
Numerical Implementation of Brittle
Failure Model for Glass

Nora Storebø Næss

Master of Science in Engineering and ICT

Supervisor: Odd Sture Hopperstad, KT
Co-supervisor: David Morin, KT

Karoline Osnes, KT

Department of Structural Engineering

Submission date: January 2017

Norwegian University of Science and Technology



 



Department of Structural Engineering                 
Faculty of Engineering Science and Technology 
NTNU- Norwegian University of Science and Technology 
 
 
 
 

MASTER THESIS 2016 
 
 
SUBJECT AREA: 

Computational Mechanics 

DATE: 

January 5, 2017 

NO. OF PAGES: 

9 + 92 + 45 
 
 
TITLE: 
Numerical implementation of brittle failure model for glass 

BY: 
Nora Storebø Næss  

 
 
RESPONSIBLE  TEACHER: Prof. Odd Sture Hopperstad 
 
SUPERVISOR(S) Prof. Odd Sture Hopperstad, Dr. David Morin and Ph.D. Karoline Osnes 
 
CARRIED OUT AT: NTNU 

SUMMARY: 
This thesis is concerned with a strength model for float glass. Failure of glass is usually initiated 
from surface flaws and the glass is reckoned as failed with the first failing flaw. The model 
implements a flaw map over the glass surface of arbitrary orientations and flaw lengths of 
maximum 200 μm. Every flaw is checked for failure for an applied load until the critical load for the 
first failing flaw is found through a search method. The plate geometry is applied several flaw 
maps for a Monte Carlo analysis, resulting in a probability distribution for strength. This means that 
rather than assuming the probability distribution a priori which requires parameters obtained from 
experimental test series, as is done for the traditional probabilistic strength model Weibull 
distribution, it is generated from the analysis. Additionally, the model provides information about 
fracture origin in the glass plate.  
 
An analytical solution of the model was implemented in MATLAB, and verified with data from 
Abaqus FEA. Then the model was implemented in an Abaqus post-processing Python script and 
further verified by comparing with the analytical solution. The verification processes yielded 
satisfying results and the model is assumed to be working according to the mathematical 
foundation. Additionally the flaw map property of the model was applied to an Abaqus VUSDLFD 
subroutine, exploring visualization of failing flaws.  
 
The model was subjected to parameter studies examining the model response from different plate 
and flaw geometries, yielding reasonable results. The resulting distributions were compared with 
fitted Normal and Weibull distributions, and in most cases the Weibull distribution provided the 
best fit. The Weibull modulus from the fitted Weibull distributions varied for plates with different 
numbers of flaws, suggesting it is inaccurate to assume this parameter as a material constant. 
Further, case studies comparing the model behavior to experimental results from four point 
bending tests were performed. In addition the model behavior were examined under the influence 
of blast loads. The studies disclosed the notable potential of the model. Finally, suggestions for 
further work with the model and the software in this thesis were presented. 
 

ACCESSIBILITY 
 
 



Institutt for konstruksjonsteknikk                 

Fakultet for ingeniørvitenskap og teknologi 
NTNU- Norges teknisk- naturvitenskapelige universitet 

 
 
 
 

MASTEROPPGAVE 2016 
 
 
FAGOMRÅDE: 

Beregningsmekanikk 

DATO: 

05.01.2017 

ANTALL SIDER: 

9 + 92 + 45 
 
 
TITTEL: 
Numerisk implementering av modell for sprøtt brudd i glass. 

UTFØRT AV: 
Nora Storebø Næss  

 
 
FAGLÆRER: Prof. Odd Sture Hopperstad 
 
VEILEDER(E): Prof. Odd Sture Hopperstad, Dr. David Morin og Ph.D. Karoline Osnes 
 
UTFØRT VED: NTNU 

SAMMENDRAG: 
Denne avhandlingen tar for seg en styrkemodell for float glass. Brudd av glass starter vanligvis i 
en overflatefeil, og glasset kan regnes som knust når den første overflatefeilen sprekker opp. 
Modellen implementerer et kart av overflatefeil over glassoverflaten med tilfeldige orienteringer og 
feillengder på maksimum 200 μm. Hver feil er kontrollert for brudd for en påført last inntil den 
kritiske lasten for den feilen som forårsaker brudd er funnet gjennom en søkemetode. 
Plategeometrien er påført flere feilfordeling for en Monte Carlo analyse, hvilket resulterer i en 
sannsynlighetsfordeling for styrke. Dette betyr at heller enn å anta sannsynlighetsfordelingen a 
priori, noe som krever parametere fra en rekke eksperimentelle tester, slik som for den 
tradisjonelle probabilistiske styrkemodellen Weibullfordeling, så blir sannsynlighetsfordelingen 
generert fra analysen. I tillegg så gir modellen informasjon om lokasjonen til bruddet i glassplaten.  
 
En analytisk løsning av modellen var implementert i MATLAB, og videre verifisert med data fra 
Abaqus. Deretter ble modellen implementert i et Abaqus postprosesseringsscript i Python og 
denne ble videre verifisert ved å sammenligne resultater med den analytiske løsningen. 
Verifiseringsprosessene ga gode resultater og modellen antas å fungere i forhold til det 
matematiske grunnlaget. I tillegg ble modellens egenskap feilfordelingen anvendt i en Abaqus 
VUSDLFD subrutine med formålet å utforske visualisering av brudd i glass. 
 
Det ble utført et parameterstudie på modellen som undersøkte modellens respons på forskjellige 
plate og feilgeometrier, hvilket ga rimelige resultater. De resulterende sannsynlighetsfordelingene 
var sammenlignet med tilpassede Normal og Weibullfordelinger, og i de fleste tilfellene var det 
Weibullfordelingen som beskrev resultatene best. Det ble funnet at for plater med forskjellig antall 
feil ville Weibullmodulen fra de tilpassede Weibullfordelingene variere. Dette antyder at det blir 
feilaktig å anta at Weibullmodulen er en materialkonstant. Videre var det utført case studier på 
modellen som sammenligner modellens oppførsel med foreliggende eksperimentelle resultater fra 
firepunktbøyningstester. I tillegg var modellens oppførsel under eksplosjonslaster undersøkt. 
Disse studiene viser det nevneverdige potensialet til styrkemodellen. Til slutt ble forslag til videre 
arbeid med modellen og programvaren i denne avhandlingen presentert. 
 

TILGJENGELIGHET 
 
 







ii

Abstract

This thesis is concerned with a strength model for float glass. Failure of glass is usually initi-

ated from surface flaws and the glass is reckoned as failed with the first failing flaw. The model

implements a flaw map over the glass surface of arbitrary orientations and flaw lengths of max-

imum 200 µm. Every flaw is checked for failure for an applied load until the critical load for

the first failing flaw is found through a search method. The plate geometry is applied several

flaw maps for a Monte Carlo analysis, resulting in a probability distribution for strength. This

means that rather than assuming the probability distribution a priori which requires parame-

ters obtained from experimental test series, as is done for the traditional probabilistic strength

model Weibull distribution, it is generated from the analysis. Additionally, the model provides

information about fracture origin in the glass plate.

An analytical solution of the model was implemented in MATLAB, and verified with data from

Abaqus FEA. Then the model was implemented in an Abaqus post-processing Python script and

further verified by comparing with the analytical solution. The verification processes yielded

satisfying results and the model is assumed to be working according to the mathematical foun-

dation. Additionally the flaw map property of the model was applied to an Abaqus VUSDLFD

subroutine, exploring visualization of failing flaws.

The model was subjected to parameter studies examining the model response from different

plate and flaw geometries, yielding reasonable results. The resulting distributions were com-

pared with fitted Normal and Weibull distributions, and in most cases the Weibull distribution

provided the best fit. The Weibull modulus from the fitted Weibull distributions varied for plates

with different numbers of flaws, suggesting it is inaccurate to assume this parameter as a mate-

rial constant. Further, case studies comparing the model behavior to experimental results from

four point bending tests were performed. In addition the model behavior were examined under

the influence of blast loads. The studies disclosed the notable potential of the model. Finally,

suggestions for further work with the model and the software in this thesis were presented.



Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5

2.1 Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Strength of brittle materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Stress intensity factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Strength-influencing properties of flaws . . . . . . . . . . . . . . . . . . . . . 9

2.2 Statistical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iii



CONTENTS iv

2.2.2 Traditional statistical treatment of strength of brittle materials . . . . . . . . 11

2.2.3 Weakest link theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Thin plate theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 The clamped plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The simply supported plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mechanical Properties of Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 The float process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Blast Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implementation 20

3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 The flaw map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 The analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 General design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 MATLAB implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Main structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 The search method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 Asymptotic running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Python implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS v

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Main structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Linear solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.5 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 FORTRAN implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Subroutine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Verification 40

4.1 Preliminary Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The MATLAB code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 The Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 The FORTRAN code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Parametric Studies 53

5.1 Plate Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Flaw Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Flaw Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Flaw length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Flaw depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.3 Geometry correction Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS vi

6 Case Studies 66

6.1 Four point bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Large sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Small sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Blast wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Applying the FORTRAN code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Concluding remarks 88

8 Future work 90

Bibliography 92

A MATLAB source code 96

B Python source code 109

C FORTRAN source code 132



Chapter 1

Introduction

1.1 Motivation

Glass is a brittle material, and will therefore behave elastically until failure. The strength of glass

is largely affected by the size of surface flaws[1]. At the present date, the traditional strength

models for brittle materials require data from experimental tests, and due to the large scatter

of results, a significant number of tests. Even then, the results often yield dissatisfying accuracy

when applied to other combinations of loads and geometries than in the test series[2].

For determining the strength of a glass plate there are two main approaches today, the deter-

ministic and the probabilistic approach[3]. The large scatter in strength suggests a probabilistic

behavior and thus a deterministic approach to be unsuitable. Probablistic methods has com-

monly been applied to the problem of predicting glass strength, where the Weibull distribution

is frequently used[4]. Other distributions such as the Normal and Log-Normal has also been

suggested, but it is uncertain which distribution is most robust with regards to failure of glass[5].

The statistical strength models for brittle materials might need to be reconsidered.

In 2014 D.Z. Yankelevsky presented a new model for strength in float glass suggesting the proba-

bility distribution should not be assumed a priori, but rather come as a result of the analysis[6].

Not only eliminating the need for a pre-determined probability distribution, the model is also

1



CHAPTER 1. INTRODUCTION 2

independent of parameters from exhausting test series. This thesis will explore the potential of

this model by implementing a version of it using the scripting interface of Abaqus FEA, which

further will be subjected to parameters studies and case studies. This version of Yankelevskys

model will take orientations of the flaws into account and use a geometry correction factor cor-

responding to the flaws depth to length ratio.

1.2 Objective

The objective of this thesis is to understand and model the effect of surface flaws on the strength

of float glass by implementation of a strength model for brittle materials, based on failure from

surface flaws and independent of test data calibration. This model should further be veri-

fied, and used to predict strength of glass based on some given initial configuration. The sub-

objectives are:

1. the establishment of the mathematical foundation,

2. the implementation of the model in MATLAB, acting as an analytical solution,

3. the implementation of the model in Python as an Abaqus FEA post-processing routine,

4. the implementation of the model in FORTRAN as an Abaqus FEA subroutine,

5. a verification process with the analytical solution,

6. a parameter study

7. and a case study.

1.3 Scope

The scope of the thesis is confined to the following items:



CHAPTER 1. INTRODUCTION 3

• Only soda-lime-silica float glass is considered.

• The flaw density if uniform. This is a simplification which excludes shielding and ampli-

fying effects of stresses from close positioning of the flaws.

1.4 Overview of thesis

This thesis is divided into chapters presenting the development of the glass strength model in

chronological order. Following is a short description of each of these chapters:

Chapter 2: Theory Chapter 2 presents the theoretical foundation needed to fully understand

the concepts and results in this thesis.

Chapter 3: Implementation Chapter 3 describes the numerical model and the implementa-

tions of it in the three programming languages MATLAB, Python and FORTRAN. The MATLAB

code was preliminary work and serves as an analytical solution, while the Python code is part of

the post-processing scripting interface of Abaqus, and finally the FORTRAN code is part of the

subroutine interface of Abaqus. The main implementations, the MATLAB and Python codes,

are described by presenting the overall framework, algorithms, asymptotic running time and

pseudo codes. All source codes are included in the Appendix.

Chapter 4: Verification Chapter 4 first presents the preliminary controls taken in developing

the code. Thereafter, the MATLAB code is verified as an analytical solution and further used to

verify the Python and FORTRAN codes by comparison of results.

Chapter 5: Parameter studies In Chapter 5 parameter studies regarding plate geometry and

flaw geometry is performed with the Python program. The resulting distributions are fitted with

Normal and Weibull distributions, examining which is the best fit.

Chapter 6: Case studies Chapter 6 compares four point bending tests carried out in a laboratory

by [7] with results from the model implementation. Further, the models behavior exposed to a

blast wave is examined. The model results derive from the Python implementation. At last a



CHAPTER 1. INTRODUCTION 4

short study for visualization is performed with the FORTRAN code.

Chapter 7: Concluding remarks Chapter 7 presents a summary of the results from this thesis

with concluding remarks.

Chapter 8: Future work Chapter 8 discusses suggestions for future development of the strength

model and the software implementations developed in this thesis.



Chapter 2

Theory

2.1 Fracture Mechanics

In this section linear elastic fracture mechanics relevant to the thesis is presented. The following

is adapted from [8], unless otherwise stated. For a more comprehensive description, please refer

to this source.

2.1.1 Strength of brittle materials

The theoretical cohesive strength of a material is related to the energy E required to break the

attractive bonds between the atoms in the material. The bonding energy between molecules is

be described by:

Eb =
Z1

x0

Pd x (2.1)

where P is the force required to separate the atoms and x0 is the equilibrium spacing, the

distance between two atomic nuclei at which the potential energy is at minimum. Further,

the force-displacement relationship for breaking interatomic bonds, assuming small displace-

5



CHAPTER 2. THEORY 6

ments, is given by:

P = Pc

≥ºx
∏

¥
(2.2)

where Pc is the cohesive strength of the atomic bonds and ∏ is the approximate distance re-

quired for the to break the atomic bonds. Combining Equations (2.1) and (2.2) and assuming

∏ is approximately equal to the atomic equilibrium spacing, the theoretical cohesive stress of a

material can be estimated as

æc º
E
º

(2.3)

It is however a documented fact that the actual strengths for brittle materials is up to four or-

ders of magnitudes lower than the theoretical strength. Stress concentrates around flaws in the

material, and thus the flaws are responsible for stresses exceeding the strengths of the atomic

bonds. These stress concentrations correlates to the size of the flaw. The founder of fracture

mechanics, A.A.Griffith, explained this by the laws of thermodynamics. A flaw will grow if and

only if the release of potential energy is greater than or equal to the surface energy needed for

the crack to grow. The energy balance in increasing the surface area by dA is described by the

equilibrium equation

° d
Q

d A
= dWs

d A
(2.4)

Q
represents the potential energy from external loads and internal strain and Ws is the applied

work in creating new surfaces.

For the case of a flaw of length 2a, where the length is much greater than the width, for an

infinitely wide plate it can be shown that

Y
=

Y

0
°ºæ

2a2B
E

(2.5)

Q
0 represents the potential energy of an uncracked plate, a the half-length of the flaw, æ the

remotely applied stress and B is the thickness of the plate.



CHAPTER 2. THEORY 7

For the through-thickness flaw, the work required to create new surfaces is given by

Ws = 4aB∞s (2.6)

∞s is the surface energy of the material. The results from combining Equations (2.4), (2.5) and

(2.6) are

° d
Q

d A
= ºæ2a

E
=G (2.7)

and
dWs

d A
= 2∞s (2.8)

G is the energy release rate, defined as the energy available for an increment of crack extension.

Combining Equations (2.4), (2.7) and (2.8) the strength of a flaw of length 2a in an infinitely large

plate stands:

æ f =

s
2E∞s

ºa
(2.9)

where æ f is the fracture stress, perpendicular to the major axis of a flaw.

2.1.2 Stress intensity factor

As covered in Section 2.1.1 failure for brittle materials almost always begins with stress concen-

trating around flaws in the material. The stress intensity factor K is a measure of the stress state

near the tip of a flaw subjected to stresses. Different modes of loading leads to different values

of the stress intensity factor.

There are three modes of loading: mode I which is caused by stress perpendicular to the flaw,

mode II caused by in-plane shear stress and mode III caused by out-of-plane shear stress. Most

relevant for float glass is mode I as it requires the least energy, and thus is the only mode focused

on in this thesis. Figure 2.1 illustrates the three modes.



CHAPTER 2. THEORY 8

Figure 2.1: The modes of fracture, retrieved from [8].

The general expression for the mode I stress intensity factor KI for a finite crack, where the plate

geometry is much greater than the flaw geometries, is

KI =∏sæ

r
ºa
Q

f (¡) (2.10)

where

Q = 1+1.464
µ

a
c

∂ 33
20

∏s =
∑

1.13°0.09
µ

a
c

∂∏
[1+0.1(1° si n¡)2]

f (¡) =
∑

si n2(¡)+
µ

a
c

∂2

cos2(¡)
∏ 1

4

(2.11)

Q is a flaw shape parameter and ∏s is the surface correction factor. c and 2a represents the

depth and length of the flaw, respectively, as illustrated in Figure 2.2(a), while ¡ is defined in

Figure 2.2(b). The expression of KI can be simplified into

KI = Y æ
p
ºa (2.12)



CHAPTER 2. THEORY 9

where Y is a geometrical correction factor, depending on the shape of the crack and its position

on the plate. When a flaw lies in an infinitely wide plate, Y º 1 [9]. Combining this and Equations

(2.9) and (2.12), the critical stress intensity factor can be written

Kc =
p

2E∞s (2.13)

This holds for all flaws exposed to a single mode loading, and failure will therefore occur when

K = Kc (2.14)

(a) Surface flaw. (b) Angle parameter of surface flaw.

Figure 2.2: Parameters for Equation (2.11). Illustrations retrieved from [8].

2.1.3 Strength-influencing properties of flaws

As stated above, presence of flaws affects the strength greatly for brittle materials. Equation

(2.9) shows that an important strength-affecting property of flaws is the size. However, the flaws

orientations, density of flaws and relative positions are also relevant properties.

As the stress critical for mode I failure is the resultant stress normal to the major axis of the

flaw[10], the orientations of the flaws affect the strength. Consequently different types of load-

ing have different impacts on strength. As an example, it is more likely that positive biaxial load

will cause failure in a glass plate than a positive uniaxial load of the same magnitudes. This is be-

cause the resultant stresses normal to the flaw length are more likely to be larger for the biaxial

loading. For a glass plate subjected to bending, the properties of the flaws on the compression

side becomes irrelevant, as only flaws in tension will fail.



CHAPTER 2. THEORY 10

(a) Amplifying effect of coplanar flaws. (b) Shielding effect of parallel flaws.

Figure 2.3: Stress concentrations around flaws. Illustrations retrieved from [8].

Further, the density of the flaws also impacts strength. The likelihood of failure increases with

the number of flaws. This applies to the span of the plate as well. With a large plate the num-

ber of flaws will be correspondingly high, and the probability for a dominant flaw present is

increased.

The relative positions of the flaws can either decrease or increase strength. Figure 2.3(a) illus-

trates the interaction of coplanar flaws. The stress concentrations will increase and the stress

perpendicular to the flaws will limit to a value of a flaw with the length of both flaws.

Figure 2.3(b) illustrates the interaction of parallel flaws with the result of decreased stress con-

centrations around each flaw. The parallel flaws have a shielding effect on one another.

2.2 Statistical Theory

In this section statistical theory relevant to this thesis is presented. This includes a short pre-

sentation of the Monte Carlo method, a traditional treatment for strength and the weakest link

theory.



CHAPTER 2. THEORY 11

2.2.1 Monte Carlo method

This section is adapted from [11]. The Monte Carlo method is an umbrella term for a wide range

of stochastic techniques using random sampling to solve numerical problems. The problems

are often complex where results are easier obtained by such a method of approximation. Re-

sults are often obtained by large scale sampling for a close approximation. The compositions

of Monte Carlo algorithms varies, although they typically follow the pattern below, as given by

[11]:

1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain.

3. Perform a deterministic computation on the inputs.

4. Aggregate the results.

2.2.2 Traditional statistical treatment of strength of brittle materials

The theory in this section is adapted from [4]. The Weibull distribution is widely used to rep-

resent the statistics of brittle failure. There are two common Weibull distributions; the two and

three-parameter distributions. Only the cumulative two-parameter distribution is presented in

this section. It is given by:

P f (æ) = 1°exp
∑
°

µ
æ

æ0

∂m∏
(2.15)

where æ is the stress and æ0 is the Weibull scale parameter. æ0 is the 63rd percentile, meaning

that the probability of failure occurring at or below the stress æ0 is 0.63. m is the Weibull mod-

ulus, and is an inverse of the distribution width. This means that when the Weibull distribution

is used to describe the material strength, the scatter will increase with a decreasing m.



CHAPTER 2. THEORY 12

It is often useful to relate the probability of failure for specimens of different geometries. This is

traditionally done by using a scale parameter of unit volume ß0. This is given by

æ0 =ß0V
°1
m (2.16)

where V is the volume of the specimen. It should be noted that both ß0 and m are assumed

materials constants.

The probability of failure can also be related to specimens subjected to different types of loading.

This can be done by employing a loading factor k. With æmax as the maximum stress anywhere

in the specimen, the cumulative probability is then given by

P f = 1°exp
∑
°kV

µ
æmax

ß0

∂m∏
(2.17)

The reader is referred to [4] for more details.

2.2.3 Weakest link theory

This section is an adaption from [4]. The principle of the weakest link theory is that the occur-

rence of one failing flaw will lead to total failure in the entire specimen of a brittle material. The

theory is also based on a homogeneous material in that the flaws are distributed throughout

the volume of the material. By considering a material of a large number of elements n, each

of volume ±V which is subjected to a stress æ, the probability for the i th element failing is de-

noted P f ,i (æ,±V ). This probability of failure is equal for every element in the specimen, thus the

probability for failure for the specimen becomes:

1°P f (æ,V ) =
£
1°P f (æ,±V )

§n =
∑

1° V
n

P f (æ,±V )

±V

∏n

=
∑

1° V
n
¡(æ)

∏n

(2.18)

where it is assumed that P f (æ,±V )/±V limits to ¡(æ) with a growing n. As n approaches infinity



CHAPTER 2. THEORY 13

and ±V approaches zero, the probability of failure becomes:

P f (æ,V ) = 1°exp[°V¡(æ)] (2.19)

The argument of the weakest link does not specify any form for ¡(æ), but Weibull assumed

¡(æ) =
µ
æ

ß0

∂m

(2.20)

Combining Equations (2.19) and (2.20) yields the two-parameter Weibull distribution:

P f = 1°exp
∑
°V

µ
æ

ß0

∂m∏
(2.21)

2.3 Thin plate theory

This section will state the definition of a thin plate and provide tools for calculating the stresses

in simply supported and clamped plates under this assumption. Thin plate theory is generally

applicable for float glass used as windows. If

• the thickness of a plate is 1/20th of its length and width, from now referred to as x and

y-direction,

• the plate is homogenic, isotropic and linearly elastic,

• and the load is normal to the plate plane,



CHAPTER 2. THEORY 14

thin plate theory can be applied[12]. For thin plates, the stresses in the thickness direction z are

virtually of zero magnitude. By Hooks law for plane stresses, the strains are given as:

≤x =°z
@2w
@x2 = 1

E
(æx °∫æy )

≤y =°z
@2w
@y2 = 1

E
(æy °∫æx)

∞x y =°2z
@2w
@x@y

= 2(1+∫)
E

øx y

(2.22)

The strains in terms of the thickness direction are equal to zero. The stresses are:

æx =° zE
1° v2

µ
@2w
@x2 + v

@2w
@y2

∂
,

æy =° zE
1° v2

µ
@2w
@y2 + v

@2w
@x2

∂
,

øx y =° zE
1° v2 (1° v)

@2w
@x@y

.

