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SUMMARY: 
Uniaxial tension tests of small versus large round specimens and small versus large flat specimens from a 
3XXX series aluminium alloy were carried out to identify the mechanical properties of the material. Different 
measurement techniques such as laser micrometer, edge tracing and Digital Image Correlation (DIC) were 
applied in the tests. In addition, extensometers were used to validate the results from the edge-trace and DIC 
approaches. The results from the tension tests were processed and the true stress-strain curves were 
obtained. For the round specimens, the data were measured all the way to fracture while for the flat 
specimens the measured data were only evaluated until diffuse necking. The results showed good 
agreement within each specimen geometry and measurement technique. A deviation between the small 
round specimen and the three other specimen geometries was observed in the comparison of the round and 
flat specimens.  
     Based on the experimental results the material constants in the modified Johnson-Cook (MJC) constitutive 
relation were calibrated. The measured data from the flat tension tests had to be extrapolated from diffuse 
necking. The method of extrapolation was discussed and, depending on the hardening laws, the 
extrapolation gave different material behaviour at large plastic strains. This showed that the method of 
extrapolation is only an approximation that could lead to an incorrect material behaviour in complex nonlinear 
structural problems.   
     Fracture was not evaluated in this thesis, hence ABAQUS/Standard was used in the numerical work. 
Simulations of the tension tests based on the direct calibration were performed and the results corresponded 
with the experimental results, hence the direct calibration predicted the material behaviour well in this case. 
The material parameters in the MJC constitutive relation were optimized using inverse modelling in LS-OPT. 
Compared with the experimental results, the optimization gave a very good fit for the flat specimens, while it 
resulted in a lower stress level at large plastic strains for the round specimens.   
     Finally, a numerical case study was performed to investigate that the material properties obtained from the 
round and flat tension tests gave the same result in a nonlinear finite element simulation. The study showed 
that the material data from the round and flat specimens resulted in approximately the same material 
behaviour in a complex nonlinear problem with large plastic strains in this case. This demonstrated that the 
round and flat tensile specimens were both valid to identify mechanical properties of materials. 
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SAMMENDRAG: 
Enaxial stresstester av små mot store runde prøvestykker og små mot store flate prøvestykker fra en 3XXX 
serie aluminiumlegering var utført for å identifisere de mekaniske egenskaper til materialet. Ulike 
måleteknikker som laser mikrometer, edge-trace og Digital Image Correlation (DIC) var brukt i testene. I 
tillegg, ekstensometre ble brukt til å validere resultatene fra edge-trace og DIC metodene. Resultatene fra 
strekktestene var behandlet og den sanne spennings- og tøyningskurven ble funnet. For de runde 
prøvestykkene, dataene var målt helt fram til brudd mens for de flate prøvestykkene de målte dataene er kun 
vurdert til necking. Resultatene viste godt samsvar innen hver geometri og måleteknikk. Et avvik mellom det 
lille runde prøvestykket og de andre tre geometriene ble observert i sammenligningen mellom edge-trace og 
DIC metodene.  
     Basert på de eksperimentelle resultatene ble material konstantene i den modifiserte Johnson-Cook (MJC) 
konstitutiv relasjonen kalibrert. De målte dataene fra de flate prøvestykkene måtte ekstrapoleres fra necking. 
Ekstrapoleringsmetoden ble diskutert og, avhengig av fastingsregel, ekstrapoleringen ga forskjellig 
materialoppførsel ved store plastiske tøyninger. Dette viste at ekstrapoleringsmetoden er en tilnærming som 
kan føre til feil materialoppførsel i komplekse ikke-lineære konstruksjonsproblemer.  
     Brudd ble ikke vurdert i denne oppgaven, derfor ble ABAQUS/Standard brukt i det numeriske arbeidet. 
Simuleringer av strekktesten basert på direktekalibreringen var utført og resultatene stemte overens med de 
eksperimentelle resultatene som betyr at direkte kalibreringen forutså riktig materialoppførsel i dette tilfellet. 
Materialparameterne i MJC konstitutiv relasjon ble optimalisert ved bruk av inverse modellering i LS-OPT. 
Sammenlignet med de eksperimentelle resultatene, optimaliseringen ga en veldig god tilnærming for de flate 
prøvestykkene, men resulterte i et lavere spenningsnivå ved store plastiske tøyninger for de runde 
prøvestykkene.  
     Til slutt, et numerisk studium ble utført for å utforske om de mekaniske egenskapene oppnådd fra de 
runde og flate strekktestene ga det samme resultatet i ikke-lineære elementmetode simuleringer. Dette 
studiet viste at de oppnådde material dataene fra de runde og de flate prøvestykkene resulterte i cirka den 
samme materialoppførsel i et komplekst ikke-lineært problem med store plastiske tøyninger i dette tilfelle. 
Dette viste at de runde og de flate strekk-prøvestykkene var begge gyldige til å identifisere de mekaniske 
egenskaper til materialer. 
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1. INTRODUCTION 

 

The uniaxial tension test is by far the most used material test to provide information on the mechanical 

properties of metallic materials requested for finite element simulations. Traditionally, it also serves as an 

acceptance test for the specification of materials. In the tension test, a specimen is subjected to a continually 

increasing uniaxial tensile force while simultaneously observing the elongation of the gauge area of the 

specimen. Based on these measurements an engineering stress-strain curve can be constructed, which forms 

the basis for a direct calibration of the material at hand. However, during the last decade advances in computer 

technology and digital cameras have made various optical field-measuring techniques increasingly popular for 

identification of material properties. One such method is digital image correlation (DIC), which is a full-field 

image analysis method based on grey-value digital images, that can determine the contour and the 

displacements of an object under loading in both two and three dimensions. If DIC is combined with FEM, a 

very powerful tool in obtaining optimised material properties based on rather simple material tests becomes 

available. The main objective of this master thesis project is to evaluate different measurement techniques in 

the identification of material properties based on standard uniaxial tension tests, and compare their accuracy.  

 

2. OBJECTIVES 

 

The primary objective of the research project is to investigate how different measurement techniques and 

specimen geometries affect the calibration of constitutive relations and failure criteria for nonlinear finite 

element simulations of structural problems.  

 

3. A SHORT DESCRIPTION OF THE RESEARCH PROJECT 

 

The main topics in the research project will be as follows: 

 

1. The candidate will conduct a review of relevant literature concerning material testing, experimental 

methods involving optical measurement techniques, constitutive relations and failure criteria for large-

scale finite element simulations and material behaviour where the focus should be on aluminium alloys.  

2. The candidate will carry out material tests on various specimens made from typical aluminium alloy. The 

material test program will involve small versus large axisymmetric (round) specimens, and small versus 

large dogbone (flat) specimens. During testing both a laser-scan micrometer, edge tracing and DIC will be 

used to measure the displacement.  

3. Finite element models of all material specimens will be made in Abaqus, and sensitivity studies are carried 

out.  

4. Various calibration methods should be considered to check if the material data do not change with 

calibration method and specimen type. This involves direct calibrations, inverse modelling using trial and 

error or LS-OPT, and combining DIC and FEM. The calibrated material models should be validated 

against each other in numerical simulations of some typical structural component.  
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Abstract

Uniaxial tension tests of small versus large round specimens and small versus large flat
specimens from a 3XXX series aluminium alloy were carried out to identify the mechanical
properties of the material. Different measurement techniques such as laser micrometer,
edge tracing and Digital Image Correlation (DIC) were applied in the tests. In addition,
extensometers were used to validate the results from the edge-trace and DIC approaches.
The results from the tension tests were processed and the true stress-strain curves were
obtained. For the round specimens, the data were measured all the way to fracture
while for the flat specimens the measured data were only evaluated until diffuse necking.
The results showed good agreement within each specimen geometry and measurement
technique. A deviation between the small round specimen and the three other specimen
geometries was observed in the comparison of the round and flat specimens.

Based on the experimental results the material constants in the modified Johnson-
Cook (MJC) constitutive relation were calibrated. The measured data from the flat
tension tests had to be extrapolated from diffuse necking. The method of extrapolation
was discussed and, depending on the hardening laws, the extrapolation gave different
material behaviour at large plastic strains. This showed that the method of extrapolation
is only an approximation that could lead to an incorrect material behaviour in complex
nonlinear structural problems.

Fracture was not evaluated in this thesis, hence ABAQUS/Standard was used in the
numerical work. Simulations of the tension tests based on the direct calibration were
performed and the results corresponded with the experimental results, hence the direct
calibration predicted the material behaviour well in this case. The material parameters
in the MJC constitutive relation were optimized using inverse modelling in LS-OPT.
Compared with the experimental results, the optimization gave a very good fit for the
flat specimens, while it resulted in a lower stress level at large plastic strains for the round
specimens.

Finally, a numerical case study was performed to investigate that the material prop-
erties obtained from the round and flat tension tests gave the same result in a nonlinear
finite element simulation. The study showed that the material data from the round and
flat specimens resulted in approximately the same material behaviour in a complex non-
linear problem with large plastic strains in this case. This demonstrated that the round
and flat tensile specimens were both valid to identify mechanical properties of materials.
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1 | Introduction

1.1 Background

In today’s society, materials are daily used in structural design of e.g. cars, buildings
or small items like kitchen equipment. Reliable mechanical properties of materials are
therefore extremely important to assure safety and to avoid structural collapse, which in
the worst case can lead to human fatalities. To provide information about mechanical
properties of materials, the uniaxial tension test is by far the most used material test and
it serves as an acceptance test for specification of materials. Based on measurements from
the tension test an engineering stress-strain curve can be calculated, which forms the basis
for a direct calibration of the material at hand. The identified mechanical properties of
materials are further used in nonlinear finite element simulations of structural problems,
e.g. design of structures subjected to large plastic strains, creep, local or global buckling
or other complex nonlinear structural problems.

The most commonly used tensile specimens are axisymmetric specimens with round
cross-section and flat specimens with dog-bone shaped cross-section. From tension tests
of round specimens the experimental data are measured all the way to fracture, while for
flat specimens the measured data are only valid until diffuse necking and extrapolation
is necessary in order to obtain data all the way to fracture. Due to limitations in the
geometry of some structural designs (e.g. use of thin plates in the car industry), only the
flat tensile specimens can be used to identify the material properties in some applications.

In a uniaxial tension test, the elongation of the tensile specimen is traditionally mea-
sured with an extensometer. However, advances in computer technology and digital cam-
eras during the last decades have made various optical measuring techniques available
for identification of material properties. One such method is Digital Image Correlation
(DIC), which is a non-contact optical method for measuring displacement fields of speci-
mens. However, limitations in time and equipment often lead to the use of extensometers
instead of more advanced optical methods such as DIC.

The main objective of this thesis is to investigate the reliability of the material prop-
erties identified from uniaxial tension test of small versus large flat specimens compared
with small versus large round specimens, manufactured from the same aluminium alloy.
Uniaxial tension tests will be performed on all four specimen geometries, where different
measurement techniques such as laser micrometer, DIC and edge tracing will be used to

1



2 CHAPTER 1. INTRODUCTION

measure displacements. The experimental data will further be numerically analysed and
validated using ABAQUS/Standard in order to check if the material data do not change
with calibration method and specimen type. Finally, the experimental data will be used
in a numerical case study to investigate if the different material input data have an affect
on the result in a complex nonlinear structural problem.

1.2 State of the Art

Throughout ancient history, the knowledge of the materials ability to sustain a load before
breaking has been of great importance since structures were first built. Early stages of
development of methods and test machines for determination of the strength of materials
started from approximately the 16th century [1]. Reliable tensile data are crucial in design
of safe structures since unreliable data can cause catastrophic failure leading to human
fatalities. By the 19th century the importance of tension testing of metallic materials
was undertaken in the UK and one of the earliest British Standards (BS18), covering the
subject, was published in 1904. In 1938, BS18 was revised with specification of the test
method, not only the test pieces, and today the European Tensile Testing Standard (first
published in 1990) has superseded the BS18. During the last decades, the uniaxial tensile
test has become the primary method for identification of material properties. There exist
numerous articles, books and manuals about tension testing, where e.g. [2, 3, 4] provide
thorough summaries of research within the field. One of the latest books, published in
2004 by Davis [5], gives a complete review of the theory, procedure and application of the
tension test.

Mechanical testing machines have been commercial available since 1886 [6]. Since
then, the evolution has gone from purely mechanical machines to hydraulic machines
with advanced electronics and microcomputers. Today, universal testing machines (UTM)
have the capability to test materials in tension, compression and bending. In tension
testing, the displacement of the specimen can be measured in several ways. Extensometers
are one of the traditional strain gauges and go back to mid 19th century. The notable
extensometers were Hodgkinson’s wedge gauge and Unwin’s tough micrometer, in addition
to the well-known dial indicator from 1890 [7]. Today, the extensometers are widely used
devices and can provide a high degree of measurement accuracy. The various types of
extensometers are thoroughly described by e.g. House and Gillis [6]. In the sixties,
the first laser was demonstrated and the laser beams were later adapted to mechanical
testing. In 1966, a classical review paper was published by Kogelnik and Li [8], which
became the standard reference on the description of the laser beams for many years. The
laser beams made it possible to perform non-contact measurements of specimens and
were a technological advance within the field. Since their publication, a lot of research
has been conducted and many advances have occurred. The latest review on the topic
is the Handbook of Optical and Laser Scanning published by Marshall and Stutz in 2011
[9].

A repeating problem with the existing measurement techniques is the difficulty of
doing measurements outside the laboratory. There is a balance between accuracy, ease
of use and costs that must be satisfied. However, during the last decades advances in
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both computer technology and digital cameras have made various optical field measuring
techniques increasingly popular for identification of material properties. Digital Image
Correlation (DIC) is a non-contact optical measurement technique for determining the
surface deformation of specimens. The method is cost efficient and in general simple to
use [10]. The development of DIC started in the 1980s [11]. Since then, the technology
has been improved through research in order to increase the resolution and to improve the
accuracy. In the early 2000s, Hild and Roux [12, 13] studied how the DIC technique could
be used to identify material properties. The research showed to be very accurate and,
especially for brittle materials, the technique appeared as extremely appealing. Generally,
the DIC method have enhanced both the accuracy of the displacement estimated and
the reliability of the identification of mechanical properties [12, 13]. A recent article
regarding full-field measurement was published by Marth et al. [14] in 2016. The article
compares the method of stepwise modelling using DIC with inverse modelling, a method
introduced by Zhano and Li [15] in 1994. Marth et al. [14] concluded that the optical
full-field displacement measurements can be used to calculate a local strain field and that
the stepwise modelling method with DIC is considerably faster compared with inverse
modelling.

