal dependency. In this case, C ’s goal is completely specified in terms of the other
collaborations’ goals (e.g. C.goal = c1.goal ∧ c2.goal). However, if the achievement
of C ’s goal not only depends on the achievement of other collaborations’ goals, but
also on the progress achieved by C itself, we talk about partial goal dependency.

We can show a total goal dependency using a UCM for the main collaboration
that does not include any responsibility, and in which the subordinate collaborations
are stubs. This is illustrated in Fig. 6.2d, where the UserLogon collaboration is
composed of two other collaborations, namely rr1 (see Fig. 6.2a) and loCC (see
Fig. 6.2e). The interpretation of UserLogon’s UCM is as follows. When UserLogon
starts, rr1 is automatically enabled and runs to completion. If it fails to achieve
its goal, so does UserLogon. But if rr1 succeeds, loCC is enabled, which also
runs to completion. In the same way as before, if loCC fails, so does UserLogon,
but if it succeeds, UserLogon achieves its goal. Therefore, this UCM tells us both
the execution order of the collaborations and the goal dependency that UserLogon
maintains with rr1 and loCC.

According to Fig. 6.2d, UserLogon.fail = rr1.fail ∨ lo.fail . We may have given
a different meaning to UserLogon.fail (or even have defined several types of failure)
just by connecting the outputs of the stubs in a different manner, with help of
OR-joins and AND-joins.

Note also that UserLogon is a composition of rr1 and loCC, where loCC is in
turn a composition of rr2 and ua. This exemplifies how collaborations can be nested
in several levels.

A partial goal dependency can be illustrated applying the patterns depicted in
Fig. 6.4 or Fig. 6.5. The key aspect behind both patterns is the interconnection of
the collaboration UCMs by means of waiting places.

Fig. 6.4 shows a case in which a subordinate collaboration c2 is enabled when
the main collaboration c1 achieves certain progress. Then c1 waits for c2 to run
to completion and, depending on c2 ’s goal outcome, c1 either succeeds itself or
not. This is the same type of dependency expressed in Fig. 6.2e, where the lo
collaboration is partially goal dependent on rr2 and ua collaborations.

There are four aspects that deserve explanation in this pattern:

2enabling point is actually a start-point, but start-points are special waiting places for a stim-
ulus to start a path

SYNTHESIZING STATE-MACHINE BEHAVIOUR 71

+
MAIN

COLLABORATION

OUT1

OUT2
OUT3

IN1
c2SUBORDINATE

COLLABORATION

c1.start

c1.s_goal:g1

c1.e_goal:
e1

c1.e_goal:
e2

[c2.s_goal:g1]

c1.fail2

[c2.fail1]

c1.fail1

[c2.fail2]

c2

c1.start

c1.s_goal:g1

c1.e_goal:e1

c1.e_goal:e2

c1.fail2
c1.fail1

INTER-RELATIONSHIPS

=

OUT1

OUT2
OUT3

IN1

Waiting-place
added

Conditions
added

Figure 6.4: Partial Goal Dependency (I)

1. There is no interaction between c1 and c2 other than the one at the beginning
and at the end of c2. That is, the subordinate collaboration, once enabled,
runs without interruption. It is therefore that we use a stub to represent it.

2. The subordinate collaboration is actually sequentially dependent on the main
collaboration. To express that its start-point is tangentially connected to the
path of the main collaboration, just after the responsibility that represents the
enabling event goal.

3. A waiting place is added to the main collaboration’s path at the point where
the end-point of the subordinate collaboration must be connected. The main
collaboration waits there for the subordinate one to finish.

4. Conditions expressed in terms of the subordinate collaboration success or fail-
ure are added to the OR-joins of the main collaboration. By doing this we join
pre-conditions (related to the subordinate collaboration) with post-conditions
(related to the main collaboration).

72 CHAPTER 6. PAPER 1

c1.start
c1.s_goal:g1

c1.e_goal:
e1

c1.e_goal:
e2

[c2.fail1]

c1.fail1

[c2.s_goal:g1]

[c2.fail2]

c1.fail2

c2.start

c2.s_goal:g1
c2.e_goal:e1

c2.fail1
c2.fail2

+

c2.start

c2.s_goal:g1

c2.e_goal:e1

c2.fail1

c2.fail2

SUBORDINATE
COLLABORATION

CONNECTORS

c1.start
c1.s_goal:g1

c1.e_goal:
e1

c1.e_goal:
e2

c1.fail1
c1.fail2

MAIN COLLABORATION

INTER-RELATIONSHIPS

+

=

Conditions
added

Figure 6.5: Partial Goal Dependency (II)

The collaboration composition presented in Fig. 6.5 is slightly more complicated.
Here the collaborations do not only interact at the beginning and at the end of
the subordinate collaboration, but also at intermediate points of the latter collab-
oration’s lifetime. The only difference thus with the previous case is that we have
to interconnect the two collaborations at those intermediate points. This is done
by using the connectors illustrated in Fig. 6.5. They are paths with one or more
start-points, one end-point, and one waiting place connected to the end-point. The
start-points are connected to the enabling collaboration and the waiting-place is
inserted into the path of the enabled collaboration. Note that both the main and
the subordinate collaborations can adopt, at different times, the roles of enabling
and enabled collaborations, depending on the concrete interactions that take place
between them.

SYNTHESIZING STATE-MACHINE BEHAVIOUR 73

6.4 Towards Automatic Synthesis of

State-Machines

The proposed service engineering process ends up with the translation from the
collaboration-oriented view, where a service is described as a collaboration, into the
object-oriented view, where the total behaviour of the service objects participating
in the service provision is described as state-machines. This translation process ba-
sically consists on building the state-machines of the collaboration roles and binding
them to instances of objects. This could be a trivial step if a collaboration was not
decomposed into smaller sub-collaborations. However, when decomposition is used,
as it is the case for the UserLogon collaboration presented in Fig. 6.1, the process is
not so trivial. In the figure we see that an object playing the TerminalClientSession
role will indeed play four sub-roles3: rr1, lo, rr2 and ua; each one in a different
sub-collaboration. Therefore, we have to compose the state-machines of those four
sub-roles in order to synthesize the behaviour of TerminalClientSession. We need to
know then the order in which the roles are played, and if their executions overlap
or not. This information can be extracted from the UCM describing the UserLogon
collaboration (see Fig. 6.2d).

The synthesis process we present here allows to mechanically generate the afore-
mentioned state-machines. In Sect. 6.2 we mentioned that, in our approach, the be-
haviour of each collaboration is described with sequence diagrams. These diagrams
are taken as input for the synthesis process, as well as the UCM representing the
service collaboration, which shows the dependencies between its sub-collaborations.
In the following we will refer to this UCM as “the composite UCM”.

For each collaboration role, the process for synthesizing the state-machine of
an object playing that role consists of four steps. These are explained below, and
exemplified with the synthesis of a fraction of the state-machine of an object playing
the TerminalClientSession role:

1. Determine the sub-collaborations4 the object participates in. This is necessary
because the composite UCM may contain information about other collabora-
tions not relevant for this object, which should be ignored.
Store the collaboration names, together with the name of the role the object
plays in each collaboration, in a table, which we will refer to as the Role Table.
Table 1 is the Role Table for TerminalClientSession.

2. For each collaboration and role in Table 1, project its associated sequence
diagram into the lifeline of the role. This is done to obtain, for each role,
an automaton (still with goal information) describing its behaviour in the
collaboration. Note that this automaton may be stored in the collaboration,
to be reused in the future. This process is shown in Fig. 6.6 for some of the
sub-roles of TerminalClientSession.

3The UML standard does not use the word sub-role when talking about collaboration use roles
that are bound to collaboration roles. However the informal interpretation is that of roles of a role,
or just sub-roles as we like to call them

4For the sake of simplicity, the prefix sub will be omitted in the following, but the reader should
be aware that when we say “collaboration” we really mean “sub-collaboration”

74 CHAPTER 6. PAPER 1

Table 6.1: Role Table for the TerminalClientSession

Collaboration Collaboration Role

rr1 invoked
lo loAgent
rr2 requestor
ua uaTerm

3. Use the composite UCM (see Fig. 6.2) to guide the composition of the au-
tomata generated in step 3 into a state-machine. The UCM is traversed and
the automata (as a whole or in parts) are added to the final state-machine
attending to the events we find in the UCM’s paths. This is done according
to the algorithm described in the Appendix.

4. As a final step, suppress any state existing between consecutive input and
output transitions.

It should be noted that the synthesized state-machine is not complete, because it
does not include internal actions, which have to be added at a later stage by the
designer. We plan to look at how this can be done in future work.

6.4.1 An Example

In this section we illustrate how the state-machine of an object playing the Terminal-
ClientSession role can be intuitively synthesized from the joint information provided
by the composite UCM for UserLogon and the automata for the invoked, requestor,
uaTerm and loAgent roles.

Looking at Fig. 6.2d, we see that just after UserLogon starts, the rr1 stub is
found. Its plug-in (see Fig. 6.2a) indicates that the rr1 collaboration starts. Since
TCS participates in rr1, playing the invoked role, we study the details of the plug-in.
It indicates that rr1 starts and runs to completion without interruptions, so we add
the whole automaton for the invoked role to the TCS state-machine (see Fig. 6.7,
step 1). After the rr1 stub, we find the loCC stub. When we look at its plug-in
(see Fig. 6.2e) we see that lo starts. TCS also participates in this collaboration,
where it plays the loAgent role. We therefore look at the details of the plug-in and
see that a responsibility corresponding to logonRequested event goal is reached. As
a result, we take, from the loAgent automaton, the transitions and states placed
between the start symbol and the transition marked with e goal:logonRequested (in-
clusive) and add them to the TCS state-machine (see Fig. 6.7, step 2). Following
the UCM we see that a new path containing two stubs, namely rr2 and ua, is trig-
gered, while lo waits at the rr2 uaWP waiting place. These two stubs represent two
collaborations which TCS participates in, playing the requestor and uaTerm roles in
them, respectively. Therefore, we add the whole automaton for both the requestor
and the uaTerm roles to the TCS state-machine. Note, that the requestor ’s au-
tomaton is added after the transition marked with e goal:logonRequested (see Fig.
6.7, step 3), since the UCM’s interpretation is that e goal:logonRequested enables

SYNTHESIZING STATE-MACHINE BEHAVIOUR 75

sd RoleRequest

requestor requested

RoleReq

RoleDeniedalt

fail

RoleConfirm

s_goal:playing

invoked

RolePlay

<<create>>

requestor_S0

RoleReq

requestor_S2

requestor_S1

RoleConfirm RoleDenied

requestor_S3

requestor

{fail}{s_goal:
playing}

loAgent_S0

LogonReq

loAgent_S2

loAgent_S1

LogonRes LogonErr

loAgent_S3

loAgent

{e_goal:
logonRequested}

{fail}{s_goal:
loggedOn}

sd Logon

loTerm loAgent

LogonReq

LogonResalt

s_goal:loggedOn

LogonErr

fail

{e_goal:
logonRequested}

uaTerm_S0

UserAuthenticationReq

uaTerm_S1

uaTerm

{fail}uaTerm_S2

UserAuthenticationValid UserAuthenticationInvalid

uaTerm_S3

sd UserAuthenticate

uaTerm aUA

UserAuthenticationReq

UserAuthenticationValid
alt

s_goal:userAuthenticated

UserAuthenticationInvalid

fail {s_goal:
userAuthenticated}

Figure 6.6: Projection of Interactions into Collaboration Roles

rr2 and thus the requestor role. The uaTerm’s automaton is added, in turn, after
the state marked with s goal:playing (see Fig. 6.7, step 4), since the UCM tells us
that rr2.s goal:playing enables ua. Following the UCM we arrive to the rr2 uaWP
waiting place where lo was waiting. That means that lo is enabled again. The

76 CHAPTER 6. PAPER 1

UCM indicates that if ua.s goal:userAuthenticated was achieved, lo achieves its own
goal. Thus we take, from the loAgent automaton, the transitions and states placed
between the transition marked with e goal:logonRequested (i.e. the point where we
stopped last time) and the state marked with s goal:loggedOn (inclusive) and add
them to the TCS state-machine. The addition is performed at the state marked
with ua.s goal:userAuthenticated in the TCS state-machine (see Fig. 6.7, step 5).
In much the same way, we take, from the loAgent automaton, the transitions and
states placed between the transition marked with e goal:logonRequested and the
state marked with fail (inclusive) and add them to the TCS state-machine, at the
states marked with rr2.fail or ua.fail (see Fig. 6.7, step 6).

The synthesis of the state-machine for TCS is now finished. However the resulting
state-machine is not totally correct. As a final step we need to suppress any state
existing between consecutive input and output transitions. This is also shown in
Fig. 6.7.

6.5 Related Work and Discussion

The idea of synthesizing state-machines/state-charts from scenario models is not
new, as demonstrated by the number of existing publications in this area. Quite a
few papers have been published proposing automatic synthesis approaches that make
use of extra information to guide the synthesis process, for example [LMR98, MZ99,
WS00, KGSB99, UKM03]. Our approach is however not currently automated, but
there is nothing that prevents its automatization.

Leue et al. [LMR98] use HMSCs to explicitly compose a set of MSCs from which
ROOM statecharts are synthesized. Mansurov and Zhukov[MZ99] also use HMSCs
in their synthesis of SDL state-machines. HMSCs asbtract away the details of MSCs
and give a high-level view of the relation between scenarios. The disadvantage, how-
ever, of using HMSCs (and their UML counterparts Interaction Overview Diagrams)
is their lack of support for describing composition of overlapping scenarios, like for
example those described by the Logon (lo) and UserAuthenticate (ua) collabora-
tions (see Figs. 6.1 and 6.6). To express the composition of these two collaborations
with a HMSC we should split the sequence diagram associated with the Logon col-
laboration in two diagrams. By using UCMs to describe the goal-oriented progress
of collaborations we also abstract away the details of sequence diagrams, while we
are able to describe the composition of overlapping collaborations.

Krüger et al. [KGSB99] adopt a different approach for the synthesis of statecharts
from a set of MSCs. Instead of explicitly describing the composition of MSCs, state
information is included in them, so different MSCs are related on the basis of similar
states. This can be compared to our use of state and event goals, which we include
in the sequence diagrams associated with the collaborations (see Fig. 6.6) to help
during the synthesis process. However, in our approach, the state and event goals
are not shared between sequence diagrams belonging to different collaborations, as
it would be required in order to apply the Krüger et al.’s approach. In contrast,
we relate the goals of different collaboration by means of UCMs. Our approach
promotes, thus, reuse and separation of concerns between scenarios, at the time
that makes explicit their inter-relationships.

SYNTHESIZING STATE-MACHINE BEHAVIOUR 77

invoked_S0

RolePlay

invoked_S1

RoleConfirm

invoked_S2, loAgent_S0

LogonReq
{lo.progress:
logonRequested}

{rr1.goal:playing}

loAgent_S1, requestor_S0

RoleReq

requestor_S1

RoleConfirm RoleDenied

requestor_S3{rr2.fail}requetor_S2, uaTerm_S0

UserAuthenticationReq

uaTerm_S1

{ua.fail}
uaTerm_S2

UserAuthenticationValid UserAuthenticationInvalid

uaTerm_S3

{rr2.goal:
playing}

loAgent_S2

LogonRes

{lo.goal:
loggedOn}

LogonErr

loAgent_S3
{lo.fail}

States between
consecutives inputs
and outputs are
supressed

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

{ua.goal:
userAuthenticated}

Figure 6.7: Synthesized State-machine for TerminalClientSession

The approach by Whittle and Schumann [WS00] also advocates for including
extra information in the scenarios in order to relate them. Pre- and post-conditions,
expressed in OCL, are used to give semantic to the messages of UML sequence di-

78 CHAPTER 6. PAPER 1

agrams, from which UML state-charts are generated. The proposed synthesis algo-
rithm does not, however, support overlapping scenarios. This is the main drawback
of this approach. Other disadvantage is its low-level of abstraction, since constraints
are specified on a per-message basis. Its scalability could also be argued, since its
application to large systems with many scenarios and interactions will probably be
a tedious work. On the contrary, with UCMs it is easier to inter-relate the scenarios
(i.e. collaborations) of large systems in a structured way.

Uchitel et al. [UKM03] present an MSC language with semantics based on sce-
nario composition, state identification and label transition systems (LTS). They
further present an approach for synthesizing label transition systems (LTS) from a
set of scenarios described in their MSC language. This approach, as ours, tries to
combine the benefits of approaches using scenario composition, such as [LMR98] and
[MZ99], with the benefits of approaches using state identification, such as [KGSB99]
and [WS00]. Moreover, the authors show how their approach can be used to support
other synthesis approaches and make their assumptions explicit. The drawback of
Uchitel et al.’s approach is, however, its lack of support for overlapping scenarios.

A semi-automatic approach for the synthesis of UML state-charts from a set of
UML sequence diagrams is given by Mäkinen and Systä in [MS01]. In their approach
no extra information is used to guide the synthesis process. UML sequence diagrams
are considered to represent example cases that can be treated in any order. If an am-
biguity is found during the synthesis, the user is consulted. This approach recognizes
the difficulty of precisely defining the dependencies between scenarios, which, by its
nature, are incomplete and many times overlapping. Specially interesting in this
approach is the ability to discover ambiguities in a set of scenarios. Its drawback,
however, is the total absence of extra information to guide the synthesis process,
which makes it too dependent on the user. It would be interesting to study how
the approach we present here may benefit from the ability to discover ambiguities
of Mäkinen and Systä’s approach.

The work presented here is not the first one that uses UCMs for the synthesis of
state-machines from scenarios. In [Bor99], [Sal01] and [HAW03] UCMs are also used
for that purpose. The differences with our approach lies, however, on the concrete
use of UCMs that is done. We use UCMs to describe the dependencies between
collaborations at a high level of abstraction. In contrast, Sales [Sal01] uses UCMs to
describe SDL state-machines, while both Bordeleau [Bor99] and He et al. [HAW03]
use UCMS, at an initial stage, to capture the requirements of services. Then UCMs
are translated into MSCs, which are finally used to synthesize SDL state-machines.
The approach by He et al. [HAW03] is fully automated, thanks partially to the use
of the UCMNav tool [Mig98, UCM], which permits to graphically construct UCMs
and translate them into MSCs, as well as export the UCMs as XML files. These
files could be used in the automatization of our approach.

6.6 Conclusions

We have presented a service modeling approach that uses UML2.0 collaborations, se-
quence diagrams and UCMs in a complementary way. UML collaborations are used

SYNTHESIZING STATE-MACHINE BEHAVIOUR 79

to describe services as a structure of roles collaborating to perform a task or achieve
a goal. They help to get a high-level view of services. The low-level details of the
collaborations are then given in the form of associated sequence diagrams annotated
with goal information. A strong feature of UML collaborations is the possibility to
compose them from other smaller sub-collaborations (by using collaboration uses).
This allows for a modular approach that promotes reuse and separation of concerns.
However, we argue that for such an approach to work, collaboration dependencies
must explicitly be described. We use UCMs for this purpose. They are used to
describe causal relationships between the event and state goals of isolated collabo-
rations and to effectively relate goals of different collaborations.

Several patterns for the illustration of goal and sequential dependencies between
collaborations using UCMs have been proposed. They are not intended to cover all
possible cases of dependencies, but just as a starting point in this way.

An experiment has been performed to synthesize the state-machine of a collab-
oration role from other smaller roles. As input for this process we have used the
information provided by the UML collaborations, in the form of sequence diagrams,
and the dependency information provided by a UCM. The results have been satisfac-
tory for small services, as the one presented here. However, we need to experiment
with other more complex services to really understand the potential of our synthesis
approach.

The work presented here is, however, at an early stage of maturity. Further
research has to be done in several directions. We are currently working with the
improvement and implementation of the synthesis algorithm. We are also investi-
gating rules for choosing appropriate event and state goals, as well as studying the
formalization of goals expressions in terms of temporal logic. We would like to study
further the classification of dependencies and their illustration with UCMs, so as to
make their scope larger. Finally, we would like to extend our approach to the gener-
ation of Hierarchical State Machines, as we believe they provide better support for
evolving systems.

Acknowledgements

The author would specially like to thank Rolv Bræk, Frank Kræmer and Richard
Sanders for their useful comments on this work.

References

[BC96] R. J. A. Buhr and R. S. Casselman. Use case maps for object-oriented
systems. Prentice-Hall, Inc., 1996.

[BC01] Francis Bordeleau and Jean-Pierre Corriveau. On the importance of
inter-scenario relationships in hierarchical state machine design. In Hein-
rich Hußmann, editor, Proc. of the 4th Intl. Conf. on Fundamental Ap-
proaches to Software Engineering (FASE’01), volume 2029 of Lecture
Notes in Computer Science, pages 156–170. Springer-Verlag, 2001.

80 CHAPTER 6. PAPER 1

[Bor99] Francis Bordeleau. A Systematic and Traceable Progression from Sce-
nario Models to Communicating Hierarchical State Machines. PhD the-
sis, Department of Systems and Computer Engineering, Faculty of Engi-
neering ,Carleton University, Ottawa, 1999.

[Buh98] R. J. A. Buhr. Use case maps as architectural entities for complex sys-
tems. IEEE Transactions of Software Engineering, 24(12):1131–1155,
1998.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular verification of
collaboration-based software designs. In ESEC/FSE-9: Proceedings of
the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software en-
gineering, pages 152–163. ACM Press, 2001. Conference Chair-A. Min
Tjoa and Conference Chair-Volker Gruhn.

[HAW03] Yong He, Daniel Amyot, and Alan W. Williams. Synthesizing SDL from
use case maps: An experiment. In Rick Reed and Jeanne Reed, editors,
SDL Forum, volume 2708 of Lecture Notes in Computer Science, pages
117–136. Springer, 2003.

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs
to statecharts. In DIPES ’98: Proceedings of the IFIP WG10.3/WG10.5
international workshop on Distributed and parallel embedded systems,
pages 61–71. Kluwer Academic Publishers, 1999.

[LMR98] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM models from
message sequence chart specifications. Technical report, Dept. of Elec-
trical and Computer Engineering, April 1998.

[Mig98] Andrew Miga. Application of use case maps to system design with tool
support. Master’s thesis, Dept. of Systems and Computer Engineering,
Carleton University,Ottawa, 1998.

[MS01] Erkki Mäkinen and Tarja Systä. MAS - an interactive synthesizer to sup-
port behavioral modelling in UML. In Proc. 23rd Intl. Conf. on Software
Engineering (ICSE’01), pages 15–24. IEEE Computer Society, 2001.

[MZ99] Nikolai Mansurov and D. Zhukov. Automatic synthesis of SDL models in
use case methodology. In 9th Intl. SDL Forum (SDL’99), pages 225–240.
Elsevier, 1999.

[OMG04] Object Management Group (OMG). UML 2.0 Superstructure Spec., 2004.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Rick Reed and Jeanne Reed, editors,
SDL ’01: Proceedings of the 10th International SDL Forum Copenhagen
on Meeting UML, volume 2078 of Lecture Notes in Computer Science,
pages 72–89. Springer-Verlag, 2001.

SYNTHESIZING STATE-MACHINE BEHAVIOUR 81

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 2nd edition, 2004.

[Sal01] Igor Sales. A bridging methodology for internet protocols standards de-
velopment. Master’s thesis, School of Information Technology and Engi-
neering (S.I.T.E.), Faculty of Engineering, University of Ottawa, Ontario,
2001.

[SB04] Richard Torbjørn Sanders and Rolv Bræk. Modeling peer-to-peer service
goals in UML. In Proc. of the 2nd Int. Conf. on Soft. Eng. and Formal
Methods (SEFM’04). IEEE CS, 2004.

[UCM] Use Case Maps Web Page and UCM User Group. URL:
http://www.usecasemaps.org.

[UKM03] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral
models from scenarios. IEEE Trans. Softw. Eng., 29(2):99–115, 2003.

[WS00] Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 314–323. ACM Press, 2000. Chairman-
Carlo Ghezzi and Chairman-Mehdi Jazayeri and Chairman-Alexander L.
Wolf.

Appendix 6.A Synthesizing Algorithm

The algorithm presented here has not been tested thoroughly yet, so it may contain
some inconsistencies. The algorithm steps should therefore be taken as guidelines,
rather than as strict steps.

We present guidelines for a recursive algorithm. First, state-machines for the
inner-most stubs are synthesized. These are stubs whose plug-ins do not contain
other stubs. The state-machines are synthesized following steps 1 - 9 (see below).
Once the state-machines for the inner-most stubs are synthesized, the state-machines
for their container UCMs, up to the composite UCM, can be synthesized following
steps again steps 1 - 9 (see below). Note that state-machines are only synthesized
for those UCMs whose start-point refers to one of the collaborations in the Role
Table.

The algorithm uses the following variables:

• currentRole: stores the name of the collaboration role we are dealing with.

• currentUCM : stores the name of the currently active collaboration

• currentRoleState[currentRole] : array that for each collaboration role stores
the name of the last automatons state added to the object’s state-machine.
Initialized to “start”.

82 CHAPTER 6. PAPER 1

• currentSMState[currentUCM] : array that for each collaboration/UCM stores
the name of the state where other states and transitions can be added. Ini-
tialized to “start”.

• ucmsCurrentPoint[currentUCM] : array that for each UCM stores the last pro-
cessed element. Initialized to “start-point”.

And it consists of the following 9 steps:

1. Set currentRole to the collaboration role that the object plays in the collab-
oration that the UCM/stub represents and currentUCM to that UCM/stub.
Go to step 2.

2. Traverse currentUCM ’s path, starting at ucmsCurrentPoint[currentUCM], un-
til a responsibility, a waiting place (either belonging to the path or tangentially
connected to it), an OR-fork, an end-point or a stub is found. If a responsibil-
ity is found go to step 3. If a waiting place is found go to step 4. If an OR-fork
is found go to step 6. If an end-point is found go to step 8. And if a stub is
found go to step 9.

3. For the currentRole’s automaton, take the states and transitions between
(but not including) currentRoleState[currentRole] and the transition marked
with the responsibility’s event goal. Add these states and transitions, to-
gether with the event goal transition and its succeeding state, to the cur-
rentUCM ’s state-machine at currentSMState[currentUCM]. Update curren-
tRoleState[currentRole] and currentSMState[currentUCM], and set ucmsCur-
rentPoint[currentUCM] pointing to the just handled responsibility. Go to step
2.

4. If the waiting place is tangentially connected to the path (i.e. other collabora-
tion is enabled), a search for a second waiting place, this time inserted in the
current path, is performed. If it is found, a partial goal dependency pattern
has been encountered. Go to step 5. If it is not found, or a new tangentially
connected waiting place is found, a sequential dependency pattern has been
encountered. The enabling collaboration and the enabled one run then con-
currently. A composite state with concurrent sub-states (or two orthogonal
regions in UML) should preferably be used to represent this behaviour. This
treatment is left as further work.

5. If the path between the first and the second waiting place is not empty (i.e.
any responsibility, stub or other element is found) both the enabling and the
enabled collaborations run concurrently for a while. At the time of writing
this paper we have not yet decided the best way of dealing with this situation.
This is left as further work.
Otherwise, if the path between the first and the second waiting place is empty,
set ucmsCurrentPoint[currentUCM] pointing to the second waiting place and
synthesize an automaton for the just enabled collaboration, according to steps

SYNTHESIZING STATE-MACHINE BEHAVIOUR 83

1 - 9 (the automaton is not necessarily synthesized for the whole collaboration,
but maybe just for a part of the collaboration, which is represented by a frag-
ment of its UCM enclosed between two waiting places). Add the synthesized
automaton to the currentUCM ’s state-machine. To do it, eliminate the start
symbol of the automaton and merge each of its succeeding states with a state
of currentUCM ’s state-machine in the following way: if the automaton state
is labeled, merge it with a state of currentUCM ’s state-machine with the same
label; if the automaton state is not labeled, merge it with the state pointed
by currentSMState[currentUCM]. Update currentSMState[currentUCM], so it
points to the last added state which is not labeled with any state goal or fail,
and go to 2.

6. Set ucmsCurrentPoint[currentUCM] pointing to the OR-fork. Check if cur-
rentRoleState[currentRole] precedes a choice. If so, go to 7. If not, traverse
the currentRole’s automaton, starting at currentRoleState[currentRole],
searching for a choice. If a choice is found, take the currentRole’s automa-
ton states and transitions between currentRoleState[currentRole] and
the state preceding the choice and add them (except the first state) to
the currentUCM ’s state-machine at currentSMState[currentUCM]. Update
currentSMState[currentUCM] and go to 7. If a choice is not found, it
means that the OR-fork describes aspects of other collaboration role.
Take then all the currentRole’s automaton states and transitions from curren-
tRoleState[currentRole] and add them to the currentUCM ’s state-machine
at currentSMState[currentUCM]. The state-machine for currentUCM is fin-
ished.

7. For each of the fork’s outgoing paths, synthesize an automaton according to
steps 1 - 9. Eliminate the start symbol and label the first state with the guard
condition of the path. If there is no guard condition, the state is not labeled.
Return to previous active step.

8. For the currentRole’s automaton, take all the states and transitions from (and
including) currentRoleState[currentRole] to the state marked with the end-
point’s goal/fail. Add these states and transitions to the currentUCM ’s state-
machine at currentSMState[currentUCM]. If there are no more paths in the
UCM, the state-machine for currentUCM is finished, otherwise return to pre-
vious active step.

9. If the stub does not represent a collaboration in Role Table, bypass it and go
to step 2. Otherwise, add the stub’s state-machine (without the start state) to
the currentUCM ’s state-machine. If the stub is enabled by an event goal (i.e
a responsibility), the addition is done at the state succeeding the transition
marked with the event goal. If the stub is enabled by a state goal (i.e. and
end-point), the addition is done at the state marked with the state goal. If
the stub is enabled by a start-point labeled with a start label, the addition is
done at the currentUCM ’s state-machine start state. Go to step 2.

7

Paper 2

Using UML 2.0 collaborations for compositional

service specification.

By Richard Torbjørn Sanders, Humberto Nicolás Castejón, Frank Alexander Krae-
mer and Rolv Bræk.

Published in the Proceedings of the ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’05), volume 3713 of
LNCS, pages 460-475. Springer, October 2005.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/11557432 35

Notes

In this paper a service was defined as a collaboration between service roles played
by objects that deliver functionality to the end-users. The main emphasis was
therefore on the collaborating nature of services. In Section 1.1 we have presented a
new definition where the emphasis is on functionality, and the collaboration among
service roles is seen as a necessary vehicle to deliver such functionality.

85

Using UML 2.0 Collaborations for Compositional
Service Specification

Richard Torbjørn Sandersa, Humberto Nicolás Castejónb, Frank
Alexander Kraemerb and Rolv Brækb

aSINTEF ICT, N-7465 Trondheim, Norway
richard.sanders@sintef.no

bNTNU, Department of Telematics, N-7491 Trondheim, Norway
{humberto.castejon, kraemer, rolv.braek}@item.ntnu.no

Abstract

Collaborations and collaboration uses are features new to UML 2.0. They
possess many properties that support rapid and compositional service engi-
neering. The notion of collaboration corresponds well with the notion of a
service, and it seems promising to use them for service specification. We
present an approach where collaborations are used to specify services, and
show how collaborations enable high level feature composition by means of
collaboration uses. We also show how service goals can be combined with be-
havior descriptions of collaborations to form what we call semantic interfaces.
Semantic interfaces can be used to ensure compatibility when binding roles
to classes and when composing systems from components. Various ways to
compose collaboration behaviors are outlined and illustrated with telephony
services.

7.1 Introduction

Service development or service engineering is currently receiving considerable at-
tention and starting to become a discipline in its own right. Driven by the belief
that future revenues will have to come from new services, a tremendous effort is
being invested in new platforms, methods and tools to enable rapid development
and incremental deployment of convergent services, i.e. integrated communication,
multimedia and information services delivered transparently over a range of access

88 CHAPTER 7. PAPER 2

and transport networks. The Service Oriented Architecture (SOA) and Service Ori-
ented Computing (SOC), building on web services, are exponents of this trend in
the business domain. A general challenge for service engineering, be it business or
ICT applications, is to enable services and service components to be rapidly devel-
oped, and to be deployed and composed dynamically without undesirable service
interactions. This is a challenging problem largely due to fundamental properties of
services, i.e.:

• A service is a partial functionality. It can be combined with other services to
provide the full functionality offered to a user.

• A service execution normally involves several collaborating components (i.e. a
service is not simply an interface to an object).

• Components can participate in several services, simultaneously or alternately.

• Services are partially dependent on each other, on shared resources and on
user preferences.

In order to support model driven service engineering, corresponding modeling con-
cepts are needed. This is where UML 2.0 collaborations come in, since they possess
many properties that make them attractive for this purpose.

First of all the concept of UML collaboration corresponds closely with the concept
of a service as explained above. We actually define a service as a collaboration
between service roles played by objects that deliver functionality to the end users.
Note that this definition is quite general and covers both client-server and peer-to-
peer services as described in [BF04].

Secondly, UML collaboration uses provide a means to structure complex collab-
orations and give an overview not provided by other notations, while at the same
time being precise. Collaborations have much the same simplicity and appeal as use
cases, and can be used for the much same purposes, but provide additional benefits
for service engineering, as will be presented in the following. Service specification
using collaborations and collaboration uses fits well with the preferred view of mar-
keters and end-users, while at the same time supporting the difficult engineering
tasks of service and system designers.

Thirdly, a collaboration role can be bound to several different classifiers by means
of collaboration uses. This provides the desired flexibility to bind service roles to
components, the only UML requirement being that the classifier is compatible with
the type of the role(s) bound to it. A precise definition of compatibility is left as a
semantic variation in UML 2.0, but it is clear that this should entail the observable
behavior on interfaces of a component.

This leads to a fourth motivation for collaborations – they lend themselves nicely
to the definition of so-called semantic interfaces [SBvBA05]. As we shall see, a
two-party collaboration can define a pair of complementary semantic interfaces.
Compared to traditional syntactical interfaces known from web services, CORBA,
Java and UML, semantic interfaces also define the visible interface behavior and the
goals of the collaboration. This extends the notion of compatibility beyond static

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 89

service b

service a

r1 r2 r3

C1 C2 C3

01:C1 03:C302:C2
system design
by composing
system components (objects)

r4 r5

system x

class design
by composing
collaboration roles
and semantic interfaces

service specification
using collaborations
and feature composition;
semantic interface definitions

Figure 7.1: Service engineering overview

signature matching to include safety and liveness properties. It also provides an
efficient means to perform such compatibility checks at design time and even at
runtime.

Finally, it may be argued that the crosscutting view of collaborations is valuable
in its own right [RGG01]. It enables us to focus on the joint behavior of objects
rather than on each object individually and, not the least, to focus on the purposes
and goals of the joint behavior in terms of desirable global states, called service
goals in [SB04a]. A service goal can be expressed in OCL, and is a property that
identifies essential progress, thus characterizing a desired or successful outcome of a
service invocation. It can be argued that service goals are closer to capturing and
expressing the user needs than specifying how they are achieved in terms of detailed
interactions. Moreover, goal expressions define liveness properties that must be
satisfied by compatible components.

Fig. 7.1 provides a principal overview of service engineering using collaborations.
Our service engineering approach is both collaboration-oriented and composi-

tional. It is collaboration-oriented because we model services as collaborations be-
tween roles played by distributed components, and it is compositional because we
build services from other smaller services. We treat collaborations and collaboration
roles as units of reuse.

We consider the following composition cases:

1. Composition of two-party services and semantic interfaces from two-party col-
laborations.

2. Composition of multi-party services from two-party or n-party collaborations.

3. Class design by composing service roles and semantic interfaces.

90 CHAPTER 7. PAPER 2

Class design is out of the scope of this paper. Here we focus on the use of collabo-
rations for service specification. It is our belief that class design can become a more
mechanical process supported by tools if it takes collaborations and semantic inter-
faces as input. Our experience so far indicates that this is the case [Cas05, Flo03].
However, further work is still needed to confirm this with certainty.

7.1.1 Structure of the Paper

In section 7.2 we present how service structures can be described in UML, and how
service behavior can be described. We introduce the concept of service goals, and
discuss how they can be defined in service structures and in the behavioral descrip-
tions. We introduce what lies in a semantic interface, and discuss compatibility
between roles and classifiers.

In section 7.3 we discuss the composition of two-party collaborations used for
defining semantic interfaces, as well as composing multi-party services from sub-
ordinate collaborations, and indicate directions toward class design. Finally we
conclude.

7.2 Collaborations, Goals and Semantic

Interfaces

7.2.1 Collaboration Structure

When used for service specification, the structure of a collaboration identifies the
service roles that collaborate to provide the service, as well as their multiplicity and
interconnections. Fig. 7.2 depicts a collaboration called UserCall specifying the
structure of a classical telephone call service. This collaboration diagram tells us
that exactly two roles, A and B, of type Caller and Callee respectively, are needed
to provide a UserCall service, and that a communication path between instances
playing those roles must exist.

A:Caller 1 B:Callee 1

UserCall

{def: goal : Boolean = A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Figure 7.2: The UserCall service specified as a collaboration with a goal expression

Specifying a service as a collaboration enables roles to be identified and described
without introducing undue bindings to implementation details. Thus a service can
be specified and understood as a behavioral component of its own, independent of
systems components that implement them.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 91

As we shall see, the behavior of collaborations can be described at several levels
of detail. Furthermore, collaborations can themselves be used as components in
collaboration compositions, thus becoming units of reuse.

7.2.2 Collaboration Goals

The diagram in Fig. 7.2 also shows a goal that should be reached by the UserCall

collaboration. It is represented by an OCL predicate over properties of the two
participating roles. In this case it is a simple logical addition of the role goals of A
and B, to show that A has a voice connection to B and B has a voice connection to A:

VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)

Goal expressions like this can be made very high level, protocol independent and
close to the essential purpose of a service as seen from a user point of view. They are
actually formal requirements expressions. In this respect they are not new; the nov-
elty lies in the natural binding to the different service specification diagrams, such
as collaborations and sequence diagrams. Furthermore, a goal expression represents
a liveness property that should hold in actual collaboration uses and therefore con-
stitutes part of the required compatibility of role binding. This illustrates one asset
of UML collaborations: they are natural places to express crosscutting properties of
services.

7.2.3 Collaboration Behavior

Since UML collaborations inherit from both structured classifiers and behaviored
classifiers, they have a large range of expression forms at their disposal. In addition
to expressing structural relationships, it is possible to express all forms of behavioral
aspects of collaborations, such as interactions, activities and state machines. The
UML standard [OMG05] and reference book [RJB04] focus mainly on the structural
features of collaborations, and provide few guidelines on how the behavior of a
collaboration is described, nor do they explain how collaboration behavior is related
to the behavior of its constituent parts, i.e. the roles and role classifiers.

In the following we suggest how the behavior of a collaboration can be described
for the purpose of service specification. We first specify the main states a collab-
oration goes through with a state diagram. This helps to abstract away details
and focus on the goal of the collaboration. Thereafter detailed interactions for the
collaboration are provided in the form of sequence diagrams.

Collaboration States.

The states (or phases) of a collaboration may be described in a state diagram (or
activity diagram), as illustrated in Fig. 7.3.

This state diagram describes well known situations in the progress of a basic
telephone call. The transitions between the states are represented by arcs, but we
have chosen not to define exactly what causes them. For instance the transition

92 CHAPTER 7. PAPER 2

sm UserCall

inviting alerting

talking
assert (goal == True)

busy

disconnecteddisconnected

Figure 7.3: State machine diagram for collaboration UserCall

from alerting to disconnected can be due to the caller hanging up, the callee
not answering before a timeout, or the network malfunctioning. Leaving such details
undefined can be desirable in a high level service specification.

But what do states of a collaboration mean? Given that a collaboration is
not instantiated as an object, no entity is ever in a collaboration state. Rather, a
collaboration state is a conceptual state expressing certain situations or conditions
on the combined states of the roles A and B during the collaboration, see Fig. 7.4.
It may be considered as a liveness property of the collaboration.

The possibility to focus on the joint behavior and goals rather than the individ-
ual role behavior is an important asset of collaborations. The role behaviors must
somehow be aligned with each other; we indicate a way of doing so in Fig. 7.4.
One must ensure that the role behaviors are dual, i.e. they are fully compatible
with respect to safety properties, and that they can reach the joint collaboration
states and goals and thereby satisfy liveness properties. A two-party collaboration
satisfying these properties defines a pair of semantic interfaces [SBvBA05].

sm UserCall

inviting alerting

talking

assert (goal == True)

busy

disconnecteddisconnected

diallingA diallingA alertingA alertingA ringingB ringingB

talkingA talkingA talkingB talkingB

waitingA waitingA *B *B

-A -A -B -B

Figure 7.4: State machine diagram for UserCall with role states and service goal
expression (UML enhancement illustrating role states in collaboration states)

By describing state machines for both the collaboration and the role classifiers, a
certain amount of redundancy is added, and the question of compatibility between
them arises. This can either be considered as a problem to be avoided, or as a feature
that can be put to use. In our view validating consistency between the role behavior
and the collaboration behavior is an opportunity that should not be missed.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 93

Interactions.

Interaction diagrams are often partial descriptions that are not meant to describe
complete behavior, unlike state machine diagrams. For the purpose of service speci-
fication interactions for a collaboration should at least focus on the successful cases,
i.e. those that lead to the achievement of service goals.

In Fig. 7.5 we have described interactions that lead to the achievement of the
service goal of a collaboration called Invite. The goal of this collaboration is to
bring the collaborating instances to the talking state. The goal is indicated by an
adornment in the continuation label talking.

Busy

Reply

Alert

Invite

inviteeinviter

End

sd invite_sd

{invite_goal}

alt

alt

inviting

talking

alerting

disconnected

Busyref

Figure 7.5: Sequence diagram for collaboration Invite

7.2.4 Semantic Interfaces and Compatibility

In principle, components can participate in any service as long as they can play
their part of the service. Therefore, the specification of a service should not bind
the service roles to specific classifiers [Bræ99]. In [SB04] we used association classes
to specify services, but they fail to meet the requirements for flexible role binding.
This is because with associations the binding is determined by the classifiers at
the association ends. Collaborations do not have this limitation. With the help
of collaboration uses, collaborations roles can be bound to any classifiers that are
compatible with the role types. This is shown in Fig. 7.6, where the same classifier,
UserAgent, is bound to two different roles, A and B. This is possible as long as the
UserAgent class is compatible with both collaboration roles. Our interpretation
of compatibility is that the UserAgent must have visible interface behavior that
is goal equivalent with the behavior of both roles, implying that the roles of the
collaboration can be achieved.

94 CHAPTER 7. PAPER 2

B
uc:UserCall

A
aUA:UserAgent bUA:UserAgent

Figure 7.6: Binding roles to component classes in a collaboration use

This can be put to use by defining a pair of semantic interfaces in a two-way
collaboration like UserCall, as proposed in [SBvBA05]. The semantic interfaces
include goal expressions and role behaviors for the two collaboration roles. Such
role behavior can be seen as a kind of protocol state machine specifying only the
input/output behavior visible on the interface. It can be derived from a general
state machine by making a projection of its behavior on the interface in question.
In the case of the UserAgent in Fig. 7.6, compatibility can be checked in two steps.
First we verify that the collaboration goals of UserCall are reachable given the roles
A and B. Then we check that the projected behaviors of UserAgent on each side of
the connection defined by UserCall are goal equivalent to the respective behaviors
of A and B. This enables a compositional and scalable validation approach where the
most computation intensive work (making projections and comparing behaviors) can
be done at design time. When dynamically binding roles to system components at
runtime, validation need not be repeated.

The UML standard [OMG05] says that “a collaboration is often defined in terms
of roles typed by interfaces”. Unfortunately an interface typing a role can only
describe either a provided interface, or a required interface, but not a combination.
This is a limitation. We want role classifiers to describe both the required and
the provided interface behavior in a single modeling unit. Typing a role by two
interfaces, a required and a provided one, is not legal in the current version of UML,
nor would this result in a unified interface description. Similarly, a protocol state
machine attached to an interface only constrains the sequence of operation calls to
a component, and can not be used to describe a two-way interface.

The limitations of interfaces may be overcome, however, if UML allowed de-
scribing interface behavior in terms of state machines that model the (projected)
input/output behavior of a component on the interface, such as the Port State Ma-
chines (PoSM) proposed by Mencl [Men04]. This is indeed close to the port state
machines of ROOM [SGW94], and should be included in UML. Goal compatibility
between a component and a port state machine could then be defined in terms of
behavior projection.

Given that the behavior of a collaboration role is described in a state machine
diagram enriched with service goals, it is relatively straightforward to validate safety
and liveness compatibility between a classifier and a semantic interface to which it
is bound [Flo03, FB05, SB04], thus ascertaining goal equivalence between objects
and roles.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 95

7.3 Composition from Collaborations

7.3.1 Composition of Two-party Services and Semantic
Interfaces from Two-party Collaborations

With collaboration uses we can express how services can be composed from elemen-
tary service features, as illustrated in Fig. 7.7.

A:Caller B:Callee

invite:Inviteinvitee inviter

talk:Talktalker talker

User Call

Figure 7.7: UserCall composed of elementary features (subordinate collaboration
uses)

In Fig. 7.7 the UserCall collaboration is decomposed into smaller features,
invite and talk, represented as collaboration uses. These are related to the distinct
states of the UserCall service (see Fig. 7.3) and to the sequence diagram for Invite
(see Fig. 7.5). To simplify the example, we have grouped the states for UserCall

so that the goal of the invite collaboration is to bring the UserCall collaboration
to the state talking, upon which the talk collaboration use takes over. However,
it is not clear from Fig. 7.7 what relationship there is between invite and talk,
that is, if their interactions are interleaved or if they represent a sequence.

It is of central importance to service engineering to make the sequence of goals
and the relationships between collaborations explicit. This may be done in several
ways. One possibility is showing dependencies between the subordinate collaboration
uses and/or their roles in the collaboration diagram itself. Another possibility is to
utilize pre- and post-conditions. A third possibility is to use interaction overview
diagrams or activity diagrams to express goal sequences, as suggested in Fig. 7.8a
below.

Interaction overview diagrams are a form of activity diagram, and thus the token
passing semantics of the latter apply. To express goal relationships, the following
interpretation of the tokens is employed: a token being passed represents that a goal
is achieved, while an input token implies that a subsequent collaboration use (i.e. a
service) is enabled. This can be exploited by mechanisms supporting the dynamic
discovery of service opportunities [SBvBA05, SB04a]. Note that what happens if
the goal is not achieved is not described – the focus is on the achievement of goals.
However, if the goal is not achieved in a referenced collaboration, the goal sequence
is interrupted.

With this interpretation, Fig. 7.8a specifies that after invite has achieved its
service goal, the subordinate collaboration use talk is enabled. Note that this
relationship applies in the context of their use, i.e. in the collaboration UserCall.

96 CHAPTER 7. PAPER 2

invite.invite_sd
ref

talk.talk_sd
ref

sd UserCall

(a) Interaction overview

A Binvite:Invite
inviter invitee

A Btalk:Talk

invite:Inviteinviter invitee

UserCall_goals

(b) Goal sequence diagram

talker talker

Figure 7.8: Overview of the subordinate collaboration uses of UserCall

It is not stated in the specification of the subordinate collaborations Invite and
Talk, which are thus free to be used in other collaboration contexts.

A minor diagrammatic enhancement to UML, which is to include an illustration
of the situation with respect to the involved collaborations (see Fig. 7.8b), seems
attractive. This is what we have called a goal sequence diagram [SB04]. The second
rectangle in Fig. 7.8b illustrates how the roles of Invite and Talk are bound in
the context of UserCall. They are statically bound in the UserCall collaboration
of Fig. 7.7, and simply referred to in Fig. 7.8b. Goal sequence diagrams do not
change the semantics of UML, and what is illustrated in Fig. 7.8b corresponds to
what is expressed in Fig. 7.8a. Goal sequence diagrams illustrate the evolution
of the collaboration structure. For instance, two shades of coloring are employed
for the referenced collaboration uses: black color (e.g. for talk) illustrates that
the collaboration use is active, while grey color (e.g. for invite) is for preceding
collaboration uses that do not have to exist any longer. For the simple example in
Fig. 7.8 the added value of the goal sequence diagram is not striking; Fig. 7.10 is
perhaps a more convincing case.

Illustrating situations has been also suggested by Diethelm & al. [DGMZ02];
they use communication diagrams to illustrate use cases and to illustrate do-actions
in states.

Two-party collaborations can be composed to form semantic interfaces, which
define role behavior and goals of a pair of complementary roles. Limiting such col-
laborations to a pair of roles is chosen to simplify the validation approach, which is
based on validation of object behavior projections and goals over a binary associa-
tion, as mentioned previously. It also simplifies composition, as components can be
composed of composite states that correspond to the semantic interfaces [FB03].

This restriction does not hinder multi-party services to be defined; they can be
composed from two-party collaborations with semantic interfaces, as well as from
subordinate multi-party collaborations, as shown below. However, this complicates
the validation and composition process, as several interfaces have to be validated
or composed, and the relationships between the interfaces must be known. Goal
sequence diagrams seem to be promising when it comes to composition, as illustrated
in the next section.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 97

7.3.2 Composition of Multi-party Services

An example that illustrates the potential of composing collaborations from subor-
dinate collaborations is found in Fig. 7.9, where the UserCall service with the call
transfer feature is described.

A B

C

orig_t:Talk

talker
:Hold

holdee

inq_i:Invite

invitee

inviter

res:Talk

talker

talker

UserCallWithTransfer

:Transfer

controlleroriginal party

third party

orig_i:Invite

inviter

inq_t:Talk

talker

talker

holder

invitee

talker

Figure 7.9: The collaboration UserCallWithTransfer

Fig. 7.9 demonstrates how subordinate collaborations such as Invite and Talk

may be reused in new settings, due to the flexible role binding of collaboration uses.
Such reuse is a very attractive aspect of collaborations, and can help to give an
intuitive understanding of a complex situation, as illustrated here. Call transfer
is a classical challenge for service designers to understand and describe succinctly.
From Fig. 7.9 it is apparent that several call invitations are involved. However, the
precise ordering of the subordinate collaboration uses can not be understood from
Fig. 7.9 alone. A goal sequence diagram for the UserCallWithTransfer service, as
suggested in Fig. 7.10a, is one possibility of describing this.

Fig. 7.10a describes the ordering of collaboration uses required for the overall
service goal of the transfer feature to be achieved. The goal sequence diagram com-
bined with the collaboration diagram of the service (see Fig. 7.9) provides a compact
and fairly intuitive description of a complex service. It has been common practice
among telecom service engineers to make informal sketches to the same effect as an
aid in service design. UML collaborations provide an opportunity to formalize and
better support this practice. The goal sequence demonstrates how UML promotes
reuse of units of behavior in the form of collaboration uses, and documents the evo-
lution of the static structure depicted in the collaboration diagram. One particularly
interesting aspect of the goal sequence diagram in Fig. 7.10a is that it shows situ-
ations in which a role, e.g. B, is simultaneously playing two or more sub-roles, e.g.
holder and inviter in the fourth step of the sequence. Note that the simplicity
of collaboration structures may be deceiving. Call transfer may look simple in Fig.

98 CHAPTER 7. PAPER 2

UserCallWithTransfer_goals

B:Participant

callsession
[talk]

inviteeinviter
A:Participant

callsession
[talk]

inviteeinviter

talk

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

C:Participant
inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

hold

callsession
[talker]

talk

B:Participant

callsession
[controler]

inviteeinviter
A:Participant

callsession
[orig.party]

inviteeinviter

C:Participant

callsession
[third party]

inviteeinviter

hold

B:Participant
inviteeinviter

A:Participant

callsession
[talker]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

(a) Goal sequence diagram (b) Illustrated component structure

transfer

talk

invite

A Borig_i:Inviteinvitee inviter

A B

C
inq_t:Talk

talker

talker

:Transfer
controller

original party

third party

A B

C

:Transfer
controlleroriginal party

third party

:Holdholdee holder

inq_t:Talk

talker

talker

A B

C inq_t:Talk

talker

talker

:Holdholdee holder

inq_i:Inviteinvitee

inviter

A B

C
inq_i:Inviteinvitee

inviter

:Holdholdee holder

A B:Holdholdee holder

orig_t:Talk
talker talker

B:Participant
inviteeinviter

A:Participant
inviteeinviter

invite

A Borig_t:Talk
talker talker

orig_i:Inviteinvitee inviter

Figure 7.10: Goal sequence for UserCallWithTransfer with related component
structure

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 99

7.9, but when fully elaborated the underlying sequences and role behaviors can be
quite complex.

There are limits to what goal sequence diagrams are capable of expressing. For
instance, it is not possible to describe goal dependencies among overlapping collab-
orations. This is the case, for example, of a log-on collaboration that requires a
user authentication as part of its operation. It is desirable to model log-on and
authenticate as separate collaborations to achieve reuse, and allow log-on to be
combined with alternative authentication patterns. However, we cannot express
with goal sequence diagrams that authenticate is enabled when log-on achieves
a sub-goal, and that authenticate must achieve its goal before further progress
in log-on is possible. An alternative notation, Use Case Maps [ITU04a], has been
shown to have the necessary expressive power [Cas05].

7.3.3 Towards Class Design

The specification of service functionality in collaborations is beneficial beyond the
specification phase and can have direct influence on the design of classes and state
machines. Analyzing the collaborations and the goal sequences tells us which roles
a class must play over time, which requests for roles can arrive in which situations
and which connections must be established to reach the goals of the implemented
services. Modeling service specifications can help class design, as we now shall see.

Fig. 7.10b illustrates the coarse structure of a class Participant that imple-
ments all three roles A, B and C of UserCallWithTransfer. The sub-roles invitee
and inviter are implemented as separate state machines, since call requests can
arrive at any time. When a call request from another component is received, invi-
tee creates a new instance of the state machine callsession to handle the request.
The sub-roles talk, hold and transfer can be implemented by composite states
inside callsession, as these roles are played alternately. The figure also illustrates
the connections between the state machines of the components and how they evolve
as the service progresses towards the achievement of its goal.

To complete class design one must consider all collaboration roles bound to the
class. The Participant class, for example, may take part in several collaborations
other than UserCallWithTransfer, as it is shown in Fig. 7.11. In that case Par-

ticipant must be compatible with the four roles ua, A, B and ub, and class design
must take this into account.

PeerToPeerCall

t1:Caller
Terminal

Ca1:
Participant

Ca2:
Participant

t2:Callee
Terminal

:UserCall
WithTransfer

:termCall:initCall

A Bta ua tbub

Figure 7.11: Service composed of elementary services

100 CHAPTER 7. PAPER 2

7.4 Discussion

7.4.1 Related Work

The understanding that services involve collaboration between distributed compo-
nents is not new; indeed, this was recognized since the early days of telecommuni-
cations. In terms of modeling the interaction of collaborations, various dialects of
interaction diagrams existed prior to the first standardization of the ITU-T MSC
language [ITU04b] in 1994. A slightly different approach was taken in the use cases
of OOSE [JCJØ92], where interactions were described textually. However, interac-
tions alone do not really cover the structural aspects of the roles and the flexible
binding of roles to classifiers.

Collaborative designs such as protocols have traditionally been specified by state
diagrams, using combinations of informal descriptions and formal models, e.g. using
SDL [ITU02] or similar ([Int89, Har87, SGW94]). But while state diagrams describe
complete object behavior, the overall goals and the joint behavior tend to be blurred.

The concept of role was already introduced in the end of the 70’s in the con-
text of data modeling [BD77] and emerged again in the object-oriented literature.
Using roles for functional modeling of collaborations was of primary concern in the
OORAM methodology [RWL96], and was one of the inputs influencing the UML
work on collaborations in OMG. Within teleservice engineering it has been a long-
standing convention to describe telephone services using role names like A and B. In
[Bræ99] we classified different uses of the role concept, and pointed out that UML
1.x was too restrictive, since a ClassifierRole could bind to only one class, so they
were not independent concepts that could be re-used in different classes.

Rössler & al. [RGG01] suggested collaboration based design with a tighter in-
tegration between interaction and state diagram models, and created a specific lan-
guage, CoSDL, to define collaborations [RGG02]. CoSDL was aligned to SDL-96.
Floch [Flo03] also proposed a notation for collaboration structure diagrams, where
components were designed in SDL-2000 [ITU02].

With UML 2.0, it is now possible to model collaborations in a standardized
language, increasingly supported by tools. Modeling collaborating services with
UML 2.0 collaborations has earlier been suggested by Haugen and Møller-Pedersen
[HMP03]. They pointed out that there might be limitations in binding collaboration
uses to classifier parts; these issues must be clarified, and binding to parts should
preferably be supported. In the FUJABA approach described in [BGHS04], so-called
coordination patterns are used for similar purposes as our semantic interfaces. They
use a model checker to provide incremental verification based on the coordination
patterns.