(2.23)

where E is the Young’s modulus, v is the Poissons ratio and w is the transverse deformation field.

w is calculated by applying boundary conditions to the plates differential equation. For a plate

subjected to a uniform load q0 the plates differential equation is given by

@4w
@x4 +2

@4w
@x2@y2 + @4w

@y4 = q0

D
(2.24)

where the plate stiffness D can be calculated by [13]:

D = Eh3

12(1° v2)
(2.25)

In the following subsections the plate equation w for the simply supported and clamped plates

are given.



CHAPTER 2. THEORY 15

2.3.1 The clamped plate

Applying the boundary conditions applicable for a clamped plate,

w = 0,

@w
@n

= 0,
(2.26)

to Equation (2.24) yields

w(x, y) =
MX

m=1

NX

n=1
(1° cos(2mºx/a))(1° cos(2nºy/b))wmn (2.27)

where a and b are the lengths in x and y-direction, respectively, and wmn are coefficients found

by minimizing the potential energy of the system. For the full procedure the reader is referred

to [14].

2.3.2 The simply supported plate

[15] provides the plate equation for simply supported plates. Applying the relevant boundary

conditions,

w = 0,

@2w
@x2 = 0,

@2w
@y2 = 0

(2.28)

to Equation (2.24) yields

w(x, y) =
MX

m=1

NX

n=1
si n(mºx/a)si n(nºy/b)wmn (2.29)



CHAPTER 2. THEORY 16

where wmn are given by

wmn =

8
>>><

>>>:

16q0

Dmnº6

≥
m2

a2 + n2

b2

¥2 , if m and n are odd.

0, otherwise.

(2.30)

2.4 Mechanical Properties of Glass

Several types of glass exist, and they are commonly a compound of silica (SiO2)[16]. Two com-

mon types of glass, with composition and typical use are given in Table 2.1.

Table 2.1: Common types of glass[17]

Glass Typical composition (wt%) Typical uses

Soda-lime glass 79 SiO2, 10 C aO, 15 N a2O Windows, bottles, etc.; easily formed and shaped
Borosilicate glass 80 SiO2, 15 B2O3, 5 N a2O Pyrex; cooking and chemical glassware; high-

temperature strength, low coefficient of expansion,
good thermal shock resistance.

Under tension, glass typically has a strength of 10-100 MPa[4]. Mechanical wear of glass stem

from local stresses from contact and sometimes chemical reactions. Since fracture of glass is

nearly always initiated from flaws at surface level[18], different techniques of polishing can be

applied to minimize flaws. These polishing techniques can be chemical, for instance as surface

crystallization with a maximum strengthening factor of 17, or thermal, for instance fire polishing

with a maximum strengthening factor of 200[4]. This thesis focuses on unpolished soda-lime

glass often used for windows.

2.4.1 The float process

This section is an adaptation from [19], unless otherwise stated. Float glass is produced by pour-

ing molten glass over a tin bath, ensuring uniform thickness. Once the float glass is congealed

the annealing of the glass begins. This is a a controlled cooling for a uniform contraction of the

glass’ inner and outer sections, in order for the residual internal stresses to be relieved[20].



CHAPTER 2. THEORY 17

Before shipping the glass off to the customer the glass is cut into a size suitable for stacking and

shipping. These plates are jumbo sized, usually 6£3.21 m2, and will be referred to as the basic

plates in this thesis.

During the production process the glass is exposed to mechanical wear creating surface flaws

on the glass. For that reason the basic plates undergoes a control of flaw lengths, such that only

plates with flaws with a maximum length is shipped to the customer. In the European standard

this maximum length is 0.2 mm[21].

2.5 Blast Mechanics

When dimensioning with respect to blast loadings, it is typically with respect to the particular

scenario of a high explosive detonation. Of the three principal effects of this scenario; the blast

overpressures, fragment generation and shock loads from the shock wave, the blast overpres-

sures are generally the governing factor to the structural response. This section presents the

phenomena of blast pressure originating from an explosive detonation and is an adaption from

[22], unless otherwise stated.

The expanding gaseous product of the sublimation of an explosion creates a shock wave prop-

agating outwards, by the surrounding air being compressed and trying to equalize. This layer

contains pressure energy and can be damaging to solids within range. In the spherical expan-

sion of the wave, the pressure will equalize towards the air due to divergence and will also

decrease due to heating of the surroundings. The expansion causes the wave to decrease in

strength, velocity and lengths in duration, as Figure 2.4 illustrates. Eventually the shock wave

reaches equilibrium with the air.

Almost instantly after an explosion, the peak incident overpressure Pso is reached, before the

pressure decays exponentially over a time period t+. Following a peak overpressure comes a

usually longer time period t° of negative pressure, i.e. pressure lower than ambient pressure Pa .

Figure 2.5 illustrates this with the curve peaking at Pso .



CHAPTER 2. THEORY 18

Figure 2.4: Influence of distance on the blast pressure, retrieved from [22].

A free field explosion with no nearby surface interaction is called the Friedlander waveform[23].

Once the blast wave travels a distance and interacts with a non-parallel surface, it will be re-

flected, always with a peak greater than the incident pressure at the same distance from the

explosion. This reflected pressure determines the loading of a structure due to an explosion.

Figure 2.5 illustrates the behavior of reflected pressure with a peak Pr . The Friedlander equa-

tion is frequently used to describe the reflected pressure and is given by:

P (t ) = Pa +Pr

µ
1° t

t+

∂
exp

µ°bt
t+

∂
(2.31)

where b is the exponential decay coefficient.



CHAPTER 2. THEORY 19

Figure 2.5: Characteristic pressure-time history for the incident blast wave from an explosion,
retrieved from [22].



Chapter 3

Implementation

In this chapter the strength model adapted from [6] is thoroughly presented. First the mathe-

matical background of the strength model is introduced, followed by a description of the general

design used in the software implementations. The software implementations are generated in

MATLAB, Python and FORTRAN, each with its own purpose and advantage, exploring the po-

tential of the strength model. The final part of this chapter describes these programs in turn.

The main implementations, the MATLAB and Python codes, are presented along with their lim-

itations, optimizations, pseudo codes and asymptotic running times.

3.1 Description of the model

In 2014, Yankelevsky proposed a new model for strength prediction in glass under external loads.

Traditional statistical strength prediction methods for glass uses parameters gained from experi-

ments. As depicted in Section 2.2.2, the traditional Weibull distribution requires two parameters

obtained from experiments, making the method potentially incorrect for non-tested geometries

and loads, and a conversion must be used to relate the results to other loads and geometries.

The model presented by Yankelevsky differs from this procedure in its independence of test se-

ries data. The idea is to predict the probabilistic strength instead of adopting a model based on

20



CHAPTER 3. IMPLEMENTATION 21

specific series of experimental data.

According to the weakest link theory for brittle materials described in Section 2.2.3, failure for

one surface flaw yields failure in the whole specimen. Failure of a flaw occurs when condition

given by Equation (2.14) is fulfilled. Yankelevskys’ model includes the properties of the flaws

over the glass surface as input variables to check Equation (2.14) for every flaw under a certain

load. The locations of the flaws over the plate surface will hereafter be referred to as the flaw

map. No established models today provide information about the fracture origin, a feature this

flaw map provides.

Surface cracks in glass originate from mechanical wear[24] and chemical exposure[25]. Over

time there will be more and larger flaws, weakening the glass. Subsection 2.4.1 describes how

freshly produced glass acquires cracks from mechanical stress from the handling after the event

of solidification. This model examines only glass straight out of the production process and the

flaws thereof.

This section is mainly an adaptation of [6], if not otherwise stated.

3.1.1 Generating the flaw map

For the general case the length and orientation of the flaws need to be randomized, thus the

problem becomes one of statistics. In this regard, the following assumptions are made:

1. The maximum length of the flaws is 200 µm.

2. For every cm2 on the surface area there is one flaw.

The flaw map is generated for a float glass of a large scale, the basic plate, which is later cut

into the desired sized plates intended for structural purposes, as described in Section 2.4.1. As-

sumption 1 is justified by the fact that manufactured soda lime float glass undergoes controls

of maximum flaw length, usually 100-300 µm[6]. These controls are for the basic plates, i.e. the

product the manufacturers ship to customers. The second assumption is such that the density



CHAPTER 3. IMPLEMENTATION 22

does not cause the flaws to interact with each other. This also complies with [26] which suggests

there are 1.18 to 2.6 flaws per cm2 in soda lime annealed glass. With respect to the distribution

of flaw sizes, more assumptions are made:

3. There is only one flaw of maximum size per basic plate.

4. The smaller the flaw size, the higher the prevalence of flaws of this size.

Points 3 and 4 are included in the model through Equation (3.1)

N f

N0
= e

±
µ (3.1)

where

N0 is the number of flaws in the plate,

± is size of a flaw in the plate,

N f is the number of flaws in the plate less than or equal to the size of ±, µ is called the char-

acteristic flaw size, a parameter found by setting and ± = ±max , which only one flaw fulfills, ie.

N f = 1, and further ± = 0 which all flaws fulfills, ie. N f = N0. By substituting these conditions

into Equation (3.1) and reordering the terms, the characteristic flaw size is determined by the

following equation:

µ= ±max

ln(N0)
(3.2)

Figure 3.1 illustrates the exponential relationship described by Equation (3.1) between the oc-

currences of different flaw sizes, by an example of a plate with 100 flaws.

Further, every flaw is assigned a random orientation µ between 0 and º. The stress parallel with

the flaw is given by [27]:



CHAPTER 3. IMPLEMENTATION 23

æx1 =
æxx +æy y

2
+
æxx °æy y

2
cos

°
2µ

¢
+øx y sin

°
2µ

¢
(3.3)

However, Mode I fracture occurs when the stressæ in Equation (2.12) is normal to µ. By referring

to thisæ asæy1 for now, the sum ofæx1 andæy1, andæxx andæy y should be the same. Combining

this relation and Equation (3.3) the equation for the stresses perpendicular to the flaw becomes:

æy1 =æxx +æy y °
æxx +æy y

2
+
æxx °æy y

2
cos

°
2µ

¢
+øx y sin

°
2µ

¢
(3.4)

Figure 3.1: The prevalence of flaws with length equal or less than some length, for a plate with

100 flaws.

3.1.2 The analysis procedure

In order to find the strength of a glass plate a Monte Carlo method is used. In accordance with

the step-by-step Monte Carlo procedure given in Section 2.2.1, the analysis procedure becomes

the following:

1. The domain of inputs for this method are glass plates which are identical in terms of ge-



CHAPTER 3. IMPLEMENTATION 24

ometry, material properties, boundary conditions and loading.

2. Other inputs to be generated are the flaw maps, as described in Section 3.1.1. The flaws are

distributed uniformly over basic plates with a density of one flaw per square centimeter.

The basic plates with their flaw maps are divided into plates fitting the domain.

3. With a plate subjected to a given load, every flaw in the plate is checked for failure with

Equation (2.14). This is repeated for different loads generated according to a search method,

until there is only one single failing flaw in the plate. Further, this is repeated for every

plate in the domain.

4. The probability distribution for the critical stresses and other parameters of interest are

eventually obtained.

3.2 General design

The model has been implemented in three programming languages, each language having a

different purpose. The MATLAB code is introductory work with analytical solutions for a few

simple cases, chosen on the basis of it being a simple programming language for procedural

programming. The finite element analysis software Abaqus FEA is used for numerical simu-

lations of the chosen problems, where the glass response in terms of the stresses is retrieved.

A Python script is used for the post-processing of the results, as it is compatible with Abaqus

FEA. Abaqus FEA enables more complicated loading scenarios, and the Python code is there-

fore more versatile than the MATLAB code. Finally, FORTRAN was used for creating an Abaqus

subroutine visualizing crack propagation.

In the following sections the model implementations are explained in detail. All implementa-

tions uses the material properties given in Table 3.1. Initially, the geometry correction factor Y

was chosen to be 0.6625, which corresponds to a half-penny shaped flaw, i.e. where the depth

is half the length. This geometry correction factor was found by setting ¡ equal to º
2 in Equa-

tion 2.11. This geometry correction factor differs from the one used by Yankelevsky, however the

same depth and length ratio was chosen.



CHAPTER 3. IMPLEMENTATION 25

Table 3.1: Material properties[28][29]

Module of Elasticity 70000 MPa

Poissons ratio 0.22

Density 2.5E-09 tons
mm3

Critical toughness 0.75 MPa m
1
2

A simplification occurring in all implementations is the basic plate. Usually the basic plate is

constructed in the jumbo size of 6£3.21 m2, but for simplicity the area is scaled uniformly sim-

ilarly to the plate to be analyzed, though in a greater dimension approximate to the jumbo size.

This way the basic plate area is comprised of a whole number of the plate area in question, has

the same shape and the prevalence of maximum sized flaws is approximately the same as with

the 6£ 3.21m2 plate. Figure 3.2 illustrates the proportions of a quadratic implemented basic

plate (red) and the general jumbo sized plate (blue).

Figure 3.2: Demonstration of the proportions of a jumbo sized plate of 6£3.21m2 and an imple-

mented basic plate used in a analysis of 4£4m2.



CHAPTER 3. IMPLEMENTATION 26

3.3 MATLAB implementation

The MATLAB code consist of analytical solutions of three distinct combinations of loads and

boundary conditions. These are uniform loads perpendicular to simply supported and clamped

plates, and in-plane uniform load on the sides of a plate. In this section these solutions will be

referred to as cases.

3.3.1 Limitations

The MATLAB code calculates the stresses in the plate, requiring the displacement function of the

particular combination of load and boundary conditions, see Sections 2.3.2 and 2.3.1. Serving

as an analytical solution with the purpose of verifying the other codes, it is considered sufficient

to limit the application to three cases.

The stresses for the two most complex cases, the simply supported and clamped plates, are cal-

culated on the basis of thin plate theory, as given in Section 2.3. The geometry of the plates must

be in accordance with the requirements such that this theory can be applied. Since these plates’

stresses are approximated through series expansion, some deviation from analytical solution is

expected.

The implementation only handles linear behavior and thus disregards nonlinear behavior such

as geometry nonlinearities from large displacements.

3.3.2 Main structure

This section describes the structure of the MATLAB implementation, rounded off with the sim-

plified pseudo formulation, given in Algorithm 1. The reader is referred to Appendix A for the

whole source code.

The code loops through a number of basic plates and generates two individual flaw maps for

each of these, one for each side of the plate to account for possible failure at both sides. Each



CHAPTER 3. IMPLEMENTATION 27

basic plate is cut into smaller plates which are further looped through. Each of the smaller plates

are applied with load in a while loop that will continue until the point where only a single flaw

fails for the plate examined. To find this point the critical load search method, described in

Section 3.3.3, is used. Within the while loop every flaw in the current plate is looped through,

checking whether this flaw will fail for the current load or not.

Eventually there is only one flaw that fails. However, the load for which this flaw failed might

not be its critical load. Therefore the flaw is subject to a convergence criterion to approximate

the lowest load it will fail for. This approximation also uses the critical load search method. As

convergence has occurred according to the criterion, information about the failing flaw is saved

for the Monte Carlo analysis, and the next plate is examined.

After all plates are accounted for the analysis writes information about the critical stresses, lo-

cations of failure and deflections to a text-file for Monte Carlo post-processing.



CHAPTER 3. IMPLEMENTATION 28

Algorithm 1: Pseudo formulation of the main structure of the MATLAB code.

define initial conditions;

for all elements/flaws in plate do

calculate stresses and store in matrix;

end

for all basic plates do

generate flaw map;

for all plates cut out of one basic plate do

retrieve flaws for this plate from flaw map;

set guessing value for load;

while there not only a single failing flaw do

for every relevant flaw in the plate do

retrieve stresses from matrix;

check for failure;

end

if there is not only one failing flaw then

apply critical load search method for a new loop;

update relevant flaws in the plate;

else

while the critical load is not converged do

apply critical load search method until the failing flaw is converged;

end

register the first failing flaw;

end

end

end

end



CHAPTER 3. IMPLEMENTATION 29

3.3.3 Critical load search method

The MATLAB implementation of the model benefits from a customized search algorithm for

finding the critical load. With an average performance of µ(log2 n), the binary search algorithm[30]

was chosen. The algorithm, adapted to finding the critical load, is in this section explained and

further formulated in pseudo code in Algorithm 2.

For the first plate, the critical load is estimated. If there is no failure, the loading level is doubled

until there is failure. When failure occur, the load is set down half the difference between the

current and the last tested loading level. The idea is to find the critical stresses by testing the

mean between the lowest stresses causing failure and the highest stresses with no failing events.

Eventually this method will converge to the critical point of a single failing flaw.

Figure 3.3(a) illustrates the algorithm in a situation where no failure occurs at the initial load,

such that the load is doubled and failure occurs. The load is further set to the mean of the non-

failure and failure inducing loads.

If failure occurs at the initial guessed value the load is halved, as demonstrated in Figure 3.3(b).

(a) (b)

Figure 3.3: Illustration of the binary search algorithm searching for a given value.



CHAPTER 3. IMPLEMENTATION 30

Algorithm 2: Pseudo formulation of the critical load search method.
retrieve array of current applied load, the previous applied load and lowest applied load

with failure registered, and information if the flaw failed for current load;

if failure for current load then

if this is the first tested load then

half the load;

else

if the current load is less than the previous then

half the load;

else

subtract the load with half the difference of current load and previous load;

end

end

else

if this is the first tested load then

double the load;

else
add to current load half the difference between lowest failing load and current

load;

end

end

3.3.4 Optimization

Depending on the size of the plate and number of plates in the Monte Carlo analysis, the number

of computations is potentially large. This section presents some cost-saving measures taken to

optimize the code. One of these measures were applying a search method for finding the critical

load, see Section 3.3.3. Other measures are listed below:

• When there are failure in multiple flaws for a load, the failed flaws are registered and are



CHAPTER 3. IMPLEMENTATION 31

the only flaws assessed from here on, as they are singled out as candidates for the first fail-

ing flaw. This is applicable to the MATLAB code since the solutions are behaving linearly.

• When finding the critical stresses for one plate, the process starts with a hard-coded es-

timated value for the load. This estimate is the same for every geometry implemented,

although the value might be far from the critical load. In order to speed up the process of

finding the critical loads for the plates, it is assumed the load is approximate to the critical

load qcr i t of the previous plate in the loop. The inital estimated load for the current plate

is set to qcr i t §1.3 in an attempt to avoid the guessing value resulting in no failure. Thus, at

the first run for the current plate the guessing value is likely to result in some failed flaws,

eliminating other flaws as candidates for first failing flaw. Also, since the value is within

a close range of the likely critical load, the number of candidates will be accordingly low.

This optimization affect all but the first plate in the loop.

• For two of the cases, the simply supported and the clamped plate, the stresses are not

uniform over the plate and needs to be calculated at the point of every flaw. For every load

tested in the analysis, the plate equation and the stresses need to be recalculated, which

is time consuming. The plate equations for the simply supported and clamped plates is

given in Equation (2.3). wmn is the only coefficient depending on the load q0, and since

the x and x-coordinates remain constant for every flaw, the plate equation is linear for a

flaw. Separating wmn from the expression, the remains of the expression can be calculated

prior to process of the main structure, see Section 3.3.2. Thus computations are saved and

only wmn needs recalculation for every load on each plate.

3.3.5 Asymptotic running time

Analysis of the asymptotic run time of the MATLAB implementation yields a worst case scenario

of

O
°
P log2

µ q f

T OL

∂
e
¢

(3.5)



CHAPTER 3. IMPLEMENTATION 32

where P represent the number of plates, q f the highest guessed load inducing failure, T OL the

tolerance of the convergence criteria and e the number of flaws in a plate.

3.4 Python implementation

The Python program differs from the MATLAB program by the stresses being retrieved from

the output database of an Abaqus simulation. This allows for flexibility in terms of geometry,

boundary conditions and loads. The requested stress data lies in an .odb-file which Python

reads with an imported odbAccess package[31]. Abaqus generates this data for a specified num-

ber of time frames, and desired data in between these time frames needs to approximated. This

approximation is done linearly. Thus, the more time frames, the more accurate the results for

combinations of boundary conditions and loads causing nonlinear behavior. For linear be-

havior, the approximation between time frames will provide identical results regardsless of the

number of time frames.

The Python code is general and will handle linear as well as nonlinear behavior. The outline of

this section is for the nonlinear case as that angle will provide a better understanding for the

structure of the code. However, as glass can behave linearly until the point of failure, the code

has potential to run significantly faster, and therefore a description of handling these cases is

provided in Section 3.4.4.

3.4.1 Limitations

Some knowledge of the expected value and variance is beneficial when simulating the problem

in Abaqus to make sure all plates will fail for the maximum load. If not the analysis will be

incomplete by not including the plates failing for the highest loads.

With respect to time it is also of great benefit to limit the maximum load in Abaqus, as the critical

load search method in Section 3.3.3 is not effective in the Python code. This is due to the time

consumption related to reading field data from the Abaqus output database. This is further



CHAPTER 3. IMPLEMENTATION 33

elaborated in Section 3.4.3.

The current version of the Python code does not output the critical load, as loads can be applied

in a number of ways and the code is general. It will however store the percentage closeness the

first failing flaws are to their non-failure time steps. Using the Abaqus simulation to obtain the

loads at the time steps, the critical load can be calculated in the Monte Carlo post-processing of

the results. An example code for this is included in at the end of Appendix B.

As stresses are retrieved at the time steps of the numerical analysis, an interpolation of the

stresses over the time steps is required to find the critical stresses. As results from nonlinear

behavior improves with higher time frame density, it is assumed the time steps are set so close

that linear interpolations of the stresses are sufficient.

Since the flaws lie in the center of every surface square centimeter, a simplification requiring

either a 1£1 cm2. The script also allows a fine 2£2 mm2 mesh by retrieving the stresses of the

center element in every square centimeter, as illustrated in Figure 3.4. By specifying posi t i on =

C E N T ROI D , stresses can be retrieved from the center of the 1£1 cm2 mesh or from the center

of the center element of every square centimeter for a 2£2 mm2 mesh.

Figure 3.4: The red element in this 2 mm2 mesh is the point where the stresses are acting on the

flaws, and is thus from where the stresses are retrieved.

3.4.2 The main structure

The Python script imports the odbAccess package that enables reading from the relevant .odb-

file of a simulation. The data from this Abaqus analysis will together with each individual flaw



CHAPTER 3. IMPLEMENTATION 34

map represent the plates in the analysis.

The length and orientation of the flaws for the Python script is read from a text file. The flaw

information is generated for plates cut from basic plates, and the text files in this thesis has

been generated through the MATLAB script. The reader is referred to the Appendix A and B for

details regarding the generating of flaws and the retrieval of these, respectively. Based on the

amount of data in this text file, the program calculates the number of plates in the analysis.

Depending on the loading situation, the time step are looped through in either a ascending or

descending order. What is meant by loading situation is further elaborated in Section 3.4.3. For a

time step, stresses from elements corresponding to the first failing flaw candidates for all plates

are read from the .odb-file. The stresses are saved in a list.

Further are every flaw in every plate looped through, and the list of stresses is used to check if

failure occurs for any of the flaws. If failure occur for a flaw, it is saved in the new list of first

failing flaw candidates for the next time step.

Eventually the first failing flaw(s) for a plate is found at some time step. Depending on the den-

sity of the time steps, there may be more than one flaw failing for a plate. Which is the first

failing flaw is determined by which flaw lies closest to the non-failing time step stresses by per-

centage, assuming stresses increase linearly with load. To calculate this, the stresses are first

needed converged by a version of the binary search algorithm, as also in Section 3.3.3, in the

interval of non-failure stresses and failure stresses.

After assessing which flaw fails first for every plate, information about the failure is stored in a

text file for a Monte Carlo analysis.

The pseudo formulation of the main structure is divided into two parts and presented in Algo-

rithm 3 and 4 as Part 1 and Part 2, respectively. Part 1 finds the first failing flaw(s) of a plate for

stress data extracted from the output database. Part 2 is the stage of converging the stresses for

all failed flaws to find the one first failing flaw for every plate. The parts do not go into depth in

the handling of the numerous specific cases, nor software validation procedures. The reader is

referred to the Appendix B for the whole logical code.



