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La goutte de pluie
(Dieu parle)

Je cherche une goutte de pluie
Qui vient de tomber dans la mer.
Dans sa rapide verticale

Elle luisait plus que les autres
Car seule entre les autres gouttes
Elle eut la force de comprendre
Que, trés douce dans |’ eau salée,
Elle allait se perdre & jamais.
Alorsje cherche dansla mer

Et sur les vagues, alertées,

Je cherche pour faire plaisir

A ce fragile souvenir

Dont je suis le seul dépositaire.
Maisj'ai beau faire, il est des choses
Ou Dieu méme ne peut plusrien
Malgré sa bonne volonté

Et I’ assistance sans paroles

Du ciel, desvagues et de I’ air.

Jules Supervielle, La Fable du monde.









Preface

When | was a child we had no phone at home. Only one personin our street, thelocal rep-
resentative of the regional newspapers, had a phone. From time to time, my father who
was sailing around the world called us at our neighbour’s. Maybe dad was far away in
Buenos Aires, or sailing close to us off Ouessant after along journey. Maybe it was my
brother’ s birthday or mine. Anyway, our neighbour cameto warn us, and wewould al run
down the street and wait for the ringing tone. | was so happy. So happy. Today we all go
around carrying mobile phones, and ringing tones make us by turns bored, stressed,
happy, indifferent or irritated. Something has not changed though: calls still make us run.

It seems that people run faster asthe pace of introduction of new communication technol -
ogies increases. While new technologies simplify our activities in many ways, they also
draw us into an interminable race where bits and bytes accompany our restless dances.
The faster we are able to communicate and exchange information, the more information
we send and receive, the more we do or try to do, the more we run, the less we think. |
sometimes wonder where this running will lead us.

As a telecommunications engineer and research scientist, | have little influence on the
rhythms of the world. I contribute myself to a cacophony where “time to market”, “rapid
service development”, “effective processes’ are everyday sounds, where “cost” and
“profit” arethe main directors. Starting adoctoral study gave me an opportunity to get free
from these market constraints, and opened new horizonsfor me. | have been able to com-
pose my work freely and to perform tasks that do not necessarily relate to immediate

profit. In that way, this study has brought resonance to my work and life.

Severa persons have provided me with help and encouragement during this doctoral
study. | would like to thank all of you. Rolv Bra&k, my advisor, for his patience, wisdom
and unending stream of advice. Otto Wittner, doctoral fellow at ITEM, for hisenthusiasm
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and unlimited optimism. Richard Sanders, my long-term colleague at SINTEF and ITEM,
for his generosity and sengitivity, for his comforting words and thorough comments.

This study would not have taken place without any financial support. | would like to
acknowledge the Research Council of Norway for their support through project grant no.
119395/431. | also acknowledge SINTEF Telecom and Informatics that has given me the
opportunity to undertake this study. Especially | would like to thank Eldfrid @. @vstedal
for her comprehension, and for providing me with the means to combine work and study
in aflexible way.

| am also deeply grateful to all the friends that have brought colours to my life these last
years. To friends who have shared many passions with me. To friends who have helped
me discover the music of Arvo Part and the poems of Jules Supervielle. To cordial friends
who have offered metheir hospitality. And especially for all the quiet, magic and inspiring
moments spent at Storfosna.

My parents have always encouraged me in all of my enterprises, even my more fanciful
ones. | thank you for having given methe spark of life and inspired me to curiosity.

Trondheim, February 2003

Jacqueline Floch



Abstract

Today telecommunication service users expect to access a Similar set of services inde-
pendently of what network they happen to use, they expect services to adapt to new
surroundings and contexts as they move around, and they expect to get access to new and
useful services as soon as they become available. Building services operating satisfacto-
rily under such requirements poses new challenges and requires new solutions and new
engineering methods for rapid service development and deployment.

The PaP project at NTNU was initiated in order to define a framework for service devel-
opment and execution that supports the dynamic composition of services using Plug-and-
Play techniques. By dynamic composition, we mean that services and service components
can be designed separately, and then composed at run-time. In the frame of the PaP
project, thisdoctoral work has addressed two issues: the design and the validation of Plug-
and-Play services.

Service design is complex. In a PaP context, this complexity increases further as services
are designed to be dynamically adapted to changing contexts. A design approach based
on service roles is proposed, and role composition is proposed as a means to achieve
adaptability.

We model service role behavioursand their composition using state machinesthat interact
asynchronously. Describing system behaviours in terms of state machines has proven to
be of great value, and iswidely adopted in most teleservice engineering approaches. We
favour the use of the modelling language SDL because of itsformal semanticsthat enables
an unambiguous interpretation of the system specification. However, our design and val-
idation results are not bound to SDL. They may be applied on systems specified using
other modelling languages that support state machines, as for example UML.

In our work, weinvestigate how SDL-2000 can be used to model composition. Differently
from process algebra, SDL and other approaches using state machines do not explicitly
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define composition operators. By defining design patterns and rules for expressing com-
position in SDL, thisthesis contributes to promote using SDL as a behaviour composition
language. SDL isnot only alanguage for the modelling of state machines. SDL-2000 has
newly been released, and to the best of our knowledge little experimentation using the
new concepts of SDL-2000 has been done. We propose original and innovative employ-
ment of some of the newly introduced SDL concepts, that should be of interest for the
SDL community.

Dynamic composition of services requires incremental and compositional validation
methods. It should be possible to validate components introduced in asystem at run-time,
and to restrict the analysis to the parts of the system affected by the dynamic modifica-
tions. Thisthesis proposes a validation approach suited for dynamic service composition.
Vaidation analysis is complex and requires simplification. Two simplification schemes,
projection and incrementation, are proposed. Projection and incrementation are two main
contributions of thisthesis:

* A projectionisasimplified system description or viewpoint that emphasi ses some sys-
tem properties while hiding some others. Rather than analysing the whole system,
projectionsare analysed. In our work, the projection only retainsthe aspects significant
for the purpose of validation of associations between service roles.

* Incrementation means that validation can be applied incrementally. The proposed val-
idation approachistightly integrated with the composition of serviceroles. Elementary
rolesarefirst validated, and then the roles composed of elementary roles, and then the
composite of composites. In that way, the proposed validation techniques enable usto
validate parts of systems and the composition of system parts.

Another contribution of thisthesis are design rules that enable the designer to avoid mak-
ing certain dynamic errors and to devel op well-formed state machines. Error search is not
postponed until after the specification phase: ambiguous and conflicting behaviours can
be identified already at design time.

The projection of serviceroles lead to interface descriptions that are described using state
machines. In that way, our interface descriptions overcome the limitations of static object
interfaces. In our work, the interface descriptions represent the dynamic behaviour of
interactions between serviceroles. It isaso possibleto determinerequired interfacesfrom
provided interfaces. The results of this thesis should then be of interest for the research
related to the definition of semantic interfaces.



A magjor concern in our work has been to provide validation techniques that are easy to
understand and apply. Current verification and validation techniques often require high
competence and knowledge in formal modelling and reasoning on the part of the system
developer, and their use in the software industry is rather moderate. We believe that our
approach, although thoroughly justified, remains easy to understand and use. In that way,
the applicability of the proposed approach iswider than the context of dynamic validation.
It should also be of interest for the validation of static systems.
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1
| ntroduction

This chapter provides an introduction to the research problem addressed in this doctoral
thesis. The background and motivation for the research are first described, and the ques-
tions to be answered are introduced. Then the main contributions are presented, and the
scopeis delimited. Finally an outline of the thesisis given.

1.1 Motivation and background

1.1.1 Therevolution of services

The convergence of the telecommunication and information technologiesis areality. This
convergence is expected to facilitate the rapid introduction of more varied and advanced
services. As an example, enabling technologies such as high-capacity wireless networks
and small hand-held java-enabled terminals make sophisticated mobile services possible.

At the same time, deregulation enables new actors to enter the scene, leading to increased
competition. Services on the telecommunication networks are no longer owned solely by
telecommunication operators. A distinction is emerging between service and connectivity
providers. Competition changes the pace of service development and deployment. Slow
standardisation processes are no longer an option. Short time to market, rapid response to
customers needs, cost reduction and increased reuse are key requirements of service pro-
viders today.

In this competitive service business environment, customers play an active role. Their
needs and expectations are in focus. Exposed to computers and the Internet, telecommu-
nication users have increased expectations. They expect more “intelligence” in services.
They expect to get access to new and useful services rapidly as they become available.
Furthermore, they expect to access the same set of services independently of what net-



2 1 Introduction

work they happen to use, and they expect services to adapt to new surroundings and
contexts as they are moving around.

Building services under these new settings poses several challenges. New solutions are
needed that support rapid service development and deployment. Traditional approaches
where users are first asked what services they need, and then new features are devel oped
and added in awell-planned manner over a course of yearsisno longer an option. A trend
among service providersisto try a number of new services at low cost to a limited user
group, assess their success, and deploy the best more widely. The provision of dynamic
services that can be configured by the users, e.g. built up from a set of service elements,
is also being considered. AMIGOS, a service for creating and customizing meeting
places, is an example of such dynamic services[AMIGOS 2002]. AMIGOS is developed
inthe AVANTEL project at NTNU [AVANTEL 2000].

1.1.2 Servicequality: themain challenge?

Thetraditional telecommunication services and networks have several strengths that tend
to be forgotten behind the excitement created by new business opportunities. Ubiquity and
simplicity of usage are two main strengths: the telecommuni cation networks provide serv-
ices to more than 800 million terminals around the world, and enable connections to any
country at any time by a simple process of dialling (from [TINA 1999]). Guarantee of
service and robustness are essential: services are available when needed, and they func-
tion as expected.

The difference between “best-effort” as provided by the Internet and the “guarantee of
quality” that has always been a key point for telecommunication networks has been
widely discussed and isoften referred asthe problem of “quality of service”. Service qual-
ity however is not restricted to connectivity and capacity in networks. In the new service
environment, new challenges arise that, if not properly managed, are also threatsfor serv-
ice quality:

» Hybrid services provided over heterogeneous networks. Users have access to hetero-
geneous networks. The new services should preferably span different networks and
networks technologies. Several research activitiesaim to provide solutionsfor the pro-
vison of so-caled “hybrid” services. [Vanecek and al. 1999] advocates putting
common service functions in the networks. [Gbaguidi and al. 1999a; Gbaguidi and al.
1999b] propose to treat end-systems and network equipment equally allowing one to
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tune or program service platform elements. [Logean and al. 1999] underlines the need
for using formal modelling and validation techniques for the development of services
deployed in heterogeneous environments.

» Hybrid providers. Interacting users may access services provided and developed by
different service operators and vendors. Theinteroperability and compatibility of serv-
ices should be preserved [Floch and Brask 2000]. Possibly support for negotiation,
adaptation and learning is needed.

* A new class of service interactions. Service interactions occur when a combination of
services behaves differently than expected [Keck and Kuehn 1998]. There exist several
causes to undesirable interferences between services. Among them, the evolution of
system architecture and the addition of new service features create a new environment
that may violate the assumptions of existing services [Cameron and al. 1994]. A new
class of serviceinteractions are introduced in open networks [Cameron and Lin 1998].
Interactions following by the lack of co-operation in a competitive business [Kolberg
and Kimbler 2000], sharing a common service layer [Kimbler 2000], moving interac-
tions from networks to terminals [Utas 2000], interactions introduced by Internet
telephony [Lennox and Schulzrinne 2000] were some of the issues discussed at the
Fifth International Workshop on Feature Interactions in Telecommunications and Soft-
ware Systems [Magill and Calder 2000].

In the context of open network service provisioning, there is no longer one organisation
responsible for solving these kinds of problems. On another hand, the access to multiple
new and useful services is exciting, and may shadow on service quality. It is a fact that
poor reliability istoday tolerated by users of personal computers;, maybe this “user toler-
ance” will also be valid for new telecom services. We believe service quality isacrucid
issue, and thisthesis aims at providing tools for achieving better quality.

1.1.3 ThePlug-and-Play project

The Plug-and-Play (PaP) project at NTNU was initiated in order to define a framework
for service devel opment and execution that supports the dynamic composition of services
using Plug-and-Play techniques [Aagesen and al. 1999]. Dynamic service composition
means that service components can be designed separately, and then composed and con-
figured at run-time. By using Plug-and-Play techniques, the project aimsat facilitating the
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deployment of new service elements, and at supporting adaptation of services to hetero-
geneous network environments or particular user needs.

In the frame of the PaP project, this doctoral work has addressed two issues. composi-
tional design and validation of Plug-and-Play services. Other research topics have also
been considered. An execution platform that supports the dynamic composition has been
developed [Aagesen and al. 1999]. A replication management framework that simplifies
the development of fault tolerant applications has been proposed [Meling and Helvik
2001; Meling and al. 2002]. Support for personal mobility in the PaP platform is under
consideration [Shiaa and Aagesen 2002].

1.2 Research problem

Service design is complex. Services involve the interaction of several components that
execute concurrently. These components may themselves be involved in several services.
In a PaP context, this complexity increases further as services are designed to be dynam-
ically adapted to changing contexts. This thesis addresses two main questions:

» How can we model services so that they can be easily modified - possibly at run-time?

* How can we ensure that service components that are modified or added dynamically
in asystem interact consistently with other system components?

Thefirst question is a design issue and relates to the requirement of rapid service devel-
opment and deployment. The second question is a validation issue and relates to the
requirement of service quality. We do not address the problem of service interaction, but
rather the problem of logical consistency.

1.2.1 Need for fine-grained modularity

Modification of services in order to adapt to different needs or contexts requires that is
possible to add, remove or replace some functionality in a service. Modifications can be
performed at different levels: the whole behaviour of a component involved in a service
may be modified, or at the modification may be restricted to an element of behaviour
within a service component. The introduction of changesis simplified when services are
designed in a modular way. We distinguish between coarse-grained modularity where
services are designed in a modular way enabling service components to be added and
replaced, and fine-grained modularity where components are designed in a modular way
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allowing small elements of behaviours to be composed. In our work, we concentrate on
fine-grained modularity, i.e. we am at providing a method for adding or replacing small
elementary behavioursin aservice.

Different forms of modification areillustrated in Figure 1.1. They are applied at different
granularity levels and require different kinds of modularity:

» Complete replacement and partial replacement are modifications performed at the
service level. One or severa components involved in the service are completely
replaced. Complete replacement and partial replacement require coarse-grained
modul arity.

» Addition is also a modification performed at the service level and requires coarse-
grained modularity. A new component is added that interacts with the existing
components.

» Component modification is performed at the component level. A component involved
in the service is partially modified. Component modification requires fine-grained
modul arity.

@

service
--» ()

components
user

initial service

@,
O
(a) complete replacement (d) component modification

%00@3 ? arond

(b) partial replacement (c) addition

legend:

O component @ new or modified <—> new or modified
component interaction
<—> interaction

Figure 1.1 : Modifications at different granularity levels.
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Partial replacement, addition and component modification are preferable over complete

replacement as functionality can be reused. In these cases, the introduction of changes

may have impact on the interactions between the existing and the new or modified com-

ponents, and ensuring the correctness of the service after adaptation is essential.

In our work, we have chosen to address fine-grained modularity. We seek modelling tech-

niques that enable elementary behavioursto be composed and components to be modified

in aconsistent way. A reason for adopting afine-grained approach is that small modifica-

tions are essential in the provision of customizable and context-aware services to the
mobile users:

Users should be able to customise existing services to their needs. Services compo-
nents should be developed with reusability and customizability in mind. A simple
customization level based on toggling features on/off is too limited. Other levels of
customization are discussed in [Maknaviciusand al. 1999]. For example, services may
be tallored at run-time, either at service instantiation or during service provision; the
users may also combine their own functions with existing services. [Hiltunen 1998]
proposes micro-protocols and composition as a means to achieve customizability.

L ocation- and context-aware services are services that can adapt to the changing loca-
tions and context mobile of users. Mobility introduces variability in the operating
environment of the provided services. Offering effective and dependable servicesin a
mobile context poses several challenges for the service developer. Several research
projects aim at developing solutions for context aware services [Nexus; Floch and al.
2001]. Thereisno doubt that the mobile industry will haveto provide solutions to these
challenges soon. An assessment of the future market for mobile multimedia services
done by the UMTS forum estimates the world market for users of mobile services to
be 940 million users by 2005 and more than 1.7 billion users by 2010 [UMTS Forum
1999].

Our choiceis asoinspired from existing service architectures:

» A fine-grained approach is successfully adopted in IN! where reusable functional

blocks can be chained together in various combinations to realize services [ITU-T
1992]. Composition isalso possible at different levels by the introduction of High level
SIBs[ITU-T 1997c].

1. Intelligent Network
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« The TINA! Service Architecture defines a set of service scenarios and interfaces as
basic elements of a service [TINA 1997; TINA 1998]. For example, scenarios are
described for login/logout, start/end session, suspend/resume session, invite user, join
session with invitation, voting, add/delete stream binding, add/delete participant to a
stream binding.

1.2.2 Service modelling and composition

Having opted for fine-grained modularity, we aim to produce different services and serv-
ice variants by composing service elementsin various ways. We adopt arole based design
approach [Reenskaug and al. 1992]. Roles and role collaborations focus on behaviours
across a system boundary. Experience suggests that role modelling provides better sup-
port for system adaptation and reuse than class modelling. The unit of reuse is seldom a
class, but rather a dice of behaviour [VanHilst and Notkin 1996; Mezini and Lieberherr
1998]. Using object-oriented approaches, systems and services are modelled as classes
and objects. When defining classes, the emphasisis on the common object characteristics,
i.e. what objects are, rather than the common object purpose, i.e. what the objects do and
what roles they are playing in the system [Kristensen and @sterbye 1996; Reenskaug
2001]. When classes are defined they are allocated individual behaviours. A mgjor prob-
lem with class decomposition is that it is difficult to understand what a whole system is
doing. Roles, on the other hand, are introduced to reflect the purpose of componentsin a
system, and collaborations are used with success to describe the relations or interactions
between theseroles.

In our approach, services are modelled as collaborations between functional roles. Com-
plex roles may be decomposed into small behavioural elements or elementary roles in
order to break down their complexity. Conversely, more complex roles, and thus behav-
iours, can be produced by composition. There exist various types of dependencies
between roles that constrain how they may be composed. This thesis introduces different
forms of composition, and discusses their properties. Composition, or role model synthe-
Sis, is aso discussed in OORAM [Reenskaug and al. 1992]. Two forms of synthess,
superposition and aggregation, are discussed that preserve the integrity of the base model.
While aggregation may hide the details of abase model, the stimuli and activity of a base
model are retained by superposition. Composition in our approach is restricted to super-

1. Telecommunications Information Networking Architecture. TINA resulted from the collaboration of over
40 of the world’s leading network operators and equipment manufacturers.
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position. OORAM does not formally describe the composition operations while our
approach does so by using state machines and SDL.

Ideally roles should be specified without making assumptions about the other roles they
are composed with, and how they are going to be composed. Dependencies between roles
may exist, and role specification may require to be coordinated with the specification of
other roles. We aim at defining design rules that enable roles to be specified individually
and to be easily composed.

[RORler and al. 2001] has also proposed an SDL based composition approach. An earlier
version of SDL isused in that work, and a new notation is used for modelling composi-
tion. In our approach composition is also described using SDL. SDL 2000 has been
recently introduced, and, as far as we know, no work related to the use of SDL 2000 for
role composition has been published to this day.

1.2.2.1 LearningfromIN

The idea of composing service elementsisnot new. It is supported in IN. However, com-
position is rather limited in IN. CS1! lacked support for paralelism and could only
accommodate single service execution performed sequentialy [ITU-T 1993b]. This
resulted in blocking subsequent activities until the original service execution is com-
pleted. The concepts of parallel service processing wasintroduced in CS-2 [ITU-T 1997b;
ITU-T 1997c¢]. Parallel service processing enables the implementation of particular CS-2
services features that require parallel service processing, e.g. Smultaneous announce-
ments to different call parties, and call waiting with two active threads at the same time
where one monitors an incoming call.

Although IN has reduced the lead time for introducing new services and gained wide
acceptance due to the multitude of servicesinstaled and its application to cellular net-
works [Gbaguidi and al. 1999a], it suffers from severa limitations that makes it
inappropriate in the provision of future services. IN does not support user-oriented serv-
ices, but rather call-oriented services. Service features offered by IN can be actually
considered as enhancements of basic call control. It should be possible to apply the same
basic features to different kind of services, e.g. forwarding may be applied to acall or an
e-mail service. IN alsolacks support for distributed control. CS-1 supports“ single-ended”
servicefeatures, i.e. featuresthat apply at one party in acall and areindependent from fea-

1. Capability Set
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tures applied at other parties. This means that IN does not support the coordination and
negotiation of services between users. Lack of standardized interfaces for service crea
tion, management and deployment, lack of facilities for brokerage, and poor
customization support are also limitations of IN [Brennan and al. 2000; Maknavicius
1999]. Furthermore, the current IN products are mainly based on proprietary HW/SW
technologies; they are not easily scalable and clumsy to program without the support of
vendors[Daoud 1999]. The opening of telecommunication systemsinterfaces as provided
by Parlay [Parlay 2000a; Parlay 2000€e] should enable higher levels of programmability.
However, Parlay relies heavily on IN and also adopts a call-oriented service approach.

1.2.2.2 Building upon TINA

TINA-C! recognised the central role of software for the telecommunication industry.
TINA was developed with the primary objective of becoming a software architecture for
services and the operation of these services[TINA 1999]. TINA proposes generic struc-
turing principles, and adopts state-of-the-art solutions such as object oriented design and
distributed computing. Furthermore, TINA support flexible business models. Thereis no
doubt that TINA isarich framework that addressesthe most relevant serviceissues. TINA
ispossibly too rich, thusleading to unnecessary complexity. TINA introduces amultitude
of concepts, architectures, viewpoints and principlesthat are difficult to comprehend.

TINA prototypes have been developed, and experimentation has shown that services can
be quickly and easily developed. However, the successof TINA islimited to research cen-
tres[TINA 1999]. TINA has not gained industrial strength. The migration from existing
networks to the sophisticated solutions of TINA represents new investments, and tele-
communication operators want to protect their existing investments. [Hubaux and al.
1999] also claims that TINA has made wrong assumptions. First, too much weight has
been set on connection-oriented networks. Connectionless networks were taken into
account too late. Secondly, TINA services are provided by servers within the networks.
TINA does not distinguish between common service that ought to be provided by the net-
works, and services that can be supported in the terminals. Finally, service evolution is
kept under the control of the main telecommunications stakeholders. TINA does not sup-
port an open service creation of the kind we find in the Internet.

