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The structural behaviour of aluminium subjected to compression load is investigated for 

both unwelded and welded cylinders for two different alloys, 6060-T6 and 6082-T6. Only 

short cylinders are tested in the laboratory, where local buckling is dominating. 

Laboratory experiments and numerical analysis are performed and compared with 

regulations from Eurocode 9: Design of Aluminium Structures. The laboratory and 

numerical results fits very well and the deformation modes are perfectly recreated in the 

numerical analysis. Compared to EC9, the cylinders tested resists up to twice the load 

calculated from EC9, depending on whether 𝑓𝑜 is taken from EC9 or tensile tests 

performed in this thesis. 

The material parameters for the two alloys are found from classical tensile tests, but in the 

vicinity of a weld, or the so-called heat affected zone (HAZ), the material parameters are 

found from previous studies where hardness tests have been conducted. 
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Abstract 
 

This master thesis has investigated the behaviour of aluminium cylinders subjected to 

compression for both unwelded and welded cross sections. Three different combinations of 

material and geometry has been tested in the laboratory, but also numerical analysis has been 

carried out by a numerical software, such as finite element programme. The aluminium alloys 

tested in this thesis are the heat treatable alloys 6060-T6 and 6082-T6. 

Material tests, such as tensile tests have been performed to get accurate material models in the 

numerical study. These tensile tests were performed without significant problems, but a 

notable large scatter was found from alloy 6082-T6. Digital Image Correlation (DIC) was 

used to find the strains.  

Only stub tests were performed in the laboratory due to unfinished design of the test rig used 

for long columns. The lengths performed were two and four times the diameter of the 

cylinders tested, and these tests were performed for both unwelded and welded cross sections. 

When welding was applied on the cylinders, only a surface weld was performed. The welds 

were welded symmetrical on two sides in the longitudinal axis at the mid-center of the 

cylinders with a length equal to the radius of the cylinders. Welded cross sections are of 

interest due to the significant lower material strength parameters in the vicinity of a weld. 

This area is called the heat affected zone (HAZ). The material parameters in the HAZ are 

found from previous studies, where hardness tests of the material were performed to find the 

yield and ultimate tensile strength. 

The results from laboratory stub tests showed that unwelded cross sections localised the 

deformation symmetrical near one of the ends, but the welded cross sections triggered the 

cylinders to buckle at the mid-sections. 

Analytical formulas for both shells independent of length, and long columns have been 

derived. Formulas for shell subjected to axial compression have been compared with 

laboratory experiments with a good degree of accuracy.  

Numerical analysis have been able to recreate the deformation modes excelent for both 

unwelded and welded cross sections. The critical buckling stress and force-displacement 

curve is very accurate for alloy 6060-T6, but numerical results are a little conservative for 

alloy 6082-T6. This may be due to the large scatter from tensile test of 6082-T6. For welded 

cross sections, the critical buckling stress found from numerical analysis fits actually slightly 

better the laboratory results then what the results from unwelded cylinders do.  

Much time is spent on measuring accurate geometry of the cylinders and the welds on every 

cylinders tested by use of a ultrasound device and a classical caliper. There were not much 

deviation in the measured geometry, so the mean values were used in the numerical analysis.  

The laboratory results were compared with calculations from Eurocode 9: Design of 

Aluminium structures for both unwelded and welded cross sections and the results shows that 

the cylinders tested can resist up to twice the load calculated by EC9, depending on whether 

𝑓𝑜 is taken from EC9 or the tensile test performed in this study.  



 
 

iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

v 
 

 

Samandrag 
 

Denne masteroppgåva har sett på oppførselen til aluminiumsylindrar påført aksialt trykk for 

både usveiste og sveiste tverrsnitt. Tre ulike kombinasjonar av material og geometri har vorte 

testa i laboratoriet, men også numeriske analysar har vorte undersøkt med hjelp av eit 

numerisk dataprogram. I denne oppgåva er det nytta elementmetodeprogram og 

aluminiumslegeringane som er nytta er dei varmebehandla legeringane 6060-T6 og 6082-T6. 

Strekktestar av materiala er utført for å få nøyaktige materialmodellar i dei numeriske 

analysane. Desse strekktestane vart utført utan problem, men resultata frå legering 6082-T6 

var veldig sprikande. Digital Image Correlation (DIC) vart nytta for å finne tøyningane i 

strekktestane. 

På grunn av at testriggen i laboratoriet ikkje var klargjort så vart det inga testing av lange 

søyler, kun korte sylindrar med lengde hhv. to og fire ganger diameteren til sylindrane for 

både usveiste og sveiste tverrsnitt. Sveiselarva vart lagt på overflata til sylindrane symmetrisk 

på to sider i lengdeaksen med senter i midten av lengda på sylindrane med ei lengde lik 

radiusen til sylindrane. Eit sveist tverrsnitt er interessant å utforske grunna droppet i 

materialstyrkjen kring sveisen som vert kalla varmtvirka sone (HAZ). Materialparametrane i 

HAZ er funne frå tidlegare studier der det er vorte tatt utgangspunkt i hardhetstestar. 

Resultat frå laboratorietestar av korte sylindrar viser at usveise tverrsnitt lokaliserer 

deformasjonsmønsteret symmetrisk nær ein av endane, men sveiste tverrsnitt derimot får 

utløyst eit knekkmønster ved midten av sylindrane. 

Analytiske formlar for både skal uavhengig av lengda, og lange søyler har vorte utleiia. 

Formlar for skal påført aksialt trykk er vorte samanlikna med resultat frå laboratorietestar med 

rimelig god nøyaktighet. 

Dei numeriske analysane har klart å simulert eksakt deformationsmønster for både usveiste og 

sveiste tverrsnitt. Den kritiske knekkspenninga og kraft-forskuvningskurva er meget lik 

resultata frå laboratoriet for legering 6060-T6, men litt konservativ for legering 6082-T6. 

Dette skuldast mest sannsynleg den store spreiinga frå strekktestane av 6082-T6. For sveiste 

tverrsnitt så passar resultata frå numeriske analysar betre laboratorie resultata enn kva dei 

usveiste gjer. 

For best mulig numeriske resultat så er det nytta mykje tid for nøyaktige målingar av 

geometrien til både sylindrane og sveisane ved bruk av vanleg skyvelær og eit ultralyd 

måleapparat. Det var veldig lite avvik frå målingane og gjennomsnittsverdiane er nytta. 

Laboratorieresultata er samanlikna med utrekningar frå Eurokode 9: Prosjektering av 

aluminiumskonstruksjonar for både usveiste og sveiste tverrsnitt og resultata syner at 

sylindrane som er testa kan tole opp til det dobble av kva som er utrekna frå EC9, avhengig av 

om flytespenninga er tatt frå EC9 eller strekktestane utført i denne masteroppgåva.  
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Notation 
 

Notations and symbols used in this report are defined in the text when they occur. 

 

Symbol Meaning 

 

 

𝐴  Area of a specimen 

𝐴𝑐𝑢𝑟𝑣𝑒𝑑  Area of curved cross section in tensile test 

𝐴𝑒𝑓𝑓  Effective cross section area 

𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟  Area of rectangular cross section in tensile test 

𝐴𝑡𝑜𝑡  Totale area of cross section 

𝐴𝑤  Area of cross section applied to welding 

𝐴0  Initial area of specimen 

𝐴𝑙  Aluminium 

𝐶  Factor 

𝐶𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒  Circumference around a cylinder 

𝐶𝑖  Hardening parameters for ith parameter in Voce rule 

𝐷  Diameter to mid-thickness of a cylinder 

𝐷𝑏  Bending rigidity 

𝐹  Force applied in tensile test 

𝐸  Young`s modulus 

𝐸𝑠  Secant modulus 

𝐸𝑡  Tangent modulus 

𝐻𝑉  Vickers Hardness 

𝐼  Second moment of inertia 

𝐿  Length of specimen or cylinder 

𝐿0  Initial length of specimen 

𝛥𝐿  Incremental change in length of a specimen 

𝐿𝑤  Length of weld 

𝑀  Moment 

𝑀𝑎  Axial half-waves 

𝑀𝑒𝑙  Elastic moment 

𝑀𝑔  Magnesium 

𝑀𝑅𝑘  Characteristic moment resistance 

𝑀𝑧  Moment about z-axis 

𝑁  Applied load 

𝑁𝑏,𝑅𝑑  Design value for flexural buckling 

𝑁𝑐,𝑅𝑑  Design value for compression 

𝑁𝑐𝑟  Critical buckling load 

𝑁𝐸  Euler buckling load 

𝑁𝑒𝑙  Elastic loading 

𝑁𝑅𝑘  Characteristic buckling resistance 

𝑁𝑥, 𝑁𝑥𝑦, 𝑁𝑦 Axial, circumferential and shear loads applied to the cylinder 
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𝑃  Applied load 

𝑄  Net heat input from the current 

𝑄𝑖  Hardening parameters for ith parameter in Voce rule 

𝑆  Strain energy stored in the cylinder 

𝑆,𝑚𝑖𝑠𝑒𝑠  Mises stress 

𝑆𝑖  Silicon 

𝑇  Temperature 

𝑇0  Initial temperature 

𝑊𝑒𝑙  Elastic modulus 

𝑊𝑧  Elastic modulus about z-axis 

𝑌0  Yield stress 

𝑍𝐿  Factor 

𝑎  Cantilever distance for rig part 

𝑏ℎ𝑎𝑧  Width of HAZ 

𝑑  Distance from column end to rotation center 

𝑒  Max deflection of a column 

𝑒0  Initial imperfection of a column 

𝑓𝑜  Corresponding stress value for 0.2% permanent strain 

𝑓𝑜,ℎ𝑎𝑧  0.2% proof strength in HAZ 

𝑓𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑡𝑒𝑠𝑡  Stress from tensile test 

𝑓𝑢  Ultimate tensile strength 

𝑓𝑢,𝑉𝑖𝑐𝑘𝑒𝑟𝑠  Ultimate stress from Vickers Hardness test 

𝑓𝑉𝑖𝑐𝑘𝑒𝑟𝑠 𝑡𝑒𝑠𝑡  Stress from Vickers Hardness test 

𝑓0.2  Corresponding stress value for 0.2% permanent strain 

𝑓0.2,𝑉𝑖𝑐𝑘𝑒𝑟𝑠  0.2% proof strength from Vickers Hardness test 

𝑓0.1  Corresponding stress value for 0.1% permanent strain 

𝑓𝜀𝑜  Corresponding stress value for 0.2% permanent strain 

𝑖  Area radius of gyration 

𝑘𝑐  Compressive buckling coefficient 

𝑚  Wavenumber in axial direction of a cylinder 

𝑚𝑐𝑟𝑜𝑤𝑛, 𝑛𝑐𝑟𝑜𝑤𝑛 Represents square deformation waves. 

𝑛  Wavenumber in circumferential direction of a cylinder 

𝑛𝑅𝑂  Material parameter in Ramberg & Osgood materialmodel 

𝑛𝑒  Material parameter in Ramberg & Osgood for buckling 

𝑛𝑢  Material parameter in Ramberg & Osgood for ultimate capacity 

𝑝  Pressure applied to the cylinder 

𝑝𝑐  Volume heat capacity 

𝑞  Unit line load from cylinder wall 

𝑟  Middle radius of a cylinder 

𝑟ℎ𝑎𝑧  Radius prevalence of the heat affected zone 

�̅�  Inner radius in rig part not subjected to bending 

𝑠  Unit strain energy 

𝑡  Thickness of cylinder wall 

𝑡𝑐𝑦𝑙  Thickness of cylinder wall 

𝑡𝑒𝑓𝑓  Effective thickness due to cross section class 4 

𝑡𝑟  Thickness of rig part for 2nd choice of design 

𝑡𝑤  Time during welding 

𝑢, 𝑣, 𝑤 Longitudinal, circumferential and thickness displacement of a cylinder 

𝑢𝑡𝑜𝑡  Total displacement of tensile test 
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𝑢1, 𝑢2 Displacement of the specimen and test rig for a tensile test, 

respectively. 

𝑤0  Initial displacement in thickness direction 

𝑤,𝑥𝑥  Second derivative of deflection 

𝑤,𝑥  First derivative of deflection 

𝛼  Factor 

𝛽  Factor 

𝛽𝑛  Factor 

𝜀  Strain 

𝜀  = √250/𝑓𝑜  

𝜀𝑒  Engineering strain 

𝜀𝐿  Logarithmic strain 

𝜀𝐿𝑢  Ultimate logarithmic strain 

𝜀𝑜  0.2% permanent strain 

𝜀𝑢  Strain corresponding to ultimate strength 

𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦 Strain in x and y direction and shear strain 

𝜀𝑥𝑥, 𝜀𝑥𝑦, 𝜀𝑦𝑥, 𝜀𝑦𝑦  Components in strain matrix 

𝜀1, 𝜀2, 𝜀3  Strain in longitudinal, circumferential and thickness directions 

𝜒  Reduction factor for the relevant buckling mode 

𝜒1, 𝜒2, 𝜒3  Corresponding curvature in longitudinal, circumferential and thickness 

directions 

𝜀𝑒𝑙  Elastic strain 

𝜀𝑝𝑙  Plastic strain 

𝜀 ̅ Accumulated plastic strain in Voce rule 

𝜀�̅�  Mean logarithmic strain 

𝜎  Stress 

𝜎𝑐𝑟  Critical buckling stress 

𝜎𝑒  Engineering stress 

𝜎𝑡  True stress 

𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦 Stress in x and y direction and shear stress 

𝜎𝑌  Yield stress in Voce rule 

𝜎0  Yield stress 

𝜎𝑐𝑟
𝑒𝑙  Elastic critical buckling stress 

𝜅  Factor to allow for weakening effects of welding 

𝛾𝑀1  Partial factor for resistance of cross section 

𝜓  Relative tensile strength 

𝜓𝑢  Relative ultimate tensile strength 

𝜓0.2  Relative 0.2% proof strength 

𝑑𝜃  Unit distance around a cylinder 

𝜂  Factor 

𝜇  Aspect ratio between deformation waves in longitudinal and 

circumferential axis 

𝜇𝑓  Coulombs coefficient of friction 

𝜆  Slenderness 

𝜆𝑇  Thermal conductivity 

𝜆𝑛  Half-wave length 

�̅�  Factor 

𝜐  Poissons`ratio 
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𝜐𝑒  Elastic Poisson`s ratio 

𝜐𝑝  Plastic Poisson`s ratio 

𝜔  Factor 

𝜌  Relative buckling stress 

𝜌𝑐  Factor to factor down the thickness of a cylinder 

𝜌𝑜,ℎ𝑎𝑧  HAZ softening factor for the corresponding 0.2% permanent strain 

𝛱𝑝  Total potential energy 

𝑈  Strain energy 

𝛺  Potential energy 

𝜆𝑗  
 

Eigenvalues 

{𝑫}  Degree of freedom matrix 

[𝑲]𝑔  Geometrical stiffness matrix 

[𝑲]𝑚  Material stiffness matrix 

[𝑲]𝑡  Resultant tangent matrix 

{𝑹}  Force matrix 

{𝝋}𝑗  Eigenvectors 
∂Rres

∂λ
  Load vector for each time increment 

 

Appendix A-G 

𝐶  Curvature on a parametric curve 

𝑅  Radius of curvature 

𝑓(𝑥)  A general plane curve 

𝑛𝑒𝑙  Number of elements 

𝑡  Time 

𝑣  Length of velocity vector 

𝜅  Curvature of a unit tangent vector 

𝒂  Acceleration vector 

�̂�  Unit normal vector 

𝒓  Parametric curve 

�̂�  Unit tangent vector 

𝒗  Velocity vector 

[𝑩]  Strain-displacement matrix 

[𝑬]  Modulus matrix 

[𝑮]  Strain-displacement matrix 

[𝐾]𝑔  Nodal geometric stiffness matrix 

[𝑲]𝑔  System geometric stiffness matrix 

[𝐾]𝑚  Nodal material stiffness matrix 

[𝑲]𝑚  System material stiffness matrix 

[𝑳]  Connectivity matrix 

[𝑵]  Shape functions 

[𝑺]  9x9 stress matrix 

[𝝈]  3x3 stress matrix 
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1 Introduction 

 

1.1 Background 

 

Statnett is a national company that is responsible for the entire power grid in Norway. They 

are searching for more efficient ways to build power pylons, and the material choice is 

therefore of crucial importance. Aluminium alloys have many important properties which 

make them competitive with other metals, such as high corrosion resistance, low 

manufacturing costs and low self-weight. When designing power pylons, the absolute most 

important property is self-weight. Due to mountains and lack of available roads, many power 

pylons have to be flown to the construction site and a low self-weight is therefore favourable. 

If the pylons are heavy, they also require bigger foundations, and then again more helicopter 

trips.  

Simple calculations based on Eurocode 9 (2007) indicates a total weight of 5500 kg for a 

power pylon made by aluminium compared to 9100 kg for one made by steel. Temporary 

calculations indicates that this weight reduction is not sufficient enough when it comes to 

costs. Statnett therefore wants research on optimum combinations between material and 

geometry by use of advanced numerical tools customized to be used for aluminium, so that 

the total weigth can be reduced even further. 