CHAPTER 3. IMPLEMENTATION 35

Algorithm 3: Pseudo formulation for Part 1 of the main structure of the Python code.

open connection to odb-job;

define initial conditions;

retrieve flaw lengths and angles from text file;

while not all plates have first failing flaws do

for all element/flaws candidates do

find æxx ,æy y ,øx y at this time frame and save in array structure;

end

for all plates searching for 1st failing flaw do

for all element/flaw(s) candidates do

retrieve length and angle for flaw(s);

retrieve æxx ,æy y ,øx y for this element from array structure;

calculate the flaw(s) æ;

if this is the first time frame tested then
discard the flaw with lowest æ as candidate;

end

calculate whether this flaw fails or not;

if flaw fails then

save information in array structure;

else

discard this flaw as candidate;

end

end

end

end



CHAPTER 3. IMPLEMENTATION 36

Algorithm 4: Pseudo formulation for Part 2 of the main structure of the Python code.

for all plates do

for all failed flaws do

if failed flaw belongs to plate then

retrieve stresses for the time frame with no fail for this flaw;

while no convergence do

apply critical search method 3.3.3 until convergence criteria is met;

end

save critical stress for this flaw in this plate in array structure;

end

end

for all converged first failing flaws do
calculate how close the critical stress is to the non-failing frame stress by

percetage;

if this this percentage is the lowest registered then

register this flaw as best candidate thus far;

end

save information of the first failing flaw for this plate in text file

end

end

3.4.3 Optimization

Since it can be time consuming reading field data from the output database, the structure of

the Python code is more efficient the less field data is retrieved from Abaqus. Hence, it is ad-

vantageous to process all plates in the analysis for the same stresses, opposite to the MATLAB

code.

Some loading conditions are optimized by the plates are tested for all time steps in descend-



CHAPTER 3. IMPLEMENTATION 37

ing order to eliminate non-candidates. Thus, it is advantageous to limit the maximum load to

eliminate more non-candidates. This optimization is applicable for cases of geometrically lin-

ear behavior, or generally for cases where the stresses in the elements are constant or increasing.

For oscillating stresses on the other hand, it is necessary to search for the first failing flaw in an

ascending order of the time steps, and no flaws can be eliminated as first failing flaw candidates.

3.4.4 Linear solutions

Depending on geometry, boundaries and loads, a glass plate can behave geometrically linear

until the point of failure. For these solutions it is not necessary to read the stresses from the

output database at all time frames. By retrieving the last time frame with the maximum load

generated in Abaqus, the search method in Section 3.3.3 will linearly and more effectively find

the critical stresses, yielding the same result as with multiple time frames. Since the Python pro-

gram handles the general case, both nonlinear and linear, reducing the number of time frames

read needs to come from the .odb-file. In other words, field data output should be specified in

Abaqus to be created only at step time for the linear solutions, in order to be processed most

effectively.

3.4.5 Run time

An analysis of the asymptotic worst case run time was performed. The worst case performance

of the program will occur if all flaws fails at all time steps. Thus, running the program with T

timesteps, P plates, e elements, a tolerance T OL with the binary search algorithm and failure

first found for load q f , the worst case performance of the main structure will be

O (Pe
°
T + log2

µ q f

T OL

∂¢
) (3.6)



CHAPTER 3. IMPLEMENTATION 38

3.5 FORTRAN implementation

The FORTRAN code was implemented with the purpose of visualizing fracture in glass. It is a

VUSDLFD subroutine, which enables the simulation of fracture as the critical stresses as reached.

For the source code the reader is referred to Appendix C.

Because of the desire of simulating the first failing flaw and the early consequential crack prop-

agation, this event is more likely isolated by using small time steps. An explicit method is pre-

ferred to an implicit method when the time steps are small and many, avoiding having to solve

a large set of equations at each iteration[32]. VUSDLFD is an explicit user subroutine allowing

for changing user defined material properties based on field variables and was hence chosen

for the problem of finding the failing flaws[31]. The user defined material properties are further

elaborated in Section 3.5.1.

As with the Python code, all combinations of loads, boundary conditions and thin plate geome-

tries are applicable with Abaqus simulations. The mesh size corresponds to the density of flaws,

in other words, as there is one flaw per cm2, the mesh size is one cm2. What differentiates the

Python and FORTRAN code is the Python code being probabilistic, running a Monte Carlo anal-

ysis on several flaw maps, while the FORTRAN code only uses a single random case with one

flaw map. I.e. the FORTRAN code is not a software implementation of Yankelevskys’ strength

model, but uses the flaw map property of this model.

3.5.1 Subroutine structure

The input file of an Abaqus job includes a text file with the following history variables:

1. a: size of the flaw in this element

2. thet a: the orientation of the flaw in this element

3. n f ai l : number of time steps this element has failed



CHAPTER 3. IMPLEMENTATION 39

4. K /Kc : defines failure for this elements if value reaches 1. In that event n f ai l increases by

1.

5. st atus: when n f ai l = 5 status is set to failure and the element is eroded.

These variables are retrieved at each time step for every element in the subroutine, as well as

the stresses at the integration points. The code is designed for elements of a single integration

point, for instance S4R[33], such that there is only one value per stress variable on each side of

the element.

K is calculated from a, thet a and the stresses. Further, K /Kc is updated for this element at this

time step. If K /Kc is greater than 1, the flaw has failed, and the value of n f ai l increases by 1. If

K /Kc is less than 1, n f ai l is initialized to 0. After the subroutine is run a number of times and

the flaw has failed 5 times in a row, such that n f ai l is 5, the flaw is considered failed.

The reason for requiring 5 failures in a row before acknowledging the flaw as failed, is the elastic

waves travelling through structures in Abaqus/Explicit, potentially causing the stresses to mo-

mentarily leap [34]. Such a leap may in turn cause the subroutine to register a failed flaw. It is

however assumed unlikely that this will happen five times in a row, and in that event the sub-

routine can be certain the flaw has failed. Finally, when n f ai l has the value of at least 5 for the

integration point at all section points element by st atus to 0. When the status variable is 0 it

means the element is inactive and is thus eroded[35]. Once an element is eroded the stresses in

the specimen will relocate some and typically concentrate around the deleted flaw. Therefore

surrounding elements are increasingly susceptible to failure once a neighbor element has failed,

and may cause a chain of element failures. This chain is comparable with crack propagation and

can be used to illustrate this phenomena.

A limitation to the model is posed by Abaqus, by the Status variable requiring failure for all

section points for every integration points. This does not reflect the phenomena of glass frac-

turing exactly, as it is usually initiated from only one side of the glass. However, the FORTRAN

implementation is only preliminary work exploring the possible usage of the model, and for

visualizing crack propagation it is considered adequate for this thesis.



Chapter 4

Verification

This chapter presents the verifications of the software implementations in MATLAB, Python and

FORTRAN. In developing the model, two possible sources of error exist: Faults in the math-

ematical foundation and mistakes in the software implementation of the mathematical foun-

dation. In the previous chapter, the mathematical background developed by Yankelevsky was

presented, and will in this chapter be assumed to be correct. In this section, emphasis is put on

the software implementations.

The MATLAB code is verified by comparing stresses and deflections with corresponding Abaqus

simulations. The next step is verifying the Python and FORTRAN programs by comparing results

with the MATLAB code. Throughout the sections describing these verifications, a 1£1£0.006

m3 geometry is used in the analyses. The uniform loads in the simply supported and clamped

plates are simulated in Abaqus by applying a pressure on the face of the plate. The stretched

plate are simulated by applying "Shell Edge Loads" on one horizontal and one vertical edge,

while the other edges are simply supported.

40



CHAPTER 4. VERIFICATION 41

4.1 Preliminary Controls

In order to avoid software bugs, continuous quality controls of the implementations were per-

formed. Some of these controls were:

• Mathematical errors in the implementation of the stresses in the MATLAB code was avoided

by the use of Symbolic Math Toolbox in the Command Line.

• Comparison of system out prints of the implementations.

• Comparison of graphical plots displaying preliminary results of the implementations.

• Interpretation of results in comparison with Abaqus/Implicit.

4.2 Verification of the MATLAB code

For the MATLAB code to find the first failing flaw and calculate the strength of a glass plate,

it is essential that the stresses are calculated correctly. To verify the behaviour of the MATLAB

plate, comparisons are made with corresponding cases in Abaqus. As the MATLAB code behaves

geometrically linear, nonlinear behavior is excluded from the Abaqus analyses. The three cases

of the analytical solution: the uniformly loaded simply supported plate, the uniformly loaded

clamped plate and the stretched plate, are considered sufficient in verifying the code. These are

compared with corresponding simulations in Abaqus on the center deflection wc for the simply

supported and clamped plates, maximum displacement ±max for the stretched plate, and the

center stresses æxx,c , æy y,c and øx y,c . In addition, a small study regarding the behavior of plates

under biaxial and uniaxial tension was performed.

The MATLAB code was run for a single simply supported plate of dimension 1£ 1£ 0.006 m3

with 49 series in Naviers plate solution. For the same dimensions and the resulting critical load

qc , an Abaqus/Implicit simulation was run. The results are presented in Table 4.1.



CHAPTER 4. VERIFICATION 42

Table 4.1: Data from MATLAB for the simply supported in Section 4.2

qc wc æxx,c æy y,c øx y,c

[kPa] [mm] [MPa] [MPa] [MPa]

MATLAB 4.4 -13.46 32.77 32.77 0.005

Abaqus/Implicit 4.4 -13.56 33.06 33.06 0.0049

Further, the MATLAB code was run for a single clamped plate with 49 series in the double cosine

series. For the critical load q , a corresponding Abaqus/Implicit simulation was run. The results

are presented in Table 4.2.

Table 4.2: Data from MATLAB for the clamped plate in Section 4.2

qc wc æxx,c æy y,c øx y,c

[kPa] [mm] [MPa] [MPa] [MPa]

MATLAB 6.2 -5.92 22.67 22.67 0.0054

Abaqus/Implicit 6.2 -5.92 22.20 22.20 0.0053

At last, the MATLAB code was run for a plate biaxially stretched with equal force on one horizon-

tal and one vertical edge. For the critical load qc , a corresponding Abaqus/Implicit simulation

was run. The results are presented in Table 4.3.

Table 4.3: Data from MATLAB for the stretched plate in Section 4.2

qc ±max æxx,c æy y,c øx y,centr e

[MPa] [mm] [MPa] [MPa] [MPa]

MATLAB 25.39 0.36 25.39 25.39 0

Abaqus/Implicit 25.39 0.28 25.39 25.39 -1.52E-16

The results coincide and the small deviations seen is likely to reduce with more series for the

plate solution for the simply supported and clamped plate. For the stretched plate the stresses

are almost identical, although there are some deviation in the displacement ±max . However,



CHAPTER 4. VERIFICATION 43

this parameter is merely showing the behavior of the plate and will not affect the failing flaw

calculation, which is dependent on the stresses.

An additional study was performed, verifying the behavior of the MATLAB implementation of

the model with regards to glass behavior under biaxial and uniaxial tension. The MATLAB code

applies loads to two edges of the plate, a horizontal and a vertical edge. A load q is applied to

one of these edges, while the load applied to the other corresponds to the product of q and a

factor. Thus for a factor of 1 the edges are equally loaded, while for a factor of 0 there is uniaxial

tension in the plate. Table 4.4 presents the critical loads qc from running the MATLAB code for

a 1£1£0.006 m3 stretched plate with these factors. 992 plates were used in the analyses. The

results indicate that q must be higher in order for a uniaxially loaded plate to fracture compared

to a biaxially loaded plate. This is a natural response due to the increased probability of finding

a critically large flaw oriented perpendicular to the maximum resultant stress in the plate. This

indicates that the MATLAB program has successfully implemented typical glass behavior.

Table 4.4: Critical loads qc for a 1£1£0.006 m3 plate exposed to biaxial and uniaxial stretching.

Factor qc [MPa]

1 69.66

0 77.32

4.3 Verification of the Python code

The Python code is capable of handling more complicated solutions than the MATLAB code.

Verification of the Python code is performed by comparing the three analytical solutions from

MATLAB to corresponding solutions produced by Abaqus and Python. It is assumed that the

Python program will handle any loading situation correctly if it produces coinciding results to

the three MATLAB cases. Histograms of both critical loads and deflections, and also the map of

the first failing flaws will be compared. The mean critical loads qc,av g and mean center deflec-

tions ±c,av g are given in Table 4.5.



CHAPTER 4. VERIFICATION 44

To produce the same results in the MATLAB and Python programs, it is essential the same flaw

maps are used. Therefore the flaw map information is gathered in a textfile, produced by the

MATLAB code while running its analysis, and later retrieved for the analysis in Python. It is also

important to turn off nonlinear effects for the simulation in Abaqus as the analytical solutions

does not account for this.

In this sections Monte Carlo analyses, 96 plates have been examined for every case. For the

simply supported and clamped, 30£ 30 series are used in the analytical solutions. The MAT-

LAB script will find the critical point of failure by converging with respect to critical load, as is

described in Section 3.3.2. The Python code will however converge with respect to stresses, as

Section 3.4.2 describes. Since the loads and stresses are proportional, a convergence criterion of

0.0002 has been applied for the critical loads and the stresses for the MATLAB code and Python

code, respectively, in order to receive compliant results.



CHAPTER 4. VERIFICATION 45

(a) First failing flaws.

(b) Critical loads with bin size 0.36 kPa. (c) Deflections with bin size 1.11 mm.

Figure 4.1: Diagrams for an analysis of 96 simply supported plates.

Figure 4.1(a) shows the distribution of the first failing flaws of the 96 plates in the simply sup-

ported plate analysis. They gather around the center of the plate, the area of the highest stress

concentrations. The results from the analytical solution and the Python programme coincide,

with one single deviation.

Figure 4.1(b) and Figure 4.1(c) show the density of the critical loads and center deflections for

the failing simply supported plates. Visual inspection suggest distributions show similar curves



CHAPTER 4. VERIFICATION 46

and magnitudes. Mean values from both figures are given in Table 4.5 also suggesting coinciding

results, only with a slight deviation in the mean deflection.

(a) First failing flaws.

(b) Critical loads with bin size 0.76 kPa. (c) Deflections with bin size 0.69 mm.

Figure 4.2: Diagram for an analysis of 96 clamped plates.

Figure 4.2(a) shows the distribution of the first failing flaws of the 96 plates in the clamped plate

analysis. The flaws concentrate along the middle of the edges, which is the area of the highest

stress concentrations for the clamped plate. The overall result yields satisfactory consistency.



CHAPTER 4. VERIFICATION 47

Figure 4.2(b) and Figure 4.2(c) show the density of the critical loads and deflections for the failing

clamped plates, while the mean values from both figures are given in Table 4.5. A slight deviation

in the critical loads is seen by visual inspection, although the mean critical loads given in Table

4.5 are equal. There is a slight deviation in the mean deflection values, however the deflection

distributions indicate completely coinciding results. The results show good correspondence

between the analytical solution and the Python code.

(a) First failing flaws.

(b) Critical loads with bin size 1.5 MPa.

Figure 4.3: Diagram for an analysis of 96 stretched plates.



CHAPTER 4. VERIFICATION 48

Figure 4.3(a) and 4.3(b) show the relevant values for verification for the stretched plate. The plate

is stretched with uniform load over one horizontal and one vertical edge, while the remaining

edges are simply supported. The stresses are thus uniform throughout the plate and probability

for failure is equal at any point, as is reflected in Figure 4.3(a).

The location of the failing flaws of the Python fully match the results from the analytical solution.

Also the critical loads coincide with the MATLAB code. Including deflection was considered un-

necessary in verification of the stretched plate as the analytical solution has no distribution for

this parameter. The mean center deflection, as well as critical load, given in Table 4.5, presents

the coinciding results with the analytical solution for the stretched plate.

Table 4.5: Mean critical load and deflection for Section 4.3

Simply supported plate Clamped plate Stretched plate

qc,av g ±c,av g qc,av g ±c,av g qc,av g ±c,av g

[kPa] [mm] [kPa] [mm] [MPa] [mm]

MATLAB 11.1 34.11 13.8 13.19 69.42 0

Python 11.1 34.13 13.8 13.21 69.42 4.19E-16

The small deviations seen is likely due to different approaches of calculating stresses. While

the analytical solutions three cases uses Hooks law[36] for the stretched plate and the thin plate

theory given in 2.3 for the simply supported and clamped plates, Abaqus uses finite element

theory.

4.4 Verification of the FORTRAN code

The FORTRAN code is a VUSDLFD subroutine called when running a job in Abaqus, with pur-

pose of visualizing the failed flaws by element erosion. The verification process in this section

will be conducted by comparing the location of the first failing flaws, center stresses and deflec-

tions of the analytical solution and the FORTRAN solution for the simply supported, clamped

and stretched plate. The same flaw maps are used in the analyses. The first failing flaws are vi-



CHAPTER 4. VERIFICATION 49

sualized by element erosion in Abaqus, acquired by changing the Status Variable to the K /Kcr i t

variable and specifying element deletion when its value is equal to or greater than 1.

All simulations are run quasi-statically in Abaqus/Explicit with a total time of 0.1 seconds. At-

tempting to avoid elastic vibrations, the load is ramped up with a "Smooth step"-amplitude.

Nonlinear effects is not included in Abaqus for compliance with the analytical solution.

Figure 4.4 shows that the same flaw is critical both for the analytical solution and the FORTRAN

code for a simply supported plate. The flaw is located close to the center of the plate, the point of

maximum deflection and stresses. These values are given in Table 4.6 and shows the FORTRAN

codes consistency with the analytical solution for the simply supported plate.

(a) Analytical solution. (b) Abaqus subroutine. The colors indicate deflection

magnitude where red signifies the greatest magnitude.

Figure 4.4: First failing flaws for the simply supporetd plate in Section 4.4.



CHAPTER 4. VERIFICATION 50

Table 4.6: Data from MATLAB for the simply supported plate in Section 4.4

wcentr e æxx,centr e æy y,centr e øx y,centr e

[mm] [MPa] [MPa] [MPa]

FORTRAN -26.37 63.96 63.96 0.0126

MATLAB -26.12 63.77 63.77 0.0096

The results corresponding to the clamped plate is given in Figure 4.5 and Table 4.7. By visually

inspecting Figure 4.5 it becomes clear that the clamped plate in this analysis fails for differ-

ent flaws. The analytical solutions failure starts with a flaw along the right vertical end of the

plate, while the subroutine fails for a flaw along the bottom horizontal edge. Further, the fail-

ure stresses and deflections in the center of the two solutions differ, as depicted in Table 4.7,

although not drastically. Several factors may be the cause of this. Although the effect of elas-

tic vibrations are attempted suppressed, as discussed in Section 3.5, they may still be present

and affecting the analysis. A finer mesh along the boundaries of the plate may result in more

accurate results, however this is not supported by the current version of the FORTRAN code.

(a) Analytical solution. (b) Abaqus subroutine. The colors indicate deflection

magnitude where red signifies the greatest magnitude.

Figure 4.5: First failing flaws for the clamped plate in Section 4.4.



CHAPTER 4. VERIFICATION 51

Table 4.7: Data from the FORTRAN subroutine for the clamped plate in Section 4.4

wcentr e æxx,centr e æy y,centr e øx y,centr e

[mm] [MPa] [MPa] [MPa]

FORTRAN -10.70 38.95 38.95 0.043
MATLAB -9.30 34.85 34.85 0.008

Figure 4.6 and Table 4.8 presents the results for the stretched plate verification analysis. The

stretched plate is in Abaqus constructed with the left and bottom edges simply supported, while

right and top edges are applied shell edge loads. Figure 4.6 shows coinciding results for the

stretched plate in terms of the location of the flaw. Also the critical stresses of the analysis are

consistent with those of the analytical solution, as presented in Table 4.8.

(a) Analytical solution. (b) Abaqus subroutine. The colors indicate deflection

magnitude where red signifies the greatest magnitude.

Figure 4.6: First failing flaws for the stretched plate in Section 4.4.

Table 4.8: Data from FORTRAN subroutine for the stretched plate in Section 4.4

wcentr e æxx,centr e æy y,centr e øx y,centr e

[mm] [MPa] [MPa] [MPa]

FORTRAN 3.2E-15 52.97 52.97 0.0005
MATLAB 0 52.72 52.72 0



CHAPTER 4. VERIFICATION 52

Good correspondence was found with the simply supported and stretched plate, while deviation

occurred with the clamped plate. The clamped plate failed with center stresses deviating by

approximately 10.52% suggesting the plate fails at a reasonable stress state, although not in exact

correspondence with the results of the analytical solution. Deviations also occurred for some

of the clamped plates in the 96-plates analyses of the Python code verification, however with

significantly smaller deviation of the center stresses. The overall result suggests the code can be

used for visualizing failing flaws, although deviations of some degree may occur.



Chapter 5

Parametric Studies

This chapter presents the parametric studies performed in this thesis. The purpose of these

studies is documenting the behavior of the strength model with respect to geometric parameters

and in that regard discuss its validity. Results include critical loads presented in histograms

and cumulative probability diagrams. These distributions have been compared with a fitted

Weibull distribution, the traditional distribution for glass strength, as described in 2.2.2. They

have also been compared with a fitted Normal distribution, which has been discussed whether

is a more accurately descriptive distribution for the problem[6]. The parameters for these fitted

distributions, the mean value µ, standard deviationæ, Weibull modulus m and the Weibull scale

parameter æ0, are given in a separate table for every study.

All analyses in this chapter uses quadratic glass plates which are exposed to tensile stresses from

"Shell Edge Loads" at one vertical and one horizontal edge in Abaqus/Implicit, i.e. in-plane

stretching. The remaining edges are simply supported.The analyses in this chapter uses 2400

plates as this is considered sufficient for documenting the variation in behaviors of the plate for

the different studies. The studies are performed with the Python program.

53



CHAPTER 5. PARAMETRIC STUDIES 54

5.1 Plate Geometry

Two plates of sizes 1£ 1£ 0.006 m3 and 0.5£ 0.5£ 0.006 m3 are subjected to in-plane stretch-

ing. Figure 5.1 shows the critical load diagrams for the large and the small plate and Table 5.1

presents the parameters for the Normal and Weibull distributions fitted to the critical load data

of the examined plates in this section. The large plate experiences failure for smaller loads than

the small plate. This agrees with the theory depicted in Section 2.1.3, saying that with more flaws

present on the specimen it is more likely one is a critical flaw. Since the density of flaws is the

same for the two geometries examined in this section, there are more flaws on the bigger plate,

and in average a higher prevalence of large flaws. In other words, a large plate will have more

weak points.

There is potential for the effect of large plates having lower strength due to more weak points

to be even greater than what the current version of the model predicts. With a density of one

flaw per cm2, the likelihood of the flaws’ stress concentrations affecting another significantly is

minimal and therefore this is not part of the implementations. However, the structured density

of flaws in this model is merely a simplification and does not reflect a realistic flaw map. A

realistic flaw map is unstructured and instances of the amplifying and shielding effect on the

stresses, as described in Section 2.1.3, are likely to occur. The phenomenon of two flaws creating

the amplifying effect will by average happen every some number of flaws, thus the more flaws

in a plate the more probable these incidents occur.

Figures 5.1(a) and 5.1(c) show the Normal distribution fitted to the resulting probability and

cumulative probability distributions of the current study, while Figures 5.1(b) and 5.1(d) are

fitted with the Weibull distribution. The dashed lines in the cumulative distribution diagrams

represent the fitted curves. Both curves seem to yield similar results, which is in accordance with

the findings of [5]. However, the Weibull distribution provides a better description of the steep

rise in the bottom of the distribution for the bigger plate. Visually comparing the Normal and

Weibull cumulative distribution curves, the overall best fit seems to be the Weibull distribution

for the results in the current study.



CHAPTER 5. PARAMETRIC STUDIES 55

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 5.1: Distributions of critical loads for plates of 1£1£0.006m3 and 0.5£0.5£0.006 m3,

fitted with Normal and Weibull distribution curves. The bin size is 1.1 MPa for the histograms.

Table 5.1 presents the parameters of the Normal and Weibull distributions fitted to the critical

load data in MPa. As given in Section 2.2.2 the Weibull shape parameter m is assumed a material

constant. The results in Table 5.1 contradicts this, as the largest plate with the lower strength has

a higher m compared with the smallest plate, despite having the same material properties. m is

a measure of the scatter of the distribution, where a narrow distribution corresponds to a high

value of m[4]. By inspecting Figure 5.1 it becomes clear the small specimen has a larger scatter

in strength. This scatter is a consequence of the lower prevalence of large flaws in the plates,



CHAPTER 5. PARAMETRIC STUDIES 56

meaning the mean critical flaw length is smaller such that higher stresses is in average required

for the flaws to fail. It can also be seen that the distribution ranges from approximately the same

interval start, and this is because the small plates that does contain large flaws will fail for the

same loads as the large plate. This indicates that less flaws in a specimen will lead to a lower m.

