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SUMMARY: 
This thesis investigates the behavior of deformable steel plates exposed to blast-loading, using experimental two 
numerical studies. The numerical work consists of a preliminary study and a numerical study with more realistic 
models. All experiments were conducted in the SIMLab Shock Tube Facility (SSTF) at the Norwegian University of 
Technology and Science (NTNU). The tested plates were made from 0.8 mm thick Docol 600DL steel with a 300 
mm x 300 mm blast-exposed area. In total, four different plate-geometries were tested; two configurations 
containing square holes, and two configurations containing slits. The purpose of including holes and slits was to 
study crack propagation and fluid-structure interaction effects in the plates. The experimental results were 
documented through the use of two high-speed cameras, three-dimensional digital image correlation, laser 
scanning of the deformed plates and high frequency pressure measurements. 
 
The objective of the preliminary study was to determine a test matrix to execute experimentally in the SSTF. The 
geometry of the tested plates, and the intensity of the applied blast load were determined in this part. The numerical 
models neglected fluid-structure interaction effects, and were all run solely in Abaqus Explicit. The loading was 
applied as idealized pressure-time curves. A benchmark for the numerical models in the preliminary study was 
created from the previous testing done at NTNU. The effects of element size, element type, boundary conditions, 
friction coefficients, and strain rate sensitivity were explored in separate parametric studies. 
 
In total 13 plates were tested during the experiments. The four configurations were all tested at the nominal firing 
pressures associated with three distinct responses; complete failure, crack arrest, and deformation with limited to no 
cracking. The intended response was accomplished for all configurations except one.   
 
In the numerical study with more realistic models, numerical solutions were compared to the experimental data for 
validation. This study includes pure Lagrangian models in Abaqus Explicit and models in Europlexus, which 
includes fluid structure interaction. 
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SAMMENDRAG: 
Hovedmålet med denne oppgaven er å studere deformerbare stålplater utsatt for eksplosjonslast ved hjelp av 
et eksperimentelt og et numerisk studie. Det numeriske arbeidet består av et forstudie og et påfølgende 
numerisk studie med mer avanserte modeller. Alle eksperimenter ble utført i SIMLab Shock Tube Facility 
(SSTF) ved Norges teknisk-naturvitenskapelige universitet (NTNU). Platene var laget av 0.8 mm tykt Docol 
600DL stål og hadde et lasutsatt område på 300 mm x 300 mm. Totalt ble fire forskjellige plategeometrier 
testet; to konfigurasjoner som inneholder firkantede hull og to konfigurasjoner som inneholdt slisser. 
Hensikten med å inkludere hull og slisser var å studere strukturoppførselen og fluid-struktur-
interaksjonseffekter i platene. De eksperimentelle resultatene ble dokumentert av to høyhastighets kameraer, 
tredimensjonal digital bildekorrelasjon, laserskanning av deformerte plater og av høyfrekvente trykkmålinger. 
 
Gjennom å bestemme geometrien til platene og lastintensiteten var formålet med forstudiet å bestemme en 
testmatrise. De numeriske modellene i denne studien neglisjerte fluid-struktur interaksjon, og alle modeller 
ble kjørt i Abaqus Eksplisitt. Lasten ble påført som idealiserte trykk-tidskurver. Modellene ble vurdert opp mot 
tidligere studier utført på NTNU, og ulike numeriske modellparametere ble studert.  
 
13 eksperimentelle forsøk ble gjennomført, og alle de fire konfigurasjonene var tiltenkt tre ulike oppførsler.  
Dette var total kollaps av platen, sprekk arrestasjon og deformasjon med begrenset eler ingen sprekkvekst.  
Det tiltenkte testresultatet ble oppnådd for alle konfigurasjoner bortsett fra en. 
 
Den numeriske studien som ble gjennomført etter forsøksdataene var behandlet, var ment som en 
sammenligningen mellom testdata og geometrisk komplekse modeller som kun beskrev strukturen med en 
Lagrange beskrivelse. I tillegg ble det kjørt modeller i Europlexus, dette ble gjort for å undersøke fluid-struktur 
interaksjonen. 
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Abstract
This thesis investigates the behavior of deformable steel plates exposed to blast-
loading, using experimental and numerical studies. The numerical work consists of a
preliminary study and a numerical study with more realistic models. All experiments
were conducted in the SIMLab Shock Tube Facility (SSTF) at the Norwegian Univer-
sity of Technology and Science (NTNU). The tested plates were made from 0.8 mm
thick Docol 600DL steel with a 300 mm x 300 mm blast-exposed area. In total, four
different plate-geometries were tested; two configurations containing square holes,
and two configurations containing slits. The purpose of including holes and slits was
to study crack propagation and fluid-structure interaction effects in the plates. The
experimental results were documented through the use of two high-speed cameras,
three-dimensional digital image correlation, laser scanning of the deformed plates and
high-frequency pressure measurements.

The objective of the preliminary study was to determine a test matrix to execute
experimentally in the SSTF. The geometry of the tested plates and the intensity of
the applied blast load were determined in this part. The numerical models neglected
fluid-structure interaction effects and were all run solely in Abaqus Explicit. The
loading was applied as idealized pressure-time curves. A benchmark for the numerical
models in the preliminary study was created from the previous testing done at NTNU.
The effects of element size, element type, boundary conditions, friction coefficients,
and strain rate sensitivity were explored in separate parametric studies.

In total 13 plates were tested during the experiments. The four configurations were
all tested at the nominal firing pressures associated with three distinct responses;
complete failure, crack arrest, and deformation with limited to no cracking. The
intended response was accomplished for all configurations except one.

In the numerical study with more realistic models, numerical solutions were com-
pared to the experimental data for validation. This study includes pure Lagrangian
models in Abaqus Explicit and models in Europlexus, which includes fluid-structure
interaction.
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Chapter 1

Introduction

Explosives-based terrorist attacks and accidents involving explosions have extensive
social and structural damage potential. Civilian structures subjected to loading from
such events are often lightweight and flexible, leaving them less protected than tradi-
tional military installations. Historically, most research in the field of blast-resistant
design was focused on fortified structures. However, the last couple of decades has
seen a significant increase in research concerning more lightweight structures sub-
jected to blast loading.

The SIMlab shock tube facility (SSTF) allows for studies on blast loaded structures
in a very predictable and controlled manner, making it well suited for comparison and
validation of numerical methods. The shock tube allows one to choose the area of
focus for experimentation specifically. Material response, shock wave propagation and
the interaction between the structure and the shock wave are all relevant phenomena
that have to be studied in detail in this context. Knowledge about the governing
parameters pertaining to these phenomena and how they affect the loading and the
structural response in an isolated manner, can thus be be applied to more complex
problems.

Thin plate structures are often present in buildings, explosion may subject these plates
to the combination of fragments and shock waves. Fragments can cause both slits
and perforations, or the structure can be perforated for design purposes. Both slits
and perforations can effect the structural behavior of the plates, but these can also
affect an incoming shock wave. Full-scale testing is seldom an option when estimating
a potential threat. Because of this, it is important to have a trustworthy numerical
framework that is validated through controlled experiments.

This thesis focuses on the structural response of thin Docol 600DL steel plates sub-
jected to blast loading created in the shock tube. This is done by planning and
executing a series of tests, as well as running numerical simulations. In order to set
up an experimental test series, a two-part preliminary study was conducted. This
resulted in a pre-planned test matrix consisting of 12 separate tests. All tests were
conducted on 0.8 mm thick plates, with four different geometrical configurations. The
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Chapter 1. Introduction

different geometrical configurations are all a continuation of previous work at NTNU,
and consists of two perforated- and two slitted configurations.

In blast problems, the loading and the structural response are often mutually depen-
dent. The tested configurations are designed with this in mind and are meant to
provoke fluid structure interaction effects as well as to challenge the numerical tools
available.

Depending on the design of the blast-exposed plate, it may be subjected to large
plastic deformations, fracture and possibly complete failure and fragmentation. The
deformation process typically takes a few milliseconds, and due to the high non-
linearity of the problem, the structural response of the plate is preferentially handled
by explicit finite element methods. Numerical models of the plate problem have to de-
scribe the material behavior by taking into account; large plastic strains, visco-plastic
behavior, possibly temperature dependency and a fracture criterion. In addition to
the description of the purely structural response, the complete solution to the prob-
lem also needs to incorporate a description of the loading of the structure. This can
be done by considering the full fluid-structure interaction, or by modeling the blast
load using simplified approaches. Both methods will be described and applied in this
thesis.

Chapter 2, Theory: Gives an introduction to the blast phenomenon and methods
for a numerical representation of blast loadings. Theoretical topics explicitly related
to the numerical framework used for the models in this thesis are also presented. The
given theory is not intended to be a thorough description but meant as an introduction
to some of the most important aspects pertaining to this thesis. A literature survey
on previous work will also be presented.

Chapter 3, Material: Explains how the material behavior of the Docol 600DL steel
is modeled in the numerical work. The assumptions that are made to idealize the
model of the material are specified. The modified Johnson-Cook relation and the
Cockcroft-Latham fracture criteria are also presented.

Chapter 4, Preliminary study Part I: Aims to develop a test matrix for the
experimental work and to study the structural response of the plates. To evaluate
the numerical response, a benchmark study was conducted. The benchmark study
includes experimental results obtained from previous studies at NTNU.

Chapter 5, Preliminary study Part II: Is a continuation of the findings from the
first benchmark study in part I. More realistic boundary conditions are introduced
through the modeling of the clamping frames and bolts holding the plates in place.
This new and more realistic description gives rise to the inclusion of contact modeling
and the calibration of a friction coefficient. In addition, it involves a parametric study
on the strain rate sensitivity, which was found to be important when evaluating
fracture in the plates.

2



Chapter 6, Experimental work: Presents the experimental work, where the test
matrix obtained in the preliminary study was tested in the SSTF. All tests are an-
alyzed through the use of high-speed cameras and 3D-DIC, synchronized with high-
frequency measurements of the reflected pressure. Post-test pictures, laser scanning
of the deformed plates, obtained crack lengths, deformation profiles, and midpoint
data will be presented and discussed.

Chapter 7, Numerical work: Serves as a final numerical study of the problem,
taking both experimental- and numerical results from the previous chapters into ac-
count. In this section, fully coupled Eulerian-Lagrangian models in Europlexus are
compared to purely Lagrangian models in Abaqus.

3





Chapter 2

Theory

This chapter aims to cover some of the most relevant theory needed to describe the
shock tube experiments and the applied numerical framework. The starting point
will be the characteristics of a shock wave followed by an introduction to the basic
shock tube design and function. The tools at hand when numerically solving the
shock tube problem is the finite element method (FEM) and computational fluid
dynamics (CFD). Some important characteristics regarding both methods will be
included. When modeling blast loading of structures, many approaches are available
and the ones applied in this thesis will be outlined.

It should be emphasized that most topics presented in this chapter are comprehensive
by them self. It is not the intention of this thesis to cover the theory in any detail.
However, a brief introduction covering some of the most relevant fundamentals is
included for a better understanding of the models and techniques applied.

2.1 Characteristics of a shock wave
An explosion is defined by a sudden increase of energy, resulting in expansion of a
fluid from a defined source. The release of energy creates a rapid increase in pressure,
density, and temperature, propagating through the undisturbed fluid at supersonic
velocity. Explosions may be categorized by the cause of the explosion such as nuclear,
chemical and mechanical explosions [1]. Only the two last mentioned types will be
presented in this section.

2.1.1 Chemical explosions
A chemical explosion is created when detonation traditional explosives such as TNT
and C4. The chemical explosion is initiated by a wave of rapid combustion/reaction
of the explosive material moving outwards from the center at a supersonic velocity.
This wave may transfer the explosive material into a hot and compressed fluid at a
very high pressure. The rapid increase in pressure creates a shock wave in the air[2].
In relation to terror attacks, this is probably the most important type of explosion.
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Chapter 2. Theory

2.1.2 Mechanical explosions

A mechanical explosion is purely caused by the rupture of a solid structure. An
example could be a tank containing a compressed fluid with high pressure. If this
tank were to rupture, a rapid release of the fluid within results in a wave of high
pressure and density propagating outward from the tank. The latter example could
have been the result of an industrial accident, but mechanical explosions can also be
initiated in a controlled manner as it is done in the SSTF.

2.1.3 Shock wave

A shock wave represents a sudden change in pressure, density and temperature prop-
agating outward from the source with a velocity higher than the speed of sound in
the fluid itself. The moving disturbance is referred to as the shock front and typically
has a thickness in the order of 10−7 m [3]. The mechanism that allows for the wave
to propagate is the disequilibrium between the compressed high-pressurized fluid in
the shock front and the undisturbed neighboring fluid. The pressure and density of
the shock wave are decreasing as the wave propagates, typically in a cubic manner
due to the spherical expansion of the shock front.

Figure 2.1: Showing the decrease of pressure in the shock front with respect to
distance from source. Image is taken from[3]

Two surface orientations are especially important for bodies interacting with the
shock wave. Surfaces parallel to the propagation direction experience side-on pressure.
Surfaces perpendicularly facing the incoming shock wave experience head-on pressure.
This is illustrated in Figure 2.2.
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2.2. Basic shock tube design and function

Figure 2.2: Illustration of a shock wave propagating down the shock tube, towards
the testing plate. The figure is inspired by [3]

When the shock wave interacts with angled surfaces with respect to the propagation
direction, the pressure is being reflected and reinforced. If assuming an ideal linear
elastic behavior, which means that the pressure and the density of the fluid are
linearly dependent, the result is a reflected head-on pressure twice the incoming side-
on pressure. However, in the nonlinear case, the reflected pressure is significantly
higher. This is due to the accumulation of fluid particles. The particles are prevented
from bouncing back from the surface because of the stream of new particles arriving
at the plate, which bring the pressure-density relation in the fluid into the non-linear
domain.

2.2 Basic shock tube design and function

Figure 2.3: Schematic illustration of the basic shock tube design. Figure inspired
by [3].

The basic shock tube design is illustrated in Figure 2.3. The illustration shows how the
shock tube consists of a high-pressure chamber, referred to as the driver and a section
where the shock wave can propagate, referred to as the driven. Separating the two
sections is a set of membranes, and the blast-exposed plate is mounted downstream
the end of the tube.
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Figure 2.4: A schematic illustration of the idealized shock tube function. The
illustration show how the pressure is distributed in the tube at different times: (a)
initial configuration, (b) wave pattern immediately after bursting of membranes, (c)
reflected rarefaction waves catch up with contact surface, (d) reflected rarefaction
waves catch up with the shock wave, and (e) reflection of incoming shock wave when
hitting the boundary. The figure is taken from [4].

When describing the function of the shock tube, it is important to keep in mind that
this is an idealized shock tube behavior. It is assumed that the problem can be viewed
as a 1D problem, that the rupture of the membranes results in an instantaneous release
of pressure, that the air can be described as an ideal gas, and lastly the absence of
any dissipation phenomenon.

With reference to Figure 2.4, the function can be described as follows [4]. Situation (a)

8
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shows the initial configuration with a high pressure in the driver section and ambient
pressure in the driven section, separated by the membranes. At t=0, the membranes
rupture which generates a shock wave that propagates into the undisturbed air with
ambient pressure p1. At the same time as the shock wave starts to propagate into
the undisturbed air in region (1), rarefaction waves start to propagate in the opposite
direction through the highly compressed air in the driven section (4). Immediately
after the propagation has initiated, the situation is as illustrated in (b). The speed
of the shock wave is supersonic and is denoted vs. The shock wave induces motion in
the air particles which moves with velocity v2 and pressure p2 immediately behind the
shock front. The moving surface of particles is denoted as the contact surface. At this
point, a system of refraction waves moves towards the end of the driver, denoted E.
The velocity of these waves is higher than the velocity of the propagating shock front,
and the speed is higher because they propagate in the air with higher density than
the shock front. Dependent on the design of the shock tube, the refraction waves may
catch up with the shock front before it reaches the test object. This causes the shock
to decay in strength, increase in duration, and decrease its velocity but results in a
pressure profile that is similar to what is found for a far field explosive detonation.
When the shock front hits the mounting plate at the end of the tube, the pressure is
reflected and reinforced.

2.3 Lagrangian and Eulerian description

In continuum mechanics, there are two common ways of describing a continuum
undergoing deformations. This two are often referred to as the Eulerian and the La-
grangian description [5]. Since this is related to the numerical methods; explicit FEM
and CFD, it is implied that the continuum is discretized into elements or computa-
tional cells.

In the Lagrangian description, each element of the mesh is used to represent a volume
of the continuum. The same amount of mass remains associated with each element
throughout the simulation, and the mesh deforms with the deformation of the con-
tinuum.

In the Eulerian description, the properties of the continuum are evaluated as functions
of time and space, measured relative to a global reference frame. The mesh remains
fixed, and the continuum moves through the mesh as it undergoes deformation.

It should be noted that it is also possible to combine these two approaches in what
is called an arbitrary Lagrangian-Eulerian description, but this is not applied in the
numerical work in this thesis.
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Figure 2.5: Lagrangian and Eulerian discretization of a continuum undergoing de-
formation. Figure taken from [6].

2.4 Explicit finite element methods
Explicit finite element method is based on the principle of virtual power (PVP) and
solves the weak form of this equation for the discretized geometry, using a Lagrangian
description[7]. The method is suited for highly nonlinear problems because the it-
erations are done explicitly in time, and do not take into account any equilibrium
iterations. In contrast to the implicit approach, this removes the problem with con-
vergence when encountering bifurcation in the solution. Although the method always
produces an answer, solutions can be prone to energy imbalance, and the analysis
may require very small time steps. Because small time steps often result in a huge
amount of iterations, numerical round-off error can be severe if the total time in the
simulation is large. This makes the method suitable for transient dynamic problems.
If applied to quasi-static problems, mass scaling is a well known numerical maneuver
to overcome the problem with small time steps.

The PVP states that for a solid body in dynamic equilibrium, the virtual power of the
internal forces, the inertia forces and the virtual power of external forces are balanced.
Using matrix notation this can alternatively be formulated as∫

V
δε̇TσdV︸ ︷︷ ︸

VP internal forces

+
∫

V
δvT (ρa)dV︸ ︷︷ ︸

VP inertia forces

=
∫

V
δvT b dV︸ ︷︷ ︸

VP body forces

+
∫

St

δvT t dS︸ ︷︷ ︸
VP surface forces

(2.1)

Here σ and ε represent the six independent components of the stress and strain tensors
σij and εij respectively. The volume of the body is notated as V, t is the prescribed
traction vector on the surface St. Further u, v and a represent the displacement,
the velocity and the acceleration vectors. The δ symbol states the virtual quantities,
meaning that they are considered infinitesimal and arbitrary, but still satisfy the
compatibility conditions.
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To arrive at the finite element formulation, the kinematic fields are interpolated over
the entire body as:

u = Nr , v = Nṙ , a = N r̈
ε̇ =∇v =∇N ṙ = Bṙ

Here r, ṙ and r̈ is the global nodal displacement, velocity and acceleration. N is the
global shape function matrix and ∇ is the gradient operator.

By inserting the interpolated kinematic fields into the principle of virtual power, one
arrive at the semi-discrete form of the equation of motions:

Mr̈ = Rext −Rint (2.2)
where

Rint =
∫

V
BTσdV , Rext =

∫
V
NTbdV +

∫
V
NT t dS

M =
∫

V
ρNTNdV

It should be noted that here, M is the consistent mass matrix. In explicit FEM it
is most common to use the lumped mass matrix, as this makes the inversion trivial.
This derivation is based on work done in [8].

2.4.1 Mass scaling
The semi-discrete equations of motion are solved in time by using the explicit central
difference integration scheme. To find a stable solution, one has to take into account
the maximum stable time increment. Based on the solution of the longitudinal wave
equation for an elastic material, it is found that the 1D wave speed is

c =
√
E

ρ
(2.3)

where E is the linear stiffness and ρ is the density of the material. If the time step is
larger than the time it takes for a wave to pass the smallest element in the simulation,
this could cause disruptions in the solution. Because of this, the upper boundary of
the time step is governed by

∆t ≤ αmin
(
he

c

)
(2.4)

Where he is the characteristic length of the smallest element and according to [9]
typical values of α are in the range [0.8,0.98]. The upper bond of the time step can as
seen in Eq.(2.4) be manipulated by applying large elements or artificially increase the
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density of the material. In many cases, applying large elements is not an option, and
mass scaling is a well-known maneuver for quasi-static analysis. Local mass scaling
can be applied to dynamic models as well, and is normal in the automotive industry.
If applied, caution must be taken so that the change in mass does not affect the
dynamics of the problem.

2.4.2 Energy considerations
It is important to note that the threshold found with Eq.(2.4) only assure stability for
the solution of the central difference scheme in the linear domain. When the response
is highly non-linear the criterion is necessary but not sufficient. It is normal to apply
elements with reduced integration schemes and to include different contact formula-
tions. Many element formulations introduce the need for some artificial stiffness to
reduce spurious deformation modes, and this stiffness gives rise to artificial energy.
An example would be elements using reduced integration. Reducing the number of
integration points may introduce zero-energy modes or deformation modes without
any stiffness. These modes are commonly known as hourglass modes, and they need
to be restrained. When modeling contact, it often introduces the need for contact
stiffness, and this gives rise to contact energy. Because the first law of thermody-
namics applies to the system, it is therefore important to consider the energy balance
when running FEM simulations. In addition, it is important to check how large the
contribution from artificial- and contact energy is for the total energy in the model.
Abaqus suggests an amount of artificial energy less than 2% of the internal energy[10],
while LS-DYNA suggests less than 10% as a rule of thumb [11].

2.4.3 Element erosion
To be able to model material fracture, two possible methods are elements erosion
or splitting the mesh through nodes splitting [12]. The first approach is the most
commonly implemented technique as finding a criterion for where to split the mesh
is challenging. In both Abaqus and Europlexus the erosion technique is available.

In both solvers, the method is based on estimating the damage in each integration
point, and to do this one need a damage criterion. The applied criterion in this thesis
is the Cockcroft-Latham damage criteria and are thoroughly described in the chapter
on material modeling. When the damage criteria are satisfied in an integration point,
the stress tensor in this point is set to zero and the element is removed when failure
is obtained in all points.

2.4.4 Adaptive mesh refinement
Damage and crack-propagation are generally very localized phenomena. It is evi-
dent that a satisfactory fine mesh is required to capture these effects when running
simulations using FE codes. However, a finer mesh introduces more elements and is
increasing the computational costs. Damage-based adaptive mesh refinement (AMR)
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is a way of refining the mesh locally where it is needed while keeping the total number
of elements to a minimum. For the models run using Europlexus, this feature has
been applied. Through a parametric study for the refinement algorithm, performed
by Aune et al. [13], the method was found to be very effective as long as the refine-
ment is being carried out in an early stage of the local damage accumulation. It is
important to note that the refinement can be related to any monitored parameter for
the simulation, and not only the damage parameter as in this study.