Like other metals, aluminium alloys have the property to undergo large permanent (plastic) 

deformations so that any collaps of a pylon will give a warning, unlike glass or ceramic. This 

property is called ductility. When optimizing aluminium alloys, its known that no metals can 

be both ductile and have a high strength, and therefore a combination have to be chosen. 

When research of different alloys are performed, high strength is naturally favourable due to 

less material needed with a stronger material. But there need to be a balance so that large 

plastic deformations occur before failure and gives a collapse warning. Ductile behaviour 

reduces the need for calculations of stress and strain concentrations for statically loaded 

structural joints and connections because of the ability of the structure to redistribute forces 

and moments to be in accordance with the assumed static model, Matusiak (1999). 

The design of the structural joints have a high influence on the cost effectiveness of the 

pylons. Today there are many different joining techniques available, but still welding is 

frequently used, and in some cases necessary. Traditional bolts are for example almost 

impossible to use when cylinders are connected, and welding is therefore required. 

The so-called T6 heat-treatable aluminium alloys are made by a process that gives highest 

strength and are obtained from age-hardening Al-Mg-Si alloys. These alloys are often used in 

welded structures, and Statnett is also interested in these alloys. When age-hardened alloys are 

welded, many different changes in the microstructure take place simultaneously in the vicinity 

of a weld, and Al-Mg-Si alloys in T6 condition suffers from severe softening in the heat-

affected zone (HAZ) due to reversion of Mg2Si precipitation during the weld thermal cycle. 
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Precipitation hardening is a method to decide the strength of a heat-treatable aluminium alloy, 

Altenpohl (1982). 

 

1.2 Objectives and Scope 
 

The objective of the present study is to investigate how aluminium behave when compression 

is performed by means of laboratory experiments and numerical analysis. This study will only 

investigate cylinders for two different aluminium alloys, 6060-T6 and 6082-T6. The study 

will investigate three different combinations of material and geometry. The two different 

geometries that will be subjected to axial loading have r/t-ratio equal to 10.4 and 35.3, 

corresponding to D=100 mm, t=4.8 mm and D=127 mm, t=1.8 mm, respectively. One 

important objective will therefore be to establish how conservative the regulations in 

Eurocode 9 (2007) actually are so that buckling of aluminium cylinders can be designed more 

correctly and aluminium structures can be better utilized. To ensure local buckling of the 

cylinders, stub tests of short cylinders will be performed with lengths equal to two and four 

times the diameter, both experimentally and numerically. Longer cylinders that buckles 

globally will not be investigated by laboratory experiments, but some numerical analysis and 

analytical equations will be derived. The reason why laboratory experiments of long cylinders 

are not performed, is because the testing rig in the laboratory was not finished during this 

master thesis. So this part is left for further work. A another objective is to investigate how 

aluminium cylinders will behave in compression when they are welded. The cylinders will be 

welded with two symmetrical welds on both sides, positioned at the center of the cylinder, and 

the length of the welds will be half of the cylinders diameter. 

 

1.3 Previous Studies 

 
Some information are available in the literatures on structural behaviour of aluminium, but 

very little considering welds and there are absolutely no available information regarding 

buckling of welded aluminium cylinders.  

Hopperstad, Langseth and Hanssen (1997) performed tensile tests for unwelded aluminium 

alloy 6082-T6 and fitted it to the five parameter Voce model and performed laboratory 

buckling tests of cruciforms for different b/t ratios, and compared with numerical analysis. 

Hopperstad, Langseth and Hanssen (2000) carried out an extensive experimental study for 

aluminium alloy 6060-T6 for unwelded cylinders subjected to axial loading. In the study, the 

r/t ratio varried in the range 17-28, and the deformation modes were non-axisymmetric/ 

diamond form.  

Ting Wang (2006) have performed a large study based on Matusiak (1999), on behaviour of 

welded 6082-T6 alloy for tensile tests and beam bending. The study gives correct material 

properties in the HAZ, based on tensile tests cutted out from the vicinity of a butt weld of a 

plate. 
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A. Alisibramulisi, O.R. Myhr, O.G. Lademo, P.K. Larsen (2010) studied the material 

parameters in the HAZ for aluminium alloy 6060-T6 and found a relation between Vickers 

hardness and yield stress for natural ageing. 

 

1.4 Approach for the Study 

 

Axial compression of aluminium will be investigated to establish their exact behaviour and 

load resistance. For short cylinders (stub tests) analytical calculations, numerical analysis, 

laboratory experiments and calculations from Eurocode 9 will be applied and compared 

together for both welded and unwelded cross sections. For longer cylinders, only some 

numerical analysis by the finite element software, Abaqus will be applied to validate the 

chosen design decided to build in the laboratory. Analytical formulas will also be derived for 

long aluminium columns. Comparing laboratory results with numerical analysis for long 

columns will be suggested in further work. 

The correct stress strain relation will be found from tensile tests conducted from the same 

cylinders as the ones tested in the laboratory, where strains will be found from Digital Image 

Correlation (DIC). 
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2 Theory 
 

2.1 Buckling Theory 
 

Buckling is a physical phenomena that happens due to compression forces, where small 

changes in the longitudinall axis causes huge sudden deflections in the transversal axis. All 

cross sections, and particular thin-walled cylinders have a membran-strain energy which will 

be transversed into bending-strain energy, and compression and tension will occur on opposite 

sides (Deeks & Hao, 2005). When a column buckles out in the middle, its called global 

buckling. This happens when the longitudinal axis differs from its initial state (Figure 2.1a). 

Local buckling is a complex phenomena, but basically it happens when the deformation form 

has its longitudinal axis constant during failure (Figure 2.1b). Local buckling happens because 

the load required to buckle out the entire member for short cylinder is larger than the load 

required to buckle the thin-wall members locally. 

 

        a) b) 

 

Figure 2.1 – Buckling mode for a) global and b) local buckling. 

 

For a compression loaded member the total potential energy from the system is given as 

 
П𝑝 = 𝑈 + 𝛺 =

1

2
{𝑫}𝑇([𝑲]𝑚 + [𝑲]𝑔){𝑫} − {𝑫}

𝑇{𝑹} 
 

[2.1] 

 

where [𝐊]m is the material stiffness matrix, [𝐊]g is the geometrical stiffness matrix 

(Appendix B), {𝑹} is the load matrix, {𝑫} is the degrees of freedom matrix and 𝑈 and 𝛺 are 

the strain and potential energy, respectively. Buckling occurs when the resultant tangent 

stiffness matrix, [𝑲]𝑡 goes towards zero 

 [𝑲]𝑡 = [𝑲]𝑚 + [𝑲]𝑔 → [𝟎] [2.2] 

 

For solving [2.2] the determinant of the equation is obtained to find the singularity, by either 

displacement controll or load controll. The difference is that load controll fails at point A in 

figure 2.2, but displacement controll fails at point B. In a buckling analysis of a column its not 



2.1 Buckling Theory 

6 
 

of interest to go further than point A, since the structure has failed when point A is reached. 

Anyhow, displacement controll is used to obtain the buckling load, both analytical and 

numerically, because its more reliable and robust around point A. 

 

 

Figure 2.2 – Force vs displacement for a buckling phenomena. 

 

Equation [2.2] then becomes a eigenvalue problem 

 ([𝑲]𝑚 + 𝜆𝑗[𝑲]𝑔){𝝋}𝑗 = {𝟎} [2.3] 

 

where 𝜆𝑗 is the eigenvalues, {𝝋}𝑗 is the eigenvector, 𝑃𝑗 = 𝜆𝑗𝑃 and 𝑃 is the load applied. 

Equation [2.3] gives a set of eigenvectors. The critical buckling load is found at point A for a 

column in compression, and here the tangent is horizontal. This is therefore a limiting point 

(the load can not go above this value). For a limit point the following relation yields 

 
{𝜑}𝑇

𝜕𝑅𝑟𝑒𝑠

𝜕𝜆
≠ 0 

[2.4] 

 

where 
∂Rres

∂λ
 is the loadvector for each time increment. 

 

 

2.2 Material Theory 

 

2.2.1 Ramberg & Osgood material model 

 
In the 40’s there were several experiments going on for different aluminium alloys, and the 

conventional description of the stress-strain curve of metals by only the Young’s Modulus and 

the yield strength were not good enough for aluminium. By looking at the test stress-strain 

curve it looked like at least one additional parameter should be introduced. A generalised 

constitutive law 𝜀 = 𝜀(𝜎) for aluminium alloys were proposed by Ramberg & Osgood (1943) 
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𝜀 =

𝜎

𝐸
+ 𝜀0 (

𝜎

𝑓𝜀0
)

𝑛𝑅𝑂

 
 

[2.5] 

 

where normally 𝜀𝑜 = 0.002 and the corresponding 𝑓𝜀𝑜 = 𝑓0.2. Aluminium does not have a 

clear yielding point, so from experiments its a good representation to take the stress value that 

gives 0.2% permanent strain. The 𝑛𝑅𝑂-value is a material parameter. Today its taken from 

curve-fitting by numerical tools, but some analytical expressions are also valid. Since its 

almost impossible to fit a experimental curve entirely, two expressions for 𝑛𝑅𝑂 are given 

(Matusiak, 1999). 

When buckling is of interest, a classical formulation yields 

 
𝑛𝑅𝑂 = 𝑛𝑒 =

ln2

ln (
𝑓0.2
𝑓0.1
)
 

 

[2.6] 

 

 

When the ultimate capacity of the cross section is of interest, a general formlation yields 

 

𝑛𝑅𝑂 = 𝑛𝑢 =
ln [500 (𝜀𝑢 −

𝑓𝑢
𝐸)]

ln (
𝑓𝑢
𝑓0.2
)

 

 

[2.7] 

 

where 𝑓𝑢 is the ultimate strength and 𝜀𝑢 is the uniform elongation corresponding to the 

ultimate strength. 

 

Tangent E-module 

The E-module is constant during the elastic domain, but in the plastic domain its changing. By 

differentiate [2.5] with respect to the stress, an expression for the tangent E-module at a given 

point in the plastic domain can be obtained 

 𝑑𝜀

𝑑𝜎
=
1

𝐸
+ 𝜀𝑜𝑛𝑅𝑂 (

𝜎

𝑓𝜀𝑜
)

𝑛𝑅𝑂−1 1

𝑓𝜀𝑜
 

 

 

[2.8] 

 
𝐸𝑡 =

𝑑𝜎

𝑑𝜀
=

𝐸

1 +
𝜀𝑜𝑛𝑅𝑂𝐸
𝑓𝜀0

(
𝜎
𝑓𝜀0
)
𝑛𝑅𝑂−1

 

 

 

[2.9] 

If the tangent modulus is used in Eulers formula for column buckling, the critical buckling 

load is a function of the parameter 𝑛𝑅𝑂, which represents the hardening of the material. 
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2.2.2 Tensile test of aluminium 
 

 

 

 

 

 

 

 
a) b) 

 

Figure 2.3 – a) Specimen of a tensile test with the corresponding b) stress strain curve. 

 

The engineering strain is given as the relative elongation of a material, hence 

 
𝜀𝑒 = ∫

𝑑𝐿

𝐿0
=

𝐿

𝐿0

𝛥𝐿

𝐿0
=
𝐿 − 𝐿0
𝐿0

=
𝐿

𝐿0
− 1 

 

 

[2.10a] 

 𝐿

𝐿0
= 1 + 𝜀𝑒 

 

[2.10b] 

 

The logaritmic strain is given as 

 
𝜀𝐿 = ∫

𝑑𝐿

𝐿
= ln (

𝐿

𝐿0
) = ln(1 + 𝜀𝑒)

𝐿

𝐿0

 
 

[2.11] 

 

The assumption of constant volume is used 

 𝐴0𝐿0 = 𝐴𝐿 
 

[2.12] 

 
𝐴 = 𝐴0

𝐿0
𝐿
= 𝐴0

1

1 + 𝜀𝑒
 

 

[2.13] 

 
𝐴 = 𝐴0

1

exp (𝜀𝐿)
 

 

[2.14] 

Equation [2.14] can be used to establish the relation between the engineering stress and true 

stress. The true stress is found from updating the area for all values of strain
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𝜎𝑡 =

𝐹

𝐴
=
exp(𝜀𝐿) 𝐹

𝐴0
= 𝜎𝑒 exp(𝜀𝐿) 

[2.15] 

 

From a elastic-plastic materialmodel the constitutive equation for strain is given as 

  𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙 [2.16] 

 

and the plastic strain is then found by using the constitutive equation 𝜀𝑒𝑙 = 𝜎/𝐸 

 𝜀𝑝𝑙 = 𝜀 −
𝜎

𝐸
 

[2.17] 

 

The diffuse necking point can be derived from equation [2.15] by establishing the engineering 

stress 

 𝜎𝑒 = 𝜎𝑡 exp(−𝜀𝐿) [2.18] 

 

Necking is found when the stress reaches its maximum, or when the incremental change in 

engineering stress is zero. The product rule gives 

 𝑑𝜎𝑒 = 𝑑𝜎𝑡 exp(−𝜀𝐿) − 𝜎𝑡 exp(−𝜀𝐿) 𝑑𝜀𝐿 = 0 
 

[2.19] 

 = (𝑑𝜎𝑡 − 𝜎𝑡𝑑𝜀𝐿) exp(−𝜀𝐿) = 0 
 

[2.20] 

 𝑑𝜎𝑡
𝑑𝜀𝐿

= 𝜎𝑡 
[2.21] 

 

Equation [2.21] is known as the Considére`s criterion and is illustrated in figure 2.4. 

 

Figure 2.4 - Considére`s criterion for finding the necking point.
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2.2.3 The five parameter extended Voce rule 
 

Its convenient to represent the stress strain curve by a mathematical expression. So based on 

previous studies on aluminium alloys, the five parameter extended Voce rule is frequently 

used to fit the stress vs plastic strain curve, hence 

 

 𝜎𝑌(𝜀)̅ = 𝑌0 + 𝑄1(1 − exp(−𝐶1𝜀)̅) + 𝑄2(1 − exp(−𝐶2𝜀)̅) [2.22] 

 

where 𝑌0 is the yield stress, 𝐶𝑖 and 𝑄𝑖 are hardening parameters and 𝜀 ̅is the accumulated 

plastic strain.  

 

2.2.4 Baushinger effect 

 
Since all the material tests are performed in tension, and buckling is a compression situation, 

there might be some problems related to this when it comes to the material behaviour. When a 

material with isotropic hardening is loaded and reloaded it will not always behave equal in 

tension and compression, this is called the Bauschinger effect. The greater the tensile cold 

working, the lower the compressive yield strength. This is illustrated in figure 2.5. 

 

Figure 2.5 – Baushinger effect for isotropic hardening. 

 

|𝜎𝐴| > 𝜎0 and |𝜎𝐵| < |𝜎𝐴|. When 𝜎𝐴 increases, 𝜎𝐵 decreases and will sometimes become 

|𝜎𝐵| < 𝜎0. 

Therefore, compression tests should be perform to get an idea of how large this deviation is, 

but due to time limitation laboratory compression tests are not performed in this study. It is, 

however suggested in further work.
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2.3 Welding Theory 

 

2.3.1 Introduction 

 
This is not a study for deep understanding of welding, but some knowledge should be 

established to be able to make sufficient assumptions and conclusions when performing tests 

and processing data. Welding is a tool for gluing components together. Welding is a 

expression that usually is used when combining metals, but it can also be used when 

combining polymeres and some other materials. Traditionally welding means that electricity 

is used to melt materials together by making a tiny space between the material and the weld-

pin. This makes an electric arc between an electrode (weld pin) and the base material. 

Welding of regular structural steel is a easy and widespread method, and does not effect the 

strength of the steel in a appreciable way. Welding aluminium on the other hand, is a very 

complex metallurgical process that reduces the strength of the material severely. The weld 

itself does usually have a higher yielding point than its base material, and its designed to not 

be the weakest link in a joint, for several reasons such as sudden and brittle collaps. From the 

welding process, TIG, MIG, FSW, or other arc welding methods, there will always be a 

appreciable amount of heat at the weld tip, and locally around the weld it will be high 

temperature gradients and rapid temperature fluctuations as well (Grong, 1997). Because of 

this high temperature, the microstructure in aluminium changes and as a function of 

temperature, metall, thickness and method, there will be a zone where the material strength is 

reduced. This zone is called heat affected zone, or HAZ. In this zone, the material parameters 

changes, usually to weaken the material. For some cases the yielding point can be decreased 

by 50% just around the weld, and then following a typical curve as shown in figure 2.6, where 

hardness is linear related to the yield and ultimate strength. 

 

Figure 2.6 – Vickers hardness in the vicinity of a weld center. 

 

Since welding requires a high amount of heat, its reasonable to neglect all other sources for 

temperature so that the general fundamental differential equations for heat conduction in 

solids are valid and can be written for uniaxial heat conduction as 

 𝜕𝑇

𝜕𝑡
=
𝜆𝑇
𝑝𝑐

𝜕2𝑇

𝜕𝑥2
 

[2.23] 
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and for triaxial heat conduction as 

 𝜕𝑇

𝜕𝑡
=
𝜆𝑇
𝑝𝑐
(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) 

[2.24] 

 

where T is the temperature, 𝑡𝑤 is the time, 𝑥 is the heat flow direction, 𝜆𝑇 is the thermal 

conductivity and 𝑝𝑐 is the volume heat capacity. If arc welding is applied at a surface on a 

isotropic metall, such as aluminium, the heat will flow in a isoterm way into the base material, 

as shown in figure 2.7. 