Table 5.1: Parameters for the Normal and Weibull distributions for the different plate geometries

in Section 5.1.

Normal Weibull

Geometry µ æ m æ0

1£1£0.006m3 69.64Mpa 3.01MPa 23.61 71.10MPa

0.5£0.5£0.006 m3 73.78MPa 4.30MPa 18.64 76.23MPa

5.2 Flaw Density

The implementations have used a structured flaw density of 1 flaw per cm2. However, a prelim-

inary study on flaw density performed in [26] suggests a density of one flaw per 1.18-2.60 cm2,

thus a reduced number of flaws per plate in comparison with the current model. A parametric

study was performed on a 1£1£0.006 m3 plate, with a density of one flaw per 2 cm2, which is in

the range of the results of the study mentioned above. Figure 5.2 shows the critical load distribu-

tions of the implemented model and the study in question. Table 5.2 shows mean critical load

for the denser flaw map is 69.6441 MPa and for the less dense concentration of flaws 73.4041

MPa. According to the results, with a lower the concentration, a glass plate will in average han-

dle more loads and tensile stresses. This can be explained with the same logic as expressed in

Section 5.1, that the prevalence of critical flaws is by average lower with less flaws. The plate in

the current study has half the amount of flaws than the implemented model, thus the average

critical load increases.



CHAPTER 5. PARAMETRIC STUDIES 57

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 5.2: Distributions of critical loads for 1£1£0.006m3 plates of 1 flaw per cm2 and 2 cm2,

fitted with Normal and Weibull distribution curves. The bin size is 0.83 for the histograms.

Table 5.2: Parameters for the Normal and Weibull distributions for the different flaw densities Ω

in Section 5.2

Normal Weibull

Ω µ æ m æ0

1 flaw/2cm2 73.40MPa 3.97MPa 20.32 75.25MPa

1 flaw/cm2 69.64MPa 3.01MPa 23.61 71.10MPa



CHAPTER 5. PARAMETRIC STUDIES 58

The dashed lines in Figure 5.2 represent the fitted cumulative Normal and Weibull distributions.

The fitted distributions manage to fit the data from the analyses well. The sharp rise from the

foot of the distribution for the plate with a denser flaw map is best captured by the Weibull

distribution. By visually inspecting the cumulative distributions the fitted Weibull distribution

overlaps the actual distribution to a greater extent than the normal distribution. This seems to

especially be the case for the more dispersed curve, i.e. the plate with one flaw per 2cm2.

The Weibull modulus m for the two plates analyzed in this section is given in Table 5.2. This

study contradicts the assumption of the m being a material constant as the values are ranging

from 20.3287 for the less dense flaw map to 23.6135 for the more dense, despite having the same

material properties. As in Section 5.1, the distributions starts at approximately the same critical

load value, but the plate holding less flaws has a larger scatter due to fewer instances of plates

with large flaws. Hence, with less flaws in a plate m will decrease.

5.3 Flaw Geometry

Yankelevskys’ model assumes half-penny shaped flaws, a maximum length of 200µm and a ge-

ometry correction factor Y of 1.12. For a half-penny shaped flaw the geometry correction factor

Y is 0.6625, by Equation (2.10). The strength model in this thesis has applied this geometry

correction factor. However, as Yankelevsky argues in [6], it is uncertain if the penny shape is a

realistic shape for a flaw. Three parametric studies will be performed on different flaw geome-

try properties; length, geometric correction factor and finally depth. All analyses in this section

uses a plate geometry of 0.5£ 0.5£ 0.006 m3. The dashed lines in the cumulative probability

distribution diagrams represent fitted Weibull and Normal distributions.



CHAPTER 5. PARAMETRIC STUDIES 59

5.3.1 Flaw length

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 5.3: Distributions of critical loads for 0.5£0.5£0.006m3 plates with maximum flaw lengths

100, 200 and 300 µm, fitted with Normal and Weibull distribution curves. The bin size is 2 MPa

for the histograms.



CHAPTER 5. PARAMETRIC STUDIES 60

Table 5.3: Parameters for the Normal and Weibull distributions for the different flaw lengths 2c

in Section 5.3.1

Normal Weibull

2c µ æ m æ0

100µm 104.55MPa 6.24MPa 18.04 108MPa

200µm 73.78MPa 4.30MPa 18.64 76.23MPa

300µm 60.27MPa 3.51MPa 18.54 62.27MPa

Maximum flaw lengths of 300µ m and 100µm was applied to the model. Figure 5.3 compares

the critical loads of the model of maximum flaw length 200µm to the 300µm and 100µm models.

The mean critical loads of the plates are given in Table 5.3, showing that with a smaller maxi-

mum flaw length the glass plates in the model will tolerate more load. This is in accordance

with observations from experiments. From Figure 5.3 it can also be observed that the variance

of critical loads increases with an increased mean critical load. This is explained mathemat-

ically. for a small flaw size the stresses perpendicular to the flaw needs to be correspondingly

high for failure to occur. With a percentage change in a small flaw length, the percentage change

of the critical stress for this flaw will be greater than for the same percentage change in a large

flaw length. This is why the variance is greater for smaller flaw lengths.

The non-equal spacing between the mean critical loads despite the equal spacing between the

flaw lengths is explained by Equation (2.12). Here the toughness K is linearly proportional with

the stress and therefore the load, and it is proportional to the square root of the depth a, which

is the half flaw length. This relation is not linear.

The fitted distributions in Figures 5.3(a) and 5.3(b), and the cumulative distributions of Figures

5.3(c) and 5.3(c) show similar results for the Normal and Weibull distribution. For the flaws

lengths 200µm and 300µm, it is uncertain which distribution provides the most accurate fitting,

but for the flaw of 100µm the Normal distribution is more precise. This is due to the Weibull dis-

tribution failing to capture the behavior at the bottom end of this distribution, which is noticed

as a typical behavior for the Weibull distribution in [37].



CHAPTER 5. PARAMETRIC STUDIES 61

5.3.2 Flaw depth

The depths a included in this study are are a = c/2 and a = c/20, where c is the half-length of

the flaw. These depths have by Equation (2.10) the corresponding geometry correction factors

Y = 0.89 and Y = 1.12, respectively. The results for the models with these flaw depths, along

with the half-penny shaped flaws, are presented in Figure 5.4.

Figure 5.4 and the mean critical loads in Table 5.4 shows that the model finds higher strength for

plates with more shallow flaws, which is the natural response. With a higher mean critical load

it can be observed that the variance increases. This is explained by the same logic as with the

same phenomena occurring in Section 5.3.1. Some percentage change in the depth of a shallow

flaw results in a larger leap of the critical stresses than for the same percentage change in the

depth of a deep flaw.

Normal and Weibull distributions are fitted to the data in Figure 5.4, yielding similar results and

good approximations. For the two most shallow flaws, it is hard to conclude the most descriptive

distribution by visual inspection, but for the most shallow flaw the Normal distribution provides

the best fit. This becomes clear by inspecting the cumulative probability distributions.



CHAPTER 5. PARAMETRIC STUDIES 62

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative Normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 5.4: Distributions of critical loads for 0.5x0.5x0.006m3 plates of depths 1/2th, 1/4th and

1/40th of the flaw length, fitted with Normal and Weibull distribution curves. The bin size is 5

MPa for the histograms.



CHAPTER 5. PARAMETRIC STUDIES 63

Table 5.4: Parameters for the Normal and Weibull distributions for the different flaw depths a in

Section 5.3.2

Normal Weibull

a µ æ m æ0

leng th
2 73.78MPa 4.30MPa 18.64 76.23MPa

leng th
4 77.22MPa 4.57MPa 17.89 79.56MPa

leng th
40 196.59MPa 11.38MPa 18.71 201.941MPa

5.3.3 Geometry correction factor

The geometry correction factors of 0.9703 and 1.1197 were applied to the model without alter-

ing the depth a. Figure 5.5 shows the resulting critical loads, and the mean values are given in

Table 5.5. The results indicate higher values of Y induce failure for smaller loads with a linear

relationship. This it due to both Y and æ being proportional to Kc , and the loads proportional

relationship with æ in this case. For geometric nonlinearity-inducing loading conditions, this

proportionality will be between the geometry correction factor and stresses, but not the load.

Further, the probability distributions show a higher variance for the lowest Y . This is because

the product of the lowest Y and the percentage change of some flaw size results in a larger per-

centage change in the critical stress for that flaw, than for a higher Y and the same percentage

change of the same flaw size.

By studying Figure 5.5 it becomes clear the fitted Normal and Weibull distribution yield both

good and similar results. Visually inspecting the graphs to find the better fit of the Normal and

Weibull distributions yields inconclusiveness.



CHAPTER 5. PARAMETRIC STUDIES 64

(a) Normal probability density distribution curves (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 5.5: Distributions of critical loads for 0.5£0.5£0.006m3 plates with Geomtry correction

factor 0.6625, 0.9703 and 1.1197, fitted with Normal and Weibull distribution curves. The bin

size is 1.75 MPa for the histograms.



CHAPTER 5. PARAMETRIC STUDIES 65

Table 5.5: Parameters for the Normal and Weibull distributions for the different geometry cor-

rection factors Y in Section 5.3.3

Normal Weibull

Y µ æ m æ0

0.6625 73.78 4.30 18.64 76.23

0.97 50.33 2.97 18.22 52.02

1.12 43.61 2.57 18.22 45.08

5.4 Summary of the Parameter Studies

• By

– decreasing the span of the plate,

– decreasing the density of the flaws,

– decreasing the maximum size, either depth of length, of the flaws,

– increasing the geometry correction factor

the strength of the glass will increase.

• The higher loads a glass plate typically can bear, the greater variance of strength.

• The assumption of the Weibull modulus m being a material constant was contradicted in

the studies relating to flaw density and the span of the plate. With more flaws on a plate

geometry m would increase.

• The studies did not indicate the Weibull modulus m being dependent on flaw geometry.

• The Normal distribution and Weibull distribution yield similar results.

• This parameter study found the Weibull distribution most descriptive of more of the re-

sulting distributions than the Normal distribution.



Chapter 6

Case Studies

This chapter presents the case studies performed in this thesis. The case studies was performed

with the purpose of examining the behavior of the model under different loading conditions,

with reference to performed experimental tests. The analysis in the first sections are run for

2400 plates with the Python code. In the final section a case study is performed to visualize

crack propagation, and for this the FORTRAN code was used.

6.1 Four point bending

A series of four point bending tests of different geometries were performed in the laboratories of

the department of Structural Engineering and reported in [7]. This section presents a case study

on two of these geometries with the purpose of comparing the behavior of the model with some

experimental results. The results are fitted with Normal and Weibull distributions to comment

on the best fit. In the cumulative distributions diagrams these distributions are represented by

dashed lines. Of the experiments that was performed it was the smallest and largest geometry

is considered the most interesting, in order to also document the models response to different

geometries compared with actual cases. The small plate is 100mm in length, 20mm in width

and 4mm in depth, while the large plate is 300mm in length, 60mm in width and 4mm in depth.

66



CHAPTER 6. CASE STUDIES 67

Four cylinders of diameter 6mm supports and loads the glass specimens, and have a length of

three times the width of the specimens. Two cylinders are supporting the plate from underneath

and two cylinders are loaded on top. The supporting cylinders are placed 10mm from the ends

of the plate. The free body diagram of the test setup is given in Figure 6.1.

Figure 6.1: The test setup for the four point bending tests in Section 6.1.

The stresses are given by the equation

æ= 3
4

PL
bd 2 (6.1)

where L represents the support span as shown in Figure 6.1, P the applied load, b the plate width

and d the plate height. Further, the deflection w is given by

w = 11
786

PL3

E I
(6.2)

where E is the module of elasticity and I is the moment of inertia.

The tests are simulated quasi-statically in Abaqus/Explicit with a total time of 0.1 seconds. A

surface-to-surface contact algorithm is applied between analytical rigid cylinders and three di-

mensional glass plate of S4R shell elements. A mesh size of 2 mm2 is applied to the glass spec-

imens. In the performed laboratory test, the cylinders were not restrained from rotating and

this is imitated for the loaded cylinders by a frictionless interaction property. However, to pre-



CHAPTER 6. CASE STUDIES 68

vent the glass specimen from sliding through the supporting cylinders, their interaction were

given a friction coefficient of 0.6, under the assumption that this will not cause the simulation

to deviate significantly from the real tests. The load applied to the top cylinders are ramped up

with a "smooth step" amplitude. They are constrained from moving in any direction but verti-

cally. The supporting cylinders are constrained from moving in any direction. In order to run

the 2400-analysis faster with the Python code, the solution for linear geometrically behaving

cases described in Section 3.4.4 was chosen, although the simulation behaves nonlinearly for

the plates experiencing the great deflections at failure. The consequential effect on the results is

however assumed small.

The following sections present the results in terms of general observations, observations regard-

ing the shape of the distribution with respect to the Normal and Weibull distributions, and fi-

nally a discussion on possible sources of discrepancy between the model and the physical tests.

The 2400-plates Python analysis is referred to as analysis results, while the experimental test

series results is referred to as test results.

6.1.1 Large sample

The simulated four point bending test of the large sample is given in Figure 6.2(a). The load

applied in the simulation is large in order to cover the range of critical loads for a plate of this

geometry, and hence the deflection is visibly large as well. The colors visualizes the stresses,

with red signifying the highest stress at the center of the plate, in accordance with Equation (6.1).

The blue area visualizes that the outer 10mm of the plate are stress free. An illustration of the

positions of the critical flaws of the 2400-plates analysis is presented in Figure 6.2(b), illustrating

the high stresses in the area of the plate around and inbetween the loaded cylinders causes the

flaws in this area to propagate and be the source of failure.



CHAPTER 6. CASE STUDIES 69

(a) Simulated four point bending for the large sample

in Section 6.1.

(b) Location of failures in the analysis.

Figure 6.2: The large sample.

Figure 6.3 and Figure 6.4 show the distributions of the critical loads and deflections at failure, re-

spectively, of the 2400-plates numerical analysis and the 31-plates test series from [7]. All graphs

are fitted with Normal and Weibull distribution curves. The mean critical loads and deflections

are given in Table 6.1, showing the analysis results yielding higher values for both compared to

the test results. The mean critical load of the analysis results deviate with 11,47% from the test

results, while the mean deflection deviate with 23,58%. The range of critical load curves start at

approximately the same value, but the analysis curve ranges further than the test series curve,

with the exception of the one test with high critical load. The variances of the deflection curves

are quite similar, as is also reflected with the standard deviations in Table 6.1.

By analyzing the Figure 6.3, it is clear neither of the fitted Normal or Weibull distributions man-

ages to capture the critical loads of the experimental test results well. This is because the experi-

mental results stems from a series of only 31 plates which in most cases will yield a rough distri-

bution curve. By the looks of Figure 6.3(a), it seems that the Normal distribution fails to follow

the curve at the bottoms of the experimental test series distribution, while the Weibull distribu-

tion has a closer approximation shown in Figure 6.3(b). By visually inspecting the cumulative

distribution curves, the case is the opposite for the distribution generated from the 2400-plates

analysis. The Weibull distribution fails to fit the bottom end of the distribution, opposite to the



CHAPTER 6. CASE STUDIES 70

Normal distribution, and thus the latter is the better fit for the analysis results. Table 6.1 presents

the Normal and Weibull parameters for the fitted critical loads distributions. The one deviating

critical load for from the test series causes the Weibull modulus m to decrease, as seen in Table

6.1, as it widens the fitted Weibull distribution curve. The trouble the fitted distributions has had

in fitting the experimental test series data is likely greatly influenced by the large critical value

deviating from the distribution body. It is questionable if this deviating value is due to errors

in the testing and should be discarded. Supporting this is that no particularly large deflection

value is measured, seen by inspection of Figure 6.4, despite one plate being subjected to an par-

ticularly high load. An outcome of this is the different values for m for the test series deflections

and critical loads, as seen in Table 6.1, where m is significantly lower for the critical loads as a

result of the wide fitted Weibull distribution due to the deviating high load.



CHAPTER 6. CASE STUDIES 71

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 6.3: Distributions of the critical loads for the large sample, fitted with Normal and Weibull

distribution curves. Analysis results bin size is 17.4N and the test results bin size is 25N for the

histograms.

By assessing the deflections of the test series distribution in Figure 6.4, the rough curve of a small

test series is evident. Also with deflection it seems that the Normal distribution fails to capture

the steep bottoms of the test series distributions, and thus the Weibull distribution seems to

more accurately capture the behavior. With the 2400-plates analysis the Normal and Weibull

distributions yield visually similar results. Table 6.1 presents the Normal and Weibull parame-

ters for the fitted deflection distributions.



CHAPTER 6. CASE STUDIES 72

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 6.4: Distribution of deflections at failure for the large specimen, fitted with Normal and

Weibull distribution curves. Analysis results bin size is 0.23 mm and test results bin size is 0.17

mm for the histograms.

The deviation seen between the test series and the analysis of the model can be due to a number

of factors. The parameters assumed for the model, for instance the penny-shaped flaw or max-

imum flaw length, may the inappropriate. Implementing a larger maximum flaw length would

for instance return lower average load at failure, however it is not certain that this is the point

where the model fails to imitate the physical behavior exactly. It is likely the simplification and

measure for a speedy 2400-plates analysis, using the solution for geometrically linear solutions,

have influenced the results to some degree, as was expected, although the effect was assumed



CHAPTER 6. CASE STUDIES 73

to be small. The experimental tests may also be the source of deviation. For the medium sam-

ples in the analyses found in [7], which are not included in this thesis, unexpected results was

explained by coarse edges of the glass. Edge-flaws are typical present from the cutting from the

basic plate[38], and is not included in the current implementation of the model, which assumes

only failure from surface flaws on the span of the plate. However, this is an adequate assump-

tion since big glasses such as windows glasses are treated to reduce edge flaws, avoiding this

problem[39]. This was a measure that was not taken for the samples used in he tests given in

[7]. Additionally, the experiments are run for only 31 plates, resulting in an uneven distribution

curve of the scattered results. Running tests on another 31 plates may yield a different result, and

thus proper validation of the model can only be conducted with an extensive series of tests[6].

Table 6.1: Normal and Weibull parameters for the large specimen in the 2400-plates analysis in

Section 6.1.1.

Normal Weibull

µ æ m æ0

Analysis critical load 519.31N 77.32N 7.09 553.18N

Analysis deflection 6.79mm 1.01mm 7.09 7.23mm

Test critical load 465.88N 147.61N 2.99 517.63N

Test deflection 5.49mm 1.10mm 5.18 5.95mm

6.1.2 Small sample

Figure 6.5(a) presents the simulated four point bending test for the small sample, with the stresses

visualized by colors and red signifying the largest stresses, in accordance with Equation (6.1).

The blue signifies a stress free state. The location of the failing flaws in the 2400-plates anal-

ysis is shown in Figure 6.5(b), in the area with the highest stresses, as shown in Figure 6.5(a).

However, the location of the failing flaws is visibly not symmetric over the plate as for the large

samples. This might be due to a fault in the simulation. In order to induce failure in all plates in

the analysis, the applied load in the simulation is so large (4000N) that the plate nearly escapes

its supporting cylinders, starting at the left cylinder. Consequently, the deflection and stresses



CHAPTER 6. CASE STUDIES 74

on this side are slightly larger than for the right and thus instances of failures are wrongfully

induced on this side. This effect is however considered to be small compared to the size of the

analysis, and an investigation revealed that there was only 5 such deviating instances out of

the 2400 failures of the analysis. Controls of maximum center stresses with Equation (6.1) and

center deflection with Equation (6.2) compared to the equivalent values from the Abaqus sim-

ulation yielded somewhat lower values for the simulation corresponding to errors of 7.8 % and

6.6 %, respectively. This is however considered adequate. The occurrence of these error values

indicates nonlinear geometric behavior for the applied load of 4000N. This leads to a nonlinear

relationship between stresses and deflections.

(a) Simulated four point bending for the small sample

in Section 6.1.

(b) Location of failures in the analysis.

Figure 6.5: The small sample.

Figures 6.6 and 6.7 presents the critical loads and deflections at failure for the test series and the

2400-plates analysis. All distributions are fitted with the Normal and Weibull distributions. The

mean critical loads and deflections are given in Table 6.2. The mean critical loads are clearly

deviating as the value for the test series is nearly half the value of the analysis performed by the

model. Mean deflection at failure, on the other hand, does not differ significantly and yields

rather good results. The variance of the critical loads of the analysis results are greater than of

the test results, while for deflection the variances are similar. For the 2400-plates analysis results,

there was one instance of a plate that failed for a significantly higher load and deflection than



CHAPTER 6. CASE STUDIES 75

the rest of the values associated with the distributions bodies, as can be seen in Figures 6.6 and

6.7.

By visually inspecting Figure 6.6 it is hard to conclude the better descriptive distribution fit for

the test series’ critical loads. For the analysis results on the other hand, the Weibull distribu-

tion provides the better description of the curve, as the Normal distribution fails to capture the

behavior at the bottom of the curve.

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves.

(c) Cumulative Normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 6.6: Distributions of the critical loads for the small sample, fitted with Normal and

Weibull distribution curves. Analysis results bin size is 370.4 N and test results bin size is 90.9 N

for the histograms.



CHAPTER 6. CASE STUDIES 76

The Normal distribution fits of the deflection distribution curves from both the test series and

the 2400-plates analysis are not providing a good description of the data, as seen in Figure 6.7.

The fitted Weibull distribution manages to capture the behavior to a greater extent and is the

overall better fit for the deflection distributions.

(a) Normal probability density distribution curves. (b) Weibull probability density distribution curves. .

(c) Cumulative Normal distribution curves. (d) Cumulative Weibull distribution curves.

Figure 6.7: Distributions of the deflections at failure for the small specimen, fitted with Normal

and Weibull distribution curves. Analysis results bin size is 0.26 mm and test results bin size is

0.12 mm for the histograms.

As with the deviations seen in the results of the large samples in Section 6.1.1, there are multiple

possible reasons for the deviating results seen with the small sample. All the possible sources of

discrepancy mentioned discussing the results for the large sample applies to the small sample



CHAPTER 6. CASE STUDIES 77

as well, with emphasis on the edge flaws. For a smaller geometry, less mid-plate surface flaws

are present. Assuming there is some density of flaws along the edges of glass, with a greater

circumference to area ratio for the glass plate the edge-flaws’ influence increases. For the large

sample this ratio is equal to 0.04 while for the small sample ratio it is 0.12. In other words, the

edge-flaws to mid-plate surface flaws ratio increases with the small sample and thus the edge-

flaws may be more dominant in determining the strength in this case. This can explain how the

model performs better with the large sample compared to the small. Supporting this theory are

microscope pictures taken of the small samples prior to testing, shown in Figure 6.8, revealing

some rough edge flaws. These flaws may have been present in the large samples as well as they

were not controlled with a microscope like the small samples were. However, if the edge flaws

of the large samples are of the same sizes as in the small samples, the argument of a higher

edge-flaws to mid-plate surface flaws holds.

Another possible source of the discrepancies is mentioned in [7]. Some results were disregarded

from the performed test series due to the discovery of a loose fastening mechanisms in the test

setup, producing unrealistic results. This was adjusted while the testing was ongoing. [7] re-

ceived a lower mean Young’s modulus from the experiment than both expected and compared

to the larger samples, and blames the loose fastening mechanism for this. Therefore, it can

seem not all faulted results were disregarded and thus may be the cause of some deviation in

the experimental results presented in this section as well.

Table 6.2: Normal and Weibull parameters for the small specimen in Section 6.1.2.

Normal Weibull

µ æ m æ0

Analysis critical load 1131.79N 368.57N 3.00 1259.46

Analysis deflection 0.87mm 0.23mm 3.00 0.97

Test critical load 639.01N 203.23N 3.47 710.36N

Test deflection 0.79mm 0.22mm 3.58 0.87mm



CHAPTER 6. CASE STUDIES 78

(a) (b)

Figure 6.8: Edge flaws on the small sample.