Figure 2.6: Showing one level of mesh refinement. The figure is taken from [13]

As seen for a shell element in Figure 2.6, the method is to split elements that satisfy
the threshold damage into four elements for every cycle of refinement. This creates
hanging nodes at internal element boundaries (h1 and h2). The movement of these
nodes is constrained by the movement of the two neighboring base nodes through
a link condition[14]. The hanging boundary nodes (b1 and b2) are automatically
adopting the prescribed boundary condition for the rest of the boundary they are
placed on. Further, the algorithm is programmed to erode refined elements when
they reach the critical damage level. By going through a refinement process before
eroding the elements, the resulting loss of mass from the erosion is reduced compared
to eroding unrefined elements.

2.4.5 Contact formulations
To handle contact in numerical models, one needs both a tracking algorithm and
a constraint formulation. The tracking algorithm handles the geometries that are
interacting, and the constraint equation is the formulation that prevents geometries
from non-physical penetration. When modeling solid to solid contact in a finite
element analysis, several tracking algorithms and constraint criteria are generally
available. However in an explicit analysis, the two most commonly applied constraint
criteria are the penalty and the augmented Lagrangian method, but only the penalty
method will be described in detail.

Abaqus

All models in Abaqus will apply the weighted penalty method, which is a modified
version of the standard penalty method. In the standard method, the two contacting
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surfaces are assigned a master and a slave role. The master role is assigned to the
surface with the most course mesh.

For every iteration, a search algorithm finds slave surface nodes penetrating the de-
fined master surface in the current configuration. As general contact is applied in all
simulations[15], the default search algorithm is used. To resist the penetration, forces
proportional to the penetration distance is applied to the penetrating slave nodes
and opposite and equally large forces are applied to the surface points in the master
surface where the penetration occurred. This force is further distributed in the nodes
at the master surface.

Figure 2.7: Illustrating the Master defined as a continuous surface, and the slave
being discretized as nodal points through Abaqus general contact. Image is inspired
by [15]

The standard penalty method does not take into consideration master surface nodes
penetrating the slave surface. The weighted penalty method accounts for this by
running two contact iterations, and alternate the master/slave role of the two surfaces.
After calculating the two sets of nodal forces the average nodal force of the two
situations is applied to the contacting surfaces.

Europlexus

Europlexus has allow a description of the constraint equation through both Lagrange
multipliers and the penalty method[16]. For all models in this thesis, the standard
penalty method, combined with the pinball method for tracking of interacting geome-
tries is applied[17]. This is a method specially developed to handle contact in the case
of complex geometries, such as a bullet penetrating a plate. It should be noted that
this contact formulation is not ideal when modeling sliding contact between parallel
surfaces. The basic principle is as follows:
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The assembled surface normal algorithm by Belytschko and Lin[18] creates a normal
to the outside surfaces. The surface elements are then assigned a pinball radius, and
contact is detected if the distance between two pinballs is less than the sum of the
two associated radiuses.

(a) (b) (c)

Figure 2.8: (a) Illustration of a incoming projectile interacting with surface. (b)
Showing how the normal to the surfaces are oriented. (c) Illustration of two pinball
spheres interacting. Images are taken from [19]

Friction

In both solvers, the simple Coulomb friction model is applied[20]. Both the static
and the dynamic frictional coefficient is set to be equal. The Coulomb model assumes
that the static and dynamic frictional force only depends on the frictional coefficient,
normal force, and direction of slippage.

2.5 Computational fluid dynamics
Computational fluid dynamics (CFD) is a way to numerically describe problems re-
lated to fluid flows. CFD is a huge field consisting of complex theories extending way
outside the scope of this study.

2.5.1 Conservation laws in fluid dynamics

The governing equations in fluid dynamics, and also the foundation for a CFD analysis
are the conservation of mass, conservation of momentum and lastly conservation of
energy. In contrast to what is normally done in solid mechanics, these conservation
laws are most commonly described through an Eulerian description.
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Conservation of mass

The conservation of mass can be expressed in differential form as

∂ρ

∂t
+∇ · (ρv) = 0 (2.5)

Where ρ represents the density of the fluid and v is the velocity. In words, the
equation states that for the mass to be conserved, the change of density with respect
to time plus the mass flow divergence has to be equal to zero. If considering a control
volume, this means that the difference in mass flow in and out has to be equal to the
change in density.

Conservation of Momentum

Conservation of momentum implies that for a fluid particle, the sum of internal and
external forces has to be equal to the mass times the acceleration. For a continuum,
this statement yields

ρa = fbody + fsurface (2.6)

Where fbody are forces applied to the entire mass of the continuum, and fsurface are
the forces acting on the surface of the evaluated continuum element. By replacing
the acceleration with the material derivative of the velocity field for the fluid, and
expressing the surface forces through the divergence of the Cauchy stress tensor, Eq.
(2.6) may be rewritten as

D(ρv)
Dt

=∇ · σ + fbody (2.7)

where the material derivative for a scalar field (φ) and for a vector field (v) is defined
by

Dv
Dt

= ∂v
∂t

+ v · ∇v (2.8)

Dφ

Dt
= ∂φ

∂t
+ v · ∇φ (2.9)

The Cauchy stress σ may further be decomposed into a hydrostatic and a deviatoric
part through the relation

σ = −pI + τ where p = −1
3tr(σ) (2.10)

By inserting the relation obtained in Eq. (2.10) back into Eq. (2.7), we end up with

∂(ρv)
∂t

+ v ·∇(ρv) = −∇p+∇ · τ + ρfbody (2.11)
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Now a constitutive relation for the continuum has to be chosen in order to further
rewrite the expression for conservation of the momentum. By assuming a Newtonian
viscous fluid, the following relations may be applied for the deviatoric stress in the
fluid

τ = 2µD′ where D′ = D − 1
3tr(D) (2.12)

Where µ is the viscosity and D is defined as the symmetric rate of deformation tensor
given by

D = 1
2
(
∇v + (∇v)T

)
(2.13)

By putting Eq. (2.13) and (2.12) back into Eq. (2.11), and setting the body forces
equal to the gravitational forces, we end up with the general Navier-Stokes equation
for a compressible Newtonian viscous fluid

∂(ρv)
∂t

+ v ·∇(ρv) = −∇p+ µ∇2v + 1
3µ∇ (∇ · v) + ρg (2.14)

To sum up, the left-hand side of Eq. (2.14) represents the mass times the acceleration,
and the right-hand side represents the sum of all acting forces. The second term on
the right-hand side is related to frictional forces, while the third term is describing the
compressibility of the fluid. The equation applies for an infinitesimal fluid particle.
The relevant theory for this derivation was found in [21] [22].

Conservation of Energy

Lastly, the conservation of energy has to be evaluated. This relation states that for
an isolated system, the rate of change in total energy has to be equal to the sum
of net heat flux through the system, and the work done by internal forces and body
forces on the system, i.e.

DE

Dt
=∇ (σv− q) + ρ(fbody · v) (2.15)

where E is the total energy and is defined by

E = 1
2ρ(v · v) + ρe = Ekinetic + Einternal (2.16)

σ is again the Cauchy stress tensor. When evaluating an infinitesimal fluid element,
these stresses may be referred to as the traction stresses or forces at the boundaries
of the cubic element.
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2.5.2 Equation of state
The conservation laws described in section 2.5.1 generally contain more unknowns
than equations, and an additional relation is required to solve for all state variables.
A thermodynamic equation of state (EOS) serves as a constitutive relation between
a set of given state variables and physical conditions, i.e., to relate the density to
pressure and temperature. The specific equation of state applied in this study is
presented in section 3.2

2.5.3 Discretization of the flow regime
In a CFD analysis, the solution domain for the fluid is being discretized into a finite
number of elements prior to the calculations, and several discretization methods are
available. The most common methods are

• The Finite Volume Method (FVM)

• The Finite Element Method (FEM)

• The Finite Difference Method (FDM)

The FVM is the one applied for the numerical work in this thesis, and only this
approach will be described in any detail.

When discretizing the fluid regime into finite volumes the conservation laws are ap-
plied to each discrete volume element, and hence, conservation of flux through each
volume will be satisfied through the use of so-called Riemann Solvers [23]. The FV
formulation is generally preferred when modeling problems with possible discontinu-
ities in the solution and high Reynolds numbers, meaning high inertial forces relative
to the viscous forces of the fluid.

2.6 Modeling of blast-loaded structures
As stated, the modeling of blast-loaded structures generally involves an interaction
between both a solid and a fluid sub-domain. As this is considered a complex and also
computationally costly issue to solve, different simplified modeling techniques may be
applied depending on the problem. Generally, there are three different approaches; A
pure Lagrangian approach, the uncoupled Euler-Lagrange (UEL), and lastly the fully
coupled Euler-Lagrange (CEL) approach. For this thesis, only the pure Lagrangian
and the fully coupled Euler-Lagrangian methods have been applied.

2.6.1 The Lagrangian approach
The idea behind the pure Lagrangian approach is to run the simulation as a structural
FEM analysis, with a predefined loading. The estimation of the load and the response
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of the structure is being considered completely separate. The load is applied to the
structure as a pressure-time curve and a common approach is to represent the blast
load through the Friedlander equation. This method is used in Chapter 4 and 5, and
also for most of the models described in Chapter 7.

Friedlander curve fit

Based on estimating some key-parameters for the blast wave, the Friedlander method
aims to describe the pressure experienced by the structure as a function of time [24].
The most straightforward way of doing this is through a curve fit on actual pressure
measurements taken from experiments, which is the applied method in this thesis.
Alternatively, it is common to find the parameters for the Friedlander curve by apply-
ing the semi-empirical approach derived by Kingery and Bulmash[25]. This method
is based on extensive experimental work, including different scaled blast scenarios.
The Kingery and Bulmash method accounts for the weight of the explosive and the
distance from the source.

P (t) = Pa + Pr

(
1− t

t+

)
exp

(
−bt
t+

)
(2.17)

Where t+ is the positive time duration, t is the total time, Pr is the reflected pressure,
Pa the atmospheric pressure and b is the exponential decay coefficient.

t +

Pr

Pso

P

t

Measured Pressure
Friedlander Fit

Figure 2.9: Plot showing measured pressure and the corresponding Friedlander fit,
when only considering the positive phase of the pressure-time history.

In Figure 2.9 the pressure measured at a sensor close to the structure has been fitted
to Eq. (2.17) for the positive phase of the event (t < t+). The result is an analytic
expression for the pressure-time relation experienced by the structure.
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2.6.2 Euler-Lagrange methods
The main idea of a Euler-Lagrange approach is to separately describe the struc-
ture through a Lagrangian description, and the fluid sub-domain through a Eulerian
(CFD) description. Now the Eulerian description of the shock propagation serves as
a numerical prediction of the blast load experienced by the structure. At this point,
there are two separate ways to go, i.e., the uncoupled and the coupled approach. For
the uncoupled method the fluid and structure sub-domains are treated separately,
and they are not allowed to interact. For the coupled methods, both the structural
Lagrangian description and the Eulerian fluid description are put together in the same
analysis. Here the two domains are allowed to interact, and the structural part will
serve as a deformable boundary condition for the fluid sub-domain.

2.6.3 Loading regimes
In structural dynamics, the duration of a loading is often related to the response time,
or natural frequency of the structure. By doing this, the loading may be classified into
one out of three possible loading-regimes; an impulsive loading, a dynamic loading or
a quasi-static loading. If the applied load has a duration significantly longer than the
response time of the structure, meaning that the structure has reached its maximum
deflection before the load has dissipated markedly, the load is said to be quasi-static.
In this regime, the response is governed by the stiffness of the structure K and the
maximum applied load, Pmax through the static equilibrium equation.

The loading is often categorized as quasi-static as long as the following inequality
holds

ωntd > 40 (2.18)

Where the ωn is the natural frequency of the structure and td is the duration of the
applied loading.

On the other hand, if the duration of the applied load is much shorter than the
response time, meaning that the loading has been both applied and removed before
the structure has experienced any significant displacements, the load is classified as
impulsive. The resulting maximum displacement is now dependent on the impulse
from the load, as conservation of momentum is the governing equation. The response
is defined as being in the impulsive domain as long as the following inequality holds

ωntd < 0.4 (2.19)

The dynamic regime is defined as the region in-between the impulsive and quasi-static
regime, i.e. (0.4 < ωntd < 40). The displacements within this regime are dependent
on the loading history and the behavior is far more complex to describe. Further
derivations of the above criterion can be found in [1].
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2.6.4 Fluid-structure interaction algorithms in Europlexus

There are several algorithms available when it comes to how to solve the mutual
interaction between the solid and the fluid. The method applied in upcoming sim-
ulations will be a method often referred to as the embedded approach. This is the
only approach that will be described in any detail. Aune[3] thoroughly describes and
evaluates several methods in his Ph.D. thesis.

The main idea behind the embedded approach is to implement the interaction in a
way that makes the fluid and the solid mesh independent of each other. This has
significant advantages when it comes to modeling large deformation and failure in the
plates, as many of the other methods encounter problems in these highly nonlinear
cases. ALE methods where the fluid mesh is fitted to the structure imply that the
fluid mesh need to deform with the structure, making the solution prone to distorted
fluid elements and possibly introducing the need for re-meshing algorithms.

(a) (b)

Figure 2.10: Illustrating mesh dependency in FSI techniques. Both images are taken
from [3](a) Illustration of FSI techniques were the fluid mesh is fitted to the solid mesh
is using ALE. (b) Illustration of the embedded approach. For this technique the two
meshes are completely independent.

When using the embedded approach, the Lagrangian solid mesh is immersed in the
Eulerian fluid mesh, but the two meshes are independent of each other. Because
the meshes are independent, the embedded approach needs a tracking algorithm that
searches for solid and fluid elements that are supposed to interact. This is done by the
definition of an influence domain and is applied as a spherical influence radius around
all surface nodes on the discretized solid structure. These spheres are further joined
to cover the entire solid structure. It should be noted that choosing the influence
domain can be challenging. A too small influence domain may introduce spurious
flux across the solid structure, whereas a too big influence domain will link too much
of the fluid to the motion of the structure.
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(a) (b) (c)

Figure 2.11: Illustrating a FSI algorithm in Europlexus[26](a) Illustration of the
influence domain around the solid structure. (b) Calculating the pressure drop force
that is imposed on the structure. (c) Detailed image of the coupling

Instead of imposing certain conditions on the particle velocities, the pressure force
is calculated in the fluid mesh and transmitted to the structure. This is illustrated
in Figure 2.11(b). With reference to this figure, the two volumes V1 and V2, with
pressures p1 and p2 are separated by the coupled face f. The pressure drop force is
then calculated as

f∆p = (p1 − p2)Lnf (2.20)

Where L is the length/area of the face and nf is the face normal. The force is
distributed from what is marked as point S∗ in Figure 2.11(c) to the neighboring
nodes at the structure. To prevent leakage, the flux of mass and energy is set to zero
across the fluid elements that are separated by the structural element.

It should be noted that although this FSI formulation is robust when handling large
deformations and potential failure, it can run into trouble if the fluid mesh is coarse
relative to the shape of the deformed plate.

2.7 Previous work
R̊akv̊ag et al.[27] investigated the effect of different pre-cut defects in thin square
Docol 600 DL steel plates subjected to rapid pressure loading. The defect shapes
tested was square, diamond, slit and circular. The plates had four symmetrically
distributed defects, and the different defect configurations had equal extent. In their
experimental work, it was found that the defect-shape and area had a great effect on
the maximum deflection of the plates. The main trend observed was that the final
deflection of the target plate decreased with an increase in hole area. However, no
monotonic relation in hole area and deflection was found. Another result to point out
is that none of the plates tested experiences failure during testing. It is important to
note that the test rig used in these experiments has a different set up than the shock
tube facility at NTNU. The Pulse Pressure Loading Rig (PPLR) consists of two sep-
arate chambers. These chambers are being pressurized equally, with the target plate
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being the dividing wall. When both chambers have reached their desired pressures,
a diaphragm in one of the chambers is melted along the circumference. As a result
the pressure is evacuated rapidly, and the plate is loaded due to the disequilibrium
between the chambers.

Baglo and Djupvik[28] investigated in their master thesis the effect from blast loading
on thin aluminum and steel plates. The tested plates were 0.8 mm thick Docol 600 DL
steel plates, and AW-1050A-H14 aluminum plates with thicknesses of 0.8 mm and 2
mm. The tests were conducted in the SSTF. Two of the aluminum plates experienced
fracture at the supports, whereas none of the steel plates experienced fracture. In
addition to the shock tube testing, tensile test specimens were cut from plates with two
different thicknesses for each metal. The specimen orientation relative to the rolling
direction of the plates was varied, and it was indicated that thinner plates were more
exposed to directional anisotropy. Aluminum plates were more prone to this effect
than steel. The FEM software Abaqus was used to model the experiment, and the
loading was applied as the pressure time history measured in the experiments. It was
concluded that the compliance between the simulations and the tests were satisfying.

Granum and Løken[29] investigated 0.8 mm thick Docol 600 DL steel plates subjected
to blast loading. Plates with four square holes symmetrically distributed, reducing
the blast-affected area by 16%, and non-perforated plates were tested and compared.
The tests were conducted at the SSTF located at NTNU. The most heavily loaded
perforated plates experienced collapse by radial fracture, initiating from the corners
of the square perforations. The non-perforated plates did not experience fracture. A
numerical study of the experimental setup was carried out using Abaqus and several
simulation techniques were applied. Simulations using a purely Lagrangian formula-
tion was compared to coupled and uncoupled Eulerian-Lagrangian simulations.

Stensjøen and Thorgeirsson [30] investigated the dynamic response of thin perforated
aluminum plates subjected to blast loading both numerically and experimentally. A
thorough preliminary numerical study was conducted to study the behavior of the
plates and to find the pressure loading to be used in the experiments. Six different
configurations with pre-formed defects were tested in this numerical study, one with
four squared windows and five different slit setups. The overall performance of the
preliminary study was found to be satisfactory when compared to experimental data
obtained from tests in the SSTF. However, even after modifying the numerical models
to better fit the experimental data, some of the slit configurations proved to be
challenging regarding the crack propagation process. The numerical study also showed
that solid elements with multiple elements across the thickness were needed in order
to get a more detailed description of the failure mechanisms.

Li et al. [31] studied the response of Q345 steel plates with pre-formed holes exposed
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to blast loading created by a TNT charge placed at a fixed distance, but with a
varying amount of explosives. The pre-formed holes in this study were included to
represent the effect of fragments perforating the plate prior to the shock wave. The
different hole-shapes studied were circular, squared and diamond. They were all
organized in a 3x3 matrix formation. Failure modes and deformation curves were
identified experimentally and were later used to verify numerical simulations. The
study indicated that the geometry of the holes has a noticeable influence on the
overall strength and response to the blast load. For the smallest charges, no obvious
difference in the response of plates containing circular and squared holes were found.
When the loading was increased, the mid-point deflection also increased in a nonlinear
manner. The deviation in response between the plates with squared and circular holes
was shown to increase with the increased blast intensity. Due to the fact that fracture
occurred in all plates with diamond-shaped holes, the ductile deformation curves was
mainly compared for the plates with circular and squared holes.

Aune et al. [13] performed a study on the dynamic response of blast-loaded Docol
600 DL steel plates both numerically and experimentally using the SSTF at NTNU.
Both massive and deformable plates with and without pre-formed was tested. The
massive plates were used for comparison to evaluate the fluid-structure interaction
effects, and to measure the load history for later numerical studies. For the deformable
plates, special focus was given to the influence of pre-formed holes on the dynamic
response of the plates and the failure characteristics. This study indicated a trend of
reduced reflected pressure for plates with pre-formed holes. This study also indicated
an increased mid-point deflection for the perforated plates compared to the full plates
under similar loading conditions.

Aune[3] contributed with a thorough description of the theory of shock physics, and
a description of various modeling techniques including FEM, CFD, and FSI. He also
investigated the behavior of both steel and aluminum plates exposed to blast loading
in the SSTF.

Aluminum plates made from the alloy EN AW 1050-H14 with thickness 0.8 mm was
tested in the SSTF at NTNU by Aune et al.[32]. The purpose was to investigate the
effect of FSI and to investigate the capacities of damage-based AMR techniques to pre-
dict ductile fracture in the aluminum plates. Several different numerical approaches
were investigated, both coupling and uncoupling the fluid-solid behavior. Different
boundary conditions were also tested. It was found that the fully coupled simulations
were in very good agreement with the experimental results, and it was concluded that
including FSI effects in the model was necessary. The damage-based AMR technique
was promising in terms of predicting ductile failure in the blast-exposed plates.
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Material models

This chapter will introduce constitutive models for air and the Docol 600Dl steel.
Some of the previously conducted work regarding the material testing of the Docol
steel will also be briefly presented. In later numerical work, constitutive models
are needed to model the material behavior and this chapter aims to elaborate these
models and their assumptions.

3.1 Docol 600DL steel
The Docol 600DL steel is produced by SAAB in Sweden and is a dual-phase, low-
strength, and high-hardening steel developed mainly for the automotive industry. The
plate material is processed through cold rolling and it is available in the thicknesses
0.5 mm - 2.1 mm. All plates evaluated in this thesis have a thickness of 0.8 mm. In
the description of the constitutive models for the Docol 600DL steel, all derivations
are based on the work presented in [33].

3.1.1 Previously conducted material testing

The material behavior of the Docol 600DL steel was studied by Gruben et al.[34][35]
on 2 mm thick plates, by Holmen et al.[36] on plates with a thickness of 0.8 mm, and
by Rakv̊ag et al.[37] on plates with a thickness of 0.7 mm. It should be noted that
Rakv̊ag also performed Split-Hopkinson tests. In all studies, it was evaluated how
isotropic the material behaved in quasi-static testing. This was carried out by cutting
out dog-bone tests specimens from the plates with a known orientation relative to the
known cold rolling direction. The dogbone tests specimens had in-plane dimensions
as shown in Figure 3.1(a), and was cut out with orientations of 0◦ , 45◦ and 90◦
relative to the rolling direction. The finding from these studies is that the steel, in
general, behaves tolerable isotropic and that thinner plates are more anisotropic than
thicker plates.
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Chapter 3. Material models

(a)

(b)

Figure 3.1: Both images are taken from[3], and is showing the test specimen and
results from the experiments on the material behavior on Docol 600DL. (a) shows the
dimensions of the dog-bone test specimen applied for material tests in [mm] and (b)
is showing resulting stress strain curves obtained in[36]

The material data for the Docol 600DL steel applied in this thesis were taken from
the PhD thesis written by Aune[3], and is given in Table 3.1.

Table 3.1: Initial material parameters used for the Docol 600DL steel. These mate-
rial parameters are taken from [3].

