
Model Development for Optimal
Operation of the District Heating
Facilities of Fortum Oslo Varme
Using Genetic Algorithm, Recurrent Neural

Network and Multiple Linear Regression

Marius Jean Bischof Hagalid

Master of Energy and Environmental Engineering

Supervisor: Natasa Nord, EPT

Department of Energy and Process Engineering

Submission date: July 2018

Norwegian University of Science and Technology



 









iv

]



v

Preface

This is a master thesis written at Department of Energy and Process Engineering, NTNU. It is

written in cooperation with Fortum Oslo Varme during spring of 2018. The thesis is part of the

research project UnDiD, Understanding behavior of District heating systems, Integrating Dis-

tributed sources.

I want to thank my supervisor, associate professor Natasa Nord, for valuable support through

the semester. She helped with guiding the project in the right direction.

I also want to thank Fortum Oslo Varme for their cooperation and support. I received help

from Øyvind Nilsen, Karine Huuse and in particular Birgitte Johannesen who was my supervi-

sor. She was very helpful with collection of data, and provided good advice from an industry

perspective. Her feedback on the first chapters of the thesis was valuable as well.



vi

Summary

Recent development in the energy sector in Norway has made district heating increasingly rel-

evant. In particular, the increased demand for electric power, has contributed to make district

heating more important.

A well known problem in district heating, is operational optimization. In this thesis, the prob-

lem is investigated on the basis of the Fortum Oslo Varme’s system, which consists of more than

40 boilers. All data used in the thesis is gathered from Fortum’s data system.

Another prominent theme in district heating, is the possibility for building thermal energy

storages. Methods which can calculate the profitability of investing in thermal energy storages

are necessary.

To solve the issue of operational optimization, models for predicting future heat load demand

are necessary. Two such models were developed, the best of which were able to predict the heat

load demand with an average error of 7.6% in the years 2013 and 2014.

Additionally, a model for operational optimization was developed. It can be run both with

and without an accumulator tank, so that the operational cost can be compared, and investment

decisions can be taken. It was found that a system with an accumulator tank can save 1.3 million

NOK yearly, based on simulations performed on data from 2016. The investment in a tank is not

profitable, given an assumed cost of 39 million NOK.

It must, however, be taken into account that potential savings will vary between years. The

simulations also build on some assumptions about the district heating system, and the ther-

mal energy storage. Since the optimization model is based on randomness, two consecutive

runs would not give the same result. Therefore, additional simulations are required to verify the

results.



vii

Sammendrag

Utviklingen innenfor energisektoren i Norge de siste årene har gjort fjernvarme stadig mer ak-

tuelt. Spesielt den økte konkurransen for elkraft, har vært med på å øke viktigheten av fjern-

varme.

Et kjent problem innen fjernvarme, er optimalisering av driften. Det er viktig å drifte ethvert

anlegg med lavest mulig utgifter, slik at det er konkurransedyktig. I denne oppgaven utforskes

problemstillingen på basis av anlegget til Fortum Oslo Varme, som består av over 40 kjeler. All

data som er brukt i oppgaven, er hentet fra Fortums datasystem.

Et annet aktuelt tema innen fjernvarmebransjen, er muligheten for å bygge termiske energi-

lager. Det er et behov for metoder til å beregne om det er økonomisk lønnsomt å investere i slike

energilager.

For å løse problemet med å drifte et anlegg optimalt, trenger man modeller som kan forutsi

fremtidig lastbehov. Det har blitt utviklet to modeller som forutsier lastbehov i fjernvarmenettet.

Den mest presise av disse klarte å forutsi lastbehovet med en gjennomsnittlig feil på 7,6% for

årene 2013 og 2014.

I tillegg er det blitt utviklet en modell som optimaliserer driften av anlegget, gitt at man kjen-

ner fremtidig lastbehov. Denne modellen kan kjøres med eller uten akkumulatortank, slik at

man kan sammenligne driftskostnadene, og avgjøre om det er en lønnsom investering. Det

ble funnet ut at et anlegg med akkumulatortank kan spare 1,3 millioner kroner årlig, basert på

simuleringer gjort på data fra 2016. Dette er ikke nok til å kunne rettferdiggjøre den antatte

investeringskostnaden på 39 millioner kroner.

Det må imidlertid tas forbehold om at årlige besparelser ved investering i akkumulatortank

vil variere fra år til år. Simuleringene bygger også på antagelser om anlegget og et eventuelt ter-

misk energilager. I tillegg er det usikkerhet knyttet til optimaliseringsmodellen, siden denne er

bygget på tilfeldighet, noe som gjør at to påfølgende kjøringer ikke gir samme resultat. Gjentatte

simuleringer må derfor gjennomføres for å bekrefte resultatene.
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Chapter 1

Introduction

District Heating (DH) is a flexible system for distribution of energy. It provides opportunity

to utilize a mix of energy sources, in order to maximize their advantages, and minimize their

drawbacks. Moreover, it provides opportunity to utilize low-grade energy sources that could not

have been taken advantage of otherwise. Waste heat from data centers and heat extracted from

waste combustion are examples of such sources.

In Norway, the abundance of cheap, environmentally friendly energy from hydropower has

traditionally made the competitors somewhat redundant. Electricity has been the dominating

carrier of energy for all purposes, including heating. This has been the case even if using high-

grade valuable energy, which electricity indeed is, to cover a low-grade exchangeable demand is

considered by many to be wasteful.

Following the deregulation of the Norwegian electricity market in 1990, however, electricity

prices have been increasing (Aanensen and Fedoryshyn, 2014, p. 8). There has been develop-

ment of the Norway to Europe cross-border electricity lines. As of 2015 Norway had a trans-

mission capacity of about 6000 MW, excluding planned lines to Germany and Great Britain

(Rosvold and Vinjar, 2015). Increased export of electricity, has naturally contributed to increase

the scarcity of the resource on a national level.

In recent years, Norwegian tax laws has been another factor to make electricity scarcer. Tax

benefits provided to el-car owners by the Norwegian government has made el-cars increasingly

1
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more common. As electricity gets a new field of application, new buyers start competing for an

already scarce resource.

By 2015, 62% of the potential for hydropower was already developed (NVE, 2015). Since hy-

dropower is not infinitely expandable, a redistribution of the available electricity becomes nec-

essary. Non el-specific purposes will naturally give way in favor of those that are. DH can replace

electricity in covering the demand for domestic heating, as it is not an el-specific demand. This

has the added benefit of being able to utilize the low-grade energy sources like waste and waste

heat. All of this makes DH a very viable option for Norway going forward.

1.1 Background

1.1.1 Operations Planning

A DH grid typically consist of a number of boilers utilizing different energy sources. These can be

spread out geographically and are connected to each other and consumer substations by insu-

lated pipes in the ground. Water flowing through these pipes is the medium of energy transport.

Cold water is heated by the boilers, and then flows to the substations where it releases heat to

the consumers.

The operation of a DH grid is however a complex undertaking, consisting of a number of tasks

and decisions. Operation decisions being made, directly affect the cost of operation, and it is

therefore crucially important to make close to optimal decisions. If a DH grid is operated sub-

optimally, the profitability of the operation decreases, weakening DH’s competitiveness com-

pared to other solutions. The direct competitors to DH include electricity based solutions and

local solutions. If it is cheaper for the consumer to employ local solutions, like local heat pumps

or stoves, DH may be competed out of the market.

With this in mind, let us review the current situation of the DH business. In general there

will be variations to how each actor in DH performs specific tasks, but most DH businesses

employ a combination of IT resources and human resources in day to day operation planning.
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For example, it is possible to use IT tools to make optimized planning schedules and employ

production operators to handle the operation of the boilers. Computer generated production

plans will sometimes also have to be reviewed by qualified personnel in order to ensure their

optimality.

This interaction between personnel and computers can be exemplified by the way load fore-

casting is performed at Fortum Oslo Varme. Load forecasting is initially performed by a com-

puter program, which makes predictions based on historical data. However, operating staff have

experienced that these predictions are generally not accurate enough, so the staff has to edit the

predictions yielded by the model to make them more accurate.

Employing personnel to perform specific tasks and decisions are sometimes, depending on

the task, more expensive than using automatic models. If utilizing computer models to a larger

degree simultaneously enables the business to cut back on staff, there is an added economic

incentive to do so. By creating more accurate and reliable models, one could potentially cut

back on staff, reducing expenses in the form of wages.

As mentioned, operating a DH system involves a number of separate tasks. In the following,

some relevant operations scheduling tasks will be presented.

Unit Commitment

Unit commitment is a form of short- or long-term production scheduling. It essentially consists

of determining which units shall be turned on at every given point in time during the planning

horizon. The criteria for deciding which units should be active, is minimization of the operation

cost. Often, the environmental impact of operation is considered as well.

A prerequisite for deciding the unit commitment, is to have an accurate prediction of the re-

quired Heat Load (HL). Another is to know the specific price of the energy carriers and the tech-

nical specifications for each boiler.
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With the prerequisite knowledge, it is possible to make enlightened decisions regarding the

unit commitment. By selecting the optimal combination of on/off statuses at each hour during

the planning horizon, one can minimize the operation cost. Finding the optimal schedule in a

system with tens of boiler units is, however, a very challenging task that require sophisticated

search techniques.

The prerequisite of knowing energy prizes and HL demand ahead of time puts some limita-

tions on how far ahead it is sensible to schedule. In the day ahead market for electricity, 12:00

CET is the deadline for submitting bids for power which will be delivered the following day.

Hourly prices are typically announced to the market at 12:42 CET or later (Nord Pool, a). An-

other limitation is the accuracy of weather forecasts. Accurate meteorological forecasts are nec-

essary to predict the HL demand, but the uncertainty of forecasts increases with the forecasting

horizon.

The uncertainty of forecasts and electricity prices, makes long-term scheduling less feasible

than short-term scheduling. A longer scheduling horizon also increases the demand for pro-

cessing power and/or processing time. Conveniently, long-term planning is not necessary in

day to day operation, since HL demand vary according to daily patterns.

Load Forecasting

Load forecasting is the process of predicting future HL demand based on a number of param-

eters. Understanding which parameters impact the demand is part of the challenge. Naturally,

consumer patterns and weather play an important role (Dotzauer, 2002, p. 1). Faults in the

weather forecast will then carry over to the demand forecast.

To find patterns of how the parameters affect HL demand, studying historical HL demand is

very useful. Analyzing how the parameters have affected demand in the past, is helpful in dis-

covering the correlation between the observed values. When performing forecasts, one utilizes

the established correlation to determine the future demand.