Although TINA may not be adopted in its whole, many concepts of TINA will probably
be progressively applied as solutions to the convergence of information and telecommu-

1. the TINA Consortium
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nication technologies. Several ideas and conceptsof TINA deserveto be retained, such as
the concept of service and communication sessions and the management approach. The
object oriented approach and the concept of a service factory are relevant in thisthesis.

TINA Service Architecture sets the two following objectives [TINA 1997]:

» to define a set of reusable and interoperable service components to be composed in
service definition and construction.

* to define mechanisms for service composition, both statically (i.e. during design and
construction) and dynamically (i.e. during the service utilization).

TINA claims that the first objective is supported by the object oriented methodology
underlying the computational view. Service composition is defined as the creation of a
new service or service instance by composing services or service components. TINA
Service Architecture also discusses the composition of service sessions and the relations
between parties in a session (i.e. user, retailer and provider). TINA concentrates on
coarse-grained composition rather than fine-grained composition. TINA composition
concepts are defined at an abstract level. It isnot clear how these concepts should be fur-
ther addressed in the computational models. We believe that the adoption of an object
oriented approach, although it facilitates reusability and composition, is not sufficient to
support composition. Additional rules and techniques, such as roles, collaborations and
composition patterns are needed.

1.2.3 Validation

An important issue when performing changes in a system is to ensure that the modified
system behaves correctly after the modification. The problem of validation isnot specific
for telecommuni cation services, but isageneral problem in software development. A par-
ticularity of telecommunication services is that they often involve severa components
that may take initiative concurrently and involve stateful behaviours (protocols). The
interaction patterns between telecommunication service components are usually more
complex than those between components in a client-server architecture. Thus the error
probability will be higher unless counter measures are taken. Moreover, as telecommuni-
cation services provide basic support for application domain services, the consequence of
errors may be severe. In an open world, where services can be provided by several actors,
the need for validation increases.
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TINA does not address the problem of validation. Components in TINA are described
using the interface description language ODL . Thislanguage was defined as an extension
of CORBA IDL [OMG 2001] with features for describing stream flows and QoS
attributes. ODL suffers from the same limitations as IDL with respect to system consist-
ency checking. With ODL, component interface definitions only deal with the declaration
of operation signatures, and not the protocol s used on a connection between objects. Thus,
it is not possible to check the dynamic consistency of a connection.

Thisthesisaims at describing the dynamic behaviour of interfaces in a manner that facil-
itates incremental validation of interface behaviour when behaviours are composed. We
seek techniquesfor deriving interfaces from components specifications, and for validating
interfaces. We propose to integrate the validation approach with the techniques proposed
for composition so that validation can be applied incrementally. Changes to a component
should not require the whole component to be validated. Only the element being added or
modified, and the way it is composed, should require checking.

1.2.4 Requirementsto the modelling and validation approaches

A magjor concern in our work has been to propose modelling and validation approaches
suited for the development of real services. To reach that aim, we identify the following
requirements:

» Theapproaches should provide “designer-friendly” techniques, i.e. techniquesthat can
be easily understood and applied by the service devel opers.

» The services and service components devel oped using these techniques should be easy
to understand.

» Theapproaches should support incremental development. It should be possibleto build
services from small elements that can be developed separately, and added progres-
sively. It should be possible to apply the validation analysisto a subset of elements.

» Theapproaches should support correctness. The modelling techniques should contrib-
ute to the development of correct service behaviours. Validation is then applied to
detect possible remaining errors.

» The approaches should not be dependent on a particular execution framework.
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» Thetechniques should be expressed in operative terms so that they can be easily imple-
mented by CASE tools.

Thefirst requirement, the designer-friendliness of the techniques, is especially important
for the validation approach. Current validation techniques often require high competence
in formal reasoning, which may explain their moderate use in the software industry. By
seeking to define simple techniques that |ead to simple results, we aim to motivate devel-
opers to using the approaches.

1.3 Main contributions

The am of this thesis has been to provide techniques for the incremental, component
based design and validation of servicesin a PaP context. We describe an approach based
onroles. Role composition is proposed as a means to achieve adaptability. The main con-
tributions of the thesis are:

» Techniques for modelling servicesin terms of roles. Roles are assigned dynamically to
actors at run-time. SDL-2000 is used to specify servicerole behaviours. SDL-2000 has
newly been released, and to the best of our knowledge little experimentation using the
new concepts of SDL-2000 has been done. Our study identifiesoriginal and innovative
employment of the composite states newly introduced in SDL. In that way, the results
of thisthesis should be of interest for the SDL community.

» Techniques for modelling the composition of service roles (s-roles). Different forms of
composition are proposed, and modelled formally using state machines. By defining
design patterns and rules for expressing composition in SDL, this thesis contributes to
promote using SDL as a composition language. Composition provides support for
dynamic service adaptation. In addition, it augments human comprehension of the
service models and contributes to reduce the complexity of the validation analysis.

» An abstraction technique, the projection, that contributes to simplifying the validation
of interactions between service roles. The projection transformation is formally
described.

» Adescription of role interfaces that overcome the limitations of static object interfaces.
We call theseinterfaces a-roles. A-roles describe the semantics of interactions between
sroles. The aroles required by an s-role can be determined from the a-roles provided
by this s-role. A-roles are obtained by projection.
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» Aclassification of particular anomalous behaviour patterns. Ambiguous and conflict-
ing behavioursthat lead to errors can beidentified at design time, before the validation
analysis itself. Design rules are given that enable the designer to identify and avoid
potential safety problems.

» A constructive validation method that supports the design of correct services. Consist-
ent complementary a-roles can be generated from particular a-roles.

» A corrective validation method that provides support for checking that two comple-
mentary a-roles interact consistently. Consistency can be checked at run time.

» Avalidation approach tightly integrated with the composition of serviceroles. Valida
tion analysis is applied incrementally. Incrementa validation contributes to simplify
the validation analysis, and the compositional properties of a system can be taken into
account during analysis. The same symptoms of error need to be addressed at the com-
posite level as at the elementary level. As composition is modelled using identical
mechanisms as the modelling of elementary s-roles, the design rules and validation
techniques proposed at the elementary s-role level apply at the composite level.

» A validation approach suited for the analysis of dynamic systems. The analysis takes
advantage of the system structure, and may be restricted to the parts of the system
affected by changes. The analysis applies to types - not instances, and isthus suited for
the validation of components bound dynamically at run-time.

» Algorithms for the transformation of state graphs and their validation.

The proposed validation techniques are believed to be easy to understand and apply. Cur-
rent verification and validation techniques often require high competence and knowledge
in formal modelling and reasoning from the system developer, and their use in the soft-
ware industry is rather moderate. Our approach, although thoroughly justified, remains
comparatively smpleto understand and use. In that way, the applicability of the proposed
approach is wider than the validation in a dynamic context. It should aso be of interest
for the validation of static systems.

1.4 Delimitation of scope

Thisdoctora work isbased on along and deep knowledge acquired from practical system
development work. Rather than acquiring knowledge through the development of proto-
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types, earlier experimentation results and experience have been injected in the modelling
approach. We propose transformation and validation algorithms that have not been inte-
grated in design and validation tools yet. We have favoured the development of a
complete and sound reasoning rather that the implementation of tools. Our experience in
the development of SDL code generators [Floch 1995] makes us confident that the pro-
posed agorithms can be implemented with reasonable effort.

Our work does not specify any service architecture and execution framework. The design
and validation approach that we propose can be applied in frameworks such as TINA
[1999] or ServiceFrame [Brak and al. 2002]. Our techniques concentrate on the behav-
iours assigned to the service components in such frameworks. We do not prescribe any
particular mechanisms that support the dynamic assignment of behaviours (roles) to com-
ponents (actors). Such mechanisms are provided by the PaP platform [Aagesen and al.
1999] and ServiceFrame.

1.5 Guidetothethess

Thisthesisis organised as followed:

» Chapter 2: Fundamental concepts introduces the main concepts used in this thes's,
such as what a service is and the notion of service roles. Concepts are defined at the
enterprise and computational viewpoints.

» Chapter 3: Collaboration and service role modelling presents the modelling approach
for services. The role view and the collaboration view are complementary views.
Whiletheroleview provides descriptions of the behaviour of individual computational
objects or actors, the collaboration view focuses on interactions between actors and
facilitates understanding the overall system behaviour. A set of basic service role
examples is introduced. These roles are also used when discussing service role
composition.

» Chapter 4. Service role composition discusses the composition of service roles (s
roles) within an actor. Through the composition of s-roles we aim to produce the com-
plete behaviour of an actor in a service. Composition may be applied incrementally.
There exist various types of dependencies between s-roles that constrain the form of
composition that can be applied on s-roles. The chapter presents different forms of
composition, and discusses their properties. SDL-2000 is used to model the different
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composition classes.

» Chapter 5. Validation: an introduction discusses the requirements set by dynamic
composition on validation, and considers existing validation techniqueswith respect to
these requirements. The chapter introduces the validation approach proposed in this
thesis. The validation approach concentrates on the interaction behaviour between
service roles, i.e. the interactions between service association roles. Focus is set on
safety propertiesi.e. avoiding that bad behaviours occur, such as deadlocks. Two sim-
plification schemes are proposed: projection and incrementation.

» Chapter 6: Service association role modelling presents the modelling of service asso-
ciation roles (a-roles). An a-roleis defined as the visible interaction behaviour of an s-
role on an association with another s-role. The set of concepts needed for a-role mod-
elingisfirst identified by describing the projection from s-rolesto a-roles. A-roles are
described as state machines using a notation inspired from SDL. Transformations are
proposed that can be applied on a-role state graphsin order to facilitate interface vali-
dation. Thischapter also identifies s-role patterns that |ead to ambiguous or conflicting
behaviours. Ambiguous and conflicting behaviours require special consideration dur-
ing interface validation.

» Chapter 7: Interface validation discusses the validation of interactions between ele-
mentary s-roles. The purpose of interface validation isto ensure that theinterfaces, i.e.
service association roles (a-roles) on associations between service roles (s-roles) inter-
act consistently. Interface validation is used both as a constructive method that aims at
generating correct systems, and as a corrective method that aims at detecting and cor-
recting errors. In the constructive method, techniques are proposed for generating
consistent complementary a-roles from particular a-roles. In the corrective method, a
consistency checking technique is described. The chapter proposes solutionsto handle
ambiguous and conflicting behaviours. Design rules are defined that enable the
designer to develop well-formed state machines.

» Chapter 8: Composition validation addresses the validation of composite serviceroles.
The purpose of composition validation is to ensure that service roles are consistently
composed across actors. As the sequential composition of s-roles is modelled using
identical mechanisms as the modelling of elementary s-roles, the techniques devel oped
for the validation of elementary s-roles apply to s-roles composed sequentially. Con-
current composition introduces new associations that are validated separately, also
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using the techniques of interface validation. The chapter discusses techniques needed
by the dynamic creation of s-roles.

» Chapter 9: Conclusions discusses of the results of this thesis. Recommendations for
further research are given.



2
Fundamental concepts

The aim of this chapter isto establish the understanding of what a serviceis, and of other
main concepts used in this thesis. Although several of these concepts may sound well-
known to the reader, we have experienced that they are often used to meaning different
things. Theterm “service’, for example, hasreceived different definitionsin theliterature
depending on the viewpoints, frameworks and application domains. Service is aso often
used imprecisaly or without being defined.

As in the ODP reference model [ITU-T 1997a] and the TINA framework [TINA 1995],
we distinguish between the enterprise viewpoint and the computational viewpoint. While
concepts at the enterprise viewpoint are related to the purpose, scope and policies for the
system, they are, at the computational viewpoint, related to functional system decompo-
sition and system distribution.

2.1 Service: somedefinitions

Intuitively, we understand service as somefacility or assistance provided by some persons
or systems to some other persons or systems. The term service is frequently adopted by
software engineers for describing a function provided by a component. But engineers and
scientists often use the term services meaning different things such as components, inter-
faces or capabilities.

Theterm serviceisoften used without being defined or in avague manner. While the RM-
ODP overview [ITU-T 1997a] uses theterm service in the introduction to the object con-
cept, the term remains undefined. Similarly, the Internet documents discuss the concept
of end-to-end quality of service without defining service. The Jini network technology,
first defines service as “ an entity that can be used by a person, aprogram or another serv-
ice”. A service may be a computation, storage, a communication channel to another user,
a software filter, ahardware device or another user [Sun microsystems 1999]. However it

-17 -
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turns out that Jini services are restricted to the computational viewpoint, and refers to
objects rather than properties provided by these objects.

The TINA Service Architecture [TINA 1997] defines services at the enterprise and com-
putational viewpoints:

* Inthe enterprise viewpoint, a service is defined as a set of capabilities provided by an
existing or intended set of systemsto all who utiliseit, such as subscribers, end-users,
network providers and service providers.

* Inthe computational viewpoint, aserviceisdefined asaset of capabilities provided by
a computational object that can be used by other objects. This definition isidentical to
the OMG definition [OMG 1997].

Servicesin the enterprise viewpoint may also be considered at different functional levels.
Telecommunication engineers often distinguish between bearer or carrier services, tele-
services and supplementary services. ISDN and UMTS[ITU-T 1998; ETSI 1995] define:

» Bearer services support the transfer of information between two network access points
(i.e. fixed access locations in the network). Carrier services designate bearer services
in mobile radio networks.

» Teleservices support communication between two end-user systems (e.g. telephony or
tele-conference).

» Supplementary services supplement teleservices by providing additional value to the
end-users (e.g. call forwarding, call screening, billing).

Another functional classification is proposed in the TINA Service Architecture [TINA
1997]:

» Telecommunication services support the transport of bits between terminals attached
to atelecommunication network, and are responsible for the establishment of connec-
tions. This definition encompasses the definitions proposed in ISDN and UMTS.
TINA clearly separates between the service architecture in charge of sessions (rather
than calls) from the network resource architecture in charge of connectivity.

» Management services support the fault, configuration, accounting, performance and
security functionalities (so-called FCAPS), and the service life-cycle management.
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* |nformation services handle information resources such as movies, sounds and
documents.

The definition of servicein the OS| reference model [ITU-T 1994] isin someway sSimilar
to the TINA definition in the computational viewpoint. In OSI, the computational object
isreplaced by a protocol layer, and a service designates the set of primitives that a given
protocol layer provides to the upper protocol layer.

In order to avoid misunderstanding among the various definitions, we clarify the meaning
of the term “service” used in this thesis. Service is defined at the enterprise viewpoint
(Section 2.2). At the computational viewpoint we prefer to use the terms service role and
service association role (Section 2.3).

2.1.1 Servicefeatures

IN distinguishes between services and service features[I TU-T 1993b]. While aserviceis
defined as a stand alone commercia offering, a service feature is a specific aspect of a
service that can also be used in conjunction with other services/service features as part of
a commercial offering. A service is characterized by one or more core service features,
and can be optionally enhanced by other service features.

There is an overlap between the defined services and service features as some features
may be used both stand-alone, or in conjunction with other services. Examples of such
features are abbreviated dialling and call forwarding. IN defines a relationship table that
defines the core and optional service features of each service.

2.2 Enterpriseviewpoint

Figure 2.1 presents1 some fundamental concepts at the enterprise viewpoint. A networkis
akind of system that provides computation and communication support. Networks offer
services to human actors that we call users, and systems (e.g. autonomous systems or
agent systems that act on the behalf of users). Service are defined as a functionality pro-
vided to users and systems. Severa users may interact sharing a service.

We distinguish between different classes of services. The communication services that
support communication between users and systems, and the application domain services
that related to a domain i.e. market segment or a family of systems related to the same
types of phenomena. For example, we may consider application domain services for the

1. Inthis section, the class diagrams that describe entities and relati onships are expressed using UML [OMG
1999].
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Figure2.1: Networks and services.

financia market or for the health sector. Application domain servicesare usually provided
by distributed systems that use communication services.

At the communication level, we separate communication session control from informa-
tion transport, and thus distinguish between communication control services and
transport services.

Trangport services comprise the allocation and setup of transport channelsin the transport
network. They allocate network resources in order to provide connectivity and transport
capacity. Typical transport services are voice, video and data transfer over various net-
work technologies such as ISDN, the GSM radio interface or IP.

Communication control services areresponsiblefor initiating and coordinating the partic-
ipation in aservice. They encompass the following functionality:

* ensuring coherence between the roles and responsibilities of the participantsin a serv-
ice. We may distinguish between the initiator of a service and the invitee (s).

» guaranteeing consistence of the preferences of the participating parts in a service and
resolving conflicts. The participating parts should agree on which services or service
subsets are instantiated. For example, an invitation redirection may only be initiated if
the participants in the service agree on that redirection.



2.3 Computational viewpoint 21

* requesting the necessary transport resources from the transport network. We abstract
from details of the transport network and assume that it provides a network independ-
ent interface to the service control part.

Setting up atelephony session between two or several participantsis akind of communi-
cation control service. Other examples are invitation, redirection, distribution, request
gueuing, callback and reminder.

Other types of services, such as management services, could also be considered. We do
not define them here as they are not further discussed in thisthesis.

Thisthesisfocuses on communication control services. When used alone, the termservice
should be understood as communication control service.

Similarly to IN, we distinguish between services and service features, and we adopt the
IN definition for service feature.

2.3 Computational viewpoint

In the computational viewpoint, we decompose networks into nodes and links. Nodes run
computational objects. Links are communication paths that provide connectivity between
nodes. Computational objects play some behaviour or servicerolesthat interact or collab-
orate in order to provide services (as defined in the enterprise viewpoint). Thus a service
isthe result of a collaboration between services roles. These concepts are represented in
Figure 2.2.

Definition: Servicerole(srole)
A servicerole, or s-role, isthe part a computational object playsin a service.

Definition: Actor
Actors are computational objects that play service roles.

Service roles enable us to better comprehend the contribution of a computational object
or actor in a service [Brak 1999]. Services involve several computational objects where
some of them may be involved in severa services. The concept of s-roles enables one to
focuson single“slices’ of behaviour and makesit possible to separate the contribution of
a computational object in a service from the contribution of the other computational
objects.
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Notice that there is no one-to-one relation between computational object and service.
Services may require the coordinated effort of several distributed computational objects.
Similarly some computational objects may be involved in several services. Thisis an
important distinction from the notion of service asfunction provided by asingle object as
inJini or CORBA.

S-rolesinteract with other s-roles over associations. A service association roleisthe vis-
ible behaviour of an s-role on an association between two s-roles. In other words, aservice
association role is the participation of an s-role in a dialogue with another s-role. An a
role can be seen as the projection of an s-role on an association. The concept of service
association roleisrepresented in Figure 2.2 using an UML rolein the association “collab-
orate”’ between service roles.

Definition: Service association role (a-role)
A service association role, or a-role, isthe interaction behaviour of an s-role visible on an
associ ation between two s-roles.
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2.3.1 Serviceroles

Roles may be introduced in arather intuitive way. The concept of role isused extensively
every day, either to describe relations between persons, for example family roles such as
mother and daughter, or to describe functions and responsibilities, for example organisa-
tional roles such as professor, secretary, librarian and student. Also in telephony, it is
customary to refer to the A-subscriber and B-subscriber, or the caller and the calleein a
telephony call.

The concept of role was already introduced in the end of the 70’s in the context of data
modelling [Bachman and Daya 1977] and has emerged again in the object-oriented liter-
ature. Roles are used both for data modelling [Wieringa and de Jonge 1991] and
functional modelling [Reenskaug and al. 1992; Kristensen and @sterbyel996; Mezini and
Lieberherr 1998]. In our approach, service roles (s-roles) are functional roles that encap-
sulate the functional properties of computational objectsinvolved in aservice.

2.3.1.1 A smpleexampleusing serviceroles

Service roles (s-roles) are introduced by a smple example in Figure 2.3. This figure
shows a collaboration structure diagram for an invitation to participate in some service.
We introduce a new notation for representing collaboration structurest. The invitation
involves two users that interact with two different s-roles: “inviter” and “invitee”. This
figure does not represent the actors playing the s-roles; actors may be represented as
shown in Figure 2.4.

collaboration invitation - two participants
legend:

user A servicerole
———  association

between s-roles

Figure 2.3 . Collaboration structure diagram for service invitation.

Role and collaboration modelling will be further discussed in Chapter 3. Dialogues
between s-roles will be described in collaboration sequence diagrams, and s-role behav-
ioursin astate machine diagrams. Collaboration sequence diagrams get rapidly complex

1. The reason for not using UML collaborations is the distinction we make between actors and roles. Thisis
desirablein order to have flexibility in alocating roles to actors.
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when there exist multiple alternative dial ogue cases. Decomposition and composition are
means to reduce the size of collaborations and s-roles.

2.3.2 Collaborations

In the early phases of service and system modelling, scenarios such as use cases [ Jacobsen
and al. 1992], use case maps [Miga and al. 2001] and message sequence charts [ITU-T
1999b; Brak and a. 1999] are often used. These scenarios describe collaborations
between roles. They provide good support for capturing system needs and describing the
main behavioural cases. Scenarios are however not used to model the complete system
behaviour. The main reason isthat there exist far too many cases, and among them many
closely related cases. Instead of modelling the complete set of scenariosfor asystem, one
may explore another approach based on the modelling of basic scenarios and their com-
position [Riehle 1997]. Basic scenarios describe simple or elementary dices of behaviour,
and scenario composition provides a method for merging the basic scenarios into more
complex behaviours.

In our approach, we do not focus on collaborations. Instead we describe roles and their
composition.

2.3.3 Composite serviceroles

Service roles may be decomposed into smaller behavioural elements that interact or col-
|aborate with other s-role elements. For example, thes-role“caller” in atelephony service
may be decomposed into distinct functional elements: inviter, setup-initiator and release-
initiator that are involved during the different service phases: invitation, setup and rel ease.
These functional elements are aso considered as s-roles. We will use the term elementary
s-roles to denote s-roles that are not further decomposed. A service feature may be seen
as the result of a collaboration between elementary service s-roles.

Conversely we may produce more complex s-roles (and thus services) by composing s-
roles possibly by reusing existing s-roles. In Figure 2.4 we combine the s-roles “inviter”
and “invitee” in different collaboration schemes in order to produce an invitation with
severa participants. We propose two alternatives. In one case, “user A” is supported by
an actor playing the s-role “inviter” twice, and able to invite two other users. In the other
case, “user B” is supported by an actor that can both play the s-roles “invitee” and
“inviter”. Thus “user B” may invite a new participant (“user C") after being invited in a
service (by “user A”).
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collaboration invitation - several participants collaboration invitation - several participants

user A user B user A

Rl ombes £ | [Tl ok o
s TR sl o™
user C user C

legend: computational service role association
object (actor) (s-role) between s-roles

Figure 2.4 . Servicerole collaborations for invitation with three participants.