6.1.3 Summary of the Four Point Bending analysis

• For large geometries the model produces results similar to the test series data.

• It is likely that edge flaws become dominant for small geometries with untreated edges, a

factor not considered by the model, and hence the model results will naturally deviate.

• The Weibull distribution describes both the experimental test data and the analysis data

more accurately than Normal distributions.

• As also seen in the plate geometry parameter study in Section 5.1, with a smaller geome-

try the specimen endures higher loads. Due to a lower prevalence of large flaws in small

specimens, the scatter in strength increases. This is reflected by the Weibull modulus m



CHAPTER 6. CASE STUDIES 79

from the analysis results presented in Table 6.1 and 6.2, where m is significantly higher for

the small specimen in comparison with the large. This indicates treating m as a material

constant is erroneous.

• The similarity in the spread of the distributions for the larger specimens indicates that the

exponential distribution of flaw lengths being a good model for flaw length occurrence.

6.2 Blast wave

This section examines the response of the model in a blast loading situation. This study is based

on some experiments that was conducted at the SIMlab shock tube facility at the Institute of

Structural Engineering in the fall of 2016. The test setup is similar to the illustration in Figure

6.10. The 400£400mm2 plate is clamped between rubber supports at the outer edges such that

the inner 300£300mm2 area is untouched by the rubber. The thickness of the glass is 4mm.

It was reported that the glass was exposed to a blast load of 79 kPa without failing. However,

an equivalent experiment yielded failure for approximately 83 kPa. The calibrated values for

the Friedlander equation explained in Section 2.5 is given in Table 6.3. Figure 6.9 shows the

corresponding load history.

Table 6.3: Friedlander Equation calibrated values.

Pr 79 kPa

t+ 13 ms

b 7.7E-01



CHAPTER 6. CASE STUDIES 80

Figure 6.9: The pressure curve corresponding to the calibrated values for the Friedlander equa-

tion in Table 6.3.

Figure 6.10: Test setup, retrieved from [40].

The experiment was simulated in Abaqus/Explicit. The geometry and boundary conditions of

the plate was approximated by using a 350m x 350m simply supported plate, simulated as a 3D



CHAPTER 6. CASE STUDIES 81

deformable shell. The boundary conditions was determined on the basis that the clamped areas

of the glass’ was able compress the rubber to some degree. A pressure load was applied to the

model, with the purpose of failing all plates in the subsequent Monte Carlo analysis. The load

was ramped up to maximum P during the first 4% of the total time of 0.1 seconds, such that the

load is applied almost instantly. The amplitude uses five points in representing the blast load

curve, as can be seen in Figures 6.11 and 6.12. As also seen in these figures is the oscillating

stresses which requires an ascending order of the time steps, not eliminating any flaws as first

failing flaw candidates, by use of the Python code.

Figure 6.11: Pressure versus center von Mises stresses for the 79 kPa blast load.



CHAPTER 6. CASE STUDIES 82

Figure 6.12: Pressure versus center von Mises stresses for the 50 kPa blast load.

Two different peak loads of 79 kPa and 50 kPa amplitudes were simulated with Abaqus. The blast

load of 79 kPa was chosen in reference to the SIMlab experiment. This load induced failure for

all plates in the analysis with many failing at peak load, as can be seen in Figure 6.13(d), and

therefore the 50 kPa load was further tested to examine the behavior for lower loads. The same

2400 flaw maps were used in both analyses. The loads are plotted together with the resulting

center stresses over time in Figures 6.11 and 6.12. The peak load amplitude for both diagrams

occurs after 0.004 seconds, while the Mises stress reaches its greatest value at 0.005 seconds.

This is due to the delay of deformation from the almost instantly applied blast load.

Figure 6.13 shows the resulting locations of initial fracture from the first failing flaws and the

critical loads and critical tensile stresses diagrams for both loads. Figures 6.13(a) and 6.13(b)

show the locations of fracture occur in the same areas, although the figures implies a greater

spread of first failing flaws for the higher load. This is natural as the loads are applied at a higher

rate. The curves of tensile stresses at failure have approximately the same shape and mean value.

As the location of initial fracture are in the same areas, in the center and in the corners of the

plate, it is likely that many of the same flaws are critical in both analyses. Thus it is reasonable



CHAPTER 6. CASE STUDIES 83

that the critical tensile stress diagrams are similar. The main difference of the two cases lies with

the critical loads at failure. For the greater load, the initial stresses at peak load, prior to the

delayed stress peak are for many plates critical, and hence failure occurs at impact. There are

plates not failing at impact, as seen in Figure 6.13(d), and they can have failed both before or

after the event of the peak load. For the case with a peak load of 50 kPa, the stresses occurring

at maximum applied load are not critical for any of the plates and thus no failure occurs for 50

kPa. The following response of the plate will however induce failure as the delayed stresses are

greater, as can be seen in Figure 6.12. Therefore the distribution will have a more symmetric

body, as seen in Figure 6.13(c), as opposed to the case where plates fails instantly at peak load.

By examining the critical load intervals for both blast loads in Figures 6.13(d) and 6.13(c) and

comparing to the stresses and loads over time in Figures 6.11 and 6.12, it seems all plates fails

before or at the point where the stresses are the highest.



CHAPTER 6. CASE STUDIES 84

(a) Flaw map (50 kPa load) (b) Flaw map (79 kPa load)

(c) 50 kPa load. Bin size: 0.07 kPa. (d) 79 kPa load. Bin size: 0.28 kPa

(e) 50 kPa load. Bin size: 1.82 MPa (f) 79 kPa load. Bin size: 1.7 MPa

Figure 6.13: The 350£350£4 mm3 SSP exposed to blast waves of 50 kPa and 79 kPa.

As mentioned, two experimental tests with blast loads of 79 kPa and 83 kPa have been per-

formed, where only the latter induced failure in the glass. This is not consistent with the analysis



CHAPTER 6. CASE STUDIES 85

results where all 2400 plates in the analysis run with the Python code failed after being applied

with a 50 kPa blast load. This may due to an inappropriate geometry and boundary conditions

in the simulation. The maximum deflection in the experimental test with applied load 79 kPa

was approximately 6 mm while the maximum deflection in the simulation with the same load

applied was 11,4 mm. This indicates a more stiff behavior in the experimental tests. It is not cer-

tain that a simply supported specimen of 350£350£4 mm3 is appropriate. Clamped edges may

provide a better description of the behavior of the plates in the experimental tests. Reducing the

plate geometry to 300£300£4 mm3 may also enhance the simulations in regards to the exper-

iments. It is also uncertain whether the thickness of the plate were 4mm or a few mm thinner.

Reducing the thickness will however result in reduced stiffness of the plate and lead to a greater

deflection, i.e. this is not what causes the simulations to behave differently than the plates in

the experiment.

6.3 The FORTRAN code applied to the case studies

The FORTRAN code was applied to two of the case studies in this chapter with the purpose of

visualizing crack propagation. These were the large sample four point bending test of Section

6.1.1 and the blast wave case of 79 kPa in Section 6.2.

Four point bending test

Due to the limitation of the program deleting elements only when all section points of an inte-

gration point are fulfilling the requirements for failure, as explained in Section 3.5, no elements

were deleted with respect to the Status field variable for the large sample in the four point bend-

ing test. This is because the always compressive stresses on the top surface of the plate will not

induce failure, only the tensile stresses on the bottom. Thus visualizing crack propagation was

impossible in this case with the current version of the subroutine. However, one-sided failure

was detected and by specifying in Abaqus/Viewer that element deletion should occur at this

point, it is possible to visualize the origin of failure with the FORTRAN code. Figure 6.14 shows



CHAPTER 6. CASE STUDIES 86

the location of failure on a color map showing the Mises stresses with red signifying the highest

stresses.

Figure 6.14: The first failing flaw visualized with the FORTRAN subroutine.

Blast wave

For the blast wave case, the plate displacement and the stresses will oscillate. At some point with

this behavior, there are tensile stresses on both sides of an element of the plate which causes

failure and the requirement for element erosion is fulfilled. From here the stresses relocates

and concentrates around the eroded element and consequently neighbor elements are eroded.

Figure 6.15 shows this effect illustrating crack propagation over the plate after exposure to a

blast load. The colors visualizes the Mises stress concentrations, with red signifying the highest

stresses, showing increased stresses in neighbor elements to the crack. It is emphasized that

this case of crack propagating might not be physically correct as fracture in fact occurs from one

side, while the FORTRAN code only recognized the fracture when both sides of the elements

registers fracture.



CHAPTER 6. CASE STUDIES 87

Figure 6.15: Crack propagation visualized with the FORTRAN subroutine.



Chapter 7

Concluding remarks

This thesis presents the foundation, implementation and verification of a strength model for

float glass, first presented by Yankelevsky in [6] and further developed herein by using a geom-

etry correction factor corresponding to the flaw depth to length ratio and including the flaws’

orientations. The model provides information of the origin of failure in the glass and the prob-

ability distribution as a result of the analysis and not assumed a priori.

In order to thoroughly explain the framework of the strength model, the mathematical and me-

chanical foundation was first presented, as well as background on the the glass production

process. Grouped together with the explanation of the model, was the rendering of the three

software versions of the model written in MATLAB, Python and FORTRAN. This structure was

chosen because of the tight relationship between the implementations and the strength model.

The main implementations, namely the MATLAB and Python scripts, are elaborated with limita-

tions and optimizations, and pseudo codes are provided for a better understanding of the main

structure of the programs.

Further, the verification processes of the three implementations was presented. The MATLAB

code was implemented with the purpose of serving as an analytical solution in verifying the

Python and FORTRAN codes. It was verified through comparing center stresses and deflections

with corresponding solutions in Abaqus FEA. The verification of the Python code yielded satis-

88



CHAPTER 7. CONCLUDING REMARKS 89

fying results. As did the FORTRAN code, except for one discrepancy which was reasoned to not

be associated with the model or faults in the source code.

After having verified the Python code, a parameter study was performed on this version of the

model, documenting its behavior with respect to geometric variables. The response was in ac-

cordance with natural behavior of failing glass. Additionally it was found that for the glass plates

with less flaws, fitted Weibull distributions would have a lower Weibull modulus m, suggesting

it is inaccurate to assume m is a material constant.

Further, a selection of case studies of glass in different loading conditions were performed. The

model was compared with results from four point bending tests conducted by Brekken and

Ingier[7], yielding acceptable results for the large specimen, however poor for the small spec-

imen. This was reasoned by some rough edge flaws from cutting the glass becoming dominant

in the small geometry, which was supported by microscopic pictures of the specimen from the

experiments. The response of a glass plate exposed to different blast loads was also examined.

The results showed that glass plates exposed to high loads is likely to fail at peak load, while for

lower loads failure is likely to occur after peak load.

The work presented in this thesis shows that the Yankelevskys’ strength model for float glass

has great potential for processed glass plates. Ideas for further development of the model is

presented in Chapter 8.



Chapter 8

Future work

The software development of the model in this thesis was limited by time, thus some ideas for

possible improvement remain unexplored. This chapter introduces some ideas for possible im-

provements on both the model and the software implementations of the model.

Clustering method

As described in Section 3.4, the Python and FORTRAN codes read stress values from the center

of every element. Since the model has a structured flaw density with one flaw in the center of

every cm2, these codes required initially a mesh of cm2 elements in the Abaqus simulations.

For the small specimen in the four point bending test in Section 6.1 this mesh turned out to

be too coarse for the contact problem between the glass plates and the rolling cylinders. The

distance between the nodes became too large such that the cylinders lost contact with plate

nodes as they began rolling. The quick solution chosen for the Python script, which was used in

this four point bending test, was to develop the code to accept a 2£2 mm2 mesh and to retrieve

the center stresses from the center element of every cm2. However, similar problems may still

arise for small geometries, and accuracy of the finite element solution will improve with a finer

mesh, thus removing the rigid requirement of either the a cm2 or a 2£2 mm2 mesh is desirable.

90



CHAPTER 8. FUTURE WORK 91

This can be achieved by implementing a clustering method, interpolating the stresses between

the elements. This allows for stresses to be retrieved at a point on the plate, independent of the

mesh[41]. A clustering method would improve both the Python and FORTRAN codes.

Interacting flaws

The strength model implemented in this thesis uses a flaw map with a density of one flaw per

cm2. This is a simplification made to avoid interaction between flaws such that a single flaw

is responsible for the local conditions causing failure. However, as discussed in Section 5.1, a

structured flaw map is not realistic, and in an unstructured flaw map instances of flaws interact-

ing are likely to occur. Applying to the model the theory related to the shielding and amplifying

effect of flaws, presented in Section 2.1.3, may yield more realistic results. This model extension

is suggested implemented to explore the model’s potential. If no clustering method is imple-

mented, it makes sense to use an unstructured mesh in the Abaqus simulations for the Python

and FORTRAN codes.

Validation

The purpose of this thesis was exploring the potential of Yankelevskys’ model. Performing a

validation process on the software implementations of the MATLAB and Python codes would

reveal whether the model is actually viable for determining glass strength. A validation process

was not included as the data at hand was considered non-sufficient to provide proper validation

of the implementations. To conclude the model implementations are behaving equally to real

situations, extensive experimental test series should be used to compare. Four point bending

test data of approximately 30 samples per test was compared to model results in Section 6.1, but

this number was considered too small to conclude the model was behaving correctly.



Bibliography

[1] Nina Ivanovna Min’ko and Vladimir Mikhailovich Nartsev. Factors affecting the strength of

the glass (review). Middle-East Journal of Scientific Research, 18(11):1616–1624, 2013.

[2] L Afferrante, M Ciavarella, and E Valenza. Is weibull’s modulus really a material constant?

example case with interacting collinear cracks. International Journal of Solids and Struc-

tures, 43(17):5147–5157, 2006.

[3] J Jeong, H Adib-Ramezani, and G Pluvinage. Tensile strength of the brittle materials, prob-

abilistic or deterministic approach? Strength of materials, 38(1):72–83, 2006.

[4] J.B. Wachtman, W.R. Cannon, and M.J. Matthewson. Mechanical Properties of Ceramics.

Wiley, 2009.

[5] Bikramjit Basu, Devesh Tiwari, Debasis Kundu, and Rajesh Prasad. Is weibull distribution

the most appropriate statistical strength distribution for brittle materials? Ceramics Inter-

national, 35(1):237–246, 2009.

[6] David Z. Yankelevsky. Strength prediction of annealed glass plates - a new model. Engi-

neering Structures, 79:244–255, 2014.

[7] KA Brekken and TP Ingier. Modelling of window glasses exposed to blast loading. Master’s

thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016.

[8] TL Anderson. Fracture Mechanics, Fundamentals and Applications. Taylor and Francis,

Boca Raton, FL, 3rd edition, 2011.

92



BIBLIOGRAPHY 93

[9] M.F. Ashby and D.R.H. Jones. Engineering Materials 1: An Introduction to Properties, Ap-

plications and Design. Number v. 1 in Butterworth-Heinemann. Butterworth-Heinemann,

2011.

[10] Wikipedia. Fracture mechanics — wikipedia, the free encyclopedia, 2016. [Online; ac-

cessed 2-November-2016].

[11] Wikipedia. Monte carlo method — Wikipedia, the free encyclopedia, 2016. [Online; ac-

cessed 07-November-2016].

[12] D. Cook and C. Young. Advanced Mechanics of Materials. Pearson, 2nd edition, 1998.

[13] A. Reyes. Lecture 13: Klassisk tynnplateteori. Online; accessed 10-November-2016, Novem-

ber 2013.

[14] RL Taylor and S Govindjee. Solution of clamped rectangular plate problems. Communica-

tions in Numerical Methods in Engineering, 20(10):757–765, 2004.

[15] A. Reyes. Lecture 14: Plateberegninger. Online; accessed 10-November-2016, November

2013.

[16] Wikipedia. Glass — wikipedia, the free encyclopedia, 2017. [Online; accessed 2-January-

2017].

[17] MF. Ashby and DR. Jones. Engineering Materials 2, an introduction to microstructures, pro-

cessing and design. Butterworth Heinemann, 2nd edition, 1998.

[18] H.J. Herrmann and S. Roux. Statistical models for the fracture of disordered media. Random

materials and processes. North-Holland, 1990.

[19] The float process. [Online; accessed 15-November-2016].

[20] Wikipedia. Annealing (glass) — wikipedia, the free encyclopedia, 2016. [Online; accessed

26-September-2016].

[21] EN. Glass in building - basic soda lime silicate glass products - Part 2: Float glass. Standard,

CEN, 2004.



BIBLIOGRAPHY 94

[22] V Aune, T Børvik, and M Langseth. Impact mechanics: An introduction to blast mechanics.

Unpublished draft., 2016.

[23] Wikipedia. Blast wave — wikipedia, the free encyclopedia, 2016. [Online; accessed 19-

November-2016].

[24] JK Lancaster. Crack propagation and particle detachment in the wear of glass under elastic

contact conditions. Interface Dynamics, Tribology Series, 12:111–119, 1988.

[25] Naimeh Khorasani. Design principles for glass used structurally. Department of Building

Science, Univ., 2004.

[26] Andrew A Wereszczak, Mattison K Ferber, and Wayne Musselwhite. Method for identifying

and mapping flaw size distributions on glass surfaces for predicting mechanical response.

International Journal of Applied Glass Science, 5(1):16–21, 2014.

[27] Wikipedia. Plane stress — wikipedia, the free encyclopedia, 2016. [Online; accessed 6-

December-2016].

[28] Oriel Goodman and Brian Derby. The mechanical properties of float glass surfaces mea-

sured by nanoindentation and acoustic microscopy. Acta Materialia, 59(4):1790–1799,

2011.

[29] Jianghong Gong, Yufeng Chen, and Chunyan Li. Statistical analysis of fracture toughness of

soda-lime glass determined by indentation. Journal of Non-Crystalline Solids, 279(2):219–

223, 2001.

[30] T.H. Cormen. Introduction to Algorithms. MIT Press, 2009.

[31] Abaqus 6.14 documentation, 2014. Online; accessed 1-Desember-2016.

[32] KM Mathisen. Solution of the dynamic equilibrium equations by explicit direct integration.

Online; accessed 1-November-2016, 2015.

[33] Y. Chen and University of South Carolina. Optimization of the Hybrid RC/FRP Beam System.

University of South Carolina, 2007.



BIBLIOGRAPHY 95

[34] FS Loureiro, JEA Silva, and WJ Mansur. An explicit time-stepping technique for elastic

waves under concepts of green’s functions computed locally by the fem. Engineering Anal-

ysis with Boundary Elements, 50:381–394, 2015.

[35] Abaqus Inc. Lecture 9, material damage and failure, 2005. Online; accessed 10-Desember-

2016.

[36] F Irgens. Fasthetslære. Tapir akademisk forlag, 7th edition, 2006.

[37] FA Veer, Pieter Christiaan Louter, and FP Bos. The strength of annealed, heat-strengthened

and fully tempered float glass. Fatigue & Fracture of Engineering Materials & Structures,

32(1):18–25, 2009.

[38] Maria Lindqvist, Marc Vandebroek, Christian Louter, and Jan Belis. Influence of edge flaws

on failure strength of glass. In 12th International Conference on Architectural and Automo-

tive Glass (Glass Performance Days 2011), pages 126–129. Glass Performance Days, 2011.

[39] Joseph B Kelly. Edging glass sheets with diamond wheels, November 11 1986. US Patent

4,621,464.

[40] Vegard Aune, Egil Fagerholt, Magnus Langseth, and Tore Børvik. A shock tube facility

to generate blast loading on structures. International Journal of Protective Structures,

7(3):340–366, 2016.

[41] CA Duarte, TJ Liszka, and WW Tworzydlo. Clustered generalized finite element methods

for mesh unrefinement, non-matching and invalid meshes. International journal for nu-

merical methods in engineering, 69(11):2409–2440, 2007.



Appendix A

MATLAB source code

function [N] = basicPlateSpan ( Length , width )

%@INPUT:

%Length : Length of plate [m]

%width : width of plate [m]

%@OUTPUT:

%N: N* Length * width = close to 6*3.21m, where N=integer

desiredArea = 6 * 3 . 2 1 ;

approx = desiredArea /( Length * width ) ;

approx1 = c e i l ( approx ) ;

approx2 = f l o o r ( approx ) ;

while (rem( sqrt ( approx1 ) , 1 ) ~= 0)

approx1 = approx1 + 1 ;

end

while (rem( sqrt ( approx2 ) , 1 ) ~= 0)

approx2 = approx2 ° 1 ;

end

i f ( abs ( ( ( sqrt ( approx1 ) * Length * width )°desiredArea ) / desiredArea ) >= abs ( ( ( sqrt ( approx1 ) * Length * width

,! )°desiredArea ) / desiredArea ) )

N = sqrt ( approx2 ) ;

e lse

N = sqrt ( approx1 ) ;

end

end

96



APPENDIX A. MATLAB SOURCE CODE 97

function [ flawInfoMatrix ] = generatePlate ( Length , width , maxFlawSize )

% @INPUT:

%Length : Length of basic plate ( integer ) [m]

%width : width of basic plate ( integer ) [m]

%maxFlawSize : max s i z e of flaw [m]

% @OUTPUT:

%flawInfoMatrix : matrix where rows represent a flaw of random Length [m]

%and angle [ radians ] .

%Generating flaw map

plateArea = Length * width ;

numFlaws = plateArea /10^(°4) ;

charFlawSize = maxFlawSize/ log (numFlaws) ;

flawInfoMatrix = zeros ( int32 (numFlaws) , 2 ) ;

a = 1/numFlaws ;

for index = 1 :numFlaws

flawLength = ( charFlawSize * ( log (numFlaws) ° log (numFlaws*((1°a ) * rand ( 1 ) +a ) ) ) ) / 2 ;

flawAngle = pi * rand ( 1 ) ;

flawInfoMatrix ( index , 1 ) = flawLength ;

flawInfoMatrix ( index , 2 ) = flawAngle ;

end

end

function [ result , sigma ] = willFlawPropagate ( stresses , theta , a , Y , K c r i t )

%This function c al c u l a t e s whether a flaw w i l l propagate or not .

% @INPUT:

% s t r e s s e s : array of l o c a l plane s t r e s s components [N/m^2]

% theta : orientation of flaw [ radians ]

% a : length of flaw [m]

% @OUTPUT:

% r e s u l t : true i f flaw f a i l s , f a l s e i f i t does not

% sigma : the s t r e s s normal to flaw

sigma = s t r e s s e s ( 1 ) + s t r e s s e s ( 2 ) ° ( 0 . 5 * ( s t r e s s e s ( 1 ) + s t r e s s e s ( 2 ) ) + 0 . 5 * ( s t r e s s e s ( 1 )°

,! s t r e s s e s ( 2 ) ) * cos (2* theta ) + s t r e s s e s ( 3 ) * sin (2* theta ) ) ;

i f ( sigma < 0) %only t e n s i l e s t r e s s e s please

r e s u l t = f a l s e ;



APPENDIX A. MATLAB SOURCE CODE 98

return ;

end

K = Y*sigma* sqrt ( pi *a ) ;

i f ( K c r i t <= K)

r e s u l t = true ;

e lse

r e s u l t = f a l s e ;

end

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I n i t i a l conditions in terms of loading s i t u a t i o n and geometry .