7.4.2 Further Work

A number of issues presented in this article need to be clarified and researched,
and experiments in real projects must be undertaken before all problems are solved.
We are currently applying these techniques on several practical service engineering
cases including access control services, call control, and mobile information services.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 101

Compatibility rules between role classifiers and the objects and classes bound by
collaboration uses is a semantic variation point in UML. The research on semantic
interfaces [SBvBA05] is a promising starting point for compatibility checking be-
tween complementary roles. Additional work on validating compatibility between
roles and class designs, with tool support for composition, is being undertaken.

An experimental tool suite is currently being developed as part of the Teleservice
Lab at the department of Telematics at NTNU, based on the Eclipse platform. The
EU funded project Semantic Interfaces for Mobile Services, SIMS, to commence in
2006, will develop tool support for designing and validating collaborations, taking
existing prototypes [Als04] as a starting point and validating the approach among
industrial users.

7.5 Conclusion

This article has suggested ways of exploiting UML 2.0 for service engineering, and
has discussed opportunities and limitations that lie in the current standard [OMG05]
in that respect. Our conclusion is that UML 2.0 collaborations seem to be a very
useful expression form, as it allows one to define pieces of collaborating role behavior
that can be bound to role players in a very flexible way.

Useful validation opportunities arise once criteria for role compatibility have been
defined. Collaborations can be used to define semantic interfaces, which in turn can
be used for compatibility checks and to support composition. We have argued for the
inclusion of port state machines in UML as a more general description of semantic
interface behavior than the existing protocol state machine mechanisms that have
been defined in UML 2.0.

Furthermore we have suggested how minor notational enhancements can be in-
troduced to represent collaboration situations in order to support high level feature
composition; this is more of a tool issue than a language issue, but has methodolog-
ical implications that are important. Finally, we have demonstrated how collabora-
tion uses provide means to define complex multi-party services on a high level.

In contrast to the common practice of modeling complete service sequences in-
volving all participating roles, our approach encourages decomposition into interface
behaviors represented as two-way collaborations. The result is smaller and more
reusable interface behaviors that can be validated separately, thereby addressing
compositionality and scalability. The disadvantage is that behavior composition
needs special attention, e.g. using goal sequences as elaborated in [Cas05].

References

[Als04] Rune Alsnes. Role validation tool. Master’s thesis, NTNU, 2004.

[BD77] Charles W. Bachman and Manilal Daya. The role concept in data models.
In Proc. of the 3rd Int. Conference on Very Large Data Bases, Tokyo,
Japan. IEEE Computer Society, 1977.

102 CHAPTER 7. PAPER 2

[BF04] Rolv Bræk and Jacqueline Floch. ICT convergence: Modeling issues. In
Proc. of the 4th Int. SDL and MSC (SAM) Workshop, Ottawa, Canada.
LNCS 3319, Springer, 2004.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental design and formal verification with UML/RT in the FU-
JABA real-time tool suite. In Proc. of the Int. Workshop on Specifica-
tion and Vaildation of UML models for Real Time and embedded Systems
(SVERTS), associated with UML2004, Lisbon, Portugal, October 2004.

[Bræ99] Rolv Bræk. Using roles with types and objects for service develop-
ment. In IFIP 5th Int. Conf. on Intelligence in Networks (SMARTNET),
Pathumthani, Thailand, 1999. Kluwer.

[Cas05] Humberto Nicolás Castejón. Synthesizing state-machine behaviour from
UML collaborations and Use Case Maps. In Proc. of the 12th Int. SDL
Forum, Norway. LNCS 3530, Springer, June 2005.

[DGMZ02] Ira Diethelm, Leif Geiger, Thomas Maier, and Albert Zündorf. Turning
collaboration diagram strips into storycharts. In Workshop on Scenarios
and state machines: models, algorithms, and tools; ICSE’02, Orlando,
Florida, USA, 2002.

[FB03] Jacqueline Floch and Rolv Bræk. Using SDL for modeling behavior com-
position. In Proc. of the 11th Int. SDL Forum, Stuttgart, Germany. LNCS
2708, Springer, 2003.

[FB05] Jacqueline Floch and Rolv Bræk. A compositional approach to service
validation. In Proc. of the 12th Int. SDL Forum, Grimstad, Norway.
LNCS 3530, Springer, 2005.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and Validation
using Roles. PhD thesis, Dep. of Telematics, Norwegain Univ. Sci. and
Tech., Trondheim, Norway, February 2003.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[HMP03] Øystein Haugen and Birger Møller-Pedersen. The fine arts of ser-
vice modeling. Technical report, Internal report. ARTS, 2003.
http://www.pats.no/projects/ARTS/arts.html.

[Int89] International Organization for Standardization (ISO). Estelle: a for-
mal description technique based on an extended state transition model.
ISO9074, 1989.

[ITU02] ITU-T Recommendation Z.100. Specification and Description Language
(SDL), 2002.

USING UML 2.0 COLLABORATIONS FOR COMP. SERV. SPEC. 103

[ITU04a] ITU-T Draft Recommendation Z.152. URN - Use Case Maps notation
(UCM), 2004.

[ITU04b] ITU-T Recommendation Z.120. Message Sequence Charts (MSC), 2004.

[JCJØ92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Øver-
gaard. Object-Oriented Software Engineering: A Case Driven Approach.
Addison-Wesley, 1992.

[Men04] Vladimir Mencl. Specifying component behavior with port state machines.
Electr. Notes Theor. Comput. Sci., 101:129–153, 2004.

[OMG04] Object Management Group. UML 2.0 Superstructure Specification, April
2004.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Proc. of the 10th Int. SDL Forum,
Copenhagen, Denmark. LNCS 2078, Springer, 2001.

[RGG02] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. CoSDL: An exper-
imental language for collaboration specification. In Proc. of the 3rd Int.
SDL and MSC (SAM) Workshop, Aberystwyth, UK. LNCS 2599, Springer,
2002.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 2nd edition, 2004.

[RWL96] Trygve Reenskaug, P. Wold, and O. A. Lehne. Working with Objects: The
OOram Software Engineering Method. Prentice Hall, 1996.

[SB04a] Richard Torbjørn Sanders and Rolv Bræk. Discovering service opportu-
nities by evaluating service goals. In Proc. of the 10th EUNICE and IFIP
Workshop on Advances in Fixed and Mobile Networks, Tampere, Finland,
2004.

[SB04b] Richard Torbjørn Sanders and Rolv Bræk. Modeling peer-to-peer service
goals in UML. In Proc. of the 2nd Int. Conf. on Soft. Eng. and Formal
Methods (SEFM’04). IEEE Computer Society, 2004.

[SBvBA05] Richard Torbjørn Sanders, Rolv Bræk, Gregor von Bochmann, and
Daniel Amyot. Service discovery and component reuse with semantic in-
terfaces. In Proc. of the 12th Int. SDL Forum, Grimstad, Norway. LNCS
3530, Springer, June 2005.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

8

Paper 3

A collaboration-based approach to service

specification and detection of implied scenarios.

By Humberto Nicolás Castejón and Rolv Bræk.

Published in the Proceedings of the 5th International Workshop on Scenarios and
State Machines: Models, Algorithms and Tools (SCESM’06). ACM Press, May 2006.

The original publication is available at portal.acm.org via
http://doi.acm.org/10.1145/1138953.1138962

Notes

• In this paper a service was defined as a collaboration between service roles
played by objects that deliver functionality to the service users. The main
emphasis was therefore on the collaborating nature of services. In Section 1.1
we have presented a new definition where the emphasis is on functionality, and
the collaboration among service roles is seen as a necessary vehicle to deliver
such functionality.

• An appendix has been included at the end of the paper to discuss some issues
discovered after the original publication.

105

Is not included due to copyright

9

Paper 4

Formalizing collaboration goal sequences for

service choreography.

By Humberto Nicolás Castejón and Rolv Bræk.

Published in the Proceedings of the 26th IFIP WG 6.1 Intl. Conf. on Formal Meth-
ods for Networked and Distributed Systems (FORTE’06), volume 4229 of LNCS,
pages 275-291. Springer, September 2006.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/11888116 21

123

Formalizing Collaboration Goal Sequences for
Service Choreography

Humberto Nicolás Castejón and Rolv Bræk
NTNU, Department of Telematics, N-7491 Trondheim, Norway

{humberto.castejon,rolv.braek}@item.ntnu.no

Abstract

Methods for service specification should be simple and intuitive. At the same
time they should be precise and allow early validation and detection of incon-
sistencies. UML 2.0 collaborations enable a systematic and structured way
to provide overview of distributed services, and decompose cross-cutting ser-
vice behaviour into features and interfaces by means of collaboration-uses. To
fully take advantage of the possibilities thus opened, a way to compose (i.e.
choreograph) the joint collaboration behaviour is needed. So-called collabora-
tion goal sequences have been introduced for this purpose. They describe the
behavioural composition of collaboration-uses (modeling interface behaviour
and features) within a composite collaboration. In this paper we propose a
formal semantics for collaboration goal sequences by means of hierarchical
coloured Petri-nets (HCPNs). We then show how tools available for HCPNs
can be used to automatically analyse goal sequences in order to detect implied
scenarios.

9.1 Introduction

Many authors have identified the cross-cutting nature of distributed services (e.g.
[RGG01, KGM+04]) i.e. that services in the general case, involve several collaborat-
ing components playing different roles, that each may participate in several services.
For service engineering, this implies a need to specify services in terms of their roles
and cross-cutting service behaviour, then to specify the detailed behaviour of each
service role and, finally, to compose the behaviour of service roles into complete,
coordinated and correct component behaviours. UML 2.0 collaborations [OMG05]
provide language concepts and mechanisms that partially support this and are there-
fore very promising from a service engineering point of view. Being both structural
and behavioural classifiers in UML 2.0, collaborations can be used to define a service

126 CHAPTER 9. PAPER 4

:P[*]

:V

:T[2]

Pev

Vev

Vd

Td

Pexv

Vexv

Ta

Va

TransportService

Pbt

Tbt

Treqed
Treqer

:BuyTicket

:EnterVehicle

:ExitVehicle

:VehArrival

:VehDeparture

:ReqVehicle

Collaboration
role

Collaboration-use

Collaboration-use
role

arriveReq

arrived

alert100

arriveAck

:Ta :Va

{vehicleArrived =
Ta.vehArrived AND

Va.atTerminal}

sd VehArrival

sd BuyTicket

displayGate

buyTicket

{tickectBought =
Pbt.tickectBought

AND Tbt.ticketSold}

{tickectReqed}

:Pbt :Tbt

ticketReqed

ticketBought

(a)

(c)

(b)

Figure 9.1: (a) Transport service as a UML 2.0 collaboration; (b) Sequence diagrams
for BuyTicket and VehArrival sub-collaborations; (c) Service-goal tree for BuyTicket

as a structure of roles with associated cross-cutting behaviour defined using e.g. se-
quence diagrams. Detailed role behaviour can be defined using e.g. state machines.
UML collaborations can be bound to specific contexts (e.g. larger collaborations) by
means of collaboration-uses. This feature enables a compositional and incremental
specification of services.

As an example consider a simple transport service (inspired by a case study
from [UKM04]) in which one vehicle transports one passenger at a time between
two terminals. Figure 9.1a depicts this service as a UML 2.0 collaboration. This
collaboration identifies three roles, namely P (Passenger), T (Terminal) and V (Ve-
hicle); as well as seven sub-collaborations representing interfaces and features of the
service. These sub-collaborations are specified as UML collaboration-uses, whose
roles are bound to the TransportService’s roles (e.g. BuyTicket ’s role Tbt is bound to
TransportService’s role T). Bound roles are classified as either initiating (i.e. takes
the initiative to start the collaboration) or offered (i.e. accepts the initiative), indi-
cated by an arrow head with offered roles. For the sake of clarity, in the following
we will refer to P, T and V as service-roles, and to Tbt,Td and the like as sub-
roles (of T, P or V). The TransportService’s sub-collaborations have been identified
from the following service requirements. In order to travel, a passenger must buy
a ticket at one of the terminals (collaboration-use BuyTicket). When this happens,
if the vehicle is waiting at the terminal, the departure gate is indicated, and the
passenger can enter the vehicle (EnterVehicle). The terminal then dispatches the
vehicle (VehDeparture) and, after arriving at the second terminal (VehArrival), the
passenger disembarks (ExitVehicle). If the vehicle is not at the terminal where the
passenger buys the ticket, that terminal requests the vehicle from the other ter-
minal (ReqVehicle), which dispatches the vehicle towards the requesting terminal.
When the vehicle arrives, the departure gate is displayed and the service continues

FORMALIZING COLLABORATION GOAL SEQUENCES 127

as explained before. In order to support validation and composition, service-goals
[SB04] are associated with each of the identified sub-collaborations. These goals are
expressed in terms of predicates over properties of the collaborations. Two types of
service-goals can be described: event-goals, denoting desired events; and state-goals,
which are properties of global collaboration states that we wish to reach, and which
entail combinations of role goals. The ordered sequence of goals for an individual
collaboration can be described with a service-goal tree, which is a directed graph with
an initial node, zero or more intermediary nodes representing event-goals, and one or
more leaf nodes representing state-goals. Figure 9.1c shows the service-goal tree for
BuyTicket, with an event-goal (i.e. ticketReqed) and a state-goal (i.e. ticketBought).
Goal trees describe the behaviour of elementary collaborations at a high-level of ab-
straction, since the interactions are not detailed. These interactions can be specified
in sequence diagrams annotated with goal information (by means of continuations),
such as the ones presented for BuyTicket and VehArrival in Fig. 9.1b.

What remains in Fig. 9.1 is to specify the overall cross-cutting behaviour of the
TransportService collaboration, that is, how its sub-collaborations interact. This
kind of behaviour will be distributed among the collaboration roles and is tradi-
tionally referred to as a choreography in SOA. Collaboration goal sequences have
been proposed by Sanders [SB04, SCKB05], and extended in [CB06a], to describe
the choreography of collaborations. They capture the liveness aspects of composite
service collaborations by describing the execution order of their sub-collaborations,
and by showing the interactions between these sub-collaborations in terms of goal
achievement (hence the name collaboration goal sequences). While service-goal trees
describe the sequence of goals for individual collaborations, collaboration goal se-
quences specify the sequence of goals for their composition. The information pro-
vided by the goal trees and the goal sequence should therefore be consistent. In the
following we will assume this is the case.

In this paper, we present the formal syntax of goal sequences and provide se-
mantics to them by means of hierarchical coloured Petri-nets (HCPNs) [Jen97] (see
Sect. 9.2). We also show how a general purpose tool for HCPNs (i.e. CPN Tools
[CPN05]) can be used to analyse goal sequences for the detection of implied scenarios
(see Sect. 9.3). These scenarios are a direct consequence of concurrency and corre-
spond to service behaviour that has not been explicitly described in the specification
of the service, but that will be present in any implementation of it [AEY00]. The
proposed detection approach avoids a global analysis of the service specification,
limiting thus the effect of the state-explosion problem. We end with related work
and some discussion in Sects. 9.4 and 9.5.

9.2 Collaboration Goal Sequences
Collaboration goal sequences complement UML collaborations for the specification
of services by describing the execution dependencies that exist between the sub-
collaborations (i.e. features) of the service. As an example, Fig. 9.2 depicts the goal
sequence for the TransportService collaboration. The actual meaning of this diagram
will become clear in the following, when we explain the syntax and semantics of goal
sequences.

128 CHAPTER 9. PAPER 4

T2:TT1:T
Treqer Treqed

r:ReqVehicle

P:P
Pbt

Tbt

b:BuyTicket T1:T

T2:TV:V
Vd Td

T1:TV:V
Va Ta

P:P V:V
Pev

Vev
ev:EnterVehicle

T2:TV:V
Va Ta

V:VP:P
Pexv Vexv

exv:ExitVehicle

r.vehicleReqed

vd1.vehicleLeft

va1:VehArrival

va1.vehicleArrived

b.ticketReqed

b.ticketBought

ev.passengerEntered va2.vehicleArrived

exv.passengerLeft

va2:VehArrival

T1:T V:V
Vd

Td

vd2.vehicleLeft

vd2:VehDeparture

vd1:VehDeparture

P:P
Pbt

Tbt
b:BuyTicket T1:T

T1.vehAtTerminal

NOT T1.vehAtTerminal
b.ticketReqed

Figure 9.2: Goal sequence for the TransportService collaboration

9.2.1 Syntax for Goal Sequences

The goal sequences presented here are inspired by UML activity diagrams. Concep-
tually, they show an ordering of service phases for a service collaboration C. Each
of these phases corresponds to an activity (i.e. round-cornered rectangle) in the
goal sequence. In each phase or activity, a specific sub-collaboration of C is active
(so-called activity’s active collaboration). This is represented by adorning the ac-
tivity with a collaboration-use, whose roles are bound to instances of C ’s roles. For
example, in Fig. 9.2, the BuyTicket collaboration is active in the first activity. This
is expressed by adorning that activity with a b:BuyTicket collaboration-use, whose
roles (i.e. Pbt and Tbt) are bound to instances of TransportService’s roles (i.e. P:P
and T1:T). The arrow in the binding identifies the offered role. In a goal sequence,
the same sub-collaboration may be active in several activities. In some cases these
activities represent different phases of that sub-collaboration, while in other cases
they represent different occurrences of the sub-collaboration. In the former cases
activities are annotated with the same collaboration-use, such as the two first ac-
tivities to the left in Fig. 9.2. They represent different phases of BuyTicket (i.e.
before and after requesting the ticket) and are therefore annotated with the same
collaboration-use (i.e. b:BuyTicket). In the latter cases, activities are annotated
with distinct collaboration-uses, as for instance va1:VehArrival and va2:VehArrival
in Fig. 9.2.

FORMALIZING COLLABORATION GOAL SEQUENCES 129

Each activity has one or more exit-points, and may or may not have one entry-
point. Both entry- and exit-points represent execution points at which an activity’s
active collaboration interact with other collaborations. They are labeled with predi-
cates describing goals of the active collaboration. Exit-points can be of two different
types. An empty-circle (©) is used for suspension exit-points. They are annotated
with event-goals, and correspond to execution points of an active collaboration where
the latter can be (or must be) suspended for another collaboration to be started (or
resumed). In Fig. 9.2 a suspension exit-point is used in the first activity. The ac-
tivity’s active collaboration (i.e. b:BuyTicket) will therefore be suspended when the
ticketRequed event-goal of BuyTicket holds. A crossed-circle (⊗) is used for end-of-
execution exit-points. They are annotated with state-goals, and represent the end
of execution of an active collaboration. Entry-points are drawn as empty circles and
annotated with event-goals. They represent the execution point at which a previ-
ously suspended active collaboration is to be resumed. When an activity does not
have an entry-point, its active collaboration starts execution from its initial state.

Edges (i.e. directed connections between activities) and control-flow nodes (i.e.
decision, merge, fork, join, initial and final nodes) are respectively used to allow
and coordinate the flow of control among activities. An activity can only have one
incoming edge, so multiple incoming edges must be AND- or OR-joined.

According to the concrete syntax just described, the formal syntax of goal se-
quences can be defined as:

Definition 9.1 (collaboration goal sequence). A collaboration goal sequence, for
a collaboration C, is a tuple GS = (N,E,gd, mexp−a,RGS,AC,ma−ac,menp−a, lep−pred,
exptype) where

(i) N is a set of nodes. It is partitioned into an initial node (n0) and sub-sets
of activities (NA), entry-points (NEnP), exit-points (NExP), control flow nodes
(NFLOW) and final nodes (NFI). In turn, NFLOW is partitioned into decision
(ND), merge (NM), fork (NF) and join (NJ) nodes.

(ii) E ⊆ (NExP∪NFLOW∪{n0})×(NA∪NEnP∪NFI∪NFLOW) is a set of directed edges
between nodes.

(iii) gd is a guard function for decision nodes’ outgoing edges. It is defined from
{(s, t) ∈ E : s ∈ ND} into boolean expressions.

(iv) RGS = {(id, type) : type ∈ RC} is a set of role instances, with RC being the set
of roles of collaboration C.

(v) AC = {(id, type,B)} is a set of active collaborations, that is, a collaboration-
use representing a specific occurrence of one of C’s sub-collaborations. For
each ac ∈ AC, id is the name of the collaboration-use; type is the name of
the collaboration that actually describes the collaboration-use (i.e. one of C’s
sub-collaborations); and B ⊆ Rtype ×RGS is a set of role bindings, where Rtype
is the set of roles of the sub-collaboration named type.

130 CHAPTER 9. PAPER 4

(vi) ma−ac : NA → AC×CL is a non-injective function that maps active collabora-
tions to activities and classifies the active collaboration’s roles as initiating or
offered roles within the context of the mapping (i.e. for the given activity).
More formally, CL is a set of binary relations, such that if ma−ac(na) = (ac,cl),
then cl = {(r, typ) : r is a role of the collaborationwith name ac.type and typ ∈
{INIT ,OFF}}.

(vii) menp−a : NEnP → NA and mexp−a : NExP → NA are functions mapping entry- and
exit-points to activities.

(viii) lep−pred : (NEnP∪NExP)→ P is an injective function labeling each entry and exit-
point of an activity with a state predicate of the activity’s active collaboration.

(ix) exptype : NExP →{END ,SUSPENSION } is a function that classifies exit-points
either as end-of-execution or as suspension ones.

9.2.2 Semantics for Goal Sequences

Goal sequences are given a token-game semantics. Intuitively, when an activity re-
ceives an input token, its active collaboration is enabled. If the token is directly
received from an edge (i.e. not via an entry-point), the active collaboration can
begin execution from its initial state. Otherwise, if the token is received through
an entry-point, the active collaboration can resume execution from the state repre-
sented by the event-goal labeling the entry-point. The active collaboration in reality
begins or resumes its execution when one of its roles takes the appropriate initia-
tive. Thereafter, it evolves until an interaction point with other collaborations is
eventually reached. That is, the active collaboration runs until the predicate of one
of its activity’s exit-points holds. When this happens, the control token is passed
on to the next activity or control node. According to this semantics, the intended
behaviour of the TransportService collaboration, as specified by its goal sequence
(Fig. 9.2), closely reflects the requirements. Initially the BuyTicket collaboration
is started and thereafter suspended after the ticket is requested. At that point, a
check is performed to determine if the vehicle is at the terminal (i.e. at T1). If
the result is positive, BuyTicket is finished and EnterVehicle is enabled, followed
by VehDeparture, VehArrival and ExitVehicle. If the vehicle was not at T1, this
role initiates ReqVehicle to request the vehicle from T2. VehDeparture is then ex-
ecuted, followed by VehArrival, which allows BuyTicket to be resumed. Thereafter
the service progresses as explained before.

Formal semantics for goal sequences is provided by mapping them into hierarchi-
cal coloured Petri-nets (HCPNs). The selection of HCPNs as the semantic domain
has been mainly motivated by two facts. First, Petri-nets in general, and HCPNs in
particular, have been extensively studied, and quite a number of quality tools exist
that support and automate their analysis. Second, the mapping of goal sequences
into HCPNs is rather intuitive, as will become clear later on. Due to space limita-
tions we will assume that the reader is familiar with traditional Petri-nets and will
only give a short introduction to (H)CPNs.

FORMALIZING COLLABORATION GOAL SEQUENCES 131

Coloured Petri-nets (CPNs) [Jen97] extend traditional Petri-nets by associating
a colour or data type with each token. In this way, tokens are distinguishable from
each other, unlike in traditional Petri-nets. Places has also an associated data type
(or colour domain) determining the kind of tokens they can contain. Transitions
can modify the type and value of their output tokens. In addition, they can have
an associated guard stating conditions over its input tokens, that must be satisfied
for the transition to become enabled.

Definition 9.2 (CPN). A non-hierarchical CPN is a tuple CPN = (Σ,P,T,A,N,C,G,
E, I) [Jen97] where Σ is a finite set of non-empty types, P is a finite set of places,
T is a finite set of transitions, A is a finite set of arcs, N : A → (P× T)∪ (T ×P)
is a node function, C : P → Σ is a colour function, G is a guard function mapping
boolean guards to transitions, E is an arc expression function labeling arcs, and I is
an initialisation function for places.

In a hierarchical CPN it is possible to define substitution transitions, which can
be decomposed into so-called subpages (i.e. subnets). Each subpage has a num-
ber of places called port places, through which the subpage communicates with its
surroundings. The relationship between a substitution transition and its subpage
is specified by describing a port assignment, which couples the port places of the
subpage with the surrounding places, or so-called socket places, of the substitution
transition. Port and socket places can be classified as input (i.e. accept tokens),
output (i.e. deliver tokens) or I/O (i.e. both accept and deliver tokens) places.

Definition 9.3 (HCPN). A hierarchical CPN is a tuple HCPN = (S,SN,SA,PN,PT,
PA,FS ,FT ,PP) where S is a finite set of pages (i.e. subnets), SN is a set of substitu-
tion transitions, SA : SN → S is a page assignment function, PN is a set of port nodes,
PT : PN →{in,out,i/o, general} is a port type function, PA is a port assignment func-
tion mapping, for a given substitution transition, its sockets with its subnet’s ports,
FS is a finite set of fusion sets, FT is a fusion type function, and PP is a multi-set
of prime pages [Jen97].

Informal Mapping

The main idea behind the mapping of goal sequences to HCPNs is to map the
collaboration-uses of a goal sequence to substitution transitions, and decompose
them into subnets describing the behaviour of those collaboration-uses.

Given a goal sequence describing the behaviour of a collaboration C (composed of
a set of sub-collaborations), we map each collaboration-use of the goal sequence into
a substitution transition. This means that several activities may be mapped into the
same substitution transition, if they are annotated with the same collaboration-use
(e.g. the two activities annotated with b:BuyTicket in Fig. 9.2 are mapped to the
same substitution transition). The mapping of activities and their collaboration-uses
is illustrated in Fig. 9.3b. Note that entry-points, as well as suspension exit-points
of an activity are mapped into I/O socket places of the corresponding substitution
transition, while end-of-execution exit-points are mapped into output socket places.
Therefore, socket places represent event- and state-goals (i.e. the goals labeling

132 CHAPTER 9. PAPER 4

:C1 :C2
RbRa

c1:Collab1

D
[gn][g1]

fork

join

S

E

(ctrl, depResolved)

ctrl

ti+1

ti

CTRL_ST

(newCtrl_EGi,
depUnres)

newCtrl_SG1

Start

EGi

I/O

InIn

(ctrl,depResolved)

EGj

I/O

newCtrl_SGk

CTRL_STxDEP

SG1

tj+1_1

SGk

OutOut

tj+1_k

CTRL_STOutOut CTRL_ST

newCtrl_EG1 stands for setCTYPEST(ctrl,id,"EGi")
newCtrl_SG1 stands for setCTYPEST(ctrl,id,"SG1")
newCtrl_SGk stands for setCTYPEST(ctrl,id,"SGk")

CTYPE is the name of the collaboration type

CTRL_STxDEP

M Merge

FROM Initial/ExP/Merge
TO Final/Activity/EnP/Merge/Decision

FROM Decision/Fork/Join
TO Fork/Join

aux

aux

Rest of combinations:

GOAL SEQUENCES HCPNs

GOAL SEQUENCES HCPNs

(a) CONTROL-FLOW NODES MAPPING

(c) EDGE MAPPING

(b) ACTIVITY MAPPING

GOAL SEQUENCES

HCPNs

(d) SUB-COLLABORATION MAPPING

c1_Collab1

Start

SG1 SGk

Collab1

EGi

EGj

CTRL_ST

CTRL_STCTRL_ST

CTRL_STxDEP

CTRL_STxDEPId_c1

STRING

[cond_1]

(ctrl,depResolved)

[cond_k]

c1.SGkc1.SG1

c1.EGj

Decision
[g1]

aux1

[gn]
auxn

SERVICE-GOAL TREE CPN

EGi

EGj

SG1 SGk

Figure 9.3: Mapping of goal sequence elements to HCPN elements

the entry- and exit-points). In addition, an input socket is added, representing
the starting point of the collaboration, as well as an id I/O socket, which is used
to uniquely identify the specific collaboration-use the substitution transition repre-
sents. The colours used for socket places are CTRL_ST and CTRL_STxDEP, which are
two custom defined data-types. CTRL_ST represents C ’s global state, and is com-
posed of the individual states of C ’s sub-collaborations. CTRL_STxDEP is a Cartesian
product of CTRL_ST and DEP. The latter is an enumeration with two values: depUn-
res (for dependency unresolved) and depResolved (for dependency resolved). The
CTRL_STxDEP type is used to cope with suspend-resume dependencies, which require
sub-collaborations to give away the control token while in the middle of execution
(i.e. at suspension exit-points in the goal sequence). To enforce this behaviour, all
tokens leaving I/O socket places (except the id one) must be marked with depUnres,
while all arriving tokens must be marked with depResolved.

The initial node, as well as the final and merge nodes of the goal sequence are
mapped into places, while join and fork nodes are mapped into normal transitions.
The mapping of a decision node yields a place interconnected to as many transitions
as the node has outgoing edges. The guards of these edges are then assigned to the
transitions. Edges become net arcs, possibly with auxiliary transitions or places so
as to respect the bipartite nature of Petri nets. All these mappings are summarized
in Figs. 9.3a and 9.3c.

The translation of activities, edges and control-flow nodes, we have just ex-
plained, yields the main net of the final HCPN. For the mapping to be complete, we
need to describe the decomposition of substitution transitions into subnets. These
subnets will describe the behaviour of the goal sequence’s collaboration-uses that
the substitution transitions represent. As the collaboration-uses of the goal se-
quence (e.g. va1:VehArrival in Fig. 9.2) are occurrences of the sub-collaborations

FORMALIZING COLLABORATION GOAL SEQUENCES 133

of C (e.g. VehArrival in Fig. 9.1a), the subnets will describe the behaviour of
those sub-collaborations. Several substitution transitions may be assigned the same
subnet, if they represent collaboration-uses of the same type (i.e. occurrences of the
same sub-collaboration of C).

We are not interested on subnets describing detailed behaviour, but rather aim
at high-level, abstract behaviour descriptions. Service goal trees (SGTs) provide
such descriptions, so we use them as input for the mapping of sub-collaborations
into subnets (see Fig. 9.3d). The SGT nodes are translated into net places, and
the SGT arcs into net arcs plus an auxiliary transition. Places are characterized as
port places: the Start place becomes an input port, places representing event-goals
(EG) become I/O (i.e. bidirectional) ports, and those representing state-goals (SG)
become output ports. Then, when coupling the subnet’s ports with the sockets of
a substitution transition, those ports and sockets representing the same goal are
interconnected. The Start place, as well as those places representing state-goals are
typed with the CTRL_ST colour, while the CTRL_STxDEP colour is used for places
representing event-goals. Custom defined functions are used to modify the state of
the collaboration (represented by CTRL_ST) as the control token travels form the
Start input port to the output port(s). At each point in time the value of the
token reflects the place the token has reached, thus reflecting the event-/state-goal
that has been achieved. In addition, all tokens arriving at an I/O port are marked
with depUnres, while all tokens leaving an I/O port are marked with depResolved.
This ensures that the control token leaves the net at I/O ports, in order to satisfy
suspend-resume dependencies.

All transitions of the subnet will be unguarded, except possibly those leading
to output ports (i.e. places representing state-goals). If several transitions lead to
different output ports from the same place, as illustrated in Fig. 9.3d, guards may
be imposed on those transitions if a deterministic choice is wanted. These guards
would determine the conditions to achieve each of the goals. They can be constructed
from the information provided by the goal sequence, since the latter describes the
relationships between sub-collaboration goals (i.e. it tells us the goal that a sub-
collaboration must achieve in order for another sub-collaboration to achieve its own
goal). The process to determine these guards is explained in the next section.

Figure 9.4a partially shows the HCPN resulting from the mapping of the Trans-
portService’s goal sequence. Each one of the collaboration-uses in Fig. 9.2 has
been mapped to a substitution transition. Note that the two activities referring to
b:BuyTicket correspond now to a single substitution transition (i.e. b BuyTicket).
This substitution transition has one I/O socket (i.e. b ticketReqed) representing
both the suspension exit-point of the first activity and the entry-point of the second
activity to the left in Fig. 9.2. Figure 9.4b depicts the subnet describing the be-
haviour of BuyTicket. This is the subnet assigned to the b BuyTicket substitution
transition, and closely resembles the service-goal tree in Fig. 9.1c.

134 CHAPTER 9. PAPER 4

(b) BUYTICKET SUBNET

ctrl

ctrlctrl

(ctrl, depUnres)

ctrl

(ctrl, depResolved)

ctrl

ctrl

v

ctrl

vd2_VehDeparture

Decision

ctrl

b_tickeBought

ev_passengerEntered

vd2_vehicleLeft

va2_vehicleArrived

r_vehicleReqed

vd1_vehicleLeft

va1_vehicleArrived

aux1

start

VehDeparture

ev_EnterVehicle

b_BuyTicket

va2_VehArrival
va1_VehArrival

VehArrival
VehArrival

EnterVehicle

BuyTicket

r_ReqVehicle
ReqVehicle

vd1_VehDeparture
VehDeparture

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRL_ST

CTRLxDEP
constraints

t1

t6

b_ticketReqed

Merge

CTRL_ST

td1

td2
[#T1_vehAtTerminal v]

[not (#T1_vehAtTerminal v)]

CTRL_ST

v

VARIABLES

t5

(c) SUB-ROLE SEQ. HCPN FOR TERMINAL

id

id

(ctrl, depResolved)

(setBuyTicketST(ctrl,
id,"ticketReqed"),
depUnres)

ctrl

t2

t1

id
STRING

ticketReqed
I/O

start

ticketBought
CTRL_ST

CTRL_ST

CTRLxDEP

(setBuyTicketST(ctrl,
id,"ticketBought")

Out

I/OI/O

In

(a) GOAL SEQUENCE HCPN

(d) SUBNET FOR Td SUB-ROLE

[not (eval_Td_Constr(constr))]

ctrl

setTdST(ctrl,id,"vehicleLeft")

ctrl

constr

upd_constr

[eval_Td_Constr(constr)]

input (constr);
output (upd_constr);
action({vehAtTerminal=false});

Start

constr

ctrl

Pconflict
CTRL_ST

CTRL_ST

CTRL_ST

vehicleLeft

constraints
CONSTRAINTS

{vehAtTerminal=true}

t1

Tconflict

Out

In

Fusion 1

(ctrl,
depUnres)

(ctrl,
depResolved)

b_tickeBought

vd2_vehicleLeft

start

vd2_Td

b_Tbt

Td

Tbt

CTRL_ST

CTRL_ST

t1

b_ticketReqed

CTRL_STIn

Out

CTRLxDEP

Figure 9.4: Nets for the TransportService case study

Formal Semantics.

For the mapping of goal sequences, we define two semantic functions: [[]]CPN, which
maps elementary sub-collaborations into non-hierarchical CPNs; and [[]]HCPN, which
maps collaboration goal sequences into HCPNs. [[]]CPN takes a service-goal tree and
a collaboration goal sequence, and returns a CPN representing the collaboration
whose goals are described by the service-goal tree. A service-goal tree is defined as:

Definition 9.4 (Service-goal tree). A service-goal tree is a directed graph SGT =
(cId,GN,GA) where: cId is the name of the collaboration whose goals SGT describes;
GN = {start}∪EG∪SG is a set of nodes, with start being the initial node, EG being
a set of intermediary nodes representing event-goals, and SG being a set of final nodes
representing sate-goals; and GA ⊆ N×N is a set of directed arcs between nodes, such
that ∀(s, t) ∈ GA : [s �∈ SG∧ t �= start].

FORMALIZING COLLABORATION GOAL SEQUENCES 135

According to the mapping explained in the previous section, and given SGT =
(cId,GN,GA) and GS = (N,E,gd,mexp−a,RGS,AC,ma−ac,menp−a, lep−pred,exptype), we
define [[SGT,GS]]CPN = (Σ,P,T,A,N,C,G,E, I), where:

Σ = {CTRL ST, CTRL ST×DEP, STRING}
P = GN ∪{Id} T = {tga : ga ∈ GA}
A = {sourceTOtga, tgaTOtarget : ga = (source, target) ∈ GA}

∪{IdTOtga, tgaTOId : Id ∈ P,ga ∈ GA}
N(a) = (source, target), if a is in the form sourceTOtarget

C(p) =

⎧⎨
⎩

CTRL ST, if p ∈ SG∪{start}
CTRL ST×DEP, if p ∈ EG
STRING, if p = Id

E(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ctrl, if (a = s tga)∧ (s = start)
(setCTYPEnST(ctrl,id,”tgn”),depUnres), if (a = tga t)∧ (t ∈ EG)
(ctrl,depResolved), if (a = s tga)∧ (s ∈ EG)
setCTYPEnST(ctrl,id,”t”), if (a = tga t)∧ (t ∈ SG)
iId, if [(a = s tga)∧ (s = Id)]∨ [(a = tga t)∧ (t = Id)]

No initial marking (I) is defined for the resulting CPN. The guard function G
assigns true to all transitions of the CPN, except possibly to those leading to places
p ∈ SG. To describe how the guards are assigned to those transitions, let us consider
the example net in Fig. 9.3d. To determine the set of conditions cond i , we just
need to search for entry-points in the goal sequence that are labeled with EG j.
For each entry-point, if its associated activity A has several exit-points, then the
conditions are set to true (i.e. representing a non-deterministic choice). Otherwise,
if the state-goal labeling A’s exit-point is SGn, then cond n is set to the value of
the goal labeling the exit-point of the activity immediately preceding A. Note that
cond n may actually be a boolean expression of goals, if several activities lead to A
through a control flow node.

As a convention, in the following we will use the notation T.E, meaning element
E of tuple T , in order to access the elements of a tuple. We can now define [[]]HCPN,
which takes a goal sequence GS =(N,exptype,menp−a, mexp−a,RGS,AC,ma−ac, lep−pred,E,
gd) and a set of service-goal trees {SGTac = (cId,GN,GA),SGTac.cId = ac.type,ac ∈
GS.AC} (i.e. one for each sub-collaboration referred to by GS), and returns a
HCPN = (S,SN,SA,PN,PT,PA,FS,FT,PP). We start by introducing the set of sub-
nets (SAC), the set of transitions due to the mapping of decision nodes and edges
(TD and Tedges), the set of places due to the mapping of arcs (Pedges), the set of arcs
connecting id places to substitution transitions (AId), and the set of arcs connecting

136 CHAPTER 9. PAPER 4

the constraint place to transitions generated by decision nodes (Aconstr) as:

SAC = {[[(SGTac,GS)]]CPN : SGTac.cId = ac.type,ac ∈ AC}
TD = {td : d ∈ ND,(d,) ∈ E}

Tedges = {t(es,et) : (es,et) ∈ E,es ∈ {n0}∪NM ∪NExP,

et ∈ NFI ∪NA ∪NEnP ∪NM ∪ND}
Pedges = {p(es,et) : es ∈ TD ∪NF ∪NJ,et ∈ NF ∪NJ,(es,et) ∈ E}

AId = {ac.id IdTOac.id ac.type,ac.id ac.typeTOac.id Id : ac ∈ AC}
Aconstr = {constrTOtd, tdTOconstr : constr ∈ P, td ∈ TD}

Now we define the main net (smain) describing the interconnection of substitution
transitions (representing collaboration uses of the goal sequence). This net is a
CPN = (Σ,P,T,A,N,C,G,E, I) described as:

Σ = {CT RL ST,CT RL ST ×DEP,ST RING,VARIABLES}
P = {n0}∪NFI ∪ND ∪NM ∪{constr}∪{ac.id Id : ac ∈ AC}

∪{ac.id psac : psac ∈ Psac,sac ∈ SAC}∪Pedges

T = {ac.id ac.type : ac ∈ AC}∪TD ∪Tedges

A = AId ∪Aconstr ∪{esTOt(es,et), t(es,et)TOet : t(es,et) ∈ Tedges}
∪{esTOp(es,et), p(es,et)TOet : p(es,et) ∈ Pedges}
∪{esTOet : (es,et) ∈ E, t(es,et) �∈ Tedges, p(es,et) �∈ Pedges}

N(a) = (source, target), if a is in the form sourceTOtarget

C(p) =

⎧⎪⎪⎨
⎪⎪⎩

CT RL ST, if p ∈ {n0}∪NFI ∪ND ∪NM ∪Parcs
ST RING, if p is in the form ac.id Id
VARIABLES, if p = constr
C(p′), if p is a socket connected to port p’

E(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ctrl,depUnres), if a=sourceTOtarget
and source is a socket connected to an i/o port

(ctrl,depResolved), if a=sourceTOtarget
and target is a socket connected to an i/o port

varbl, if a ∈ Aconstr
id, if a ∈ AId
ctrl, otherwise

G(t) =
{

gD(e), if t = td ∈ TD,e = (d,) ∈ E,d ∈ ND
true, otherwise

The initialisation function (I) of smain assigns to the starting place (i.e. p = n0)
a token of type CTRL_ST. This token describes the initial state of the composite
collaboration described by GS, where all state predicates representing the goals of
the collaboration are set to false.

FORMALIZING COLLABORATION GOAL SEQUENCES 137

Finally, we define [[GS,{SGTac}]]HCPN = (S,SN,SA,PN,PT,PA,FS,FT,PP), where:

S = {smain}∪SAC SN = {ac.id ac.type : ac ∈ AC}
PN =

⋃
sac∈SAC

Psac FS = /0 PP = {smain}

SA(t) = sac, if t = ac.id ac.type,ac ∈ AC,sac ∈ SAC

PT (p) =

⎧⎨
⎩

in, if p = start
out, if p ∈ GTac.SG
i/o, if p ∈ GTac.EG∪{Id}

,∀p ∈ Psac,∀sac = [[(SGTac,GS)]]CPN ∈ SAC

PA(t) = (ac.id p, p),∀p ∈ PN,∀ac.id p ∈ Psmain

9.3 Detection of Implied Scenarios

A goal sequence describes the intended behaviour of a service from a global perspec-
tive, and can be used to synthesize state-machines for the service-roles. The actual
service behaviour is performed by the components playing those roles. Since compo-
nents only have a local view of the service, unexpected interactions may arise. These
are the so-called implied scenarios [AEY00], which correspond to service behaviour
that has not been explicitly specified, but follows implicitly, and will be present in
any implementation of the service. An implied scenario may capture some over-
looked positive behaviour, but it may also represent undesired behaviour. Detecting
implied scenarios is therefore important.

In the context of the collaboration-based service specification approach treated
here, an implied scenario may arise due to the existence of multiple initiatives, from
the service-roles, to engage in sub-collaborations. In the collaboration goal sequence
these initiatives are ordered in some desired sequence. However, this ordering may
not be guaranteed at runtime due to the independence between the initiatives of
different service-roles. Therefore, all possible orderings should be analyzed in order
to determine if undesired behaviours may arise. Fortunately, this can be done with-
out performing a global analysis of the service collaboration. It suffices to analyse,
separately, the sub-role sequences that each service-role may execute. These sub-role
sequences can be obtained from the collaboration goal sequence. For example, the
following sub-role sequence: Vev → Vd → Va → Vexv; can be extracted from the goal
sequence in Fig. 9.2 for the V service-role.

Separate sub-role sequences are extracted for each (instance of a) service-role
(e.g. T1:T, T2:T, . . .). This can be done by invoking the VISIT algorithm (see
Algorithm 1), with i = 0 and n = n0, for each service-role (rType), and for each
instance of that role (rIns). This algorithm traverses the goal sequence’s graph
(GSG) with a depth-first search method, looking for occurrences of rIns. While
traversing the GSG forwards, the algorithm creates a role-sequence graph (RSG)
that includes only those activities (and their associated entry-/exit-points) related
to rIns. RSGs have the same syntax and semantics as GSGs. If a fork node is found,
the algorithm adds it to the RSG and continues the search through one of the fork’s
outgoing edges. When a decision node is found, one of its outgoing edges is also

138 CHAPTER 9. PAPER 4

Algorithm 1: VISIT(GSG,n,rIns,RSG[rIns,i])
/* All variables except adjNodes and nextN are global */
/* All elements of the visited array are initialized to 0 before first call
to VISIT */
visited[n]++; ad jNodes[n] = GETADJACENTNODES (n,GSG)1

while ad jNodes[n] �= /0 do2

nextN = ad jNodes[n].pop()3

if visited[nextN] < 2 then4

if ((n ∈ NEnP)∨ (n ∈ NExP)∨ (n ∈ NA))∧RELATED(n,rIns) then5

ADDTOGRAPH (n,RSG[rIns, i])6

else if (n ∈ NF)∨ (n ∈ NJ) then7

ADDTOGRAPH (n,RSG[rIns, i]) and update forks[rIns, i]/joins[rIns, i]8

else if n ∈ ND then9

update decisions[rIns, i]10

else if n = n0 then11

ADDTOGRAPH (n,RSG[rIns, i])12

VISIT (GSG,nextN,rIns,RSG [rIns, i])13

// There are no (more) adjacent nodes
visited[n] = visited[n]−114

if n ∈ NFI then15

// Final node
ADDTOGRAPH (n,RSG[rIns, i]); RSG [rIns, i+1] = RSG [rIns, i]; i++16

REMOVEFROMGRAPH (n,RSG[rIns, i]) // Backtracking17

chosen to continue the search, but the decision node is not added to the RSG (since
at runtime only one of the branches can be executed). Instead, different RSGs will
be generated for each of the decision’s branches (e.g. in our case study two RSGs
are generated for T1:T, one for vehAtTerminal and other for NOT vehAtTerminal).
In order to know the decision node’s branch a RSG corresponds to, the branch’s
guard is saved in a dedicated table (decisions). Once a final node is found, a sub-
role sequence has been obtained. From there, a copy of the RSG is done and the
algorithm begins the backtracking phase. During this phase the previously added
nodes are removed from the RSG until a decision or fork node with unvisited edges
is found. If this happens, one of the unvisited edges is selected and the GSG is
again traversed forwards (so new nodes are added to the RSG). Otherwise, if the
initial node is reached during backtracking, the extraction process ends. Note that
if fork (resp. join) nodes where found while traversing the GSG, the generated
RGSs describe a path through only one of the outgoing (resp. incoming) edges of
these nodes. The individual RGSs sharing fork (resp. join) nodes must therefore
be merged at the end. To help in this process, each time a fork (resp. join) node
is found, information about the traversed edge is saved in a dedicated table (forks ;
resp. joins). Note also that loops are traversed only once (i.e. only one iteration is
performed). This is achieved by annotating in a table (visited) the number of times
each node is visited. With this restriction we avoid infinite role sequences, while we
ensure that all possible non-repetitive sequences of sub-roles are considered.

FORMALIZING COLLABORATION GOAL SEQUENCES 139

Once the sub-role sequences have been obtained, their analysis can start. For
each service-role, its sub-role sequences are first analysed individually, and thereafter
their interactions are studied. In the individual analysis, we look for any set of two or
more consecutive offered sub-roles (i.e. offered sub-roles connected by edges and/or
join/fork nodes) that the sequence may contain. Consecutive offered sub-roles may
represent a conflict, if they are played in collaborations with different parties, and
these collaborations maintain some kind of dependency (e.g. one of them should not
finish before the other does). In that case, the dependency might be violated, since
the initiatives to start the collaborations are taken by different parties. In the Trans-
portService example this happens for the V service-role. According to their sub-role
sequences, Vev is to be played in EnterVehicle before Vd in VehDeparture (see Fig.
9.2). However there is no way for T, which takes the initiative in VehDeparture, to
know if Passenger (P) has taken the initiative to start EnterVehicle, and when this
has finished (i.e. the condition ev.passEntered is not visible for Terminal). Thus T
may request V to play Vd before P has requested it to play Vev.

After the individual analysis, we study how the sub-role sequences of a single
service-role interact with each other, if executed concurrently. Intuitively, we first
constrain the execution of sub-roles by imposing pre- and post-conditions, and then
build the cross-product of the sub-role sequences to detect constraint conflicts. For
that purpose, sub-role sequences are semantically mapped into HCPNs. This map-
ping follows the same guidelines as the goal sequence mapping detailed in Sect.
9.2.2, the only difference being substitution transitions labeled with sub-role names,
rather than with active collaboration names. As an example, consider Fig. 9.4c,
which depicts the HCPN for the sub-role sequence obtained when the TransportSer-
vice’s goal sequence is projected onto T1:T and T1.vehAtTerminal is true. Figure
9.4d presents the subnet representing role Td (part in boldface).

The execution constraints (i.e pre- and post-conditions) to be imposed on sub-
roles follow from the requirements and the service domain. For example, in our
case study we can further restrict the execution of role Td (from VehDeparture) by
setting VehAtTerminal and NOT VehAtTerminal as part of Td’s pre- and post-condition,
respectively. In our HCPN model constraints are represented as boolean tokens that
reside in a place shared by all the sub-role sequence nets. Since HCPNs do not allow
guards to be imposed on substitution transitions (which, remember, represent sub-
roles), the pre-condition for the execution of a sub-role is instead specified as a
guard on the first transition of the subnet describing the sub-role behaviour. If the
guard is satisfied, the transition fires and it updates the value of the constraints
according to the post-condition. This is illustrated in Fig. 9.4d for the Td sub-
role, where the result of calling function eval Td Constr(constr) has been imposed
as guard of transition t1. This function processes the value of the constr token,
which represents the constraints, and returns true if VehAtTerminal is true. The
value of VehAtTerminal is updated when t1 fires, by its code segment. Note that in
addition to the constraints place, a Tconflict transition and a Pconflict place have
been added to the subnet of Td. Note also that Tconflict can only be fired when t1
can not, that is, when VehAtTerminal is false. In such a case, Tconflict “steals” the
tokens from the Start and constraints places forcing a dead-marking to be reached.

140 CHAPTER 9. PAPER 4

This behaviour reflects our desire of a (potential) conflict to be reported if a sub-
role cannot be immediately executed when it receives the control token, because its
pre-condition is not satisfied.

At the end, the sub-role sequences are composed in parallel and the reachability
graph of the resulting net is constructed and analysed in search of dead-markings,
which would represent potential conflicts. In order to test our analysis method, we
used CPN Tools [CPN05] to analyse an extended version of the TransportService
(with a control center for mediation between the terminals). A reachability graph
with 37 nodes and 58 arcs was generated for the analysis of the sub-role sequences
of the Terminal (T) service-role. This analysis revealed two implied scenarios: a
passenger may miss the vehicle after buying the ticket, if the vehicle is dispatched
following a request from the control center; or the vehicle may depart with the
passenger before a control center’s request has been completely processed. A reach-
ability graph of similar size was generated for the Vehicle (V) service-role. As a
comparison, the detection method by Uchitel et al. [UKM04], which is of exponen-
tial complexity with the number of service-roles, needs to build a safety property
for the same case study of 4414 states, if heuristics are used. Although no formal
conclusions can be obtained from this comparison, we believe the results show the
potential of our approach.

9.4 Related Work

Service-oriented specification has been addressed in several works. Rößler et al.
[RGG01] suggested collaboration based design with a tighter integration between
interaction and state diagram models, and created a specific language, CoSDL,
to define collaborations. CoSDL is inspired by SDL, so it fails at providing the
cross-cutting service composition offered by UML collaborations and goal sequences.
Krüger et al. [KGM+04] propose an approach to service engineering that has many
commonalities with our own. They consider, as we do, services as collaborations
between roles played by components, and use a combination of Use Cases and an
extended MSC language to describe them. Liveness is expressed by means of the
operators provided by their MSC language, while service structure and role binding
are described with, so-called, role and deployment domain models. In our approach
UML collaboration diagrams are used to provide a unified way of describing service
structure and role bindings, and to provide a framework for expressing liveness with
goal sequences. Goal sequences provide interesting opportunities for analysis, as we
have discussed.

The concept of implied scenarios was first introduced by Alur et al. in [AEY00],
where they presented an algorithm to detect this kind of scenarios from MSC spec-
ifications. This work was later extended by Uchitel et al. [UKM04], who proposed
an approach for the incremental specification (using both MSCs and HMSCs) of sys-
tems, driven by the detection of implied scenarios. The main drawback of Uchitel
et al.’s work is, however, the state explosion problem (although they limit it by ap-
plying heuristics). Munccini has proposed an approach for the detection of implied
scenarios based on the analysis of HMSCs [Muc03]. His work builds over a previous
work of Uchitel et al., and avoids the state explosion problem. Our method also

FORMALIZING COLLABORATION GOAL SEQUENCES 141

limits the state explosion problem and it is applicable to UML collaboration-based
specifications, while Munccini’s approach applies to HMSC-based specifications.

9.5 Discussion And Conclusions

UML 2.0 collaborations provide very useful structuring mechanisms for specifying
cross-cutting service behaviours. They enable: (a) an attractive structured overview;
(b) structural decomposition into features, by means of collaboration-uses; (c) re-
usability; and (d) definition of semantic interfaces for dynamic discovery, binding
and compatibility checks [SBvBA05]. Still, a proper way to describe the choreog-
raphy or joint behaviour of the sub-collaborations of a composite collaboration is
needed. Collaboration goal sequences can be used to fill this gap. They help to
understand and document the relationships and execution dependencies between
sub-collaborations, in terms of their goals. Moreover, they can be analysed in order
to detect inconsistencies and implied scenarios at an early stage of service specifica-
tion.

Formal semantics for goal sequences based on hierarchical coloured Petri-nets
has been presented here that allows their automated analysis using general pur-
pose tools available for HCPNs. The detection of implied scenarios is done in two
phases. First, sub-role sequences are extracted from the goal sequence and individu-
ally analysed. Then the cross-product of the sub-role sequences of each service-role
is built to examine how they interact. The proposed analysis suffers little from the
state explosion problem since the sub-role sequences of each service-role are anal-
ysed separately, so the complexity is linear with the number of service-roles. In
addition, the analysis is done at a high-level of abstraction (i.e. with role sequences
and not message sequences). The proposed implied scenario detection approach
demonstrates, in addition, that we have much to gain from the explicit description
of features dependencies, and from the analysis and understanding of concurrency
on interfaces.

Although we can use HCPN-tools for the analysis of goal sequences, their map-
ping into HCPNs is still performed manually. Thus, a short-term objective is to
provide tool support for the mapping, so the whole process can be automatized.
Another interesting issue we plan to work on is how to address the elimination of
the implied scenarios. One possibility might be to specify negative goal sequences
(as the the negative scenarios in [UKM04]).

Acknowledgements

We would like to thank Gregor von Bochmann, Cyril Carrez and the anonymous
reviewers for their valuable comments on this work.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of
message sequence charts. In 22nd Int. Conf. on Software Engineering
(ICSE’00), 2000.

142 CHAPTER 9. PAPER 4

[CB06] Humberto N. Castejón and Rolv Bræk. A collaboration-based approach
to service specification and detection of implied scenarios. In Proc. of
5th int. workshop on Scenarios and state machines: models, algorithms
and tools (SCESM’06). ACM Press, 2006.

[CPN05] CPN Group. CPN Tools Manual. Technical re-
port, Univ. of Aarhus, Denmark, 2005. Available at
http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[Jen97] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use, volume 1 of Monographs in Theoretical Computer
Science. Springer-Verlag, 1997.

[KGM+04] Ingolf H. Krüger, Diwaker Gupta, Reena Mathew, Praveen Moorthy,
Walter Phillips, Sabine Rittmann, and Jaswinder Ahluwalia. Towards
a process and tool-chain for service-oriented automotive software engi-
neering. In Proc. of the ICSE 2004 Workshop on Software Engineering
for Automotive Systems (SEAS), 2004.

[Muc03] Henry Muccini. Detecting implied scenarios analyzing non-local branch-
ing choices. In 6th Intl. Conf. Fundamental Approaches to Software
Engineering (FASE’03), volume 2621 of LNCS, pages 372–386, 2003.

[Obj05] Object Management Group (OMG). UML 2.0 Superstructure Spec.,
2005.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Proc. of 10th Intl. SDL Forum, volume
2078 of LNCS, pages 72–89. Springer, 2001.

[SB04] Richard Torbjørn Sanders and Rolv Bræk. Modeling peer-to-peer service
goals in UML. In Proc. of the 2nd Int. Conf. on Soft. Eng. and Formal
Methods (SEFM’04). IEEE CS, 2004.

[SBvBA05] Richard Torbjørn Sanders, Rolv Bræk, Gregor von Bochmann, and
Daniel Amyot. Service discovery and component reuse with semantic
interfaces. In Proc. 12th Intl. SDL Forum, volume 3530 of LNCS, 2005.