Fagerholt [16] developed the in-house DIC software eCorr in 2012 used in this the-
sis. The software connects the measured displacement field with the DIC algorithm and
hence, the strain-field may be obtained. The software is a powerful tool and has since its
development been widely used for in-house experiments. Edge tracing is another feature
that is implemented in eCorr. Edge tracing is an optical measurement technique, where
the latest technique uses digital cameras together with software to detect the minimum
diameter of axisymmetric specimens. The minimum diameter has previously been mea-
sured using lasers, but as the technology and digital cameras have been developed, the
method has been simplified and got a wider area of applications. A description of the use
of edge tracing with optical techniques is proposed by Kristensen et al. [17].

Through the decades the different measurement techniques have been thoroughly de-
scribed in the literature. However, the different methods are rarely compared in the same
experiment with various specimens from the same material in order to investigate the
result. In this thesis, uniaxial tension tests are performed on four different specimen
geometries from an aluminium alloy of the 3XXX series with the use of different measure-
ment techniques are investigated. The different methods are compared, and parameters
such as accuracy and user-friendliness are evaluated. This investigation will hopefully
provide insight on how the different measurement techniques affect the result, in addition
to give an understanding of the user-friendliness for an untrained user.





2 | Theory

2.1 Aluminium Alloys

Aluminium alloys are lightweight metals with a wide range of applications. Compared to
other metals such as steel, aluminium possesses substantial advantage in weight reduction
for structural components (2.7 g/m3 density compared to 7.83 g/m3 for iron). Pure
aluminium is soft, ductile and has a high electrical conductivity, in addition to ease of
fabrication and appearance. However, in order to secure adequate mechanical strength
in many engineering applications, aluminium has to be alloyed and also, very often, heat
treated.

Aluminium alloys are classified into a four-digit numbering system, where the first
digit indicates the major alloying element. From Schweitzer et al. [18] the classification
of aluminium alloys is as shown in Table 2.1. Note that all the alloy classes in Table 2.1
contain other minor alloying elements.

Table 2.1: Classification of aluminium alloys [18].

Series designation Major alloying element
1XXX Aluminium > 99.0 %
2XXX Copper
3XXX Manganese
4XXX Silicon
5XXX Magnesium
6XXX Magnesium and silicon
7XXX Zinc
8XXX Other elements
9XXX Unused series

Wrought alloys are subdivided into their ability of being heat treated or not. Wrought
alloys that are non-heat treatable must be strengthened by strain hardening and are
designated the letter H. These alloys are in the 1XXX, 3XXX, 4XXX and 5XXX series.
In general, the non-heat treatable alloys have a high resistance to corrosion. On the
other hand, the heat treatable alloys are of the 2XXX, 6XXX and 7XXX series and are
designated the letter T. When it comes to cast aluminium, there is no single commercial
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6 CHAPTER 2. THEORY

designation system. However, as for wrought aluminium, cast aluminium is classified as
heat treatable and non-heat treatable alloys. In addition to strain hardening and heat
treatment, all alloys can be cold worked to increase strength [18]. The degree of increased
strength depends on the alloy class.

2.2 The Tension Test

The uniaxial tension test is by far the most used material test to provide information of
the mechanical properties of materials and is an acceptable test for characterisation of
materials. The following process of extracting material properties from the tension test
is based on Hosford and Caddel [4].

In a tension test a specimen is subjected to a continually increasing uniaxial tensile
force while simultaneously observing the elongation of the gauge region of the specimen.
The nominal or engineering stress, σe, and strain, εe, are based directly on the measure-
ments of the tensile force, F , and the elongation, ∆L, of the specimen. The engineering
stresses and strains are defined as

σe =
F

A0
, εe =

∆L

L0
=
L− L0

L0
(2.1)

where A0 is the initial cross-sectional area and L0 is the initial gauge length of the
specimen. Since both A0 and L0 are constant factors, the load-elongation curve will have
the same shape as the engineering stress-strain curve.

When performing a tension test on metals the dimensions of the specimen change
continuously during the test. As the specimen elongates, the cross-sectional area of the
gauge length decreases uniformly until maximum load is reached. At maximum load, also
referred to as the tensile strength, the cross-sectional area decreases rapidly and necking
occurs. Since the engineering stresses and strains are based on the initial dimensions of
the specimen, they will not give a true indication of the deformation of the specimen. To
be able to extract the true mechanical properties of metals, the Cauchy stress, σt, and
logarithmic strain, εl, need to be established.

The logarithmic strain, also referred to as the true strain, is based on instantaneous
measurements of the incremental strain and from integration the logarithmic strain reads

εl =

∫ L

L0

dL

L
= ln

L

L0
= ln(1 + εe) (2.2)

where L is the current gauge length. The relationship between logarithmic and engineering
strains is given in Equation 2.2. For metals and alloys the density changes measured after
large plastic strains are less than 0.1 percentage and a good approximation is therefore that
the volume remains constant during plastic deformation. Assuming volume preservation
A0L0 = AL, Equation 2.2 can be written in terms of either length or area, i.e.,

εl = ln
L

L0
= ln

A0

A
(2.3)
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where A is the current cross-sectional area of the specimen. Note that due to the assump-
tion of volume preservation and a homogeneous distribution of strain along the gauge
length of the specimen, the relationship between the logarithmic and engineering strains
given in Equation 2.2 is only applicable to the onset of necking.

The Cauchy stress, also referred to as the true stress, is the tensile force at any instant
divided by the current cross-sectional area of the specimen

σt =
F

A
(2.4)

By the assumption of volume preservation, Equation 2.4 for the true stresses can be
rewritten to a function of engineering stresses and strains as

σt =
FL

A0L0
= σe

L

L0
= σe(1 + εe) (2.5)

Note that Equation 2.5 is only valid until onset of necking due to the assumptions men-
tioned above. After necking, Equation 2.4 is used to calculate the true stresses.

Necking begins at maximum load during tensile deformation of a ductile material.
Here, the increase in stress due to decrease in the cross-sectional area of the specimen
becomes greater than the increase in the load-carrying ability of the metal due to strain
hardening. This condition will be reached first at some point in the specimen that is
slightly weaker than the rest. Necking is defined by dF = 0, or dσe = 0, and the diffuse
necking criterion can be derived as following:

dF = 0

d(σtA) = Adσt + σtdA = 0⇒ dσt = −dA

A
σt (2.6)

From the assumption of volume preservation dV = 0

d(AL) = LdA+AdL = 0⇒ dA

A
= −dL

L
= −dεl (2.7)

By combining Equations 2.7 and 2.6, the diffuse necking criterion becomes

dσt
dεl

= σt (2.8)

The necking criterion, also known as the Considère criterion, is shown graphically in
Figure 2.1

The phenomenon of necking can be divided into two types of tensile instabilities de-
pending on the geometry of the specimens. For cylindrical specimens necking is symmet-
rical around the tensile axis if the material is isotropic. This type of instability is called
diffused necking. For a sheet tensile specimen, where the width is much greater that the
thickness, a second instability occurs. First the neck is analogous as for cylindrical speci-
men. This diffuse necking is followed by a second process where the neck is a narrow band
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σt

εl

σt vs εl

dσt
dεl

vs σt

dσt
dεl

= σt

Figure 2.1: Graphical illustration of necking criterion. The black x marks the point of failure.
Adapted from Hopperstad and Børvik [19].

with a width about equal to the sheet thickness inclined at an angle of the specimen’s
longitudinal axis. This second instability is called localized necking.

Beyond maximum load the cross-sectional area of the specimen is decreasing more
rapidly than the deformation load is increased by strain hardening and the actual load
required to deform the specimen falls off. The true stress-logarithmic strain curve is fre-
quently linear from maximum load to fracture, while in other cases its slope continuously
decreases up to fracture.

Ductile Fracture

Ductile fracture occurs as the result of nucleation, growth and coalescence of microscopic
voids. Microvoids nucleate at inclusions and second-phase particles. The voids grow
together to form a macroscopic flaw, which leads to fracture.

The commonly observed stages in ductile fracture are described as the following in
Anderson [20]. A void form around a second-phase particle or inclusion when the applied
stress is sufficient to break the interfacial bonds between the particle and the matrix. Voids
can also be nucleated when particles cracks. Larger particles are more likely to crack in
the presence of plastic strain, because they are more likely to contain small defects. Once
the voids are formed they continue to grow due to plastic strain and hydrostatic stress,
until they eventually coalesce with adjacent voids. Ductile fracture occurs when the voids
reach a critical size, relative to their spacing, and a plastic instability produces a band of
localized deformation. Figure 2.2 illustrates the growth and coalescence of microvoids in
ductile materials.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: (a) Inclusions in a ductile matrix, (b) void nucleation, (c) void growth, (d) strain
localization between voids, (e) necking between voids, (f) void coalescence and fracture. The figure
is adapted from Andersen [20].

2.3 Constitutive Relations and Fracture Criteria

Constitutive relations describe the relation between stresses and strains in terms of the
variables strain rate and temperature. A classic example of a constitutive relation is
Hooke’s law, which relates the stresses and strains of a linear elastic material during
loading. Hooke’s law is given as

σ = Eε (2.9)

where σ is the stress, E is the Young’s modulus and ε is the elastic strain. In impact
mechanics, more advanced material models are required to describe e.g. material non-
linearities, strain-rate dependency and temperature dependency. One such material model
is the Johnson-Cook (JC) model described in Section 2.3.1.

The constitutive relations do not predict material fracture. To predict fracture a
fracture criterion is needed. Two well-used fracture criteria are the Cockcroft-Latham
(CL) and the Johnson-Cook fracture criteria, which are described in Sections 2.3.2 and
2.3.3, respectively.
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2.3.1 The Johnson-Cook Model

Johnson and Cook [21] presented in 1983 a constitutive model of thermo-viscoplasticity,
which included the effects of strain hardening, strain rate hardening and thermal softening.
The model is valid for isotropic materials and is applicable for materials subjected to large
strains, high strain rates and high temperatures.

Assuming isotropic hardening, the yield function is defined as

f(σ, R, T ) = ϕ(σ)− (σ0(T ) +R(p, T )) (2.10)

where T is the current temperature and p is the equivalent plastic strain. The von Mises
equivalent stress σeq, the yield stress σ0 and the isotropic hardening variable R are given
as

σeq ≡ ϕ(σ) =

√
3

2
σ

′
ijσ

′
ij , σ0(T ) = A(1− T ∗m), R(p, T ) = Bpn(1− T ∗m) (2.11)

where σ
′

ij is the deviatoric stress tensor, A, B, and n are material constants determining
the work hardening and m defines the thermal softening. The homologous temperature
T ∗ is defined as

T ∗ =
T − Tr
Tm − Tr

(2.12)

where Tr is the reference temperature and Tm is the melting temperature of the material.
In the viscoplastic domain the yield function f equals the viscous stress σν , i.e.

f(σ, R, T ) = σν(ṗ, p, T ) > 0. An alternative form of the von Mises equivalent stress
is given as

σeq =

√
3

2
σ

′
ijσ

′
ij = σ0(T ) +R(p, T ) + σν(ṗ, p, T ) for f > 0 (2.13)

where ṗ is the equivalent plastic strain rate. The viscous stress controls the strain rate
sensitivity of the material and a multiplicative constitutive relation for this strain rate
dependent is given as

ṗ = ṗ0

[(
σeq(σ)

σ0(T ) +R(p, T )

) 1
C

− 1

]
for f > 0 (2.14)

where C is a material constant and ṗ0 is a reference plastic strain rate. By solving
Equation 2.14 for the equivalent stress, the constitutive relation for thermo-viscoplasticity
reads

σeq = (A+Bpn)(1 + ṗ∗)
C

(1− T ∗m) (2.15)

which is known as the modified Johnson-Cook (MJC) model. The dimensionless plastic
strain rate is given by ṗ∗ = ṗ/ṗ0. Originally, the Johnson-Cook (JC) model was given as

σeq = (A+Bpn)(1 + C ln ṗ∗)(1− T ∗m) (2.16)
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The two versions of the model give similar results, but in the original model the logarithmic
term may result in unwanted effects if ṗ∗ < 1. This problem is avoided in the MJC model.
In the JC model the first term represents the stress as a function of strain, the second
term considers the effect of strain rate hardening and the third term includes the effect
of temperature softening. The material constants in the JC model are identified through
material tests, e.g. data from tension tests over a range of strain rates and temperatures.
The JC model is therefore purely empirical and is widely used in numerical computations.

The isotropic hardening variable R is defined by the equivalent plastic strain p in
Equations 2.15 and 2.16. Two frequently used isotropic hardening laws are the Power law
and the Voce rule. The Power law is defined as

R(p) = Bpn (2.17)

and hence, the strain hardening term in the JC model follows the Power law. If the Power
law is replaced by the Voce rule defined as

R(p) =

N∑
i=1

Ri(p) =

N∑
i=1

QRi(1− exp(−CRip)) (2.18)

the constitutive relation for the MJC model is expressed as

σeq =

(
σ0 +

N∑
i=1

QRi(1− exp(−CRip))
)

(1 + ṗ∗)
C

(1− T ∗m) (2.19)

where QR and CR are hardening parameters and N is typically 1, 2 or 3. Note that the
parameter A in Equations 2.15 and 2.16 is replaced by σ0 in Equation 2.19.

In structural impacts, i.e. in cases of high plastic strain rate, it is reasonable to assume
adiabatic conditions. The temperature change due to adiabatic heating is given by

∆T =

∫ p

0

χ
σeq
ρCp

dp (2.20)

where ρ is the material density, Cp is the specific heat of the material and χ is the Taylor-
Quinney coefficient, which represents the proportion of plastic work converted into heat.
The Taylor-Quinney coefficient is an empirical constant and is often set to χ = 0.9 in
numerical simulations of adiabatic processes [22].

