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1. INTRODUCTION 

In numerical simulations of structural components and structures in the ultimate limit load state or 

subjected to accidental loads, there is a need for constitutive models that describe the material 

behaviour at large deformations. In addition to modelling the stress-strain behaviour of the 

materials at large strains, the risk for ductile failure needs to be assessed in such simulations. The 

physical mechanisms governing ductile failure are nucleation, growth and coalescence of micro-

voids and strain localization due to local bifurcation modes (loss-of-ellipticity). The topic of this 

thesis is micromechanical modelling and simulation of ductile fracture in metallic materials 

(aluminium alloys and steels) as well as analytical and computational methods for predicting 

evolution of damage and ductile failure in metallic structures.  

2. OBJECTIVE 

The objective is to formulate, implement and validate state-of-the art cellular automaton micro-

mechanics based damage models for void nucleation, growth and coalescence in a stand-alone 

computer code. The computer code may then be used as a post-processing tool to assess the risk of 

ductile fracture in structural analysis based on the finite element method. 

 

3. TASKS 
 

The main topics in the research project will be as follows: 
 

1. Literature study on ductile fracture in metallic materials: experiments, analytical methods, 

modelling and simulation.  

2. Theoretical formulation of the cellular automaton micro-mechanics based damage models for 

void nucleation, growth and coalescence. 

3. Numerical implementation of the cellular automaton model in a stand-along computer code. 

4. Verification and validation of the implemented cellular automaton model using analytical 

solutions, experimental data from the literature, and finite element simulations of unit cells 

with distributed voids. 

5. Numerical study on the influence of the model parameters on the predicted ductility.  
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Abstract

A Cellular Automaton Model for Calculation of Ductile Fracture

This thesis is concerned with the modeling of a cellular automaton model of
ductile fracture in metals involving significant micro-structure heterogeneities,
based on the growth equations of Rice&Tracey for the microvoids in metals.

The voids were given an initial size, orientation and position, which means
that nucleation and growth were considered to be two separate phases of ductile
growth. Further, the nucleation of all the microvoids were assumed completed
at the moment the deformation started. Coalescence was defined to occur at
the moment two voids were intersecting each other, and they got replaced by a
new minimum volume enclosing ellipsoid, or with a scaled version of this new
ellipsoid, as were thoroughly discussed. Elastic deformations were neglected.
The ductility was defined as the value of the equivalent (plastic) strain at a given
critical void volume fraction V crit

f . V crit
f = 0.2 was used in most of this thesis, but

it became evident that the exact value of this parameter was of less importance.
Furthermore, it was seen that the probability distribution of the voids’ posi-

tions introduced a variance into the fracture strain calculated by the model. The
choice of probability distribution will evidently influence the results to a great
extent.

Based on results obtained throughout the work with the model, it was con-
cluded that to get converged results towards a physically meaningful value of the
fracture strain without calibrating the model with results obtained from exper-
iments, the biggest challenge is consequently to find a probability distribution
that manages to generate a physical distribution of the microvoids as found in a
given alloy.

Sondre Bergo, Spring 2016, NTNU
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Sammendrag

En cellulær automat modell for bestemmelse av duktilt brudd

Denne avhandlingen tar for seg modelleringen av en cellulær automat modell, for
å bestemme duktilt brudd i materialer som har en betydelig andel mikrostruktur-
heterogeniteter, basert på likningen utviklet av Rice&Tracey for vekst av porene
i metaller.

Porene ble gitt en opprinnelig størrelse, orientering og posisjon i rommet.
Nukleering og vekst av porene ble betraktet som to separate faser i utviklingen
av duktilt brudd, hvor all nukleeringen var antatt gjennomført før deformasjo-
nen av materialet startet. Koalesens var definert til å inntreffe det øyeblikket to
porer kom i kontakt med hverandre, hvorpå de ble erstattet av en minst mulig
omsluttende ellipsoide.

Elastiske deformasjoner ble neglisjert. Duktilititeten ble definert som verdien
på den ekvivalente plastiske tøyningen ved en gitt kritisk porevolumandel. Den
kritiske volumandelen hulrom brukt i denne avhandlingen ble satt til V crit

f = 0.2,
men det kom klart fram i resultatene at den eksakte verdien på denne parame-
teren var av mindre betydning.

Videre ble det tydelig at sannsynlighetsfordelingen for porenes posisjoner in-
troduserte en varians i bruddtøyningen kalkulert av modellen. Valg av sannsyn-
lighetsfordeling vil altså påvirke resultatene i veldig stor grad.

Basert på resultater oppdaget gjennom arbeidet med modellen ble det kon-
kludert med at for å få konvergerte resultater mot en fysisk meningsfull verdi på
bruddtøyningen uten å måtte kalibrere modellen med resulateter fra forsøk, er
den største utfordringen å finne en sannsynlighetsfordeling som klarer å generere
en fysisk fordeling av porer som funnet i materialer.

Sondre Bergo, Våren 2016, NTNU

3



4



Acknowledgements

The thesis presented herein was conducted at the Center for Research-based In-
novation, Structural Impact Laboratory (SIMLab) which is housed at the Depart-
ment of Structural Engineering at the Norwegian University of Science and Tech-
nology during the spring 2016.

I would like to express my gratitude to my supervisors:

Professor Odd Sture Hopperstad for his invaluable help. Whenever one of
the algorithms or the behaviour of the model didn’t work as expected, he was
always there to guide me. Individual cases are too numerous to begin to men-
tion, so I will content myself with saying that this thesis wouldn’t have been
done in time without his help.

PhD Candidate Lars Edvard Dæhli for his excellent understanding of how
the microvoids behave, which really helped with how I should implement the
model. The results from Abaqus are from him, and he also had suggestions
for improvement of the layout of the thesis. He was always willing to help;
several of the almost weekly meetings continued with him further explaining
problems we had just discussed at the meeting.

5



6



Contents

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Ductile Fracture Observations 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Ductile Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Void Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Void Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Void Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Essential Theory 21
3.1 Materials Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mathematical Foundation . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Material Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The Cellular Automaton Model 43
4.1 Main Parts of the Program . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Coalescence of Voids . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Minimum Volume Enclosing Ellipsoid . . . . . . . . . . . . . . . . 50
4.4 Collision Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Varying Lode ΘL or Triaxiality σ ∗ . . . . . . . . . . . . . . . . . . . 54
4.6 Flowchart and Pseudocode Formulation . . . . . . . . . . . . . . . 54

5 Verification 59
5.1 Preliminary Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Comparison to Closed-Form Solution . . . . . . . . . . . . . . . . . 60
5.3 Differences of Euler, Heun, RK4 . . . . . . . . . . . . . . . . . . . . 63
5.4 Asymptotic Running Time . . . . . . . . . . . . . . . . . . . . . . . 64

7



6 Validation 69
6.1 Comparing Results to Abaqus . . . . . . . . . . . . . . . . . . . . . 69
6.2 Spherical Void Growth - Rotated Semi-Axes . . . . . . . . . . . . . 76
6.3 Parameter Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Extension of Modeling Framework 99

8 Concluding Remarks 103

A Source Code for the Cellular Automaton Model 109

8



1
Introduction

1.1 Motivation

Ductile fracture is preferred to brittle fracture in most applications, because
of the extensive plastic deformation and energy absorption before fracture [1].
Through ductility, materials are able to absorb large deformations far beyond the
elastic limit. The goal of plastic design is to utilize the reserve strength beyond
the elastic limit due to the redistribution of internal forces [2]. If not being able to
fully exploit this feature of ductility in materials, at worst a considerable sacrifice
of economy is made [2].

Today there are many methods to try to calculate when materials will ex-
perience fracture. “Fracture Mechanics” is an entire field of mechanics, about
the study of the propagation of cracks in materials. The concept of “fracture
toughness” is a quantitative way of expressing a material’s resistance to “brittle”
fracture when a crack is present [3]. If a material has high fracture toughness,
it will probably undergo “ductile” fracture. The ductility is a materials ability
to deform under tensile stress, i.e to which extent it can be plastically deformed
without fracture [3]. The ductility of a given material is often defined in terms of
the equivalent plastic strain at fracture, which it also is defined as in this thesis.

There is a potential for improvement in the calculation of the ductility of al-
loys, see for instance the review by Benzerga and Leblond [4]. This thesis will
try a relatively new approach in an attempt to determine the ductility of metallic
materials.

1.2 Objective

The objective of this thesis is to understand and model the effect of microstruc-
ture heterogenities on damage accumulation in metallic alloys, through imple-
mentation of a cellular automaton model in Python. The implemented model
should be verified and validated, and used to predict the ductility based on a
given initial configuration. The sub-objectives are:

• A literature study

• The establishment of the mathematical foundation

9



1.3. OVERVIEW OF THESIS CHAPTER 1. INTRODUCTION

• The implementation in Python

• A verification by comparing with analytical solutions

• A validation process through comparison with numerical solutions from
Abaqus, and different case studies obtained from the model itself.

• A parameter study

The scope of this thesis is confined to:

• Only growth and coalescence of the microvoids are considered.

• The microvoids are assumed initially nucleated. This is a conservative sim-
plification, which should yield a lower ductility than obtained from exper-
iments.

1.3 Overview of Thesis

This thesis report is divided into chapters which presents the development of the
cellular automaton model. A short description of each chapter is found below.

Chapter 2: Ductile Fracture Observations Chapter 2 presents how ductile
fracture happens, by explaining in depth the process of nucleation, growth
and coalescence of microvoids.

Chapter 3: Theory Chapter 3 contains a presentation of the theoretical foun-
dation which is needed to fully understand the concepts and results presented
in this thesis.

Chapter 4: The Cellular Automaton Model Chapter 4 presents the cellular
automaton model starting with the overall framework, continuing with flowcharts,
and ending with the pseudo-code of the primary parts of the program. The
actual source code implementation is provided as an appendix.

Chapter 5 : Verification Chapter 5 presents the verification process of the
implemented model. An outline of the preliminary controls made during the
development are given, and a discussion of the main parts of the program,
how they were solved, and possible sources of error is also conferred.

Chapter 6: Validation Chapter 6 compares some of the implemented func-
tions to results obtained from Abaqus. It then continues by comparing how
much the orientation of the local coordinate system introduces an error in the
calculations. A parameterstudy and a sensitivity analysis is also conducted.
At last, the model is used to calculate a fracture locus for the two outer sce-
narios; when coalescence is taken into account, and when it is not.

Chapter 7: Extension of Modeling Framework Chapter 7 presents concrete
suggestions for future development of the model.

10
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Chapter 8: Concluding Remarks Chapter 8 presents a summary of the re-
sults produced in this thesis along with concluding remarks.

11



1.3. OVERVIEW OF THESIS CHAPTER 1. INTRODUCTION

12



2
Ductile Fracture Observations

2.1 Introduction

The most common fracture mehcanisms in metals and alloys are ductile fracture,
cleavage and inter-granular fracture (and fatigue) [5]. Cleavage fracture involves
separation along specific crystallographic planes, with a trans-granular fracture
path. Inter-granular fracture occurs when the grain boundaries are the preferred
fracture path in the material. This thesis is about ductile fracture, therefore only
ductile fracture will be discussed further in the text.

Ductile fracture results from the nucleation, growth and coalescence of small
internal cavities, which are called “microvoids”. Microvoid nucleation is usu-
ally associated with the fracture of brittle particles or interface decohesion ([6]
and [7]), and is the “creation” of cavities at positions without cavities just mo-
ments before. In short, microvoids may initiate at inclusions and second-phase
particles. After nucleation, these microvoids grow by plastic deformation of the
surrounding matrix [4].

The important role played by void nucleation, growth and coalescence in duc-
tile fracture was understood in the late 1940s [8]. But, it was not until the year
1960 that the phenomenology of this process became well documented [9]. Dur-
ing the last approximately four decades, ductile fracture has been a subject of
intense investigation [4]. The first micromechanical treatments of ductile frac-
ture was due to McClintock [10] and Rice&Tracey [11], and considered isolated
voids and how they grew. After the nucleation of voids, stable growth proceeds
until plasticity localizes within the ligament between closely spaced microvoids
setting the onset of the coalescence mechanism [12]. The accumulation of mi-
crovoid linkages leads to the formation of a dominant microscopic crack that
finally propagates into the entire material, and fracture occurs.

The understanding and modeling of the different steps of the process of nu-
cleation, growth, and coalescence of voids have been improved over the last five
decades, as covered in several recent review papers, see f.ex [4], [13] and [14].
Many experimental investigations show for instance that the ductility depends
considerably on the triaxiality of the stress state [15].

However, major questions remain about the understanding and proper mod-
eling of ductile fracture in metals involving significant micro-structure hetero-
geneities, like several types of alloys. This introduction proceeds with a review
of the main issues related to heterogeneities and how they affect damage evolu-

13



2.2. FRACTURE CHAPTER 2. OBSERVATIONS

tion and complexifies the application of existing models.
Void nucleation is a discontinuous process of successions of discrete nucle-

ation events [13]. The effect of particle size, and also the distribution of inter-
nal or inter-facial defects, can be a dominant factor of the inhomogeneity of the
damage process. The particle shape relative to the loading orientation can also
contribute to the heterogeneity of the nucleation process [16] and [17], which
means microvoids can nucleate at very different times during the deformation.
Voids nucleated by interface decohesion are initially somewhat like an ellipsoid,
and tend to elongate in the principal loading direction. Heterogeneities in the
void distribution do not significantly affect the void growth rates, which means
that the interaction between the voids during the growth phase is weak when the
volume fraction of constituent particles are low, as it usually is in industrial al-
loys ([18], [19],[20] and [21]). This means that the assumption of no interactions
between the voids before coalescence may seem like a valid assumption, at least
until the voids are quite close to each other.

The impact of heterogeneities on damage evolution until fracture can be mod-
eled in many different ways, see the review [14]. In this thesis, a quite sophis-
ticated approach was chosen, which consists of generating a large ensemble of
microvoids, and simulate the latter two of the three steps of the damage process;
growth and coalescence.

2.2 Ductile Fracture

Figure 2.1 shows the differences between ductile and brittle fracture. Ductile
fracture is almost always the preferred form of fracture, since ductile materials
generally are tougher, as mentioned in section 1.1. To easier explain the process
of ductile fracture; consider a uniaxial tensile test. Fig 2.2 shows force vs dis-

(a) Highly ductile fracture (b) Moderately ductile fracture (c) Brittle fracture

Figure 2.1: Fracture may be divided in ductile or brittle fracture

placement, which means the plot is unaltered if engineering stress and strains

14



CHAPTER 2. OBSERVATIONS 2.2. FRACTURE

Figure 2.2: A perfectly plastic material

were measured instead. Engineering values means that stresses and strains are
defined in terms of the initial cross sectional area and initial specimen length,
respectively. The material eventually reaches an instability point, where strain
hardening no longer can keep up with the loss of cross-sectional area, and a
necked region forms beyond the maximum load. Depending on the purity of
the material, the neck may go down to a sharp point (see Fig 2.1), which means
the stress-strain curve approaches zero before fracture occurs.

Figure 2.3: Necking in a material specimen, [22]

If the cross-sectional area are reduced to only a small fraction of the initial
area, it results in extremely large local plastic strains. The less impurities, the
more cross sectional area reduction will happen before fracture. But pure mate-
rials are seldom used in the industry. Steel for instance, is an alloy of iron and
other elements, primarily carbon [23]. Carbon, other elements, and inclusions
within iron acts as hardening agents that prevent the movement of dislocations
that otherwise occur in the crystal lattices of iron atoms. These elements are
what is called particles in the matrix. These particles are what gives steel al-
loys its hardness and excellent tensile strength, but they are also the source of
the microvoids that nucleates [24]. Steel alloys are an excellent material to be
used in structures, but the introduction of these particles is also the reason that
predicting ductile fracture is considered a difficult task.

15



2.3. NUCLEATION CHAPTER 2. OBSERVATIONS

The commonly observed stages in ductile fracture are:

1. Necking (localization of plastic strain).

2. Formation of free surfaces at an inclusion/particle by either interface deco-
hesion or particle cracking (nucleation of voids).

3. Growth of the voids around the particle, by means of plastic strain and
hydrostatic stress.

4. Coalescence of some of the growing voids with adjacent voids.

5. Fracture.

These steps may be summarized by Figure 2.4. When the neck occurs, the stress
state becomes triaxial, and the triaxiality increases from σ ∗ = 1/3 in a uniaxial
stress state to maybe as much as σ ∗ = 3 at the most in the center of the neck.
Due to this large elevation of the triaxiality, voids will nucleate much easier and
grow much faster inside this neck compared to outside the neck. Closer to the
outer edge of the test-specimen, the triaxiality is significantly lower, so in these
locations there are both much fewer and smaller voids. When fracture occurs,
this part of the cross-section will experience shear fracture, which results in the
characteristic “cup-and-cone” fracture shown in Fig 2.5.

(a) Necking occurs (b) Nucleation and
growth

(c) Coalescence (d) Fracture

Figure 2.4: Ductile fracture process summarized

2.3 Void Nucleation

As mentioned in section 2.1, a void forms around a second-phase particle or in-
clusion when the sufficient stress is applied to break the interfacial bonds be-
tween the particle and the matrix [5]. The size of the microvoids usually varies
between 0.01µm to >> 1µm [15].

The energy released in the void nucleation must be sufficient to create the new
surface that appears. Each particle may for instance be assigned an associated

16



CHAPTER 2. OBSERVATIONS 2.3. NUCLEATION

(a) SEM fractograph of the fracture surface
[25]

(b) Photograph of fracture surface [26]

Figure 2.5: “Cup and Cone” fracture

critical principal stress value, and when this value is reached, the particle will
then nucleate into a microvoid [27].

A number of models for estimating void nucleation stress have been pub-
lished. The most widely used continuum model for void nucleation is due to
Argon et al. [7]. They argued that the inter facial stress at a cylindrical particle
is approximately equal to the sum of the mean (hydrostatic) stress σm and the
effective stress, defined as the vonMises stress: σe = σVM . The decohesion stress
is defined as a critical combination of these two:

σc = σe + σm

The nucleation strain decreases as the hydrostatic stress increases. That is, void
nucleation occurs more readily in a triaxial tensile stress field, a result that is
consistent with experimental observations. In this thesis, the implemented model
assumes already nucleated voids at the initial time step, so no implementation of
nucleation of voids are included.

Theories of ductile fracture generally assume uniformity of particle size, shape
and spacing, and simoultanous nucleation of microvoids at all particles [15]. This
is the principle behind the “unit cell model”, where it is possible to (and also lim-
ited to) consider only one microvoid. This is a simplification, since there may be
significant variations, and nucleation and growth are not separate and sequential
processes. Hannard et al. [27] concluded that the particle distribution is the most
significant factor when trying to determine the fracture strain. In contrast to an
ideal periodic distribution, a physical distribution (f.ex obtained as the result of a
CT scan, also called X-ray computed tomography, of the matrix material) will al-
ways have some degree of clusters. A cluster is a group of independent voids that
is located closer to each other somewhere in the matrix compared with other parts
of the matrix. The spatial distribution of particles influences the void coalescence
process due to its effect on the local void spacing. A periodic distribution is an
idealized situation, and will result in higher ductility, since local clusters will not
be present [5].

17



2.4. GROWTH CHAPTER 2. OBSERVATIONS

2.4 Void Growth

Once voids nucleate, further plastic strain and hydrostatic stress cause the voids
to grow and eventually coalesce. At some point, the voids may interact, which
will be discussed in section 2.5.

There are a number of mathematical models for void growth and coalescence,
where the two most widely referenced models were published by Rice&Tracey
[11], and Gurson [28]. Rice&Tracey considered a single void in an infinite solid.
The void is subjected to remote normal stresses: σ1, σ2 and σ3, and remote nor-
mal strain rates ε̇1, ε̇2 and ε̇3. The initial void is assumed to be spherical, but
it becomes ellipsoidal as it deforms. They developed a set of equations for the
growth of a spherical void of radius R0 in a remote strain field

εij (2.1)

and remote stress field

σij = σ ‘
ij + σm ∗ δij . (2.2)

The analysis was performed for a rigid-plastic non-hardening material, and an
estimate for linear, isotropic hardening was also made. They differ only in a
constant parameter, so in this thesis only rigid-perfectly plastic material behavior
is considered. The void growth equations have the form:

Ṙk/R0 = (1 +E)ε̇k +D

√
2
3
ε̇l ε̇l k,l = 1,2,3 (2.3)

Ṙk are the rates of change in void radius in the directions x, y, and z defined by
the principal strain rates of the remote strain field.

An heuristic procedure is proposed in this thesis (inspired by [27]) in order
to estimate the void growth rates in the case of an ellipsoidal void under general
loading conditions. The principal radii of the ellipsoidal void are replaced by
the three intersections of the void with the principal stress (loading) directions,
see Figure 4.1. This equivalent void is then assumed to follow the growth model
given by Eq (2.3). In a general case, it is also necessary to replace R0 by the mean
void radius:

Rmean =
R1 +R2 +R3

3
(2.4)

which is the arithmetic mean. It is further assumed that the principal axes of
the remote strain-rate field remain fixed in direction during the deformations, so
the loading conditions are proportional and may be characterized by a constant
Lode variable ΘL (see Chapter 3 for definition). Since the Rice&Tracey model is
based on a single void, it does not take into account interactions between voids,
nor does it predict ultimate failure. A separate failure criterion must be applied
to characterize microvoid coalescence [27]. An analytical solution is readily ob-
tained if we can assume constant stress triaxiality σ ∗ and lode angle ΘL, which

18



CHAPTER 2. OBSERVATIONS 2.4. GROWTH

(a) Local/principal directions of the
semi-axes

(b) Global directions of the semi-axes

Figure 2.6: Local and global semi-axes’ directions

the numerical results are controlled against:

R1 = Rmean(A+
3 +ΘL

2
√

3 +Θ2
L

B)

R2 = Rmean(A− ΘL√
3 +Θ2

L

B)

R3 = Rmean(A+
ΘL − 3

2
√

3 +Θ2
L

B)

(2.5)

where

A = exp(
2
√

3 +Θ2
L

3 +ΘL
Dε1)

B = (
1 +E
D

)(A− 1)

D =

αexp(3
2σ
∗) if σ ∗ ≥ 1.0

ασ ∗0.25exp(3
2σ
∗) if σ ∗ < 1.0

E =
2
3

α = 0.427

(2.6)

For cases when the lode parameter isn’t constant, numerical integration must be
used if the analytical solution is desired. The trapezoidal rule is a well known
technique for approximating integrals like this, see Chapter 3.
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2.5. COALESCENCE CHAPTER 2. OBSERVATIONS

2.5 Void Coalescence

This is the final stage of ductile fracture. At some point, neighboring voids in-
teract. Plastic strain is concentrated between adjacent voids, and local necking
instabilities develop. As a failure criterion, it is most often assumed that fracture
occurs when a critical void volume fraction is reached [5]. The Gurson model
[28] (modified by Tvergaard [29], who is behind one of the many expansions of
the Gurson model) analyzes the plastic flow in a porous medium by assuming
that the material behaves as a continuum. In the Gurson model, the effect of
the voids is averaged through the material. The yield surface exhibits a hydro-
static stress dependence in the Gurson-Tvergaard model, in contrast to classical
plasticity theory. This model also contains a fracture criterion; ductile fracture
is assumed to occur as the result of a plastic instability that produces a band of
localized deformation, which occurs more readily in a Gurson-Tvergaard mate-
rial because of the strain softening induced by the hydrostatic stress. However,
because the model does not consider discrete voids, it is unable to predict the
necking instability between voids.

In this thesis, a finite number of voids in a matrix material is considered, and
this way the interaction between voids are taken into account. To summarize,
microvoids coalesce when adjacent microvoids link together or the material be-
tween microvoids experiences necking.

20



3
Essential Theory

Expected Prior Knowledge

When reading this thesis, the reader is presumed to have some prior knowledge
in the fields: materials mechanics, continuum mechanics, computer program-
ming and linear algebra. The following sections are meant as a refreshment of
prior knowledge, to remind the reader of the theories which are needed to fully
understand all the aspects of the model. The theory presented in the following
sections are based upon the listed sources.

3.1 Materials Science

On Alloys as a Material

(a) Steel as our eyes see it [30] (b) Steel under a microscope [31]

Figure 3.1: Macroscopic and microscopic view of steel

An alloy is a mixture of ideally pure chemical elements, which forms an im-
pure substance that keeps the characteristics of a metal. The added impurities are
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usually desirable and will typically have some useful benefit. Alloys are made by
mixing two or more elements, at least one being a metal, which is usually called
the base metal for the alloy. When the molten elements are mixed, and cools into
a solid, the mechanical properties will often be quite different from its individual
components. Adding a small amount of non-metallic carbon to iron produces an
alloy called steel. Due to its very high strength and toughness (which is much
higher than pure iron), and its ability to be greatly altered by heat treatment,
steel is one of the most common alloys in modern use.

The alloying elements (such as carbon, manganese, chromium, nickel, tung-
sten etc) acts as hardening agents that prevent the movement of dislocations that
otherwise occur in the crystal lattices of iron atoms. Pure iron is very ductile and
relatively weak, where steel is much less ductile but much stronger (higher ten-
sile strength). A dislocation is a chrystallographic defect (irregularity) within a
crystal structure (such as a metal, among others).

By varying the amount of the alloying elements, it is possible to control qual-
ities such as hardness and ductility, by restricting the movement of these dislo-
cations. These alloying elements is in this thesis referred to as second-phase par-
ticles, or just particles, which is the main reason for the nucleation of microvoids,
see Chapter 2.