A Q1 C1 Q2 C2 c m ṗ0 Wc

[MPa] [MPa] [-] [MPa] [-] [-] [-] [S−1] [MPa]

325.7 234.5 56.2 445.7 4.7 0.01 1.0 5x10−4 555.0
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3.1. Docol 600DL steel

3.1.2 Model assumptions
The material is expected to act elastic-thermoviscoplastic and to be exposed to large
plastic deformations. Strain-rates are expected to be moderate and the steel expe-
rience strain- and strain rate hardening as well as temperature softening. Ductile
fracture is the expected fracture mechanism.

When modeled, the behavior will be assumed as perfectly isotropic for both the
elastic and the plastic domain. The transition from idealized elastic behavior to
plastic behavior is assumed to be governed by the Von Mises yield criteria. In the
plastic domain, incompressible conditions apply to the plastic deformation, and the
plastic flow stress is assumed to be independent of the hydrostatic stress. The total
strain is assumed to be an additive combination of a pure elastic strain and a pure
plastic strain. To describe hardening and softening of the material, it is assumed that
this can be expressed explicitly as a function of strain, strain rate, and temperature.

3.1.3 Elastic behavior
The stress-strain relation for linear elastic materials can be expressed through the
Generalized Hooke’s Law on the form

σij = Cijklεij (3.1)

Where σij contains all nine stress components, εij contains all nine strain components
and Cijkl is a 4th order tensor of elastic constants.

Further, the material is assumed to behave in an isotropic manner, i.e., the material
has the same properties in all directions. This makes it possible to simplify Eq.(3.1)
in terms of strains on the form

εij = 1 + ν

E
σij −

ν

E
σkkδij (3.2)

Or in terms of stresses

σij = λεkkδij + 2µεij (3.3)

Where λ and µ are the Lamè elastic constants, related to the Youngs modulus, E,
and Poisson’s ratio, ν through the relations

µ = E

2(1− ν) = G (3.4)

λ = νE

(1 + ν)(1− 2ν) (3.5)
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3.1.4 Yield criteria
In terms of material modeling, the yield criterion is the relation that separates the
elastic domain from the plastic domain. The material is said to behave elastically
until the yield criterion is satisfied and the behavior enters the plastic domain where a
new set of rules are governing the stress-strain relation. The von Mises yield criterion
is derived by assuming the material to be isotropic, yielding is independent of hydro-
static pressure, plastic deformations are isochoric, yield behavior is rate independent,
and that the loading is quasi-static. The result is a criterion that relates yield to the
second invariant of the deviatoric stress tensor, J2.

The relation between the stress tensor, the hydrostatic stress tensor, and the devia-
toric stress tensor is given by

Sij = σij − σHδij and σH = 1
3σkk (3.6)

Where Sij represents the deviatoric stress tensor, σH is the hydrostatic stress tensor,
σij is the stress tensor. The second invariant of the deviatoric stress matrix is given
by

J2 = 1
2SijSij (3.7)

The von Mises yield criterion states that yield will occur when J2 reaches a critical
value. To derive the expression for the yield function, this value will first have to be
determined. This is done by considering the state of uni-axial stress at initial yield.
The obtained result is that yield will occur when

J2 = k2 = 1
3σ

2
Y (3.8)

Now, the relation between the current stress state and the initial yield of the material
has been defined. It is now convenient to rewrite the equation in Eq.(3.8) in terms
of a yield function of the current stress state, σij. This function should take a value
less than zero if the behavior is elastic, and the value zero when yield is initiated.

f(σij) = ϕ(σij)− σY =
√

3J2 − σY =
√

3
2SijSij − σY ≤ 0 (3.9)

3.1.5 Strain hardening and flow stress
To describe strain hardening, the yield function has to be modified in such a way
that it can accumulate plastic strains, and adjust the current yield stress accordingly.
If the material is being further deformed after initial yield, the strains can now be
decomposed into an elastic part and a plastic part.
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3.1. Docol 600DL steel

εij = εe
ij + εp

ij (3.10)
Where εe

ij represents the pure elastic strain tensor and εp
ij the pure plastic strain

tensor. Writing these tensors on increment form gives

dεij = dεe
ij + dεp

ij (3.11)

The yield criteria, f(σij) = 0, results in a yield surface for the material. To model
strain-hardening, the yield surface must be allowed to expand/move. The material
is assumed to behave equally in both tension and compression, hence the isotropic
hardening model is assumed.

Figure 3.2: Expansion of the yield surface when assuming isotropic hardening. The
figure is taken from [33].

The yield function may now be modified to include the work-hardening and allow for
the yield surface to expand. This is done by including an isotropic work-hardening
parameter to the function on the form

f(σij, R) = ϕ(σij)− (σ0 +R) and σY = σ0 +R (3.12)

Where σ0 denotes the initial yield stress, σY is the current yield stress and R = R(p)
is the isotropic work-hardening variable which is a function of the equivalent plastic
strain p. The equivalent plastic strain is given by the formula;

p =
∫
dp and dp =

√
2
3dε

p
ijdε

p
ij (3.13)
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The last missing piece is the function R(p), i.e., it has to be decided what hardening
rule to apply. Two of the most common hardening rules are the Power Law and the
Voce/Extended Voce hardening. In this material model, the extended Voce hardening
is chosen and it is given by

R(p) =
2∑

i=1
Qi

(
1− e−Cip

)
(3.14)

Where Qi and Ci are calibrated constants.

3.1.6 Viscoplasticity
So far, the equivalent stress only depends on the plastic strain. The evaluated mate-
rial behavior is assumed to be both strain-rate and temperature dependent as well.
To account for rate dependency, the yield function is expanded to include the rate
dependent stress term σv. This result in

f(σij) = ϕij − σeq and σeq = σ0 +R(p) + σv(ṗ) (3.15)

Where ṗ is the plastic strain rate and σv is the rate-dependent work-hardening. By
applying the Norton creep law, the viscous stress can be expressed as

σv = (σ0 +R)
[(

1 + ṗ

ṗ0

)c

− 1
]

(3.16)

Where ṗ0 is a pre-defined reference strain rate, and c is a material-specific constant
related to the strain-rate sensitivity that will have to be determined through a cali-
bration process. The equivalent stress, σeq, may now be rewritten as [8]

σeq = (σ0 +R)
(

1 + ṗ

ṗ0

)c

(3.17)

It is important to note that this modification allows the stress to move outside the
yield surface, i.e. the yield function f may now take values greater than zero. This
result in new boundaries for elastic-plastic behavior

f ≤ 0 elastic
f > 0 plastic

3.1.7 Thermal softening
When steel is subjected to rapid plastic deformation, heat is generated. This heating
process is assumed to be adiabatic, and high temperatures generally have a softening
effect on both the elastic stiffness, E, and the plastic behavior for most metals. In
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3.1. Docol 600DL steel

this material model, the effect on and from the elastic behavior will be neglected,
resulting in the following differential equation

dT = βT Q

ρcε

dWp = βT Q

ρcε

σeqdp (3.18)

Where dT is an incremental temperature change, ρ is the density of the material, cε

is the specific heat capacity, dWp is the incremental plastic work per unit volume and
βT Q is the Taylor-Quinney coefficient. The latter determines the percentage of plastic
work that is dissipated as heat.

The temperature softening effect may be added to the yield function or the equiva-
lent stress in the same manner as the viscous stress term described in section 3.1.6.
To write the expression more compact it is convenient to introduce the homologous
temperature T ∗

T ∗ = T − T0

Tm − T0
(3.19)

Where T is the current temperature, T0 is a reference temperature, typically 25◦C,
and Tm is the melting temperature of the material. The temperature contribution to
the equivalent stress may now be expressed as

σeq = (σ0 +R(p))(1− (T ∗)m) (3.20)

Where m is a material constant describing the temperature sensitivity that can be
found through a calibration of several tension tests at different temperatures.

3.1.8 Modified Johnson-Cook

By considering the von Mises yield criterion, combined with the work-hardening,
rate dependency, and the temperature softening, all these contributions may now
be collected to one expression for the equivalent stress. The result is the Modified
Johnson-Cook (MJC) constitutive model. The equivalent stress expressed through
MJC reads

σeq = ϕ(σij) = (σ0 +R(p))(1 + ṗ∗)c(1− (T ∗)m) for f > 0 (3.21)

Where

ṗ∗ = ṗ

ṗ0
(3.22)
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3.1.9 Ductile fracture

When a ductile metal alloy is being stretched, voids around second phase particles
may occur. As a result of increased plastic strains and hydrostatic tension, these
voids grow and eventually cause failure. As the voids grow, the metal accumulates
damage. The Cockcroft-Latham fracture criteria aims to model the nature of ductile
fracture[38], and is the applied fracture criteria throughout this thesis.

The Cockcroft Latham fracture criteria

Cockcroft and Latham suggested that a failure criterion should include both stresses
and plastic strains. A way of doing this is to formulate the accumulated damage as a
function of the plastic work per unit volume. They also suggested that the hydrostatic
tension should be included. The result is a fracture criterion based on the plastic work
found by integrating the major principal stress, σ1 over the equivalent plastic strain
p, and it is given by the equation

D = W

Wc

= 1
Wc

p∫
0

〈σ1〉 dp (3.23)

Wc is the amount of plastic work the material will experience when loaded to fracture
and is considered a material parameter. W is the current amount of plastic work,
meaning that the damage parameter D always will be in the range [0,1]. Fracture
will occur when D has reached its critical value. Normally this is set to equal 1, but
a certain percentage of maximum damage may also be applied, i.e. Dcrit = 0.9. To
only account for the accumulation of damage for hydrostatic tension, σ1 is put inside
Macaulay brackets, which is defined by the relation

〈σ1〉 = 1
2 (σ1 + |σ1|) (3.24)

Eq.(3.24) assures that only hydrostatic tension will contribute to the accumulation
of damage.

3.2 Shock wave propagation in air
The blast event in this thesis consists of a shock wave propagating in air. For the
undisturbed air within the SSTF, atmospheric pressure and a temperature of 20◦ is
assumed. In the particular case of shock or blast wave propagation, the viscosity may
be neglected and the fluid is then incapable of transferring shear forces [39]. The fluid
is further assumed to behave compressibly. This section on how to model the fluid is
based on work done in [40] [3].
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3.2. Shock wave propagation in air

3.2.1 The Euler equations
The assumption of an inviscid flow allows for Eqs. (2.5), (2.14) and (2.15) presented
in Section 2.5.1, to be rewritten as the Euler equations. For a compressible flow, these
are given by

Dρ

Dt
+ ρ∇ · v = 0 (3.25)

Dv
Dt

+ 1
ρ
∇p = g (3.26)

∂(E)
∂t

+∇ · (vE) =∇(ρv) = ρfbody · v (3.27)

where Eq.(3.25) represents the conservation of mass which is unchanged. Eq.(3.26)
describe the conservation of momentum and Eq.(3.27) represents the conservation of
energy. Eqs. (3.25) and (3.26) may be found in [39].

3.2.2 Equation of state for air
As mentioned in Section 2.5.2, an equation of state is applied to obtain a solvable
system of equations. For this thesis, the air is assumed to behave as an ideal gas.
The ideal gas law is commonly given as

pV = MRT (3.28)

where p represents the pressure, V the volume of the fluid, M the mass, T is the
temperature and R is a material-specific constant. Eq.(3.28) may be expressed in
various forms and will in this thesis be applied on the form

p = ρRT (3.29)

p = ρ(γ − 1)e (3.30)

where ρ is the density. The ratio of specific heats are given as γ = cp/cv, where cp

and cv are given at constant pressure and constant volume respectively. Further, e
represents the specific internal energy per unit mass.

The ideal gas law is suitable for most dynamics problems regarding gas, except for
cases involving the combination of high pressures and low temperatures. Such con-
ditions lead to small inter-particle distances relative to the size of the particles, and
the inter-particle forces become more significant. To describe the gas in this state,
the presented EOS is not sufficient.
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3.2.3 Fluid parameters
All fluid parameters related to the equations given in Chapter 2 and 3 are well estab-
lished in the literature and no experiments for identification or validation has been
carried out in this thesis. The parameters presented in Table 3.2 are found in [41][42].

Table 3.2: Fluid parameters describing air at atmospheric pressure and room tem-
perature. These data are taken from [41][42].

Parameter Description Value Units

ρ Density 1.2041 [kg/m3]
R Gas constant 287 [J/kg·K]
cv Specific heat, constant volume 716 [J/kg·K]
cp Specific heat, constant pressure 1005 [J/kg·K]
µ Dynamic viscosity 1.848·10−5 [kg/m·s]
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Preliminary study part I

Early in the work with this thesis, it was decided to conduct tests in the SSTF on 0.8
mm Docol 600DL steel plates. However, the geometry of these configurations was not
decided. Based on the previous work, much was already known about the behavior
of plates in the shock tube, and data from tests on Docol 600DL was available.
This chapter is intended to discover what behavior to expect from the new plate
configurations, and based on this a test matrix is to be decided.

To model the full shock tube problem was not the purpose of this initial study.
Instead, the focus is placed on studying the structural response of the different plate
configurations, using simple modeling techniques.

The preliminary study is divided into two parts, Preliminary study part I and Pre-
liminary study part II, presented in this chapter and Chapter 5 respectively. The
first part deals with models given very simple boundary conditions and the geomet-
rical complexity is increased in Chapter 5. This division was considered convenient
because more complex models are computationally expensive. This chapter is there-
fore intended to give as much insight into the numerical problem as possible before
increasing the geometrical complexity.
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Chapter 4. Preliminary study part I

4.1 Description

Through pure Lagrangian analyses, this chapter aims to explore the effects of different
discretizations and element-formulations. All models will utilize symmetry by only
modeling the quarter geometry, and the load is being idealized through pressure-time
curves obtained by Aune [3]. These loading curves were determined by exposing a
5 cm thick steel plate to nominal firing pressures in the range 5 to 60 bar. The
blast-exposed area of the plate was covered with sensors sampling the pressure, and
a Friedlander curve was fitted to the data. Loading curves have been calibrated for a
number of different driver lengths, but in this study, all experiments are using a fixed
length of 77 cm.

To be in continuance with previous work done at SIMLab, NTNU, it was decided
to focus on square perforations and slits. The perforations already tested by Aune
[3] and Granum and Løken [29] resulted in a 16% reduction of the blast-exposed
area. By keeping the total hole area constant, the new configurations divides the
16% area reduction into one single perforation and 16 perforations respectively. This
was intended to change the structural response of the plates and to investigate fluid-
structure interaction effects. The slit configurations studied are similar to the ones
tested by Stensjøen and Thorgeirsson [30], but the plates are made of Docol 600DL
instead of aluminum. In addition, the aluminum plates were 1.5 mm thick. In [30], it
was found challenging to model the angled slit configurations, as it challenges the mesh
geometry, and possibly the element-formulation. The configurations evaluated are
shown in Figure 4.1(a) - 4.1(f), where the full plate (FP) and perforated configuration
(P2) are the ones already tested at NTNU. The plate dimensions of 300 mm x 300
mm refer to the blast-exposed area of the plates.

The previously obtained test data for the Docol 600DL steel plates gave the oppor-
tunity of benchmarking numerical models prior to the experimental testing. With
this opportunity, it was an absolute goal to come up with an accurate test matrix.
This would be a series of tests that resembles the predicted behavior seen in the
simulations. The plan was to test each configuration at three different nominal firing
pressures. The first should result in large deformations and crack arrest. For the sec-
ond test, it was intended to have mainly deformation and only minor or no cracking.
Lastly, the goal was a firing pressure that resulted in complete failure of the plate.

The benchmark study applied the experimental work conducted by Granum and
Løken [29] and aims to learn how the different modeling approaches represent the ex-
periments and to explore the sensitivity of different parameters. An effort was made to
qualitatively reproduce the results in [29], before modeling new plate configurations.

36



4.2. Models

(a) FP (b) P1 (c) P2

(d) P3 (e) S1 (f) S2

Figure 4.1: The configurations evaluated in this thesis, including both new config-
urations and the ones studied by Granum and Løken [29]. Configurations already
tested at NTNU are the FP and P2.

4.2 Models

The models presented in this chapter include only the blast-exposed area of the plates
and utilize symmetry about two axes. Since the models are geometrically simple and
exclude the clamping frames that hold the blast-exposed plate in place, the outer
boundaries are fixed. Only models that utilize symmetry about two axes will be run.
It is shown in [29], [28], and [30], that symmetric models differ negligibly from full
models for this specific problem. The perforations are modeled as perfect squares and
the slits as stars with a center gap of 0.01 mm.

Different configurations, mesh sizes, and element types will be evaluated. To keep
track of all parametric changes, a naming convention is introduced in Table 4.1.
The naming convention states the applied element type, the approximate size of the
elements, the geometrical configuration of the plate tested and the applied loading.
This convention is applied throughout both this chapter and Chapter 5.
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Table 4.1: Naming convention used to label different models in the preliminary
numerical study. The labels will be used in plots and in tables.

General label name: XX EE ZZ phh tt
Part of name Possible configurations Explanation

FP Full Plate
XX PX Perforated plate, geometry X

SX Slit plate, geometry X

EE S4R Shell element, reduced integration
C3D8R Brick element, reduced integration

ZZ 0xx Mesh size of 0.xx mm
xx Mesh size of x.x mm

phh tt p77 tt hh = driver length in [cm]
tt = nominal firing pressure [bar]

4.2.1 Description of the shell element models
The shell element models apply quadratic S4R or triangular S3R shell elements with
an approximate element size on the range 3.2 mm to 0.8 mm. These elements utilize
reduced integration, built-in hourglass control, drilling stiffness, and are linear general
purpose shell elements meant to handle both thin and thick shell problems [43].

Meshing of the shell models

When modeling fracture, the geometry of the mesh and the element size may be of
great importance [44] [30]. To investigate this effect, a mesh study was conducted.

Several different discretizations of the S2 configuration has been evaluated and are
given in Figure 4.2(e) - 4.3(f), referred to as M1 to M4. Due to the angular difference
of 45◦ between the slits and the outer boundary, the mesh for the S2 configuration
requires a transition zone to adjust. M1 and M2 apply only squared S4R elements
across the entire plate. The two meshes are similar but differ in the mesh transition
zone in front of the tip of the slit. The M3 mesh is constructed by using triangular
S3R elements in a squared zone around the slit, and S4R elements in the rest of the
plate. This mesh is regular but introduces a mesh with mixed element types. For M4,
S4R elements are used for the entire plate and the medial axis meshing technique is
applied [45]. All four meshes use an approximate size of 1.0 mm but some elements
are smaller in the transition zones, which leads to higher computational costs.

For the S1, P1, P2, and P3 configurations, only regular meshes was applied. The
different element sizes for the P1 configuration in presented Figures 4.2(a) to 4.2(d).
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4.2. Models

(a) 3.2 mm (b) 2.0 mm

(c) 1.0 mm (d) 0.8 mm

(e) Mesh M1 (f) Mesh M1, zoomed

Figure 4.2: Meshes applied to the different configurations in the simulations in
Abaqus. (a)-(d) Show different mesh sizes and geometries used in the simulations
for the P1, P2, and the P3 configuration. (e) and (f) shows the M1 mesh for the S2
configuration.
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(a) Mesh M2 (b) Mesh M2, zoomed

(c) Mesh M3 (d) Mesh M3, zoomed

(e) Mesh M4 (f) Mesh M4, zoomed

Figure 4.3: Meshes applied to the S2 configuration. (a),(c) and (e) shows the entire
mesh, used for the meshing methods M2, M3 and M4 respectively. (b), (d) and (f)
are showing zoomed images of the mesh around the slit for M2, M3 and M4.

40



4.2. Models

4.2.2 Description of the solid element models
All models apply the C3D8R element. This is a linear 8-noded element with reduced
integration and built-in hourglass control [46]. Simulations have been run with two,
three, and four elements across the thickness of the plate. Three elements result in an
approximate element size of 0.26 mm, and approximately 1 million elements. When
modeled with two and four, the numbers are approximate 250 000 and 2 million
elements respectively. The number differs slightly between the slit and perforated
configuration as the perforations remove 16% of the total meshed area.

For P1, P2, P3, and S1, the models use regular mesh geometries similar to what
is shown in figure 4.2(a). The S2 configuration is modeled slightly different for the
solid models than for the shell models. Figure 4.4(a) shows the partitions made to
construct the mesh for the S2 model. The green area is meshed using a structured
mesh, while the yellow area applies the meshing algorithm sweep advancing front
[47]. Figure 4.4(b) shows the corresponding mesh in the area close to the slit. The
mesh is mostly uniform but there is a transition zone between the areas where the
two different meshing techniques are used. Due to much higher computational costs
when running the solid element model, no study on the mesh geometry was included.

(a) (b)

Figure 4.4: Partitioning and meshing of the S2 configuration. (a) shows the mesh-
ing algorithms applied in the simulations. Green represents the structured meshing
algorithm and sweep advanced front meshing is represented with yellow [47]. (b)
shows the result of sweep advanced meshing for the yellow area.
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4.3 Results
The results obtained for this chapter will be presented in three main blocks. First
the results from the benchmark study, where numerical results are compared to ex-
periments done by Granum and Løken in [29]. The two following parts are evaluating
the new slit and perforated configurations separately.

4.3.1 Benchmark study

In their experiments, Granum and Løken[29] reported the observed midpoint dis-
placement and pictures of the crack arrest in the plates among other observations.
To evaluate the numerical approach chosen in this thesis, these two parameters will
be compared for different numerical models. Midpoint displacement data obtained
in their work will be included, labeled as -GL. The midpoint displacement data was
obtained using 3D-DIC. When applicable, pictures of the crack arrest from the actual
test will be compared to the crack propagation found in the simulations. Further
details regarding their experimental work can be found in their master thesis [29].
Some results obtained by Aune [3] are also included and labeled -VA.

Simulations of the full plate configuration, using shell elements

Only shell element models were applied for the full plate configuration. These sim-
ulations were among the first in this study, and plots of the midpoint displacement
for different mesh sizes are presented in Figures 4.5(a) to 4.6(b). Plots of artificial-
and total energy are also included for some representative simulations to evaluate the
analyses, presented in Figures 4.6(c) and 4.6(d).
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Figure 4.5: Midpoint displacement vs. time for the full plate configuration exposed
to firing pressures of 15 and 25 bar. Experimental results by Granum and Løken are
included and labeled as -GL.
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Figure 4.6: Displacement and energy plots for the full plate configuration exposed to
different loading curves indicated in each plot. (a) and (b) are showing the midpoint
displacements vs. time at 35 and 60 bar. Experimental results obtained by Granum
and Løken[29] are included and labeled as -GL. (c) is showing the artificial energy vs.
time at 35 bar, and (d) is showing the conservation of energy at 35 bar.