%With ’ST ’ a f a c t o r for the load on edge compared to the

%other can be chosen .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

loadSit = ’ST ’ ; % SSP ( simply supported ) or CP( clamped ) or ST( stretched )

i f ( strcmp ( loadSit , ’ST ’ ) )

f a c t o r = 0 ;

end

width = 1 ; %[m]

Length = 1 ; %[m]

depth = 0 . 0 0 6 ; % [m]

numFlawsSP = width *100* Length *100;

midX = Length * 1 0 0 * 0 . 5 ; %[cm]

midY = width * 1 0 0 * 0 . 5 ; %[cm]

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Parameters

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

E = 70*10^9;

v = 0 . 2 2 ;

D = (E * ( depth ) ^3) /(12*(1°v^2) ) ;

geoFactor = 0.6625;

K c r i t = 0.75*10^6;

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Series expansion

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

numMSeries = 30;

numNSeries = 30;

totNumSeries = numNSeries*numMSeries ;



APPENDIX A. MATLAB SOURCE CODE 99

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Generating the basic plate parameters .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

numBP = 62; %number of basic plates in analysis

N = basicPlateSpan ( Length , width ) ;

bpWidth = N* width ; %m

bpLength = N* Length ; %m

maxFlawSize = 200*10^(°6) ; %m

numSP = N*N; %number of small plates per basic plate

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Generating s t i f f n e s s matrix for the calculat ion for clamped plate .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( strcmp ( loadSit , ’CP ’ ) )

Kmatrix = K( Length , width , numMSeries , numNSeries ) ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Calculating part of the plate equation for clamped and simply

%supported .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

xPositions = zeros ( int32 ( Length *100) , 1 ) ;

yPositions = zeros ( int32 ( width *100) , 1 ) ;

sigmaXXm = c e l l ( 1 ,numFlawsSP) ;

sigmaYYm = c e l l ( 1 ,numFlawsSP) ;

tauXYm = c e l l ( 1 ,numFlawsSP) ;

for numFlaw = 1 :numFlawsSP

xindicator = mod(numFlaw , ( Length *100) ) ;

i f ( xindicator == 0)

xindicator = Length *100;

end

yindicator = c e i l (numFlaw/ ( Length *100) ) ;

X = xindicator °0.5;

Y = yindicator °0.5;

xPositions (numFlaw) = X ;

yPositions (numFlaw) = Y ;

i f ( strcmp ( loadSit , ’SSP ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

sigmaXXv = zeros ( 1 , totNumSeries ) ;

sigmaYYv = zeros ( 1 , totNumSeries ) ;

tauXYv = zeros ( 1 , totNumSeries ) ;



APPENDIX A. MATLAB SOURCE CODE 100

index = 1 ;

X = X*10^°2;

Y = Y*10^°2;

for n = 1 : numMSeries ;

for m = 1 : numNSeries ;

i f ( strcmp ( loadSit , ’SSP ’ ) )

sigmaXXv ( index ) = °(depth * 0 . 5 *E) /(1°v^2) * (°(m^2* pi ^2* sin ( ( pi *m*X) / ( Length

,! ) ) * sin ( ( pi *n*Y) /( width ) ) ) /( Length^2) + v*°(n^2* pi ^2* sin ( ( pi *m*X) /(

,! Length ) ) * sin ( ( pi *n*Y) /( width ) ) ) /( width^2) ) ;

sigmaYYv ( index ) = °(depth * 0 . 5 *E) /(1°v^2) * (°(n^2* pi ^2* sin ( ( pi *m*X) / ( Length

,! ) ) * sin ( ( pi *n*Y) /( width ) ) ) /( width^2) + v*°(m^2* pi ^2* sin ( ( pi *m*X) / (

,! Length ) ) * sin ( ( pi *n*Y) /( width ) ) ) /( Length^2) ) ;

tauXYv ( index ) = °(depth * 0 . 5 *E) *(1°v ) /(1°v^2) * ( (m*n* pi ^2*cos ( ( pi *m*X) / (

,! Length ) ) * cos ( ( pi *n*Y) /( width ) ) ) /( Length * width ) ) ;

e l s e i f ( strcmp ( loadSit , ’CP ’ ) )

sigmaXXv ( index ) = °(depth * 0 . 5 *E) /(1°v^2) * (°(4* pi ^2*m^2*cos ( ( 2 * pi *X*m) /

,! Length ) * ( cos ( ( 2 * pi *Y*n) /width ) ° 1) ) /Length^2 + v *(°(4* pi ^2*n^2*cos

,! ( ( 2 * pi *Y*n) /width ) * ( cos ( ( 2 * pi *X*m) /Length ) ° 1) ) /width^2) ) ;

sigmaYYv ( index ) = °(depth * 0 . 5 *E) /(1°v^2) * (°(4* pi ^2*n^2*cos ( ( 2 * pi *Y*n) /

,! width ) * ( cos ( ( 2 * pi *X*m) /Length ) ° 1) ) /width^2 + v *(°(4* pi ^2*m^2*cos

,! ( ( 2 * pi *X*m) /Length ) * ( cos ( ( 2 * pi *Y*n) /width ) ° 1) ) /Length^2) ) ;

tauXYv ( index ) = °(depth * 0 . 5 *E) *(1°v ) /(1°v^2) * ( ( 4 * pi ^2*m*n* sin ( ( 2 * pi *X*m) /

,! Length ) * sin ( ( 2 * pi *Y*n) /width ) ) / ( Length * width ) ) ;

end

index = index + 1 ;

end

end

sigmaXXm{numFlaw} = sigmaXXv ;

sigmaYYm{numFlaw} = sigmaYYv ;

tauXYm{numFlaw} = tauXYv ;

end

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%MAIN STRUCTURE

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

fai ledFlawInfo = [ ] ;

forMonteCarlo = [ ] ;

check = [ ] ;



APPENDIX A. MATLAB SOURCE CODE 101

for bP = 1 :numBP

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Generating the flaw map for both sides of the current

%basic plate .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

f lawInfo = generatePlate ( bpLength , bpWidth , maxFlawSize ) ;

flawInfo2 = generatePlate ( bpLength , bpWidth , maxFlawSize ) ;

for sP = 1 :numSP

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I s o l a t i n g the flaws for t h i s plate

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

startIndex = 1+(sP°1)*numFlawsSP ;

flawsInSP = flawInfo ( startIndex : ( startIndex+numFlawsSP°1) , : ) ;

flawsInSP2 = flawInfo2 ( startIndex : ( startIndex+numFlawsSP°1) , : ) ;

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Generate t e x t f i l e for the e x p l i c i t Abaqus model

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( sP==1)

partname = ’ Plate°1 ’ ;

filename = s p r i n t f ( ’ i n i t i a l _ c o n d i t i o n s%d . inp ’ , sP ) ;

fp = fopen ( filename , ’w’ ) ;

f p r i n t f ( fp , ’ * i n i t i a l conditions , type=SOLUTION\n ’ ) ;

f p r i n t f ( fp , ’ ** Elnb , a , theta , n f a i l , K/ Kcrit , s tatus \n ’ ) ;

for i =1: s i z e ( flawsInSP )

f p r i n t f ( fp , [ partname ’ .%g,%6d,%6d,%6d,%7d,%6d\n ’ ] , i , flawsInSP ( i , 1 ) *1000 , flawsInSP ( i

,! , 2 ) , 0 , 0 . 0 , 1 . 0 ) ;

end

f c l o s e ( fp ) ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

% Generate t e x t f i l e s for Python post processing

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

filename = ’ flawInfoForPlate ’ ;

f i lenametxt = s t r c a t ( filename , ’ . t x t ’ ) ;

i f ( e x i s t ( filename , ’ f i l e ’ ) && (bP == 1) && ( sP == 1) )

disp ( ’ f i l e was deleted ’ ) ;

delete fi lenametxt ;

end



APPENDIX A. MATLAB SOURCE CODE 102

i f (bP == 1 && sP == 1)

f i l e = fopen ( filenametxt , ’w’ ) ;

end

for i = 1 : s i z e ( flawsInSP , 1 )

f p r i n t f ( f i l e , ’ %1.9 f %1.5 f \ r \n ’ , flawsInSP ( i , 1 ) , flawsInSP ( i , 2 ) ) ;

end

i f (bP == numBP && sP == numSP)

f c l o s e ( f i l e ) ;

end

filename2 = ’ flawInfoForPlate°2 ’ ;

fi lenametxt2 = s t r c a t ( filename2 , ’ . t x t ’ ) ;

i f ( e x i s t ( filename2 , ’ f i l e ’ ) && (bP == 1) && ( sP == 1) )

disp ( ’ f i l e was deleted ’ ) ;

delete filenametxt2 ;

end

i f (bP == 1 && sP == 1)

disp ( ’ ?PNER FIL2 ’ ) ;

f i l e 2 = fopen ( filenametxt2 , ’w’ ) ;

end

for i = 1 : s i z e ( flawsInSP , 1 )

f p r i n t f ( f i l e 2 , ’ %1.9 f %1.5 f \ r \n ’ , flawsInSP2 ( i , 1 ) , flawsInSP2 ( i , 2 ) ) ;

end

i f (bP == numBP && sP == numSP)

disp ( ’LUKKER FIL ’ ) ;

f c l o s e ( f i l e 2 ) ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I n i t i a t i n g estimated c r i t i c a l load for current plate and

%necessary flaws for loading s i t u a t i o n .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

f a i l u r e = f a l s e ;

i f ( strcmp ( loadSit , ’ST ’ ) )

i f ( sP ==1)

qList = [ 4 0 0 0 0 ] ;

e lse

qList = [ qList ( 1 ) * 1 . 3 ] ;



APPENDIX A. MATLAB SOURCE CODE 103

end

e l s e i f ( strcmp ( loadSit , ’SSP ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

i f ( sP == 1)

qList = [ 1 0 0 ] ;

e lse

qList = [ qList ( 1 ) * 1 . 3 ] ;

end

end

flawsToBeExamined = [ 1 : s i z e ( flawsInSP , 1 ) ] . ’ ;

i f ( strcmp ( loadSit , ’ST ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

flawsToBeExamined2 = [ 1 : s i z e ( flawsInSP2 , 1 ) ] . ’ ;

e lse

flawsToBeExamined2 = [ ] ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Finding the f i r s t f a i l i n g flaw .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

while ( f a i l u r e == f a l s e )

qn = qList ( 1 ) ;

failedFlawCount = 0 ;

i f ( strcmp ( loadSit , ’SSP ’ ) )

wn = zeros ( 1 , totNumSeries ) ;

counting = 1 ;

for n = 1 : numNSeries

for m = 1 : numMSeries

i f (mod(m, 2 ) ~=0 && mod(n , 2 ) ~=0)

wn( counting ) = (16*qn) / (D*m*n* ( pi ^6) * ( (m/( Length ) ) ^2 + (n/ ( width ) ) ^2)

,! ^2) ;

end

counting = counting + 1 ;

end

end

e l s e i f ( strcmp ( loadSit , ’CP ’ ) )

bload ( 1 : ( numMSeries*numNSeries ) ) = ( ( qn* Length^4) / ( 4 * ( pi ^4) *D) ) ;

wn = ( Kmatrix\bload . ’ ) . ’ ;

end

i f (~ isempty ( flawsToBeExamined ) )



APPENDIX A. MATLAB SOURCE CODE 104

for index = 1 : s i z e ( flawsToBeExamined , 1 )

flaw = flawsToBeExamined ( index ) ;

i f ( strcmp ( loadSit , ’SSP ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

sigmaXseries = sigmaXXm{ flaw } ;

sigmaYseries = sigmaYYm{ flaw } ;

tauXYseries = tauXYm{ flaw } ;

sigmax = wn* sigmaXseries . ’ ;

sigmay = wn* sigmaYseries . ’ ;

tauxy = wn* tauXYseries . ’ ;

s t r e s s e s = [ sigmax sigmay tauxy ] ;

e l s e i f ( strcmp ( loadSit , ’ST ’ ) )

s t r e s s e s = [qn qn* f a c t o r 0 ] ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I f flaw f a i l s for t h i s load , save t h i s in array .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

[ f a i l b o o l , s t r e s s ] = willFlawPropagate ( stresses , flawsInSP ( flaw , 2 ) , flawsInSP (

,! flaw , 1 ) , geoFactor , K c r i t ) ;

i f ( f a i l b o o l == true )

failedFlawCount = failedFlawCount + 1 ;

fai ledFlawInfo = [ fai ledFlawInfo ; [ flaw xPositions ( flaw ) yPositions ( flaw )

,! s t r e s s flawsInSP ( flaw , 1 ) flawsInSP ( flaw , 2 ) 0 ] ] ;

end

end

end

i f (~ isempty ( flawsToBeExamined2 ) )

for index = 1 : s i z e ( flawsToBeExamined2 , 1 )

flaw = flawsToBeExamined2 ( index ) ;

i f ( strcmp ( loadSit , ’SSP ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

sigmaXseries = sigmaXXm{ flaw } ;

sigmaYseries = sigmaYYm{ flaw } ;

tauXYseries = tauXYm{ flaw } ;

sigmax = °wn* sigmaXseries . ’ ;

sigmay = °wn* sigmaYseries . ’ ;



APPENDIX A. MATLAB SOURCE CODE 105

tauxy = °wn* tauXYseries . ’ ;

s t r e s s e s = [ sigmax sigmay tauxy ] ;

e l s e i f ( strcmp ( loadSit , ’ST ’ ) )

s t r e s s e s = [qn qn* f a c t o r 0 ] ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I f flaw f a i l s for t h i s load , save t h i s in array .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

[ f a i l b o o l , s t r e s s ] = willFlawPropagate ( stresses , flawsInSP2 ( flaw , 2 ) , flawsInSP2

,! ( flaw , 1 ) , geoFactor , K c r i t ) ;

i f ( f a i l b o o l == true )

failedFlawCount = failedFlawCount + 1 ;

failedFlawInfo2 = [ failedFlawInfo2 ; [ flaw xPositions ( flaw ) yPositions ( flaw )

,! s t r e s s flawsInSP2 ( flaw , 1 ) flawsInSP2 ( flaw , 2 ) 1 ] ] ;

end

end

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%I f there i s only one flaw f a i l i n g , converge

%u n t i l i t s c r i t i c a l load i s found . Find def lect ion

%in that process .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

registeredChange = 0 ;

i f ( failedFlawCount == 1)

i f ( isempty ( fai ledFlawInfo ) )

fai ledFlawInfo = failedFlawInfo2 ;

registeredChange = 1 ;

end

f a i l u r e = true ;

c r i t i c a l S t r e s s = ( K c r i t ) /( geoFactor * sqrt ( pi * fai ledFlawInfo ( 5 ) ) ) ; %Pa

qList = findCrit icalPressureAlgorithm ( qList , 1 ) ;

convergence = f a l s e ;

while (~ convergence )

disp ( s t r e s s ) ;

wn = zeros ( 1 , totNumSeries ) ;

counting = 1 ;

def lect ion = 0 ;

i f ( strcmp ( loadSit , ’SSP ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )



APPENDIX A. MATLAB SOURCE CODE 106

i f ( strcmp ( loadSit , ’SSP ’ ) )

for n = 1 : numNSeries

for m = 1 : numMSeries

i f (mod(m, 2 ) ~=0 && mod(n , 2 ) ~=0)

wn( counting ) = (16* qList ( 1 ) ) / (D*m*n* ( pi ^6) * ( (m/( Length ) ) ^2

,! + (n/ ( width ) ) ^2) ^2) ;

def lect ion = def lect ion + (wn( counting ) * sin ( (m* pi ) /2) * sin ( (

,! n* pi ) /2) ) ;

end

counting = counting + 1 ;

end

end

else

bload ( 1 : ( numMSeries*numNSeries ) ) = ( ( qList ( 1 ) * Length^4) / ( 4 * ( pi ^4) *D) ) ;

wn = ( Kmatrix\bload . ’ ) . ’ ;

index = 1 ;

for m = 1 : numNSeries

for n = 1 : numMSeries

def lect ion = def lect ion + wn( index ) *(1°cos (m* pi ) ) *(1°cos (n* pi ) )

,! ; %ikke 100% sikker p? komposisjonen av wn og om dette

,! da stemmer ! !

index = index + 1 ;

end

end

end

sigmaXseries = sigmaXXm{ fai ledFlawInfo ( 1 ) } ;

sigmaYseries = sigmaYYm{ fai ledFlawInfo ( 1 ) } ;

tauXYseries = tauXYm{ fai ledFlawInfo ( 1 ) } ;

i f ( registeredChange == 1 && strcmp ( loadSit , ’CP ’ ) )

wn = °wn;

end

s t r e s s e s = zeros ( 1 , 3 ) ;

s t r e s s e s ( 1 ) = wn* sigmaXseries . ’ ;

s t r e s s e s ( 2 ) = wn* sigmaYseries . ’ ;

s t r e s s e s ( 3 ) = wn* tauXYseries . ’ ;

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Get center s t r e s s e s for output .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°



APPENDIX A. MATLAB SOURCE CODE 107

i f (mod(numFlawsSP/2 , Length *100) ==0)

midsigmax = wn*sigmaXXm { ( numFlawsSP/2)+ ( Length *100*0.5) } . ’ ;

midsigmay = wn*sigmaYYm { ( numFlawsSP/2)+ ( Length *100*0.5) } . ’ ;

midtauxy = wn*tauXYm { ( numFlawsSP/2)+ ( Length *100*0.5) } . ’ ;

e lse

midsigmax = wn*sigmaXXm{numFlawsSP / 2 } . ’ ;

midsigmay = wn*sigmaYYm{numFlawsSP / 2 } . ’ ;

midtauxy = wn*tauXYm{numFlawsSP / 2 } . ’ ;

end

e l s e i f ( strcmp ( loadSit , ’ST ’ ) )

s t r e s s e s = [ qList ( 1 ) qList ( 1 ) * f a c t o r 0 ] ;

end

[ f a i l b o o l , s t r e s s ] = willFlawPropagate ( stresses , fai ledFlawInfo ( 6 ) ,

,! fai ledFlawInfo ( 5 ) , geoFactor , K c r i t ) ;

i f ( abs ( s t r e s s ° c r i t i c a l S t r e s s ) / c r i t i c a l S t r e s s <= 0.0002)

forMonteCarlo = [ forMonteCarlo ; [ fai ledFlawInfo ( 2 ) fai ledFlawInfo ( 3 ) s t r e s s

,! qList ( 1 ) def lect ion ] ] ; %qList ( 1 ) her er f e i l ! ! !

check = [ check ; sP fai ledFlawInfo ( 1 ) fai ledFlawInfo ( 6 ) fai ledFlawInfo ( 5 )

,! fai ledFlawInfo ( 7 ) s t r e s s e s ( 1 ) s t r e s s e s ( 2 ) s t r e s s e s ( 3 ) ]

convergence = true ;

end

qList = findCrit icalPressureAlgorithm ( qList , f a i l b o o l ) ;

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%More than one f a i l u r e for the current plate . Register these

%f a i l e d flaws , and eliminate others as f i r s t f a i l i n g flaw

%candidate . Reduce load . Empty f a i l e d flaws info array .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

e l s e i f ( failedFlawCount > 1)

qList = findCrit icalPressureAlgorithm ( qList , 1 ) ;

i f (~ isempty ( fai ledFlawInfo ) )

flawsToBeExamined = fai ledFlawInfo ( : , 1 ) ;

e lse

flawsToBeExamined = [ ] ;

end

i f ( strcmp ( loadSit , ’ST ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

i f (~ isempty ( failedFlawInfo2 ) )

flawsToBeExamined2 = failedFlawInfo2 ( : , 1 ) ;

e lse



APPENDIX A. MATLAB SOURCE CODE 108

flawsToBeExamined2 = [ ] ;

end

end

else

qList = findCrit icalPressureAlgorithm ( qList , 0 ) ;

end

fai ledFlawInfo = [ ] ;

i f ( strcmp ( loadSit , ’ST ’ ) | | ( strcmp ( loadSit , ’CP ’ ) ) )

fai ledFlawInfo2 = [ ] ;

end

end

end

end

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

%Save information of the f i r s t f a i l i n g flaws of the plates in a

%text° f i l e for post°processing .

%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

f i l e = fopen ( ’ matlabvalues . t x t ’ , ’w’ ) ;

f p r i n t f ( f i l e , ’ Deflection [mm] , Load [MPa] , x [cm] , y [cm] ’ ) ;

for i =1: s i z e ( forMonteCarlo , 1 )

f p r i n t f ( f i l e , ’ %1.9 f %1.5 f %1.5 f %1.5 f \ r \n ’ , forMonteCarlo ( i , end) *10^3 , forMonteCarlo ( i , 4 ) *10^°6,

,! forMonteCarlo ( i , 1 ) , forMonteCarlo ( i , 2 ) ) ;

end

f c l o s e ( f i l e ) ;

disp ( ’Mean c r i t i c a l load ’ ) ;

disp (sum( forMonteCarlo ( : , 4 ) *10^°6)/ s i z e ( forMonteCarlo ( : , 4 ) , 1 ) ) ;



Appendix B

Python source code

def f i l e _ l e n (fname) :

""" Calculates the length of a . txt° f i l e """

with open(fname) as f :

for i , l in enumerate ( f ) :

pass

return i +1

def f i n d F a i l S t r e s s ( x x f a i l , y y f a i l , x y f a i l , xxnofai l , yynofail , xynofai l ) :

""" Linearizes s t r e s s e s and returns the middle value . """

f a c t o r = 0.5

xx = x xnofa i l + f a c t o r * ( x x f a i l °xx nofai l )

yy = yynofai l + f a c t o r * ( y y f a i l °yynofai l )

xy = xynofai l + f a c t o r * ( x y f a i l °xynofai l )

return [ xx , yy , xy ]

def unique_rows ( a ) :

""" Returns unique rows of a numpy array . """

a = np . ascontiguousarray ( a )

unique_a = np . unique ( a . view ( [ ( ’ ’ , a . dtype ) ] * a . shape [ 1 ] ) )

return unique_a . view ( a . dtype ) . reshape ( ( unique_a . shape [ 0 ] , a . shape [ 1 ] ) )

def column( matrix , i ) :

""" Given an index , returns the corresponding column in a matrix . """

return [ row [ i ] for row in matrix ]

109



APPENDIX B. PYTHON SOURCE CODE 110

def binary_search ( array , t a r g e t ) :

""" Searches for a t a r g e t value in an index by binary search . Returns the index . """

lower = 0

upper = len ( array )

while lower < upper :

x = lower + ( upper ° lower ) // 2

val = array [ x ]

i f t a r g e t == val :

return x

e l i f t a r g e t > val :

i f lower == x :

break

lower = x

e l i f t a r g e t < val :

upper = x

def back_search ( failuresAtThisFrame , plate ) :

""" Returns a l i s t of the indexes of the t a r g e t value plate in the l i s t

failuresAtThisFrame . S t a r t s at the l a s t index which needs to be a plate°value . """

arr = column( failuresAtThisFrame , 0 )

index = °1

stopIndex = len ( arr )

i n d e x l i s t = np . array ( [ index ] )

i t e r a t i o n = 0

while ( abs ( index ) ! = stopIndex ) :

index = index ° 1

i f ( i n t ( arr [ index ] ) ==plate ) :

i n d e x l i s t = np . vstack ( ( i n d e x l i s t , [ index ] ) )

e lse :

index = stopIndex

return i n d e x l i s t

def width_search ( failuresAtLastFrame , plate ) :

""" Returns a l i s t of a l l indexes of t a r g e t value plate in failuresAtLastFrame . """

arr = column( failuresAtLastFrame , 0 )

startIndex = binary_search ( arr , plate )

i f ( startIndex == None) :

print ’ There are no f a i l i n g flaws for t h i s plate ’

quit ( )



APPENDIX B. PYTHON SOURCE CODE 111

plusIndex = startIndex + 1

minusIndex = startIndex ° 1

plusOK = False

minusOK = False

i n d e x l i s t 1 = np . array ( [ ] )

i n d e x l i s t 2 = np . array ( [ startIndex ] )

while ( plusOK == False ) :

i f ( plusIndex < len ( arr ) ) :

i f ( i n t ( arr [ plusIndex ] ) == plate ) :

i n d e x l i s t 2 = np . vstack ( ( i nde xl i s t2 , [ plusIndex ] ) )

plusIndex = plusIndex + 1

else :

plusOK = True

else :

plusOK = True

while (minusOK == False ) :

i f ( minusIndex >= 0) :

i f ( i n t ( arr [ minusIndex ] ) == plate ) :

i f ( i n d e x l i s t 1 . s i z e == 0) :

i n d e x l i s t 1 = np . array ( [ minusIndex ] )

e lse :

i n d e x l i s t 1 = np . vstack ( ( i nde xl i s t1 , [ minusIndex ] ) )

minusIndex = minusIndex ° 1

else :

i f ( i n d e x l i s t 1 . s i z e != 0) :

i n d e x l i s t 1 = np . f l i p l r ( [ i n d e x l i s t 1 ] ) [ 0 ]

i n d e x l i s t 1 = np . vstack ( ( i nde xl i s t1 , i n d e x l i s t 2 ) )

e lse :

i n d e x l i s t 1 = i n d e x l i s t 2

minusOK = True

else :

i f ( i n d e x l i s t 1 . s i z e != 0) :

i n d e x l i s t 1 = np . f l i p l r ( [ i n d e x l i s t 1 ] ) [ 0 ]

i n d e x l i s t 1 = np . vstack ( ( i nde xl i s t1 , i n d e x l i s t 2 ) )

e lse :

i n d e x l i s t 1 = i n d e x l i s t 2

minusOK = True

return i n d e x l i s t 1



APPENDIX B. PYTHON SOURCE CODE 112

from odbAccess import *

from math import *

import numpy as np

#=========================================================================

########## DEFINE NECESSARY INITIAL CONDITIONS

#=========================================================================

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Fine mesh ( allows mesh of 2 square mill imeters )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

finemesh = False

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Forward search appropriate for some nonlinear cases . stopAtTimeFrame = °1 i f a l l time

#frames are to be checked .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

nonlinear = True

stopTimeFrame = °1

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Hardcoded values for mode I f a i l u r e for gl as s

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

K c r i t = 0.75*pow(10 ,6) # 0.75*pow(10 ,6)NM̂ °3/2, men m b l i Nmm̂ °3/2

Y = 0.6625

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Access Abaqus job and create a variable r e f e r r i n g to the l a s t time step for Step°1

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

odbfi le = ’ Plate . odb ’

odb = openOdb( odbfile , readOnly=True )

instance = odb . rootAssembly . instances [ ’PLATE°1 ’ ]

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# I n i t i a l i z e plate geometry and element l i s t

#Make sure the length i s i n i t i a l i z e d as x°axis length and width as y°axis width

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

numElementsInFile = len ( instance . elements )

lengthCM = 35

widthCM = 35

numElements = lengthCM*widthCM

i f ( finemesh == False ) :

i f ( numElementsInFile != numElements) :



APPENDIX B. PYTHON SOURCE CODE 113

print ’ Element s i z e not of 1 square centimeter ’

odb . close ( )

relevantElements = np . arange (numElements)

e lse :

numElementsInMesh = numElements*25

i f ( numElementsInFile != numElementsInMesh) :

print ’ Element s i z e not of 2 square mill imeters ’

odb . close ( )

el_length = lengthCM*5

el_width = widthCM*5

cm_el_length = lengthCM ;

cm_el_width = widthCM ;

relevantElements = np . zeros (numElements)

count = 0

for elL in range ( 1 , cm_el_width+1) :

i f ( elL == 1) :

index = el_length *2 °2

else :

index = index + el_length *4

for elB in range ( 1 , cm_el_length +1) :

index = index + 5

relevantElements [ count ] = index

count = count + 1

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Open t e x t f i l e with flaws . Register number of plates in t e x t f i l e .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

f i l e = open( ’ f lawInfoForPlate . t x t ’ , ’ r ’ ) . readlines ( )

f i l e 2 = open( ’ flawInfoForPlate °2. t x t ’ , ’ r ’ ) . readlines ( )

numLines = f i l e _ l e n ( ’ f lawInfoForPlate . t x t ’ )

numPlatesNext = np . arange ( numLines/numElements) ;

open( ’ f lawInfoForPlate . t x t ’ , ’ r ’ ) . close ( )

open( ’ flawInfoForPlate °2. t x t ’ , ’ r ’ ) . close ( )

#====================================================================================

#####################################################################################

#====================================================================================

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# I n i t i a l i z i n g l i s t s carrying the f a i l u r e s registered .