Composite s-roles, obtained by composing other s-roles, may be coordinated in various
manners. Thiswill be further discussed in Chapter 4.

2.3.4 Serviceassociation roles

A service association role (a-role) is the visible interaction behaviour of an s-role on an
association. Each association involves exactly two s-roles. An s-role that interacts with
severa other s-roles provides distinct a-roles on each association. A-roles describe the s-
role behaviour visible on an interface. A-roles abstract the internal behaviour of the s-
roles, and the interactions towards other s-roles. This abstraction facilitates the validation
analysis (see Chapter 5).

In the current distributed processing approaches such as CORBA and DCOM, computa-
tional objects are described by static interfaces limited to the declaration of operation
signatures [OMG 2001; Microsoft Corporation 1996]. Such interface descriptions may
facilitate the construction of asystem by providing ameansfor retrieving objectsthat may
potentially offer afunction or feature, but they do not provide sufficient support for build-
ing a system that behaves correctly. Architectures based on traditiona object interfaces
lack two main properties [Luckham and al. 1995]. They only describe the functions pro-
vided by an object, and fail to describe the functions required by an object. This makes it
difficult to determine the effects that changes to an interface may have on other objects.
Moreover, they do not describe the semantics of a connection between objects and the
constraints on using the interfaces. For example, it is not possible to ensure that the inter-
actions between objects will occur in a correct order. This is important when the
invocation of an operation influences the behaviour of future operations, as encountered
in stateful behaviours. This property is not either described by static interfaces.
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Service association roles overcome the limitations of static object interfaces. Contrarily
to traditional object interfaces, a-roles describe dialogues or protocols between s-roles.
The association roles on each end of an association complement each other. Thus the a
rolesrequired by an s-role can be determined from the a-roles provided by thiss-role. The
dialogue on an association may be influenced by the events that have previously occurred
inthe s-role, i.e. the state of the s-role. Thiswill be discussed in Chapter 6.

A-roles are represented in collaboration structure diagrams as shown in Figure 2.5. A-
roles are described using state diagrams, and sometimes illustrated by collaboration
sequence diagrams. We use the state machine graph representation for reasoning about
correctness. See Chapter 7.

collaboration invitation - two participants legend:
inviter-user inviter-invitee invitee-user servicerole
/ / (s-role)
\ L association
-+ Q 'nviter © O O between s-roles
/ o service association
user A invitectinviter user B role (arole)

Figure2.5: Service association roles.

Notice that distinct service roles may provide identical association roles:

* An srole may implement internal actions that are not visible at the s-role interfaces
(i.e. the aroles). For example, the role “invitee-with-log” may, in addition to answer-
ing to aninvitation, perform logging of the operations being executed, and still provide
exactly the same a-roles asthe role “invitee’.

* Ansrole may aso be extended by adding associations to other s-roles and still main-
tain the same a-roles on existing associations. Thisisillustrated in Figure 2.6. The new
srole “invitee-with-redirect” that redirects all incoming invitations to a third party,
extends the s-role “invitee”. The new s-role still provides the same a-role “invitee-
inviter” to therole“inviter”.

An s-role may collaborate with severa other s-roles. The behaviour on one association
may influence the behaviour on other associations, and, in theworst case, conflict. S-roles
and a-roles should be specified such that concurrency does not cause deadlocks or other
incorrect behaviours. Thiswill be discussed in Chapter 7.
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collaboration invitation with redirect

inviter-user inviter-invitee inviter-invitee invitee-user
% - O e 1 ’ ‘*%
user A invitee-zviter invitee-inviter user C

Figure 2.6 : Extended role - unchanged association role.

By maintaining the existing a-role “invitee-inviter” in the example of Figure 2.6, we guar-
antee that the s-rolesinteract consistently, and that the extended system behaves correctly
with respect to the interface behaviours. Hiding the extension of an s-role may, however,
lead to systems that do not behave according to the users goals. In the example of
Figure 2.6, “user A” intended to invite “user B”; “user A” may not be satisfied with being
redirected to “user C’. We may distinguish between two levels of collaboration
correctness:

» The system level: consistency among a-roles ensures consistent interactions between
s-roles, and a correct behaviour from a system viewpoint.

» Theuser level: additional constraints are imposed on the actors by requiring actors to
play specific s-roles. This ensures a correct or expected behaviour from a user
viewpoint. Thisis not further elaborated in this thesis.

2.4 Engineering viewpoint
Thisthesis does not elaborate the engineering viewpoint.

We assume that actors are implemented on an object-oriented platform that supports dis-
tributed processing. This platform or distributed processing environment (DPE) controls
the execution and management of applications. The DPE supports transparent communi-
cation between the network nodes, and hides the heterogeneity of the underlying systems
(e.g. programming languages, operating systems, network protocols). CORBA is such a
DPE [OMG 2001].

Asinthe TINA framework [TINA 1995], we assume that the network nodes are able to
interact by means of a communication infrastructure called the kernel transport network.
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2.5 Summary

In thisthesis, the term serviceis used at the enterprise viewpoint to designate capabilities
provided to systems and users. The focus of the thesisis on communication control serv-
ices that coordinate the participation of multiple users in a service. When modelling
services at the computational viewpoint, we use the term servicerole (or s-role) to desig-
nate the behaviour of acomputational object (or actor) in aservice. S-roles collaborate in
order to provide services. S-rolesinteract over associations; a service association role (or
arole) isthe visible participation of an s-rolein an association.
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Collaboration and servicerole modelling

The chapter discusses the modelling of collaborations and serviceroles (s-roles). Therole
view and the collaboration view are complementary views that contribute to the descrip-
tion of the system behaviour. While the role view provides descriptions of the behaviour
of individual computational objects or actors, the collaboration view focuses on interac-
tions between actors and facilitates understanding the overall system behaviour. We
propose to use the M SC language to describe collaboration sequences, and the SDL lan-
guage to specify service role behaviours.

A set of basic s-rolesisintroduced in order to discuss the application of the languages to
s-role and collaboration modelling. These examples will be used later when discussing
service role composition in Chapter 4.

3.1 SDL and M SC as modelling languages

When modelling systems and services, we describe their structures (in terms of compo-
nents), interactions between the system components, and the detailed behaviour of the
components. Two main families of languages are available today for modelling [Brask
2000]: on one hand the ITU-T languages including SDL [ITU-T 1999a], MSC [ITU-T
1999b], on the other hand UML [OM G 1999] that defines a set of notations such as Class
Diagrams, State Machines, Sequence Diagrams, and Collaboration Diagrams. We have
selected SDL and MSC, mainly because SDL and M SC are formally defined. UML still
lacks a complete semantics.

SDL has a formal semantics that enables an unambiguous interpretation of the system
specification. Using SDL for s-role modelling, we are able to reason completely about s-
role behaviours, interactions between s-roles and composition of s-roles at the design
level. SDL wasdefined to model distributed systems that combine sequential and concur-
rent behaviours, and provides a set of concepts that fits our needs when composing

-29-
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distributed s-roles. The graphical notation augments human comprehension of the mod-
els. Of course, our long experience in using SDL [Haugen and al. 1993; Bragk and al.
1999] has also influenced our choice. Our earlier work makes us confident that complete
and efficient code can be automatically generated from SDL [Floch 1995]. A new version
of SDL, SDL-2000, was recently released [ITU-T 1999a]. SDL is widely used in the
industry and a number of successful experiences have been reported [Faargemund and
Reed 1991; Faargemund and Sarma 1993; Brak and Sarma 1995; Cavalli and Sarma 1997,
Dssouli and al. 1999; Reed and Reed 2001]. The composite state concept introduced in
SDL-2000 allows one to structure state machines in the same way as Harel’s statecharts
[Harel 1987]. The benefit of composite states will be highlighted in Chapter 4. A draw-
back when using SDL-2000 is that no CASE tools that support the new version are
available yet; all diagrams presented in this thesis were edited with drawing tools.

MSC isaformal language that can be used for the definition of interaction sequences. We
will use M SC to describe ssmple basic collaborations. The focus of thisthesisbeing s-role
composition and validation, we will not make an extended use of MSC.

3.2 Collaborations

Collaborations describe the interactions between computational objects or actors; they
focus on behaviours across a system rather than the behaviours of individual objects. As
system behaviours will be described in terms of s-rolesin this thesis, collaborations will
primarily be used to describeinteractions between s-roles rather than interactions between
objects.

We describe collaborations using two diagram types:

» Collaboration structure diagrams describe structuresin terms of s-rolesinvolved in a
collaboration and interaction associations between these s-roles. A-rolesand the actors
playing the s-roles may also be represented in collaboration structure diagrams. We
propose a new graphical notation for representing collaboration structures. This nota-
tion is introduced in Figure 3.1, where a collaboration structure for invitation is
described. All the concepts that may be of interest in a collaboration structure are
present in this figure. The invitation behaviour enables a user to invite another user to
participate in some service activity.
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» Collaboration sequence diagrams describe the interactions between s-roles and
between a-roles. We use the M SC language to describe collaborations sequences. The
collaboration sequence diagram shown in Figure 3.2 describes the interactions
between the s-roles in the collaboration “invitation”. In addition to the system s-roles,
the user roles are also represented in this diagram. The MSC alternative construct is
used to represent possible alternative behaviours. More complex collaborations can be
described by a set of message sequence charts (MSCs) and High Level MSCs
(HMSCs) showing how the MSCs are combined. Data in messages may also be
specified.

collaboration invitation

inviter-user inviter-invitee invitee-user

/

Actor A Actor B

o]

user A user B
invitee-inviter

legend: computational servicerole association service association

object (actor) (s-role) betweensroles  © role (a-role)

Figure3.1: Invitation: collaboration structure diagram.

msc invitation

user A inviter invitee user B
L] L 1] L]
rg]uest-invite,
invite

at J accept
Invite-accept

request-accept
-

reject
invite-reject
request-reject
——————
[ [ I [

Figure 3.2 : Collaboration sequence diagram for service invitation.
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Inasimilar way asin the invitation example, Figure 3.3 presents the collaboration struc-
ture and sequence diagrams for participation release. This behaviour enables a participant
in aservice to force another participant to quit the service.

collaboration release
Actor A Actor B
%4—» rel- rd- 4—»%
init wait
user A user B
msc rel ease
user A rel-init rel-wait user B
—1
request-release )
terminate )
notify
terminate-ind
| I |

Figure 3.3 : Participation release: collaboration structure and sequence diagrams.

3.3 Serviceroles

Service roles describe the behaviour played by individual actors. This chapter restricts to
elementary s-roles, i.e non-composite s-roles. Elementary s-roles usually describe smple
behavioural elements and are composed in order to provide more complex behaviours. S-
role composition is discussed in Chapter 4.

The behaviour of s-rolesis described using state machines. Describing the behaviours of
individual objectsin terms of states and transitions has proven to be of great value, and is
widely adopted in most engineering approaches [Bragk 2000]. We use the SDL language
to specify the s-role and the actors playing these s-roles. As SDL does not define the con-
cept of role, an SDL feature that fits the concept of s-role has to be selected.

SDL systems consist of a structure of communicating agents; SDL agents are meant to
represent computational objects. Agent behaviours are described using state machines.
SDL composite states support the structuring of state machines; they contain nested sub-
states and transitions. As they represent parts of behaviour, we find them well suited to
represent elementary s-roles. We use state types so that s-rolesmay be instantiated in mul-
tiple combinations with other s-roles to form a complete behaviour.
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Modelling convention: In the rest of this thesis, roles will be defined as state types, and
references to roles will be represented by state instances. A state reference that does not
use state instantiation, indicates that the state is a basic state (i.e a non-composite state).

In Figure 3.4, the s-role “inviter” earlier introduced in the collaboration “invitation”, is
specified using an SDL composite state. The definition of labelled entry and exit points
will be justified later. Signal parameters and variables are not represented in this state
machine diagram. Variables may be declared as part of the s-role definition or as part of
the actor playing the s-role. When elementary s-roles are composed within an actor,
shared variables should be declared at the actor level.

state type inviter

D

}—‘ request-

request- request- invite- invite- ) isnvite
invite invite accept reject q
invite request- request-
accept reject success

wait-answer ) success fail g;

Figure 3.4 . Inviter: s-role behaviour.

In asimilar way, Figure 3.5 defines the behaviour of the s-role “invitee” in the collabora-
tion invitation, and Figure 3.6 the s-roles “rel-init” and “rel-wait” in the collaboration
“release’.

3.3.1 Assumptions

An SDL state represents acondition in which the state machine may either consumeasig-
nal instance, or interpret a continuous signal or a spontaneous transition:

o States are usually applied to represent conditions for signal consumption. If a signa
instance is consumed, the associated transition isinterpreted.
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state typeinvitee

idle (wajt-ansxver?
invite invite . invite
accept reject
| |
invite- invite-
accept reject SUCCess

e oy Y

Figure 3.5: Invitee: s-role behaviour.
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< idle >< wait-ind > idle
| | -
terminate-| | request- . ) Oc—
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ind

P

terminate

wait-ind

Figure 3.6 : Rel-init and rel-wait: s-role behaviours.

» A continuous signal interprets aboolean expression; it is associated to atransition that
can be executed when the boolean expression is true. Continuous signals enable the
designer to model that a certain condition isfulfilled.

* A spontaneous transition specifies a state transition without any signal reception.
Spontaneous transitions enable the designer to model non-deterministic behaviours.

Spontaneous transitions are not needed when modelling s-roles. An s-role represents a
complete behaviour i.e. any action, decision and interaction controlling the s-role behav-
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iour is described. We will see that spontaneous transitions are of interest when modelling
aroles that hide parts of the s-role behaviour. Thiswill be discussed in Chapter 6.

We assume that the communication between elementary s-roles can be completely
described using signals. The use of continuous signals is restricted to the composition of
sroles (see Section 4.1.1 and Section 4.1.2).

Using enabling conditions, it is possible to impose a condition on the consumption of a
signal. Thesignal isconsumed if the condition istrue; otherwise the signal remainsin the
input port. Enabling conditions are interpreted when entering the state, and while waiting
in the state. We assume that enabling conditions are not used to describe any information
exchange between elementary s-roles. The use of enabling conditions is restricted to the
composition of s-roles (see Section 4.1.1 and Section 4.1.2).

Both assumptions reduce the complexity of the validation analysis. From our long expe-
rience of using SDL, we know that these assumptions are acceptable.

3.4 Actors

Service roles are played by actors. We represent actors using SDL process agents. The
assignment of s-rolesto agentsis specified by instantiating composite states within these
agents, and, in the case of concurrent composition, other process agents. Concurrent com-
position will be discussed in Section 4.2.

In Figure 3.7, the process agent “inviter” represents an actor playing the s-role “inviter”.
Note that process agent types may also be used.

process inviter

* declarations */ ( irinviter

Figure 3.7 . Actor playing the s-role inviter.

3.4.1 Servicerole management asa servicerole

Actors may play severa s-roles. An srole to be played may be assigned following an
external regquest, i.e. arequest issued by another actor, or it may be selected depending on
the behaviour that previously occurred within the actor. We call service role management,
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or s-role management, the behaviour that describesthe assignment of s-rolesto actors, and
the selection of a specific s-role among severa alternative s-roles. S-role management
should be coordinated between actors. actors should play s-rolesthat interact consistently
with each other. S-role management may also encompass negotiation between actors.
Negotiation enables actors to agree on the s-roles to be played.

S-role management does not directly contribute to services, but rather supports actorsin
providing services. However, as s-role management requires collaboration and coordina-
tion between actors, and is aso a part an actor plays in a service, we consider the
behaviour related to s-role management as service roles.

The separation between s-role management and the behaviour of the s-role(s) being man-
aged isbeneficial. It augmentsthe understanding of the system behaviour, and contributes
to reducing the complexity of extending the system. Alternative behaviours may beintro-
duced by extending the s-role management without making changes to the existing s-
roles. Conversely, the s-roles being assigned may be modified without changing s-role
management.

Sections 3.4.1.1 and 3.4.1.2 describe two main elements of s-role management. Service
roletriggering and service role assgnment indication are both related to the selection and
assignment of an s-role.

3.4.1.1 Serviceroletriggering

The assignment of an s-role to be played may be decided internally in an actor, or trig-
gered by arequest from another actor. Inthe latter case, arequest may either be expressed
explicitly or implicitly. We propose three main behaviour patterns for s-role triggering:
spontaneous s-role triggering, implicit s-role triggering and explicit s-role triggering.

3.4.1.1.1 Spontaneous s-role triggering

We say that an s-role is triggered spontaneously when it is instantiated as part of the log-
ical action sequence of an actor, i.e. when the actor reaches a specific state. The s-roleis
triggered as part of the s-role management played by the actor. S-roles that take the initi-
ative to start a collaboration, and thus are not triggered by any external request, are
triggered spontaneoudly.

Figure 3.8 illustrates spontaneous s-role triggering. The s-role “inviter” that always takes
place after starting the actor, istriggered spontaneoudly. The s-role“main”, that represents
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some main service activity, e.g. coordinating the allocation of stream channels, is aso
triggered spontaneously after a successful invitation. Notice the relevance of the state exit
points “success’ and “fail” defined in the s-role “inviter” (see Figure 3.4 on page 33) in
this example.

process inviter

iiinviter

Figure 3.8 : Spontaneous s-role triggering.

3.4.1.1.2 Implicit s-roletriggering

An srole is triggered implicitly when its invocation is requested by another actor, and
expressed by a stimulus defined as part of the collaboration to be started and of the s-role
to be assigned.

Implicit s-role triggering is illustrated in the collaboration sequence shown in Figure 3.2
on page 31. For example, the reception of the message “request-invite” triggers the actor
to play the s-role“inviter”. The messageis defined as part of the definition of the collab-
oration between the s-roles “user A” and “inviter”. In that case, the actors playing the
requested s-roles are not represented in the collaboration sequence.

The actor playing the s-role “inviter” is specified in Figure 3.9. The actor may also play
other s-roles. The s-role management played by the actor handles the reception of thetrig-
gering stimuli, and selects the s-role to be played. In this example, notice the relevance of
the state entry points that were defined in the s-roles “inviter” and “invitee’. An entry
point allows one to enter the desired part of a state.

3.4.1.1.3 Explicit s-roletriggering

An srole is explicitly triggered when its triggering is requested by another actor, and
expressed by astimulus defined explicitly for triggering purposes. This stimulus specifies
the s-role to be played.
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process inviter-invitee

Tinitiate idle replyto !
invitation| ! invitation | |
- — — -
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irinviter
viarequest-
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ieinvitee
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Figure 3.9 : Invitation: implicit s-roletriggering.

Explicit triggering isillustrated in Figure 3.10. The message “play” representsthe explicit
request and contains information about the s-role to be played. The actor that is requested
to play the s-role is specified in the collaboration sequence. The complete collaboration
for invitation is not described here; instead an MSC reference is made to the remaining
sequence in the collaboration. The s-role management played by the actor handles the
reception of the explicit request message “play”, and selects the s-role to be played. Sim-
ilarly to the previous case, the s-role “inviter” is entered through a state entry point. The
process agent “actor-inviter” may be extended allowing the selection of other s-roles.

msc Invitation request

user A

play (inviter)
—>

actor-inviter

inviter

request-invite
>

invitation-continue

)

C
——

—

—

process actor-inviter

else

irinviter
via request-
invite

Figure 3.10 : Invitation: explicit s-role triggering.

Explicit s-roletriggering isrequired in a Plug-and-Play approach when thereis aneed for
negotiating or learning the s-roles to be played [Floch and Bragk 2000].
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3.4.1.2 Serviceroleassignment indication

The assignment of s-roles needsto be coordinated between actors. S-role assignment indi-
cation is used to report the assignment of an s-role. It usually takes place after a request
for triggering anew s-role. Similarly to triggering, several behaviour patterns for assign-
ment indication may be defined. We propose two main patterns. implicit s-role
assignment indication and explicit s-role assgnment indication.

In implicit s-role assignment indication, indication about the s-role assignment isimplic-
itly expressed by a stimulus defined as part of the collaboration being started and of the
srole being assigned. Implicit assignment indication may be applied after explicit or
implicit s-role triggering. An example of implicit indication was given in Figure 3.2 on
page 31. The messages “request-accept” and “request-reject” are stimuli that indicate that
the s-role “inviter” is being played.

In explicit role assignment indication, the actor, or role management played by the actor,
indicates, by a stimulus defined explicitly for indication purposes, whether or not the
requested s-role has been instantiated. Explicit assignment indication may be applied after
explicit or implicit triggering. Explicit assignment indication may indicate that an alter-
native s-role to the requested s-role is preferred. Explicit assignment indication is
illustrated in Figure 3.11.

msc invitation request process actor

user A actor
1 1
play (inviter)
—>

at inviter idle >
play-grant e o (

————————— L
request-mwte
T
play

< invitation-continue ) (role)
T inviter @
play-reject

else
-
play-grant play-rej ec>

isinviter J<
viarequest-
invite

Figure 3.11 : Invitation: explicit s-role assignment indication.
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Similarly to triggering, explicit s-role assignment indication requires the actorsto be rep-
resented in the collaboration sequences. The explicit approach also introduces
supplementary signalling leading to increased traffic and processing loads. Again, the
explicit approach is attractive as a part of role negotiation.

3.4.2 ExtensiontotheM SC language

The MSC language does not provide any notation for expressing structural relations
between instances in a sequence chart. It is not possible to indicate that an s-role instance
IS executing as part of an actor behaviour, or that two s-roles execute within the same
actor. Using instance decomposition is not a satisfying solution. One weakness of decom-
position is that two charts need to be defined: one showing the collaboration between the
composite instance and the other instances, one showing the collaboration within the com-
posite instance. Another weaknessisthat the complete sequence of messages between the
composite instance and the other instances needs to be specified on the chart where the
composite is referred to.