2.3.2 The Cockcroft-Latham Fracture Criterion

Cockcroft and Latham [23] did research on ductility and workability of metals in 1968
in order to propose a ductile fracture criterion. The criterion considers the effects of
stress triaxiality, plastic strains and the Lode angle. The criterion is a particularly simple
criterion as the fracture parameter Wc is the only model constant, hence the criterion is
easy to calibrate from a single uniaxial tension test. The Cockcraft-Latham (CL) fracture
criterion is given as
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ω =
1

Wc

∫ p

0

〈
σI
〉
dp =

1

Wc

∫ p

0

〈
σ∗ +

2

3
cos θL

〉
σeqdp (2.21)

where ω is the damage variable. Fracture is assumed to occur when ω = 1. The σI
is the maximum principal stress and 〈σI〉 = max(σI , 0), which indicates that damage
cannot occur when there is no tensile stress operating. The stress triaxiality is defined as
σ∗ = σH/σeq, where σH is the hydrostatic stress and the σeq is the von Mises equivalent
stress. Further, θL is the Lode angle defined as

cos(3θL) =
J3

2
√

(J2/3)3
(2.22)

where J2 = 1
2σ

′

ijσ
′

ij and J3 = detσ
′
are the second and third invariants of σij

′
, respec-

tively.

2.3.3 The Johnson-Cook Fracture Criterion

Johnson and Cook [24] presented in 1985 a fracture model which intended to show the
relative effects of various parameters such as strain rate, temperature and pressure. The
damage variable is given as

ω =

∫ p

0

1

pf
dp (2.23)

where the fracture strain pf is defined as

pf =
[
D1 +D2 exp(D3σ

∗)
]
(1 + ṗ∗)D4(1 +D5T

∗) (2.24)

where D1, D2, D3, D4 and D5 are material constants. Fracture is assumed to occur when
ω = 1.

In a uniaxial tension test, when the specimen starts to neck, the stress state changes
from purely uniaxial to a triaxial stress state. An expression for the initial stress triaxiality
is given as

σ∗ =
1

3
+ ln

(
1 +

a

2R

)
(2.25)

where R is the notch radius and a is the radius of the specimen in the notch.

2.4 Experimental Measurement Techniques

Deformation of a specimen can be measured in several ways, depending on the size of
the specimen, environmental conditions, and measurement requirements for accuracy and
precision of expected strain levels. In this thesis, four different measurement techniques
are used, namely edge tracing, laser micrometer, DIC and extensometer. The different
techniques are briefly described here.
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2.4.1 Edge Tracing

Kristensen et al. [17] wrote a technical report on edge tracing in tensile tests using optical
measurements. A short description of the method is presented here.

Edge tracing is a non-contact measurement technique which measures the smallest
diameter of an axisymmetric specimen, and hence makes it possible to calculate the true
stress-strain curve up to a deformation beyond diffuse necking. Edge tracing of tension
tests have previously been conducted by directing a laser at the point of the cross-section
with the smallest diameter by manual adjustments. Although laser measurements for
edge tracing is an accurate method at ambient temperatures, the laser cannot be used
for testing at temperatures below approximately 0◦C or above approximately 70◦C. This
method has therefore been optimized using an optical measurement technique. This new
method simplifies this procedure and can be conducted at high and low temperatures.

The optical measurements for edge tracing are conducted with the software eCorr [17].
In the laboratory, the diameter reduction measures from two angles using two cameras,
or one camera in combination with two mirrors. The result is a picture series of the whole
edge along the gauge length of the specimen. The software processes the recordings and
can easily find the position of the smallest cross-section.

2.4.2 Laser Micrometer

Lasers are non-contact sensors that can be used in several different ways of measure the
dimensions and positions of specimens. The sensing of outside diameters of cylindrical
specimens is probably the most common application of a laser scanner gauge. The ASM
handbook [25] describes how the laser operates as following.

A scanning laser beam gauge consists of a transmitter, a receiver and electronics
to process the optical signal. A thin band of scanning laser light is projected from the
transmitter to the receiver. When an object is placed in a beam, it casts a time-dependent
shadow. Signals from the light entering the receiver are used by the microprocessor to
extract the dimension represented by the time difference between the shadow edges. The
gauges can exhibit accuracies as high as ± 0.25 µm for diameters of 10 to 50 mm.

In this thesis, a dual axis laser micrometer is used in the experimental work. A dual
axis laser micrometer projects two perpendicular light beams towards a detector located
on the opposite side of the specimen. The two orthogonal lasers create a box of laser light
around the minimum cross-section of the specimen and measure the change in diameter
[26]. The dual axis laser micrometer has a repeatability up to ± 0.01 µm [27].

2.4.3 Digital Image Correlation

Digital Image Correlation (DIC) is a non-contact optical method for measuring displace-
ment fields. Based on the measured displacement fields, the strain fields may be obtained.
This technique is simple to use and cost effective as well as more accurate compared to
traditional techniques such as extensometers and strain gauges. DIC has therefore a huge
range of applications.
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The two-dimensional DIC method using a single fixed camera is limited to in-plane
deformation measurements of the planar object surface. For curved surfaces, or three-
dimensional deformation, a direct 3D extension of the 2D DIC must be applied as the 2D
DIC method is no longer applicable. In this thesis, a 2D version of the DIC method is
utilized.

The DIC technique involves finding the deformation of a surface by comparing digital
images of the undeformed and deformed configuration. The DIC method comprises of
three consecutive steps [28]. First, specimen and experimental preparations which in-
cludes applying a random speckle pattern on the surface of the specimen. This pattern
carries the surface deformation information. Second, a camera records images of planar
specimen surface before and after loading. And third, processing of the acquired images
using a computer program to obtain the desired displacement and strain information. In
this thesis, the in-house software eCorr [17] is used to process the recorded image series
from the tests. The reader is referred to e.g. Fagerholt [16] for description of the DIC
algorithm in details.

The DIC method has both advantages and disadvantages. The main advantages are
simple experimental set-up and specimen preparation, low requirements in measurement
environment (suitable for both laboratory and field applications) and wide range of sensi-
tivity and resolution. The disadvantages are that the surface of the specimen must have
a random speckle pattern and the measurements depend heavily on the quality of the
imaging system.

2.4.4 Extensometer

An extensometer measures the elongation of a specimen during load application. Ex-
tensometers are widely used in tension tests and can provide a high degree of accuracy.
There are mainly two types of extensometers: contact and non-contact.

A clip-on extensometer is a contact-type extensometer which is mounted directly on
the specimen. There is practically no relative movement between the specimen and the
extensometer, resulting in a high level of measurement accuracy. Typical extensometers
have fixed gauge lengths and are classified by maximum percentage elongation. In this
thesis, a clip-on extensometer is used in the experimental work.

Examples of non-contact extensometers are laser extensometer and video extensome-
ter. The reader is referred to e.g. House and Gillis [6] for more details regarding exten-
someters.

2.5 Nanostructure Model

In structural designs, mechanical testing is part of the process of evaluating new materials,
but it is both time consuming and expensive. A method for analysing the structural
response without experimental testing would save both time and money. One such method
is the nanostructure model.

The nanostructure model (NaMo) is a software developed by Ole Runar Myhr and
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co-workers at Hydro, which determines the stress-strain curves of materials based solely
on the chemical composition and the thermal history of the alloy. NaMo consists of three
sub models; a precipitation model, a yield strength model and a work hardening model.
Figure 2.3 illustrates the three sub models of the NaMo and how they interact.

Figure 2.3: Illustration of the three sub models in NaMo. Adapted from Johnsen et al. [29].

The results from the precipitation model are the key components in the yield strength
and work hardening models. The precipitation model calculates the evolution of the par-
ticle size distribution with time and temperature. The yield strength model converts the
relevant output parameters from the precipitation model into equivalent room tempera-
ture yield stress, while the work hardening model takes the results from the precipitation
model and uses it to calculate the work hardening at room temperature. The stress-strain
curves predicted by NaMo can be then used in finite element simulations [29].

In 2015, the nanostructure model was extended to account for cold deformation and
prolonged room temperature storage prior to artificial ageing. This extended model is
called Namo-Version 2. Further details on Namo-Version 2 are given in Myhr et al. [30].

NaMo is verified and validated for 6XXX series aluminium alloys only. Since a 3XXX
series aluminium alloy is investigated in this thesis, NaMo cannot be used here. It is
however an interesting tool that can be used as an alternative method to determine the
stress-strain curves of 6XXX series aluminium alloys instead of doing material testing.





3 | Experimental Work

The main objective behind the experimental work in this thesis has been to investigate
how different measurement techniques and specimen geometries affect the calibration
of constitutive relations and failure criteria for nonlinear finite element simulations of
structural problems. In the following, quasi-static tension tests on four different specimen
geometries have been carried out by using different measurement techniques. The different
techniques are here described and the experimental results are presented and discussed.

3.1 Material Description

In this thesis an aluminium alloy of the 3XXX series with major alloying elements of man-
ganese has been investigated. The material was provided as DC-cast extrusion ingots with
a diameter of 100 mm produced at the laboratory casting facilities at Hydro Aluminium
R&D Sunndal. The material was provided for Westermann et al. [26, 31] and Pedersen et
al [32]. Aluminium alloys from the 3XXX series provide moderate strength and good cor-
rosion resistance, in addition to low density and good formability. The 3XXX series alloys
are also suited for use at elevated temperatures. In order to secure adequate mechanical
strength for many engineering applications, aluminium alloys are very often heat treated.
However, the alloys from the 3XXX series are non-heat treatable but the strength may
be increased through work hardening. Today, the major applications of the 3XXX series
aluminium alloys are heat exchangers in vehicles and power plants, while other applica-
tions are kitchen equipment as pots and pans. As the 3XXX series alloys have moderate
strength, applications in structural designs are precluded. The exact chemical composi-
tion of the material is presented in Table 3.1. Throughout this thesis the aluminium alloy
from the 3XXX series will be referred to as Al1.2Mn to ease the reading.

Table 3.1: Chemical composition of Al1.2Mn in weight % [26].

Fe Mn Mg Si Al
0.2 1.2 - 0.05 Bal.

During casting of Al1.2Mn, grain refiner (titanium boron (TiB)) has been added to
control the grain size and avoid abnormal grain growth, which resulted in a homogeneous

17
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grain structure. Otherwise the Al1.2Mn is as-cast without any further treatment after
homogenisation [26].

3.2 Geometries

The specimen geometries in this thesis were small and large specimens with round cross-
section and small and large flat specimens with dog-bone shaped cross-section. The
geometries of the round specimens are shown in Figure 3.1. The round specimens have a
parallel region in the middle of the specimen in which the gauge length is specified. The
small and the large round specimens have gauge lengths of 5 mm and 40 mm, respectively.
The round specimens were created with threaded ends.
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(a) 5 mm gauge length.
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(b) 40 mm gauge length.

Figure 3.1: Geometries of the round specimens.

The geometries of the small and large flat specimens are shown in Figures 3.2 and
3.3, respectively. The flat specimens were created with circular holes at each end of the
specimen in order to pin the specimens to the test machine. The gauge region consists
of a parallel section in the middle of the specimen, where the small and large specimens
have gauge lengths of 20 mm and 50 mm, respectively.
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Figure 3.2: Geometry of the flat specimen with 20 mm gauge length.
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Figure 3.3: Geometry of the flat specimen with 50 mm gauge length.

3.3 Test Setup

Quasi-static tension tests are performed to provide information about material properties
such as strength, ductility, hardening and toughness. Tension tests are usually performed
in a hydraulic machine where the loading is either force or displacement controlled. The
test setup is here described for each measurement technique.

3.3.1 Edge Tracing

The quasi-static tension tests of the round specimens were performed using an Instron
5982 test machine with a load cell of 5 kN. When performing a quasi-static tension test,
the displacement rate of the test machine must be small enough in order to neglect the
inertia forces in the system. A constant strain rate of 5 x 10−4 s−1 was therefore used in
the tests. The initial diameter of the specimens, given in Appendix A.1, was measured
prior to the tests.

The round specimens were installed in the test machine. The threaded ends were
mounted into the machine, where the lower end was fixed and the loading was applied at
the upper end. The velocity of the test machine was calculated as v = ε̇L0, where ε̇ is
the strain rate and L0 is the gauge length of the specimen. The test machine was given
a constant velocity of 0.15 mm/min for the specimens with 5 mm gauge length and 1.2
mm/min for the specimens with 40 mm gauge length, both corresponding to the given
strain rate of 5 x 10−4 s−1 to assure quasi-static conditions.

The continuously change in cross-sectional diameter was captured by two Prosillica
GC2450 cameras. The cameras have high resolution and a frame rate of 15 frames per
second. The lens used was a Sigma 1:2.8 105 mm DG Macro lens. The test setup is
shown in Figure 3.4a. The two cameras were placed with an angle of 90◦, giving pictures
in two perpendicular directions. The recorded pictures were to be processed in the in-
house software eCorr, using edge tracing. In eCorr, the gray-scale gradient between
the specimen and the background is used to detect the gauge region of the specimen. To
optimize the gray-scale gradient, powerful lights of the type Hayashi HDF7010 were placed
behind the specimen to overexpose the background and this resulted in a sharp contrast
between the bright background and the dark specimen [17]. In addition to the recorded
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pictures, the displacement of the cross-head and the applied force were measured. For
the round specimens, four tests were successfully conducted for both geometries.

(a) (b) (c)

Figure 3.4: (a) Cameras and edge-trace approach, (b) Laser micrometer setup, (c) Extensome-
ter.

3.3.2 Laser Micrometer

The quasi-static tension tests of the round specimens with 5 mm gauge length were in
addition performed using an AEROEL XLS 13XY laser micrometer, which continuously
measured the change in diameter of the specimens. In this case, a Zwick Roell Z030 - 30
kN test machine was used. The specimens were mounted in the test machine which was
given a constant velocity of 0.15 mm/min, corresponding to a strain rate of 5 x 10−4 s−1.
The laser, shown in Figure 3.4b, creates two perpendicular beams, each measuring 13 x 0.1
mm2, giving continuous measurements of the diameter in two perpendicular directions.
The laser can be moved in the vertical direction, which is necessary in order to ensure
that the minimum cross-sectional area was measured at all times. Three successful tests
of the round specimens L5 were performed using laser.