 

Figure 2.7 – Heat spreading in a isotropic material. 

 

Further, its assumed that the heat is applied instantaneous at time 𝑡𝑤 = 0, and equation [2.24] 

can be solved (Grong, 1997) 

for a long cylinder with weld around the whole cross section 

 

𝑇 − 𝑇0 =

𝑄
𝐴𝑤

𝑝𝑐√4𝜋
𝜆𝑇
𝑝𝑐 𝑡𝑤

exp(−
𝑥2

4
𝜆𝑇
𝑝𝑐 𝑡𝑤

) 

 

[2.25] 

 

or a line weld on a surface 

 

𝑇 − 𝑇0 =

𝑄
𝑡𝑐𝑦𝑙

4𝜋𝜆𝑇𝑡𝑤
exp(−

𝑟ℎ𝑎𝑧
2

4
𝜆𝑇
𝑝𝑐 𝑡𝑤

) 

 

[2.26] 

 

where 𝑇0 is the initial temperature, Q is the net heat input from the current, 𝐴𝑤 is the cross 

section area, 𝑡𝑐𝑦𝑙 is the thickness of the cylinder and 𝑟ℎ𝑎𝑧
2 = 𝑥2 + 𝑦2, which represents the 

radius prevalence of the heat affected zone. This is an analytical method, and if dimensionless 

parameters are introduced and its solved numerically, it will be impossible to find data for 

very small values of time, since its based on instantaneous applied heat at 𝑡𝑤 = 0. Anyhow, it 

can be used to get an idea of how large the heat affected zone will be, but it can not determine 

material parameters, such as yield and ultimate tensile strength. To establish these data, which 

are important for the numerical analysis of compressed cylinders, some other methods will be 
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considered, such as hardness methods. Standard tensile tests are different to perform for a 

material with HAZ, because it would fail for the weakest point, and therefore not consider the 

variating material properties throughout the zone. A way to performe tensile tests for material 

with HAZ is to cut out small pieces from different places in the HAZ, but hardness tests are 

easier and cheaper because it just presses a hard indenter into a flat surface of the test 

material, without destroing the specimen. To get reliable testresults, a material much harder 

than the test material is used, i.e. diamond or sapphire. These have also low coefficient of 

friction against other metals. Some tests uses a sphere, others a cone for the indenter. Its also 

possible to perform nanoindentation tests of high accuracy, but this will not be done in this 

master thesis, as the traditionall hardness tests gives sufficient results. 

 

2.3.2 Vickers hardness test 

 
The Vickers Hardness test presses a square diamond pyramide into the test material and gives 

the hardness in form of load/area.  

For aluminium alloy 6082-T6, Hydro Aluminium and EC9 report the yield and ultimate stress 

as 260 MPa and 310 MPa, respectively. Matusiak (1999) proposed a linear relation between 

the hardness and the strength for butt welds, on the basis of Vickers hardness and uniaxial 

tensile tests, which yields 

 𝑓0.2(𝑀𝑃𝑎) = 3.6𝐻𝑉 − 81 
 

𝑓𝑢(𝑀𝑃𝑎) = 2.6𝐻𝑉 + 54 

[2.27a] 

 

[2.27b] 

 

where HV is the Vickers hardness and 𝑓0.2 and 𝑓𝑢 are the yield and ultimate stress, 

respectively. This formula gives only two points on the stress strain curve, but Wang (2006) 

has used experimental tensile test data from Matusiak (1999) and established the hardening 

parameters for both butt and fillet welds for aluminium alloy 6082-T6. These results are given 

in section 5.3 and will be used for the numerical studie.
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3 Analytical Formulas 
 

3.1 Donnels Equation for Elastic Buckling of Thin-Wall Cylinders 
 

The relation between the displacement and the middle-surface strain variations, and the 

curvature are given as: 

 
 

Figure 3.1 – Thin-wall cylinder. 

𝜖1 =
𝜕𝑢

𝜕𝑥
 

 

𝜖2 =
1

𝑟

𝜕𝑣

𝜕𝜃
+
𝑤

𝑟
 

 

𝜖3 =
1

2
(
𝜕𝑢

𝑟𝜕𝜃
+
𝜕𝑣

𝜕𝑥
) 

 

𝜒1 =
𝜕2𝑤

𝜕𝑥2
 

 

𝜒2 =
𝜕2𝑤

𝑟2𝜕𝜃2
 

 

𝜒3 =
𝜕2𝑤

𝑟𝜕𝑥𝜕𝜃
 

 

 

 

 

 

 

 

 

 

[3.1] 

 

  

By inserting equations [3.1] into the equilibrium equations for compression load 

 ∑𝐹𝑥 = 0,   ∑𝐹𝜃 = 0,   ∑𝐹𝑤 = 0 
[3.2] 

 

and using deformation plasticity theory, a set of equilibrium equations can be established for 

plastic buckling of thin-wall cylinders to be used to derive Donnell`s eight-order equation for 

elastic buckling (Gerard, NACA 3783). Here showed for radial displacement 

 

 
𝐷𝑏𝛻

8𝑤 +
𝐸𝑡

𝑟2
𝜕4𝑤

𝜕𝑤4
+ 𝛻4 (𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝑟𝜕𝑥𝜕𝜃
+ 𝑁𝑦

𝜕2𝑤

𝑟2𝜕𝜃2
+ 𝑝) = 0 

[3.3] 

 

where 𝐷𝑏 is the bending rigidity equal to 𝐸𝑡3/12(1 − 𝜐𝑒
2), 𝑝 is the pressure applied and 𝑁𝑥, 

𝑁𝑥𝑦 and 𝑁𝑦 are the axial, circumferential and shear loads applied to the cylinder, respectively. 
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By inserting boundary conditions into these equations, very different solutions will occur 

depending on how long the cylinders are, because the effect from fixed conditions will 

disappear when the cylinders are long. On the other hand, short cylinders will depend on how 

the boundaries are designed. When a simple supported cylinder in compression is considered, 

the edges correspondes to 𝑤 = 0, 𝑣 = 0 and 𝑢 ≠ 0, and a double sine-series which satisfies 

the boundary conditions is proposed as a solution to Donnell`s differential equation (Batdorf, 

NACA 1341) 

 w = w0 sin
πy

𝜆𝑛
sin
mπx

L
 

[3.4] 

 

𝜆𝑛 = 𝜋𝑟/𝑛 is the half-wave length in the circumferential direction, θ and 𝑚 is the axial 

wavenumber. Solving equation [3.3] with equation [3.4] and the fact that 𝑁𝑦 = 𝑁𝑥𝑦 = 0, the 

compressive buckling coeffisient, 𝑘𝑐 and the critical buckling stress, 𝜎𝑐𝑟 yields 

 
𝑘𝐶 =

(𝑚2 + 𝛽𝑛
2)2

𝑚2
+

12𝑍𝐿
2𝑚2

𝜋4(𝑚2 + 𝛽𝑛
2)2

 
[3.5] 

where 

𝛽𝑛 =
𝐿

𝜆𝑛
 

𝑍𝐿 =
𝐿2

𝑟𝑡
√1 − 𝜐𝑒2 

𝜐𝑒 is the elastic Poisson`s ratio. 

 
𝜎𝑒𝑙𝑐𝑟 =

𝑘𝐶𝜋
2𝐸

12(1 − 𝜐𝑒
2)
(
𝑡

𝐿
)
2

 
[3.6] 

 

where 𝐸 is the Young`s modulus. For the two cylinder geometries in this study, A and B with 

geometries D=127 mm, t=1.8 mm and D=100 mm, t=4.8 mm, respectively, a plot of 𝑍𝐿 is 

shown for different lengths: 

 

Figure 3.2 - 𝑍𝐿 vs length for cylinder D=127 mm and D=100 mm. 

 

To calculate the critical value of 𝑘𝑐, the lowest value has to be identified, and is found from 

minimization of equation [3.5] to be for long cylinders
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𝑘𝐶 =

4√3

𝜋2
𝑍𝐿 = 0.702𝑍𝐿 

[3.7] 

 

Equation [3.5] is differentiated with respect to (𝑚2 + 𝛽𝑛
2)2/𝑚2 and set equal to zero. Thus 

 
(𝑚2 + 𝛽𝑛

2)2

𝑚2
= √

12𝑍𝐿
2

𝜋4
 

 

[3.8] 

 

and by solving for 𝛽𝑛 

 

𝛽𝑛 =
√(
12𝑍𝐿

2

𝜋4
)

1
4

𝑚 −𝑚2 

 

 

[3.9] 

 

A real (positive) value of 𝑚 and 𝑛 have to be contented, therefore the lowest value is 𝑚 = 1 

and 𝑛 = 0. Hence,  

 
𝑍𝐿 ≥

𝜋2

√12
= 2.85 

[3.10] 

 

Cylinder A and B, diameter 127 mm and 100 mm, respectively, will therefore have a limit 

equal to 𝐿𝐴 ≥ 18.35 mm and 𝐿𝐵 ≥ 26.12 mm. For cylinders shorter than these values, 𝑘𝑐 can 

be found from substituting the limiting values 𝛽𝑛 = 0 (𝑛 = 0) and 𝑚 = 1 into equation [3.5] 

 
𝑘𝐶 = 1 +

12𝑍𝐿
2

𝜋4
= 1 + 0.1232𝑍𝐿

2 
[3.11] 

 

Below are the 𝑘𝑐-values plotted against the length of the cylinder 

 

  
a) b) 

 

Figure 3.3 - 𝑘𝑐 vs length of cylinder A (D=127 mm) and B (D=100 mm) for a) long cylinders 

and b) short cylinders when 𝑍𝐿 ≤ 2.85. 
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Its observed that 𝑘𝑐 is 1 when 𝐿 = 0 for short cylinders, and that it increases rapidly when L 

increases. For a long cylinder, equation [3.7] is substituted into equation [3.6] with 𝜐𝑒 = 0.3 

and matches the classical buckling stress for an axially compressed thin-wall cylinder 

 

𝜎𝑒𝑙𝑐𝑟 =
0.702

𝐿2

𝑟𝑡 √1 − 𝜐𝑒
2𝜋2𝐸

12(1 − 𝜐𝑒2)
(
𝑡

𝐿
)
2

=
0.57737

√1 − 𝜐𝑒2

𝐸𝑡

𝑟
= 0.606

𝐸𝑡

𝑟
 

 

[3.12] 

 

Equation [3.12] is derived for shells with small values of 𝑡/𝑟 and no imperfections, so to use 

this formula on the cylinders in this study will be very unconservative, as shown in figure 3.4. 

The stress is plotted against the length of the cylinder on cylinder A (D=127 mm) and B 

(D=100 mm), and also on two thin-wall cylinders with small values of 𝑡/𝑟. 

 

 

 

 

Figure 3.4 – Critical buckling stress calculated with equations for short and long cylinders for 

different geometry. 
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Its observed that the values of critical buckling stress increases rapidly for the theory for short 

cylinders, therefore it can be concluded that the theory is only valid when the cylinders are 

very short. The elastic buckling stress calculated for long cylinders from equation [3.12] gives 

very high stresses as shown in figure 3.4 and its clearly that plasticity needs to be involved. 

This is derived in section 3.3. 

 

3.2 Strain Energy Equation 
 

When a cylinder is loaded in axial compression up to the buckling load, the strain energy 

stored in the cylinder is equal to the external work done by the force, thus 

 
𝑆(𝜖1) = ∫ 𝑃𝜖 𝑑𝜖

𝜖1

0

 
[3.13] 

 

where 𝜀1 is the strain in the longitudinal axis of the cylinder because of the deformation from 

the load. When the strain energy is calculated, a relation between several parameters are 

derived to find the critical buckling stress (Tsien, 1942): 

 

  
a) b) 

 

Figure 3.5 – Relation between the unit strain energy 𝑠 and the unit end shortening 𝜀 for 

cylindric shells under axial compression with the aspect ratio 𝜇 of the waves equal to a) 1.0 

and b) 0.5. 
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The different parameters are the radius of the cylinder, 𝑟, the thickness, 𝑡, Youngs-modulus, 

𝐸, the aspect ratio between waves in x and θ direction, μ = m/n and the parameter η =

𝑛2𝑡/𝑟. 𝑛 is as known the wave number in circumferential direction. From figure 3.5a and 3.5b 

the critical buckling stress is found when the strain energy curve for a certain value of η 

crosses the unbuckled equilibrium curve. For example, 𝜇 = 1 and η = 0.4 correspondes to 

point A in figure 3.5a where 𝜀𝑟/𝑡 = 0.46. 

 𝜀𝑟

𝑡
=
𝜎𝑒𝑙𝑐𝑟𝑟

𝐸𝑡
= 0.46 

[3.14] 

 

 

 
 

 

a) b) 

 

Figure 3.6 – The relation between 𝑡/𝑟 and 𝑛 for 𝜇 equal to a) 1.0 and b) 0.5. 

 

By introducing a factor 𝐶 into the equation 𝜎𝑒𝑙𝑐𝑟 = 𝐶𝐸𝑡/𝑟, the critical buckling stress versus 

𝑡/𝑟 can be computed for values from figure 3.5. 

 

Figure 3.7 – Critical elastic buckling stress for different C values. 
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3.3 Plastic Buckling of Axially Compressed Shell with Membrane 

Prebuckling Deformations 
 

 

Figure 3.8 – Secant and tangent modulus. 

 

The critical elastic buckling stress is shown in section 3.2 and its clearly that plasticity needs 

to be taken into account due to very high critical buckling stress. When deformation theory of 

plasticity is assumed (𝜐𝑝 = 0.5) the following relations between stress and strain yields 

 
𝜎𝑥 =

4

3
𝐸𝑠 (𝜀𝑥 +

1

2
𝜀𝑦) 

 

[3.15] 

 
𝜎𝑦 =

4

3
𝐸𝑠 (𝜀𝑦 +

1

2
𝜀𝑥) 

 

[3.16] 

 
𝜏𝑥𝑦 =

1

3
𝐸𝑠𝛾𝑥𝑦 

 

[3.17] 

where 𝐸𝑠 and 𝐸𝑡 is the secant and tangent modulus for the stress vs plastic strain relation for 

the material. The tangent modulus, 𝐸𝑡 could be found by equation [2.9], but its taken more 

accurate from iteration from the tensile tests performed in section 5. From Langseth (2016) 

axisymmetric buckling is assumed and the following critical plastic stress is derived 

 

𝜎𝑝𝑙𝑐𝑟 =
2

3
𝐸𝑠
𝑡

𝑟
√
𝐸𝑡
𝐸𝑠

 

 

 

[3.18] 

By using the relation 

 
𝜐 = 0.5 −

𝐸𝑠
𝐸
(0.5 − 𝜐𝑒) 

 

[3.19] 
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and the elastic critical buckling stress given in equation [3.12], an equation for the critical 

buckling stress yields 

 

𝜎𝑐𝑟 = √3√1 − 𝜐2𝐸𝑠
𝑡

𝑟
√
𝐸𝑡
𝐸𝑠

 

 

 

[3.20] 

This formula uses the secant and tangent modulus for a given point on the stress vs plastic 

strain curve for a material to calculate the critical buckling stress. The intersection point 

between equation [3.20] and the stress strain curve gives the critical buckling stress. Results 

for the three cylinders investigated are found in section 9.5. 

 

 

3.4 Circumferential Wavenumber 

 
Since a sinusoidal mode shape is assumed in both directions, Koiter (1945) derived for very 

thin shells a formula that could give possible waveforms expressed as a semi-circle in 

“wavenumber space”, given by Hunt (2003) 

 (𝑚 −𝑚𝑐𝑟𝑜𝑤𝑛)
2 + 𝑛2 = 𝑚𝑐𝑟𝑜𝑤𝑛

2 [3.21] 

 

 

Figure 3.9 – Relationship between axial and circumferential wavenumber 𝑚 and 𝑛, 

respectively. 

 

The crown represents square wavenumbers, and the axial wavenumber 𝑚 ≤ 2𝑚𝑐𝑟𝑜𝑤𝑛 can be 

any positive value for a infinitely long cylinder, but the circumferential wavenumber 𝑛 ≤

𝑛𝑐𝑟𝑜𝑤𝑛 must be an integer. Donnells equation with a given sinusoidal mode shape from 

equation [3.4] can be used to find the circumferential wavenumber, 𝑛. Inserting 𝛽𝑛 = 𝐿𝑛/𝜋𝑟 
into equation [3.9] gives
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𝐿𝑛

𝜋𝑟
= √(

12𝑍𝐿
2

𝜋4
)

1
4

𝑚 −𝑚2 

 

[3.22] 

 

 

𝑛2 (
𝐿

𝜋𝑟
)
2

=

(

 
 12 (

𝐿2

𝑟𝑡 √1 − 𝜐𝑒
2)
2

𝜋4

)

 
 

1
4

𝑚−𝑚2 

 

 

[3.23] 

 

Since the crown represents square waves it means that the length in both axial and 

circumferential direction will have to be equal, therefore its convienient to put 𝐿 =

𝐶𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2𝜋𝑟.  