We introduce an extension to MSC allowing usto group instances in a chart, more specif-
ically actors and s-roles in our work. A dashed frame symbol containing several MSC
instances indicates that the instances execute within the same actor. Figure 3.12 illustrates
this extension to MSC. We do not differentiate between actor and s-role in the collabora-
tion sequence diagram. The actor behaviour describes the s-role management, that isitself
an s-role.

msc invitation request
r— = — — — — — A
user A actor-inviter
I I
play (inviter) I
e AN A TN
at | inviter |
play-grant e o
1 . I
| request-invite |
< invitati on-continue ) |
! ==
L—_ - 1= - — _| - — = - — — _| —
play-rejectl I
— | — I
L — — — — — — — 4

Figure 3.12 : Grouping actors and s-roles. extension to MSC.
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3.5 Associations

As our work focuses on s-role composition and validation, we omit describing the mod-
elling of system structures. S-rolesinteract over associations that can be described in SDL
in terms of channels. We assume that the signals exchanged between two elementary s-
roles are conveyed on the same communication path, where acommunication path is con-
stituted by a sequence of connected channels. With this assumption, we ensure that signal
ordering is preserved during transport, i.e. signals are received in the same order as they
are sent.

3.6 Summary

The SDL language is used to model s-roles and actors. S-roles are specified using SDL
composite states, and actors using SDL process agents. We distinguish between the
behaviour required to manage s-roles from the behaviour of the s-roles to be assigned.

The MSC language is used to model collaborations. An extension to the MSC language
is proposed that supports the grouping of actors and the s-roles they play.
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3 Collaboration and service role modelling



4
Servicerole composition

Thischapter discussesthe composition of serviceroles (s-roles) within an actor. The coor-
dination of the composition of s-rolesacross actorsis presented in Chapter 8. Through the
composition of s-roleswe aim to produce the complete behaviour of an actor in aservice.
Composition may be applied incrementally. Composite s-roles obtained from the compo-
sition of elementary s-roles may themselves be composed with other s-roles.

There exist various types of dependencies between s-rolesthat constrain the form of com-
position that can be applied on sroles. This chapter presents different forms of
composition, and discusses their properties. While sequential composition enforces
behaviour ordering, concurrent composition supports simultaneous behaviours. Sequen-
tial composition encompasses true sequential composition, guarded sequential
composition, choice and disabling. S-roles that are composed concurrently may execute
more or less independently.

|deally s-roles should be specified without making assumptions about how they are going
to be composed with other s-roles. We define simple general design rules that enable s-
roles to be easily composed. Using these rules, no supplementary behaviour needs to be
specified within the s-roles being composed sequentially. On the other hand, s-roles that
are composed concurrently may require explicit coordination behaviour. We propose
design patterns for the coordination of concurrent s-roles.

SDL-2000 is used to model the different composition classes [ITU-T 1999a]. We select a
set of SDL conceptsfor the realisation of s-role composition, and draw out general guide-
lines for the specification of the s-role to be composed. The basic s-roles introduced in
Chapter 3 are used to illustrate composition.

-43-
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4.1 Sequential composition

Two s-roles are sequentially composed if the execution of one of them precedes the exe-
cution of the other. The s-role executing first must be completed before the other can start
its execution. Using LOTOS terminology, we may also say that the execution of the first
s-role enables the execution of the second s-role [ISO 1989]. The sequential composition
of s-rolesleadsto anew s-role, acomposite s-rolethat may itself be composed with other
sroles.

We represent true sequential composition in SDL by linking the elementary s-role states
in acomposite state. The ordering of execution of the composed s-rolesis enforced by the
definition of the composite state. No adaptation needsto be done in the s-roles to be com-
posed in order to deal with the composition.

The s-role obtained by composing sequentially “inviter” and “rel-init” (see Figure 3.4 on
page 33 and Figure 3.6 on page 34) is shown in Figure 4.1. Here we enforce the s-role
“rel-init” to take place after “inviter” even if theinvitation has been rejected. We postpone
using the exit points of “inviter” to Section 4.1.2.1, thisto illustrate true sequential com-
position. SDL constrains us to attach the “*” symbol to the connection between “inviter”
and “rel-init”. In our example, “*” means that the connection is chosen for any non-
referred exit point of “inviter” (i.e. “fail” and “success’).

state type sequence

i:inviter

r:rel-init

Figure4.1: Sequential composition of inviter and rel-init.

Guarded sequential composition, choice and disabling are extended forms of sequential
composition. They al ensure mutual exclusion between the s-roles being composed and
impose an order of execution. They are also described in SDL by linking the elementary
s-role states in acomposite state. Guards and disabling triggers are added that control the
execution of s-roles. Sections4.1.1, 4.1.2 and 4.1.3 describe these forms of composition.
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4.1.1 Guarded sequential composition

Guarded sequential composition extends the basic sequential composition. Guards are
used that prefix s-roles. Guards describe preconditions that must be satisfied prior to the
execution of s-roles. The ordering of sequential composition is maintained.

Guards may either be expressed as predicates over local conditions (i.e. conditions set
within the actor executing the s-role), or external conditions (i.e. conditions set by other
actors). Guards based on internal conditions are typically used when the composite s-role
executes concurrently with other s-roles within the same actor (see Section 4.2). Externd
conditions facilitate the coordination of composition across actors. They are further dis-
cussed in Chapter 8.

In SDL, we describe guards as continuous signals or enabling conditions. In the case
where s-roles are triggered spontaneously (see Section 3.4.1.1), only continuous signals
are used. A continuous signal interprets a boolean expression; it is associated to a transi-
tion that can be executed when the boolean expression is true. Continuous signals are
interpreted upon entering the state to which they are attached when no signal can be con-
sumed, and while waiting in the state. An enabling condition associates an additional
condition on the consumption of asignal. The signal is consumed if the condition istrue;
otherwise the signal remains in the input port. Enabling conditions are interpreted when
entering the state, and while waiting in the state.

Figure 4.2 illustrates guarded sequential compositionin SDL. Sequence (a) usesacontin-
uous signal as a guard. Sequence (b) uses an enabling condition. The condition “ ready”
may represent an internal condition such as the state of a stream channel, or an externa
condition such asthe state of an interacting actor. The s-role “main” represents any main
activity performed in the service. In sequence (a), the basic state! “idle” is introduced so
that the continuous signal does not force the exit of the s-role “inviter”. The execution of
s-role “inviter” should be completed before the continuous signal is interpreted.

4.1.2 Choice among alter native behaviours

Choice among alternative behaviours extends the basic sequential composition. Using
choice, alternative s-roles can be specified in asequential composite s-role. The selection
of a behaviour among the alternative behavioursin a choice may be controlled by guards

1. Recall the modelling convention introduced in Chapter 3. A direct reference to a state indicates that the
state is abasic state (i.e. a non-composite state)
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state type guarded-sequence-1 state type guarded-sequence-2

isinviter > %

idle < ready>
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ready>_  continuous signal invite
L

izinviter
m:main wa&s/c#:ﬂ- r:rel-init
r:rel-init

(a) guar ded spontaneoustriggering

/\

~——

(b) guarded implicit triggering

Figure 4.2 . Guarded sequential composition.

or external triggers. Guards are expressed as predicates over conditions that are either
resolved locally, i.e. within the actor executing the s-role, or globally, i.e. their resolution
requires some interaction with other actors. External triggers are elements of some inter-
action with other actors. They belong to the definition of an s-role, either the s-role to be
selected and assigned (implicit triggering) or the management s-role (explicit triggering).
Explicit and implicit triggering have been defined in Section 3.4.1.1.

4.1.2.1 Choicebased on a condition

InSDL, guardsare either specified using anamed return (from astate), a set of continuous
signals, or acombination of these mechanisms. A named return describes a state exit con-
dition. State exit conditions are defined by labelled exit points. The set of continuous
signals representing guards should describe a complementary set of conditions. While a
named return reflects a condition set by the s-role immediately preceding the occurrence
of achoice, continuous signals may be related to actions that have taken place at any time
before the occurrence of a choice, or that are taking place within another s-role executing
concurrently. The resolution of a condition specified using a continuous signal may
require an interaction with other actors. This increases the complexity of the validation
anaysis and should be restricted to the synchronisation of s-role composition across
actors (see Chapter 8).
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Figure 4.3 illustrates a sequential composition tree where the exit conditions from the s-
role“inviter” control the selection of the further behaviour. Notice that although the con-
ditionisresolved locally, it may represent a global collaboration condition.

state type sequential-tree

CO

success fall

m:main

<r2§§t>

Figure 4.3 : Choice among alternative behaviours using exit conditions.

Thisexampleis extended in Figure 4.4. Here the selection of a main activity is based on
a set of continuous signals representing the content of the user profile.

state type sequential-tree

i:inviter >

success fail

idle >
.

<ty etle

\

() (i )

&

Figure 4.4 : Choice among alternative behaviours using continuous signals.

M odelling a choice based on a condition is straightforward. No supplementary signalling
isneeded to control the choice. The s-roles specified as aternative behaviours do not need
any adaptation. Labelled exit points facilitate the specification of choices. As illustrated
in Figure 4.1, labelled exit points may be defined that are not used in the composite state.
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Therefore we recommend defining them in any case. We state this recommendation in our
first design rule or D-rule aswe call it throughout this thesis.

D-rule: Exit conditions
L abelsthat express exit conditions should be attached to the exit points of the states mod-
elling s-roles.

4.1.2.2 Choice based on an external trigger

In SDL external triggers are specified using signals. The consumption of these signalsis
specified as part of the composite state where the choice is made. In the case of implicit
triggering, triggering signals belong to the s-role to be selected. The triggered s-roleis
then entered through a state entry point allowing one to enter the triggered state after the
consumption of the signal. No major specification change of the s-roleisrequired in order
to deal with the composition. Labelled entry points facilitate the specification of choices,
and should be defined in any s-role.

D-rule: Entry conditions
Entry pointsthat represent entry through external triggering should be defined in the states
representing s-roles.

Figure 4.5 illustrates a choice based on an external trigger. Here a service user may either
initiate an invitation or reply to an invitation. The user is represented by a single actor in
the service framework, that either playsthe s-role “inviter” or “invitee”. The selection of
an s-role istriggered by the external signals “request-invite” or “invite”.

Any initialisation to be performed when entering the triggered s-roles through the default
start node should also be performed when entering through entry conditions. Entry proce-
dures can be defined that describe initialisation tasks. SDL entry procedures are called
implicitly when entering or re-entering astatel.

D-rule: Entry procedure
Anentry procedure should be defined that describes the tasks to be performed when enter-
ing an s-role.

1. Re-entering a state is discussed in Section 4.2.3.5.
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Figure 4.5 : Choice among alternative behaviours based on an external signal.

rirel-init

4.1.3 Disabling

An s-role disables another s-roleif its execution inhibits the execution of thisother s-role.
Unlike suspension (see Section 4.2.3.5), disabling has a permanent interruption effect.
The disabled s-role isforced to complete execution.

We represent disabling in SDL by linking the elementary s-role statesin acomposite state,
where the disabling s-role state is triggered by the reception of asignal. The reception of
the disabling signal should take priority over the reception of other signals. This is
expressed by means of apriority signal. The disabling signal may either belong to the def-
inition of the disabling s-role (implicit triggering) or the management s-role (explicit
triggering). In the case of implicit triggering, the disabling s-role is entered through a state
entry point. No major specification change of the disabling s-role is required. The same
design rules as for choice based on an external trigger apply (see “entry conditions’” and
“entry procedure” in Section 4.1.2.2).

In the case where an exit procedure is defined in the disabled s-role, the exit procedureis
executed upon disabling. This enables the designer to describe termination operations of
the disabled state. However, SDL exit procedures can only contain asingle transition, and
therefore do not allow one to describe two-way interactions with other actors. When dis-
abling occurs, the process agent queue may contain signals that have been addressed to
the disabled s-role. The retrieval of these signals from the input port leads to unspecified
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signal reception. As unspecified signal reception is not desirable, disabling should only
be applied in critical situations where interruption is necessary. Thisis further discussed
in Chapter 8.

D-rule: Exit procedure
When designing an exit procedure, take into account that the state may be exited through
an exit node, or when a transition attached to the composite state is interpreted.

Figure 4.6 illustrates disabling of the s-role “inviter”. In this example, release may be
forced when the invitation or the main service activity have not yet completed, or it may
take place as a normal case after the completion of the main activity.

state type service-role-with-disabling

State type rel-init

i:inviter )

S —

success fail /

] @ release |
m:main

r:rel-init > > release
@ r:rel-init
via

request-rel

request-
release

Figure 4.6 : Disabling composition.
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4.2 Concurrent composition

With concurrency, we do not mean true concurrency, but rather interleaving. Two or more
s-roles are composed concurrently if their executions interleave. This means that the
actions in the s-roles never occur simultaneously. As s-roles are composed within acom-
putational object and share processing resources, simultaneousness is neither necessary
nor desirable. S-roles composed concurrently have overlapping lifetimes. They may exe-
cute in an independent manner, or their execution may require explicit coordination.

We distinguish between static concurrent composition, where the s-roles and the number
of s-rolesthat are being composed are set at design time, and dynamic concurrent compo-
sition, where s-roles are created dynamically upon decisons made at run-time. Static
concurrent composition is, for example, attractive for combining main tasks with back-
ground activities running continuously, such as logging or status checking. Static
concurrent composition can also be applied when afixed number of instances of an s-role
run independently and concurrently. For example, a service may require one of its partic-
ipants to invite exactly two other participants. Dynamic concurrent composition, on the
other hand, is relevant when a variable number of s-role instances is needed.

We propose to represent concurrent composition using process agents in SDL (see
Section 4.2.1). A process agent representing an actor may contain other process agents
representing s-roles. Inner process agents execute in alternating manner. It is possible to
specify severa levels of concurrency, as inner process agents may themselves contain
process agents. In the case of dynamic concurrent composition, the s-role process agents
are created dynamically at run-time.

An aternativeto process agentsis provided by state aggregation (see Section 4.2.2). SDL
state aggregationisaparticular form of composite state. It definesapartitioning of a state.
A state aggregation consists of multiple states, which have an interpretation that is inter-
leaved at the transition level. The state aggregation construct replaces the SDL-92 service
construct [ITU-T 1993a). State aggregation has many limitations, and can only be used to
model some cases of static independent concurrent composition of instances of distinct s-
roles. In Section 4.2.2.1, we propose smple extensions to SDL that make state aggrega-
tion easier to apply.
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4.2.1 Using process agents

The concurrent execution of multiple s-role instances increases the complexity of a spec-
ification. We propose structural design rules for using process agents in the modelling of
concurrent composition. These rules contribute to an orderly design, and ease the reada-
bility of the descriptions.

We introduce a new role responsible for managing the set of concurrent s-roles. The man-
ager role and the concurrent s-roles are specified within the same process agent. A generic
model is presented in Figure 4.7:

» The managing role “manager” is defined as a composite state. In that way, it can be
itself composed with other serviceroles.

* The srolesto be composed “service-role” are defined using composite states. These
composite states are instantiated within s-role process agents “ service-role-agent”. In
the case of static concurrent composition, the initial number of instances of the process
agent should be specified.

state type manager

o rc.
process type service-aetor W\>
, ——
o &)
manager )

-
service-role-agent

" ['process type service-role-agent

St
service-role

Rk adbad

&

Figure 4.7 : Concurrent composition using process agents.

Two dightly different manager roles are introduced through examplesin Section 4.2.1.1
and Section 4.2.1.2. In both sections, theinitial service exampleisextended in order to let
the service user invite several participants. This is achieved by concurrently composing
multiple “inviter” s-roles.
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4.2.1.1 Allocation manager

The purpose of an alocation manager is to assign aresource, here an s-role, to a request.
Thisisillustrated in the collaboration diagram in Figure 4.8. The new role “allocator” is
introduced that assigns an s-role “inviter” to handle the invitation request. Here the s-role
“inviter” is created dynamically. The collaboration between “inviter” and “user A” is
identical to the initial collaboration invitation (see Figure 3.2 on page 31). In Figure 4.8,
asingle invitation sequence is represented. The sequence may be re-iterated.

msc invitation
user A I—allocator 1
| ]I ] |
request- L L
invite | inviter | invitee user B
.4|>_ _ _>| ] | [ ] [ ]
request- S
H
invite _'[ﬁ»

|
ED | |
|

i |J1vi te-accept

______'_______'___ _____ |

| irlviterejec

Figure 4.8 : Role allocator in concurrent composition.

The behaviour of the role “allocator” and the process agents involved in the service are
described in Figure 4.9.

The introduction of the allocator role dightly changes the initial addressing scheme: the
srole “inviter” no longer replies to the sender of the request message. We recommend
specifying the reference(s) of the entity(ies) to be addressed by the reply in request mes-
sages. Here the message “request-invite” should contain the address of “user A”. Using
SDL gates, channels and connections, it is also possible to specify a system structure that
enforcesthe correct addressing of the signals. However, such an approach providesalim-
ited addressing support. It cannot be applied when the requesting instance is a member of
an instance set. Furthermore, it is not appropriate for dynamic system structures.

D-rule: Addressing information
Request messages should contain the addresses of the s-roles waiting for areply.

Using this design rule, no supplementary behaviour needs to be specified in the s-roles
being composed.
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Figure 4.9 : Concurrent composition of invitation using an allocator.

4.2.1.2 Mediation manager

The purpose of a mediation manager is to assign a resource, here an s-role, to a request,
and to mediate messages to and from that s-role. Thisis illustrated in the collaboration
diagram in Figure4.10. The new role “mediator” is introduced that assigns an s-role
“inviter” to handle the invitation request, and that re-transmits the messages from the s-
role“user A” to thes-role “inviter”, and conversely. The role mediator provides the same
service association role asthe s-role “inviter” to the s-role “user A”, and the same service
association s-role as the s-role “user A” to the s-role “inviter”. The mediator is actively
involved during the whole collaboration, thereby introducing some delay in the interac-
tion between the s-s-role “user A” and the s-role “inviter”.

The mediation manager may also support other functions in addition to re-transmission.
For example, it may provide support for grouping multiple requests. I nstead of generating
arequest for each invited participant, the user may generate a single group request that is
processed and split by the mediator into individual requests. Conversely, the mediator
may concatenate a single answer from the individual answers. A drawback with such
additional functionsisthat changes to the basic collaboration require modificationsto be
made in the mediator.
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Figure 4.10 : Role mediator in concurrent composition.

4.2.2 Using state aggregation

State aggregation provides a smple approach to the modelling of the static concurrent
composition of instances of distinct s-roles. It definesa partitioning of astate into multiple

states. Execution interleaving is enforced by the semantics of state aggregation.

m:main )
S
status-chec

state aggregation type concurrent | -

state type service-role

irinviter >

r:rel-init

Figure4.11 : Satic concurrent composition of the roles main and status.

State aggregation isillustrated in Figure 4.11. Two s-roles “main” and “ status-check” are
composed concurrently. The s-role “status-check” is a background activity that enables
other actors to request information about the actor state while the main activity is taking



56 4 Service role composition

place. The composite s-role obtained by concurrent composition is itself composed
sequentialy with the s-roles “inviter” and “rel-init”. According to SDL semantics, the s-
role “concurrent” terminates when both the s-roles “main” and “status-check” have
terminated.

Using state aggregation, sequential and concurrent composition can easily be combined
in a state graph. However, state aggregation is difficult to apply. The SDL definition of
state aggregation introduces severa restrictions:

* Theinput signal sets of the state partitions must be digoint. Thus state aggregation is
not the appropriate technique to model static independent concurrent composition of
instances of the same s-role.

» The composite state terminates when all state partitions have terminated, or when a
transition istriggered at the composite state level. SDL does not provide any support
for specifying that a state partition (or agroup of state partitions) forces the exit of the
composite state. Additional signalling has to be defined for forcing termination as
illustrated in Figure 4.12, where the termination of “main” forcesthetermination of the
state aggregation. On termination, any exit procedure defined for the state partitionsis
executed. The exit procedure of the state aggregation is also executed.

state type service-role

state type main-with-exit |+

ilinviter

state aggregation type| |
cohcurrent

m: main-
with-exit
exit-main . .
+ (status-check L . :
! ( , exit-main

Figure4.12: Sate aggregation: forcing termination.

» Although the exit points from the state partitions may be connected to the exit points
of the state aggregation, SDL restricts the appearance of each exit point in exactly one
connection. Thus it is not possible to define exit conditions of the state aggregation
from the exit conditions of the state partitionsin aflexible way. Figure 4.13 illustrates
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the connection of exit points. Two exit points are defined for the state aggregation, and
connected to exit points of the state partitions. According to SDL, the exit point “fail”
of “role-1” must appear in exactly one connection, preventing us from specifying any
exit point of the state aggregation for the casewhere“role-1” exitsvia“fail”, and “role-
2’ via*“success'. If so happens, SDL specifies that the exit point of the state aggrega-
tion is chosen in a non-deterministic way.

state aggregation type concurrent

Success

Figure 4.13 : Sate aggregation with exit connection points.

4.2.2.1 Extensionstothe SDL language

We suggest introducing ssmple extensions to SDL to facilitate using state aggregation for
modelling the static concurrent composition of instances of distinct s-roles. We propose
two sets of extensions:

1. Thetermination of a state partition (or agroup of state partitions) may force the termi-
nation of the state aggregation. This can be modelled as shown in Figure 4.14. The exit
point of the state aggregation is connected to the exit point of the state partition “main”
(here DEFAULTl), but not to any exit point of “status-check”. The connection of an
exit point to asingle state partition indicates that the termination of the partition forces
the termination of the state aggregation.

state aggregation type concurrent

done
main ) DEFAULT .
(status-check)

Figure 4.14 : Extension to state aggregation: termination.

2. Exit points may appear in multiple connections, and exit conditions of the state aggre-
gation can be expressed as logical expressions of the exit conditions of the state
partitions. These extensions are modelled in Figure 4.15. Connection lines are not rep-

1. DEFAULT isdefined in SDL; it indicates unlabelled entry and exit points.
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resented graphically here. We prefer atextual representation. Qualifiers are used that
refer to the state partitions.

state aggregation type concurrent
success = <role-1> success AND
role-1 <role-2> success
role-2 fal := <role-1>fail OR
<role-2>fail

Figure4.15: Extension to state aggregation: exit conditions.

We have also considered a set of extensions for supporting non-disjoint input signal sets
of the state partitions. Such an extension requires support for the identification and
addressing of sub-states. Furthermore, the creation of states would enable dynamic con-
current composition to be described using state aggregation. In that way, it would be
possible to use a single SDL concept, the composite state, to model sequential and con-
current compositions. However, with these extensions, the state concept becomes
identical to the process agent concept, the main difference being that states can be linked
sequentially. As this set of extensions is complex, we suggest representing concurrent
composition using process agents when state aggregation cannot be used.