As seen in Figure 4.5(a) to 4.6(b) the measured midpoint displacements qualitatively
responds in a similar way as the experiments. However, it is important to note that
the simulated response is consistently stiffer than the experimental results, and the
deviation is varying for the different firing pressures. The simulation at 35 bar is the
one closest to predict the experimental results. Further, the displacement response
does not change noticeably on the range of element sizes tested.
Figure 4.6(c) shows that the ratio of artificial energy divided by the internal energy in
the model is consequently below 0.08%. As mentioned in Section 2.4.2, the artificial
energy is typically related to the resistance of hour-glassing and the added drilling
stiffness to the elements. ETOTAL is the total energy balance in the model [48],
and should remain constant as no energy is to be created during the analysis. The
total energy in the simulation divided by the sum of kinetic- and internal energy is
oscillating around 0.004 to 0.005%, as seen in Figure 4.6(d).
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Perforated plates, P2

The midpoint displacements for the P2 configuration, presented in Figure 4.7, shows
noticeable oscillations for the simulations at 5 bar compared to higher pressures. A
plausible explanation might be that higher firing pressures lead to more energy being
dissipated as plastic work, resulting in a damped behavior. In addition, the increased
pressure force might also contribute to the damping.
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Figure 4.7: For the P2 configuration, experimental data and the simulated response
for nominal firing pressures of 5, 15, and 25 bar is given. (a) to (c) shows the
midpoint displacements vs. time for 5, 15 and 25 bar. (d) shows the artificial energy
for simulations at 25 bar.
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Results for the firing pressure of 35 bar are excluded as this led to failure in the
experiments. The simulated midpoint displacements for the P2 configuration shows
the same trend as the full plates, giving too stiff solutions. The exception is for the
5 bar test, where the initial peaks are captured identically. The 25 bar test was run
with both shell elements applying different element sizes and with two, three and
four solid elements across the thickness of the plate. All models are capturing the
first 3 ms of the response almost identically, except the solid element analysis with
four elements through the thickness. This model results in a slightly softer solution
than the others. It should be noted that this simulation experiences the largest crack
propagation, which may explain the reduced stiffness.

The artificial energy for the analyses on P2 is magnitudes higher than for the Full
plates, but still below the suggested value of 10% [11]. For the conservation of en-
ergy, the total energy divided by the kinetic and internal energy is comparable to
observations for the full plates.
In addition to the midpoint displacement, it was considered important to compare
the simulated crack propagation to what was found experimentally by Granum and
Løken[29]. They reported the crack arrest when testing their perforated plates with
a nominal firing pressure of 25 bar, as shown in Figure 4.9(a) and 4.9(b). The crack
lengths were not explicitly stated, and the length of the cracks are crudely measured
relative to known dimensions in the pictures.

(a) (b)

Figure 4.9: Crack arrest for nominal firing pressure of 25 bar. Both images are from
the same test. (a) Shows the four cracks propagating towards the center and (b) is
showing the upper left perforation of the P2 plate. Both images are taken from [29].

To compare the numerical results with the reported cracks, the accumulated Cockcroft-
Latham damage (SDV W) for different element sizes is shown in Figure 4.10. All
simulations are run with reduced integration. For the 8-node solid elements, C3D8R,
this means only one single integration point located at the volume center for each
element. For the shell elements, S4R, the consequence is one integration point across
the area, and five integration points across the thickness. Remember from Section
2.4.3 that elements are eroded if the damage accumulated in all integration point
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exceeds 555.0 MPa. The fields presented in Figure 4.10 are taken at 20 ms. Larger
elements are observed to lower the value of accumulated damage in the corner of the
perforation.

(a) (b) (c)

Figure 4.10: Damage accumulation in lower left corner of the perforation of P2 at
25 bar using S4R elements with an approximate size of (a) 0.8 mm, (b) 1 mm and
(c) 2 mm.

Figure 4.11 shows the crack propagation at 20 ms for solid element simulations us-
ing two, three and four elements across the thickness. The field output shows the
SDV W field. However, the interesting observation in this figure is the relative length
difference of the arrested crack for the different element sizes.

(a) (b) (c)

Figure 4.11: Showing the longest crack, propagating towards the center of the plate
for P2 at 25 bar using C3D8R elements with an approximate size of (a) 0.4 mm, (b)
0.26 mm and (c) 0.2 mm.

In Table 4.2 the arrested crack length for the different solid element models are listed.
Estimated crack lengths from Figure 4.9 are also included for comparison.
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4.3. Results

Table 4.2: Crack lengths for the P2 configuration at 25 bar. Comparison between
the simulated response when using different solid-element sizes and the experimentally
obtained data by Granum and Løken [29].

Model Long Crack [mm] Short Crack [mm]

Experiments by Granum and Løken 10 5

C3D8R, 0.20 mm 19 8

C3D8R, 0.26 mm 11 6

C3D8R, 0.40 mm 5 3

Experimentally, the nominal firing pressure of 35 bar resulted in complete failure for
the P2 configuration. None of the shell element analyses reproduced failure at 35
bar, neither did any crack initiate at 25 bar. The solid element model with three ele-
ments across the thickness showed promising results for the 25 bar test and predicted
complete failure at 35 bar. The numerically obtained failure mode is compared to
experimental results in Table 4.3. The times at which the images from the test and
the simulations are collected are not synchronized, and the figures are only intended
to illustrate the two failure modes.

Table 4.3: P2 configuration with 35 bar firing pressure. Test compared to solid
element analysis applying three elements across the plate thickness. Images of exper-
iments are taken from [29].
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It is evident in Table 4.3 that the solid element simulation was able to predict the
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same kind of crack propagation pattern as observed in the test.

A summary of all the relevant simulations run for the FP and P2 configurations are
given in Table 4.4. This table contains the model name, mean midpoint displacement
in the time interval 15-20 ms and cracks length. The crack lengths given are the
measured diagonal cracks from the center corner in the perforation towards the center
of the plate. For the simulations resulting in failure, both the midpoint- and the crack
length column will only contain the word Failure.
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Table 4.4: Mean midpoint displacement measured between 15 and 20 ms, and
obtained crack lengths for the FP and the P2 configuration are presented. The
measured crack length for the P2 configuration is for the crack illustrated in Figure
4.11. For the FP configuration no cracking was initiated in any of the simulations.

Model Mean displacement [mm] Crack Length [mm]

FP S4R 08 P77 15 21.08 No crack
FP S4R 10 P77 15 21.10 No crack
FP S4R 20 P77 15 20.98 No crack

FP S4R 08 P77 25 26.14 No crack
FP S4R 10 P77 25 26.13 No crack
FP S4R 20 P77 25 26.09 No crack

FP S4R 08 P77 35 33.99 No crack
FP S4R 10 P77 35 33.98 No crack

FP S4R 20 P77 60 41.65 No crack
FP S4R 08 P77 60 41.75 No crack
FP S4R 10 P77 60 41.74 No crack
FP S4R 20 P77 60 41.75 No crack

P2 S4R 08 P77 05 12.14 No crack
P2 S4R 10 P77 05 12.14 No crack

P2 S4R 08 P77 15 24.64 No crack
P2 S4R 10 P77 15 24.59 No crack

P2 S4R 08 P77 25 30.55 No crack
P2 S4R 10 P77 25 30.55 No crack
P2 C3D8R 02 P77 25 31.41 18.67
P2 C3D8R 026 P77 25 30.99 11.38
P2 C3D8R 04 P77 25 30.32 4.53

P2 S4R 08 P77 35 40.86 11.74
P2 S4R 10 P77 35 40.54 2.82
P2 C3D8R 02 P77 35 Failure Failure
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4.3.2 New plate configurations

By comparing the reference point displacements for the P1 configuration to the mid-
point displacements obtained for P2, it is observed that P1 consequently exhibits the
largest displacements. Although the different sampling points make a direct compar-
ison challenging, it qualitatively illustrates the effect of removing the load carrying
capacity in the middle of the plate. By removing the mid square, membrane forces
can not be transmitted across the free boundary, resulting in large deformation.

The artificial energy and the the energy balance in the models are observed to be
considerably larger for the solid element models than for the shell element models.
This is observed in Figure 4.12(c). A plausible explanation may be the larger crack
propagation obtained in the solid element models. However, the artificial energy is
lower than the suggested limit of 10% [11].

The final crack arrest for the firing pressure of 10 bar using both shell and solid
elements is presented in Figure 4.13. As observed in Section 4.3.1, the shell element
formulation under-predicts the crack propagation compared to solid elements. In the
solid-element analysis at 10 bar, the final crack length is 10.49 mm while the shell
element model applying an element size of 0.8 mm gives a crack length of 2.25 mm.
When using larger shell elements than 0.8 mm no cracks were initiated in the analyses.

(a)
(b) (c)

Figure 4.13: Crack arrest for P1 at 10 bar. (a) 0.8 mm S4R elements, (b) 0.26 mm
C3D8R elements and (c) 0.26 mm C3D8R elements.

When exposed to a firing pressure of 15 bar, the model using 0.26 mm C3D8R elements
experienced a complete failure. The entire plate opens up by folding outwards as
shown in Figure 4.14. However, none of the shell element analyses resulted in complete
failure at 15 bar.
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In this section, the four new plate configurations will be evaluated. The results will
be presented in the same manner as in the benchmark study, i.e., plots describing
midpoint displacement, artificial energy, conservation of energy followed by an eval-
uation of crack arrest, failure mode and required firing pressure to achieve failure.
As this numerical work has been conducted to plan the test matrix, only the most
relevant results will be presented.

The Perforated P1 configuration

An alternative reference point for displacements has been chosen for P1 as it has its
perforation at the centre of the plate. An illustration is presented in Figure 4.12,
together with the corresponding displacements, and energy plots.
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Figure 4.12: Numerical results for the P1 configuration. (a) reference point dis-
placement vs. time, (b) artificial energy vs. time, (c) the energy balance, and (d)
indicates the reference point for displacements.
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Figure 4.14: Illustrating the failure mode for P1 at 15 bar using 0.26 mm C3D8R
elements.

The Perforated P3 configuration

When comparing all simulations on perforated and slit configuration in this chapter,
P3 is the configuration undergoing the largest midpoint displacement without expe-
riencing failure. As pointed out in Section 4.3.1, the midpoint displacement does not
vary significantly with respect to element size and formulation. The difference be-
tween using shell and solid elements are less than 1%. Both midpoint displacements
and artificial energy are given in Figure 4.15. The artificial energy follow the same
trend as observed for the other configurations.
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Figure 4.15: Numerical results for the P3 configurations. (a) midpoint displace-
ments vs. time, (b) artificial energy vs. time.

When applying a firing pressure of 25 bar, the 0.26 mm C3D8R element model is
predicting crack arrest in all four corners of the perforation closest to the center of
the plate. This is shown in Figure 4.16. The longest predicted crack is the one running
towards the midpoint of the plate with a length of 2.91 mm. At a firing pressure of
35 bar, the 0.26 mm C3D8R model is experiencing complete failure as illustrated in
Figure 4.17(a) and 4.17(a).
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(a)
(b)

Figure 4.16: Crack arrest for P3 at 25 bar. (a) indicates the evaluated perforation
and (b) show crack arrest using 0.26 mm C3D8R elements.

It is observed in Figure 4.17(a) and 4.17(b), that the predicted failure is unsymmet-
rical. This is strange as the models utilizes symmetry, the loading is uniform, and
the material is perfectly isotropic. Hence, the failure should evolve in a symmetrical
manner. A numerical round off error, or element erosion patterns has been discussed
as possible explanations.

(a) (b)

Figure 4.17: Showing the failure mode for the P3 configuration at 35 bar. (a) failure
mode at using 0.26 mm C3D8R elements and (b) show a zoomed image of the failure
mode.

In Table 4.5 all relevant simulations regarding the P1 and P3 configurations are listed.
The crack length given for the P3 configuration is the crack propagating diagonally
towards the center of the plate, illustrated in Figure 4.16.
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Table 4.5: Mean midpoint displacement and obtained crack lengths for the P1 and
the P3 configurations. The measured crack length for the P1 configuration is the
one illustrated in Figure 4.13. For the P3 configuration it is the crack propagating
diagonally towards the center of the plate, illustrated in Figure 4.16.

Model Mean displacement [mm] Crack Length [mm]

P1 S4R 08 P77 05 15.79 No crack
P1 C3D8R 026 P77 05 16.41 1.1

P1 S4R 08 P77 10 24.08 2.25
P1 S4R 10 P77 10 23.93 1.41
P1 S4R 20 P77 10 23.57 No crack
P1 C3D8R 026 P77 10 24.53 10.49

P1 S4R 08 P77 15 30.08 11.26
P1 S4R 10 P77 15 29.43 6.4
P1 S4R 20 P77 15 29.01 No crack
P1 C3D8R 026 P77 15 Failure Failure

P3 S4R 08 P77 10 21.88 No crack

P3 S4R 08 P77 15 27.57 No crack
P3 C3D8R 026 P77 15 27.57 0.57

P3 S4R 08 P77 25 34.36 No crack
P3 S4R 10 P77 25 34.41 No crack
P3 S4R 20 P77 25 34.27 No crack
P3 S4R 32 P77 25 34.18 No crack
P3 C3D8R 026 P77 25 34.48 2.92

P3 S4R 08 P77 35 45.54 No crack
P3 C3D8R 026 P77 35 Failure Failure
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4.3. Results

The slitted S1 configuration

The midpoint displacements for the S1 configuration responds quite similar to the P2
configuration, and the energy plots follow the same trend as seen previously. Both
midpoint displacements and artificial energy is given in Figure 4.18.
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Figure 4.18: Numerical results for the S1 configurations. (a) midpoint displacements
vs. time and (b) artificial energy vs. time.

Compared to the other configurations evaluated, S1 and P1 are the only two configu-
rations experiencing crack initiation for both 0.26 mm C3D8R elements and 0.8 mm
S4R elements at a firing pressure as low as 10 bar. The crack arrest for the 10 bar
simulation is seen in Figure 4.19.

Figure 4.19: Crack arrest for the S1 configuration at the firing pressure of 10 bar.

The failure mode obtained with solid elements at 15 bar seems to qualitatively behave
in the same manner as what was found in the masters thesis written by Stensjøen
and Torgeirsson [30] and is shown in Figure 4.20. However, it is important to note
that the plates evaluated were made of aluminum and had a different thickness.

55



Chapter 4.

Figure 4.20: Showing the failure mode for the S1 configuration at 15 bar using 0.26
mm C3D8R elements.

The slitted S2 configuration

The midpoint displacements and development of artificial energy for the S2 configu-
ration, seen in Figure 4.21, obeys the trend observed for other configurations. For S2
it is especially evident that oscillations are increased as the pressure load is decreased.
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Figure 4.21: Numerical results for the S2 configuration. (a) midpoint displacements
vs. time, and (b) artificial energy vs. time.

Although the different shell element meshing techniques do not affect the midpoint
displacement in any noticeable degree, it has a great effect on the propagation of
the cracks. This is illustrated i Figure 4.22. The images of the slit perforation and
zoomed in images of the crack propagating towards the center of the plate is shown.
These images indicate that the propagation of the crack is guided by the mesh. This
is especially evident for the M2 mesh, as the crack is bending in the same way as the
mesh.
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(a) (b) (c) (d)

Figure 4.22: Mesh study for crack arrest at 15 bar for the S2 configuration. (a) M1,
(b) M2, (c) M3, (d) M4. See Figure 4.2(e) to 4.3(f) for the different mesh geometries.

The different crack propagation patterns obtained through the use of solid and shell
elements are deviating noticeably, both in crack-lengths and crack shape. Figure 4.23
shows the crack arrest for the solid-element simulation using three elements through
the thickness of the plate. The solid analysis results in considerable cracks in all four
corners of the slit. It is important to note that a different mesh geometry was used
for the solid analysis, where the mesh is oriented parallel to the outer boundaries.

(a) (b) (c)

Figure 4.23: Crack arrest at 15 bar firing pressure for S2 configuration using C3D8R
elements with an approximate size of 0.26 mm. (a) Shows the entire plate, (b) shows
a zoomed image of the modelled slit, and (c) show a collection of all four cracks.

When applying a firing pressure of 25 bar to the simulation using three C3D8R
elements across the thickness, the S2 configuration is experiencing complete failure.
The propagation initiates as indicated in Figure 4.23. By further crack growth the
upper left crack in the symmetric model shown in Figure 4.23(b) is running across
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the plate and is responsible for the collapse. The crack propagation until complete
failure is shown in Figure 4.24

Figure 4.24: Failure mode for S2 at 25 bar using 0.26 mm C3D8R elements.

The simulation results regarding the slit configurations are summarized in Table 4.6.
The measured crack length for the S1 configurations is the horizontal crack illustrated
in Figure 4.19. For the S2 configurations it is the crack propagating diagonally towards
the center of the plate, illustrated in Figure 4.23.
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Table 4.6: Mean midpoint displacement and obtained crack lengths for the S1 and
the S2 configuration. The measured crack length for the S1 configurations is the
horizontal crack illustrated in Figure 4.19. For the S2 configurations it is the crack
propagating diagonally towards the center of the plate, illustrated in Figure 4.23.

Model Mean displacement [mm] Crack Length [mm]

S1 S4R 08 P77 05 11.82 No crack
S1 C3D8R 026 P77 05 12.04 0.79

S1 S4R 08 P77 10 19.39 0.79
S1 S4R 10 P77 10 19.48 No crack
S1 C3D8R 026 P77 10 19.24 7.30

S1 S4R 08 P77 15 24.23 12.63
S1 S4R 10 P77 15 23.95 8.00
S1 S4R 10 P77 15 24.02 No crack
S1 C3D8R 026 P77 15 Failure Failure

S2 M1 P77 10 18.08 No crack
S2 C3D8R 026 P77 10 17.85 5.73

S2 M1 P77 15 22.66 5.17
S2 M2 P77 15 22.73 2.95
S2 M3 P77 15 22.72 2.22
S2 M4 P77 15 22.98 No crack
S2 C3D8R 026 P77 15 22.58 12.16

S2 M1 P77 25 28.64 19.66
S2 M2 P77 25 28.23 4.36
S2 M3 P77 25 28.42 5.07
S2 M4 P77 25 29.44 No crack
S2 C3D8R 026 P77 25 Failure Failure
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4.3.3 Resulting test matrix
Based on the simulations presented in this chapter, the test matrix seen in Table
4.7 was made. This test matrix is based on the solid element models applying three
elements across the thickness, and provides nominal firing pressures associated with
three distinct responses; complete failure, crack arrest, and deformation with limited
to no cracking.

Table 4.7: Test matrix based on the simulations in the preliminary study. All
nominal firing pressures refer to a driver length of 77 cm.

Configuration Firing Pressure [bar] Planned response

P1
5 Mainly deformation
10 Arresting crack
15 Total failure

P3
15 Mainly deformation
25 Arresting crack
35 Total failure

S1
5 Mainly deformation
10 Arresting crack
15 Total failure

S2
10 Mainly deformation
15 Arresting crack
25 Total failure

4.4 Discussion
4.4.1 Element size and formulation
When comparing midpoint displacements for models applying shell elements with a
size on the range 0.8 mm to 3.2 mm, no significant changes are observed. The same
trend is seen when evaluating solid element models with two, three and four elements
across the thickness of the plate. This shows that convergence is reached with respect
to midpoint displacements for both element formulations when using element sizes
on the given intervals.

Because experimental work conducted by Granum and Løken [29] was available for
comparison, the nominal firing pressure needed to obtain failure in the P2 configura-
tion and the corresponding crack lengths was known. With these experimental results
as a benchmark, the ability to capture cracking and failure was evaluated for models
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using both shell and solid elements. None of the shell element models were able to
predict the crack initiation at the critical firing pressure, whereas the solid element
models qualitatively reproduced the crack lengths seen in the test. Regarding the
failure load, the solid element model applying three elements across the thickness was
able to predict complete failure of the plate. For the equivalent loading, the shell
element model with 0.8 mm predicted only minor cracking. It was found that shell
elements give an idea of the capacity, but to verify it is necessary to apply a solid
element analysis.

Based on the findings in the benchmark study, it was decided to use an iterative
technique to identify nominal firing pressures for the test matrix. The first step was
to run simulations on all new configurations using 0.8 mm S4R elements. If the result
contained elements close to the limit for the Cockcroft-Latham damage parameter,
the second step was to re-submit the simulation using 0.26 mm C3D8R elements.
The solid element analysis determined whether to expect complete failure or not.
By applying this procedure, it was possible to cost-efficiently determine the critical
pressures for all new configurations.

An important observation was the lack of convergence in crack-length with respect
to element size when using solid elements. At the critical firing pressure analyses
applying two, three and four elements across the thickness resulted in observed crack-
length of 4.5 mm, 11.38 mm and 18.7 mm respectively. In general, cracking is a
very local and small-scale phenomenon. To describe the crack propagation properly,
four elements across the thickness is probably not a sufficiently fine discretization.
However, a further refinement of the mesh was considered computationally too costly.
A comprehensive study of crack behavior is considered to be outside the scope of this
thesis as the main goal was to learn how different element types, combined with the
Cockcroft-Latham fracture criterion affected the results.

By comparing the experimentally obtained crack-lengths to the numerical results
for the P2 configuration, the model applying three elements across the thickness
gave the best results. The implementation of a fixed boundary does not allow any
sliding or rotations, which is assumed to be too strict and reduce the capacity of the
plates. In addition, the applied loading curves are taken from measurements on rigid
plates[3]. This results in a higher loading than what is found for a deformable plate
at a corresponding nominal firing pressure. It might be that these two effects are
compensated for by the coarse discretization of the structure.

4.4.2 Structural response
Perforated configurations

The P1 configuration is found to have a greatly reduced failure capacity compared to
the P3 and P2 configuration. Placing the perforation in the center of the plate makes
the corners of the perforation exposed to high strains as the plate lose the ability to
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transfer membrane forces across the center of the plate.

In contrast to P1, the P3 configuration distribute the damage over a larger area in the
plate because of its evenly spread perforations. This increase the capacity by allowing
the midpoint to experience large displacement before the plate fails. Compared to P2,
the P3 configuration responds with larger displacements for all applied pressures, but
as both configurations fail for the same maximum pressure it is hard to distinguish
the capacities due to the limited selection of available pressure-time curves.

Regarding the failure mode predicted for the P3 configuration, the expected failure
mode could be highly sensitive to geometrical- and material imperfections. Because
there are as many as 16 perforations in the P3 configuration, there are many areas of
stress concentration where crack propagation can initiate.

Slitted configurations

For the S1 and S2 configurations, no direct comparison was available, but the mod-
els have been compared to the results obtained for the similar slit geometries using
aluminum instead of steel, in [30]. Note that the aluminum plates had a thickness
of 1.5 mm. When compared, the failure modes show good agreement. The greatest
challenge for the slit geometries was the angled slits of the S2 configuration. The 45◦
difference in orientation between the slits and the outer boundary makes it possible
to mesh the plate in different ways. The mesh study carried out in this configuration
showed that both the initiation and propagation of the cracks are highly dependent on
element size and mesh orientation. When using shell elements, four different meshes
gave four different crack-arrest shapes. Due to the high computational costs for solid
element analyses, only one mesh orientation was tested. The latter implies that there
is still some uncertainty related to the mesh dependency in this model.