The other source of nucleation of voids, is inclusions. An inclusion in an alloy
are either chemical compounds or present nonmetals. They are the product of
physical effects or chemical reactions, and are categorized as either endogenous or
exogenous. Endogenous inclusions occur within the material as a result of chem-
ical reactions during cooling, and are typically very small. Exogenous inclusions
are caused by entrapment of non-metals and may vary greatly in size, and their
source can include slag, dross, flux, or even pieces of the mold. These inclusion-
s/particles are the cause of the creation of the microvoids, through the nucleation
process. The reader is referred to [23] and [24] for more on this topic.

3.2 Mathematical Foundation

Main source here is [32], unless stated otherwise.

3.2.1 Matrices (n-Dimensional Arrays)

A two-dimensional matrix is a table or rectangular array of elements arranged in
rows and columns, and is herein expressed as a bold upper case Latin letter:[

A11 A12 A13
A21 A22 A23

]
≡ [Aαi] ≡A (3.1)

The elements may be numbers or functions. The symbol Aαi represent an arbi-
trary element for which the row number (α, the first subindex) here may take
the value 1 or 2, while the column number (i, the second subindex) may take
values 1,2 or 3. Lower case Greek letter indices represents the numbers 1 and 2,
while lower case Latin letter indices represents the numbers 1, 2 and 3. A one-
dimensional matrix is an array of elements arranged in a column (unless stated
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otherwise), and is expressed as a bold lower case Latin letter:a1
a2
a3

 ≡ [ai] ≡ a (3.2)

From a two-dimensional matrix A = [Aij] a transposed matrix is constructed as
AT = [Aji], by interchanging columns and rows:

ATij = Aji (3.3)

An n-dimensional matrix is represented by a set of elements with n indices, f.ex
Cijk is a three dimensional matrix. Addition of matrices is defined only for ma-
trices of same size, and are obtained by adding corresponding elements:

Cij = Aij +Bij (3.4)

The product of a matrix A = [Aij] by a term α is a matrix αA = [αAij]. The matrix
product of two matrices A and B is a new matrix C:

AB = C ≡
3∑
k=1

AikBkj = Cij (3.5)

Note that in general AB , BA. From the definition in Eq 3.5 it follows that
(AB)T = BTAT . A symmetric n × n real matrix A is said to be positive definite if
the scalar zTAz is positive for every non-zero column vector z of real numbers.
Here zT denotes the transpose of z. A positive definite matrix has some very
interesting properties, where the most important is that:

AT = A (3.6)

The Kroenecker Delta

The kroenecker delta δij represents the identity matrix, where:

δij = δji =

1, if i = j
0 if i , j

(3.7)

Einsteins Summation Convention

An index repeated once and only once in a term implies a summation over the
number region of that index. By this convention, the following are equivalent
statements:

3∑
k=1

AikBkj ≡ AikBkj (3.8)

A summation index (as k above) is also called a dummy index because it may be
replaced by a different letter without changing the result of the summation.
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3.2.2 Quadratic Forms

A quadratic form is a homogeneous polynomial of 2nd degree in a given number
of variables. For example, x2 +2y2 +4xyz+3z2 is a quadratic form of the variables
x,y and z. A quadratic surface is given by the general equation:

ax2 + by2 + cz2 + 2f yz+ 2gzx+ 2hxy + 2px+ 2qy + 2rz+ d = 0 (3.9)

Ellipsoids

Figure 3.2: Ellipsoids with center in origo

An ellipsoid is an example of a quadratic surface. An ellipsoid centered in
origo and with principal axes aligned with the coordinate system’s axes, has a
standard equation (a quadratic form) given as:

x2

a2 +
y2

b2 +
z2

c2 = 1 (3.10)

Here a,b and c are the lengths of the principal semi-axes. This quadratic form
may be written on a generalized form:

(x)TAx = 1 (3.11)

where A is a positive definite matrix. Its eigenvectors define the principal axes of
the ellipsoid, and its eigenvalues are the reciprocals of the squares of the semi-
axes: a−2,b−2 and c−2 (see under subsection 3.2.4, eigenvectors and eigenvalues). If
the ellipsoid is centered in C, the generalized form becomes:

(x−C)TA (x−C) = 1 (3.12)

The last thing that should be known about ellipsoids, is that the volume is given
by

V =
4πabc

3
. (3.13)

3.2.3 Discriminant

The discrimant of a polynomial is a function of its coefficients, typically denoted
∆, which gives information about its roots. In this thesis, since ellipsoids are
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given on quadratic form, only discriminants of 2nd order will be considered. For
a general 2nd order polynomial:

ax2 + bx+ c = 0 (3.14)

the discriminant is given as:
∆ = b2 − 4ac (3.15)

This is a very useful quantity to determine if the ellipsoids are intersecting planes,
such as the box’s ’walls’. In Fig 3.3, it is shown the three scenarios where the dis-

Figure 3.3: Physical interpretation of the discriminant

criminant may be negative, equal to zero, or positive, respectively. For a negative
discriminant, the solutions are imaginary numbers, which physically means no
intersection. A discriminant equal to zero means one physical (real) solution,
while a positive discriminant means two physical solutions as long as we are
limited to 2nd order polynomials and intersecting lines. When intersecting with
planes, there will of course be a whole set of solutions. In Fig 3.3, the black points
refers to imaginary solutions, while the red ones are meant to symbolize the real
solutions.

3.2.4 Tensors

Tensors are geometric objects that describe linear relations between geometric
vectors (like for instance between the displacement vector u and ū, described in
different coordinate systems) , scalars and other tensors. A tensor can be rep-
resented as an multidimensional array of numerical values, where the order of
the tensor is the dimensionality of the array needed to represent it. Tensors are
invariant to the particular choice of coordinate system. In this thesis, 2nd order
tensors are extensively used to transform between a global and a local coordinate
system. To establish how a vector transforms under the change of orthonormal
basis, first the direction cosines between two sets of unit vectors ej and ēi must
be defined:

Qij = ēi · ej = ēiej cos(θ) = cos(θ) (3.16)

Where θ is the angle between the coordinate axes x̄i and xj. Qij are the compo-
nents of the unit vectors ēi decomposed onto the unit vectors ej, and similarly are
Qji the components of ei onto ēj, and we have the relations:

ēi =Qijej , ej =Qij ēi (3.17)
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The matrix made up of the components Qij are called the transformation matrix
Q for the coordinate transformation from Ox (spanned by the base vectors ej) to
Ōx̄ (spanned by ēi). The rows in Q represent the components of the orthogonal
vectors ēi in the Ox system, and the columns in Q represents the components of
ej in the Ōx̄ system. The transformation matrix Q has the following properties:

QikQjk = δij ⇔ QQT = 1 ⇔ Q−1 = QT (3.18)

detQ = 1 (3.19)

A matrix with properties like this are called an orthogonal matrix. Q is a linear
operator, and a tensor of 2nd order. To transform between coordinate systems,
just replace the coordinate variable according to Eq (3.17). The coordinate trans-
formation formula becomes:

x̄i = c̄i +Qijxj ⇔ x̄ = c̄ + Qx (3.20)

The inverse transformation is easily found to be:

x = −c + QTx (3.21)

To transform the ellipsoid surface given in generalized form (Eq (3.11)) between
a global (Ox) and a local (Ōx̄) coordinate system, the relation between A and Ā
should be derived. Start with the generalized form:

(x)TAx = 1

and replace x according to Eq (3.17):

(Q−1x̄)TAQ−1x̄ = 1

(x̄)TQ−TAQ−1x̄ = 1

(x̄)TQAQTx̄ = 1

(3.22)

which means that:
Ā = QAQT (3.23)

Eigenvectors and Eigenvalues

Also called principal vectors and principal values. In linear algebra, an eigen-
vector of a linear transformation is a non-zero vector that does not change its
direction when that linear transformation is applied to it. I.e, if v is a vector that
is not the zero vector, then it is an eigenvector of a linear transformation T if T(v)
is a scalar multiple of v. This can be written as the equation:

T (v) = λv, (3.24)

where λ is a scalar known as the eigenvalue (or principal value) associated with
the eigenvector v. If the linear transformation T is expressed as a square matrix
A, then the equation can be expressed as the matrix multiplication:

Av = λv (3.25)
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If this holds for a given direction v, then v is an eigenvector and λ a corresponding
eigenvalue to A. This relation may be written on a form thats makes it easier to
actually find these vectors and values:

(A−λI)v = 0 (3.26)

Where a non-trivial solution for v and λ requires that:

det(A−λI) = 0 (3.27)

For a symmetric matrix with real components, the eigenvectors will be mutually
orthogonal if they are all distinct. If the matrix A is positive definite, then all
the eigenvectors will be distinct. An ellipsoid (see subsection 3.2.2) is uniquely
determined by a positive definite matrix, which means that its three semi-axes
are uniquely defined by its eigenvectors.

3.2.5 Numerical Integration - Trapezoidal Rule

The Trapezoidal rule is a technique for approximating definite integrals:

lim
∆x→0+

∑
f (x)∆x ⇒

∫
f (x)dx. (3.28)

The trapezoidal rule approximates the area under some small part of the function
as a trapezoid, calculates that small area, and adds all the contributions between
the integral limits together, commonly known as the Riemann sum. When the
limit ∆x→ 0+ is reached, the exact value of the integral is obtained. In numeri-
cal mathematics this is impossible, but very accurate results may be obtained by
using many sample points.

Figure 3.4: Trapezoidal Rule [33]
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3.2.6 Numerical Solvers of Differential Equations

The Rice&Tracey growth equation, see 2.3, is solved numerically as a linear first
order differential equation (an Ordinary Differential Equation, ODE) as an initial
value problem. The initial boundary condition is given as the value of the semi
axes in the global coordinate directions.

There exists a lot of different numerical procedures for solving ODEs, but the
most common choice is usually an explicit method of some desired order. In
this thesis, Euler (1. order), Heun (2.order) and Runge-Kutta 4 (4.order) was im-
plemented to study the differences between some of the most common explicit
methods for numerical integration of ODEs. All the explicit numerical integra-
tion methods discussed here only work on linear first order ODEs, where some
tweaks must be made to get a correct solution for non-linear or higher order
equations. This will not be discussed further, since Eq (2.3) is a 1. order ODE.

Explicit methods, in contrast to implicit methods, approximates the next value
yn+1 based on the present value yn. For higher order explicit methods, there is
used a weighted average of n increments, where n is the order of the method. The
weights is determined either by a Taylor expansion to the desired order, solve the
Taylor expansion for y′, and then solve the occurring linear algebra system for
the weights a, b, and c, or by replacing the derivatives with the corresponding
difference equation, where either forward-, backward- or central differences may
be used. Its harder to obtain a desired order this way, but the order of the method
is easily checked once it’s weights are determined. The Euler scheme is given as:

y′(t) = f (t,y(t)), yn+1 = yn + hf (tn, yn). (3.29)

where h is the time step, tn = t0 +nh, and yn ≈ y(xn), for n = 0, 1, 2, 3, . . . .

Heuns method, also called the improved or modified Euler method is given as:

y′(t) = f (t,y(t)), ỹn+1 = yn + hf (tn, yn)

yn+1 = yn +
h
2

[f (tn, yn) + f (tn+1, ỹn+1)],
(3.30)

Runge-Kutta 4, for short called RK4, is given as:

yn+1 = yn +
h
6

(k1 + 2k2 + 2k3 + k4) (3.31)

using
k1 = f (tn, yn),

k2 = f (tn + h
2 , yn + h

2k1),

k3 = f (tn + h
2 , yn + h

2k2),
k4 = f (tn + h,yn + hk3).

(3.32)

3.2.7 QR Decomposition

In linear algebra, a QR decomposition of a matrix is a decomposition of a ma-
trix A into a product A = QR of an orthogonal matrix Q and an upper triangular
matrix R. The creation of Q is done by for instance the Gram-Schmidt process

28



CHAPTER 3. ESSENTIAL THEORY 3.2. MATHEMATICAL FOUNDATION

(other methods are “Householder transformations” or “Givens rotations”), which
is a procedure to make every column in a matrix, with basis in the first column,
normal to each other with vector norm (the same as magnitude/length of a vec-
tor) equal to 1. This creates an orthonormal basis. R is created afterwards as
R = QTA.

The first vector is chosen to remain fixed in its direction, while all the other
vectors are projected into a plane which is perpendicular to this first vector, and
all the vectors made up to this point. This is easy to envision in 2D or 3D, but not
so much for higher dimensions.

Then, all the vectors are normalized, which makes the matrix Q orthonormal.
To be able to allow the voids to rotate during the deformation process, the current
largest semi axis in each ellipsoid is set as the basis (1st column in its eigenvector
matrix T) for the Gram-Schmidt process.

Figure 3.5: Projection of v into plane M, which is perpendicular to the vector N
[34]

3.2.8 Constrained Optimization

This section is a summary of the relevant parts from the online source [35], in
addition to [32]. In mathematical optimization, constrained optimization is the
process of optimizing an objective function with respect to some variables in the
presence of constraints on those variables.

Constraints can be either hard or soft constraints. Hard constraints set condi-
tions for the variables that are required to be satisfied, while soft constraints have
some variable values that are penalized in the objective function if, and based on
the extent that, the conditions on the variables are not satisfied. A general con-
strained minimization problem may be written as follows:

min f (x) (the objective function)
subject to gi(x) = ci for i = 1, . . . ,n (Equality constraints)

hj(x) ≥ dj for j = 1, . . . ,m (Inequality constraints)
(3.33)
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To solve problems like this, there exists several different strategies to choose from,
depending on the properties of the problem. If the constrained problem has only
equality constraints (the case for the problems in this thesis), the method of La-
grange multipliers may be used.

Lagrange multipliers

The method of Lagrange multipliers is a strategy for finding the local maxima and
minima of a function subject to equality constraints. In mathematical analysis it
is known that extremums must have the property that the set of partial deriva-
tives of the objective function must be proportional to the corresponding partial
derivatives of the constraint function. This can be expressed mathematically as:

∇x,yf = −t ∇x,yg, for some t (3.34)

where f is the objective function, g the equality constraint function, and t the La-
grange multiplier. The Lagrange multiplier is a constant since the partial deriva-
tives must be proportional in the maximum/minimum points.

3.3 Material Mechanics

The theory presented within this section (material mechanics) is taken from the
references: [36], [37], [38], [39], and [15].

3.3.1 Stress Invariants

In this section, it is assumed isotropic materials. The stress state will be defined
in terms of stress invariants.

Von Mises Stress

The first invariant is the Von Mises stress which is defined as:

σVM ≡
√

3J2 ≡
√

3
2

[(σI − σH )2 + (σII − σH )2 + (σIII − σH )2] (3.35)

where σI ≥ σII ≥ σIII are the principal stresses, σH = 1
3(σI + σII + σIII ) the hydro-

static stress, and J2 is the second principal invariant of the deviatoric stress tensor
σ
′
:

J2 =
1
2
σ
′
ijσ

′
ij =

1
2

[
(σI − σH )2 + (σII − σH )2 + (σIII − σH )2

]
(3.36)

Stress Triaxiality

The second invariant employed to describe the stress state is the stress triaxiality
σ ∗ which is defined by

σ ∗ ≡ Iσ
3
√

3J2
=
σH
σVM

(3.37)
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Lode Parameter

The third invariant adopted here is the Lode angle ΘL which is defined as

ΘL =
J3

2
√

(J2/3)3
=

27J3
2σ3

VM

, −1 ≤ΘL ≤ 1 (3.38)

The lode variabel may also be defined in terms of the principal stresses as

ΘL =
2σ2 − σ1 − σ3

σ3 − σ1
, where − 1 <ΘL < 1 (3.39)

Owing to the normality rule, the strain field εij is incompressible, i.e the volu-
metric strain is zero (εV = 0). This can be written on rate form:

ε̇1 + ε̇2 + ε̇3 = 0 (3.40)

By invoking this theorem, the number of independent principal strain rates are
reduced to two. These two unknowns can be expressed in terms of ε1 and the
lode parameter. The principal strain rate field may thus be expressed as

ε̇2 =
−2ΘL

3 +ΘL
ε̇1 ε̇3 =

ΘL − 3
3 +ΘL

ε̇1 (3.41)

If proportional strain paths are considered, then the lode parameter ΘL is con-
stant, which implies that all ε̇i are constant, which simplifies several calculations
considerably.

Since the principal components of the strain rate field ε̇k is parallel to the unit
normal of the yield surface, it follows that the strain rate field can be character-
ized by the Lode parameter ΘL as

ΘL =
2σ2 − σ1 − σ3

σ3 − σ1
=

2ε̇2 − ε̇1 − ε̇3

ε̇3 − ε̇1
= − 3ε̇2

ε̇1 − ε̇3
(3.42)

This is not valid in general, but the deformation of the matrix in the CA model
implemented herein are limited to principal load directions parallel to the global
axes. In such cases, Eq (3.42) holds.

3.3.2 Equivalent Plastic Strain

The definition of the equivalent strain most often used in the theory of plasticity
is given as:

εeq =

√
2
3
ε ′ : ε ′ =

√
2
3
ε
′
ijε
′
ij , (3.43)

where

ε
′
= ε − 1

3
tr(ε) 1, (3.44)

or equivalently

ε‘
ij = εij −

1
3
εkkδij , (3.45)
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where tr(ε) ≡ εkk, called the trace of ε. For the case of a general extension defor-
mation, where the elastic strains are neglected, this simplifies to

εeq =

√
2
3

(ε2
1 + ε2

2 + ε2
3), (3.46)

where it follows from the neglection of the elastic strains that

εi ≡ ε
p
i , (3.47)

i.e the total strain is equal the plastic strain. The accumulated strain εeq is defined
in rate form as

˙εeq ≡
√

2
3
ε̇
p
ij ε̇

p
ij (3.48)

where ε̇ij are the components of the strain rate field.

3.3.3 Continuum Mechanics

Here the kinematics and kinetics of a continuum body loaded by quasi-static ex-
ternal forces are defined. That a body are a continuum body means that the ma-
terial is modeled as a continuous mass rather than discrete particles. A body oc-

Figure 3.6: The configuration of a continuum body [40]

cupying a region (f.ex in Euclidean space) is called the continuum body B where
the points inside this body are the material points. Every point in the body are
occupied by a material point, and has a unique mapping (i.e no set of coordi-
nates describes the same material point). In Figure 3.6, a continuum body in its
reference configuration κt are shown.

The general case of deformation in the neighborhood of a material point P in
a body that deforms from the reference configuration κ0 at time t0 to the present
configuration κt at time t shall now be defined. The body is assumed to be un-
deformed in the reference configuration. Each particle i has its own coordinates
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Figure 3.7: The deformation of a continuum body, [41]

Xi in the reference configuration κ0, which may also be expressed as its initial
place vector X. The motion of the material point is given by its place vector x(X, t),
alternatively by the displacement vector u(X, t):

u(X) = x(X, t)−X (3.49)

In Fig 3.7, the deformation is shown. The deformation gradient tensor is denoted
F and is defined as:

F ≡ ∂x
∂X
≡Grad x = ∇x (3.50)

The displacement gradient tensor H is defined by

H ≡ ∂u
∂X

⇔ Hij ≡
∂ui
∂Xj

(3.51)

The stretch ratio λ is related to the longitudinal strain, and is defined by:

λ =
ds
ds0

(3.52)

The relationship between the stretch ratio λ and the true strain εl is given by:

ε =
∫ l

l0

dl
l

= ln(λ) (3.53)

Everything defined so far in this section, are strictly all that is necessary as
long as infinitesimal deformations are assumed. The strain tensor for small de-
formations is easily defined in terms of either F or H. But, to be able to describe
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arbitrarily large deformations, several other interesting concepts must be intro-
duced. To summarize the definitions above, the deformations can be described
as:

xi = xi(Xi , t) = Xi +ui(Xi , t) (3.54)

In a homogeneous deformation of the body (the deformations are the same for all
material points), the deformation may be described as:

x = u(X) + F ·X (3.55)

Where u(X) represents a translation, and F · X is dx, see Fig 3.7. A rigid-body
motion is an idealized situation where the deformation of the body is neglected
during the displacement of the body. It is given by:

x = u(X) + R ·X (3.56)

Where R is the (orthogonal) rotation tensor. In the case of a rigid body motion, it
is seen that F = R. A motion resulting in homogeneous pure strain, have that F is
equal to a positive definite symmetric tensor U.

x = u(X) + U ·X (3.57)

The principal values of U are λi(t), and the eigenvectors of U are parallel to the
principal deformation directions, represented by the unit vectors ai. A straight
material line in the initial configuration can then be expressed as dX = ds0ai If
translations are set equal to zero for simplification, the following is obtained:

dx = U · dX = U · ds0ai = λids0ai

Where it is seen that ds ≡ |dx| = λids0, which means that λi are stretch ratios,
called principal stretches of the deformation. In a coordinate system parallel to
the principal deformation directions, the deformation may thus be given in terms
of:

Fij =Uij = λiδij , x = U ·X ≡ xi = λiXi (3.58)

In this thesis, the coordinate system is chosen to have base vectors parallel to the
principal directions of the loading. This means that the deformation is a mo-
tion of homogenous pure strain, with no translations or rotations, and it becomes
much easier to define the deformation. A material point P at place x has the
velocity v(x,t) and is during the short time increment dt given the displacement
du = v · dt. This displacement field leads to small deformations with a displace-
ment gradient tensor dH:

dHij =
∂vi
∂xj

dt ≡ vi,jdt (3.59)

Three new tensors are now defined: the velocity gradient tensor L, the symmetric
rate of deformation tensor D and the antisymmetric rate of rotation tensor W, all
defined at the time t:

L = gradv ≡ ∂v
∂x

⇔ Lij = vi,j (3.60)

D =
1
2

(L + LT) ⇔ Dij =
1
2

(vi,j + vj,i) (3.61)

W =
1
2

(L−LT) ⇔ Wij =
1
2

(vi,j − vj,i) (3.62)
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From these definitions, and if small deformations is assumed, it follows that:

dH = Ldt (3.63)
dE = Ddt (3.64)

dR̃ = Wdt (3.65)

Ė = D (3.66)
˙̃R = W (3.67)

In contrast to small deformations, where Hij << 1 ⇔ norm(H) << 1, it is more
convenient to use the deformation gradient tensor F instead of the displacement
gradient H when large deformations are considered. For large deformations, the
equation dE = Ddt does not hold anymore. From the definitions of F in (3.50)
and L in (3.60), the following relationship is derived:

Ḟ = LF ⇔ L = ḞF−1 (3.68)

In large deformation, a state of pure strain has that F(X,t) = U(X,t) and R(X,t) = 1.
In this thesis, a motion that is called general extension is considered, with the prin-
cipal loading directions defined in the same direction as the global coordinate
system. The motion is described through the relations:

xi = λi(t)Xi for i = 1,2,3 (3.69)

The deformation gradient F is now an diagonal matrix, and it is also equal to the
stretch tensor U:

F ≡U =

λ1 0 0
0 λ2 0
0 0 λ3

 (3.70)

The parameters λi are the principal stretches of the deformation. The material
points velocity v is given as:

vi =
∂xi
∂t

= λ̇iXi =
λ̇i
λi
xi (3.71)

Which gives the velocity gradient L as:

L =


λ̇1
λ1

0 0

0 λ̇2
λ2

0

0 0 λ̇i
λi

 (3.72)

In this case, it is seen that D = L, and that W = 0, since L is symmetric. In
this thesis, the deformation of the matrix material is defined through the global
velocity gradient L. The deformation of the voids are defined through a local
velocity gradient L∗, where the heuristic approach of defining global semi-axes
for the ellipsoids were a necessity. This will be explained further in Chapter 4.
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3.3.4 Elastic-Plastic Materials

Metallic materials exhibit linear elastic behavior for small stresses, while at a
certain level (denoted the yield stress), the behaviour becomes elasto-plastic. The
strain is divided into a recoverable part (the elastic strain) and an irrecoverable
part (the plastic strain). The simplest possible material model is perfect plasticity,
where the yield stress will be constant during further plastic deformation. If the
elastic response is neglected, the material model exhibits what is called a rigid -
perfectly plastic response.

Figure 3.8: Stress-strain curve for a perfectly plastic material

The growth equations developed by Rice&Tracey assumes a rigid-perfectly
plastic material response, where an extension was made to include rigid-linear
hardening material response, where the only difference was a constant parameter.
Therefore, the material assumed in this thesis are modeled as a rigid-perfectly
plastic material, where the elastic response where neglected

εe ≡ 0 ⇒ ε = εp (3.73)

When results obtained with the model are compared with analyses in Abaqus,
the material model used in Abaqus had a very high value for Young’s modulus in
an attempt to neglect the elastic response.
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3.4 Programming

3.4.1 Object Oriented Programming - OOP

Only a brief introduction is presented; it would be an advantage to have some
experience from procedure-oriented programming. See [42], [43] and [44] for in
depth information about all the subsections presented in this section (and a lot
that hasn’t been presented).

In Object-Oriented Programming (OOP for short), the term object means a
collection of data with a set of functions for accessing and manipulating those
data. OOP allow decomposition of a problem into a number of objects and then
builds data (attributes) and functions (methods) around these objects. There are
several reasons to use objects instead of global variables and functions, where the
most beneficial is that problems may become unmanageable very fast for more
complex things. A lot of “book-keeping” is taken care of behind the curtains with
OOP. By “book-keeping”, it is meant that it becomes easier to get, set and store
calculated values. When for instance doing the same calculation several times,
where the only difference is the arguments used for a function call, OOP really
shines. Instead of explicitly changing the arguments, they are stored as attributes
in different objects, and OOP just calls the same method for each object. This
makes the code much more compact and easier to write/read. The basic ideas of
OOP may be summarized through these three concepts:

Polymorphism: You can use the same operations on objects of different classes!

Encapsulation: You hide unimportant details of how the objects work from
the outside world

Inheritance: You can create specialized classes of objects from general ones.