4.2.3 Coordination

S-roles that are composed concurrently may execute more or less independently. Their
composition may require explicit coordination behaviour. For example, in the sharing of
aresource, the phases in a service may have to be coordinated. Unlike the management of
concurrent s-roles, coordination often requires behaviour to be added to the s-roles that
are composed. Coordination is often application dependent. In this section, we propose a
set of design patterns for the coordination of s-roles. Aswe will see, SDL provides rather
poor support for the definition of generic coordination behaviours. First, let us consider
some examples.

4.2.3.1 Examples
4.2.3.1.1 Alternating execution

A service enables auser to invite several other participants at any time during the service
session. For logical reasons, the main activity in the service has to be suspended while a
new invitation takes place.
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This can be modelled by the concurrent composition of the s-roles “main” and “inviter”
where their execution aternates. The s-roles have overlapping lifetimes, but the s-role
“main” is suspended during invitation request. Invitation request and termination are two
relevant events for the coordination of the execution of the s-roles. The caseisillustrated

in Figure 4.16. When “inviter” starts, it suspends “main”. “main” is resumed when invi-
tation terminates. In this example, theinvitation is simplified (i.e. no rgection).

msc invitation
user A T main allocator K
[ ] [ ] [ ]
st o
invite | inviter | invitee user B
g ] | ] | ]
| request- 3 |
| invite |
| - suspend |
invite
| h—> notify
| |
| | ¢ accept |
| invite-accept
requiest-accept I
a3 I |
| - resume |
continde-activit
| — >
I |_ ] ] | ] I
Lo |

Figure 4.16 : Alternating execution between inviter and main.

4.2.3.1.2 Coordinating multiple instances

A service enables a user to invite several other participants to the service session. Invita-
tion takes place when the service session is started and requires negotiation of the
transport streams characteristics. Negotiation takes place between an invitation request
phase and a confirmation phase.

This can be modelled by the concurrent composition of multiple instances of the s-role
“inviter”. We assume that the actor that hasinitialised invitation decides upon the charac-
teristics of the transport streams. The s-roles “inviter” execute concurrently until the
negotiation phase. At that point, the s-roles should coordinate and agree on a common
transport stream configuration. This configuration may be computed by a configuration
coordinator that executes concurrently with the s-roles “inviter”. When a configuration
has been generated, the s-roles “inviter” can further proceed concurrently. The case is
illustrated in Figure 4.17. In order to smplify the message sequence, a single instance of
“inviter” isshown in the diagram. Invitation has been extended to two phases, configura-
tion and confirmation.
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Figure 4.17 : Synchronisation: computing a common profile.

4.2.3.1.3 Resource sharing

A service may enable a user to invite several other participants to a service session. The
elementary invitation s-role is extended with a dialogue with the requesting user. Through
this dialogue the user is authenticated by the remote s-roles “invitee”. The user terminal
supports only one dialogue at atime.

Thiscan be modelled by the concurrent composition of multiple s-roleinstances“inviter”.
The s-roles execute concurrently during their initial phase. Invitation is suspended if the
terminal resource is not available for authentication dialogue. Invitation is resumed when
the terminal resource can be allocated.

4.2.3.2 Coordination events

Coordination events trigger the coordination of concurrent s-roles. They may be related
to the state of a shared resource or the stage of a service phase. As we have seen, coordi-
nation events are often service dependent. Generic events may however be defined for a
set of services. Generic user states such as “busy”, “not responding” are defined in Parlay
[Parlay 2000f]. The development of reusable s-roles requires generic events to be

identified.

In SDL, coordination events may modelled by input signals, enabling conditions, or con-
tinuous signals.
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4.2.3.3 Coordination modes

The composed s-roles may execute concurrently between two coordination events, or
aternating:

* Inthefirst case, the s-roles evolve independently until they reach coordination points,
where they wait for some coordination event to occur. Thisisthe case in the example
shownin Figure 4.17. The“inviter” instances execute independently until they wait for
a configuration profile to be computed.

* Inthelater case, only one of the s-roles can execute at atime; the other s-roles are sus-
pended until a coordination event is reached where, possibly, one of the suspended s-
role resumes while the activate s-role is suspended. Alternating execution can be
employed when two s-roles share a common resource. It ensures mutual exclusion
between s-roles. The coordination events serve as guards for interleaving between s-
roles. In Figure 4.16, the s-role “main” and “inviter” execute alternating. Suspension
is further discussed in Section 4.2.3.5.

4.2.3.4 Coordination interaction

Coordination between concurrent s-roles may be communicated directly between the con-
current s-roles or through a coordinator. This is illustrated in the case of alternating
execution in Figure 4.18. The message “event” represents the notification of a coordina-
tion event. The messages “suspend” and “resume” control the alternating execution.
Confirmation should be added if suspension cannot take place in every s-role state. Case
(b) is better suited when the composition involves more than two s-roles. In the case of
concurrent execution, the messages “suspend” and “resume” are not needed. The notifi-
cation event serves as a coordination.

msc coordination msc coordination

" roe1  role2 ! coordinator ~ rolel  role2 !

| I | | || | I | | | | ||

event | event |
resume suspend

| | | » |
resume

| suspend | | |

| — | | — — |

L - - — — J L - - _

(a) direct coordination between s-roles (b) coordination using a coor dinator

Figure 4.18 : Alternating execution: coordination patterns.
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4.2.3.5 S-rolesuspension and resumption

The alternating execution of concurrent s-roles requires mechanisms for the suspension
and resumption of s-roles. Suspension and resumption are triggered by the notification of
coordination events. A suspended s-role enters a suspended state where all signals
expected by the s-role, except the resumption trigger should be saved. Certain signals, e.g.
exceptions, may also be enabled in a suspended state. We introduce a ssimple design pat-
tern for suspension and resumption. SDL provides rather poor support for the definition
of generic behaviours. Thisis explained in this section.

Suspension may be enabled in a subset of the s-role states or any s-role state. In the first
case, suspension hasto be modelled as part of the s-role definition; suspension is applica-
tion-dependent. In the second case, suspension may be modelled as part of the s-role
definition or at the s-role level. We prefer the later approach asit does not require any sup-
plementary behaviour to be specified within the s-role being composed. Thetwo casesare
illustrated in Figure 4.19.

state type service-role

process type service-role

(D | & =

suspend resume / * | P

suspend resume
suspend-ind) ( active | | v
siservice- with
<suspended> < role history
suspended>

(b) suspension of thewholes-role
(extension to SDL)

(a) suspension of a particular s-role state

Figure4.19: Suspension and resumption at different levels.

Case (a) issmplified and shows only the suspension of one state. The suspension is con-
firmed asit cannot take place in every s-role state. Asit isnot possiblein SDL to test the
value of a state, the value of the suspended state should either be stored in a variable, or
distinct suspended states should be defined for the distinct active states that can be
suspended.
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In case (b), the definition of SDL composite states makes the specification of a smple
design pattern for s-role suspension intricate. On resumption, the s-role should be re-
entered in the stateit wasleft. The SDL history concept supports the re-entering of acom-
posite state. However, the state specified in the nextstate node with history must be the
state in which the transition was activated. Thus, in case (b) in Figure 4.19, using history
isnormally not allowed. The intermediate state “ suspended” introduced between leaving
and re-entering “active” prevents us from using history.

Another difficulty isintroduced by the SDL definition of entry procedure. When re-enter-
ing a composite state with history, the entry procedure of the composite state is invoked.
No mechanism in SDL is provided to distinguish between entering or re-entering a state.
Thus, inthe case a state can be re-entered, entry procedures are not appropriate to describe
initialisation tasks that only need to be performed on entering the state for the first time.
Someintricate work-arounds usi ng flags may be introduced. However such work-arounds
introduce dependencies between composite s-roles and sub-roles. Thisis not desirable.

4.2.3.5.1 Application dependent behaviour

Thebehaviour of s-roleshas often to be taken into account when suspension isintroduced.
As aready discussed, some particular states may not be suspended. Timers, interactions
with other actors, and real-time requirements may also influence the suspension of an s-
role. Should timers be stopped before suspending an s-role? If not, should expired timers
be taken into account in suspended states? Or should they be restarted? There is not one
single answer to these questions. The application has to be taken into account. We con-
clude that suspension behaviour can only be defined as a pattern that the designer may
refine according to the application needs.

4.2.3.5.2 Suspension vs. disabling

While suspension is defined as a temporary interruption, disabling is permanent (see
Section 4.1.3). Suspension may be modelled in the same manner as disabling using trig-
gering at the composite level. In that way, we try to model suspension and disabling
without introducing changes to the s-role behaviours. A new difficulty is introduced by
the SDL definition of exit procedure. When exiting a composite state, the exit procedure
isinvoked. No mechanismin SDL isprovided to catch the cause of exit. It is not possible
to test whether areturn node has been reached, or asignal at the composite level has trig-
gered the exit. In the latter case, it is not possible to test the type of the signal. These
limitations of SDL also makes the definition of generic composition behavioursintricate.
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4.2.3.5.3 Extensionsto the SDL language

We propose the following extensionsto SDL that facilitate the specification of suspension
a thes-role level:

» Severa transitions may be executed between leaving a composite state and re-entering
this state with history. With this extension the pattern proposed in case (b) of
Figure 4.19 is allowed.

» Theboolean variable re-enter is defined for all composite states; this variableis set to
true when re-entering a state. Testing this variable, it is easy to determine which tasks
should be performed.

» Thevariable exit-cause is defined for all composite states, that distinguishes between
exits through areturn-node and exits triggered at the composite level. It should also be
possible to test exit conditions attached to return-nodes, and the trigger types and
values.

In general, welack simple mechanismsin SDL for testing state and signal names, for test-
ing entry and exit conditions, etc. This lacking support makes the specification of general
patterns cumbersome. Such mechanisms do not require changes to made to the SDL
semantics.

4.3 Incremental servicerolecomposition

Through the composition of s-roles, it is possible to produce complex behaviours. Com-
position may be applied incrementally. Composite s-roles may themselves be composed
with other s-roles. Ideally s-roles are specified without knowing how they are going to be
composed, i.e. sequentially or concurrently, and composition is applied in order to define
different kinds of services. This is illustrated in Figure 4.20 and Figure 4.21 where the
same elementary s-roles are composed in different ways leading to distinct service
behaviours:

* InFigure4.20, auser may participate in distinct service sessions. A participant may be
invited in each session, and independent activities are performed. Each session is
obtained by composing sequentially elementary s-roles. The sessions are themselves
composed concurrently.
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process type user-role
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Figure 4.20 : Concurrent service sessions.

» Figure4.21, auser may invite severa participantsin aservice session. The participants
are involved in a common activity. Invitation and release may take place at any time.
The participation management and the common activity are composed concurrently.
The participation management is obtained by composing sequentially elementary s
roles.

| state aggregation type session-role | - -~~~ | state type participant-allocator

process type session-role o a
P icipant-alocator
s:session-role - N ;
common-activity )+ ide

[request]
e request
p:partici panﬂ process type participant
- participant
" . ) request to
. i inviter > offspring

Y r: rel-init >

Figure4.21 : Concurrent service participation and activity.

Normally elementary s-roles are composed sequentially. In Figure 4.20 and Figure 4.21,
“inviter” and “rel-init” are composed sequentially. Service features usually result from the

collaboration between elementary s-roles.
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S-roles obtained from the composition of elementary s-roles may themselves be com-
posed with other s-roleseither sequentially or concurrently. In multiphase services, s-roles
are usually composed sequentially.

Sequential and concurrent composition can both be applied statically at s-roledesigntime.
Theintroduction of new services can be achieved by defining new elementary s-roles, and
by composing new and existing s-roles in different ways. Dynamic concurrent composi -
tion, on the other hand, is applied a run-time. Srole process agents are created
dynamically and composed at run-time. This form of composition suits a plug-and-play
approach where s-roles are designed off-line, and deployed dynamically.

The composition approach is attractive for several reasons:

It encourages the designer to produce modular service descriptions. The elementary
roles and collaborations are ssimple and can be easily understood.

* By nature, it provides a method for adding or replacing elementary behaviours. New
functionality can also be added at run-time. In that way, the composition approach sup-
ports incremental service development and deployment.

» Dependencies between roles are highlighted during composition. Thus, the composi-
tion approach contributes to the understanding of dependencies between roles and
services.

*  When components are involved in severa services, the contribution to different serv-
ices can be modelled by different roles that are composed in order to obtain the whole
component behaviour. In that way, role composition enables one to concentrate on
individual services, and break down complex component behaviours.

» Composition can be exploited during validation. This helps to reduce the complexity
of the analysis. Asvalidation takes into account the compositional properties of a sys-
tem, it isaso suited for the validation of components bound at run-time.

The power of expression of SDL is not restricted by the design rules that have been pro-
posed. In that way, the composition approach does not introduce any restriction asto what
functionality can be defined.
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4.4 Summary

In this chapter, we have proposed two main s-role composition schemes: sequential and
concurrent composition.

Sequential composition ensures mutual exclusion between the s-roles being composed
and imposes an order of execution. The modelling of sequential composition is straight-
forward in SDL. Simple design rules related to the entry and exit of s-roles have been
introduced. When these rules are followed, no supplementary behaviour needs to be spec-
ified within the s-roles being composed in order to deal with the composition.

Concurrent composition is used to compose s-rolesthat have overlapping lifetimes. Static
concurrent composition applies at design time. It requires the s-roles and the number of
instancesto be set at design time. Dynamic concurrent composition isapplied at run-time.
Sroles are created dynamically upon decisions made at run-time. Concurrent composi -
tion is modelled using process agents or state aggregation. State aggregation however
involves many limitationsthat restrictsits application to the composition of static compo-
sition of instances of distinct s-roles. Simple extensions to SDL are suggested that would
facilitate using state aggregation. The extensions are related to the exit of state

aggregations.

S-roles composed concurrently may execute more or lessindependently. When s-rolesare
dependent, composition requires explicit coordination behaviour. We propose design pat-
terns for the coordination of concurrent s-roles. These patterns need to be adapted to
application specific needs. Smple extensions to SDL could facilitate the specification of
a suspension pattern. The extensions are related to the entry and exit of s-roles.

Composition provides support for dynamic service adaptation. In addition, it augments
human comprehension of the service models, and, aswe will seein the next chapters, con-
tributes to reduce the complexity of the validation analysis.
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Validation: an introduction

This chapter discusses the requirements set by dynamic composition on validation, and
considers existing validation techniques with respect to these requirements. A short intro-
duction to the validation techniques in our approach is presented, and some fundamental
concepts are defined. The validation techniqueswill be described in detailsin Chapters 6,
7 and 8.

The validation approach deals with the interaction behaviour between service roles, i.e.
visible as service association roles. The dynamic analysis considers all possible interac-
tions that may occur during system execution, and aims at detecting interaction errors.
Thevalidation ensuresthat theinteractions between a-rolesarelogically consistent. Focus
is set on safety properties i.e. avoiding that bad behaviours, such as deadlocks, occur.
Dynamic analysisiscomplex and requires ssmplification. Two simplification schemes are
proposed: projection and incrementation.

A magjor concern in our work has been to provide validation techniques that are easy to
understand and apply. Current verification and validation techniques often require high
competence and knowledge in formal modelling and reasoning, and their use in the soft-
ware industry is rather moderate. Our approach does not require that designers have
detailed knowledge of formal analysis techniques. It proposes a set of design rules that
can be easily applied as an integrated part of the design process, and enforced by design
tools.

5.1 Validation in a dynamic context

Dynamic and incremental composition of systems sets particular requirements on
validation:

» The analysis should take advantage of the system structure. If one component is

- 69 -
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replaced, modified or added, the analysis should be restricted to the parts of the system
affected by the modifications.

* As components may be bound dynamically at run-time, the analysis should apply to
types - not instances.

We propose to validate interfaces between components. Interfaces may be defined in dif-
ferent ways. A main research issue in software architectures and architecture definition
languages relates to the definition of component interfaces [Medvidovic and Taylor
2000]. [Luckham and al. 1995; Kirini 1999] discuss which information should be
described by interfaces so that systems can be easily and correctly built from components.
Building systems out of componentsis difficult, and poor interface descriptions are iden-
tified as an important reason of architectural mismatch [Garlan and al. 1995]. In the
current distributed processing and object-oriented approaches, interface definitions are
restricted to operation signatures, i.e. operations offered by the interface, and the param-
eter types. Such interfaces fail to describe the semantics and dynamics of interactions
between components, e.g. the ordering in which operations should be used. They aso fall
to describe the operations required by the component. Thisinformation isimportant when
acomponent is replaced in a system. It is should be possible to determine whether or not
the other components in the system provide the functionality required by the new
component.

Our approach seeks to overcome these limitations by describing the dynamics of interac-
tions by means of service association roles (a-roles). An a-role represents the observable
behaviour of aservicerole (s-role) on an association. A-rolesare derived from s-roles, and
are represented by state machines. They describe operations in terms of messages
received and sent on an association. Each state represents acondition for the consumption
or sending of messages, and the machine represents a behaviour.

It should be noted that a-roles define bidirectional behaviour, and not just the offered oper-
ations. Each a-role interacts with a complementary arole on the other end of an
association, and the complementary a-role can be derived from an a-role behaviour. When
an s-roleisinserted or modified in a system, new a-roles can be derived from this s-role.
We provide techniques for checking that these new a-roles behave correctly towards the
arolesprovided by the other interacting s-rolesin the system. We al so provide techniques
for determining which a-roles should be provided by these s-roles. In that way, the vali-
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dation analysis only needs to be applied on the parts of a system that are affected by a
modification.

Our validation approach is integrated with the composition of s-roles described in
Chapter 4. Elementary s-roles are first validated, and then their composite s-roles, etc. A
change to an elementary s-role requires the validation analysis to be applied on that ele-
mentary s-role, not on the composite. In that way, the validation analysis takes into
account the compositional properties of asystem.

The validation techniques are applied on a-role types, not just instances. This facilitates
the analysis of components that are bound dynamically. Design rules are defined that ena-
ble the designer to identify errors at design time, and devel op well-formed state machines.
In that way, it is possible to avoid the deployment of poorly designed components.

5.1.1 Related research

Little work has been dedicated to the validation analysis of systems that are composed
dynamically. [ Charpentier and Chandy 1999] introduces a component-based approach for
formal design and verification of distributed systems. Systems are described using an
abstract formalism based on temporal logic, and system properties are expressed using
logical properties. This is an academic approach, and we find it far too complex to be
taken into usein an industrial context.

Within software architecture research, formal languages and analysis tools are also pro-
posed. A maor difference between our approach and the work done on software
architecturesisthat we deal with fine-grained elements (and their composite), while soft-
ware architectures concentrate on coarse-grained elements. [Medvidovic and Taylor
2000] points out the lack of consensus in the software architecture research community.
Some scientists am at providing ssimple, understandable architecture definition lan-
guages, but not necessarily having formally defined semantics. Others aim at providing
formal languages and powerful analysistools. In thislater group, [Allen and Garlan 1994;
Allen and Garlan 2000] describe aformal approach to architectural connection based on
the process algebra CSP [Hoare 1985]. The small client-server cases used as examplesin
these articles are rather complex. We reckon that the approach is not appropriate in the
case of fine-grained elements. The specification of components and the derivation of
interfaces from components are not addressed. Our approach starts from the component
specifications (s-roles) and describes interfaces as projection of specifications.
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[Allen and al. 1998] discusses the problem of dynamic reconfiguration. Thisis an issue
that we have not considered yet.

5.2 An alternativeto reachability analysis

Aswe model services as state machines that communicate asynchronously, and interfaces
as a-roles that describe the protocols of interaction between s-roles, we seek techniques
that are suitable in that context rather than general software validation techniques. [Boch-
mann 1990; Perhson 1990] give an overview of the main protocol validation techniques,
and [Hogrefe 1996; Hogrefe and al. 2000] present how these validation techniques can be
used to validate SDL systems.

It is appropriate to compare our approach with reachability analysis. Reachability analysis
isat the core of the dynamic analysis of SDL systems and other state transitions systems.
Other validation techniques require amore abstract specification languagethan SDL. Itis
often combined with property languages in order to determine liveness properties.

Reachability analysisis based on the exploration of the global state space. A global state
graph that represents all possible ways of combining behaviours is generated, and
inspected in order to find errors, e.g. deadlocks and incorrect terminations. The main
problemin this approach is that the complexity of the global state graph grows exponen-
tially with the number of states of the constituting state machines. The number of statesis
often too large for exhaustive analysis. Thisis known as the state space explosion prob-
lem. Severa techniques have been proposed in order to reduce the complexity of the
reachability analysis; [Lin and al. 1987; Perhson 1990] discuss some of them. For large
systems, exhaustive analysis degrades to low-quality partial search. A discussion about
the limitations of exhaustive analysis, and a smplification scheme based on controlled
partial searches are presented in [Holzmann 1991]. The Telelogic TAU tool exploresthis
scheme, enabling the analysis of large SDL systems|[Telelogic; Ek and al. 1997]. Despite
the availability of tools, the analysis remains complex and often requires manual naviga
tion of the unexplored branchesin the state space.

Reachability analysis is not well suited to the validation of compositiona systems and
systems dynamically composed at run-time. It is applied on state machine instances - not
types -, and thus is not appropriate for checking components bound at run-time. It poorly
takes advantage of the compositional properties of a system. If one component is modi-
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fied, the system needs to be analysed again. The results of the analysis done before the
modification of the system cannot be directly reused.

Another drawback of reachability analysisisthat the error search is postponed until after
the design phase. If errors are found, the system has to be re-designed, re-analysed, etc.,
until no new errors can be detected. In our approach, anomal ous behaviours can be iden-
tified at design time, before the validation analysis itself. We propose design rules that
enable the designer to develop well-formed state machines.

By concentrating on the interactions on associations between components, our approach
isnot asgeneral asreachability analysis. Variables are not taken into account, and depend-
encies between three or more components are ignored. As we will see, our approach
enables the detection of second-order errors, but fails to identify the exact cause of these
errors. Thiswill be further explained in Section 7.3.

5.3 Simplification schemes

System validation has two parts: a static analysis and adynamic analysis. The static anal-
ysis consistsin checking the consistency of the types of messages exchanged between the
system components. Thisstatic analysisisrather simple and isnot discussed inthisthesis.
The dynamic analysis considers all possible interactions that may occur during system
execution. Dynamic analysisis difficult and requires simplification in order to be practi-
cal. We propose two simplification schemes: projection and incrementation.

5.3.1 Projection

The projection is an abstraction technigue. A projectionisasimplified system description
or viewpoint that emphasises some of the system properties while hiding some others.
Rather than analysing the whole system, projections are analysed. In our work, the pro-
jection only retains the aspects significant for the purpose of validation of an association.