3.3.3 DIC

The quasi-static tensions tests of the flat specimens were performed using the Instron
5982 test machine with a 5 kN load cell. The initial thickness and width of the specimens
were measured prior to the tests in case of deviation from the nominal values. The initial
values are given in Appendix A.1.

The flat specimens were pinned to the test machine through the two circular holes at
each end of the specimen. As previously, the specimens were fixed at the lower end and
the loading was applied at the upper end. The test machine was given a constant velocity
of 0.6 mm/min for the flat specimens with 20 mm gauge length and 1.5 mm/mm for the
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flat specimens with 50 mm gauge length. Both velocities correspond to a strain rate of 5
x 10−4 s−1 to assure quasi-static conditions.

Two-dimensional DIC was used to measure the elongation of the flat specimens. The
2D-DIC worked as an optical extensometer. The elongation of the specimens was captured
by a camera perpendicular on the surface of the specimens, which resulted in a picture
series that were to be processed in eCorr. To be able to extract the elongation in eCorr,
a speckle pattern was spray-painted on to the gauge region of the specimens prior to the
tests. By adding white paper as a background as well as powerful lights in the front, the
contrast between the background and the specimen was optimized. For the flat specimens,
four tests were successfully conducted for both geometries.

3.3.4 Extensometer

A clip-on extensometer was used at one of the tests of the flat specimens and the round
specimens with 40 mm gauge length. The experimental setup with the extensometer
is shown in Figure 3.4c. The extensometer has a gauge region of ± 5 mm, hence the
extensometer was removed when its elongation reached 5 mm. The data from the exten-
someters can then be compared with the results from the edge-trace approach and the
DIC approach.

3.4 Experimental Results

In this section the experimental results from the tension tests are presented. The pro-
cedure of extracting material data when using the different measurement techniques are
described and the results from the tests of each specimen geometry are presented sepa-
rately. In order to ease the reading, the round specimens with 5 mm and 40 mm gauge
lengths are referred to as round specimen L5 and L40, respectively. In addition, the flat
specimens with 20 mm and 50 mm gauge lengths are referred to as flat specimen L20 and
L50, respectively.

3.4.1 Displacement of the Cross-Head

To evaluate the experimental results without considering the different measurement tech-
niques, the total displacement of the cross-head was investigated. Figure 3.5 shows the
force-displacement curves from the cross-head for the four specimen geometries. Note
that for the round specimen L5 the data were supplied from the test machine (Zwick
Roell Z030) using the laser setup, while the data for the three other geometries were
from the same test machine (Instron 5982). In Figures 3.5a and 3.5c a slight scatter is
observed, otherwise there is a good agreement within each geometry.

A representative test from each geometry was chosen and the engineering stress-strain
curves from the cross-head are compared in Figure 3.6. To accurately compare the results,
the Young’s modulus needed to be corrected according to the nominal value. The mea-
sured and the nominal Young’s modulus were corrected by adjusting the initial stiffness
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of the stress-strain curves. This was done through the relation

∆ε = εc − εm ⇒ εc = εm + ∆ε = εm +

(
Em − Ec
EmEc

)
σ (3.1)

where subscript c means corrected and m means measured. The correct Young’s modulus
equals the nominal Young’s modulus for aluminium alloys, i.e., Ec = E = 70000 MPa. It
is observed in Figure 3.6 that both the yield stress at 0.2 % strain and the strain level
at diffuse necking varies for the different geometries. However, the stress level at diffuse
necking coincides.
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Figure 3.5: Force-displacement curves from the displacement of the cross-head.
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Figure 3.6: Engineering stress-strain curves from the displacement of the cross-head. The black
o indicates diffuse necking.

3.4.2 Round Specimen L5

Edge Tracing

To extract material properties of a specimen when using cameras and edge tracing as the
measurement technique, the experimental data have to be processed in the software eCorr.
The output from the software was the minimum diameter in two perpendicular directions,
denoted D1 and D2. In addition, a log-file from each test containing measurements of
time, force and displacement was available after testing. In eCorr, the recordings from the
experiment were processed and the minimum diameter was measured. Figure 3.7 shows
the gauge region of a round specimen with the minimum diameter (pink line) highlighted.
The minimum diameter was found as the minimum vertical distance between the two edges
of the specimen (blue lines).

Figure 3.7: Determination of the minimum diameter in eCorr.

The output from eCorr with measurements of the minimum diameter D1 and D2,
given in number of pixels, was processed in MATLAB. As the minimum diameters were
given in number of pixels, a mm/pixel relation needed to be establish. In eCorr, the
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vertical distance between the edges of the undeformed specimen was measured using an
image ruler. The initial diameter of the specimen measured in the laboratory was then
divided by the vertical distance from eCorr, giving a mm/pixel relation. The diameter
reduction in each direction was then calculated using

∆D1 = D1,0 −D1, ∆D2 = D2,0 −D2 (3.2)

where the D1,0 and D2,0 are the initial diameters in direction 1 and 2, respectively. As the
current diameter was continuously measured in two directions, an indication of material
isotropy could be evaluated by comparing the force-diameter reduction in direction 1 and
2. The cross-sectional area of the round specimens was assumed to be elliptical. The
initial and current cross-sectional area of the specimen were calculated from

A0 =
π

4
D1,0D2,0, A =

π

4
D1D2 (3.3)

respectively. The current cross-sectional area of the specimen was continuously measured
during the test, so the true (Cauchy) stress and the logarithmic strain were calculated
directly by using Equations 2.3 and 2.4. The Young’s modulus for aluminium alloys has
a nominal value of E = 70000 MPa. The measured Young’s modulus from a quasi-static
tension test often differs from the nominal value, therefore the measured Young’s modulus
was corrected using Equation 3.1.

The true stress-logarithmic strain curves for the round specimens L5 are plotted in
Figure 3.8a. To investigate repeatability, all four tests are plotted together. The observed
stress level at failure coincides for all four tests, however there is a slight variation in strain
level at failure. The different tests display a good repeatability. To evaluate the material
isotropy, the force-diameter reduction curves in direction 1 and 2 for a representative
test are compared in Figure 3.8b. As seen, the curves in direction 1 and 2 have a good
agreement and the material behaves isotropic. Another indication of the material isotropy
is the r-value. The r-value is the ratio of the strain increments measured at minimum
cross-section,

r =
dε1
dε2

, ε1 = 2 ln

(
D1

D1,0

)
, ε2 = 2 ln

(
D2

D2,0

)
, (3.4)

where an r-value equal to unity indicates isotropic behaviour. Figure 3.8c presents the
r-value for a representative test of the round specimen L5. The r-value is approximately
unity throughout the test, indicating isotropic material behaviour. The Al1.2Mn has been
homogenised and assumed isotropic which corresponded well with the observations made
from the experimental results.

The material data were found from the processed data. The stress and strain at diffuse
necking, denoted with the subscript u, were found at the maximum force level, Fmax, as
described in section 2.2. The corresponding values at failure, denoted with the subscript
f , were found at maximum true stress, σt,max. In addition, the yield stress at 0.2 %
strain, σ0.2, was found. The extracted material data are given in Table 3.2 in Section
3.4.3, together with the results from the tension tests of the round specimens L40. The
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εl,f,micro is the fracture strain of the specimen when the diameter is measured using an
optical microscope. The area and the strain at fracture were calculated using

Af =
π

4
D1,fD2,f , εf = ln

A0

Af
(3.5)

respectively. D1,f and D2,f are the diameters at fracture in direction 1 and 2, respectively.
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Figure 3.8: (a) True stress-logarithmic strain curves for the round specimens L5 using edge-
trace. The black x marks the point of failure, (b) Force-diameter reduction curves in direction
1 and 2 for a representative test (test 4), (c) r-value-logarithmic strain for a representative test
(test 4).

Laser Micrometer

The experimental results from the quasi-static tension tests using laser micrometer were
supplied in a spreadsheet containing measurements of time, force, position, diameter D1
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and diameter D2. As the laser continuously measured the diameter of the specimens, the
experimental data could be imported directly to MATLAB and further processed.

When using a laser micrometer to measure the current diameter, the search for the
smallest diameter resulted in small jumps in the diameter measurements. To get a smooth
curve the small jumps had to be removed. When the small jumps were removed, the
further procedure of extracting the material data was the same as described for the edge-
trace approach above. Figure 3.9a compares the true stress-logarithmic strain curves
for the round specimens L5 using laser. As observed, the three tests display a good
repeatability, however there is a slightly variation in strain level at failure. The force-
diameter reduction curves in direction 1 and 2 for a representative test are displayed in
Figure 3.9b and the r-value-logarithmic strain curve for a representative test is presented
in Figure 3.9c. As observed, the laser measurements show a good agreement in the two
directions and the r-value indicates isotropic behaviour.

0 0.5 1

Logarithmic strain [-]

0

50

100

150

200

250

T
ru

e
 s

tr
e

s
s
 [

M
P

a
]

Test 1

Test 2

Test 3

(a)

0 0.4 0.8 1.2

Diameter reduction [mm]

0

0.2

0.4

0.6

0.8

F
o

rc
e

 [
k
N

]

D
1

D
2

(b)

0 0.4 0.8 1.2

Logarithmic strain [-]

0

0.5

1

1.5

r-
v
a

lu
e

 [
-]

(c)

Figure 3.9: (a) True stress-logarithmic strain curves for the round specimens L5 using laser.
The black x marks the point of failure, (b) Force-diameter reduction curves in direction 1 and 2
for a representative test (test 2), (c) r-value-logarithmic strain for a representative test (test 2).
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The material data obtained from the laser measurements are given in Table 3.2 in
Section 3.4.3. The deformed geometry of a representative test of the round specimen L5
are shown in Figure 3.10. The fracture surface will be examined in Section 3.5.

Figure 3.10: Deformed geometry of a representative test from the round specimen L5.

3.4.3 Round Specimen L40

Edge Tracing

The procedure of extracting material data of a tensile specimen when using edge tracing
as the measurement technique was described in Section 3.4.2. The true stress-logarithmic
strain curves for the round specimens L40 are plotted in Figure 3.12a. As seen, Test 2
has a slightly higher stress and strain level at failure, otherwise the tests coincide. Figure
3.12b shows the force-diameter reduction curves in direction 1 and 2 and Figure 3.12c
presents the r-value-logarithmic strain curve for a representative test. As observed, the
r-value is approximately unity, which indicates that the round specimen L40 behaves
isotropic. The extracted material data for the round specimen L40 are given in Table 3.2.

Extensometer

Test 4 of the round specimen L40 was performed using an extensometer in addition to
the cameras and edge-trace approach. As the extensometer was placed in the gauge
region of the specimen, the recorded images were disturbed and thus the data from test
4 could not be processed in eCorr. However, the engineering stress-strain curve from the
extensometer was extracted and compared with a representative test. Figure 3.12d shows
the engineering stress-strain curves up to diffuse necking. As seen, the stress level of the
two curves coincide, hence the extensometer and the edge-trace approach give similar
results. The extensometer was removed when an elongation of 5 mm was reached, which
was before diffuse necking of the specimen in this case.

The deformed geometry of a representative test from the round specimen L40 are
shown in Figure 3.11.

Figure 3.11: Deformed geometry of a representative test from the round specimen L40.



28 CHAPTER 3. EXPERIMENTAL WORK

0 0.5 1

Logarithmic strain [-]

0

50

100

150

200

250

T
ru

e
 s

tr
e

s
s
 [

M
P

a
]

Test 1

Test 2

Test 3

(a)

0 1 2 3

Diameter reduction [mm]

0

1

2

3

F
o

rc
e

 [
k
N

]

D
1

D
2

(b)

0 0.4 0.8 1.2

Logarithmic strain [-]

0

0.5

1

1.5

r-
v
a

lu
e

 [
-]

(c)

0 0.1 0.2 0.3

Eng. strain [-]

0

20

40

60

80

100
E

n
g

. 
s
tr

e
s
s
 [

M
P

a
]

Edge-trace

Extensometer

(d)

Figure 3.12: (a) True stress-logarithmic strain curves for the round specimens L40 using edge
tracing. The black x marks the point of failure, (b) Force-diameter reduction curves in direction
1 and 2 for a representative test (test 3), (c) r-value-logarithmic strain for a representative test
(test 3), (d) Engineering stress-strain curves from the extensometer (Test 4) and edge-trace (Test
3). The black o indicates diffuse necking.

Table 3.2: Material data from the tension tests of the round specimens.

Geometry Method Test No. σ0.2 σe,u εe,u σt,u εt,u σt,f εl,f εl,f,micro
[MPa] [MPa] [-] [MPa] [-] [MPa] [-] [-]

Round L5

Edge-trace

Test 1 61.85 101.3 0.3073 132.6 0.2679 220.2 1.193 1.437
Test 2 55.61 102.4 0.3144 134.6 0.2734 220.5 1.155 1.400
Test 3 61.57 103.2 0.2859 133.0 0.2515 222.1 1.205 1.442
Test 4 51.40 102.6 0.3002 133.1 0.2625 219.2 1.174 1.510

Laser
Test 1 56.67 107.3 0.3115 140.6 0.2712 230.0 1.155 1.329
Test 2 52.65 105.9 0.3261 140.4 0.2822 230.5 1.194 1.382
Test 3 57.80 105.4 0.3014 137.2 0.2635 225.6 1.175 1.302

Round L40 Edge-trace
Test 1 40.77 104.5 0.2957 135.2 0.2590 233.5 1.208 1.346
Test 2 36.90 105.2 0.2926 135.8 0.2566 242.3 1.276 1.428
Test 3 40.10 104.1 0.2998 135.3 0.2622 233.1 1.230 1.318
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3.4.4 Flat Specimen L20

DIC

The procedure of processing the measured data from the tension tests of the flat specimens
using DIC as the measurement technique are described here. A log-file from each test
containing measurements of time, force and displacement was available after testing. In
addition, the recorded pictures from the experiments were to be processed in eCorr in
order to extract the material data.