In this thesis, polymorphism and inheritance is of less importance, since the only
class used is a class called Void, that is used to represent the voids in the ma-
trix material. The basic idea of an object (a collection of data and functions) is
nonetheless crucial to be able to manage a large number of voids that must inter-
act with each other, and itself be the target of a lot of manipulation.

In OOP, the first step is to create a Class for representing data. A class is a
blueprint of an object that contains variables for storing data and functions to
perform operations on these data. An object is an instance of a class. An exam-
ple may be the class Dog and the instance Fido. Every instance of a class gets its
own unique set of data, and every method for the class works on these unique at-
tributes. Objects provide a layer of abstraction, which is used to separate internal
and external code.

The differences between class and objects are shown in Fig 3.9. The object Fido
has its own unique attributes, and a set of methods that works on all instances of
the class Dog. These methods may or may not take any of the instance’s attributes
as input (For example a method eat should probably take Fido’s weight as input
parameter, since large dogs usually eat more).
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Figure 3.9: Class and Object [45]

An Object Oriented Model

When trying to solve a problem, write a description of what the desired program
should do. Underline all nouns, verbs and adjectives, and go through the follow-
ing checklist:

Nouns, looking for potential classes

Verbs, looking for potential methods

Adjectives, looking for potential attributes

This list was used to develop the basic idea of how the program should be writ-
ten, based on the desired model behaviour. A void does according to this mindset
classify as a class, while all the things the voids may do, like grow, rotate, trans-
late, etc. classifies as methods.

If a very strict object oriented model is desired, every function should ideally
be written as a method, but some potential methods are still written as functions
in the program. OOP was used to get a much more intuitive program written
in relatively few lines in Python, but it was not seen as a necessity to hide every
function as a corresponding method.

3.4.2 Convex Hull

In mathematics, the convex hull of a set of points X in the Euclidean plane or
Euclidean space is the smallest convex set that contains X. For instance, when X
is a bounded subset of the plane, the convex hull may be visualized as the shape
enclosed by a rubber band stretched around X.

The algorithmic problem of finding the convex hull of a finite sets of points in
a Euclidean space is one of the fundamentals problems of computational geome-
try. In this thesis the concept of a convex hull was used to find the volume of the
voids that grew outside the box’s dimensions. This is a part of the program the
user can decide to include or not. In the work with the model, it was ultimately
decided that the voids that grew outside the box’s dimension statistically should
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be equalized by the voids that should have grown into the box from the outside.
Therefore, this part of the program was not included in the calculations of the
results presented herein.

Figure 3.10: A convex hull in 2D

3.4.3 Data Structures

There exists many types of data structures. A data structure is a particular way of
organizing data in a computer so it can be used efficiently. Linear data structures
are sequences, such as array, lists, tuples, matrices etc. Trees have one root-node,
and subtrees of children with a parent node. Graphs consists of a set of vertices
(nodes) and a set of pairs of these vertices called edges.

Linear data structures is used to store values in a sequence, and is mostly
used to perform calculations. The concept of a sequence is assumed known to
the reader, so the rest of this subsection shall focus on graphs.

(a) The tree structure (b) The graph structure

Figure 3.11: The tree and graph data structures

Graphs are a powerful mental (and mathematical) model of a structure in gen-
eral. A graph G = (V ,E) consists of a set of nodes V and edges between them E. If
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the edges have directions only one way, the graph is directed, otherwise undirected.
Graphs can represent all kinds of structures/systems, and their expressibility can
be increased by adding extra data such as weights or distances. A tree is just a
special type of graph; they are connected and have no cycles.

A highly useful mental model for graph algorithms is ’traversal’, i.e discov-
ering and later visiting all the nodes in a graph. The two most well-known ba-
sic traversal strategies are depth-first search and breadth-first search. In classic
graph traversal, each node in the graph should be visited, and exactly once. This
is implemented by adding the nodes that have to be visited to some sort of collec-
tion, and adding the ones that are connected to the visited nodes through edges to
a list of nodes that need to be visited. When a node becomes visited, it is removed
from the ’must visit’ list and added to a collection of discovered nodes.

The check neighbors algorithm implemented in this thesis is inspired by these
traversal algorithms, but with some twists. In classical graph traversal, the goal
is to reach each node in the graph, exactly once. In this thesis, the goal is to check
every neighbor pair, exactly once. Every void is controlled against each of its
neighbors, unless this exact pair of voids have been controlled before. Thats why
a predecessor list is needed to keep track of which pairs that have been checked.

3.4.4 Asymptotic Notation

This is the last part of the theory chapter, and it may seem a bit unnecessary. But,
it is quite useful to analyze the running complexity of the model, in order to be
able to localize the bottle-necks of the program. By knowing how the program
behaves, it is much easier to look for computational improvements. Coupled
with the fact that this topic is unknown to most without a background in pro-
gramming, an attempted brief introduction will conclude this chapter.

In computer science, in the analysis of algorithms, asymptotic analysis is a
method of considering the performance of algorithms when applied to very big
input datasets. The distinction between "constant factors" (related to more gen-
eral things such as hardware or language performance) and the growth of the
running time as problem size increases, is of crucial importance in the study of
algorithms.

The core idea of asymptotic notion is to represent the resource that’s being
analyzed (usually time or memory) as a function, with the input size as the pa-
rameter, usually denoted n.

The asymptotic notion consists of O (Big Oh), Ω and Θ. The expression O(g)
for some function g represent a set of functions, and a function f (n) is in this
set if it satisfies the following condition: There exists a natural numbern0 and a
positive constant c such that:

f (n) ≤ cg(n) for all n > n0 (3.74)

The constant c may be tweaked (f.ex by running on machines with different
speed). Where O forms an asymptotic upper bound, Ω forms an asymptotic lower
bound. Θ is the intersection of both, Θ(g) = O(g)∩Ω(g), it is both an upper and
lower bound at the same time.
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Figure 3.12: The three asymptotic notions [46]

When working with asymptotic analysis of algorithms, there is one important
rule:

Drop all multiplicative and additive constants, as well as other "small"
parts of the function. All that matters is the largest order of n.

Algorithm design can be seen as a way of achieving low asymptotic running time
by designing efficient algorithms. There has been paid quite a lot of attention
throughout the development of this program on algorithmic design.
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4
The Cellular Automaton Model

The overall framework of the Cellular Automaton model, “CA model” for short,
will first be explained in order to give the reader a conceptual idea along with
the mathematical definition of features related to the model. Following this,
flowcharts and condensed pseudo formulations of the model will be presented.

In the model, the material is thought to exist of two phases, a matrix mate-
rial and voids (which are just empty space). The two phases are decomposed,
but managed separately. The matrix material is subject to a deformation field,
defined by the velocity gradient L. The translation of the voids are based on the
velocity gradient field for the entire box. Description of the two phases follows:

Matrix Phase
The box (the part of the material that are under consideration) is thought of
as plastically incompressible. In reality, it is the matrix material that should
be considered incompressible, but the void growth are considered uncoupled
with the box. Based on this assumption the velocity gradient field is defined
in terms of the lode parameter and the principle axis (which is defined as the
x-axis in the model). By employing the incompressible theorem, the relations
between the three different terms of the velocity gradient field is obtained.

Void Phase
The assumptions made in the Rice&Tracey growth equation is that the void
under consideration is placed in an infinite matrix. No void interactions are
assumed. A simplification of this model has been made, by allowing the ma-
trix material’s volume to decrease as the voids grow. See Chapter 6 for further
discussion. As the voids grow, the void volume fraction keeps increasing,
which means that the matrix volume is decreasing, since the box’s volume
is kept constant. The volume fraction of the voids Vf is between one and
zero, i.e: Vf ∈ [0,1], and the volume fraction of the matrix then follows as
Vm = 1−Vf .
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4.1 Main Parts of the Program

In this section, the main parts of the program will be discussed in more detail.
The program consists of some essential functions and methods that constitutes
the basis of the program, and a lot of smaller functions that do the bookkeeping
work. The four most important of these functions will be presented. After the
reader is given a thorough understanding of the essential parts of the program,
the flowcharts and pseudo code formulation is presented. With a understanding
of the essential parts and the flow of the program, the reader is hopefully given
a good basis for following the discussion of the validity, but also the flaws of the
model in Chapter 5 and 6.

4.1.1 Simplifications / Limitations of the Model

The nucleation of voids are as mentioned neglected in this thesis. The material
is modeled with an initial void volume fraction, spread among a desired number
of voids. This is a conservative assumption, since all the particles that otherwise
should have nucleated sometime into the deformation process are all assumed
nucleated as the deformation starts. Depending on the user input, the voids are
given an orientation and size, among several options. Since nucleation is ne-
glected, it means that the total void number will only decrease, when coalescence
occurs. For coalescence to occur, the coalescence criterion must be fulfilled. In
this thesis, coalescence is defined to occur when two voids intersect each other.
The two voids will then be replaced by a new ellipsoid, defined as the minimum
volume enclosing ellipsoid of the two that collided, or in an implemented exten-
sion of the model, as a scaled version of this ellipsoid.

4.1.2 1st Function: Grow, Rotate and Translate the Voids

This is perhaps the single most important function/method in the program. The
procedure implemented here is credited my supervisors. The first step is to de-
termine the local velocity gradient for each void, denoted L∗. It is unique for
each void, and may differ significantly from the global velocity gradient which
is a result of the deformation of the box under consideration. The Rice&Tracey
growth equation is used to calculate the rate of change of the global semi-axes
of the voids, in the global coordinate system directions, see Fig 4.1. The term
local will denote the coordinate system of each individual void (ellipsoids), as
shown in Fig 2.6a. The local velocity gradient L∗ is determined directly from the
definition of the velocity gradient, as defined in Eq (3.60):

L∗ =
∂v∗

∂x∗
(4.1)

The void growth model developed by Rice&Tracey was originally developed for
voids with the principal axes aligned with the principal loading directions. An
heuristic procedure was therefore followed in order to estimate the void growth
rates in the case of an ellipsoidal void. The semi-axes of the voids are replaced by
the three intersections of the void with the principal loading directions, again re-
ferring to Fig 4.1. This equivalent void is then assumed to follow the Rice&Tracey
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growth equation. L∗ is therefore developed as:

L∗ =



Ṙ1
glob

R
glob
1

0 0

0 Ṙ2
glob

R
glob
2

0

0 0 Ṙ3
glob

R
glob
3


(4.2)

where
˙

R
glob
i are found by solving the Rice&Tracey growth equation for this time

step with either euler, heun or RK4 (see subsection 3.2.6), and Rglobi are found as:

R
glob
i =

√
1
Aii

(4.3)

The local velocity gradient field L∗ is used to determine how the void will ro-

Figure 4.1: The global axes and “axes rates” of a void

tate. L∗ acts upon the local (principal) semi-axes of the void during the timestep
dt, which results in three no longer orthogonal semi-axes. The three semi-axes
must then undergo a QR decomposition, to become orthogonal, as an ellipsoid’s
principal axes must be orthogonal to each other. The largest semi-axis in the el-
lipsoid is set to determine the rotation of the ellipsoid. This is done by setting it
as the first column in its local coordinate basis, before the QR decomposition is
performed.

In Fig 4.2, it is shown a graphical illustration in the form of a vector field, of
how L∗ looks like in 2D for low and high values of the triaxiality, respectively. It
is seen how the void’s semi-axes will decrease towards smaller y-values for small
values of the triaxiality σ ∗ (the same is true for the z-values), so the volume of
the void will actually decrease towards zero after some deformation. For higher
values of σ ∗, the y-values (and z-values) will increase, which means that the void
will grow in every direction. The Rice&Tracey growth equation was first and
foremost developed for these scenarios (higher triaxiality values).
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(a) The vector field created by L∗ for low tri-
axialities

(b) The vector field created by L∗ for larger
triaxialities

Figure 4.2: Local velocity tensor L∗

The void’s semi-axes deforms under the influence of L∗ as shown in Fig 4.3a.
This is the first step of the deformation process. The principal axes of the void
has grown and rotated during the time increment, but the deformations have
been greatly exaggerated to make a point. This step of the deformation process
of the semi-axes are calculated as:

gi
n+1 = gi

n +∆tL∗gi
n for i = 1,2,3 (4.4)

(a) Voids deforms under influence of L∗ (b) The QR decomposition normalizes the
set of vectors

Figure 4.3: Deformation of the void

By looking at the deformation of the void in Fig 4.3a, it is evident that the
semi-axes of the void is no longer perpendicular to each other. Therefore, the

46



CHAPTER 4. THE CA MODEL 4.2. COALESCENCE OF VOIDS

QR decomposition (which uses the Gram-Schmidt process) is used to orthonor-
malize the set of vectors, where the first vector’s direction is leaved untouched,
see Fig 4.3b. Since L∗ tries to deform the semi-axes in opposing directions, this
may introduce an error in the rotation of the voids, so very small time steps are
recommended.

This resulting new basis is then set as the ellipsoids eigenvectors T, and the
norms of the vectors gi are used to get the eigenvalues. With the eigenvectors
and eigenvalues known, the A matrix which defines the ellipsoids in generalized
form is calculated as:

A = TDT−1 (4.5)

The voids were also translated, which means its position was updated to Cnew.
This is based on a linear interpolation of the box’s deformation, given through
the stretch ratios λi at the given time increment:

Cnew =


C
orig
1 λ1(t)
C
orig
2 λ2(t)
C
orig
3 λ3(t)

 (4.6)

where t is the current time in the deformation, and Corig is the initial position of
the voids, as given at t = 0. The stretch ratios are functions of time only.

Depending on whether ΘL is constant or not, the values of L∗ may either be
constant during the deformation, or change. If ΘL is set to vary, both ΘL and
L∗ will nonetheless be a piecewise constant function, as the values within each
time increment are held constant. Anyway, this means that λi should satisfy the
equation:

λ̇i
λi

= ci where i = 1,2,3 (4.7)

where ci are constants. This is a 1st order ordinary differential equation, and the
solution is

λi = ecit where i = 1,2,3 (4.8)

The set of constants ci are given in terms of the lode parameter ΘL and the stretch
ratio λi , since the deformation process were defined in terms of ΘL and ε̇1.

4.2 Coalescence of Voids

The algorithm described in this section were briefly explained in “Algorithms for
Ellipsoids” by Stephen B. Pope [47]. To determine when the ellipsoids are in
contact, one of the two ellipsoids in question (E1 and E2) is transformed to a unit
sphere in origin by the transformation:

x̄ = R1(x− c1), (4.9)

and this transformed ellipsoid is denoted E
′
1. E2 then undergoes the same trans-

formation, and the new ellipsoid is denoted E
′
2. The point x

′
2 in E

′
2 which is clos-

est to the origin is determined by the Lagrange multiplier method. If this point is
closer to the origin than 1 (remember that E

′
1 is a unit sphere) the two ellipsoids

intersect.
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To determine the transformation matrix between the two coordinate systems,
a transformation matrix Q with the following properties must be developed:

x = Qx̄, (4.10)

so that the three unit vectors x̄1, x̄2 and x̄3 turns into the ellipsoid’s principal axes
by undergoing this transformation. The transformation matrix Q is therefore
given by the length and orientation of the ellipsoids principal axes, which are
the inverse of the root of the eigenvalues and the eigenvectors, respectively. The
transformation matrix between the two coordinate systems is thus:

Q =
[
v1

1√
λ1
, v2

1√
λ2
, v3

1√
λ3

]
(4.11)

where λi are the three eigenvalues, and vi the three eigenvectors. The matrix may
therefore also be expressed as:

Q =


v

[1]
1√
λ1

v
[1]
2√
λ2

v
[1]
3√
λ3

v
[2]
1√
λ1

v
[2]
2√
λ2

v
[2]
3√
λ3

v
[3]
1√
λ1

v
[3]
2√
λ2

v
[3]
3√
λ3


(4.12)

where v[j]
i means vector i’s jth component. The first ellipsoid is transformed ac-

cording to:
xT

1 A1x = 1

(Qx̄)TA1(Qx̄) = 1

(x̄)T(QTA1Q)x̄ = 1

(x̄)T(Ā1)x̄ = 1

(4.13)

which shows that Ā1 = QTA1Q. Ellipsoid 2 undergoes the same transformation,
i.e Ā2 = QTA2Q. The transformation is a linear one, so the transformation of the
distance between the ellipsoids centers follows as:

d0 = C2 −C1

d1 = Q−1 · d0
(4.14)

where d0 is the initial distance between the voids, and d1 the distance between
the centers of the transformed voids. The transformed ellipsoid 2, Ē2, expressed
by Ā2, has eigenvalues and eigenvectors denoted λ̄2 and v̄2, respectively.

To find the shortest distance from origin to some point in the ellipsoid Ē2,
the easiest approach is to change coordinate systems, so Ē2 can be expressed by
its standard equation (see Eq (3.10)). Thus, Ē2 is transformed again into its own
local coordinate system, and denoted Ēnew2 , through the transformation:

Ānew
2 = v̄−1

2 Ā2v̄2 (4.15)

The transformed distance between the centers of the ellipsoids are transformed
again, i.e the vector from origin to the center of ellipsoid Ē2, since the coordinate
system has been changed:

d2 = v̄−1
2 · d1 (4.16)
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The problem is now reduced to finding the minimum distance from d2 to the
surface of Ēnew2 , and if this distance is smaller than or equal to unity, then the
ellipsoids are intersecting. To find the shortest distance from a point to an ellip-
soid expressed in its standard equation(again, Eq (3.10)), the following equation
should be minimized:

(x − x0)2 + (y − y0)2 + (z − z0)2 (4.17)

where (x0, y0, z0) is the point d2, and (x,y,z) are points on the surface of the ellip-
soid, subject to the constraint of the standard equation of an ellipsoid (Eq (3.10)).

As described in 3.2.8, this is a problem that calls for finding a Lagrange mul-
tiplier. It is solved by setting

[2(x − x0), 2(y − y0), 2(z − z0)] (4.18)

proportional to
[2x/a, 2y/b, 2z/c] (4.19)

The proportionality factor (the Lagrange multiplier) is here denoted t. This gives
the following equations

t = a
x − x0

x
= b

y − y0

y
= c

z − z0

z
(4.20)

which leads to

x =
a
a− t

x0, y =
b
b − t

y0, z =
c
c − t

z0 (4.21)

Substituting these into the ellipsoid equation gives

a

(a− t)2 x
2
0 +

b

(b − t)2 y
2
0 +

c

(c − t)2 z
2
0 = 1, (4.22)

from which it is obtained that

(a− t)2(b − t)2 · (c − t)2 = a(b − t)2(c − t)2 · x2
0 + b(c − t)2(a− t)2 · y2

0

+ c(a− t)2(b − t)2 · z2
0

(4.23)

This is a sixth order polynomial equation in the multiplier t. Python were used
to solve this, where the seven coefficients were worked out with symbolic calcu-
lations. A general polynomial may be written on the form:

c1 · xn + c2 · xn−1 + . . .+ cn = 0, (4.24)

where the seven coefficients were found to have the following values

c1 = 1
c2 = − 2(a+ b+ c)

c3 = a2 + b2 + c2 + 4(bc+ ca+ ab)− (ax2
0 + by2

0 + cz2
0)

c4 = 2(−a2(b+ c)− b2(c+ a)− c2(a+ b)

− 4abc+ a(b+ c)x2
0 + b(c+ a)y2

0 + c(a+ b)z2
0)

c5 = b2c2 + c2a2 + a2b2 + 4abc(a+ b+ c)− a(b2 + c2)x2
0 − b(c2 + a2)y2

0

− c(a2 + b2)z2
0 − 4abc(x2

0 + y2
0 + z2

0)

c6 = 2abc · ((b+ c)x2
0 + (c+ a)y2

0 + (a+ b)z2
0 − bc − ca− ab)

c7 = abc(abc − bcx2
0 − cay

2
0 − abz

2
0)

(4.25)
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Only the real roots gives possible solutions, so for every real root of t the corre-
sponding (x, y, z) coordinates are found from Eq (4.21). The distance d (Eq (4.17))
is calculated for these real solutions, and the smallest value among them is cho-
sen. In this case, there is exactly two real roots; the maximum and minimum
distance from the point to the ellipsoid’s surface. As mentioned before, if this
distance d is smaller than unity, d ≤ 1, the ellipsoids intersects.

4.3 Minimum Volume Enclosing Ellipsoid

In mathematical optimization, the ellipsoid method is an iterative method for
minimizing convex functions with inequality constraints. The minimum vol-
ume enclosing ellipsoid will for short be denoted MVEE, or MVE ellipsoid from
here on. The ellipsoid method generates a sequence of ellipsoids whose volume
uniformly decreases at every step, thus enclosing a minimizer of a convex func-
tion. Leonid Khachyan’s [48] algorithm is implemented in this thesis, with help
from [49]. See also [50] and [51] for a full explanation of the algorithm. The
following optimization problem is solved

minimize log(det(A))
subject to (Pi − c)′ ∗A ∗ (Pi − c) ≤ 1 for all points Pi

(4.26)

in variables A and c, for a set of data points stored in P, where Pi is the ith point
in P. A describes as before the ellipsoid equation in its generalized form, and
c is the ellipsoid’s center. The final solution differs from the optimal value by
the pre-specified amount of tolerance. This is the reason the new ellipsoid is not
completely covering all the input points. The pseudo-code for this algorithm
are shown in 4.3. Figures that combine the two algorithms MVEE and Intersect-
ingVoids, are shown in Fig 4.4 and Fig 4.5.

(a) Two coalesced voids, from the front (b) Two coalesced voids, from an angle

Figure 4.4: Coalescence shown in 3D

As shown in Fig 4.4, when two aligned (and in this case identical) voids inter-
sects, the resulting MVE ellipsoid is clearly very accurate. When two ellipsoids
with very different size and/or orientations, the resulting MVE ellipsoid does not
obtain quite as accurate results, see Fig 4.5 and Fig 4.6. Here it is shown that
by varying the error tolerance, a visible effect on the resulting MVE-ellipsoid
returned from the algorithm are obtained. Some parts of the two intersecting
ellipsoids will be outside the resulting MVE-ellipsoid, because of the fact that
the algorithm is truncated before reaching its optimal value, because of the TOL
parameter.
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(a) Tight error tolerance between random
oriented voids

(b) A more relaxed error tolerance

Figure 4.5: Coalescence shown in 2D upon contact

Figure 4.6: A more relaxed tolerance shown in 3D

When two voids are determined to be intersecting, MVEE are called with ar-
guments being sample points from the two ellipsoids surfaces. The new ellip-
soid that is created does have larger volume than the sum of the intersecting
ellipsoids, so matrix is removed from the model for each coalescence. This is
an non-physical phenomenon, since the matrix in reality is incompressible dur-
ing plastic deformations. On the other hand, the voids would probably coalesce
quite a while before they intersect. These two effects are at the moment assumed
to cancel each other out, at least to some extent. The fact that the MVE-ellipsoid
“eats” matrix, is quite suitably called the "Pac-Man effect".

In Fig 4.7, the “Pac-Man effect" is shown for the same scenario shown in
Fig 4.4, i.e for two identical initially spherical voids, that experiences coalescence.
The red graph is the “Pac-Man effect”, and it makes a jump for each coalescence,
and are constant in between. The “Pac-Man effect” denotes how much of the vol-
ume that is the result of “eaten” matrix of the total void volume. The total void
volume is the sum of void growth and the “Pac-Man effect”. These results will be
further discussed in Section 5.
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Figure 4.7: The Pac-Man Effect

4.4 Collision with Box

The last algorithm that will be shown. This is used for the periodic distribution
of voids during the parameterstudy in Chapter 6, and are also used in order to
subtract the void volume of the parts of the voids that is outside the box’s dimen-
sions, if the user so specifies.

In an attempt to model the behavior of the microvoids even more accurately,
voids were allowed the option to be positioned outside the box’s dimensions. This
way, voids may grow into the box from the outside, and out of the box from the
inside. Only the volume of the parts of the voids that are inside the voids are
then added to the void volume. The disadvantage is that more voids, combined
with the fact that only part of the void’s volume should be added to the total
void volume, of course will result in longer computation time. As mentioned
in subsection 3.4.2, it was decided that the voids that grew outside the box’s
dimension statistically should be equalized by the voids that should have grown
into the box from the outside. The benefits of this procedure was therefore rather
uncertain, and while it is an option for the user, it was not used to produce any
of the results presented herein.