1.1. BACKGROUND 5

Figure 1.1: Example of a heat load profile

1.1.2 Investment in Thermal Energy Storages

A DH system consists of boilers with different properties and different purposes. Some boilers

have high investment costs and low operation costs. This makes them suitable to cover the base

load demand, which is the demand with low absolute value but long duration. These boilers will

typically be active throughout the year to fully utilize the investment and save costs on opera-

tion. To cover the peak load demand it is cheaper to use boilers with low investment costs and

high operation costs.

Figure 1.1 shows an example of a load profile of a DH system, where the distinction between

peak load boilers and base load boilers is evident. The system consists of two boilers, where the

bio-boiler is assigned to the base load and stays active throughout the year. Only when demand

exceeds the generation capacity of the bio-boiler, the el-boiler is activated.

In order to decrease the use of peak boilers, and thereby reducing operation costs, it is possible

to invest in a Thermal Energy Storage (TES). A TES can accumulate cheap heat when demand

is low, so that this heat can be released when the demand increases, replacing heat from peak
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boilers.

In recent years, deciding whether to invest in short-term energy storages has been a highly

relevant topic to Norwegian DH companies. IT tools have shown to be a good aid in making

such decisions.

Statkraft Varme is an example of a company which is currently working on the installation of

an accumulator tank at their facility in Trondheim. It can hold 5000 m3 of 120°C water. When

making the decision to invest in the tank, Statkraft employed a simulation tool which showed

that the tank would lead to better energy utilization (Graver, 2016).

Fortum Oslo Varme has considered to invest in an accumulator tank for some years, but in

the past calculations have shown that it would not be profitable. However, such matters has

to be reevaluated continuously, as the DH system changes over time. An updated and more

detailed analysis is necessary in order to reevaluate the decision, so that potential profits are

not lost. Simulating the DH system in detail over time could enable the company to take a more

informed decision.

One way of deciding the profitability of the investment would be to run a unit commitment

optimization of the DH system at hand. By optimizing a longer time horizon, for example a year,

one would get an estimate of the total operation costs over the year. If the same system is then

optimized with an imagined TES installed, one would get a different result for the total operation

cost. Comparing the operation costs of the system with and without a TES, it is possible to

decide whether the investment is profitable or not. Reviewing the variations in HL demand

throughout the year also gives an indication of whether the investment is worthwhile.

1.2 Problem Formulation

This thesis aims to develop models which solves the issue of DH operations scheduling over

short time horizons, focusing on the issues discussed in the preceding section. In the following,

there is a list of subproblems which are to be solved to achieve this goal.
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1. Data Collection

The first subproblem is to gather and present data about the DH system at hand. The sys-

tem should be mapped out, including boilers, facilities and the grid. Furthermore, histori-

cal data necessary to complete the remaining objectives has to be collected and presented

in a well arranged manner.

2. HL Prediction

Develop multiple models for HL prediction, and evaluate which model provides the best

fit. These models must be able to run with available data collected from Fortum, along

with weather predictions. Collected data should also be used to evaluate the performance

of the models.

3. Unit Commitment

This subproblem consists of developing a model for solving the unit commitment prob-

lem, thereby optimizing the operation of the facilities. The optimization should be aimed

at finding the schedule with the lowest possible operational costs. A definition of the unit

commitment problem is provided in section 4.4.1.

4. Yearly Simulations and Sensitivity Analysis

Use the model for unit commitment to simulate a DH system over an entire year. Then

compare the results with the systems actual operation during that period in order to eval-

uate the model. Multiple simulations with different conditions should be performed, to

do a sensitivity analysis which yields economical insight about the system. The primary

target should be to evaluate a possible investment in a TES.

1.3 Limitations

Since optimization of DH production is a very comprehensive problem, some limitations has

been made for the execution of this study.

Methods for meteorological predictions have not been studied. When developing models for

prediction of HL, only the actual measured temperatures have been used. In reality there will
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also be a difference between predicted temperatures and measured temperatures. This error

carries over to the predicted HL.

In order to reduce the mapping job of the production facilities and comply with demands of

confidentiality, the mapping was performed in a generalized manner. Each individual boiler has

not been mapped out, rather the boilers and facilities are described more generally.

The heat transport through the DH grid has not been simulated, because it is not strictly nec-

essary for the purpose of this study. Since hourly historical HL demand is available, the opti-

mization is focused on the heat generation. It is simply assumed that the grid is operated in

such a way that the heat is transferred to the right destination, given that the heat transfer con-

straints of the grid are not violated.

In reality, efficiencies of the boilers will vary depending on operation. In this study there has

not been done an analysis regarding the variation of efficiency depending on variables like part

load, temperatures and so on. Instead, fixed efficiencies have been used. It is, however, possible

to use the developed model as a framework for researching the effect of varying efficiencies on

the operation.

There has also been done some simplifications regarding energy prices. Although most energy

prices will vary throughout the year, not all of the variations have been included in the yearly

simulation. Since accurate hourly prices are only available for electricity, other energy prices

are set to be constant throughout the year.

1.4 Literature Survey

1.4.1 Heat Load Prediction

An important part of the problem is to develop predictive models that can be used to optimize

DH. Models that can predict future HL in the DH network are of particular interest here. Previ-

ous models are developed by analyzing the influencing factors on the HL (Dotzauer, 2002; Mag-

nus Dahl, 2017; Idowu et al., 2014; Ma et al., 2014). It is well known that external factors such
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as outdoor temperature and consumer habits play the most important role in load prediction

models (Dotzauer, 2002; Magnus Dahl, 2017; Idowu et al., 2014).

Dotzauer (2002) develops a simple model for HL prediction based on the parameters outdoor

temperature and hour of the week. This model is based on the assumption that contributions

from the social component and outdoor temperature are independent of each other, so that the

contributions can be summed up.

Magnus Dahl (2017) develops a model where the weekly average HL is predicted. It is done by

using the central boundary theorem to derive a formula for the power requirement of a collec-

tion of single buildings based on the power requirement of each building. In simple terms, the

theorem states that a sum of a number of random variables tends toward a normal distribution.

The constants in the derived formula is determined using feasible generalized least squares, a

technique which is efficient in estimating unknown parameters in a linear regression model.

Profiles for variation in HL requirements throughout the day are also made.

Idowu et al. (2014) compares the performance of four different machine learning algorithms

when predicting HL based on different variables. To predict HL 24 hours ahead of time, the pa-

rameters hour of day, current HL, outdoor temperature and forecasted temperature in 24 hours,

gives the best results. The machine learning algorithm that provides the highest precision in

predictions out of the four algorithms tested is Support Vector Regression. Mixed Linear Regres-

sion provides second best results. Both of them are regression methods that are more sophisti-

cated than regular linear regression. The report also shows that there is a significant correlation

between current HL and HL in 24 hours.

Ma et al. (2014) develops a statistical model, which is based on a Gaussian mixture model. The

main finding of the article is that the factors time and building type is important for determining

energy consumption patterns.

Kato et al. (2008) compares the efficiency of two different neural networks in predicting power

consumption. They are a feed forward neural network (FFNN), which is one of the machine
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learning algorithms used by Idowu et al. (2014), and a recurrent neural network (RNN). The

FFNN is less accurate for dynamic HL prediction, and it is shown that the RNN is more effective.

1.4.2 The Unit Commitment Problem

As mentioned, the problem of heat generation scheduling in a DH system is variation of the unit

commitment problem. This problem is well explored in the literature (Swarup and Yamashiro,

2002; Kazarlis et al., 1996; Cohen and Sherkat, 1987; Ouyang and Shahidehpour, 1991; Thakur

and Titare, 2016; Damousis et al., 2004; Dasgupta and McGregor, 1994; Sakawa et al., 2002). Most

of these papers deal with the unit commitment problem in electric power systems, but mathe-

matically this is very similar to the unit commitment problem in DH systems (Dotzauer, 2003,

p. 2).

An example of a DH unit commitment problem is Sakawa et al. (2002). That problem was

solved by using the genetic algorithm, in a similar way to some unit commitment problems in

electrical power systems (Dasgupta and McGregor, 1994; Swarup and Yamashiro, 2002; Kazarlis

et al., 1996; Damousis et al., 2004). Disadvantages of the genetic algorithms are their long exe-

cution time and that the solution is not guaranteed to be optimal (Damousis et al., 2004, p. 2).

Another prominent solution methodolgy to unit commitment problems, is dynamic program-

ming. It is used in multiple papers (Thakur and Titare, 2016; Ouyang and Shahidehpour, 1991;

Cohen and Sherkat, 1987). Critic against that method revolves around its explosion of computa-

tional resource requirements with system size (Damousis et al., 2004, p. 2). Solution methodol-

gies based on other optimization strategies exist as well. Examples are priority lists (Senjyu et al.,

2003), mixed integer linear programming (Carrion and Arroyo, 2006) and lagrangian relaxation

(Cheng et al., 2000).

The method for solving the unit commitment problem employed in this paper is based on a

genetic algorithm, and is presented in detail in section 4.4.2.



Chapter 2

Assessment of the Plants

This chapter is dedicated to providing an assessment of Fortum Oslo Varme’s DH system. Com-

pared to other systems in Norway, it is relatively extensive. It consists of 11 different production

facilities with a total of 43 boilers, which have a combined generation capacity of approximately

1 GW. The following energy carriers are used:

• Bio-oil/bio-diesel

• Electric boilers

• Heat pumps

• Industrial waste

• Liquefied Natural Gas (LNG)

• Municipal waste

• Oil

• Pellets/biofuel

Each boiler has specifications depending on which energy carrier it uses. The specifications

are described using well known measures from unit commitment literature, namely minimum

down time, minimum up time, minimum generation capacity and ramp up/down rates.

11
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Energy Min Ramp Ramp Min Min Min Efficiency
carrier generation up rate down rate up down down time [1]

capacity [1/h] [1/h] time time (from
[MW/MW] standby)

Industrial 0.7667 1 1 1 h 12 h 3 h 0.88
waste
Municipal 0.7667 - - 1 h 12 h 3 h -
waste
Pellets 0.6429 1 1 30 min 1 h - 0.92
Oil 0.2 1 1 10 min 15 min - 0.95
LNG 0.2 1 1 10 min 15 min - 0.92 - 0.95
Heat pump 0.4 1 1 10 min 15 min - 2.8
Electricity 0.1 1 1 10 min 10 min - 0.99

Table 2.1: Overview of boiler specifications by energy carrier

For the convenience of the reader, all of the measures are explained briefly here. Minimum

down time is the time it takes for a boiler to be turned back on after it has been turned off,

while minimum up time is the time it takes for a boiler to be turned off once it has become

active. Minimum generation capacity is the lowest possible HL the boiler can deliver, and ramp

up/down rates are the rates at which the HL of a boiler can change (while it is turned on).