Figure 3.13: Illustration of the mesh of the gauge region of the undeformed specimen, with a
vector (green line) which extracts the elongation of the specimen. The figure is taken from eCorr.

In eCorr, a mesh was created over the gauge region of the specimen consisting of
structured, linear Q4 elements, as shown in Figure 3.13. The element size of 25 x 25
pixels was chosen to be ideal to the speckle pattern to extract the elongation as accurate
as possible and to avoid noise. A vector was then created over the gauge region of the
specimen in which the elongation was extracted. The data were further processed using
MATLAB.

When the elongation of the specimen was extracted, the engineering stress and strain
were calculated using Equation 2.1. Further, by using the relations in Equations 2.2
and 2.5, the true stress and the logarithmic strain until diffuse necking were calculated.
In order to calculate the stresses and strains after diffuse necking, the current area of
the specimen had to be measured. As the deformation in the thickness direction cannot
be measured directly with the 2D-DIC, only the data until necking are evaluated in
this section. The true stress-logarithmic strain curves for the flat specimens L20 are
plotted in Figure 3.14a. As observed, Test 3 has a lower strain level at diffuse necking.
Otherwise there is a good agreement within the tests. The force-displacement curve for
a representative test is displayed in Figure 3.14b.
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Figure 3.14: (a) True stress-logarithmic strain curves for the flat specimens L20 using DIC.
The black o indicates diffuse necking. (b) Force-displacement curve for a representative test (test
1) all the way to fracture.

Extensometer

For the flat specimens L20 a clip-on extensometer was used in one of the tests. In Figure
3.15 the engineering stress-strain curves until diffuse necking for the extensometer and a
representative test using DIC are compared. The curves coincide, hence the extensometer
and the DIC approach give similar results. It is also observed that the point of necking
coincides. The extensometer was removed when its elongation had reached 5 mm, which
corresponded to diffuse necking in this case. This indicates that the elongation of the
specimen at diffuse necking was approximately 5 mm.
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Figure 3.15: Engineering stress-strain curves using extensometer and DIC. The black o indi-
cates diffuse necking.
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The deformed geometry of a representative test of the flat specimen L20 is shown in
Figure 3.16. The fracture surface will be examined in Section 3.5. The material data
found from the processed data of flat specimen L20 are displayed in Table 3.3 in Section
3.4.5.

Figure 3.16: Deformed geometry of a representative test from the flat specimen L20. The
speckle pattern spray-painted on to the gauge region prior to the test is visible.

3.4.5 Flat Specimen L50

DIC

The procedure of processing the experimental results from the tension tests of the flat
specimens L50 when using DIC as the measurement technique was described in section
3.4.4. As for the flat specimens L20, only the data until diffuse necking are evaluated
in this section. The true stress-logarithmic strain curves for the flat specimens L50 are
compared in Figure 3.17a. Test 2 has slightly higher stress and strain level at diffuse
necking, otherwise there is a good repeatability within the tests. Figure 3.17b shows the
force-displacement curve for a representative test.
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Figure 3.17: (a) True stress-logarithmic strain curves for the flat specimens L50 using DIC.
The black o indicates diffuse necking, (b) Force-displacement curve for a representative test (test
1) all the way to fracture.
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Extensometer

A clip-on extensometer of length 25 mm was used in one of the tests of the flat specimen
L50. Figure 3.18 compares the engineering stress-strain curves from the extensometer and
the DIC approach. The curves coincide, hence the extensometer and the DIC approach
give similar results. As seen, the data from the extensometer were not measured all the
way to diffuse necking. This is because the extensometer was removed when an elongation
of 5 mm was reached, which was before diffuse necking of the specimen in this case.
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Figure 3.18: Engineering stress-strain curves using extensometer and DIC. The black o indi-
cates diffuse necking.

The deformed geometry of a representative test from the flat specimen L50 is shown
in Figure 3.19. The material data found from the processed data are given in Table 3.3.

Figure 3.19: Deformed geometry of a representative test of the flat specimen L50. The speckle
pattern spray-painted on to the gauge region prior to the test is visible.



3.5. SCANNING ELECTRON MICROSCOPE 33

Table 3.3: Material data obtained from the tension tests of the flat specimens using DIC.

Geometry Test No. σ0.2 σe,u εe,u σt,u εt,u
[MPa] [MPa] [-] [MPa] [-]

Flat L20

Test 1 46.65 104.6 0.2712 133.0 0.2412
Test 2 45.84 105.3 0.2732 134.0 0.2422
Test 3 32.78 106.7 0.2573 134.2 0.2290
Test 4 35.09 104.6 0.2785 133.7 0.2448

Flat L50

Test 1 36.58 104.9 0.2637 132.6 0.2352
Test 2 37.62 105.9 0.2745 135.0 0.2437
Test 3 34.70 103.5 0.2580 130.2 0.2312
Test 4 38.37 103.3 0.2604 130.2 0.2303

3.5 Scanning Electron Microscope

To get a better understanding of the fracture mechanisms of the material, the fracture
surfaces of the round specimen L5 and the flat specimen L20 were studied using a Scanning
Electron Microscope (SEM). A brief description of the SEM is given below, however the
details are not included.

The Scanning Electron Microscope is a type of electron microscope which uses a
focused beam of electrons to scan the surface of the specimen. The electrons interact
with the atoms in the specimen which creates various signals that contain information
about the topography, chemical composition and the crystalline structure of the material.
These signals are captured by a detector, which produces an image. Here, only the
topography of the fracture surface was studied. The SEM has some great advantages in
comparison to an optical microscope. An optical microscope is limited by the wavelength
of the illuminating light, while SEM is limited by the wavelength of the elections. Since
the wavelength of the electrons is about 10−5 of the wavelength of light, the SEM has
many times better resolution than the optical microscope [33]. The combination of high
spatial resolution and high depth of field makes the SEM one of the most versatile forms
of microscope available, and an ideal tool to examine the microstructure of materials [34].

In the laboratory, the specimens were cleaned with acetone in order to remove dirt and
grease. The specimen was mounted on a specimen stand with the fracture surface facing
upwards and then placed inside the vacuum chamber. The vacuum prevents interaction
between the electrons and air molecules on the way down to the specimen, which would
produce noise in the image. The SEM machine used was a Zeiss Gemini SUPRA 55VP
and the vacuum in the machine was < 10−5 Pa. When the chamber reached the required
level of vacuum, the electron gun was turned on and images of the specimen were created.
The fracture surfaces could then be examined.

Figures 3.20 and 3.21 show the fracture surfaces of the round specimen L5 and the
flat specimen L20, respectively. As seen in Figure 3.20a, the cleaning of the fracture
surface did not remove all the dirt and a single hair is clearly visible in the lower right
corner. The overview picture of the round specimen L5 shows the formation of the cup-
and-cone fracture surface that is commonly observed in uniaxial tension tests for ductile
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materials. The outer ring of the specimen, a region between the edges and approximately
100−200 µm towards the centre, contains relatively few voids, because the hydrostatic
stress is lower than in the centre. The cup-and-cone fracture surface implies that the
fracture starts from the centre and grows outward. As observed, the specimen exhibits a
dimpled appearance, which is typically for microvoid coalescence. In Figures 3.20b and
3.21b the dimples structures are clearly visible and particles are observed at the bottom of
some of the dimples. The clearly dimple structure observed for both geometries indicates
ductile fracture.

(a) Overview. (b) Zoom.

Figure 3.20: Round specimen L5.

(a) Overview. (b) Zoom.

Figure 3.21: Flat specimen L20.
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3.6 Discussion

In this thesis, quasi-static tension tests have been performed on specimens with four
different specimen geometries, where different methods of extracting material data have
been investigated. The experimental results from the different methods are here compared
and discussed in order to investigate the similarities and differences of the methods, and
compare their accuracy.

Displacement of the Cross-Head

A starting point in the discussion of the experimental results is to compare the engineering
stress-strain curves extracted directly from the displacement of the cross-head, as the test
machines were unaffected by the different measurement methods. Figure 3.6 shows the
engineering stress-strain curves of representative tests from each specimen geometry. It
is observed that the specimens display the same material behaviour to a certain degree.
However, there is a difference in yield stress at 0.2 % strain and the smooth specimen L40
has a clearly lower strain level at diffuse necking and lower work hardening. Otherwise,
the stress levels for the different geometries coincide at diffuse necking.

There are some uncertainties in extracting the material data directly from the dis-
placement of the cross-head. The gripping of the specimens was different. The round
specimens were threaded to the test machine, while the flat specimens were pinned. It
was important to make sure that the specimens could be held at a maximum load without
failure or slippage of the grip section. In this case, the pin could give some looseness or
mobility of the specimen the moment the load was applied. Other factors that could
influence the results were the accuracy and resolution of the load cell output or the align-
ment of the specimens in the test machines as two different test machines were used in
the experimental work.

Laser vs. Edge Tracing

Figure 3.22 compares the true stress-logarithmic strain curves for a representative test of
the round specimen L5 using laser and edge-trace and of the round specimen L40 using
edge-trace. As seen, the round specimen L5 using laser and the round specimen L40
using edge-trace exhibit a good agreement until failure. The edge-trace measurements of
the round specimens L5 shows clearly a lower stress level at failure, in addition to lower
work hardening. The deviation in stress level between the round specimen L5 using laser
and edge-trace was 11.3 MPa at failure, which corresponded to 4.89 %. This deviation is
non-negligible and the sources of error are discussed below.

In quasi-static tension tests, the use of lasers is a well-known measurement technique
and the accuracy is at a micrometer scale. In this thesis, the laser measurements are
assumed correct and used as reference measurements. The sources of error due to the
deviation in Figure 3.22 are therefore focused on the edge-trace approach.

The deviation in Figure 3.22 can be caused by several reasons. First, when processing
the pictures in eCorr, the resolution of the pictures was not optimal. As seen in the Figure
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Figure 3.22: Comparison of true stress-logarithmic strain curves from the round tension tests.

3.7, the ratio between the horizontal and the vertical directions of the picture is not equal
to one and the highest resolution will then be in the horizontal direction. Since the
minimum diameter was measured in the vertical direction, a lower resolution gave blurry
edges of the specimen and this could result in a ± 1 pixel deviation in the minimum
diameter [35]. By reducing the minimum diameter with one pixel, the deviation was
reduced only with 0.63 %. The resolution of the pictures was therefore not the decisive
reason for the deviation in Figure 3.22, but it is important to keep this in mind.

A second source of error could arise during the experiment work. In the beginning of
the test, when the force was applied and started to increase, the specimen could adjust its
position and move towards or away from the cameras. This adjustment could influence
the mm/pixel relation and result in an overall larger or smaller minimum diameter.

The third source of error could be the initial measurements of the specimens. Prior to
the tests, the initial diameter, denoted Det

0 , was measured manually with a digital slide
gauge. The digital slide gauge has an accuracy of 1/100 mm [36], which is a lower accuracy
than the laser. When an inexperienced user utilized the glide gauge, small variations
gave different measurements and this could affect the calculated stress levels. For the
representative test of the round specimens L5 measurement of the initial diameter was
forgotten in the laboratory, so the nominal diameter of 3 mm was used in the calculations.
The initial diameters measured in situ with the laser, denoted Dl

0, varied between 2.943
- 2.964 mm, which indicated that the diameters were initially smaller than the nominal
value. Figure 3.23 shows that a small reduction in initial diameter gives noticeable change
in the stress level at failure. The values in the parentheses are the percentage error in
stress level at failure between the laser and edge-trace approach.

As seen, when Det
0 = Dl

0 the true stress-logarithmic strain curves coincide for two
methods and the error becomes relatively small. This indicates that Det

0 had a value close
to Dl

0 and using the nominal value gave a deviation, which demonstrates the importance
of measuring the initial diameters of the specimens prior to the tests. When using the
edge-trace approach, there is no standard guideline in how to measure the initial diameter
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Figure 3.23: Initial diameters of the round specimen L5.

and the method varies from user to user, which affects the results.

Edge Tracing vs. DIC

Figure 3.24 compares the true stress-logarithmic strain curves until diffuse necking for
the round specimens using edge-trace and the flat specimens using DIC. As seen, the
round specimen L5 clearly shows a higher yield stress at 0.2 % strain and has a different
behaviour. Note that the strain interval in Figure 3.24 is small compared to the strain
interval in Figure 3.22 and the difference in yield stress is not as clear at larger strains
(see Figure 3.22).
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Figure 3.24: Comparison of the true stress-logarithmic strain curves until diffuse necking for
the round and flat specimens.

It is observed in Figure 3.24 that the true stress-logarithmic strain curves for the round
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specimen L40 and the flat specimens L20 and L50 exhibit similar behaviour. The stress
level at diffuse necking coincide to a certain degree, but there is a slight variation in strain
level at diffuse necking.

The measured data from the flat tension tests have only been evaluated until diffuse
necking, hence the strain interval is small compared with the measured data from the
round tension tests. To be able to compare the edge-trace and DIC approaches prop-
erly, the true stress-logarithmic strain curves calculated for the flat specimens need to
be extrapolated. This will be done in Chapter 4. The method of extrapolating is an
approximation which can lead to errors. When using the 2D-DIC method as an optical
extensometer the extracted data were only valid until diffuse necking without combining
it with FEM, hence the method has a major weakness compared with the edge-trace
approach. This means that in order to accurately investigate fracture, the laser or the
edge-trace approach have to be applied.

As discussed above, the measurements of the initial dimensions of the specimens prior
to the tests were important for the results. The digital slide gauge was used to measure
the initial dimensions of the flat specimens and using the same instrument consistently
in each test gave an agreement in the result within the geometries, which was observed
in Figures 3.14a and 3.17a.