 

𝑛2 (
2𝜋𝑟

𝜋𝑟
)
2

= (
12(2𝜋𝑟)4(1 − 𝜐𝑒

2)

𝜋4(𝑟𝑡)2
)

1
4

𝑚 −𝑚2 

 

 

[3.24] 

 

𝑛2 =
2𝜋𝑟

𝜋√𝑟𝑡
(12(1 − 𝜐𝑒

2))

1
4
𝑚
1

4
−𝑚2

1

4
 

 

 

[3.25] 

 
𝑛2 =

1

2
√
𝑟

𝑡
(12(1 − 𝜐𝑒

2)) 
1
4𝑚−𝑚2 

 

 

[3.26] 

 

𝑛2 +𝑚2 = [(
3

4
) (1 − 𝜐𝑒

2)]

1
4
√
𝑟

𝑡
𝑚 

 

[3.27] 

 

Equation [3.27] gives the value for the crown wavenumber for both axial and circumferential 

waves for a cylinder with length equal to 2𝜋𝑟 

 

𝑛𝑐𝑟𝑜𝑤𝑛 = 𝑚𝑐𝑟𝑜𝑤𝑛 = [(
3

4
) (1 − 𝜐𝑒

2)]

1
4
√
𝑟

𝑡
 

 

[3.28] 

 

For cylinders with different length than 2𝜋𝑟, a rescaling is required. 𝑀𝑎 is introduced to 

represent the number of axial half-waves at the point of buckling in the shell of length L. 

Rescaling to a length 2𝜋𝑟 and set 𝑚 = 𝑀𝑎𝜋𝑟/𝐿 and inserting into equation [3.26] yields 

 
𝑛2 = 𝑀𝑎𝜋

𝑟

𝐿
√
𝑟

𝑡
(12(1 − 𝜐𝑒

2)) 
1
4 −𝑀𝑎

2𝜋2 (
𝑟

𝐿
)
2

 
 

[3.29] 

 

This is an equation for thin walled cylinder shells, and the cylinders investigated in this 

master thesis are not very thin, in fact they are not even in cross section class 4. Plots for 
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cylinders with different lengths are given in Appendix C compared to numerical analysis. In 

figure 3.10, different cylinders are plotted for 𝑀𝑎 = 6 to get a overview of how 𝑛 changes for 

different lengths, but from results given in Appendix C, its observed that 𝑛 changes a lot 

when 𝑀𝑎 changes. 

 

Figure 3.10 – Circumferential wavenumber from equation [3.29]. 

 

From the data from figure 3.10 its observed that equation [3.29] is only valid down to lengths 

equal to 18 mm and 16 mm for cylinder A and B, respectively. This fits great to the limiting 

results from equation [3.10], where the results are 𝐿𝐴 ≥ 18.35 mm and 𝐿𝐵 ≥ 26.12 mm. For 

shorter cylinders when the thickness are 1.8 mm and 4.8 mm, there will be less buckling 

effects and more like a compression test. Numerical analyses for cylinders in the range 20 <

𝐿 < 400 mm are given in Appendix C, compared with the analytical results. Laboratory 

experiments will not be performed in this master thesis due to time issue and the fact that 

these cylinders are not very thin, so the wavepattern will not occur on cylinder A and B. 

Figure 3.11 gives a visual result from one of the numerical analysis from Appendix C, 

cylinder C with length L=100 mm. Here its easy to identify the wavenumber in both axial and 

circumferential direction. 𝑀𝑎 is 3 and n is 7. Equation [3.29] gives 𝑛 = 9.9. 

 

Figure 3.11 - Wavepattern using Riks method and S4R shell elements for D=127 mm, t=0.4 

mm, L=100 mm.
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For a very thin cylinder, its observed from figure 3.12 that the numerical and analytical 

analysis fits very well. Figure 3.13 is the associated cylinder with length L=100 mm. The 

analytical result is 18.7 compared to 23 for the numerical. From Appendix C the results does 

not give a perfect comparison between equation [3.29] and numerical analysis, and the reason 

can be that those cylinders are not very thin, therefore cylinder B (D=100 mm, t=4.8 mm) is 

not even considered because it is too thick. 

 

 

Figure 3.12 – Length versus circumferential wavenumber, 𝑛. 

 

 

Figure 3.13 - Wavepattern from numerical analysis using Riks method and S4R shell element 

for D=127 mm, t=0.1 mm, L=100 mm. Displacement is 0.09 mm and deformation scale factor 

is 40. 
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3.5 Buckling Load for Pin-Ended Column 

 

3.5.1 Buckling load for a column without imperfection 
 

A sinusoidal curve is assumed for the deformation mode. 

 
 

 

 

 

 

 

 

 

 

 

𝑤 = 𝑒 sin
𝜋𝑥

𝐿
 

 

 

 

 

 

 

 

 

 

[3.30] 

Figure 3.13 – Buckling of pin-enden column. 

 

The relationship between the approximated curvature, deflection and the internal moment is 

known mechanic knowledge 

 1

𝑅
= 𝑤,𝑥𝑥 

 

[3.31] 

 
𝑀 = −𝐸𝐼

1

𝑅
= −𝐸𝐼𝑤,𝑥𝑥 

[3.32] 

 

Equilibrium gives 

 𝑀 = 𝑁𝑤 = −𝐸𝐼𝑤,𝑥𝑥 

 

[3.33] 

 
𝑁𝑒 sin

𝜋𝑥

𝐿
= 𝑒𝐸𝐼 (

𝜋

𝐿
)
2

sin
𝜋𝑥

𝐿
 

[3.34] 

 

Which gives the Euler buckling load
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𝑁𝐸 =

𝜋2𝐸𝐼

𝐿2
 

[3.35] 

 

If the exact expression for curvature from Appendix A is used, the stable form of the buckling 

load is shown: 

 1

𝑅
=

𝑤,𝑥𝑥

(1 + 𝑤,𝑥2)
3
2

 

 

[3.36] 

 

𝑁𝑒 sin
𝜋𝑥

𝐿
= 𝐸𝐼

𝑒 (
𝜋
𝐿)

2

sin
𝜋𝑥
𝐿

(1 + (𝑒
𝜋
𝐿 cos

𝜋𝑥
𝐿 )

2
)

3
2

 

 

 

[3.37] 

 

𝑁 = 𝐸𝐼
(
𝜋
𝐿)

2

(1 + (𝑒
𝜋
𝐿 cos

𝜋𝑥
𝐿 )

2
)

3
2

 

 

 

[3.38] 

 

Introducing series expansion of the cosine 

 
cos 𝑥 = 1 −

𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. .. 

[3.39] 

 

and dividing by 𝑁𝐸, an approximated solution can be found 

 𝑁

𝑁𝐸
= 1 +

𝜋2

8

𝑒2

𝐿2
 

[3.40] 

 

By plotting relative load vs relative deflection its observed that a stable post-buckling curve 

occur because the load capacity increases after buckling. It can also be noted that this is 

therefore a stable bifurcation point. 

 

Figure 3.14 – Stable bifurcation.
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3.5.2 Buckling load for a column with initial imperfection 
 

 

 

 

 

 

 

 

 

𝑤0 = 𝑒0 sin
𝜋𝑥

𝐿
 

 

𝑤 = 𝑒 sin
𝜋𝑥

𝐿
 

 

 

 

 

 

 

 

 

[3.41a] 

 

 

[3.41b] 

Figure 3.15 – Initial imperfection. 

 

Moment equilibrium gives 

 𝑁𝑤 = −𝐸𝐼(𝑤,𝑥𝑥 − 𝑤0,𝑥𝑥) 
 

[3.42] 

 
𝑁𝑒 = 𝐸𝐼 (

𝜋

𝐿
)
2

(𝑒 − 𝑒0) 

 

[3.43] 

 𝑁𝑒 = 𝑁𝐸(𝑒 − 𝑒0) 
 

[3.44] 

 𝑒 =
𝑒0

1 −
𝑁
𝑁𝐸

 
[3.45] 

 

Equation [3.45] is the imperfection factor including the initial imperfection, 𝑒0. In a column 

with homogeneous pressure over the cross section, the critical yielding stress including the 

moment from the imperfection is given as 

 
𝜎𝑦 =

𝑁

𝐴
+
𝑀

𝑊𝑒𝑙
 

[3.46] 

 

Introducing 𝑁𝑒𝑙 = 𝐴𝜎𝑦, 𝑀𝑒𝑙 = 𝑊𝑒𝑙𝜎𝑦 and the fact that the moment comes from the deflection, 

𝑀 = 𝑁𝑒 and dividing [3.46] with 𝜎𝑦 gives
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 𝑁

𝑁𝑒𝑙
+
𝑁𝑒

𝑀𝑒𝑙
= 1 

[3.47] 

 

Equation [3.45] will follow its path untill it reaches the Euler load, but the cross section will 

fail somewhere before that, following equation [3.47]. So the intersection between these to 

graphs will be the critical buckling load, 𝑁𝑐𝑟. 

 

Figure 3.16 – Critical buckling load due to cross section capacity. 

 

Observe that decreasing 𝑒0 will increase 𝑁𝑐𝑟, as it should be. The intersection point 𝑁𝑐𝑟 is 

found from inserting [3.45] into [3.47] 

 
𝑁𝑐𝑟
𝑁𝑒𝑙

+
𝑁𝑐𝑟
𝑀𝑒𝑙

(
𝑒0

1 −
𝑁𝑐𝑟
𝑁𝐸

) = 1 

 

 

[3.48] 

 
𝑁𝑐𝑟
𝑁𝑒𝑙

+
𝑁𝑐𝑟
𝑁𝑒𝑙

𝑁𝑒𝑙
𝑀𝑒𝑙

(
𝑒0

1 −
𝑁𝑐𝑟
𝑁𝑒𝑙

𝑁𝑒𝑙
𝑁𝐸

) = 1 

 

[3.49] 

 

Introducing some scalars, �̅�2 = 𝑁𝑒𝑙/𝑁𝐸  and 𝛼 = 𝑒0𝑁𝑒𝑙/𝑀𝑒𝑙 

 
𝑁𝑐𝑟
𝑁𝑒𝑙

+
𝑁𝑐𝑟
𝑁𝑒𝑙

(
𝛼

1 −
𝑁𝑐𝑟
𝑁𝑒𝑙

�̅�2
) = 1 

 

[3.50] 
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Solving this for 𝑁𝑐𝑟, a function of imperfection, length, cross section capacity and the residual 

stresses can be obtained 

 

𝑁𝑐𝑟 =
𝑁𝑒𝑙
2
(1 +

1 + 𝛼

�̅�2
−√(1 +

1 + 𝛼

�̅�2
)
2

−
4

�̅�2
) 

 

[3.51] 

 

3.5.3 Buckling load for a column in axial compression and bending at ends 
 

By putting on equal moments on each side, an equal homogen moment-diagram will occur, 

and the critical cross section stress can be calculated.  

 

Figure 3.17 – Axial compression and bending at ends. 

 

If axial load is the only force acting, then 

 

 𝑁𝑅𝑘 = 𝜒𝐴𝑓𝑜 [3.52] 

 

where 𝜒 is a reduction factor for the relevant buckling mode. Further, its assumed that failure 

occurs when the maximum compression stress at the mid section reaches the yield stress 𝑓𝑜, 

and equation [3.46] is therefore valid 

 𝑁𝑅𝑘
𝐴
+
𝑁𝑅𝑘𝑒

𝑊𝑧
= 𝑓0 

 

[3.53] 
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𝑒 =

𝑊𝑧𝑓𝑜
𝑁𝑅𝑘

(1 −
𝑁𝑅𝑘
𝐴𝑓𝑜

) 

 

𝑤 = 𝑒 sin
𝜋𝑥

𝐿
 

[3.54] 

 

 

 

[3.55] 

 

If now bending moments are acting at the ends, the total maximum compressive stress is 

 
𝑓𝑜 =

𝑁

𝐴
+
𝑀𝑧
𝑊𝑧
+
𝑁𝑤

𝑊𝑧
 

[3.56] 

 

Inserting equation [3.55] into equation [3.56] yields 

 
𝑓𝑜 =

𝑁

𝐴
+
𝑀𝑧
𝑊𝑧
+
𝑁𝑊𝑧𝑓𝑜
𝑊𝑧𝑁𝑅𝑘

(1 −
𝑁𝑅𝑘
𝐴𝑓𝑜

) sin
𝜋𝑥

𝐿
 

 

[3.57a] 

 
𝑓𝑜 =

𝑁

𝐴
+
𝑀𝑧
𝑊𝑧
+
𝑁𝑓𝑜
𝑁𝑅𝑘

(1 −
𝑁𝑅𝑘
𝐴𝑓𝑜

) sin
𝜋𝑥

𝐿
 

 

[3.57b] 

 𝑁

𝑓𝑜𝐴
+
𝑀𝑧
𝑓𝑜𝑊𝑧

+
𝑁

𝑁𝑅𝑘
(1 −

𝑁𝑅𝑘
𝐴𝑓𝑜

) sin
𝜋𝑥

𝐿
= 1 

 

[3.57c] 

 𝑁

𝑓𝑜𝐴
+
𝑀𝑧
𝑓𝑜𝑊𝑧

+
𝑁

𝑁𝑅𝑘
(1 − 𝜒) sin

𝜋𝑥

𝐿
= 1 

 

[3.57d] 

 𝑁

𝑁𝑅𝑘
(
𝑁

𝑓𝑜𝐴

𝑁𝑅𝑘
𝑁
+ (1 − 𝜒) sin

𝜋𝑥

𝐿
) +

𝑀𝑧
𝑀𝑅𝑘

= 1 

 

[3.57e] 

 𝑁

𝜒𝐴𝑓𝑜
(𝜒 + (1 − 𝜒) sin

𝜋𝑥

𝐿
) +

𝑀𝑧
𝑀𝑅𝑘

= 1 

 

[3.57f] 

𝜒 + (1 − 𝜒) sin
𝜋𝑥

𝐿
 has its maximum when 𝑥 = 𝐿/2, which means that the midsection of a 

column is the most critical point. By introducing a factor 𝜔 equation [3.57f] yields 

 𝑁

𝜔𝜒𝐴𝑓𝑜
+
𝑀𝑧
𝑀𝑅𝑘

= 1 
[3.58] 

 

where  

 
𝜔 =

1

𝜒 + (1 − 𝜒) sin
𝜋𝑥
𝐿

 
[3.59] 

 

This factor is found in EC9 as well and its usefull for calculations of welds for flexural 

buckling. 𝐿 is the buckling length in the buckling plane considered and 𝑥 is the distance to the 

weld from the upper end. This factor is linear related to the critical buckling load for flexural 

buckling.
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4 Calculations from Eurocode 9 
 

4.1 Flexural Buckling 
 

Eurocode 9 gives the buckling load for a given cylinder. Due to lack of research on 

aluminium and possible conservative statements, these rules are most likely very 

conservative. Figure 4.1 shows the relation between critical buckling load and length for the 

three unwelded cylinders investigated in this study, and its corresponding relative buckling 

curves are given in figure 4.2 when the length ranging from 0 to 5 m. Its observed for short 

cylinders that the critical buckling load is almost identical due to local buckling. 

 

Figure 4.1 – Critical buckling load calculated by EC9. 

 

The critical buckling load for flexural buckling is given in EC9 as 

 

 𝑁𝑏,𝑅𝑑 = 𝜅𝜒𝐴𝑒𝑓𝑓𝑓𝑜/𝛾𝑀1 [4.1] 

 

where 𝜅 is a factor to allow for the weakening effects of welding. Without welds 𝜅 = 1. χ is 

the reduction factor for the relevant buckling mode, and for short cylinders 𝜒 = 1.0 due to 

local buckling. 𝑓𝑜 and 𝛾𝑀1 is the characteristic value of 0.2% proof strength and partial factor 

for resistance of cross sections equal to 1.1, respectively, and the effective area is equal to the 

cross section area, A for cross section class 1,2 and 3. For class 4, the area is multiplied by a 

factor 𝜌𝑐 to factor down the thickness of the cylinder.
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Figure 4.2 – Relative buckling stress vs slenderness. 

 

Figure 4.2 is given by the slenderness, 𝜆 and the relative buckling stress, 𝜌, where 𝜆 = 𝐿/𝑖, 

𝜌 = 𝜎𝑐𝑟/𝑓𝑜, 𝑖 = √𝐼/𝐴 and 𝜎𝑐𝑟 = 𝑁𝑏,𝑅𝑘/𝐴. 

 

 

 

4.2 Local Buckling 

 
As observed from figure 4.1 the critical buckling load is almost the same for short cylinders, 

due to local buckling. Local buckling is given in Eurocode 9 (2007) as 

 

 𝑁𝑐,𝑅𝑑 = 𝐴𝑒𝑓𝑓𝑓𝑜/𝛾𝑀1 

 

[4.2] 

 

where the effective area is the same as for flexural buckling, but when welds are applied, its 

calculated as shown on the next page. For a cylinder subjected to welding in cross section 

class 1,2 and 3, the effective area is reduced around the weld as shown in figure 4.4a by 

introducing the factor 𝜌𝑜,ℎ𝑎𝑧, which is given in EC9. When cylinders are in cross section class 

4, the effective area is reduced for the whole cross section as well. But for cylinders in class 4, 

the reduction around the welds can not be less than the reduction for the rest of the cross 

section, EC9 (2007). 
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Figure 4.3 – Datum of welded cross section corresponding to figure 4.4. 