4.4.3 Comparison to other numerical studies
The simulated midpoint displacement, using the simple model, is lower than the
experimentally obtained values by Granum and Løken. When comparing with equiv-
alently simplified studies done in the master thesis by Granum and Løken[29] and by
Aune[3], the trend is the opposite. A plausible explanation for this observation may
be that these studies applied slightly different material properties Aune [3].

62



Chapter 5

Preliminary study part II

Based on the knowledge obtained in Chapter 4, this chapter aims to investigate
more realistic Lagrangian models of the problem. This is done by replacing the
fixed boundary conditions of the blast-exposed area with a numerical model of the
clamping frames in the SSTF. The effect of varying the strain rate sensitivity and
include adiabatic heating will be investigated. This part is further intended to act
as a final benchmark study, before applying the most complex model to the new
configurations.

5.1 Description
This part of the thesis includes two different models. The first is a continuance of the
simplest models described in Chapter 4, with the only modifications being changes
in the strain rate sensitivity parameter and the inclusion of adiabatic heating. The
second model is geometrically more complex, including the clamping frame and bolts.
The loading is modeled in the same way as in Chapter 4. By including more parts
in the assembly, a higher number of elements are required as well as the modeling of
contact. This results in a significant increase in computational costs.

As stated in Chapter 4, the strain rate sensitivity study is included as the numerical
results differed slightly between this thesis and previous work done at NTNU. Work
done by Aune[3] showed that both introducing perforations, and allowing for deforma-
tions in the plates reduce the pressure build-up when compared to the massive steel
plates. This finding indicates that the loading applied in the pure Lagrangian simula-
tions are conservative. It is therefore expected that the response will be overestimated
in the pure Lagrangian simulations when comparing to experimental observations. It
is considered important to find a combination of friction and strain rate sensitivity
that obey the findings from Aune.

Tuning of parameters to obtain the desired results is a bad habit when doing FEM-
analysis. This being said, the modeling of friction is a challenging task if doing it
accurately. The same goes for the strain rate sensitivity for the Docol 600DL steel.
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Rakv̊ag [27] investigated the strain rate sensitivity experimentally for this steel in
conjunction with his PhD thesis by performing split Hopkinson tension bar tests at
different strain rates. The tests were conducted on 2 mm thick plate material and
suggest that the strain rate sensitivity parameter c, described in Eq.(3.21), was de-
pendent on the level of plastic strain. By fitting the modified Johnson-Cook equation
to the experimental data for plastic strain levels of 5%, 8% and 12% it resulted in
three different values of the strain rate sensitivity parameter; 0.026, 0.015 and 0.01
respectively.

The parameters applied in the models of the new configurations will be based on
the parametric study in this chapter. The results when running these models are
included in Chapter 7, and only the FP and the P2 configuration are considered in
this chapter.

5.2 Models
In addition to the general naming format presented in Chapter 4, some additional
information regarding the models is added. For the complex models, the name label
will include CX. These models introduce the need of modeling friction, and the applied
friction coefficient is added as fxx. Here xx is the friction coefficient, and the notation
f03 refers to a coefficient of 0.3. For simplicity, it is assumed that one single frictional
coefficient is valid for all parts interacting in the entire assembly. For both the simple
and the complex model the strain rate sensitivity parameter c is given at the end
of the name as cxxxx, where c0001 refers to this parameter being set to 0.001. The
initial value used for this parameter in the first part of the study was 0.01, and when
cxxxx is not part of the legend, it implies that the initial value was used. The last
addition to the naming format is a T at the end of the label if adiabatic heating were
included in the simulation.

5.2.1 Complex model
Figure 5.1 shows an illustration of the modeled assembly. The assembly has two
clamping frames, a red side, and the blue side. The loading is applied to the blast-
exposed area of the plate on the blue side, and it is the clamping frame marked with
blue that is the thickest. In the actual experimental setup, the blue plate would have
consisted of two separate plate structures with a thickness of 25 and 50 mm. For
simplicity, it is modeled as a single plate with a thickness of 75 mm. This is done
to exclude one set of contacts from the simulation. The assembly consists of four
bolts, where the grey bolts are split in half for symmetry reasons. The assembly is
held in place by fixing all degrees of freedom at the surface marked in egg-white.
Initially, it was planned to create the model without fixing the entire backside of the
thick plate, and to use the built-in bolt-load-feature in Abaqus to pre-load the bolts.
Unfortunately, this feature is only available for the implicit solver, and transferring
results between jobs with different solution algorithms was found cumbersome. The
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possibility of using a temperature gradient to shrink the bolts, giving the desired
pre-tension was also considered. It was decided not to use this method as the model
contain a large number of elements, and that this approach calls for an iterative
technique to reach exact force levels.

Figure 5.1: Illustration of the complex model

The advantage when fixing the back side of the thick fastening plate is that it allows
for the bolt force to be applied directly to the side of the bolt opposite to the bolt head.
This implies the assumption that the clamping plates with the combined thickness of
75 mm are considered magnitudes stiffer than the 0.8 mm steel plate that is exposed
to the shock wave.

The analysis was therefore divided into two separate steps. First a bolt tightening
step, and second the pressure loading of the blast-exposed area. The bolt tightening
step applied mass scaling with a factor of 100 to speed up the simulation and was
doable because this part of the behavior does not include any important dynamic
effects. The bolt traction was applied as a smooth step function to further minimize
any dynamic effects. At the beginning of the loading step, the free ends of the now
elongated bolts were fixed, and the bolt load was turned off. This was done to ensure
that the bolts now held the plates in place by its elastic deformations only and that
the contact force was governed by the pre-tension load in the bolts.
To calculate the pre-tension in the bolts, previous work by Aune [3] [49] was consid-
ered. The calculation is based on measuring the approximate torque at which the
bolts are tightened, and estimating of the effect of friction based on material param-
eters and thread geometry. This calculation estimates the pre-tension force in each
bolt to be 46.5 KN and is the force applied as a surface traction to the end of the
bolts in the model.

To model the friction, the simple Coulomb frictional model, as described in [20]
will be applied. Both the static and the dynamic frictional coefficient will take the
same value. Generally, these two values differ, but no experimental data regarding
the frictional behavior is available for comparison. Because of this, it is considered
cumbersome to include both in the parametric study.
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(a) (b)

Figure 5.2: The bolts being tightened and fixed in the two steps. (a) showing the
load being applied and (b) shows the fixing of the bolt ends.

5.3 Results

In this section the results of varying the strain rate sensitivity, including adiabatic
heating, and varying the friction coefficient is presented. For the models investigating
the strain rate sensitivity, only the geometrically simple boundary conditions are
applied.

5.3.1 Effect of rate dependency and thermal softening

From the plots given in Figure 5.3 it is observed that a change of the strain rate sen-
sitivity parameter c is affecting the behavior of the plates noticeably. As expected,
a reduction of the strain rate sensitivity gives a softened material behavior. When
comparing the average midpoint displacement for the results obtained in this section,
the greatest change is found for the P2 configuration when exposed to a firing pres-
sure of 25 bar as seen in Figure 5.3(d). Here the average midpoint displacement is
experiencing an increase of 9.75% when changing c from 0.01 to 0.001. For the FP
configuration exposed to both 25 bar and 15 Bar, and the P2 configuration exposed
to 15 bar the change of c from 0.01 to 0.001 gives an increase of midpoint displace-
ment in the range 7.59 to 7.78%. The effect of including adiabatic does not affect the
results noticeably.
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Figure 5.3: Midpoint displacement response vs. time is plotted for changes in strain-
rate sensitivity and by including adiabatic heating. (a) FP at 15 bar, (b) FP at 25
bar, (c) P2 at 15 bar and (d) P2 at 25 bar
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The results also suggest that the fracture behavior is dependent on the strain rate
dependency parameter c. Figure 5.4 are obtained by running three clamped solid
element analyses using 0.26 mm C3D8R elements, a firing pressure of 25 bar, and
varying the strain rate dependency as c=0.01, c=0.005 and c=0.001. A decrease in
c from 0.01 to 0.005 increases the crack-length at the center from 11.08 mm to 17.36
mm and the midpoint displacement from 30.55 mm to 32.54 mm. When running the
analysis using c=0.001 the model is experiencing a complete failure. It is also worth
noting that none of the 2 mm S4R shell element analyses with a decreased strain rate
sensitivity are experiencing any crack initiation at the firing pressure of 25 bar.

(a) c=0.01 (b) c=0.005 (c) c=0.001

Figure 5.4: Crack propagation at 2 ms for the simple solid element model with an
element size of 0.26 mm at the strain rate sensitivities given in (a) to (c).

5.3.2 Effect of friction

The effect from varying the frictional number seems to effect the response for the
full plates more than the P2 configuration, as indicated in Figure 5.5 and 5.6. The
FP configuration shows a softer behavior for all simulations, except for one, while P2
only overestimates the response for the friction-less analysis. For the firing pressure
of 15 bar, a change in the friction coefficient from 0.16 to 0.3 for P2, results in an
increase in midpoint displacement of 9.31%. The same change for the full plate gives
an increase of 18.97%.
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Figure 5.5: The resulting midpoint displacements from varying the friction coeffi-
cient for the FP configuration.
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Figure 5.6: The resulting midpoint displacements from varying the friction coeffi-
cient for the P2 configuration.

From Figure 5.5 and 5.6 it is seen that the geometrically more complex models expe-
rience less oscillations than the models applying fixed boundary conditions. However,
this is only the case for a non-zero frictional coefficient.

Regarding the energy calculations in the model; the contact energy, total energy, and
the artificial energy are included in the appendix. For all models, these energies were
within the acceptable range, but are included for consistency.
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5.4 Concluding remarks
When investigating the effect of lowering the strain rate sensitivity parameter, it is
evident that this noticeably changes the response. A lower value both increase the
obtained midpoint displacement and increase the crack lengths. In his numerical work,
Rakv̊ag chose to neglect the strain rate sensitivity [27]. This was justifiable because
a parametric study on this parameter showed marginal effect, probably due to lower
strain rates in his experiments. Neglecting it in this study is not an option as it clearly
affects the results. When it comes to introducing or excluding adiabatic heating the
effect is negligible, due to low temperature development. This is in compliance with
the previous work done at NTNU.

To settle on a friction coefficient turned out to be complicated as the FP and the P2
configurations responded quite differently to the changes in this parameter. Although
the two configurations responded differently, it was decided to choose a friction coef-
ficient that worked well for the P2 configuration. This was done because all the new
configurations include either slits or perforations, and in that sense, differ more from
the full plate configuration than the P2 configuration.

For the coming models, the strain rate parameter is chosen to be c=0.005. This is the
same value as Granum and Løken apply in their thesis [29], which makes comparison
easier. Based on the parametric study, the frictional coefficient is chosen to be 0.16.
This is a typical value seen in engineering handbooks for steel-steel friction [50],
applying to lubricated or greased surfaces. In the tests, the surfaces interacting are
indeed not clean due to spray-painting for 3D-DIC, but it is important to be aware
that the chosen coefficient is not determined by actual testing.
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Experimental work

In this chapter, the experimental setup and results will be presented. The experiments
conducted and presented are the test matrix presented at the end of Chapter 4.

6.1 Experimental setup
The experimental setup will include a description of the shock tube and the equipment
used to document the experiments. This includes the DIC technique, laser scanning
equipment and the setup of pressure sensors.

6.1.1 The SIMLab shock tube facility
All experiments are performed in the SIMLab Shock Tube Facility (SSTF) at CASA,
NTNU. This test facility is thoroughly described and validated by Aune [3], but
will be presented briefly in this section for completeness. The SSTF is designed to
create shock waves in air and allows for both the shock wave phenomenon and the
corresponding response of structures to be studied. To monitor experiments, the
facility is equipped with two high-speed cameras and several pressure sensors for a
synchronized sampling of data.

Figure 6.1: Illustration the SSTF. The different sections, as well as the dimensions
is shown. Image is taken from [3].

71



Chapter 6. Experimental work

When including the tank, the total length of the tube is 20 m. It consists of four
main sections: the driver section, the firing section, the driven section, and a dump
tank.

Driver section

This is a high-pressure chamber, with a inner diameter of 31.1 cm and is pressurized
prior to the release of the shock wave. The total length of this section is 2.02 m and by
the use of aluminum inserts, the length of the driver may be varied. All experiments
in this study apply a driver length of 77 cm.

Firing section

This section is located downstream the driver and has a length of 14 cm. The firing
section serves as the divider between the high-pressure side (driver) and the low-
pressure side (driven). In order to get a stepwise transition from high to low pressure
in the firing mechanism, this section allows for three separate membranes giving two
intermediate pressure chambers between the high- and low-pressure side. Different
firing pressures are obtained by varying the rupture strength of the membranes in
this section.

Figure 6.2: Illustration showing the driver, firing section and driven section. The
image is taken from [3].

Driven section

The cross-section of both the driver and the firing section are circular, while the
cross-section in most of the driven section is squared. The driven section has a total
length of 16.2 m and the first 0.6 m of this section serves as a transition between the
two different cross-sections. The blast-exposed plates are mounted in the downstream
end of this section. This part of the shock tube also contains an area with windows,
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where it is possible to mount test objects, but this feature has not been utilized in
this work.

Dump tank

The dump tank encapsulates the end of the driven section where the blast-exposed
plates are being mounted. The tank has a large volume, and the significant increase
in volume from the driven section to the dump tank ensure a drop in pressure. The
tank act as a protection from dust and fragments, furthermore windows are installed
to enable view for the high-speed cameras.

Figure 6.3: Showing the two high-speed cameras outside the dump tank. The image
is taken from [3].

Initiation of the shock wave

The process starts by gradually filling the driver section and the intermediate pres-
sure chambers with compressed air until the desired firing pressure is obtained. The
mechanical explosion is set off by manually releasing the pressure in the intermediate
chambers, causing the membranes to rupture. First, the wave is transformed from
the circular cross-section to the squared cross-section. By the time the shock wave
hits the blast exposed plate, the rarefaction waves have caught up with the shock
wave, which results in a uniform shock front very similar to what is found for an far
field detonation. This has been verified by Aune in [4].

6.1.2 Measuring equipment and calibration
During the blast event, the two Phantom v2511 high-speed cameras placed outside
the windows of the dump tank are sampling pictures of the plate at a frequency of
37 kHz. The pressure is sampled in several sensors along the inside of the tube at
a frequency of 500 kHz. The pressure data is also extracted at the same rate as the
pictures taken by the high-speed cameras, so each image pair is linked to a pressure
level. The synchronization of the pressure data and pictures makes it possible to
define a common time axis when post-processing the results. Since the distance
between each sensor is known it is also possible to calculate the velocity of the shock
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wave propagating towards the testing plate. The two pressure sensors closest to the
plate is placed 24.5 cm and 34.5 cm upstream of the plate, respectively.

6.1.3 Plate setup
All plates have a total area of 0.625 m x 0.625 m and a blast-exposed area of 0.3 m x
0.3 m, which corresponds to the cross-sectional area of the driven section. All plates
tested has a thickness of 0.8 mm and are made of the material Docol 600DL. The
plates are mounted between two thick steel plates with dimensions given in Figure
6.10. The clamping frames are fastened using 12 M24 bolts evenly distributed. All
bolts are tightened using a torque wrench at 200 Nm.

(a) (b)

Figure 6.4: Illustrating the clamping frame used for clamping of plates in the shock
tube. (a) Showing the P1 configuration mounted in the clamping frame and (b)
dimensions of the clamping frame.

Prior to testing, all plates are spray painted with a random speckle pattern to enable
post-processing with 3D-DIC. This technique is described further in the section below.
When spray painting the plates, it is desired to keep the area covered by the supports
as clean as possible for a more predictable friction in the system. The painting is
being done manually with spray cans. This cause the amount of paint covering the
plates inside the clamped area to vary quite a lot, implying that the friction in the
system possibly differs between tests.

6.1.4 Three-dimensional digital image correlation
Digital Image Correlation (DIC) is a technique used to measure displacements and
strains or to track points and edges. The method is based on tracking points on
the outer surface of an object, and the points are tracked in a series of images of
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the deformation process. For the blast-exposed plates, this is done through tracking
the random speckle pattern. The DIC-analysis is run in the eCorr software, which is
developed at NTNU, and a detailed documentation is available at [51]. In order to
obtain 3D-fields, at least two cameras are needed, and both cameras need to capture
the same point at the same time. Each tracked point is described by two coordinates,
one for each camera. By taking the angles between the cameras and the plates
into account, these four coordinates can be translated into three spatial coordinates
(X, Y, Z). To obtain field data, a mesh is paired with the two first images of the
undeformed geometry. Throughout the deformation process, the eCorr-software is
using the grey scale values of the new images to adapt the original mesh to the
images of the deformed geometry. To describe the fields, an FE formulation using Q4
elements are being applied. When applied to the experimenters, both the clamping
frame and the blast-exposed plate is tracked. This is done because the entire shock
tube setup is free to move, and it is the relative displacement between the plate and
the clamping frames that are of interest. To track a chosen set of points on the
surface of the clamping frame, it is covered with the checkerboard stickers seen in
Figure 6.5(a).

(a) (b)

Figure 6.5: The P3 plate clamped in the SSTF prior to testing. (a) shows the
applied speckle pattern for 3D-DIC analysis and (b) shows the applied mesh, and
subsets for point tracking in 3D-DIC.
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6.1.5 Laser scanning
In addition to the DIC measurements of the blast-loaded plates, laser measurements
of both the deformed and undeformed plates have been performed. For these mea-
surements, the Romer Absolute Arm 7525SI delivered by Hexagon Manufacturing
Intelligence was used. The Absolute Arm is a portable laser measuring arm which
allows for the blast loaded plates to be measured while they are still mounted in the
shock tube after the test, and the measuring conditions will, therefore, be as similar
as possible to the results obtained from DIC. The first step in the measuring proce-
dure is to manually define a zero-plane for the measurements. When this plane is
determined the plate is scanned and the surface of the deformed geometry is being
discretized into a point cloud which can be extracted as a .txt-file for further pro-
cessing. The technical specifications for the Absolute Arm 7525SI state that it has
a point repeatability of 0.02 mm. The point repeatability is defined by measuring
one single point from multiple directions. More technical details can be found in [52].
The laser scanning process conducted after each test is illustrated in Figure 6.6.

The point-clouds obtained from the laser measurements were post-processed in MAT-
LAB. A filtering script was used to remove unnecessary points and to visualize the
data, the cloud is plotted for a 1 mm x 1 mm mesh using second order interpolation.

(a) (b)

Figure 6.6: The scanning process of a P1 plate after testing. (a) shows the Romer
Absolute Arm and (b) shown the probe while scanning a plate.
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6.2 Experimental results
The obtained experimental results will be presented in the following order:

– Post test images
– Pressure-time curves
– Midpoint displacements
– Deformation profiles
– Laser scanning and final deformation profiles by DIC and laser
– Failure modes
– Cracking

In Table 6.1 the executed test matrix is given. This matrix differs slightly from the
pre-planned test matrix as it contains one additional nominal firing pressure for the
P1 configuration at 25 bar. The inclusion of one extra test for the P1 configuration
was possible as a misunderstanding resulted in extra plates being produced for this
configuration. The exclusion of the P3 configuration at 15 bar is due to a premature
firing of the system, leaving no usable test data. Table 6.1 together with the images
taken after the tests, presented in Section 6.2.1, gives a compact summary of the
structural response observed experimentally.

Table 6.1: The experimentally executed test matrix with a short summery of the
experimental response of the tested configurations. All nominal firing pressures refers
to using a driver length of 77cm.

Configuration Firing Pressure [bar] Summary of Response

P1

5 No crack initiation
10 Crack initiation
15 Crack initiation
25 Total failure

P3
25 Crack initiation
35 Total failure

S1
5 Crack initiation
10 Crack initiation
15 Total failure

S2
10 Crack initiation
15 Crack initiation
25 Close to failure
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6.2.1 Post test images

(a) P1 05 (b) P1 10 (c) P1 15

(d) P1 25 (e) P3 25 (f) P3 35

(g) S1 05 (h) S1 10 (i) S1 15

(j) S2 10 (k) S2 15 (l) S2 25

Figure 6.7: Post test images of all successfully conducted experiments in this thesis.
For every image, the configuration and the nominal firing pressure applied in the
experiment is given. All nominal firing pressures refers to using a driver length of
77cm, and firing pressure is given i bar.78
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6.2.2 Pressure-time data

Pressure-time plots for all experiments conducted in this study are given in Figures
6.8(a) - 6.9. In addition to the data obtained through work with this, older test
data are included as a basis for comparison. Data included are from the calibration
experiments conducted with the massive steel plate [3] and from experiments with the
FP and the P2 configuration [29]. The only new addition to the naming convention
is: Cal, used for the calibration experiments.

In the pressure-time plots, only the positive part of the pressure phase is included.
The measurements are taken from the closest pressure sensor, 24.5 cm upstream the
plate. The presented data is filtered using a moving average approach, as this makes
the data easier to visually inspect.

(a) 5 bar. (b) 10 bar.

(c) 15 bar. (d) 25 bar.

Figure 6.8: Reflected pressure measured at the pressure sensor 24.5 cm upstream
the plates in the SSTF.
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Figure 6.9: Reflected pressure measured at the pressure sensor 24.5 cm upstream
the plates in the SSTF. Included are all test with nominal firing pressure of 35.

Important note: all curves are shifted to define time equal to zero as the incoming
pressure wave passes the sensor closest to the plate. This point is seen as the first
sudden peak in the pressure, which keeps approximately constant until the reflected
pressure arrives at the sensor seen as the maximum peak in the plots. This is impor-
tant because the displacement data and the pressure data are synchronized for each
individual test, resulting in the displacement data to be shifted equally much as the
corresponding pressure-time curve, and that the two sets of data are related to the
same reference point in time.

From the pressure-time data, it is seen that for the experiments experiencing collapse,
the reflected pressure experience a drop in pressure after the initial peak as the air is
released into the dump tank. This is observed for the following tests: S1 15, P1 25,
P2 35, and P3 35.

As a tool to inspect the pressure-time data, Table 6.3 is given. With this table, it is
easy to inspect and compare the peak reflected pressures. It is evident that different
plate configurations give a noticeable change in the pressure build-up in front of
the plate, compared to the calibration experiments. The table is sorted by nominal
firing pressure, and within these groups, rows are sorted by the value of measured
peak pressure. The two columns named Deviation contain the deviation between the
measured peak pressures for different plate configurations compared to the calibration
results for equal nominal firing pressures. This is an important comparison as it gives
an indication of how the structural response of the tested plates reduces the pressure
build up in front, compared to a nearly rigid surface. For experiments where the
plates failed, data are written in italic in Table 6.3.