We use projection to hide internal actions and interactions that are not relevant in the val-
idation of a particular association. We formally define a projection transformation for the
generation of a-roles from s-roles (Chapter 6). A-roles define the visible behaviour of s-
roles on associations and hide the behaviours not visible on the association. Interface val-
idation is applied on a-roles. The purpose of interface validation is to ensure that a-roles
interact consistently (Chapter 7).
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Figure5.1: Projection: a simplification scheme.

The concept of projection is not new. Projections were proposed in [Lam and Shankar
1984] for the analysis of single functionsin aprotocol. In that work, protocols are decom-
posed into modules that handle different functions, and each module is defined as a
projection of the whole protocol. Another projection technique is proposed in [Brak and
Haugen 1993] that sketches a projection transformation and an analysis of projected inter-
faces. Thisthesis further develops thisidea.

5.3.2 Incrementation

In addition to projection, incrementation is used in order to achieve simplification. The
validation approach is tightly integrated with s-role composition. Elementary s-roles are
first validated, then the s-roles composed from elementary s-roles, and then the composite
of composites, etc. As composition is modelled using similar modelling mechanisms as
elementary s-roles, the techniques developed for the validation of elementary s-roles can
be reused during the validation of composite s-roles. Thisis discussed in Chapter 8.

[Chow and al. 1985] has described an incremental validation model for protocols built
from sequential phases. The model isrestricted to two interacting machines. Our approach
addresses more complex cases in that each s-role may interact concurrently on severd
associations. Furthermore, we are not restricted to sequential composition, but consider
different forms of composition.
composition
Composition validation:

check that composite s-roles
interact consistently.

composition

Figure 5.2 : Incrementation: a smplification scheme.
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5.3.3 Related research

Using abstractions in order to reduce the complexity of a system to be analysed is also
used in system verification and testing. There are many similarities between validation
and testing [Hogrefe and al. 2000]. Both techniques require searching in large state
spaces, and suffer from the state space explosion problem. Both exploit similar smplifi-
cation techniques.

Abstraction techniques have been proposed for removing control flow redundancy
[Moundanos and Abraham 1998] or for hiding variables [Bozga and al. 1999]. The pres-
ervation by abstraction of the propertiesto be checked isan important issue. A theoretical
approach is proposed in [Loiseaux and a. 1995]. In [Boroday and al. 2002], the authors
point out the lack of work related to abstracting state machines or SDL. They focus on
state abstraction in test generation.

5.4 Constructive and corrective methods

In [Brak and Haugen 1993], the authors distinguish between constructive methods that
aim to generate the right systems, and corrective methods that aim to detect and correct
the errors that are made. Our approach istwofold. It provides support for producing cor-
rect designs, and for detecting errors when checking a design. Interface validation is
applied in two ways:

» As aconstructive method, interface validation aims at generating consistent comple-
mentary a-roles from particular a-roles. Design rules are also defined for a-rolesand s-
roles that prevent errors. We do not address the generation of s-roles from a set of a
roles. Techniques developed for the generation of specifications from MSCs may be
investigated [Robert and al. 1997; Abdallaand al. 1999].

» Asacorrective method, interface validation is used to check that two complementary
arolesinteract consistently. Consistency may also be checked at run time.

The concept of complementary a-role is defined as followed:

Definition: Complementary service association role

An arole is called a complementary a-role with respect to another arole, if it interacts
with that a-role on some association. Complementary a-roles are a-rolesthat interact with
each other.
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In Figure 5.1, the arole “arole-2-1" is a complementary a-role of “arole-1-2". The a
roles are complementary. Complementary a-roles do not necessarily interact consistently.

The proposed constructive and corrective methods make use of common techniques.
Rather than directly checking the consistency of two a-roles, wefirst check whether or not
the a-roles present the right properties for interacting consistently. This is illustrated in
Figure 5.3. Projection isfirst applied in order to generate a-roles from s-roles. The a-role
graphs are then transformed in order to simplify further validation operations. The simpli-
fied definition of a-roles enables us to detect and understand ambiguous or conflicting
behaviours. Design rules are proposed that support the designer in removing errors and
defining well-formed s-roles. When s-roles follow the design rules, consistent comple-
mentary atroles (or dua aroles) can be generated, and the consistency of two
complementary a-roles can be checked automatically.
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1. project arole arole "
srole | ———p Q - 5. check - Q - s—role

consistency

:}ng symptoms / v
of errors

4,
4. correct errors

(apply design rules) 5. generate
dual a-role
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Figure 5.3 : Constructive and corrective methods.

By identifying and removing errors before consistency checking, we avoid analysing
poorly designed s-roles and a-roles. The algorithm for consistency checking is thereby
simplified, and the number of states in the working space used by the algorithm can be
kept low. Requiring that each s-roles and a-roles adhere to design rules may sound severe.
The design rules do not restrict the possibilities to make useful designs. They smply pre-
vent designs that are likely to cause dynamic errors.

The consistency checking of a-roles is cognate to the validation of protocols. [Nitta and
al. 1993] hasalso defined a method for converting SDL systemsto protocol specifications
and applying a particular protocol validation method on SDL systems. The method how-
ever is restricted to two interacting SDL machines. Our approach applies to several
machines. Furthermore, we thoroughly review the properties of a-roles, and propose a
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classfication of anomalous behaviours that are symptoms for errors. These behaviours
can beidentified at system design time.

The transformations applied to s-roles and aroles are rather ssimple. They can be per-
formed manually by the designer, or be supported by tools. The design rules can also be
applied manually, and be enforced by design tools. It is our experience, and this is also
observed by [Logean and al. 1999], that the use of automated formal validation techniques
for industrial software design is still moderate. The current techniques require high com-
petence and knowledgein formal modelling and reasoning from the system devel oper. We
believe that our approach, although having aformal base, remains easy to understand and
use. In that way, the applicability of the proposed approach iswider than the validation in
adynamic context. It should also be of interest for the validation of static systems.

5.5 Interaction consistency

Our work focuses on safety properties, i.e. bad things that should never happen. Unspec-
ified signal receptions, deadlocks and improper terminations are classified as violations
of safety properties. Liveness properties, i.e. desirable things that should eventually hap-
pen, are not addressed. We do not provide any formalism for expressing liveness
requirements as done in [Holzmann 1991].

As aroles are defined in terms of state machines that communicate by message
exchanges, safety violations can be characterized in terms of signals and states. This sec-
tion defines the saf ety violations considered here.

The approach isrestricted to the avoidance and detection of logical errors. Physical errors
such as signal loss, communication channel defect and actor defect are not discussed.

Definition: Unspecified signal reception
An unspecified signal reception occurs when an a-role recelves asignal that is not speci-
fied asinput in the current role state.

In SDL, unspecified signals are discarded, and thus unspecified signal reception may not
cause any immediate failure. However, unspecified signal reception is asymptom of pos-
sible design errors. Therefore we enforce strong requirements on interacting roles: all
signals sent by arole should be explicitly consumed by the associated role.
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Definition: Deadlock
A deadlock occurswhen two a-roles are unabl e to proceed because they wait endlessly for
signals from each other.

Definition: Improper termination

I mproper termination occurs:

- when two a-roles do not terminate in a coordinated manner: no signal should be sent to
an a-role that has terminated,

- when the exit conditions attached to the a-role terminations are not consistent. Two exit
conditions are consistent when they represent the same termination cases, or when one of
the conditions represents a termination case that covers the termination case represented
by the other condition.

The termination of an a-role should be perceived by the interacting a-role so that a-roles
never send signalsto their associated complementary a-roles when they have terminated.
Thisrequirement is essential to support consistent role composition.

SDL does not define the concept of exit condition, but the concept of exit label. An exit
label is a means for abstracting a condition. For example, the role “inviter” introduced in
Chapter 3 on page 33, isdefined with two exit labels: “fail” and “success’. Each label rep-
resents a condition of termination. We prefer to reason on exit conditions rather than
labels. In Section 7.1.2.4 on 172, we will introduce an extension to the SDL exit label for
expressing exit conditions as OR-expression of other exit conditions. Thisextension facil-
itates the composition of roles across actors. For example, using this extension, it will be
possibleto attach the condition “fail OR success’ to areturn node. The condition “fail OR
success’ means any of the cases “fail” or “success’. It represents a termination case that
covers the termination case represented by the condition “fail”. Thuswe consider the two
conditions “fail OR success” and “fail” to be consistent.

In the following, wewill usethe termexit condition instead of exit label. Smilarly, we will
use entry condition instead of entry label.

Definition: Interaction consistency
A-rolesare said to interact consistently when their interactions do not lead to any unspec-
ified signal reception, deadlock or improper termination.
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5.6 Rules

In the following chapters, we will define various rules related to the validation of a-roles
and s-roles. We distinguish between three kinds of rules:

* D-rules, or design rules, define guidelines for the system designer. D-rules mainly
describe the desirable properties of a-roles and s-roles. Some of them facilitate inter-
face validation. D-rules apply to humans, and can be enforced by design tools.

» T-rules, or transformation rules, are related to the transformations that we define and
apply ontherole state graphs. These transformationswill aim to reduce the complexity
of the analysis, or to produce consistent complementary a-roles. T-rules apply to man-
ual or automated transformations.

» V-rules, or validation rules, support the validation of roles. They describe required
properties of roles, and the techniques that may be applied on theseroles. V-rules apply
to humans, and can be enforced by design and validation tools.

The rules are expressed in simple terms so that they are easy to understand and apply.
However, we have tried to be precise, and we have provided ajustification for each rule.
We also define algorithms for the main transformations and validation rules.
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6
Service association role modelling

This chapter introduces the modelling of service association roles (a-roles). Recall that an
arole is defined as the visible interaction behaviour of an s-role on an association with
another s-role. We describe a-roles as state machines using a notation inspired from SDL.
Asarolesarerestricted to the visible behaviour of s-roleson associations, full SDL isnot
needed. Some extensions to the SDL notation are introduced in order to abstract non-
observable behaviours, i.e. s-role behaviours not visible at the interface.

The set of concepts needed for a-role modelling is first identified by describing the pro-
jection from s-roles to a-roles. The projection of an s-role state graph generates an a-role
state graph. Transformations are proposed that can be applied on arole state graph in
order to facilitate interface validation. In particular a-roleswill be described using transi-
tion charts, akind of state graph where transitions between states consist only of asingle
event: an input, an output or a silent event.

This chapter also identifies s-role patterns that lead to ambiguous or conflicting behav-
iours. An a-role behaviour is said to be ambiguous when an external observer is not able
to determine which behaviour is expected by this arole. A conflict occurs when the
behaviours of an a-role and its complementary a-role diverge. Ambiguous and conflicting
behaviours require specia consideration during interface validation.

6.1 Modelling concepts

A-roles capture the interaction behaviour of an s-role on an association. They abstract the
internal actions occurring in the s-roles and theinteractionstowards other s-roles. In order
to identify the concepts needed for a-role modelling, it is suitable to think about a-rolesas
derived from s-roles. We call this derivation a projection. The projection of an s-role state
graph onto an association generates an a-role state graph.

-81-
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A-rolesexhibit the same behaviour asthe s-rolesthey are derived from, on the association
they are attached to. This means that an s-role and the projected a-role should be able to
generate the same sequence of outputs on an association when offered the same sequence
of inputs on this association. Note that the s-role and the projected a-role are not restricted
to generate a single sequence of outputs for a given sequence of inputs; alternative
sequences are allowed. The behaviour determining the choice of a sequenceis not visible
at the association interface, and an a-role may appear to make non-deterministic choices.
Thisnon-determinism results from the abstraction of the s-rolesinternal decisionsand the
interactions on other associations.

Therelation between an s-role and aprojected a-roleisakind of equivalencerelation. The
notion of equivalenceisusually introduced in program verification, and amsto establish-
ing the equivalence of aprogram and its specification. Several equivalencerelations have
been proposed [Milner 1989]. These relations are based upon the concept of observable
behaviour: “two agents are equivalent, if they exhibit the same behaviour”, where severa
interpretations may be given asto what behaviour is observable. In particular, theinternal
actions may be observable or not. In our approach, the observation is restricted to one
association at atime, and the abstraction of internal actionsis observed in terms of state
changes, where each state represents different behaviour events.

Definition: Observable association behaviour
The behaviour provided by an s-role on an association is called the observabl e association
behaviour.

We will aso use the term external association observer, or simply external observer, to
denote some external machine that interacts with the s-role on an association. An externa
observer perceives the signals sent by an s-role on an association. It can observe how an
s-role reacts, or responds, to the reception of asignal or sequence of signals. An externa
observer does not observe s-role state changes directly, only indirectly when state changes
lead to distinct responses. A complementary a-roleis akind of external observer.

arole
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Figure6.1: A-roleand external observer.
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Sections 6.1.1 to 6.1.8 introduce the modelling concepts by describing the projection from
srolesto a-roles. Similarly to s-roles, a-roles are described as state machines. A notation
inspired from SDL isintroduced for the specification of a-roles. In Section 6.2, we will
show that the a-roles obtained by projection provide the same observable association
behaviour as s-roles.

6.1.1 Signals

We assume that all the communication between s-roles take place by the exchange of sig-
nals, and that signals exchanged on an association between two s-roles are conveyed
asynchronously on the same communication path. Communication is modelled using
SDL input signals and output signals. A communication path is constituted by a sequence
of connected channels. With this assumption, we ensure that signal ordering is preserved
during transport on an association, i.e. signals are received in the same order as they are
sent. Communication through remote variables and remote procedure calls is not
considered.

An association between two s-roles handles the signals that can be exchanged between
these two s-roles, and does not contain any other signalling. For each s-role, the associa-
tion includes the signalsthat can be received from the association, and the signalsthat can
be sent on the association.

Definition: Valid association input signal set

A valid association input signal set is defined with respect to an s-role and an association
related to this s-role. The valid association input signal set isthe set of signalsthat can be
received by the s-role from the association.

Definition: Valid association output signal set

A valid association output signal set is defined with respect to an s-role and an association
related to this s-role. The valid association output signal set is the set of signals that can
be sent by the s-role to the association.

We assume that valid association input signal setsrelated to distinct s-role associationsare
digoint. We also assume that valid association output signal sets related to distinct s-role
associations are digjoint. In practice, signal sets can be made digoint by encoding the ref-
erences to the entities involved in the association in the signal. These assumptions
facilitate the identification of the signals related to an association during the projection.
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We will also use the termsvisible signalsand non-visible signalsto denote signalsthat are
respectively exchanged and not exchanged on the association where a projection is done.
Given an association, a visible signal belongs to the valid association input and/or output
signal set. A non-visible signal does not belong to any of the sets.

arole

<non-visib|esigna|sonA>O/<visiblesignals on A>
A

Figure 6.2 : Visble and non-visible signals.

An arole state graph describes the sending and consumption of signals exchanged on the
association the a-roleis attached to, i.e. the exchange of visible signals. The consumption
of signals from other associations by the s-role, i.e. non-visible input signals, may lead to
state changes that influence the further behaviour on the association the a-roleis attached
to. These signals are abstracted from the a-role state graph and become SDL spontaneous
inputs. Their accurate identification is not relevant, the state changes are. Spontaneous
transitions are further explained in the next section. The signals sent on the other associ-
ations, i.e. non-visible output signals, have no influence on the state changes, and are not
represented in the a-role state graph at all.

6.1.2 Satesand transitions

While a state in the state graph of an s-role represents a condition in which a signal may
be consumed (recall the assumptions introduced in Section 3.3.1), a state in the state
graph of an a-role represents a condition in which signals may be consumed or sent.

Thes-role statesthat represent conditions for the consumption of signalsin the valid asso-
ciation input signal set, are projected to states that also represent conditions for the
consumption of these signals in the arole. A smple state projection is shown in
Figure 6.3. The behaviour that is not visible at the interface, here signal sending on other
associations, like “X” and “Y”, is represented by a dashed symbol. This notation will be
also applied in the next figures.

The consumption of signals from other associations is projected to spontaneous transi-
tionsinthearole. Thetriggering of atransition without any signal consumptionisdefined
in SDL asaspontaneoustransition, and isintended to represent non-deterministic behav-
iour. When modelling a-roles, a spontaneous transition indicates that some non-visible
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signal consumption has taken place that leads to atransition. The fact that triggering may
happen isrelevant for the a-role, not the reason for triggering.

srole arole

Figure 6.3 : Sate projection: condition for signal consumption.

Spontaneous transitions may prescribe the sending of asignal in the valid association out-
put signal set. In that case the projected transition has a visible signal sending, while the

triggering input signal is hidden from an external observer. An example is shown in
Figure 6.4.

srole a-role

Figure 6.4 : Sate projection: condition for signal sending.

In order to simplify the state graphs, we omit using the SDL spontaneousinput designator
“none”’. Signal sending, if any, isdirectly specified after the state. The simplified notation

is shown in Figure 6.5. Using this notation, the state appears as a condition for signal
sending.

srole a-role arole

SDL standard notation Simplified notation

Figure 6.5 : Spontaneous transition: simplified notation (extension to SDL).
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When the transitions triggered by non-visible signals do not prescribe any visible signal
sending, the simplified notation leads to empty transitions. We call such empty transitions
T-transitions. The transitions are marked using the symbol “1”.An example is shown in
Figure 6.6.

{ 1 ) 1 { 1J T-transtion
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Figure 6.6 : t-transition.

Definition: t-transition
A T-trangition is an empty spontaneous transition.

The symbol “1” used to mark t-transitions may appear superfluous. This use will be jus-
tified at the composite level where it is important to distinguish between sequentia and
spontaneous transitions between composite states. While a sequential transition occurs at
once, a spontaneous transition may occur at any time. No signal isretrieved from the input
port in asequential transition between two composite states, but signals may be retrieved
from the input port before a spontaneous transition is triggered.

6.1.2.1 Mixed initiative states

An a-role state may both represent a condition for signal consumption and signal sending.
Such states are called mixed initiative states. Mixed initiative states are derived from s-
role states that described the consumption of visible and non-visible signals. An example
isshown in Figure 6.7.

< 1 ) ( 1 )<\ mixed initiative state
SH ] o ey ] [

Figure 6.7 : Mixed initiative state.

Mixed initiative states are further discussed in Section 6.6.
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6.1.2.2 Multipletranstions

An arole state may enable the consumption or sending of multiple signals. In Figure 6.3,
severa signals can be consumed in state“1”. In Figure 6.7, sending and consumption are
both alowed in state “1”. An a-role state may aso prescribe the sending of multiple sig-
nals. An srole state that prescribes the consumption of multiple signals from other
associationsis projected to an a-role state that prescribes the sending of multiple signals.
An exampleis shown in Figure 6.8.
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Figure 6.8 : Sending of multiple signals.

6.1.2.3 Implicit transitions

We retain the SDL semantics for the interpretation of transitions between states. A signal
received in astate that isnot specified asinput or savein that state, isimplicitly consumed,
i.e. discarded.

According to our definition of interaction consistency (see Section 5.5), implicit transi-
tions should not occur, and istreated as an error in the validation analysis.

6.1.3 Internal actions

Theinterna actionsof an s-role, such astasks, agent instance creations or timer operations
arenot visible at theinterface. They are not represented in the a-roles. Thusan a-roletran-
sition is either empty, or it describes the sending of a visible signal or a set of signals.
Figure 6.9 illustrates the projection of an internal task.

1
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Figure 6.9 : Non-visibleinternal behaviour.
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6.1.3.1 Decision

A decision consistsin aquestion and a set of answers, where these answers lead to differ-
ent behaviour choices. The processing of the question is an internal action that is not
visible at the interface. The answers also represent interna information. The choices, on
the other hand, may describe visible behaviours, e.g. the sending of asignal or atransition
to anew state. Such choices are described in the a-role.

In Figure 6.10, the decision choices describe internal behaviours; they are not represented
inthe arole.

project

4>

Figure 6.10: Abstracting a decision node: internal behaviour.

In Figure 6.11, the decision choices describe the sending of signalsin thevalid association
output signal set. The choices arerepresented in the a-role, but not the decision. The deci-
sion is abstracted to a non-deterministic choice. Note that we introduce an extension to
the SDL notation: two transitions attached to the same input are normally not allowed.

—
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Figure 6.11 : Abstracting a decision node: before signal sending (SDL extension).

In Figure 6.12, the decision choices describe transitions to new states; they are also rep-
resented in the a-role.
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Figure 6.12 : Abstracting a decision node: before next state.

In the previous examples, decisions take place after the consumption of a signal in the
valid association input signal set. Decisions may also take place after the sending of asig-
nal in the valid association output signal set. An example is shown in Figure 6.13. Note
that we introduce asimilar extension to the SDL notation asin Figure 6.11: two transition
parts attached from the same output are not allowed in pure SDL.
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Figure 6.13 : Abstracting a decision node: after signal sending (SDL extension).

A decision taking place within a transition that does not describe any visible signal con-
sumption and sending is projected as described in the previous examples. The projection
of decision may lead to multiple t-transitions. An exampleis shown in Figure 6.14.
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Figure6.14 : Abstracting a decision node: t-transitions.
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6.1.4 Initial states

Anaroleinitial state representsthe start of interactionson an association. Initial statesare
modelled in the a-role state graph using SDL start nodes. The SDL semantics for start
node is maintained.

A-roleinitial statesaredirectly derived from s-rolesinitia states. S-roleinitial transitions
are projected in asimilar way as other transitions. Recall that the consumption of signals
is not allowed in start nodes. An a-role initial transition is either an empty spontaneous
trangition, i.e. at-transition, or it describes the sending of asignal or a set of signals.

An entry condition may be associated with an initial state. A state graph may contain sev-
eral initial states. In that case, distinct entry conditions should be associated to the initial
states. The projection maintains the entry conditions attached to the initial states.

6.1.5 Exit states

An arole exit state represents the end of an interaction on an association. Exit states are
modelled in the a-role state graph using SDL return nodes. The SDL semanticsfor return
node is maintained.

A-role exit states are directly derived from s-roles exit states. An exit condition may be
associated to an exit state. The projection maintains the exit conditions attached to the exit
states.

6.1.6 Timer signals

Timer signals are projected to SDL spontaneous inputs similarly as for signals received
from other associations.

6.1.7 Save

A saved signal in SDL is not immediately consumed, but retained in the agent input port
for future processing. A saved signal istreated asanormal signal instancein thefollowing
state. A saved signal is not necessarily consumed in the successor state. The input port
may contain several saved signals; signals are consumed in the order of their arrival.