 

  
 

a) b) 

 

Figure 4.4 – Reduced area due to weld effects for a) class 1,2 and 3 and b) class 4. 

By using the geometry in figure 4.4a, the equation for the effective area for cross section class 

1,2 and 3 becomes 

 𝐴𝑒𝑓𝑓 = 𝐴𝑡𝑜𝑡 − 2(2𝑏ℎ𝑎𝑧(𝑡 − 𝜌𝑜,ℎ𝑎𝑧𝑡)) 
[4.3] 
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 𝐴𝑒𝑓𝑓 = 𝐴𝑡𝑜𝑡 − 4𝑏ℎ𝑎𝑧𝑡(1 − 𝜌𝑜,ℎ𝑎𝑧) [4.4] 

 

where the total area is 

 𝐴𝑡𝑜𝑡 = 2𝜋𝑟𝑡 
 

[4.5] 

 

For cross section class 4, the effective area is calculated the same way but now the thickness 

is replaced with a effective thickness for the cross section, 𝑡𝑒𝑓𝑓 

 𝑡𝑒𝑓𝑓 = 𝜌𝑐𝑡 
 

[4.6] 

 

Around welds for class 4, the reduction factor is taken as 

 𝑚𝑖𝑛{𝜌𝑜,ℎ𝑎𝑧𝑡;  𝜌𝑐𝑡} 
 

[4.7] 

In this study, two cylinders in class 1,2 or 3 and one cylinder in class 4 are investigated. The 

6060-T6, D=127 mm, t=1.8 mm cylinder is in class 4 when subjected to welding. The 𝜌𝑐 

factor for this cylinder when subjected to welding is found to be 0.984. The 𝜌𝑜,ℎ𝑎𝑧 factor is 

0.43 and 0.48 for alloy 6060-T6 and 6082-T6, respectively and is given in EC9 as: 

 
𝜌𝑜,ℎ𝑎𝑧 =

𝑓𝑜,ℎ𝑎𝑧
𝑓𝑜

 

 

[4.8] 

EC9 assumes that throughout the heat affected zone (HAZ) the strength properties are reduced 

on a constant level, but section 5.3 shows that this is not right and results comparing EC9 and 

laboratory experiments for welded cross sections are given in section 9.
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5 Material Test 
 

5.1 Introduction to DIC 

 
Material tests are necessary to establish the correct stress strain relation for the investigated 

cylinders, and tensile tests are the cheapest way to get this relation. This is done by cutting out 

a dog-bone looking piece from the given cylinder and putting it into a stretching machine. 

This machine logs both force and displacement, and the stress strain relation can therefore be 

found. Due to many parts between the specimen and the machine, the displacement logged is 

not as accurate as it should be, based on earlier experiments. All parts in the machine are 

made out of steel and even though steel has much higher Young`s modulus than aluminium, 

the total elongation in these parts makes it non-accurate. Therefore, a another much more 

expensive method was used, digital image correlation (DIC). This method takes high 

resolution pictures during the tests and by analysing the pictures afterwards, the strain can be 

found and fitted with the stress values from the tensile machine. Strain is a dimensionless 

number and its usually found from elongation of a known length of a specimen, but DIC uses 

relative pixel sizes found from the pictures. Therefore, very many pictures are needed during 

one tensile test to get an accurate result. The tests performed in this study are quasi static, 

which means they are loaded very slowly. In fact its deformation controll to ensure the correct 

force. One test took about ten minutes, and five pictures were taken every second so in total 

about 3000 pictures for every test. This is to ensure absolute every changes that happens in the 

material, specially around yielding and necking. The changes are found from meshing the 

specimen so every points inside one element will follow its position inside the given element. 

Figure 5.1a and b shows how a 25x25 pixel Q4 element is meshed onto a tensile specimen for 

the initial and last picture before necking, respectively. The principal strain, 𝜀1 is mapped in 

figure 5.1c.
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a) b) c) 

 

Figure 5.1 - 25x25 pixels Q4 element is meshed onto a tensile specimen for the a) initial and 

b) last picture before necking. The principal strain, 𝜀1 is mapped in c). 

 

Unlike FEA, the mesh in DIC can not be refined so it converges to a limit. The elements in 

DIC needs a suitable size to ensure that every point stays at that point within the element. If 

the element size was so small that there only was one dot in every picture, the analysis would 

fail. Therefore, a size 25x25 pixels are used, which is a great balance between enough dots 

and capable of representing a accurate strain behaviour. With this size, there was eight 

elements over the width to represent the strain for the elements were necking occurs, and due 

to different unit vector of these elements, some shear strain will affect the results and 

therefore the whole logaritmic strain matrix has to be concerned. Further is the mean value 

assumed for the strain.  

 
𝜀�̅� = [

𝜀𝑥𝑥 𝜀𝑥𝑦
𝜀𝑦𝑥 𝜀𝑦𝑦

] 
[5.1] 

 

Figure 5.2 shows a Q4 element used in this analysis with enough dots inside to establish an 

accurate result. The dots are painted on each specimen. 
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Figure 5.2 – 25x25 pixels Q4 element. 

 

 

 

 

5.2 Tensile Test 

 
Three tensile tests were performed for each of the three different cylinders in this master 

thesis, in total 9 tests. The design of the tensile test is shown in figure 5.3, including the 

cameras for the DIC analysis. Its clearly that there are many components that will in some 

degree have an elastic elongation when tension is applied even though they are made out of 

steel, so strains are found by DIC. In figure 5.4, the specimens are shown. It was observed 

that the elastic domain was equal for every tests and that Young`s modulus was 70 GPa, as 

expected. The plastic domain however, gave a fine and smooth graph when plotting the 

plastic strain vs the true stress for aluminium alloy 6060-T6, but gave a large scatter for alloy 

6082-T6, as seen in figure 5.5a, b and c, respectively. Its also noted that the graph fits very 

good for all of the three tests in the beginning and in the transition from elastic to plastic 

domain. This is a good observation because buckling is probably very sensitive in this region. 

The necking point is not very coordinated for none of the tensile tests, and the engineering 

knowledge about buckling should be applied when choosing values to be used in the 

numerical analysis. Since the tests gave a large scatter for alloy 6082-T6, its obviously that 

more tensile tests should be performed, but due to time issue, the numerical analysis will be 

based on these tests. When tensile tests are performed with some scatter in the result, the 

mean values from the tests are normally used to establish the stress strain relation in 

numerical analysis. A reason for the large scatter, special in alloy 6082-T6 is most likely due 

to an extrusion weld made when producing the cylinders.
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Figure 5.3 – Design of the tensile test. 

 

 

  
 

a) b) 

 

Figure 5.4 – a) Projected drawing of the specimens and b) specimens with curvature. 
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Figure 5.5 – True stress vs plastic strain from tensile tests.
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Figure 5.6 – Mean values from the three tests used in the numerical analysis. 

 

As expected, more strength in a material decreases its ductile properties, and alloy 6082-T6 

necks for much lower strain values than alloy 6060-T6.  

The 𝑓𝑜 parameters are taken from figure 5.6 when the plastic strain is equal to 0.002 and are 

listed in table 5.1 for the three cylinders. For the elastic part, a Young`s modulus equal to 

70000 MPa has been used to calculate the stress corresponding to 0.2% permanent strain. 

 

Table 5.1 - 𝑓𝑜 values taken from 0.2% permanent strain. 

 

Cylinder 

 

𝑓𝑜 [MPa] 

 

 

6060-T6, D=100 mm, t=4.8 mm 

 

192.23 

 

6060-T6, D=127 mm, t=1.8 mm 193.63 

 

6082-T6, D=100 mm, t=4.8 mm 314.56 

 

 

Figure 5.7 shows the five parameter extended Voce rule and Ramberg & Osgood constitutive 

law fitted by the least square method to the true stress vs plastic strain from the tensile tests.



5.2 Tensile Test 

43 
 

 

 

 

 

Figure 5.7 – Voce rule and Ramberg & Osgood fitted to the laboratory tensile test results.
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Voce rule gives significant more accurate results, so this material formula will be used in the 

numerical study. Table 5.2 gives the hardening parameters from the curve fitting. 

 

Table 5.2 – Hardening parameters for Voce rule and material parameter for Ramberg & 

Osgood. 

 

 

Cylinder 

 

 

𝑌0 
[MPa] 

 

 

𝑄1 
[MPa] 

 

 

𝐶1 
[-] 

 

 

𝑄2 
[MPa] 

 

 

𝐶2 
[-] 

 

 

𝜎0 + ∑𝑄𝑖  
[MPa] 

 

Ramberg & 

Osgood, 

𝑛𝑅𝑂 
[-] 

6082-T6 

D=100 mm, t=4.8 mm 

 

311 

 

28 

 

9 

 

57 

 

15 

 

396 

 

 

22 

6060-T6 

D=127 mm, t=1.8 mm 

 

 

191 

 

18 

 

40 

 

51 

 

8 

 

260 

 

17.5 

6060-T6 

D=100 mm, t=4.8 mm 

 

 

186 

 

16 

 

50 

 

69 

 

8 

 

271 

 

14.3 

 

The reason why two different tensile tests were performed for the same material was because 

it did not have the same geometry, and different stress-strain values were expected. Figure 5.6 

shows that due to different geometry, the thicker specimen gave little higher stress values. 

Therefore, it can be concluded that there are no such thing as a perfect tensile test of a 

material. There will always be some edge effects and some effects from the cooling rate from 

the extrusion when making the profiles, and tensile tests therefore have to be performed for 

the same profiles that are analysed numerically. 

The specimens had a little curvature because they were cut out from the corresponding 

cylinders and this may affect the results. First, the area is assumed rectangular when 

establishing the stress strain relation, so how wrong this is, is shown in table 5.3. 

 

 
 

 

 

 

                          a)                                b) 

 

Figure 5.8 – Cross section of tensile specimens. a) D=100 mm and b) D=127 mm.
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Table 5.3 – Deviation calculations for curved vs rectangular cross sections. 

 

Specimen from cylinder 

 

𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 

[𝑚𝑚2] 

 

𝐴𝑐𝑢𝑟𝑣𝑒𝑑 

[𝑚𝑚2] 

 
𝐴𝑐𝑢𝑟𝑣𝑒𝑑

𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟
 

 

6060-T6 

D=127 mm, t=1.84 mm 

 

 

14.5360 

 

 

14.5166 

 

 

0.99866 

 

6060-T6 

D=100 mm, t=4.82 mm 

 

 

38.0780 

 

 

37.9898 

 

 

0.99768 

 

6082-T6 

D=100 mm, t=4.81 mm 

 

 

 

37.9990 

 

 

37.9110 

 

 

0.99768 

 

With correct curvature the area is 0.134 %, 0.232% and 0.232% below the area used to 

establish the stress strain relation for D=127 mm (6060-T6), D=100 mm (6060-T6) and 

D=100 mm (6082-T6), respectively. Equation [2.14] shows that there is a linear relation 

between the initial area and the true stress, and therefore, based on the assumption that the 

specimens are rectangular, the true stress used in the numerical analysis will lay 0.134%, 

0.232% and 0.232% below, respectively. This is negligible. 

Second, the curvature may affect the tension test itself. Edge effects and complex shear forces 

may occur due to uniaxial tension of a transverse curvature, and the curvature may want to 

“straighten-up” during a tensile test. To ensure that this effect is negligible, both rectangular 

and curved specimens are analysed numerically and compared together, with the material 

parameters found from tensile tests of curved specimens since this is the only tests done in 

this study. The maximum force is compared for the numerical studies with rectangular and 

curved cross sections, but also with the test results from the tensile tests performed in lab to 

observe inequalities. Since the tensile tests performed in lab gives very inaccurate 

displacements, due to many parts in the rig, some corrections are done. As mentioned before, 

numerical analysis are based on strains taken from DIC, and are therefore very accurate. 

Figure 5.9 shows a simple 1 DOF system with two springs, representing the displacement of 

the specimen, and all the associated components, 𝑢1 and 𝑢2, respectively. 

 

Figure 5.9 – 1 DOF system representing the displacement in the tensile test.



5.2 Tensile Test 

46 
 

 

The force is the same in all components and by using Hook`s law, an equation for 

displacement of the specimen yields: 

 𝐹 = 𝜎𝐴0 = 𝐸𝜀𝐴0 = 𝐸𝐴0
𝑢1
𝐿

 

 

[5.2] 

 
𝑢1 =

𝐹𝐿

𝐸𝐴0
 

[5.3] 

 

The total displacement of the rig and specimen is logged by the testing machine and is given 

as 

 𝑢𝑡𝑜𝑡 = 𝑢1 + 𝑢2 [5.4] 

 

If 𝑢2 is plotted against the force, a curve can be fitted to the graph combining Voce rule and a 

linear term, as shown in figure 5.10, where red is the fitted curve. 

 

Figure 5.10 – Rig displacement versus load for alloy 6060-T6, D=127 mm, t=1.8 mm. 

 

When the displacement of the machine, 𝑢2 is known, this fitted curve is used to find the exact 

displacement in the specimen, and figure 5.11a, b and c shows the comparison between the 

tensile tests performed in lab with numerical analysis, both rectangular and curved cross 

sections. Matlab script for finding displacement for the specimens are given in Appendix F. 

Figure 5.11a, b and c shows almost completely equal graphs for rectangular and curved cross 

sections, i.e. no curve effects. They are very equal to the ones performed in lab as well, except 

for alloy 6082-T6 were the elastic stiffness is a little higher for the one performed in lab. 

Somehow, rupture of the elements in the numerical analysis were not possible, so the 

deformation of the tests just kept on going long past the fracture point. Since this was of no 

interest here the problem was not solved.
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Figure 5.11a – Alloy 6060-T6, D=127 mm, t=1.84 mm. 

 

 

Figure 5.11b – Alloy 6060-T6, D=100 mm, t=4.82 mm. 

 

 

Figure 5.11c – Alloy 6082-T6, D=100 mm, t=4.81 mm.
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5.3 Material Parameters for Weld, HAZ and Base Material 

 
When cylinders are used in the industry, they are often welded together due to lack of possible 

connection designs and cheap solutions. Bolts are very rare used due to practical issues when 

tighting components together. Figure 5.12a shows a typical connection point between 

cylinders, and its clearly that there are no way to use bolts in this design. Another reason to 

weld in cylinders will be when lugs are needed, as shown in figure 5.12b. 

 
 

 

a) b) 

 

Figure 5.12 – a) Welded connection joint of cylinders and b) welded lug onto a cylinder. 

 

When aluminium is welded, the material parameters are weakened as mentioned in section 

2.3, and the heat affected zone are spreading spherical out from the weld tip. This master 

thesis will only investigate how much welding reduces the buckling strength, and therefore no 

other components can be attached to the cylinders tested, i.e. no lugs or attached cylinders. 

Figure 5.13a and b shows the difference between attaching a component versus just a weld on 

the outside of a cylinder. Its known that the weld itself is not the weakest link, but the material 

in HAZ nearest the weld. Since it will give approximately the same size of the HAZ, these 

two methods will be very simular, and figure 5.13b is therefore a decent method to compare 

with, and will be performed both experimentally and numerically. A comment on this 

assumption is that the weld will work as a stiffener on the outside, with height equal to the 

throatsize. The only solution would be to cut the cylinders lengthwise and weld them together 

so the weld wouldn`t lay on the outside. Since the weld will not be placed at the whole length 

of the cylinder, there are no easy way to do this, and figure 5.13b will still be performed as 

mentioned.
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a) b) 

 

Figure 5.13 – HAZ for a) associated component welded on a cylinder wall and b) fillet weld 

laid onto a cylinder wall. 

 

The welds are performed by Sintef as a MIG-welding process where the filler alloy is melted 

together with the base alloy with the following parameters: 

 

Table 5.4 – Welding parameters performed in this study. 

 

Cylinder 

 

Shielding gas 

 

Filler alloy 

 

Current 

[A] 

 

Arc voltage 

[V] 

 

Velocity 

[mm/s] 

 

 

6060-T6 

D=127 mm, t=1.8 mm 

 

 

Argon 

 

5183, 

1.2 mm 

 

70-72 

 

19-20 

 

12 

6060-T6 

D=100 mm, t=4.8 mm 

 

Argon 5183, 

1.2 mm 

118-120 23-24 6 

6082-T6 

D=100 mm, t=4.8 mm 

 

Argon 5183, 

1.2 mm 

118-120 23-24 6 

 

Hardness tests will not be performed in this study, and therefore data from previous studies 

will be used. The Voce rule from section 2.2 is used to fit the true stress strain curve, and 

from Wang (2006) the true stress strain curve for the weld and HAZ performed as a MIG 

welding process for both butt and fillet welds are shown for aluminium alloy 6082-T6 in 

figure 5.15, where the base material from tensile test is plotted as well. These welds are made 

with a current of 236 amps, which is twice the current done in this study. Due to more heat, 
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the HAZ from Wang (2006) is larger than the HAZ in this study. Hardness tests conducted in 

HAZ in this study are required in order to investigate this accurately. The hardening 

parameters for Voce rule from Wang (2006) are given in appendix E. To establish the 

hardening parameters in the HAZ for alloy 6060-T6, Vickers hardness parameter will be used. 