In reality, the specifications of a boiler depend on the configuration and physical properties

of the individual boiler, but here it is assumed that the boiler specifications can be classified by

the energy carrier of the boiler only. Table 2.1 shows the resulting specifications of the boilers

by energy carrier. In the table, minimum generation capacity is given relative to the maximum

generation capacity. For the purpose of the optimizations presented in subsection 4.4.2, it has

been assumed that boilers which can use either oil or LNG, uses the cheaper of the two, namely

LNG.

Ramp up/down rates are given as the maximum change in part load per hour. Most of the

boilers can reach their maximum generation capacity or be switched completely off inside one

hour. Those units have both a ramp up rate and a ramp down rate equal to one. The indus-

trial waste boiler is obviously slower at ramping up or down, but its high minimum generation

capacity means that it is reasonable to assume that it can ramp from minimum generation to

maximum generation in approximately one hour.
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Facility number Number of boilers Installed capacity [MW]
1 3 42
2 3 145
3 5 150
4 6 57.5
5 1 100
6 2 25
7 2 23
8 7 243
9 3 11.6
10 7 151
11 4 59

Table 2.2: Overview of the production facilities

Since the municipal waste boilers owned by Fortum can generate free heat, they are always

running at their maximum generation capacity. This is true even in the summer, when the free

heat is not actually needed. For this reason there is limited information available about their

specifications.

As the optimization approach presented in subsection 4.4.2 utilizes a minimum time interval

of one hour, minimum up or down times of one hour or less will not affect the optimization

model. Therefore, such constraints do not have to be enforced.

The layout of the district heating grid is presented in figure 2.1. Because of the confidentiality

of the information, it is not a geographically accurate representation. Facility names have been

replaced by numbers, and no names of places are specified. Each production facility consists of

one or more boilers. Table 2.2 shows the number of boilers and installed capacity at each facility.

A generalized facility is shown in figure 2.2, and it can have multiple turn and return pipes,

which lead to different parts of the grid. Valves attached to these pipes control the HL delivered,

so that the demand of each area is met.

The facility shown consists of four boilers, but as mentioned that number will vary between

facilities. In order to satisfy heat demands at different temperature levels, the two valves by-

passing the boilers are used. By adjusting the flow of water outside the boilers, the temperature
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Facility 1

Facility 2

Facility 3

Facility 4

Facility 5

Facility 6

Facility 7

Facility 8

Facility 9

Facility 10Facility 11

Figure 2.1: Layout of Oslo’s district heating grid

level in the turn pipes can be regulated. Lower temperatures in the turn pipes, leads to lower

heat losses, but it is important that the minimum temperature requirements of the customers

are always met. In this case, the facility has three pumps placed in parallel. Utilizing multiple

pumps, ensures reliability in case of a breakdown of one of the pumps.

A generalized overview of a boiler is presented in figure 2.3. At the primary side, the boiler

is connected to a pump and valves which control the flow of water into the primary side of the

heat exchanger. Increasing the flow over the heat exchanger leads to increased heat transfer

to the secondary side. There is also a valve bypassing the heat exchanger on the primary side.

Adjusting the flow of water to through that valve, makes it possible to control the temperature

of the return water into the boiler.

There is also a feed water tank connected to the return water on the primary side. Its purpose

is to feed more water into the system if the water pressure becomes too low. The valve on the

secondary side controls the flow over the heat exchanger on that side. If a boiler is switched off,

that valve can be closed, so that the water will flow to the other boilers instead.
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Boiler 1 Boiler 2 Boiler 3 Boiler 4

Turn 1

Turn 2 Turn 3

Return 1

Return 2 Return 3

Figure 2.2: General layout of a facility

Boiler

Feed water tank

Fuel

Turn water

Secondary side

Return water

Primary side

Figure 2.3: General layout of a boiler
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2.1 Limitations of The District Heating Grid

As the facilities are geographically spread throughout the DH grid, the heat transfer limitations

of the grid affect the operation of the facilities. The mass flow rate, ṁ, will be the limiting factor

along with the temperature difference of the system, (Ttur n −Tr etur n). They limit the energy

flow Ė , as described by equation 2.1. When both are at their maximum values, the result is the

maximum energy flow. The mass flow is in turn restricted by the diameter and roughness of the

pipe, and the pumps used to pump the water through the pipe. cv is the heat capacity of water

at constant volume.

Ė = ṁ · (Ttur n −Tr etur n) · cv (2.1)

Boilers which deliver heat to certain areas of the grid have upper limits on their combined

generation, due to the limitation on the energy flow. Generally, this can be described by equa-

tion 2.2. Here, J is the set of units which are affected by a certain constraint. Ėmax,J is the

maximum combined generation limit and, P j (t ) is the generation of unit j at time t . In gen-

eral, there can be many constraints on this form, but for this system there are only two such

constraints which are relevant.

∑
j∈J

P j (t ) ≤ Ėmax,J (2.2)

2.2 Operational costs

The operational costs consist of start costs, standby costs and specific energy costs. Start costs

are the cost of heating the boilers to operational temperature. Standby costs are related to keep-

ing boilers warm and ready to start generating with a lesser delay. Specific energy costs are

simply the fuel costs per MW of heat at normal operation. In reality, there is also operational

costs associated with maintenance and wages, but these costs are assumed to be independent
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of plant operation. Based on that assumption, those expenses can be neglected by the optimiza-

tion model.

The boilers have start costs corresponding to the amount of energy which is needed to reach

a high enough temperature to start delivering heat to the grid. Boilers powered by pellets, mu-

nicipal waste or industrial waste will need start up energy in the form of bio-diesel or oil. The

rest of the boilers simply use their primary energy carrier as start up energy. The start costs are

calculated according to equation 2.3. The notation for the equation is given in table 2.3.

SUi =
Pi ,mi n ·T o f f

i ·SFi

2
(2.3)

SUi start up cost of unit i
Pi ,mi n minimum generation capacity of unit i

T o f f
i minimum down time of unit i

SFi start fuel cost of unit i

Table 2.3: Notation for equation 2.3

Boilers running on industrial waste have the additional option to be in standby mode. This

means that the boilers are kept warm by combustion of bio-diesel, so that generation can re-

sume when needed. This significantly decreases the minimum down time of those units, but

comes at the cost of the bio-diesel which is used to keep it warm. As suggested by equation 2.3,

a shorter minimum down time will also decrease the start cost. Therefore, it may be cheaper

to keep a unit at standby than to turn it off completely depending on the scheduled down time.

Start costs, standby costs and specific energy prices are given in table 2.4.

Some of the municipal waste boilers in the system are not owned by Fortum. Those boilers

are operated by an external company, and Fortum has simply agreed to buy all the heat they

deliver at fixed rates. During the period May-September the rate is 100 NOK/MWh and during

October-April the rate is 270 NOK/MWh.
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Energy carrier Specific energy price [NOK/MWh] Standby cost [NOK/MW]
pellets 380 -
oil 720 -
LNG 390 -
heat pump spot price + 60 -
electricity spot price + 60 -
industrial waste 32 112
municipal waste 0 112
municipal waste (external) 100 or 270 -

Table 2.4: Operating costs of boilers by energy carrier

Electricity is traded on an hourly basis at the Nord pool power market, and the spot price is

volatile over the course of a day. To accommodate for variations throughout the days, hourly

price data has to be collected. Hourly spot prices has been gathered from (Nord Pool, b). It is

assumed that the energy price payed by Fortum is the Nord Pool spot price plus a premium of

60 NOK/MWh.

The remaining energy prices do not vary significantly over the course of a single day, so they

are assumed to be constant over time. That price data was gathered from Fortums internal data

systems. In those prices, efficiency of the boilers are already accounted for. The specific energy

prices for electric boilers and heat pumps, on the other hand, do not account for efficiencies. All

the energy prices are presented in table 2.4 along with standby costs. The standby cost is given

relative to the maximum generation capacity of the boiler.

2.3 Thermal Energy Storage

TES refers to a system which stores heat in some medium over longer or shorter periods of time.

The energy can be stored as sensible heat, latent heat or thermochemical energy (Sharma et al.,

2009, p. 4-5). In the context of this thesis, the term refers to systems using water to store energy

as sensible heat, also called accumulator tanks.

The principle of a water based TES, is to keep hot and cold water separated inside the tank.

No built-in physical boundaries are necessary for this purpose. Instead, the difference in density
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Figure 2.4: Layout of a thermal energy storage from Thomsen and Overbye (2016)

between hot and cold water ensures that the hot and cold water stays separated in layers. Hot

water with low density will stay in a layer on the top part of the tank, while cold water with higher

density will stay lower down. In the middle there is a transition zone with a temperature gradient

ranging from hot at the top to cold at the bottom. This phenomenon is called stratification

(Thomsen and Overbye, 2016, p. 3-4).

The tank is always completely filled with water, but the ratio between cold and hot water

changes as heat is charged or discharged. When the storage is in discharge mode, hot water

is extracted from the top, and cold water is fed into the bottom. In charge mode, hot water is fed

in at the top, and cold water is extracted at the bottom (Thomsen and Overbye, 2016, p. 3-4).

Since the tank is designed without any physical separation of hot and cold water, it is impor-

tant that the turbulence of the flows in and out of the tank is kept a minimum. To minimize the

turbulence, diffusers are used to feed and withdraw water from the tank (Thomsen and Overbye,

2016, p. 3-4).
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2.3.1 Operational Losses

A thermal energy storage will have two sources of operational losses. One of them is the heat

losses from the tank to its surroundings caused by conduction through its walls. Heat is trans-

ferred from the water inside the tank to the colder air outside (Bahnfleth and Musser, 1998, p. 3).

The other phenomenon causing losses is mixing of hot and cold water in the tank. Even if a

TES is designed to promote water stratification, there will still be some heat transfer between

the higher and lower layers of water. In district heating, the equipment of the customers are

designed to operate inside certain temperature ranges, and this places a minimum threshold

on the turn temperature. Mixing of hot and cold water in the tank will leave some of the stored

energy at a temperature which is lower than the minimum threshold. If the storage is not phys-

ically close to a production facility, so that the water can be reheated, this energy can not be

delivered to the customers (Verda and Colella, 2011, p. 6).