The projection of save is complex. When the consumption of saved signals is combined
with spontaneous transitions, the activation of spontaneous transitions may occur before
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the consumption of saved signals. The activation of a spontaneous transition may occur
at any time, independently of the presence of signalsin the input port. In order to define
a simple projection of save that maintains the observable association behaviour, we pro-
pose to constrain the use of save. Constraints can be expressed by design rules.

This section first defines a simple projection of save and justifies this definition. Then,
non desirable behaviours occurring when combining the projection of save and spontane-
ous transitions are described. Finally we define design rules that enable us to apply the
simple projection of save. An alternative definition of the projection is also proposed that
relaxes the constraints set by the design rules.

6.1.7.1 Save projection: a smple definition

We would like to define the projection of save so that the saving of signals belonging to
the valid association input signal set is maintained in the a-role graph, while the saving of
signals received from other associations is not represented in the a-role graph. Intuitively,
this seems an acceptable definition. Theinformation related to the saving of signalsin the
valid association input signal set isof importance, asit influences the allowed ordering of
signal sending on the association. On the other hand, only the knowledge about state
changes triggered by the consumption of non-visible signals is relevant, not the identifi-
cation of these signals, and not the moment of their arrival. Spontaneous transitions model
that non-visible signals may be received at any time.

We first assume that the projection of save is defined in this smple way and present a set
of examples where the definition satisfies our requirement on observable association
behaviour.

Figure 6.15 illustrates the projection of the saving of avisible signal “B”. The saving of
signal “B” is maintained in the a-role graph. The machines behave in the same ways. the
s-role and a-role generate the same output when offered the same inputs; signal “B” can
be sent before or after “A”.

Figure 6.16 illustrates the projection of the saving of anon-visiblesignal “X”. The saving
of signa “X” is not represented in the a-role graph. The machines behave in the same
ways: an external observer that sends“A”, can receive “D”.

Figure 6.17 illustrates the projection of the saving of avisiblesignal “B” and anon-visible
signal “X”. Only the saving of signal “B” is maintained in the a-role graph. An externd
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observer may either send “A” before“B”, or “B” before“A”. In both cases, thetwo s-role
behaviours described in state “2” can occur, depending on whether the saving of “X” has
taken place before“B”, after “B” or not at all. An external observer either receives“C” or
“D”. The same two behaviours can also be observed when interacting with the a-role,
depending on whether the spontaneous transition occurs immediately when entering state

“2" or not.
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Figure 6.15: Projection of save: visible signal.
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Figure 6.16 : Projection of save: non-visible signal.
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Figure 6.17 : Projection of save signals: visible and non-visible signals.
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In this last example, the independent arrival of “B” and “X” in the input port and their
retrieval are properly modelled by the spontaneous activation of the spontaneous transi-
tion. A spontaneous activation is however not always desirable. This is discussed in the
next section.

6.1.7.2 Interference between save and spontaneoustransition

The save feature is often applied in order to enforce a strict ordering on the consumption
of signals on an association. When this use of save is combined with interactions on other
associations, the proposed projection of save does not aways maintain the observable
association behaviour. The activation of spontaneous transitions in the projected a-role
may interfere with the retrieval of saved signalsin an unintended way.

An exampleis shown in Figure 6.18. Here the interaction on the association carrying “ A”
and “B” is combined with an interaction on another association. The visible signals “A”
and “B” may be sent in various orders, and the s-role handles them in the fixed order “A”
before “B”. When “B” is sent before “A”, “B” is necessarily the first signal in the input
port when entering state “2”. Thusthe saving of “B” enforcesthe s-role to always handle
“B” before®“X”. Inthat case, the s-role always sends“ C”. The a-role however, may ether
send “C” or “D” depending on the activation of the spontaneous transition that sends“D”.
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Figure 6.18 : Projection of a save signal: an undesirable a-role behaviour (1).

Similarly, the s-role described in case (a) in Figure 6.19 and its derived a-role do no pro-
vide the same observable association behaviour. While the s-role fails to interact
consistently when “B” is sent before “A”: “C” (and anything) never happens, the a-role
may sometimes send “C” depending on the activation of the spontaneous transition. We
observe that the same a-role is obtained by projection of the s-role described in case (b).
Here however, the s-role and its derived a-role behave similarly. The saving and retrieval



94 6 Service association role modelling

of “X” occur independently from the saving and retrieval of “B”. Thisis properly mod-
elled by the spontaneous transition.

(&) non-successfully proj ected (b) successfully projected

Figure 6.19 : Projection of save signals. an undesirable a-role behaviour (2).

Of course, the behaviours described in Figure 6.19 are not desirable. In both cases, “B”
may be discarded in state “2”. If the saving of “B” isintroduced in state “2”, we observe
that the s-role and the projected a-role would provide an identical behaviour.

The interference between the spontaneous transitions and the retrieval of saved signalsin
the input port invalidate the proposed projection of save. The projection does not always
maintain the observable association behaviour. The previous examples illustrate two
types of undesirable interferences:

» The spontaneous activation of atransition may prevent a saved signal from being dis-
carded from the input port. In some way, the interference partially repairs an incorrect
behaviour specification. Thiswas shown in case (a) of Figure 6.19.

» The spontaneous activation of atransition may prevent asaved signal from being con-
sumed when it is stored first in the input port. This was shown in Figure 6.18.

While the first kind of interference is avoided by introducing a design rule enforcing a
consistent use of save, the second may either be avoided by the redefinition of the projec-
tion of save, or by adesign rule constraining how save should be used.
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6.1.7.3 Save consistency

The discarding of a saved signal from the input port is not desirable neither with respect
to the projection of s-roles nor with respect to the consistency of interaction between s-
roles. As our definition of interaction consistency requires that unspecified signal recep-
tion never happens (see Section 5.5), saved signals should eventually be consumed in the
state(s) succeeding a saving state.

D-rule: Save consistency

The saving of asignal should be repeated in the successor state(s) of the state where save
is specified until the consumption of the saved signal is specified. A successor state spec-
ified according to thisrule is said to maintain save consistency, or to be save consistent
with its predecessor state(s). An s-role specified according to thisrule is said to be save
consistent.

Note that the repetition of save may introduce new saving states. The successor states of
these new saving states should also be save consistent.

Using this rule, the two case examples shown in Figure 6.19, should be redefined. “B”
should be saved in state“2” in both cases. Then the projection of save faithfully maintains
the observable association behaviour.

The save consistency rule does not necessarily prevent the discarding of a saved signal
from occurring. In Figure 6.17, for example, the rule has been enforced, but till signal
“B” may be discarded in state “3”. In that case, rules related to mixed initiative states
should be applied. Thiswill be explained in Section 7.1.3.

In the following, we assume that s-roles are designed according to the design rule " Save
consistency".

6.1.7.4 Retrieval of saved signals

Therule " Save consistency" addresses the problem of the discarding of saved signals, but
not that of retrieval as shown in Figure 6.18. We may consider two kinds of solutions to
the retrieval problem:

» Oneisto redefine the projection of the retrieval of a saved signal by adding control on
the activation of the spontaneous transition.
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» Another isto constrain the use of save. Save is a complicating feature and should not
end up modelling both alternative orderings and concurrent association behaviours.

6.1.7.4.1 Controlling the activation of spontaneous transitions

Control can be set on the activation of a spontaneous transition by associating a precon-
dition to the activation. In SDL, preconditions can be expressed using continuous signals.
Figure 6.20 illustrates this approach. The precondition only depends on the interaction on
the association where the projection is done. “B not sent before A” means that B is not
saved. Note that in the casewhere“B” issent after “A”, both transitionsin state“2” of the
the projected may also occur. According to the SDL semantics, signals in the input port
are retrieved before continuous signals are interpreted when entering a new state.

pr Oj ect
not
beforeA

Figure 6.20 : Projection of a save signal: using a continuous signal.

Preconditions should only be applied in the case where the non-visible signals projected
to spontaneous inputs may interfere with the retrieval of a saved signal in an undesirable
way. In the case where non-visible signals can be stored in theinput port beforethe visible
saved signal, preconditions should not be added. For example, in Figure 6.17 the non-vis-
ible signal “X” may be saved before “B”. Preconditions are not needed in that case.

In this approach, preconditions are defined by comparing the possible ordering of the sig-
nals sent by the complementary a-role. The ordering of two signals, one sent and one
received cannot be compared. As communication between a-roles is asynchronous, the
reception of asignal is percelved sometime after its sending, and acomplementary a-role
is not able to determine when the sending of a signal exactly occurs. In Figure 6.21, an
external observer cannot determine whether “B” is received before or after sending “C”.
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The order of occurrence of “B” and “C”
cannot be observed.
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Figure 6.21 : Projection of save signals. comparing signal ordering.
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To sum up, preconditions should be defined for each visible signal that is saved in a state
that can consume avisible signal when:

» Thesaved signal can be retrieved in a state that can consume non-visible signals.
» These non-visible signals cannot be not saved before the visible saved signal.

Preconditions control the triggering of the transitions projected from the transitions trig-
gered by these non-visible signals. They describe the ordering of a pair of visible events
(saved signal, consumed signal).

When severa visible signals can be saved in the same state, preconditions should be
defined for each pair of signals (saved, consumed). The preconditions should be logically
combined such that any possible ordering combination is described. Such a case is how-
ever asymptom of complex - and possibly bad - design, and should be avoided.

6.1.7.4.2 Constraining the use of save

Therefined projection of save defined in Section 6.1.7.4.1israther smple. However hav-
ing in mind that the save concept introduces complexity, we propose to introduce
constraints on using save.
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Save serves two main purposes:

* |t may be used to enable alternative signal sending orderings while a strict order on the
consumption of signalsis enforced. Seen from the complementary a-role, the ordering
of signal sending is relaxed.

* |t may be used to facilitate the description of concurrent behaviours on multiple asso-
ciations. For example, save may be used to enable an interaction on an association not
to be interrupted by the arrival of signals from other associations.

In order to limit the complexity of adesign, we advise not to use save to relax the ordering
of signal sending. Alternative orderings should only be specified when required for opti-
misation purposes, or when constrained by external interfaces. Furthermore, we
recommend not to combine the use save for alternative orderings together with the
description of concurrent behaviours. This constraint applies both when the modelling of
concurrent behaviours involves save or not.

In Figure 6.18, save is used to describe alternative sending orderings. This use of save
overlaps with the description of aconcurrent behaviour: “X” can be received when“B” is
retrieved. The s-role should be re-designed, avoiding the saving of “B”. The constraint on
the usage of savewill permit to generate aprojection that provides an identical observable
association asthe s-role.

In Figure6.17, save is used to describe alternative sending orderings and concurrent
behaviours: both “X” and “B” are saved. The s-role should be re-designed. Althoughiitis
possible in that case to generate a projection that provides an identical observable associ-
ation as the s-role, the s-role behaves in a non-deterministic manner.

D-rule: Saveand ordering

Using save for the modelling of alternative signal orderings on one association should be
restricted to special cases, for example when required for optimisation purposes, or when
constrained by external interfaces.

Alternative orderings can easily be identified: a state that can both save and consume sig-
nals received from the same association models alternative orderings.

D-rule: Ordering with save and concurrency
Using save for the modelling of alternative signal orderings on one association should not



6.1 Modelling concepts 99

overlap with the modelling of concurrent behaviours.

Overlapping can easily be identified: a signal saved in a state that can consume signals
from the same association, should not be retrieved in astate that can consume signalsfrom
other associations. When thisrule is enforced, the projected a-role does not describe any
spontaneous transition in the state where the saved signal isretrieved. Thus interferences
between spontaneous transitions and the retrieval of asaved signal do not occur.

The rules do not constrain the use of save for modelling concurrency when no alternative
orderings are described. Saved signals not involved in aternative orderings may be
retrieved in any state, also states receiving signals from other associations. In thisway, it
is possible to describe complex concurrent behaviours that occur on three associations or
more. Thisisillustrated by Figure 6.22. Here the s-role provides three association roles
“A-1",“A-2" and“A-3". Thesroleisfirstinvolved in aninteraction on “A-3"; any of the
other associated roles may send the role arequest “A” or “K”. When the interaction on
“A-3" isfinished (in state “2"), the s-role handles one of the requests, possibly the request
that was first saved, if any.

Figure 6.22 : Save and concurrent behaviours.

In the case where a spontaneous transition occurring in the retrieval state does not intro-
duce any visible behaviour (i.e. the sending of avisible signal), the rule "Ordering with
save and concurrency” may betoo strict. An exampleis shownin Figure 6.23. The behav-
iour described by state “2” is not allowed by the rule. As the spontaneous transition does
not introduce any visible behaviour, this case is acceptable. We have chosen to maintain
the rule as already defined. The case of Figure 6.23 may be considered in further work.
Note that this kind of behaviour would be removed by state gathering (Section 6.3.2).
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L
{ 2 ) not allowed in the same state

Figure6.23: Designrule"Ordering with save and concurrency": arestricting case.

In the following, we assume that s-roles are designed according to the design rule " Order-
ing with save and concurrency”. When this rule is enforced, interferences between
spontaneous transitions and the retrieval of a saved signal do not occur. The initial defini-
tion of the projection of save can then be used. Justifying that the observable association
behaviour is maintained through the projection is further discussed in Section 6.2.

In the following, we assume that the simple projection of save defined in Section 6.1.7.1
isused.

6.1.8 Enabling condition

We have assumed that communication between elementary s-roles take place through sig-
nal exchange. Thus enabling conditions are not used to describe any information
exchange between s-roles. They represent local conditionsthat are set before entering the
state that the enabled conditions apply to. The graph can be transformed by replacing the
enabling condition with adecision. Thisis shown in Figure 6.24. The transformation does
not modify the s-role behaviour. Here the enabling condition is set on the consumption of
avisblesignal. It could also be set on the consumption on anon-visible signal. Using such
transformation, it is not necessary to define the projection of local enabling conditions.
The graph can be transformed before projection. In the following, we will assume that the
s-role graph has been transformed in order to remove enabling conditions.

Enabling conditions that describe information exchange between s-roles are more com-
plex. They may lead to implicit signal saving. The conditions may change after entering
the state that describes the enabling condition. They are not considered.
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6.2 Projection and observable association behaviour

Section 6.1 has proposed a set of projection operations that transform s-roles to a-roles.
As the main purpose of a-roles is to validate the interaction behaviour of an s-role with
other s-roles, it is essential that the a-roles obtained by projection provide the same
observable association behaviour as the s-roles. An a-role should be able to generate the
same sequences of outputs on an association asthe s-roleit is derived from, when offered
a seguence of inputs on this association.

When comparing the s-role behaviour with a particular a-role behaviour, we assume that
any behaviour described by the s-role on the other associations may occur, i.e. any non-
visibleinput signal may be received, and any behaviour triggered by non-visibleinput sig-
nals may occur.

6.2.1 Simplebehaviour: no signal saving

L et us first reason assuming that save is not used in the s-role state graph, i.e. signals are
consumed or discarded in the order of their arrival.

The projection transformation presented in Section 6.1 has the following properties:

» The projection maintains the structure of the state graph. Distinct states in the s-role
state graph are projected to distinct states in the a-role state graph. The transitions
between states are maintained, and no new transitions are added in the projected a-role
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state graph.

» The projection maintains the valid association input and output signal sets. The a-role
is able to receive and send the same signals as the s-role on the association.

» The projection maintainsthe triggering of transitions by the consumption of asignal in
the valid association input set. The projected states can consume the same signalsfrom
the association as the s-role states. No signal consumption is added in any projected
state.

» Theprojection hides non-visible signals, but transitions and state changes triggered by
non-visible signals are maintained. A spontaneous transition obtained from the projec-
tion of the triggering by the consumption of anon-visible signal may occur, inasimilar
way as the transition in the s-role may occur when the non-visible signal is received
and consumed.

» The projection maintains the sending of signals on the association in transitions
between identical states. Thetransitionswhere signal sending on the association occurs
are transformed to transitions where identical sending occurs.

A projected state is triggered by the same set of visible input signals asthe initial state it
is derived from, or by hidden non-visible signals. Thus each projected state may be trig-
geredinasimilar way asitsinitial state. Each triggered projected transition may generate
the same outputs on the association, and lead to a new projected state that may also be
triggered in asimilar way asitsinitial state and, again, the triggered transitions behave as
intheinitial graph. Thus all association behaviour sequences described in an s-role graph
are also described in an a-role graph. Asthe projection does not introduce new state trig-
gers or transitions, no new behaviour sequences are introduced.

Aslong as the concept of save isnot used, it is not possible to force asignal to befirst in
the queue when entering a state. The signals are retrieved from the input port in the order
of their arrival. The immediate activation of a spontaneous transition in an a-role occurs
in the same way as the corresponding transition in the s-role when the non-visible signal
is stored before avisible signal in the s-role input port.

Thus, a-roles and s-roles represent the same interface behaviour included eventual errors.
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6.2.2 Addingsave

L et us now add the save concept. We assume that the design rules "Save consistency" and
"Ordering with save and concurrency" have been applied. The simple projection of save
defined in Section 6.1.7.1 is used.

As previoudy, the projected states provide the same set of trangitions as the initial states
they are derived from. We have to consider how signal saving influences the triggering of
atransition. Using save, it is possible to control, or partially control, the ordering of sig-
nalsin the input port when entering a new state. The design rule "Ordering with save and
concurrency" enforces that using save for alternative signal orderings does not overlap
with concurrent behaviours.

We first consider that save has been used to describe alternative orderings on the associ-
ation where the projectionis done. The design rule " Save consistency" enforces the saved
signal (s) to be maintained in the input port until a state is reached where it (they) can be
consumed. The design rule "Ordering with save and concurrency” enforces that non-vis-
ible signals are not received in such a state, and thus the visible signals are retrieved as
enforced by the save ordering. The projected a-role describes the same behaviour: the pro-
jected state does not describe any spontaneous transition that can interfere with the
retrieval of avisible saved signal.

Let us now consider that save has been used in the modelling of concurrent behaviours.
Thismeansthat visible and non-visible signal s can be saved and consumed in overlapping
states. Following the design rule "Ordering with save and concurrency”, an externd
observer cannot perceive when avisible signal is saved with respect to the occurrence of
other visible signals, and then cannot force a saved signal to be stored first in the input
port. A saved signal may beretrieved in any state. Thisretrieval may occur in astate when
only visible signals areretrieved, or in astate where other non-visible signalsareretrieved
concurrently. The projected a-role describes the same interface behaviour asthe s-rolein
both cases.

From this reasoning, we deduce that projected a-roles provide the same observable asso-
ciation behaviour as s-roles, provided that the design rules "Save consistency" and
"Ordering with save and concurrency" are enforced.
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6.3 A-rolestate graph refinement

The state graph obtained by projection may be transformed in order to smplify interface
validation. Reasoning on transition charts rather that state graphswill facilitate the gener-
ation of consistent complementary a-rolesand other validation operations (see Chapter 7).
Section 6.3.1 defines transition charts, and describes the transformation from a-role state
graphs to transition charts. Section 6.3.2 and Section 6.3.3 define transformations for
reducing the size of the graph.

6.3.1 Transtion charts

A transition graph isa kind of state graph where transitions between states are attached a
single event: an input, an output or asilent event. The event attached to atransition issaid
to trigger the transition. Signal sending is not considered as an action occurring within a
transition, but rather as a triggering output event for a transition.

Definition: t-event
T-transitions are triggered by a silent event called the t-event.

A transition chart isa particular state graph, and the notation defined for modelling a-role
state graphs can al so be used to describe transition charts. Notice that, using the simplified
notation for spontaneous transitions, signal sending appears as a triggering output event
of a spontaneous transition (see Figure 6.5 on page 85).

In the case where every signal sending described in an a-role state graph occursin a spon-
taneous trangition (i.e. signal sending is never described in a transition triggered by the
consumption of avisible signal), and signal sending never succeeds any other signal send-
ing within a trangition, the a-role state graph is a transition chart. Otherwise, the a-role
state graph has to be transformed to a transition chart. The transformation consists in
inserting anew state before signal sending, when the sending is not described as the first
action of a spontaneous transition.

An arole transition chart should exhibit the same behaviour as the initial a-role state
graph derived from an s-role state graph. The insertion of a state before signal sending
should not modify the observable association behaviour. To that end, we introduce a new
kind of state: the o-state.
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6.3.1.1 o-date

Definition: o-state

A o-state is a specialization of the SDL state that implicitly saves al signasin the valid
association input signal set. o-states do not define any input event or T-event. At least one
of the output events described in a o-state always occurs.

The transformation of an a-role state graph to atransition chart is performed by inserting
a o-state before the sending of asignal, when no state already precedes signal sending. A
transition part is added between the event preceding the signal sending and the o-state.
Figure 6.25 illustrates the insertion of a o-state. A naming convention is introduced in
order to distinguish o-states from other states: the prefix “o-" is added to the o-state
names. The saving symbol isnormally not represented in the a-role chart; it is shown here
to underline the implicit saving.

implicit saving

will occur if
o0-Oi entered

Figure 6.25: o-stateinsertion.

The o-state insertion is performed on a-role state graphs after the projection from s-roles.
For thisreason, it is possible to restrict saving to signalsin the valid association input sig-
nal set. Signals received from other associations are not described in a-role state graphs.

As o-states are inserted before the sending of signals, we can restrict input events and t-
events not to happen in o-states. Differently from other states, output events do not occur
spontaneoudy. There is no non-determinism in the occurrence of the events described in
ao-state. When ao-stateisentered, one of the events described in the state always occurs.

Theimplicit saving of signals enables the transformed machine to handletheinput signals
astheinitial machine. Assume that the machine described in Figure 6.25 recelvesasignal
in the valid association input signal set during the transition between the states “1” and
“2" intheinitial machine. The signal is handled in state “2”. After the insertion of the o-
state, the signal may either be received between the states“1” and “o-0", in the state “ o-
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0" or between the states “0-0" and “2”. In the two first cases, the signal is saved in the o-
state, and handled in state “2”. In the later case, the signal is handled in state “2”.

Furthermore, asthe output signal in the o-state always occur, we observe the same behav-
iour before and after the insertion of the o-state in this example.

Figure 6.26 illustrates the insertion of ao-state in a state graph that describes a non-deter-
ministic choice. In that case, we observe that the transformed machine also handles the
input signals astheinitial machine astheinitial machine. Assumethat asignal in thevalid
association input signal set is received during the transition between state “1” and one of
its successor states“2” or “3” intheinitial machine. The signal isretrieved from the input
gueue when one of these successor statesis entered. After theinsertion of the o-state, the
signal may be received between the state “1” and one of its successor states “o-0" or “3”,
or whilein state “0-0" or between the states“c-0" and “2”. Because of implicit saving in
the state “0-0", a signa received before entering the state “o0-0", in state “0-0" is then
retrieved from the signal queuein state “2”. Similarly asin theinitial machine, the signa
iseither retrieved in the state“2” or “3”.