Alisibramulisi (2010) gives a relation between the Vickers hardness and the yield and tensile 

strength for aluminium alloy 6060-T6 

 𝑓0.2[𝑀𝑃𝑎] = 3.0 ∗ 𝐻𝑉 − 48.1 
 

[5.5a] 

 𝑓𝑢[𝑀𝑃𝑎] = 2.6 ∗ 𝐻𝑉 + 39.8 [5.5b] 

 

Figure 5.14 shows the Vickers hardness parameter in the HAZ region for a natural aged MIG 

weld in alloy 6060-T6 with the following welding parameters applied: Current: 145A, 

Voltage: 15.8V, and welding speed 16 mm/s, Alisibramulisi (2010). The current is almost 

twice the current applied on alloy 6060-T6, D=127 mm, t=1.8 mm, so to investigate this 

accurately, hardness test should be performed for the welds in this study. The investigation 

will go on using the given data from previous studies. 

 

 
 

Figure 5.14 – Vickers hardness in HAZ for 6060-T6, natural aged. Alisibramulisi (2010). 

 

For the heat treatable alloy 6060-T6 its possible to mitigate the effects of HAZ softening by 

means of artificial ageing applied after welding, as stated in EC9 (2007). Hardness tests 

conducted in the study by Alisibramulisi (2010) shows that for some ageing methods, the 

Vickers hardness is almost the same for HAZ and the base material. No artificial ageing 

methods are applied in this study.
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A method to find the hardening parameters in the HAZ for alloy 6060-T6 is to multiply the 

hardening parameters in Voce rule with the relative tensile strength, 𝜓 

 
𝜓 =

𝑓𝑉𝑖𝑐𝑘𝑒𝑟𝑠 𝑡𝑒𝑠𝑡
𝑓𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑡𝑒𝑠𝑡

 
[5.6] 

 

The yield and ultimate tensile strength are taken from table 5.2. The yield stress is multiplied 

by 𝜓0.2, 𝜎0 + ∑𝑄𝑖 is multiplied by 𝜓𝑢 and the hardening parameters 𝐶𝑖 is left unchanged. 

 

Table 5.5 – Relative tensile strength for alloy 6060-T6, D=100 mm, t=4.8 mm. 

 

Zone 

 

HV 

[kg/mm2] 

 

𝑓0.2,𝑉𝑖𝑐𝑘𝑒𝑟𝑠 
[MPa] 

 

𝑓𝑢,𝑉𝑖𝑐𝑘𝑒𝑟𝑠 
[MPa] 

 

𝜓0.2 

 

𝜓𝑢 

 

Weld 

 

52 

 

108 

 

175 

 

0.58 

 

0.65 

2 mm away 51 105 172 0.56 0.64 

4 mm 48 96 165 0.52 0.61 

6 mm 51 105 172 0.56 0.64 

8 mm 70 162 222 0.87 0.82 

10 mm 76 180 237 0.97 0.88 

Base material 78 186 271 1 1 

 

 

 

Table 5.6 – Relative tensile strength for alloy 6060-T6, D=127 mm, t=1.8 mm. 

 

Zone 

 

HV 

[kg/mm2] 

 

𝑓0.2,𝑉𝑖𝑐𝑘𝑒𝑟𝑠 
[MPa] 

 

𝑓𝑢,𝑉𝑖𝑐𝑘𝑒𝑟𝑠 
[MPa] 

 

𝜓0.2 

 

𝜓𝑢 

 

Weld 

 

52 

 

108 

 

175 

 

0.58 

 

0.65 

2 mm away 51 105 172 0.56 0.64 

4 mm 48 96 165 0.52 0.61 

6 mm 51 105 172 0.56 0.64 

8 mm 70 162 222 0.87 0.82 

10 mm 76 180 237 0.97 0.88 

Base material 80 191 260 1 1 

 

 

The hardening parameters in the HAZ for Voce rule are given in Appendix E. It should be 

noted that there are many uncertainties related to the chosen procedure in parameter 

identification, so for exact results, hardness tests should be performed in further studies.
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Figure 5.15 – Strength reduction in the HAZ for alloy 6082-T6, D=100 mm, t=4.8 mm. 

 

 

Figure 5.16 – Strength reduction in the HAZ for alloy 6060-T6, D=100 mm, t=4.8 mm. 

 

 

Figure 5.17 – Strength reduction in the HAZ for alloy 6060-T6, D=127 mm, t=1.8 mm.
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The reduction factor, 𝜌𝑜,ℎ𝑎𝑧 for welding is found from equation [4.6], and is found in EC9 to 

be 0.43 and 0.48 for alloy 6060-T6 and 6082-T6, respectively. By use of the values found 

from Vickers hardness tests at weld center and the 0.2% permanent strain, the correct 

reduction factors yields: 

 

Table 5.7 – Reduction factor, 𝜌𝑜,ℎ𝑎𝑧 due to welding for both EC9 and material tests. 

  

From material,- and Vickers 

hardness tests 

𝜌𝑜,ℎ𝑎𝑧 =
𝑓𝑜,ℎ𝑎𝑧
𝑓𝑜

 

 

From EC9 

 

𝜌𝑜,ℎ𝑎𝑧 =
𝑓𝑜,ℎ𝑎𝑧
𝑓𝑜

 

 

6060-T6, D=100 mm, t=4.8 mm 

 
110.27

192.23
= 0.57 

 

 

0.43 

 

6060-T6, D=127 mm, t=1.8 mm 

 
112.99

193.63
= 0.58 

 

 

0.43 

 

6082-T6, D=100 mm, t=4.8 mm 

 
140.54

314.56
= 0.45 

 

 

0.48 
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6 Numerical Analysis 
 

6.1 Stub Tests without Welds 
 

 

 
 

 

 

 

a) b) 

 

Figure 6.1 – a) Alloy 6060-T6, D=100 mm, t=4.8 mm, L=2D with volume elements and 

meshsize ≈ 2.5 mm, and b) two analytical rigid plates compressing a deformable solid part. 

 

Figure 6.1a) and b) shows the finite element design of the numerical analysis in Abaqus. Two 

analytical rigid plates compressing a deformable solid part by dynamic explicit analysis. The 

solid part has approximately one and two C3D8R linear volume elements over the thickness 

for cylinder D=127 mm and D=100 mm, respectively. To ensure local buckling, stub column 

tests are permformed both numerical and by laboratory experiments. Its decided to do some 

numerical analysis first to somehow know the required lengths needed to make the stub 

columns buckle locally, i.e. no movement of the longitudinal axis. Because the lengths are 

decided before the laboratory experiments, based on numerical analysis, the laboratory 

experiments will hopefully only be performed once. In experiments, stubs will just be put 

between two plates and compressed together. Thats because its cheap and easy to design in a 

FEA. But there is only one problem by this performance, and that is the boundary conditions. 

Will the effect of friction be a problem and trigger the local buckling or can it be analysed as 

frictionless? The friction between steel and aluminium is known, but it can be of interest to 

establish the different results. Figure 6.2 illustrates a stub column test when friction is zero. 

Then the column can move in radial direction without trigger the local buckling effect, so the 

question is will the degree of friction have any effects on the critical buckling load?
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Figure 6.2 – Stub column test with zero friction. 

 

Numerical analysis performed as dynamic explicit shows in figure 6.3 that the critical 

buckling load is constant for friction coefficients, 𝜇𝑓 in the range 0.1 to 2.0. Steel to 

aluminium has normally a friction coefficient equal to 0.6, and therefore friction is not a 

problem in this study. However, by running an analysis with 𝜇𝑓 = 0.01, a slightly increase in 

critical buckling load is observed, most likely due to the free movement in the circumferential 

direction. Its assumed that the two other cylinders tested in this study are unaffected by 

friction coefficients as well. 

 

 

Figure 6.3 – Critical buckling load versus friction coefficients. 

 

The lengths are decided from numerical analysis of aluminium alloy 6060-T6 when the 

diameter is perfect circular and values given from the factory as D=127 mm and t=1.8 mm. 

Dynamic explicit analysis are used and figure 6.4 shows that the critical buckling stress is the 

same for lengths every 50 mm in the domain ranging from L=50 mm to L=500 mm. 

Therefore, its decided that two different lengths will be tested in the laboratory for each of the 
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three combinations of stub columns. The lengths are two and four times the diameter. It 

should be noted that the critical buckling load have been filtered by a Butterworth filter 

embedded in the numerical analysis with a cutoff frequency as 100 kHz so that the high 

frequency oscillations can be omitted. 

 

 

Figure 6.4 – Critical buckling stress for unwelded stub column. 

For numerical analysis compared to the laboratory experiments, exact geometry, diameter and 

thickness are measured and the mean values used in the analysis are given in Appendix H. 

 

 

6.2 Stub Tests with Welds 

 
Stub tests are performed with two welds symmetrical on each side to investigate if the welds 

gives lower critical buckling load or different buckling mode than without welds. The 

numerical analysis are designed with changing sections around the welds when material 

parameters are taken from section 5.3. The welds itself are not in the numerical design 

because they are so small and any stiffener effects from the welds are therefore assumed 

negligable. When welding is performed, the heat is expanding like a sphere, but the half circle 

at the start and end of the weld is neglected in this numerical analysis. The lengths of the 

welds and their positions are measured in the lab with a classical caliper for each of the three 

tests and the mean lengths are used in the numerical analysis. Because of welding, some 

residual stresses will be applied in the middle of the cylinders, but these are not taken into 

account in this analysis, but should be further investigated for accurate results.
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a)                        b) 

 

Figure 6.5 – Numerical analysis of stub test with a) symmetrical welds and b) HAZ for alloy 

6060-T6, D=100 mm, t=4.8 mm, L=2D. 

 

 

Figure 6.6 – A weld on alloy 6060-T6, D=100 mm, t=4.8 mm. The length of the weld is D/2.  

 

Exact geometry (posistions, length and width) for every welds are measured by a caliper and 

the mean values for the six different tests (two lengths and three cylinders) are used in the 

numerical analysis.
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6.3 Long Cylinders. 1st Choice of Design 

 
This design was first chosen to be used as a pin connection, but when it was investigated by 

FEA some problems occurred. Firstly, Abaqus would not allow making multiple rigid parts 

touch each other, so this became a connection problem where one of the sphere parts had to 

be a deformable part. This made the analysis a time-consuming problem. Second, the degree 

of friction between the spheres proved to be very sensitive when it came to critical buckling 

load. In total, this design was ment to be an easy pinned connection in all directions, but 

turned out to be a problem when it came to numerical analysis. It should also be noted that the 

rotation center for the pinned connection lays in the cylinder as described in figure 6.7b). 

 

  
a)                            b) 

 

Figure 6.7 – a) Two half-spheres (part 2 and 3) making a pin-connection in all directions. b) 

Rotation center within the longitudinal axis of a column. 

 

 

 

6.4 Long Cylinders. 2nd Choice of Design 

 
Due to many uncertanties with the previous design, it was desided that a new and simplier 

design should be used. For simplicity, the buckling degrees of freedom (DOF) was limited to 

only one direction, making it easy to hinge the column in each end as shown in figure 6.8. By 

this design, the rotation center lays almost at the end of the column and the friction problem 
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disappear which makes it easy to design in a FEA where the column is the only part needed 

and the numerical analysis would expect to give approximately perfect results. 

 

 

Figure 6.8 – Hinged connection at each end of a column with rollerbearings making the 

friction problem vanish. 

 

In this master thesis, the rig is not build in the laboratory yet, so no laboratory experiments 

will be performed with this design. Some FEA however, are performed to validate the design 

when the rotation center is at the column ends. Visualizing results are given in figure 6.9 for 

alloy 6060-T6, D=127 mm, t=1.8 mm and L=2 m when a 4-node doubly curved S4R shell 

element has been used and dynamic explicit analysis is applied. 
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b) 

 

 

 
 

a) c) 

 

Figure 6.9 – Visualizing results for alloy 6060-T6, D=127 mm, t=1.8 mm, L=2 m when S4R 

shell elements are applied by a dynamic explicit analysis. a) represents the cylinder as pin-

connected and b) and c) shows detailed buckling mode in the middle of the column, in y-z and 

y-x plane, respectively. 

 



 

62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

63 
 

 

7 Laboratory Experiments 
 

7.1 Unwelded Stub Column Tests 
 

Two lengths for each of the three cylinder combinations are performed, and three tests for all 

cylinders, in total 18 stub tests are compressed between two rigid plates. Appendix D lists the 

combinations and all the tests. All stub tests were performed using Dartec 500 kN testing 

machine with displacement controll and a velocity of 0.1-0.5 mm/s. The displacement was 

measured using a laser, Micro-Epsilon optoNCDT. The rigid plates are made out of steel and 

are completely flat. The results from the stub tests are given in Appendix G. 

 

 

Figure 7.1 – Compression test in Dartec 500kN. 
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7.1.1 Results 
 

  

 

  

Figure 7.2 – Results from compression tests of unwelded cross sections. 
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7.2 Welded Stub Column Tests 

 
When welding is applied on a cylinder the geometry is expected to change due to heat 

contractions around the welds. Any thickness reductions in the cylinders are neglected 

because the uncertainty in the measuring device is propably larger than the thickness 

reduction, and most likely is the thickness only reduced around the welds where the material 

parameters are the dominating factors anyway. The diameter however, is expected to change. 

Either will the initial circular form become elliptic, force an elliptic form to be circular, or it 

will make an elliptic form even more elliptic. The welds are welded symmetrical on opposite 

sides, but not at the same positions relative to the measuring points in Appendix H. Figure 7.4 

shows how the diameter changes for some cylinders before (black color) and after welding 

(red color). D1 and D2 is the diameter in the middle of each cylinder with 90 degrees 

between, see figure H.1. Its observed from figure 7.4 that when D1 decreases after welding, 

D2 increases, and opposite when D2 increases. Due to this observation, the welding process is 

neglected when it comes to geometry because the elliptic form only changes position and the 

form itself does not change. Due to welding, some residual stresses will be applied to the 

cylinders, but they are neglected in the numerical analysis. The cylinders tested are the same 

as in section 7.1 when it comes to material and geometry combinations. Appendix D lists the 

combinations and all the tests. 

 

Figure 7.3 – Weld on surface for alloy 6082-T6, D=100 mm, t=4.8 mm. 𝐿𝑤 = 𝐷/2. 
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Figure 7.4 – Diameter before (black) and after (red) welding. 
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7.2.1 Results 
 

    

  

  

Figure 7.5 – Results from compression tests of welded cross sections.
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7.3 Buckling Test of Long Cylinders 

 

7.3.1 Long cylinder. 2nd choice of design 

 
For simplicity, pinned connection is used in this study. Pinned connection is easy to analyse 

and compare to analytical formulas. A problem with pinned connection is the degree of 

friction. First, a design with a half-sphere was investigated as shown in figure 6.7a. By 

performing some friction-sensitivity analysis with FEM as mentioned, the buckling load 

varied too much with varying friction coefficients between components 2 and 3. This became 

a problem as the friction on the half-sphere is not easy to determine. Besides, some lubricate 

should also be used and this would have made the friction a wild guess. Therefore, a another 

design is considered where the friction is not a problem as shown in figure 6.7b. 

Rollerbearings are used between the shaft and the two other components making this almost a 

frictionless design due to small steel spheres rolling inside the bearing, but also a very short 

distance from the rolling area into the center of the shaft, e.i. negligible torque on the shaft 

due to friction. Unfortunally, this design is only able to move in one direction, and since the 

global imperfection is unknown, but probably very small, a design to somehow controll its 

buckling direction is suggested. This design therefore becomes a bending-compression 

problem with a tiny force transverse in the middle of the column to ensure the buckling 

direction. The initial global imperfection is not known exactly, but the manufacturer has a 

tolerance limit they have to be within. So to make the columns buckle in the desirable 

direction, the force has to minimum be equal to the corresponding value from the 

imperfection limit from the manufacturer, i.e. the elastic deflection from a simply supported 

beam, taken into account that the imperfection in worst case scenario can be the opposite 

direction as the mid-force. This is better illustrated in figure 7.6. 

 

Figure 7.6 – Transversal force to ensure the buckling direction.
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Figure 7.6 illustrates the worst case scenario when the global imperfection, 𝑒0 is orientated in 

the opposite direction as the force applied. If the column was allowed to buckle in this 

direction it would destroy the component applying the force, F. This is also one of the reasons 

a bending-compression design is determined. Classical buckling theory, as shown in this 

master thesis, would buckle out in a sudden, out-of-controll behaviour if the initial 

imperfection is small or zero as shown in figure 8.1. So when full scale buckling tests on 

aluminium columns are performed in the laboratory it can be dangerous to be around when 

columns with small imperfection buckles. Therefore, a known force, or a corresponding 

deflection is applied in the middle with a good safety margin. By this, the bending effect will 

become more important and the sudden buckling effect will decrease. This is also taken into 

account in the numerical analysis, and some analytical derivations are done for bending-

compression of columns. Further, some beams are put up in the rig for safety reasons so the 

columns will not shoot out. 

When the rig in the laboratory will be designed, steel will be used as the favorable material in 

the components forming the pinned connections at the ends. When long aluminium columns 

are compressed, its assumed that its only the aluminium that yields, i.e. no deformations in the 

steel components. Therefore, the associated steel components, i.e. components 2 and 3 in 

figure 6.8, should absolutely not yield when the buckling load for the aluminium columns are 

reached. Figure 7.7 shows the load acting as a cantilever beam problem with length a on 

component 2. The little trace on the top of component 2 is to secure the column not to move 

during the experiments. 