The discharge efficiency ratio, ε, of the storage is defined in equation 2.4. Qav is the average

usable discharge energy of the storage, and Qtot is the total initial energy (Verda and Colella,

2011, p. 6). It will vary depending on the design of the tank, and the charging/discharging rates.

Higher flow rates will make the flow more turbulent, increasing the losses due to mixing (Verda

and Colella, 2011, p. 6). The insulation of the tank affects the losses due to conduction.

ε= Qav

Qtot
(2.4)

Verda and Colella analyzes a tank with a volume of 1000 m3. Using a one dimensional model

and computational fluid dynamics, a discharge efficiency ratio of between 90% and 86% de-

pending on discharge rate is found. This is also consistent with values in other works (Bahnfleth

and Musser, 1998, p. 3) (Wang et al., 2015, p. 7). For the purpose of the optimization model, a

value of 90% has been chosen.
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2.3.2 Dimensioning

The storage capacity, ET ES,max, is determined by the internal volume of the tank, V , and the

temperature difference of the water, (Ttur n −Tr etur n). It is calculated according to equation 2.5.

ET ES,max =V ·ρ · cp · (Ttur n −Tr etur n) (2.5)

cp is the heat capacity of water, and ρ is the density of the water. The charge/discharge capac-

ity, PT ES,max, is not that clearly defined. When the charge/discharge rate is increased, the flow

becomes more turbulent. This, in turn, increases the mixing of hot and cold water, and thereby

reduces the discharge efficiency ratio. For this reason, the charge/discharge capacity must be

set based on the desired discharge efficiency ratio.



Chapter 3

Presentation of Data

The purpose of this chapter is to give an overview of the DH system at hand. This is done by

studying operation of the system over time and reviewing relevant historical data. Both internal

and external parameters have been reviewed.

3.1 Outdoor Temperature and Heat Load Data

Some of the outdoor temperature data and HL data used to create the models for HL prediction

in chapter 4 are presented here. The dataset consists of hourly averages from the period 2013 -

2016. Only data from 01-Jan-2016 01:00:00 - 31-Dec-2016 08:00:00 is presented here. Outdoor

temperatures are recorded at Ullevål. HL is the total heat delivered from all boilers across all

eleven plants. In other words, it is the total heat that is delivered to Oslo’s DH grid.

As figure 3.1 and figure 3.2 suggests, the data tends to follow a trend where the relationship

between HL and outdoor temperature are approximately linear below a threshold temperature,

Tthr eshol d . When the outdoor temperature is higher than Tthr eshol d , HL is approximately con-

stant at the value P0. This relationship can be explained by the fact that there is no need for

room heating when the outdoor temperature is over Tthr eshol d . In that range the only source of

HL demand is from tap water heating (Magnus Dahl, 2017; Dotzauer, 2002).

22
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Figure 3.1: Scatter plot of hourly heat load versus temperature Jan-2016 01:00:00 - 31-Dec-2016
08:00:00

Figure 3.2: Scatter plot of weekly average heat load versus weekly average temperature Jan-2016
01:00:00 - 31-Dec-2016 08:00:00
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Figure 3.3: Hourly heat load of weeks 48 and 49, 2016

Notice that the data points are more scattered in figure 3.1 than in figure 3.2. The reason for

this is that hourly HL is heavily influenced by the daily consumption patterns. When taking the

average over one week, the daily consumption patterns does not impact on the value. There

will, of course, still be differences in consumption patterns between weeks as a consequence of

for example holidays. Another reasonable contribution factor to the difference in spread is that

potential outliers of the hourly data will has less impact on the weekly average data. Since each

weekly data point is the average of 168 hourly data points, a couple of outliers in the hourly data

will not have a big impact on the weekly average value.

Figure 3.3 shows how the HL varies depending on the hour of the week for two consecutive

weeks. For weekdays, there are usually two peaks, one in the morning and one in the evening.

During the night HL stays at a lower value. The high peaks induce increased costs, because they

need to be covered by more expensive energy sources. This is part of the motivation for using

accumulator tanks to store energy.

It is also worth noting that the daily profiles of weekends are different from those of weekdays.

The reason for this is differences in consumer patterns between weekends and weekdays (Ma

et al., 2014). More people get up early and go to work in the week, whereas they get up later and

stay at home in the weekend. When people get up, there is an increased demand for tap water

heating due to showering. Demand for room heating also increases. On work days the heat
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demand of work places will be higher during opening hours, while homes will have reduced

demand in this period (Gross and Galiana, 1987, p. 4). These differences are important to take

into consideration when developing models for HL prediction.

3.2 District Heating Operation

To be able to evaluate the model for unit commitment, it is useful to study historical operating

data for comparison. It can reveal information about how the system operates as well. This

section contains HL data from facility 8 along with the total HL demand of the system. The

data is presented as hourly values for one day at a time. To get a good overview, one day from

each season except autumn where selected. Autumn was omitted, as meters seems to have

malfunctioned during that period, so that data was not available.

Figure 3.4 and figure 3.5 shows how total HL demand and HL of each individual boiler varies

on 01.01.2016. As one can see, the HL demand initially is at about 240 MW and then rises to

around 300 MW between 7:00 and 8:00. It then stays around 300 MW until it starts slowly de-

creasing after 16:00. Before midnight the HL demand is back to approximately 240 MW.

Looking at figure 3.5 it does not seem like the changes in total HL demand carries over to

the HL of the boilers at facility 8. The explanation for this must be that boilers located in other

facilities are ramped up to meet the increased demand. Boiler 5, which uses industrial waste,

and boilers 6 and 7, which use municipal waste, are kept switched on throughout the day. Their

HL is kept steadily around their maximum generation capacity. The remaining boilers, which

use pellets (boiler 1), LNG (boiler 2 and boiler 3) and electricity (boiler 4) are kept switched off.

This indicates close to optimal operation of the facility, as the cheapest sources of energy are the

ones being used.

The total HL demand and boiler HL on 01.04.2016 is shown on figure 3.6 and figure 3.7. The

HL demand has a peak of around 150 MW between 9:00 and 10:00. After 16:00 it rises up again

and stabilizes around 130 MW.
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Figure 3.4: Total heat load demand 01.01.2016

Figure 3.5: Heat load of the boilers at facility 8 on 01.01.2016
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Figure 3.6: Total heat load demand 01.04.2016

Figure 3.7: Heat load of the boilers at facility 8 01.04.2016

Once again boilers 6 and 7 are generating heat at their maximum capacity throughout the

day. To meet the peak demand, the el-boiler, boiler 4, is kept on until around 10:00. After it is

switched off, it remains off until after 20:00, when it is ramped back up. It might seem coun-

terintuitive to utilize electricity rather than industrial waste to cover the peak demand. After all

heat from industrial waste is far cheaper than electricity. This can, however, be explained by the

higher start cost of the industrial waste boiler. It takes longer to start up, and also consumes ex-

pensive bio-oil when doing so. Since there is large fluctuations in HL demand, it can sometimes

be better to utilize the el-boiler to satisfy a temporary demand.
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Figure 3.8: Total heat load demand 01.07.2016

Figure 3.9: Heat load of the boilers at facility 1 01.07.2016

Finally, HL demand and boiler HL of 01.07.2016 are shown in figure 3.8 and figure 3.9. HL

demand stays very low throughout the day, but with small peaks in the periods 7:00 - 8:00 and

18:00 - 19:00.

Only boiler 6 is kept on throughout the day. The reason could be that Fortum are obligated to

buy the heat generated by that boiler. This is true even if heat from industrial waste would be

cheaper.



Chapter 4

Methodology

This chapter is aimed at presenting the methodology which was used to solve the four tasks

brought up in section 1.2. The first section contains information about how the structuring

and collection of data was performed. The second section deals with a method for analyzing

a known HL profile in order to decide the necessary size of a potential TES. Methodologies for

predicting the HL profile based on external parameters is presented in the third section. In

the fourth section, the methodology used to find the optimal operation schedule of the boilers

based on a known HL profile is described.

4.1 Data Collection

The methods for collecting and structuring data are presented in this section. All of the historical

data was collected from Fortums internal data systems. The collection process consists of the

following three steps.

4.1.1 Retrieving Tags

The layout of the system as well as the layout of each of the facilities are represented graphically

in computer program. It includes all of the important units, like pumps, boilers, regulators and

so on. Each unit has an individual tag, which is essentially the name or code of that unit. To get

historical values for one unit, the tag of that unit has to be retrieved.

29
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4.1.2 Compiling a Report

Once all the necessary tags have been retrieved, the next step is to input those tags into a report

creation program. The program lets one input the desired tags along with metadata like the de-

sired time step, desired period and so on. When it runs, the output is an excel table with listings

of values for each selected tag at each time step. Analyses were, for the most part, performed

with one hour time steps, so that was also the selected interval for the data reports.

4.1.3 Organizing Data

To further organize and visualize the data, the excel data was later imported into matlab. In

matlab’s workspace one can then create variables containing any time interval and combination

of tags. Most of the data were structured into separate variables for each year. For example,

an individual variable containing the hourly HL demand during 2016 was created. Afterwards,

separate variables were created for the HL demand of the remaining years.

4.2 Analysis of Heat Load Profile

To find out if investment in a TES is necessary, one has to perform some analysis of the HL

profile of the relevant DH system. Intuitively, a system where the HL demand varies a lot during

the day, will have a larger upside from using a TES. In a system with high demand peaks, a TES

can be very useful in reducing said peaks. The methodology for analyzing daily HL variations is

presented in the following.

To analyze the daily HL patterns, two terms introduced by Gadd and Werner are used. These

are the relative daily variation, Gd , and the relative hourly variation, Gh .

4.2.1 Relative Daily Variation

The relative daily variation, Gd , is defined by equation 4.1. Here, Ph is the hourly average HL, Pd

is the daily average HL, and Pa is the annual average HL (Gadd and Werner, 2013, p. 5).
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The relative daily variation is a measure of how much the hourly average HL deviates from the

daily average HL during a day. For one year there will be 365 different values. A TES with a size

corresponding to the highest value of relative daily variation would be enough to eliminate all

of the daily variations during that year. Since Gd is a unitless measure, equation 4.1 has to be

multiplied by 24 ·Pa/100% to get the storage size (Gadd and Werner, 2013, p. 5).