To determine if a void is intersecting the box, the general equation of the
ellipsoid (Eq (3.12)) is expanded, which results in

x(a00x+ a01y + a02z) + y(a01x+ a11y + a12z)
+z(a02x+ a12y + a22z)− 1 = 0

(4.27)

This expression is a 2nd order polynomial in three variables. It is solved for the
different scenarios where the ellipsoid may collide with the planes determined by
a constant x, y or z value, i.e the expression is solved for x, y and z. To determine
if the planes intersects the ellipsoid, the discriminants need to be established (see
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Algorithm 1: MVE Ellipsoid: Pseudocode
Data: A matrix P storing points, and a tolerance for error TOL
Result: A and c
Initialization: N is the number of points, and d the dimension of the points
Establish Q: Q = [P;ones(1,N )]
Establish u: u = (1/N ) ∗ ones(N,1)
while error > tolerance do

Establish X: X = Q diag(u) QT

Establish M: M = diag(QT inv(X) Q)
Store the maximum value in M as max, and the location/index as j
Calculate step size: step-size =

(max - d -1)/((d+1)·(max-1))
Calculate new_u: new_u = (1− step-size) ·u
Increase the jth element of new_u : new_u(j) = new_u(j) + step-size
Store an error-measure: err = norm(new_u - u)
Increment count: count = count + 1 Replace u: u = new_u

end
Compute U: U = diag(u)
Compute A: A = (1/d) ∗ inv(P ∗U ∗PT − (P ∗u) ∗ (P ∗u)T )
Compute center: c = P ∗u

subsection 3.2.3). The discriminants are given as

discrx =− a00a11y
2 − 2a00a12yz − a00a22z

2 + a00

+ a2
01y

2 + 2a01a02yz+ a2
02z

2 (4.28)

discry =− a00a11x
2 − 2a02a11xz − a11a22z

2 + a11

+ a2
01x

2 + 2a01a12xz+ a2
12z

2 (4.29)

discrz =− a00a22x
2 − 2a01a22xy − a11a22y

2 + a22

+ a2
02x

2 + 2a02a12xy + a2
12y

2 (4.30)

The distance from the ellipsoids centroid to the plane is then substituted for
the relevant variable. Now, the discriminants are functions of one variable only.
When for instance controlling intersection with the y-plane, the discriminant for
the equation solved with respect to x is found, and then the value for y is substi-
tuted. The resulting function is then only in z, i.e f = f (z). The 2nd derivative of
f (z) is negative for all values of z, which follows from the fact that the quadratic
form is given by a definite positive matrix A. So if the maximum value of f (z),
found as f (zcrit), is ≥ 0, where zcrit is obtained from

∂f (zcrit)
∂z

= 0, (4.31)

then the ellipsoid intersects the plane, since the discriminant is positive (∆ ≥ 0).
Thus, a real solution exists. Otherwise, they are separated.
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4.5 Varying Lode ΘL or Triaxiality σ ∗

Finally, it should also be mentioned that the triaxiality and lode must by no
means be constant throughout the deformation. They may vary depending on
the user input, through the function called Make_linear_function(). In Fig 4.8, it
is shown how for instance the stress triaxiality may vary. The development of σ ∗

may for instance be taken from a FE-analysis, and the development may be given
to the CA model. The deformation process is therefore not limited to propor-
tional deformation, as long as the principal deformation directions aligns with
the global coordinate system in the CA model. Proportional deformation means
that ΘL is constant, and it is also the most usual scenario in experiments. The
results obtained in this thesis have all been for constant values of ΘL and σ ∗, but
the choice to let these parameters vary have been implemented.

Figure 4.8: How ΘL or σ ∗ may vary, defined by user

4.6 Flowchart and Pseudocode Formulation

This section will present flow charts and the corresponding pseudocode for the
two main parts of the program. The reader is advised to maybe focus more on the
flowcharts in Fig 4.9 and Fig 4.10 than the pseudocode shown in 4.11 and 4.12.
When trying to formulate a program in a computer language, there is always a
lot more unexpected commandos that need to be executed compared to the oral
description of the problem, so to get an understanding of what happens, and in
which order it happens, the flowcharts will give the necessary information.

The instantiation part (green flowchart, Fig 4.9) are executed in the beginning
of the blue flowchart; see the green box in Fig 4.10.
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Figure 4.9: Flowchart that gives an overview of the instantiation part of the pro-
gram
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Figure 4.10: Flowchart that gives an overview of the main part of the program
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Figure 4.11: Pseudocode for the instantiation part

Algorithm 2: Pseudocode - Instantiation part

for each void desired do
if orientation == something then

Generate desired orientation
else

Generate another type of void. . .
end

end
Calculate void volume
Define box
for each void desired do

Generate position
for each void instantiated do

if collision with new void then
generate another position

else
instantiate void

end
end

end
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Figure 4.12: Pseudocode for the main part of the program

Algorithm 3: Pseudocode - Main part

while Vf ≤ V lim
F do

Find neighbors every kth increment
σ ∗ = σ ∗vec[t]
ΘL = Θvec

L [t]
if sigma∗ ≤ 1.0 then

D = αe
3σ∗

2

else
D = ασ

1
4 e

3σ∗
2

end
The constants ci in λ(t) = ecit are determined from:
c1 = user-specified value
c2 = (−ΘL ∗ c1 ∗ 2)/(3 +ΘL)
c3 = c1 ∗ (ΘL − 3)/(ΘL + 3)

L =

c1 0 0
0 c2 0
0 0 c3


Calculate ε̇eq
for each void do

Grow, rotate and translate
Add all the voids volumes together, to get Vf
if user decides then

subtract the volumes of the voids thats outside the box
end

end
for each void do

for each neighbor do
if (void,neighbor) pair has been checked already then

skip it
else

check collision between the ellipsoids
end
if collision then

Sample points from both voids
Create a MinimumVolumeEllipsoid around these points
Delete the two intersecting voids
Instantiate the replacement MVEE void
for each void do

Delete these two voids from the neighbor list
end
Find all the neighbors for the new MVEE void
Add the (void,neighbor) pair to a list of checked pairs

end
end

end
Increase t: t+ = dt

end
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5
Verification

In the development of the model, there were possibly two major sources of error:
Flaws in the mathematical foundation and mistakes in the software implementa-
tion of the mathematical foundation. In chapter 4, the mathematical foundation
was described in detail for the most important algorithms. In this section, it will
be assumed that these procedures were calculated correctly, and the focus will
therefore be on the implementation in Python, and how the results compares to
known solutions where these are available.

5.1 Preliminary Controls

In order to avoid bugs (flaws/errors) in a program, a continuous quality control
of the code were performed. Examples are:

1. Symbolic operations were performed and controlled with Sympy, which is
a Python module for symbolic math operations.

2. Comparison with the closed form solution of Rice&Tracey

3. Graphical plots were used all the time to see if the voids behaved as ex-
pected. When a large amount of random generated voids are shown in plots
during the deformation process, it is quite easy to see if something does not
behave as expected, where rotation and translation of the voids are obvious
examples, but also coalescence and the MVE ellipsoid. A lot of errors where
discovered this way; by simply considering the results graphically to see if
the behavior made sense.

4. When the implemented algorithms didn’t work as expected, further study
of the problem was undertaken, which most often resulted in a change of
the whole algorithmic idea. Especially the collision between voids was a
problem of this type; where the procedure changed several times during
the work with the thesis.
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5.2 Comparison to Closed-Form Solution

To control the numerical solution, it is compared to the analytical solution of the
growth equation. As mentioned before, as long as the stress triaxiality and lode
parameter is held constant during the deformation, there exists a closed form
solution. The Rice&Tracey void growth equation (Eq (2.3)) have a closed form
solution when ΘL and σ ∗ are held constant during the deformations:

Ri = R0(A+
3 +ΘL

2
√

3 +Θ2
L

B for i = 1,2,3 (5.1)

where

A = exp(
2
√

3 +Θ2
L

3 +ΘL
Dε1

B =
1 +E
D

(A− 1)

(5.2)

To compare the results, an initial spherical void with principal axes in the same
directions as the global axes was computed. The stress triaxiality and lode pa-
rameter was held constant, and the three semi-axes’ magnitude were calculated.
The differences between the analytical and the numerical solution was extremely
small even for relatively large time steps.

The figure Fig 5.1 shows how the volume developed both analytically and
numerically during the deformation, according to Runge-Kutta 4 with the two
different timesteps 100 and 300. The lode parameter used was ΘL = 1, and the
triaxiality was σ ∗ = 1. This value of σ ∗ is chosen because the Rice&Tracey model
is first and foremost developed for stress triaxialities at this value and higher.

Most of the simulations run in this thesis will use this value for σ ∗. With this
value, the voids will grow in all principal directions. Higher values will result
in very fast void growth, while low values will result in a situation where one or
two (depending on ΘL) principal axes will start to shrink, and this is a bit outside
the assumptions made in the development of the Rice&Tracey growth equation.
σ ∗ = 1 is therefore a well suited value for the validation and verification of the
model.

As shown in Fig 5.1 (which shows the volume of the void vs equivalent strain),
the numerical and analytical solutions are very close to each other, even for as few
as 100 time steps! The situations when ΘL = 0 and Θ = −1 behaves exactly the
same, so they will not be shown here. A plot of how the voids semi-axes develop is
also shown, see Fig 5.2, where the length of the principal axes are plotted against
the equivalent strain. Since the volume of an ellipsoid is

Vf =
4πR1R2R3

3
(5.3)

the error shown in the calculated Vf will in a worst case scenario be in the 3rd

power (the semi-axes calculated in the numerical solution is not always either all
smaller or larger than the analytical solution, therefore only worst case scenario).
Still, the differences between numerical and analytical solution is insignificant,
and by increasing the timesteps up to f.ex 500, it is almost impossible to tell them
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(a) 100 timesteps (b) 300 timesteps

Figure 5.1: Evolution of the void volume fraction

(a) 100 timesteps (b) 300 timesteps

Figure 5.2: Evolution of the void’s semi-axes, ΘL = 1

apart. It is concluded that the numerical solution gives very accurate results even
for relatively few timesteps (for instance 100 time steps).

In Fig 5.3, it is shown how the voids deforms differently for different values
of the Lode parameter. The plots are taken from the same time increment, and
all the voids were initially spherical and of identical size.

(a) ΘL = 1 (b) ΘL = 0 (c) ΘL = −1

Figure 5.3: The voids grows differently depending on ΘL
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There are extremely small differences in the void volumes for varying ΘL
(not shown here), but the shapes differs to some degree. In the case of gener-
alized shear and generalized compression, the void will grow more towards a
"pancake" geometry, where the generalized compression will be the flattest and
widest. These differences in how the shape turns out may result in differences in
when they coalesce (See Chapter 6 for further discussion).

Unfortunately, for the case of varying ΘL or σ ∗, there exists no analytical
(closed-form) solution to the Rice&Tracey growth equations. It is therefore as-
sumed that since the numerical solution for the case when triaxiality and lode
are constant clearly converges, the program will also converge for varying pa-
rameters, which is no more than partially constant parameters. The lode and tri-
axiality may change between time increments, but are constant within each. The
convergence would probably be slower, so more time steps may be advised, but it
is concluded that since the solution converges for constant parameters, the solu-
tion should also converge when the parameters are partially constant. As long as
the solution of independent subproblems are correct, compiling the results from
these subproblems should yield a correct solution.

5.2.1 Stop Semi-Axes of the Void from Decreasing Below Zero

This may not be a very relevant case, since this may only occur for small values
of the stress triaxiality. But it is made sure that instabilities are avoided for lower
stress triaxialities, so it is possible to look at f.ex how the rotation develops dur-
ing extremely large deformations (shown in the next chapter, see 6.1.1). During
the method ‘Rotate_and_grow()’, the voids translates, grows and rotates. Each
increment, the original orthonormal basis given by the A matrix’ eigenvectors
are adjusted as a result of the local velocity field L∗ during the operation

g1 = g1 +∆t L∗ġ1 (5.4)

where ∆t L∗ġ1 from now on is denoted ∆g. To stop the semi-axes from getting
negative values, the following procedure was chosen:

The ratio |∆g|
|g| gets larger as g keeps decreasing in magnitude, which is deter-

mined by its corresponding eigenvalue. When this ratio reaches a critical value,
the magnitude of g is kept unchanged during the following increments. For rel-
atively small time steps, the semi-axes may reach values extremely close to zero
without ever have to worry about the instability that may be caused from ill-
conditioned equations. Note that this instability has nothing to do with numeri-
cal instability for the explicit solvers.

In Figure 5.4, it is shown how the voids will stop decreasing when the semi
axis reaches a value close to 0. The corresponding evolution of the void’s volume
is shown in Fig 5.5, where the red dots show where in the deformation process
the plots are taken from. Since only 40 timesteps are used, the void will not
get a volume particularly close to zero before the semi-axis will stop decreasing.
Notice that the void’s volume will start to increase towards the end, because the
semi-axis in the z-direction will have fixed magnitude from this point on, while
the other semi-axes will keep increasing according to the Rice&Tracey growth
equation.
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(a) Decreasing void volume (b) Stopped decreasing semi-axis in z-direction

Figure 5.4: Growth of a void, Θ = −1 and σ ∗ = 1
3 , only 40 timesteps

Figure 5.5: Numerical vs analytical solution

If more time steps are used, the voids will become practically completely flat,
as the ratio |∆g|

|g| will be below the critical ratio much longer, due to low values of
|∆g|. The volume of the voids will then get much closer to zero, see Fig 5.6b. In
Fig 5.6, it is shown what will happen if this procedure hadn’t been implemented.
If it had been active, the void’s volume would have stayed very close to zero
during further deformation, instead of the instabilities shown.

5.3 Differences of Euler, Heun, RK4

Figure 5.7 clearly shows how small differences there is between the different so-
lutions, even for as few timesteps as 40 (which nonetheless is way fewer than rec-
ommended, because of the desired accuracy). They are very close to each other,
and all of them is as expected for 40 timesteps a bit different from the analytical
solution.
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(a) Instability for 35 timesteps (b) Instability for 500 timesteps

Figure 5.6: Instability because of decreasing voids, 35 timesteps and 500
timesteps, RK4 solver

Based on the theory presented on the explicit solver methods in Section 5.3,
much larger differences between Euler, Heun and RK4 were expected. But, the
reason for the very similar results have an explanation:

The process of defining the local velocity tensor L∗ based on the voids global
semi-axes, is the source behind the rather unexpected results. The fraction Ṙi/Ri
gets very similar values for all methods, since RK4 gets more correct values for
Ri , which results in a “more correct” value for the next time increment than the
other methods manages. But, since the Euler method results in a lower value
for Ri , it therefore results in higher growth rate of the void through L∗. Heun is
somewhere in between of the results obtained from Euler and RK4. The results
turned out to be very similar in the end, for all the explicit methods. They were
in fact so similar that the author several times checked the numerical values to be
sure that RK4 hadn’t been used by an accident for all the simulations; but there
are indeed small differences between the calculated values.

It may be concluded that the Euler method should be used in the simulations
instead of Heun or RK4, since the results are so similar, but the Euler method is
computationally more effective. But, every possible combination of void growth
hasn’t been checked, so there may yet exist undiscovered scenarios where the
differences between Euler, Heun and RK4 are larger. In a “rather safe than sorry”
mentality, the RK4 solver was therefore still used for all the results obtained in
this thesis.

5.4 Asymptotic Running Time

When writing code, almost all problems one may stumble upon does have a
’brute force’ solution. This simply means that every options is calculated and
compared to find the solution one is searching for, or the ’optimal solution’. In
this thesis, a lot of effort have been made to come up with better algorithms than
this ’brute force’ alternative. A ’brute-force’ solution is usually pretty easy to im-
plement, but also quite computationally demanding, and thereby setting a limit
on the problem size.
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Figure 5.7: The numerical solvers compared to the analytical solution

In this section, the asymptotic running time of the program will be stated.
The flowcharts (and of course the pseudo code) of the program is tightly coupled
with this section.

To show the asymptotic running time as easily as possible, the pseudocode of
the program is used, but this time all the commands have written their respec-
tive running times at the end of the same line. By remembering the principal rule
when working with asymptotic analysis (see 3.4.4), that it is allowed to drop all
the constant parts of our functions, the program turns out like shown in Fig 5.8.
The total running time complexity for the initialization part of the program be-
comes Θ(n2), which is because every void created must be compared with all the
others to avoid initial collision, resulting in n(n+ 1)/2 comparisons.

The running time complexities for the main part of the program of the pro-
gram is shown in Fig 5.9. Here, the running time is found to be Θ(N ∗n3∗m∗TOL).
N means the number of time steps, TOL is the tolerance given in the MVE ellip-
soid algorithm, n is the total number of voids, and m the average number of
neighbors for each void.

Asymptotic notion is used to tell how the program responds to changes in the
input on the running time. In this thesis, it was also used to find the “correct”
parts of the program to try to optimize.

The only part of the code (see Appendix A for the source code) that is not
as good as desired, is the algorithm that updates the neighbor lists every kth

timestep. The algorithm used is a brute force algorithm, that checks the distances
between all the voids’ centers, and if the centers are closer than the sum of the two
voids largest principal axis times a factor of 1.1, assigns them as neighbors. The
value k = 5 was used to obtain the results herein. On the bright side, just com-
puting the norm of a vector in 3D and comparing it to the voids’ semi axes, is not
a very computational expensive procedure. If all the voids had been controlled
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Algorithm 4: Running Time Complexity - Initialization part

for each void wanted Θ(n) do
if orientation == something Θ(1) then

Generate desired orientation Θ(1)
else

Generate another type of void. . .Θ(1)
end

end
Calculate void volume Θ(1)
Define box Θ(1)
for each void wanted Θ(n) do

Generate position Θ(1)
for each void instantiated Θ(n) do

if collision with new void Θ(1) then
generate another position Θ(1)

else
instantiate void Θ(1)

end
end

end

Figure 5.8: Running Time Complexity - Initialization part

for intersections with each other, the algorithm is still a brute force strategy, but
it would have been a lot more expensive. By filtering out the voids that have no
possibility of intersecting each other based on distance between each other and
size, the computations becomes much faster. This process is called pruning, which
in computer science means that subproblems (intersecting ellipsoids in this case)
whose solution is known beforehand to give a “negative” result, are discarded
without further consideration.

Nonetheless, the problem of finding current neighbors is possible to solve
by a Divide&Conquer strategy, which would have resulted in a running time
of Θ(Nn2 · lg(n)m · TOL) instead of Θ(Nn3m · TOL). Unfortunately, it was not
found enough time to implement a Divide&Conquer algorithm for this problem.
This topic is therefore mentioned in the Chapter “Extensions of the Modeling
Framework”. Pay attention to the fact that the running time of finding the convex
hull to remove part of the void’s volume is not included in the calculated running
time of the program. This functionality was as mentioned not used to obtain any
of the results in this thesis, and therefore it was decided to not include it in the
running time complexity for the CA model.
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Algorithm 5: Running Time Complexity - Main part

while Vf ≤ V lim
F Θ(N ) do

Find neighbors every kth increment Θ(n2)
A lot of constant operations, Θ(1)
for each void Θ(n) do

Grow,rotate and translate Θ(1)
Add all the voids volumes together, to get Vf Θ(1)
if user decides then

subtract the volumes of the voids thats outside the box Θ(nlg(n))
end

end
for each void Θ(n) do

for each neighbor Θ(m) do
if (void,neighbor) pair has been checked already then

skip it Θ(1)
else

check collision between the ellipsoids Θ(1)
end
if collision then

Sample points from both voids Θ(1)
Create a MinimumVolumeEllipsoid around these points
Θ(TOL)

Delete the two intersecting voids Θ(1)
Instantiate the replacement MVEE void Θ(1)
for each void Θ(n) do

Delete these two voids from the neighbor list Θ(1)
end
Find all the neighbors for the new MVEE void Θ(n2)
Add the (void,neighbor) pair to a list of checked pairs Θ(1)

end
end

end
Increase t: t+ = dt

end

Figure 5.9: Running Time Complexity - Main part
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6
Validation

This chapter will start off with mentioning the shortcomings of some assump-
tions made in the implementation of the model:

In the Rice&Tracey growth equation, Rice&Tracey looked at one void in an
infinite medium, and in this case the void volume fraction is of course 0. The
assumption of an incompressible matrix are not violated. On the other hand, to
consider a finite matrix with a large amount of voids, does violate the incom-
pressibility matrix theorem of plastic flow. This was a necessary simplification in
order to be able to use the Rice&Tracey growth equation to model the void growth
in the CA model. As the voids grow, the volume of the matrix is reduced corre-
spondingly. This section will do its best to uncover and discuss any shortcomings
as a result of the assumptions and simplifications made in this model.

6.1 Comparing Results to Abaqus

6.1.1 Rotation Compared to Abaqus

This section will compare how the voids rotates in the CA model compared to
the exact same simulations in Abaqus. For all the following cases, the stress
triaxiality is set as low as σ ∗ = 1/3, to avoid that the void will grow outside the
box, which terminates the Abaqus simulations. This is to be able to fully focus
on the rotation of the voids. Further, the lode parameter is equal to 1, which
characterizes a load situation of generalized tension. The initial void volume
fraction is 0.005.

1st case - 45 degrees initial angle, R1=4R2=4R3

The void is initially rotated from the global coordinate system around the y-axis,
an angle of 45 degrees. The semi-axes ratio is as mentioned in the title R2 =
R3,R1 = 4R2, and the angle between the R1 axis and the x-axis is measured in
both the CA model and in Abaqus. In Fig 6.1, it is shown angle vs principal strain
along the x-axis (ε11). The results must be said to be in very good agreement. It is
seen that when ε11 exceeds 1.5, the angle from the CA model will keep decreasing
towards 0, for so to be equal to 0 for further deformation. The angle in the Abaqus
analysis will from ε11 ≥ 1.5 on decrease more slowly.
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It is worth mentioning that strain values of 1.5 is equal to a stretch ratio of λ =
e1.5 = 4.48, which means ridiculously large deformations. No results of interest
should be taken from such large strains in the CA model nonetheless, since the
void will be so incredibly different from the spherical void that is assumed in the
Rice&Tracey growth equations.

(a) Initial configu-
ration

(b) Early rotated config-
uration

(c) Configuration at large deformation

Figure 6.1: 1st case - 45 degree initial angle, R1=4R2=4R3

Figure 6.2: Comparison of the void’s rotation; Abaqus and model

2nd case - 75 degrees initial angle, R1=4R2=4R3

The void is now rotated an angle of 75 degrees, with the same semi-axes ratios
as in the preceding subsection. This case shows possibly the largest differences
between the implementation and Abaqus.

Initially, the void’s largest semi-axis is in transverse direction of the largest
strain direction (the x-direction). The void will be stretched in the x-direction,
and it will rotate towards the x-axis. At a given deformation, the void will have
several points with almost the exact same distance to the center of the void (see
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Fig 6.6 and Fig 6.7 for plots from Abaqus of a very similar configuration). Abaqus
assumes that the greatest distance to the origin is the principal axis. Therefore,
Abaqus does not follow the same material point on the void’s surface (as the CA
model does), but rather the greatest distance to the origin. This is the reason for
the sometimes irregular changes in the measured angle in the Abaqus results.
The mesh used in the Abaqus model may also affect the obtained results, but the
mesh used to obtain these results should be well within reasonable limits.

For several of the next cases, the changes in the angle between the largest
principal axis and the x-axis are much more irregular. The above mentioned
explanation is very likely the source of the irregular measures.

(a) Initial configu-
ration

(b) Early rotated configu-
ration

(c) Configuration at large deformation

Figure 6.3: Rotation of the void with 75 degree initial angle, R1=4R2=4R3

Figure 6.4: 2nd case - 75 degree initial angle, R1=4R2=4R3
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3rd case - 15 degrees initial angle, R1=4R2=4R3

Once again (see Fig 6.5), very similar results are obtained from the model and
Abaqus. At εeq ≈ 1.5, the angle calculated from the CA model has reached an
alignment with the global coordinate system. Further deformation does then
not change the angle at all, which is exactly the physical behavior that can be
expected!

Figure 6.5: 3rd case - 15 degree initial angle, R1=4R2=4R3

4th case - 75 degrees initial angle, R1=3R2=3R3

In this case, the initial angle is still 75 degrees, but the weight ratios are slightly
lower: R1=3R2=3R3. The graphical results from Abaqus are this time included
(see Fig 6.6 and Fig 6.7), to show the graphical similarities during the deforma-
tion.

As Fig 6.8 shows, the angle computed in Abaqus is less smooth than the one
obtained from the CA model. The sometimes irregular jumps in the Abaqus re-
sults are because of the change of the largest semi-axis, as mentioned in the pre-
ceding subsection. The Abaqus analysis was terminated early for this case, as the
void had grown too much (nearly outside the box). Nonetheless, by comparing
both the graphical and analytical results, they are once again quite similar.

5th case - 85 degrees initial angle, R1=2R2=2R3

In Fig 6.10, it is shown how the change of the largest semi-axis happens. This
change results in a discontinuous measurement of the angle and a change in
which way the void rotates, shown in Fig 6.9. For a stretch ratio above 1 in the
x-direction (λ1 > 1), the void will rotate clockwise until the change of largest
principal axis happens, and then the principal axis will change by 90 degrees.
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(a) Initial configuration in Abaqus (b) Initial configu-
ration in model

Figure 6.6: 4th case, graphical comparison

(a) Final configuration in Abaqus (b) ≈ corresponding configu-
ration in model

Figure 6.7: 4th case, graphical comparison

After this change, the largest principal-axis will now be oriented such that the
void will rotate counterclockwise from here on out. This process is shown in
Fig 6.11. The exact opposite will happen for λx < 1.

6th case - 89 degree initial angle, R1=2R2=2R3

In Fig 6.1.1, the angle calculated by both the model and Abaqus are shown. The
trend in both this case and the case of an initial angle of 85 degrees, is that the
change in largest semi-axis happens a bit earlier in the Abaqus simulation.

To summarize this whole section; the obtained results are very similar. For
the cases when the initial angle is quite large (75 degrees and larger), it seems
like Abaqus rotates the void slightly faster than the model. For 45 degrees, the
results are more or less identical, while for the case when the voids are rotated
only 15 degrees, it actually rotates slightly faster in the CA model. The voids
in the CA model will actually reach an angle of zero degrees, while that never
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Figure 6.8: 4th case - 75 degrees initial angle, R1=3R2=3R3

Figure 6.9: 5th case - 85 degree initial angle, R1=2R2=2R3

happened in Abaqus. When the voids got pretty close to being aligned with the
x-axis in Abaqus, they rotated very slowly, much slower than the CA model. Even
though there were some differences, the results seems to be very promising. It is
concluded that the rotations are described with sufficient accuracy.
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(a) Initial configuration (b) Configuration at large deformation

Figure 6.10: 5th case - 85 degree initial angle, R1=2R2=2R3

Figure 6.11: The voids need not rotate the same way throughout the whole defor-
mation process. Here the deformation process between Fig 6.10a and Fig 6.10b
are shown.

6.1.2 Growth Compared to Abaqus

In this section, the growth of the voids according to Rice&Tracey will be com-
pared to the corresponding results from Abaqus. In Figure 6.13, the void volume
evolution of an initial spherical void in Abaqus and the CA model, for three dif-
ferent Lode values are shown. In this case, the results are not as similar as in the
void rotation cases in Section 6.1.1.