APPENDIX B. PYTHON SOURCE CODE 114

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

failuresAtThisFrame = np . array ( [ ] )

failuresAtLastFrame = np . array ( [ ] )

f i n a l F a i l u r e s = np . array ( [ ] )

a r e A l l P l a t e s F a i l i n g = np . zeros ( len ( numPlatesNext ) )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# I n i t i a l i z i n g

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( nonlinear == True ) :

frameIndex = °1

else :

frameIndex = 0

al lPlatesHaveFirstFai l ingFlaws = 0

sigmaXX1 = np . zeros (numElements)

sigmaYY1 = np . zeros (numElements)

tauXY1 = np . zeros (numElements)

sigmaXX2 = np . zeros (numElements)

sigmaYY2 = np . zeros (numElements)

tauXY2 = np . zeros (numElements)

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Finding the f i r s t f a i l i n g s flaws . This w i l l loop through the time steps where f i e l d

#data i s generated and r e t r i e v e the s t r e s s e s . There might be more than one f a i l i n g

#flaw per plate a f t e r t h i s while loop has continued running .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

while ( al lPlatesHaveFirstFai l ingFlaws == 0) :

i f ( nonlinear ==True ) :

frameIndex = frameIndex + 1

else :

frameIndex = frameIndex ° 1

print frameIndex

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Stopping the time step search at l a s t time step

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( ( odb . steps [ ’ Step°1 ’ ] . frames [ frameIndex ] == odb . steps [ ’ Step°1 ’ ] . frames [ 0 ] and nonlinear

,! ==False ) or (odb . steps [ ’ Step°1 ’ ] . frames [ frameIndex ] == odb . steps [ ’ Step°1 ’ ] . frames [

,! stopTimeFrame ] and nonlinear==False ) ) :

print ’ Final time step i s reached and t h i s i s the very l a s t frame loop ’

al lPlatesHaveFirstFai l ingFlaws = 1



APPENDIX B. PYTHON SOURCE CODE 115

lastFrame = odb . steps [ ’ Step°1 ’ ] . frames [ frameIndex ]

s t r e s s e s = lastFrame . fieldOutputs [ ’ S ’ ]

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Retrieving s t r e s s e s for d i f f e r e n t cases .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( relevantElements . shape ! = (2L , ) ) :

for elem in relevantElements :

i f ( ( frameIndex == °1 and nonlinear==False ) or ( nonlinear==True and

,! frameIndex == 0) ) :

e l = i n t ( elem )

thiselement = s t r e s s e s . getSubset ( region = instance . elements [ e l ] ,

,! position=CENTROID)

sigmaXX1 [ e l ] = thiselement . values [ 0 ] . data [ 0 ] *pow(10 ,6)

sigmaYY1 [ e l ] = thiselement . values [ 0 ] . data [ 1 ] *pow(10 ,6)

tauXY1 [ e l ] = thiselement . values [ 0 ] . data [ 3 ] *pow(10 ,6)

sigmaXX2 [ e l ] = thiselement . values [ 1 ] . data [ 0 ] *pow(10 ,6)

sigmaYY2 [ e l ] = thiselement . values [ 1 ] . data [ 1 ] *pow(10 ,6)

tauXY2 [ e l ] = thiselement . values [ 1 ] . data [ 3 ] *pow(10 ,6)

e l i f (odb . steps [ ’ Step°1 ’ ] . frames [ frameIndex ] == odb . steps [ ’ Step°1 ’ ] . frames

,! [ 0 ] ) :

e l = i n t ( elem [ 0 ] )

i f ( elem [1]==0) :

sigmaXX1 [ e l ] = 0

sigmaYY1 [ e l ] = 0

tauXY1 [ e l ] = 0

else :

sigmaXX2 [ e l ] = 0

sigmaYY2 [ e l ] = 0

tauXY2 [ e l ] = 0

else :

e l = i n t ( elem [ 0 ] )

thiselement = s t r e s s e s . getSubset ( region = instance . elements [ e l ] ,

,! position=CENTROID)

i f ( elem [1]==0) :

sigmaXX1 [ e l ] = thiselement . values [ 0 ] . data [ 0 ] *pow(10 ,6)

sigmaYY1 [ e l ] = thiselement . values [ 0 ] . data [ 1 ] *pow(10 ,6)

tauXY1 [ e l ] = thiselement . values [ 0 ] . data [ 3 ] *pow(10 ,6)



APPENDIX B. PYTHON SOURCE CODE 116

else :

sigmaXX2 [ e l ] = thiselement . values [ 1 ] . data [ 0 ] *pow(10 ,6)

sigmaYY2 [ e l ] = thiselement . values [ 1 ] . data [ 1 ] *pow(10 ,6)

tauXY2 [ e l ] = thiselement . values [ 1 ] . data [ 3 ] *pow(10 ,6)

e lse :

thiselement = s t r e s s e s . getSubset ( region = instance . elements [ relevantElements [ 0 ] ] ,

,! position=CENTROID)

i f ( relevantElements [1]==0) :

sigmaXX1 [ relevantElements [ 0 ] ] = thiselement . values [ 0 ] . data [ 0 ] *pow(10 ,6)

sigmaYY1 [ relevantElements [ 0 ] ] = thiselement . values [ 0 ] . data [ 1 ] *pow(10 ,6)

tauXY1 [ relevantElements [ 0 ] ] = thiselement . values [ 0 ] . data [ 3 ] *pow(10 ,6)

e lse :

sigmaXX2 [ relevantElements [ 0 ] ] = thiselement . values [ 1 ] . data [ 0 ] *pow(10 ,6)

sigmaYY2 [ relevantElements [ 0 ] ] = thiselement . values [ 1 ] . data [ 1 ] *pow(10 ,6)

tauXY2 [ relevantElements [ 0 ] ] = thiselement . values [ 1 ] . data [ 3 ] *pow(10 ,6)

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#For every element/ flaw , check relevant flaws in a l l plates i f they f a i l

# for the s t r e s s e s

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

numPlates = numPlatesNext

for plate in numPlates :

fai ledflawcount = 0

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# For the f i r s t run for a time frame that i s not the f i r s t , store the flaws

# f a i l i n g for previous time step and i n i t i a l i z e the l i s t for r e t r i e v i n g f a i l i n g

# flaws at t h i s time step .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( ( frameIndex!=°1 and plate==numPlates [ 0 ] and nonlinear==False ) or ( frameIndex !=0

,! and plate==numPlates [ 0 ] and nonlinear==True ) ) :

i f ( failuresAtThisFrame . s i z e ! = 0) :

failuresAtLastFrame = failuresAtThisFrame

failuresAtThisFrame = np . array ( [ ] )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Checking f i r s t f a i l i n g flaw candidates for f a i l u r e

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

for elem in relevantElements :

i f ( relevantElements . shape ! = (2L , ) ) :

i f ( ( frameIndex ! = °1 and nonlinear==False ) or ( frameIndex !=0 and

,! nonlinear==True ) ) :



APPENDIX B. PYTHON SOURCE CODE 117

flaw = i n t ( elem [ 0 ] )

pos = i n t ( elem [ 1 ] )

e lse :

pos = 5 #tweak

flaw = i n t ( elem )

else :

flaw = i n t ( relevantElements [ 0 ] )

pos = i n t ( relevantElements [ 1 ] )

thisFlaw = f i l e [ i n t ( ( plate *numElements) +( flaw ) ) ] . s p l i t ( )

thisFlawLength = f l o a t ( thisFlaw [ 0 ] )

thisFlawAngle = f l o a t ( thisFlaw [ 1 ] )

thisFlaw2 = f i l e 2 [ i n t ( ( plate *numElements) +( flaw ) ) ] . s p l i t ( )

thisFlawLength2 = f l o a t ( thisFlaw2 [ 0 ] )

thisFlawAngle2 = f l o a t ( thisFlaw2 [ 1 ] )

i f ( ( frameIndex == °1 and nonlinear==False ) or ( frameIndex==0 and nonlinear==

,! True ) ) :

sigma1 = sigmaXX1 [ flaw ] + sigmaYY1 [ flaw ] ° ( 0 . 5 * ( sigmaXX1 [ flaw ]+

,! sigmaYY1 [ flaw ] ) + 0 . 5 * ( sigmaXX1 [ flaw]°sigmaYY1 [ flaw ] ) * cos (2*

,! thisFlawAngle ) +(tauXY1 [ flaw ] * sin (2* thisFlawAngle ) ) )

sigma2 = sigmaXX2 [ flaw ] + sigmaYY2 [ flaw ] ° ( 0 . 5 * ( sigmaXX2 [ flaw ]+

,! sigmaYY2 [ flaw ] ) + 0 . 5 * ( sigmaXX2 [ flaw]°sigmaYY2 [ flaw ] ) * cos (2*

,! thisFlawAngle2 ) +(tauXY2 [ flaw ] * sin (2* thisFlawAngle2 ) ) )

s i gmal i s t = np . array ( [ sigma1 , sigma2 ] )

e lse :

i f ( pos == 0) :

s i gmal i s t = np . array ( [ sigmaXX1 [ flaw ] + sigmaYY1 [ flaw ] °

,! ( 0 . 5 * ( sigmaXX1 [ flaw ]+sigmaYY1 [ flaw ] ) + 0 . 5 * ( sigmaXX1

,! [ flaw]°sigmaYY1 [ flaw ] ) * cos (2* thisFlawAngle ) +(tauXY1 [

,! flaw ] * sin (2* thisFlawAngle ) ) ) ] )

e lse :

s i gmal i s t = np . array ( [ sigmaXX2 [ flaw ] + sigmaYY2 [ flaw ] °

,! ( 0 . 5 * ( sigmaXX2 [ flaw ]+sigmaYY2 [ flaw ] ) + 0 . 5 * ( sigmaXX2

,! [ flaw]°sigmaYY2 [ flaw ] ) * cos (2* thisFlawAngle2 ) +(tauXY2

,! [ flaw ] * sin (2* thisFlawAngle2 ) ) ) ] )

sigmacount = 0

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Calculating toughness



APPENDIX B. PYTHON SOURCE CODE 118

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

for sigma in si gmal i s t :

sigmacount = sigmacount + 1

i f ( sigma >= 0) :

i f ( ( len ( s i gmal is t ) ==2 and sigmacount==1) or ( pos==0) ) :

K = Y*sigma* sqrt ( pi * thisFlawLength )

else :

K = Y*sigma* sqrt ( pi * thisFlawLength2 )

else :

K = 0

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Checking for f a i l u r e and in that case saving

#information about the f a i l i n g flaw

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( K c r i t <= K) :

i f ( frameIndex == °1 and nonlinear==False ) :

i f ( i n t ( a r e A l l P l a t e s F a i l i n g [ plate ] ) == 0) :

a r e A l l P l a t e s F a i l i n g [ plate ] = 1

i f ( failuresAtThisFrame . s i z e == 0) :

i f ( sigmacount==1) :

failuresAtThisFrame = np . array ( [

,! plate , flaw , sigma ,

,! frameIndex , 0 ] )

e lse :

failuresAtThisFrame = np . array ( [

,! plate , flaw , sigma ,

,! frameIndex , 1 ] )

e lse :

i f ( sigmacount==1) :

failuresAtThisFrame = np . vstack ( (

,! failuresAtThisFrame , [ plate ,

,! flaw , sigma , frameIndex ,

,! 0 ] ) )

e lse :

failuresAtThisFrame = np . vstack ( (

,! failuresAtThisFrame , [ plate ,

,! flaw , sigma , frameIndex ,



APPENDIX B. PYTHON SOURCE CODE 119

,! 1 ] ) )

e lse :

i f ( failuresAtThisFrame . s i z e == 0) :

failuresAtThisFrame = np . array ( [ plate , flaw

,! , sigma , frameIndex , pos ] )

e lse :

failuresAtThisFrame = np . vstack ( (

,! failuresAtThisFrame , [ plate , flaw ,

,! sigma , frameIndex , pos ] ) )

fai ledflawcount = failedflawcount + 1

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Linear : I f no flaws f a i l e d in t h i s plate at t h i s time frame , the l i s t of

# f a i l e d flaws from the l a s t time frame i s registered as the f i n a l f a i l i n g flaws .

#The plate i s removed in order to not be included at next time frame .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( i n t ( fai ledflawcount ) == 0 and nonlinear==False ) :

i f ( failuresAtLastFrame . shape != (5L , ) ) :

indexes = width_search ( failuresAtLastFrame , i n t ( plate ) )

for index in indexes :

i f ( f i n a l F a i l u r e s . s i z e == 0) :

f i n a l F a i l u r e s = np . array ( failuresAtLastFrame [ index

,! ] )

e lse :

f i n a l F a i l u r e s = np . vstack ( ( f i n a l F a i l u r e s ,

,! failuresAtLastFrame [ index ] ) )

e lse :

i f ( i n t ( failuresAtLastFrame [ 0 ] ) == i n t ( plate ) ) :

i f ( f i n a l F a i l u r e s . s i z e == 0) :

f i n a l F a i l u r e s = failuresAtLastFrame

else :

f i n a l F a i l u r e s = np . vstack ( ( f i n a l F a i l u r e s ,

,! failuresAtLastFrame ) )

numPlatesNext = np . delete ( numPlatesNext , np . where ( numPlatesNext==plate ) [ 0 ] )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Nonlinear : I f f a i l u r e occurs at t h i s time frame for a plate , they are stored

#in f i n a l F a i l u r e s . The plate i s then removed from numPlatesNext not to be

#included in a new loop .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°



APPENDIX B. PYTHON SOURCE CODE 120

i f ( i n t ( fai ledflawcount ) !=0 and nonlinear == True ) :

i f ( failuresAtThisFrame . shape ! = (5L , ) ) :

indexes = back_search ( failuresAtThisFrame , i n t ( plate ) )

for index in indexes :

i f ( f i n a l F a i l u r e s . s i z e == 0) :

f i n a l F a i l u r e s = np . array ( failuresAtThisFrame [ index

,! ] )

e lse :

f i n a l F a i l u r e s = np . vstack ( ( f i n a l F a i l u r e s ,

,! failuresAtThisFrame [ index ] ) )

e lse :

i f ( i n t ( failuresAtThisFrame [ 0 ] ) == i n t ( plate ) ) :

i f ( f i n a l F a i l u r e s . s i z e == 0) :

f i n a l F a i l u r e s = failuresAtThisFrame

else :

f i n a l F a i l u r e s = np . vstack ( ( f i n a l F a i l u r e s ,

,! failuresAtThisFrame ) )

numPlatesNext = np . delete ( numPlatesNext , np . where ( numPlatesNext==plate ) [ 0 ] )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Validates that a l l plates are f a i l i n g at f i r s t time frame for l i n e a r cases . I f no

# f a i l u r e occurs at f i r s t time frame , i t i s unl ikely f a i l u r e w i l l occur at a l a t e r

#stage . This only s u i t s the l i n e a r case and for nonlinear cases should be removed .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( i n t ( frameIndex )==°1 and nonlinear==False and i n t (np . amin( a r e A l l P l a t e s F a i l i n g ) ==0) ) :

print ’Not a l l g l a ss plates f a i l e d for the greatest s t r e s s e s . The analysis w i l l be

,! incomplete . Apply greater s t r e s s e s in the Abaqus job . ’

quit ( )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Updating the l i s t of f i r s t f a i l u r e candidates as to which have f a i l e d and not .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( nonlinear==False ) :

i f ( failuresAtThisFrame . s i z e == 0) :

a l lPlatesHaveFirstFai l ingFlaws = 1

else :

i f ( failuresAtThisFrame . shape != (5L , ) ) :

relevantElements = np . array ( [ ] )

for f a i l s in failuresAtThisFrame :

i f ( ( f a i l s == failuresAtThisFrame [ 0 ] ) . a l l ( ) ) :



APPENDIX B. PYTHON SOURCE CODE 121

relevantElements = np . array ( [ i n t ( f a i l s [ 1 ] ) , i n t (

,! f a i l s [ 4 ] ) ] )

e lse :

relevantElements = np . vstack ( ( relevantElements , [

,! i n t ( f a i l s [ 1 ] ) , i n t ( f a i l s [ 4 ] ) ] ) )

relElemCheck = relevantElements

relevantElements = unique_rows ( relevantElements )

e lse :

relevantElements = np . array ( [ i n t ( failuresAtThisFrame [ 1 ] ) , i n t (

,! failuresAtThisFrame [ 4 ] ) ] )

e lse :

i f ( len ( numPlatesNext ) ==0) :

a l lPlatesHaveFirstFai l ingFlaws = 1

else :

i f ( frameIndex==0) :

for elements in relevantElements :

i f ( elements==relevantElements [ 0 ] ) :

relevantElements2 = np . array ( [ elements , 0 ] )

relevantElements2 = np . vstack ( ( relevantElements2 , [

,! elements , 1 ] ) )

e lse :

relevantElements2 = np . vstack ( ( relevantElements2 , [

,! elements , 0 ] ) )

relevantElements2 = np . vstack ( ( relevantElements2 , [

,! elements , 1 ] ) )

relevantElements = relevantElements2

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

# Converging the f a i l e d flaws of the plates by finding the c r i t i c a l s t r e s s e s . Retrieving

# def lect ion from output database . Can r e t r i e v e center pressure where applicable , but

#needs uncommenting .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

f i n a l F a i l u r e s L i n e a r i z e d = np . array ( [ ] )

numPlates = np . arange ( numLines/numElements)

#Allowing for only a few plates f a i l i n g in forward search of time frames

i f ( len ( numPlatesNext ) != 0 and nonlinear==True ) :

for plate in numPlatesNext :

numPlates = np . delete ( numPlates , np . where ( numPlates==plate ) [ 0 ] )



APPENDIX B. PYTHON SOURCE CODE 122

for plate in numPlates :

plateReached = False

thisPlateLinearized = np . array ( [ ] )

s t r e s s L i s t = np . array ( [ ] )

for row in f i n a l F a i l u r e s :

#assuming more than one plate in the analysis

i f (row [ 0 ] == plate ) :

e l = i n t (row [ 1 ] )

pos = i n t (row [ 4 ] )

frameFail = odb . steps [ ’ Step°1 ’ ] . frames [ i n t (row [ 3 ] ) ]

def lect ions = frameFail . fieldOutputs [ ’U’ ]

node = i n t ( c e i l ( ( ( sqrt (numElements) +1) * ( sqrt (numElements) +1) ) /2) )

centerDeflection = def lect ions . getSubset ( ) . values [ node ] . data [ 2 ]

# pressureFail = frameFail . fieldOutputs [ ’ P ’ ] . getSubset ( ) . values [ node ] . data

pressureFail = ’Not included in analysis ’

frameNoFail = odb . steps [ ’ Step°1 ’ ] . frames [ i n t (row [ 3 ] ) °1]

deflectionsNoFail = frameNoFail . fieldOutputs [ ’U’ ]

centerDeflectionNoFail = deflectionsNoFail . getSubset ( ) . values [ node ] . data [ 2 ]

#pressureNoFail = frameNoFail . fieldOutputs [ ’ P ’ ] . getSubset ( ) . values [ node ] .