Gd =
1

2

∑24
h=1 |Ph −Pd |

Pa ·24
·100% (4.1)

4.2.2 Relative Hourly Variation

The relative hourly variation, Gh , is defined by equation 4.2. It is a measure of how much the

hourly average HL deviates from the daily average HL for each hour during the course of a year.

A TES with a HL capacity corresponding to the highest value of relative hourly variation will be

enough to eliminate all of the daily HL variations. Since Gh is a unitless measure, equation 4.2

has to be multiplied by Pa/100% to get the HL capacity (Gadd and Werner, 2013, p. 5).

Gh = |Ph −Pd |
Pa

·100% (4.2)

4.2.3 Dimensioning of Thermal Energy Storage

The maximum values of the preceding terms specify the size and the HL capacity of a TES nec-

essary to eliminate all of the daily HL variations. In reality, a TES which eliminates all of the

variations will be oversized and therefore not the most profitable option (Gadd and Werner,

2013, p. 7).

To find a middle ground between the investment cost and reduction of HL variation, some

further analysis has to be performed. Gadd and Werner suggests that one should first remove

the extreme values, corresponding to the highest 1% of Gd and Gh . Then the average values

of both parameters are calculated. Using the average values instead of the maximum values is

sufficient to remove almost all of the daily HL variations (Gadd and Werner, 2013, p. 7).
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4.3 Heat Load Prediction

In the following, two methods for HL prediction are presented. Common for both of them is

the goal of predicting future values based on a set of known parameters. Both models were

fitted based on data from 2015 to 2016. They were then used for predictions on data from 2013

to 2014. When training the neural network, 70% of the data from 2015 to 2016 were used for

training, 15% for validation and 15% for initial testing. Both methods have been implemented

in MATLAB R2017b.

4.3.1 Multiple Linear Regression

Multiple Linear Regression (MLR) is a method built on the assumption that the relationship

between the dependent variable and the input parameters can be described by equation 4.3

(Idowu et al., 2014, p. 3).

Y =α+β1 ·X1 +β2 ·X2 + ...+βn ·Xn (4.3)

Y is the dependent variable, x1, x2, ..., xn are the input parameters, and β1,β2, ...βn are the

weights which describe the dependency of Y on each input parameter. There will be an error, ε,

between the predicted value, Y , and the real value, y .

By using this model, one assumes that the dependency of HL on each of the input parameters

is in fact a linear one, but in reality relationships can have any functional form. To account for

this, it is possible to include input parameters which are functions of independent parameters.

In this model, some of the input parameters are products of independent parameters.

In MATLAB R2017b, the method is implemented using the function fitlm. The model was

fitted using the option of robust fitting, which is a modification of the least squares method. It

iteratively reduces the effect of outliers using weighted least squares, where lesser weights are

given to data points far from the initially fitted line (MathWorks, a). Since no data preprocessing

to reduce outliers was performed, robust fitting is preferred over ordinary least squares.
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The input parameters, x1, x2, ..., xn , for the multiple linear regression model are as following.

• Outdoor temperature (Recorded at Ullevål)

• The HL recorded 24 hours prior to the prediction

• The month of the year (as 12 categorical variables)

• The hour of the week (as 168 categorical variables)

• The hour of the week multiplied by outdoor temperature

• The month of the year multiplied by outdoor temperature

It is well documented that HL recorded at one point in time has a correlation with HL recorded

24 hours later (Idowu et al., 2014, p. 4). This is also confirmed by including the current recorded

HL as an input in the model for predicting HL in 24 hours. HL 24 hours ago then returns a

p-value of 0 in the linear model created, which means that there is a 0% that they are not corre-

lated.

Seasonal changes such as the number of daylight hours and changes in temperature, affects

the behavior of consumers (Gross and Galiana, 1987, p. 4). To account for the varying consump-

tion patterns over the year, the input variable month of year has been included.

HL also varies depending on the hour of the day and the day of the week (Dotzauer, 2002;

Ma et al., 2014; Magnus Dahl, 2017; Kato et al., 2008). Both of these variations are captured by

dividing the week into 168 hours, creating 168 corresponding categorical variables. A categorical

variable is 1 if a data point is recorded at the corresponding weekly hour, and it is 0 otherwise.

Nonlinear Regression

The relationship between HL of a DH system and outdoor temperature is not linear over the

entire range of outdoor temperatures (Magnus Dahl, 2017, p. 7). Rather HL as a function of

outdoor temperature is approximately linear below some threshold temperature, T0, and it is

approximately constant above that temperature (Magnus Dahl, 2017, p. 18). This knowledge is

possible to exploit when performing linear regression.
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One way to find the threshold temperature, T0, is to fit the parameters of equation 4.4 using

nonlinear regression. It is an equation derived to the describe the dependency of weekly average

HL, P tot , on weekly average outdoor temperature, Tout (Magnus Dahl, 2017, p. 18). The data

used for fitting is Tout and P tot . The model is fitted by estimating values of the parameters a, T0,

σ and P0. Estimation is done in MATLAB R2017b by employing the function nlinfit. It uses an

iterative generalized least squares algorithm to fit the nonlinear regression model (MathWorks,

c).

P tot (Tout ) = a

[
(Tout −T0)

1

2
erfc

(
Tout −T0p

2σ

)
− σp

2π
exp

(
− (Tout −T0)2

2σ2

)]
+P0, (4.4)

where erfc is the error function, as defined in equation 4.5

erfc(x) = 1p
π

∫ x

−x
e−t 2

d t (4.5)

A Combined Model

Since the dependence of HL on outdoor temperature has a different functional form above and

below T0, it is proposed to divide the training dataset into two sets. One set contains the data

points with outdoor temperature lower than T0, while the other set contains the data points

where the outdoor temperature is higher than T0. Then the two data sets are used to train two

separate sets of MLR weights. Both are trained with the same selection of input parameters, but

one is trained with the first set of data, while the other is trained with the second data set.

Having two separate sets of weights entails having two separate MLR models independent of

each other. By combining these models, it is possible to get good predictions of HL whether the

outdoor temperature is higher or lower than T0. If a test data point has an outdoor temperature

below T0, HL is predicted by the first model, and if it is above T0, HL is predicted by the second

model. In this way, it is decided which model is used for prediction at each data point of the test

data set. This means that the combined model used for prediction is in fact a combination of

two separate MLR models.
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Figure 4.1: The recurrent neural network in open loop configuration (figure created in MATLAB)

4.3.2 Recurrent Neural Network

Another approach to predicting HL data, is using neural networks. In this case, a nonlinear

autoregressive neural network with external input (NARX) has been used. It is a type of recurrent

neural network that can learn to predict a time series given past values of the same time series,

and another time series (MathWorks, b). This is shown in figure 4.1, where the watches, with

1:24 written on them, indicate delayed values.

The output of the network y(t ) is the HL predicted at time t . The inputs used to predict this

value are {x(t −1),x(t −2), . . . ,x(t −d)} and past HL values
{

y(t −1), y(t −2), . . . , y(t −d)
}
. x(t ) is

a vector of the values of K independent parameters measured at time t . In other words, for time

t there are K independent input parameters x1(t ), x2(t ), . . . , xK (t ).

The independent input parameters used in this model are the following:

• The outdoor temperature

• The type of day, weekday/weekend (as a categorical variable)

• The season (as 4 categorical variables)

The output for the next time step y(t +1) of the NARX network with multiple independent in-

puts is calculated according to equation 4.6 (Diaconescu, 2008, p. 5). The hidden layer transfer

function Φh is the sigmoid function, and the output layer transfer function Φo is linear (Math-

Works, d).
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y(t +1) =Φ0

{
bo +

N∑
h=1

wh,o ·Φh

(
bh +

d∑
i=0

[
wi ,h · y(t − i )+

K∑
k=1

wi ,k,h · xk (t − i )

])}
(4.6)

Input xk has a corresponding weight, wi ,k,h , for each amount of delay, i , and each hidden

layer neuron, h. The output, y , also has a corresponding weight, wi ,h , for each amount of delay

and hidden layer neuron. Notation for equation 4.6 is given in table 4.1.

y(t ) Output of the network at time step t
x1(t ), x2(t ), . . . , xK (t ) Values of K independent inputs of the network at time step t
N Number of neurons in the hidden layer
K Number of independent input parameters
d Total amount of delay
bh Hidden layer bias
bo Output layer bias
wi ,h , wi ,k,h Hidden layer weights
wh,o Output layer weights
Φh Hidden layer transfer function
Φo Output layer transfer function

Table 4.1: Notation for the NARX net

The amount of delay, d , chosen for the proposed network is 24. Remember that data was

collected with one hour intervals, so in time delay this corresponds 24 hours. Training of the

network was done in open loop configuration using the Levenberg-Marquardt algorithm, which

is described briefly by Lourakis. This means that the network was fed the correct output values,

in this case HL values, when training. After the network is trained, it can be used for prediction.

The future HL values are then unknown and can therefore not be used by the network. First the

network has to be changed into closed loop mode as shown in figure 4.2. In closed loop mode,

it uses its own predicted HL values from the previous time step as input for the next time step.
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Figure 4.2: The recurrent neural network in closed loop configuration (figure created in MAT-
LAB)

4.4 Optimization of Unit Commitment Using Genetic Algorithm

and Load Dispatch

4.4.1 The Unit Commitment Problem

The short term operation scheduling of DH production is a version of the unit commitment

problem. It involves deciding which units are to be committed, in other words turned on, at

every point in time inside the planning horizon. This is done by minimizing the operation cost,

while serving the HL demand at every hour in the interval. Additionally, constraints related to

the production units has to be respected. The mathematical formulation of the problem con-

sists of minimizing the cost function, without violating the constraints (Swarup and Yamashiro,

2002, p. 2), (Senjyu et al., 2003, p. 2), (Damousis et al., 2004, p. 2). The cost function is shown in

equation 4.7, and notation is given in table 4.2.