80



6.2. Experimental results

Table 6.3: Measured peak reflected pressure and the positive duration of the blast
wave, measured at the sensor 24.5cm away from the blast exposed plate. The listed
deviations are measured relative to the calibration plate experiments for equivalent
firing pressures.

Peak reflected Positive
Experiment pressure duration Deviation Deviation

[KPa] [ms] [%] [KPa]

Cal 05 276.8 26.4 - -
FP 05 267.4 25.5 -3.4 -9.4
S1 05 259.6 23.5 -6.2 -17.2
P2 05 240.5 23.8 -13.1 -36.3
P1 05 234.9 22.1 -15.1 -41.9

Cal 10 456.2 30.3 - -
S1 10 415.9 27.1 -8.8 -40.3
S2 10 411.9 28.0 -9.7 -44.3
P1 10 399.7 23.6 -12.4 -56.5

Cal 15 613.0 36.5 - -
FP 15 575.0 32.2 -6.2 -38
S1 15 574.0 14.0 -6.4 -39
S2 15 570.7 29.4 -6.9 -42.3
P1 15 520.0 24.5 -15.2 -93.0
P2 15 498.2 27.3 -18.7 -114.8

Cal 25 817.8 46.1 - -
FP 25 789.6 42.1 -3.4 -28.2
S2 25 746.5 24.7 -8.7 -71.3
P2 25 732.2 33.2 -10.5 -85.6
P1 25 702.3 5.2 -14.1 -115.5
P3 25 673.7 29.2 -17.6 -144.1

Cal 35 1137.1 43.3 - -
FP 35 1055.9 42.0 -7.1 -81.2
P2 35 901.5 6.6 -20.7 -235.6
P3 35 873.0 7.4 -23.2 -264.1
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When inspecting Table 6.3, it is evident that the S1 and S2 configuration are con-
sistently closest matched to the results from the calibration experiments. This when
considering the new plate configurations tested in this thesis. Not surprisingly the
experiments regarding the full plates are closest to the calibration plate experiments
for all tests. From Table 6.3 it is seen that the order of the different configurations
is not consistent between the groups of nominal firing pressure. For the 5 bar tests,
P2 deviate less from the calibration tests than the P1 configuration, but for the 15
bar tests, P1 deviate less than P2. At 25 bar, it changes again. When evaluating the
two highest firing pressures, the P3 configuration is consistently deviating most from
the calibration experiments. Unfortunately, data for this configuration are missing
for the 15 bar test due to the premature firing of the system.

In Table 6.2, the mean value of the group deviations from the calibration experi-
ments are given, and also the variance within the groups. The variation in the S1,
S2 and the P1 group takes very similar values and are low compared to the other
groups. The group with the P2 configuration tests stand out as the group with the
highest variation. For all the perforated configurations, the mean value of deviation
is considerably high, when compared with the slitted perforations.

Table 6.2: Variance and mean value of the deviation in reflected peak pressure
for each configuration group. The deviation is calculated relative to the calibration
experiments at equivalent loading pressures.

Group Variance Mean
[KPa]2 [KPa]

FP 2.7 5.0

P1 1.3 14.2

P2 16.9 15.8

P3 7.8 20.4

S1 1.4 7.1

S2 1.3 8.4
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In Table 6.4, the shock wave velocities for the different experiments are given. The
exception is for the S2 configuration at 25 bar, due to poor data sampling. Grouped
after nominal firing pressure, the mean shock wave velocity and the time it takes
for the wave to reach the plate after passing the closest sensor is also given. The
velocity calculations are based on knowing the distance between the two pressure
sensors closest to the plate. Based on the velocity estimate, the time consumed
by the wave before reaching the plate is calculated. It is seen that higher nominal
firing pressures result in higher supersonic wave speed, an observation that obeys the
theory elaborated in the PhD thesis by Aune[3]. The wave speed is of importance as
all experiments are chosen to have the same reference on the time axis, namely the
point in time when the incoming wave passes the pressure sensor closest to the plate.
This will be further discussed in the section on midpoint data.

Table 6.4: The shock wave velocity, mach number and an estimate of the time it
takes the wave to travel the 24.5cm between the closest pressure sensor and the blast
exposed plate.

Experiment Velocity Mach number Mean velocity ∆t
[m/s] [-] [m/s] [ms]

P1 05 458.7 1.34 460.9 0.53
S1 05 463 1.35

P1 10 510.2 1.49
510.2

0.48
S1 10 510.2 1.49
S2 10 510.2 1.49

P1 15 561.8 1.64
557.7

0.44
S1 15 555.6 1.62
S2 15 555.6 1.62

P1 25 602.4 1.76 602.4 0.41
P3 25 602.4 1.76
S2 25 - -

P3 35 649.4 1.89 649.4 0.38
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6.2.3 Midpoint displacements data
Figures 6.10(a) to 6.11(b) presents the experimentally obtained midpoint displace-
ments. Due to air passing through the perforations/slits and into the dump tank,
oscillations occur in the plexiglass in front of the high-speed cameras. This effect
makes the pictures blurry and they cannot be used in the DIC-analysis. As a result,
the DIC-analysis fails early for some of the experiments and leave little usable dis-
placement data. The point were data is no longer usable is indicated with an black x
in the figures. Experiments that led to failure of the plate is not included. As stated
in Section 6.2.2, the displacement data is synchronized to have its time axis equal to
zero as the incoming pressure wave passes the sensor in front of the plate.
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(d) S2

Figure 6.10: Midpoint displacements vs. time measured with 3D-DIC.

As seen in Figure 6.11(a) and 6.11(b), the initial response in midpoint displacement
is very similar between configurations when grouped after nominal firing pressure.
When grouped by configuration, the deviations are larger. A small fraction of this
deviation can be explained by the fact that higher firing pressure results in increased
wave speeds [3]. In Table 6.4, the estimates for how long it takes the shock front to
travel from the closest sensor to the plate is given. The maximum time consume is

84



6.2. Experimental results

0.53 ms and the lowest is 0.38 ms, and the maximum time deviation due to this effect
is therefor 0.15 ms. Between 10 and 15 bar, the deviation is only 0.04 ms.
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(a) All experiments at 10 bar
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(b) All experiments at 25 bar

Figure 6.11: Midpoint displacements vs. time measured with 3D-DIC.

Qualitatively, all experiments respond in the same manner. First, a rapid increase
of displacements, followed by a phase of oscillations. However, some tests stand
out. When comparing the behavior of S2 25 with P3 25 in Figure 6.11(b), the S2
configuration experience noticeably slower oscillations with a lower amplitude. This
is probably due to large plastic strains combined with cracking, as the plate was close
to collapse in this test. Another result that stands out is the P1 15 which is the
slowest test to reach its maximum displacement. When comparing all the P1 tests,
seen in Figure 6.12, it is evident that the P1 15 initially deforms with the highest
rate. However, the P1 15 only reach a local maximum at 1.35 ms. From this point,
it slowly accumulates deformations until it reaches its maximum point at 1.74 ms.
When looking at the synchronized images from the high-speed camera, it is observed
that the cracks at the four corners of the perforation are growing considerably between
1.35 ms and 1.74 ms.
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Figure 6.12: Midpoint displacement vs. time plotted until 3.5 ms for all P1 config-
urations tests
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6.2.4 Deformation profiles

The deformation profiles corresponding to the maximum displacement, 80% of max,
60% of max, and 40% of max are presented in Figures 6.14(a) to 6.15(c). The experi-
ments that resulted in total failure of the plates are excluded. It should be noted that
extracting the displacement data for the profiles is associated with some uncertainty.
This is done manually in eCorr by defining a vector that is suppose to be the center
line, illustrated in Figure 6.13 for the P1 and the P3 configuration. To define the vec-
tor, it is drawn between what is suppose to be the centered nodes at each side of the
plate. The point used to sample the midpoint displacements, plotted in Section 6.2.3,
is always included. Because the mesh is fitted to the picture of the undeformed plate
using only visual inspection, this represent the greatest uncertainty. Displacement
data within the elements are extracted using interpolation of the kinematic fields.

Some of the DIC-analysis required a coarser mesh than others and the result is that
the obtained profiles becomes less smooth. A course mesh is needed if the plate
experience cracking or if the applied speckle pattern is too uniform.

(a) P1 (b) P3

Figure 6.13: The images show the defined vectors used to sample the deformation
profiles in the 3D-DIC analyses. (a) show how the center line and the DIC mesh is
defined for the P1 configuration and (b) show how the center line and the DIC mesh
is defined for the P3 configuration.
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(a) P1 05
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(b) P1 10
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(c) P1 15
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(d) P3 25
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(e) S1 05
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(f) S1 10

Figure 6.14: Deformation profiles obtained using 3D-DIC.
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(a) S2 10
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(b) S2 15
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(c) S2 25

Figure 6.15: Deformation profiles obtained using 3D-DIC.

It is seen in Figures 6.14(a) to 6.15(c), that within each configuration group, the
shape of the deformation profile have similar features for all firing pressures. The P3
configuration deviates from the two slitted configurations and although similar, the
S1 and the S2 deformation profiles show distinguishable features.
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6.2.5 Laser scanning and final deformation profiles

From the measurements using the laser scanning technique, the displacement profiles
measured across both the horizontal and vertical center line is presented. All tests
experiencing complete failure are excluded. The DIC-profiles are measured along the
same axis as what is referred to as ”... Lazer X”, and are included for comparison
between the two methods. In addition to the comparative profile plots, the full 3D
plots of the deformed are presented. These plots are the graphical representation
of the obtained point clouds measured with the laser arm and post-processed with
MATLAB. The profile and point cloud plots are given for the P1 and P3 configuration
in Figures 6.16(a) to 6.19, and for the S1 and S2 configuration in Figures 6.20(a) to
6.22(f).

(a) Final deformation P1 05. (b) Final deformation P1 10.

Figure 6.16: The point cloud representation of the final deformations obtained from
the laser measurements.
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(a) Deformation profiles P1 05
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(b) Deformation profiles P1 10

Figure 6.17: Deformation profiles obtained using the laser arm compared to using
3D-DIC.
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(a) Final deformation P1 15 (b) Final deformation P3 25

Figure 6.18: The point cloud representation of the final deformations obtained from
the laser measurements.
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(a) Deformation profiles P1 15
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(b) Deformation profiles P3 25

Figure 6.19: Deformation profiles obtained using the laser arm compared to using
3D-DIC.

The maximum deviation between the measurements from DIC and the laser arm is
for the P1 10 and P1 15 configuration. For these two experiments, the difference is
2.7 mm and 4.6 mm respectively. To find the permanent displacements using DIC,
a post picture is taken approximately a minute after the blast event is over. The
picture is taken after the oscillations have stilled, and the deformation has reached its
permanent state. Due to oscillations in the plexiglass, as mentioned in Section 6.2.3,
the DIC analysis struggle. When the DIC-analysis is run, the post picture is added
after the last valid image in the image series. This results in a quite large change in
displacements between the two last images in the series, and the mesh separate along
the boundary of the perforation. This is probably what causes the deviation between
the two measuring techniques. With the exception of the experiments on P1 10 and
P1 15, the two measuring techniques are in acceptable compliance.
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The green circle Figure 6.20(a) - 6.20(b) indicates the area where the mesh has sep-
arated from the plates. Although this could be part of a possible explanation for
the deviation measured between the laser and DIC, no separation was found for the
P1 15 test. In this test, the deviation is even larger than for the P1 10.

(a) DIC post picture P1 10 Camera 1 (b) DIC post picture P1 10 Camera 2

Figure 6.20: Indicating the 3D-DIC analysis where the mesh separated from the
plate along the boundary of the perforation for the P1 plate tested at a nominal firing
pressure of 10 bar

(a) Final deformation S1 05 (b) Final deformation S1 10

Figure 6.21: The point cloud representation of the final deformations obtained from
the laser measurements.
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(a) Deformation profile S1 05
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(b) Deformation profile S1 10

(c) Final deformation S1 15 (d) Final deformation S2 25
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(e) Deformation profiles S2 15
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(f) Deformation profiles S2 25

Figure 6.22: Deformation profiles obtained using the laser arm compared to using
3D-DIC, and the point cloud representation of the final deformations obtained from
the laser measurements.

The deformation profile obtained from the DIC analysis for the S2 25 experiment,
seen in Figure 6.22(f), is experiencing an unrealistic peak in displacement. This is
seen when evaluating the displacement in the position range 200 mm to 250 mm. At
this location, the slits are opening up completely and it creates a shaded area above
the speckle pattern in the post image. This confuses the DIC-analysis, due to a rapid
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change in grey-scale values.

The green circles in Figure 6.23(a) and 6.23(b) indicate the areas where the speckle
pattern is disturbed by both a shadow and pieces of the plate itself. When looking
at the horizontal center line, it is clear that the nodes/elements within the shaded
region are without visual speckles. This makes it impossible for the displacements to
be calculated. However, most parts of the displacement profile are in good agreement
with the laser measurements in the X-direction, labeled S2 25 Lazer X.

(a) DIC post picture S2 25 Camera 1 (b) DIC post picture S2 25 Camera 2

Figure 6.23: Showing the area of the S2 plates exposed to a firing pressure of 25
bar where the opening of the slits covered up the speckle patter along the center line
of the plate, and disturbed the 3D-DIC analysis.

6.2.6 Observed failure modes

For the experiments that led to failure, a selection of the high-speed camera images
are included to document the crack propagation. The S2 configuration tested at 25
bar is an exception as this experiment did not experience complete failure, but the
crack propagation was considered large enough to be included in this section. In
Figure 6.24 and 6.25, the failure modes observed for the P1 and the P3 configurations
are presented.
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t =1.13 ms t=1.43 ms t=2.24 ms t=2.56 ms
Figure 6.24: Showing the symmetric failure mode for the P1 25 test.

t =1.29 ms t=1.49 ms t=2.29 ms t=3.08 ms

t =3.78 ms t=4.56 ms t=5.19 ms t=6.08 ms
Figure 6.25: A selection of high-speed images showing the obtained failure mode
for the P3 35 test. It is tried to capture the non-symmetric initiation of the failure
at the center of the plate, and the propagation all the way to complete failure.

For the P1 configuration, failure happens as the cracks initiated in the perforation
corners propagate diagonally all the way to the boundary of the blast-exposed area.
The loose flaps, seen in the last image in Figure 6.24, ends up being wrapped around
the edges of the clamping frame. This is seen in the section containing post test
images. For the P3 configuration, the failure mechanism is more complicated, and
it is harder to describe. As seen in Figure 6.26, the failure initiates at the center of
the plate, where cracks are formed in each corner of the perforation closest to the
midpoint of the plate. It becomes unsymmetrical as one crack propagate faster than
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the others, and this initiates a complete tearing down towards the lower left corner
of the clamping frame. This failure mode is the one deviating most from what was
found in the numerical simulations done in Chapter 4.

t =1.19 ms t=1.22 ms t=1.24 ms t=1.27 ms
Figure 6.26: Showing the failure mode for the P3 35 test. The images are zoomed
in at the center of the plate to capture the non-symmetrical initiation of the crack
propagation.

For the S1 configuration, the cracking initiates symmetrical, but one horizontal crack
propagating faster than the others. This is seen in Figure 6.27. The result is that a
flange still connected to the plate is cut out. Regarding the S2 configuration, complete
failure was never reached. As can be seen in Figure 6.28, the plate still have some
rest capacity but is highly deformed.

t=1.27 ms t=1.51 ms t=1.72 ms t=2.41 ms
Figure 6.27: Showing high-speed images of the failure mode for S1 15 at a selection
of times.

t =1.40 ms t=1.62 ms t=1.89 ms t=2.30ms
Figure 6.28: Showing high-speed images of the failure mode for S2 25 at a selection
of times. 95
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6.2.7 Measured crack lengths
In Chapter 4, crack lengths was one of the important parameters to evaluate when
constructing the test matrix. For validation of new numerical models, the crack
lengths are documented through this section. The measurements are given i Table
6.5, and relates to the illustrations in Figure 6.29.

(a) P1 (b) P3

(c) S1 (d) S2

Figure 6.29: Orientations of measured cracks.

When measuring the cracks, it was found that some of the configurations did not
crack, but only necked in the highly stressed areas. This was at least the finding
with only a visual inspection. If applying more advanced inspection methods, small
or internal cracks can possibly be found. For the plates with large visible cracks, the
necking is also present at the crack-tip. To distinguish between cracks and necking
may be hard, and this made the measuring process challenging. Both phenomena are
illustrated in Figure 6.30. The method of measurement was rather crude, as a digital
caliper was the only tool available. Based on doing repeated measurements of the
same crack by two persons, the uncertainty in the measurements is given as a rough
estimate. For the long and short cracks, the uncertainty is estimated to be ±1 mm
and ±0.5 mm. In the Table 6.5, N indicates a pure necking and a number indicates
an actual crack length.
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(a) (b)

(c) (d)

Figure 6.30: Images identifying cracks and necking for P3 25 and P1 15. (a) P3 25
showing both cracks and necking, (b) Zoomed image of cracks and necking for P3 25,
(c) P1 15 showing cracks with necking at the tip, (d) Zoomed image of the combina-
tion of a crack and necking for P1 15.

All four images in Figure 6.30 are taken from the backside of the plates. The clean
steel surface without the speckle pattern makes it easier to see the necking, and also to
distinguish between a crack and a necking. The P3 25 test shows both pure necking
and the mix of cracks and necking, while P1 15 shows more distinct cracks with a
neck at the crack tip.
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Table 6.5: Crack data for all tests that did not experience complete failure. Measure-
ments are made with reference to the crack name convention introduced in Figure
6.29. Where only necking was observed, an N is given. For the S2 25 experiment
cracks was too large to be practically measured, this is indicated with X.

Test O1 O2 O3 O4 I1 I2 I3 I4
S2 10 N N N N 4.4 4.7 4.3 4.2
S2 15 5.1 4.4 4.7 4.8 11.4 10.8 10.9 10.3
S2 25 22.8 22.2 21.2 22.5 X X X X

H1 H2 H3 H4 V1 V2 V3 V4
S1 05 N N N N N N N N
S1 10 5.1 5.4 6.2 5.8 7.2 7.9 7.5 7.4

O1 O2 O3 O4 I1 I2 I3 I4
P3 25 N N N N 2.0 2.4 1.6 2.2

O1 O2 O3 O4
P1 05 N N N N
P1 10 6.1 6.2 6.4 6.1
P1 15 25.0 26.0 22.7 22.3

Flipping of cracks

Some of the measured cracks experienced the crack-flipping phenomenon. This is
characterized by the crack changing its direction through the plate thickness with a
±45◦ with respect to the axis going straight through the thickness. The S2 25 is the
test where this phenomenon is most evident, but it is also observed in some of the
other configurations. The flipping phenomena were also reported in [29].

Figure 6.31 shows the orientation of the yield line through the thickness of the plates.
The orientation has two equivalent solutions, being θ = ±45◦. This is based on
Hills analysis and can be found in [8]. In the experiments, it seems like the crack
is changing in-between the two directions along the length axis of the crack. Figure
6.32 shows the flipping phenomenon for the S2 configuration at 25 bar.
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Figure 6.31: Through thickness yield line for the plates. The image is taken from
[8].

(a) (b)

Figure 6.32: Images of the S2 25 test experiencing flipping at some of the cracks.
(a) S2 25 at its final deformation, (b) Zoomed image of a crack exhibiting flipping.

6.2.8 Concluding remarks
The test matrix obtained in the preliminary study was generally in good agreement
with the experimental results. Both the P3 and S1 configurations exhibited the
numerically predicted behavior for all three firing pressures. The exceptions are the
S2 and the P1 configurations. At 10 and 15 bar, the S2 configuration responded
as predicted, while the 25 bar test did not experience complete failure as predicted
numerically. For P1, the test matrix had to be expanded to a firing pressure of 25
bar to obtain complete failure, and hence, the numerically predicted capacity of the
plate was under-predicted.

For the pressure-time data, the observed trend is that perforated plates produce lower
reflected pressures than slitted plates. When comparing the perforated plates, some
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alternation between the configurations is seen. The decrease in the reflected pressure
is thought to have two main contributions, the deformation of the plate itself and
the leakage of air flowing into the dump tank. Obviously, perforated plates allow for
more leakage than full and slit plates. This being said, is hard to determine to what
degree it is the leakage effect or the reduced stiffness that reduces the pressure build-
up. Within the different perforated configurations, the experiments suggest that the
P3 configuration gives the overall lowest reflected pressure. However, the lack of test
data for the firing pressure of 15 bar makes it hard to conclude on this matter.

When comparing the crack propagation in the S1 and S2 configurations to the ge-
ometrically similar aluminum plates tested by Stensjøen and Thorgeirsson [30], the
results are almost identical. For the S1 configuration, the failure mode found in alu-
minum and steel shows a similar pattern. Although complete failure did not occur
for the S2 configuration, the failure mode seems to initiate in the same way as in the
aluminum plates. In the appendix, some images illustrating the failure modes found
in their master is included for comparison.

The observed failure modes in the plates seem to become more unsymmetrical as
the geometrical complexity increase. Unfortunately, no repeated test was conducted
in this study. Due to the complex geometry for the P3 configuration, it could be
interesting to perform repeated tests at its failure pressure, to investigate the potential
variation in failure modes.

For the most part, the results obtained from the laser measurements and DIC were
in good agreement. The exceptions were the tests regarding the P1 configuration and
the S2 25 test. For the P1-tests, most of the problems regarding the DIC-analysis is
probably due to oscillations in the plexiglass in front of the cameras. For the S2 25
test, the complete opening of the slits gave shadows covering parts of the speckle
pattern, and this caused trouble for the DIC-analysis. The results from the laser arm
were considered the most trustworthy, and they also serve as a great tool to inspect
details in the deformed geometry.
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Numerical work

This chapter will serve as a final numerical study where simulations in both Abaqus
and Europlexus will be evaluated. The chapter consists of three main parts. First,
the most geometrically complex Lagrangian models developed in Abaqus will be val-
idated through a comparison with the experimental results. Here, the midpoint dis-
placements, failure modes, and deformation profiles will be considered. The second
part will compare Lagrangian models in both Abaqus and Europlexus. To identify the
deviations purely related to the change of solvers, identical loading histories and ma-
terial parameters will be applied to all models. The last part will evaluate the effect
of including fluid-structure interaction through running coupled Eulerian-Lagrangian
analyses in Europlexus.

7.1 Description
Based on the parametric study in Chapter 5, the parameters for the final Lagrangian
models in Abaqus was determined and will be applied in this chapter. The fully
coupled simulations are run in Europlexus, which is a software for simulations of
fast transient fluid-structure interaction problems. It is developed jointly by several
co-owners plus the members of a consortium, and a number of Universities. The sim-
ulations run in this code are included to investigate the effects of FSI, and to compare
the pure Lagrangian approach to the fully coupled Eulerian-Lagrangian method. The
use of Europlexus was only possible due to guidance from our supervisor V. Aune,
and the models applied in this chapter were developed in conjunction with his PhD
thesis [3] and through the work, he does as an associate professor at NTNU.