[SCKB05] Richard T. Sanders, Humberto N. Castejón, Frank A. Kraemer, and Rolv
Bræk. Using UML 2.0 collaborations for compositional service specifi-
cation. In ACM/IEEE 8th Intl. Conf. on Model Driven Eng. Languages
and Systems (MoDELS), volume 3713 of LNCS, pages 460–475, 2005.

[UKM04] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Incremental elabora-
tion of scenario-based specifications and behavior models using implied
scenarios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85, 2004.

10

Paper 5

Using collaborations in the development of

distributed services.

By Humberto Nicolás Castejón, Gregor von Bochmann and Rolv Bræk.

Published as Technical Report Avantel 2/2008, ISSN 1503-4097, NTNU, February
2008.

This is an extended and revised version of: Humberto Nicolás Castejón, Gregor von
Bochmann, and Rolv Bræk. Realizability of collaboration-based service specifica-
tions. In Proc. 14th Asia-Pacific Soft. Eng. Conf. (APSEC’07). IEEE Computer
Society, December 2007.

Notes

An appendix has been included at the end of the paper to discuss some issues
discovered after the original publication.

143

Using Collaborations in the Development of
Distributed Services

Humberto Nicolás Castejóna, Gregor von Bochmannb and
Rolv Bræka

aNTNU, Department of Telematics, N-7491 Trondheim, Norway
{humberto.castejon, rolv.braek}@item.ntnu.no

bSchool of Inf. Technology and Engineering, University of Ottawa, Ottawa, Canada
bochmann@site.uottawa.ca

Abstract

This paper is concerned with the compositional specification of services us-
ing UML 2 collaborations, activity and interaction diagrams. It addresses
the problem of realizability: given a global specification, can we construct a
set of communicating system components whose joint behavior is precisely the
specified global behavior? We approach the problem by looking at how the se-
quencing of sub-collaborations and local actions may be described using UML
activity diagrams. We identify the realizability problems for each of the se-
quencing operators, such as strong and weak sequence, choice of alternatives,
loops, and concurrency. Possible solutions to the realizability problems are
discussed. This brings a new look at already known problems: we show that
given some conditions, certain problems can already be detected at an abstract
level, without looking at the detailed interactions of the sub-collaborations,
provided that we know the components that initiate and terminate the differ-
ent sub-collaborations.

10.1 Introduction

For several decades now it has been common practice to specify and design reactive
systems in terms of loosely coupled components modeled as communicating state
machines [Boc78, Bræ79], using languages such as SDL [ITU00] and more recently
UML [OMG07]. This has helped to substantially improve quality and modular-
ity, mainly by providing means to define complex, reactive behavior precisely in a
way that is understandable to humans and suitable for formal analysis as well as
automatic generation of executable code.

145

146 CHAPTER 10. PAPER 5

However, there is a fundamental problem. In many cases, the behavior of services
provided by a system is not performed by a single component, but by several collab-
orating components. This has been recognized by several authors, such as [Bræ99],
[Krü03] and [BKM07], and is sometimes referred to as the “crosscutting” nature of
services [FK01, KM03]. Often each component takes part in several different ser-
vices, so in general, the behavior of services is composed from partial component
behaviors, while component behaviors are composed from partial service behaviors.
By structuring according to components, the behavior of each individual component
can be defined precisely and completely, while the behavior of a service is frag-
mented. In order to model the global behavior of a service more explicitly one needs
an orthogonal view where the collaborative behavior is in focus.

Interaction sequences such as MSC [ITU98], and UML Sequence diagrams [OMG07]
are commonly used to describe collaborative behavior, and have proven to be very
valuable. They are however, not without limitations. They are expressed in terms
of message exchanges, which at an early stage of development may be too detailed.
Due to the large number of interaction scenarios that are possible in realistic sys-
tems, it is normally too cumbersome to define them all, and therefore only typi-
cal/important scenarios are specified. In addition, there are problems related to the
realizability of interaction scenarios, i.e. finding a set of local component behaviors
whose joint execution leads precisely to the global behavior specified in the scenar-
ios. Some authors have studied the realizability problem in the context of implied
scenarios [UKM04, AEY05], i.e. unspecified scenarios that will be generated by any
set of components implementing the specified scenarios. Other authors have studied
pathologies in interaction sequences, e.g. non-local choices [BAL97], that prevent
their realization.

We have asked ourselves if there are better ways to model services. Is it possible
to model service behavior more completely? Can it be done in a more structured way
without revealing more interaction detail than necessary? Is it possible to support
composition and to detect and remove realization problems? And is it possible to
derive detailed implementations automatically from service models?

We have found that a promising step forward is to adopt a collaboration-oriented
approach, where the main structuring units are collaborations. This is made prac-
tically possible by the new UML 2 collaboration concept [OMG07]. The underlying
ideas, however, date back to before the UML era [RAB+92, RWL96]. Collabora-
tions model the concept of a service very nicely. They define a structure of partial
object behaviors, called roles, and enable a precise definition of the service behavior
using interaction diagrams, activity diagrams and state machines as explained in
[SCKB05], [CB06b] and [KH06]. They also provide a way to compose services by
means of collaboration uses and to bind roles to components. In this way, UML 2
collaborations directly support (crosscutting) service modeling and service compo-
sition. As we shall see in the following, this opens many interesting opportunities.
Fig. 10.1 illustrates the main models involved in the collaboration oriented approach
being discussed in the following:

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 147

Design Models
C 1 C 2 C 3 C 4

Service Models

Design synthesis

Implementations

Code generation

S1.1 S1.2

Service2

Service1

Service3

Figure 10.1: Collaboration oriented development

(i) Service models are used to formally specify and document services. Collabora-
tions provide a structural framework for these models that can embody both
the role behaviors and the interactions between the roles needed to fulfill the
service.

(ii) Design models are used to formally specify and document system structure
and components providing the services. They are expressed in terms of com-
municating state machines, typically using UML2 active objects or SDL agents
(processes). Each of these will realize one or more collaboration roles.

(iii) Implementations are executable code automatically generated from the design
models.

This paper is concerned with the crucial first steps of expressing service models
using UML 2 collaborations and deriving well-formed design models expressed as
communicating state machines. The ensuing steps from design component models
to implementations and dynamic deployment on service platforms can be solved in
different ways, see for instance [San00] and [BM05], and are not discussed further
here.

An important property of collaborations is that it is possible and convenient to
compose/decompose collaborations structurally into sub-collaborations, by means
of collaboration uses. These refer to separately defined collaborations and provide a
mechanism for abstraction and collaboration reuse. In order to define the behavior
of collaborations, we have found it useful to distinguish between the behavior of
composite collaborations and elementary collaborations (collaborations that are not

148 CHAPTER 10. PAPER 5

further decomposed into sub-collaborations). The elementary collaborations that
result from the decomposition process are often quite simple, reusable and possible
to define completely in terms of interaction sequences. Binary collaborations can in
many cases be associated with interfaces and their sub-collaborations with phases
or features of the interface behavior. Assuming the behavior of elementary collab-
orations are completely defined using interaction diagrams or other notations, the
question then is how to define the overall behavior of composite collaborations in
terms of sub-collaboration behaviors. In the SOA domain this kind of behavior is
called “choreography” [Erl05], a term we will use in the following. Several notations
may be used to define the choreography of sub-collaborations (i.e. their global ex-
ecution ordering). We have found UML2 Activity diagrams a good candidate, as
they provide many of the composition operators needed for the purpose. This will
be elaborated in Section 10.2.

Interestingly, the operations needed to define a choreography also enable us to
identify and classify the underlying reasons leading to realization problems. Many of
these can be found by analyzing choreographies at the level of its sub-collaborations
without needing to go into interaction details. When this is not possible, potential
problem spots can be pinpointed so that detailed interaction analysis can be focused
on those. In Section 10.3 we present our results in this area.

In Section 10.4 we discuss the feasibility of automatically synthesizing compo-
nents from collaborations, i.e. to automate the step from service models to design
models. We foresee a process where choreographies defined using activity diagrams
are used directly. This points towards a highly automated process form collaboration
oriented service models to executable services.

10.2 Using Collaborations to Model Services

10.2.1 A case study: TeleConsultation

We consider as an example a telemedicine consultation service. A patient is being
treated over an extended period of time for an illness that requires frequent tests
and consultations with a doctor at the hospital to set the right doses of medicine.
Since the patient may stay at home and the hospital is a considerable distance away
from the patient’s home, the patient has been equipped with the necessary testing
equipment at home. The patient will call the hospital on a regular basis to have
remote tests done and consult with a doctor. A consultation may proceed as follows:

(i) The patient calls the telemedicine reception desk to ask for a consultation
session with one of the doctors. The receptionist will register the information
needed, and then see if any of the appropriate doctors is available.

(ii) If no doctor is available, the patient will be put on hold, possibly listening to
music, until a doctor is available. If the patient does not want to wait he/she
may hang up (and call back later).

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 149

r: registration

availableunavailable

as: assignment

c: consultation

 hangup

av: available

u: unavailable

w: waiting

d: disconnect

Patient Doctor

v: voicet: test

Consultation

Figure 10.2: Activity diagrams describing a TeleConsultation

(iii) When a doctor becomes available while the patient is still waiting, the doctor
is assigned to the patient and may use the supplied information to look up the
patient journal.

(iv) A voice connection is established between the patient and the doctor allowing
the consultation to take place.

(v) During the consultation the doctor may decide to perform some remote tests
using the equipment located at the patient’s site. The doctor evaluates the
results and advises the patient about the further treatment. Either the doctor
or the patient may end the consultation call.

(vi) After the consultation call is ended the doctor may spend some time updating
the patient journal and doing other necessary work before signaling that he/she
is available for a new call. The doctor may signal that he/she is unavailable
when leaving office for a longer period, or going off-duty.

Each of these points may be considered an activity. An UML activity diagram
describing the order of execution of these activities is given in Fig. 10.2. The
fact that the patient and the doctor behave concurrently and may take initiatives
independently of each other is reflected by the use of two initial nodes. The result
is a diagram with two concurrent parts that are joined for the assignment and
consultation activities.

10.2.2 Collaboration structure

An important aspect in requirements specification and service modeling, as well as
in workflow modeling, is the identification of the actors involved in the different
activities.

150 CHAPTER 10. PAPER 5

Patient

Doctor

Receptionist

pc

dc

du

rura

da

TeleConsultation

pr

rr
r:registration

c:consultation

u:unavailable

av:available

Sensor
sc

ras

das

as:assignment

pw

rw

w:waiting

pd

rd

d:disconnect
dc

consultation
callee callerc:call

testee
testert:test

pc

sc

Figure 10.3: Roles and sub-collaborations in the hospital visit

Traditional UML use cases distinguish the system and actors that are part of
the system environment. For high-level workflow modeling and domain analysis,
one usually identifies various actors that participate without necessarily identifying
a system. For the TeleConsultation example, we can identify the following actors:
the patient, the doctor and the receptionist. It should be noted here that it is
useful to make a distinction between real actors and the roles that actors play.
In specifications and designs it does not make much sense to identify particular
actors. One rather identifies roles that may be composed and bound to real actors
in different ways. As illustrated in Fig. 10.2, roles (patient and doctor) may have
different responsibilities and follow partly independent workflows with some joint
activities.

A UML collaboration diagram is well suited to model role structures and iden-
tify sub-collaborations among the roles. This is illustrated for the TeleConsulta-
tion example in Fig. 10.3, where 4 roles and 7 sub-collaborations are identified.
These sub-collaborations are modeled as UML collaboration uses, and their roles
are bound to the roles of TeleConsultation1. When decomposing collaborations into
sub-collaborations one tends to identify sub-collaborations that involve just two
roles. Such binary collaborations can be used to define interfaces and interface be-
havior. This has some advantages: (1) the behaviors are relatively small, (2) they
can be completely defined, and (3) they are units of reuse. In this example, all sub-
collaborations except consultation are elementary and associated with an interface
between two roles.

As explained in [SBvBA05] and [San07] binary collaborations can be used to
define semantic interfaces that are used to type components in order to enable effi-
cient discovery and compatibility checking at design time and runtime. Used in this
way, collaborations are useful during the entire life cycle, not only in early service
modeling.

1The “dots” and “bars” in this diagram are not standard UML. They are used to indicate the
initiating and terminating roles of a collaboration use, as will be explained in Section 10.2.4

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 151

In service and workflow modeling one often distinguishes between actors and
resources. Both may be associated with a given action and required for its correct
execution. The main difference between these two entities is normally that actors
may take initiatives, while resources are rather passive. For the modeling of col-
laborations, we consider both actors and resources as roles that participate in the
execution of an action. In the TeleConsultation the sensors are rather passive re-
sources. The doctors may be seen as shared resources from the point of view of
patients, and the receptionist as a resource allocator. Contrary to sensors, the pa-
tients and the doctors can take independent initiatives, and this exemplifies that
resources may also be active.

10.2.3 Collaboration behavior: Choreography

The activity diagram in Fig. 10.2 defines the global behavior for the TeleConsulta-
tion collaboration. The activities have been chosen so that each activity corresponds
to a sub-collaboration in Fig. 10.3, and in this way it defines their choreography.
Note how this diagram defines collaboration ordering in a visual way without going
into the details of interactions.

UML Activity diagrams appear to be at a suitable level of abstraction for defining
the choreography of sub-collaborations within a given composite collaboration. They
can express sequential, alternative and concurrent behavior including the possibility
of looping, as well as interruption and activity invocation (e.g. voice invoking test
in the consultation collaboration), as illustrated in Fig. 10.2. The units of execution
are atomic actions or activities. An activity can be further refined and described by a
separate activity diagram that will be invoked when the activity becomes activated.

There is, however, one important feature of collaborations that is different from
what is normally assumed of an activity. A collaboration involves several roles (par-
ticipants). In activity diagrams, each activity normally involves only a single role. It
must therefore be foreseen that an activity or action, representing a sub-collaboration
within an activity diagram, involves more than one role. This information can be
provided by annotating the diagram as shown in Fig. 10.4. UML is very open-ended
concerning the precise notation for activity diagrams and allows this kind of nota-
tional extension. The important point here is the kind of information we would like
to include in the models, not exactly how it is done. The same information might
be supplied in different ways, as will be discussed in Section 10.2.5.

10.2.4 The nature of collaborations

A collaboration describes (joint) actions among a set of roles carried out in order
to achieve a goal. The roles describe the behavior and properties that components
should exhibit in order to participate in the collaboration. The order in which the
actions are performed is enforced locally by the participants and globally by the
exchange of messages between the participants. This is in general a partial order,
as first explained by Lamport [Lam78]. A collaboration may include behavior alter-

152 CHAPTER 10. PAPER 5

«external»
hangup

d:disconnectP R

availableunavailable

r:registrationP R

Patient Doctor

w:waitingP R

c:consultationP D

S

as:assignmentR D

a:availableR D

u:unavailableR D

v:voiceP Dt:testS D

Consultation

Figure 10.4: Choreography for the TeleConsultation collaboration.

natives leading to different outcomes, as for instance the registration collaboration
in the TeleConsultation, see Fig. 10.4.

For each collaboration, we distinguish the initiating actions and the terminating
actions. The initiating actions are those actions for which there is no earlier action
in the collaboration according to the (partial) execution order defined for the col-
laboration. Similarly, the terminating actions are those for which there is no later
action in the collaboration. The roles involved in the execution of an initiating (resp.
terminating) action of a collaboration are called initiating (resp. terminating) roles.
In Fig. 10.3 and Fig. 10.4 the initiating roles have been identified by a dot and the
terminating roles by a bar. Which roles initiate and/or terminate the execution of
a sub-collaboration is very important for the coordination of the temporal order of
execution of different sub-collaborations, as discussed in more detail in Section 10.3.

How the roles of sub-collaborations are bound to roles of enclosing collaborations
and eventually to components of a distributed system design is important for the
realizability of a specified ordering. Collaboration structures such as Fig. 10.3
specify precisely the binding of sub-roles (i.e. roles of sub-collaborations) to the
composite-roles of the collaboration structure. The diagram in Fig. 10.3, for
instance, specifies that the sub-role pr from registration is bound to the composite-
role Patient of TeleConsultation. We will say that a composite-role is the initiating

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 153

(resp. terminating) role of a sub-collaboration if it is bound to the initiating (resp.
terminating) role of that sub-collaboration.

In the case of a sub-collaboration that has several terminating roles, the termi-
nating actions performed by these different roles will normally not be synchronized.
This is in contradiction to the semantics of UML activity diagrams which states
that all the outputs of an activity will become available at the same time (when the
activity terminates)2.

We note that a collaboration with more than one initiating role may be not so
easy to realize because of the required coordination between the initiating roles for
initiating the collaboration. As a general design guideline, it is therefore desirable to
avoid collaborations with multiple initiating roles as far as possible. Related issues
are further discussed in Section 10.3. Here are some examples:

(i) Single initiating role: the patient (initiating role) registers with the reception-
ist.

(ii) Several alternative initiating roles: each side of a consultation call may take
the initiative to perform the call termination sub-collaboration.

(iii) No initiating role identified: it is not specified whether the doctor or the sensor
(triggered by the patient) initiates a test.

(iv) Several terminating roles: in the voice collaboration the last action may be
performed by the patient or the doctor, or both.

At a high-level of abstraction, we may characterize a collaboration by a pre-condition
and a post-condition. A collaboration can only be initiated if its pre-condition is
satisfied; we say then that the collaboration is enabled. The pre-condition describes
the required system state for the collaboration to start. As a design guideline, we
note that it is desirable that the enabling condition only depends on the state of
the initiating roles. The post-condition represents a condition that will be true
when the collaboration terminates; if the collaboration admits several alternative
outcomes, the post-condition will be the logical OR between these alternatives.
One may also specify “goals” in terms of states or events where the purpose of a
collaboration is achieved (see [SBvBA05]), when different from the post-condition.
In the TeleConsultation example pre- and post-conditions have not been illustrated.
However, we can imagine that there would be an available predicate reflecting the
availability of the doctor. This predicate should for example be true for assignment
to be enabled, and would become false when this collaboration finishes.

Sometimes it is also useful to identify a triggering event for a collaboration. This
is an event that leads to the execution of the collaboration if its precondition is true

2In UML, outputs of an action are identified by so-called pins, outputs of an activity are
identified by so-called parameters of the activity. There are two exceptions to the rule that all
outputs occur when the activity terminates: (a) Several alternate sets of outputs may be identified
(only one of these sets of outputs will occur), and (b) so-called stream inputs and outputs may
occur anytime during the execution of an activity.

154 CHAPTER 10. PAPER 5

when the triggering event occurs. In the case of sequential execution of two sub-
collaborations, the triggering event of the second collaboration would normally be
the termination of a terminating action of the first collaboration. In other cases, the
triggering event may be the reception of an external input or a time-out that is not
part of the collaboration being modeled. Such external triggering events may cause
a role to initiate a collaboration seemingly spontaneously and on its own initiative.
External triggering events are normally not specified explicitly, only the initiatives,
i.e. the seemingly spontaneous actions they cause. It is important to identify such
initiatives in service modeling for two main reasons: (1) most services and service
features are initiated by external initiatives; (2) they give rise to concurrency and
potential conflicts. Initiatives normally occur independently. They start threads of
sequential behavior, which execute (partly) in parallel with the behavior triggered by
other initiatives. In the TeleConsultation service, for example, the patient and the
doctor take independent initiatives leading to the parallel paths in Fig. 10.2 and Fig.
10.4. The two paths may be considered as different views on the service; the patient
view and the doctor view. These are brought together and coordinated during the
assignment and consultation collaborations. The existence of independent initiatives
and the need for their coordination is an essential property of the TeleConsultation
service and many other services. Independent initiatives may give rise to conflicts,
if they are not properly coordinated. This will be discussed further in Section 10.3.

10.2.5 Notation

We make in the following some comments about possible notations for representing
the choreography of collaborations as described above. The objective is not so much
to find a notation as to identify concepts that allow specifying and analyzing the
high level flow without prematurely binding the detailed interactions, and that also
allow gradual detailing towards interactions and localized behavior.

In Section 10.2.3 we have already discussed the suitability of UML activity di-
agrams for defining the choreography of sub-collaborations. They allow a composi-
tional specification approach and can express sequential, alternative and concurrent
behavior, as well as interruption and activity invocation.

An important aspect of a choreography is to show which roles participate in
which collaborations and whether they are initiating or terminating roles. A possible
graphical notation for representing multiple roles involved in a single activity was
proposed in [Boc00] where resources and roles are represented as separate entities
and their involvement in activities by a special type of arrow (see Fig. 10.5(a)). A
variant of this is to let activities and roles overlap as illustrated in Fig. 10.5(b).
This style can visualize the ordering of sub-roles within a role, and can also be used
to localize control flows to particular roles when this is desirable. In the variant
shown in Fig. 10.5(c), this is taken one step further by representing the global
choreography as one enclosing activity with partitions corresponding to the roles,
and sub-collaborations modeled as activities that cross-cuts the partitions. All flow
lines are here local to roles and specify precisely how role behaviors are composed.
This approach has been used in several case studies, and to demonstrate that design

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 155

(a) external role binding

(d) role binding as partitions (e) collaboration uses as
activities

(c) role binding to partitions
of enclosing activity

(b) overlapping role binding

DP

S

consultation

t: test

v:voice

as:assignmentR

D
P

c:consultation

S

(R, D)

(P, D, S)

c:consultation

as:assignment as:assignmentR D

c:consultationP D

S

v: voice

DP

S

R

t: test

as: assignment

Figure 10.5: Alternative notations for role binding

components defined as state machines can be derived automatically [KBH07]. The
UML specification suggests representing the partitions textually as illustrated in Fig.
10.5(d). The notation used in Fig. 10.4 is a visual enhancement of this showing the
roles graphically as well as the active collaboration use. It is an extension of the
notation originally proposed in [CB06a] and [CB06b]. It has the advantage that
each activity has a clear boundary, which helps to organize larger diagrams. In
the following we will use the simplified form shown in Fig. 10.5(e) for illustration
purposes.

Note that the variants in Fig. 10.5(a) to Fig. 10.5(d) are formed simply by
varying the representation and localization of roles relative to activity boundaries.
The variants in Fig. 10.5(b) and Fig. 10.5(c) allow localizing control flows to roles.
Semantically the only difference between these variants is the localization of control
flow. Note that the variant in Fig. 10.5(b) resembles a sequence diagram, where
messages are replaced by sub-collaborations. The variants in Fig. 10.4 and Fig.
10.5(e) have an explicit reference to collaboration uses, while in the other variants
this is maintained by naming conventions.

High-Level Message Sequence Charts (HMSC) [ITU98] or UML Interaction Over-
view Diagrams (IOD) are other notations that also have a suitable level of abstrac-
tion for choreography, but they are tied to interactions and do not readily allow
the same flexibility to combine notations. Moreover, they lack certain operators
(e.g. preemption) and semantics needed to fully define collaborative behavior as
also pointed out in [Krü03].

156 CHAPTER 10. PAPER 5

A textual notation might also be used to define the temporal ordering of ac-
tions and sub-collaborations within a given collaboration. In previous work [BG86,
KHB96] a notation based on process algebras was used. If one uses Use Case Maps
[Amy03] to model collaborations, the concept of sub-collaboration could be modeled
as a ”stub”, and a participant as a ”component”; however, also here it is assumed
that each action (called ”responsibility”) is associated with at most one ”component”.

To specify the behavior of elementary collaborations there are several options.
Activity diagrams may be used to define the behavior in a way that allow com-
ponent behaviors to be derived automatically [KBH07]. If one chooses to define
elementary collaborations using interaction diagrams, these may be referenced from
the activities of a choreography [CB06a]. One may also refer to collaborations rep-
resenting semantic interfaces with goals and behavior defined by two role state ma-
chines [SBvBA05]. Alternative approaches of combining sequence diagrams with
other diagrams have been proposed by several authors, e.g. [RT03] and [Whi07].

Finally, we mention that it is often useful to introduce variables that are used
to define guards for alternate choices or sub-activity invocations. They typically
represent databases or state variables and are important for the description of the
overall system behavior. At the early stages of development, these variables may
be considered global variables (as in Use Case Maps [Amy03]). At the later stages,
they must be allocated to particular system components or replaced by other means
of keeping the pertinent information.

10.3 Ordering operators for choreography

In this section we discuss the sequencing operators that we consider important for
describing the execution order of collaborations. These are the standard concepts
of sequential execution, alternatives, concurrency, and interruption which are sup-
ported by most notations for workflow modeling, including UML Activity Diagrams
and Use Case Maps. We discuss in the following some particular semantic features
for these concepts which are not provided by the standard semantics of Activity Di-
agrams. We also introduce the concept of activity invocation, a variant of a remote
procedure call. We note that some of these features are also discussed in Wohed’s
analysis of the control-flow perspective of UML Activity Diagrams [WvdAD+05].

10.3.1 Realization problems

We consider in this paper that the model of a distributed service is defined by a
composition of several sub-collaborations, as discussed in Section 10.2. The service
model defines a global order about different actions that will be performed by differ-
ent service roles. At the system design level, as shown in Fig. 10.1, the roles of the
collaborations are assigned to certain system components and their local behavior
may be defined by state machine models. One may attempt to obtain the specifica-
tion for the behavior of a given system component by projecting the global service
behavior specification onto that component, that is, ignoring all actions at the other
components in the service model and deriving the order of the local actions at the

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 157

given component from the ordering of these actions in the service model. We say
that a design model is directly realized from a given service model, if the behavior
of each system component of the design is obtained by projecting the service model
onto the given system component. If the behavior of the directly realized design
model is equivalent to the overall system behavior defined by the service model, we
say that the service model is directly realizable.

Unfortunately, in some cases the directly realized design will generate interaction
scenarios not foreseen by the service model. The problem of these implied scenarios
was originally studied for MSC-based specifications in [AEY00]. This problem is
however not unique to MSCs, but inherent to any specification language where the
behavior of a distributed system is described from a global perspective, while it is
realized by independent components with only local knowledge.

We will discuss in this section under which circumstances a choreography is
directly realizable. We will discuss for each composition operator what problems
of direct realizability may occur, how they may be detected, and what kind of
additional mechanisms could be introduced into the directly realized design model
in order to assure that the resulting behavior conforms to the service model. These
mechanisms include additional coordination messages, and additional parameters in
the messages of the directly realized design. Provided we know the initiating and
terminating roles, we are in many situations able to identify problems by looking
only at the sub-collaboration ordering defined by the choreography. In other cases,
we are able to identify potential problems at the choreography level, but need to
consider detailed interactions of the sub-collaborations to see if the problems are
actual, i.e. actually exist.

It is important to note that the question whether a choreography is directly
realizable depends not only on the ordering defined by the choreography, but also
on the characteristics of the underlying communication service that is used for the
transmission of messages between the different system components. Important char-
acteristics of the communication service are the type of transmission channels, and
the type of input buffering at each component. We assume that there is no mes-
sage loss, and distinguish between channels with out-of-order delivery (i.e. messages
sent from a given source to a given destination may be received in a different order
than they were sent) and channels with in-order delivery. Concerning the input
buffering we distinguish between the following schemes of message reordering for
consumption:

(i) No reordering : Each component has a single FIFO buffer in which all received
messages are stored until they are processed. Messages are consumed in a
FIFO order.

(ii) Reorder between sources: A component has separate FIFO buffers for messages
received from different source components, and may locally determine from
which source the next message should be consumed.

(iii) Full reorder : A component may reorder received messages freely.

158 CHAPTER 10. PAPER 5

In the following we assume that each sub-collaboration of a choreography is directly
realizable and discuss for each ordering operator different conditions for the direct
realizability of the choreography.

10.3.2 Sequence

According to the semantics of UML activity diagrams, each activity is completely
finished before the next one starts. In the most general case, this requires global
coordination between all system components participating in the two activities. In
many cases, such strong sequencing is what we want for collaborations too, but some-
times strong sequencing is too restrictive and may be replaced by weak sequencing
where the sequential order is only enforced locally on each component without global
coordination.

It is therefore necessary to allow weak sequencing as well as strong sequencing
and to provide some notation for distinguishing between them. We can annotate
sequential composition with a constraint of the form ”{weak}” and ”{strong}” for
this purpose. By default we assume weak sequencing and only annotate edges in
case of strong sequencing. Note that weak sequencing is the semantics defined for
sequential execution in High-Level Message Sequence Charts and UML interaction
overview diagrams.

Strong and weak sequential execution of sub-activities impose ordering con-
straints on the collaborations and may lead to various realization problems which
are further discussed below.

Strong Sequence

Strong sequencing between two collaborations C1 and C2, written C1 ◦s C2, requires
C1 to be completely finished, for all its roles, before C2 can be initiated. It requires a
direct precedence relation between the terminating action(s) of C1 and the initiating
action(s) of C2, so that the latter can only happen after the former are finished. The
situation is particularly simple in the case of a localized sequence composition as
defined below.

Definition 10.1 (localized sequence composition). A sequence composition
C1 ◦C2 is a localized sequence composition if all terminating actions of C1 and all
initiating actions of C2 are located at the same composite role.

In the case of a localized sequence composition, there is no semantic difference
between strong and weak sequencing. In this case, the initiator of C2 can know when
C1 is completely finished. We have the following proposition.

Proposition 10.2. A localized sequence composition of two directly realizable col-
laborations is directly realizable.

Note that this property can be checked at the choreography level, i.e. by consid-
ering the initiating and terminating roles, without considering detailed interactions.
In Fig. 10.4, for example, the condition is not satisfied anywhere so there is no
localized sequence composition in the diagram.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 159

(a) (b)

R1

a

R2 R4

sd Weakly Causal Composition

b

d

R3

e

C1

C2

c

C1A B

C3B E

C2A D

{weak}

{weak}

Figure 10.6: Problematic weak sequential compositions

If the condition is not satisfied and strong sequencing is required, coordination
messages must be added from C1’s terminating composite-roles to C2’s initiating-
composite roles. This could be done automatically by a synthesis algorithm [BG86].

Weak Sequence

Weak sequencing of two sub-collaborations C1 and C2, written C1 ◦w C2, basically
requires each composite role in C2 to be completely finished with previous collab-
orations before it may initiate participation in C2. This means that the actions in
the two collaborations are sequenced on a per-role basis. This corresponds to the
semantics of MSC and UML Interaction Diagrams.

Weak sequencing introduces concurrency, since the actions of the composed col-
laborations may partially overlap. Although such concurrency may be desirable for
performance or timing reasons (i.e. a role may initiate a new collaboration if the
actions in that collaboration are independent of the actions that have yet to be
executed in the first collaboration), it comes at a price, since it may lead to spec-
ifications that are counter-intuitive and/or not directly realizable, as illustrated in
Fig. 10.6.

According to the basic weak sequence semantics, role B in Fig. 10.6(a) may
initiate collaboration C3 as soon as it has finished with C1. As a result, collaborations
C2 and C3 may be executed in any order in the realized system. This is counter-
intuitive to the specification, which we assume reflects the designer’s intention (i.e.
that C3 should be executed after C2, with some allowed overlapping). If the designer’s
intention was that the collaborations should be concurrently executed, this should
be explicitly specified by means of parallel composition. Note that in this case there
are no problems with realizability since the roles of C2 are completely disjoint from
the roles of C3 and may execute independently. A tool should nonetheless issue a
warning that the collaborations may not behave as intended and suggest replacing
the sequence with a parallel composition. Note that the composition C2 ◦w C3 has
two initiating roles, i.e. A and B, that may be executed concurrently. As a guideline
such initial concurrency should be avoided in order to ensure a minimal amount of
causality between initiatives.

160 CHAPTER 10. PAPER 5

Definition 10.3 (weak-causality). A weak sequential composition of two collab-
orations, C1 ◦w C2, is weakly-causal if C2 has a single initiating composite role and
this role participates in C1.

The weak-causality property ensures that the initial actions of C1 and C2 are
ordered sequentially. This can be checked at the collaboration level. We note that
weak-causality is enforced in the so-called local-HMSCs of [GMSZ06].

Consider the weak sequential composition of C1 and C2 in Fig. 10.6(b). This
composition is weakly causal, but not directly realizable. Component R1 may ini-
tiate collaboration C2 just after sending message a in C1. Therefore, the actions in
C2 may overlap with the actions in C1 that follow the sending of message a. For
example, message e may be received at R2 before message c, or even before message
a. This message reception order has not been explicitly specified, and therefore it
is an implied scenario. Note that such problems may only occur when a composite
role (here R2) participates in both C1 and C2 and plays a non-initiating sub-role in
C2.

Proposition 10.4. A weakly causal composition of two directly realizable collabo-
rations, C1 ◦w C2 is directly realizable if no composite role participating in C1 partic-
ipates with a non-initiating role in C2.

This property can be easily checked at the choreography level and represents a
situation where weak sequencing is unproblematic. In the opposite case, where a
non-initiating role in C2 also participates in C1, there is a potential race condition.

In the literature about MSCs, the possibility that messages may be received in a
different order than the one specified is usually called a race condition [AHP96].
In general, a race condition can occur when the specification requires a receiving
event to happen after another receiving event or a sending event, and both events
are located at the same component. The reason lies in the controllability of events.
While a component can control when its sending events should happen, it cannot
control the timing of its receiving events.

The actual occurrence of races highly depends on the underlying communication
service being used. Channels with in-order delivery prevent races in the communi-
cation between a pair of roles, but do not prevent races when more than two roles
are involved. This is the case for the situation in Fig. 10.6(b). Such races may in
general be resolved by means of input buffering that can reorder between sources
(unless choices are involved, as we will see in Section 10.3.3).

We note that race conditions may not only appear between directly composed
collaborations, but also between indirectly composed ones. This is because a role in
a collaboration that is composed in weak sequence can remain active during several
succeeding collaboration steps. For example, in the TeleConsultation service a race
condition exists between registration and consultation at composite role P (see Fig.
10.4). In this case it is the weak sequencing between registration and assignment
that makes such race possible, since the sub-role played by P in registration may
still be active (i.e. not finished) while assignment is executed and when consultation
is initiated. We therefore say that there is indirect weak sequencing between

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 161

registration and consultation. This “propagation” of weak sequencing makes it more
difficult to avoid races.

A property that helps to reduce the number of races and facilitates their detection
is send-causality, which requires all sending events to be totally ordered.

Definition 10.5 (send-causal composition3). A composition C1 ◦w C2 is send-
causal if the composite role initiating C2 is either the terminating role of C1 or the
role that performs the last sending event of C1.

Definition 10.6 (send-causal collaboration). A collaboration C is send-causal
if:

(i) it is a single message transmission, or

(ii) it is formed by, possibly repeated, send-causal compositions C =C1◦wC2 where
C1 and C2 are send causal.

It has been shown in [CBB07] that when send-causality is enforced, races may
only occur between two or more consecutive receiving events (i.e. not between a
sending event and a receiving event).

Proposition 10.7. In a send-causal collaboration, race conditions may only exist
between two or more consecutive receiving events.

If C = C1 ◦w C2 is send-causal a potential race condition exists on a composite
role R in C if the sub-role that R plays in C1 ends with a message reception (i.e.
is a terminating role) and the sub-role R plays in C2 starts with another message
reception (i.e. is a non-initiating role). Whether the potential race condition is
an actual race or not depends on the underlying communication service, and on
whether messages are received from the same or from different components. For
example, in the TeleConsultation service the collaborations available and assignment
are composed in weak sequence (see Fig. 10.4). Role D plays a terminating sub-
role in available, while it plays a non-initiating sub-role in assignment. Therefore,
a potential race condition exists at D between the receptions of the last message
in available and the first message in assignment. This race is only actual in the
case of out-of-order delivery. Note that we can identify this potential race simply by
considering the initiating and terminating roles in the choreography in Fig. 10.4.

Proposition 10.8. A send-causal weak sequential composition of a sequence of
directly-realizable collaborations C = C1 ◦w C2 . . .◦w Cn (n > 1) is directly realizable

(i) over a communication service with in-order delivery if the following condition
is satisfied: if a composite role plays a terminating role in a collaboration
Ci (1 ≤ i < n) followed by a non-initiating role in another collaboration Cj
(i < j ≤ n), then the last message it receives in Ci and the first one it receives
in Cj are sent by the same peer-composite role; or

3For the sake of simplicity, we assume here that each sub-collaboration has only a single initiat-
ing event and a single last sending event, but the definition could be easily generalized to consider
multiple ones.

162 CHAPTER 10. PAPER 5

(ii) over a communication service with out-of-order delivery only if no composite
role plays a terminating sub-role followed by a non-initiating sub-role.

For binary sub-collaborations we can easily identify which composite role sends
the first and last messages, if we know which composite roles are the initiating and
terminating roles. Using Proposition 10.8, we can determine whether a collaboration
is directly realizable and identify actual races at the choreography level without
considering the detailed interactions. In the case of n-ary collaborations, we can
perform the same early analysis, but only potential races can be discovered.

One interesting aspect of the specification with collaborations is that we can
get information about potential races from the diagram describing the structural
composition of collaborations, see Fig. 10.3. In such diagrams we can see whether a
component participates in several collaborations, and whether it plays at least one
terminating and one non-initiating role in them. If that is the case, a potential race
exists. This information could then be used to direct the analysis of the behavioral
specification (i.e. the choreography). For example, from the collaboration diagram
for TeleConsultation (see Fig. 10.3(a)) we can see that Patient participates both
in registration and consultation, playing a terminating role in the first one and a
non-initiating role in the second one. From this information we can conclude that
a potential race exists at Patient between those two collaborations. We could then
check whether a path from registration to consultation exists in the choreography.
If that is the case, the race is actual. Now, if we consider the collaboration diagram
for consultation it is easy to see that there will not be races between voice and test
at Doctor, since the latter does not play a non-initiating role in any of them.

One of our motivations is to provide guidelines for constructing specifications
with as few conflicts as possible and whose intuitive interpretation corresponds to
the behavior allowed by the underlying semantics. We therefore propose, as a gen-
eral specification guideline, that all elementary collaborations be send-causal. Weak
sequencing of collaborations should also be send-causal, unless there is a good reason
to relax this requirement. In the following we assume that all elementary collabora-
tions are send-causal.

Resolution of Race Conditions

Race conditions can be resolved in several ways. Some authors [Mit05, CKS05]
have proposed mechanisms to automatically eliminate race conditions by means
of synchronization messages. We note that when the send-causality property is
satisfied, a synchronization message should be used to transform the weak sequencing
leading to the race into strong sequencing. If synchronization messages are added
in other places new races may be introduced. For example, in the TeleConsultation
service (see Fig. 10.4) the race condition between registration and consultation
at composite role P may be eliminated by introducing strong sequencing between
registration and assignment.

Other authors (e.g. [KZ05, MRW06]) tackle the resolution of race conditions at
the design and implementation levels. They differentiate between the reception and
consumption of messages. This distinction allows messages to be consumed in an

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 163

order determined by the receiving component, independently of their arrival order.
In general, this reordering may be implemented by first keeping all received messages
in a (unordered) pool of messages. When the behavior of the component expects
the reception of one or a set of alternative messages, it waits until one of these
messages is available in the message pool. Khendek et al. [KZ05] use the SDL Save
construct to specify such message reordering. This technique can be used to resolve
races between messages received from the same source (i.e. in the case of channels
with out-of-order delivery), as well as races between messages received from different
sources. It corresponds to the full reordering for consumption capability mentioned
in Section 10.3.1. Finally, races may also be eliminated if an explicit consumption
of messages in all possible orders is specified (i.e. similar to co-regions in MSCs).
We note that in the presence of choices, message reordering may only be possible if
the messages to be reordered are marked with the id of the collaboration instance
that they belong to (see Section 10.3.3).

We believe that the resolution of races heavily depends on the specific application
domain and requirements, as well as on the context in which they happen. In some
cases the addition of synchronization messages is not an option, and a race has to be
resolved by reordering for consumption. In other cases, such as when races lead to
race propagation problems (see Section 10.3.3) a strict order between receptions is
required, so components should be synchronized by extra messages. At any rate, all
race conditions should be brought to the attention of the designer once discovered.
She could then decide, first, whether the detected race entails a real problem (e.g.
there is no race at P between registration and consultation if all channels have
the same latency). Then, she could decide whether reordering for consumption is
acceptable or synchronization messages need to be added or the specification has to
be revised.

10.3.3 Alternatives

We consider here the case that at some point of the execution of a collaboration, two
or more alternative sub-collaborations may be performed. Alternative composition
is specified by means of choice operators, and describes alternatives between differ-
ent execution paths. In a choice one or more choosing composite roles decide the
alternative of the choice to be executed, based on the (implicit or explicit) condi-
tions associated with the alternatives. Choosing roles are initiating roles. The other
non-choosing composite roles involved in the choice follow the decision made by the
choosing roles (i.e. execute the alternative chosen by the latter). Non-choosing roles
are non-initiating roles. It is thus important that:

(i) The choosing roles, if several, agree on the alternative to be executed. We call
this the decision-making process.

(ii) The decision made by the choosing roles is correctly propagated to the non-
choosing roles. We call this the choice-propagation process.

In the following we study how each of these aspects affect the direct realizability of a
choice. We note that a choice can be seen as a sequential composition with one inlet

164 CHAPTER 10. PAPER 5

alt

caller

invite

callee

sd voice

hangup

hangup

hangup

hangup

connected

Figure 10.7: A sequence diagram for the voice collaboration illustrating mixed ini-
tiatives with common goals

and a set of alternative outlets. The propositions and guidelines for sequential com-
position, given in Section 10.3.2, apply to every path through the choice. However,
we will see how the choice-propagation process affects the resolution of races.

We assume collaborations to be weakly-causally composed, and therefore con-
sider that the set of choosing roles is the union of the initiating roles of all collabo-
rations immediately following the decision node.

Decision-making Process

We may distinguish the following situations:

(i) The enabling conditions of the alternatives are mutually exclusive; only one of
the sub-collaborations can be initiated.

(ii) The enabling conditions of several alternatives could be true; if the initiating
composite roles of these sub-collaborations are different and there is no coordi-
nation between these roles, several alternatives may be initiated concurrently.
We call this situation mixed initiatives. In many cases this is due to uncoordi-
nated external triggering events, represented by independent initiatives in the
collaborations, see Fig. 10.7. We distinguish the following two sub-cases:

a) The different sub-collaborations have different goals; only one of them
should succeed. We call this situation competing initiatives.

b) The different sub-collaborations have the same goal; there is no conflict
between them at the semantic level, however, there is a conflict at the
level of message exchanges. Example: the doctor and the patient initiates
the terminating collaboration of a voice call at the same time, see Fig.
10.7. We call this situation mixed initiatives with common goals.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 165

(c)

C1A S

C4S DC3S B

C2C S

(d)

A B

invite
disc1
invite
disc2

(a) (b)

disc2A Bdisc1A B

inviteA B

C2C DC1A B

Figure 10.8: (a) Example of a non-local choice; (b) Non-local choice where a mixed
initiative conflict cannot be detected; (c) Non-local choice where a mixed initiative
conflict can be detected; (d) Possible scenario resulting from (a)

Local Choice. Deciding the alternative to be executed becomes simple if there
is only one choosing role, and the enabling conditions and triggering events for the
alternatives are local to that role (i.e. they are expressed in terms of observable
predicates, and events). Choices with this property are called local. It is easy to
see that the decision making process of local choices are directly realizable, since the
decision is made by a single role based only on its local knowledge.

Non-local choice. The decision-making process gets complicated when there is
more than one choosing role, as in Fig. 10.8(a), where there are two choosing
roles, namely A and B . From a global perspective, our intention is that once the
choice node is reached, either role A initiates collaboration discA with B, or role B
initiates collaboration discB with A. We are assuming then that there is an implicit
synchronization between A and B, which allows them to agree on the alternative to
be executed. However, in a directly realized system, components A and B will not
be able to synchronize and may decide to initiate both collaborations simultaneously
resulting in a mixed initiative.

Choices involving more than one choosing role are usually called non-local
choices [BAL97]. They are normally considered as pathologies that can lead to
misunderstanding and unspecified behaviors, and algorithms have been proposed to
detect them in the context of HMSCs (e.g. [BAL97, Hél01]). Despite the extensive
attention they have received, there is no consensus on how they should be treated.
We believe this might be motivated by a lack of understanding of their nature.
Some authors (e.g. [BAL97]) consider them as the result of an underspecification
and suggest their elimination. This is done by introducing explicit coordination, as
a refinement step towards the design. Other authors look at non-local choices as

166 CHAPTER 10. PAPER 5

an obstacle for realizability and propose a restricted version of HMSCs, called local
HMSCs [HJ00, GMSZ06], that forbid non-local choices. Finally, there are authors
[GY84, MGR05] that consider non-local choices to be inevitable in the specification
of distributed systems with autonomous processes. They propose to address them
at the design level, and propose a generic implementation approach for non-local
choices.

A non-local choice shows up at the choreography level as a choice where the alter-
natives have different initiating roles. We may avoid the problem of mixed initiatives
by coordinating these initiating roles (e.g. either with additional messages or with
additional message contents). This would make the choice local in practice. Unfor-
tunately, such coordination is not always feasible. If the alternatives are triggered
by independent external events (represented by independent initiatives), we call the
choice an initiative choice. In these choices the occurrence of mixed initiatives is
unavoidable. In the TeleConsultation service, for example, two collaborations are
enabled after the execution of available: assignment and unavailable (see Fig. 10.4).
The triggering events for these come form the end-users (i.e. the actual doctor and
receptionist) that operate independently and are not coordinated. It makes little
sense to coordinate components D and R in order to obtain a local choice, since this
would imply the coordination of the end-users’ initiatives. Such non-local choice is
simply unavoidable. It is an initiative choice.

Any role involved in two or more alternatives of an initiative choice may be
potentially used to detect a mixed initiative and initiate the resolution. For such
roles, the mixed initiatives reveal themselves in the role behavior as choices between
an initiating and a non-initiating sub-role, or between two non-initiating sub-roles
played in collaborations with different peers. Note that if two alternatives with
different choosing roles have no common roles, a mixed initiative conflict can not
be detected (see, for example, Fig. 10.8(b)). If the intention is that they shall be
mutually-exclusive, an arbiter role should be introduced. Such arbiter role would
act as an intermediary between the choosing roles and the non-choosing roles, and
could detect a mixed initiative conflict (e.g. the choice in Fig. 10.8(c) results from
adding an arbiter role S to the choice in Fig. 10.8(b)).

Situations of initiative choices were discussed by Gouda et al. [GY84] and Mooij
et al. [MGR05]. These authors propose some resolution approaches. In the domain
of communication protocols, Gouda et al. [GY84] propose a resolution approach for
two competing alternatives (i.e. two choosing components), which gives different
priorities to the alternatives. Once a conflict is detected, the alternative with lowest
priority is abandoned. With motivation from a different domain, where Gouda’s
approach is not satisfactory, Mooij et al. [MGR05] propose a resolution technique
that executes the alternatives in sequential order (according to their priorities), and
is valid for more than two choosing components. We conclude that the resolution
approach to be implemented depends on the specific application domain. We there-
fore envision a catalog of domain specific resolution patterns from which a designer
may choose the one that better fits the necessities of her system. We note that any
potential resolution should also address the problem of orphan messages, see Section
10.3.5, which is not considered in either [GY84] or [MGR05].

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 167

Choice-propagation Process

The decision made by the choosing component must be properly propagated to the
non-choosing components, in order for them to execute the right alternative. In each
alternative, the behavior of a non-choosing component begins with the reception of a
sequence of messages, which we call the triggering trace. Thereafter, the component
may send and receive other messages. It is the triggering traces that enable a non-
choosing component to determine the alternative chosen by the choosing component.
In some cases, however, a non-choosing component may not be able to determine
the decision made by the choosing component. As an example, we consider the
local choice in Fig. 10.9(a). For the component R3, the triggering traces for both
alternatives are the same (i.e. the reception of message x). Therefore, upon reception
of x, R3 cannot determine whether R1 decided to execute collaboration C1 or C2.
That is, R1 ’s decision is ambiguously propagated to R3. We say a choice has an
initial ambiguous propagation if there is a non-choosing component for which
the triggering traces specified in two alternatives have a common prefix. Note that
according to this definition, triggering traces such as (?x,?y) and (?x,?z) cause initial
ambiguous propagation since in any direct realization, the choice cannot be made
immediately after ?x. An easy solution in this case would be to delay the choice (i.e.
extract ?x from the choice). Choices with ambiguous propagation are not directly
realizable. They are similar to the non-deterministic choices defined in [MRW06].
Unfortunately, ambiguous propagation cannot be detected at the choreography level
as it depends on the detailed interactions of the sub-collaborations. In order to avoid
ambiguous propagation, [BG86] suggested the introduction of a message parameter
that indicates to which branch of the choreography the message belongs.

If any of the alternatives contains a weak sequence with a race condition, the race
may make the propagation ambiguous. Consider the choice in Fig. 10.9(b). In this
case there is a race in the weak sequence of U and V. The choice is followed by either
V or U+V and may result in the situation depicted in Fig. 10.9(c). This example
shows that in the presence of race conditions the triggering trace observed by a non-
choosing component may differ from the specified one. Therefore, whenever race
conditions may appear in any of the alternatives, we need to consider the potentially
observable triggering traces in the analysis of choice propagation. For example, in
Fig. 10.9(b) the specified triggering traces for R3 are (?b+,?c) and (?c). However,
R3 may observe triggering traces such as (?c,?b) or (?b,?c,?b). We say a choice has
a race propagation if there is ambiguous propagation due to races. Choices with
race propagation are not directly realizable. They are similar to the race choices
defined in [MRW06].

Choices without ambiguous or race propagation are said to have proper deci-
sion propagation. These choice propagations are directly realizable.

Resolution of Race Propagation

To resolve the problem of race propagation we need to resolve the race(s) that lead to
it. However, if we try to remove the race conditions by means of message reordering
for consumption (e.g. by means of separate input buffers), the race propagation

168 CHAPTER 10. PAPER 5

(a)

R1
a

R2 R3

x
b

R1
c

R2 R3

x
d

C1 C2

R1 R2 R3

b(u2)

a(u1)

a(u2)

b(u1)

(c)(b)

c(v2)

R1
a

R2 R3

b

U

R1 R2 R3

V

c
d

e f

Figure 10.9: Choices with (a) ambiguous propagation and (b) race propagation; (c)
Behavior implied by (b)

problem may still persist. This is because, in general, a component would not be
able to determine whether a received message should be immediately consumed as
part of one alternative, or be kept for later consumption in another alternative as
illustrated by the race propagation in Fig. 10.10(a). To make the message reordering
work, we need to mark the messages with the id of the collaboration instance they
belong to. In order to obtain such an id, we need to unfold the branches of the
choice in the choreography graph, so that they do not share any activity. Then, we
need to assign a different id to each activity referring to the same collaboration (e.g.
Fig. 10.10(b) shows the unfolding of the choice in Fig. 10.10(a) and the assignment
of distinct collaboration ids). Fig. 10.10(c) shows a possible scenario during the
execution of the choice in Fig. 10.10(a). If the messages are not marked, R3 cannot
determine whether it should consume message d immediately after receiving it (i.e.
in case C2 has been directly executed after the decision node), or whether it should
keep it on the buffer until it receives message b. Marking message d with C2 (i.e.
the id of the collaboration “type” it belongs to) would not help. It has to be marked
with the id of the actual collaboration instance it belongs to (i.e. C′

2).
When loops are involved, we need to consider the number of iterations of the

loop in order to create the collaboration ids. Consider, for example, the choice in
Fig. 10.9(b). An unfolding of this choice would give an infinite number of alternative
paths: U1→V1, U1→ U2→V2, U1→ U2→ U3→V3, and so on. In order to assign
a proper id to each instance of U (or, in general, to each instance of a collaboration
inside a loop) we just need to use the iteration number. The id assigned to each
instance of V (or, in general, to each instance of a collaboration following the loop)
depends on the total number of iterations that have been executed. The messages in

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 169

R1 R2 R3
d

R1 R2 R3

ba

R1 R2 R3

b(c1)
a(c1)

d(c2')
c e

f

C1 C2

(a) (c)(b)

C2'

C1 C2

Figure 10.10: (a) Choice with race propagation; (b) Unfolding of (a); (c) Behavior
implied by (a)

the scenario of Fig. 10.9(c) have been marked following these principles. Therefore,
when R3 receives message c(v2) it may determine that there is still one message b
on the communication medium, and wait for it without consuming c (for this R3
needs to keep the count of b messages that it has received).

In [GMSZ06] the realizability of local-HMSCs is studied. The authors propose to
implement the behavior of each component by means of a simple linear algorithm.
This algorithm is based on the idea of marking messages with the id of the HMSC
node they belong to. This is basically the same idea that we have just discussed for
the resolution of race choices. Indeed, although the authors do not explicitly study
the race propagation problem, their solution should in principle avoid such problems.
The authors do not explain, however, the way to achieve a unique id for each HMSC
node. They might consider this as something trivial, although we have shown it is
not so trivial. Moreover, they propose marking all messages that are exchanged,
and not only those involved in a race propagation. Components therefore have to
check the data carried by all messages, and decide whether to consume them or
not. We believe this unnecessarily increases the amount of processing needed upon
message reception. We prefer to detect the cases of race propagation. Then, if we
want to resolve the problematic propagation by means of message reordering4, we
design the components so that they only mark the involved messages, and apply
message reordering only to them. Alternatively, we may decide to resolve the race
propagation in a probably simpler way, that is, by transforming the responsible weak
sequencing into strong sequencing (see e.g. [NHT98]).

10.3.4 Merge

When two or more preceding flows merge into a single successor flow, this may be
seen as a set of sequential compositions where each preceding flow is composed with
the succeeding flow. The propositions and guidelines given in Section 10.3.2 apply
to each flow composition.

4 This avoids not only race propagation, but ambiguous propagation in general

170 CHAPTER 10. PAPER 5

10.3.5 Loop

Loops can be used to describe the repeated execution of a (composite) collaboration,
which we call the body collaboration. A loop can be seen as a shortcut for strong or
weak sequential composition of several executions of the same body collaboration,
combined with a choice and a merge (see e.g. Fig. 10.9(b)). This means that the
rules for strong/weak sequencing with choices and merges must be applied. We note
that all executions of a loop involve the same set of components. This fact makes the
chances for races high when weak sequencing is used even though the weak-causality
property is always satisfied. Strong sequencing should therefore be preferred in
loops. When strong sequencing is specified between any two executions of the body
collaboration (e.g. to be sure that one iteration is completely finished before the
next one starts), the body collaboration should be initiated and terminated by the
same component. When send-causal weak sequencing is specified, the component
initiating the loop-body collaboration should be the one sending or receiving the
last message exchanged in the collaboration.

Loops may give rise to so-called process divergence [BAL97], characterized by
a component sending an unbounded number of messages ahead of the receiving
component. This may happen with weak sequencing if the communication between
any two of the participants in the body collaboration is unidirectional. They may
also give rise to so-called orphan messages, i.e. messages sent in one iteration and
received in a later iteration. Consider the specification in Fig. 10.8(a), and imagine
that each collaboration consists of only one message. Then the scenario in Fig.
10.8(d) is possible, where message discB is sent as a response to the first invite
message, but it is received by A after having sent the second invite. Component A
may then consume message discB as a response to the second invite message, leading
to an undesired behavior. In this scenario, discB is a so-called orphan message.

Situations similar to loops occur if several occurrences of the same collaboration
may be weakly sequenced (e.g. several consecutive sessions of a service).

10.3.6 Concurrency

Concurrency means that several sub-collaborations are executed independently from
one another, possibly at the same time. We use forks and joins to describe concur-
rency, and we require they are properly nested as in UML Interaction Overview
Diagrams. Concurrent sub-collaborations are directly realizable as long as they are
completely independent (i.e. their executions do not interfere with each other). This
is clearly the case when there is no overlap among the roles. When a role participates
in several concurrent collaborations it must be possible to distinguish messages from
the different collaborations, otherwise messages belonging to one collaboration may
be consumed within a different collaboration.

In the TeleConsultation example, the receptionist participates in two concurrent
flows, and this indicates that the flows are partially dependent. In this case the
receptionist serves to coordinate the doctor and the patient. Concurrent activities
often involve shared resources for which there is competition that require coordina-
tion. Seen from the patient, the doctors are shared resources and the coordination
is performed by the receptionist.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 171

Indirect dependencies may also exist through passive shared resources, and shared
information. In this case, appropriate coordination has to be added between the
collaborations, which will normally be service-specific. In [CB06a] and [CB06b] we
discussed the automatic detection of problems due to shared resources, between
concurrent instances of the same composite service collaboration. This detection
approach makes use of pre- and post-conditions associated with sub-collaborations,
and could also be used to detect interactions between concurrent collaborations
composed using forks and joins.