It is evident that the voids modeled in Abaqus will grow more slowly in the
beginning, for so to start to grow very fast when the equivalent strain has reached
a given value. A trend in the results may seem to be that the Rice&Tracey growth
equation gives conservative results, except for rather large strain values.

To summarize the topic on void growth, the growth of the voids does clearly
not experience the same growth evolution. The Rice&Tracey model follows an ex-
ponential function, while the results from Abaqus seems to have a very increased
growth rate towards the end. The Abaqus analysis terminated at this point, be-
cause the void became to large, but if the analysis had continued, it may seem
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Figure 6.12: 6th case - 89 degree initial angle, R1=2R2=2R3

like the results for the Rice&Tracey model may not be conservative for very large
values of the strain. As will be shown in the next chapter, the model will predict
ductile fracture for much lower values of the equivalent strain than the values
needed for the Rice&Tracey growth model to show less conservative results than
Abaqus.

Therefore, it is concluded that the void growth equation given by Rice&Tracey
is more conservative than the Abaqus simulations for all values of the equivalent
strain that are relevant for the model. Coalescence and ductile fracture usually
happens for much lower values of the equivalent strain εeq than the values needed
for Abaqus to give more conservative results than the CA model. These values
for the equivalent strain are approximately 0.8 (εeq ≈ 0.8). The exception may be
when ΘL = −1, where Abaqus will give more conservative results already from
εeq = 0.55. But, coalescence will usually have happened before values like this
are reached anyway.

6.2 Spherical Void Growth - Rotated Semi-Axes

In this section, it will be studied what happens when the voids are initially spher-
ical, but their principal axes are not aligned with the global coordinate system
(the principal deformation directions). By comparing the numerical results from
voids aligned, and not aligned, with the principal deformation directions, it can
be measured how much error is introduced because of the heuristic approach of
defining an equivalent void as described in Section 2.4 and shown in Fig 4.1. The
results called ’Spherical error’, is from an initial configuration where the void is
rotated 45 degrees around the y-axis from an aligned position.

In Fig 6.14 and Fig 6.15, it is shown how the two different scenarios grows
differently. The initially rotated void begin to rotate as it grows, something that
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(a) Growth in Abaqus, ΘL = 1

(b) Growth in Abaqus, ΘL = 0

(c) Growth in Abaqus, ΘL = −1

Figure 6.13: Void growth from Abaqus compared to the CA model’s numerical
and analytical solution (where the latter two are shown to overlap)
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(a) Initial configuration (b) Configuration at large deformation

Figure 6.14: “Spherical error”

(a) Initial configuration (b) Configuration at large deformation

Figure 6.15: “Spherical”

is obviously wrong. So, the rotation of the voids will apparently be affected by
the heuristic approach of defining an equivalent void, but not to any great extent.

In Fig 6.16, it is shown the void volume fraction evolution when 100 time
steps are used, ΘL = 1 and σ ∗ = 1. The differences are extremely small, but in
this particular case the initially rotated void is actually closer to the analytical
solution. The Rice&Tracey equation states how the semi-axes grows, and for the
rotated void, all the three semi-axes are further away from the analytical solution
than when the void were aligned, even though the volume is closer to the analyt-
ical evolution. R1 is a bit smaller, but R2 and R3 is a bit larger. A void’s volume is
as known by now 4πR1R2R3/3, so the errors will actually help in this case. This
of course means that it is pure luck that the void’s volume gets a more accurate
value for the non-aligned principal axes.

Nonetheless, the differences in the size of the void (semi-axes magnitudes)
are absolutely negligible, even for as few time steps as 100. For the cases when
ΘL = 0 and ΘL = −1, the exact same trend is showing. It seems like the heuristic
approach of solving the growth equation may be quite an accurate approach.

6.3 Parameter Studies

Up until this point, it has been shown that the CA model quite accurately de-
scribes the voids behavior. In this section, the program is used to calculate the
fracture strain of a given configuration of voids, which is the ultimate test. It shall
now be revealed whether the results produced from the CA model gives results
that are similar to what is known from experiments and other means of numeri-
cal analysis. As done in Hannard et al.[27], when coalescence happened, the new
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Figure 6.16: Void Volume fraction evolution, 100 timesteps

void was chosen to be modeled as a minimum volume enclosing ellipsoid. The
same strategy was used in this model. Everything about the procedure was ex-
plained in Section 4.3, but the results will be discussed further here. The new
MVE-ellipsoid will have larger volume than the sum of the two separate ellip-
soids that are replaced. This means that every coalescence will result in a “jump”
in the void volume fraction. This jump should actually be as small as possible,
since the matrix can’t disappear.

6.3.1 Parameter study 1 - Increasing Number of Voids

The first study is a parameter-study of how the model responds to an increasing
amount of voids in the model, while holding the void volume fraction constant.
The stress triaxiality is set to σ ∗ = 1, and the lode parameter as ΘL = 1 in all
the simulations shown here. This is done by taking a much larger portion of the
matrix under consideration. The purpose of this study is to see whether the frac-
ture strain will converge towards a solution, which of course is the ideal scenario.
How many voids (or equivalently; how large part of the matrix material) must be
considered to yield results that seems to have converged?

The CA model is run 5 times for each value of n voids, where n takes the
values 10, 50, 100, 200, 300, 500, 1000. Ductile fracture is assumed to happen
when the void volume fraction reaches a critical value, in this case set as 0.2 of
the box’s volume (V crit

f = 0.2). The equivalent strain εeq when this critical void

volume is reached, is defined as the fracture strain εfeq. The results are presented
in the figures 6.17,6.18, 6.19, 6.20, 6.21, 6.22 and 6.23. The resulting expected
(mean) fracture strain from these simulations are shown in a table (see Fig 6.24),
where it may be easier to see how the ductility keeps decreasing as the number
of voids used in the CA model are increased. A trend is quite clear, namely that
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Figure 6.17: Void Volume evolution, 5 cases, 10 voids in the model

Figure 6.18: Void Volume evolution, 5 cases, 50 voids in the model

the ductility keeps decreasing as a larger part of the matrix is taken into consid-
eration in the CA model. To measure the spread in the results, the largest and
smallest equivalent strain εeq is identified in each case of a constant amount of
voids, and the ratios presented in Fig 6.25 is found as the largest εeq divided by
the smallest.

ratio =
εmaxeq

εmineq
(6.1)
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Figure 6.19: Void Volume evolution, 5 cases, 100 voids in the model

Figure 6.20: Void Volume evolution, 5 cases, 200 voids in the model

This ratio would ideally converge towards 1 as the number of voids under con-
sideration increases. Unfortunately, the ratio does not seem to converge. The
reason is assumed to be a combination of how the voids are given a position
based on a uniform distribution, and that the MVE ellipsoid results in a void
with at times considerably larger volume than the sum of the two colliding voids
(The "Pac-Man" effect, see Section 4.3). This is especially true if the intersecting
voids have quite different orientations. As the number of voids considered in the
model are increased, the higher the probability of a "cluster", which means that
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Figure 6.21: Void Volume evolution, 5 cases, 300 voids in the model

Figure 6.22: Void Volume evolution, 5 cases, 500 voids in the model

some of the voids are positioned closer to each other somewhere in the box. This
means that the first coalescence comes earlier, and the more voids, the higher the
probability that some of these voids have unfavorable positions considering the
ductility. Since the coalescence process is allowed to flourish within each time
step, one coalescence may turn into a series of coalescences, and thus the void
volume typically reaches the critical value earlier than if first coalescences were
postponed.

As the MVE-ellipsoid has larger volume than the two intersecting voids, it
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Figure 6.23: Void Volume evolution, 5 cases, 1000 voids in the model

Figure 6.24: A table with fracture strains for the corresponding number of voids
taken into consideration in the CA model

Number of voids n 10 50 100 200 300 500 1000

Fracture strain εfeq ≈ 0.52 0.44 0.37 0.32 0.27 0.26 0.22

Figure 6.25: Ratio evolution from the parameterstudy

follows that each coalescence may remove a significant portion of the matrix.
This means that the void volume increases in proportion to the number of co-

83



6.3. PARAMETER STUDIES CHAPTER 6. VALIDATION

alescences during the deformation. Further, voids with a “safe” distance to the
intersecting voids may still intersect the MVE void that replaces them. Each coa-
lescence therefore increases the likelihood of a new coalescence. Because of both
these effects, and especially the use of the uniform probability distribution for
generating the voids centers, the coalescence process is more likely to flourish as
more voids are taken into consideration. This is the reason for the increasingly
steeper void volume evolution shown in the figures 6.17,6.18, 6.19, 6.20, 6.21,
6.22 and 6.23.

There are as mentioned two reasons for the increase in void volume: The
growth of voids, and the "Pac-Man" effect. The growth of voids is the desired
source, while the "Pac-Man" effect is most probably a source of error, since the
matrix can’t disappear in huge chunks at a time. It is assumed the matrix can
be replaced by the voids as they grow, but during the deformation, there should
probably not be any discontinuous jumps in the void volume. Therefore, another
option was added to the program: The MVE ellipsoid algorithm is still used to
produce the orientation and position of the new void, but the semi-axes are scaled
so the new void does have the same volume as the sum of the two colliding.

In Hannard et al. [27], whom was the inspiration for this model, the position
of the voids were determined by a CT scan of the tensile test specimen. In this
thesis, the positions are generated from a probability distribution. The MVE-
ellipsoid seemed to work perfectly in Hannard et al., but in this thesis it is seen
as a possible improvement to reduce the volume of the MVE-ellipsoid to try to
get a convergence as the number of voids are increased.

In Fig 6.26 the evolution of 50 random voids with ΘL = 1 and σ ∗ = 1 are
shown. The red dots in 6.27 shows where in the simulation the plots are taken
from. The red line in the plot is how much of the void volume that is the result of
the “Pac-Man” effect. Pay attention to the fact that the “Pac-Man” effect is step-
wise constant, since it is a result of disappearing matrix during coalescence only.
The volume from the void growth are steadily increasing between these discon-
tinuous gaps. The blue line is the void volume fraction calculated by the model.
The green line shows the void growth for one spherical void given analytically
from the Rice&Tracey growth equation, with the same initial volume fraction as
is now divided among the 50 voids in the simulation. This illustrates the lower
bound of the void volume fraction evolution. The more voids in the simulation,
the closer this lower bound and the void volume fraction from the simulations in
the CA model will be before the coalescence chain-reaction begins.

Pay attention to the fact that the axes limits in Fig 6.26 are held constant in
all the plots, where the y- and z-axes are equal to the initial box’s dimensions
in these directions, while the x-axis is set equal to two times the box’s initial
dimension in the x-direction. It was concluded that the axes had to bee fixed to
better understand the plots, and these values were chosen. Therefore, remember
that the voids shown are actually twice as large in the x-direction as the plots
may suggest.

The last plot in Figure 6.26 is just before the coalescence chain-reaction starts.
This situation occurs earlier as the number of voids in the simulation are in-
creased. In an attempt to avoid this situation, the MVE-ellipsoid may be replaced
by a scaled ellipsoid with the same orientation as the MVEE, but with the same
volume as the sum of the two intersecting voids.
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(a) (b)

(c) (d)

(e)

Figure 6.26: 50 voids, ΘL = 1 and σ ∗ = 1. See Fig 6.27 for where in the deforma-
tion process the plots are taken from (the red dots)
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Figure 6.27: Void volume fraction evolution from the model

As shown in Fig 6.28, the “Pac-Man” effect is now removed. The fifty random
voids with coalescence is now pretty close to the analytical solution of Rice&Tracey’s
growth equation, as shown in Fig 6.29. In this case with only 50 voids, the two
solutions are pretty close, but as the void number increases, they becomes prac-
tically identical.

That the results converges towards the analytical solution is no coincidence.
When the coalescence is adjusted so there will be no increase in the void vol-
ume, the model is back to a situation where no interactions between the voids
are assumed. As the number of random voids are increased, and interactions be-
tween voids are “neglected”, the results will converge towards the solution of the
Rice&Tracey growth equation.

The "Pac-Man" effect may of course be adjusted between the two outer scenar-
ios shown in this section. Therefore, as a means of calibrating the model for a set
amount of voids, the Pac-Man effect could be adjusted to a given value between
0-100%) so the expected value of the fracture strain coincides with the results
obtained from experiments or very detailed finite element simulations. Pay at-
tention to the fact that the CA model can only be calibrated so the expected value
of the fracture strain is as obtained from experiments. As long as the initial con-
figuration of the voids are generated from a probability distribution, there will be
a variance in the results. The only way to get rid of this variance, is to determine
the initial configuration of the voids by some other means than a probability dis-
tribution, f.ex by a CT scan.

6.3.2 Parameter Study 2 - Periodically Distributed Voids

A periodic distribution of identical spherical voids shall now be simulated. A
given configuration may for instance contain 500 voids, with an initial void vol-
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(a) (b)

(c)

Figure 6.28: 50 voids, T hetaL = 1, with scaled “Pac-Man” effect to zero for each
coalescence

ume fraction equal to V 0
f = 0.005. Since the voids are all identical and spherical,

this is the same as looking at only one void in a box, still with V 0
f = 0.005. As

it is shown in Fig 6.30, the large distribution of voids is equivalent to the mod-
eling of only one void. Since all the voids undergoes the same deformations,
coalescence will then occur when the void intersects its “own” box, shown in red.
This scenario is much more ductile than the configurations generated from any
probability distribution.

In Fig 6.31, 500 initially spherical voids following a uniform probability dis-
tribution are shown, with ΘL = 1 and σ ∗ = 1. The “Pac-Man” effect is allowed,
which means that the calculated MVE ellipsoid aren’t scaled. The results from
this configuration shall now be compared to the case of periodically distributed
initially spherical voids.

For the 500 randomly positioned initially spherical voids shown in Fig 6.31
and Fig 6.32, the critical void volume fraction is set to V crit

f = 0.2, but this exact

value for V crit
f is of less importance: See the steep evolution of the void volume

in Fig 6.32. If the critical void volume fraction was increased to f.ex V crit
f = 0.5,

there would only be a minimal difference in the fracture strain, if any.
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Figure 6.29: Void volume evolution with the “Pac-Man” effect scaled to 0%

Figure 6.30: How to model a periodic distribution by only considering one void

For the periodically distributed voids, coalescence doesn’t happen until the
equivalent strain has reached the value εeq = 0.819, with a corresponding void
volume fraction of Vf = 0.394 (see Fig 6.33. Imminent fracture will of course
happen instantly after this point. If the critical void volume fraction had been
defined as a higher value, f.ex V crit

f = 0.4, there would have been even larger dif-
ferences in the calculated ductility between the periodic and the random config-
uration. The fracture strain in the random positioned voids would probably not
increase at all, while in the periodic case it would increase to εeq ≈ 0.82. If V crit

f

was given a value so coalescence wasn’t reached (i.e V crit
f ≤ 0.394), the calculated

fracture strain will be a lower bound on the void volume because then only void
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(a) (b)

(c) (d)

(e)

Figure 6.31: 500 voids, ΘL = 1. See Fig 6.32 for where in the deformation process
the plots are taken from (the red dots)
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(a)

Figure 6.32: 500 voids, ΘL = 1 and σ ∗ = 1

growth contributes to the void volume. Thus, the CA model is guaranteed to not
yield a higher fracture strain (less conservative) with a random distribution than
for a periodic distribution. These results are presented in Fig 6.34.

Figure 6.33: Void volume evolution with periodically distributed spherical voids
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Figure 6.34: Fracture strain calculated from a random and a peridoc distribution
of voids

Fracture defined at Vf = 0.2
Random distribution Periodic distribution

ε
f
eq= 0.35 ε

f
eq = 0.69

6.3.3 Summary of the Parameter Studies

• The main source of the increase in the void volume is seen to be the co-
alescence process, especially for larger number of voids, or higher stress
triaxialities. From this, it is concluded that the coalescence of voids has the
largest impact on the calculation of the fracture strain. It is essentially the
largest voids that is involved in collisions with other voids, so the position-
ing of the largest voids is quite critical. If relatively large voids are given
positions close to each other, the calculated fracture strain will be affected
by decreasing correspondingly.

The model is therefore very sensitive to the position and size of the voids.
If the given position of the voids results in "clusters" (closely positioned
voids), this is in fact very critical for the fracture strain.

• As the number of voids in consideration increases, the fracture strain de-
creases. It does seem like the CA model doesn’t converge as long as an
uniform random distribution is used to generate the initial configuration of
voids.

• A periodic distribution of the positioned voids will always result in a much
higher fracture strain. This is explained by the fact that a periodic distribu-
tion results in the largest possible initial distances between the voids, which
postpones the coalescence significantly.

• The initial porosity has of course also a large effect on the predicted fracture
strain εfeq. Large voids grows faster than small voids, and if ductile fracture
is assumed at the same critical void volume fraction, the result is of course
lower ductility.

The decrease in the fracture strain as the initial void volume fraction in-
creases is obvious. See Fig 6.35 for the results obtained when 200 random
voids are considered. In Fig 6.36, the analytical solutions of the void growth
equation are shown. This is the same as not considering interactions be-
tween the voids, i.e for a “Pac-Man” effect set equal to 0%.

It is concluded that the initial void volume fraction of course does have a
huge impact on the ductility.
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Figure 6.35: Sensitivity analysis, initial void volume fraction as parameter

Figure 6.36: Sensitivity analysis, initial void volume fraction as parameter, only
void growth (no coalescence)

6.3.4 Calculation of Fracture Locus

Before rounding up this thesis, the CA model will be used to calculate a fracture
locus, also known as a "fracture surface". This is just a sample of fracture strains,
calculated as the result of several analyses with different lode parameter ΘL and
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stress triaxiality σ ∗. The fracture locus is expressed more mathematically as:

ε
f
eq = g(ΘL,σ

∗) (6.2)

The fracture strain may for instance be shown as a surface in 3D, or as points in
a 2D plot. Both are shown in this section.

First, an expected fracture surface will be calculated based on 50 voids, where
the MVE-ellipsoid was used with no scaling. The lode parameter took the follow-
ing values

ΘL ∈ [−1, 0, 1] (6.3)

and the stress triaxialities the values

σ ∗ ∈ [
1
3
,

2
3
, 1, 1.5, 2, 2.5, 3] (6.4)

Each combination above was calculated 15 times, and the results shown in the
figures are the expected value of the fracture strain εfeq from these 15 calculations.

It was seen that for σ ∗ = 1/3, the voids seldom grew enough to coalesce. Even
for σ ∗ = 2/3, coalescence was sometimes never reached. For such low values of
σ ∗, the voids will as shown before, increase a little, for so start decreasing in vol-
ume. The fracture strain will in these cases be false, since the the simulation
didn’t terminate because a critical void volume fraction was reached, but because
the void volume fraction reached a lower limit. For these values of the triaxial-
ity, shear fracture or maybe a mixed mode fracture between ductile fracture and
shear fracture will probably occur. The value of the triaxiality for mixed mode
fracture seems to be somewhere in the interval σ ∗ ∈ [0.5,1], according to [52]. Un-
fortunately, the CA model doesn’t manage to capture this mixed mode fracture.
It seems like the CA model is restricted to ductile fracture only, which is assumed
to occur for approximately σ ∗ ≥ 1. As the growth equation from Rice&Tracey was
developed for higher triaxialities, this was as expected.

In Fig 6.37, the expected fracture strain for 50 random voids are shown. Pay
attention to the values obtained for σ ∗ = 1/3 and σ ∗ = 2/3, which is marked within
a red box. These results are as mentioned above sometimes obtained as the result
of a terminating simulation because of the void volume approximately reaching
zero. They are not valid results!

The same values plotted as a fracture locus is shown in Fig 6.38. Here, the
results from σ ∗ = 1/3 and σ ∗ = 2/3 are included. It is quite difficult to see the
dependence on the lode parameter ΘL, which nonetheless are very small.

The fracture locus is also shown for the case when the Pac-Man effect is set
to 0%. This case will just converge towards the analytical solution of the growth
equation. To compute this, only one spherical void needs to be considered. For
one void, the resulting fracture strain will never differ for the same values of ΘL
and σ ∗, so the expected value is calculated based on only one simulation. The
values for ΘL and σ ∗ used this time is:

ΘL ∈ [−1, −2
3
, −0.5, −1

3
, 0,

1
3
, 0.5,

2
3
, 1] (6.5)

and
σ ∗ ∈ [

1
3
, 0.5,

2
3
, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 3.0] (6.6)
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Figure 6.37: Expected fracture strain by the automaton model, 100% Pac-Man
effect, σ ∗ = 1/3 and σ ∗ = 2/3does not give valid results

Figure 6.38: Expected fracture locus by the automaton model, 100% Pac-Man
effect

For the plot in 2D (Fig 6.39), only values for ΘL = 1, ΘL = 0 and ΘL = −1 are
shown. The red box are again used to mark the invalid results that were the result
of termination. For the plot of the fracture surface (Fig 6.41), all the calculated
values of ΘL and σ ∗ are shown.

Fig 6.3.4 might be difficult to envision, but it is just the fracture locus seen
from an angle perpendicular to what is shown in Fig 6.39. The goal with this
plot was to show the fracture strains dependence on the lode parameter. There
is a little dependence when σ ∗ = 1.0, but for higher triaxialities the differences
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Figure 6.39: Expected fracture strain by the Rice&Tracey growth equation

Figure 6.40: Expected fracture strain by the Rice&Tracey growth equation
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Figure 6.41: Expected fracture surface by the Rice&Tracey growth equation

Figure 6.42: Fracture strain from 5 analyses for 30 voids
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aren’t visible for the naked eye at all. The corresponding fracture surface in 3D
is shown in Fig 6.41.

In Fig 6.42, the variance in the results obtained with 30 random voids, σ ∗ = 1
and ΘL = 1 are shown for the valid results only (σ ∗ ≥ 1). The expected fracture
strain are calculated based on n results like this. It is evident from the figure
how there is much larger variance for the lower values of the triaxiality than the
higher values of the triaxiality. This is because the voids grows much faster for
higher values of the triaxiality σ ∗, so fracture will nevertheless occur quite early
on in the deformation process. The reader must be aware that the points shown
in each “group” in Fig 6.42, are all calculated for the same triaxiality. The plot is
supposed to better show the variance in the result, but it may be misleading. The
triaxialities used are 1.0, 1.5, 2.0, 2.5 and 3.0, as described in Eq (6.6).
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7
Extension of Modeling Framework

As the development of the model herein was limited by time, some ideas remain
unexplored. This chapter presents some concrete suggestions to future activities
related to the cellular automaton model.

Probability Distribution for the Position of the Voids

How to give the voids an initial position is seen as the main problem with the
CA model as it is presented in this thesis. The problem is avoided by using CT
scanning of the material to obtain all the voids’ position and size, but this is of
restricted practical use. The ultimate goal is seen as to calibrate a probability
distribution, so the results converges towards a value for the fracture strain with
an increasing amount of voids, and at the same time, the variance goes towards
zero. This section concludes that this desired probability distribution is not a
uniform distribution. With uniformly distributed void position and a “Pac-Man”
effect above 0%, the fracture strain is seen to steadily decrease as the number of
voids in the model are increased. The distribution need to take into account the
already positioned voids, which means a more sophisticated probability distri-
bution such as for instance Markov-chains seems like a much better choice.

Nucleation of Voids

As mentioned in Chapter 2, void nucleation is actually a discontinuous process of
successions of discrete nucleation events, where for instance the particle size can
be a dominant feature for when the voids nucleate during the deformation pro-
cess. Therefore, to model nucleation, each particle may be assigned an associated
critical principal stress value. When this value is reached for the particle, it nucle-
ates into a microvoid. Instead of giving position to a bunch of microvoids, the CA
model would in this case instead generate positions for the particles. This way, a
more accurate description of the ductile fracture process would be achieved.
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Differently Defined Coalescence

Another possibility for the purpose of trying to copy the behavior of ductile frac-
ture shown in experiments, would be to implement the coalescence differently.
When the distance between the voids in question is below some critical value,
possibly calculated based on the void’s size (or based on some other argument), a
new void could be created between them; which would represent the crack that
links the two voids together, see Fig 7.1.

(a) Current coalescence (b) Alternative coalescence

Figure 7.1: How coalescence are implemented, and an alternative procedure

This way, cracks will be able to link between voids instead of just turning the
colliding voids into one large "ball". The links that are created between the voids
will not intersect any other voids, because if there had been any voids between
them, there would have been created a link between these first. This linkage
between the voids can spread throughout the model, to better represent the coa-
lescence process. It is important to subtract the volume of the overlapping voids,
i.e no volume should be counted twice. A possible strategy would be to calcu-
late a convex hull of the intersecting area. The option to remove the part of the
void’s volume that is located outside the box’s dimensions has already been im-
plemented in this thesis, and this overlapping area between voids can be found
by the same strategy, although it is of course a bit more complex mathematical
problem.

Another possible improvement by implementing this strategy is that the coa-
lescence chain-reaction that happens quite fast after the first voids intersects in
the current model, would probably be somewhat restrained, as this new smaller
void are quite unlikely to coalesce with other voids in the model, since it is cre-
ated inbetween two neighbors. These links between voids is much closer to phys-
ical results than a MVE ellipsoid.

It may even be expedient to define the fracture criterion differently: Instead of
defining a critical void volume fraction, fracture may be defined to occur when n
number of voids are linked together in the model, or maybe define local fracture
to occur when a given void is linked directly to m other voids. The point is that
these linkages between voids gives the user of the program a lot of information
about what happens in the model. These linkages are kind of creating a graph
structure during the deformation, by connecting the nodes (voids) with edges
(links) between them. But, no matter how the reader chooses to imagine this, it
must be said that it seems like a very interesting approach.