 

Figure 7.7 – Design of component 2 in the rig design for long columns.
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The formula to determine the thickness, 𝑡𝑟 and the length 𝑎 for different cylinder geometries 

are given below, based on the geometry of figure 7.7. The maximum buckling load, 𝑁 are 

found from buckling analysis with numerical tools. Then the rotation center lays at the center 

of each ends, and this is ok because its assumed that this design will be close to an ideal euler 

column. The maximum load will occur on the cylinder with D=100 mm and t=4.8 mm, 

material properties from aluminium alloy 6082-T6 and with short lengths, and the rig is 

therefore designed based on this buckling load. To be on the safe side that component 2 does 

not yield, 𝜎 will be set equal to half of its yield strength.  

The moment acting in the attachment from the cantilever is the force from the cylinder wall 

times 𝑎 

 𝑀 = 𝑞𝑑𝜃𝑟 ∗ 𝑎 [7.1] 

 

The elastic resisting moment is thus 

 1

6
�̅�𝑑𝜃𝑡𝑟

2 ∗ 𝜎 
[7.2] 

 

Equilibrium gives 

 
𝑞𝑑𝜃𝑟𝑎 =

1

6
�̅�𝑑𝜃𝑡𝑟

2𝜎 
[7.3] 

 

The force acting from the cylinder wall is 𝑞 = 𝑁/2𝜋𝑅. Inserting this and solve for 𝜎 

 
𝜎 =

𝑁

𝜋
3
𝑎

�̅�𝑡𝑟
2 

[7.4] 

 

From equation [7.4] component 2 in figure 6.8 can be designed to ensure no plastic 

deformation in the steel component and its further assumed in the numerical analysis that all 

these associated components can be made rigid, i.e. zero deformations. Since the steel 

components are made rigid in the numerical analysis and the rollerbearings ensure zero 

friction, its only interesting to establish the distance, d from the cylinder end to the rotation 

center, as shown in figure 7.8. Because then a simple design in the FEA can be used, i.e. one 

rigid part at each ends with a constrained referance point that the rigid part can rotate about at 

a distance 𝑑 from the column ends. The design is restrained to rotate about two axes, so it can 

only rotate one way. 
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Figure 7.8 – Distance, 𝑑 from column end to rotation center. 

 

7.3.2 Measurement of long cylinders 

 
When buckling tests shall be performed in the laboratory and compared with numerical 

analysis, its very important that the exact geometry of the column tested is known so that the 

numerical analysis is reliable. As shown in section 8, buckling is very sensitive for 

imperfection for long columns, but thickness variation should also be investigated. Therefore, 

manual measurement of thickness were performed by a ultrasound device on all three 

different cylinders with lengths of five meters. Four measurement data were logged at every 

points on the cylinders, and the average value was plotted as shown in figure 7.10. The 

thickness was measured on cylinders with lengths of five meters, and measurement points 

were taken every half meter. To get a suitable idea of how the thickness varies around the 

cylinders, four points were taken around the cross section as well. In total 480 measurements 

were performed.  

 

 

 

 

 

 
 

 

 

Figure 7.9 – Measurement points on the investigated cylinders.
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Figure 7.10 – Thickness variation for cylinders of five meters.
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These measurements are taken from only three cylinders so it only shows that the thickness 

varies somewhat, and measurements have to be performed for every cylinders performed in a 

buckling test. As observed from figure 7.10 its not easy to determine the exact geometry when 

performing a numerical analysis. The thickness scatter is about 0.1 mm for all the cylinders, 

so analyses with the highest and lowest homogeneous thickness could be performed and the 

deviation could be considered, but since the cylinders are most likely non of these cases, a 

more interesting analysis could be investigated with different thickness distributions. Abaqus 

allows the thickness to follow an analytical expression, so a simple method is to make the 

thickness follow a sine curve with amplitude 0.05-0.1 mm in both the longitudinal and 

circumferential axis. Different amplitudes in the longitudinal and circumferential axis best 

fitted the measurement for each cylinders could be investigated, but maybe a more scientific 

method would be to distribute the thickness randomly with a given amplitude. This is 

suggested as further work when buckling test of long columns will be performed.
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8 Imperfection 

 

8.1 Analytical Formula 

 

By plotting equation [3.45] for different initial imperfections for a given cylinder, the load 

capacity increases when the imperfection becomes smaller. The column can not go above 

equation [3.47], and by comparing the initial imperfection for 𝑒0 = 0.5 mm and 𝑒0 = 3 mm, 

for a column (D=127 mm, t=1.8 mm and 𝑓𝑜 = 140 MPa) with length 𝐿 = 2.5 m, the critical 

buckling load will decrease by 13.6%. This means that the critical buckling load is very 

sensitive for initial imperfections. Its therefore convenient to measure the exact imperfection 

of the columns. 

 

 

Figure 8.1 – Critical load due to imperfection and cross section capacity. 

Equation [3.51] gives the intersection point for [3.45] and [3.47] and the relative load can be 

plotted against length of the same cylinder.
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Figure 8.2 – Relative load for different initial imperfections following equation [3.51].
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9 Results 

 

9.1 Unwelded Stub Tests 

 

The mean values from the three tests are used to find the experimental force versus 

displacement curve, and its compared with numerical results below. From section 7 and 

Appendix G its observed that the force displacement curve and the deformation modes are 

identical for lengths two and four times the diameter. 

 

  
 

a) b) c) 

 

Figure 9.1 – Buckling mode for a) experiment and b) numerical when displacement is 15 mm. 

c) Force displacement for both experiment and numerical for alloy 6060-T6, D=100 mm, 

t=4.8 mm, L=2D and meshsize ≈ 2.5 mm. Numerical result gives a critical buckling load 

0.32% below result from the laboratory experiment. 

 

 

 

 

 

 

 

 

 
a) b) c) 

 

Figure 9.2 – Buckling mode for a) experiment and b) numerical when displacement is 100 

mm. c) Force displacement for both experiment and numerical for alloy 6060-T6, D=100 mm, 

t=4.8 mm, L=2D and meshsize ≈ 2.5 mm.
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a) b) c) 

 

Figure 9.3 – Buckling mode for a) experiment and b) numerical when displacement is 4 mm. 

c) Force displacement for both experiment and numerical for alloy 6060-T6, D=127 mm, 

t=1.8 mm, L=2D and meshsize ≈ 5 mm. Numerical result gives a critical buckling load 2.26% 

below result from the laboratory experiment. 

 

  
 

a) b) c) 

 

Figure 9.4 – Buckling mode for a) experiment and b) numerical when displacement is 65 mm. 

c) Force displacement for both experiment and numerical for alloy 6060-T6, D=127 mm, 

t=1.8 mm, L=4D and meshsize ≈ 2.5 mm. 
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a) b) c) 

 

Figure 9.5 – Buckling mode for a) experiment and b) numerical when displacement is 15 mm. 

c) Force displacement for both experiment and numerical for alloy 6082-T6, D=100 mm, 

t=4.8 mm, L=2D and meshsize ≈ 2.5 mm. 

 

Due to cracks in aluminium alloy 6082-T6, the compression tests were stopped earlier than 

for alloy 6060-T6. Its observed from figure 9.5 that when alloy 6082-T6 cracks it has almost 

no force resistance. The numerical analysis does not take the cracks into consideration, and 

that may be a reason why the force displacement curve does not fit so well. The critical 

buckling force calculated from the numerical analysis lay 6.25% below critical buckling force 

from the laboratory experiment. 

 

For the cylinders tested experimentally, the mean values for the three tests are used to 

calculate the critical buckling stress. Figure 9.6 shows only results for two lengths, 2 and 4 

times the diameter, but its clearly that the critical buckling stress is the same for all lengths 

that buckles locally. 
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Figure 9.6 – Critical buckling stress for unwelded stub columns.
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When EC9 calculations for length two times the diameter is compared with experimental 

results for unwelded cross sections, alloy 6060-T6, D=100 mm, t=4.8 mm is 38.4% below, 

alloy 6060-T6, D=127 mm, t=1.8 mm is 33.8% below and alloy 6082-T6, D=100 mm, t=4.8 

mm is 29.5% below. 

 

Figure 9.7 – Results from unwelded cross sections given as laboratory experiments (black 

points) and numerical results (red points) for L=2D. Calculations from EC9 represents the 

black line. 

Figure 9.7 gives the relationship between 𝜌 and 𝛽/𝜀 for the three different tests performed in 

this study when the local buckling factor, 𝜌 is given as 𝜎𝑐𝑟/𝑓𝑜. The yield stress, 𝑓𝑜 is taken as 

the corresponding 0.2% permanent strain found in EC9. When EC9 is used, the same local 

buckling factor is notated 𝜌𝑐 and its used to factor down the thickness for cross section class 4 

members. For unwelded cross sections, non of these cylinders are in class 4, but as shown in 

figure 9.7, alloy 6060-T6, D=127 mm and t=1.8 mm is very close. The 𝛽 and 𝜀 factors are 

given in EC9 as 𝛽 = 3√𝐷/𝑡 and 𝜀 = √250/𝑓𝑜.   

 

9.2 Welded Stub Tests 
 

   
a) b) c) 

 

Figure 9.8 – Buckling mode for a) experiment and b) numerical when displacement is 3 mm. 

c) Force displacement for both experiment and numerical for alloy 6060-T6, D=127 mm, 

t=1.8 mm, L=2D and meshsize ≈ 1 mm.
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a) b) c) 

 

Figure 9.9 – Buckling mode for a) experiment and b) numerical when displacement is 3 mm. 

c) Force displacement for both experiment and numerical for alloy 6060-T6, D=127 mm, 

t=1.8 mm, L=4D and meshsize ≈ 1 mm. 

 

  
a) b) 

 

Figure 9.10 - A section of the cylinder around the weld for both a) experiment and b) 

numerical, for alloy 6060-T6, D=127 mm, t=1.8 mm, L=4D and meshsize ≈ 1 mm. 
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a) b) c) d) 

 

Figure 9.11 – Buckling mode for a) & c) experiment and b) & d) numerical when 

displacement is 11 mm and the cylinders are oriented in the a) & b) y-z and c) & d) y-x plane 

for alloy 6060-T6, D=100 mm, t=4.8 mm and L=2D. 

 

Figure 9.12 – Welded alloy 6060-T6, D=100 mm, t=4.8 mm and L=2D. 
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a) b) c) d) 

 

Figure 9.13 – Buckling mode for a) & c) experiment and b) & d) numerical when 

displacement is 13 mm and the cylinders are oriented in the a) & b) y-z and c) & d) y-x plane 

for alloy 6060-T6, D=100 mm, t=4.8 mm, L=4D and meshsize ≈ 2.5 mm. 

 

Figure 9.14 – Welded alloy 6060-T6, D=100 mm, t=4.8 mm and L=4D. 
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a) b) c) d) 

 

Figure 9.15 – Buckling mode for a) & c) experiment and b) & d) numerical when 

displacement is 13 mm and the cylinders are oriented in the a) & b) y-z and c) & d) y-x plane 

for alloy 6082-T6, D=100 mm, t=4.8 mm, L=4D and meshsize ≈ 2.5 mm. 

 

Figure 9.16 – Welded alloy 6082-T6, D=100 mm, t=4.8 mm and L=4D.
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a) b) c) 

 

Figure 9.17 – Buckling mode for a) experiment and b) & c) numerical when displacement is 7 

mm and the cylinders are oriented in a) & b) y-z and c) y-x plane for alloy 6082-T6, D=100 

mm, t=4.8 mm, L=2D and meshsize ≈ 1 mm. 

 

   

a) b) c) 

 

Figure 9.18 – Buckling mode for a) & b) experiment when displacement is 10 mm and the 

cylinders are oriented in a) y-z and b) y-x plane. c) Force displacement for alloy 6082-T6, 

D=100 mm, t=4.8 mm and L=2D. 
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Figure 9.19 – Critical buckling stress for welded stub columns.
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The calculations from EC9 are based on the effective area found in section 4 and the yield 

stress tabulated in EC9. When cylinder 6060-T6, D=127 mm, t=1.8 mm is subjected to 

welding, it becomes cross section class 4, otherwise all the cylinders are class 3 or lower.  

 

Figure 9.20 – Results from welded cross sections given as laboratory experiments (black 

points) and numerical results (red points) for L=2D. Calculations from EC9 represents the 

black line. 

 

9.3 Comparison Welded and Unwelded Cross Sections 
 

Critical buckling load for both laboratory experiments and numerical analysis for unwelded 

and welded cross sections of stub tests with length two and four times the diameter are given 

for the three cylinders in table 9.1. 

Table 9.1 – Critical buckling load for unwelded and welded cross sections. 

 

Cylinder 

Unwelded 

[kN] 

Welded 

[kN] 

Exp. Num. Exp. Num. 

 

6060-T6, D=100 mm, t=4.8 mm, L=2D 

 

311.40 

 

310.41 

 

294.63 

 

296.90 

 

6060-T6, D=100 mm, t=4.8 mm, L=4D 311.48 307.86 288.78 292.15 

 

6060-T6, D=127 mm, t=1.8 mm, L=2D 138.15 134.86 132.05 129.74 

 

6060-T6, D=127 mm, t=1.8 mm, L=4D 138.22 135.24 128.90 129.27 

 

6082-T6, D=100 mm, t=4.8 mm, L=2D 505.57 473.62 466.92 457.25 

 

6082-T6, D=100 mm, t=4.8 mm, L=4D 499.33 473.30 461.74 449.40 
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Figure 9.21 – Results from experiments of unwelded (black points) and welded (red points) 

cross sections for L=2D. Calculations from EC9 are given as black and red lines for unwelded 

and welded cross sections, respectively.
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Figure 9.22 – Critical buckling stress when 𝑓𝑜 is taken from EC9.
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Figure 9.22 compares laboratory results with calculations from EC9 for both unwelded and 

welded cross sections when the yield stress is taken from EC9. If the yield stress, 𝑓𝑜 is taken 

from the tensile test as the 0.2% permanent strain and used in calculations in EC9, figure 9.23 

will give the deviation from the experiments. The 0.2% permanent strain in HAZ will be 

taken from the weld center and the reduction factor is given in table 5.7. 
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Figure 9.23 – Critical buckling stress when EC9 is calculated with 𝑓𝑜 values from tensile tests 

in section 5. 

 

Table 9.2 – EC9 calculations percentage below laboratory experiments for L=2D. 

  

𝑓𝑜 values from EC9 

[%] 

 

𝑓𝑜 values from tensile test 

[%] 

 Unwelded Welded Unwelded Welded 

 

6060-T6, D=100 mm, t=4.8 mm 

 

38.4 

 

47.4 

 

19.4 

 

24.6 

 

6060-T6, D=127 mm, t=1.8 mm 33.8 39.8 9.8 22.3 

 

6082-T6, D=100 mm, t=4.8 mm 29.5 37.4 18.8 25.0 

 

 

 

9.4 Circumferential Wavenumber for Unwelded Cross Section 

 
Equation [3.29] gives the relation between the longitudinal and circumferential wavenumber 

for unwelded thin walled cylinders compressed together. Figure 9.24 shows the relation for 

the thickest cylinder tested. All the 6082-T6 cylinders cracks at the same place as shown in 

figure 9.25, and therefore its clearly that the five cracks are triggered by 𝑛 = 5 sinusoidal 

waves. Equation [3.29] shows that the circumferential wavenumber, 𝑛 is dependent on the 

length, but results from testing of aluminium alloy 6082-T6 shows that 𝑛 is independent of 

the two lengths tested. A reason for this might be that equation [3.29] is derived for thin 

walled cylinders, and this cylinder is very thick. Its worth nothing that 𝑛 may change for 
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different lengths of thick cylinders too, but since it has to be an integer, it remains the same 

number. Anyhow, its clearly that equation [3.29] does not fit the laboratory results tested for 

the cylinders in this study. By the clear eye, its impossible to observe any longitudinal waves, 

except from the localisations at the ends, so this should be investigated further by for example 

DIC. 

 

Figure 9.24 – Circumferential wavenumber, 𝑛 vs length for different axial wavenumber, 𝑀𝑎. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 

 

Figure 9.25 – Laboratory results for unwelded alloy 6082-T6, D=100 mm, t=4.8 mm and a) 

L=4D and b) L=2D. c) Picture taken in the longitudinal axis.
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a) b) 

 

Figure 9.26 – Non-symmetrical/diamond form of a) laboratory results and b) numerical results 

of unwelded alloy 6060-T6, D=127 mm, t=1.8 mm and L=508 mm. 

 

Its observed from figure 9.25 and 9.26 that for both unwelded cylinders 6060-T6, D=127 mm, 

t=1.8 mm, L=4D and 6082-T6, D=100 mm, t=4.8 mm the circumferential wavepattern 

corresponds to 𝑛 = 5. For unwelded alloy 6060-T6, D=100 mm, t=4.8 mm, the deformation 

mode is symmetrical, i.e. 𝑛 = 0. 