In a fork, a preceding flow is followed sequentially by a set of two or more
succeeding flows running concurrently. The opposite takes place in a join; a set
of two or more preceding flows running concurrently is followed sequentially by
a single succeeding flow. For each of the sequential flow compositions in the set
of compositions defined by a fork/join the conditions for (weak/strong) sequential
composition explained in Section 10.3.2 apply.

For strong sequencing, all the collaborations immediately succeeding a fork must
be initiated by the role terminating the collaboration preceding the fork. Similarly,
all the collaborations immediately preceding a join must terminate at the component
initiating the collaboration succeeding the join. If this is not the case, coordination
messages may be added before the join/fork to ensure strong sequencing [BG86].

10.3.7 Interruption

We consider here the interruption of a sub-collaboration C by another sub-collabora-
tion Cint that may become enabled, for instance as soon as C is initiated, or when
C reaches a certain state. Cint requires a triggering event to be initiated, normally
in the form of a request coming from an external user or another active agent. In
the TeleConsultation the observation of the external event hangup performed by
the patient results in the interruption of the waiting collaboration by the disconnect
collaboration.

As noted in [KHB96], a semantics for cancellation with immediate termination of
all activities in the interrupted process is not directly realizable in a distributed sys-
tem. Instead, one has to assume that the cancellation takes some time to propagate
to all participants in the interrupted sub-collaboration, which means that certain
activities of the interrupted process may still proceed for some time after the can-
cellation has been initiated. For example, a client may send a request to a server
and, shortly after that, decide to send a cancellation message. While this message
is on the way, the server would continue processing the request, and may even send
a response back to the client before it receives the cancellation message. The client
would then receive an unexpected response message. Similarly, the server would
receive a non-awaited cancellation message.

Interruption composition is akin to mixed initiatives where the preempting col-
laboration has priority. Interruption implies that resolution behavior must be added.
However, with interruptions the existence of mixed initiatives is clearly visible in the
choreography. The detection is thus easy at the choreography level.

172 CHAPTER 10. PAPER 5

10.3.8 Activity invocation

In many cases, a given collaboration A needs to invoke another collaboration B in
order to carry out some task. In the TeleConsultation, the doctor invokes the test
collaboration while in the middle of the voice collaboration, as illustrated in Fig.
10.2 and Fig. 10.4.

We propose to model this situation in activity diagrams using two ”stream” con-
trol flow arrows, one representing the request for service and the other representing
the results returned5. If a collaboration A, invoking a collaboration B, suspends its
own behavior while waiting for the results of B, then this collaboration invocation
corresponds to the semantics of a procedure call, which is a case of strong sequenc-
ing. This is directly realizable if collaboration B is initiated and terminated by a
single role that also participates in A. If this is not the case, additional coordination
messages are needed to ensure strong sequencing.

Activity invocations should be checked to ensure that no invocation cycles are
created (e.g. A invokes B, which in turns invokes C, which in turns invokes A).
These cycles may lead to deadlocks. Mixed initiatives may also appear if the invok-
ing collaboration does not suspend its behavior. An example can be found in the
TeleConsultation service. Assume that the behavior of voice is given by the sequence
diagram in Fig. 10.7, and that the test collaboration is invoked when connected is
true. Then a result from test may be received when callee has already sent a hangup
message.

We note here that streaming pins allow information to be exchanged between con-
current activities and provides a general mechanism to model information exchange
between collaborations that are executing in parallel, as has been demonstrated by
Kraemer and Herrmann [KBH07]. This possibility is not elaborated here, but we
remark that such interchange is directly realizable if localized within one role, as
indicated in Fig. 10.5(b) and Fig. 10.5(c).

10.3.9 Related work on realizability

The realizability of specifications of reactive systems was first studied, in general
terms, in [ALW89]. In the context of MSC-based specifications it was first consid-
ered in [AEY00], where the authors relate the problem of realizability to the notion
of implied scenarios. They consider a specification given as a set of MSCs describing
asynchronous interactions, and analyze it to check if it implies any non-specified
MSC. Intuitively, a realizable specification does not contain implied scenarios. The
authors propose two notions of realizability, depending on whether the realization
is required to be deadlock-free (safe realizability) or not (weak realizability). This
work was extended in [AEY05] to consider realizability of bounded HMSCs [AY99].
Reference [Loh03] extends in turn [AEY05] and provides some complexity results for
a less restrictive class of HMSCs. Realizability of HMSCs with synchronous com-
munication is considered in [UKM04]. The authors present a technique to detect
implied scenarios from a specification describing both positive, as well as negative

5One may use several ”stream” control flows for representing different types of results that
could be obtained, such as normal and exceptional cases.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 173

scenarios. The realizability notion considered in [AEY05] and [Loh03] does not
allow adding data into messages or adding extra synchronization messages. This
is seen as a very restrictive notion of realizability by some authors, who propose
a notion of realizability where additional data can be incorporated into messages
[MKS00, BM03, GMSZ06]. The authors of [MKS00] study safe realizability, with
additional message contents, of regular (finite state) HMSCs with FIFO channels.
This work is extended in [BM03], where the authors consider non-FIFO commu-
nication, and identify a subclass of HMSCs, so-called coherent HMSCs, which are
safely realizable with additional message contents. However, checking whether an
HMSC is coherent is in general hard. Reference [GMSZ06] discusses two classes of
unbounded HMSCs. They claim that so-called local-choice HMSCs are always safely
realizable with additional message contents6. A subclass of local-choice HMSCs that
are safely realizable without additional message contents was studied in [HJ00].

Other authors have studied conditions for realizability of Compositional MSCs
[MRW06] and pathologies in HMSCs [BAL97, Hél01] and UML sequence diagrams
[BBJ+05] that prevent their realization. None of these works discusses the nature
of the realization problems.

10.3.10 System composition

In service engineering it is desirable that services can be modeled as independently
as possible and then be composed in a modular way at design time and/or runtime.
So far we have discussed the composition of a service defined as a collaboration
among roles.

In general, a system may provide many different services, and many occurrences
of the same service may be running concurrently. A collaboration, such as the
TeleConsultation, may just be one of many collaborations to be realized in a given
system, and a given system may run several TeleConsultations concurrently. In
order to be executed in a system, each role must be bound to a component that
can execute it, either statically or dynamically. In general a role may be assigned to
many different components and each component may be assigned several different
roles.

Using UML, the system structure and the binding of roles to components may be
defined using composite classes with inner parts, as illustrated in Fig. 10.11. Clearly
system composition has similarities with, but is not the same as the collaboration
composition we have discussed so far. One will normally not define the complete
system behavior explicitly as the choreography of an enclosing collaboration, but
rather let it follow implicitly from the system structure and the binding of roles to
the system components. System composition raises a number of issues and problems
related to the composition and coordination of roles that will not be discussed further
here. We only remark that, to a large extent, they may be handled outside the roles
by additional coordination functionality in the components.

6Although their claim is true, the authors do not explain the proper format of message contents,
as we discussed in Section 10.3.3

174 CHAPTER 10. PAPER 5

RemoteHealthcareSystem

Patient Receptionist

Tele
Consultation

Nurse

DoctorSensor Doctor[*]

Patient [*]

Instrument[*]

Figure 10.11: Actors with role bindings

10.4 Going from collaborations to component

designs

We discuss in this section the possibility of deriving the behaviors of the components
in a distributed design automatically from the behavior of a collaboration which we
assume is given in the form described in Section 10.2. In general, each component
will realize the behavior of at least one role identified in the collaboration. The be-
havior of each component will be given in terms of local actions to be performed and
messages exchanged with the other components within the system. The term ”proto-
col” [Boc90] denotes this behavior that must be satisfied for obtaining compatibility
between the actions performed by the different system components.

During the past years, much research effort has been spent on the problem of
deriving component behaviors from scenario-based specifications of the system be-
havior (for a survey, see [LDD06]). The system behavior is usually defined in terms
of sequence diagrams or similar notations. In this context, most of the issues dis-
cussed in Section 10.3 must be addressed. As explained in Sections 10.2 and 10.3,
collaborations provide useful structuring and composition mechanisms to describe
and analyze the requirements that are the starting point for a systematic develop-
ment process, and are therefore preferable to message sequence diagrams, which are
at a relatively low level of abstraction. Nevertheless, message sequence scenarios
can be derived from higher-level specifications in the form of activity diagrams or
Use Case Maps [AHHC03], and then one could derive component behaviors in a
second step. In the following, however, we do not follow that approach, but con-
sider instead the direct derivation of component behavior from the specification of
a collaboration.

10.4.1 Protocol derivation from service specification

Traditionally, an abstract view of a collaboration within a distributed system is called
a service [BS80]. The specification of a service behavior describes actions that are
executed at different ”service access points” and their temporal order. A service
access point corresponds to a role (or a participating component) in the definition
of a collaboration. At this level of abstraction, the exchange of messages between
the different roles is normally not shown. However, these messages are essential at

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 175

the level of the protocol specification which defines the behavior of each component
in the distributed system. A body of work exists that describes algorithms for
deriving a protocol specification from a given service specification. The service
specification defines the temporal ordering of elementary actions that are associated
with the components of the system. A protocol derivation algorithm, therefore,
derives the necessary message exchanges between the different components in order
to assure that the service actions are executed in an order consistent with the service
specification. The initial work in [BG86] assumes that the service specification
consists of elementary actions where the temporal ordering is defined by sequence,
alternative and concurrency operators; the inclusion of message parameters for data
transfer was added in [GB90]. In [KBK89], temporal orderings with regular recursion
and sub-collaborations are introduced. General recursion is dealt with in [NHT98]
and [KHB96], and the latter also deals with interruption.

The basic idea of these algorithms is to first identify for each sub-collaboration
the roles (components) involved, and in particular the initiating and terminating
roles (components). If two sub-collaborations should be executed in the temporal
order of a strong sequence, then the protocol derivation algorithm introduces a coor-
dination message from each terminating component of the first sub-collaboration
to each initiating component of the second sub-collaboration. In many cases, the
sub-collaborations have only a single initiating and terminating component; in this
case a single coordination message is sufficient; and when both components are the
same, no coordination message is required, since the sequencing can be enforced by
the single component.

We note that most of these approaches only consider strong sequencing and
assume that the service specification does not include a non-local choice. However, a
non-local choice can be handled by introducing a conflict-resolution protocol between
the components involved, for instance in the form of a circulating token, or by
introducing priorities as suggested by Gouda [GY84], however, no general solution
exists. Most derivation algorithms also assume that each component has separate
input buffers for all its partners, and that there is no message overtaking.

10.4.2 Protocol derivation for Petri-nets

The problem of protocol derivation from service specifications has been studied also
for the case that the service specification is given as a Petri net or some extended
form of Petri nets [YOHT95, KG96]. This is of particular interest to us because
the semantics of activity diagrams can be described naturally with Petri nets. An
elementary action of a collaboration (described as an activity diagram) corresponds
to a transition of the corresponding Petri net. Each transition of the Petri net is
therefore associated with one of the roles of the collaboration. The Petri net tokens
that pass from one transition to another represent coordination messages. Non-local
choice remains a problem. We note that Petri net extensions have been considered,
including pre- and post-conditions for transitions and variables that may be located
at different components. The derived protocol includes mechanisms for checking
non-local pre-conditions, updating of variables, and the control of access to shared
resources [YEFBH03].

176 CHAPTER 10. PAPER 5

10.4.3 Semi-automatic designs of collaborations

From the above discussion, we get the following conclusion: Given the behavior of
a collaboration described in terms of sub-collaborations and elementary actions and
their allowed execution order, the problem of deriving the behavior of components
that will realize this global behavior through message exchanges has been solved
under the assumption that there is (a) no weak sequencing, and (b) no non-local
choice or mixed initiatives.

For the many cases where these assumptions are not satisfied, further work is
needed for finding appropriate solutions for the component behaviors. Concerning
weak sequencing, a composition of sub-collaborations satisfying Propositions 10.4 or
10.8 in Section 10.3 has been shown to be directly realizable. In [CBB07] we provide
proofs of this and also algorithms to check if the conditions for direct realizability
of weak sequencing are satisfied or not.

We hope that the guidelines given in Section 10.3 will eventually lead to the
semi-automated derivation of component behaviors from a service specification given
in the form of sub-collaborations, elementary actions and their allowed execution
order. This would lead to a semi-automatic process, where the designer has to
choose domain-specific solutions to those problems for which no general solution is
available, namely non-local choices and mixed initiatives.

10.5 Conclusions

In Section 10.1 we asked ourselves the following questions. Is it possible to model
service behavior more completely? Can it be done in a structured way without
revealing more interaction detail than necessary? Is it possible to support compo-
sition and to detect and remove realization problems? And is it possible to derive
detailed implementations automatically from service models? We have shown here
that a collaboration oriented approach based on UML 2 collaborations have poten-
tial to provide positive answers to several of these questions. In particular we have
demonstrated how choreographies defined using activity diagrams can be used for
service specification at a higher level than interactions and at the same time help
to identify and resolve realization problems. To our best knowledge we are able to
identify all the realization problems that have been reported in literature, many at
the level of choreography, without needing to consider detailed interactions of sub-
collaborations. We have also argued that our approach can be supported by tools
that automatically generate correct implementations from service specifications. Ev-
idence of this has been provided through several demonstrations by our groups and
others.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference
of message sequence charts. In Proc. of 22nd Int. Conf. on Software
Engineering (ICSE’00). ACM, 2000.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 177

[AEY05] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability
and verification of MSC graphs. Theor. Comput. Sci., 331(1):97–114,
2005.

[AHHC03] Daniel Amyot, Xiangyang He, Yong He, and Dae Yong Cho. Gen-
erating scenarios from use case map specifications. In Proc. of the
3rd Intl. Conf. on Quality Software (QSIC’03), pages 108–115, 2003.
IEEE CS.

[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for
message sequence charts. Software - Concepts and Tools, 17(2):70–77,
1996.

[ALW89] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and un-
realizable specifications of reactive systems. In Proc. of the 16th Intl.
Colloquium on Automata, Languages and Programming (ICALP’89),
pages 1–17, 1989. Springer-Verlag.

[Amy03] Daniel Amyot. Introduction to the user requirements notation: learn-
ing by example. Computer Networks, 42(3):285–301, 2003.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message
sequence charts. In Proc. 10th Intl. Conf. on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 114–129. Springer, 1999.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic detection of process
divergence and non-local choice in message sequence charts. In Proc.
2nd Int. Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), 1997.

[BBJ+05] Paul Baker, Paul Bristow, Clive Jervis, David King, Robert Thom-
son, Bill Mitchell, and Simon Burton. Detecting and resolving se-
mantic pathologies in uml sequence diagrams. In Proc. of the 10th
European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engi-
neering (ESEC/FSE-13), pages 50–59, 2005. ACM Press.

[BG86] Gregor Bochmann and Reinhard Gotzhein. Deriving protocol spec-
ifications from service specifications. In Proc. of ACM SIGCOMM
Symposium, pages 148–156, 1986.

[BKM07] Manfred Broy, Ingolf H. Krüger, and Michael Meisinger. A formal
model of services. ACM Trans. Softw. Eng. Methodol., 16(1):5, 2007.

[BM03] Nicolas Baudru and Rémi Morin. Safe implementability of regular
message sequence chart specifications. In Proc. of ACIS 4th Intl.
Conf. on Soft. Eng., Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD’03), pages 210–217, 2003.

178 CHAPTER 10. PAPER 5

[BM05] Rolv Bræk and Geir Melby. Model Driven Service Engineering, chap-
ter of Model-driven Software Development. Volume II of Research and
Practice in Software Engineering. Springer, 2005.

[Boc78] Gregor Bochmann. Finite state description of communication proto-
cols. Computer Networks, 2:361–372, 1978.

[Boc90] Gregor von Bochmann. Protocol specification for OSI. Computer
Networks and ISDN Systems, 18(3):167–184, 1989/1990.

[Boc00] Gregor v. Bochmann. Activity nets: A UML profile for modeling
workflow and business processes. Technical report, SITE, University
of Ottawa, 2000.

[Bræ79] Rolv Bræk. Unified system modeling and implementation. In Inter-
national Switching Symposium (ISS). ISS Committee, 1979.

[Bræ99] Rolv Bræk. Using roles with types and objects for service develop-
ment. In IFIP TC6 WG6.7 Fifth International Conference on Intel-
ligence in Networks (SMARTNET), volume 160 of IFIP Conference
Proceedings, pages 265–278, Pathumthani, Thailand, 1999. Kluwer.

[BS80] Gregor Bochmann and Carl A. Sunshine. Formal methods in com-
munication protocol design. IEEE Trans. on Communications, 28(4),
April 1980.

[CB06a] Humberto N. Castejón and Rolv Bræk. A collaboration-based ap-
proach to service specification and detection of implied scenarios. In
Proc. of 5th int. workshop on Scenarios and state machines: models,
algorithms and tools (SCESM’06). ACM Press, 2006.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing collaboration
goal sequences for service choreography. In Proc. of the 26th IFIP
WG 6.1 Intl. Conf. on Formal Methods for Networked and Distributed
Systems (FORTE’06), volume 4229 of LNCS, pages 275–291, Paris,
France, September 2006. Springer-Verlag.

[CBB07] Humberto N. Castejón, Gregor Bochmann, and Rolv Bræk. Inves-
tigating the realizability of collaboration-based service specifications.
Technical report, Avantel 3/2007 ISSN 1503-4097, NTNU, 2007.

[CKS05] Chien-An Chen, Sara Kalvala, and Jane Sinclair. Race conditions
in message sequence charts. In Proc. of 3rd Asian Symposium on
Programming Languages and Systems (APLAS’05), volume 3780 of
LNCS, pages 195–211. Springer, 2005.

[Erl05] Thomas Erl. Service Oriented Architecture: Concepts, Technology
and Design. Number ISBN 0-13-185858-0. Prentice Hall, 2005.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 179

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular verification of
collaboration-based software designs. In ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, pages 152–163. ACM Press, 2001.

[GMSZ06] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun.
Infinite-state high-level mscs: Model-checking and realizability. J.
Comput. Syst. Sci., 72(4):617–647, 2006.

[GB90] Reinhard Gotzhein and Gregor von Bochmann. Deriving protocol
specifications from service specifications including parameters. ACM
Trans. Comput. Syst., 8(4):255–283, 1990.

[GY84] Mohamed G. Gouda and Yao-Tin Yu. Synthesis of communicating
finite state machines with guaranteed progress. IEEE Trans. on Com-
munications, Com-32(7):779–788, July 1984.

[Hél01] Löıc Hélouët. Some pathological message sequence charts, and how to
detect them. In 10th Intl. SDL Forum, volume 2078 of LNCS, pages
348–364. Springer-Verlag, 2001.

[HJ00] Löıc Hélouët and Claude Jard. Conditions for synthesis of commu-
nicating automata from HMSCs. In Proc. of 5th Intl. Workshop on
Formal Methods for Industrial Critical Systems (FMICS’00). GMD
FOKUS, 2000.

[ITU98] ITU-T. Message sequence charts (MSC). Technical report, Recom-
mendation Z.120. International Telecommunications Union, 1998.

[ITU00] ITU-T. Specification and description language (SDL). Technical
report, Recommendation Z.100. International Telecommunications
Union, 2000.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing components with sessions from collaboration-oriented service
specifications. In Procs. of 13th SDL Forum, volume 4745 of LNCS,
pages 166–185, Paris, 2007. Springer.

[KG96] Hakim Kahlouche and Jean-Jacques Girardot. A stepwise refinement
based approach for synthesizing protocol specifications in an inter-
preted petri net model. In Proc. of INFOCOM’96, pages 1165–1173,
1996.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service specification
by composition of collaborations–an example. In Procs. of 2nd Intl.
Workshop on Service Composition (SERCOMP’06), pages 129–133,
2006. IEEE CS.

180 CHAPTER 10. PAPER 5

[KHB96] Christian Kant, Teruo Higashino, and Gregor von Bochmann. De-
riving protocol specifications from service specifications written in
LOTOS. Distributed Computing, 10(1):29–47, 1996.

[KM03] Ingolf H. Krüger and Reena Mathew. Component synthesis from ser-
vice specifications. In Intl. Dagstuhl Workshop on Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS, pages 255–277.
Springer, 2003.

[Krü03] Ingolf Krüger. Capturing overlapping, triggered, and preemptive col-
laborations using MSCs. In Proc. of the 6th Intl. Conf. on Funda-
mental Approaches to Software Engineering (FASE’03), volume 2621
of LNCS, pages 387–402. Springer, 2003.

[KBK89] F. Khendek, G. von Bochmann, and C. Kant. New results on de-
riving protocol specifications from service specifications. SIGCOMM
Comput. Commun. Review, 19(4):136–145, 1989.

[KZ05] Ferhat Khendek and Xiao Jun Zhang. From msc to sdl: Overview
and an application to the autonomous shuttle transport system. In
Springer, editor, 2003 Dagstuhl Workshop on Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS, pages 228–254,
2005.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, 1978.

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative
survey of scenario-based to state-based model synthesis approaches.
In Proc. of the 5th Intl. workshop on Scenarios and State Machines:
models, algorithms, and tools (SCESM’06), pages 5–12, 2006. ACM
Press.

[Loh03] Markus Lohrey. Realizability of high-level message sequence charts:
closing the gaps. Theor. Comput. Sci., 309(1-3):529–554, 2003.

[MGR05] Arjan J. Mooij, Nicolae Goga, and Judi Romijn. Non-local choice
and beyond: Intricacies of MSC choice nodes. In Proc. Intl. Conf.
on Fundamental Approaches to Soft. Eng. (FASE’05), volume 3442
of LNCS. Springer, 2005.

[Mit05] Bill Mitchell. Resolving race conditions in asynchronous partial order
scenarios. IEEE Trans. Softw. Eng., 31(9):767–784, 2005.

[MKS00] Madhavan Mukund, K. Narayan Kumar, and Milind A. Sohoni. Syn-
thesizing distributed finite-state systems from MSCs. In Proc. 11th
Intl. Conf. on Concurrency Theory (CONCUR’00), volume 1877 of
LNCS, pages 521–535. Springer, 2000.

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 181

[MRW06] Arjan Mooij, Judi Romijn, and Wieger Wesselink. Realizability cri-
teria for compositional msc. In Proc. of 11th Intl. Conf. on Algebraic
Methodology and Software Technology (AMAST’06), volume 4019 of
LNCS. Springer, 2006.

[NHT98] A. Nakata, T. Higashino, and K. Taniguchi. Protocol synthesis
from context-free processes using event structures. In Proc. of the
5th Intl. Conf. on Real-Time Computing Systems and Applications
(RTCSA’98), page 173. IEEE CS, 1998.

[OMG07] Object Management Group (OMG). UML 2.1.1 Superstruc-
ture Spec., February 2007. Accesible at http://www.omg.org/cgi-
bin/apps/doc?ptc/06-04-02.pdf.

[RAB+92] T. Reenskaug, E.P. Andersen, A.J. Berre, A. Hurlen, A. Landmark,
O.A. Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A.L. Skaar,
and P. Stenslet. OORASS: Seamless support for the creation and
maintenance of object-oriented systems. Journal of Object-oriented
Programming, 5(6):27–41, 1992.

[RT03] Abhik Roychoudhury and P. S. Thiagarajan. Communicating trans-
action processes: An msc-based model of computation for reactive
embedded systems. In Lectures on Concurrency and Petri Nets, vol-
ume 3098 of LNCS, pages 789–818, 2003.

[RWL96] Trygve Reenskaug, P. Wold, and O. A. Lehne. Working with Objects:
The OOram Software Engineering Method. Prentice Hall, 1996.

[San00] Richard Sanders. Implementing from SDL. Telektronikk, 96(4), 2000.

[San07] Richard Sanders. Collaborations, Semantic Interfaces and Service
Goals – a new way forward for Service Engineering. PhD thesis,
Department of Telematics, Norwegain Univ. Science and Technology,
Trondheim, Norway, March 2007.

[SBBA05] Richard Torbjørn Sanders, Rolv Bræk, Gregor von Bochmann, and
Daniel Amyot. Service discovery and component reuse with semantic
interfaces. In Proc. 12th SDL Forum, volume 3530 of LNCS, Grim-
stad, Norway, June 2005. Springer.

[SCKB05] Richard Torbjørn Sanders, Humberto N. Castejón, Frank Alexander
Kraemer, and Rolv Bræk. Using UML 2.0 collaborations for compo-
sitional service specification. In Lionel Briand and Clay Williams, ed-
itors, ACM/IEEE 8th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), volume 3713 of LNCS,
pages 460–475, Montego Bay, Jamaica, October 2005. Springer-
Verlag.

182 CHAPTER 10. PAPER 5

[UKM04] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Incremental elab-
oration of scenario-based specifications and behavior models using
implied scenarios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85,
2004.

[Whi07] Jon Whittle. Precise specification of use case scenarios. In 10th
Intl. Conf. on Fundamental Approaches to Software Engineering
(FASE’07), volume 4422 of LNCS, pages 170–184, 2007.

[WvdAD+05] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M.
ter Hofstede, and Nick Russell. Pattern-based analysis of the control-
flow perspective of UML activity diagrams. In 24th Intl. Conf. on
Conceptual Modeling (ER’05), volume 3716 of LNCS, pages 63–78.
Springer, 2005.

[YEFBH03] Hirozumi Yamaguchi, Khaled El-Fakih, Gregor von Bochmann, and
Teruo Higashino. Protocol synthesis and re-synthesis with optimal al-
location of resources based on extended petri nets. Distributed Com-
puting, 16(1):21–35, 2003.

[YOHT95] H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi. Synthesis
of protocol entities specifications from service specifications in a petri
net model with registers. In Proc. of the 15th Intl. Conf. on Dis-
tributed Computing Systems (ICDCS’95), page 510. IEEE Computer
Society, 1995.

Appendix 10.A Remarks to the Paper

This appendix did not appear in the original publication. It is included here to
discuss some issues regarding the use of activity diagrams that were discovered after
the publication time.

In this paper we suggested using UML activity diagrams to model collaboration
choreographies. An activity diagram describing a choreography consists of control
nodes, as well as call behavior actions allowing to directly invoke (collaboration)
behaviors elsewhere described. Since in UML both interactions as well as activities
are a kind of behavior, both of them can be invoked from a call behavior action.
This means that, in principle, call behavior actions can be used in a choreography
graph to invoke the behavior of both elementary collaborations, described by means
of UML sequence diagrams (a kind of interaction diagram), as well as the behavior of
composite collaborations, described by means of UML activity diagrams (specifying
the choreography of their sub-collaborations). This is what we want. However, an
obstacle arises in order to support the weak sequencing of collaborations, as well as
the invocation of collaborations by other ones (i.e. invocation compositions). In both
cases we need a call behavior action (invoking the behavior of one collaboration) to
be started while another one is still running. That is, we need a call behavior action

USING COLLABORATIONS IN THE DEV. OF DISTR. SERVICES 183

to offer tokens while its invoked behavior is still running (or suspended, but not
finished). When the invoked behavior is described by an activity, this is perfectly
possible. In that case we could:

(i) Provide the activity with streaming parameters, which allow the behavior de-
scribed by the activity to accept input values, and provide output values, while
in the middle of its execution (i.e. not only at the beginning and at the end
of the execution).

(ii) Provide the call behavior action invoking that activity with pins, which would
be associated with the activity’s parameters. Pins connected to output stream-
ing parameters would then receive a token whenever a value was produced via
the corresponding parameter.

Unfortunately, streaming parameters are only defined for activities (and more specif-
ically for the package of CompleteActivities – see page 394 of [OMG07]). UML
interactions can have parameters, but not with streaming capabilities. Therefore,
if the behavior invoked by a call behavior action is described using an interaction
(i.e. as in the case of elementary collaborations), the call behavior action may nei-
ther receive nor offer tokens while its invoked behavior is being executed. This
means that we cannot have weak sequencing semantics and invocation compositions
in choreographies described with UML activity diagrams when the behaviors of the
collaborations are described using interaction diagrams. Not if we want to be totally
compliant with the UML semantics for activity diagrams. This is paradoxical. On
the one hand, the UML standard allows to invoke behaviors described using inter-
action diagrams from activity diagrams. On the other hand, the standard imposes
(implicitly) a strong sequence semantics, while weak sequencing is the default se-
mantics for interaction diagrams. We believe the UML standard should be more
clear and precise on this issue. If interactions may be invoked from activities, weak
sequence semantics should be possible, either by direct support, or by allowing se-
quence diagrams to have streaming parameters. Otherwise activities should not be
allowed to invoke behaviors described using interactions.

As a result, we propose to use the syntax of activity diagrams, but with the
semantics described in Paper 6.

We note that it could maybe be possible to define a UML profile where interac-
tions are extended so that they can have streaming parameters. This option should
however be carefully studied.

11

Paper 6

Investigating the realizability of

collaboration-based service specifications.

By Humberto Nicolás Castejón, Gregor von Bochmann and Rolv Bræk.

Published as Technical Report Avantel 3/2007, ISSN 1503-4097, NTNU, September
2007.

Notes

A minor correction has been made to Property 11.3.1. This correction is explained
in an endnote.

185

Investigating the Realizability of
Collaboration-based Service Specifications

Humberto Nicolás Castejóna, Gregor von Bochmannb and
Rolv Bræka

aDept. of Telematics, Norwegian University of Science and Technology, Trondheim,

Norway
{humberto.castejon, rolv.braek}@item.ntnu.no

bSchool of Inf. Technology and Engineering, University of Ottawa, Ottawa, Canada
bochmann@site.uottawa.ca

Abstract

This report is concerned with compositional specification of services using
UML 2 collaborations, activity and interaction diagrams. It provides formal
syntax and semantics for so-called choreography graphs, used to describe the
complete behavior of composite collaborations. It then addresses the problem
of realizability: given a global specification, can we construct a set of com-
municating state machines whose joint behavior is precisely the specified one?
We approach the problem by looking at how collaboration behaviors may be
composed using UML activity diagrams-based choreographies. We classify
realizability problems from the point of view of each composition operator,
and discuss their nature and possible solutions. This brings a new look at al-
ready known problems. We show that given some conditions, some problems
can already be detected at an abstract collaboration level, without needing to
look into detailed interactions. We present algorithms to detect some of the
discussed problems.

11.1 Introduction

For several decades now it has been common practice to specify and design reactive
systems in terms of loosely coupled components modeled as communicating state
machines [Boc78, Bræ79], using languages such as SDL [IT00] and UML [OMG07].
This has helped to substantially improve quality and modularity, mainly by provid-
ing means to define complex, reactive behavior precisely in a way that is understand-
able to humans and suitable for formal analysis as well as automatic generation of
executable code.

188 CHAPTER 11. PAPER 6

However, there is a fundamental problem. In many cases, application/service
behavior is not performed by a single component, but by several collaborating com-
ponents. This is referred to as the “crosscutting” nature of services by different au-
thors [RGG01, FK01, KM03]. Often each component takes part in several different
services, so in general, the behavior of services is composed from partial component
behaviors, while component behaviors are composed from partial service behaviors.
By structuring according to components, the behavior of each individual component
can be defined precisely and completely, while the behavior of a service is frag-
mented. In order to model the global behavior of a service more explicitly one needs
an orthogonal view where the collaborative behavior is in focus. Interaction se-
quences such as MSC [IT99], and UML Sequence diagrams [OMG07] are commonly
used for this purpose, but normally only to describe typical/important use cases
and not complete behaviors. Normally when using interaction sequences, it is very
cumbersome to define all the intended scenarios. In addition, there are problems
related to the realizability of interaction scenarios, i.e. finding a set of local compo-
nent behaviors whose joint execution leads precisely to the global behavior specified
in the scenarios. The realizability of MSC-based specifications has been extensively
studied by different authors (e.g. [AEY00, UKM04, AEY05, BS05]). Conditions
for realizability have been proposed for HMSCs [HJ00] and Compositional MSCs
[MRW06], as well as restricted classes of HMSCs that are known to be always real-
izable [GMSZ06]. Some authors have studied pathologies in HMSCs [BAL97, Hél01]
that prevent their realization. Other authors have considered realizability notions
that allow additional message contents [BM03, GMSZ06].

A promising step forward is to adopt a collaboration-oriented approach, where the
main structuring units are collaborations. This is made practically possible by the
new UML 2 collaboration concept [OMG07]. The underlying ideas, however, date
back to before the UML era [RAB+92, RWL96]. Collaborations model the concept of
a service very nicely. They define a structure of partial object behaviors, called roles,
and enable a precise definition of the service behavior using interaction diagrams,
activity diagrams and state machines as explained in [SCKB05, CB06a, CB06b].
They also provide a way to compose services by means of collaboration uses and
to bind roles to components. In this way, UML 2 collaborations directly support
(crosscutting) service modeling and service composition. As we shall see in the
following, this opens many interesting opportunities. Figure 11.1 illustrates the
main models involved in the collaboration oriented approach being discussed in the
following:

• Service models are used to formally specify and document services. Collabora-
tions provide a structural framework for these models that can embody both
the role behaviors and the interactions between the roles needed to fulfill the
service.

• Design models are used to formally specify and document system structure
and components realizing the services. They are expressed in terms of com-

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 189

C 1 C 2 C 3 C 4

Collaboration-oriented
Service Models

Design synthesis

Code generation

S1.1 S1.2

Service2

Service1

Service3

State Machine-based
Design Models

Implementation

Figure 11.1: Collaboration oriented development

municating state machines, using UML 2 active objects. Each of these will
realize one or more collaboration roles.

• Implementations are executable code automatically generated from the design
models.

This paper is concerned with the crucial first steps of expressing service models
using UML 2 collaborations and deriving well-formed design models expressed as
communicating state machines. The ensuing steps from design component models
to implementations and dynamic deployment on service platforms can be solved in
different ways, see for instance [San00, BM05], and are not discussed further here.

An important property of collaborations is that it is possible and convenient to
compose/decompose collaborations structurally into sub-collaborations, by means
of collaboration uses. These refer to separately defined collaborations and provide
a mechanism for collaboration reuse. In order to define the behavior of collabo-
rations, we have found it useful to distinguish between the behavior of composite
collaborations and elementary collaborations (collaborations that are not further de-
composed into sub-collaborations). The elementary collaborations that result from
the decomposition process are often quite simple, reusable and possible to define
completely using interaction sequences. Binary collaborations can in many cases be
associated with interfaces and their sub-collaborations with features of the interface.
The question then is how to define the overall behavior of composite collaborations
in terms of sub-collaboration behaviors? In the web service domain this kind of be-
havior is called “choreography” [Erl05], a term we will use in the following. Several
notations may be used to define the choreography of sub-collaborations (i.e. their

190 CHAPTER 11. PAPER 6

global execution ordering). We have found UML 2 Activity diagrams a good can-
didate, as they provide many of the composition operators needed for the purpose.
While HMSCs normally describe collection of scenarios, and therefore represent in-
complete and existential behavior, our choreographies describe the exact behavior
of a service according to the service designer’s intentions (i.e. the service should
behave exactly as described, no other behaviors are allowed). The local behavior for
a given component of the choreography can be obtained by applying the ordering
defined by the choreography’s activity diagram to the role behaviors bound to the
component in question.

We say that a choreography is directly realizable if the joint execution of the
local behaviors of all components leads precisely to the global behavior specified by
the choreography. Note that some choreographies that are not directly realizable
may still be realized by adding extra coordination messages or additional data in
messages. We consider these measures as solutions to realization problems, which
could be adopted by the designer depending on the context and service domain. Note
also that the realizability of a choreography depends not only on the ordering defined
by the activity diagram of the choreography, but also on the characteristics of the
underlying communication service used for the transmission of messages. Important
characteristics of the communication service are the type of transmission channels,
and the type and number of input buffers of each component. We assume there is
no message loss, and distinguish between channels with out-of-order delivery (i.e.
messages sent from a given source to a given destination may be received in a different
order than they were sent) and channels with in-order delivery. Components may
have either a single input FIFO buffer (i.e. one buffer for all received messages) or
separate input FIFO buffers (i.e. one buffer for messages received from each different
peer).

In the rest of the paper we study the direct realizability of a choreography from
the point of view of the operators used to compose the sub-collaborations. In our
discussion we assume that each sub-collaboration of a choreography is directly re-
alizable. Then, for each composition operator (i.e. sequential, alternative, parallel,
interruption) we study the problems that can lead to difficulties of realization. We
investigate the actual nature of these problems and discuss possible solutions to
prevent or remedy them.

11.1.1 Outline

The paper is structured as follows. In Section 11.2 the proposed service modeling
approach is illustrated with help of an example, and the syntax and semantics of
choreographies is presented in Section 11.3. The problem of realizability of chore-
ographies is discussed in Section 11.4. Section 11.5 presents a set of algorithms
to detect some of the realizability problems discussed in the previous section. We
finally conclude with Section 11.6.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 191

11.2 Service Specification Approach: An

Example

We exemplify our service specification approach by means of a simple shuttle service
(inspired by a case study from [UKM04]) in which one vehicle transports one pas-
senger at a time between two terminals. Figure 11.2 depicts this service as a UML
2.0 collaboration. This collaboration identifies three roles, namely P (Passenger),
T (Terminal) and V (Vehicle); as well as seven sub-collaborations representing in-
terfaces and features of the service. These sub-collaborations are specified as UML
collaboration-uses, whose roles are bound to the ShuttleService’s roles (e.g. BuyT-
icket ’s role Tbt is bound to ShuttleService’s role T). For the sake of clarity, in the
following we will refer to P, T and V as service-roles, and to Tbt,Td and the like as
sub-roles (of T, P or V). The ShuttleService’s sub-collaborations have been identi-
fied from the following service requirements. In order to travel, a passenger must
buy a ticket at one of the terminals (collaboration-use BuyTicket). When this hap-
pens, if the vehicle is waiting at the terminal, the departure gate is indicated, and
the passenger can enter the vehicle (EnterVehicle). The terminal then dispatches
the vehicle (VehDeparture) and, after arriving at the second terminal (VehArrival),
the passenger disembarks (ExitVehicle). If the vehicle is not at the terminal where
the passenger buys the ticket, that terminal requests the vehicle from the other ter-
minal (ReqVehicle), which dispatches the vehicle towards the requesting terminal.
When the vehicle arrives, the departure gate is displayed and the service continues
as explained before.

:P

:V

Pev

Vev Vd

Td

Pexv

Vexv

Ta

Va

ShuttleService

Pbt

Tbt

TreqedTreqer

:BuyTicket

:EnterVehicle

:ExitVehicle

:VehArrival

:VehDeparture

0..1

1 :T[2]

:ReqVehicle

Figure 11.2: UML collaboration for the ShuttleService

The complete and exact behavior of each elementary sub-collaboration is de-

192 CHAPTER 11. PAPER 6

sd VehDeparture

departureReq

setDestination

:Td :Vd

{vehicleLeft}

arriveReq

arrived

alert100

arriveAck

:Ta :Va

{vehicleArrived}

sd VehArrival

departureAck

sd BuyTicket

displayGate

buyTicket

:Pbt :Tbt

{tickectBought}

{tickectReqed}

Figure 11.3: Sequence diagrams describing some elementary collaborations of
ShuttleService

scribed by means of sequence diagrams. Figure 11.3 shows the sequence diagrams
describing BuyTicket, VehDeparture and VehArrival.

What remains is to specify the overall cross-cutting behavior of the ShuttleService
collaboration, that is, the choreography describing how its sub-collaborations are or-
dered and interact. We use UML 2 activity diagrams to describe the choreography of
collaborations. They capture the liveness aspects of composite service collaborations
by describing the execution order of their sub-collaborations. The choreography for
ShuttleService is depicted in Fig. 11.4. Note that we have annotated each activity
with a pictorial representation of the collaboration-use the activity refers to.

vehicleReqed

vehicleLeft

vehicleArrived

ticketBought

passengerEntered

vehicleArrived

passengerLeft

vehicleLeft

ticketReqed

[T1.vehAtTerminal=false]

[T1.vehAtTerminal=true]

Pbt
Tbt

b:BuyTicketP:P T1:T

P:P V:V
Pev

Vev
ev:EnterVehicle

VdTd

vd2:VehDepartureT1:T V:V

T2:TV:V
Va Ta

va2:VehArrival

V:VP:P
Pexv Vexv

exv:ExitVehicle

T2:TT1:T
Treqer Treqed

r:ReqVehicle

T2:TV:V
Vd Td

vd1:VehDeparture

T1:TV:V
Va Ta

va1:VehArrival

Figure 11.4: Choreography of ShuttleService

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 193

11.3 Syntax and Semantics of Choreographies

A choreography graph specifies the full behavior of a composite collaboration by
defining the global execution ordering of its sub-collaborations. We consider here
choreography graphs represented by means of UML activity diagrams, and assume
that the sub-collaborations referred to by the choreography are elementary collab-
orations whose behavior is described by means of UML sequence diagrams. In the
following we describe the syntax and semantics of choreography graphs. Before that
we describe the syntax and semantics of sequence diagrams.

11.3.1 Syntax and Semantics for Sequence Diagrams

We consider here a restricted version of UML 2 sequence diagrams, which we use to
specify the behavior of elementary collaborations. We used the syntax proposed in
the UML standard, but provide a semantics based on partially ordered sets (posets).
In the following we define and provide a semantics to basic sequence diagrams.
Thereafter, we focus on composite sequence diagrams.

Definition 11.1 (Basic Sequence Diagram). A basic sequence diagram defines
a labeled directed acyclic graph that can be described by a tuple bSD = (E,<e,<m,
P,M ,Σ, loc, lbl,rcv,snd), where:

• E = S∪R∪Φ is a set of events partitioned into sending events (S), receiving
events (R) and predicate events (Φ)

• P is a set of lifelines

• M is a set of messages

• Σ = Σc ∪Σp is a set of communication actions (Σc) and predicates (Σp). El-
ements of Σc are of the form 〈!m, p,q〉 or 〈?m, p,q〉, with p,q ∈ P,m ∈ M .
We read 〈!m, p,q〉 as “p sends message m to q”, and 〈?m, p,q〉 as “p receives
message m from q”

• loc : E → P is a mapping that associates each event with a lifeline

• lbl : E → Σc∪Σp is a labeling function associating each event with a commu-
nicating action or a predicate

• rcv : S → R and snd : R → S are bijective functions that respectively match each
sending event with its corresponding receiving event, and each receiving event
with its corresponding sending event. We have snd ≡ rcv−1

• <e⊆ E ×E is an acyclic relation between events, called the visual order, that
satisfies:

<e= (
⋃

p∈P
<p)∪{(s,rcv(s)) : s ∈ S}, where for each p ∈ P,<p is a total order

(i.e. an antisymmetric, transitive and total binary relation) on Ep = {e ∈ E :
loc(e) = p} (i.e. events on a lifeline are totally ordered)

194 CHAPTER 11. PAPER 6

R1 R2

sd Example2

e6

a b

dc

e1

e5

e7

e4

e3e2

e8

(a) (b)

R1

a

R2

sd Example4

c

R3

e2

e6 e5

e4 e3

e1

b

paralt

R1

a

R2

sd Example3

c

R3

e1

e6 e5

e4e3

e2

b

(c) (d)

R1

a

R2

sd Example1

b

c

R3

e1

e5 e6

e4e3

e2

(e)

R1

a

R2

sd Example5

b

c

R3

e1

e4 e3

e6e5

e2

Figure 11.5: Some basic sequence diagrams (with conflicts)

• <m⊆ S× S is a total order on sending events, called the message order. To
construct <m we imagine a vertical line L aligned with the sequence diagram
and project each sending event on L. We say s1 <m s2 if s1 is located on L
higher than s2. To ensure that <m is a total order, two sending events cannot
be drawn on the same imaginary horizontal line.

For any sequence diagram we require the following property:

Property 11.3.1 (Non-crossing messages). Messages do not graphically cross
each other. That is:

(i) Messages exchanged between different lifelines are represented by horizontal
arrows.

(ii) Messages sent by a lifeline p ∈P to itself (self-receiving messages) satisfy this
condition: ∀e1 = 〈!m, p, p〉 ,e2 = rcv(e1), � ∃e such that e1 <p e <p e2

1.

In this property, condition (i) is required to avoid cycles that could lead to
causal relations where a sending message is indirectly dependent on its receiving
event. Condition (ii) is required because, in general, a specification with an order
〈!m, p, p〉 <p e1 <p . . .en <p rcv(〈!m, p, p〉) is not directly realizable. As an example
consider the diagram in Fig. 11.5(a). Here R1 first sends message a to itself and be-
fore receiving it, it sends message b to R2. This specification does not satisfy condi-
tion (ii) in Property 11.3.1, since we have e1 = 〈!a,R1,R1〉<p e2 <p e4 = 〈?a,R1,R1〉.
It is easy to see that, in general1, this order cannot be guaranteed by any directly
realized system, since the reception of message a cannot be controlled, and may
therefore happen before the sending of message b. In the lower part of the diagram
a similar situation happens between messages c and d.

Both the visual order (<e) and the message order (<m) can be obtained form the
graphical representation of the sequence diagram. The visual order captures the or-
der of events on each lifeline, as well as the order induced by message transmissions.
The message order captures the vertical order of messages. For example, in Fig.
11.5(b) the visual order is <e= {(e1,e5),(e2,e3),(e4,e6),(e1,e2), (e3,e4),(e5,e6)},
while the message order is <m= {(e1,e3),(e3,e5),(e1,e5)}, which indirectly describes
the vertical order between messages a, b and c.

1This order can only be guaranteed if the design is such that the two sending events e1 and e2
are performed in an atomic transition.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 195

The ordering of events dictated by the visual order does not necessarily reflect the
semantics of the sequence diagram. The visual order may impose ordering between
events that cannot be guaranteed in a directly realized system. To describe the
semantics of sequence diagrams we use a weaker partial order, called the causal
partial order (or causal poset), which only orders two events if they necessarily
happen in that order in any execution of the directly realized system. The causal
order takes into account the particularities of the communication architecture to be
used in the realized system, in particular whether channels with out-of-order delivery
or channels with in-order delivery are to be used.

Definition 11.2. A causal order for channels with out-of-order (or non-
fifo) delivery (≺nf) is the reflexive-transitive closure of the immediate precedence
relation <nf (i.e. ≺nf= (<nf)∗), where e <nf e′ if any of the following holds:

• e ∈ S∧ rcv(e) = e′ (i.e. e’ is the receiving event associated to the sending event
e)

• e′ ∈ S∪Φ∧ e <p e′, for p ∈ P (i.e. e′ is a sending event, or a predicate event,
and e is a visual predecessor of e′ on the same lifeline)

The above definition reflects that in a channel with out-of-order delivery, the
order in which messages are received (at a certain input buffer) may not be the
same as the order in which message were sent (i.e. messages may overtake each
other on the channel). With out-of-order delivery channels, only two classes of
event orderings can be guaranteed. First, a receiving event will always happen after
its sending event. Second, a system component may always control when to perform
a sending event. This means that a sending event s will always happen after any
other events that precede s on the same lifeline have been performed.

Definition 11.3. A causal order for channels with in-order (or fifo) delivery
(≺f) is the reflexive-transitive closure of the immediate precedence relation <f (i.e.
≺f= (<f)∗), where e <f e′ if one of the following holds:

• e <nf e′ (i.e. e is an immediate predecessor of e′ under out-of-order semantics)

• e,e′ ∈R∧e <p e′∧snd(e) <q snd(e′), for p,q∈P (i.e. messages cannot overtake
each other on the channel, so any two messages sent by a system component
to another will arrive in the correct order)

We can now define two semantic functions that assign a Σ-labeled causal poset
to a basic sequence diagram.

Definition 11.4. The semantics of a basic sequence diagram bSD = (E,<v,<m
,P,M ,Σ, loc, lbl,rcv,snd) can be described with a semantic function [[]]xbSD, with
x ∈ {nf, f}, such that

• [[bSD]]nf
bSD = (E,≺nf, lbl), in the presence of out-of-order delivery channels

• [[bSD]]fbSD = (E,≺f, lbl), in the presence of in-order delivery channels.

196 CHAPTER 11. PAPER 6

In general, when the specific type of channel is not important for the discussion,
we will use [[]]bSD as a generic semantic function for basic sequence diagrams.

Basic sequence diagrams can be composed to obtain more complex behaviors. In
UML 2 this is possible by means of interaction operators. We consider four opera-
tors: seq (for weak sequential composition), alt (for alternative composition), par
(for parallel composition) and loop (for iterative composition). The weak sequential
composition of two sequence diagrams consists in their lifeline-by-lifeline concatena-
tion, such that for each instance, the events of the first diagram precede the events
of the second diagram. Events on different lifelines are interleaved. In the parallel
composition of two sequence diagrams their events are interleaved. The alternative
composition of two sequence diagrams describes a choice between them, such that
in any run of the system events will be ordered according to only one of the dia-
grams. That is, alternative composition introduces alternative orderings of events.
The semantics of an alternative composition of basic sequence diagrams is therefore
defined by a set of posets. The iterative composition of a sequence diagram can be
seen as the weak sequential composition of a number of instances of that sequence
diagram.

The syntax of a composite sequence diagram (SD) is defined by the following
BNF-grammar:

SD
de f
= bSD | (SD1 seqSD2) | (SD1 altSD2) | (SD1 parSD2) | loop(min,max)SD1

We describe the semantics of a composite sequence diagram by means of a set of
causal posets (one for each possible alternative behavior described by the sequence
diagram). As we did for basic sequence diagrams, we consider two semantic func-
tion [[]]nf

SD and [[]]fSD that assign a set of Σ-labeled posets to a composite sequence
diagram.

We introduce now two operations on posets that we need for the definition of
[[]]xSD, with x∈ {nf, f}. The first one is weak sequencing of two Σ-labeled posets (over
P,M), which results in a new Σ-labeled poset where, for each lifeline, the events
of the first poset precede the events of the second poset. The second operation is
concurrence of two Σ-labeled posets, which results in a new poset with interleaved
events.

Definition 11.5 (Weak sequencing). Let p1 = (E1,≺1, lbl1) and p2 = (E2,≺2, lbl2)
be two Σ-labeled posets (over P,M) with disjoint sets of events2. Their weak
sequencing, p1 ◦w p2, is a new Σ-labeled poset defined as p1 ◦w p2 = (E1 ∪E2,≺1◦w2,
lbl1 ∪ lbl2), where ≺1◦w2= (≺1 ∪ ≺2 ∪{(e1,e2) ∈ E1 ×E2 : loc(e1) = loc(e2)})∗.
Definition 11.6 (Concurrence). Let p1 = (E1,≺1, lbl1) and p2 = (E2,≺2, lbl2)
be two Σ-labeled posets (over P,M) with disjoint sets of events2. Their parallel
composition, p1 ‖ p2, is a new Σ-labeled poset defined as p1 ‖ p2 = (E1∪E2,≺1 ∪≺2,
lbl1 ∪ lbl2).

Now we can define the semantics of a composite sequence diagram, along the
lines in [KL98], as follows:

2If they are not disjoint, they are renamed

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 197

Definition 11.7. The semantics of a composite sequence diagram SD can be de-
scribed with a semantic function [[]]xSD, with x ∈ {nf, f}, such that

[[bSD]]xSD
de f
= {[[bSD]]xbSD}

[[SD1 seqSD2]]xSD
de f
= {p1 ◦w p2 : p1 ∈ [[SD1]]xSD, p2 ∈ [[SD2]]xSD}

[[SD1 parSD2]]xSD
de f
= {p1 ‖ p2 : p1 ∈ [[SD1]]xSD, p2 ∈ [[SD2]]xSD}

[[SD1 altSD2]]xSD
de f
= [[SD1]]xSD

⋃
[[SD2]]xSD

[[loop(min,max)SD]]xSD
de f
=

⋃
min≤i≤max

[[Δi.SD]]xSD

where

Δ0.SD
de f
= {(/0, /0, /0)}

Δn.SD
de f
= SDseqΔn−1.SD,n > 0

In general, when the specific type of channel is not important for the discussion,
we will use [[]]SD as a generic semantic function for sequence diagrams.

For the analysis of sequence diagrams it is useful to distinguish their initiating
and terminating events. For a sequence diagram SD, we denote its multi-set of
initiating events as init(SD) = {min(ps) : ps ∈ [[SD]]SD}, where min(ps) = {e ∈ E :
� ∃e′ ∈ E,e′ ≺ e} is the set of minimum events (i.e. events non-causally dependent
on other events) of the Σ-labeled poset ps. The initiating events of SD will be the
minimum sending events for each possible alternative described by the sequence di-
agram. Similarly, we denote multi-set of terminating events for a sequence diagram
SD as term(SD) = {max(ps) : ps ∈ [[SD]]SD}, where max(ps) = {e ∈ E :� ∃e′ ∈ E,e ≺ e′}
is the set of maximum events (i.e. events that do not precede any other events)
of the Σ-labeled poset ps. The terminating events of SD will be the maximum re-
ceiving events for each possible alternative described by the sequence diagram. Fi-
nally, we denote the multi-set of terminating sending events of SD as termsnd(SD) =
{maxsnd(ps) : ps ∈ [[SD]]SD}, where maxsnd(ps) = {s ∈ S :� ∃s′ ∈ S,s ≺ s′} is the set of
maximum sending events (i.e. sending events that do not precede any other sending
events, just receiving events) of the Σ-labeled poset ps. The terminating sending
events of SD will be the maximum sending events for each possible alternative de-
scribed by the sequence diagram.

11.3.2 Syntax and Semantics for Choreography Graphs

We present now the syntax and semantics for choreography graphs.

Choreography Syntax

Each of the activities in the activity diagram of a choreography can be seen as a
phase in the execution of a service collaboration C. In each phase or activity, a spe-

198 CHAPTER 11. PAPER 6

cific sub-collaboration of C is active (so-called activity’s active collaboration). This
is represented by adorning the activity with a collaboration-use, whose roles are
bound to instances of C ’s roles. For example, in Fig. 11.4, the BuyTicket collabora-
tion is active in the first activity. This is expressed by adorning that activity with a
b:BuyTicket collaboration-use, whose roles (i.e. Pbt and Tbt) are bound to instances
of ShuttleService’s roles (i.e. P:P and T1:T). The solid circles and bars beside
the roles are respectively used to identify the role that initiate and terminate each
collaboration. Each activity has one input pin representing the starting execution
point of the activity’s active collaboration, and one or more output pins representing
alternative end-of-execution points of the active collaboration. These pins are rep-
resented as small empty rectangles attached to the boundary of the activity node.
If several alternative end-of-execution pins exists, each of them is surrounded by an
additional rectangle (see Fig. 11.12 on page 218 for an example). Activities may
have additional output pins, describing execution points where the active collabora-
tion is suspended to invoke another collaboration, as well as additional input pins,
describing execution points at which a previously suspended active collaboration is
to be resumed. Pins used for invoking and resuming an activity’s active collabora-
tion are represented as small rectangles with an arrow inside. Both input and output
pins represent execution points at which an activity’s active collaboration interact
with other collaborations. They are labeled with predicates describing goals of the
active collaboration.

Edges (i.e. directed connections between activities) and control-flow nodes (i.e.
decision, merge, fork, join, initial and final nodes) are respectively used to allow
and coordinate the flow of control among activities. An activity can only have one
incoming edge, so multiple incoming edges must be AND- or OR-joined.

According to the concrete syntax just described, the formal syntax of goal se-
quences can be defined as follows:

Definition 11.8 (Choreography). A choreography of the sub-collaborations of a
collaboration C is a directed graph defined by the tuple CH = (V,E ,Rint,↘ch,ge,
mexp−a,RCH,AC,ma−ac,mp−a, pin, lpred, ptype) where

(i) V is a set of nodes. It is partitioned into an initial node (v0) and sub-sets
of activities (VA), input pins (VInP), output pins (VOutP), control flow nodes
(VFLOW), accept event actions (VEA) and final nodes (VFI). In turn, VFLOW is
partitioned into decision (VD), merge (VM), fork (VF) and join (VJ) nodes.

(ii) E ⊆ (VOutP ∪VFLOW ∪VEA ∪{v0})× (VA ∪VInP ∪VFI ∪VEA ∪VFLOW) is a set of
directed edges between nodes, which is partitioned into normal edges (En) and
interrupting edges (Eint).

(iii) Rint is a set of interruptible regions (i.e. regions containing nodes that can be
interrupted).

(iv) ↘ch⊆Rint×(Rint∪V) is a hierarchy relation among interruptible regions and
nodes. We write reg ↘ x if x is a node or an interruptible region that is directly
contained by the interruptible region reg .

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 199

(v) ge is a guard function for edges. It is defined from En into boolean expressions.

(vi) RCH = {(id, type) : type ∈ RC} is a set of role instances, with RC being the set
of roles of collaboration C.