When performing material tests on relatively small specimens the number of grains
over the loading area of the specimens can have an influence on the results. Westermann
et al. [26] studied in 2014 the effects of particles and solutes on ductile fracture of
aluminium alloys, whereas one of the alloys was the Al1.2Mn used in this thesis. The
reader is referred to Westermann et al. [26] for details on this study. All four specimen
geometries in this thesis consist of Al1.2Mn but they have different geometries, which
results in different areas. The Al1.2Mn consists of an equiaxed grain structure with a
grain size of approximately 60 µm. As the grain size was approximately constant, the
number of grains in each geometry varied. The round specimen L5 had an initial area of
7.07 mm2, whereas the initial area of the flat specimen L20 was 15 mm2. This meant that
the flat specimen L20 had approximately twice as many grains over the cross-sectional area
as the round specimen L5. As the force is carried by the grain structure in the specimens
the number of grains over the loading area may results in different load capacity and
hence different response.

In Figure 3.24 it is observed that the round specimen L5 has a clearly higher stress at
yielding than the other specimen geometries. To investigate the reason for this deviation,
new tension tests of the round specimen L5 using laser and edge-trace were performed
in the laboratory. This time the initial diameters of the specimens were measured prior
to testing to avoid errors regarding the initial measurements as discussed above. The
results from the new tests showed the same deviation in yield stress as seen in Figure
3.24. This indicated that the initial measurements of the specimens were not the reason
for the deviation in yield stress for the round specimen L5 and the reason for the deviation
is unknown. One explanation could be that this was a scalar effect as the round specimen
L5 had clearly smaller cross-sectional area than the other specimen geometries.
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4.1 Calibration of Material Model

In the numerical simulations in Chapter 5, two calibration methods were used. Direct
calibration of the measured data obtained from the tension tests and inverse modelling
using the code LS-OPT [37]. In this chapter, the calibration of the material model based
on the direct calibration is described.

The MJC constitutive relation with Power and Voce hardening laws were used in the
calibration of the material model in order to examine their behaviour compared with the
true stress-logarithmic strain curves from the experimental results.

4.1.1 Round Specimens

The calibration of the material constants in the MJC constitutive relation was performed
using the measured data from the tension tests of the round specimens, where edge tracing
was used as measurement technique. The representative tests chosen were Test 4 of the
round specimen L5 and Test 3 of the round specimen L40. Both tests will be simulated
in Chapter 5.

In the calibration of the material model, the equivalent stress and strain are needed.
The true stress and logarithmic strain were calculated from the experimental data in
section 3.4. In uniaxial tension the equivalent plastic strain p equals the logarithmic
plastic strain εpl . The equivalent plastic strain was found by subtracting the elastic part
of the logarithmic strain from the total logarithmic strain, i.e.,

p = εpl = εl −
σt
E

(4.1)

In uniaxial tension the equivalent stress equals the true stress until diffuse necking.
The formation of a neck introduces a complex triaxial stress state in that region giving
an increase in the measured stress level. To find the equivalent stress after necking, the
measured true stress needed to be corrected. The equivalent stress after necking was
obtained using the correction proposed by Bridgman [38]

σeq =
σt

(1 + 2R/a) ln(1 + a/2R)
(4.2)

39
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where a is the radius of the current cross-section of the specimen and R is the radius
of the curvature of the neck. Note that the Bridgman correction is based on several
assumptions. The radius a is easily measured, but estimating the radius of the curvature
R can be more complicated. LeRoy et al. [39] proposed in 1981 an empirical model for
the a/R ratio

a/R = 1.1(p− εplu), p > εplu (4.3)

where εplu is the equivalent plastic strain at diffuse necking. The equivalent plastic strain
at diffuse necking was calculated by finding the point where the gradient of the true
stress-logarithmic strain curve is equal to the true stress, i.e. the Considère criterion
given as

dσt
dεl

= σt (4.4)

The measured data from the tension tests were a set of data points and it was impossible
to apply Equation 4.4 directly since the discontinuities cause the gradient to change
dramatically between each data point. A continuous differential function was obtained
by curve fitting the measured data to a two term Voce rule (Equation 2.18). After
calculating εplu, the Bridgman-LeRoy correction was applied to the experimental data
after diffuse necking and the equivalent stress σeq was obtained. Figure 4.1 shows the
Considère criterion and the Bridgman-LeRoy corrected equivalent stress curves for the
round specimens L5 and L40. As seen in Figures 4.1b and 4.1d, the Bridgman-LeRoy
corrected stress level is clearly lower than the measured stress level, indicating that the
triaxial stress state arising in the neck had a significant contribution to the measured
stress level after diffuse necking.

When the σeq−p curve was calculated, the material constants in the MJC constitutive
relation, see Equation 2.15, could be calibrated. The tension tests were performed at
room temperature giving T ∗ = 0 and quasi-static condition means ṗ∗ ≈ 1. With these
conditions the strain rate term in Equation 2.15 is reduced to (1 + ṗ∗)C = 2C . For small
values of C the MJC constitutive relation becomes

σeq = (A+Bn)2C ≈ A+Bn (4.5)

It is observed that under the given conditions the MJC constitutive relation is reduced to
the Power law. If the strain hardening term in Equation 2.15 was replaced by the Voce
rule under the same conditions, the equivalent stress is reduced to

σeq = σ0 +

2∑
i=1

QRi(1− exp(−CRip)) (4.6)

The unknown material constants in Equation 4.5 and 4.6 were determined by the
method of least squares and curve fitting in MATLAB. The material constants were
fitted to the experimental σeq−p curve until failure of the round specimens. The material
constants obtained from the direct calibration are given in Table 4.1 for Power and Voce
hardening laws. The constants in the MJC constitutive relation with the Voce rule are
arranged so that C1 ≥ C2, which implies that the first term R1 saturates at lower strain
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than the second term R2. Figure 4.2 shows the experimental curves along with the final
calibration of both Power and Voce hardening laws.
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Figure 4.1: (a) and (c) Considère criterion and determination of εplu, (b) and (d) Comparison
of the true stress-plastic strain and Bridgman-LeRoy corrected equivalent stress-plastic strain
curves.

Table 4.1: Material constants of the Power and Voce hardening laws found from direct calibra-
tion.

Geometry A B n σ0 QR1 CR1 QR2 CR2

[MPa] [MPa] [-] [MPa] [MPa] [-] [MPa] [-]
Round L5 7.543 169.0 0.2311 51.88 41.43 27.38 95.87 1.924
Round L40 1.579 181.7 0.2358 36.67 54.54 38.05 103.7 2.011
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(b) Round L5.
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(c) Round L40.
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Figure 4.2: Fitted hardening laws to experimental σeq − p curve for both geometries.

a/R-relation

LeRoy’s empirical model for determination of the a/R-relation tends to give good results
in combination with the Bridgman correction, as seen in e.g. [22, 40]. The model is simple
to use as measurements of a and R are not needed. However, a newly implemented feature
in eCorr makes it possible to determine the radius of curvature in the necked region of a
specimen. The procedure of extracting the radius of curvature in eCorr is described and
then the a/R-relation will be calculated and used in combination with the Bridgman’s
correction formula in order to compare the result with LeRoy’s model. The experimental
data from Test 3 of the round specimen L40 were used in this study.

Figure 4.3 shows the necked region of a specimen, marked by blue points and green
lines. The minimum cross-sectional diameter is marked by the vertical pink line. The
shape of the edges were interpolated with a Chebyshev polynomial function of order 30
[41], giving the green lines in Figure 4.3. Gauss weighing was used to focus the polynomial
function close to the position of the minimum cross-sectional diameter. The two outer
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points in the neck gave the position to where the second-derivative of the polynomial
function changed sign [35]. The upper and lower radius of the curvature were obtained
by fitting a circle to the two outer points using a nonlinear least squares method.

Figure 4.3: Determination of radius of curvature in the necked region of a specimen. The
picture is adapted from eCorr.

At large radii of curvature, i.e. at small deformations, the search for the radius in
the neck produced noise. Therefore, back-extrapolation was necessary to estimate the
radius of curvature from the onset of necking, see Figure 4.4a. By applying both LeRoy’s
model and the eCorr-approach in Bridgman’s correction formula the equivalent stresses
were obtained.
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Figure 4.4: (a) Back-extrapolation of the radius of curvature, (b) Comparison of true stress
and Bridgman-corrected equivalent stresses.

The two methods are compared in Figure 4.4b and a clear difference in stress level is
observed, where the Bridgman-LeRoy correction estimates a lower stress level than the
Bridgman-eCorr correction. As the LeRoy’s model has previously given good results in
combination with Bridgman correction, the Bridgman-LeRoy correction will be used in
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the numerical studies in Chapter 5. However, it is important to notice the different results
and that LeRoy’s model is purely empirical and may not always be the best option.

The Method of Extrapolation

When performing quasi-static tension tests, extensometers are traditionally used to mea-
sure the elongation of the specimens. The use of extensometers works as long as the de-
formation is uniform over the whole gauge length. When diffuse necking occurs, the data
from the extensometer are no longer valid. In order to evaluated the material behaviour
all the way to fracture, the calculated true stress and strain have to be extrapolated to
large plastic strains. A small study was performed to investigate the accuracy of the
method of extrapolation.

In this investigation the direct calibration method described previous in this chapter
was applied. The experimental data were taken from Test 3 of the round specimen L40.
The unknown material constants of the MJC constitutive relation using both Power and
Voce hardening laws, were fitted to the experimental σeq − p curve until diffuse necking.
Then, the obtained material constants were used to extrapolate the fitted curves all the
way to failure. The material constants are given in Table 4.2.

Table 4.2: Material constants of the Power and Voce hardening laws found from direct calibra-
tion. The constants are fitted to the experimental σeq − p curve until diffuse necking.

A B n σ0 QR1 CR1 QR2 CR2

[MPa] [MPa] [-] [MPa] [MPa] [-] [MPa] [-]
Round L40 10.91 181.0 0.2754 33.40 82.38 4.499 44.50 59.89
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(b) Round L40.

Figure 4.5: Comparison of curve fitting until fracture and curve fitting until diffuse necking
and extrapolation.

Figure 4.5 compares the extrapolated curves with the experimental curves and the
curves fitted to data all the way to failure (as previously). As observed, the extrapolated
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curves cannot accurately describe the material behaviour from diffuse necking to failure.
They follow different paths, which give a large deviation in stress level at failure. An
observation of the extrapolated Voce rule is that the curve saturating to a certain stress
level, which is a characteristic behaviour of the Voce hardening rule. Figure 4.5 clearly
shows that the method of extrapolation is an approximation, which can lead to incorrect
material behaviour at large plastic strains.

4.1.2 Flat Specimens

In Section 3.4, the true stress and logarithmic strain from the flat tension tests were
calculated. However, only the data until diffuse necking were evaluated. To simulate
the flat tension tests in Chapter 5, the true stress and logarithmic strain have to be
extrapolated for strains beyond necking. In the calibration of the material constants in
the MJC constitutive relation, the chosen representative tests were Test 1 for both the
flat specimen L20 and L50.

For the flat tension tests, the true stress equals the equivalent stress as only the data
until diffuse necking were considered. The equivalent plastic strain p was calculated using
Equation 4.1. The tension tests of the flat specimens were performed under the same
conditions as for the round specimens and the MJC constitutive relation with the Power
and Voce hardening laws, given by Equation 4.5 and 4.6, respectively, were used in the
direct calibration. The unknown material constants were fitted to the experimental σeq−p
curve until diffuse necking in the same manner as described for the round tension tests.
The calibrated material constants are given in Table 4.3.

Table 4.3: Material constants of the Power and Voce hardening laws found from direct calibra-
tion.

Geometry A B n σ0 QR1 CR1 QR2 CR2

[MPa] [MPa] [-] [MPa] [MPa] [-] [MPa] [-]
Flat L20 14.89 177.2 0.2791 39.27 37.09 59.56 76.85 5.476
Flat L50 10.00 188.3 0.2853 30.44 43.70 65.38 77.03 5.963

When the experimental σeq − p curves were fitted until diffuse necking, the obtained
material constants were used to extrapolate the fitted curves. The plastic strain region was
expanded to 150 %. The extrapolated σeq − p curves for the flat specimens are presented
in Figure 4.6. As observed, the extrapolated curves give two very different material
behaviours. As discussed above, the method of extrapolation is an approximation and
extrapolated curves might not be able to describe the exact material behaviour from
diffuse necking to fracture. Both hardening laws will be used in the simulations of the
flat tension tests in Chapter 5.
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(a) Flat L20.
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Figure 4.6: Fitted hardening laws to experimental σeq − p curve for the flat tension tests. The
curves are extrapolated from diffuse necking.

4.2 Calibration of Fracture Model

A fracture criterion is required to predict fracture in numerical simulations. In order to
calibrate the JC fracture criterion, more extensive material tests are required, e.g. quasi-
static tension tests of notched specimens. As the material tests performed in this thesis
were limited to quasi-static tension tests of round specimens, there were not enough data
to determine the constants in the JC fracture criterion. Hence, only the CL fracture
criterion will be applied in this thesis.

The CL fracture criterion, see Section 2.3.2, says that fracture is assumed to occur
when the damage variable ω = 1. The only unknown model constant was the fracture
parameter Wc which, for a uniaxial tension test, can be estimated as the integral of
the true stress with respect to the true plastic strain up to fracture, see Equation 2.21.
From the tension tests of the round specimens, the experimental true stress and true
plastic strain were calculated and the fracture parameter was approximated by numerical
integration. The values of Wc, given in Table 4.4, were estimated from the experimental
results of Test 4 of the round specimen L5 and Test 3 of the round specimen L40.

Table 4.4: The fracture parameter Wc estimated from the experimental results of the round
tension tests.

Round L5 Round L40
[MPa] [MPa]

Experimental Wc 192.8 210.7
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5.1 Direct Calibration

The quasi-static tension tests performed in this thesis were recreated and analysed using
ABAQUS/Standard in order to verify the material models calibrated in Chapter 4.

The von Mises yield criterion and the associated flow rule were chosen by default in all
the numerical models in this Chapter. The mass density ρ and the Poisson’s ration ν for
aluminium were given as ρ = 2.7 g/m3 and ν = 0.3, respectively. These values are typical
values for aluminium taken from the literature. The determination of the Poisson’s ratio
requires special tests, which were not performed in this thesis.