This differently defined coalescence, combined with a better probability dis-
tribution and implementation of particles that may nucleate instead of already
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nucleated voids, seems like the three best options for getting the model to con-
verge towards the physical results obtained in experiments, without the need for
calibration!

Other Possible Improvements

Other parts of the program with improvement potential are more in a computer
programming sense of improvement. Each void grow independent to all the
other voids (there are no memory dependences between them as they grow), un-
til collisions are controlled at the end of the step. This is an obvious case where
parallel programming would give a speed boost. Also, to find each void’s neigh-
bors, a divide&conquer algorithmic implementation is known to result in a faster
asymptotic running time, but not enough time was find during the work with this
model to implement it. This is the only algorithm in this thesis that performs be-
low the desired performance of the author.
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8
Concluding Remarks

This thesis presents the foundation, implementation, verification and validation
of a cellular automaton model for ductile fracture in alloys. It is quite similar to
the work presented by Hannard et al. [27], at least the concept of the CA model.
By taking into account void growth and coalescence, a method for calculating the
ductility of alloys was established.

Chapter 1 starts by presenting ductile fracture observations, specifically that
it results from nucleation, growth and coalescence of microvoids, and mentions
several research results obtained in this field primarily during the last 50 years.
The goal of the thesis was presented; being to understand and model the effect of
micro structure heterogeneities on damage accumulation in metallic alloys.

In Chapter 2, ductile fracture observations were presented. The main reasons
for ductile fracture were also discussed in depth.

The theory considered necessary in order to follow the procedures imple-
mented in the model, was presented in Chapter 3. The mentioned topics are
from mathematics, material mechanics and programming, since these three ar-
eas creates the foundation for this thesis.

In Chapter 4, the most important procedures in the model was discussed in
depth, where the mathematical basis was presented first, followed by flowcharts
of the whole program, and then pseudo-code. The source code was implemented
around the algorithms and ideas presented here. A thorough understanding of
the model was hopefully established in this chapter.

Chapter 5 is about the verification of the model. The recurring theme here
were: “Are the equations are solved correctly?”. The numerical solutions are com-
pared to the analytical, and the convergence is discussed. There were pointed
out differences in the results from the explicit solver schemes. The asymptotic
running time of the program was presented through a pseudo-code formulation,
were the running time of each commando in the main part of the program was
stated. Choices taken to implement a fast program was pointed out.
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As the model was working properly according to the theoretical foundation,
a validation of the model was done in Chapter 6. The void growth and rotation
was compared to corresponding results from Abaqus, for a wide range of situa-
tions. Shortcomings of assumptions made in the program, and the behavior of
especially the MVE-ellipsoid algorithm was discussed.

The finished model was tested at a wide range of cases, from parameter stud-
ies to establishing a fracture locus. A sensitivity analysis was also summarized.
Unfortunately, the use of a uniform distribution of the void positions was shown
to not be refined enough. As the number of voids used in the model increased,
the lower the expected calculated ductility. This was concluded to be the result
of a higher probability of unfavorably positioned voids as the void number in-
creased, combined with the fact that the MVE-ellipsoid may remove too much
matrix at each coalescence.

The main focus in the chapter “Extension of Modeling Framework” was there-
fore to develop a probability distribution that takes into account the current state
of void positions and sizes, and give the next void a position accordingly. Also,
the coalescence could be defined differently, by creating linkages between voids.
Last, but not least, nucleation should also be implemented to better model the
ductile fracture process, without the very conservative assumption made that ev-
ery void is nucleated before the deformation starts.
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A
Source Code for the Cellular Automaton Model

from __future__ import d i v i s i o n
import numpy as np
import matplot l ib . pyplot as p l t
from sympy import symbols , d i f f , solve , exp
import random
from mpl_toolki ts . mplot3d import Axes3D
import numpy . l i n a l g as l a
from scipy . s p a t i a l import ConvexHull
import math as m

###############################################
# CELLULAR AUTOMATON MODEL #
###############################################

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# User Input
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# User decides number of voids in the simulat ion :
num_voids=50

# User s p e c i f i e s o r i e n t a t i o n of the voids ; the choices are
# ‘Rand ’ , ‘ Spher ica l ’ , ‘ Skra ’ , ‘ Langs ’ , ‘ S p h e r i c a l _ e r r o r ’ ,
# ‘ One_with_angle ’ , and ‘ Two_with_coalescence ’ :
o r i e n t a t i o n= ’Rand ’

# The fol lowing are only used i f the o r i e n t a t i o n i s ’ One_with_angle ’ :
angle_for_1_void = 45.
r a t i o _ f o r _ 1 _ v o i d = 1 .

# The fol lowing are only used i f o r i e n t a t i o n i s ‘ Two_with_coalescence ’ :
Two_with_coalescence_orientat ion = ’ Spher ica l ’
# Same choices as above , except ’Rand ’ i s in the xz−plane only .

# User s p e c i f i e s i n i t i a l volume percentage microvoids :
Volume_fraction =0.005
# 0.005 i s a r e p r e s e n t a t i v e value for most i n d u s t r i a l a l l o y s . . .

# The s t r e s s − t r i a x i a l i t y and Lode may be defined as constant or
# l i n e a r l y varying parameters , depending on the number of
# points in the assigned l i s t of values :
S t r e s s _ t r i a x i a l i t y = [ 1 . ]
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phi = [ 1 . ]

# The infamous ‘ Pac−Man ’ e f f e c t may be adjusted here by a value
# between 0 and 1 , 0 g ives MVEE, 1 g ives no Pac−Man e f f e c t at a l l :
Reduced_Pac_Man_Effect = 0 .

# How l a r g e the term ‘ dt * L_star *g ’ can be compared to ‘ g _ o r i g i n a l ’ ,
# to avoid that the voids shr inks to negat ive semi−axes −> i n s t a b i l i t y !
g _ v e c t o r s _ t o l = 0.1
# When using many timesteps , a smaller value here i s OK

# Number of timesteps , higher s t r e s s t r i a x i a l i t y needs more t imesteps :
N_timesteps = 700

# Chose a numerical s o l v e r among ’ euler ’ , ’ heun ’ and ’ rk4 ’ :
Which_expl ic i t_ integrat ion_scheme = ’ rk4 ’

# Number of p l o t s the user wants :
number_of_plots = 3

# Set the s t r e t c h r a t i o for the x−d i r e c t i o n l a r g e r or smaller than 1 ;
# the program terminates when the c r i t i c a l
# void volume f r a c t i o n i s reached nonetheless :
lamba_x = 2

# C r i t i c a l void volume f r a c t i o n :
Upper_Void_Volume_Limit = 0.2

# Should the volume outs ide the box be removed ? User decides :
Remove_Volume_Outside_Box = False

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Prel iminary setup
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Calculate the constant used in the v e l o c i t y gradient L
constant_a = np . log ( lamba_x )

# Smallest p o s s i b l e semi−axis , micrometer
d_min = 5
# Largest p o s s i b l e semi−axis , micrometer
d_max = 50

t _ s t a r t = 0 .

n_el l ipso id_samplepoints=6
# Uses the square of the value points from the e l l i p s o i d s
# in the algorithm MVEE (6**2 = 36 points . . . )

N _ e l l i p s o i d _ p l o t t i n g _ p o i n t s =20
#For the plot t ing , 20 r e s u l t s in 400 points from the e l l i p s o i d

#The transparency for the e l l i p s o i d s , 1 i s max , 0 i n v i s i b l e :
alpha_plot =0.1
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# Constants used in Rice&Tracey growth equation
E=2.0/3
alpha =0.427

i f len ( S t r e s s _ t r i a x i a l i t y ) == 1 and len ( phi ) == 1 :
# I f the length i s equal to 1 , the values are constant during the
# deformation ! The values c a l c u l a t e d here does then not need
# to be updated during the a n a l y s i s :
# The other constants in the v e l o c i t y gradient tensor L i s
# c a l c u l a t e d :
constant_b = −phi [ 0 ] * constant_a *2/(3+ phi [ 0 ] )
constant_c = constant_a * ( phi [ 0 ] − 3) / ( phi [ 0 ] + 3)

# Gather them in the same array :
constant=np . array ( [ constant_a , constant_b , constant_c ] )
L_diag=np . array ( [ constant [ 0 ] , constant [ 1 ] , constant [ 2 ] ] )

# The v e l o c i t y gradient tensor L i s c a l c u l a t e d :
L=np . diag ( L_diag )

# L i s the same for a l l the voids , i t i s t h e r e f o r e defined
# as a globa l v a r i a b l e

# S i m p l i f i e s the c a l c u l a t i o n of the Rice&Tracey growth
# equation by def in ing :
eps i lon_ j_squared = L_diag [ 0 ] * *2 + L_diag [ 1 ] * *2 + L_diag [ 2 ] * *2

# The s t r a i n r a t e i s equal to L in the case of uniform extens ion :
e p s i l o n _ r a t e=L_diag

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Class ’ Void ’ d e f i n i t i o n
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c l a s s Void ( ) :
def _ _ i n i t _ _ ( s e l f , T ,D, T_inv , C, name ) :

" " "
The cons t ruc tor of the c l a s s , these parameters
must be given upon c r e a t i o n of an ins tance .
" " "
s e l f . T=T # Eigenvectors , i . e p r i n c i p a l d i r e c t i o n s of A
s e l f .D=D # Eigenvalues , i . e p r i n c i p a l values of A
s e l f . T_inv=T_inv # The inverse of T
s e l f .C=C # The p o s i t i o n of the void ’ s center
s e l f . C_origin=C # The o r i g i n a l pos i t ion ,

# to c a l c u l a t e the t r a n s l a t i o n .
s e l f . neighboors=s e t ( ) # A s e t of the void ’ s neighbors

# Remember which neighbors that have been checked :
s e l f . checked_neighboors =[ ]
# Unique name , to avoid overwri t ing e x i s t i n g voids :
s e l f . name=name

# Only need to rearrange the e i g e n v e c t o r s once :
s e l f . Checked_Eigenvectors_Counter = 0
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# Upon creat ion , some methods are c a l l e d to get the r e s t of the
# values immediately , through UpdateVoid ( ) :
s e l f . Update_Void ( )

def Volume ( s e l f ) :
" " "
Returns the volume of the void
" " "
volume = 4.0/3*np . pi * s e l f . a * s e l f . b* s e l f . c
return volume

def calcA ( s e l f ) :
" " "
Ca lcu la tes the A matrix of the e l l i p s o i d ( void )
" " "
s e l f .A= s e l f . T* s e l f .D* s e l f . T_inv
s e l f .A=np . matrix ( s e l f .A, dtype= f l o a t )
return

def COEFF( s e l f ) :
" " "
Ca lcu la tes the semi−axes ’ s lengths
" " "
s e l f . c o e f f i c i e n t s =np . array ( [ np . s q r t ( 1 . / s e l f .D[ i , i ] ) fo r i in

xrange ( 3 ) ] )
s e l f . a= s e l f . c o e f f i c i e n t s [ 0 ]
s e l f . b= s e l f . c o e f f i c i e n t s [ 1 ]
s e l f . c= s e l f . c o e f f i c i e n t s [ 2 ]
return s e l f . c o e f f i c i e n t s

def Global_Semi_Axes ( s e l f ) :
" " "
To f ind the ‘ equivalent ’ e l l i p s o i d , where the i n t e r s e c t i o n s in
the the global d i r e c t i o n s are c a l c u l a t e d .
" " "
s e l f . a_glob=np . s q r t ( 1 . / s e l f .A[ 0 , 0 ] )
s e l f . b_glob=np . s q r t ( 1 . / s e l f .A[ 1 , 1 ] )
s e l f . c_glob=np . s q r t ( 1 . / s e l f .A[ 2 , 2 ] )
return np . array ( [ s e l f . a_glob , s e l f . b_glob , s e l f . c_glob ] , dtype=

f l o a t )

def RiceTracey ( s e l f , g l o b a l _ c o e f f ) :
" " "
Returns the growth r a t e s found from the Rice&Tracey
growth equation :
" " "
a_glob , b_glob , c_glob = g l o b a l _ c o e f f
R_mean = ( a_glob + b_glob + c_glob ) /3 .0
rad_rate=RT(R_mean )
return rad_rate

def rk4 ( s e l f , g l o b a l _ c o e f f ) :
" " " Runge−Kutta 4 . order e x p l i c i t scheme : " " "
dt2=dt /2.0
# p r e d i c t o r step 1 :
k1=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f ) )
# p r e d i c t o r step 2 :
k2=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f+k1*dt2 ) )
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# p r e d i c t o r step 3 :
k3=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f+dt2 *k2 ) )
# p r e d i c t o r step 4 :
k4=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f+dt *k3 ) )
# c o r r e c t o r step :
g l o b a l _ c o e f f=g l o b a l _ c o e f f+dt / 6 . 0 * ( k1 + 2 .0*k2 + 2 .0*k3 + k4 )
return g l o b a l _ c o e f f

def euler ( s e l f , g l o b a l _ c o e f f ) :
" " " Euler 1 . order e x p l i c i t scheme " " "
# p r e d i c t o r step :
k1=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f ) )
# c o r r e c t o r step :
g l o b a l _ c o e f f=g l o b a l _ c o e f f+dt *k1
return g l o b a l _ c o e f f

def heun ( s e l f , g l o b a l _ c o e f f ) :
" " " Heun 2 . order e x p l i c i t scheme " " "
# p r e d i c t o r step 1 :
k1=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f ) )
# p r e d i c t o r step 2 :
k2=np . asarray ( s e l f . RiceTracey ( g l o b a l _ c o e f f+k1*dt ) )
# c o r r e c t o r step :
g l o b a l _ c o e f f=g l o b a l _ c o e f f+dt / 2 . * ( k1 + k2 )
return g l o b a l _ c o e f f

def Rotate_and_grow ( s e l f , time ) :
g l o b a l _ c o e f f = s e l f . Global_Semi_Axes ( )
i f Which_expl ic i t_ integrat ion_scheme == ’ rk4 ’ :

rad_glob= s e l f . rk4 ( g l o b a l _ c o e f f )
e l i f Which_expl ic i t_ integrat ion_scheme == ’ heun ’ :

rad_glob= s e l f . heun ( g l o b a l _ c o e f f )
e l i f Which_expl ic i t_ integrat ion_scheme == ’ euler ’ :

rad_glob= s e l f . eu ler ( g l o b a l _ c o e f f )
rad_rate= s e l f . RiceTracey ( g l o b a l _ c o e f f )
# The l o c a l v e l o c i t y gradient tensor i s unique fo r each void ,
# and i s defined as :
L_star_diag=np . array ( [ rad_rate [ 0 ] / rad_glob [ 0 ] , rad_rate [ 1 ] /

rad_glob [ 1 ] ,
rad_rate [ 2 ] / rad_glob [ 2 ] ] )

L_star=np . diag ( L_star_diag )

# To c a l c u l a t e the void growth , the fol lowing procedyre i s
followed :

c o e f f i c i e n t s = s e l f . COEFF ( )
tempo1 = s e l f . a
tempo2 = s e l f . b
tempo3 = s e l f . c

temp1 = np . array ( s e l f . T [ : , 0 ] )
temp2 = np . array ( s e l f . T [ : , 1 ] )
temp3 = np . array ( s e l f . T [ : , 2 ] )

g1=temp1* tempo1
g2=temp2* tempo2
g3=temp3* tempo3
g1=np . array ( g1 [ : , 0 ] , dtype= f l o a t )
g2=np . array ( g2 [ : , 0 ] , dtype= f l o a t )
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g3=np . array ( g3 [ : , 0 ] , dtype= f l o a t )

# Rearrange the e i g e n v e c t o r s so the voids r o t a t e s in the
# c o r r e c t d i rec t ion , only needed once :
i f s e l f . Checked_Eigenvectors_Counter == 0 :

Checked_Eigenvectors_Counter = 1
# This ensures i t i s not checked again !
i f tempo1 >= tempo2 and tempo1 >= tempo3 :

pass # The order of the e i g e n v e c t o r s was c o r r e c t !
e l i f tempo2 >= tempo1 and tempo2 >= tempo3 :
#Must swap g1 and g2 , and s e l f . a and s e l f . b :

temp_value = s e l f . a
s e l f . a= s e l f . b
s e l f . b=temp_value
temp_vector = g1
g1 = g2
g2 = temp_vector

e l i f tempo3 >= tempo1 and tempo3 >= tempo2 :
#Must swap g1 and g3 , and s e l f . a and s e l f . c :
temp_value = s e l f . a
s e l f . a= s e l f . c
s e l f . c=temp_value
temp_vector = g1
g1 = g3
g3 = temp_vector

# The voids are stopped from o s c i l l a t i n g under
# low s t r e s s t r i a x i a l i t i e s :
i f np . l i n a l g . norm ( dt *np . dot ( L_star , g1 ) ) >

g _ v e c t o r s _ t o l *np . l i n a l g . norm ( g1 ) :
magn1 = np . l i n a l g . norm ( g1 )
g1 = g1 + dt *np . dot ( L_star , g1 ) * g _ v e c t o r s _ t o l

e l s e :
g1=g1+dt *np . dot ( L_star , g1 )
magn1 = np . l i n a l g . norm ( g1 )

i f np . l i n a l g . norm ( dt *np . dot ( L_star , g2 ) ) >
g _ v e c t o r s _ t o l *np . l i n a l g . norm ( g2 ) :

magn2 = np . l i n a l g . norm ( g2 )
g2 = g2 + dt *np . dot ( L_star , g2 ) * g _ v e c t o r s _ t o l

e l s e :
g2=g2+dt *np . dot ( L_star , g2 )
magn2 = np . l i n a l g . norm ( g2 )

i f np . l i n a l g . norm ( dt *np . dot ( L_star , g3 ) ) >
g _ v e c t o r s _ t o l *np . l i n a l g . norm ( g3 ) :

magn3 = np . l i n a l g . norm ( g3 )
g3 = g3 + dt *np . dot ( L_star , g3 ) * g _ v e c t o r s _ t o l

e l s e :
g3=g3+dt *np . dot ( L_star , g3 )
magn3 = np . l i n a l g . norm ( g3 )

# The p r i n c i p a l axes of the void has now changed d i r e c t i o n s
# and magnitudes , and must be adjusted into an orthonormal
# b a s i s once again by a Gauss−S e i d e l Decomposition :
tempor = np . matrix ( [ [ g1 [ 0 ] , g2 [ 0 ] , g3 [ 0 ] ] , [ g1 [ 1 ] , g2 [ 1 ] ,

g3 [ 1 ] ] , [ g1 [ 2 ] , g2 [ 2 ] , g3 [ 2 ] ] ] )
#Gauss S e i d e l decomposition :
q , r = np . l i n a l g . qr ( tempor )
# This process may r e s u l t in det ( tempor ) = +1 or −1 , so should
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# c o n t r o l that the d i r e c t i o n s hasn ’ t changed 180 degrees :
i f g1 [ 0 ] > 0 :

i f q [ 0 , 0 ] < 0 :
q = q * ( −1)

i f g1 [ 0 ] < 0 :
i f q [ 0 , 0 ] > 0 :

q = q * ( −1)

# The void has now rota ted and grown , so i t s a t t r i b u t e s
# should be updated :
s e l f .D=np . diag ( [ 1 . / magn1 * *2 , 1 . / magn2 * *2 , 1 . / magn3 * *2 ] )
s e l f .D=np . matrix ( s e l f .D)
s e l f . T=q
s e l f . T_inv=np . transpose ( s e l f . T)
s e l f . Update_Void ( )

# The void a l s o need to t r a n s l a t e :
New_C=np . array ( [ s e l f . C_origin [ 0 ] * lamba ( time ) [ 0 ] ,

s e l f . C_origin [ 1 ] * lamba ( time ) [ 1 ] ,
s e l f . C_origin [ 2 ] * lamba ( time ) [ 2 ] ] )

s e l f .C=New_C
return

def Update_Void ( s e l f ) :
" " " J u s t to gather the updating methods in one method : " " "
s e l f . calcA ( )
s e l f . COEFF ( )
s e l f . Global_Semi_Axes ( )
return

def El l ipso id_samplepoints ( s e l f , n_e l l ipso id_samplepoints=
n_el l ipso id_samplepoints ) :

rx , ry , rz = s e l f . a , s e l f . b , s e l f . c
# Calculate the s p h e r i c a l angles :
u = np . l i n s p a c e ( 0 , 2 * np . pi , n_el l ipso id_samplepoints )
v = np . l i n s p a c e ( 0 , np . pi , n_el l ipso id_samplepoints )
# Cartes ian coordinates that correspond to
# the s p h e r i c a l angles :
x = rx * np . outer ( np . cos ( u ) , np . s in ( v ) )
y = ry * np . outer ( np . s in ( u ) , np . s in ( v ) )
z = rz * np . outer ( np . ones_ l ike ( u ) , np . cos ( v ) )
# Must return the points on the form [ [ x_1 , y_1 , z_1 ] ,
# [ x_2 , y_2 , z_2 ] , [ x_3 , . . . ] ] , where the points are adjusted fo r
# the f a c t that the void are not centered in or igo :
l i s t e =[ ]
fo r i in xrange ( x . shape [ 0 ] ) :

fo r j in xrange ( x . shape [ 1 ] ) :
l i s t e . append ( [ x [ i , j ]+ s e l f .C[ 0 ] , y [ i , j ]+ s e l f .C[ 1 ] , z [ i , j ]+

s e l f .C [ 2 ] ] )
return l i s t e
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Function d e f i n i t i o n s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

def lamba ( t ) :
" " "
lambda i s a keyword in Python , t h e r e f o r e c a l l e d lamba
Returns the s t r e t c h r a t i o s at the moment , given the time t
" " "
return np . array ( [ np . exp ( constant [ 0 ] * t ) ,

np . exp ( constant [ 1 ] * t ) ,np . exp ( constant [ 2 ] * t ) ] )

def eps i lon_equivalent_func ( t ) :
" " " Returns the equivalent s t r a i n at the moment , given the time t " " "
lambda_value_1 , lambda_value_2 , lambda_value_3 = lamba ( t )
epsi lon_1= np . log ( lambda_value_1 )
epsi lon_2= np . log ( lambda_value_2 )
epsi lon_3= np . log ( lambda_value_3 )
epsi lon_eq = ( 2 . / 3 * ( epsi lon_1 **2 + epsi lon_2 **2 +

epsi lon_3 * *2 ) ) * *0 . 5
return epsi lon_eq

def e p s i l o n _ p l a s t i c _ r a t e ( ) :
" " " Returns the equivalent s t r a i n rate , given the time t " " "
r a t e = ( 2 . / 3 * ( constant_a **2+ constant_b **2+ constant_c * *2 ) ) * *0 . 5
return r a t e

def RT(R_mean ) :
return ((1+E ) * e p s i l o n _ r a t e

+ ( 2 / 3 . 0 * eps i lon_ j_squared ) * *0 . 5 *D_constant ) *R_mean

def Analytic_solved_RT ( void ) :
" " "
A n a l y t i c a l s o l u t i o n of an i n i t i a l s p h e r i c a l void with
constant lode and t r i a x i a l i t y :
" " "
T_constant = S t r e s s _ t r i a x i a l i t y [ 0 ]
i f T_constant >1.0 :

D_constant=alpha *np . exp ( 3 . 0 / 2 * T_constant )
e l s e :

D_constant=alpha *T_constant * *0 . 2 5 *np . exp ( 3 . 0 / 2 * T_constant )
#The radius ’ are measured in p r i n c i p a l space fo r the voids . . .
p h i _ l o c a l = phi [ 0 ]
R_1 , R_2 , R_3 = void . COEFF ( )
R_1 = [ R_1 ]
R_2 = [ R_2 ]
R_3 = [ R_3 ]
R_mean = ( R_1 [ 0 ] + R_2 [ 0 ] + R_3 [ 0 ] ) / 3 .

fo r dtime in analy t i c_ t ime [ 1 : ] :
# ana ly t i c_ t ime i s defined l a t e r , as a g loba l v a r i a b l e . . .

epsilon_1 , epsilon_2 , epsi lon_3 = np . log ( lamba ( dtime ) )
A_constant = np . exp ( ( 2 * ( 3 + p h i _ l o c a l * *2 ) * *0 . 5 ) /

(3+ p h i _ l o c a l ) *D_constant * epsi lon_1 )
B_constant = ((1+E ) / D_constant * ( A_constant − 1) )
R_1 . append (R_mean * ( A_constant + (3+ p h i _ l o c a l ) /

(2* (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
R_2 . append (R_mean * ( A_constant − ( p h i _ l o c a l ) /
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( (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
R_3 . append (R_mean * ( A_constant + ( phi_local −3) /

(2* (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
# The evolut ion of the semi−axes are c a l c u l a t e d as :
R_1=np . array ( R_1 )
R_2=np . array ( R_2 )
R_3=np . array ( R_3 )

# I n i t i a l void volume f r a c t i o n :
W0 = box_dim [ 0 ] / 2 .
V_f0 = np . pi /6* (R_mean/W0) **3
#Current void volume f r a c t i o n :
V_f = V_f0 * R_1*R_2*R_3/R_mean**3

epsilon_1 , epsilon_2 , epsi lon_3 = np . log ( lamba ( ana ly t i c_ t ime ) )
# Returns void volume f r a c t i o n , and the length of the
# p r i n c i p a l semi−axes of the void :
return V_f , R_1 , R_2 , R_3

def A n a l y t i c a l l y _ f i n d _ t i m e _ l i m i t s ( void ) :
T_constant = S t r e s s _ t r i a x i a l i t y [ 0 ]
i f T_constant >1.0 :

D_constant=alpha *np . exp ( 3 . 0 / 2 * T_constant )
e l s e :

D_constant=alpha *T_constant * *0 . 2 5 *np . exp ( 3 . 0 / 2 * T_constant )
p h i _ l o c a l = phi [ 0 ]
R_1 , R_2 , R_3 = void . COEFF ( )
R_mean = ( R_1 + R_2 + R_3 ) / 3 .