(vii) AC is a set of active collaborations, that is, a collaboration-use representing a
specific occurrence of one of C’s sub-collaborations. For each (id, type,B) ∈
AC, id is the name of the collaboration-use; type is the name of the col-
laboration that actually describes the collaboration-use (i.e. one of C’s sub-
collaborations); and B ⊆ Rtype×RCH is a set of role bindings, where Rtype is the
set of roles of the sub-collaboration named type.

(viii) ma−ac : VA → AC is a non-injective function that maps active collaborations to
activities.

(ix) mp−a : VInP ∪VOutP →VA is a function mapping input and output pins to activ-
ities, and pin : VA → P(VInP ∪VOutP) is a function that returns the set of pins
attached to a given activity.

(x) lpred : VInP∪VOutP → Pre is an injective function labeling each input and output
pin of an activity with a state predicate of the activity’s active collaboration.

(xi) ptype :VInP∪VOutP →{START ,END ,INVOCATION ,RESUMPTION } is a func-
tion that classifies pins as either starting, end-of-execution, invocation or re-
sumption ones.

Choreography Semantics

The semantics of a choreography can be intuitively understood in terms of a token-
game. At a high level of abstraction, when an activity receives an input token, its
active collaboration is enabled. If the token is received on the activity’s starting
input pin, the active collaboration can begin execution from its initial state. Other-
wise, if the token is received through a resuming input pin, the active collaboration
can resume execution from the state represented by the event-goal labeling the pin.
The active collaboration in reality begins or resumes its execution when one of its
roles takes the appropriate initiative. Thereafter, it evolves until an interaction
point with other collaborations is eventually reached. That is, the active collabora-
tion runs until the predicate of one of its activity’s output pins holds. When this
happens, the control token is passed on to the next activity or control node. Ac-
cording to this semantics, the intended behavior of the ShuttleService collaboration,
as specified by its choreography (see Fig. 11.4), closely reflects the requirements.
Initially the BuyTicket collaboration is started and thereafter suspended after the
ticket is requested. At that point, a check is performed to determine if the vehicle
is at the terminal (i.e. at T1). If the result is positive, BuyTicket is finished and
EnterVehicle is enabled, followed by VehDeparture, VehArrival and ExitVehicle. If
the vehicle was not at T1, this role initiates ReqVehicle to request the vehicle from
T2. VehDeparture is then executed, followed by VehArrival, which allows BuyTicket
to be resumed. Thereafter the service progresses as explained before.

200 CHAPTER 11. PAPER 6

The above high-level semantics, which describes the intended behavior of a ser-
vice collaboration from the point of view of the service designer, was formalized in
[CB06b]. This semantics abstract away from individual roles, and implicitly consid-
ers that the sequencing between collaborations is strong. That is, when a collabora-
tion passes the control token to the next collaboration through an end-of-execution
pin, the behavior of the former collaborations is assumed to be completely finished,
for all its participating roles. In the present work we consider a weak sequencing
semantics, since it better reflects the actual behavior. Instead of assuming only one
control token, we may think that there is one specific token for each role instance
appearing in the choreography graph. In order to perform a sending or receiving
event, a role needs its token. As soon as a role is finished with its participation on
an activity’s active collaboration, its token can be sent out to the next activity and
the role can start participating in the active collaboration of the new activity. This
means that, at any point in time, the execution of two active collaborations may
partially overlap. This behavior can be described with a Petri net. However, we
will not use Petri nets to formalize the semantics of choreography graphs. Instead
we will use partial orders, as we did for sequence diagrams. We note that runs of a
Petri net can be described as partial orders over events, where the events correspond
to the firing of the net transitions [Kie97].

Paths that start at the initial node of a choreography graph and end at any of
the final nodes correspond to finite executions of the service collaboration modeled
by the choreography. Infinite paths (due to loops) starting at the choreography’s
initial node correspond to infinite executions of the service collaboration. A labeled
poset can be obtained for each of the finite and infinite execution paths of the
choreography. The semantics of a choreography is then defined as the (possibly
infinite) set of labeled posets obtained from all the choreography’s finite and infinite
executions paths.

The execution paths of a choreography can be obtained using a depth first search
technique. The labeled poset corresponding to a given execution path can be ob-
tained by applying some simple guidelines. We detail those guidelines for each of the
possible ways in which activities (i.e. collaborations) can be composed or ordered
in the choreography graph3. In the explanation we consider that the behavior of an
activity Ci is described by a collaboration, whose behavior is in turn described by a
sequence diagram SDi.

Sequential composition. When the end-of-execution pin of an activity C1 is
connected (directly, or via one or more control nodes) to the starting pin of an
activity C2, C1 and C2 are composed in weak sequence. This is the case for activities
C1 and C2 in Fig. 11.6(a), and C3 and C1 in Fig. 11.6(b). When the activities are
directly connected (e.g. Fig. 11.6(a)), or connected through decision and merge
nodes, the semantics of the composition corresponds to the seq operator defined
for sequence diagrams. The semantics for the composition in Fig. 11.6(a) is thus
[[SD1 seqSD2]]SD.

3We do not consider here alternative composition, which just defines several execution paths.
Decision and merge nodes in the choreography graph are used to select one or another path, but
they are otherwise ignored in order to build the labeled poset for the selected execution path.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 201

(a) (b)

C1

C2

C1 C2

C3

C4

Figure 11.6: Example of sequential and parallel composition of activities in a chore-
ography graph.

Parallel composition. Activities inside a fork-join pair are composed in parallel
(i.e. they are executed concurrently). Since we require proper nesting of fork and
join nodes4, the semantics of such composition corresponds to the par operator
defined for sequence diagrams. The semantics for the composition of C1 and C2 in
Fig. 11.6(b) is thus [[SD1 par SD2]]SD. The semantics for the whole composition
presented in Fig. 11.6(b) is [[(SD3 seq (SD1 par SD2)) seq SD4]]SD. We note that
fork-join pairs are first processed, and then composed with any preceding and/or
succeeding activities.

Interruption composition. In this kind of composition an activity C2 interrupts
another activity C1. It is represented as in Figures 11.7(a) and 11.7(b). In Fig.
11.7(a) an accept event action is enabled whenever C1 reaches a point in its execution
where predicate pred holds. From that point of time on, if the event e associated to
the accept event action is observed, activity C1 is interrupted and activity C2 starts
execution. We assume that event e is an external stimulus from the environment
observed by the role(s) initiating C2. If C1 finishes execution before event e is
observed, the interruptible region (i.e. the dashed rectangle) is abandoned via a
normal edge. The accept event action is then disabled (i.e. interruption is no longer
possible) and activity C4 is started. In the case of Fig. 11.7(b), activity C1 may
be interrupted as soon as it starts execution, since the accept event action becomes
enabled as soon as the interruptible region is entered.

To define the semantics of interruption we need to introduce the notion of prefix,
and prefix with a fixed part, of a labeled poset.

4All outgoing edges of a fork node should lead to the same join node, and all incoming edges
of a join node should come from the same fork node. An exception is the following. If the join
node is connected to a final node, the former could be removed, and let all outgoing edges of the
fork lead to final nodes.

202 CHAPTER 11. PAPER 6

(a)

e
C1 C2eC1

C3

C4

C2

pred

(b)

Figure 11.7: Examples of interrupting composition of activities in a choreography
graph.

Definition 11.9 (Prefix). A labeled poset (E ′,≺′, lbl′) is a prefix of a labeled
poset (E,≺, lbl) describing the semantics of a sequence diagram SD iff the following
conditions hold:

• E ′ ⊂ E

• if e ∈ S′, then rcv(e) ∈ E ′ (i.e. if the prefix contains a sending event, it also
contains its corresponding receiving event)

• ∀e, f , if e ≺ f ∧ f ∈ E ′, then e ∈ E ′ (i.e. if an event f is part of the prefix, all
the events that precede f in the original poset are also in the prefix)

• ≺′=≺ ∩(E ′ ×E ′)

• lbl′ = lbl � E, where �denotes restriction

Note that the empty poset [ε] is a prefix of each poset. Note also that this
definition differs from the one in [KL98] in two respects. First, we require the set of
events of the prefix to be strictly included in the set of events of the original poset.
This means that a poset cannot be a prefix of itself. Second, for each sending event
contained in the prefix we require its matching receiving event to be also contained
in the prefix. For a poset ps we denote the set of all its prefixes as prefix (ps).

Definition 11.10 (Prefix with fixed part). A labeled poset (E ′,≺′, lbl′) is a
prefix with a fixed part of a labeled poset (E,≺, lbl), with upper limit for the fixed
part a predicate event epred with label pred (i.e. lbl(epred) = pred), iff the following
conditions hold:

• (E ′,≺′, lbl′) is a prefix of (E,≺, lbl)

• epred ∈ E ′ and ∀ f ∈ E, f ≺ epred , we have f ∈ E ′

A prefix with a fixed part cannot be an empty poset. It will always contain a
fixed part consisting of the predicate event epred and all its predecessor events in the

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 203

original poset. For a poset ps and a predicate pred labeling one of ps’s events, we
denote the set of all its prefixes with a fixed part as fprefix (ps, pred).

We let C2 intC1 informally mean that activity C2 interrupts activity C1 from the
beginning of C1 (as in Fig. 11.7(b)). The semantics for this type of interrupting
composition is defined as follows:

[[C2 intC1]] = {ps1 ◦w ps2 : ps′ ∈ [[SD1]]SD, ps1 ∈ prefix (ps′), ps2 ∈ [[SD2]]SD}

Valid posets for the interruption are those formed by the weak sequencing of a
prefix of one of C1’s posets and one of C2’s posets.

We now let C2 int(pred)C1 informally mean that activity C2 interrupts activity
C1 from the point in the execution of C1 where predicate pred holds (as in Fig.
11.7(a)). We also let epred be the predicate event with label pred (i.e. lbl(epred) =
pred). The semantics for this type of interrupting composition can then be defined
as follows:

[[C2 int(pred)C1]] = {ps1 ◦w ps2 : ps′ = (E,≺, lbl) ∈ [[SD1]]SD such that epred ∈ E,

ps1 ∈ fprefix (ps′, pred), ps2 ∈ [[SD2]]SD}

Since SD1 may have several associated posets (in case it contains alternatives or
loops), we select those ps′ posets that contain epred . Valid posets for the interruption
are those formed by the weak sequencing of a prefix with a fixed part of ps′ and one
of C2’s posets. The fixed part is the behavior the needs to be executed in order for
predicate pred to hold.

We note that the above semantics describe cases where the interruption actually
happens, that is, where an interrupting edge is traversed. The semantics for the
choreography in Fig. 11.7(a) would be

[[(SD3 seqSD1)seqSD4]]SD∪ [[SD3 seq (C2 int(pred)C1)]]

Invocation composition. In the most general case, this type of composition
implies that while in the middle of its execution, C1 invokes C2. Thereafter, the
behaviors of C1 and C2 may proceed independently. Here we consider a more specific
case of invocation (so-called invocation with feedback), where C1, after reaching a
point in its execution where a predicate pred holds, invokes C2. C1 then is suspended
and waits for C2 to execute all or part of its behavior before resuming. This normally
represent a goal dependency between C1 and C2, such that C1 can only achieve its
own goal if C2 achieves its corresponding one. An example is shown in Fig. 11.8(a).

Invocation composition is achieved with help of invocation and resumption pins.
For each invocation output pin labeled with a predicate pred, there should be a cor-
responding resumption input pin labeled with the same predicate (see Fig. 11.8).
These pins correspond to execution points that are represented by means of pred-
icate events in the sequence diagram of the invoking activity. For each pair of
invocation/resumption pins of an invoking activity that are labeled with a predicate
pred, the sequence diagram describing the behavior of that activity should contain a
predicate event labeled with the same predicate pred. Since the invoking activity is

204 CHAPTER 11. PAPER 6

C1 C2

pred

pred

(a)

C1
C2

p11

p11

(b)

p21

p12

p21p12

Figure 11.8: Examples of invocation composition of activities in a choreography
graph.

required to get suspended after the invocation, such predicate event may not appear
inside an operand of a par combined fragment.

To define the semantics of invocation we need to introduce the notion of segment
of a labeled poset.

Definition 11.11 (Segment). A labeled poset (E ′,≺′, lbl′) is a segment of a labeled
poset ps = (E,≺, lbl) with predicates pred1 and pred2 as lower and upper limits
(written seg(ps, pred1, pred2)), iff the following conditions hold:

• Let e1,e2 ∈ E such that lbl(e1) = pred1 and lbl(e2) = pred2, and let Epr = { f ∈
E : f ≺ e2} and Esc = { f ∈ E : e1 ≺ f},

– if pred1 = start , then E ′ = {e2}∪Epr (i.e. the segment contains e2 and all
events of the original poset that are predecessors of e2)

– if pred2 = end, then E ′ = Esc (i.e. the segment contains all events of the
original poset that are successors of e1)

– if pred1 �= start∧pred2 �= end, then E ′ = {e2}∪(Esc∩Epr) (i.e. the segment
contains e2 and all events of the original poset that are successors of e1
and predecessors of e2)

– if pred1 = start∧pred2 = end, then E ′ = E (i.e. the segment is the original
poset)

• if e ∈ S′, then rcv(e) ∈ E ′ (i.e. if the segment contains a sending event, it also
contains its corresponding receiving event)

• ≺′=≺ ∩(E ′ ×E ′)

• lbl′ = lbl � E, where �denotes restriction

In the above definition, start and end are special purpose predicates that should
not label any of the predicate events of the original poset.

We let C1 inv(Ψ1,Ψ2)C2 informally mean that activities C1 and C2 invoke each
other (with C1 performing the first invocation) at the execution points indicated

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 205

by the predicates in Ψ1 and Ψ2. Ψ1 (resp. Ψ2) is an ordered set containing the
predicates that hold at execution points where C1 (resp. C2) invokes C2 (resp. C1).
We now explain how to obtain Ψ1 for each ps′1 ∈ [[SD1]]SD (the same procedure can
be used to obtain Ψ2):

(i) Get the predicates labeling the invocation pins of C1 that are connected to pins
of C2, that is, Pr = {lpred(ip) : ip∈ pin(C1), ptype(ip) = INVOCATION ,(ip,x)∈
E ,mp-a(x) = C2}

(ii) Get the total ordered set tpred of predicate events in ps′1 = (E ′
1,≺′

1, lbl′1) that are
labeled with predicates from Pr (i.e. events e ∈ E ′

1 such that lbl′1(e) ∈ Pr, and
their order relations). Note that it is a total order since the predicate events
denoting invocation points cannot appear inside par combined fragments of
C1’s sequence diagram to enforce suspension.

(iii) Replacing each event in tpred with its label, and adding the special purpose
predicates start and end as first and last elements, respectively, we obtain Ψ1

For the invocation composition in Fig. 11.8(a) we would have Ψ1 = {start ,pred ,end}
and Ψ2 = {start ,end}, while for the invocation composition in Fig. 11.8(b) we would
have Ψ1 = {start , p11, p12,end} and Ψ2 = {start , p21,end}.

In general, we assume that Ψ1 = {pred1
1, . . . ,pred

n
1} (with pred1

1 = start and
predn

1 = end) and Ψ2 = {pred1
2, . . . ,pred

n−1
2 } (with pred1

2 = start and predn−1
2 = end),

where n > 1. The semantics for C1 inv(Ψ1,Ψ2)C2 can then be defined as follows:

[[C1 inv(Ψ1,Ψ2)C2]] = {seg(ps′1,pred
1
1,pred

2
1)◦w seg(ps′2,pred

1
2,pred

2
2)◦w . . .

. . .seg(ps′2,pred
n−2
2 ,predn−1

2)◦w seg(ps′1,pred
n−1
1 ,predn

1) :
ps′1 ∈ [[SD1]]SD, ps′2 ∈ [[SD2]]SD}

11.4 Realizability of Choreographies

In the following sections we study the direct realizability of a choreography from
the point of view of the operators used to compose the sub-collaborations. In our
discussion we assume that each sub-collaboration referred to in a choreography is
directly realizable. Starting from single messages and applying the operators and
rules described in the following will ensure this. For the sequential, alternative,
parallel and interruption composition operators we study the problems that can
lead to difficulties of realization. We investigate the actual nature of these problems
and discuss possible solutions to prevent or remedy them.

11.4.1 Sequential Composition

Sequential composition imposes a causal dependency or partial order between the
events of the composed sub-collaborations. In the following the notions of strong
and weak sequential composition are discussed.

206 CHAPTER 11. PAPER 6

Strong Sequencing

Strong sequencing between two collaborations C1 and C2, written C1 ◦s C2, requires
C1 to be completely finished, for all its components, before C2 can be initiated. It
requires a direct precedence relation between the terminating action(s) of C1 and
the initiating action(s) of C2, so that the latter can only happen after the former are
finished. This leads to the following:

Proposition 11.12. The strong sequential composition of two directly realizable
collaborations C1 and C2, C1 ◦s C2, is directly realizable if all terminating actions of
C1 and all initiating actions of C2 are located at the same component.

The above proposition requires C1 to terminate at the component initiating C2.
This is the only way the initiator of C2 can know when C1 is completely finished. If
this condition is not satisfied, coordination messages must be added from C1’s termi-
nating components to C2’s initiating components, in order to guarantee the strong
sequencing. This could be done automatically by a synthesis algorithm [BG86].

Weak Sequencing

Weak sequencing of two sub-collaborations C1 and C2, written C1 ◦w C2, does not
require C1 to be completely finished before C2 can be initiated. Any component
can start participating in C2 as soon as it has finished with C1 (without waiting
for the other components to finish as well), which means that the actions from
both collaborations are sequenced on a per-component basis. This is the sequential
composition semantics used in HMSCs and UML Interaction Overview Diagrams,
but not in standard UML activity diagrams. The semantics of choreography graphs
presented in the previous section assumes weak sequencing.

Weak sequencing introduces a certain degree of concurrency, since the executions
of the composed collaborations may partially overlap. Although such concurrency
may be desirable for performance or timing reasons (i.e. a component may initiate a
new collaboration if the actions in that collaboration were independent of the actions
that have yet to be executed in the first collaboration), it comes at a price, since it
may lead to specifications that are not directly realizable and even counter-intuitive.
The specification in Fig. 11.9(a) is an example of a counter-intuitive composition.
According to the weak sequence semantics, component B may initiate collaboration
C3 as soon as it has finished with C1. As a result, collaborations C2 and C3 may
be executed in any order in the realized system. This is counter-intuitive to the
specification, which we assume reflects the designer’s intention (i.e. that C3 should
be executed after C2, with some allowed overlapping). If the designer’s intention
was that the collaborations should be concurrently executed, this should rather be
explicitly specified by means of parallel composition.

To avoid the aforementioned problem, when two collaborations are composed in
weak sequence the component initiating the second collaboration should participate
in the first collaboration (e.g. as in the composition of C1 and C2 in Fig. 11.9(a)).
We say a sequential composition with this property is weakly-causal:

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 207

(a) (c)(b)

(e)(d)

R1

a

R2 R4

sd Weakly Causal Composition

b

d

R3

e

C1

C2

c

C1
aC1 cC1

A B

C2
aC2 cC2

A B

C1A B

C3B E

C2A D

C1R1 Rx

C2R1 R2

CnRm Rx

m=n-1, n>2 (if FIFO channels)

C1

Rn-1R2

n>2

C2 Cn

R1 Rx

: Terminating role

: Initiating role

Figure 11.9: Weak Sequence Problems

Definition 11.13 (weak-causality). The weak sequential composition of two col-
laborations, C1 ◦w C2, is weakly-causal if the initiator of C2 participates in C1.

A weak sequential composition without the weak-causality property (e.g. the
composition of C2 and C3 in Fig. 11.9(a)) can be made weakly-causal by means of a
synchronization message sent from one of the participants of the first collaboration
to the initiator of the second collaboration5.

Weak-causality is a necessary condition for direct realizability of weak sequential
composition. However, it is not strong enough to be a sufficient condition. For
example, consider the weak sequential composition of C1 and C2 in Fig. 11.9(b).
This composition is weakly-causal, but it is not directly realizable. Component
R1 may initiate collaboration C2 just after sending message a in C1. Therefore, the
actions in C1 that follow the sending of message a may overlap with those performed
in C2 by the same components. For example, message e may be received at R2 before
message c, or even before message a. Obviously, this message reception order has
not been explicitly specified. We note that weak-causality is enforced in the so-called
local-HMSCs of [GMSZ06].

In the literature about MSCs, the possibility that messages may be received in a
different order from the one specified is usually called a race condition [AHP96].
In general, race conditions can occur when a receiving event is specified to happen
before another event (i.e. either a receiving or a sending one), and both events
are located on the same component. The reason lies in the controllability of events.

5The component sending this message should be chosen among the components that participate
in both collaborations (if any), in order to minimize the risk of introducing race conditions.

208 CHAPTER 11. PAPER 6

While a component can always control when its sending events should happen (e.g. it
can wait for one or more messages to be received before sending a message), it cannot
control the timing of its receiving events. The occurrence of races highly depends on
the underlying communication service that is used. If no assumption is made about
the communication service, races can only be prevented if all message transmissions
are strongly sequenced. This condition might be quite restrictive. We now present
a less restrictive condition that does not prevent all races, but reduces their number
and facilitates their detection, compared with weak-causality. This condition, which
we call send-causality, requires all sending events to be ordered, except those that
have been explicitly specified (with parallel composition) to happen concurrently.

Definition 11.14 (send-causal composition). C1 ◦w C2 is send-causal if 1) C1
and C2 are send-causal, and 2) the component initiating C2 is the one that performs
either the last sending event of C1 or the receiving event corresponding to that
sending event.

An elementary collaboration is send-causal if can be decomposed into a choreog-
raphy of sub-collaborations, each of them consisting of exactly one message, where
all sequential compositions in the choreography are send-causal. We can give a more
formal definition based on sequence diagrams as follows:

Definition 11.15 (send-causal elementary collaboration). An elementary col-
laboration is send-causal if its associated sequence diagram is send-causal.

Definition 11.16 (send-causal sequence diagram). A sequence diagram is send-
causal if any of the following conditions is satisfied:

(i) If the diagram is a basic sequence diagram, the following holds: ∀s,s′ ∈ S, if
s <m s′∧ � ∃s′′ ∈ S,s <m s′′ <m s′ then loc(s′) = loc(s)∨ loc(s′) = loc(rcv(s)).

(ii) If the diagram is a composite sequence diagram, the following holds:

• All its basic sequence sub-diagrams are send-causal

• Whenever two sub-diagrams SD1 and SD2 are composed in weak sequence
(i.e. SD1 seq SD2), the following is satisfied: ∀TS ∈ termsnd(SD1),∀I ∈
init(SD2),∀st ∈ TS,∀si ∈ I , loc(si) = loc(st)∨ loc(si) = loc(rcv(st)).

Note that in condition (ii) of Definition 11.16 we have implicitly considered the
possibility that a composite sequence diagrams may describe alternative or parallel
behaviors. In such situation, for each alternative behavior, or each parallel behavior,
we require that the send-causality property holds.

It can be shown that when send-causality is enforced, races may only occur
between two or more consecutive receiving events (i.e. not between a sending event
and a receiving event).

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 209

Proposition 11.17. In a send-causal composition race conditions may only exist
between two or more consecutive receiving events.

Proof. See Appendix 11.A.

Corollary 11.18. A send-causal composition is directly realizable over a communi-
cation service with in-order delivery and separate input buffers.

One of our motivations is to provide guidelines for constructing specifications
with as few conflicts as possible and whose intuitive interpretation corresponds to
the behavior allowed by the underlying semantics. We therefore propose, as a gen-
eral specification guideline, that all elementary collaborations be send-causal. Weak
sequencing of collaborations should also be send-causal, unless there is a good reason
to relax this requirement. In the following we assume that all elementary collabora-
tions are send-causal.

A potential race condition exists between two weakly sequenced collaborations,
C1 ◦w C2, if there is a component that participates in both collaborations playing
roles that may partially overlap. Due to Proposition 11.17, if the sequencing is
send-causal this may only happen when the role that the component plays in C1
ends with a message reception (i.e. it is a terminating role) and the role it plays in
C2 starts with another message reception (i.e. it is a non-initiating role). Whether
a potential race condition is an actual race or not depends on the underlying com-
munication service, and on whether messages are received from the same or from
different components. For example, in Fig. 11.9(c) a potential race condition ex-
ists at component B between the receptions of the last message in C1 and the first
message in C2, but it is only actual in the case of out-of-order delivery.

We note that race conditions may not only appear between directly composed
collaborations (Fig. 11.9(c)), but also between indirectly composed ones, as shown
in Fig. 11.9(d). In this specification it is the weak sequencing between C1 and C2
that makes the potential race between C1 and Cn possible. We therefore say that
there is indirect weak sequencing between C1 and Cn. This“propagation”of weak
sequencing makes it more difficult to avoid races.

We have the following result:

Proposition 11.19. The send-causal weak sequential composition of a set of directly-
realizable collaborations is directly realizable

• over a communication service with in-order delivery if the following condition
is satisfied: if a component plays a terminating role in a collaboration C1
followed by a non-initiating role in another collaboration Cn, then the last
message it receives in C1 and the first one it receives in Cn are sent by the
same peer-components.

• over a communication service with out-of-order delivery only if no component
plays a terminating role followed by a non-initiating role.

Working with binary collaborations we can easily know which component sends
the first and last messages of a collaboration, if we know which components play

210 CHAPTER 11. PAPER 6

the initiating and terminating roles. Due to Proposition 11.19, actual races can
then be detected at an early specification stage, when the detailed behavior of each
collaboration has not yet been specified, but only the selection of their initiating
and terminating roles has been done. In the case of n-ary collaborations, we can
perform the same early analysis, but only potential races can be discovered.

One interesting thing of the specification with collaborations is that we can
get information about potential races from the diagram describing the structural
composition of collaborations (see e.g. Fig. 11.9(d)). In such diagram we can see
whether a component participates in several collaborations, and whether it plays
at least one terminating and one non-initiating role in them. If that is the case, a
potential race exists. This information could then be used to direct the analysis of
the behavioral specification (i.e. the choreography).

Resolution of Race Conditions. Race conditions can be resolved in several
ways. Some authors [Mit05, CKS05] have proposed mechanisms to automatically
eliminate race conditions by means of synchronization messages. We note that when
the send-causality property is satisfied, the synchronization message should be used
to transform the weak sequencing leading to the race into strong sequencing. If
synchronization messages are added in other places new races may be introduced.

Other authors tackle the resolution of race conditions at the design and im-
plementation levels. They differentiate between the reception and consumption of
messages. This distinction allows messages to be consumed in an order determined
by the receiving component, independently of their arrival order. We call this mes-
sage reordering for consumption. In general, this reordering may be implemented
by first keeping all received messages in a (unordered) pool of messages. When the
behavior of the component expects the reception of one or a set of alternative mes-
sages, it waits until one of these messages is available in the message pool. Khendek
et al. [KZ05] use the SDL Save construct to specify such message reordering. This
technique can be used to resolve races between messages received from the same
source (i.e. in the case of channels with out-of-order delivery), as well as races be-
tween messages received from different sources. In the latter case, a communication
service with separate input buffers would also resolve the races. Finally, races may
also be eliminated if an explicit consumption of messages in all possible orders is
implemented (i.e. similar to co-regions in MSCs).

We believe that the resolution of races heavily depends on the specific application
domain and requirements, as well as in the context which they happen in. In some
cases the addition of synchronization messages is not an option, and a race has to be
resolved by reordering for consumption. In other cases, such as when races lead to
race propagation problems (see Section 11.4.2) a strict order between receptions is
required, so components should be synchronized by extra messages. At any rate, all
race conditions should be brought to the attention of the designer once discovered.
She could then decide, first, whether the detected race entails a real problem (e.g.
in Fig. 11.9(d) there is no race if all channels have the same latency). Then, she
could decide whether reordering for consumption is acceptable or synchronization
messages need to be added or the specification has to be revised.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 211

Loops

Loops can be used to describe the repeated execution of a (composite) collaboration,
which we call the body collaboration. A loop can therefore be seen as a shortcut
for strong or weak sequential composition of several executions of the same body
collaboration. This means that the rules for strong/weak sequencing must be ap-
plied. We note that all executions of a loop involve the same set of components
(weak-causality property is thus always satisfied). This fact makes the chances for
races high when weak sequencing is used. Strong sequencing should therefore be
preferred for loop bodies in the general case.

Loops may give rise to so-called process divergence [BAL97], characterized by a
component sending an unbounded number of messages ahead of the receiving com-
ponent. This may happen if the communication between any two of the participants
in the body collaboration is unidirectional (i.e. only happens in one direction).

As we will see in the next section, loops may also affect the realizability of choices.

11.4.2 Alternative Composition

Alternative composition is specified by means of choice operators, and describes al-
ternatives between different execution paths. In a choice one or more choosing com-
ponents decide the alternative of the choice to be executed, based on the (implicit or
explicit) conditions associated with the alternatives. The other non-choosing com-
ponents involved in the choice follow the decision made by the choosing components
(i.e. execute the alternative chosen by the later ones). It is therefore important that:

(i) The choosing components, if several, agree on the alternative to be executed.
We call this the decision-making process.

(ii) The decision made by the choosing components is correctly propagated to the
non-choosing components. We call this the choice-propagation process.

In the following we study how each of these aspects affect the realizability of a
choice. We assume that the set of choosing components is the union of the initiating
components of all the choice alternatives.

Decision-making Process

The intuitive interpretation of a choice is that only one of the alternative behaviors is
to be eventually executed. Deciding which alternative to be executed becomes simple
if there is only one choosing component, and the conditions for the alternatives are
local to that component (i.e. they are expressed in terms of observable predicates).
Choices with this property are called local. It is easy to see that local choices are
realizable (up to the decision-making process), since the decision is made by a single
component based only on its local knowledge.

The decision-making process gets complicated when there is more than one choos-
ing component. This is the case in the choice of Fig. 11.10(a), where there are two
choosing components, namely A and B. From a global perspective, we may think

212 CHAPTER 11. PAPER 6

(b)

A B

invite
disc1
invite
disc2

(a)

disc2A Bdisc1A B

inviteA B

Figure 11.10: Competing-initiatives choice

that once the decision node is reached, either component A initiates collaboration
disc1 with B, or component B initiates collaboration disc2 with A. We are assuming
then that there is an implicit synchronization between A and B, which allows them
to agree on the alternative to be executed. However, in a directly realized system,
components A and B will not be able to synchronize and they may decide to initiate
both collaborations simultaneously.

Choices involving more than one choosing component are usually called non-
local choices [BAL97]. They are normally considered as pathologies that can lead
to misunderstanding and unspecified behaviors, and algorithms have been proposed
to detect them in the context of HMSCs (e.g. [BAL97, Hél01]). Despite the ex-
tensive attention they have received, there is no consensus on how they should be
treated. We believe this is due to a lack of understanding of their nature. Some
authors (e.g. [BAL97]) consider them as the result of an underspecification and
suggest their elimination. This is done by introducing explicit coordination, as a
refinement step towards the design. Other authors look at non-local choices as
an obstacle for realizability and propose a restricted version of HMSCs, called local
HMSCs [HJ00, GMSZ06], that are always realizable. These HMSCs forbid non-local
choices. Finally, there are authors [GY84, MGR05] that consider non-local choices
to be almost inevitable in the specification of distributed systems with autonomous
processes. They propose to address them at the implementation level, and propose
a generic implementation approach of non-local choices.

The problem with non-local choices is the existence of several uncoordinated com-
ponents that have the possibility to make an independent decision in the directly
realized system. As a solution, we may think of making the choice local by coor-
dinating these components (i.e. either with additional messages or with additional
message contents), so that they make a common decision. Such coordination may
however not be feasible in all contexts and application domains. Consider, for ex-
ample, the specification of a personal communication service where both end-users
can take the initiative to disconnect. This could be specified as a non-local choice
between two disconnection collaborations, each of them initiated by a different com-
ponent (see Fig. 11.10(a)). The decision made by any of the components to initiate
one of the disconnection collaborations is not totally controlled by that component,
but it is triggered by the respective end-user. It makes therefore little sense to
coordinate the components in order to obtain a local choice, since this would im-
ply the coordination of the end-users’ initiatives. Such non-local choice is simply
unavoidable.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 213

We refer to non-local choices where the coordination of the choosing components
is not feasible as competing-initiatives choices. A characteristic of them is that
all the alternative collaborations are simultaneously enabled, and will be triggered
by events that cannot be controlled by the initiating components, such as an end-
user initiative or a time-out. As a result, the alternative collaborations cannot
be prevented from being simultaneously triggered. If this happens, it should be
detected as soon as possible and resolved by means of a proper conflict resolution.
Any component involved in two or more alternatives may be potentially used to
detect the initiative conflict and initiate the resolution. For such components, the
competing initiatives reveal themselves in the components’ role sequences as choices
between an initiating and a non-initiating role, or between two non-initiating roles
played in collaborations with different peers.

A side effect of competing-initiatives choices is the existence of orphan messages.
Consider again the specification in Fig. 11.10(a), which describes the repetitive
execution of collaboration invite followed by either disc1 or disc2. Now imagine
that each collaboration consists only of one message. Then the scenario in Fig.
11.10(b) is possible, where message disc2 is sent as a response to the first invite
message, but it is received by A after having sent the second invite. Component A
may then consume message disc2 as a response to the second invite message, leading
to an undesired behavior. In this scenario the collaboration occurrence where disc2
is sent is considered finished while disc2 is still in the system (i.e. not consumed).
This message becomes thus orphan, with the danger of being consumed in a latter
occurrence of the same collaboration. To avoid this messages should be marked (e.g.
with a session id), so they are only consumed within the right collaboration instance.

Competing-initiatives choices correspond to the non-local choices discussed by
Gouda et al. [GY84] and Mooij et al. [MGR05]. These authors propose some reso-
lution approaches. In the domain of communication protocols, Gouda et al. [GY84]
proposes a resolution approach for two competing alternatives (i.e. two choosing
components), which gives different priorities to the alternatives. Once a conflict is
detected, the alternative with lowest priority is abandoned. With motivation from a
different domain, where Gouda’s approach is not satisfactory, Mooij et al. [MGR05]
propose a resolution technique that executes the alternatives in sequential order (ac-
cording to their priorities), and is valid for more than two choosing components. We
conclude that the resolution approach to be implemented depends on the specific
application domain. We therefore envision a catalog of domain specific resolution
patterns from which a designer may choose the one that better fits the necessities of
her system. We note that any potential resolution should also address the problem
of orphan messages, which is not considered in either [GY84] or [MGR05].

Choice-propagation Process

The fact that a choice is local does not guarantee its realizability. The decision
made by the choosing component must be properly propagated to the non-choosing
components, in order for them to execute the right alternative. In each alternative,
the behavior of a non-choosing component begins with the reception of a sequence
of messages, which we call the triggering trace. Thereafter, the component may

214 CHAPTER 11. PAPER 6

R1
a

R2 R3

x
b

R1
c

R2 R3

x
d

R1 R2 R3

b c
d

a
R1 R2 R3

fg

c

R1 R2 R3

b c

a
f

(a)

(c)(b)

e

g

C1 C2

C1 C2

Figure 11.11: (a) Non-deterministic and (b) Race choice propagation; (c) Behavior
implied by (b)

send and receive other messages. It the triggering traces that enable a non-choosing
component to determine the alternative chosen by the choosing component. In some
cases, however, a non-choosing component may not be able to determine the decision
made by the choosing component. As an example, we consider the local choice in
Fig. 11.11(a). For the component R3, the triggering traces for both alternatives
are the same (i.e. the reception of message x). Therefore, upon reception of x, R3
cannot determine whether R1 decided to execute collaboration C1 or C2. That is,
R1 ’s decision is ambiguously propagated to R3. We say a choice has an ambiguous
propagationif there is a non-choosing component for which the triggering traces
specified in two alternatives have a common a prefix6. Choices with ambiguous
propagation are not directly realizable. They are similar to the non-deterministic
choices defined in [MRW06].

Now consider the choice in Fig. 11.11(b). It is a local choice and, according to
the triggering traces specified for any of the two non-choosing components, the prop-
agation should not be ambiguous. Still, this choice is not directly realizable. A race
condition between messages a and c in C1 may lead to the scenario of Fig. 11.11(c),
where R1 and R2 execute C1, while R3 executes C2. This example shows that in
the presence of race conditions the triggering trace observed by a non-choosing com-
ponent may differ from the specified one. Therefore, whenever race conditions may
appear in any of the alternatives, we need to consider the potentially observable

6Note that this definition considers that there is ambiguous propagation with the following
triggering traces: {?x,?y} and {?x,?z}. This is true in any directly realized system, since the choice
cannot be made immediately after ?x. An easy solution in this case would be to delay the choice
(i.e. extract ?x from the choice). Note, however, that this solution would not always be appropriate
(e.g. with the following triggering traces: {?x} and {?x,?z}).

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 215

triggering traces in the analysis of choice propagation (e.g. {?a, ?c} and {?c, ?a} for
R3 in collaboration C1 – Fig. 11.11(b)). We say a choice has a race propagation
if there is ambiguous propagation due to races. Choices with race propagation are
not directly realizable. They are similar to the race choices defined in [MRW06].

To resolve the problem of race propagation we need to eliminate the race(s)
that lead to it. However, if we try to remove the race conditions by means of mes-
sage reordering for consumption (e.g. by means of separate input buffers), the race
propagation problem may still persist. This is because, in general, a component
would not be able to determine whether a received message should be immediately
consumed as part of one alternative, or be kept for later consumption in another
alternative (e.g. race propagation in Fig. 11.11(b) cannot be solved with separate
input buffers). To make the message reordering work, we need to mark the messages
with the collaboration instance7 they belong to [BG86]. This not only avoids race
propagation, but also ambiguous propagation in general. In [GMSZ06], although
choice propagation is not explicitly discussed, the authors propose marking all mes-
sages (i.e. not only those involved in a race propagation) as just explained, in order
to realize local-HMSCs specifications. Components then have to check the data car-
ried by messages upon each reception. We believe this unnecessarily increases the
amount of processing that each component has to do upon message reception. We
would prefer to detect the cases of race propagation and either remove the race con-
dition(s) by transforming the responsible weak sequencing into strong sequencing,
or apply message reordering together with marking only to the messages involved.

Neither ambiguous nor race choice propagation can be detected at the collab-
oration level8, we need to consider the detailed behavior of the sub-collaborations
involved in the choice.

A choice without ambiguous or race propagation is said to have proper decision
propagation. A local choice with proper decision propagation is directly realizable.

11.4.3 Interruption

The interruption semantics requires a collaboration C be interrupted once another
preempting collaboration Cint is initiated. In a distributed asynchronous system the
interruption may take some time to propagate to all participants in the interrupted
collaboration. This means that certain components may still proceed executing their
behavior in C for some time after Cint has been initiated. For example, a client may
send a request to a server and, shortly after that, decide to send a cancellation
message. While this message is on the way, the server would continue processing
the request, and may even send a response back to the client before it receives the
cancellation message. The client would then receive a response message that it does
not expect. Similarly, the server would receive a non-awaited cancellation message.

As competing-initiatives choices, interruption compositions suffer from a problem
of initiatives (from the interrupted and the interrupting collaborations) that compete

7If the choice is part of the body of a loop, the iteration number should be considered
8In the case of race propagation we may detect the existence of a race at the collaboration

level, but could not determine if that race affects the propagation.

216 CHAPTER 11. PAPER 6

with each other. They are therefore not directly realizable, in the general case. Note,
however, that the presence of competing initiatives is visible with interruptions, and
so the detection is easy at the choreography level. We refer to Section 11.4.2 for a
discussion on resolution of competing initiatives situations and related problems.

11.4.4 Parallel Composition

A parallel composition is directly realizable as long as the composed collaborations
are completely independent (i.e. their executions do not interfere with each other).
Unfortunately, sometimes there are implicit dependencies that may lead to unspec-
ified behaviors. This is the case if a component participates in several concurrent
collaborations that use the same message types. Messages belonging to one collab-
oration may then be consumed within a different collaboration.

Implicit dependencies may also exist through shared resources. In this case,
appropriate coordination has to be added between the collaborations, which will
normally be service-specific. In [CB06b] we discussed the automatic detection of
interactions, due to shared resources, between concurrent instances of the same
composite service collaboration. This detection approach makes use of pre- and
post-conditions associated with sub-collaborations, and could also be used to detect
interactions between collaborations composed in parallel with forks.

Forks, Joins and Sequential Composition.

We note that the rules for (weak/strong) sequential composition should be applied,
as in any other context, in the presence of forks and joins. If strong sequencing
is required, all the collaborations immediately following a fork should be initiated
by the component terminating the collaboration preceeding the fork. Similarly, all
the collaborations immediately preceding a join should terminate at the component
initiating the collaboration following the join. If weak sequencing is required, each
collaboration immediately following a fork should be initiated by a component partic-
ipating in the collaboration preceeding the fork. Likewise, the component initiating
the collaboration following a join should participate in each of the collaborations
immediately preceding the join.

We also note that if synchronization behavior is needed in order to guarantee the
strong or weak sequencing as explained above (or to remove race conditions), such
behavior should be added to the affected branch after the fork, or before the join,
in order to prevent interactions with the collaborations in the other branches.

11.4.5 Conflicts between Concurrent Collaboration
Instances

So far we have discussed the conflicts that may appear when sub-collaborations are
composed within the scope of an enclosing collaboration. In a running system there
will normally be many collaborations executing in parallel. One will normally not
define the complete system behavior explicitly as one collaboration, but rather let
it be implied from the binding (and composition) of roles to components. Here we

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 217

briefly discuss the problem of undesired interactions between concurrent instances
of the same composite collaboration (e.g. concurrent sessions of a service).

If several instances of a collaboration are executed at the same time, and they
involve disjoint sets of components (i.e. the roles of each collaboration instance are
bound to different components), they will run independently, without interactions.
The situation is however different if one component participates in two or more
collaboration instances. In that case, undesired interactions between the collabora-
tions may arise if the roles played by the component in those collaborations need
to access shared resources. To avoid such interactions the roles should be properly
coordinated. Depending on the kind of resource and on the concrete service re-
quirements, a different mechanism may be needed for their coordination. One may
also distinguish between static role binding, which is resolved at design time, and
dynamic role binding, which is resolved at runtime. For example, an FTP server
may maintain concurrent sessions with different clients. Since the memory at the
server is a shared and limited resource, the total number of such concurrent sessions
should be restricted to a maximum. A session manager could then be used that
would dynamically bind new session roles or reject session requests once the max-
imum was reached. In a telephone service, where a user may receive a call while
already talking to someone, a call-waiting functionality may be a better solution.

In [CB06a, CB06b] we showed that the detection of conflicts between concurrent
instances of a composite collaboration can be automatized. This is not elaborated
further here, and we just explain the main lines behind the proposed analysis ap-
proach. It is based on the fact that a component participates in a composite col-
laboration instance by playing a certain sequence of sub-roles (i.e. one sub-role for
each sub-collaboration in the collaboration choreography the component participates
in). When the same component participates in several collaboration instances, it
plays several sequences of sub-roles. Undesired interactions may then arise between
sub-roles belonging to different sequences (i.e. played in different collaboration in-
stances) due to shared resources. In the proposed analysis approach, collaboration
pre-conditions are used to specify the status and availability of the resources needed
to execute a collaboration. Post-conditions describe the status and availability of
resources after the collaboration execution. The analysis of interactions between
the sequences of sub-roles played by a component is performed by constructing all
possible interleavings of such sequences. If an interleaving contains two consecu-
tive sub-roles such that the post-condition of the first one contradicts/falsifies the
pre-condition of the second one, an interaction is reported.

11.5 Algorithms

In the following we present algorithms for the detection of race conditions and choice
propagation problems. The input for these algorithms is a slightly modified version
of the choreography graph. In a choreography an activity may describe two or more
alternative behaviors, each one of them given by a different poset. Depending on
the behavior that is executed, a different output pin may be used to pass on the
focus of control to another activity (see left side of Fig. 11.12). Activities with these

218 CHAPTER 11. PAPER 6

A
(psok, psnok)

 nok {Av=false}{Av=true} ok

CB

{Av=false}{Av=true}

A.ok
(psok)

CB

A.nok
(psnok)

Figure 11.12: Replacement of collaborations with behavior described by several
posets

characteristics are replaced with a choice node and a set of new activities. Each
new activity will be associated to one of the posets of the original activity. The
interconnection of these new activities with the other activities in the graph is made
according to the original interconnections (see right side of Fig. 11.12).

We also assume that the choreography graph does not contain interrupting and
invocation compositions.

11.5.1 Detection of Race Conditions

For the detection of races it is useful to know when a role p gets synchronized at a
sending event s, so that no races may happen at p between a visual predecessor of s
and any of its visual successors. Formally, given a visual order < and its associated
causal order ≺, we say that a role p gets synchronized at a sending event s ∈ Sp if
for any e1 ∈ {e ∈ Ep : e <p s} and any e2 ∈ {e ∈ Ep : s <p e}, it holds that e1 ≺ e2.

In an MSC, a race condition exists when two events are related by the MSC’s
visual order but not by its causal order. Building the visual and causal orders
requires a transitive closure operation that has quadratic complexity on the number
of events. Unfortunately, the detection of races in HMSCs is not so simple. Since an
HMSC describes a collection of possible scenarios, it may happen that a race exists
in one execution of the HMSC but it is compensated in another execution. That
is, two events may be said to happen in one order in one of the HMSCs executions,
and in the opposite order in another execution. As a result, the events are not in
race. For the general class of HMSCs, the race detection problem is undecidable
[MP00, Mus00].

A choreography of collaborations describes exact behavior, rather than existential
behavior. Therefore, a race condition will exist in a choreography if it exists in
any of its executions. The straightforward approach for the detection of races in
a choreography requires to construct the visual and causal orders for all possible
execution sequences, which might be computationally costly. In the following we
present a set of algorithms for the detection of race conditions that do not require
building the visual and causal orders for all possible execution sequences. We assume
that all elementary collaborations are send-causal, that is, that their behaviors are

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 219

described by sequence diagrams satisfying the send-causality property.
In the main algorithm (see Algorithm 2), we first look for races between events

of the same elementary collaboration. For each elementary collaboration c, we con-
struct the causal order of its events (≺c). We then check, for each role p, if there
exist any pair of receiving events that are ordered by the total order associated to
p (i.e. r1 <p r2) but they are unordered according to the causal order of the collab-
oration (i.e. r1 �≺c r2). If that is the case, a race exist between r1 and r2 (lines 1-4
of Algorithm 2). In case the sequence diagram of the elementary collaboration con-
tains loops, we consider just one iteration of the loop. If an event inside a loop is in
race, we proceed according to the GetRaceType procedure (see page 227). Note that
we only check for races between receiving events. This is because we assume that
all elementary collaborations are send-causal, and according to Proposition 11.22,
a receiving event cannot be in race with a sending event when the send-causality
property is satisfied. We may have actually used the results of Propositions 11.24
and 11.25 to detect race conditions without constructing the causal order of each
elementary collaboration. We nevertheless built the causal orders since they will be
needed in other parts of the race detection process.

Once all elementary collaborations have been analyzed, we search for races in
the choreography graph, between events that belong to different collaborations. We
propose two techniques to detect races in a choreography graph. One is used to
detect races when the weak sequencing of collaborations in the choreography graph
is send-causal, while the other is used when the weak sequencing is weakly-causal.
We discuss these two techniques in the following.

Algorithm 2: DetectRaces
Data: A composite collaboration C; A choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2
foreach elementary sub-collaboration c of C do1

Construct causal order ≺c for c2

foreach role p of c and each pair of receiving events r1,r2 ∈ Ec
p do3

if r1 <p r2 ∧ r1 �≺c r2 then EventsInRace[r1][r2] ←{c}4

DetectRacesWithSendCausality()5

DetectRacesWithWeakCausality()6

DetectRacesInChainedActSeqs()7

Races with Send-causal Weak Sequencing

When the weak sequencing of collaborations is send-causal, no sending event may
be involved in a race condition (see Propositions 11.20 and 11.22). Only receiving
events may be in race with other receiving events. Moreover, based on Propositions
11.24 and 11.25, only the visual order of events specified for a role p (i.e. <p) needs
to be considered in order to detect races between the receiving events performed by
that role. That is, with send-causality the detection of races can be performed on a
per-role basis, without taking into account the global causal order.

Propositions 11.24 and 11.25 show that two receiving events from the same role

220 CHAPTER 11. PAPER 6

p, r1 and r2, may be in race only if, according to p’s visual order, p does not perform
any sending event between the two receiving events (i.e. if r1 <p r2, and there is not
a sending event s such that r1 <p s <p r2). Therefore, if a choreography describes a
sequence of activities9 v1 ·v2 · . . . ·vn (1 < n), a race between r1 ∈ Rv1

p (i.e. a receiving
event performed by role p in v1) and rn ∈Rvn

p may only be possible if the two following
conditions are satisfied:

• p plays a terminating sub-role in v1 (i.e. p finishes its participation in v1
with a receiving event) and a non-initiating sub-role in vn (i.e. p starts its
participation in vn with a receiving event); and

• for each activity vi, with 1 < i < n, either p does not participate in vi (i.e.
Rvi

p = /0) or p only executes receiving events in vi (i.e. Svi
p = /0).

We propose to detect races in two steps. First, algorithm DetectRacesWithSend-
Causality (on page 229) traverses the choreography graph and finds activity se-
quences of the form v1 · v2 · . . . · vn (n > 1), where v1 ◦w v2 is send-causal10 and p
only participates in v1, playing a terminating sub-role, and in vn, playing a non-
initiating sub-role in vn. For each of these sequences, a check is performed to detect
potential races between v1 and vn at role p11. Thereafter, algorithm DetectRacesIn-
ChainedActSeqs (on page 243) tries to “chain” the activity sequences obtained by
DetectRacesWithSendCausality. That is, given a sequence of activities v1 · v2 · . . . · vn
(n > 1), where p has no sending event in vn

12, the algorithm looks for any other
sequences that starts with vn. If a sequence vn ·vn+1 · . . . ·vm (m > n) is found, a check
is performed to find races between the events of v1 and vm. After that, the process
starts again, taking now the concatenated sequence, that is, v1 ·v2 · . . .·vn ·vn+1 · . . .·vm,
as the initial sequence. To better understand the detection process, consider the se-
quence diagram in Fig. 11.13, which illustrates a sequence of collaborations13. For
role R2, the DetectRacesWithSendCausality algorithm would find two sequences of
collaborations with the aforementioned characteristics, namely v1 · v2 · v3 and v3 · v4
(note that R2 plays a terminating sub-role in v4, but v4 ◦w v5 is not send-causal). It
would then check for races between the events of v1 and v3, and between the events
of v3 and v4. Assuming communication channels with in-order delivery, a race would
be detected between ?m4 (in v3) and ?m6 (in v4). The DetectRacesInChainedActSeqs
algorithm would determine that sequences v1 ·v2 ·v3 and v3 ·v4 can be chained (note
that R2 has no sending event in v3). It would then check for races between the
events of v1 and v4. As a result, a race between ?m1 (in v1) and ?m6 (in v4) would
be detected.

9For the sake of simplicity we will use the terms activity and (sub-)collaboration interchange-
ably, since activities in the choreography refer to occurrences of sub-collaborations

10The sequencing of the other activities might be either send-causal or weakly-causal.
11For the sake of brevity, we will talk about races between two activities v and w at a role p.

This should be understood as races between an event ev ∈ Ev
p and an event ew ∈ Ew

p .
12This is a requisite to chain sequences obtained by the DetectRacesWithSendCausality algo-

rithm. However, as we will see, sequences where p performs a sending event in vn may be chained
with sequences obtained by the DetectRacesWithWeakCausality algorithm.

13The dashed rounded-rectangles are included just for illustration purposes, but are not standard
UML

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 221

R2 R4

sd Races

v4

v5

m6

m7

m5

R1 R3

m9

v6
m10

m11

m12m13

m8

m14

m15

v8

v7

m4
v3

m1
v1

v2

m3

m2

Figure 11.13: Races with send-causal and weakly-causal compositions

In the following we explain in more detail each of the procedures that are used
as part of the DetectRacesWithSendCausality algorithm.

Algorithm DetectRacesWithSendCausality (on page 229). This algorithm
performs a separate analysis of the choreography graph for each role p that may be
subject to potential races, that is, any role that plays a terminating sub-role in at
least one sub-collaboration, and a non-initiating sub-role in at least other (possibly
the same) sub-collaboration. Roles that play terminating sub-roles, but do not play
non-initiating sub-roles, or roles that do not play any terminating sub-role are not
subject to races14, so they are not considered during the analysis of the choreography.
This information can be obtained from the collaboration diagram.

For each role p that is subject to potential races, and from each activity v1
where p plays a terminating sub-role, the algorithm invokes the VisitSuccessorSC
procedure (on page 230) to perform a depth-first search (DFS) [AHU74] on the
choreography graph. The idea is to find sequences of activities v1 · v2 · . . . · vn (n > 1)
where p only participates in v1 and vn and, thereby, check if there is any race between
v1 and vn at role p.

14They may actually have races inside a given collaboration, but not between two collaborations.

222 CHAPTER 11. PAPER 6

Procedure VisitSuccessorSC (on page 230). This is a recursive procedure
that performs a depth-first search [AHU74] on the choreography graph to find se-
quences of activities v1 · v2 · . . . · vn (n > 1) where p only participates in v1 and vn.
Once such a sequence is found, that is, once an activity vn where p participates is
found, procedure CheckRacesSC is invoked (line 5). This procedure checks whether
there is any race between v1 and vn at role p (see details on page 227). When Check-
RacesSC returns, the backtracking process is initiated until a node with unvisited
successors is found.

We note that, for a given activity v1 and a role p, a possibly infinite number of
activity sequences v1 ·v2 · . . . ·vn (n > 1), where p only participates in v1 and vn, may
be found in the choreography graph. Fortunately, only a subset of these sequences
is of interest for our purposes. We note the following:

(i) In order to detect a race between two activities v1 and vn at role p, it is sufficient
to find one sequence of the form v1 ·v2 · . . . ·vn (n > 1), where p only participates
in v1 and vn. This has a positive implication on loops: we just need to traverse
the body of a loop once, thus avoiding infinite sequences. Therefore, during
each traversal of the graph, each activity is visited as most once. For example,
in the case of the choreography in Fig. 11.14(a) the algorithm would only
return the sequence v1 · v2 · v3, which is sufficient to detect races between v1
and v3.

(ii) Given a sequence of activities v1 · v2 · . . . · vn, a race between v1 and vn is only
possible if v1 and v2 are composed in weak sequence. Making strong the se-
quencing between v1 and v2 would eliminate any potential race between v1 and
vn, but only when vn is reached via v2. The race may still be possible if vn is
reached through another path. This means that, given two activities v1 and
vn, we are interested in the set of all sequences that start at v1, end at vn, and
have a second activity that is different from the second activity of any other
sequence in the set. For example, in the choreography of Fig. 11.14(c) we
are interested in two sequences, namely v1 · v2 · v3 and v1 · v′2 · v3, while in the
choreography of Fig. 11.14(b) we are only interested in one sequence, either
v1 · v2 · v3 · v5 or v1 · v2 · v4 · v5.
To obtain the set of desired sequences, procedure VisitSuccessorSC allows de-
cision nodes to be revisited multiple times, while merge nodes may be revisited
only in certain cases. Whenever a merge node is visited, its visited flag is set
to true. In a traditional DFS algorithm, such flag would be reset during back-
tracking. This does not happen in the proposed algorithm (line 45). Instead,
when a decision node is visited, and before visiting any of its successor nodes,
the algorithm checks whether AuxSeq (i.e. the ordered set of visited activities
in the current path) contains only one element (i.e. v1). If that is the case,
a different “second activity” will be visited. It is then that the visited flag of
merge nodes is set to false (lines 13-15), so that vn can be visited again (if that
is possible through the new path). For example, in the choreographies of Figs.
11.14(a) and 11.14(b), the visited flag of m1 would not be reset when visiting
d1, since AuxSeq = {v1,v2} at that point. In the case of the choreographies in
Figs. 11.14(c) and 11.14(d), AuxSeq = {v1} when visiting d1, so the visited flag
for m1 would be reset.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 223

v2 v2'

m1

d1

v1

v3

v1

v2

m1

d1

v3

v1

v2 v2'

m1

d1

v3

v2

v3 v4

m1

d1

v1

v5

(a) (b) (c) (d)

Figure 11.14: Examples of combinations of merge and decision nodes in a choreog-
raphy graph

The treatment of fork and join nodes by the VisistSuccessorSC procedure de-
serves some explanation. In the following we assume that fork and join nodes are
properly nested. That is, all outgoing edges of a fork node lead to the same join node
(in the following called the companion join), and all incoming edges of a join node
come from the same fork node15. We note that each branch of a fork (corresponding
to each of the fork’s outgoing edges) may define several execution paths. For exam-
ple, in Fig. 11.15 the fork’s right branch defines two execution paths, namely v4 · v5
and v4 · v6.

v7

v4v2

v1

v3 v5 v6

Figure 11.15: Properly nested fork and join nodes in a choreography graph

When a fork node is visited, a search is performed in each of the fork’s branches
for activities where p participates. This is done by invoking the TraverseForkBranch
procedure for each of the fork’s successor nodes (line 25). This procedure returns
three values:

15An exception is the following. If the join node is connected to a final node, the former could
be removed, and let all outgoing edges of the fork lead to final nodes.