In Europlexus, both fully coupled and pure Lagrangian simulations are included. The
clamping frame and bolts are modeled slightly different for the models in Europlexus
and Abaqus. Therefore, it was considered important to compare results between the
two solvers for similar loading histories in the Lagrangian models before evaluating
the FSI effects.

It should be noted that some trouble was encountered when running simulations
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in Europlexus due to a bug in the solver. This was related to the combination of
adaptive meshing and the description of contact between the testing plates and the
clamping frames. Europlexus has a narrow and very specialized market segment
and is a cutting-edge software. Due to this, the code is not as robust as the more
established solvers such as Abaqus and LS DYNA.

Initially, the goal of this chapter was to run the most complex FSI models developed
by Aune and to compare the results with the experimental work. However, due to
the bug in the solver, all simulations was delayed and it was decided to only evaluate
the geometrically simple models when including FSI. This choice limited the focus in
Section 7.5 to only evaluate the effect of including FSI in the simulations, rather than
to investigate whether the coupled Eulerian-Lagrangian approach gives better results
than the pure Lagrangian simulations.

7.2 Numerical models
This chapter contains numerical models in two different solvers, and the models in
each solver will be presented separately. As stated, the parameters for the models
in this chapter are based on the findings from part two of the preliminary study,
described in Chapter 5. Table 7.1 gives the applied material parameters and fric-
tion coefficient used for both solvers. Note that µ is applied as both the static and
the dynamic friction coefficient. The strain rate sensitivity parameter has also been
changed from c=0.01 to c=0.005 due to findings in Chapter 4.

Table 7.1: The material parameters for the Docol 600DL steel, and the frictional
coefficient applied in the numerical models. The coefficient µ is applied as both the
static and dynamic friction coefficient.

A Q1 C1 Q2 C2 c m ṗ0 Wc µ

[MPa] [MPa] [-] [MPa] [-] [-] [-] [S−1] [MPa] [-]

325.7 234.5 56.2 445.7 4.7 0.005 1.0 5x10−4 555.0 0.16

7.2.1 Lagrangian models in Abaqus
The Lagrangian models in Abaqus are the geometrically complex models, applying
three solid elements across the thickness, described in Chapter 5.

7.2.2 Europlexus
All models run in Europlexus apply the same representation of the blast-exposed
plate, and all utilize symmetry about two axes. The Plate is discretized using four-
noded, fully integrated shell elements, and the adaptive mesh refinement technique,
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outlined in Chapter 2 is applied. The initial element size is 6mm and is refined down
to the minimum size of 0.75mm as the Cockcroft-Latham damage parameter in the
most affected integration point is on the interval (0.01 ≤ D ≥ 0.02).

The difference between the Europlexus models is the implementation of loading and
boundary conditions. For the geometrically simple models, only the blast-exposed
area of the plate is included. This is illustrated in Figure 7.1(b) for the P3 configura-
tion. The outer boundaries are fixed and marked with black, which is equivalent to
the simple models applied in Chapter [ch:prelimI].

The geometrically complex models include the clamping frame with bolts and apply
the pinball contact with a penalty constraint equation. The tangential behavior is
governed by the simple Coulomb friction model with an equal static- and dynamic
friction coefficient. The surface on the clamping frame facing the incoming shock-
wave is fixed in all degrees of freedom, and the bolts are modeled without the bolt
heads. The end of the bolts facing the incoming shock wave is merged together
with the clamping frame, modeled as one part. To represent the bolt load, a surface
traction is applied to the area around the bolt holes on the clamping frame furthest
from the incoming shock wave. This area is marked in gray in Figure 7.1(a). The
applied traction force is kept constant and corresponds to a bolt force of 46.5 KN,
which is equivalent to the model in Chapter 5. It is important to note that this
implementation of the bolt load differs from the one presented in Chapter 4.

(a) P1 (b) P3

Figure 7.1: Illustration of the numerical models in Europlexus, shown with the P3
configuration as the blast exposed plate. (a) shows the geometrically complex model,
including the clamping frame and bolts. (b) shows the geometrically simple model.
Only the blast-exposed area is included, and the green lines indicates symmetric
boundary conditions and the black lines represents the fixed outer boundary.
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Lagrangian models in Europlexus

In the purely Lagrangian models, the same pressure-time curves are used in Euro-
plexus as presented in Chapter 4 for the models in Abaqus. Lagrangian models run
with both the simple and the complex boundary implementation will be included.

Fully coupled Eulerian-Lagrangian in Europlexus

The fully coupled simulations apply a finite volume formulation for the discretization
of the fluid. To model the interaction between the fluid and the solid, an embedded
FSI technique is applied. Both the finite volume and the embedded FSI technique is
more thoroughly described in Chapter 2.

The fully coupled models include the entire shock tube, as well as the rupture of the
membranes. This level of detailing has been shown by Aune et al. [32] to be necessary
to get a realistic representation of the loading on the plates. The rupture process of
the membranes introduce disturbances in the initial phase of the wave propagation,
and this effects must be included to get good compliance with the experimentally
obtained pressure measurements. To save computational time, the fluid domain is
only considered as a 3D domain in the proximity of the membranes and the blast-
exposed plate. In parts of the shock tube where the flow is mostly uniform, a 1D
domain is used [53].

7.2.3 Naming convention

All name labels start with the same two-letter shortening of the geometrical con-
figuration as described in Chapter 4, followed by the nominal firing pressure. The
modeling-specific parts of the name labels presented in Table 7.2 states which solver
that was used, and further parametric changes from the standard models. Explana-
tions regarding different parametric changes are given in the result section.

Table 7.2: Descriptions of the naming convention used in both plots and tables in
this chapter.

Part of name Explanation

ABQ Model in Abaqus

Exp Experimental data

EPX Model in Europlexus, geometrically complex
Fix EPX Model in Europlexus, geometrically simple
L Purely Lagrangian model
CEL Coupled Eularian Lagrangian
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7.3 Validation of Abaqus models
This section serves as a validation of the most realistic Lagrangian models, developed
in Abaqus. The numerically obtained results will be compared with the experimental
work. Crack propagation, failure modes, and displacements will be evaluated in the
same manner as what was done in the preliminary study presented in Chapter 4 and
5.

Chapter 4 aimed to determine the test matrix for the experimental work, Crack
arrest and failure modes has been one of the important parameters for benchmarking
of the preliminary numerical models. Due to the specific focus in the prediction of
the capacity of the plates, and the ability to within a reasonable range determine
obtained crack lengths in previous chapters, this will be the first topic for validation
of the final models. Further, the midpoint displacement response and deformation
profiles will be evaluated.

7.3.1 Evaluation of failure modes and cracking
In table 7.3, the numerically predicted failure loads for the different configurations are
compared to the experimental results. It is seen that the Lagrangian model in Abaqus
is able to accurately predict failure for two out of four configurations. The failure
estimate deviates from the experimental results by underestimating the capacities of
the plate and is therefore conservative.

In Table B.4 the numerically obtained failure modes for the different configurations
are given. It is seen that the simulated result for S1 15 is in good agreement with
the experimental results. Both the failure load and mode are correctly predicted.
For the P1 configuration, the correct failure mode is predicted, but the capacity is
underestimated numerically. As stated in the experimental work, P1 15 does not
experience complete failure experimentally, but numerically it does when modeled
with both the geometrically complex model and the simple model from Chapter 4.
For the P3 configuration, the correct failure load is predicted but the numerical failure
mode differs from the experimental result. The failure mode observed for the 35
bar simulation in this section also deviates from what was found in the preliminary
study, in Chapter 4. A plausible reason for this may be the change in the strain rate
sensitivity. Numerically S2 25 is experiencing a complete failure. Experimentally,
this test was observed to be at the very limit, but complete failure was not obtained.

Table 7.3: Comparison of how accurate the numerical models in Abaqus is at pre-
dicting total failure of the tested plates.

P1 15 P3 35 S1 15 S2 25

Experimental Not failure Failure Failure Close to failure
Simulation Failure Failure Failure Failure
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Table 7.4: Failure modes obtained with Abaqus for the four different configura-
tions. The deformation and crack propagation are shown at three chosen times for
all simulations resulting in failure of the plates.

P
1

15
A

B
Q

t = 1.15ms t = 1.49ms t = 1.82ms

P
3

35
A

B
Q

t = 0.81ms t = 1.14ms t = 1.48ms

S1
15

A
B

Q

t = 1.15ms t = 1.49ms t = 2.15ms

S2
25

A
B

Q

t = 1.15ms t = 1.49ms t = 2.15ms
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All evaluated crack lengths from the experimental work in Chapter 6.2.8 has been
compared to the numerically obtained results in this section and is given in Table 7.5.
In this table, it is seen that the length of the predicted cracks is consistently overesti-
mated. Although overestimated, the lengths of the predicted cracks are comparable
to the experimental results for many of the simulations. The lowest deviation between
the numerical end the experimentally obtained crack length is for the S1 10 simula-
tion where the crack length for the O-crack is overestimated with approximately 20%
and the S1 05 simulation where the simulated result is 1.1 mm cracks compared to
pure necking experimentally. The least accurate crack representation is for the P1
configuration. For the P1 10 simulation, the crack length is overestimated by a factor
of 2.7.

Table 7.5: Crack data for all simulations using the geometrically complex Abaqus
model is compared to the experimental results. The crack names are referring to the
naming convention given in Figure 6.29. From the simulations, only one crack length
is given due to the symmetric model. In the table, (N) indicates pure necking, (X)
indicates a crack that is too large and twisted to be measured, and (-) indicates that
the simulation resulted in complete failure.

Test Experimental Abaqus
O1 O2 O3 O4 I1 I2 I3 I4 O I

S2 10 N N N N 4.4 4.7 4.3 4.2 1.1 5.3
S2 15 5.1 4.4 4.7 4.8 11.4 10.8 10.9 10.3 5.5 14.5
S2 25 22.8 22.2 21.2 22.5 X X X X - -

H1 H2 H3 H4 V1 V2 V3 V4 H V
S1 05 N N N N N N N N 1.1 1.1
S1 10 5.1 5.4 6.2 5.8 7.2 7.9 7.5 7.4 9.3 9.0

O1 O2 O3 O4 I1 I2 I3 I4 O I
P3 25 N N N N 2.0 2.4 1.6 2.2 1.5 6.3

O1 O2 O3 O4 O
P1 05 N N N N 1.5
P1 10 6.1 6.2 6.4 6.1 16.9
P1 15 25.0 26.0 22.7 22.3 -

7.3.2 Evaluation of displacements
To evaluate the numerically obtained results, the calculated displacements will be
compared to what was in the experimental work. Plots of the midpoint displacement
are included for all combinations of configuration and firing pressure except the ones
that resulted in failure experimentally. This is presented in Figure 7.2.

The experimental and the numerical midpoint displacements are plotted on a syn-
chronized time axis through the calculated shock wave velocities. As stated in Section
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6.2.2, the reference time is zero as the incoming shock wave passes the sensor closest
to the plate. To obtain the equivalent time axis, the time consumed by the shock
wave between the closest sensor and the plate is added to the numerical data. These
time estimates are given in Table 6.4. As seen in Figure 7.2, the numerical response
is qualitatively very similar to the experimental data after the time axis has been
adjusted.
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Figure 7.2: Midpoint displacements vs. time for experimentally obtained data
compared to pure Lagrangian model in Abaqus. Dotted lines represents the experi-
mentally obtained data.

The numerically predicted response is consistently larger than in the experiments.
This is in agreement with previous numerical studies conducted at NTNU, as men-
tioned in Chapter 4. In Table 7.6 the maximum midpoint displacement is compared
between the geometrically complex Abaqus model and the experimental results. To
evaluate the difference between using the geometrically complex or simple models,
results from Chapter 4 has also been included for equivalent element formulations
and sizes. The evolution of the displacement profiles for two representative tests is
included in Figure 7.3. As seen, the numerically and experimentally obtained profiles
are qualitatively very similar.
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When treating all perforated simulations as one group, it is seen in Table 7.6 that
the complex geometry representation increases the displacement with approximately
10%, compared to the simple representation. This is in agreement with the results
in the master thesis by Granum and Løken [29]. For the group containing all slitted
configuration, the deviation is approximately 14%. Within both groups, the deviation
seems to be almost constant for different firing pressures. All geometrically complex
models overestimate the response, but for the simple model, this is only true for
the P1 configuration when loaded with the lowest firing pressures. The deviations
between the numerical models and the experimental results are not constant for either
the simple or the complex model.

Table 7.6: Deviation in maximum midpoint displacement, given in [%]. Between
the experimental data and the clamped models from Part I of the preliminary study,
the experimental data and the geometrically complex model, and the clamped models
from Part I of the preliminary study and the geometrically complex model.

Clamped & Complex & Clamped &
Test Experimental Experimental Complex

[%] [%] [%]

P1 05 -5.8 -17.8 10.2
P1 10 -5.1 -17.7 10.7

P3 25 4.0 -6.7 10.0

S1 05 2.9 -13.3 14.3
S1 10 4.9 -11.1 14.4

S2 10 3.8 -12.8 14.7
S2 15 8.3 -6.8 14.2

7.4 Comparison of Lagrangian models in
Abaqus and Europlexus

As stated earlier in this chapter, the initial goal was to validate the geometrically
complex CEL models through a comparison with the experimental results. For a
thorough validation, it was decided to address all deviations in structural response
purely related to the change of solvers, before including FSI. However, due to the
difficulties experienced in Europlexus regarding the geometrically complex CEL sim-
ulations, the main focus was slightly changed. This section was obtained prior to the
encountered bug, and it was decided to still include this part as the results may be
of importance for future studies.
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Figure 7.3: Deformation profiles for experimentally obtained data compared to
the pure Lagrangian model in Abaqus. Dotted lines represent the experimentally
obtained data.

The midpoint displacements obtained when running the geometrically simple and
complex Lagrangian analysis in Europlexus is compared to the Lagrangian Abaqus
models in Figure 7.4.

In Figure 7.4, an interesting observation is that the results for the geometrically
complex model in Europlexus are consistently softer than the results obtained in
Abaqus. It is important to note that both models apply the exact same material
parameters and friction coefficient. Because the implementation of the boundary,
with respect to the contact formulation and the modeling of the bolt loads, differed
between the models, the geometrically simple model was included for comparison. As
seen in Figure 7.4, even the geometrically simple models in Europlexus gives a softer
response than the Abaqus models. This result excludes the boundary from being the
explanation of the deviation between the models.

In Table 7.7, the maximum displacements shown in Figure 7.4 is given. This table
also states the deviation between corresponding simulations, as well as the mean
deviation between the Abaqus models and the two types of Europlexus models. It is
seen that the mean deviation between all geometrically complex Europlexus models
and the corresponding Abaqus models is 7.7%. When comparing this deviation to
results from previously conducted parametric studies, the effect of changing solvers is
qualitatively resulting in deviations in the same range as the effect of changing from
a simple to a complex geometrical model in Abaqus.

When predicting the capacities of the plates, the geometrically complex models in
Europlexus are in good agreement with the results from Abaqus. The Geometrically
complex models in Europlexus repeats the findings presented in Table 7.3.
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Figure 7.4: Comparison of midpoint displacement response for Lagrangian analyses
run in Abaqus and Europlexus. For the models in Europlexus both the geometrically
simple and the complex models in Europlexus are included.

7.5 Fluid structure interaction effects
This section aims to compare the coupled Eulerian-Lagrangian simulations to the
purely Lagrangian simulations in Europlexus. As mentioned earlier in this chapter,
the focus in this section will not be a detailed investigation on the capability in pre-
dicting the experimental response, but rather on how the inclusion of FSI changes the
response between the pure Lagrangian and coupled Eulerian-Lagrangian simulations.

7.5.1 Midpoint displacement response

To evaluate the effect of including FSI, a comparison of the structural response for the
simulations applying a Lagrangian description is compared to CEL models. Due to
the fact that the structural domain is discretized in an equal manner for the two ap-
proaches, any deviations in the response may be related directly to the representation
of the loading.
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Table 7.7: Deviation in maximum midpoint displacement between the models in
Europlexus and Abaqus. Both the simple and the geometrically complex models in
Europlexus is compared to the models in Abaqus. The total mean of all deviations
within the two groups is also included.

Europlexus complex& Europlexus simple &
Test Abaqus Abaqus

[%] [%]

P1 05 7.4 -0.8
P1 10 5.7 0.2

P3 15 9.7 4.7
P3 25 10.5 6.4

S1 05 5.7 -4.7
S1 10 6.7 0.7

S2 10 6.6 0.1
S2 15 9.0 3.8

Mean deviation 7.7 1.3

In Figure 7.6, the midpoint displacements for the CEL and the pure Lagrangian
models in Europlexus are plotted and compared. Because of an issue in Europlexus,
some of the simulations aborted early and only the initial displacement peak was cap-
tured. All simulations compared are modeled with the simple boundary conditions. It
should be noted that the simulations for P1 25, P3 35, P2 35, and S1 15 experienced
complete failure for both modeling approaches and are therefore not included in the
plots. The Lagrangian simulation for P1 15 and S2 25 are also excluded because the
simulation predicts failure.

In Table 7.8 the obtained maximum midpoint displacements for both the CEL and
the Lagrangian simulations are given, as well as the relative deviation between the
two approaches given in [%]. It is seen that for most simulations the deviation is
approximately 10%. The maximum deviation is found for the P1 10 simulation with
a deviation of 10.92% and the lowest deviation is for the P3 25 simulation with only
4.79%. All simulations experiencing complete failure are excluded from Table 7.8. In
Figure 7.5(a) and 7.6(c), it is seen that data is missing for the Lagrangian simula-
tion of P1 15 and S2 25, and this is due to numerically predicted failure. Because
the two different modeling approaches differ in the prediction of failure for these to
combinations of configuration and firing pressure it could be argued that these are
the simulations that deviate the most.
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Figure 7.5: Comparison of midpoint displacement response for the CEL and the
pure Lagrangian simulations in Europlexus for all configurations. The results are
taken from the models using a simple fixed boundary of the blast-exposed area. Un-
fortunately, many of the CEL simulations exited before they had reached the total
time, and this is the most evident for the P3 and S2 configuration.

Table 7.8: Comparison of the obtained maximum midpoint displacement between
the coupled Euler-Lagrangian (CEL) and pure Lagrangian (L) simulations. The de-
viation in obtained results by using the two approaches is also indicated in the table.

Configuration MPD, max MPD,Max Deviation
L CEL

[mm] [mm] [%]

P1 10 29.76 26.51 10.92

P2 05 17.71 16.03 9.49
P2 15 32.01 28.86 9.84
P2 25 39.60 35.98 9.14

P3 15 34.78 32.68 6.04
P3 25 43.24 41.17 4.79

S1 05 16.88 15.44 8.53
S1 10 25.18 22.69 9.89

S2 10 23.89 21.87 8.46
S2 15 29.84 26.86 10.00
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Figure 7.6: Comparison of midpoint displacement response for the CEL and the
pure Lagrangian simulations in Europlexus for all configurations. The results are
taken from the models using a simple fixed boundary of the blast-exposed area. Un-
fortunately, many of the CEL simulations exited before they had reached the total
time, and this is the most evident for the P3 and S2 configuration.

7.5.2 Pressure evolution in front of the plates
To evaluate the obtained loading by including FSI, the pressure fields in front of the
blast-exposed plates are shown in Figure 7.7 to 7.10. The field maps are shown for
the following tests; P1 15, P2 25, P3 25, and S2 15. The S1 configuration is not
included because the obtained behavior was very similar to what was found for the
S2 configuration.
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(a) t = 32.3 ms

(b) t = 32.3 ms (c) t = 32.4 ms

(d) t = 32.5 ms (e) t = 32.6 ms

(f) t = 33.1 ms (g) t = 33.3 ms

Figure 7.7: The pressure distribution in front of the P1 configuration at 15 bar is
shown. The field maps are taken from the CEL simulations in Europlexus, The color
shades represent the pressure in bar. All images are labeled with the total time in
the simulation, which includes the propagation of the shock wave before reaching the
plate. The presented field maps are taken from the cut given in image (a), and the
grey mesh represent the air initially at rest in the dump tank.
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(a) t = 30.6 ms

(b) t = 30.6 ms (c) t = 30.7 ms

(d) t = 30.8 ms (e) t = 30.9 ms

(f) t = 31.0 ms (g) t = 31.1 ms

Figure 7.8: The pressure distribution in front of the P2 configuration 25 bar is
shown. The field maps are taken from the CEL simulations in Europlexus, and the
color shades represent the pressure in bar. All images are labeled with the total time
in the simulation, which includes the propagation of the shock wave before reaching
the plate. The presented field maps are taken from the cut given in image (a), and
the grey mesh represent the air initially at rest in the dump tank.
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(a) t = 30.6 ms

(b) t = 30.6 ms (c) t = 30.7 ms

(d) t = 30.8 ms (e) t = 30.9 ms

(f) t = 31.0 ms (g) t = 31.1 ms

Figure 7.9: The pressure distribution in front of the P3 configuration at 25 bar is
shown. The field maps are taken from the CEL simulations in Europlexus, and the
color shades represent the pressure in bar. All images are labeled with the total time
in the simulation, which includes the propagation of the shock wave before reaching
the plate. The presented field maps are taken from the cut given in image (a), and
the grey mesh represent the air initially at rest in the dump tank.
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(a) t = 32.3 ms

(b) t = 32.3 ms (c) t = 32.4 ms

(d) t = 32.5 ms (e) t = 32.6 ms

(f) t = 32.7 ms (g) t = 32.8 ms

Figure 7.10: The pressure distribution in front of the S2 configuration at 15 bar is
shown. The field maps are taken from the CEL simulations in Europlexus, and the
color shades represent the pressure in bar. All images are labeled with the total time
in the simulation, which includes the propagation of the shock wave before reaching
the plate. The presented field maps are taken from the cut given in image (a), and
the grey mesh represents the air initially at rest in the dump tank. Note that the
slits are not visible in the undeformed configuration.
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Figure 7.7 to 7.10 indicates that the geometry of the different plate configurations
affect the pressure build up in front of the blast-exposed plates differently. The
pressure fields for the perforated configurations show similar features and stand out
compared to the slitted configurations. With reference to Figure 7.7(b), parts of the
shock wave passes through the centered perforation in the P1 plate in the initial part
of the interaction. After passing through the perforation, parts of the shock front are
still planar but the profile of the pressure front changes quickly. Within a time span
of 0.1 ms the profile changes from partly planar into a mushroom-like shape, and as
a less intense pressure wave propagates into the dump tank, the pressure profile over
the perforation takes the shape of an arch. This evolution is seen in Figure 7.7(c) to
7.7(g).