dtime =0.001
t o t a l _ t i m e = 0 .
W0 = box_dim [ 0 ] / 2
V_f = np . pi /6* (R_mean/W0) **3
V_f0 = np . pi /6* (R_mean/W0) **3
while V_f < Upper_Void_Volume_Limit/ f l o a t ( num_voids )

and V_f > 0 . 0 :
# In case of low t r i a x i a l i t y , the voids w i l l shrink , and t h i s

funct ion
# w i l l t h e r e f o r e a l s o terminate i f the void volume f r a c t i o n

reaches 0 .
epsilon_1 , epsilon_2 , epsi lon_3 = np . log ( lamba ( t o t a l _ t i m e ) )
A_constant = np . exp ( ( 2 * ( 3 + p h i _ l o c a l * *2 ) * *0 . 5 ) /

(3+ p h i _ l o c a l ) *D_constant * epsi lon_1 )
B_constant = ((1+E ) / D_constant * ( A_constant − 1) )
R_1 = (R_mean * ( A_constant + (3+ p h i _ l o c a l ) /

(2* (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
R_2 = (R_mean * ( A_constant − ( p h i _ l o c a l ) /

( (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
R_3 = (R_mean * ( A_constant + ( phi_local −3) /

(2* (3+ p h i _ l o c a l * *2 ) * *0 . 5 ) *B_constant ) )
t o t a l _ t i m e += dtime
V_f = V_f0 * R_1*R_2*R_3/R_mean**3

return t o t a l _ t i m e
# Assumed time u n t i l the terminat ion c r i t e r i a i s reached ,
# based on constant t r i a x i a l i t y and lode , s p h e r i c a l voids ,
# and no coa lescence . . .
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def Make_linear_function ( vector ) :
" " "
I f varying lode or t r i a x i a l i t y i s desired , t h i s makes a l i n e a r
varying funct ion between the points given for lode / t r i a x i a l i t y .
" " "
n = len ( vector )
i f n == 1 :

Result = np . l i n s p a c e ( vector [ 0 ] , vec tor [ 0 ] , N_timesteps )
Result = np . append ( Result , f l o a t ( vector [ −1] ) )

e l i f n == 2 :
Result = np . l i n s p a c e ( vector [ 0 ] , vec tor [ 1 ] , N_timesteps )
Result = np . append ( Result , f l o a t ( vector [ −1] ) )

e l i f n > 2 :
Result = [ ]
n_parts = n − 1
dt_parts = ( t_end− t _ s t a r t ) / f l o a t ( n_parts )
fo r i in xrange ( n−1) :

Result = Result + l i s t ( np . l i n s p a c e ( vector [ i ] ,
vec tor [ i +1] , i n t ( N_timesteps / f l o a t ( n_parts ) ) ) )

l e n _ r e s u l t = len ( Result )
i f l e n _ r e s u l t != N_timesteps :

d i f f e r e n c e = N_timesteps − l e n _ r e s u l t
i f d i f f e r e n c e < 0 :

for i in xrange ( d i f f e r e n c e ) :
Result . pop ( )

e l i f d i f f e r e n c e > 0 :
for i in xrange ( d i f f e r e n c e ) :

Result . append ( f l o a t ( vector [ −1] ) )
Result = np . append ( Result , f l o a t ( vector [ −1] ) )

return Result

def define_box ( void_volume ) :
" " " Ca lcu la tes the necessary s i z e of the box : " " "
Volume_box=void_volume/ Volume_fraction
box_dim=[Volume_box * * ( 1 / 3 . 0 ) f or i in xrange ( 3 ) ]
return box_dim

def UpdateBox ( t ) :
" " " The current box dimensions given the time t " " "
current_box=lamba ( t ) *box_dim
return current_box

def Make_rand_coord_sys ( ) :
" " " Create a random oriented orthonormal coordinate b a s i s " " "
a = np . array ( [ [ random . random ( ) , random . random ( ) ,

random . random ( ) ] fo r i in xrange ( 3 ) ] )
q = np . l i n a l g . qr ( a ) [ 0 ]
q=np . matrix ( q )
return q , q . T

def Generate_Void ( s t a t i s t i c a l _ d i s t r i b u t i o n = ’ Uniform ’ ) :
" " " Creates unique A and C for the voids " " "
i f s t a t i s t i c a l _ d i s t r i b u t i o n == ’ Uniform ’ :

T , T_inv=Make_rand_coord_sys ( )
semi_axes =[random . uniform ( d_min / 2 . 0 , d_max / 2 . 0 ) for

i in xrange ( 3 ) ]
D=np . diag ( [ 1 . / i **2 for i in semi_axes ] )
D=np . matrix (D)
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return T ,D, T_inv
e l i f s t a t i s t i c a l _ d i s t r i b u t i o n == ’ Other ’ :

# THIS IS AN IMPORTANT FOCUS IN FURTHER WORK! A MUCH MORE
# SOPHISTICATED PROBABILITY DISTRIBUTION THAN
# UNIFORM DISTRIBUTION IS NECESSARY .
" " " I n s e r t very e legant code here . . . " " "
return T ,D, T_inv ,C

def One_Ell ipsoid_plot (A,C) :
" " "
To plot each e l l i p s o i d
" " "
U, D, V = np . l i n a l g . svd ( np . array (A, dtype= f l o a t ) )
centro id=np . array (C)
rx , ry , rz = [1/np . s q r t ( d ) fo r d in D]
u , v = np . mgrid [ 0 : 2 *np . pi :20 j ,−np . pi / 2 : np . pi /2:10 j ]
exec ( ’u , v=np . mgrid [ 0 : 2 *np . pi : ’+ s t r ( N _ e l l i p s o i d _ p l o t t i n g _ p o i n t s )

+ ’ j ,−np . pi / 2 : np . pi / 2 : ’+ s t r ( N _ e l l i p s o i d _ p l o t t i n g _ p o i n t s )+ ’ j ] ’ )

x=rx *np . cos ( u ) *np . cos ( v )
y=ry *np . s in ( u ) *np . cos ( v )
z=rz *np . s in ( v )

for idx in xrange ( x . shape [ 0 ] ) :
fo r idy in xrange ( y . shape [ 1 ] ) :

x [ idx , idy ] , y [ idx , idy ] , z [ idx , idy ] = np . dot ( np . transpose (V) ,
np . array ( [ x [ idx , idy ] , y [ idx , idy ] , z [ idx , idy ] ] ) ) +

centro id

ax . p l o t _ s u r f a c e ( x , y , z , c s t r i d e = 1 , r s t r i d e = 1 , alpha=alpha_plot
)

p l t . show ( )
return

def mvee ( points , t o l = 0 .001) :
" " "
Finds the e l l i p s e equation in " center form "
( x−c ) . T * A * ( x−c ) = 1
See the Theory chapter for an in−depth explanat ion
" " "
N, d = points . shape
Q = np . column_stack ( ( points , np . ones (N) ) ) . T
e r r = t o l +1.0
u = np . ones (N) /N
while e r r > t o l :

X = np . dot ( np . dot (Q, np . diag ( u ) ) , Q. T)
M = np . diag ( np . dot ( np . dot (Q. T , np . l i n a l g . inv (X) ) , Q) )
jdx = np . argmax (M)
s t e p _ s i z e = (M[ jdx ]−d−1.0) / ( ( d+1) * (M[ jdx ] −1 .0 ) )
new_u = (1− s t e p _ s i z e ) *u
new_u [ jdx ] += s t e p _ s i z e
e r r = l a . norm ( new_u−u )
u = new_u

c = np . dot ( u , points )
A = l a . inv ( np . dot ( np . dot ( points . T , np . diag ( u ) ) , points )

− np . multiply . outer ( c , c ) ) /d
return A, c
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def Plot_El l ipsoid_2D ( void , c o l o r ) :
" " "
To plot the e l l i p s o i d s in 2D
" " "
A = void .A
a_11 = A[ 0 , 0 ]
a_12 = A[ 0 , 1 ]
a_22 = A[ 1 , 1 ]
a_23 = A[ 1 , 2 ]
a_33 = A[ 2 , 2 ]
a_13 = A[ 0 , 2 ]
x_2 = 0.0 − void .C[ 1 ]
# The plot goes through the value x_2=0 ( y=0) , but may very
# e a s i l y be extended to go through a user defined value
# The s o l u t i o n i s based on the e x i s t e n c e of a r e a l discr iminant :
z_1 = (−x_2 * ( a_11 * a_23 − a_12 *a_13 ) + np . s q r t ( a_11 *(−a_11

* a_22 * a_33 *x_2 **2 + a_11 *a_23 **2* x_2 **2
+ a_11 * a_33 + a_12 **2* a_33 *x_2 **2
− 2*a_12 * a_13 * a_23 *x_2 **2 + a_13 **2* a_22 *x_2 **2
− a_13 * *2 ) ) ) / ( a_11 *a_33 − a_13 * *2 )

z_2 = (−a_11 *a_23 *x_2 + a_12 * a_13 *x_2 − np . s q r t ( a_11 *(−a_11
*a_22 * a_33 *x_2 **2 + a_11 * a_23 **2* x_2 **2
+ a_11 *a_33 + a_12 **2* a_33 *x_2 **2
− 2*a_12 * a_13 * a_23 *x_2 **2 + a_13 **2* a_22 *x_2 **2
− a_13 * *2 ) ) ) / ( a_11 * a_33 − a_13 * *2 )

z_values = np . l i n s p a c e ( f l o a t ( z_1 ) , f l o a t ( z_2 ) ,700)
x_3 = z_values
x_values1 = (−a_12 *x_2 − a_13 *x_3 + np . s q r t (−a_11

*a_22 *x_2 **2 − 2*a_11 * a_23 *x_2 *x_3
− a_11 *a_33 *x_3 **2 + a_11 + a_12 **2* x_2 **2
+ 2*a_12 * a_13 *x_2 *x_3 + a_13 **2* x_3 * *2 ) ) /a_11

x_values2 = −(a_12 *x_2 + a_13 *x_3 + np . s q r t (−a_11
* a_22 *x_2 **2 − 2*a_11 * a_23 *x_2 *x_3
− a_11 * a_33 *x_3 **2 + a_11 + a_12 **2* x_2 **2
+ 2*a_12 * a_13 *x_2 *x_3 + a_13 **2* x_3 * *2 ) ) /a_11

x_values1 = np . d e l e t e ( x_values1 , 0 )
x_values1 = np . d e l e t e ( x_values1 , −1)
x_values2 = np . d e l e t e ( x_values2 , 0 )
x_values2 = np . d e l e t e ( x_values2 , −1)
z_values = np . d e l e t e ( z_values , 0 )
z_values = np . d e l e t e ( z_values , −1)
z_values = z_values + void .C[ 2 ]
x_values1 = x_values1 + void .C[ 0 ]
x_values2 = x_values2 + void .C[ 0 ]

p l t . p lot ( x_values1 , z_values , s t r ( c o l o r ) )
p l t . p lot ( x_values2 , z_values , s t r ( c o l o r ) )
p l t . p lot ( [ x_values1 [ 0 ] , x_values2 [ 0 ] ] , [ z_values [ 0 ] ,

z_values [ 0 ] ] , s t r ( c o l o r ) )
p l t . p lot ( [ x_values1 [ −1] , x_values2 [ −1 ] ] , [ z_values [ −1] ,

z_values [ −1 ] ] , s t r ( c o l o r ) )
return
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def Col l i s ion_Box (A, C, box_dims ) :
" " "
This code w i l l check c o l l i s i o n with the current box dimensions
" " "
a=[C[0] −0 , box_dims [0] −C[ 0 ] ]
b=[C[1] −0 , box_dims [1] −C[ 1 ] ]
c =[C[2] −0 , box_dims [2] −C[ 2 ] ]
a00 , a01 , a02 , a11 , a12 , a22=A[ 0 , 0 ] ,A[ 0 , 1 ] ,A[ 0 , 2 ] ,

A[ 1 , 1 ] ,A[ 1 , 2 ] ,A[ 2 , 2 ]
C o l l i s i o n _ s t a t u s = [ ]
# For the case when i t i s i n s e r t e d fo r x2 :
i f 2*(−a00 *a11 + a01 * *2 ) < 0 :

fo r value in c :
x2 = value
# x1 gets i t s r i t i c a l value :
x1 = x2 *(−a00 *a12 + a01 *a02 ) / ( a00 *a11 − a01 * *2 )
#Check the funct ion value , with v a r i a b l e s x1 and x2 :
i f (−a00 *a22 *x2 **2 + a00 + a02 **2* x2 **2

+ x1 **2* ( − a00 *a11 + a01 * *2 ) + x1 *( −2*a00 *a12 *x2
+ 2*a01 *a02 *x2 ) ) > 0 :

C o l l i s i o n _ s t a t u s . append ( True )
e l s e :

C o l l i s i o n _ s t a t u s . append ( Fa l se )
e l s e :

C o l l i s i o n _ s t a t u s . append ( True )

# For the case when i t i s i n s e r t e d fo r x0 :
i f 2*(−a11 *a22 + a12 * *2 ) < 0 :

fo r value in a :
x0 = value
# x2 gets i t s c r i t i c a l value :
x2 = x0 * ( a01 *a12 − a02 *a11 ) / ( a11 *a22 − a12 * *2 )
#Check the funct ion value , with v a r i a b l e s x0 and x2 :
i f (−a00 *a11 *x0 **2 + a01 **2* x0 **2 + a11

+ x2 **2* ( − a11 *a22 + a12 * *2 ) + x2 * ( 2 * a01 *a12 *x0
− 2*a02 *a11 *x0 ) ) > 0 :

C o l l i s i o n _ s t a t u s . append ( True )
e l s e :

C o l l i s i o n _ s t a t u s . append ( Fa l se )
e l s e :

C o l l i s i o n _ s t a t u s . append ( True )

# For the case when i t i s i n s e r t e d fo r x1 :
i f 2*(−a00 *a22 + a02 * *2 ) < 0 :

fo r value in b :
x1 = value
# x0 gets i t s c r i t i c a l value :
x0 = x1 *(−a01 *a22 + a02 *a12 ) / ( a00 *a22 − a02 * *2 )
#Check the funct ion value , with v a r i a b l e s x0 and x1 :
i f (−a11 *a22 *x1 **2 + a12 **2* x1 **2 + a22

+ x0 **2* ( − a00 *a22 + a02 * *2 ) + x0 *( −2*a01 *a22 *x1
+ 2*a02 *a12 *x1 ) ) > 0 :

C o l l i s i o n _ s t a t u s . append ( True )
e l s e :

C o l l i s i o n _ s t a t u s . append ( Fa l se )
e l s e :

C o l l i s i o n _ s t a t u s . append ( True )
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i f any ( C o l l i s i o n _ s t a t u s ) :
return True

e l s e :
return False

def Col l i s ion_El l ipso ids_new ( void1 , void2 , args = [ ] ) :
" " "
Determines i f two e l l i p s o i d s are i n t e r c e p t i n g or not
" " "
i f len ( args ) == 0 :

A_1 = void1 .A
T_1 = void1 . T
T_1_inv = void1 . T_inv
a , b , c = void1 . COEFF ( )
#The transformation of A to a unit sphere i s done through
# the fol lowing coordinate transformation :
# y = R * x
R = np . matrix ( np . zeros ( ( 3 , 3 ) ) )
R[ 0 , 0 ] = T_1 [ 0 , 0 ] * a
R[ 1 , 0 ] = T_1 [ 1 , 0 ] * a
R[ 2 , 0 ] = T_1 [ 2 , 0 ] * a
R[ 0 , 1 ] = T_1 [ 0 , 1 ] * b
R[ 1 , 1 ] = T_1 [ 1 , 1 ] * b
R[ 2 , 1 ] = T_1 [ 2 , 1 ] * b
R[ 0 , 2 ] = T_1 [ 0 , 2 ] * c
R[ 1 , 2 ] = T_1 [ 1 , 2 ] * c
R[ 2 , 2 ] = T_1 [ 2 , 2 ] * c

#The transformation of A i s then done by R_T * A * R
A_1_unit = R . T * A_1 * R

# The other e l l i p s o i d s h a l l then undergo the same
transformation :

A_2 = void2 .A
A_2_transf = R . T * A_2 * R

# Distance between the e l l i p s o i d s c e n t e r s :
d i s t 1 = np . matrix ( void1 .C)
d i s t 2 = np . matrix ( void2 .C)
d i s t = np . l i n a l g . inv (R) * d i s t 2 . T − np . l i n a l g . inv (R) * d i s t 1 . T

# The transformed void s h a l l be descr ibed in i t s
# own coordinate system :
D_diag , T_new = np . l i n a l g . e ig ( A_2_transf )
a , b , c = ( 1 . / D_diag [ 0 ] ) * *0 . 5 , ( 1 . / D_diag [ 1 ] ) * *0 . 5 ,

( 1 . / D_diag [ 2 ] ) * *0 . 5

# Since A i s a symmetric p o s i t i v e d e f i n i t e matrix ,
# the fol lowing i s a l s o c o r r e c t :
T_new_inv = T_new . T
A_2_eq = T_new_inv * A_2_transf * T_new
#We now have A_2_eq descr ibed in i t s own coordinate system ,
# i . e with i t s own e i g e n v e c t o r s as the coordinate system .

# The point should be transformed in the opposi te d i r e c t i o n ;
# i . e be s t a t i o n a r y while the coord . system r o t a t e s :
point_temp = T_new_inv * d i s t
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point=np . array ( [ 0 . , 0 . , 0 . ] )
point [0]= point_temp [ 0 , 0 ]
point [1]= point_temp [ 1 , 0 ]
point [2]= point_temp [ 2 , 0 ]

#The problem i s now reduced to f ind the minimum dis tance
# between the point ’ point ’ and the e l l i p s o i d
# descr ibed by A_2_eq , and see i f t h i s i s l e s s than unity ( 1 . ) !
D_diag , T = np . l i n a l g . e ig ( A_2_eq )
x0 , y0 , z0 = point [ 0 ] , point [ 1 ] , point [ 2 ]

# In the fol lowing code , a , b and c i s used to denote the
# squares of the semi−axes , which u n t i l now has been
# denoted a , b and c .
# I . e , from now on , a == a **2 , b==b**2 and c==c * *2 :
a = 1 . / D_diag [ 0 ]
b = 1 . / D_diag [ 1 ]
c = 1 . / D_diag [ 2 ]
# The 6 . order polynomial has the fol lowing c o e f f i c i e n t s :
# c_1 *x **n + c_2 * x **n−1 + . . . + c_n = 0 , where
# the values has been c a l c u l a t e d ( with SymPy) to :
c1 = 1 .
c2 = −2.* ( a+b+c )
c3 = a **2+b**2+ c * *2 + 4 . * ( b* c+c *a+a *b )

−(a *x0**2+b*y0**2+ c * z0 * *2 )
c4 = 2.* ( − a * *2 * ( b+c )−b * *2 * ( c+a )−c * *2 * ( a+b ) −4*a *b* c

+a * ( b+c ) *x0**2+b * ( c+a ) *y0 **2 +c * ( a+b ) * z0 * *2 )
c5 = b **2* c **2+ c **2* a **2+ a **2*b**2+4*a *b* c * ( a+b+c )

−a * ( b**2+ c * *2 ) *x0**2−b * ( c **2+ a * *2 ) *y0 **2
−c * ( a **2+b * *2 ) * z0 **2−4*a *b* c * ( x0**2+y0**2+ z0 * *2 )

c6 = 2*a *b* c * ( ( b+c ) *x0 **2+( c+a ) *y0 **2+( a+b ) * z0 **2
−b*c−c *a−a *b )

c7 = a *b* c * ( a *b*c−b* c *x0**2− c *a *y0**2−a *b* z0 * *2 )

# Find a l l s i x r o o t s :
t = np . r o o t s ( [ c1 , c2 , c3 , c4 , c5 , c6 , c7 ] )

# Determine which are the r e a l r o o t s :
p = np . imag ( t ) == 0

# Narrow t vector down to only r e a l r o o t s :
t = t [ p ]
# J u s t to remove +0 j at the end of the term :
t = np . r e a l ( t )

# Find corresponding x , y , z coordinates
x = a / ( a− t ) *x0
y = b /( b− t ) *y0
z = c / ( c− t ) * z0

# Choose the minimum dis tance :
d = ( min ( ( x−x0 ) **2+( y−y0 ) **2+( z−z0 ) * *2 ) ) * *0 . 5
# This d i s tance i s not the r e a l phys ica l d i s tance between the
# two voids , but the length 1 i s the l i m i t value fo r

i n t e r s e c t i o n
# or not , in the d i f f e r e n t coordinate system !
i f d <=1.:

return True
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e l s e :
return False

e l s e :
" " "
This part i s very s imi lar , but i s needed to compute

i n t e r s e c t i o n
between p o t e n t i a l voids , i . e they have yet to be i n s t a n t i a t e d
as a Void ins tance ! The code underwent some minor changes .
" " "
A_1 = void1 .A
T_1 = void1 . T
T_1_inv = void1 . T_inv
a , b , c = void1 . COEFF ( )
d i s t 1 = np . matrix ( void1 .C)
d i s t 2 = np . matrix ( args [ 1 ] )
A_2 = args [ 0 ]

R = np . matrix ( np . zeros ( ( 3 , 3 ) ) )
R[ 0 , 0 ] = T_1 [ 0 , 0 ] * a
R[ 1 , 0 ] = T_1 [ 1 , 0 ] * a
R[ 2 , 0 ] = T_1 [ 2 , 0 ] * a
R[ 0 , 1 ] = T_1 [ 0 , 1 ] * b
R[ 1 , 1 ] = T_1 [ 1 , 1 ] * b
R[ 2 , 1 ] = T_1 [ 2 , 1 ] * b
R[ 0 , 2 ] = T_1 [ 0 , 2 ] * c
R[ 1 , 2 ] = T_1 [ 1 , 2 ] * c
R[ 2 , 2 ] = T_1 [ 2 , 2 ] * c

#The transformation of A i s then done by R_T * A * R
A_1_unit = R . T * A_1 * R

#The other e l l i p s o i d s h a l l then undergo the same transformation
:

A_2_transf = R . T * A_2 * R

#Distance between the e l l i p s o i d s c e n t e r s :
d i s t = np . l i n a l g . inv (R) * d i s t 2 . T − np . l i n a l g . inv (R) * d i s t 1 . T

#The transformed void s h a l l be descr ibed in i t s own
# coordinate system :
D_diag , T_new = np . l i n a l g . e ig ( A_2_transf )
a , b , c = ( 1 . / D_diag [ 0 ] ) * *0 . 5 , ( 1 . / D_diag [ 1 ] ) * *0 . 5 ,

( 1 . / D_diag [ 2 ] ) * *0 . 5

#Since A i s a symmetric p o s i t i v e d e f i n i t e matrix :
T_new_inv = T_new . T

A_2_eq = T_new_inv * A_2_transf * T_new

#The point should be transformed in the opposi te d i r e c t i o n ;
# i . e be s t a t i o n a r y while the coord . system r o t a t e s :
point_temp = T_new_inv * d i s t
point=np . array ( [ 0 . , 0 . , 0 . ] )
point [0]= point_temp [ 0 , 0 ]
point [1]= point_temp [ 1 , 0 ]
point [2]= point_temp [ 2 , 0 ]

#The problem i s now reduced to f ind the minimum dis tance
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# between the point ’ point ’ and the e l l i p s o i d descr ibed by
# A_2_eq , and see i f t h i s i s l e s s than unity ( 1 . ) .
D_diag , T = np . l i n a l g . e ig ( A_2_eq )
x0 , y0 , z0 = point [ 0 ] , point [ 1 ] , point [ 2 ]
a = 1 . / D_diag [ 0 ]
b = 1 . / D_diag [ 1 ]
c = 1 . / D_diag [ 2 ]
# The 6 . order polynomial has the fol lowing c o e f f i c i e n t s :
# c_1 *x **n + c_2 * x **n−1 + . . . + c_n = 0 , where
# the values has been c a l c u l a t e d ( with SymPy) to :
c1 = 1 .
c2 = −2.* ( a+b+c )
c3 = a **2+b**2+ c * *2 + 4 . * ( b* c+c *a+a *b )

−(a *x0**2+b*y0**2+ c * z0 * *2 )
c4 = 2.* ( − a * *2 * ( b+c )−b * *2 * ( c+a )−c * *2 * ( a+b ) −4*a *b* c

+a * ( b+c ) *x0**2+b * ( c+a ) *y0 **2 +c * ( a+b ) * z0 * *2 )
c5 = b **2* c **2+ c **2* a **2+ a **2*b**2+4*a *b* c * ( a+b+c )

−a * ( b**2+ c * *2 ) *x0**2−b * ( c **2+ a * *2 ) *y0 **2
−c * ( a **2+b * *2 ) * z0 **2−4*a *b* c * ( x0**2+y0**2+ z0 * *2 )

c6 = 2*a *b* c * ( ( b+c ) *x0 **2+( c+a ) *y0 **2+( a+b ) * z0 **2
−b*c−c *a−a *b )

c7 = a *b* c * ( a *b*c−b* c *x0**2− c *a *y0**2−a *b* z0 * *2 )

# Find a l l s i x r o o t s :
t = np . r o o t s ( [ c1 , c2 , c3 , c4 , c5 , c6 , c7 ] )
# Determine which are the r e a l r o o t s :
p = np . imag ( t ) == 0

# Narrow t vector down to only r e a l r o o t s :
t = t [ p ]
# J u s t to remove +0 j at the end of the term :
t = np . r e a l ( t )