224 CHAPTER 11. PAPER 6

• continue: it is a boolean predicate that is true when p does not participate
in one or more (possibly all) of the execution paths of the traversed branch,
and gets synchronized16 in the remaining paths. For example, consider that
p does not participate in any of the activities inside the fork-join pair in Fig.
11.15. Then continue would be true for both branches of the fork. If p only
participates in v6 and gets synchronized, continue would still be true for the
right branch, but if it does not get synchronized, then continue would be false
for the right branch.

• auxSynch: it is a boolean predicate that is true when p gets synchronized in
all execution paths of the traversed branch.

• lastPMRs : it is a set containing, for each of the execution paths of the traversed
branch, the index of the last entry created in PMRSeqssc. Note that Tra-
verseForkBranch invokes VisitSuccessorSC, which may in turn invoke Check-
RacesSC, where new entries can be added to the PMRSeqssc table.

Once all the branches of the fork has been traversed, and if contAfterFork is true
(this only happens if continue was true for all the fork’s branches – see line 28),
VisitSuccessorSC continues traversing the choreography graph from the fork’s com-
panion join node (line 41). Otherwise, if contAfterFork is false, VisitSuccessorSC
starts the backtracking process. This may happen in two cases:

a) p gets synchronized in one or more of the fork’s branches (i.e. auxSynch is
true for each of those branches and synch is true – see line 27). No races are
then possible between activities that precede the fork and activities that suc-
ceed the fork’s companion join. In this case the DetectRacesInChainedActSeqs
algorithm should not try to chain activity sequences whose first activity pre-
cedes the fork with activity sequences whose last activity succeeds the fork’s
companion join. For example, consider that, after analysing the graph in Fig.
11.15, VisitSuccessorSC stores three activity sequences in PMRSeqssc, namely
v1 · v2, v2 · v3 and v3 · v7. Assume also that p gets synchronized in the fork’s
right branch. Now, the DetectRacesInChainedActSeqs algorithm would chain
the v1 · v2 and v2 · v3 sequences, but should not try to chain the resulting se-
quence (i.e. v1 · v2 · v3) with v3 · v7. This is because p gets synchronized in
one of the fork’s branches, and no races can thus happen between events of
v1and events of v7. To ensure that DetectRacesInChainedActSeqs behaves as
expected, the last entries created in PMRSeqssc for each of the fork’s branches,
whose indexes are stored in lastPMRs, are “marked”. In the previous example
the entry containing v2 · v3 in would be marked. This is done with help of
the table synchPMR, which associate each element in lastPMRs with the first
activity in AuxSeq, which precedes the fork (lines 32-34).

16A role gets synchronized at a sending event if no races may happen between events preceding
and succeeding that sending event. See the explanation of procedure GetsSynchronized on page
225 for more details.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 225

b) p does not get synchronized in any of the fork’s branches, and p participates
in at least one of the activities of one of the fork’s branches. In this case races
between activities preceding the fork and activities succeeding the fork’s com-
panion join are possible, but will be detected by the DetectRacesInChainedAct-
Seqs algorithm. Consider the example in Fig. 11.15 and imagine that p plays
initiating sub-roles in v1, v2 and v7 (p does not participate in the other activi-
ties). Starting from v1, VisitSuccessorSC would traverse the fork’s left branch,
find the sequence v1 · v2, and check for races between v1and v2. Then it would
traverse the fork’s right branch. After that, since continue would be false for
the left branch, it would start the backtracking process. Thereafter, starting
from v2, VisitSuccessorSC would find the sequence v2 · v3 · v7, and check for
races between v2and v7. Potential races between v1 and v7 would be found by
the DetectRacesInChainedActSeqs algorithm when chaining the two sequences
v1 · v2 and v2 · v3 · v7.

Procedure TraverseForkBranch (on page 231). This procedure first invokes
the VisitSuccessorSC procedure in order to find an activity in a fork’s branch where
a role p participates. There situations can then be differentiated:

• p does not participate in any of the execution paths of the fork’s branch. Then
joinFound will be true and k = 0. TraverseForkBranch will thus return with
(true, false, /0).

• p does not participate in some of the execution paths of the fork’s branch, and
gets synchronized in the other paths. Then joinFound will be true and k > 0.
TraverseForkBranch will again return with (true, false, /0), since F will be an
empty set.

• p participates in some of the execution paths. For each of those paths an
entry in the PMRSeqssc table should have been created by the CheckRacesSC
procedure, and the index of such entry should have been stored in the forkPMR
array. Then, for each entry in PMRSeqssc, TraverseForkBranch is recursively
invoked, but this time starting from the successor node of the last activity
of the activity sequence stored in PMRSeqssc. As a result of the recursion,
all the execution paths of the branch will be traversed until either the fork’s
companion join node or an activity where p gets synchronized is found. At the
end of this process, lastPMRs will contain the index of the last entry created
in PMRSeqssc in each of the execution paths. synch will be true if p got
synchronized in all execution paths, and contAfterFork will be true if p did
not participate in one or more (possibly all) of the execution paths, and got
synchronized in the remaining paths.

Procedures GetsSynchronized (on page 233) and SynchronizedRoles (on
page 233). We say that a role p gets synchronized at a sending event s, if no
races may happen at p between a visual predecessor of s and any of its visual
successors. More formally, given a visual order < and its associated causal order

226 CHAPTER 11. PAPER 6

≺, we say that a role p gets synchronized at a sending event s ∈ Sp if for any
e1 ∈ {e ∈ Ep : e < s} and any e2 ∈ {e ∈ Ep : s < e}, it holds that e1 ≺ e2. Intuitively,
procedure GetsSynchronized determines whether a role p gets synchronized, at a
specific point, in some of the execution paths described by the choreography graph.

Consider that the choreography describes a sequence of activities v1 · . . . ·vi ·vi+1 ·
. . . (i > 0). In general, this sequence of activities defines several alternative execution
paths, since each activity may describe several alternative behaviors. Each of those
execution paths is represented by a visual order (E,<) and a causal order (E,≺
) = ps1 ◦w . . .◦w psi ◦w psi+1 ◦w . . . (where each psi is one of the causal partial orders
associated with activity vi). A given activity may appear in several sequences of
activities, and each of these sequences may define several execution paths. Given an
activity vi, a causal order psi = (Ei,≺i), and a role p, procedure GetsSynchronized
returns true if p gets synchronized at a sending event s ∈ Ei in all the choreography’s
execution paths that contain the behavior described by psi. Otherwise, it returns
false.

We explain in the following the process of checking whether a role gets synchro-
nized in a given execution path whose visual order is (E,<) and its causal order is
(E,≺) = ps1 ◦w . . .◦w psi ◦w psi+1 ◦w . . .◦w psn. Recall that we assume that the sequen-
tial composition of activities in the choreography graph is weakly-causal, and that
each individual activity is send-causal. This means that any psi in (E,≺) is send-
causal, and any psi ◦w psi+1 is weakly-causal. We consider initially the case where
activities describe sequential behaviors. Later, we generalize the result to consider
the possibility of concurrent behaviors.

Assume that role p executes at least one sending event in the behavior described
by psi (otherwise p does not get synchronized). Let sp ∈ Ei be the minimum sending
event of role p in psi (i.e. there is no other sending event s′ ∈ Ei such that s′ ≺i sp).
Consider now two events located at p, e1 and e2, such that e1 < sp (i.e. e1 is a visual
predecessor of sp) and sp < e2 (i.e. e2 is a visual successor of sp). We know that
e1 ≺ sp, since a role will not execute a sending until all events that are specified to
happen before that sending have been processed. Therefore, to determine whether
e1 ≺ e2 (and thereby determining whether p gets synchronized at sp), we just need to
check whether sp ≺ e2. Two cases can be differentiated. If e2 ∈ Eu, given that psi is
send-causal, and according to Proposition 11.22, we have that sp ≺ e2. If otherwise
e2 �∈ Ei, then it should be the case that e2 ∈ Ei+1 ∪ . . .∪En. Let us take a closer look
at this case. Let smin

j be the minimum sending event in ps j (1 ≤ j ≤ n). Let now q be
the initiating role of ps j+1, that is, the role executing the minimum sending event in

ps j+1 (i.e. loc(smin
j+1) = q), and let emax−q

j be the maximum event in ps j of q17. Since

ps j is send-causal we have that smin
j ≺ e, for any e ∈ E j, and therefore smin

j ≺ emax−q
j or

smin
j = emax−q

j . Now, since emax−q
j ≺ smin

j+1 (due to the definition of weak sequencing),

we have that smin
j ≺ smin

j+1 ≺ e′, for any e′ ∈ E j+1. It is easy then to see that smin
j ≺ ex,

for any ex ∈ E j ∪ . . .∪En and any j ∈ {1 . . .n}. In particular, it must be the case

that emax−q
i ≺ smin

i+1 ≺ e2, where loc(emax−q
i) = loc(smin

i+1) = q. Therefore, to determine

17We note that q will always participate in ps j, since ps j ◦w ps j+1 is weakly-causal

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 227

whether sp ≺ e2, we just need to check whether sp ≺ emax−q
i or sp = emax−q

i . This is
what procedure SynchronizedRoles does.

Procedure SynchronizedRoles takes also into account that the causal orders may
describe concurrent behaviors. In general, p may have a set Min of minimum sending
events in psi. There might also be a set I of initiating roles in psi+1, and each of
them may have a set Maxq of maximum events in psi. Then, in order for role p to get
synchronized, it is necessary that for each role q ∈ I, there is at least one minimum
sending sp ∈ Min and one maximum event emax−q

i ∈ Maxq such that sp ≺ emax−q
i or

sp = emax−q
i . This ensures that sp ≺ smin

i+1 for each role q.

Procedure GetRaceType (on page 233). In case the behavior of an activity
contains loops, procedure CheckRacesSC considers only one iteration for each of the
loops. When a race is detected between two events and one of the events, or both,
are inside a loop, a question arises whether all potential instances of those events
(when several loop iterations are considered) will be in race. Procedure GetRaceType
answers that question by classifying a race as type1 and/or type2. This procedure
assumes send-causality (i.e. for any loop, the sequential composition of its body
with itself, and with the preceding and succeeding behaviors, is send-causal) and,
given a receiving event r1 that is in race with another receiving event r2 (i.e. r1 <p r2
but r1 �≺ r2), differentiates two main cases:

a) r1 is a loop event. If there is a sending event inside all loops that contain r1,
then only the instance of r1 corresponding to the last iteration of the loops will
be in race with r2. Otherwise, each instance of r1 will be in race with r2, and
the race between r1 and r2 is said to be a type1 loop-race (i.e. type1 = true).

b) r2 is a loop event. If there is a sending event inside all loops that contain r2,
then r1 is in race only with the instance of r2 corresponding to the first iteration
of the loops. Otherwise, r1 will be in race with all instances of r2, , and the
race between r1 and r2 is said to be a type2 loop-race (i.e. type2 = true).

Procedure CheckRacesSC (on page 232). This procedure checks whether
there is any race at role p between events in v1 (i.e. the first activity in the current
sequence of activities) and events in u (i.e. the first activity after v1 where role p par-
ticipates). The procedure takes into account that activities may describe alternative
behaviors, so each activity may have several associated posets, as well as concurrent
behaviors, so p may have several minimum and maximum sendings in each poset.
It also takes into account that activities may describe loops. Only one iteration of
each loop is considered to build the visual orders used to detect races. The effect of
multiple loop iterations is considered by invoking procedure GetRaceType.

For race detection the procedure obtains, for each poset of v1 and each poset of
u, the sets Rv1

race and Ru
race of receiving events that might be in race. Rv1

race (line 4)
contains receiving events from v1 that do not have any sending event as a successor,
while Ru

race (line 13) contains receiving events from u that do not have any sending
event as a predecessor. If non-FIFO channels are used for communication, all these
events will be in race. Otherwise, if FIFO channels are used, a receiving event

228 CHAPTER 11. PAPER 6

r1 ∈ Rv1
race will be in race with a receiving event r2 ∈ Ru

race if their associated sending
events are not located at the same role. Whenever a race is found between two
events r1 and r2, the value of AuxSeq (i.e. the current sequence of visited activities)
is stored in table EventsInRace (line 18). In addition, procedure GetRaceType is
invoked to determine whether the events that are in race are inside a loop and, if so,
check whether all potential instances of those events (when several loop iterations are
executed) are or not in race. The result of this procedure is stored in the RaceType
table (line 19).

In addition to checking the existence of races between v1 and u, procedure Check-
RacesSC determines whether races may exist at role p between v1 and other activi-
ties that may be executed after u. This information will then be used by procedure
TraverseForkBranch and algorithm DetectRacesInChainedActSeqs.

Races between v1 and any successor activity of u might be possible in the follow-
ing three cases:

a) If u describes several alternative behaviors, and p does not participate in some
of them (line 6).

b) If p only executes receiving events in one of the possible behaviors described
by u (line 20).

c) If p executes a sending event in one of the possible behaviors described by u,
but it does not get synchronized at that sending event18 (line 24).

In the three cases above, procedure CheckRacesSC stores in the PMRSeqssc table
data that will be used by DetectRacesInChainedActSeqs for the actual detection of
races (namely AuxSeq,Rv1

race,Ru
race and a boolean value specifying whether there was

any race between events of v1 and u). In addition, the index of the entry created
in PMRSeqssc is stored in the forkPMR set and in the PMRrcv set (in cases a and
b) or in the PMRsnd set (in case c). Also in the three cases above, a boolean entry
in the synchSB array is created and set to false, meaning that role p does not get
synchronized in the current execution path. Otherwise, if no one of the three above
cases applies, an entry in the synchSB array is created and set to true, meaning that
p gets synchronized in the current execution path.

18Note that this implies that the sequential composition of u with one of its succeeding activities
in the choreography is weakly-causal.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 229

Algorithm 3: DetectRacesWithSendCausality
Data: A choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2; Sets PMR and PMRSeqs
that are useful for the detection of races involving several collaboration sequences

foreach role p playing both terminating and non-initiating sub-roles do1

foreach v1 ∈V where p plays a terminating sub-role do2

forall v ∈V do visited[v] ← f alse3

i ← 0; VisitedMerge ← /04

AuxSeq ←{v1} // Ordered sequence of activities5

v ← successor of v16

VisitSuccessorSC (v, f alse, f alse, /0,0)7

230 CHAPTER 11. PAPER 6

Procedure VisitSuccessorSC(v, forkFound, joinFound,synchSB,k)
visited[v] ← true1

if v is an activity node then2

AuxSeq ← AuxSeq∪{v}3

if p participates in v then4

(synchSB,k) ←CheckRacesSC(v,synchSB,k)5

AuxSeq ← AuxSeq−{v}; visited[v] ← f alse // Backtrack6

return (joinFound ,synchSB,k)7

else if v is a merge node then8

VisitedMerge ← VisitedMerge ∪{v}9

else if v is a decision node then10

visited[v] ← f alse // Decision nodes can always be revisited11

foreach u successor of v do12

if |AuxSeq| = 1 then13

forall w ∈ VisitedMerge do visited[w] ← f alse14

VisitedMerge ← /015

if !visited[u] then16

(joinFound ,synchSB,k) ←VisitSuccessorSC (u, forkFound , joinFound ,synchSB,k)

return (joinFound ,synchSB,k)17

else if v is a join node ∧ forkFound then18

vjoin ← v; visited[v] ← f alse19

return (true,synchSB,k) // joinFound is set to true20

else if v is a fork node then21

forkFound ← true; vjoin ← null22

synch ← f alse; contAfterFork ← true; allLastPMRs ← /0; AuxSeqold ← AuxSeq23

foreach successor u of v do24

(continue,auxSynch, lastPMRs) ← TraverseForkBranch(u, /0, /0)25

allLastPMRs ← allLastPMRs ∪ lastPMRs26

synch ← synch∨auxSynch27

contAfterFork ← contAfterFork ∧continue28

AuxSeq ← AuxSeqold29

forkFound ← f alse; joinFound ← f alse30

if !contAfterFork then31

if synch = true then32

v1 ← first element of AuxSeq33

forall (u, p, j) ∈ allLastPMRs do synchPMR[u][p][j] ← v134

synchSB [k] ← true; k ++35

else36

// In case the just visited fork is inside another fork-join pair
foreach (u, p, j) ∈ allLastPMRs do37

forkPMR[k] ← (u, p, j); synchSB [k] ← f alse; k ++38

visited[v] ← f alse // Backtrack39

return (f alse,synchSB ,k)40

AuxSeq ← AuxSeq∪{v}41

v ← vjoin // Continue traversing graph from companion join42

u ← successor of v43

if !visited[u] then44

(joinFound ,synchSB,k) ←VisitSuccessorSC (u, forkFound , joinFound ,synchSB,k)
/* Backtrack */
if v is NOT a merge node then visited[v] ← f alse45

return (joinFound ,synchSB,k)46

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 231

Procedure TraverseForkBranch(v, prevPMR, lastPMRs)
/* forkPMR and PMRSeqs sc are global variables whose data is set in the
CheckRacesSC procedure */
synch ← true; contAfterFork ← f alse1

(joinFound ,synchSB,k) ←VisitSuccessorSC(v, true, f alse, /0,0)2

if joinFound then synch ← f alse3

if joinFound∧prevPMR = /0 then contAfterFork ← true4

if !joinFound∨ (joinFound∧ k > 0) then5

lastPMRs ← lastPMRs −prevPMR6

F ←{forkPMR[j] : j ∈ 0 . . .k−1∧ synchSB[j] = f alse}7

foreach (w,q, j) ∈ F do8

lastPMRs ← lastPMRs ∪{(w, p, j)}9

u ←last activity of PMRSeqssc[w][q][j].AuxSeq10

AuxSeq ←{u}; iold ← i; i ← 011

x ←successor of u12

(continue,auxSynch, lastPMRs) ← TraverseForkBranch(x,{(w,q, j)}, lastPMRs)13

i ← iold14

synch ← synch∧auxSynch15

if !auxSynch then contAfterFork ← f alse16

return (contAfterFork ,synch, lastPMRs)17

232 CHAPTER 11. PAPER 6

Procedure CheckRacesSC(u,synchSB,k)
Data: Activity u with which v1 (first act. in AuxSeq) could be in race
Result: EventsInRace and RaceType are updated if a race is found; Entries in PMRrcv/snd

and PMRSeqssc are created if v1 might be in race with an activity following u (to
be used by the DetectChainRaces algorithm); Entries in f orkPMR and synch are
created for use in the TraverseForkBranch procedure

v1 ← first element of AuxSeq1

foreach visual order (Ev1
p ,<v1

p) of v1 do2

Sv1
max ←{s ∈ Sv1

p :� ∃s′ ∈ Sv1
p ,s <v1

p s′} // max sending events in psv1
p3

/* Obtain set Rv1
race of receiving events from psv1

p that could be in race
(i.e. all receiving events, except those that according to <v1

p precede
any of the maximum sending events) */
Rv1

race ← Rv1
p −{r ∈ Rv1

p : ∃smax ∈ Sv1
max,r <v1

p smax}4

foreach visual order (Eu
p,<

u
p) of u do5

if Eu
p = /0 then /* p does not participate in this alternative of u */6

PMRSeqssc[v1][p][i] ← (AuxSeq,Rv1
race, /0, f alse); PMRrcv ← PMRrcv∪{(v1, p, i)}7

i++8

f orkPMR[k] ← (v1, p, i); synchSB[k] ← f alse; k ++9

else10

race ← f alse11

Su
min ←{s ∈ Su

p :� ∃s′ ∈ Su
p,s

′ <u
p s} // min sending events in psu

p12

/* Obtain set Ru
race of receiving events from psu

p that could be in
race (i.e. all receiving events, except those that according to
<u

p happen after any of the minimum sending events) */

Ru
race ← Ru

p −{r ∈ Ru
p : ∃smin ∈ Su

min,smin <u
p r}13

// Check races
foreach rv1 ∈ Rv1

race do14

foreach ru ∈ Ru
race do15

if non-FIFO OR (FIFO AND loc(snd(ev1)) �= loc(snd(eu))) then16

race ← true17

EventsInRace[rv1][ru] ← EventsInRace[rv1][ru]∪{AuxSeq}18

/* Check if the race involves events inside loops */
RaceType[rv1][ru] ← GetRaceType(rv1 ,ru,S

v1
max,Su

min)19

if Su
min = /0 then // p has only receiving events in Eu

p20

PMRSeqssc[v1][p][i] ← (AuxSeq,Rv1
race,Ru

race,race)21

PMRrcv ← PMRrcv∪{(v1, p, i)}; i++22

f orkPMR[k] ← (v1, p, i); synchSB[k] ← f alse; k ++23

else if NOT GetsSynchronized(p,u, psu) then24

PMRSeqssc[v1][p][i] ← (AuxSeq,Rv1
race,Ru

race,race)25

PMRsnd ← PMRsnd∪{(v1, p, i)}; i++26

f orkPMR[k] ← (v1, p, i); synchSB[k] ← f alse; k ++27

else28

/* Role p gets synchronized. No possibility of race at p
between v1 and any activity following u, so no PMR and
PMRSeqs entries needed. */
synchSB[k] ← true; k ++29

return (synchSB,k)30

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 233

Procedure GetRaceType(rv1,ru,S
v1
max,Su

min)

(type1, type2) ← (f alse, f alse) // No special race1

if rv1 is inside one or more nested loops then2

/* There will be one instance of rv1 for each loop iteration */
if � ∃smax ∈ Sv1

max such that smax is contained by all nested loops that contain rv1 then3

/* All instances of rv1 are in race with ru */
type1 ← true4

if ru is inside one or more nested loops then5

/* There will be one instance of ru for each loop iteration */
if � ∃smin ∈ Su

min such that smin is contained by all nested loops that contain ru then6

/* rv1 is in race with all instances of ru */
type2 ← true7

return (type1, type2)8

Procedure GetsSynchronized(p,u, psu)
Result: true if p gets synchronized for all successor posets of psu. false otherwise
result ← true1

foreach successor activity w of u do2

foreach poset psw of w do3

if SynchronizedRoles(psu, psw,{p}) = /0 then4

result ← f alse5

return result6

Procedure SynchronizedRoles(ps1, ps2,R)

/* We assume ps1 = (S1 ∪R1,≺1) */
Rsynch ← /01

/* Get subset Rsnd of roles from R that have a sending event in ps1 */
Rsnd ←{loc(s) : loc(s) ∈ R ∧ s ∈ S1}2

if Rsnd �= /0 then3

if ps1 ◦w ps2 is weakly-causal then4

I ←{loc(e) : e ∈ min(ps2)} /* Initiating roles of ps2 */5

foreach q ∈ I do6

Max[q] ←{e : e ∈ max(ps1)∧ loc(e) = q} /* Max events in ps1 of q role */7

foreach p ∈ Rsnd do8

Min ←{s : s ∈ min((S1,≺1))∧ loc(s) = p}/* Min sendings in ps1 of p */9

if ∀q ∈ I,∃m ∈ Max[q],∃s ∈ Min such that s ≺1 m∨ s = m then10

Rsych ← Rsynch∪{p}11

else /* Send-causal sequencing */12

Rsynch ← Rsnd13

14

return Rsynch15

234 CHAPTER 11. PAPER 6

Races with Weakly-causal Weak Sequencing

When the weak sequencing of collaborations is weakly-causal, the global causal order
of events has to be considered for race detection. Consider again the example in Fig.
11.13. The sequential composition v4 ◦w v5 is weakly-causal. It is easy to see that
events happening in v4 after !m5 (i.e. the events performed by R2 and R3) may
be in race with other events in v5,v6,v7 and v8. Let us focus on role R2, which
performs three events in v4 after !m1, namely ?m6, !m7 and ?m8. Just by looking at
the local ordering of events in the lifeline of R2 we cannot determine whether, for
example, ?m6 is in race with ?m10,?m13 or ?m15. To find this out we need to consider
the causal order between the events of R2 and the events performed by the other
roles. Fortunately, the total number of events that we need to consider in order to
build such causal order can be limited. In this case, for example, we do not need
to consider the events of v8 (and of any other collaboration that may succeed v8) in
order to detect races at R2. This is because R2 gets synchronized at sending event
!m14 in v7 (see explanation on page 225), so no races may happen at R2 between
events preceding and succeeding !m14 in R2’s lifeline.

In the following we explain in more detail the DetectRacesWithWeakCausality
algorithm and each of the procedures that are used by this algorithm.

Algorithm DetectRacesWithWeakCausality (on page 237). For each causal
poset ps1 = (E1,≺1) of an activity v1, and each causal poset ps2 of an activity v2,
such that ps1 ◦w ps2 is weakly-causal, this algorithm finds race conditions involving
events of E1. For that, it first obtains the set R of roles that are subject to poten-
tial races, that is, roles whose events may be in race with other events (lines 4-9).
Intuitively, these are roles that may execute an event from E1 when the behavior
described by ps2 has already been started. Given an initiating-role q of ps2, and a
maximum event m of q in ps1 (if m is a receiving event, its associated sending event
is considered instead), a role may execute an event e ∈ E1 after q has initiated ps2 if
e will always be executed after m (i.e. m ≺1 e), or if e and m may be executed in any
order (i.e. m �≺1 e and e �≺ m). We note, however, that the algorithm only considers
roles that may execute a sending event form ps1 when ps2 has already been initiated
(line 9). This is because races affecting a role that may execute receiving events
from ps1, but not sending events, when ps2 has already been initiated, are already
detected by the DetectRacesWithSendCausality algorithm.

Once the set of roles subject to potential races has been obtained, the algo-
rithm invokes the VisitSuccessorWC procedure to perform a depth-first search on
the choreography graph. This procedure returns an array SEQS (via a global vari-
able) whose elements are tuples of the form (seq, ps,R ′), where seq = v1 · v2 · . . . · vn
is a sequence of activities, ps = ps1 ◦w ps2 ◦w . . . ◦w psn (n ≥ 2) is the causal poset
corresponding to one of the execution paths associated to seq, and R ′ ⊆ R is the
set or roles that did not get synchronized in any of the posets in ps. Normally,
R ′ will be the empty set, unless a final node or an infinite loop was found in the
choreography (see the explanation of VisitSuccessorWC).

After VisitSuccessorWC returns, the CheckRacesWC procedure is invoked to
detect races with help of the causal posets previously obtained.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 235

Procedure VisitSuccessorWC (on page 238). This is a recursive procedure
that performs a depth-first search [AHU74] in the choreography graph.

Control nodes, as well the posets of activity nodes, can be“visited”at most twice.
This avoids infinite sequences in the presence of loops, while it ensures that all com-
binations of activities that are interesting for the detection of races are considered.

Each time an activity node is visited, each one of its posets is visited. The
procedure then checks whether any role in R got synchronized in the previously
visited poset (when that poset is weak sequenced with the current one) and, if so,
it removes the roles that got synchronized from R (line 7). When all roles in R
get eventually synchronized (and if the done flag is false), the current sequence
of visited activities, and the causal poset corresponding to the sequence of visited
posets are stored in the SEQS array (by invoking the ProcessSeq procedure in line
10). The done flag is done to avoid having several equal entries in the SEQS array,
in case R becomes empty for several posets of the same activity. If not all roles got
synchronized, the current activity and poset are added to the sequences of visited
activities and posets, and the traversal of the graph continues by recursively invoking
VisistSuccessorWC (line 13). The backtracking process starts in the following cases:

• If a final node is found or all roles in R get synchronized. In that case,
the ProcessSeq procedure is invoked to store in the SEQS array the current
sequence of visited activities, as well as the causal poset corresponding to the
sequence of visited posets.

• If a join node is found. This is done as part of the special treatment of fork-join
pairs, as it is explained later on.

• In the presence of loops, when a third attempt to traverse the body of the
loop is made. In this case the ProcessSeq procedure might or not be invoked.
Consider the loop in Fig. 11.16(a). After visiting d1 twice, VisitSuccessorWC
may try to visit m1 a third time with no success. It would then go back to
d1 and continue thereafter to v3 without invoking ProcessSeq. Consider now
the loop in Fig. 11.16(b). Here, after visiting v2 twice, VisitSuccessorWC
may try to visit m1 a third time. As in the previous example, it would not
succeed and the backtracking process would be initiated. However, before
that, VisistSuccessorWC would invoke the ProcessSeq procedure (line 14). As
a result, the activity sequence v1 · v2 · v2 and the causal poset ps1 ◦w ps2 ◦w ps2
would be stored in the SEQS array.

When a fork node is visited, the MapForkWC procedure is invoked (line 26). This
procedure returns two sets, SynchPaths and UnsynchPaths, whose elements are tu-
ples of the form (seq, ps,R′) (i.e. the same type of tuples stored in the SEQS array).
The elements in SynchPaths describe execution paths through the fork where all roles
in R get synchronized. For each of these paths the ProcessSeq procedure is invoked
(line 32) and the backtracking process is initiated. The elements in UnsynchPaths
describe execution paths through the fork where not all roles in R get synchronized.
For each of these paths, the VisistSuccessorWC procedure is invoked (line 37) to
continue traversing the choreography graph from the fork’s companion join node.

236 CHAPTER 11. PAPER 6

(a) (b)

v1

v2

m1

d1

v3

v1

v2

m1

Figure 11.16: Two examples of loops in a choreography graph

Procedure MapForkWC (on page 239). For each branch of a fork-join pair,
this procedure traverses all the possible execution paths, and generates a causal
poset and a sequence of activities for each of them (lines 1-1). Thereafter, it groups
the paths in sets CP of concurrent paths (the getsComb function, shown below, is
used for this – line 9). For example, two sets of concurrent paths would be generated
for the fork-join pair in Fig. 11.15, one for v2 · v3 and v4 · v5, and another for v2 · v3
and v4 ·v6. The procedure generates a causal order for each set of concurrent paths,
as well as a corresponding activity sequence, and stores them in the SynchPaths set,
if all roles in R get synchronized in at least one of the concurrent paths, or in the
UnsynchPaths set, otherwise.

getCombs(S) =

⎧⎨
⎩

/0, if S = /0
{{s} : s ∈ S}, if S = {S}
{{e}∪Comb : e ∈ S∧Comb ∈ getCombs(S′)}, if S = S

′ ∪{S}

Procedure CheckRacesWC (on page 240). This procedure analyzes the causal
posets generated by the VisitSuccessorWC procedure (and stored in the global vari-
able SEQS) in order to find race conditions. Each of those causal posets describes
an execution path through a sequence of activities v1 · v2 · . . . · vn, and is of the form
(E≺,≺) = ps1 ◦w ps2 ◦w . . .◦w psn (n ≥ 2), where ps1 ◦w ps2 is weakly-causal.

CheckRacesWC checks whether any event e ∈ E1 (if ps1 = (E1,≺1)) is in race
with any receiving event event r ∈ E≺−E1. This is done by checking whether e is a
causal predecessor of r. If it is not, the events are in race, and the activity sequence
where such race may happen is stored in the EventsInRace table. Note that the
same poset may appear twice in ps1 ◦w ps2 ◦w . . .◦w psn, if its activity is inside a loop
in the choreography graph. In that case the second occurrence of the poset will
have their events relabeled and marked as loop events. This fact is used by the
CheckRacesWC procedure to determine the “type of loop race” (see explanation on
page 227).

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 237

Algorithm 10: DetectRacesWithWeakCausality
Data: A choreography graph (V,E)
Result: x
foreach pair (v1,v2) of activities whose sequential composition is weakly-causal do1

/* [[SD]]WC
SD instantiates each loop of SD with two iterations */

foreach poset ps1 = (S1 ∪R1,≺1, t1) ∈ [[SDv1]]
WC
SD of v1 do2

foreach poset ps2 ∈ [[SDv2]]
WC
SD of v2 such that ps1 ◦w ps2 is weakly causal do3

/* Obtain the set R of roles that are subject to potential races
due to weak causality */
R ← /0; MaxEv ← /04

foreach initiating-role q of ps2 do5

foreach maximum event m ∈ max(ps1) such that loc(m) = q do6

if m is a receiving event then m ← snd(m)7

MaxEv ← MaxEv∪{m}8

R ← R ∪{loc(s) �= q : s ∈ S1 ∧ (m ≺1 s∨ (m �≺1 s∧ s �≺1 m))}9

if R �= /0 then10

/* Now we start a DFS on the graph, looking for activities
where roles subject to races participate */
forall v ∈V do11

if v is an activity node then12

visited[psv] ← 0, for each poset psv of v13

else14

visited [v] ← 015

f orks ← 0; i ← 0; SEQS ← /016

AuxSeqAct ←{v1,v2}; AuxSeqPS ←{ps1, ps2}17

visited[ps1]++; visited[ps2]++18

seqProcessed ← f alse19

VisitSuccessorWC(u,R, ps2) // u is v2’s successor20

CheckRacesWC (v1,S1 ∪R1,MaxEv ,R)21

238 CHAPTER 11. PAPER 6

Procedure VisitSuccessorWC(v,R, psprev)

if v is an activity node then1

Rbck ← R /* Backup to have fresh data for each poset */2

done ← f alse3

foreach poset psv ∈ [[SDv]]WC
SD of v, such that visited[psv] < 2 do4

R ← Rbck5

visited[psv]++6

/* Check if any role gets "synch" with a sending event */
R ← R−SynchronizedRoles(psprev , psv ,R)7

if R = /0∧!done then8

done ← true9

ProcessSeq(AuxSeqPS,AuxSeqAct,R)10

else if R �= /0 then11

/* NOTE: If visited[psv] = 2, relabel events of psv as loop events */
AuxSeqPS ← AuxSeqPS∪{psv}; AuxSeqAct ← AuxSeqAct ∪{v}12

VisitSuccessorWC(u,R, psv) // u is v’s successor13

if !seqProcessed then ProcessSeq(AuxSeqPS,AuxSeqAct,R)14

AuxSeqPS ← AuxSeqPS−{psv}; AuxSeqAct ← AuxSeqAct −{v}15

visited[psv]−−16

else if visited[v] < 2 then17

visited[v]++18

if v is an activity-final or flow-final node then19

ProcessSeq(AuxSeqPS,AuxSeqAct,R)20

else if v is a join node AND f orks > 0 then21

ProcessSeq(AuxSeqPS,AuxSeqAct,R)22

vjoin ← v23

else if v is a fork node then24

f orks++; vjoin ← null25

(SynchPaths,UnsynchPaths) ←MapForkWC(v,R, psprev)26

f orks−−27

if vjoin = null then28

/* Either all fork branches got synchronized before reaching the
associated join node, or all branches ended up in a final node.
In any case we are finished. */
SynchPaths ← SynchPaths ∪UnsynchPaths29

UnsynchPaths ← /030

foreach (f orkActs, psfork,Rfork) ∈ SynchPaths do31

ProcessSeq(AuxSeqPS∪{psfork},AuxSeqAct ∪{ f orkActs},Rfork)32

vjoin succ ←successor of vjoin33

foreach (f orkActs, psfork,Rfork) ∈ UnsynchPaths do34

AuxSeqPS ← AuxSeqPS∪{psfork}; AuxSeqAct ← AuxSeqAct ∪{ f orkActs}35

seqProcessed ← f alse36

VisitSuccessorWC(vjoin succ,Rfork, psfork)37

else38

foreach u successor of v do39

seqProcessed ← f alse40

VisitSuccessorWC(u,R, psprev)41

visited[v]−−42

return43

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 239

Procedure ProcessSeq(AuxSeqPS,AuxSeqAct,R)

SEQS[i] ← (AuxSeqAct,CausalOrderSeq(AuxSeqPS),R)1

i++2

seqProcessed ← true3

return4

Procedure MapForkWC(vfork,R, psprev)
AuxSeqPSold ← AuxSeqPS; AuxSeqActold ← AuxSeqAct; iold ← i1

Paths ← /0;2

foreach successor u of vfork do3

AuxSeqPS ← /0; AuxSeqAct ← /0; i ← iold4

VisitSuccessorWC (u,R, psprev)5

/* SEQS is a global variable updated by VisitSuccessorWC */
Paths ← Paths∪{{SEQS[j] : iold ≤ j < i}}6

AuxSeqPS ← AuxSeqPSold; AuxSeqAct ← AuxSeqActold; i ← iold7

SynchPaths ← /0; UnsynchPaths ← /08

foreach CP ∈ getCombs(Paths) do9

psfork ←CausalOrderPar({(ps : (seq, ps,Rp) ∈CP})10

forkActs ← ∣∣ ∣∣
(seq,ps,Rp)∈CP

seq
11

if ∃(seq, ps,Rp) ∈CP such that Rp = /0 then12

/* If roles get synchronized in a path, they do it for the set of
concurrent paths */
SynchPaths ← SynchPaths ∪{(forkActs, psfork, /0)}13

else14

UnsynchPaths ← UnsynchPaths ∪{(forkActs, psfork,{Rp : (seq, ps,Rp) ∈CP})}15

return (SynchPaths,UnsynchPaths)16

240 CHAPTER 11. PAPER 6

Procedure CheckRacesWC(v1,E1,MaxEv,R)

PMRwc ← /0; n ← 01

foreach j ∈ {0 . . . i} do2

(ActSeq,(E≺,≺),R ′) ← SEQS[j]3

Rtail ←{e ∈ (E≺−E1) : e is a receiving event}4

foreach p ∈ R do5

foreach e ∈ E1, such that loc(e) = p do6

foreach r ∈ Rtail,such that loc(r) = p do7

if e �≺ r then8

if e or r are marked as a “loop event” then9

/* etype (resp. rtype) is the event type of which e
(resp. r) is an instance */
(type1, type2) ← RaceType[etype][rtype]10

if e is marked as a “loop event” then11

type1 ← true12

if r is marked as a “loop event” then13

type2 ← true14

RaceType[etype][rtype] ← (type1, type2)15

else16

EventsInRace[e][r] ← EventsInRace[e][r]∪{SEQS[j].ActSeq}17

PMRSeqswc[v1][p][n] ← SEQS[j]18

PMRwc ← PMRwc∪{(v1, p,n)}19

n++20

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 241

Races in Chained Activity Sequences

Algorithm DetectRacesInChainedActSeqs (on page 243). Given an ac-
tivity sequence seq1 = v1 · v2 · . . . · vn (n > 1), obtained by the DetectRacesWith-
SendCausality algorithm19, the DetectRacesInChainedActSeqs algorithm looks for
other activity sequences whose first activity is vn, that is, sequences of the form
seq2 = vn ·vn+1 ·. . .·vm (m > n). Thereafter, it looks for races between v1 and vm, if seq2
was obtained by the DetectRacesWithSendCausality algorithm. Otherwise, if seq2
was obtained by the DetectRacesWithWeakCausality algorithm, it looks for races
between v1 and any of the activities in seq2. In the former case the matching and
detection processes are repeated again, now with seq1 = v1 · v2 · . . . · vn · vn+1 · . . . · vm.

The matching and detection processes described above are indeed performed
by the CheckChainsSC and CheckChainsWC procedures, which we explain in the
following.

Procedure CheckChainsSC (on page 244). This procedure tries to chain
the activity sequences that were obtained by the DetectRacesWithSendCausality
algorithm (so it assumes that the sequential composition of activities is send-causal).
When two or more sequences are chained, the procedure checks for races between
the first and the last activities of the resulting sequence. The procedure also detects
whether the activities in races are inside loops. If two activities v1 and v2, such that
v1 is executed before v2

20, are in race, and v1 is inside a loop, LoopRaceType1[v1][v2]
is set to true. This means that if an event e1 from v1 is in race with and event e2 from
v2, all instances of e1 (due to the loop iterations) will be in race with e2. If v2 is inside
a loop, LoopRaceType2[v1][v2] is set to true. This means that if an event e1 from v1 is
in race with and event e2 from v2, e1 will be in race with all instances of e2. To detect
the existence of loops, when an activity sequence is considered for concatenation, its
last activity is marked as “visited”, as well as added to the visitedSeq set, which is
an ordered set of visited activities (line 8). Activities inside loops are stored in the
ActInsideLoop set. In addition, the procedure uses the ActInRace set to keep record
of the activities that are in race.

The procedure receives as input an activity sequence seq1, which starts with an
activity v and ends with an activity u. Using the indexes stored in PMRrcv and
PMRsnd, the procedure finds activity sequences that start with u. When a sequence
seq2 starting with u is found, its last activity (in the following w) is extracted. The
procedure then checks whether w has already been visited (line 7). If not, it marks
it as visited and checks whether v and w are the same activity. If that is the case,
v is inside a loop, so it is added to the ActInsideLoop set. If any activity is in
race with v the appropriate LoopRaceType1 flag is set to true (lines 9-11). After
that, the procedure checks whether there are any races between events of v and

19Recall that in the CheckRacesSC procedure (pages 227 and 232), activity sequences (together
with additional data) were stored in the PMRSeqssc table, and that the indexes of the entries
created in that table were stored in either the PMRrcv set or the PMRsnd set. Activity sequences
obtained by the DetectRacesWithSendCausality algorithm can thus be retrieved via the elements
in PMRrcv and PMRsnd.

20If the execution is tarted at the choreography graph’s initial node

242 CHAPTER 11. PAPER 6

events of w (lines 12-15). If any race is detected, an entry in the EvenstInRace
table is created, and w is added to the ActInRace set (line 16). The LoopRaceType1
flag is also set to true if v is inside a loop. Once the race detection process is
finished, the procedure checks whether it is allowed to chain the activity sequence
resulting from concatenating seq1 and seq2 with other activity sequences (line 18)21.
If allowed, the procedure invokes either CheckChainsSC (i.e. a recursive invocation)
or CheckChainsWC to continue with the chaining process. The former happens if
role p does not execute any sending event in w. In that case, the index (u, p, j)
pointing to seq2 belongs to PMRrcv.

If w was already visited, a loop has been detected. In that case all activities that
were visited after the first visit to w are added to the ActInsideLoop set. Also, if
any of those activities is in race with v, the appropriate LoopRaceType2 flag is set
to true.

Procedure CheckChainsWC (on page 245). Given an activity sequence seq1
(obtained by the DetectRacesWithSendCausality algorithm), which starts with an
activity v and ends with an activity u, this procedure tries to find activity sequences
obtained by the DetectRacesWithSendCausality algorithm that start with u (this
is done using the indexes stored in PMRwc). Given an activity sequence seq2 that
starts with u, and whose causal partial order is (R≺∪S≺,≺), the procedure looks for
races between any receiving event rv from v (i.e. rv ∈ Rv

race) and any receiving event r
from seq2 (i.e. r ∈ R≺). For that, the procedure obtains the set of minimum sending
events of p in seq2 (by construction of seq2 those sending events should belong to
u’s set of events). Role p may have more than one minimum sending event if there
are concurrent sendings. Given a maximum sending event m, and a receiving event
r ∈ R≺, it is easy to see that if m ≺ r, no rv ∈ Rv

race can be in race with r (since
r ≺ m will always be true). Therefore, the procedure only looks for receiving events
r ∈ R≺that have no maximum sending of p as causal predecessor.

21See explanation on page 224.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 243

Algorithm 15: DetectRacesInChainedActSeqs
Data: PMR,PMRSeqs from Algorithm 3; Choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2
foreach role p do ActsInsideLoop[p] ← /01

forall (v, p, i) ∈ PMRrcv such that v �= synchPMR[v][p][i] do2

(seq1,Rv
race,R

u
race,race) ← PMRSeqssc[v][p][i]3

visitedSeq ← /04

forall u ∈V do visited[u] ← f alse // Mark all choreography nodes as5

non-visisted
x ←last element of seq16

visited[x] ← true; visitedSeq ←{x}7

if v = x then8

ActsInsideLoop[p] ← ActsInsideLoop[p]∪{v}9

ActsInRace ← /010

if race then ActsInRace ←{x}11

CheckChainsSC(seq1,v, p,Rv
race)12

forall (v, p, i) ∈ PMRsnd such that v �= synchPMR[v][p][i] do13

(seq1,Rv
race,R

u
race,race) ← PMRSeqssc[v][p][i]14

u ←last element of seq115

CheckChainsWC(seq1,u)16

244 CHAPTER 11. PAPER 6

Procedure CheckChainsSC(seq1,v, p,Rv
race)

visitedold ← visited; visitedSeqold ← visitedSeq;1

u ←last element of seq12

forall (u, p, j) ∈ PMRsnd∪PMRrcv, j ≥ 0 do3

visited ← visitedold; visitedSeq ← visitedSeqold;4

(seq2,Ru
race,R

w
race,race) ← PMRSeqssc[u][p][j]5

w ←last element of seq26

if !visited[w] then7

visited[w] ← true; visitedSeq ← visitedSeq∪{w}8

if w = v then9

ActsInsideLoop[p] ← ActsInsideLoop[p]∪{v}10

forall x ∈ ActsInRace do LoopRaceType1[v][x] ← true11

foreach rv ∈ Rv
race do12

foreach rw ∈ Rw
race do13

if non-FIFO channels OR (FIFO channels AND14

loc(snd(rv)) �= loc(snd(rw))) then
EventsInRace[rv][rw] ← EventsInRace[rv][rw]∪{(seq1 −{u})∪ seq2}15

ActInRace ← ActInRace∪{w}16

if v ∈ ActInsideLoop[p] then LoopRaceType1[v][w] ← true17

if synchPMR[u][p][j] = null ∨ (synchPMR[u][p][j] �= v∧!visited[synchPMR[u][p][j]])18

then
if (u, p, j) ∈ PMRrcv then19

CheckChainsSC((seq1 −{u})∪ seq2,v, p,Rv
race)20

else21

CheckChainsWC((seq1 −{u})∪ seq2, p,Rv
race)22

else23

X ←{w}∪{x : x appears after w in visitedSeq}24

ActsInsideLoop[p] ← ActsInsideLoop[p]∪X25

forall x ∈ ActsInRace∩X do LoopRaceType2[v][x] ← true26

return27

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 245

Procedure CheckChainsWC(seq1, p,Rv
race)

u ←last element of seq11

forall (u, p, j) ∈ PMRwc, j ≥ 0 do2

(seq2,(R≺ ∪S≺,≺),R) ← PMRSeqswc[u][p][j]3

M ←{m : m ∈ min((S≺,≺))∧ loc(m) = p} // Minimum sending event(s) of p in E≺4

foreach rv ∈ Rv
race do5

foreach r ∈ R≺ such that loc(r) = p∧m �≺ r,∀m ∈ M do6

if non-FIFO channels OR (FIFO channels AND loc(snd(rv)) �= loc(snd(r)))7

then
if r is marked as a “loop event” then8

/* We assume rtype is the event type of which r is an
instance */
(type1, type2) ← RaceType[rv][rtype]9

type2 ← true10

if v ∈ ActsInsideLoop[p] then type1 ← true else type1 ← f alse11

RaceType[rv][rtype] ← (type1, type2)12

else13

EventsInRace[rv][r] ← EventsInRace[rv][r]∪{(seq1 −{u})∪ seq2}14

return15

11.5.2 Detection of Ambiguous and Race Propagation

Ambiguous propagation happens when the triggering traces specified for a non-
choosing component in two different alternatives of a choice have a common prefix.
Race propagation happens if there can be an ambiguous propagation due to the
existence of races. That is, if the triggering traces that may be observed at run-time
in two different alternatives, due to the effect of races, have a common prefix.

Obviously, in order to determine whether two triggering traces have a common
prefix it is sufficient to compare their first elements. This is indeed enough to either
assert or negate the existence of ambiguous or race propagation. However, in case of
a propagation problem, knowing the complete triggering traces and their complete
common prefix helps to determine the most appropriate resolution. For example,
consider these two pairs of triggering traces, both of them giving rise to ambiguous
propagation: {(?a),(?a)} and {(?a,?b,?c),(?a,?b,?d)}. Whit the second pair we may
opt for a design solution where the decision on which alternative to follow is postpone
until the reception of either message c or d. We can do this by “extracting” ?a,?b
from the choice in the local behavior of the non-choosing component. Obviously,
this solution is not valid for the first pair of triggering traces.

We present in the following an algorithm for the detection of both ambiguous
and race propagation problems. In the case of ambiguous propagation, the algo-
rithm is able to obtain the maximum common prefix of two triggering traces leading
to ambiguous propagation, even in the presence of loops. In the case of race prop-
agation, the algorithm considers only one iteration of loops. This means that race
propagation problems will always be detected, but the maximum common prefix
of the triggering traces leading to a race propagation problem may not always be
obtained.

246 CHAPTER 11. PAPER 6

For the algorithms we assume that a single state machine will be synthesized
for each role in the choreography graph, and that such state machine will have one
single input buffer to store the messages received from all the other roles. In the
case that the same role participates in two concurrent collaborations (i.e. inside a
fork-join pair), we consider that the messages received and sent by the role in both
collaborations are interleaved (since we consider one single state machine with one
single buffer for the role). However, a decision could be made to create the role state
machine in such a way that messages belonging to each of the concurrent collabora-
tions are treated by separate orthogonal sub-state machines. In that case, messages
would no longer interleave. The proposed algorithms could be easily adapted to
consider this case. We just need to mark the roles in concurrent collaborations as
implemented by different state-machines. A decision could also be made to provide
state machines with different input buffers for different peer roles. In that case,
to construct correct triggering traces, the algorithm should be modified to consider
only messages that can be received on the same buffer.

Algorithm DetectChoicePropagationProblems (on page 254). For each
choice node vch, and each non-choosing role p on vch, this algorithm invokes the
ChoreographyToFSA procedure to convert (a part of) the choreography graph into
an“equivalent”(from the point of view of p) finite state automaton, whose transitions
are labeled by receiving and sending events executed by p. The resulting automaton
may also have ε-transitions (i.e. silent transitions). Those ε-transitions are removed
(see Appendix 11.B.2), and the resulting automaton is split into as many automata
as branches has the choice under analysis. Each of the new automata may be used
to generate the triggering traces of one of the choice’s branches.

These “branch” automata are then passed as input to the DetectAmbiguousProp-
agation and DetectRacePropagation procedures, which will analyse them for the
detection of ambiguous and race propagation problems.

Procedure DetectAmbiguousPropagation (on page 254). This procedure
receives as input a set A of automata, where each automaton Ai ∈ A describes (part
of) the behavior of a non-choosing role p in ith branch of the choice under analysis.
More specifically, Ai describes the behavior of p, up to the its first sending event
(if any), in each of the possible execution paths through the ith branch. That is, Ai
describes p’s specified triggering traces in the ith branch of the choice under analysis.

Given two automata A1 = (Q1,Σ1,δ1,q01,F1) and A2 = (Q2,Σ2,δ2,q02,F2), an
ambiguous propagation will exist if one of the strings accepted by A1 has a common
prefix with one of the strings accepted by A2. This can be easily checked by con-
structing their intersection automaton (Q,Σ,δ ,q0,F) = A1∩A2, where Q = Q1×Q2,
Σ = Σ1 ∩Σ2, δ = {((q1,q2),e,(q′1,q

′
2)) : (q1,e,q′1) ∈ δ1,(q2,e,q′2) ∈ δ2}, q0 = (q01,q02)

and F = F1 ×F2.
Note that before intersecting the automata, their transitions are relabeled, so

that instead of events, their associated messages (i.e. the message sent or received)
are used as transition labels.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 247

If the set of transitions of the intersection automaton is non-empty (i.e. δ �= /0),
there is a problem of ambiguous propagation. To obtain the sequence(s) of events
leading to ambiguous propagation, the intersection automaton is converted into an
equivalent regular expression. Note, however, that the intersection automaton may
have unreachable states. These states should be eliminated before converting the
automaton into a regular expression. In addition, ε-transitions should be added
from each state with no output transitions to a common final state.

Procedure DetectRacePropagation (on page 255). This procedure receives
as input a set A of automata, where each automaton Ai ∈ A describes (part of)
the behavior of a non-choosing role p in ith branch of the choice under analysis.
More specifically, Ai describes the behavior of p, up to the its first sending event, in
each of the possible execution paths through the ith branch. That is, Ai describes
p’s specified triggering traces in the ith branch of the choice under analysis. The
procedure also gets as input the containerNode table, which for each sending event
at the end of a triggering trace stores the activity node where the sending event
can be found, or the fork node of a fork-join pair containing the activity where the
sending event can be found.

To detect a race propagation this procedure obtains the observed triggering traces
(lines 1-18), that is, the triggering traces observed by p in the presence of races. Once
they have been obtained, the procedure checks whether any two of those traces
(corresponding to different branches of the choice under analysis) have a common
prefix (line 19).

To obtain the observed triggering traces the procedure proceeds as follows. Each
automaton is converted into an equivalent regular expression (line 3), following the
technique described in Appendix 270. The resulting regular expression may describe
loops. The SeparateInAltSubexpressions procedure (line 3) initializes those loops, so
at most one iteration is considered. For that purpose, each sub-expression α1 ·α∗

2 ·α3
is replaced with (α1 ·α3|α1 ·α2 ·α3), and each sub-expression α+ is replaced with α .
The new regular expression will consist of the union of several sub-expressions, each
of them describing p’s triggering trace in a given execution path. Each of those sub-
expression will be processed separately. For each sub-expression re, the terminating
sending event s, if any, is extracted. All events in re (except s) are then partially
ordered (line 6): events in race become unordered; otherwise the total order dictated
by re is respected. If re ended with a receiving event (i.e. s = null), it means that a
final node was reached in the execution path described by re. The resulting poset can
thus already be used to generate the observed triggering traces, which correspond
to the labeled-linearizations of the poset22 (line 18). Otherwise, if re ended with a
sending event s, races might be possible between receiving events from the triggering
trace and receiving events that succeed s according to the visual order. The set Eext

of “external” events (i.e. not from the triggering trace) that are in race with events

22A linearization of a poset (E,<) is a word w = e1 · · · · · e|E| over the alphabet E, such that if
ei < e j then i < j. In [ON05] a technique is described to obtain all possible linearizations of a poset
in an efficient way. A labeled-linearization is a linearization where each event has been replaced
with its associated message (i.e. the message sent or received).

248 CHAPTER 11. PAPER 6

of the triggering trace can be obtained with help of the EventsInRace table (lines
11-13). However, we still need to determine the causal order between those events,
and between them and the events of the triggering trace. This is done with help of
the GetPosetsForObservedTT procedure, which returns a set of partial orders whose
labeled-linearizations correspond to the observed triggering traces.

Procedure ChoreographyToFSA (on page 256). This procedures returns an
automaton describing the behavior of role p in (part of) the choreography graph.
It also returns a table containerNode, which which stores the choreography nodes
where some events can be found.

Starting from a decision node, this procedure traverses the choreography graph
using a depth-first search technique [AHU74]. For each possible execution path
starting at the decision node, the procedure stops searching when an activity is
found where role p executes a sending event, or when a final node is reached. The
nodes that are visited and the edges that are traversed are mapped into states and
transitions of an automaton A .

When an activity v where p participates is visited, function fsa is invoked to
obtain an automaton describing the behavior of p in v (line 4). This new automaton
is then concatenated with A at certain junction states J (i.e. final states with
incoming transitions that are labeled with a receiving event – see Concatenation on
page 250), and the set of junction states is updated. If the resulting automaton has
any final state with an input transition labeled with a sending event s, an entry in the
containerNode table is created. Thereafter, if all the final states of the automaton
have input transitions labeled with sending events (i.e. the new set of junction
states is empty – see line refjunctionempty), the backtracking process is initiated.
Otherwise, the graph traversal continues.

When a merge node is found (line 9), a new state is added to A and each of
the junction states is connected to the newly added state by means of ε-transitions.
Decision nodes are not explicit mapped into states of A . Instead, the junction
states at the time a decision node is visited will act as “decision” states (i.e. the
automata obtained by traversing each of the branches of the decision node will be
concatenated at those junction states).

When a fork node is visited (line 11) the ForkToFSA procedure is invoked. This
procedure returns an automaton corresponding to the nodes found within the fork
and its companion join node. This automaton is then concatenated with A . If
the set of new junction states is empty (i.e. a sending event was found in all paths
within the fork-join pair) or if a join node was not found (because all the fork’s
branches ended up in a final node), the backtracking process is initiated. Otherwise,
the graph traversal continues from the fork’s companion join node.