C F =
T∑

t=1

N∑
i=1

[Fi (Pi (t ))+SUi (t ) ·ui (t ) · (1−ui (t −1))+SDi (t ) · (1−ui (t )) ·ui (t −1)] (4.7)

The unit commitment problem has a number of constraints which need to be satisfied at

any given point in time:

1. System HL balance. The generation has to be equal to the HL demand.

D(t ) =
N∑

i=1
Pi (T ) (4.8)
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C F total cost over the planning horizon
N number of production units
T total scheduling period
i index of unit
t index of hour
ui (t ) commitment status (1=on, 0=off) of unit i at time t
Pi (t ) generation of unit i at time t
Pi ,max maximum generation capacity of unit i
Pi ,mi n minimum generation capacity of unit i
Li ,max(t ) maximum generation limit of unit i at time t
Li ,mi n(t ) minimum generation limit of unit i at time t
D(t ) HL demand at time t
T on

i minimum up time of unit i

T o f f
i minimum down time of unit i

X on
i (t ) on time of unit i at time t

X o f f
i (t ) off time of unit i at time t

Fi (Pi (t )) fuel cost of unit i at time t
SUi (t ): start up cost of unit i at time t
SDi (t ): shut down cost of unit i at time t
RUi ramp-up rate of unit i (in megawatts per hour)
RD I ramp-down rate of unit i (in megawatts per hour)

Table 4.2: Notation of the unit commitment problem
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2. Generation limits. The generation for each unit has to be within the current generation

limits of the unit. This is stated by equation 4.9.

Li ,mi n(t ) ≤ Pi (t ) ≤ Li ,max(t ) (4.9)

Notice that the generation limits for each unit are time dependent. This is because they

depend on the ramp up/down constraints and the generation in the previous time step as

specified by equation 4.10

Li ,max(t ) = ui (t ) ·min
{
Pi ,max ,Pi (t −1)+RUi

}
Li ,mi n(t ) = ui (t ) ·max

{
Pi ,mi n ,Pi (t −1)−RDi

} (4.10)

3. Unit minimum up/down time. A unit’s commitment status can only be changed when

equation 4.11 is satisfied.

T on
i ≤ X on

i (t )

T o f f
i ≤ X o f f

i (t )
(4.11)

4. Unit initial status. Initial status of the units must be taken into account so that ramp

up/down rates or minimum up/down times are not violated.

4.4.2 A Genetic Algorithm Approach

As discussed in section 1.4.2, there are multiple possible approaches to solving the unit commit-

ment problem. The one chosen here is employing a variant of the genetic algorithm. Genetic

algorithms are search techniques that can be applied to variety of problems. They are inspired

by the evolution that can be observed in nature (Kazarlis et al., 1996, p. 3).

The on/off status of all the units over the planning horizon is encoded by a bit string of length

T · N as shown in figure 4.3. One bit encodes the status corresponding to a certain unit at a

certain hour. A zero in the bit string means that the unit is off, at that hour, while a one means

that it is on. A bit string is also called a genotype.
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Figure 4.3: A solution to the unit commitment problem represented as a bitstring (Kazarlis et al.,
1996, p. 3).

Genotype

Fitness function

Fitness value

Figure 4.4: Input and output of the fitness function

Finding the optimal operation schedule is equivalent to finding the optimal genotype. The

objective function which measures the performance of a genotype, is called the fitness func-

tion. It takes a genotype as input, and outputs a fitness value as shown in figure 4.4. When

one is searching for the optimal genotype, one is searching for the genotype that has the lowest

possible fitness value.

In the context of unit commitment the fitness value is calculated according to equation 4.12.

It consists of the operation costs and a penalty term. The reason for including a penalty term is

that all of the constraints of the problem are not enforced by the genetic algorithm directly. Usu-

ally some of the constraints are enforced by adding a penalty term to the cost function when the

constraint is violated. This is encouraging the optimization algorithm to choose valid solutions.
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The penalty is calculated according to equation 4.13 (Kazarlis et al., 1996, p. 3). In this case only

the constraint of system HL balance is enforced using a penalty.

FT =
[

FCT +SUT +SDT +
N∑

j=1
PF j

]
(4.12)

FCT : Total fuel cost over the planning horizon with optimal load dispatch
SUT : Total start up cost over the planning horizon
SDT : Total shut down cost over the planning horizon
PF j : Penalty associated with violation of constraint j
j : Constraint number

PF j =µ j · |V IOL j |, (4.13)

µ is the penalty multiplier associated with constraint j , and V IOL j is the amount that constraint

j is being violated by.

Fitness Function

To evaluate the fitness value of a genotype according to equation 4.12, first the fuel cost and

penalty has to be calculated. So in order to assign a fitness value to each genotype, the load

has to be dispatched to the units at each hour to find the fuel cost. This is done by the fitness

function itself. It performs load dispatch and uses the resulting fuel cost and penalty to calculate

the fitness value of a selected genotype. The load is dispatched using a priority list algorithm,

which minimizes the total fuel cost of each hour individually.

Before the load can be dispatched at an hour t , the current maximum generation limits,

Li ,max(t ) has to be adjusted, so that the limitations of the DH grid described by equation 2.2

can not be violated. This is done by first sorting the units affected by a given constraint by de-

scending specific energy price. Then their maximum generation limits are decreased sequen-

tially, starting with the first unit in the list. The maximum generation limit of a unit is reduced

until it either is equal to the minimum generation capacity, or until equation 4.14 is satisfied.

Once it is satisfied, the combined generation limit of the affected units, Ėmax,J , can no longer be

exceeded, so no further changes are done to the current maximum generation limits.
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Pi 5(t )Pi 4(t )Pl (t )Pi 2(t )Pi 1(t )
Priority list direction

P (t )

Li ,max (t )

Li ,mi n(t )

Figure 4.5: Illustration of load dispatch by priority list

∑
j∈J

L j ,max(t ) ≤ Ėmax,J (4.14)

When the generation limits have been adjusted, the next step is to find the optimal load dis-

patch at the current hour. This is in essence similar to the previous step. First a priority list is

created by sorting the currently active units by descending specific energy prices. It must be

prioritized to utilize the cheaper units at the back of the resulting list. This is achieved by first

setting the generation of all the units to their current maximum generation limits. Then the gen-

eration of each unit is decreased sequentially, starting with the units at the front of the priority

list. The generation of a unit is decreased until it is equal to the current minimum generation

limit, or until equation 4.8 is satisfied. Once it is satisfied, the procedure ends.

The result will be that a sequence of units from the front of the list has their generation set to

Li ,mi n(t ), and a sequence of units at the end has of it has their generation set to Li ,max(t ). A unit

in between those two sequences will have its generation set somewhere between Li ,mi n(t ) and

Li ,max(t ). This unit will from now on be reffered to as the limit unit or unit l . An example of a

result of the load dispatch procedure is shown in figure 4.5.

Once the optimal load dispatch for an hour has been found, it is possible to calculate the fuel

costs associated with that load dispatch. If the optimal load dispatch does not satisfy equa-

tion 4.8, a penalty is incurred according to equation 4.13.
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Start

Generate initial pop-
ulation of genotypes

Evaluate fitness
of each genotype

New generation of
genotypes is created

by basic operators

Heuristic operators are
applied to the genotypes

Evaluate fitness
of each genotype

Stopping
criteria reached?

Best genotype

Stop

yes

no

Figure 4.6: Flowchart of the genetic algorithm approach
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The whole procedure is sequentially repeated for the next hours of the planning horizon.

When it is finished, all of the terms on the right hand side of equation 4.12 can easily be cal-

culated, so that the fitness value is found.

4.4.3 The Genetic Algorithm

The genetic algorithm works by randomly creating an initial set of solutions, also called a gen-

eration of genotypes. Then each genotype is evaluated by the fitness function, which assigns it

a fitness value. Afterwards, it creates the next generation of genotypes from the previous one

using three different operators. Before any operators are used, two parent genotypes are chosen

at random, but with a larger probability assigned to genotypes with a low fitness value relative to

the rest of the population. Two offspring genotypes are then created using one of the basic op-

erators: crossover, mutation or elitism (Kazarlis et al., 1996, p. 4). This process is repeated until

the desired amount of offspring genotypes have been created. The distribution of offspring cre-

ation between operators can be set at any desirable value. In the following, each basic operator

is explained.

Crossover

This operator mimics the natural selection in nature. It combines the properties of the two

parent genotypes, and creates a new genotype with properties from both parents. Some parts of

the offspring genotype will be copied from one of the parents, while other parts of it are copies

from the other parent (Kazarlis et al., 1996, p. 4).

Mutation

This operator mimics the mutation in nature, and is aimed at increasing the diversity of geno-

types, in order to find better solutions. When applied, it changes randomly chosen bits of the

offspring genotype from 0 to 1 or the other way around (Kazarlis et al., 1996, p. 4).
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Elitism

The best individuals from the previous generation are simply copied over to the next generation

without any alteration. (Kazarlis et al., 1996, p. 4).

4.4.4 Heuristic operators

The aforementioned operators are the most standard features of the genetic algorithm. They

are generally effective at solving any type of problem. In this case, a number of additional oper-

ators are implemented in order to make the algorithm find better solutions specifically for the

unit commitment problem. As shown in figure 4.6, once a new generation has been created by

crossover, mutation and elitism, the resulting solutions are altered by a set of heuristic opera-

tors.

Turn-off mutation

A problem of using the genetic algorithm to solve the unit commitment problem, is that it is

difficult for the algorithm to determine if a unit should be turned off for the entire scheduling

period. The turn-off mutation is aimed at addressing this problem (Maifeld and Sheble, 1996,

p. 37). It is applied to each of the solutions in a new generation with a certain probability. When

it is applied to a genotpe, a unit is chosen at random, and this unit is switched off for the entire

scheduling period.

Intelligent mutation I

In unit commitment, it is rarely optimal to switch a unit on and off every other hour. With this

knowledge, the intelligent mutation I operator was developed. When applied to a solution, it

first chooses on unit at random. Then it searches that units schedule for instances where the

unit is turned on or off. In other words, it searches for 0 1 and 1 0 combinations in the schedule.

When such a combination is found, it is replaced by either a 1 1 or 0 0 combination, with equal

probability (Maifeld and Sheble, 1996, p. 49).
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Intelligent mutation II

This operator is also aimed at finding better solutions by eliminating constant on/off-switching.

Similarly to intelligent mutation I, a unit is chosen at random and searched for 0 1 and 1 0 com-

binations. However, instead of replacing the bits at random, the operator calls the fitness func-

tion to test whether it is cheaper to replace them by a 1 1 or 0 0 combination or leave them as

is. Whichever combination gives the lowest fitness value is kept in the genotype (Maifeld and

Sheble, 1996, p. 51).

Minimum Up/Down Operator

Since up and down time constraints are not enforced on the problem, a repair operator is neces-

sary in order to fix invalid solutions. This operator searches for instances in the solution sched-

ule where such constraints are violated. When a point is found where a unit is switched on

illegally, the hours from it is turned off until the hour before it can legally be switched on are

all replaced by either ones or zeros, depending on which combination gives the lowest fitness

value. This is an embodiment of the Minimum Up/Down Operator (Swarup and Yamashiro,

2002, p. 4).