5.1.1 Round Tension Tests

The round tensile specimens were modelled using 2D axisymmetry and symmetry in the
longitudinal direction. This simplification was made to save computational time. The
2D axisymmetric models are known to give good results, however a 3D model was also
modelled to compare the two approaches. The nominal geometries shown in Figure 3.1
were used in the models. The threaded ends were excluded in the models as they have
no effect on the results.

To optimize the models, a small sensitivity study was performed. The influence of
mesh size was investigated by running simulations with three mesh densities. The element
sizes in the gauge region of the specimens were 0.5x0.5 mm2, 0.3x0.3 mm2 and 0.1x0.1
mm2. The results showed that the mesh size had an influence on the numerical stress-
strain curves at failure and, compared with the experimental curves, the element size of
0.1x0.1 mm2 gave the best result for both specimen geometries. The round specimens
were meshed with 4-node bilinear axisymmetric quadrilateral elements (CAX4) with full
integration. Figure 5.1 shows the mesh of the round tensile specimens. Both specimens
had a coarser mesh outside of the gauge region. As the models experience only tensile
forces, fully integrated elements will not cause any problems regarding shear locking. Both
fully and reduced integrated elements have been analysed and there was no difference in
the results. Therefore, fully integrated elements were chosen to increase the accuracy of
the numerical integration process.

47
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(a) Round L5.

(b) Round L40.

Figure 5.1: Mesh of the round tensile specimens. The dashed lines symbolize the axisymmetry
(yellow) and symmetry (black) axes.
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(b) Round L5.
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(c) Round L40.
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Figure 5.2: The results from the numerical simulations of the round specimens based on the
direct calibration. Force-diameter reduction (left) and true stress-logarithmic strain (right).
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The JC constitutive relation and the JC fracture model are both available in ABAQUS,
while the MJC constitutive relation and the CL fracture model are not. However, the
MJC constitutive relation with both Power and Voce hardening laws were included in the
material cards of the models, where the equivalent plastic strains and equivalent stresses
were tabulated. Fracture was not evaluated in this case, therefore an implicit solver in
ABAQUS was used in the numerical models. In ABAQUS/Standard fracture criteria
are not available. The tensile force was applied on the left end of the specimens and
was given as a constant displacement of 1.75 mm and 7.5 mm for the round specimen
L5 and L40, respectively. The constant displacements corresponded to half of the total
displacement of the specimens from the experiments due to the symmetry conditions. To
extract data from the simulations, the diameter reduction at the neck and the applied
force were reported. From this, the true stress and logarithmic strain were calculated.
The results from the simulations are given in Figure 5.2. As seen, the two hardening
laws represent the material behaviour in a good way. The Voce rule is a slightly better
match at large plastic strains for the round specimen L40, as seen in Figure 5.2d. The
simulations agree nicely with the experiments and hence the direct calibration predicts
the material behaviour well in this case.

The deformed shape of the round specimens from the experiments and the numerical
models of the corresponding specimens are visually shown in Figures 5.3 and 5.4. It
is observed that the deformed shape from the experiment is well represented by the
numerical model for both specimen geometries.

Figure 5.3: Visual representation of the deformed shape of the experimental and the numerical
model specimens. Note that the threaded part is not included in the numerical model and that the
geometry is mirrored. PEEQ is the equivalent plastic strain.
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Figure 5.4: Visual representation of the deformed shape of the experimental and the numerical
model specimens. Note that the threaded part is not included in the numerical model and that the
geometry is mirrored. PEEQ is the equivalent plastic strain.

3D Model

A 3D model of the round specimen L5 was created in ABAQUS/Implicit using 360◦

revolution. The specimen was meshed with 8-node linear brick elements (C3D8) with full
integration and the mesh size in the gauge region was set to 0.1x0.1 mm2. Figure 5.5 shows
the mesh of the 3D model. The MJC constitutive relation with Voce hardening rule was
used and the specimen was fixed at one end due to that the hole length was modelled, else
the 3D model was modelled as the axisymmetric model. The results from the simulations
showed that there was no significant difference between the true stress-logarithmic strain
curves for the axisymmetric model and the 3D model. However, the total computational
time is an important factor as the axisymmetric model was approximately 300 times
faster than the 3D model. The heavy computational time of the 3D model makes the
axisymmetric model the best choice in this case.

Figure 5.5: The mesh of the 3D model of the round specimen L5. Note that the threaded ends
are not included in the numerical model.
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5.1.2 Flat Tension Tests

The numerical models of the flat tensile specimens were simplified by using symmetry in
the longitudinal, the transverse and the thickness directions. These simplifications were
made to save computational time. The nominal geometries used in the simulations are
shown in Figures 3.2 and 3.3. The circular holes in the specimens were not included in
the numerical models.

The specimens were modelled with 3D solid elements. The models were partitioned
into three main parts in order to make the mesh more structured. A small sensitivity
study on the mesh size in the gauge region was performed. The element sizes of 0.5x0.5
mm2, 0.25x0.25 mm2 and 0.1x0.1 mm2 were studied for the flat specimen L20. The
results showed that there was no significant influence of mesh size for the two refined
meshes on the numerical stress-strain curves before diffuse necking, therefore the element
size of 0.25x0.25 mm2 was used to save computational time. For the flat specimen L50 on
the other hand, the element size of 0.5x0.5 mm2 gave accurate results and was therefore
used in the simulations. The specimens were meshed with 8-node linear brick elements
(C3D8) with full integration. The mesh of the flat tensile specimens are shown in Figure
5.6.

(a) Flat L20.

(b) Flat L50.

Figure 5.6: Mesh of the flat tensile specimens. The black dashed lines symbolize the symmetry
planes.

The material inputs were the same as for the round specimens. The tensile force,
applied on left end of the specimens, was given as a constant displacement of 5 mm and
12.5 mm for the flat specimen L20 and L50, respectively. The elongation of the specimens
was reported from two single nodes. One was placed at approximately the same position
as the extensometer clip arms and the other had approximately the same position as the
vector from the DIC analyses. The results from the simulations are given in Figure 5.7.
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As observed in Figures 5.7a and 5.7c the simulations agree nicely with the experiments
and the direct calibration predicts the correct material behaviour in this case. However,
the Voce rule predicts the maximum engineering stress at a lower strain than the ex-
periments and the necking point, marked by a black o, appears at lower a strain level.
In Figures 5.7b and 5.7d, the elongation from the extensometers are compared with the
simulations and, as observed, the curves coincide to a certain degree and the stress level
at diffuse necking is about the same. For both specimens, a difference in the strain level
at diffuse necking is observed for the two hardening laws, which is especially visible for
the Power law in Figure 5.7d.
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(a) Flat L20.
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(b) Flat L20.

0 0.05 0.1 0.15 0.2 0.25

Logarithmic strain [-]

0

50

100

150

T
ru

e
 s

tr
e

s
s
 [

M
P

a
]

Experiment

ABAQUS - Voce rule

ABAQUS - Power law

(c) Flat L50.
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(d) Flat L50.

Figure 5.7: Results from the numerical simulations using the direct calibration of the Voce and
Power hardening laws as input data in ABAQUS. The results are compared with the experimental
data. The black o indicates diffuse necking. True stress-logarithmic strain curves (left) and
engineering stress-strain curves from the extensometer (right).

The deformed shape of the flat specimens from the experiments and the numerical
models of the corresponding specimens are visually shown in Figures 5.8 and 5.9. It
is observed that the deformed shape from the experiment is well represented by the
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numerical model for the flat specimen L20. As seen in Figure 5.4, necking of the specimen
from the experiment is not in the centre of the specimen, but slightly to the left. This may
be due to that there was a small imperfection in the material in that point. Imperfections
have not been in included in the numerical analyses and diffuse necking occurs in the
centre of the model as expected.

Figure 5.8: Visual representation of the deformed shape of the experimental and the numerical
model specimens. Note that for the numerical model the geometry is mirrored. PEEQ is the
equivalent plastic strain.

Figure 5.9: Visual representation of the deformed shape of the experimental and the numerical
model specimens. Note that for the numerical model the geometry is mirrored. PEEQ is the
equivalent plastic strain.

Parametric Study

The results from the simulations of the 3D models of the flat tension tests corresponded
very well with the experimental results. However, in the making of the models some
choices and simplifications were made. The circular holes in the specimens were excluded
from the analyses and 3D models were created instead of 2D models, which requires
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more computational time. These parameters were investigated to study the effects on the
results.

A 3D model of the flat specimen L20 created with circular holes at each end of the
specimen was provided by PhD Candidate Henrik Graunm at SIMLab [42]. By including
the circular holes in the numerical model, the boundary conditions from the experiment
were more accurately represented. Except from the circular holes, the 3D model was
created in the exact same way as the 3D model created in Section 5.1.2. The circular
holes had a diameter of 5 mm. The specimen was loaded through a rigid pin modelled
as a discrete surface. The contact was assumed frictionless. Figure 5.10 shows the de-
formed shape of the numerical model with the equivalent plastic strain distribution along
the specimen. The results from the simulations showed that the circular holes had no
influence on the true stress-logarithmic strain curves until diffuse necking, hence the holes
have negligible effect on the deformation in the gauge area and could be excluded from
the models. In computational time, the 3D model created with the circular holes takes
approximately 17% longer time than the 3D model created without the circular holes.

Figure 5.10: Deformed shape of the numerical model of the flat specimen L20 with a circular
hole. PEEQ is the equivalent plastic strain.

The 2D models of the flat specimens were created using deformable shell elements
with a plane stress thickness of 3 mm, which is the nominal thickness of the specimens.
Symmetries in the longitudinal and transverse directions were also used to save computa-
tional time. The element size in the gauge region of the flat specimens L20 and L50 were
0.25 x 0.25 mm2 and 0.5 x 0.5 mm2, respectively. Figures 5.11 and 5.12 show the mesh
of the 2D models, where 4-node bilinear plane stress quadrilateral elements (CPS4) with
full integration were used. The MJC constitutive relation with Voce hardening rule was
used and the boundary conditions were the same as for the 3D models.

The results from the simulations of the 2D models gave exactly the same results as
for the 3D models. This indicates that the 2D models are as good as the 3D models in
this case. By looking closer at the total computational time, the simulations of the 3D
model take approximately 90 % longer time than the 2D model for the flat specimen L20,
while for the flat specimen L50 the 3D model takes approximately 87 % longer time than
the 2D model. This clearly shows that the 2D models have an advantage when it comes
to computational time and, as there was no difference in the result, the 2D models can
describe the material behaviour of the flat tension tests accurately. The 2D models were
further used in the inverse modelling in Section 5.2.
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Figure 5.11: Mesh of the 2D model of the flat specimen L20.

Figure 5.12: Mesh of the 2D models of the flat specimen L50.

5.2 Inverse Modelling

Inverse modelling is a calibration method that uses a trial and error approach that tunes
the constants of a material model until the material model predicts the experimental
material behaviour well. This process of trial and error is cumbersome when done by
hand and can be highly simplified when using a numerical optimization tool.

The numerical optimization tool used in this thesis was the design optimization code
LS-OPT [37]. LS-OPT interacts with the finite element code LS-DYNA [43], but in the
LS-OPT setup ABAQUS can be specified as a user-defined solver. One drawback with the
numerical optimization process is that it can be time consuming, especially for complex
hardening laws with many material parameters to be determined and for computationally
heavy FE-models.

The inverse modelling process was as following. Before running the optimization anal-
yses, numerical models of the tensile specimens had to be created in ABAQUS. LS-OPT
read the ABAQUS input-file, together with a separate input file containing information
on the material parameters to be optimized. Based on this, LS-OPT ran several iterations
while changing only the desired parameters to obtain the solution with the smallest mean
square error between a target curve and the computed curve.

The numerical models of the tension tests created in Section 5.1 were used in the
inverse modelling. The models of the round tension tests are axisymmetric which is
beneficial compared to e.g. a 3D model since a high number of analyses have to be run
during each optimization. For the flat tension tests, the 2D models created in Section
5.1.2 were used instead of the 3D models to save computational time. The measured force-
diameter reduction curves from the tests were used as the target curves for the round
specimens, while the target curves for the flat specimens were the engineering stress-
strain curves. The curves were discretized into 100 data points before the optimization,
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otherwise no other manipulations were performed (e.g. weighting). The optimization was
run using the MJC constitutive relation with the two term Voce hardening rule given as

σeq = σ0 +R(p) = σ0 +

2∑
i=1

QRi(1− exp(−θRi(p)) (5.1)

where θRi ≡ QRiCRi is the work-hardening rate. QR1, θR1, QR2 and θR2 were material
parameters that could be changed to obtain the best fit, while σ0 was held constant.
The material parameters obtained from the direct calibration were used as initial values.
A cut-off-criterion was included in LS-OPT which terminated the optimization after 30
iterations.

Some adjustments could be necessary during the iteration process. A narrow solution
range should be defined for the variables so that LS-OPT will not start to search for a local
mean square error minimum instead of a global mean square error minimum. However,
if one of the optimized parameters is equal the limit value, the solution range might be
too narrow and should be expanded to get a better fit. This process demands some trial
and error.

Table 5.1 shows the optimized material parameters compared with the material pa-
rameters obtained from the direct calibration.

Table 5.1: The obtained direct calibrated and inverse modelled material parameters for the four
specimen geometries.

Geometry Method QR1 θR1 QR2 θR2

[MPa] [-] [MPa] [-]

Round L5 Optimized 31.64 1362.58 90.13 272.43
Dir. Cal. 41.43 1134.35 95.87 184.45

Round L40 Optimized 43.06 2196.74 95.40 308.12
Dir. Cal. 54.54 2075.25 103.7 208.54

Flat L20 Optimized 37.92 2451.40 82.13 395.46
Dir. Cal. 37.09 2209.28 76.85 420.78

Flat L50 Optimized 49.29 2951.48 86.79 352.00
Dir. Cal. 43.70 2857.12 77.03 459.33

The round specimen L5 gave good results after using LS-OPT and all the four material
parameters converged. The same applied for the round specimen L40. The results from
LS-OPT, see 5.13a, shows how the optimal force-diameter reduction curve approaches
the target curve for the round specimen L5. From this figure, it is evident that a good
solution was reached after about nine iterations. Figure 5.14a shows how Q2 converges
from the directly calibrated value to the optimized value. The flat specimens gave also a
good fit, as shown in Figure 5.13b for the flat specimen L50. As seen in the figure, a good
solution was obtained after approximately 13 iterations. However, the convergence of the
parameters was more difficult. The Q2 had problems converging for the flat specimen
L50, see Figure 5.14b.
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(a) Round L5. (b) Flat L50.