Each node in the choreography graph is visited at most once. It may happen
that an attempt is made to re-visit a merge node, or to re-visit the decision node
of the choice under analysis (i.e. the very first node been visited). The latter may
happen if that node is inside a loop, as in the choreography of Fig. 11.17(a). In
the first case ε-transitions are added from the current junction states to the state
corresponding to the merge node (i.e. the state added the first time the merge node

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 249

(a) (b)

R1 R2 R3

m9
m10

R1 R2 R3

m1

m11

R1
m2

R2 R3

m3

m4

R1 R2 R3

m6

m5

R1 R2 R3
m7

R1

m1

R2

m13

C1

C5

C4

C3

C6C2

ch1

ch3ch2

m1

m8

q0

q3

q2

m1

?m1

"

q1 q4

q7q5

?m8

?m2
?m9

!m10!m3

?m1

q8q6

"

Figure 11.17: (a) Choice (ch1) with race propagation; (b) Automaton describing the
significant part of R2 ’s behavior in (a) for detection of race propagation

was visited)(line 28). In the second case , ε-transitions are added from the current
junction states to the initial state (line 30).

Figure 11.17 shows a choreography graph and the automaton created by proce-
dure ChoreographyToFSA for role R2.

Function fsa. This function takes an expression describing a sequence diagram23

and a role p, and returns an automaton A describing the behavior of p in the given
sequence diagram. It is defined as

fsa(SD, p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AbSD , if SD := bSD
fsa(SD1, p) · fsa(SD2, p), if SD := SD1 seq SD2
fsa(SD1, p)∪ fsa(SD2, p), if SD := SD1 alt SD2
fsa(SD1, p)× fsa(SD2, p), if SD := SD1 par SD2
fsa(SD1, p)∗, if SD := loop(0,n)SD1,n > 0
fsa(SD1, p) · fsa(SD1, p)∗, if SD := loop(n,m)SD1,0 < n ≤ m

where AbSD is an automaton describing the behavior of p, up to its first sending event
(if any), in the bSD basic sequence diagram. To obtain AbSD, the basic sequence
diagram is first projected onto the lifeline of p. The result is a totally ordered set
of events (E,<). From that set we are only interested in the first sending event (if

23Recall that a sequence diagram can be described by an expression consisting of basic sequence
diagrams (bSDs) identifiers and a combination of seq, alt, par and loop operators (i.e. an
expression conforming to the BNF-grammar described in Sect. 193)

250 CHAPTER 11. PAPER 6

any) and all its preceding events. That is, assuming that E = R∪S (with S the set
of sending events), we are interested on the totally ordered set (E ′,<), where

E ′ =
{

E, if S = /0
{e ∈ E : (e < s∨ e = s),s ∈ S∧ � ∃s′ ∈ S,s′ < s}, otherwise

The ordered set (E ′,<) is then converted into an automaton AbSD such that:

• If E ′ = /0 (i.e. p does not participate in the basic sequence diagram), AbSD =
A /0, where A /0 = ({q0}, /0, /0,q0,{q0}) is the so-called empty automaton.

• Otherwise, AbSD = (Q,E,δ ,q0,F), with

Q = {q0}∪{qe : e ∈ E}
δ = {(q0,e,qe) : e ∈ E∧ � ∃ f ∈ E, f < e}∪{(qe, f ,q f) : e, f ∈ E,e < f∧

∃g ∈ E,e < g < f}
F = {qe : e ∈ E∧ � ∃ f ∈ E,e < f}

The operators used by the fsa function to compose the automata are defined as fol-
lows. Let A1 = (Q1,Σ1,δ1,q01,F1) and A2 = (Q2,Σ2,δ2,q02,F2) be two automata with
disjoint sets of states, and let Ji = {q f ∈ Fi : ∃(q,r,q f)∈ δi and r is a receiving event}
, i ∈ {1,2}, be the set of junction states of Ai (i.e. the set of final states that have
an incoming transition labeled with a receiving event).We then define the following
four basic operations on automata:

Concatenation. For the concatenation of two automata A1 and A2, for each
output transition with label e from the initial state of A2, new transitions are added,
with the same label e, from the junction states of A1 to the successors of the initial
state of A2. If the initial state of A2 is not a final state, it is removed, together with
its output transitions. More formally, the concatenation A1 ·A2 of two automata
A1 and A2 is an automaton A such that:

• A = A1, if J1 = /0∨A2 = A /0

• A = A2, if A1 = A /0

• Otherwise, A = (Q,Σ1 ∪Σ2,δ ,q01,F2), with

Q =
{

Q1 ∪Q2, if q02 ∈ F2
Q1 ∪Q2 −{q02}, otherwise

δ = δ1 ∪ (δ2 ∩ (Q×Σ2 ×Q))∪{(q1,e,q2) ∈ J1 ×Σ2 ×Q2 : (q02,e,q2) ∈ δ2}

Union. For the union of two automata, a new initial state is created and con-
catenated with each of the automata. More formally, the union A1 ∪A2 of two
automata A1 and A2 is automaton A , such that:

• A = A1, if A2 = A /0

• A = A2, if A1 = A /0

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 251

• Otherwise, A = (Q,Σ1 ∪Σ2,δ ,q0,F1 ∪F2), where

q0 is a new state

Q =

⎧⎨
⎩

Q1 ∪Q2, if q01 ∈ F1 and q02 ∈ F2
Q1 ∪Q2 −{q01,q02}, if q01 �∈ F1 and q02 �∈ F2
Q1 ∪Q2 −{q0i} if q0i ∈ Fi, i ∈ {1,2}

δ = (δ1 ∩ (Q×Σ1 ×Q))∪ (δ2 ∩ (Q×Σ2 ×Q))∪{(q0,e,q1) ∈ {q0}×Σ1 ×Q1 :
(q01,e,q1) ∈ δ1}∪{(q0,e,q2) ∈ {q0}×Σ2 ×Q2 : (q02,e,q2) ∈ δ2}

Kleene closure. For the Kleene closure of an automaton, the initial state
is also made a final state. The original final states are removed, and their input
transitions are connected to the initial state. More formally, the Kleene closure A ∗

1
of an automaton A1 is an automaton A such that:

• A = A1, if F1 = J1 ∨A1 = A /0

• Otherwise, A = (Q,Σ1,δ ,q01,F), with

Q = Q1 − J1 ∪{q01}
δ = δ1 ∪{(q,e,q01) : (q,e,qj) ∈ δ1,qj ∈ J1}
F = {q01}∪ (F1 − J1)

Cross-product. The cross-product A1 ×A2 of two automata A1 and A2 is
the automaton A returned by the CrossProductFSA procedure. That is, A =
CrossProductFSA(A1,A2). The result is an automaton describing the interleaving
of the transitions of the original automata. The interleaving is however stopped as
soon as a transition labeled with a sending event is found.

Procedure ForkToFSA (on page 257). This procedure returns an automaton
describing the behavior of a role p on the part of a choreography graph included
between a fork node and its companion join node. It also returns a containerNode
table, which for each sending event labeling an input-transition of a final automaton
state (i.e. a sending event at the end of a triggering trace) stores the activity node
where the sending event can be found, or the fork node of a fork-join pair containing
the activity where the sending event can be found.

The procedure converts each branch of the fork into an automaton with help of
the ChoreographyToFSA procedure. The resulting automaton may has several final
states if several execution paths are possible through the fork’s branch. In that case
the SplitFSA procedure is invoked to split the automaton into as many automata
as final states had the former automaton. Each of the new automata will describe
the behavior of p on one of the execution paths through the branch. If any of the
automata has a final state with input-transitions labeled with a sending event, an
entry in the containerNode table is created storing the fork node under analysis.

After all branches have been processed, their associated automata are grouped in
sets of concurrent automata (i.e. automata corresponding to concurrent execution
paths) with help of the getsComb function (see page 236 for details on this function).

252 CHAPTER 11. PAPER 6

A cross-product automaton is then obtained for each group of concurrent automata.
The union of all the cross-product automata, and the containerNode table, are
returned by the ForkToFSA procedure.

Procedure GetPosetsForObservedTT (on page 259). For a given role p,
this procedure takes a poset (Ett,≺tt), describing the causal order between the events
of a certain triggering trace, a set Eext of all “external” events (i.e. not from the trig-
gering trace) that are in race with events from the triggering trace. Those external
events may not all be executed in the same execution path. For each possible execu-
tion path, this procedure finds out which external events are executed in the given
path and creates a causal poset (in the following OTT poset) relating those events
and the events from the triggering trace. The set of all OTT posets is then returned.

In order to properly group the external events and create the observed triggering
trace’s posets, a choreography node v0 is also provided as input for the procedure.
This node might be either an activity node or a fork node. Let us first look at the
former case.

If v0 is an activity node, v0 is the activity where the sending event triggered
by the triggering trace can be found. Since all external events will be successor
(or concurrent) events of that sending event, the procedure uses v0 as a starting
point to traverse the choreography graph in search of the external events. Since the
behavior of v0 may be described by more than one poset, the procedure first needs to
determine which of those posets should be considered as the actual starting point to
begin searching for external events. The set PSmatch of selected posets will contain
those posets with the highest number of events in common with the triggering trace
(line 3). Consider, for example, that the behavior of p in v0 is the one illustrated in
Fig. 11.18, and that Ett = {. . . ,?a,?b,?c} (i.e. the triggering trace is, for example,
. . . ·?a·?c·?b and triggers !s1). Then, of the two posets describing the behavior of v0
the procedure will only select the poset that includes events ?c and !s2.

Once the set PSmatch has been obtained, the procedure determines the subset of
external events that may be found in activities succeeding v0 (line 5). If that subset
is not empty, the VisitSuccessorRP procedure is invoked (line 10). That procedure
traverses the choreography graph from v0’s successor using a DFS technique. If an
activity where external events can be found is visited by VisitSuccessorRP, those
external events are added into a poset. VisitSuccessorRP returns a set PStail of
posets, each of them describing the causal order of the external events found on a
certain execution path.

After VisitSuccessorRP returns (if it was invoked), the procedure analyses the
poset in poset PSmatch. For each poset ps0 ∈ PSmatch, the procedure checks whether
any external event can be found in ps0 (line 13). At this point it is important to note
that not all external events that could be found in ps0 should be included in the OTT
poset under construction. Consider again the example in Fig. 11.18, and imagine
that ?a is in race with ?e, but that this race can only happen when ?d is executed.
Such race could therefore not happen for the given triggering trace. Although event
?a would be part of Eext, it should not be included in the OTT poset. In general,
for a poset ps0, only external events that are not causal successor of any minimum

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 253

b

P
sd

par

a

s1

c
s2

d

e

alt

Figure 11.18: Behavior of role p in v0

sending of ps0 should be included in the OTT poset. To determine the causal order
between such events and the triggering trace events, two cases are considered. For
those triggering trace events that can also be found in ps0, the causal order relations
dictated by that poset are considered (line 14). For each triggering trace event r1
preceding the events of ps0, a causal order relation r1 ≺ott r2 is created for each
selected external event r2, if r1 and r2 are not in race (line 15).

Once ps0 has been processed, the procedure checks whether role p gets synchro-
nized on a sending event belonging to ps0 (line 16). If p does not gets synchronized
(line 5 of UpdatePoset procedure), each of the posets in PStail are concatenated with
the OTT poset. If p gets synchronized, the triggering trace events from activities
preceding v0 will not be in race with events from activities succeeding v0. However,
triggering trace events from v0 might be in race with events from activities succeed-
ing v0. If there is any triggering trace event from v0 in race with some external
events E (line 9), only the parts of the posets in PStail that deal with any of the
E events are concatenated with the OTT poset. If E = /0, the PStail posets are not
considered to create the OTT posets.

As we already said, v0 might also be a fork node. In that case, v0 is the fork
of a fork-join pair that contains the activity where the sending event triggered by
the triggering trace can be found, but that does not contain all the events of the
triggering trace. In this case, procedure MapForkWC (see page 236) is invoked to
obtain a set of causal posets for all the activities contained by the fork-join pair.
After that, the processing is similar as the case where v0 is an activity.

254 CHAPTER 11. PAPER 6

Algorithm 18: DetectChoicePropagationProblems

foreach choice node vch ∈V do1

foreach non-choosing role p in vch do2

forall v ∈V do visited[v] = f alse3

q0 ← NewFSAState()4

A ← ({q0}, /0, /0,q0,{q0})5

(A ,containerNode) ← ChoreographyToFSA(p,vch,A ,{q0})6

A ←RemoveEpsilonTransitions(A)7

/* We split A in a set of automata, one for each branch of the
choice. */
forall q ∈ Q such that ∃(q0,e,q) ∈ δ ,e ∈ Σ do8

Qcl ← Closure(q) /* All states reachable from q, incl. q */9

F ′ ← Qcl∩F ; Q′ ← Qcl∪{q0}; δ ′ ← {(q1,e,q2) ∈ δ : q1,q2 ∈ Q′}10

A ← A∪{(Q′,Σ,δ ′,q0,F ′)}11

DetectAmbiguousPropagation(A)12

DetectRacePropagation(p,containerNode,A)13

end14

Procedure DetectAmbiguousPropagation(A)

RE ← /01

foreach A ∈ A do A ← RelabelTransitions(A)2

foreach A1 ∈ A do3

A ← A−{A1}4

foreach A2 ∈ A do5

Aprefix ← A1 ∩A2 // Intersection automaton6

if Aprefix.δ �= /0 then7

/* Eliminate non-reachable states in Aprefix and add ε-transition
from states w/o output transitions to a common final state */
RE ← RE ∪{ConvertFSAtoRE(Aprefix)}8

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 255

Procedure DetectRacePropagation(p,containerNode,A)

foreach A ∈ A do1

L [A] ← /02

RE ← SeparateInAltSubexpressions(ConvertFSAtoRE(A))3

foreach re ∈ RE do4

s ← sending event at the end of re or null if re ends with a receiving event5

(Ett,≺tt) ←events in re (except s) are partially ordered6

if s = null then7

ϒ ←{(Ett,≺tt)}8

else9

/* Get set Eext of "external" events in race with events from the
triggering trace */
Eext ← /010

foreach e1 ∈ Ett do11

foreach e2 such that EventsInRace[e1,e2] �= /0∧ e2 �∈ Ett do12

Eext ← Eext∪{e2}13

if Eext = /0 then14

ϒ ←{(Ett,≺tt)}15

else16

/* Get set ϒ of causal posets describing causal relations
between events in Ett∪Eext */
ϒ ← GetPosetsForObservedTT (p,containerNode[s],Eext,Ett,≺tt)17

L [A] ← L [A]∪GetLinearizations(ϒ)18

if ∃l ∈ L [A1],A1 ∈ A ∧ ∃l′ ∈ L [A2],A2 ∈ A such that l and l′ have a common prefix then19

Report race propagation20

256 CHAPTER 11. PAPER 6

Procedure ChoreographyToFSA(p,v,A ,J)
containerNode ← /01

visited[v] ← true2

if v is an activity node where p participates then3

/* Let SDv be the sequence diagram describing v’s behavior */
(A ,J) ← ConcatenateFSA(A , fsa(SDv, p),J)4

foreach sending event s such that (q,s,qf) ∈ δ ,qf ∈ F − J do5

containerNode[s] ← v6

if J = /0 then7

visited[v] ← f alse; return (A ,containerNode)8

else if v is a merge node then9

qv ← NewFSAState(v); Q ← Q∪{qv}; δ ← δ ∪{(qj,ε,qv) : qj ∈ J}; F ← F ∪{qv}; J ←{qv}10

else if v is a join node then11

vjoin ← v; visited[v] ← f alse; return (A ,containerNode)12

else if v is a fork node then13

vjoin ← null14

(Afork,containerNode aux) ← ForkToFSA(p,v)15

containerNode ← containerNode ∪containerNode aux16

(A ,J) ←ConcatenateFSA(A ,Afork,J)17

if J = /0∨ vjoin = null then18

visited[v] ← f alse19

return (A ,containerNode)20

/* We continue traversing the graph from the join node associated to the
fork (i.e. vjoin). Note that we assume proper nesting of fork/join
nodes */
v ← vjoin21

foreach u successor of v do22

if !visited[u] then23

(A ,containerNode aux) ← ChoreographyToFSA(p,u,A ,J)24

containerNode ← containerNode ∪containerNode aux25

else26

if u is a merge node then27

δ ← δ ∪{(qj,ε,qu) : qj ∈ J}28

else29

δ ← δ ∪{(qj,e,q0) : qj ∈ J}30

if v is NOT a merge node then31

visited[v] ← f alse32

return (A ,containerNode)33

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 257

Procedure ForkToFSA(p,vfork)

Aall ← /01

foreach successor v of vfork do2

/* An FSA is built for each branch of the fork */
q0 ← NewFSAState(v)3

Av ← ({q0}, /0, /0,q0,{q0})4

(Av,containerNode) ← ChoreographyToFSA(p,v,Av,{q0})5

Av ← RemoveEpsilonTransitions(Av)6

/* If Av has several final states, SplitFSA() returns one FSA for each
final state */
if |Av.F | > 1 then7

Aall ← Aall∪{SplitFSA(Av)}8

else9

Aall ← Aall∪{{Av}}10

foreach s such that (q,s,qf) ∈ Av.δ ,qf ∈ Av.F and s ∈ Av.Σv is a sending event} do11

containerNode[s] ← vfork12

Afork ← ({q0}, /0, /0,q0,{q0})13

foreach A ∈ getCombs(Aall) do14

Afork ← Afork∪CrossProductFSA(A)15

return (Afork,containerNode)16

Procedure CrossProductFSA(A)
Data: Set A of automata
Result: FSA (Q,Σ,δ ,q0,F) corresponding to the cross-product of the FSAs in A

if A = {A } then return A1

A1 ← any element of A; A ← A−{A1}2

while A �= /0 do3

A2 ← any element of A; A ← A−{A2}4

Qaux ←{(q01,q02)}5

while Qaux �= /0 do6

(qs
1,q

s
2) ←Any element of Qaux; Qaux ← Qaux−{(qs

1,q
s
2)}7

foreach transition (qs
1,e1,qd

1) ∈ δ1 do8

qnew ← (qd
1 ,qs

2); δ ← δ ∪{((qs
1,q

s
2),e1,qnew)}; Q ← Q∪{qnew}9

if e1 is a sending event ∨ qnew ∈ F1xF2 then F ← F ∪{qnew}10

else Qaux ← Qaux∪{qnew}11

foreach transition (qs
2,e2,qd

2) ∈ δ2 do12

qnew ← (qs
1,q

d
2); δ ← δ ∪{((qs

1,q
s
2),e2,qnew)}; Q ← Q∪{qnew}13

if e2 is a sending event ∨ qnew ∈ F1xF2 then F ← F ∪{qnew}14

else Qaux ← Qaux∪{qnew}15

A1 ← (Q,Σ,δ ,(q01,q02),F)16

return A117

258 CHAPTER 11. PAPER 6

Procedure SplitFSA(A)

/* Assume A = (Q,Σ,δ ,q0,F) */
A ← /01

foreach qf ∈ F do2

/* Get set Qrcl of all states from which qf can be reached, incl. qf */
Qrcl ← ReverseClosure(qf)3

δ ′ ← {(q1,e,q2) ∈ δ : q1,q2 ∈ Qrcl}4

Σ′ ← {e : (q1,e,q2) ∈ δ ′}5

A ← A∪{(Qrcl,Σ′,δ ′,q0,{qf}}6

return A7

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 259

Procedure GetPosetsForObservedTT(p,v0,Eext,Ett,≺tt)

ϒ ← /01

if v0 is an activity node then2

/* Get the posets of v0 that have the most common events with the
triggering trace. Only one iteration of loops is considered. */

PSmatch ←{(E1,≺1) ∈ [[SDv0]]SD :� ∃(E2,≺2) ∈ ([[SDv0]]SD −{(E1,≺1)}),
∣∣Ett∩E p

2

∣∣ >3 ∣∣Ett∩E p
1

∣∣}
PStail ← /04

E ′
ext ← Eext−{Rp

0 : (R0 ∪S0,≺0) ∈ PSmatch}5

if E ′
ext �= /0 then6

foreach v ∈V do7

if v is an activity node then visited[psv] ← f alse, for each poset psv of v8

else visited [v] ← f alse9

PStail ← VisitSuccessorRP(p,u,E ′
ext,(/0, /0)) // u is v0’s successor10

foreach (R0 ∪S0,≺0) ∈ PSmatch do11

Min ←{s ∈ min((S0,≺0)) : loc(s) = p} // Minimum sendings of p in ps012

F ←{r ∈ Eext∩Rp
0 :� ∃s ∈ Min,s ≺0 r}13

≺ott←≺tt ∪{(r1,r2) ∈≺0: (r1,r2 ∈ F)∨ (r1 ∈ Ett∩Rp
0 ∧ r2 ∈ F)}14

≺ott←≺ott ∪{(r1,r2) : r1 ∈ (Ett−Rp
0)∧ r2 ∈ F ∧EventsInRace[r1][r2] = /0}15

synched ← CheckSynchronization(p,v0,(R0 ∪S0,≺0))16

ϒ ← ϒ∪UpdatePoset(synched ,PStail,≺ott,Ett,F,E ′
ext,R

p
0 ,Min)17

else18

/* v0 is a fork node */
vjoin ← null // Global variable updated inside VisitSuccessorWC19

(SynchPaths,UnsynchPaths) ← MapForkWC (v0,{p},(/0, /0))20

/* Get the posets in PSfork that have the most common events with the
triggering trace */
PSfork ← SynchPaths ∪UnsynchPaths21

PSmatch ←{(seq,(E1,≺1),R) ∈ PSfork :� ∃(E2,≺2) ∈ (PSfork−{(seq,(E1,≺122

),R)}), ∣∣Ett∩E p
2

∣∣ >
∣∣Ett∩E p

1

∣∣}
PStail ← /023

E ′
ext ← Eext−{Rp

0 : (seq,(R0 ∪S0,≺0),R) ∈ PSmatch}24

if E ′
ext �= /0 then25

foreach v ∈V do26

if v is an activity node then visited[psv] ← f alse, for each poset psv of v27

else visited [v] ← f alse28

PStail ← VisitSuccessorRP(p,u,E ′
ext,(/0, /0)) // u is vjoin’s successor29

foreach (seq,(R0 ∪S0,≺0),R) ∈ PSmatch do30

Min ←{s ∈ min((S0,≺0)) : loc(s) = p} // Minimum sendings of p in ps031

F ←{r ∈ Eext∩Rp
0 :� ∃s ∈ Min,s ≺0 r}32

≺ott←≺tt ∪{(r1,r2) ∈≺0: (r1,r2 ∈ F)∨ (r1 ∈ Ett∩Rp
0 ∧ r2 ∈ F)}33

≺ott←≺ott ∪{(r1,r2) : r1 ∈ (Ett−Rp
0)∧ r2 ∈ F ∧EventsInRace[r1][r2] = /0}34

ϒ ← ϒ∪UpdatePoset((R = /0),PStail,≺ott,Ett,F,E ′
ext,R

p
0 ,Min)35

return ϒ36

260 CHAPTER 11. PAPER 6

Procedure UpdatePoset(synched,PStail,≺ott,Ett,F,Eext,R
p
0 ,Min)

ϒ ← /01

if PStail = /0 then2

ϒ ← ϒ∪{(Ett∪F,≺ott)}3

else4

if !synched then5

foreach ((Etail,≺tail),synchB) ∈ PStail do6

≺ott←≺ott ∪ ≺tail ∪{(r1,r2) : r1 ∈ Ett∪F ∧ r2 ∈ Etail∧EventsInRace[r1][r2] = /0}7

ϒ ← ϒ∪{(Ett∪F ∪Etail,≺ott)}8

else if ∃r ∈ Ett∩Rp
0 such that9

∀s ∈ Min,s �≺0 r and EventsInRace[r][r′] �= /0, for any r′ ∈ Eext) then
foreach ((Etail,≺tail),synched) ∈ PStail do10

Etail ←{r2 ∈ Etail : EventsInRace[r1][r2] �= /0 for any r1 ∈ Ett ∩Rp
0}11

≺ott←≺ott ∪(≺tail ∩(Etail×Etail))}12

≺ott←≺ott ∪{(r1,r2) : r1 ∈ Ett ∩Rp
0 ∧ r2 ∈ Etail∧EventsInRace[r1][r2] = /0}13

ϒ ← ϒ∪{(Ett∪F ∪Etail,≺ott)}14

else15

ϒ ← ϒ∪{(Ett∪F,≺ott)}16

return ϒ17

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 261

Procedure VisitSuccessorRP(p,v,Eext, psaux)

if v is an activity node then1

if p participates in v then2

psold ← psaux; ϒ ← /03

foreach poset psv = (Rv ∪Sv,≺v) of v such that !visited[psv] do4

psaux ← psold; visited[psv] ← true5

/* Consider psaux = (Eaux,≺aux) and psv = (Rv ∪Sv,≺v) */
F ←{r ∈ Rp

v ∩Eext}6

Eext ← Eext−F7

Eaux ← Eaux∪F8

≺aux←≺aux ∪{(r1,r2) : r1 ∈ Eaux,r2 ∈ F,EventsInRace[r1][r2] = /0}9

≺aux←≺aux ∪{(r1,r2) ∈≺v: r1,r2 ∈ F}10

if Eext = /0 then11

ϒ ← ϒ∪{(psaux, f alse)}12

else13

if CheckSynchronization(p,v, psv) = true then14

ϒ ← ϒ∪{(psaux, true)}15

else16

ϒ ← ϒ∪VisitSuccessorRP(p,u,Eext, psaux) // u is v’s successor17

visited[psv] ← f alse18

else19

ϒ ← VisitSuccessorRP(p,u,Eext, psaux) // u is v’s successor20

return ϒ // Backtrack21

else22

/* Control node */
if v is a final node then23

return {(psaux, f alse)}24

else if v is a join node then25

vjoin ← v // Global variable used inside MapForkRP()26

return {(psaux, f alse)}27

else if v is a fork node and !visited[v] then28

visited[v] ← true29

ϒ ← TraverseForkRP(p,v,Eext, psaux)30

visited[v] ← f alse31

return ϒ32

else33

psold ← psaux34

foreach u successor of v do35

if Eext �= /0 then36

psaux ← psold37

ϒaux ← VisitSuccessorRP(p,u,Eext, psaux)38

Eext ← Eext−{Eaux : (Eaux,≺aux) ∈ ϒaux}39

ϒ ← ϒ∪ϒaux40

return ϒ // Backtrack41

262 CHAPTER 11. PAPER 6

Procedure TraverseForkRP(p,vfork,Eext, psaux)

vjoin ← null // Global variable updated when a join node is visited1

Enew
ext ← Eext2

foreach successor u of vfork do3

if Enew
ext �= /0 then4

ϒ ← VisitSuccessorRP(p,u,Eext,(/0, /0))5

ϒfork ← ϒfork∪ϒ6

Enew
ext ← Enew

ext −{E : ((E,≺),synchB) ∈ ϒ, for any ≺,synchB}7

ϒ ← /08

foreach ϒpath ∈ getCombs(ϒfork) do9

(EforkP,≺forkP) ← CausalOrderPar({ps : (ps,synchB) ∈ ϒpath, for any synchB})10

≺aux←≺aux ∪ ≺forkP ∪{(r1,r2) : r1 ∈ Eaux∧ r2 ∈ EforkP∧EventsInRace[r1][r2] = /0}11

Eaux ← Eaux∪EforkP12

if (vjoin = null)∨ (Enew
ext = /0)∨(∃(ps, true) ∈ ϒpath, for any ps) then13

ϒ ← ϒ∪{((Eaux,≺aux), true)}14

else15

vjoin succ ←successor of vjoin16

ϒ ← ϒ∪VisitSuccessorRP(p,vjoin succ,Eext−EforkP,(Eaux,≺aux))17

return ϒ18

Procedure CheckSynchronization(p,v, psv)

synched ← f alse1

if p has a sending in psv then2

synched ← true3

foreach successor activity u of v do4

foreach poset psu of u do5

/* We assume psv = (Sv ∪Rv,≺v) */
I ←{loc(e) : e ∈ min(psu)} // Initiating roles of psu6

/* Get max events in psv of I roles */
foreach q ∈ I do Max[q] ←{e : e ∈ max(psv)∧ loc(e) = q}7

Min ←{s : s ∈ min((Sv,≺v))∧ loc(s) = p}// Min sendings in psv of p8

if ∃q ∈ I such that ∀m ∈ Max[q], � ∃s ∈ Min, s ≺v m then9

synched ← f alse10

else11

visited [psu] ← true12

return synched13

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 263

11.6 Conclusions

We have outlined a collaboration-oriented service specification approach, where
UML 2 collaborations are used to specify services. The behavior of elementary
collaborations is described by means of UML sequence diagrams, while the behavior
of composite collaborations is described with help of a choreography graph (following
the notation of UML activity diagrams) that defines the execution order of its sub-
collaborations. We have provided a formal syntax and semantics to choreography
graphs and sequence diagrams in terms of partial orders.

We have discussed realizability of choreographies in terms of the composition
operators: weak and strong sequence, alternative, interruption and parallel. For
each composition operator we have studied the problems that can lead to difficul-
ties of realization. We have investigated the actual nature of these problems and
discussed possible solutions to prevent or remedy them. The result of our study is
a better understanding of the actual nature of realizability problems. Not surpris-
ingly, we have seen that implicit concurrency and competing initiatives are at the
heart of most problems. The send-causality property identified in this paper helps
to build specifications that are more intuitive and less prone to conflicts, since it
forces concurrency to be explicitly specified (i.e. by means of parallel composition
or interruption). We have shown that some problems can already be detected at an
abstract collaboration level, without needing to look into detailed interactions. We
have also shown that generic solutions to the discussed problems are not valid. The
same type of problem may require different resolutions in different contexts.

Finally, we have presented a set of algorithms for the detection of the problems
discussed in this paper, and are currently working on their implementation.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of
message sequence charts. In 22nd Int. Conf. on Software Engineering
(ICSE’00), 2000.

[AEY05] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability
and verification of MSC graphs. Theor. Comput. Sci., 331(1):97–114,
2005.

[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for
message sequence charts. Software - Concepts and Tools, 17(2):70–77,
1996.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design
and analysis of computer algorithms. Addison-Wesley, 1974.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic detection of process
divergence and non-local choice in message sequence charts. In Proc.
2nd Int. Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), 1997.

264 CHAPTER 11. PAPER 6

[BG86] Gregor Bochmann and Reinhard Gotzhein. Deriving protocol specifica-
tions from service specifications. In Proc. of ACM SIGCOMM Sympo-
sium, pages 148–156, 1986.

[BM03] Nicolas Baudru and Rémi Morin. Safe implementability of regular mes-
sage sequence chart specifications. In Proc. of ACIS 4th Intl. Conf. on
Soft. Eng., Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD’03), pages 210–217, 2003.

[BM05] Rolv Bræk and Geir Melby. Model Driven Service Engineering, chapter of
Model-driven Software Development. Volume II of Research and Practice
in Software Engineering. Springer, 2005.

[Boc78] Gregor Bochmann. Finite state description of communication protocols.
Computer Networks, 2:361–372, 1978.

[Bræ79] Rolv Bræk. Unified system modeling and implementation. In Interna-
tional Switching Symposium (ISS). ISS Committee, 1979.

[BS05] Yves Bontemps and Pierre-Yves Schobbens. The complexity of live se-
quence charts. In Proc. of 8th Intl. Conf. on Foundations of Software
Science and Computational Structures (FoSSaCS ’05), pages 364–378,
2005.

[CB06a] Humberto N. Castejón and Rolv Bræk. A collaboration-based approach
to service specification and detection of implied scenarios. In Proc. of
5th int. workshop on Scenarios and state machines: models, algorithms
and tools (SCESM’06). ACM Press, 2006.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing collaboration goal
sequences for service choreography. In Proc. of the 26th IFIP WG
6.1 Intl. Conf. on Formal Methods for Networked and Distributed Sys-
tems (FORTE’06), volume 4229 of LNCS, pages 275–291, Paris, France,
September 2006. Springer-Verlag.

[CKS05] Chien-An Chen, Sara Kalvala, and Jane Sinclair. Race conditions in
message sequence charts. In Proc. of 3rd Asian Symposium on Program-
ming Languages and Systems (APLAS’05), volume 3780 of LNCS, pages
195–211. Springer, 2005.

[Erl05] Thomas Erl. Service Oriented Architecture: Concepts, Technology and
Design. Number ISBN 0-13-185858-0. Prentice Hall, 2005.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular verification of
collaboration-based software designs. In ESEC/FSE-9: Proceedings of
the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 152–163. ACM Press, 2001.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 265

[GMSZ06] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-
state high-level MSCs: Model-checking and realizability. J. Comput.
Syst. Sci., 72(4):617–647, 2006.

[GY84] Mohamed G. Gouda and Yao-Tin Yu. Synthesis of communicating finite
state machines with guaranteed progress. IEEE Trans. on Communica-
tions, Com-32(7):779–788, July 1984.

[Hél01] Löıc Hélouët. Some pathological message sequence charts, and how to
detect them. In 10th Intl. SDL Forum, volume 2078 of LNCS, pages
348–364. Springer-Verlag, 2001.

[HJ00] Löıc Hélouët and Claude Jard. Conditions for synthesis of communicating
automata from HMSCs. In Proc. of 5th Intl. Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS’00). GMD FOKUS, 2000.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison Wesley,
2000.

[IT99] ITU-T. ITU Recommendation Z.Z.120: ”Message Sequence Chart (MSC-
2000)”. ITU, Geneva, 1999.

[IT00] ITU-T. ITU Recommendation Z.100: ”The Specification and Description
Language (SDL)”. ITU, Geneva, 2000.

[Kie97] Astrid Kiehn. Observing partial order runs of petri nets. In Foundations
of Computer Science: Potential - Theory - Cognition, to Wilfried Brauer
on the occasion of his sixtieth birthday, pages 233–238, London, UK,
1997. Springer-Verlag.

[KL98] J. P. Katoen and L. Lambert. Pomsets for message sequence charts.
In H. König and P. Langendörfer, editors, Formale Beschreibungstech-
niken fuer verteilte Systeme, 8. GI/ITG-Fachgespraech, Cottbus, Ger-
many, pages 197–207. Shaker Verlag, 1998.

[KM03] Ingolf H. Krüger and Reena Mathew. Component synthesis from service
specifications. In 2003 Dagstuhl Workshop on Scenarios: Models, Trans-
formations and Tools, volume 3466 of LNCS, pages 255–277. Springer,
2005.

[KZ05] Ferhat Khendek and Xiao Jun Zhang. From MSC to SDL: Overview
and an application to the autonomous shuttle transport system. In 2003
Dagstuhl Workshop on Scenarios: Models, Transformations and Tools,
volume 3466 of LNCS, pages 228–254. Springer, 2005.

[MGR05] Arjan J. Mooij, Nicolae Goga, and Judi Romijn. Non-local choice and
beyond: Intricacies of MSC choice nodes. In Proc. Intl. Conf. on Fun-
damental Approaches to Soft. Eng. (FASE’05), volume 3442 of LNCS.
Springer, 2005.

266 CHAPTER 11. PAPER 6

[Mit05] Bill Mitchell. Resolving race conditions in asynchronous partial order
scenarios. IEEE Trans. Softw. Eng., 31(9):767–784, 2005.

[MP00] Anca Muscholl and Doron Peled. Analyzing message sequence charts. In
SAM, pages 3–17, 2000.

[MRW06] Arjan Mooij, Judi Romijn, and Wieger Wesselink. Realizability criteria
for compositional msc. In Proc. of 11th Intl. Conf. on Algebraic Method-
ology and Software Technology (AMAST’06), volume 4019 of LNCS.
Springer, 2006.

[Mus00] Anca Muscholl. Compositional issues on message sequence charts. In
Proc. Workshop on Logic and Algebra in Concurrency, 2000.

[OMG07] Object Management Group (OMG). UML 2.1.1 Superstructure Spec.,
February 2007.

[ON05] Akimitsu Ono and Shin-Ichi Nakano. Constant time generation of linear
extensions. In 15th Intl. Symp. on Fundamentals of Computation Theory
(FCT’05), pages 445–453, 2005.

[RAB+92] T. Reenskaug, E.P. Andersen, A.J. Berre, A. Hurlen, A. Landmark,
O.A. Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A.L. Skaar, and
P. Stenslet. OORASS: Seamless support for the creation and mainte-
nance of object-oriented systems. Journal of Object-oriented Program-
ming, 5(6):27–41, 1992.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Proc. of the 10th Intl. SDL Forum,
volume 2078 of LNCS, pages 72–89. Springer-Verlag, 2001.

[RWL96] Trygve Reenskaug, P. Wold, and O. A. Lehne. Working with Objects:
The OOram Software Engineering Method. Prentice Hall, 1996.

[San00] Richard Sanders. Implementing from SDL. Telektronikk, 96(4), 2000.

[SCKB05] Richard Torbjørn Sanders, Humberto N. Castejón, Frank Alexander
Kraemer, and Rolv Bræk. Using UML 2.0 collaborations for compo-
sitional service specification. In ACM/IEEE 8th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS),
volume 3713 of LNCS, pages 460–475, Montego Bay, Jamaica, October
2005. Springer-Verlag.

[UKM04] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Incremental elabora-
tion of scenario-based specifications and behavior models using implied
scenarios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85, 2004.

[Woo87] Derick Wood. Theory of Computation. John Wiley & Sons, Inc., New
York, 1987.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 267

Appendix 11.A Propositions and Proofs

We show here that in sequence diagrams with both the send-causality and the non-
crossing messages properties, race conditions may only occur between two or more
consecutive receiving events. We introduce first some useful propositions, which will
help on the demonstration.

Proposition 11.20. In a basic sequence diagram with the send-causality property
all sending events are causally ordered (i.e. there is a total causal order on sending
events).

Proof. We prove it for out-of-order delivery semantics, so the result is also valid for
in-order delivery semantics.

Consider two consecutive sending events according to <m, that is, s,s′ ∈ S,s <m
s′∧ � ∃s′′ ∈ S,s <m s′′ <m s′. Then, from the definition of send-causal sequence diagram
(Definition 11.16), we have that either loc(s′) = loc(s) or loc(s′) = loc(rcv(s)). If
loc(s′) = loc(s) = p, then s <p s′, and from the definition of causal order with out-
of-order delivery (Definition 11.2), we conclude s ≺n f s′. Otherwise, if loc(s′) =
loc(rcv(s)) = p, then rcv(s) <p s′. Again, by Definition 11.2, we conclude s ≺n f s′.
Since any two consecutive sending events are causally ordered, and by transitivity
of ≺n f , we conclude that all sending events are causally ordered.

Corollary 11.21. A send-causal basic sequence diagram has a unique initiating
event.

Note that, in the absence of parallel composition, send-causality imposes a total
causal order of sending events for each alternative behavior. If a sequence diagram
describes a parallel composition by means of a par construct, the sending events
within each operand of the construct are related by a total causal order. In addi-
tion, the sending events preceding (resp. succeeding) the par construct are causal
predecessors (resp. successors) of all sending events within the par construct.

Now we demonstrate that in a send-causal sequence diagram, if a receiving event
r ∈ R is specified to happen after a sending event s ∈ S on the same lifeline p ∈ P
(i.e. s <p r), then r is always causally dependent on s, with independence of the
communication architecture (i.e. r will always happen after s in a any realized
system).

Proposition 11.22. In a send-causal sequence diagram satisfying the non-crossing
messages property, the following is always true: given a sending event s ∈ S and a
receiving event r ∈ R located on the same lifeline p ∈ P (i.e. loc(s) = loc(r) = p),
we have that s <p r ⇒ s ≺n f r∧ s ≺ f r.

Proof. We prove it for the out-of-order delivery causal order (≺n f), since it corre-
sponds to a communication architecture without restrictions. The results will then
be valid for any more restrictive order (e.g. ≺ f). We consider first the case where
s and r are located within the same basic sequence sub-diagram. By Proposition
11.20, we know that s ≺n f snd(r). We conclude, therefore, that s ≺n f r.

268 CHAPTER 11. PAPER 6

We consider now two basic sequence sub-diagrams, SD1 and SD2, such that
SD1 seq SD2. We assume s is located in SD1 and r is located in SD2. We know that:

(i) Either s is a maximum sending event of SD1 (i.e. s ∈ Ts,Ts ∈ termsnd(SD1)),
or, by Proposition 11.20, we have that s ≺n f st ,∀st ∈ Ts,Ts ∈ termsnd(SD1).

(ii) Either snd(r) is a minimum event of SD2 (i.e. snd(r) ∈ I ,I ∈ init(SD2)), or,
by Proposition 11.20, we have that si ≺n f snd(r),∀si ∈ I ,I ∈ init(SD2).

By Definition 11.16, we also know that ∀Ts ∈ termsnd(SD1),∀I ∈ init(SD2),∀st ∈
Ts,∀si ∈ I , loc(si) = loc(st)∨ loc(si) = loc(rcv(st)). With this information, and ap-
plying the same reasoning as the one used in the proof of Proposition 11.20, we
conclude that s ≺n f r.

The above results can be easily generalized, by induction on the composite struc-
ture of the sequence diagram, to prove that in all cases s ≺n f r.

Given Proposition 11.22 and the fact that races may exist between consecutive
receiving events (see, e.g., the race between e4 and e6 in Fig. 11.5(a)) we have the
result we were looking for:

Proposition 11.23. In a sequence diagram satisfying the send-causality property
and the non-crossing messages property, a potential race condition exists between
two receiving events r1 and r2, located at the same lifeline p, if r1 <p r2 and there is
not a sending event s ∈ S such that r1 <p s <p r2.

11.A.1 Race Conditions in Send-Causal Sequence
Diagrams

We study now the necessary conditions for a race to actually exist in a send-causal
sequence diagram. Such conditions depend on the communication architecture. We
consider two architectures, one with out-of-order delivery channels and other with
in-order delivery channels.

Race conditions with in-order delivery channels

Messages cannot overtake each other in channels with in-order delivery. Therefore,
there are not races between receiving events located on the same lifeline p if their
associated sending events are both located on the same lifeline q. However, a race
exists if the sending events are located on different lifelines and there is no sending
event located on p between the receiving events.

Proposition 11.24. Given a sequence diagram satisfying the send-causality prop-
erty and the non-crossing messages property, and a communication architecture with
in-order delivery channels, a race condition exists between two receiving events, r and
r′, located on the same lifeline p ∈ P, iff r <p r′ ∧ loc(snd(r)) �= loc(snd(r′))∧ � ∃s ∈
S,r <p s <p r′.

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 269

Proof. (⇐=) We assume that r <p r′ ∧ loc(snd(r)) �= loc(snd(r′))∧ � ∃s∈ S,r <p s <p r′
and prove that there is a race between r and r′ (i.e. r �≺ f r′). We do this by
contradiction. Let us assume that r ≺ f r′. Then we should have that r ≺ f snd(r′). We
recall that, according to Definition 11.3,≺ f = (< f)∗. It is easy to see that r �< f snd(r′),
since r and snd(r′) do not satisfy any of the conditions on Definition 11.3. Therefore,
there must exist one or more events such that r < f e1 < f . . .en < f snd(r′). Since
loc(snd(r)) �= loc(snd(r′)), the relation r < f e1 can only be true if e1 ∈ S∧ r <p e1.
This contradicts our initial assumption: � ∃s ∈ S,r <p s; so we conclude that r �≺ f r′.

(=⇒) We consider two receiving events, r and r′, that are located on the same
lifeline p∈P and that are in race, so that r �≺ f r′. By the definition of race condition,
we know that r <p r′. We also know that in-order delivery semantics do not allow
message overtaking, so if loc(snd(r)) = loc(snd(r′)) there cannot be a race. Therefore
it must be loc(snd(r)) �= loc(snd(r′)). We just need to prove that � ∃s ∈ S,r <p s <p r′.
Let us assume that ∃s ∈ S,r <p s <p r′. Then, by Definition 11.3, we have that
r ≺ f s, and by Proposition 11.22, we have that s ≺ f r′. This implies r ≺ f r′, which
is a contradiction. Therefore � ∃s ∈ S,r <p s <p r′.

Race conditions with out-of-order delivery channels.

With out-of-order delivery channels races always exist between receiving events lo-
cated on the same lifeline p if there is no sending event located also p between the
receiving events.

Proposition 11.25. Given a sequence diagram satisfying the send-causality prop-
erty and the non-crossing messages property, and a communication architecture with
out-of-order delivery channels, a race condition exists between two receiving events,
r and r′, located on the same lifeline p ∈ P, iff r <p r′∧ � ∃s ∈ S,r <p s <p r′.

Proof. Since the causal order imposed by out-of-order delivery channels is less re-
strictive than the causal order imposed by in-order delivery channels (i.e. ≺n f⊆≺ f),
races will exists with out-of-order delivery channels whenever they exist with in-order
delivery channels. The case of races between between receiving events associated
to messages sent by different lifelines is therefore proved by 11.24. We just need to
prove that there are also races between receiving events associated to messages sent
by the same lifeline. This can be easily done following the same reasoning as with
Proposition 11.24, and having into account that messages may overtake each other
in an out-of-order delivery channel.

Appendix 11.B Automata Theory

A finite state automaton is a tuple A = (Q,Σ,δ ,q0,F), where Q is a finite set of
states, Σ is a set of transition labels, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final (or accepting) states.

270 CHAPTER 11. PAPER 6

11.B.1 Converting an FSA into a regular expression

There exist several methods for the conversion of an FSA into an equivalent regular
expression (i.e. a regular expression accepting the same language as the FSA). Here
we describe the state-elimination technique from [Woo87].

The intuitive idea behind the state-elimination technique is to bypass an state
q ∈ Q−{q0,qf} by replacing that state, together with its incoming, outgoing and
self-looping transitions, with new transitions. These new transitions are labeled with
regular expressions, such that the resulting automaton accepts the same language
as the original one.

As input for the state-elimination process we assume an automaton A = (Q,Σ,δ ,
q0,qf) with the following properties (which facilitate the elimination process):

• A has one single initial state, and this state has no input or self-looping
transitions. If the original automaton does not fulfill this requisite, a new
initial state q′0 can be added and connected to q0 by an ε-transition (i.e.
Q′ = Q∪{q′0}, δ ′ = δ ∪{(q′0,ε,q0)}).

• A has one single final state, and this state has no output or self-looping
transitions. If this is not the case for the original automaton, the original final
states are converted into normal states and connected to a new final state q′f
by ε-transitions (i.e. Q′ = Q∪{q′f}, δ ′ = δ ∪{(q,ε,q′f) : q ∈ F}, F ′ = {q′f}).

• Each state q ∈ Q−{q0,qf} has a unique self-looping transition (q,β ,q) ∈ δ .
This is a merely accessory property and required to ease the explanation below.
Note that if a state q ∈ Q−{q0,qf} has not self-looping transitions, we can
assume a self-looping silent transition (i.e. β = ε). And if q has several self-
looping transitions, we can merge them.

Formally, a step of the state elimination technique can be seen as the transfor-
mation of an automaton A = (Q,Σ,δ ,q0,qf) into a new automaton A ′ = (Q −
{q},Σ′,δ ′,q0,qf), where q ∈ Q−{q0,qf} is the state being eliminated. A ′ is then
used as input for the next step. The elimination process is repeated until we ob-
tain an automaton AE = ({q0,qf},ΣE,{(q0,E,qf)},q0,qf) that consists of exactly two
states, the initial and final ones, and one transition between them. Such transition
is labeled with a regular expression E, which accepts exactly the same language as
the original automaton A .

For the elimination of a state q ∈ Q−{q0,qf} we proceed as follows. For each
input transition (pi,ui,q) ∈ δ , with 1 ≤ i ≤ n and n ≥ 1, each output transition
(q,v j,r j) ∈ δ , with 1 ≤ j ≤ m and m ≥ 1, and the self-looping transition (q,w,q) ∈ δ ,
we create a new transition (pi,ui ·w∗ · v j,r j). We then obtain Σ′ and δ ′ as indicated
below:

δ ′ = δ − ({(pi,ui,q),(q,v j,r j) : 1 ≤ i ≤ n∧n ≥ 1∧1 ≤ j ≤ m∧m ≥ 1}∪{(q,w,q)})
∪{(pi,ui ·w∗ · v j,r j) : 1 ≤ i ≤ n∧n ≥ 1∧1 ≤ j ≤ m∧m ≥ 1}

Σ′ = Σ∪{ui ·w∗ · v j : 1 ≤ i ≤ n∧n ≥ 1∧1 ≤ j ≤ m∧m ≥ 1}

REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC. 271

If δ ′ contains more than one transition between any two states, we merge those
transitions. Formally, given two transitions (q1,u,q2),(q1,v,q2)∈ δ ′, we remove them
from δ ′ and add a new transition (q1,u | v,q2). We also add the label u | v to Σ′.

Figure 11.19(a) shows the automaton obtained after running the ChoreographyTo-
FSA procedure on the choreography graph of Fig. 11.17(a). Figures 11.19(b)
and 11.19(c) illustrate some steps of the state elimination technique applied to
that automaton. The automaton in Fig. 11.19(b) results after eliminating states
m1,q0,q3,q6 and q8. Note that since the two first properties discussed above where
not satisfied by the automaton in Fig. 11.19(a), a new initial state, q′0, and a new
final state, qf, were added. After eliminating all states, except the initial and final
ones, the automaton in Fig. 11.19(c) is obtained. Merging the transitions of that
automaton would give a new automaton with a single transition, whose label would
correspond to a regular expression accepting the same language as the FSA in Fig.
11.19(a).

(a) (b) (c)

q'0

q2

?m1

q1 q4

q7q5

?m8

?m2
?m9

!m10

!m3 !m13

?m1

?m1
?m8

qf

?m1
+·?m2·!m3

q'0 qf

?m1
+·?m8·?m9·!m10

?m1
+·?m8·?m1·!m13

?m8·?m9·!m10

?m8·?m1·!m13

!m13

q0

q3

q2

m1

?m1

"

q1 q4

q7q5

?m8

?m2
?m9

!m10!m3

?m1

q8q6

"

Figure 11.19: (a) FSA for the choreography of Fig. 11.17(a); (b) FSA resulting after
eliminating all ε-transitions in (a); (c) FSA resulting after eliminating all non-initial
and non-final states in (b)

11.B.2 Eliminating ε-transitions

To eliminate these ε-transitions the technique described in [HMU00] can be used.
This technique consists of three basic steps:

a) Identify all states Qε with output ε-transitions.

b) For each state p ∈ Qε , find all states Q′ that can be reached using only ε-
transitions (this can be done with a DFS technique). For each state q ∈ Q′, if
there is a transition to state r on input e (i.e. a non ε-transition), then create
a new transition (p,e,r) from p to r on input e. If any state q ∈ Q′ is a final
state, then make p a final state.

c) Remove all ε-transitions and all unreachable states.

272 CHAPTER 11. PAPER 6

Notes
1The second condition for the non-crossing messages property was wrongly formulated in the

original technical report. In the original text it could be read

∀e = 〈!m, p, p〉 , � ∃e′ �= rcv(〈!m, p, p〉),e <p e′

We note that such condition would be right if <p was an immediate precedence relation, rather
than a total order.

12

Paper 7

Dynamic role binding in a service oriented

architecture.

By Humberto Nicolás Castejón and Rolv Bræk.

Published in the Proceedings of the IFIP Intl. Conf. on Intelligence in Communi-
cation Systems (INTELLCOMM’05), volume 190 of IFIP International Federation
for Information Processing. Springer, October 2005.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/0-387-32015-6 11

273

Dynamic Role Binding in a Service Oriented
Architecture

Humberto Nicolás Castejón and Rolv Bræk
NTNU, Department of Telematics, N-7491 Trondheim, Norway

{humberto.castejon,rolv.braek}@item.ntnu.no

Abstract

Many services are provided by a structure of service components that are
dynamically bound and performed by system components. Service modular-
ity requires that service components can be developed separately, deployed
dynamically and then used to provide situated services without undesirable
service interactions. In this paper we introduce a two-dimensional approach
where service components are roles defined using UML 2.0 collaborations and
system components are agents representing domain entities such as users and
terminals. The process of dynamic role binding takes place during service
execution and provides general mechanisms to handle context dependency,
personalisation, resource limitations and compatibility validation. A policy
framework for these mechanisms is outlined.

12.1 Introduction

A service may generally be defined as an identified partial functionality provided
by a system to an end user, such as a person or other system. The most general
form of service involves several system components collaborating on an equal basis
to provide the service to one or more users. This understanding of service is quite
general and covers both client-server and peer-to-peer services as described in [BF04].
A common trait of many services is that the structure of collaborating components
is dynamic. Links between components are created and deleted dynamically and
many services and service features depend on whether the link can be established
or not, and define what to do if it cannot be established (e.g. busy treatment in a
telephone call). Indeed, setting up links is the goal of some services. For example,
the goal of a telephone call is to establish a link between two system components,
so that the users they represent can talk to each other. In the past this problem has
often been addressed in service specific ways. It may however, be generalised to a

276 CHAPTER 12. PAPER 7

problem of dynamic role binding, i.e. requesting system components to play roles,
such as for example requesting a UserAgent to play the b-subscriber in a call. The
response to such a request may be to alert the end-user (if free and available), to
reject the call, to forward it or to provide some waiting functionality (if busy). Which
feature to select depends on what is subscribed, what other features are active, what
resources are available, what the current context is and what the preferences of the
user are. By recognising dynamic role binding as a general problem, we believe it
is possible to find generic and service independent solutions. In fact, many crucial
mechanisms can be associated with dynamic role binding: service discovery; feature
negotiation and selection; context dependency resolution; compatibility validation
of collaborating service components, and dependency resolution.

Modularity is a well-known approach for easing service development. Service
modularity requires a separation of service components from system components,
allowing the former ones to be specified and designed separately from the latter
ones, then be incrementally deployed and finally be linked dynamically during ser-
vice execution to provide actual services without undesirable service interactions.
We will show that dynamic role binding mechanisms are crucial to achieve the de-
sired separation and modularity and still be able to manage the complex mutual
dependencies between service components and system components. It is desirable
that such dependencies are not hard coded, but represented by information that can
be easily configured and interpreted by general mechanisms, i.e. by some kind of
policies.

In this paper we present a service architecture where service modularity and
dynamic linking is supported by means of roles and general mechanisms for dynamic
role binding. In Sect. 12.2 the main elements of the architecture are presented:
agents mirroring the environment as system components; UML 2.0 collaborations
and collaboration roles as service-modelling elements; and UML active classes as
service components. In Sect. 12.3 we show how the proposed architecture provides
structure to service-execution policies and how dynamic role binding enables policy-
driven feature selection with compatibility guarantees. Finally we conclude with a
summary of the presented work.

12.2 Agent and Role Based Service Architecture

Fig. 12.1 suggests an architecture for service-oriented systems which is characterized
by horizontal and vertical composition. On the horizontal axis, system components
are identified that may reside in different computing environments. This axis reflects
domain entities (such as users, user communities and terminals) and resources that
must be represented in a service providing system regardless of what services it
provides. On the vertical axis, several services and service components are identified
that depend on the system components of the architecture. This two-dimensional
picture illustrates the crosscutting nature of services which is a well-known challenge
in service engineering [Bræ99, Flo03, KGM+04, BCS00].

In the following sections we will present our particular realization of this archi-
tecture.

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 277

Service 1

Terminal
Agent x

Service 3

Service 2

Vertical composition
(within an agent)

Horizontal
composition
(within a service)

Terminal
Agent k

User
Agent y

User
Agent w

Group
Agent z

service
component

Figure 12.1: Service Oriented Architecture

12.2.1 Agents as System Components

In [BF04], Bræk and Floch identify two principal system architectures: the agent
oriented and the server oriented. The agent oriented architecture follows the prin-
ciple that a system should be structured to mirror objects in the domain and en-
vironment it serves [BH93]. This is a general principle known to give stable and
adaptable designs. Agents may represent and have clear responsibilities for serving
domain/environment entities and resources and thereby provide a single place to
resolve dependencies. In the case of personalised communication services accessi-
ble over a number of different terminal types, this mirroring leads to a structure of
TerminalAgents and UserAgents as illustrated in Fig. 12.1. In addition there may
be agents corresponding to user communities (e.g. the GroupAgent in Fig. 12.1),
service enablers and shared service functionality. Several authors have proposed
similar architectures, for example [ZWO+95] and [AKGM00].

Note that such an agent structure reflects properties of the domain being served
and not particular implementation details, nor particular services. It is therefore
quite stable and service independent. At the same time agents provide natural
containers for properties and policies of domain entities like users, terminals and
service enablers.