 

 

 

 

 

9.5 Analytical Results for Unwelded Stubs 

 
Equation [3.20] is plotted in figure 9.27-9.29 with tangent and secant modulus taken from 

tensile tests for the three cylinders. The elastic Poisson`s ratio is taken as 0.3. The intersection 

point with the curve found from tensile test is the critical buckling stress. Figure 9.30 

compares the analytical results with laboratory experiments, numerical analysis and 

calculations from EC9 when 𝑓𝑜 is taken from EC9 for a stub column when L=2D.
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Figure 9.27 – Critical buckling stress from analytical equation for alloy 6060-T6, D=100 mm, 

t=4.8 mm. 

 

 

Figure 9.28 – Critical buckling stress from analytical equation for alloy 6060-T6, D=127 mm, 

t=1.8 mm.
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Figure 9.29 – Critical buckling stress from analytical equation for alloy 6082-T6, D=100 mm, 

t=4.8 mm. 
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Figure 9.30 – Critical buckling stress for analytical equation, laboratory experiments, 

numerical analysis and calculations from EC9 when 𝑓𝑜 is taken from EC9 for unwelded stubs, 

when L=2D. 

 

 

9.6 Discussion 
 

The numerical analysis for welded cross section of alloy 6060-T6, D=127 mm, t=1.8 mm gets 

a deformation mode identical to the laboratory result. The cylinder starts buckle in the middle, 

but it initiate at the end of the welds, for both numerical and laboratory results. Its also 
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observed for absolutely all cylinders tested that it initiate at that end where the thermal weld 

process ends. The welded cylinders with D=100 mm and t=4.8 mm, have a slightly different 

deformation modes for the numerical results than the laboratory. Its observed that the buckle 

initiates at the end of the welds, like for cylinder D=127 mm and t=1.8 mm, but the numerical 

analysis does not recreate this perfectly. Somehow, the analysis have a deformation mode 

symmetrically around the longitudinal center, unlike the laboratory results given in section 

9.2. 
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10 Conclusions and Suggestions 

 

10.1 Conclusions 
 

The present study has investigated the structural behaviour of aluminium alloy 6060-T6 and 

6082-T6 subjected to compression for both unwelded and welded cross sections 

experimentally, numerically, analytically and with calculations from EC9. Analytical 

formulas have been derived for long columns when the global buckling effect is dominating. 

The tensile test programme was completed without significant experimental problems and 

generally good repeatability was achieved for parallel specimens for alloy 6060-T6. For alloy 

6082-T6, however large scatter occurred in the data most likely due to an extrusion weld. For 

this to be investigated more accurately, more tensile tests should be performed. 

Based on experimental, numerical, analytical and EC9 results the following conclusions have 

been drawn: 

1) For all three cylinders with different material and geometry combinations investigated in 

this study, calculations from EC9 is conservative for both unwelded and welded cross 

sections. For some cylinders the experiment results are almost twice the resistance calculated 

from EC9. 

2) EC9 is even more conservative when welded cross sections are calculated. 

3) Based on experimental results the critical buckling load is the same for cylinders that 

buckles locally. In this study, two lengths are compared, two and four times the diameter. 

4) The analytical formulas for shell buckling fits the experiment results surprisingly well. 

5) The numerical analysis fits very well to the experimental results. The force displacement 

curve fits very well, but also the buckling modes are achieved correctly for both unwelded 

and welded cross sections. Some deviations are discussed in section 9.6. 

6) The analytical formulas for circumferential wavenumber derived for thin shells did not fit 

very well for the three cylinders investigated in this study. Results from very thin shells 

however, fitted great. This means that the cylinders in this study is not thin.  

7) From numerical analysis, curvature in tensile test specimens did not have any effect. 

8) Analytical formulas shows that increasing imperfection decreases the critical buckling load 

significantly for long columns. Therefore, its important to measure the imperfection before 

laboratory testing of long columns. 
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10.2 Suggestions for Further Work 
 

Structural behaviour of aluminium subjected to compression is so far not widely investigated. 

More alloys should be tested to find the optimum material when it comes to strength and 

ductility. For aluminium alloy 6082-T6 more tensile tests should be performed to get a 

reliable stress strain relation. Since this study only tested short cylinders in the local buckling 

domain, laboratory experiments for long columns have to be performed and compared to EC9. 

To be able to do this, a suitable design is as mentioned suggested in section 6.4 and 7.3. 

Compression tests should be performed to obtain any deviation in stress strain regarding the 

Bauschinger effect mentioned in section 2.2. 

For welded cross sections, hardness tests, such as Vickers Hardness should be performed in 

the vicinity of a weld to get accurate material stress strain relation in the HAZ. Transversal 

welds could be of interest to investigate for both stub tests and long columns. 

In the numerical analysis in this study, the half spheres on both ends in the HAZ is neglected, 

and so is the weld itself with the filler material. Therefore, this should be investigated more 

accurately to get reliable numerical results. 

The critical buckling load for long columns are as shown in section 8 sensitive for 

imperfections. When laboratory experiments are performed, a study on the effect of 

imperfection could be of interest.  

Numerical analysis of long columns should be performed with respect to different thickness 

distributions. As given in section 7.3 its observed that the thickness varies some for columns 

of five meters. The thickness could be distributed randomly with a given amplitude best fitted 

to the measurement in section 7.3. 
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Appendix A – Derivation of Curvature 
 

 

Figure A.1 – Parametric curve. 

 

A curvature, C lays on the parametric curve r=r(t). At the point r=r(t), a velocity vector 

v(t)=dr/dt is tangent to this point. Its assumed that v(t)≠0 and by dividing v(t) by its length, a 

unit tangent vector �̂�(𝑡) is found at point r(t) 

 

�̂�(𝑡) =
𝒗(𝑡)

𝑣(𝑡)
=

𝑑𝒓
𝑑𝑥

|
𝑑𝒓
𝑑𝑥
|
 

 

[A.1] 

 

Its known that a curve parametrized in terms of arc length, r=r(s) is traced at unit speed 

v(s)=1, Adams (2003). Thus 

 
�̂�(𝑠) =

𝑑𝒓

𝑑𝑠
 

[A.2] 

 

The relation between curvature and the unit tangent vector will therefore be found from taken 

the length of 𝑑�̂�/𝑑𝑠 at the point r(t) 

 
𝜅(𝑠) = |

𝑑�̂�

𝑑𝑠
| 

[A.3] 

 

The radius of curvature thus becomes 

 
𝑅 =

1

𝜅(𝑠)
 

[A.4] 

 

To obtain a unit normal vector, �̂� in the same direction, 𝑑�̂�/𝑑𝑠 is only divided by its length 

κ(s), as done for the tangent vector assuming that κ(s)≠0 
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�̂�(𝑠) =
1

𝜅(𝑠)

𝑑�̂�

𝑑𝑠
=

𝑑�̂�
𝑑𝑠

|
𝑑�̂�
𝑑𝑠
|

 

 

[A.5] 

 

The curve will now be expressed in terms of arc-length parameters, and these quantities are 

found in terms of a general parametrization r=r(t) where the velocity, v(t), the speed, 

v(t)=|𝒗(𝑡)| and the acceleration, a(t) are obtained from the point r(t) 

 
𝒗 =

𝑑𝒓

𝑑𝑡
=
𝑑𝒓

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑣�̂� 

 

[A.6] 

 
𝒂 =

𝑑𝒗

𝑑𝑡
=
𝑑𝑣

𝑑𝑡
�̂� + 𝑣

𝑑�̂�

𝑑𝑡
=
𝑑𝑣

𝑑𝑡
�̂� + 𝑣

𝑑�̂�

𝑑𝑠

𝑑𝑠

𝑑𝑡
=
𝑑𝑣

𝑑𝑡
�̂� + 𝑣2𝜅�̂� 

[A.7] 

 

If the cross product of these two vectors are obtained, a usefull expression for κ can be found 

 
𝒗 ⨯ 𝒂 = 𝑣

𝑑𝑣

𝑑𝑡
�̂� ⨯ �̂� + 𝑣3𝜅�̂� ⨯ �̂� = 𝑣3𝜅

𝒗 ⨯ 𝒂

|𝒗 ⨯ 𝒂|
 

 

[A.8] 

 
𝜅 =

|𝒗 ⨯ 𝒂|

𝑣3
=
|𝒗 ⨯ 𝒂|

|𝒗|3
 

 

[A.9a] 

 
𝜅 =

|𝒗 ⨯ 𝒂|

√𝒗2
3  

[A.9b] 

 

A general plane curve with the equation y=f(x) is used to obtain a general expression for the 

curvature. The graph can be parametrized as r=xi+f(x)j, and the following quantities are 

 𝒗 = 𝒊 + 𝑓′(𝑥)𝒋 
 

[A.10] 

 𝒂 = 𝑓′′(𝑥)𝒋 
 

[A.11] 

 𝒗 ⨯ 𝒂 = 𝑓′′(𝑥)𝒌 [A.12] 

 

Inserting equation [A.10] and [A.12] into [A.9b] yields 

 
𝜅(𝑥) =

|𝑓′′(𝑥)|

(1 + (𝑓′(𝑥))
2
)

3
2

 
 

[A.13] 
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Appendix B – Geometric Stiffness 
 

 

[𝑲]𝑚 =∑[𝑳]𝑖
𝑇[𝑘𝑚]𝑖[𝑳]𝑖

𝑛𝑒𝑙

𝑖=1

 

 

[B.1] 

 

[𝑲]𝑔 =∑[𝑳]𝑖
𝑇
[𝑘𝑔]𝑖

[𝑳]𝑖

𝑛𝑒𝑙

𝑖=1

 

 

 

[B.2] 

 
[𝑘𝑚] = ∫[𝑩]

𝑇[𝑬]

𝑉

[𝑩]𝑑𝑉 

 

[B.3] 

 
[𝑘𝑔] = ∫[𝑮]

𝑇[𝑺]

𝑉

[𝑮]𝑑𝑉 

 

[B.4] 

 

where 

[𝑩] = [𝝏][𝑵] 

[𝑮] = [𝜵][𝑵] 

[𝑺] = [
𝝈 0 0
0 𝝈 0
0 0 𝝈

] , [𝝈] = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

] 

[𝑺] contains axial membrane stress and [𝑵] is the shape functions. 
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Appendix C – Wavenumber, 𝒏 from section 3 
 

Table C.1 – D=127 mm, t=0.4 mm 

Length 

[mm] 
𝑀𝑎 n 

Equation [3.29] 

n 

Numerical 

50 5 7.8 2 

100 3 9.9 7 

200 6 9.9 5 

400 7 8.1 0 

 

Table C.2 – D=127 mm, t=1.8 mm 

Length 

[mm] 
𝑀𝑎 n 

Equation [3.29] 

n 

Numerical 

50 1 5.2 2 

100 3 5.3 3 

200 3 4.8 6 

400 3 3.7 3 

 

Table C.3 – D=127 mm, t=0.1 mm 

Length 

[mm] 
𝑀𝑎 n 

Equation [3.29] 

n 

Numerical 

50 7 22.2 15 

100 5 18.7 23 

200 5 14.1 18 

400 7 12.0 17 
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Figure C.1 – Circumferential wavepattern versus length [mm] for different cylinders and 

different longitudinal half waves. 
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Appendix D – Explanation for Stub Tests 
 

Table D.1 – Unwelded stubs. 

 

Test 

 

Material 

 

Diameter [mm] 

 

Thickness [mm] 

 

Length [mm] 

 

1-1 6060-T6 100 4.8 400 

2-1 6060-T6 100 4.8 400 

3-1 6060-T6 100 4.8 400 

1-2 6060-T6 100 4.8 200 

2-2 6060-T6 100 4.8 200 

3-2 6060-T6 100 4.8 200 

1-3 6082-T6 100 4.8 200 

2-3 6082-T6 100 4.8 200 

3-3 6082-T6 100 4.8 200 

1-4 6082-T6 100 4.8 400 

2-4 6082-T6 100 4.8 400 

3-4 6082-T6 100 4.8 400 

1-5 6060-T6 127 1.8 508 

2-5 6060-T6 127 1.8 508 

3-5 6060-T6 127 1.8 508 

1-6 6060-T6 127 1.8 254 

2-6 6060-T6 127 1.8 254 

3-6 6060-T6 127 1.8 254 

 

 

Table D.2 – Welded stubs. 

1-7 6060-T6 100 4.8 400 

2-7 6060-T6 100 4.8 400 

3-7 6060-T6 100 4.8 400 

1-8 6060-T6 100 4.8 200 

2-8 6060-T6 100 4.8 200 

3-8 6060-T6 100 4.8 200 

1-9 6082-T6 100 4.8 200 

2-9 6082-T6 100 4.8 200 

3-9 6082-T6 100 4.8 200 

1-10 6082-T6 100 4.8 400 

2-10 6082-T6 100 4.8 400 

3-10 6082-T6 100 4.8 400 

1-11 6060-T6 127 1.8 508 

2-11 6060-T6 127 1.8 508 

3-11 6060-T6 127 1.8 508 

1-12 6060-T6 127 1.8 254 

2-12 6060-T6 127 1.8 254 

3-12 6060-T6 127 1.8 254 
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Appendix E – Hardening Parameters in HAZ used in 

Numerical Analysis 
Tabel E.1 – Hardening parameters in HAZ for 6082-T6, D=100 mm, t=4.8 mm. 

 

Zone 

 

𝑌0 
[MPa] 

 

𝑄1 
[MPa] 

 

𝐶1 
[-] 

 

𝑄2 
[MPa] 

 

𝐶2 
[-] 

 

𝜎0 + ∑𝑄𝑖  
[MPa] 

 

Weld 

 

105 

 

42 

 

656 

 

189 

 

13 

 

336 

4 mm away 120 38 616 157 18 314 

8 mm away 101 47 669 131 22 280 

12 mm away 168 51 1091 74 33 293 

16 mm away 200 84 2811 60 30 343 

20 mm away 221 88 6095 61 19 369 

24 mm away 209 100 2780 57 24 365 

28 mm away 240 72 3196 52 29 364 

Base material 311 28 9 57 15 396 

 

 

Tabel E.2 – Hardening parameters in HAZ for 6060-T6, D=100 mm, t=4.8 mm. 

 

Zone 

 

𝑌0 
[MPa] 

 

𝑄1 
[MPa] 

 

𝐶1 
[-] 

 

𝑄2 
[MPa] 

 

𝐶2 
[-] 

 

𝜎0 + ∑𝑄𝑖  
[MPa] 

 

Weld 

 

108 

 

10 

 

50 

 

58 

 

8 

 

175 

2 mm away 105 10 50 58 8 172 

4 mm away 96 10 50 60 8 165 

6 mm away 105 10 50 58 8 172 

8 mm away 162 13 50 49 8 222 

10 mm away 180 14 50 45 8 237 

Base material 186 

 

16 50 69 8 271 

 

Tabel E.3 – Hardening parameters in HAZ for 6060-T6, D=127 mm, t=1.8 mm. 

 

Zone 

 

𝑌0 
[MPa] 

 

𝑄1 
[MPa] 

 

𝐶1 
[-] 

 

𝑄2 
[MPa] 

 

𝐶2 
[-] 

 

𝜎0 + ∑𝑄𝑖  
[MPa] 

 

Weld 

 

111 

 

12 

 

40 

 

47 

 

8 

 

169 

2 mm away 107 11 40 49 8 166 

4 mm away 99 11 40 49 8 158 

6 mm away 107 11 40 49 8 166 

8 mm away 166 15 40 33 8 213 

10 mm away 185 16 40 29 8 229 

Base material 191 18 40 51 8 260 
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Appendix F – Correction for Displacement in Tensile Tests 
 

dirF='D:\Skule\5.klasse\Masteroppgåve\Strekktest vår 

2016\2016-03-03-Marius\' 

testName='3-2' 

ForceFile=dlmread([dirF testName '.txt'],'\t',1,0); 

 

A0=7.9*4.81 

  

lData=1:500; 

Le=45 

E=70000 

u1=Le*1000*ForceFile(lData,2)/(A0*E) 

u2=ForceFile(lData,3)-u1; 

plot(1000*ForceFile(lData,2),u2) 

f=@(a,b,c,d,e,x)a*(1-exp(-x*b))+c*(1-exp(-x*d))+e*x 

x=1000*ForceFile(lData,2); 

hold on 

plot(x,f(0.23,2e-3,10e-5,1.8e-3,0.84e-4,x),'k') 

%% 

lData=1:length(ForceFile(:,3)); 

u1tot=ForceFile(lData,3)-f(0.23,2e-3,10e-5,1.8e-3,0.84e-

4,1000*ForceFile(lData,2)) 

plot(u1tot,1000*ForceFile(lData,2)) 
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Appendix G – Laboratory Results from Stub Tests 

 

G.1 Unwelded Cylinders 
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Figure G.1 – Laboratory results from stub tests for unwelded cylinders. 
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G.2 Welded Cylinders: 
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Figure G.2 – Laboratory results from stub tests for welded cylinders. 
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Appendix H – Measure of Stubs 

 

H.1 Unwelded Cylinders 

 

 

Figure H.1 – Measuring point. 
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Figure H.2 – Thickness of unwelded cylinders. 
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Figure H.3 – Diameter of unwelded cylinders. 
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H.2 Welded Cylinders 
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Figure H.4 – Thickness of welded cylinders. 
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Figure H.5 – Diameter of welded cylinders. 