Figure 5.13: Screenshots from LS-OPT where only the best computed iterations are displayed.

(a) Round L5.

(b) Flat L50.

Figure 5.14: Screenshots from LS-OPT showing how Q2 converges well for the round specimen
L5 and has problems converging for the flat specimen L50.
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Figure 5.15 compares the equivalent stress-strain curves obtained from the direct cal-
ibration and the inverse modelling. As seen in Figures 5.15c and 5.15d, the optimized
material parameters from the inverse modelling of the flat specimens corresponded very
well with the direct calibration method, even though some of the parameters had trou-
ble converging. For the round specimens on the other hand, Figures 5.15a and 5.15b
show that the inverse modelling resulted in a lower stress level at large plastic strains
compared with the direct calibration. In Section 5.1, the results showed that the direct
calibration corresponded well with the experimental results. Hence, the inverse modelling
of the round specimens could not predict the material behaviour very well at large plas-
tic strains in this case. In order to get a better fit, further trial and error of different
user-defined parameters in LS-OPT could have been carried out.
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(a) Round L5.
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(b) Round L40.
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(c) Flat L20.
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(d) Flat L50.

Figure 5.15: Equivalent stress-strain curves from the inverse modelling compared with the direct
calibration.

As mentioned, there are several user-defined parameters in LS-OPT which the user
must select. The different user-defined parameters can influence both the efficiency of the
optimization procedure as well as the result of it. There are several experimental design
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criteria available and the so-called D-optimality criterion was chosen in this thesis, which
is the default method in LS-OPT. In addition, the order of polynomial approximation
could be changed, where a high-order polynomial approximation yields a better accu-
racy and faster convergence than a lower-order approximation. However, a high-order
approximation takes more computational time [44]. In this case, a first-order polynomial
approximation was used.

All the possibilities in LS-OPT have not been employed in this thesis and further trial
and error with different parameters could give better results. However, optimization is
time consuming and the obtained results are considered sufficient.

5.3 DIC-FEM

A novel technique, which is still under development, incorporates Digital Image Correla-
tion (DIC) and the Finite Element Method (FEM) in a coupled approach (Fagerholt et
al. [45]). The aim of this approach is to obtain optimized material properties based on
rather simple material tests.

Figure 5.16: A schematic overview of the proposed DIC-based FEM approach with optimization
of material parameters. The figure is adapted from Fagerhold et al. [45].

A schematic overview of the DIC-based FEM approach is given in Figure 5.16. By
using two-dimensional DIC in a mechanical test, the in-plane displacement and strain
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fields are easily measured from images of a single camera. The displacement field is the
input data in the FEM routine.

In the FEM routine, the stresses, internal variables and nodal forces are computed
using constitutive models. The global force is calculated by integrating the nodal forces
over the selected cross-section, transverse to the loading direction. The calculated global
forces are compared to the recorded global forces from the test. Thus, the calculated and
measured global force values provide a basis for optimization and validation of the material
model and the associated material parameters. The reader is referred to Fagerholt et al.
[45] for more details on the algorithms behind this DIC-based FEM approach.

The DIC-based FEM approach was performed on the flat specimen L50. The resulting
image sequence obtained from the test was processed using the in-house DIC code eCorr.
In eCorr, see Figure 5.17, a structural Q4 mesh was generated over the necked region of
the specimen. The mesh should cover the hole width of the specimen in order to extract
information at the edges. A strain field was then obtained from a single row of elements,
see Figure 5.17b.

(a) (b)

Figure 5.17: Screenshots from eCorr. (a) Structured Q4 mesh over the necked region, (b) Field
map showing the principal strain in the longitudinal direction.

To avoid noise, filtering of the DIC data was carried out. A two-step procedure of
filtering the DIC results were performed. First, a time-moving average filter which acted
on each node separately and smoothened its displacement in time. Second, a spatial filter
with Gauss weighting which acted on the nodal displacements for a particular time step
and smoothened the displacement in the image plane. The radius of pixels was set to 25
(default value). With these filters the DIC data became smooth and were further sent as
input to the finite element routine.

In this thesis, only the DIC part of the DIC-FEM approach was carried out due to
that the FEM routine is still under development. The FEM routine is proposed as further
work.



6 | Numerical Case Study:
Component Test

In this thesis, uniaxial tension tests were performed on both round and flat specimens
which gave a solid basis for identifying the mechanical properties of an aluminium alloy.
Often, in e.g. the car industry, the mechanical properties of metals are based on tension
tests of flat, dog-bone shaped specimen due to limitation in the design geometries (e.g.
design of thin plates) [46]. The experimental data from flat tension tests are only valid
until diffuse necking and extrapolation is necessary. Therefore, in this case study, the
obtained data from the tension tests of the round and flat specimens were used as input
data in a component test to investigate the difference between data that were curve fitted
all the way to failure (round specimens) and data that were extrapolated from diffuse
necking (flat specimens).

The component test chosen for this purpose was a quasi-static compression test of
a rectangular, thin-walled tube. The numerical model was provided by PhD Candidate
Henrik Granum from SIMLab [42].

The numerical model was established in ABAQUS/Explicit using 3D solid elements.
The nominal dimensions of the tube are given in Appendix A.2. The tube was meshed
with 8-node linear brick elements with reduced integration (C3D8R) where hourglass
control was activated in order to avoid zero-energy modes. The global element size was
set to 1.0 x 1.0 mm2. Two 3D analytical rigid plates were created in order to accurately
represent the boundary conditions of the test machine. One of the plates was given a
constant velocity and time scaling was used to reduce the computational time, while the
other plate was fixed. Friction between the rigid plates and the tube was included in
the model, in addition to self-contact due to the specific folding mechanisms of the tube.
Finally, it was checked that the kinetic energy remained negligible compared with the
internal energy of the tube during the deformation process.

The material was modelled with the von Mises yield criterion, the associated flow rule
and isotropic hardening. The MJC constitutive relation with the Voce hardening rule
was included in the material card, where the equivalent stresses and equivalent plastic
strains were tabulated. A fracture criterion was not included or considered in this case.
The input data were from the representative tests of the round specimen L40 and the flat
specimen L20.

61
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Figure 6.1: Deformed shape of the tube.

The deformed shape of the tube and the results from the simulations are given in
Figures 6.1 and 6.2, respectively. The tube deformed until the equivalent plastic strain
in one of the most loaded elements was approximately 150 %, i.e. the tube experienced
large plastic strains. As seen in the force-displacement diagram in Figure 6.2a, the curves
for the round and flat tension tests using the Voce rule give the same response and agree
very well. The results from the simulations demonstrated that measured data from a
round tension test and a flat tension test can both give the same material behaviour in
nonlinear structural problems with large plastic strains.
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(a) Force-displacement curves.
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(b) Mean force-displacement curves.

Figure 6.2: The results from the simulations of the quasi-static compression test.

The results from the flat tension test using the Power law has a small deviation after
the first peak, compared with the Voce rule as seen in Figure 6.2a. By considering the
first peak in the force-displacement diagram, the difference between the Voce and Power
hardening laws are negligible (only about 1.4 %). As the tube is deforming, the difference
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between the two hardening laws is increasing and the biggest difference is located between
the second and third fold, corresponding to the second and third peak in Figure 6.2a.
At that point the difference in force level is about 7 MPa, corresponding to about 25
%. In Figure 6.2b the mean force-displacement curves are displayed. The three curves
coincide, hence the models absorb approximately the same amount of energy throughout
the simulations.

The aim of this case study was to check that the material properties obtained from
the round and flat tension tests gave the same result in a nonlinear finite element sim-
ulation with large plastic strains. The study showed that the two tension tests resulted
in approximately the same material behaviour, regardless of whether the data were curve
fitted all the way to failure or extrapolated from diffuse necking.





7 | Concluding Remarks

The main objective of this thesis was to investigate the reliability of the material prop-
erties obtained from uniaxial tension tests of small versus large round specimens and
small versus large flat specimens, in addition to comparing the accuracy of different mea-
surement techniques. Uniaxial tension tests have been carried out with four specimen
geometries in order to identify the mechanical properties of the material. The tests have
been conducted using different measurement techniques such as extensometer, laser mi-
crometer, Digital Image Correlation (DIC) and edge tracing. The experimental data
have been processed and the modified Johnson-Cook (MJC) constitutive relation and the
Johnson-Cook (JC) fracture criterion were calibrated based on the experimental results.
The material tests were further numerically simulated using ABAQUS/Standard in order
to verify the calibrated material models. In addition, the results from inverse modelling
were compared with the direct calibration. Finally, the experimental data were used in
a numerical case study to investigate if the different input data had significant effect on
the results in more complex nonlinear structural problems.

Experimental Work

With the use of different measurement techniques, the user-friendliness and accuracy of
the methods were compared. Prior to the tests, all the specimens were measured. The
laser micrometer measured the initial diameters in situ with a high accuracy while for
the edge-trace and DIC approaches the initial dimensions were manually measured with
a digital slide gauge, which has a lower accuracy than the laser. It was observed that
the accuracy of the measured initial dimensions influenced the calculated stress level. An
inaccuracy of 0.05 mm in initial diameter lead to a deviation in stress at failure of 10
MPa. This clearly showed that accurate measurements of the initial dimensions of the
specimens were very important. For an untrained user, some guidelines of how to use a
digital slide gauge could get rid of some of the gross errors and lead to more accurate
measurements.

The results from the tension tests of the round and flat specimens showed that there
was a good repeatability within each geometry and each method. However, when the
results from the round and flat specimens were compared, a deviation between the round
specimen L5 and the three other specimen geometries was clearly observed. The results
from the new tests gave also the same deviation. The reason of this deviation of the round
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specimen L5 is unknown, but it is speculated that this can be a scalar effect since the
round specimen L5 has clearly the lowest cross-sectional area in the loading direction of
the four specimen geometries.

The measured data from the flat specimens were only evaluated until diffuse necking
in this case. Comparison of the edge-trace and DIC approaches showed that the two
approaches gave the same results until diffuse necking. However, for large strains the
measured data from the flat specimens had to be extrapolated, which lead to considerable
deviation. This meant that when DIC was used as an optical extensometer in this case,
the approach cannot be used to investigate fracture. The results from the extensometers
validated that the measured data from the edge-trace and DIC approaches gave the correct
response.

Numerical Work

The numerical models of the tension tests were used to validate the direct calibrated
constants in the MJC constitutive relation and to optimize the constants with inverse
modelling. The results based on the direct calibration corresponded very well with the
experimental results. This showed that the direct calibration predicted the material
behaviour well, at least of this material.

From the inverse modelling process, the optimized model constants for the flat spec-
imens corresponded very well with the direct calibration and hence the experimental
results. For the round specimens, the optimized constants resulted in a slightly lower
stress level at large plastic strains than the direct calibration. Since the direct calibration
corresponded well with the experimental results, the inverse modelling could not predict
the material behaviour well at large plastic stains in this case. The reason for this de-
viation for the inverse modelling is not known and further optimization by changing the
parameters in LS-OPT could result in a better fit.

Numerical Case Study

A numerical case study of a structural component was performed in order to check that
the obtained data from the round and flat tension tests gave the same response in a
nonlinear finite element simulation. The results showed that the data from the round
and flat tension tests, using the MJC constitutive relation with Voce hardening rule, gave
the same global response. The data from the flat tension test using the MJC constitutive
relation with the Power hardening law resulted in similar behaviour, but a small deviation
was observed after the first peak. This study demonstrated that the data from round and
flat tension tests resulted in the same behaviour in a complex nonlinear structural problem
in this case. In conclusion, the tension tests of round and flat specimens are both valid
for identification of reliable mechanical properties of materials.



8 | Further Work

Based on the work done in this thesis some suggestions of further work are here proposed.

• Carry out the same tests performed in this thesis on a 6XXX series aluminium alloy,
where the result from the tests could be compared with the nanostructure model,
NaMo. This could also have been performed using steel.

• Study the DIC-FEM approach in more details and perform the FEM routine when
the routine is fully developed.

• More extensive analyses in LS-OPT while changing the user-defined parameters in
an attempt to get a better fit for the round specimens.

• Numerical simulations of the round tension tests in ABAQUS/Explicit in order to
include the CL fracture criterion.

• More extensive tests of the round specimen L5 in an attempt to find a reason for
the deviation at yielding.
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A | Appendix

A.1 Initial Dimensions of the Tensile Specimens

The diameters in Table A.1 are measured with the AEROEL XLS 13XY laser micrometer
in two directions. The dimensions in Tables A.2 and A.3 are measured with a digital slide
gauge.

Table A.1: Measured diameters of the round specimens with 5 mm gauge length used in the
tension tests with laser. Measures in mm.

Test No. D1,0 D2,0

1 2.9642 2.9646
2 2.9431 2.9435
3 2.9498 2.9499

Table A.2: Measured diameters of the round specimens used in the tension test with edge tracing.
Measures in mm. Nom. = nominal value.

Geometry Test No. D0

Round L5

1 3.000 (Nom.)
2 3.000 (Nom.)
3 3.000 (Nom.)
4 2.970

Round L40

1 6.003
2 6.003
3 6.002
4 6.007
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Table A.3: Measured thickness and width of the flat specimens. Measures in mm.

Geometry Test No. t0 b0

Flat L20

1 3.01 4.91
2 2.99 4.90
3 3.03 4.87
4 2.99 4.93

Flat L50

1 3.015 12.30
2 3.00 12.28
3 3.04 12.39
4 3.02 12.40
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A.2 Nominal Dimensions of the Component

The nominal dimensions for the rectangular tube used in the numerical case study is given
in Figure A.1.
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Figure A.1: The nominal dimensions of the rectangular tube. Measures in mm.