12.2.2 UML Collaborations as Services and Roles as
Service Components

As illustrated in Fig. 12.1, a service is a partial functionality provided by a collabora-
tion between service components executed by agents to achieve a desired goal for the
end users. UML 2.0 collaborations [OMG05] are well suited for service modelling as
they are intended to describe partial functionalities provided by collaborating roles
played by objects. An interesting characteristic of UML collaborations is that they
can be applied as collaboration uses and employed as components in the definition
of larger collaborations. This feature enables a compositional and incremental de-
sign of services, as we explain in [SCKB05, Cas05]. For instance, Fig. 12.2 shows
a collaboration specifying a UserCall service in terms of collaboration roles linked

278 CHAPTER 12. PAPER 7

a:Caller b:Callee

invite:Role
Request

c:Calling

b:Busy

u:Unavailable

b:Called
Agent

requester

requested

invokeda b
b
b

a
a

UserCall

{goal: VoiceCnt(a,b) = a.VoiceCntTo(b) AND b.VoiceCntTo(a)}{goal: VoiceCnt(a,b) = a.VoiceCntTo(b) AND b.VoiceCntTo(a)}

Figure 12.2: The UserCall Service as a UML 2.0 Collaboration

by collaboration uses, which correspond to different phases and features of the ser-
vice. It also shows a simple goal expression representing a desired goal state for
the collaboration. Behaviour descriptions can be associated with the collaboration
to precisely define the service behaviour, including precise definitions of the visible
interface behaviour that objects must show in order to participate in the collabora-
tion. Collaborations thereby provide a mechanism to define semantic interfaces that
can be used for service discovery and to ensure compatibility with respect to safety
and liveness (i.e. reaching the desired goal states) when linking service components,
as we discuss in [SBvBA05].

Ideally, service models should be independent of particular system structures.
It can be argued, however, that it is necessary and beneficial to take a minimum
of architectural aspects into account [Zav03]. The challenge is to do this at an
abstraction level that fits the nature of the services without unduly binding design
solutions and implementations. In our architecture (see Fig. 12.1) the horizontal axis
represents the agent structure and the vertical axis represents the services modelled
as collaborations with roles that are bound to agents. The service-independent agent
structure is therefore instrumental, since it helps to identify and shape roles, without
introducing undue bindings to implementation details. At the same time it provides
an architectural framework for role composition, role binding and role execution.

In this service oriented architecture, service specific behaviour is the responsibil-
ity of (service-) roles while domain specific behaviour and policies are the responsi-
bility of agents. Interactions between roles and agents are needed primarily in the
process of creating and releasing dynamic links, that is, the process of dynamic role
binding.

Roles need to be mapped to well defined service components, which can then be
deployed and composed in agents to provide (new) services without causing safety
or liveness problems. We do this by defining service components as UML active
classes with behaviour defined by state machines. Note that service components may
implement one or more UML collaboration roles composed by means of collaboration
uses, as it is roughly illustrated in Figs. 12.2 and 12.4. Each of these collaboration

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 279

roles will correspond to a different service or service feature. We assume that service
components are typed with semantic interfaces with well defined feature sets. This
information is exploited when service components are dynamically linked within a
service collaboration in order to ensure their compatibility in terms of safety and
liveness criteria, as explained in [SBvBA05]. In addition, it is necessary to ensure
that the service components can actually be bound to the intended agents. Their
feature sets may also be restricted and dynamically selected during the binding
process. These aspects will be discussed in the following sections.

Note that, for the sake of simplicity, in the rest of the paper we will use the word
role to name service components.

12.2.3 Dynamic Role Binding

Dynamic Role binding has three distinct phases:

a) Agent identification, which aims at identifying an agent by consulting a name-
server or performing a service discovery. Some service features are related to
the agent identification, e.g. aliasing, business domain restrictions or originat-
ing and terminating screening features in telephony.

b) Role request, which aims at creating a dynamic link according to a semantic
interface with an agreed feature set. This means to request the agent identified
in phase 1 to play a role with a certain feature set, which can be negotiated.
The role with the agreed feature set is finally invoked. The role request pattern
[BHM02] described in Fig. 12.3 provides one partial solution to this. Using
this protocol any role can request an agent to play a complimentary role. If the
agent is able to play the requested role, it invokes it and a link is dynamically
established between the requesting and the requested roles, so that they can
collaborate. This is illustrated in Fig. 12.2, where a UserAgent is requested
(invited) to play the b role in a UserCall collaboration. The response of
the UserAgent in this case is to enable one of three features, represented as
collaboration uses: Calling, Busy or Unavailable.

c) Role release, which signals that a role is finished and has released whatever
resources it had occupied.

Once a role is invoked it can proceed autonomously, until it reaches a state where
interaction with agents is again required for one of the following reasons:

• it needs to bring a new role into the collaboration (i.e. create another dynamic
link). In this case it first needs to identify the agent that should play the role
and then initiate a role request to this agent, as explained above;

• it needs to check what feature or feature set to select at a certain point in its
behaviour, if this depend on agent policy (e.g. if mid-call telephony services
are allowed);

280 CHAPTER 12. PAPER 7

requester invoked

requested

RoleRequest
sd RoleRequest

requester requested

RoleReq

RoleDeniedalt

fail

RoleConfirm

invoked

RolePlay

<< create >>

goal: playing

{goal: playing}{goal: playing} sd Role Requestsd Role Request

Figure 12.3: Role Request Pattern

• it needs to signal to its own agent that it is available for additional linking, in
response to an incoming role request (e.g. to perform a call waiting feature);
or

• it is finished and performs role release.

Note that all cases except the second are related to dynamic role binding. Also
note that a large proportion of features are discovered, selected and initiated in
connection with dynamic role binding.

12.3 Governing Service Execution with Policies

Dynamic role binding is clearly a very central mechanism in service execution. As we
have already pointed out, associated with dynamic role binding are such key issues
as: service discovery, feature negotiation and selection, context dependency res-
olution, compatibility validation and feature interaction detection/avoidance. The
challenge is to find general, scalable and adaptable ways of dealing with those issues.

In general a role can only be bound to an agent without undesired side-effects
if certain (pre-/post-) conditions hold. By explicitly expressing these conditions as
constraints, we may check them upon role-binding and only allow the role to be
invoked if they are satisfied. It is also important to give users the possibility to
express their preferences to control the selection of features when, for example, the
requested service can not be delivered. In the following we will use the term policy
to cover both general role binding constraints and user preferences. In doing that we
adhere to the usual definition of policy that can be found in the computer-science
literature: a rule or information that modifies or defines a choice in the behavior of
a system [LS99].

The agent architecture discussed in the previous section provides a natural way
to structure policies into three groups:

• Role-binding policies, which constrain the binding of roles to agents at run-
time.

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 281

• Collaboration policies, which express constraints that must hold for a collabo-
ration (i.e. a service) as a whole when it is executed. They aim at preventing
actions that may compromise the intentions and goals of the collaboration.

• Feature-selection policies, which control the triggering of context-dependent
service features.

We will take a closer look at each of these policies in the following.

12.3.1 Role-binding and Collaboration Policies

Role-binding policies represent conditions that must be satisfied for a role to be
bound to an agent. These policies may be associated with agent types, so they shall
hold for all instances of that type, or they may be defined for specific agent instances
(usually describing user preferences and/or user permissions). Finally, role-binding
policies may also be associated with role types and they shall hold for all instances
of that role type.

The role-binding policies associated with a role type define constraints that the
role imposes on any agent it may be bound to and, thereby, indirectly on system
resources. For example, the role-binding policy of a role may require that role to
be bound to a TerminalAgent representing a specific terminal type with specific
capabilities (e.g. a PDA).

The role-binding policies associated with an agent represent, on the contrary,
constraints that the agent imposes on the roles it can play. When these policies are
associated with an agent type, they represent constraints on the type and multiplicity
of the roles that can be bound to the agent, as well as other constraints imposed
by the service provider (e.g. that the user must hold a valid subscription to play
a certain role). When they are associated with a particular agent instance, they
represent user preferences and/or user permissions specifying when that particular
agent should or should not play a certain role. These preferences/permissions can
be seen to express context dependency (e.g. on location, calendar, presence or
availability). For example, a user may define a role-binding policy for her UserAgent
to express that it should only participate in a UserCall service, playing the callee

role, if the invitation was received between 8 am and 11 pm.
Collaboration policies express constraints that must hold for a collaboration (i.e.

a service) as a whole when it occurs. We may associate collaboration policies with a
UML collaboration, so that they shall hold for all occurrences of that collaboration.
For instance, a collaboration policy may be associated with a conference-call col-
laboration to prohibit the agent playing the conference-controller role to temporally
interrupt its participation in the service. This policy would specifically prohibit the
conference-controller role to invoke the hold feature. Agent instances may also hold
specialised collaboration policies that, in this case, shall only be satisfied for those
occurrences of the collaboration where the agent participates. These policies may
then represent user preferences. An important use of such user-defined collaboration
policies is to constrain who participates in a service session. For personal communi-
cation services the identity of the agents participating in a service is important (e.g.

282 CHAPTER 12. PAPER 7

a calling user wants a specific user’s UserAgent to play the b role - see Fig. 12.2).
It is not only important who must be invited to a service, but also who cannot be
invited. Some users may not want to talk to certain people, or they may not like, for
example, to talk to a machine. We can easily solve this problem using collaboration
policies by constraining the type and/or id of agents that can participate in a service
session, as well as the roles they can play. For instance, if a user does not want to be
redirected to an automatic-response machine, she may define a collaboration policy
for the UserCall service constraining the participation of IVRAgents1. This policy
would be held by her UserAgent, thus only affecting UserCall services in which she
may participate.

Role-binding and collaboration policies are checked upon a role request by both
the requester and the requested agents. The requester agent checks the collab-
oration policies associated to the service being (or to be) executed before the role
request is sent. This is done to confirm that inviting the requested agent would
not violate those policies (e.g. that a UserAgent representing an undesired user
would not be invited when performing a forwarding). At the reception of the role
request, the requested agent checks first the collaboration policies for conformance
on joining the collaboration (e.g. to ensure that all other participating agents are
welcome). Thereafter, it checks the role-binding policies concerning the requested
role, which is only bound if those policies are satisfied.

Policies defined for a collaboration (and its roles) are “inherited“ when that col-
laboration is employed, as a collaboration use, in the specification of other collabora-
tions. Therefore, when a collaboration is bound to a set of agents for its execution,
all policies defined for the collaboration itself and for its sub-collaborations must
hold. This is illustrated in Fig. 12.4. The upper part shows a collaboration speci-
fying a FullCall service. This service is a collaboration between four roles and it
is composed from the UserCall service described in Fig. 12.2 and two uses of a
TermCall service, which specifies the collaboration between UserAgents and Ter-

minalAgents. Policies have been defined for each of the roles and collaboration uses
in FullCall (P2-P8). In addition a policy (P1) has been defined for the FullCall

collaboration as a whole. The lower part of the figure illustrates a set of UserAgents
and TerminalAgents, representing users and terminals, performing the FullCall

service. It is important to note that for this collaboration use (i.e. fcx:FullCall)
all and each of the policies defined for the FullCall collaboration must hold. This
is indicated by the annotation P1+P2+...+P8. Moreover, each agent holds a set of
role-binding, collaboration and feature selection policies, called P10-P13 in the fig-
ure, that also must hold in the execution of fcx:FullCall. Therefore, if for example
at:TermCaller had some collaboration policy that would not hold when inviting
bt:TermCallee, fcx:FullCall could not be completed.

12.3.2 Feature Selection Policies

A feature can be defined as a unit of functionality in a base service. In general,
we can differentiate two types of features, depending on how they are selected and

1IVR stands for Interactive Voice Response machine

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 283

FullCall

bt:Term
Callee

at:Term
Caller

au:User
Caller

bu:User
Callee

uc:UserCallo:TermCall t:TermCall

P1

P2 P3 P4 P5 P6 P7 P8

bt:Term
Callee

at:Term
Caller

au:User
Caller

bu:User
Callee

fcx:FullCall

P1+P2+...+P8

at:Term
Agent

au:User
Agent

bu:User
Agent

bt:Term
Agent

P12P11P10 P13

collaborations

agents

FullCall

bt:Term
Callee

at:Term
Caller

au:User
Caller

bu:User
Callee

uc:UserCallo:TermCall t:TermCall

P1

P2 P3 P4 P5 P6 P7 P8

bt:Term
Callee

at:Term
Caller

au:User
Caller

bu:User
Callee

fcx:FullCall

P1+P2+...+P8

at:Term
Agent
at:Term
Agent

au:User
Agent
au:User
Agent

bu:User
Agent
bu:User
Agent

bt:Term
Agent
bt:Term
Agent

P12P11P10 P13

collaborations

agents

Figure 12.4: Role Binding

triggered:

• features that are triggered within a role as part of its behaviour (e.g. call-
transfer)

• features that are triggered upon role-binding depending on the agent’s context
and policy (e.g. call-forward on busy subscriber)

We refer to the first type of features as mid-role-triggered (or just mid-role), and to
the second as role-binding-triggered. Mid-role-triggered features are selected as part
of the role behaviour. If they may be disabled by policy decisions this should be
agreed during a negotiation phase before the role is bound. Alternatively, the role
may consult its containing agent concerning actual policies before invoking mid-role
features. One example of such a feature is call-forward on no-answer. It describes
an alternative behavior to the UserCall service and it is triggered when the latter
does not achieve its goal (i.e. contacting the end-user).

Role-binding-triggered feature selection occurs when an agent receives a role
request. In that case the agent (1) checks its feature selection policies to determine
if, in the current context, there is an alternative feature to be selected, without even
trying to invoke the requested role. This may be the case if the following feature
selection policy existed: “when the b role is requested in a UserCall and the (called)
user is not at home, always select call-forward instead”. This checking returns either
the requested role (if no feature selection policy was satisfied) or an alternative one.
The selected role is then target (2) for checking the collaboration and role binding
policies to decide whether it may be actually invoked. If yes, a confirmation message
is sent back to the requesting role. Note that if the role that is finally selected to
be invoked is not the originally requested one, the confirmation message may be

284 CHAPTER 12. PAPER 7

replaced by a negotiation phase (not shown in Fig. 12.3). If otherwise collaboration
and/or role binding policies are not satisfied, (3) a search is again performed for
a substitute role that may be invoked, and, if found, the process is repeated from
(2), until a role with specific features is agreed and invoked. In addition, if an
invoked role does not achieve its goal during the service execution, a search for an
alternative role, implementing a mid-role-triggered feature, can be made once more
(e.g. to invoke call-forward on no-answer).

From the above explanation three generic events can be distinguished that trigger
the selection of features describing alternative behavior. These events are:

• OnRoleRequest,

• OnUnsuccessfulRoleBinding, and

• OnNonAchievedGoal event.

Feature selection policies can then be defined, by for example end-users, as event-
condition-action (ECA) rules, where the event is one of the three just mentioned,
the condition is expressed in terms of the context and the action is the selection of
a feature.

Note that up to now we have just talked about the use of feature selection policies
to select features of a base service. However their potential is actually greater than
that. There is nothing that prevents us from using feature selection policies to
specify any service as an alternative to another one. That is, we may specify which
event and condition leads to the substitution of a role X for a role Y, where roles X
and Y are not necessarily related. In this case, the role at the requesting side must
most likely be also substituted. A negotiation between the parties would then be
necessary.

The use of policies for service-execution management and personalization is not
novel. For example, the Call Processing Language (CPL) [LWS04] is used to describe
and control Internet telephony services. With CPL users can themselves specify
their preferences for service execution. Reiff-Marganiec and Turner [RMT03] also
propose the use of policies to enhance and control call-related features. The novelty
of our work lies in the structuring of policies we make, based on the proposed service
architecture.

12.4 Conclusion

We have presented a two-dimensional service oriented architecture where service
components are roles defined using UML 2.0 collaborations and system components
are agents representing domain entities such as users and terminals. Service modu-
larity is achieved by the separation of service components from system components,
and by general policy-driven mechanisms for dynamic role binding that handle con-
text dependency, personalisation, resource limitations and compatibility validation.
Central parts of this architecture, such as the role request pattern and a simple
form of XML-based role-binding policy, have been implemented in ServiceFrame

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 285

[BHM02] and have been used to develop numerous demonstrator services within
the Program for Advanced Telecommunication Services (PATS) research program
[PAT], which is a cooperation between the Norwegian University of Science and
Technology (NTNU), Ericsson, Telenor and Compaq (now Hewlett-Packard). These
experiments have confirmed that dynamic role binding is central not only to tra-
ditional telecom services, but also to a wide range of convergent services, and that
explicit support for role-binding helps to manage the complexity of such services.
The use of more advanced role-binding policies specified as BeanShell [Nie97] scripts
has also been studied in [Stø03]. At the time of writing this paper, ServiceFrame has
been extended with support for java-based role-binding, collaboration and feature
selection policies that can be specified by both end-users and service providers to
handle context dependency [Pha05].

An interesting problem that has not been treated is undesirable interactions
between two or more roles simultaneously played by an agent in different services.
This is known as the feature interaction problem. We believe that our policy-driven
mechanisms for dynamic role binding can help to avoid such interactions, if the agent
maintains the consistency between the policies imposed in different services. We are
also investigating in this direction.

Acknowledgements

We wish to thank NTNU and the ARTS project for partial funding this work. G.
Melby and K.E. Husa at Ericsson have been extremely valuable through numerous
discussions and by implementing the core of the architecture. We are also grateful
to the many MSc students that have contributed by making services using these
principles and by proposing and prototyping role binding mechanisms. Finally we
appreciate all the input from our close colleagues J. Floch, R. T. Sanders, F. Krämer
and H. Samset.

References

[AKGM00] Magdi Amer, Ahmed Karmouch, Tom Gray, and Serge Mankovski.
Feature-interaction resolution using fuzzy policies. In Feature Interac-
tions in Telecommunications and Software Systems VI, pages 94–112,
Glasgow, Scotland, UK, 2000.

[BCS00] F. Bordeleau, J. P. Corriveau, and B. Selic. A scenario-based approach
to hierarchical state machine design. In ISORC ’00: Proceedings of
the Third IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, page 78. IEEE Computer Society, 2000.

[BF04] Rolv Bræk and Jacqueline Floch. ICT convergence: Modeling issues.
In Daniel Amyot and Alan W. Williams, editors, System Analysis and
Modeling (SAM), 4th International SDL and MSC Workshop, volume
3319 of LNCS, pages 237–256, Ottawa, Canada, 2004. Springer.

286 CHAPTER 12. PAPER 7

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems. An
object-oriented methodology using SDL. Prentice Hall, 1993.

[BHM02] Rolv Bræk, Knut Eilif Husa, and Geir Melby. Service-
Frame: WhitePaper. White paper, Ericsson Norarc, 2002.
http://www.pats.no/devzone/platforms/ServiceFrame/doc/ Ser-
viceFrameWhitepaperv8.pdf.

[Bræ99] Rolv Bræk. Using roles with types and objects for service development.
In IFIP TC6 WG6.7 Fifth International Conference on Intelligence in
Networks (SMARTNET), volume 160 of IFIP Conference Proceedings,
pages 265–278, Pathumthani, Thailand, 1999. Kluwer.

[Cas05] Humberto N. Castejón. Synthesizing state-machine behaviour from
UML collaborations and use case maps. In Andreas Prinz, Rick Reed,
and Jeanne Reed, editors, Proc. 12th SDL Forum, volume 3530 of LNCS,
pages 339–359, Grimstad, Norway, June 2005. Springer.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and Vali-
dation using Roles. PhD thesis, Department of Telematics, Norwegain
Univ. Science and Technology, Trondheim, Norway, February 2003.

[KGM+04] Ingolf H. Krüger, Diwaker Gupta, Reena Mathew, Praveen Moorthy,
Walter Phillips, Sabine Rittmann, and Jaswinder Ahluwalia. Towards a
process and tool-chain for service-oriented automotive software engineer-
ing. In Proceedings of the ICSE 2004 Workshop on Software Engineering
for Automotive Systems (SEAS), 2004.

[LS99] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed
systems management. IEEE Trans. Softw. Eng., 25(6):852–869, 1999.

[LWS04] J. Lennox, X. Wu, and H. Schulzrinne. Call processing language (CPL):
A language for user control of internet telephony services. RFC 3880,
IETF, October 2004.

[Nie97] P. Niemeyer. Beanshell - lightweight scripting for java.
http://www.beanshell.org/, 1997.

[OMG05] Object Management Group (OMG). UML 2.0 Superstructure Spec., July
2005.

[PAT] Program for Advanced Telecom Services (PATS). http://www.pats.no.

[Pha05] Quoc Tuan Pham. Policy-based service personalization. Master’s thesis,
Dept. of Telematics, Norwegian University of Science and Technology
(NTNU), 2005.

[RMT03] Stephan Reiff-Marganiec and Kenneth J. Turner. A policy architec-
ture for enhancing and controlling features. In Feature Interactions in

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 287

Telecommunications and Software Systems VII, pages 239–246, Ottawa,
Canada, 2003.

[SBvBA05] Richard Torbjørn Sanders, Rolv Bræk, Gregor von Bochmann, and
Daniel Amyot. Service discovery and component reuse with semantic
interfaces. In Proc. 12th SDL Forum, volume 3530 of LNCS, Grimstad,
Norway, June 2005. Springer.

[SCKB05] Richard Torbjørn Sanders, Humberto N. Castejón, Frank Alexander
Kraemer, and Rolv Bræk. Using UML 2.0 collaborations for composi-
tional service specification. In Lionel Briand and Clay Williams, editors,
ACM/IEEE 8th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), volume 3713 of LNCS, pages
460–475, Montego Bay, Jamaica, October 2005. Springer-Verlag.

[Stø03] Alf Kristian Støyle. Flexible user agent. Technical report, Dept. of
Telematics, Norwegian University of Science and Technology (NTNU),
2003.

[Zav03] Pamela Zave. Feature disambiguation. In Feature Interactions in
Telecommunications and Software Systems VII, pages 3–9, Ottawa,
Canada, 2003.

[ZWO+95] Israel Zibman, Carl Woolf, Peter O’Reilly, Larry Strickland, David
Willis, and John Visser. Minimizing feature interactions: An architec-
ture and processing model approach. In Feature Interactions in Telecom-
munications III, pages 65–83, Kyoto, Japan, 1995.

Part III

Appendices

A

Synthesis of Role State Machines

In Paper 1 we presented an algorithm for the synthesis of role state machines from
a Use Case Maps-based choreography. The state machines generated were flat and
interruption composition was not supported. Here we present a new algorithm
for the synthesis of role state machines from activity diagram-based choreography
graphs. The five types of composition discussed in Section 2.2, namely sequential,
parallel, alternative, invocation and interruption composition, are supported. The
algorithm generates hierarchical state machines.

The formal syntax and semantics of choreography graphs were presented in Paper
6. To help with the understanding of the synthesis algorithm we reproduce here their
syntax definition.

Definition A.1 (Choreography). A choreography of the sub-collaborations of a
collaboration C is a directed graph defined by the tuple CH = (V,E ,Rint,↘ch,ge,
mexp−a,RCH,AC,ma−ac,mp−a, pin, lpred, ptype) where

a) V is a set of nodes. It is partitioned into an initial node (v0) and sub-sets
of activities (VA), input pins (VInP), output pins (VOutP), control flow nodes
(VFLOW), accept event actions (VEA) and final nodes (VFI). In turn, VFLOW is
partitioned into decision (VD), merge (VM), fork (VF) and join (VJ) nodes.

b) E ⊆ (VOutP∪VFLOW∪VEA∪{v0})×(VInP∪VFI∪VEA∪VFLOW) is a set of directed
edges between nodes, which is partitioned into normal edges (En) and inter-
rupting edges (Eint).

c) Rint is a set of interruptible regions (i.e. regions containing nodes that can be
interrupted).

d) ↘ch⊆Rint×(Rint∪V) is a hierarchy relation among interruptible regions and
nodes. We write reg ↘ x if x is a node or an interruptible region that is directly
contained by the interruptible region reg .

e) ge is a guard function for edges. It is defined from En into boolean expressions.

f) RCH = {(id, type) : type ∈ RC} is a set of role instances, with RC being the set
of roles of collaboration C.

g) AC is a set of active collaborations, that is, a collaboration-use representing a
specific occurrence of one of C’s sub-collaborations. For each (id, type,B) ∈

291

292 CHAPTER A. PAPER 7

AC, id is the name of the collaboration-use; type is the name of the col-
laboration that actually describes the collaboration-use (i.e. one of C’s sub-
collaborations); and B ⊆ Rtype×RCH is a set of role bindings, where Rtype is the
set of roles of the sub-collaboration named type.

h) ma−ac : VA → AC is a non-injective function that for a given activity returns its
associated active collaboration.

i) mp−a : VInP ∪VOutP →VA is a function mapping input and output pins to activ-
ities, and pin : VA → P(VInP ∪VOutP) is a function that returns the set of pins
attached to a given activity.

j) lpred : VInP∪VOutP → Pre is an injective function labeling each input and output
pin of an activity with a state predicate of the activity’s active collaboration.

k) ptype :VInP∪VOutP →{START ,END ,INVOCATION ,RESUMPTION } is a func-
tion that classifies pins as either starting, end-of-execution, invocation or re-
sumption ones.

We require proper nesting of fork and join nodes in the choreography graph.
That is, all outgoing edges of a fork node should eventually lead to the same join
node, and all incoming edges of a join node should come from the same fork node.
We also assume that invocation, resumption and end pins are always labeled with a
predicate.

The state machines generated by the proposed algorithm are hierarchical finite
state machines, which we define as follows.

Definition A.2. A hierarchical finite state machine is a tuple HFSM = (Q,R,↘
,T,G,A,δ ,q0,J), where

• Q is a finite set of states, which is partitioned into simple states (Qsim), com-
posite states (Qcomp), junction pseudostates (Qjun), fork pseudostates (Qfork),
join pseudostates (Qjoin), initial pseudostates (Qinit) and final pseudostates
(Qend)

• R is a set of regions

• ↘⊆ (Qcomp ×R)∪ (R ×Q) is a hierarchy relation among regions and states.
We write qcomp ↘ reg if reg is a region of the composite state qcomp, and
reg ↘ q if the state q is directly contained by the region reg .

• T is a set of event triggers (e.g. message receptions)

• G is a set of guard conditions (i.e. boolean expressions)

• A is a set of actions, such as the sending of a message or a variable assignment

• δ ⊆ Q×T ×G×A×Q is a set of transitions between states. A transition is
fired when its triggering event is observed and its guard condition (if any)
evaluates as true. After firing, the associated action (if any) is executed. If a

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 293

triggering event is not specified, the transition fires when the guard condition
is true. If neither a triggering event nor a guard are specified, the transition
may fire spontaneously.

• q0 ∈ Q is the so-called initial state, but not necessarily a UML initial pseudo-
state

• J ⊆ Q is a set of connecting states, which are special purpose states used to
composed together state machines

In certain cases it is useful to obtain the parent of a region or state, that is, the
state or region containing them. For this purpose we define the function parent :
Q∪R → Qcomp∪R, such that

parent(x) =

⎧⎨
⎩

reg ∈ R, if x ∈ Q∧ reg ↘ x
q ∈ Qcomp, if x ∈ R ∧q ↘ x
null , if x ∈ Qtop

In the definition of the parent function, Qtop is the set of all top-level states,
where a top-level state is defined as follows.

Definition A.3. A top-level state q is a state that is not contained by any region
(i.e. � ∃reg ∈ R, such that reg ↘ q).

In the following we present and explain the synthesis algorithm. We discuss first
the synthesis of state machines from UML sequence diagrams, before addressing the
synthesis from choreography graphs.

A.1 Synthesis from UML 2 Sequence Diagrams

Basic sequence diagrams can be composed to obtain more complex behaviors. In
UML 2 this is possible by means of interaction operators. We consider four opera-
tors: seq (for weak sequential composition), alt (for alternative composition), par
(for parallel composition) and loop (for iterative composition). The weak sequential
composition of two sequence diagrams consists in their lifeline-by-lifeline concatena-
tion, such that for each instance, the events of the first diagram precede the events
of the second diagram. Events on different lifelines are interleaved. In the parallel
composition of two sequence diagrams their events are interleaved. The alternative
composition of two sequence diagrams describes a choice between them, such that
in any run of the system events will be ordered according to only one of the dia-
grams. That is, alternative composition introduces alternative orderings of events.
The semantics of an alternative composition of basic sequence diagrams is therefore
defined by a set of posets. The iterative composition of a sequence diagram can be
seen as the weak sequential composition of a number of instances of that sequence
diagram.

The syntax of a composite sequence diagram (SD) is defined by the following
BNF-grammar:

SD
de f
= bSD | (SD1 seqSD2) | (SD1 altSD2) | (SD1 parSD2) | loop(min,max)SD1

294 CHAPTER A. PAPER 7

q01

?m1

q1

q2

qp11

qp12

p11:=true

p12:=true

!m2

C1

C1

Figure A.1: Mapping of an activity into an HFSM

The bSDToHFSM procedure (on page 298) generates a state machine for a given
role p from a basic sequence diagram bSD. The synthesis of the state machine is
based on the projection of the sequence diagram events on the lifeline of the role.
The result of the projection is a totally ordered set of events π(bSD , p) = (E,<),
where loc(e) = p for each e ∈ E, and < is a restriction of the visual order of bSD to
the events in E. The set E is partitioned as usual into sending events (S), receiving
events (R) and predicate events (Φ). Instead of working with the total order, the
procedure obtains its linearization.

Definition A.4. A linearization of a poset (E,<) is a word w = e1 · · · · ·e|E| over the

alphabet E, such that if ei < e j then i < j. We let wi denote the ith element of w,
and |w| denote the size of w (i.e. its number of elements).

If the role does not participate in the sequence diagram, the so-called empty state
machine SM /0 = (/0, /0, /0, /0, /0, /0, /0, /0, /0) is returned. Otherwise a flat state machine is
returned that consists of a sequence of states. The transitions between those states
are labeled with either an event trigger corresponding to the reception of a message,
an action describing the sending of a message, or a local action where a boolean
predicate is set to true.

The SDToHFSM procedure (on page 297) generates a state machine for a given
role p from a composite sequence diagram SD. This state machine consists of a
composite state with a single region that contains the state machine-based behavior
of p in SD (see Fig. A.1). The composite state is given as id the the id of the activity
v whose behavior is described by SD. This way we can later on easily retrieve the
state machine corresponding to the behavior of p in an activity. The hfsm function
is used to obtain the actual state machine for role p from the sequence diagram (line
6). This is a recursive function defined as follows:

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 295

hfsm(SD, p)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bSDToHFSM (SD, p), if SD := bSD
hfsm(SD1, p) ·hfsm(SD2, p), if SD := SD1 seq SD2
hfsm(SD1, p)∪hfsm(SD2, p), if SD := SD1 alt SD2
parToHFSM (SD1,SD2, p), if SD := SD1 par SD2
hfsm(SD1, p)∗, if SD := loop(0,m)SD1,m > 0
hfsm(SD1, p) ·hfsm(SD1, p)∗, if SD := loop(n,m)SD1,1 ≤ n ≤ m

The hfsm function uses three operators to compose state machines: the con-
catenation operator (·), for sequential composition; the union operator (∪), for al-
ternative composition; and the Kleene closure operator (∗), for iteration. These
operators are similar to those presented in [ZHJ04]. The hfsm function also uses
the parToHFSM procedure to compose state machines in parallel, and the bSDTo-
HFSM procedure to obtain the state machine of basic sequence diagrams. We define
the composition operators and explain the parToHFSM procedure in the following.
Before that, let us explain the mapping into state machines of sequence diagrams
describing loops. For this mapping, we abstract away from the actual number of
iterations specified by the loop. If the minimum number of iterations is zero, a state
machine is generated where the behavior described by the sequence diagram may be
executed zero or more times (line 5 in the definition of hfsm). Otherwise, if the min-
imum number of iterations is greater than zero, a state machine is generated where
the behavior described by the sequence diagram will be executed at least once (line
6 in the definition of hfsm).

Let SM1 = (Q1,R1,↘1,T1,G1,A1,δ1,q01,J1) and SM2 = (Q2,R2,↘2,T2,G2,A2,δ2,
q02,J2) be two hierarchical finite state machines with disjoint sets of states. We define
the composition operators used by the hfsm function as follows.

Concatenation. For the concatenation of two state machines SM1 and SM2,
we proceed as follows. If the initial state of SM2 is a fork pseudostate, we just
add a silent transition from the connecting states of SM1 (i.e. J1) to the fork state.
Otherwise, for each output transition with label (e,g,a) from the initial state of SM2,
new transitions are added with the same label (e,g,a) from the connecting states of
SM1 to the successors of the initial state of SM2. Then, if the initial state of SM2 is
not a connecting state, it is removed, together with its output transitions (see Fig.
A.2(a)). Otherwise, if the initial state of SM2 is a connecting state, nothing else is
done (see Fig. A.2(b)). More formally, the concatenation SM1 · SM2 of two state
machines SM1 and SM2 is a state machine SM such that:

• SM = SM1, if SM2 = SM/0

• SM = SM2, if SM1 = SM/0

• Otherwise, SM =(Q,R1∪R2,↘1 ∪↘2,T1∪T2,G1∪G2,A1∪A2,δ ,q01,J2), where

– If q02 is a fork pseudostate,

Q = Q1 ∪Q2, δ = δ1 ∪δ2 ∪{(q1, /0, true, /0,q02) : q1 ∈ J1}

296 CHAPTER A. PAPER 7

=

c

q01
a

q1 q2
b

q02

c

b

q01
a

q1 q2
b

q02seq

(a)

(b)

(c)

(d)

= q01
a

q1
b

q2q01
a

q1 q02
b q2seq

loop[0,...]() = q1
a

q01

b

q01
a

q1
b

q2

=q01
a

q1 q02
b q2par

q01
a

q1

q02
b q2

Figure A.2: Composition of state machines

– Otherwise,

Q =
{

Q1 ∪Q2, if q02 ∈ J2
Q1 ∪Q2 −{q02}, otherwise

δ = δ1 ∪ (δ2 ∩ (Q×T2 ×G2 ×A2 ×Q))∪
{(q1,e,g,a,q2) ∈ J1 ×T2 ×G2 ×A2 ×Q2 : (q02,e,g,a,q2) ∈ δ2}

Union. For the union of two state machines, a new initial state is created and
concatenated with each of the state machines. More formally, the union SM1 ∪SM2
of two state machines SM1 and SM2 is a state machine SM, such that:

• SM = SM1, if SM2 = SM/0

• SM = SM2, if SM1 = SM/0

• Otherwise, we let SM 0 = ({q0}, /0, /0, /0, /0, /0, /0,q0,{q0}) and proceed as follows
to get SM

a) Concatenate SM 0 and SM 1: SM′ = SM 0 ·SM 1

b) Set the connecting states of SM′ to {q0} (i.e. J′ = {q0}) and concatenate
the new SM ′ with SM 2: SM′′ = SM ′ ·SM 2

c) Set the connecting states of SM′′ to J1∪J2 (i.e. J′′ = J1∪J2) to obtain SM

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 297

Kleene closure. For the Kleene closure of a state machine, the initial state
is also made a connecting state. If one of the original connecting state is a join
pseudostate (i.e. it belongs to Qjoin), a silent transition is added from the join state
to the initial state. Otherwise, the original connecting states are removed, and their
input transitions are connected to the initial state (see Fig. A.2(c)). More formally,
the Kleene closure SM∗

1 of a state machine SM1 is a state machine SM such that:

• SM = SM1, if SM1 = SM/0

• Otherwise, SM = (Q,R1,↘1,T1,G1,A1,δ ,q01,{q01}), where

Q = Q1 −{q ∈ J1 : q �∈ Qjoin}∪{q01}
δ = δ1 ∪{(q,e,g,a,q01) : (q,e,g,a,qj) ∈ δ1,qj ∈ J1,q j �∈ Qjoin}∪

{(q1, /0, true, /0,q01) : q1 ∈ J1 ∩Qjoin}

The parToHFSM procedure (on page 298) generates a hierarchical state machine
HFSM. For each of the input sequence diagrams, it obtains a state machine for role
p (line 8) and copies the states, transitions and other elements of the state machine
into the final HFSM (line 13). It also creates a composite state with two orthogonal
regions and places each of the obtained state machines in one of the regions. In
addition, it creates a fork pseudostate and adds silent transitions from it to the
initial states of the state machines. It also creates a join pseudostate and adds silent
transitions from the connecting states of each state machine to the join pseudostate
(see Fig. A.2(d)).

Procedure SDToHFSM(v,SD, p)
qv ← newCompositeState(v)1

Q ←{qv}; R ← /0; ↘← /0; T ← /0; G ←{true}; A ← /0; δ ← /0; J ← /02

reg ← newRegion()3

R ← R ∪{reg}4

↘←{(qv,reg)} // Add region to composite state5

SM ← hfsm(SD, p)6

foreach top-level state q of SM do7

↘←↘∪{(reg ,q)} // Add state to region8

Update Q,R,↘,T,G,A,δ ,J with elements from SM9

return (Q,R,↘,T,G,A,δ ,SM.q0,J)10

298 CHAPTER A. PAPER 7

Procedure bSDToHFSM(bSD, p)
w ← linearization(π(bSD , p))1

if |w| = 0 then2

/* p does not participate in bSD */
return SM /03

q0 ← newState()4

currState ← q05

Q ←{q0}; T ← /0; G ← /0; A ← /0; δ ← /06

foreach i ∈ {1 . . . |w|} do7

qwi ← newState(wi); Q ← Q∪{qwi}8

if wi ∈ R then9

T ← T ∪{?m : lbl(wi) = 〈?m, p1, p2〉}10

δ ← δ ∪{(currState,?m, true, /0,qwi) : lbl(wi) = 〈?m, p1, p2〉}11

else if wi ∈ S then12

A ← A∪{!m : lbl(wi) = 〈!m, p1, p2〉}13

δ ← δ ∪{(currState, /0, true, !m,qwi) : lbl(wi) = 〈!m, p1, p2〉}14

else15

act ← ”pred := true”, where lbl(wi) = pred16

A ← A∪{act}17

δ ← δ ∪{(currState, /0, true,act,qwi)}18

currState ← qwi19

return (Q, /0, /0,T,G,A,δ ,q0,{currState})20

Procedure parToHFSM(SD1,SD2, p)
initForkState ← newForkPseudoState()1

finalJoinState ← newJoinPseudoState()2

enclosingState ← newCompositeState()3

Q ←{initForkState,finalJoinState,enclosingState}; R ← /0; ↘← /0; T ← /0; G ←{true};4

A ← /0; δ ← /0; J ← /0
reg1 ← newRegion(); reg2 ← newRegion()5

R ← R ∪{reg1,reg2}6

↘←{(enclosingState,reg1),(enclosingState,reg2)} // Add regions to composite state7

SM 1 ← hfsm(SD1, p); SM 2 ← hfsm(SD2, p)8

foreach top-level state q of SM1 do9

↘←↘∪{(reg1,q)} // Add state to region10

foreach top-level state q of SM2 do11

↘←↘∪{(reg2,q)}12

Update Q,R,↘,T,G,A,δ with elements from SM1 and SM213

δ ← δ ∪{(initForkState, /0, true, /0,SM1.q0),(initForkState, /0, true, /0,SM2.q0)}14

δ ← δ ∪{(q, /0, true, /0,finalJoinState) : q ∈ SM1.J}∪{(q, /0, true, /0,finalJoinState) : q ∈ SM2.J}15

return (Q,R,↘,T,G,A,δ , initForkState,{finalJoinState})16

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 299

A.2 Synthesis from Choreography Graphs

The GetRoleStateMachine algorithm (on page 303) is used to generate a hierarchical
state machine HFSM for a role p from a choreography graph. Before discussing the
details of that algorithm, let us explain the ChoreographyToHFSM procedure (on
page 304). This procedure traverses the choreography graph using a depth-first
search (DFS) [AHU74] technique and maps the visited nodes into elements of an
HFSM. Normal edges are used to navigate from one node of the choreography to
another node (i.e. interrupting edges are not traversed). A global variable currState
is used to identify the state of the HFSM to which new states should be concatenated.
When an activity is visited, the SDToHFSM procedure is invoked to obtain the
state machine corresponding to that activity’s sequence diagram (line 3), which is
merged into the HFSM being created (line 4). A silent transition is then added
from currState to the initial state of the activity’s state machine (line 5). In case
the activity has invocation pins, the ProcessInvocation procedure (to be explained
later) is invoked to deal with a possible invocation composition. Once this procedure
has finished, one of the successors u of the activity is visited (line 22). The currState
variable is then updated to point to the state named with the predicate that labels
the end-of-execution pin of the just processed activity that leads to u 25. Merge and
final nodes in the choreography are mapped into junction and final pseudostates in
the HFSM (lines 7-11). Decision nodes in the choreography are not mapped into
any pseudostate in the HFSM. Instead, the presence of a decision node will cause
currState (at the time of visiting the decision node) to be the same for all the
successor nodes of the decision node. When a fork node is visited, the ForkToHFSM
procedure (to be explained later) is invoked (line 18) to obtain a state machine
corresponding to the behavior of role p in all the nodes contained between the fork
and its companion join node. That state machine is merged into the HFSM being
created (line 19) and a silent transition is added from currState to the initial state
of the state machine (line 20). The traversal of the graph continues then from the
fork’s companion join. The global variable vjoin points to that join node1. This
variable is updated when a join node is visited, which should happen during the
execution of the ForkToHFSM procedure, as we will see.

The ForkToHFSM procedure (on page 305) follows the same principles as the
parToHFSM procedure described in the previous section. The parToHFSM proce-
dure uses the hfsm function to obtain the state machines to be composed in parallel.
Instead, the ForkToHFSM procedure repeatedly invokes the ChoreographyToHFSM
procedure to obtain state machines for each of each branches (lines 5-14). Figure
A.3 illustrates the mapping performed by the ForkToHFSM procedure.

The ProcessInvocation procedure (on page 306) is used to deal with invocation
compositions (see e.g. Fig. A.4(a) and Fig. A.4(b)). A given activity may invoke
several other activities, which in turn may invoke other activities, and so on. Imag-
ine, for example, that an activity v1 invokes two other activities, v2 and v3, and
that v2 invokes in turn an activity v4. The procedure would first process the invo-
cation v1 invv2. Then, by means of a recursive call, it would process the invocation

1This is true as long as forks and join nodes are properly nested.

300 CHAPTER A. PAPER 7

C1 C2

q02
b q2

C2

q01
a

q1

C1

Figure A.3: Illustration of mapping of fork-join pairs into an HFSM

v2 inv v4. And after returning from the recursive call, it would process the invoca-
tion v1 invv3. For a given activity v, the procedure obtains first the set of activities
that v invokes, and removes from that set the activity stored in the alreadyInvoked
variable (initially empty) (lines 1-2). For example, in Fig. A.4(a) the set of invoked
activities for v would be {u}. In this figure, both activities invoke each other, and
this mutual invocation is handled while processing v. That is, the invocation of v
from u is already processed while handling the invocations of v. Therefore, when
ProcessInvocation is recursively invoked (line 26) to process the invocations of u,
alreadyInvoked is set to v. Given one of the invoked activities, u, the procedure
obtains the state machine for that activity and, if it is not the empty state machine,
merges it with the main HFSM being constructed (lines 4 and 6). Now the proce-
dure handles the invocation and resumptions by adding silent transitions between
appropriate states of the two state machines of v and u. We will explain this process
with help of the invocation composition in Fig. A.4(b). In that figure v invokes u
at a point in its execution where predicate p11 holds, and gets suspended. Activity
u executes and returns the control to v, which is resumed at the same point where
it was suspended. Invocations are performed by means of invocation pins, which
are labeled with predicates that should hold at the time of the invocation. These
predicates are represented by states in the state machines (in the following called
“predicate states” or “invocation states”). For example, in Fig. A.4(b), v invokes
u by means of an invocation pin labeled with predicate p11. This predicate is also
labeling one of the states of v’s state machine in Fig. A.4(c). For each invocation
pin there is a companion resumption pin, and both of them are labeled with the
same predicate (see Fig. A.4(b)). This means that resumption should happen at
the same invocation state in the state machine at which the invocation took place.
In practice, a new state is created for resumption (called “resumption state”) in the
following way. For a predicate state qpred , a new state qpred-res is created. Then,
for each transition tr with label l from qpred to a state q, a transition from qpred-res

to q with label l is added, and the original transition tr is removed (see v’s state
machine in Fig. A.4(d)). For each invocation pin invPin of v, the ProcessInvocation
procedure proceeds as follows. It first obtains the pin peerPin1 of u that is connected
to invPin (line 10). The peerPin1 pin might be a start pin or a resumption pin. In
the former case, a silent transition is added from the appropriate invocation state
of v’s state machine to the initial state of u’s state machine (line 12), as shown in

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 301

v
u

p11

p11 p21

p12

p21p12

p13

p22

v u

p11

p11
p12 p21

q01

a

q1

q2

qp12-res

qp12

p11:=true

p12:=true

b

v

q02

a

q3

qp21

p21:=true

u

qp11

q01

a

q1

q2

qp11

qp12

p11:=true

p12:=true

b

v

q02

a

q3

qp21

p21:=true

u

(a) (b)

(c) (d)

Figure A.4: (a) Mutual invocation; (b) Simple invocation; (c) State machines for
each of the activities in (b); (d) State machine resulting from the invocation com-
position in (b)

Fig. A.4(d). If peerPin1 is a resumption pin, an appropriate resumption state is
created in u’s state machine and a silent transition is added from the appropriate
invocation state of v’s state machine to the newly created resumption state in u’s
state machine (lines 14-18). After that, the procedure creates a resumption state in
v’s state machine (line 19-21) and obtains resPin, the companion resumption pin of
invPin (line 22). It then obtains the pin peerPin2 of u that is connected to resPin
(line 23). The peerPin2 pin might be an invocation pin or an end pin. In both cases,
the pins are associated to appropriate predicate states in the state machine. A silent
transition is then added from the appropriate predicate state of u’s state machine
to the appropriate resumption state of v’s state machine (see Fig. A.4(d)).

Now that we have explained the procedures used (directly or indirectly) by the
GetRoleStateMachine algorithm, we can explain its operation. It creates first an
HFSM describing the so-called nominal behavior of p in the choreography (i.e. all
the behavior except the behavior executed due to interruptions). This is done by

302 CHAPTER A. PAPER 7

invoking the ChoreographyToHFSM procedure from the initial node of the choreog-
raphy (lines 1-4). After that, the behaviors executed when an interruption occurs
are added. The whole process is illustrated in Fig. A.5. The process of adding
the interrupting behaviors is as follows. First, a new composite state is created and
added to the final HFSM for each interruptible region in the choreography (lines
5-7). Then, for each accept event action ea in the choreography2, the algorithm
gets the node vint connected to ea via an interrupting edge (line 9). That node
corresponds to the beginning of the interrupting behavior (e.g. activity C3 in Fig.
A.5(a)). The ChoreographyToHFSM procedure is then invoked from vint to obtain
a state machine for the interrupting behavior (line 10), which is merged with the
final HFSM (line 17). If the ChoreographyToHFSM procedure returns a non-empty
set of finalStates, the interrupting behavior is inside a fork-join pair, and should be
placed inside the appropriate orthogonal region of the composite state corresponding
to that fork-join pair. To do that the getRegionForInterruptionBehavior procedure
is used (line 13). This procedure is not detailed here. Instead we explain its main
principles. Using the vjoin global variable (updated inside ChoreographyToHFSM)
we can retrieve the join pseudostate associated to the composite state we are looking
for, and, thereafter, we can retrieve the regions of the composite state itself (follow-
ing the transitions connected to the join pseudostate). Then we need to identify one
region that contains a composite state that corresponds to an activity contained by
the interruptible region containing the accept event action we are dealing with (line
12). At this point we would have a situation as the one depicted in Fig. A.5(b).
We still need to encapsulate the behavior that can be interrupted (i.e. the behavior
corresponding to the activities inside the interruptible region) into the composite
state that was created for the interruptible region (lines 18-21), and add a transition
from that composite state to the beginning of the interrupting behavior (lines 22-26).
The state machine for the choreography in Fig. A.5(a) is shown in Fig. A.5(c).

C3

C1

C4

C5

C2

e
C2

C1

C4

C3

pred

C5

(a) (b) (c)

int

C1

C4

C5

C2

C3

[pred]

int

Figure A.5: (a) Interruption composition; (b) Partial mapping of (a) into an HFSM;
(c) Complete mapping of (a) into an HFSM

2Accept event actions are used to trigger interruptions

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 303

Algorithm 33: GetRoleStateMachine

/* Obtain first the HFSM = (Q,R,↘,T,G,A,δ ,q0,J) for the "nominal" behavior
*/
forall v ∈V do visited[v] = f alse1

(HFSM ,finalStates) ← ChoreographyToHFSM (v0, p,SM /0)2

qinit ← newInitialPseudoState()3

Q ← Q∪{qinit}; δ ← δ ∪{(qinit, /0, true, /0,HFSM .q0)}4

/* Now we obtain and add the "interrupting" behaviors */
foreach interruptible region intReg ∈ Rint do5

qintReg ← newCompositeState(intReg)6

Q ← Q∪{qintReg}7

foreach accept event action ea ∈VEA do8

/* Get the node at the end of the interrupting edge */
vint ← mp-a(startPin), such that (ea,startPin) ∈ Eint9

(SM vint
,finalStates) ← ChoreographyToHFSM (vint, p,SM /0)10

if finalStates �= /0 then11

/* The interrupting behavior ended up at a join node, so it should be
placed inside a region of a composite state. vjoin is a global
variable updated inside ChoreographyToHFSM that points to the last
visited join node. qvjoin is the state corresponding to that node */

intReg ←interruptible region containing ea (i.e. such that intReg ↘ch ea)12

/* Obtain the region of the HFSM where the interrupting behavior
should be placed */
reg ← getRegionForInterruptingBehavior(HFSM ,SM vint

,qvjoin , intReg)13

foreach top-level state q of SMvint do14

↘←↘∪{(reg,q)} // Add state to region15

δ ← δ ∪{(q, /0, true, /0,qvjoin) : q ∈ finalStates}16

Copy elements of SM vint
to HFSM17

/* Place the behavior that can be interrupted inside one of the
composite states previously created */
reg ← newRegion(); R ← R ∪{reg}; ↘←{(qintReg ,reg)}18

Vi ←{x : intReg ↘ch x}19

foreach x ∈Vi do20

↘←↘∪{(reg ,qx)}21

/* Add a transition from composite state to first state of the
interrupting behavior */
if � ∃(invPin,ea) ∈ En, for any invPin ∈VOutP (i.e. ea has no incoming edge) then22

δ ← δ ∪{(qintReg , /0, true, /0,SM vint
.q0)}23

else24

pred ← lpred(invPin), such that (invPin,ea) ∈ En25

δ ← δ ∪{(qintReg , /0, pred, /0,SM vint
.q0)}26

304 CHAPTER A. PAPER 7

Procedure ChoreographyToHFSM(v, p,HFSM)

visited[v] ← true1

if v is an activity node where p participates then2

/* Let SDv be the sequence diagram describing v’s behavior */
SMv ← SDToHFSM (v,SDv, p)3

Copy elements of SMv to HFSM4

δ ← δ ∪{(currState, /0, true, /0,SMv.q0)}5

if v has invocation pins then HFSM ← ProcessInvocation(HFSM ,SMv,v, p, /0)6

else if v is a merge node then7

qv ← newJunctionPseudoState(v); Q ← Q∪{qv}; δ ← δ ∪{(currState, /0, true, /0,qv)}8

currState ← qv9

else if v is a final node then10

qv ← newFinalPseudoState(v); Q ← Q∪{qv}; δ ← δ ∪{(currState, /0, true, /0,qv)}11

else if v is a join node then12

vjoin ← v; visited[v] ← f alse13

return (HFSM,{currState})14

else if v is a fork node then15

vjoin ← null16

currState old ← currState17

SMv ← ForkToHFSM (v, p)18

Copy elements of SMv to HFSM19

δ ← δ ∪{(currState old , /0, true, /0,SMv.q0)}20

/* We continue traversing the graph from the fork’s companion join node
(i.e. vjoin). Note that we assume proper nesting of fork/join nodes */
v ← vjoin21

foreach u successor of v do22

if !visited[u] then23

if v is an activity then24

currState ← qpr where lpred(ep) = pr and ep is the end-of-execution pin of v25

that leads to u26

(HFSM ,finalStates aux) ← ChoreographyToHFSM (u, p,HFSM)27

finalStates ← finalStates ∪finalStates aux28

else if u is a merge node then29

/* A silent transition is added from currState to the state
corresponding to the previously visited merge node */
δ ← δ ∪{(currState, /0, true, /0,qu)}30

if v is NOT a merge node then31

/* Merge nodes cannot be revisited. They are mapped into a state just
once. See also line 30 */
visited[v] ← f alse32

return (HFSM ,finalStates)33

DYNAMIC ROLE BINDING IN A SERVICE ORIENTED ARCH. 305

Procedure ForkToHFSM(vfork, p)
qvfork-init ← newForkPseudoState(vfork-init)1

qvfork ← newCompositeState(vfork)2

Q ←{qvfork-init,qvfork}; R ← /0; ↘← /0; T ← /0; G ←{true}; A ← /0; δ ← /0; J ← /03

F ← /04

foreach successor v of vfork do5

/* An HFSM is built for each branch of the fork and placed in a separate
orthogonal region */
reg ← newRegion()6

R ← R ∪{reg}7

↘←{(qvfork ,reg)} // Add region to composite state8

(SM v,finalStates) ← ChoreographyToHFSM(v, p)9

foreach top-level state q of SMv do10

↘←↘∪{(reg,q)} // Add state to region11

Update Q,R,↘,T,G,A,δ with elements from SMv12

δ ← δ ∪{(qvfork-init, /0, true, /0,SMv.q0)}13

F ← F ∪finalStates14

/* vjoin is a global variable updated inside ChoreographyToHFSM */
qvjoin ← newJoinPseudoState(vjoin)15

Q ← Q∪{qvjoin}16

δ ← δ ∪{(q, /0, true, /0,qvjoin) : q ∈ F}17

currState ← qvjoin18

return (Q,R,↘,T,G,A,δ ,qvfork-init,{currState})19

306 CHAPTER A. PAPER 7

Procedure ProcessInvocation(HFSM,SMv,v, p,alreadyInvoked)

InvokedActs ←{mp-a(x) : (inv,x) ∈ E , inv ∈ pin(v), ptype(inv) = INVOCATION ,x ∈VA}1

InvokedActs ← InvokedActs −{alreadyInvoked}2

foreach u ∈ InvokedActs do3

SMu ← hfsm(SDu, p)4

if SMu �= SM/0 then5

Copy elements of SMu to HFSM6

INV v−u = {inv ∈ pin(v) : ptype(inv) = INVOCATION ,(inv,x) ∈ E ,mp-a(x) = u}7

foreach invPin ∈ INVv−u do8

/* lblv is the labeling function of the seq. diag. of v */

ev ← lbl−1
v (lpred(invPin))9

/* Get pin on u connected to v ’s invocation pin */
peerPin1 ← x, such that (invPin,x) ∈ E10

if ptype(peerPin1) = START then11

δ ← δ ∪{(qev , /0, true, /0,SMu.q0)}12

else13

/* peerPin 1 is a resumption pin on activity u */

eu ← lbl−1
u (lpred(peerPin1))14

qeu-res ← newState(eu-res); Q ← Q∪{qeu-res} // Create resumption15

state
δ ← δ ∪{(qev , /0, true, /0,qeu-res)}16

δ ← δ ∪{(qeu-res,e,g,a,q) : (qeu ,e,g,a,q) ∈ SMu.δ}17

δ ← δ −{(qeu ,e,g,a,q) ∈ SMu.δ}18

// Create a resumption state on v’s state machine
qev-res ← newState(ev-res); Q ← Q∪{qev-res}19

δ ← δ ∪{(qev-res,e,g,a,q) : (qev ,e,g,a,q) ∈ SMv.δ}20

δ ← δ −{(qev ,e,g,a,q) ∈ SMv.δ}21

/* Get resumption pin on v with same predicate as invPin */
resPin ← res ∈ pin(v) : ptype(res) = RESUMPTION ∧ lpred(res) = lpred(invPin)22

/* Get pin on u connected to v ’s resumption pin */
peerPin2 ← x, such that (x,resPin) ∈ E23

eu ← lbl−1
u (lpred(peerPin2))24

δ ← δ ∪{(qeu , /0, true, /0,qev-res)}25

ProcessInvocation(HFSM ,SMu,u, p,v)26

return27