4.4.5 Thermal Energy Storage

Up to this point, methodology for solving the unit commitment problem with the genetic al-

gorithm, has been presented. Similar approaches have been used to optimize the operation of

DH systems to some extent (Sakawa et al., 2002, 2001). There is, however, limited information

available on how the approach can be applied to DH systems which include a TES.

In this section, it will be shown that the approach can, with slight modifications, also be used

for systems which have a TES. In that case, the TES is treated as a normal generator, which has

its minimum and maximum generation limited by the physical properties of the storage.

Since the TES does not have a specific energy cost assigned to it, its place in the priority list

of generators can not be decided with the standard priority list algorithm. To define its position
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in the list, a number of additional bits containing that information are needed. These are ap-

pended to the original genotype, and encode an integer, I , which defines how the storage is to

be operated. For each hour of the planning horizon, k bits are added to the genotype. The inte-

ger, I , then has a value between −k/2 and k/2. Its value is calculated according to equation 4.15.

Here, bi is the value of bit i . Methods representing integers with bits from a bit string has been

utilized previously in other optimization problems (Gil et al., 2003, p. 4).

I =−
k/2∑
i=1

bi +
k∑

j=k/2+1
b j (4.15)

If the integer is negative, it indicates that the storage is charging, while a positive value indi-

cates that energy is being discharged. A value of zero indicates that the TES is disabled.

If the value of I is -1, the storage unit will be placed immediately before the limit unit in the

priority list. In case there are more units with the same specific energy price as the limit unit, the

storage unit will be placed before the first of them. For each integer I is less than -1, the storage

is placed one price step further to the front of the priority list.

If the value of I is 1, the storage unit will be placed immediately before the limit unit in the

priority list. In case there are more units with the same specific energy price as the limit unit,

the storage unit will be placed before the first of them. For each integer I is larger than 1, the

storage is placed one price step further to the back of the priority list.

When the storage is in discharge mode, it has a maximum discharge capacity, LT ES,max(t ),

given by equation 4.16 and a minimum discharge capacity, LT ES,mi n(t ), of zero. When it is in

charge mode, LT ES,max(t ) is equal to zero, and LT ES,mi n(t ) is given by equation 4.17. Notice that

the TES generates negative HL when it is in charge mode. ε is the discharge efficiency ratio of

the TES and accounts for the losses as explained in section 2.3.1. ET ES(t ) is the currently stored

energy of the TES, and ET ES,max is the storage capacity.

LT ES,max(t ) = min
{
ε ·ET ES(t ),PT ES,max

}
(4.16)
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LT ES,mi n(t ) = max
{
ET ES −ET ES,max(t ),−PT ES,max

}
(4.17)

4.4.6 Yearly Simulation

To simulate the operation of the plant over an entire year, the previously described genetic al-

gorithm approach is used. Unit commitment status and HL for each unit is scheduled for 24

hours at a time. The scheduling is run sequentially for each day of 2016, using HL demand data

collected from Fortum. As the hourly unit commitment statuses and HL are found, the yearly

production cost is obtained as the sum of the fitness values of the best solutions.



Chapter 5

Results

In this chapter, the results are presented. There are three parts. The first one contains the results

of the load profile analysis. The second section contains results from the HL prediction, and the

third section contains results from the yearly simulations.

5.1 Load Profile Analysis

The load profile analysis gives estimates of the size and HL capacity of the TES. The load profile

of 2016 is used for the analysis. Figure 5.1 shows the relative daily variation on each day during

the year when the largest 1% of the values has been removed. The mean value of relative daily

variation is then 5.1%, which corresponds to a TES size of 238 MWh.

The largest value of relative daily variation is 14.9%, which corresponds to a TES size of 695

MWh. This means that a TES size of 695 MWh would be enough to eliminate all of the daily

variations. However, a TES of that size would only be utilized at its maximum capacity for one

day of 2016, which would not be economically ideal. Rather a TES size of 238 MWh is preferred

as a starting point for the simulations which are to be carried out.

When it comes to relative hourly variation, the maximum value is 49.9%, which corresponds to

a HL capacity of 91 MW. This means that a TES with a HL capacity of 91 MW would be enough to

eliminate all of the hourly variations. Such a high value is not realistic in practice, since it would
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Figure 5.1: Relative daily variation for each day of 2016

require high flow rates of water. To accommodate for the higher flow rates, pipes, pump and

tank has to be sized up, but even then higher water speeds relative to dimensions would likely

be required as well. This, in turn, leads to more turbulence, and if there is too much turbulence

the TES might be impossible to operate because of mixing of cold and hot water in the tank. The

mean relative hourly variation is 10%, which corresponds to a HL capacity of 19 MW.

This analysis is useful for determining how much of the daily load variations can be elimi-

nated with a TES of a certain size and HL capacity. However, it does not immediately show how

much of the variations one should aim to eliminate from an economical standpoint. That also

depends on the investment cost of the TES and the operation costs of the boilers. Therefore

optimization and sensitivity analyses have to be performed in order to find the specifications of

the ideal TES.

5.2 Heat Load Prediction

In this section, the results of heat load prediction using two different methods are presented.

The methods used are MLR and RRN. Both models have been trained using data from 2015 to
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Figure 5.2: Relative hourly variation for each hour of 2016

2016, and were then tested on data from 2013 to 2014.

In table 5.1 some performance measures of the models are shown. The perfect model has Ge-

ometric Mean Bias (MG), Geometric Mean Variance (VG), Correlation Coefficient (R) and Factor

of two (FAC2) equal to 1, and it has Fractional bias (FB) and Normalized Mean Square Error

(NMSE) equal to 0. Both models perform on an adequate level with numbers close to the ideal

values. The RNN has a lower absolute value of FB and MG, which are measures of systematic er-

ror (Chang and Hanna, 2004, p. 8). It has a better value for R as well, even if that is not necessarily

indicative of a good fit (Chang and Hanna, 2004, p. 8).

The MLR model scores better on the remaining measures, NMSE, VG and FAC2. NMSE and

VG are both measures of mean relative scatter. This means that the MLR makes lesser errors in

its predictions overall. Its high score on FAC2 is important as well, since it indicates that almost

all of the predicted values are in the vicinity of the measured values (Chang and Hanna, 2004,

p. 8).
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Method Multiple linear regression Recurrent neural network
Mean absolute percentage error (MAPE) 7.6330 8.7530
Fractional bias (FB) -0.0249 -0.0047
Normalized mean square error (NMSE) 0.0092 0.0101
Correlation coefficient (R) 0.9908 0.9932
Factor of two (FAC2) 0.9915 0.9687
Geometric mean bias (MG) 0.9736 0.9841
Geometric mean variance (VG) 1.0116 1.0137

Table 5.1: Performance comparison of load prediction methods (best values in bold)

Figure 5.3: 1:1 scale plot of the multiple linear regression
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Figure 5.3 shows a 1:1 scale plot of the MLR. When reviewing the plot of the MLR, some sys-

tematic errors become apparent. To the upper right of the figure, the errors do not appear to be

spread randomly. Rather, all of the predicted HL are larger than the measured HL in that region.

The reason for that could be an assumption made when creating the model. It was assumed

that HL is linearly dependent on outdoor temperature below the threshold temperature, how-

ever, this is not completely accurate. As heating equipment is turned up to their maximum load,

the HL as a function of outdoor temperature approaches a constant value (Dotzauer, 2003, p. 3).

Some large errors can be spotted in the area between measured HL of 100 MW and 200 MW.

There are many points where predicted HL is more than 100 MW too high. When searching

for points with an error larger than 100 MW, it becomes evident that 24 of those errors where

recorded during the period 12.02.2014 - 13.02.2014. This is actually in the middle of the winter

holiday in Norway, which would explain a deviation in consumer behavior from the normal

consumption patterns. This uncovers a weakness in the model, namely that holidays are not

accounted for.

Figure 5.4 and figure 5.5 shows the results of each sub model of the MLR model. The scatter in

the upper right region of figure 5.4 suggests that a systematic error is present in the sub model

for outdoor temperatures above T0. In that region, predictions seems to systematically under-

shoot the measured HL. This could be caused by the observed nonlinear dependence of HL on

outdoor temperature when outdoor temperature is close to the threshold temperature. As HL

can not be accurately be predicted by a linear model in that area, the predictions undershoot

the measured values, and also leads to some heteroskedasticity in the results.

When reviewing the scatter plot for the RNN on figure 5.6, it is evident that the predictions are

more scattered away from the line. This is in line with the values of NMSE and VG presented

earlier. Noticeably, both models has some extreme errors around the measured HL of 50 MW. In

particular, there are three points where the predicted HL overshoots the measured HL by over

300 MW. Interestingly, all of those errors where recorded between 12:00 and 13:00 of days in au-

gust 2013. Reviewing those data points, show that the recorded outdoor temperatures are below

-20 °C at each of those points, which must certainly have happened because of malfunctioning



54 CHAPTER 5. RESULTS

Figure 5.4: 1:1 scale plot of the multiple linear regression above T0

Figure 5.5: 1:1 scale plot of the multiple linear regression below T0
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Figure 5.6: 1:1 scale plot of the recurrent neural network

measurement equipment. An interesting difference between the models is that while the MLR

model overshoots its predictions in the upper right, the RNN model does not. This is related

to one of the strengths of a RNN model has compared to a MLR model. To train the RNN, one

does not need to make assumptions about the functional relationship between the dependent

variable and the input parameters.

The prediction of both methods and the measured HL of week 2 of 2013 are shown in fig-

ure 5.7. Again it is confirmed that the linear model has lesser errors in predictions compared to

the neural network. This is can possibly be attributed to the fact that it uses a larger number of

parameters which affect the measured HL. Additionally, the RNN’s use of previously predicted

values in future predicted values can contribute to propagation of errors if initial predictions are

not accurate.

The predictions and measured HL of week 30 of 2013 are shown in figure 5.8. Errors may seem

larger here than in week 2, but this is because the relative errors are larger. Remember that the

errors of neither model showed any clear heteroskedasticity in the 1:1 scale plots, except for a

small number of data points on figure 5.4. This means that the expected magnitude of the errors
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Figure 5.7: Heat load predictions of week 2, 2013

Figure 5.8: Heat load predictions of week 30, 2013
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a T0 σ P0

-18.0763 14.8904 3.6738 48.5543

Table 5.2: Parameter values of non linear fitting

Figure 5.9: Fitted curve of non linear model to observed heat load points 2015 - 2016

is for the most part not dependent on the measured HL.