# Find corresponding x , y , z coordinates
x = a / ( a− t ) *x0
y = b /( b− t ) *y0
z = c / ( c− t ) * z0

# Choose the minimum dis tance :
d = ( min ( ( x−x0 ) **2+( y−y0 ) **2+( z−z0 ) * *2 ) ) * *0 . 5
i f d <=1.:

return True
e l s e :

return False

def Generate_C ( ) :
" " "
Generate a random p o s i t i o n for a void
" " "
C=np . array ( [ random . uniform ( 0 . 0 , box_dim [ 0 ] ) ,

random . uniform ( 0 . 0 , box_dim [ 1 ] ) ,
random . uniform ( 0 . 0 , box_dim [ 2 ] ) ] , dtype= f l o a t )

return C
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def Find_posi t ion (A) :
" " "
Keep generat ing p o s i t i o n s fo r the voids , u n t i l the p o s i t i o n doesn ’ t
r e s u l t in any i n t e r s e c t i o n s with other voids
" " "
s t a t u s 1 = ’ C o l l i s i o n ’
while s t a t u s 1== ’ C o l l i s i o n ’ :

C = Generate_C ( )
s t a t u s 1 = ’ Not�C o l l i s i o n ’
fo r void in Voids :

i f Col l i s ion_El l ipso ids_new ( void , void , args =[A,C ] ) :
s t a t u s 1 = ’ C o l l i s i o n ’

return C

def checkEqual ( l s t ) :
" " "
Checks wether a l i s t c o n s i s t s of only one value , i . e a l l the
terms in the l i s t are equal
" " "
return l s t [ 1 : ] == l s t [ : −1 ]

def f ind_neighboors ( ) :
" " "
Checks wich of the voids that can be c l a s s i f i e d as neighbors .
A c i r c l e with radius 1.1 times the l a r g e s t semi−a x i s of the void
i s thought to encompass each of the 2 voids in question ,
and i f these c i r c l e s i n t e r s e c t s , the voids are c l a s s i f i e d as

neighbors .
" " "
tempor_index = 0
fo r void_search_1 in Voids :

tempor_index +=1
maximum_axis_1 = 1 .1*max( void_search_1 . a ,

void_search_1 . b , void_search_1 . c )
fo r void_search_2 in Voids [ tempor_index : ] :

maximum_axis_2 = 1 .1*max( void_search_2 . a ,
void_search_2 . b , void_search_2 . c )

i f np . l i n a l g . norm ( void_search_1 .C − void_search_2 .C)
< ( maximum_axis_1+maximum_axis_2 ) :

void_search_1 . neighboors . add ( void_search_2 )
void_search_2 . neighboors . add ( void_search_1 )

return
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Generate voids before void c r e a t i o n
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

" " "
The voids can not be created with a given p o s i t i o n before the
box ’ s dimension i s determined , which cannot be determined
before the voids t o t a l volume i s known . In t h i s part of the program ,
a l l the voids are generated , but the void c r e a t i o n i s postponed
to the next s e c t i o n .
" " "
A_from_voids =[ ]
Volume_Voids = 0
fo r i in xrange ( num_voids ) :

# Depending on the user s p e c i f i e d parameter ’ o r i e n t a t i o n ’ :

i f o r i e n t a t i o n == ’Rand ’ :
T ,D, T_inv=Generate_Void ( )

# or :
e l i f o r i e n t a t i o n == ’ Spher ica l ’ :

T=np . matrix ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] )
T_inv=T . T
D=np . matrix ( np . diag ( [ 1 / ( d_min / 2 . ) **2 for kl in xrange ( 3 ) ] ) )

e l i f o r i e n t a t i o n == ’ Langs ’ :
T ,D, T_inv=Generate_Void ( )
T=np . matrix ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] )
T_inv=T . T

e l i f o r i e n t a t i o n == ’ Skra ’ :
T ,D, T_inv=Generate_Void ( )
T = np . matrix ( [ [ 1 , 0 , 1 ] , [ 0 , 1 , 0 ] , [ −1 , 0 , 1 ] ] )
T_inv = T . T

e l i f o r i e n t a t i o n == ’ S p h e r i c a l _ e r r o r ’ :
T ,D, T_inv=Generate_Void ( )
D=np . matrix ( np . diag ( [ 1 / ( d_min / 2 . ) **2 for kl in xrange ( 3 ) ] ) )

e l i f o r i e n t a t i o n == ’ One_with_angle ’ :
#Get the angle in radians :
angle_temp = angle_for_1_void *np . pi /180.
T = np . matrix ( [ [ 1 . , 0 . , 0 . ] , [ 0 . , 1 . , 0 . ] , [ 0 . , 0 . , 1 . ] ] )
#Rotat ion about the y−a x i s :
R = np . matrix ( [ [ np . cos ( angle_temp ) , 0 . , −np . s in ( angle_temp ) ] ,

[ 0 . , 1 . , 0 . ] , [ np . s in ( angle_temp ) , 0 . , np . cos (
angle_temp ) ] ] )

T = R*T
T_inv = T . T
semi_axes_b , semi_axes_c = d_min , d_min
semi_axes_a = r a t i o _ f o r _ 1 _ v o i d * semi_axes_b
D=np . matrix ( np . diag ( [ 1 / ( semi_axes_a / 2 . ) **2 , 1/( semi_axes_b /

2 . ) **2 , 1/( semi_axes_c / 2 . ) * *2 ] ) )
l i s t _ o f _ a n g l e s = [ angle_temp *180./np . pi ]

e l i f o r i e n t a t i o n == ’ Two_with_coalescence ’ :
i f Two_with_coalescence_orientat ion == ’ Spher ica l ’ :

T=np . matrix ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] )
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T_inv=T . T
D=np . matrix ( np . diag ( [ 1 / ( d_min / 2 . ) **2 for kl in xrange ( 3 ) ] ) )

e l i f Two_with_coalescence_orientat ion == ’Rand ’ :
T ,D, T_inv=Generate_Void ( )
T = np . matrix ( [ [ 1 . , 0 . , 0 . ] , [ 0 . , 1 . , 0 . ] , [ 0 . , 0 . , 1 . ] ] )
#Rotat ion about the y−a x i s :
angle_for_2_void = random . uniform ( 0 , np . pi / 2 . )
R = np . matrix (

[ [ np . cos ( angle_for_2_void ) , 0. , −np . s in (
angle_for_2_void ) ] ,

[ 0 . , 1 . , 0 . ] ,
[ np . s in ( angle_for_2_void ) , 0 . , np . cos ( angle_for_2_void

) ] ] )
T = R*T
T_inv = T . T

e l i f Two_with_coalescence_orientat ion == ’ Skra ’ :
T ,D, T_inv=Generate_Void ( )
T = np . matrix ( [ [ 1 , 0 , 1 ] , [ 0 , 1 , 0 ] , [ −1 , 0 , 1 ] ] )
T_inv = T . T

e l i f Two_with_coalescence_orientat ion == ’ Langs ’ :
T ,D, T_inv=Generate_Void ( )
T=np . matrix ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] )
T_inv=T . T

A=T*D*T_inv
A_from_voids . append ( [ A, T ,D, T_inv ] )
c o e f f i c i e n t s = np . array ( [ np . s q r t ( 1 . /D[ i , i ] ) fo r i in xrange ( 3 ) ] )
a , b , c = c o e f f i c i e n t s [ 0 ] , c o e f f i c i e n t s [ 1 ] , c o e f f i c i e n t s [ 2 ]
volume =4.0/3*np . pi *a *b* c

# Get the t o t a l volume of the voids , needed to def ine the box :
Volume_Voids += volume

#Define the box :
box_dim = define_box ( Volume_Voids )
Volume_box = box_dim [ 0 ] * box_dim [ 1 ] * box_dim [ 2 ]
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Void c r e a t i o n and setup for the main part of the program
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Voids =[ ]
i f num_voids != 1 :

i f o r i e n t a t i o n != ’ Two_with_coalescence ’ :
fo r i in xrange ( num_voids ) :

k= i +1
A, T ,D, T_inv = A_from_voids [ i ]
i f k == 1 :

C=Generate_C ( )
#The voids are created with t h e i r own unique name :

exec ( ’ void_ ’+ s t r ( k )+ ’=Void (T ,D, T_inv , C, \ ’ void_ ’+ s t r ( k )+
’ \ ’ ) ’ )

exec ( ’ Voids . append ( void_ ’+ s t r ( k )+ ’ ) ’ )
e l s e :

D_diag=np . diag (D)
COEFF=np . array ( [ np . s q r t ( 1 . / D_diag [ l ] ) fo r l in xrange

( 3 ) ] )
C = Find_posi t ion (A)
exec ( ’ void_ ’+ s t r ( k )+ ’=Void (T ,D, T_inv , C, \ ’ void_ ’+ s t r ( k )+

’ \ ’ ) ’ )
exec ( ’ Voids . append ( void_ ’+ s t r ( k )+ ’ ) ’ )

e l s e :
# Which means that ‘ o r i e n t a t i o n ’== ’ Two_with_coalescence ’ . . .
# Creation of void_1 :
A, T ,D, T_inv = A_from_voids [ 0 ]
larges t_semi_axes = max ( [ ( 1 . /D[ i , i ] ) * *0 . 5 f or i in xrange ( 3 ) ] )
C = np . array ( [ box_dim [0]/2 . −2* largest_semi_axes ,

0 . 0 , box_dim [ 0 ] / 2 . ] )
void_1=Void (T ,D, T_inv , C, ’ void_1 ’ )
Voids . append ( void_1 )

# Creation of void_2 :
A, T ,D, T_inv = A_from_voids [ 1 ]
larges t_semi_axes = max ( [ ( 1 . /D[ i , i ] ) * *0 . 5 f or i in xrange ( 3 ) ] )
C = np . array ( [ box_dim [ 0 ] / 2 . + 2 * largest_semi_axes ,

0 . 0 , box_dim [ 0 ] / 2 . ] )
void_2=Void (T ,D, T_inv , C, ’ void_2 ’ )
Voids . append ( void_2 )
void_1 . neighboors . add ( void_2 )

e l i f num_voids==1:
A, T ,D, T_inv = A_from_voids [ 0 ]
# The void i s pos i t ioned in the center of the box :
C=np . array ( box_dim ) / 2 .
void_1=Void (T ,D, T_inv , C, ’ void_1 ’ )
Voids . append ( void_1 )

# Find the time where the a n a l y t i c a l s o l u t i o n has reached the
# given l i m i t volume value :
i f num_voids == 1 :

t_end = A n a l y t i c a l l y _ f i n d _ t i m e _ l i m i t s ( void_1 )
dt = ( t_end− t _ s t a r t ) / f l o a t ( N_timesteps )
ana ly t i c_ t ime = np . l i n s p a c e ( t _ s t a r t , t_end , 2 0 0 )
i f len ( S t r e s s _ t r i a x i a l i t y ) == 1 and len ( phi ) == 1 :

# An a n a l y t i c a l s o l u t i o n i s c a l c u l a t e d :
A n a l y t i c a l _ s o l u t i o n = Analytic_solved_RT ( void_1 ) [ 0 ]
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Analyt ica l_eps_eq = eps i lon_equivalent_func ( ana ly t i c_ t ime )
e l s e :

t_end =[ ]
len_Voids = len ( Voids )
" " "
Finding the a n a l y t i c a l time fo r every tenth void , and choosing
the l a r g e s t as t_end . Coalescence i s not taken into account ,
so t_end i s not reached i f coa lescence happens , which i t usual ly
does .
" " "
fo r void in Voids [ : i n t (m. c e i l ( len_Voids / 1 0 . ) ) ] :

t_end . append ( A n a l y t i c a l l y _ f i n d _ t i m e _ l i m i t s ( void ) )
t_end = max( t_end )
dt = ( t_end− t _ s t a r t ) / f l o a t ( N_timesteps )
ana ly t i c_ t ime = np . l i n s p a c e ( t _ s t a r t , t_end , 2 0 0 )
A n a l y t i c a l _ s o l u t i o n = np . zeros ( len ( ana ly t i c_ t ime ) )
Analyt ica l_eps_eq = eps i lon_equivalent_func ( ana ly t i c_ t ime )
i f len ( S t r e s s _ t r i a x i a l i t y ) == 1 and len ( phi ) == 1 :

# Calculate an a n a l y t i c a l so lut ion , to have something
# to compare the r e s u l t s to . As the number of voids increases ,
# they w i l l converge towards t h i s i f i t weren ’ t fo r the
# Pac−Man e f f e c t .
fo r void in Voids :

An al y t i c_ so l ut ion = Analytic_solved_RT ( void )
A n a l y t i c a l _ s o l u t i o n += np . array ( A na ly t i c _so lu t io n [ 0 ] ,

dtype= f l o a t )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Main part of the program
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# To keep track of how the void volume f r a c t i o n evolves ,
# a l i s t i s made :
Volume_percentage =[Volume_Voids/Volume_box ]

# To keep track of the Pac−Man e f f e c t :
Volume_percentage_fake = [ 0 . , 0 . ]

# To remember at which times the plot was taken from :
Time_at_plot = [ ]

fig_number=1
time_counter=0
t = t _ s t a r t
eps i lon_equiva lent = [ 0 . ]

S t r e s s _ t r i a x i a l i t y = Make_linear_function ( S t r e s s _ t r i a x i a l i t y )
phi_vector = Make_linear_function ( phi )
e p s i l o n _ p l a s t i c _ r a t e _ v e c t o r =[ ]
epsi lon_11 = [ ]

while t < t_end and Volume_percentage [ −1] < Upper_Void_Volume_Limit :
i f t ime_counter % 7 == 0 :
# Every 7th increment , s t a r t i n g with the f i r s t , the
# neighboors are c o n t r o l l e d :

f ind_neighboors ( )

# S t r e s s t r i a x i a l i t y at t h i s time increment :
T_constant= S t r e s s _ t r i a x i a l i t y [ time_counter ]

# Lode parameter at t h i s time increment :
phi = phi_vector [ time_counter ]

i f T_constant >1.0 :
D_constant=alpha *np . exp ( 3 . 0 / 2 * T_constant )

e l s e :
D_constant=alpha *T_constant * *0 . 2 5 *np . exp ( 3 . 0 / 2 * T_constant )

# Determine the constants in the v e l o c i t y gradient tensor L :
constant_b = −phi * constant_a *2/(3+ phi )
constant_c = constant_a * ( phi − 3) / ( phi + 3)
constant = np . array ( [ constant_a , constant_b , constant_c ] )
L_diag=np . array ( [ constant [ 0 ] , constant [ 1 ] , constant [ 2 ] ] )
L=np . diag ( L_diag )

e p s i l o n _ p l a s t i c _ r a t e _ v e c t o r . append ( e p s i l o n _ p l a s t i c _ r a t e ( ) )
eps i lon_ j_squared = L_diag [ 0 ] * *2 + L_diag [ 1 ] * *2 + L_diag [ 2 ] * *2
e p s i l o n _ r a t e=L_diag
epsi lon_11 . append ( constant_a * t )

# Find the current dimensions of the box :
Current_box = box_dim* lamba ( t )

# Uses the current box ’ s volume , j u s t to c o n t r o l that the box ’ s
# volume a c t u a l l y are kept constant ( which i t should ) :
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Current_box_volume=Current_box [ 0 ] * Current_box [ 1 ] * Current_box [ 2 ]
Current_Volume = 0

fo r void in Voids :
void . Rotate_and_grow ( t )
Current_Volume += void . Volume ( )
i f Remove_Volume_Outside_Box == True :

" " "
The fol lowing code may be used to remove the par ts of the
voids that are outs ide the current box , i . e reduce the void
volume f r a c t i o n in the box i f the voids are p a r t l y outs ide
the box . Not used in t h i s t h e s i s , because the voids outs ide

the
box are j u s t as l i k e l y to grow p a r t l y in to the box .
The assumption made i s that these two e f f e c t s cancel each
other out . But , the code may be used to remove overlapping
e l l i p s o i d s as descr ibed in f u r t h e r work ,
with only minor changes , so the procedure i s shown here .
" " "
x _ l i s t _ l o w =[ ]
x _ l i s t _ h i g h =[ ]
y _ l i s t _ l o w =[ ]
y _ l i s t _ h i g h =[ ]
z _ l i s t _ l o w =[ ]
z _ l i s t _ h i g h =[ ]
i f New_Collision_Box ( void .A, void . C, Current_box ) :

points=void . El l ipso id_samplepoints (
n_el l ipso id_samplepoints =10)

for x , y , z in points :
i f x < 0 :

x _ l i s t _ l o w . append ( [ x , y , z ] )
i f x > Current_box [ 0 ] :

x _ l i s t _ h i g h . append ( [ x , y , z ] )
i f y < 0 :

y _ l i s t _ l o w . append ( [ x , y , z ] )
i f y > Current_box [ 1 ] :

y _ l i s t _ h i g h . append ( [ x , y , z ] )
i f z < 0 :

z _ l i s t _ l o w . append ( [ x , y , z ] )
i f z > Current_box [ 2 ] :

z _ l i s t _ h i g h . append ( [ x , y , z ] )
" " "
Need at l e a s t 4 points to make a ConvexHull
in 3D, and i f these points are extremely c l o s e
to each other , there may occur some
i n s t a b i l i t i e s upon c r e a t i o n of the
ConvexHull , so approximately 8 points outs ide the
box should occur before i t i s deemed necessary
to remove the excess void volume .
" " "
i f len ( x _ l i s t _ l o w ) > 8 :

t r y :
x_low=ConvexHull ( x _ l i s t _ l o w )
negative_volume=x_low . volume
Current_Volume −= negative_volume

except : pass
i f len ( x _ l i s t _ h i g h ) > 8 :

t r y :
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x_high=ConvexHull ( x _ l i s t _ h i g h )
negative_volume=x_high . volume
Current_Volume −= negative_volume

except : pass
i f len ( y _ l i s t _ l o w ) > 8 :

t r y :
y_low=ConvexHull ( y _ l i s t _ l o w )
negative_volume=y_low . volume
Current_Volume −= negative_volume

except : pass
i f len ( y _ l i s t _ h i g h ) > 8 :

t r y :
y_high=ConvexHull ( y _ l i s t _ h i g h )
negative_volume=y_high . volume
Current_Volume −= negative_volume

except : pass
i f len ( z _ l i s t _ l o w ) > 8 :

t r y :
z_low=ConvexHull ( z _ l i s t _ l o w )
negative_volume=z_low . volume
Current_Volume −= negative_volume

except : pass
i f len ( z _ l i s t _ h i g h ) > 8 :

t r y :
z_high=ConvexHull ( z _ l i s t _ h i g h )
negative_volume=z_high . volume
Current_Volume −= negative_volume

except : pass
" " "
F ina l ly , the ra ther unnecessary part of the code i s over .
" " "
Volume_percentage . append ( Current_Volume/Volume_box )
checked = s e t ( )
for void in Voids :

fo r neighbor in void . neighboors :
i f ( neighbor , void ) in checked :

# I f c o n t r o l l e d before , j u s t the other way around , skip
i t :

continue
i f Col l i s ion_El l ipso ids_new ( void , neighbor ) :

points=np . array ( l i s t ( void . El l ipso id_samplepoints ( ) )
+ l i s t ( neighbor . El l ipso id_samplepoints ( ) ) )

points=np . array ( points , dtype= f l o a t )
A,C=mvee ( points )
D_diag , T=np . l i n a l g . e ig (A)
T=np . matrix (T)
T_inv=T . T
C = np . array (C)
C_origin = C / lamba ( t )

# The s c a l i n g of the voids , to c o n t r o l the Pac−Man
e f f e c t :

V_s = void . Volume ( ) + neighbor . Volume ( )
s c a l e r = (4*np . pi / (3*V_s * ( D_diag [ 0 ] *D_diag [ 1 ]

*D_diag [ 2 ] ) * *0 . 5 ) ) * * ( 2 . / 3 )
s c a l e r = ( 1 . / s c a l e r + (1 − 1 . / s c a l e r )

*Reduced_Pac_Man_Effect ) * s c a l e r
D_diag = D_diag * s c a l e r
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D=np . matrix ( np . diag ( D_diag ) )
name= void . name [ 4 : ] + neighbor . name [ 4 : ]
exec ( ’ void ’+name+ ’=Void (T ,D, T_inv , C, \ ’ void ’+ name + ’ \ ’ )

’ )
exec ( ’ void ’+name+ ’ . C_origin=C_origin ’ )
exec ( ’ void ’+name+ ’ . Update_Void ( ) ’ )
exec ( ’ Voids . append ( void ’+name+ ’ ) ’ )
exec ( ’ void ’+name+

’ . neighboors=void . neighboors . union ( neighbor . neighboors ) ’ )

fo r void_temp in Voids :
void_temp . neighboors . d iscard ( void )
void_temp . neighboors . d iscard ( neighbor )

ind1=Voids . index ( void )
temp_name=Voids [ ind1 ] . name
# Delete void_1 from the l i s t
del Voids [ ind1 ]
# Delete void_1 from the namespace
exec ( ’ del� ’ + temp_name )
ind2=Voids . index ( neighbor )
temp_name=Voids [ ind2 ] . name
# Delete void_2 from the l i s t
del Voids [ ind2 ]
# Delete void_2 from the namespace
exec ( ’ del� ’ + temp_name )
# The new void need to know i t s neighbors :
f ind_neighboors ( )
break

# I f not c o l l i s i o n , the void pair i s marked as checked :
checked . add ( ( void , neighbor ) )

# To find the amount of void volume from the Pac−Man e f f e c t :
Current_Volume_fake = 0
fo r void in Voids :

Current_Volume_fake += void . Volume ( )
Volume_percentage_fake_now = Current_Volume_fake /Volume_box
Volume_percentage_beforefake = Current_Volume/Volume_box
Volume_percentage_fake . append ( Volume_percentage_fake_now

−Volume_percentage_beforefake )

t += dt
eps_eq=eps i lon_equivalent_func ( t )
eps i lon_equiva lent . append ( eps_eq )

# P l o t t i n g of the voids , i f the user have s p e c i f i e d i t :
i f fig_number % f i g _ d i v i d e r == 0 or fig_number == 1 :

# Remember when the plot was made :
Time_at_plot . append ( i n t ( round ( t / dt ) ) )

#Making the f i g u r e :
exec ( ’ f i g ’+ s t r ( fig_number )+ ’=p l t . f i g u r e ( ) ’ )
exec ( ’ ax=f i g ’+ s t r ( fig_number )+

’ . add_subplot (111 , p r o j e c t i o n =\ ’3d \ ’ ) ’ )
o r i g _ l i m i t s = np . array ( [ [ 0 , box_dim [ 0 ] *2 ] , [ 0 , box_dim [ 1 ] ] ,

[ 0 , box_dim [ 2 ] ] ] , dtype= f l o a t )
l i m i t s = np . array ( [ [ 0 , Current_box [ 0 ] ] , [ 0 , Current_box [ 1 ] ] ,

[ 0 , Current_box [ 2 ] ] ] , dtype= f l o a t )
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# The ext ra s c a l i n g above i s to ensure that the voids
# s t a y s in the f i g u r e . .
ax . set_xlim3d ( o r i g _ l i m i t s [ 0 ] )
ax . set_ylim3d ( o r i g _ l i m i t s [ 1 ] )
ax . set_zlim3d ( o r i g _ l i m i t s [ 2 ] )

ax . s e t _ x l a b e l ( ’ x−axis , micrometer ( $\mu$m) ’ )
ax . s e t _ y l a b e l ( ’ y−axis , micrometer ( $\mu$m) ’ )
ax . s e t _ z l a b e l ( ’ z−axis , micrometer ( $\mu$m) ’ )
fo r void in Voids :

One_El l ipsoid_plot ( void .A, void .C)
fig_number += 1

# T e l l the user how much of the increments that are done :
time_counter+=1
i f time_counter % 4 == 0 :

pr int ’ { } �%�of� the� increments� are�done . . . ’ . format ( i n t ( t *100./
t_end ) )

# Using the trapez method to f ind the equivalent p l a s t i c s t r a i n
# i f varying lode angle or s t r e s s t r i a x i a l i t y during the increments :
i f checkEqual ( l i s t ( S t r e s s _ t r i a x i a l i t y ) ) and

checkEqual ( l i s t ( phi_vector ) ) :
# Constant values , so no need to use numerical i n t e g r a t i o n :
pass

e l s e :
del ta_t ime = ( t_end− t _ s t a r t ) / f l o a t ( N_timesteps +1)
i n t e g r a t i n g _ v e c = 0 . 5 * ( np . array ( e p s i l o n _ p l a s t i c _ r a t e _ v e c t o r [ : −1 ] )

+ np . array ( e p s i l o n _ p l a s t i c _ r a t e _ v e c t o r [ 1 : ] ) )
i n c r e m e n t a l _ p l a s t i c _ s t r a i n s = i n t e g r a t i n g _ v e c * delta_t ime
e p s i l o n _ p l a s t i c _ v e c t o r = np . array ( [ 0 . ] )
running_plast ic_stra in_sum = np . cumsum( i n c r e m e n t a l _ p l a s t i c _ s t r a i n s )
e p s i l o n _ p l a s t i c _ v e c t o r = np . append ( e p s i l o n _ p l a s t i c _ v e c t o r ,

running_plast ic_stra in_sum )
e p s i l o n _ p l a s t i c _ v e c t o r = np . append ( e p s i l o n _ p l a s t i c _ v e c t o r ,

e p s i l o n _ p l a s t i c _ v e c t o r [ −1] +
e p s i l o n _ p l a s t i c _ r a t e _ v e c t o r [ −1]* delta_t ime )

# The Pac−Man e f f e c t i s the cumulative sum of the increased
# volume at coa lescence :
Volume_percentage_fake = np . cumsum( Volume_percentage_fake )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# RESULT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#The r e s u l t of the program i s the c a l c u l a t e d f r a c t u r e s t r a i n :
pr int eps i lon_equiva lent [ −1]
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