,! data

pressureNoFail = ’Not included in analysis ’

s t r e s s e s = frameFail . f ieldOutputs [ ’ S ’ ]

thiselement = s t r e s s e s . getSubset ( region = instance . elements [ e l ] , position=

,! CENTROID)

sigmaXXfail = thiselement . values [ pos ] . data [ 0 ] *pow(10 ,6)

sigmaYYfail = thiselement . values [ pos ] . data [ 1 ] *pow(10 ,6)

tauXYfai l = thiselement . values [ pos ] . data [ 3 ] *pow(10 ,6)

frameNoFail = odb . steps [ ’ Step°1 ’ ] . frames [ i n t (row [ 3 ] ) °1]

s t r e s s e s = frameNoFail . fieldOutputs [ ’ S ’ ]

thiselement = s t r e s s e s . getSubset ( region = instance . elements [ e l ] , position=

,! CENTROID)

sigmaXXnofail = thiselement . values [ pos ] . data [ 0 ] *pow(10 ,6)

sigmaYYnofail = thiselement . values [ pos ] . data [ 1 ] *pow(10 ,6)



APPENDIX B. PYTHON SOURCE CODE 123

tauXYnofail = thiselement . values [ pos ] . data [ 3 ] *pow(10 ,6)

convergence = False

i f (row [ 4 ] == 0) :

thisFlaw = f i l e [ i n t ( ( plate *numElements) +( e l ) ) ] . s p l i t ( )

thisFlawLength = f l o a t ( thisFlaw [ 0 ] )

thisFlawAngle = f l o a t ( thisFlaw [ 1 ] )

e lse :

thisFlaw = f i l e 2 [ i n t ( ( plate *numElements) +( e l ) ) ] . s p l i t ( )

thisFlawLength = f l o a t ( thisFlaw [ 0 ] )

thisFlawAngle = f l o a t ( thisFlaw [ 1 ] )

c r i t i c a l S t r e s s = ( K c r i t ) /(Y* sqrt ( pi * thisFlawLength ) )

f a i l c o n t r o l = sigmaXXfail + sigmaYYfail ° ( 0 . 5 * ( sigmaXXfail+sigmaYYfail ) +

,! 0 . 5 * ( sigmaXXfail°sigmaYYfail ) * cos (2* thisFlawAngle ) +( tauXYfai l * sin (2*

,! thisFlawAngle ) ) )

nofai l contro l = sigmaXXnofail + sigmaYYnofail ° ( 0 . 5 * ( sigmaXXnofail+

,! sigmaYYnofail ) + 0 . 5 * ( sigmaXXnofail°sigmaYYnofail ) * cos (2*

,! thisFlawAngle ) +( tauXYnofail * sin (2* thisFlawAngle ) ) )

t h i s = 0

while ( not convergence ) :

[newXX, newYY, newXY] = f i n d F a i l S t r e s s ( sigmaXXfail , sigmaYYfail ,

,! tauXYfail , sigmaXXnofail , sigmaYYnofail , tauXYnofail )

sigma = newXX + newYY ° ( 0 . 5 * (newXX+newYY) + 0 . 5 * (newXX°newYY) * cos

,! (2* thisFlawAngle ) +(newXY* sin (2* thisFlawAngle ) ) )

sigmasqrtA = sigma* sqrt ( thisFlawLength )

K = Y*sigma* sqrt ( pi * thisFlawLength )

i f (K >= K c r i t ) :

sigmaXXfail = newXX

sigmaYYfail = newYY

tauXYfai l = newXY

else :

sigmaXXnofail = newXX

sigmaYYnofail = newYY

tauXYnofail = newXY

i f ( t h i s == abs ( sigma°c r i t i c a l S t r e s s ) / c r i t i c a l S t r e s s ) :

print ’ Wil l not converge properly ’



APPENDIX B. PYTHON SOURCE CODE 124

quit ( )

t h i s = abs ( sigma°c r i t i c a l S t r e s s ) / c r i t i c a l S t r e s s

i f ( abs ( sigma°c r i t i c a l S t r e s s ) / c r i t i c a l S t r e s s <= 0.0002) :

convergence = True

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Saving information of converged flaw . Breaking the loop of a l l f a i l u r e s in

# a l l plates i f a l l f a i l u r e s in current plate i s accounted for , in order to

#move on to next plate .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

i f ( plateReached == False ) :

s t r e s s L i s t = np . array ( [ plate , el , sigmaXXfail , sigmaYYfail ,

,! tauXYfail , f a i l c o n t r o l , nofai lcontrol , sigma , row [ 4 ] , row

,! [ 3 ] , centerDeflection , centerDeflectionNoFail , pressureFail ,

,! pressureNoFail ] )

e lse :

s t r e s s L i s t = np . vstack ( ( s t r e s s L i s t , [ plate , el , sigmaXXfail ,

,! sigmaYYfail , tauXYfail , f a i l c o n t r o l , nofai lcontrol , sigma ,

,! row [ 4 ] , row [ 3 ] , centerDeflection , centerDeflectionNoFail ,

,! pressureFail , pressureNoFail ] ) )

plateReached = True

e l i f ( ( plateReached == True ) and ( i n t (row [ 0 ] ) i s not plate ) ) :

break

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Finding which of the converged f a i l e d flaws of the current plate i s f a i l i n g f i r s t

#by comparing by percentage which of the flaws c r i t i c a l s t r e s s e s i s the c l o s e s t to

#the s t r e s s e s of the no f a i l time frame . I f pressure i s to be included in the

# analysis , t h i s needs uncommenting .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

lastpercentage = 1

i f ( s t r e s s L i s t . shape == (14L , ) ) :

f i r s t F a i l i n g F l a w = s t r e s s L i s t

lastpercentage = ( f i r s t F a i l i n g F l a w [7]° f i r s t F a i l i n g F l a w [ 6 ] ) /( f i r s t F a i l i n g F l a w [5]°

,! f i r s t F a i l i n g F l a w [ 6 ] )

actualCenterDeflection = flaw [ 1 1 ] + ( flaw [10]° flaw [ 1 1 ] ) * lastpercentage

# actualPressureFai l = flaw [ 1 3 ] + ( flaw [ 1 2 ] ° flaw [ 1 3 ] ) * lastpercentage



APPENDIX B. PYTHON SOURCE CODE 125

actualPressureFai l = ’Not included in analysis ’

e lse :

for flaw in s t r e s s L i s t :

percentage = ( flaw [7]° flaw [ 6 ] ) /( flaw [5]° flaw [ 6 ] )

i f ( percentage <= lastpercentage ) :

f i r s t F a i l i n g F l a w = flaw

lastpercentage = percentage

actualCenterDeflection = flaw [ 1 1 ] + ( flaw [10]° flaw [ 1 1 ] ) *

,! lastpercentage

# actualPressureFai l = flaw [ 1 3 ] + ( flaw [ 1 2 ] ° flaw [ 1 3 ] ) *

,! lastpercentage

actualPressureFai l = ’Not included in analysis ’

# i f ( plate == 0 or ( nonlinear==True and plate == numPlates [ 0 ] ) ) :

i f ( plate==numPlates [ 0 ] ) :

f i n a l F a i l u r e s L i n e a r i z e d = np . array ( [ ’ Plate no . ’ , ’ Flaw no . ’ , ’ sigma_xx ’ , ’ sigma_yy ’

,! , ’ tau_xy ’ , ’ controlparameter_fail ’ , ’ controlparameter_nofail ’ , ’ t e n s i l e

,! s t r e s s ’ , ’ side of plate ’ , ’ time frame index ’ , ’ def lect ion_frame_fai l ’ , ’

,! deflection_frame_nofail ’ , ’ pressure_frame_fail ’ , ’ pressure_frame_nofail ’ , ’

,! closenessToNoFailFramePercentage ’ , ’ c r i t i c a l C e n t e r D e f l e c t i o n ’ , ’

,! cr i t ical CenterPressure ’ ] )

f i n a l F a i l u r e s L i n e a r i z e d = np . vstack ( ( f inalFai luresLinearized , np . append(

,! f i r s t F a i l i n g F l a w , [ lastpercentage , actualCenterDeflection ,

,! actualPressureFai l ] ) ) )

e lse :

f i n a l F a i l u r e s L i n e a r i z e d = np . vstack ( ( f inalFai luresLinearized , np . append(

,! f i r s t F a i l i n g F l a w , [ lastpercentage , actualCenterDeflection ,

,! actualPressureFai l ] ) ) )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

#Write r e s u l t s to a t e x t f i l e for post°processing .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

w r i t e f i l e = open( ’ monteCarloResults . t x t ’ , ’w’ )

for row in f i n a l F a i l u r e s L i n e a r i z e d :

w r i t e f i l e . write ( ’ ’ . join (map( str , row) ) )

w r i t e f i l e . write ( ’ \n ’ )

w r i t e f i l e . close ( )

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°



APPENDIX B. PYTHON SOURCE CODE 126

#Close . odb° f i l e .

#°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

odb . close ( )

import matplotlib . pyplot as p l t

import matplotlib . mlab as mlab

import numpy as np

from math import *

from scipy import s t a t s

import scipy . s t a t s as ss

#EXAMPLE OF MONTE CARLO POST PROCESSING

#This i s the Monte Carlo s c r i p t for the small sample in the four point bending t e s t s in Section

,! 6 . 1 . 2

load = 4000

length =(10) #cm

width = 2

f i l e = open( ’ MonteCarloResults . t x t ’ , ’ r ’ ) . readlines ( )

sigma = np . zeros ( len ( f i l e ) )

c r i t l o a d = np . zeros ( len ( f i l e ) )

d = np . zeros ( len ( f i l e ) )

x = np . zeros ( len ( f i l e ) )

y = np . zeros ( len ( f i l e ) )

num = np . zeros ( len ( f i l e ) )

index = 0

p = 0

v = np . zeros ( len ( f i l e ) )

for row in f i l e :

values = row . s p l i t ( )

d[ index ] = f l o a t ( values [°1])

sigma [ index ] = f l o a t ( values [ 7 ] ) *pow(10 ,°6)

percentage = f l o a t ( values [°2])

p = p + percentage

c r i t l o a d [ index ] = ( load ) * percentage

v [ index ] = values [ 1 ]

xindicator = ( f l o a t ( values [ 1 ] ) +1)%(length *5)

i f ( xindicator == 0) :

xindicator = length *5



APPENDIX B. PYTHON SOURCE CODE 127

xindicator = xindicator /5

num[ index ] = values [ 1 ]

yindicator = c e i l ( ( f l o a t ( values [ 1 ] ) +1) / ( length *5*5) )

x [ index ] = xindicator ° 0.3

y [ index ] = yindicator ° 0.5 #tweak

index = index + 1

p l t . show ( )

nbins = 30

ss = np . unique ( v )

open( ’ monteCarloResults . t x t ’ , ’ r ’ ) . close ( )

actual = open( ’ smallTestResults . t x t ’ , ’ r ’ ) . readlines ( )

d e f l = np . zeros ( len ( actual ) )

F = np . zeros ( len ( actual ) )

index = 0

for l i n e in actual :

values = l i n e . s p l i t ( )

F [ index ] = values [ 0 ]

d e f l [ index ] = values [ 1 ]

index = index + 1

open( ’ smallTestResults . t x t ’ , ’ r ’ ) . close ( )

c r i t l o a d = np . sort ( c r i t l o a d )

F = np . sort (F)

d e f l = np . sort ( d e f l )

d = np . sort (d)

meanF = sum(F) / len (F)

meanDefl = sum( d e f l ) / len ( d e f l )

sigmF = np . std (F)

sigmDefl = np . std ( d e f l )

XX = np . linspace (0 ,3000 ,200)



APPENDIX B. PYTHON SOURCE CODE 128

mean1 = sum( c r i t l o a d ) / len ( c r i t l o a d )

meand = sum(d) / len (d)

sigmd = np . std (d)

sigm1 = np . std ( c r i t l o a d )

bins = 30

p l t . axi s ( [ 0 , 1 0 , 0 , 2 ] )

p l t . x label ( ’ Distance along the plate length [cm] ’ , fo nts i ze = 20)

p l t . y label ( ’ Distance along the plate width [cm] ’ , fo nts i z e = 20)

p l t . s c a t t e r ( x , y , l ab el = ’ Analysis r e s u l t s ’ )

p l t . show ( )

#CUMULATIVE NORMAL

p l t . plot (XX, s t a t s .norm. cdf (XX, loc=meanF, scale=sigmF ) , ’ k°° ’ )

p l t . plot (XX, s t a t s .norm. cdf (XX, loc=mean1, scale=sigm1 ) , ’ k°° ’ )

Xa = np . sort (F)

Na = len (F)

Fa = np . array ( range (Na) ) / f l o a t (Na)

p l t . plot (Xa , Fa , color = ’ red ’ , l ab el = ’ Test r e s u l t s ’ )

X1 = np . sort ( c r i t l o a d )

N = len ( c r i t l o a d )

F2 = np . array ( range (N) ) / f l o a t (N)

p l t . plot (X1 , F2 , color = ’ blue ’ , l a be l = ’ Analysis r e s u l t s ’ )

p l t . x label ( ’ C r i t i c a l load [N] ’ , fo nts i z e = 20)

p l t . y label ( ’ Cumulative probabi l i ty ’ , fo nts i z e = 20)

p l t . axi s ( [ 0 , 3 0 0 0 , 0 , 1 ] )

p l t . show ( )

#CUMULATIVE WEIBULL

p l t . plot (XX, s t a t s . exponweib . cdf (XX, * s t a t s . exponweib . f i t ( cr i t load , 1 , 1 , scale =0.2 , loc =0) ) , ’ k°° ’ )

p l t . plot (XX, s t a t s . exponweib . cdf (XX, * s t a t s . exponweib . f i t (F , 1 , 1 , scale =0.2 , loc =0) ) , ’ k°° ’ )

Xa = np . sort (F)

Na = len (F)

Fa = np . array ( range (Na) ) / f l o a t (Na)

p l t . plot (Xa , Fa , color = ’ red ’ , l ab el = ’ Test r e s u l t s ’ )

X1 = np . sort ( c r i t l o a d )

N = len ( c r i t l o a d )



APPENDIX B. PYTHON SOURCE CODE 129

F2 = np . array ( range (N) ) / f l o a t (N)

p l t . plot (X1 , F2 , color = ’ blue ’ , l a be l = ’ Analysis r e s u l t s ’ )

p l t . x label ( ’ C r i t i c a l load [N] ’ , fo nts i z e = 20)

p l t . y label ( ’ Cumulative probabi l i ty ’ , fo nts i z e = 20)

p l t . axi s ( [ 0 , 3 0 0 0 , 0 , 1 ] )

p l t . show ( )

#crLoad = np . array ( [ c r i t l o a d ] ) . T

crLoad = c r i t l o a d

p l t . plot (np . linspace (0 ,3000 ,200) ,mlab . normpdf(np . linspace (0 ,3000 ,200) ,meanF, sigmF ) , linewidth = 2 ,

,! color = ’ r ’ )

p l t . h i s t (F , bins , f i l l = False , hatch= ’+ ’ , edgecolor= ’ r ’ , l a be l = ’ Test r e s u l t s ’ ,normed=1)

p l t . plot (np . linspace (0 ,3000 ,200) ,mlab . normpdf(np . linspace (0 ,3000 ,200) ,mean1, sigm1 ) , linewidth = 2 ,

,! color = ’b ’ )

p l t . h i s t ( cr i t load , bins , f i l l = False , hatch= ’ x ’ , edgecolor= ’b ’ , l ab el = ’ Analysis r e s u l t s ’ , normed

,! =1)

p l t . x label ( ’ C r i t i c a l load [N] ’ , fo nts i z e =20)

p l t . y label ( ’ Density ’ , fonts iz e =20)

p l t . axi s ( [ 0 , 3 0 0 0 , 0 , 0 . 0 0 6 ] )

p l t . show ( )

#weibull

crLoad = c r i t l o a d

p l t . h i s t (F , bins , f i l l = False , hatch= ’+ ’ , edgecolor= ’ r ’ , l a be l = ’ Test r e s u l t s ’ ,normed=1)

p l t . h i s t ( cr i t load , bins , f i l l = False , hatch= ’ x ’ , edgecolor= ’b ’ , l ab el = ’ Analysis r e s u l t s ’ , normed

,! =1)

p l t . plot (XX, s t a t s . exponweib . pdf (XX, * s t a t s . exponweib . f i t ( cr i t load , 1 , 1 , scale =0.2 , loc =0) ) , color= ’b ’

,! , l inewidth =2)

p l t . plot (XX, s t a t s . exponweib . pdf (XX, * s t a t s . exponweib . f i t (F , 1 , 1 , scale =0.2 , loc =0) ) , color= ’ r ’ ,

,! l inewidth =2)

p l t . x label ( ’ C r i t i c a l load [N] ’ , fo nts i z e =20)

p l t . y label ( ’ Density ’ , fonts iz e =20)

p l t . axi s ( [ 0 , 3 0 0 0 , 0 , 0 . 0 0 6 ] )

p l t . show ( )

#DEFLECTION PLOTS

F = d e f l

c r i t l o a d = d



APPENDIX B. PYTHON SOURCE CODE 130

meanF = sum( d e f l ) / len ( d e f l )

mean1 = sum( c r i t l o a d ) / len ( c r i t l o a d )

sigmF = np . std (F)

sigm1 = np . std ( c r i t l o a d )

XX = np . linspace (0 ,2 ,200)

#CUMULATIVE NORMAL DEFLECTION

p l t . plot (XX, s t a t s .norm. cdf (XX, loc=meanF, scale=sigmF ) , ’ k°° ’ )

p l t . plot (XX, s t a t s .norm. cdf (XX, loc=mean1, scale=sigm1 ) , ’ k°° ’ )

Xa = np . sort (F)

Na = len (F)

Fa = np . array ( range (Na) ) / f l o a t (Na)

p l t . plot (Xa , Fa , color = ’ red ’ , l ab el = ’ Test r e s u l t s ’ )

X1 = np . sort ( c r i t l o a d )

N = len ( c r i t l o a d )

F2 = np . array ( range (N) ) / f l o a t (N)

p l t . plot (X1 , F2 , color = ’ blue ’ , l a be l = ’ Analysis r e s u l t s ’ )

p l t . x label ( ’ Deflection at f a i l u r e [mm] ’ , fo nts i ze = 20)

p l t . y label ( ’ Cumulative probabi l i ty ’ , fo nts i z e = 20)

p l t . show ( ) y

#CUMULATIVE WEIBULL DEFLECTION

p l t . plot (XX, s t a t s . exponweib . cdf (XX, * s t a t s . exponweib . f i t ( cr i t load , 1 , 1 , scale =0.2 , loc =0) ) , ’ k°° ’ )

p l t . plot (XX, s t a t s . exponweib . cdf (XX, * s t a t s . exponweib . f i t (F , 1 , 1 , scale =0.2 , loc =0) ) , ’ k°° ’ )

Xa = np . sort (F)

Na = len (F)

Fa = np . array ( range (Na) ) / f l o a t (Na)

p l t . plot (Xa , Fa , color = ’ red ’ , l ab el = ’ Test r e s u l t s ’ )

X1 = np . sort ( c r i t l o a d )

N = len ( c r i t l o a d )

F2 = np . array ( range (N) ) / f l o a t (N)

p l t . plot (X1 , F2 , color = ’ blue ’ , l a be l = ’ Analysis r e s u l t s ’ )

p l t . x label ( ’ Deflection at f a i l u r e [mm] ’ , fo nts i ze = 20)

p l t . y label ( ’ Cumulative probabi l i ty ’ , fo nts i z e = 20)



APPENDIX B. PYTHON SOURCE CODE 131

p l t . show ( )

# Deflection normal histogram

crLoad = c r i t l o a d

p l t . plot (np . linspace (0 ,2 ,200) ,mlab . normpdf(np . linspace (0 ,2 ,200) ,meanF, sigmF ) , linewidth = 2 , color

,! = ’ r ’ )

p l t . h i s t (F , bins , f i l l = False , hatch= ’+ ’ , edgecolor= ’ r ’ , l a be l = ’ Test r e s u l t s ’ ,normed=1)

p l t . plot (np . linspace (0 ,2 ,200) ,mlab . normpdf(np . linspace (0 ,2 ,200) ,mean1, sigm1 ) , linewidth = 2 , color

,! = ’b ’ )

p l t . h i s t ( cr i t load , bins , f i l l = False , hatch= ’ x ’ , edgecolor= ’b ’ , l ab el = ’ Analysis r e s u l t s ’ , normed

,! =1)

p l t . x label ( ’ Deflection at f a i l u r e [mm] ’ , fo nts i z e =20)

p l t . y label ( ’ Density ’ , fonts iz e =20)

p l t . show ( )

# Deflection weibull histogram

p l t . h i s t (F , bins , f i l l = False , hatch= ’+ ’ , edgecolor= ’ r ’ , l a be l = ’ Test r e s u l t s ’ ,normed=1)

p l t . h i s t ( cr i t load , bins , f i l l = False , hatch= ’ x ’ , edgecolor= ’b ’ , l ab el = ’ Analysis r e s u l t s ’ , normed

,! =1)

p l t . plot (XX, s t a t s . exponweib . pdf (XX, * s t a t s . exponweib . f i t ( cr i t load , 1 , 1 , scale =0.2 , loc =0) ) , color= ’b ’

,! , l inewidth =2)

p l t . plot (XX, s t a t s . exponweib . pdf (XX, * s t a t s . exponweib . f i t (F , 1 , 1 , scale =0.2 , loc =0) ) , color= ’ r ’ ,

,! l inewidth =2)

p l t . x label ( ’ Deflection at f a i l u r e [mm] ’ , fo nts i z e =20)

p l t . y label ( ’ Density ’ , fonts iz e =20)

p l t . show ( )



Appendix C

FORTRAN source code

subroutine vusdfld (

! Read only var iables

. nblock , nstatev , nfieldv , nprops , ndir , nshr ,

. jElem , kIntPt , kLayer , kSecPt ,

. stepTime , totalTime , dt , cmname,

. coordMp , direct , T , charLength , props ,

. stateOld ,

! Write only variables

. stateNew , f i e l d )

include ’vaba_param . inc ’

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Declare general var iables

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

dimension jElem ( nblock ) ,coordMp( nblock , * ) , d i r e c t ( nblock , 3 , 3 ) ,

. T( nblock , 3 , 3 ) , charLength ( nblock ) , props ( nprops ) ,

. stateOld ( nblock , nstatev ) , stateNew ( nblock , nstatev ) ,

. f i e l d ( nblock , nf ie l dv )

character *80 cmname

r e a l *8 stressdata ( maxblk * ( ndir+nshr ) )

integer jSData ( maxblk * ( ndir+nshr ) )

character *3 cSData ( maxblk * ( ndir+nshr ) )

integer j S t a t u s

integer i

r e a l *8 s ( nblock , 6 )

integer f l a g

132



APPENDIX C. FORTRAN SOURCE CODE 133

data f l a g /0/

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Declare Glass model var iables

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

r e a l *8 K( nblock ) , sigma ( nblock )

integer n f a i l ( nblock ) , n f a i l c r i t

r e a l *8 theta ( nblock ) , a ( nblock )

r e a l *8 Y , K c r i t

r e a l *8 pi

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Read material properties

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

K c r i t = props ( 1 )

Y = props ( 2 )

n f a i l c r i t = i n t ( props ( 3 ) )

pi = 4.0d0* atan ( 1 . 0 d0 )

c

i f ( f l a g . eq . 0 ) then

print * , ’ K c r i t = ’ , K c r i t

print * , ’Y = ’ ,Y

print * , ’ n f a i l c r i t = ’ , n f a i l c r i t

f l a g = 1

endif

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Cal l data from ABAQUS memory

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

c a l l vgetvrm ( ’ S ’ , stressdata , jSData , cSData , j S t a t u s )

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Extract data from ABAQUS memory

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

do i =1 , nblock

s ( i , 1 ) = stressdata ( i )

s ( i , 2 ) = stressdata ( i +nblock )

s ( i , 3 ) = stressdata ( i +nblock *2)

s ( i , 4 ) = stressdata ( i +nblock *3)

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Get flaw information from history var iables

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°



APPENDIX C. FORTRAN SOURCE CODE 134

do i =1 , nblock

a ( i ) = stateOld ( i , 1 )

theta ( i ) = stateOld ( i , 2 ) * pi /180.0

n f a i l ( i ) = i n t ( stateOld ( i , 3 ) )

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Compute s t r e s s i n t e n s i t y f a c t o r

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

do i =1 , nblock

sigma ( i ) = s ( i , 1 ) +s ( i , 2 ) °(0.5*( s ( i , 1 ) +s ( i , 2 ) )

. +0 . 5*( s ( i , 1 )°s ( i , 2 ) ) * cosd (2* theta ( i ) )

. +s ( i , 4 ) * sind (2* theta ( i ) ) )

K( i ) = Y*max( sigma ( i ) , 0 . 0 ) * sqrt ( pi *a ( i ) )

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Check for f a i l u r e

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

do i =1 , nblock

i f (K( i ) . ge . K c r i t ) then

n f a i l ( i ) = n f a i l ( i ) +1

else

n f a i l ( i ) = 0

endif

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Delete elements i f required

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

do i =1 , nblock

i f ( n f a i l ( i ) . eq . n f a i l c r i t ) then

statenew ( i , nstatev ) = 0

n f a i l ( i ) = n f a i l ( i ) +1

e l s e i f ( n f a i l ( i ) . gt . n f a i l c r i t ) then

statenew ( i , nstatev ) = 0

else

statenew ( i , nstatev ) = 1

endif

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! Store informations



APPENDIX C. FORTRAN SOURCE CODE 135

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

do i =1 , nblock

stateNew ( i , 1 ) = stateOld ( i , 1 )

stateNew ( i , 2 ) = stateOld ( i , 2 )

stateNew ( i , 3 ) = n f a i l ( i )

stateNew ( i , 4 ) = K( i ) / K c r i t

enddo

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

! End of subroutine

!°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

return

end