Overall, the RNN model shows less systematic bias compared to the MLR model. This is likely

due to the assumption that HL is a piecewise linear function of outdoor temperature, which

that model is based on. However, it does have significantly less scatter, which makes it perform

better than the RNN model overall.

5.2.1 Nonlinear Regression

Figure 5.9 shows the resulting curve of the non linear regression. HL and outdoor temperature

of 2015 - 2016 was used for fitting the model. The resulting values of the parameters are shown

in table 5.2. Only the value of T0 was necessary to make the MLR model.
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With TES Without TES
Yearly cost [NOK] 184,900,000 186,240,000

Table 5.3: Results of simulations with and without a thermal energy storage

5.3 Yearly Simulation

In this section, the results of the yearly simulations are presented. Optimizations were run with

a range of different setups, so that effects of various parameters can be studied.

The initial runs were carried out first without a TES, and then with a TES of size 238 MWh. The

results of those simulations are shown in table 5.3. According to the results, a saving of 1,345,000

is possible with a TES of that size. Given the assumption that cost savings would be similar in

subsequent years, it is possible to calculate the net present value of an investment in a TES. If

one makes the conservative assumption that the lifespan of the TES is 25 years, and has an initial

investment cost of 39,000,000 NOK, the net present value of the investment is -19,000,000 NOK,

given an interest rate of 5% . Here, costs as a result of maintenance, tank operation, and so on

have been neglected. The negative net present value indicates that the investment would not be

profitable under the given conditions.

5.3.1 Comparison with Actual Operation

It is interesting to see whether the boilers at facility 8 would be operated any differently if the

genetic algorithm approach was applied. In the following, the results of the yearly simulation

will be presented and compared with the actual operation during that period.

On figure 5.10, the results of simulations of 01.01.2016 is presented. Operation of the indus-

trial waste boiler, boiler 5, is similar to the operation data from figure 3.5. The HL of Boiler 6 and

boiler 7 is the equal to the operation HL, as those boilers are not part of the optimizations. Boiler

4, the electric boiler, is the only one with clear differences between actual operation and simu-

lations. The simulation has it active between hour 6 and 24, while operation data shows that it

was inactive in that period. However, the difference does not make a big impact on the opera-

tion cost, as it is possible that heat from boiler 4 simply replaces the heat that would otherwise
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Figure 5.10: Heat load of the boilers at facility 8 on 01.01.2016

be generated from an electric boiler in another facility.

Figure 5.11 shows the results of simulations of 01.04.2016. Compared to the actual operation

from figure 3.7, the major difference here is that boiler 5 is turned on instead of boiler 4. This

is the cheaper solution, since industrial waste has a lower specific energy price than electricity.

Seemingly, the genetic algorithm has found a more optimal operation schedule than the one

used in practice. There could, however, be natural reasons for why boiler 5 is not utilized. For

example there could be carried out maintenance on that boiler.

Results from optimization of 01.07.2016 are shown on figure 5.12. Here the actual operation

from figure 3.9 is equal to that resulting from optimizations. The reason is that the solution is

trivial. The demand is so low that no HL is generated except that from boiler 6, which is not

operated by Fortum Oslo Varme.
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Figure 5.11: Heat load of the boilers at facility 8 on 01.04.2016

Figure 5.12: Heat load of the boilers at facility 8 on 01.07.2016
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Figure 5.13: Sensitivity analysis of thermal energy storage size

5.3.2 Sensitivity Analysis

Dependency of Yearly Operation Cost on Thermal Energy Storage Size

To better understand the effect of different parameters on the yearly cost, a sensitivity analysis

has to be performed. When investigating the economic viability of a TES, the most pressing issue

is deciding its size. This can be done by comparing the cost savings achieved with different TES

sizes. Figure 5.13 shows the results of performing a sensitivity analysis based on storage size.

It is interesting to note that the yearly operation cost is not strictly decreasing with TES size.

The reason is, apparently, that the genetic algorithm is a stochastic method which will generally

not acquire the same result twice. There are more possibilities for cost savings, when the TES

size is larger, but the algorithm may not always find the best solutions. The random nature

of the algorithm means that it can find extraordinarily many optimal solutions on one run of

simulations, while fewer optimal solutions are found on the next run.

This is problematic in regards to the confidence of the results. As the figure is based on only

one simulation per data point, it is probable that the optimal costs have not been found, so the
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dependence shown in the figure is not a proven relationship.

Increasing TES size seems to generally affect the yearly cost in the negative direction. This is to

expected. One point, in particular, breaks with this pattern. That is the point where the storage

size is 190 MWh. The yearly operation cost in that point is 186,200,000 which is considerably

lower than the operation costs with TES capacities of 214 MWh, 238 MWh and 262 MWh. Since

a larger TES size only increases possibilities, and does not limit them, the optimal solutions with

a larger TES is at least as good as previous solutions with smaller TES. Because of that fact, the

conclusion must be that, by random chance, more optimal solutions were found when using a

TES size of 190 MWh.

Another interesting point, is that the relationship between storage size and yearly operation

cost seems to flatten as TES sizes become larger. It is reasonable, since one is expanding the

TES into an area of diminishing returns. This is illustrated well by figure 5.1. A storage size of

286 MWh is enough to eliminate a relative daily variation of 6.1%. When summing the relative

daily variation under a horizontal line drawn from 6.1%, one finds the total amount of daily

variations eliminated by the TES. Overall, it is enough to eliminate 79% of daily variations, and

has a utilization of 66%. Increasing the TES size any further would only have minor benefits in

reducing daily variations, but with a substantial decrease in utilization.

Dependency of Yearly Operation Cost on Thermal Energy Storage Heat Load Capacity

The yearly operational cost versus HL capacity of the TES, is plotted in figure 5.14. It is evident

that the yearly operational cost is more sensitive to changes in HL capacity than to changes in

TES size, since the difference between the maximum and minimum costs are 500,000 NOK for

TES size and 1,300,000 NOK for HL capacity.

Savings of 340,000 NOK can be made by increasing the HL capacity from 9.5 MW to 13.3 MW.

From that point onwards, the dependency seems to flatten out. As is the case with TES size,

there is an area of diminishing returns.
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Figure 5.14: Sensitivity analysis of thermal energy storage heat load capacity

When increasing HL capacity, one should be wary of the effect it has on the discharge effi-

ciency ratio. Higher water speeds will be required to achieve the highest HL capacities, so that

more turbulence is created in the tank. This, in turn, promotes mixing in the tank, so that the

tank can not be run equally efficiently. Such effects are not included in the sensitivity analysis,

but they must be accounted for when selecting HL capacity. It is possible with the proposed

framework, to make a sensitivity analysis regarding discharging efficiency ratio as well.

Running one sensitivity analysis with 11 simulations, takes around 26 to 32 hours on an AMD

Ryzen 5 1600 processor. If one is planning to use the framework for comprehensive sensitivity

analyses based on tens of parameters, powerful hardware is required.
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Concluding Remarks and

Recommendations for Further Work

Two working models for heat load prediction have been developed. Their performance in pre-

dicting the heat load demand for Oslo’s district heating grid on an hourly basis have been com-

pared. Their performances were tested by predicting the heat load from 2013 to 2014. Compar-

isons showed that out of the two models, the one using MLR had the least spread errors, and

was therefore deemed more effective overall.

Additionally, a model for solving the unit commitment problem, and performing load dis-

patch, has been developed. It was based on the genetic algorithm, using a simple priority list

method to dispatch the load at each hour. An advantage of the model, is that it can perform

simulations with a TES installed as well. This was used to investigate the profitability of adding

an accumulator tank to the system. The results showed that a system with an accumulator tank

can save 1.3 million NOK yearly, based on simulations performed on data from 2016. The in-

vestment in a tank is not profitable, given an assumed cost of 39 million NOK.

Future work on prediction models will aim at getting more accurate predictions. When it

comes to the MLR model, it had problems achieving precise predictions in the border areas,

where the dependency of HL on outdoor temperature is not linear. This is true in the area where

temperatures are getting so low that the heating equipment of the customers are already turned
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up to the maximum.

When it comes to the neural network, predicted HL was more scattered from the measured

HL. This can mainly be attributed to the fact that it uses fewer input parameters than the MLR.

However, if one tries to add more relevant parameters to the model, one risks adding a lot of

irrelevant information to model, since past values of all added parameters are simultaneously

added as well. To achieve increased precision with a RNN, one has to use a different kind of RNN,

that does not have to take in past values of all the input parameters. One could for example use

a similar RNN to the one used by Kato et al. (2008).

A weakness in both models, is that they do not include all of the relevant input parameters. In

particular, predictions on holidays were shown to have large errors. This issue could be negated

by including such data in the models.

When it comes to the model for operational optimization, it is very flexible and can be used

for systems of different sizes, or over longer planning horizons. It is possible that optimizing for

longer planning horizons can lead to more optimal operation of the TES. The reason for this is

that, generally, no energy will be saved from one day to the next, as the model can not see that

far into the future.

A strength of the model, is that it does not require a smooth cost function. This makes it able

to work well on a highly complex search space like a unit commitment problem.

A weakness of the model, is that it is based on randomness, so that the optimality of the so-

lutions can not be guaranteed. To ensure the validity of the results, one would have to perform

multiple simulations, which can be very time consuming when simulating operation over longer

periods. When optimizing one day at a time, however, the running time is not an issue.

Another term that would be possible to include in the cost function, is the variation of boiler

efficiencies with part load. For this study, only constant efficiencies were acquired, so they are

the ones that were used. In the future it would be interesting to study the relationship between
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part load and efficiency, if such data is available. If so, a function describing this relationship

can be included in the model.

Additionally, other operation expenses could be added, if one acquires relationships between

the HL of the boilers, and such expenses is known. For example, a thought scenario where one

knows the pumping cost as a function of boiler HL, would be possible to study.



Appendix A

Acronyms

DH District heating

FAC2 Factor of two

FB Fractional bias

HL Heat load

LNG Liquefied natural gas

MAPE Mean average percentage error

MG Geometric mean bias

MLR Multiple linear regression

NMSE Normalized mean square error

R Correlation coefficient

RNN Recurrent neural network

TES Thermal energy storage

VG Geometric mean variance
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