The initial propagation for the shock wave, as described for the P1 configuration, is
very similar for the P2 and the P3 configuration. The difference is that the pattern
repeats two and three times respectively. Although similar, the evolution of the P3
configuration, shown in Figure 7.9(b) to 7.9(g), differ by having an initially higher
pressure across the perforations. The simulated trend seems to be that many small
perforations are less suited for letting particles trough than few larger ones.

When evaluating the pressure field in front of the perforated plates, the pressure
seems to build up in a less uniform manner due to the flow through the perforations.
This is especially evident in Figure 7.7(c) and 7.7(d) for P1, Figure 7.8(b) to 7.8(e) for
P2 and Figure 7.9(d) to 7.9(f). These figures imply that the pressure field across the
blast-exposed area of the perforated plates is distributed in a non-uniform manner,
and the effect seems to be the most significant for P1. Here it is seen that the
pressure loading on the blast-exposed surface varies with the radial distance from
the perforation. The variation in pressure is approximately 2.15 bar from the edge
of perforation to the clamped edge of the plate. Relative to the maximum pressure
in this pressure field, the difference is 30%. The fact that the pressure is far from
uniform for the P1 plates is thought to be a major contributor to why the CEL and
the pure Lagrangian simulations differ for this configuration.

For the S2 15 simulation, shown in Figure 7.10, the pressure distribution is more
uniform than what is seen for the perforated plates. The S1 10 configuration showed
a similar behavior and can be found in the appendix. The simulations for the slitted
configurations did not result in pressure waves passing through the slits in the plates.
This might be due to a relatively course fluid mesh compared to the size of the
slit opening. As stated in Chapter 2, the embedded FSI approach is sensitive to the
relative size of the fluid mesh compared to the structure it interacts with. To illustrate
this, Figure 7.11 is included. In this figure, it is clearly seen that no air passes through
the slits even as they open up. The same effect can possibly be important for the P3
configuration as well, due to its small perforations.
With reference to Table 7.8, it is evident that the only configuration group that
stands out significantly with respect to the deviation between the Lagrangian and
the CEL simulations is the P3 configuration. The mean deviation when treating all
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(a) (b)

Figure 7.11: It is seen that the fluid mesh is too coarse to let air pass through the
opened slits for the S2 configuration. The images are taken from the S2 15 simulation
in Europlexus at t = 33.2 ms. (a) The image includes the blast-exposed S2 plate. (b)
Pressure profile in the cut seen from the side. The pressure field values are excluded
for this figure.

P3 simulations as a group is 5.6%, whereas it is 9.41% and 9.22% when treating P1 and
P2, and both slitted configurations as one group respectively. It is interesting to note
that when comparing the complex Abaqus model to the experimental results in Table
7.6, the P3 25 test deviate from the Lagrangian Abaqus model with 6.7%, and the
slitted configurations deviate with 11% if treated as a group. The P1 configurations
deviate with 17.8% when treated as a group. This indicates that it is indeed true
that the P3 configuration is the one configuration that is the least prone to the FSI
effects.

7.6 Concluding remarks
The geometrically complex Abaqus models, using a pure Lagrangian description was
found to be in good agreement with the experimental results. For experimental tests
not experiencing failure, the deviation between the simulated and the experimental
midpoint displacement was approximately 10% and 14% for the perforated and the
slitted configurations respectively. The deviation was a result of the numerical models
consistently overestimating the displacements. This finding is in agreement with
previous work conducted by both Granum and Løken [29], and Aune [3].

When evaluating failure modes and cracking, the Abaqus models were capable of
predicting the exact failure load for two out of four tests. The predicted failure load
was not correct for the P1 and the S2 configuration. However, the S2 configuration
was observed to be on the limit to failure when exposed to the predicted failure loading
in the SSTF. The crack lengths predicted with the Abaqus models was consistently
found to be larger than the experimentally measured results and makes the overall
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prediction of capacity conservative.

The comparison between the Lagrangian models in Abaqus and Europlexus revealed
that the models in the two solvers differ in their prediction of the midpoint dis-
placement with an average deviation of 7.7%. However, the prediction of the critical
pressure and failure modes coincides for both solvers.

Even though some difficulties were encountered for the simulations run in Europlexus,
the results were promising. By inspecting the pressure field in front of the plates,
the CEL analyses indicated that the different configurations are experiencing non-
uniform pressure distributions, which deviates from the applied loadings in the pure
Lagrangian analyses.
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Concluding remarks

This chapter aims to draw the lines between all the work done in the context of this
thesis. A brief summary of the work, as well as a discussion of the most important
findings and experiences, will be presented. Specific details from each chapter will
not be repeated here, as both of the preliminary studies, the chapter on experimental
work and the last numerical chapter are all ended with concluding remarks.

8.1 Summary and discussion

The main objective of this thesis was to determine how thin perforated steel plates
behave under blast-loading and to validate to which extent this can be predicted
using computational tools. The starting point was to perform a thorough prelim-
inary numerical study on the structural response of the steel plates, prior to the
experimental work. Through this study, the test matrix for the experiments in the
SSTF was determined. Four configurations were decided, two with preformed holes
and two containing slits. Each configuration was tested at three different pressure
levels, intended to provoke different behaviors. To evaluate the experimental work,
all experiments were recorded through the use of two high-speed cameras, pressure
measurements and a laser scanner. The experimental testing was followed by a final
numerical study. Lagrangian analyses in Abaqus was validated through a comparison
with the experiments, and the effect of including fluid-structure interaction in the
numerical work was explored.

A comprehensive literature review, where the representation of a blast loading, mod-
eling techniques for both the structural and fluid sub-domains, shock tube theory as
well as previously conducted studies on the topic was evaluated. This thesis mainly
serves as a continuation of the work done by Aune in his PhD thesis, the work he
does as an associate professor at NTNU, and the work done by Granum and Løken
in their masters thesis [29].

The two perforated configurations, P1 and P3 were chosen to study the effect of
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different distributions of a fixed total hole area. The findings through both the ex-
perimental work and the CEL analyses suggest that problem is less prone to FSI
effects as the hole size in the plates is being decreased. The P1 configuration was
found to be the most susceptible configuration for FSI, while P3 was the least. It was
not studied whether it was the reduced stiffness or the relative size of the perforations
in the plate that governs the FSI effects.

In the preliminary numerical study, presented in Chapter 4 and 5, a trusted material
model as well as a validated description of the loading histories was available. This
resulted in accurate numerical predictions prior to the experimental testing. This
shows that for the investigated blast-loaded steel plates, it is possible to obtain good
results with pure Lagrangian models. When only evaluating the structural response,
the inclusion of FSI through CEL analyses did not result in any significant changes
in behavior. However, the combined modeling of fluid and structure allow for a much
deeper insight into the physics governing the behavior, and the phenomenon of blast-
loading to be studied in detail.

In the numerical work conducted with Lagrangian models in Abaqus, three param-
eters were given special attention. The first part of the study focused on the dis-
cretization of the blast-loaded plates by investigating the effect of different element
sizes and formulations. Secondly, the effect of different representations of the bound-
ary condition was instigated. Lastly, strain rate sensitivity parameter in the modified
Johnson-Cook equation was studied.

When exposed to blast loadings below the failure capacity, the parametric study
on element size and formulation revealed that the global deformation of the blast-
exposed plates is equally represented for fine and coarse discretizations. The plates are
resisting the motion induces by the blast load through membrane forces, and as long
as the cracks are small, they do not significantly decrease the stiffness of the plates.
This makes the coarsely discretized models capable of predicting the displacements
with good accuracy but to capture the failure phenomenon, a fine discretization of
the plates are required.

It is interesting to note that how one chooses to evaluate the FSI effect may be of
great importance. Through the experimental work in Chapter 2, it is indicated that
the P3 configuration exhibit the structural response resulting in the lowest reflected
peak pressures. Although this was never rigidly confirmed, due to the premature
firing of the system. It indicates that the geometry of the P3 configuration changes
the fluid behavior noticeably compared to the other configurations. The pressure
measured by the sensor 24.5 cm upstream the plate differ the most from the cal-
ibration experiments for this configuration. This indicates an FSI effect, but P3 is
actually the configuration that is most accurately predicted with the pure Lagrangian
models, and also the configuration with least difference between CEL and Lagrangian
analysis. The latter could be argued to indicate the absence of FSI effects for this
configuration. The contradicting results imply that to evaluate the FSI effects for
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the fluid and for the structure should be treated separately. It seems like the geom-
etry of the P3 configuration interact with the shock wave in a way that effectively
changes the pressure field, at least when evaluating 24.5 cm away, but in such a way
that the effective loading felt by the plate is very similar to what a rigid plate would
have experienced. The possible mechanism might be evaluated by running the ge-
ometrically complex CEL model and doing a detailed sampling of the pressure on
the blast-exposed plate. This could then be compared to the pressure measurements
conducted on the massive steel plate tested by Aune [3].
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8.2 Conclusions
This section will briefly conclude on the most important findings obtained through
the work on this thesis.

• Due to available results from previous work and validated loading curves, re-
liable Lagrangian models were established in the preliminary study prior to
testing in the SSTF.

• The chosen defects in the plates provoked FSI effects. This was confirmed
through both experimental tests and the numerical study applying CEL models.

• Overall, the calibrated material parameters and constitutive relation describing
the behavior of the Docol 600DL steel plates gave good results.

• Changes in the strain rate sensitivity parameter described in the modified
Johnson-Cook constitutive relation affected the stiffness, capacity and failure
modes observed for the numerical models.

• For the Lagrangian analyses in Abaqus, the inclusion of the clamping frames
and bolts to the numerical models resulted in noticeably increased displacements
compared to models applying fixed boundary conditions.

• The experiments in the SSTF served as a great tool for validating the applied
numerical models, and the comparison of 3D-DIC and the laser measurements
showed that the two techniques coincide.
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8.3 Further work
The results obtained in this thesis suggest that different distributions of the holes in
the perforated configurations change the fluid-structure interaction. Although CEL
analysis was run, it has not been concluded whether this is related to the flow going
through the holes, or if it is related to the structural response. An interesting study
would, therefore, be to conduct tests on perforated 5 cm rigid steel plates. This
allows for the effect of different hole setups to be studied in an isolated manner. By
excluding the material behavior of the structural domain, this could also thoroughly
validate the simulations of the fluid sub-domain.

Three different values of the strain rate sensitivity in the modified Johnson-Cook
equation was applied in this thesis. Conducted simulations indicate that the different
values of c are considerable affecting the behavior both regarding the stiffness and
the capacity of the plates. This is an interesting parameter to investigate, as shown
by Rakv̊ag [27], and may be hard to determine experimentally.

In Chapter 7 Lagrangian simulations in Abaqus and Europlexus was compared. The
results obtained in Europlexus showed a significantly softer behavior than what was
found in Abaqus. Due to the fact that both solvers applied identical material cards,
and boundary conditions, it could be interesting to perform a more comprehensive
comparative study to identify the differences between the two solvers.
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Appendix A. Experimental results

Appendix A

Experimental results

A.1 Failure modes obtained from [30]

Figure (A.1) is included in this appendix as a tool to easily compare the failure modes
found in aluminum plates compared to steel plates. The last number in the figure
text is referring to the nominal firing pressure, and the driver length in this tests was
77cm, equal to the length used in the tests conducted in this thesis.

Figure A.1: Failure modes aluminum platesii



A.1. Failure modes obtained from [30]

A.1.1 Experimentally measured midpoint displacements.

A.1.2 Experimental deformation evolution

t=1.22 ms t=1.30 ms t=1.35 ms t=1.49 ms
Figure A.2: P1 05

t=1.06 ms t=1.14 ms t=1.22 ms t=1.38 ms
Figure A.3: P1 10

t=1.03 ms t=1.11 ms t=1.19 ms t=1.74 ms
Figure A.4: P1 15
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Appendix A. Experimental results

The measured maximum midpoint displacement for each test is listed in Table A.1. In
addition, the permanent midpoint deflection measured with both DIC and the laser
is given. For consistency, the midpoint displacement data obtained by Granum and
Løken [29] is included as a mean of comparison. They were not given the possibility
of using the laser scanner, and this column is, therefore, left blank.

Table A.1: Maximum midpoint displacement measured with DIC, and permanent
midpoint displacements measured with DIC and the laser arm.

Maximum MPD Permanent MPD Permanent MPD
Test DIC [mm] DIC [mm] Laser [mm]

P1 05 18.2 13.5 13.0
P1 10 25.0 24.2 21.5
P1 15 34.7 30.6 25.98
P1 25 - - -

FP 15 25.5 22.1 -
FP 25 31.3 28.8 -
FP 35 36.2 34.5 -

P2 15 29.6 26.9 -
P2 25 37.3 36.3 -

P3 25 37.8 34.1 33.7
P3 35 - - -

S1 05 15.6 11.4 11.6
S1 10 22.8 18.9 19.5
S1 15 - - -

S2 10 21.3 17.4 17.7
S2 15 26.5 23.4 23.6
S2 25 35.6 32.0 32.0
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A.1. Failure modes obtained from [30]

t=0.92 ms t=1.06 ms t=1.14 ms t=1.30 ms
Figure A.5: P3 25

t=1.06 ms t=1.22 ms t=1.30 ms t=1.54 ms
Figure A.6: S1 05

t=1.00 ms t=1.11 ms t=1.22 ms t=1.44 ms
Figure A.7: S1 10

v



Appendix A. Experimental results

t=1.00 ms t=1.11 ms t=1.19 ms t=1.41 ms
Figure A.8: S2 10

t=0.87 ms t=0.97 ms t=1.06 ms t=1.27 ms
Figure A.9: S2 25

t=0.89 ms t=1.03 ms t=1.11 ms t=1.33 ms
Figure A.10: S2 15

vi



Appendix B

Numerical results

B.1 Energy plots from Chapter 5
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(b) Conservation of energy
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(d) Conservation of energy

Figure B.1: Plots from models i Chapter 5
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Figure B.2: Plots from models i preliminary study Part II
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B.1. Energy plots from Chapter 5
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Figure B.3: Plots from models i preliminary Chapter 5
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B.2 Midpoint displacement plots for from
Chapter 7
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Figure B.4: (a) Midpoint displacements, (b) and (c) are showing Deformation pro-
files

For the midpoint displacements, the same trend as found in the preliminary study is
observed. The solution gets slightly stiffer for a higher rate dependency but is still
over-predicting the displacements with respect to experimental results.
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B.3. Effect of excluding the pre-tension in the bolts for the clamping frame

B.3 Effect of excluding the pre-tension in
the bolts for the clamping frame

As mentioned in the description of the models, the tightening of the bolts is modeled
slightly different in Abaqus and Europlexus. Due to the deviation in response shown
in the previous section, it was decided to check the effect of varying the pre-tension in
the bolts for the Abaqus model. The models labeled .... LB has the clamping frame,
bolts, and contact modeled in the same way at the other Abaqus models, but the
bolt tightening step is removed. This means that when the loading is being applied
to the plates, the bolts are completely stress-free. For comparison, both the midpoint
displacement and the sliding at the supports has been measured for the simulations.
The sliding was measured by finding the relative distance in the x-direction between
a node on the clamping frame, and a node at the testing plate initially placed in the
same x-position. The nodes applied for measurements are indicated in Figure B.5(c)
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Figure B.5: Shows the effect of not including pre-tension in the bolts for the clamp-
ing frame. (a) Midpoint displacements vs. time for S1, (b) Midpoint displacements
vs. time for P3 and (c) is showing the defined points for evaluation of sliding at the
supports.
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As seen from the midpoint displacement response shown in figure (B.5(b)) the effect
of loose bolts is allowing for a much softer behavior. An increase of 11% and 8% is
obtained for firing pressures of 5bar and 10bar respectively. The sliding is increased
with 0.27mm and 0.25mm for the two tests. By evaluating these results it is evident
that the behavior if the plates are sensitive to changes in the modeling of the boundary.

Another important observation is that the oscillations for the firing pressure of 5bar
are highly reduced for the models applying loose bolts. This might be due to more
sliding at the supports resulting in an increased frictional damping for the system.

Table B.1: Maximum midpoint displacement and relative sliding. The sliding at
the supports are measured as the relative movement in x-direction between the two
points indicated in Figure B.5(b).

Configuration MPD, max Sliding at supports
[mm] [mm]

S1 05 A 17.67 0.31
S1 05 A LB 19.92 0.58

S1 10 A 25.00 0.52
S1 10 A LB 27.08 0.77

P3 15 A 33.14 0.43
P3 15 A LB 35.03 0.65

P3 25 A 40.49 0.53
P3 25 A LB
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B.3. Effect of excluding the pre-tension in the bolts for the clamping frame

B.3.1 Tables from Chapter 7

Table B.2: Maximum midpoint displacement, the deviation between simulated re-
sults and experimental data, and the time it takes to reach the maximum displace-
ment. The time relates to the defined time axis defined in section 6.2.2.

Configuration MPD, max Deviation, MPD Time
[mm] % [ms]

P1 05 17.95 - 1.49
P1 05 ABQ 21.15 20 1.49

P1 05 EPX L 22.83 30 1.54
P1 05 Fix EPX L 20.98 1.52

P1 10 25.22 - 1.38
P1 10 ABQ 29.69 18 1.36

P1 10 EPX L 31.49 25 1.41
P1 10 Fix EPX L 29.76 1.40

P3 15 - -
P3 15 ABQ 33.14 - 1.32
P3 15 C001 32.15 - 1.32

P3 15 EPX L 36.71 - 1.38
P3 15 Fix EPX L 34.78 - 1.37

P3 25 37.95 - 1.30
P3 25 ABQ 40.49 7 1.26
P3 25 C001 39.08 3 1.24

P3 25 EPX L 45.24 19 1.31
P3 25 Fix EPX L 43.24 1.31
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Table B.3: Maximum midpoint displacement, the deviation between simulated re-
sults and experimental data, and the time it takes to reach the maximum displace-
ment. The time relates to the defined time axis defined in section 6.2.2.

Configuration MPD, max Deviation, MPD Time
[mm] % [ms]

S1 05 15.60 - 1.54
S1 05 ABQ 17.67 13 1.54

S1 05 EPX L 18.74 20 1.77
S1 05 Fix EPX L 16.88 1.77

S1 10 22.51 - 1.44
S1 10 ABQ 25.00 11 1.39

S1 10 EPX L 26.80 19 1.66
S1 10 Fix EPX L 25.18 1.67

S2 10 21.17 - 1.41
S2 10 ABQ 23.87 12 1.37

S2 10 EPX L 25.56 21 1.62
S2 10 Fix EPX L 23.89 1.66

S2 15 26.87 - 1.33
S2 15 ABQ 28.71 7 1.25

S2 15 EPX L 31.55 17 1.55
S2 15 Fix EPX L 29.84 1.55
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B.3. Effect of excluding the pre-tension in the bolts for the clamping frame

B.3.2 Pressure distribution from Chapter 7

(a) t = 33.9 ms

(b) t = 33.9 ms (c) t = 34.0 ms

(d) t = 34.1 ms (e) t = 34.2 ms

(f) t = 34.3 ms (g) t = 34.4 ms

Figure B.6: The pressure distribution in front of the S1 configuration at the nominal
firing pressure of 10 bar is shown. The field maps are taken from the fully coupled
Eulerian-Lagrangian simulations in Europlexus, and the color shades represent the
pressure in bar. All images are labeled with the total time in the simulation, which
includes the propagation of the shock wave before reaching the plate. The presented
field maps are taken from the cut given in image (a), and the grey mesh represents
the air initially at rest in the dump tank. Note that the slits are not visible in the
undeformed configuration.
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B.3.3 Varying the strain rate sensitivity for P3 and S2

As a result of the deviations in failure modes observed between the numerical models
of the P3- and the S2 configuration compared to experimental results and previous
numerical work, it was decided to conduct a small parametric study. The strain rate
sensitivity parameter c is changed from 0.005 to 0.01.

In this section, only the effect on the failure modes will be presented as a similar
study evaluating the midpoint displacement response was performed in Chapter 5.
However, the obtained midpoint displacement plots from this section are included in
the Appendix. Due to high computational costs, the study is limited to only consider
P3 and S2, and the obtained failure modes are shown in Table B.4.

Table B.4: Failure modes obtained by changing the strain rate sensitivity from
c = 0.005 to c = 0.01 for the complex models of P3 at 35 bar and S2 at 25 bar.

P
3

35
A

B
Q

C
00

1

t = 0.81ms t = 1.14ms t = 1.48ms

S2
25

A
B

Q
C

00
1

t = 1.14ms t = 1.81ms t = 5.00ms
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B.3. Effect of excluding the pre-tension in the bolts for the clamping frame

From the results presented in Table B.4 it is evident that the failure modes are
dependent on the strain rate sensitivity parameter. For c = 0.005, seen in the previous
section, both S2 25 ABQ and P3 35 ABQ went to complete failure. By increasing the
dependency to c = 0.01, both simulations resulted in crack arrest rather than failure.
However, the deformation pattern for S2 is rather unrealistic. Due to the symmetric
model, flaps are being bent outwards and wrapped around the outer boundary of
the quarter model, as shown in Figure B.7. When visualizing the full geometry,
by mirroring the model across the two symmetry planes, it is seen that the flaps
are penetrating each other. This deformation is clearly non-physical, and can only
be accounted for by modeling the full geometry, or with a more advanced contact
formulation.

t = 1.48ms t = 2.14ms t = 2.81ms
Figure B.7: Failure mode for the quarter model S2 25 A C001

Regarding the P3 configuration, it is interesting to note that the failure pattern is
rather unstable in the numerical simulations. When comparing the failure mode
obtained in Chapter 4 with the two modes found with the complex models varying
the strain rate sensitivity parameter, it gives three different failure modes.
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B.3.4 Evaluation of displacements, from Chapter 7
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(e) P3, 15 bar
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(f) P3, 25 bar

Figure B.8: Midpoint displacements vs. time and deformation profiles for experi-
mentally obtained data compared to pure Lagrangian model in Abaqus. Dotted lines
represents the experimentally obtained data.
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Regarding the deformation profiles, it is important to note that the sampling fre-
quency used to log displacement data in the simulations is too low compared to the
rapid response of the plates. The profiles are created by collecting displacement data
at 80%, 60% and 40% of the maximum displacement respectively, but the low fre-
quency results in a deviation of approximately ±2%. This error is especially evident
in the S2 15 test, as seen in Figure B.8. Here, the deformation profiles obtained nu-
merically and experimentally coincide at 40% of max displacement, but are deviating
at the maximum displacement. As a result of the low sampling rate, the profiles are
not directly comparable. However, for all configurations and all firing pressures both
the development of the profiles and the profiles when the maximum displacement is
reached are qualitatively equal to the experimental results.
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(e) S2, 10 bar
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(f) S2, 15 bar

Figure B.9: Midpoint displacements vs.time and deformation profiles for experi-
mentally obtained data compared to pure Lagrangian model in Abaqus. Dottet lines
represents the experimentally obtained data.
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