=
\V/FE (;) ((3)

2

Figure 6.26 : o-state insertion after a non-deterministic choice.

T-rule: o-stateinsertion

o-states are inserted before signal sending, when no stateimmediately precedesthe signa
sending. After the insertion of a o-state, a state machine exhibits the same behaviour as
the original machine.

Justification:

A transition where no o-stateisinserted may betriggered in the sameway asin theinitial
machine, and behave similarly.

A transition where some o-state is inserted, may be triggered in the same way asin the
initial machine. It also behaves similarly:

- A dsigna sent in the transition before o-state insertion (in a sending action) is also sent
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in the sequence of transitions after o-state insertion (as a triggering output event). There
IS no non-determinism in the occurrence of the event.

- The signals stored in the signal queue when triggering the transition or received during
the transition before o-state insertion, are handled in the same way after o-state insertion:
they are retrieved from the queue in the same states, this because of the implicit saving.

In the following, we will assume that the a-role state graphs are transformed by o-state
insertion to transition charts.

6.3.1.2 Initial states

In order to be able to treat initial statesin asimilar way as other states in the generation
of consistent complementary a-roles (see Chapter 7), we also introduce o-states between
initial states and signal sending. After this transformation, al initia transitions are
described as empty transitions. Figure 6.27 illustrates the insertion of an o-state after the
initial state.

Figure 6.27 : o-stateinsertionin an initial transition.

Observe that the empty transitions after initial states differ from t-transitions. The is no
non-determinism in the occurrence of an empty transition, i.e. an empty transition always
OCCurs.

T-rule: o-stateinsertion in initial transitions

o-states are inserted between initial states and signal sending. After the insertion of a o-
state in an initia trangition, a state machine exhibits the same behaviour as the originad
machine.

Justification:

Theoriginal empty transitions fromtheinitial state(s) remain unchanged, and may betrig-
gered at any time in the same way as in the original machine.

The empty transition before the inserted o-state may occur at any time; it does not require
any external triggering. The inserted o-state supports the same signal sending asthe orig-
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ina initial state. Thus the transformed initial transitions provide the same sending
behaviour asin the original transitions.

Theimplicit signal saving enforces that signals received during the initial transitions are
handled in the same way (i.e. retrieved in the same states) as before the o-state insertion.

In the following, we will assume that the a-role state graphs are transformed adding o-
states between initial states and signal sending.

6.3.2 Sategathering

The transformation from s-rolesto a-roles may lead to graphs where several 1-transitions
follow each other successively. In some cases, these t-transitions have no influence on the
observable association behaviour. Gathering is atransformation that merges states linked
by t-trangitions by a single state, and, in that way, reduces the size of a transition chart.
Gathering will be defined such that the transition chart transformed by gathering exhibits
the same behaviour as theinitial transition chart. Before proposing a definition, this sec-
tion discusses examples where states can be gathered and examples where states cannot
be gathered.

We will use the term 1-successor to denote the successor of astate triggered by at-event,
and t-predecessor to denote the predecessor state of a T-successor.

6.3.2.1 Successivet-transitions

An external observer cannot distinguish multiple successive t-transitions from asingle t-
transition. Thisisillustrated by Figure 6.28. An external observer cannot distinguish the
T-transition state “1” to state“2” from the t-transition state “2” to state“3”. The states“1”
and “2" are gathered to “1-2”. The new state machine behaves like the initial machine.
The non-deterministic occurrence of the T-transition is preserved.

6.3.2.2 Output behaviour

An external observer cannot distinguish whether a signal sending in a spontaneous tran-
sition occurs following at-transition or not. Thisisillustrated in Figure 6.29. An externd
observer does not perceive the t-transition between the states “1-2” and “3”. The states
can be gathered without modifying the a-role behaviour. The new state machine behaves
just as the initial machine. The non-deterministic occurrence of the output event is
preserved.
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Gathering may also be applied to aT-successor in achoice asillustrated by the two cases
in Figure 6.30. In case (b), state “1” can be gathered with the two T-successors in the two
choices. In both cases, the new state machine behaves similarly as the initial machines.
The non-deterministic occurrence of the sending is preserved. Whether the signals “A”
and “B” are sent from distinct states or not, does not influence the observable association

behaviour.

Figure 6.30: Gathering and choice (1).
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The behaviour taking place after the gathered states remains unchanged. The same suc-
cessor states are specified. In Figure 6.31, the two transitions triggered by “A” lead to
different states. After gathering, two transitions leading to different states are specified.

Figure 6.31: Gathering and choice (2).

6.3.2.3 Input behaviour

In the case where at-successor istriggered by one or more input events, gathering can be
applied if the t-predecessor is triggered by the same set of input events, and if, for each
input event, the transitions lead to equivalent states, i.e. states that exhibit the same
observable behaviour. In order to smplify the definition of gathering, we propose to
restrict gathering to states that describe the same input behaviour, i.e. the states should be
able to consume the same signals and make transitions leading to identical states. This
restriction will be justified in Section 6.3.3.2 on page 121.

Definition: Input behaviour
Theinput behaviour of astate describes the set of input signals consumed by the state, and
for each input, the successor state(s) triggered by thisinput.

Incase (a) showninFigure 6.32, the states“1” and “2” describe the same input behaviour:
they both can consume signal “B”, and triggering by “B” leads to the same state, state“3”.
After gathering, the machine behaves smilarly. In case (b), the states“1” and “2” cannot
be gathered. While signal “B” is discarded when received in state “1”, it is consumed in
state“2”. Notethat, in case (a), there isno observable non-determinism on the association
before gathering. The machine can always consume “B”.

6.3.2.4 Mixed input and output behaviours

In the case where a 1-successor is triggered by output and input events, gathering can be
applied if the t-predecessor defines the same input behaviour. An example is shown in
Figure 6.33. Here state “2” is both triggered by an input event and an output event. As
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Figure 6.32 ;. Gathering: input behaviour.

states“1” and “2” describe the same input behaviour, they can be gathered. The new state
“1-2" is able to send the same output as the states before gathering.
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Figure 6.33: Gathering: mixed input/output behaviour.
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Note that, in that the non-deterministic occurrence of the output event “A” ispreserved by
gathering.

A T1-successor and a t-predecessor that define distinct input behaviours cannot be gath-
ered. In Figure 6.34, states “1” and “2” cannot be gathered. While signal “B” can be
consumed instate“1”, itisdiscarded in state “2”. If states“1” and “2” were gathered, the
reception behaviour would be modified; thisis not desirable.

G

e

distinct input behaviours:
no gathering

Figure 6.34 : Gathering: distinct input behaviours.
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6.3.2.5 Save behaviour

We extend the previous examples by adding save behaviour. Providing the same condi-
tionsasinthe previous examples, at-successor can be gathered with its predecessor when
the states describe the same save behaviour, i.e. they are able to save the same signals.

Definition: Save behaviour
The save behaviour of a state describes the set of signals that can be saved by the state.

Thisisillustrated by Figure 6.35. The A states“1” and “3” describe the same save behav-
iour; hence they can be gathered. The non-deterministic occurrence of the sending of “B”
is preserved. On the other hand, the states“1” and “2” cannot be gathered because while
signal “C” is saved when received in state “1”, it is discarded in state “2”. According to
the design rule " Save consistency”, this should not occur. The saving of “C” should bere-
iterated in state “2" or “C” should be consumed in state “2”.

gather

non -
save consistent

2
|
A
state v
4

) identical save
behaviour

Figure 6.35: Gathering: output and save behaviours.

Similarly, we can gather the states “1” and “2” in Figure 6.36. The states describe the
same input behaviour. Both can consume*®A” and triggering leads to the same state. Both
states describe the same save behaviour.
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Figure 6.36 . Gathering: input and save behaviours.

Therule"Save consistency" enforces successor statesto be defined consistently with their
predecessors, but not conversely. Two case examples are shown in Figure 6.37. An exter-
nal observer cannot distinguish state “1” from its T-successor, and thus cannot determine
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when the signal “B” can be saved or not. We call thiskind of behaviour “ save ambiguity”.
The states cannot be gathered. While signal “B” can be saved in state “2”, it is discarded
in state “1”. Gathering would modify the reception behaviour; thisis not desirable.

save ambiguity: T save ambiguity:
no gathering N ‘ ( > no gathering

(@ (b)
Figure 6.37 : Gathering: save ambiguity.

Definition: Save ambiguity

A save ambiguity occurs when, at some stage of an interaction, an external observer can-
not determine from any observable events that a signal can be saved by the a-role state
machine. The behaviour of the a-role is said to present a save ambiguity, or to be save-
ambiguous.

6.3.2.6 Distinct input and save behaviours

In the previous examples, the t-successors and t-predecessors being gathered have
described identical input behaviours and identical save behaviours. When the states
describe the same input and save events, but distinct behaviours, we fail to gather them
without changing the observable behaviour.

Thisisillustrated in Figure 6.38. The states“1” and “2” defines the same events“A” and
“B”. If we assume that the T-transition always occurs, an external observer of the machine
(a) cannot perceive when the transition from “1” to “2” occurs, and cannot determine
whether or not signalsare saved in state “1” before being consumed in “2”. When gather-
ing is applied as shown in (b), the signals may be consumed in the same way (storing a
signal in the input port also occurs when a signal is received while a transition is being
executed). However, aslong aswe cannot ensure that the T-transition always occurs, gath-
ering cannot be applied. The behaviours before and after gathering are different. The
signal “A” sent to the machine (a) in state “1” may remain in the input port for ever, this
isadeadlock case. On the other hand, the signal would be consumed in case (b) and trig-
gering occur. The same reasoning also applies to show that behaviours differ when an
input signal is added (for example “C” shown in dash line).
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Figure 6.38 . Gathering and non-determinism (1).

In Figure 6.39, the save and input states have been permuted. If we assumethat the t-tran-
sition and the sending of “B” always occur, an external observer cannot distinguish
between the machines (@) and (b). In (a) an external observer cannot determine when the
transition from “1” to “2” occurs, and whether the signal “A” will be consumed in“1”, or
savedin*“2” and then consumedin “4”. In (b), as machines communicate asynchronously,
an external observer cannot observed when the sending “B”, if any, takes place. An
observer cannot determine whether thesignal “A” isconsumed in “1-3” or “4”. However,
as long as we cannot ensure that the t-transition and the sending of “B” always occur,
gathering cannot be applied. Note that if we assume that the t-transition occurs, but not
the sending of “B”, the machine (a) deadlocksin state“3". The machine (b) does not dead-
lock with the same condition on “B”: it always can consume “A”.
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(@) initial machine (b) after gathering

Figure 6.39 . Gathering and non-determinism (2).

In resume, in these two examples, gathering can be applied without changing the
machines observable behaviour provided that the spontaneous transitions, i.e. the t-tran-
sitions and transitions triggered by output events, always occur.

6.3.2.7 Ordering behaviour

Even when the assumption that the spontaneous transitions always occur is made, gather-
ing cannot be always applied to a machine that defined the same input and save events.
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This is the case when a t-successor and its predecessor describe distinct ordering
behaviours.

Thisisillustrated in Figure 6.40. In both machines, an external observer that sendsthesig-
nal sequence “B” followed by “A”, may either observethat “A” ishandled first or “B” is
handled first. This depends on the state in which the machine is when receiving the sig-
nals. When “1” and “2” are gathered, the first behaviour, i.e. “A” firgt, isremoved. The
observable behaviour is modified.
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Figure 6.40: Gathering and ordering.
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6.3.2.8 Definitions

We propose two definitions of gathering: strong and weak gathering. Strong gathering
mai ntains the machine observable behaviour. It is defined taking into account that t-tran-
sitions may not occur. Weak gathering only maintains the observable behaviour provided
that spontaneous transitions can occur. Thus cases similar to those introduced in
Section 6.3.2.6 will be simplified by weak gathering, but not by strong gathering. Strong
gathering is safe. Weak gathering may hide some error behaviours that occur following
errors of the non-visible behaviour. This will be further discussed in Section 7.1.4 and
Section 7.3.

6.3.2.8.1 Srong gathering or gathering

Definition: Srong gathering (gathering)

Strong gathering or gathering is atransformation that appliesto non-exit states. Gathering
merges two statesthat are linked by at-transition, i.e. at-successor and its 1-predecessor,
to asingle state provided that:

- The t-successor and T-predecessor define the same input behaviour.

- The t-successor and T-predecessor define the same save behaviour.

The new state describes any spontaneous transitions defined for the non-gathered states,
except the t-trangition being gathered. It provides the input behaviour and save behaviour
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of the states before gathering. In the transition graph, the transitions to a t-predecessor
state merged by gathering, are replaced by transitions to the new state obtained by
gathering.

Notice that:
» Gathering is never applied to o-states. o-states never succeed or precede T-transitions.

» Gatheringisnever appliedtoinitial states. Initial states never precede t-transitions, but
empty transitions.

» Gathering is not applied when a t-trangition links a non-exit state to an exit state.
Whether termination takes place immediately after some interaction on the association
has occurred or not, is of importance when roles are composed.

» Gathering is applied iteratively when atransition chart describes a sequence of T-tran-
sitions or choices. Asillustrated by Figure 6.28 and Figure 6.29, or Figure 6.30, states
“1" and “2" arefirst gathered; then the new state and state “ 3" are gathered.

» A state obtained by gathering may define t-transitions. In Figure 6.35, the transition
between “1n” and “2” isaTt-transition.

After gathering, the T-predecessor states are removed from the state graph because they
arenolonger reachablefrom theinitial states. T-successor states, on the other hand, cannot
aways be removed from the state graph. Thisisthe case when a t-successor is reachable
from other states through a non t-transition. An example is shown in Figure 6.41. Gath-
ering is a transformation that suppresses t-transitions rather than t-successors from the
state graph. t-successor states that are no longer reachable from the initial states, can be
removed applying Algorithm 7.5 on page 167.

- :

gather 3 3-4

N not removed v
6 < 5 > ( 6 > by gathering ( 6 ) < 5

Figure 6.41 : Gathering and state removal.
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T-rule: Srong gathering
After strong gathering or gathering, a transition chart exhibits the same observable asso-
ciation behaviour astheinitial transition chart.

Justification:

A state obtained by gathering behaves as the states it is gathered from:

- It can consume any signal specified as inputs in the gathered states. The triggered tran-
sitions lead to the same states asin the initial chart. No other signal can be consumed.

- It saves any signal specified as save in the gathered states.

- It maintainsthe ordering in which signal s are consumed. Ordering can be enforced using
save. The new and gathered states specify the same save and input behaviour.

- The new state may send spontaneously any signal specified as outputs in one of the ini-
tial states. The triggered transitions lead to the same states asin the initial chart.

- T-transitions|eading to states exhibiting distinct input or save behaviours are maintained.

6.3.2.8.2 Weak gathering

Thedefinition of weak gathering is more complex asvarious input and save combinations
are taken into account.

Definition: Weak Gathering

Weak gathering is atransformation that applies to non-exit states. Gathering merges two
states that are linked by a t-transition, i.e. a T-successor and its T-predecessor, to asingle
state provided that:

- Any signal specified as an input in the T-successor is either specified asan input or asa
save signal in the T-predecessor. In the input case, the t-successor and t-predecessor
should transit to identical successor states. In the save case, no other input should be spec-
ified in the t-predecessor.

- Any signal specified as a save in the t-successor is either specified as an input or as a
save signal in the t-predecessor. In the input case, no other input should be specified in
the T-successor.

- Any signal specified as an input in the t-predecessor is specified as an input in the 1-
successor. The t-successor and T-predecessor should transit to identical successor states.

- Any signal specified as asave in the T-predecessor is either specified asan input or asa
save in the t-successor. In the input case, no other input should be specified in the 1-
predecessor.

The new state describes al spontaneous transitions defined for the non-gathered states,
except the t-transitions removed by gathering. It providestheinput behaviour of the states
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being gathered. It provides the save behaviour of the states being gathered, except for sig-
nals already described as inputs. In the transition graph, the transitions to a t-predecessor
state merged by gathering are replaced by transitions to the new gathered state.

The observations made for strong gathering also yields for weak gathering.

T-rule: Weak gathering
After weak gathering, a transition chart exhibits the same observable association behav-
iour asthe initial transition chart provided that spontaneous transitions can occur.

Justification:

Any state obtained by weak gathering behaves as the states it is gathered from:

- The new state can consume any signal specified as inputs in both gathered states. The
triggered transitions lead to the same states as in the initial chart. No other signal can be
consumed.

- Signals that were saved in both gathered states are saved. No other signal can be saved.
- A signal specified as savein one state and input in the other before gathering is specified
asinput in the new machine provided that ordering is not changed. If asignal specified as
asave signal in one of the gathered statesis specified asan input in the other state, no other
input can be specified in the save state. Otherwise if ordering isenforced in one of theini-
tial states, gathering can only be applied if the same ordering isenforced in the other initial
states.

- Asthe spontaneous transitions occur, the transformation of a save signal to an input sig-
nal is harmless. a save signal can always be retrieved from the input port in the initia
machines.

- The new state may spontaneously send any signal specified asoutput in theinitial states.
Thetriggered transitions lead to the same states asin theinitia chart.

- T-transitions|eading to states exhibiting distinct input or save behaviours are maintained.

6.3.3 Sateequivalence

Transition charts may contain equivalent states that exhibit the same observable associa-
tion behaviour and lead to states that also exhibit the same observable association
behaviour. In order to facilitate interface validation, it is desirable to identify such states,
and replace them by asingle state. Thisreplacement, called minimisation, reducesthesize
of the state graph. It also facilitates the identification of equivoque transitions (see
Section 6.5).
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Equivalence may be defined in different manners depending on whether t-events are
observed or not [Milner 1989]. In our approach, we wish to retain T-eventsthat contribute
to state changes that influence the visible association behaviour. As gathering is atrans-
formation that removes t-transitions that do not influence the visible association
behaviour, we propose to take into account T-eventsin the definition of state equivalence,
and to combine gathering and minimisation in order to remove redundant and non-observ-
able behaviour from the transition graph.

We first introduce the definition of strong state equivalence, and show that gathering and
minimisation based on this definition fail to identify all states that exhibit the same
observable association behaviour. In order to be able to remove any redundant behaviour,
we refine the definition of strong state equivalence to the definition of state equivalence.
Thedefinitions of equivalence are expressed in terms of triggering events, sothat it ispos-
sible to easily define operational minimisation algorithms. Minimisation algorithms will
be proposed in Section 6.9.

6.3.3.1 Strong state equivalence

Definition: Srong state equivalence

States are strongly equivalent if they define the same triggering and save events, and their
successor states are strongly equivalent. Exit states are strongly equivalent if they define
the same exit conditions.

Recall that triggering events encompass inputs, outputs and t-events. A triggering event
may lead to several successor states. Examples were shown in Figure6.12 and
Figure 6.13. Two states S, and S, are not equivalent unless for each triggering event E and
for each possible successor state of S; triggered by E, there is at least one equivalent suc-
cessor state of S, triggered by E, and conversely.

Equivalent states exhibit the same observable association behaviour, as they can accept
and generate the same visible association signal's, and they can execute the same interna
actions in terms of spontaneous state changes, i.e. t-transitions. As their successor states
are equivalent, the successor states also define the same triggering and save events, and
lead to new successor states that also have these properties.

The definition of strong state equivalence is similar to the definition of equivalence pro-
posed by [Holzman 1991], and cognate of the definition of [Hennie 1968]. A main
difference with the latter approach is that Hennie defines a state as a condition in which
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signals may be consumed; signal sending does not occur spontaneously, but is triggered
by the consumption of a signal. In addition, in Hennie's approach, the consumption of a
signal leads to a single successor state. The definition of strong state equivalence relates
to the definition of strong equivalence in [Milner 1989]. However Milner defines the
equivalence of agents rather than agent states, and the definition applies to synchronous
communication rather than asynchronous communication.

The state machine shown in Figure 6.42, inspired from [Holzmann 1991], illustrates the
equivalence of states: states “1” and “4”, “2” and “5”, “3” and “6” are equivalent. Note
that, in this example, we have to assumethat “2” and “5”, and “3” and “6” are equivalent
in order to establish the equivalence of the states“1” and “4”. Similarly, in order to estab-
lish the equivalence of the states“ 2" and “5”, and “3” and “6” we haveto assume that “1”
and “4” are equivalent. As none of these pairs can be found non-equivalent, the assump-
tions hold.

—  —1 —————

A ‘ 5 ‘ equivalent A ‘ B
< \IZ/ Wm{ \|5/ < 2
| /

Figure 6.42 . Srongly equivalent states.

This example describes a specia case of cyclic dependency. Usually, apair of equivalent
states lead to pairs of identical states.

Definition: Strong minimisation

Strong minimisation isatransformation that replaces strongly equivalent statesby asingle
state. The new state defines the same triggering and save events asthe original states, and
each successor state is either the same origina state, or a new state obtained from the
replacement of the original strongly equivalent successor states. Strong minimisation
mai ntai ns exit conditions. Strong minimisation merges entry conditionsby alogical “or” 1

T-rule: Strong minimisation
After strong minimisation, a transition chart exhibits the same observable association
behaviour as the initia transition chart.

1. See Section 6.3.3.1.1.
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Justification:

Any new state defines the same triggering and save events, and leads to states that also
have these properties. Entry and exit properties are maintained through the constraints set
on entry and exit conditions.

Strong minimisation also appliesto o-states. As o-states have a particular semantics, a o-
state can only be strongly equivalent to a o-state, not to an ordinary state.

6.3.3.1.1 Extension to the SDL language

OR-logical expressions of entry conditions areintroduced here as an extensionto SDL. A
composite state is entered through the initial state attached the condition “cl or c2” when
at least one of the conditionsis true.

In the case of minimisation, two strongly equivalent initial states S1 and S2 attached the
entry conditions cl and c2 are replaced through strong minimisation by anew initial state
attached the entry condition “cl or c2”.

6.3.3.2 Strong state equivalence and gathering

The strong state equivalence relation takes t-transitions into account. As the gathering
transformation removes someT-transitionsin atransition chart, statesthat are not strongly
equivalent before gathering, may become equivaent after gathering.

Gathering has not been applied to the transition chart shown in Figure 6.43. It would be
transformed to the transition chart shown in Figure 6.42 by gathering. However, states
“2a’ and“5” arenot equivalent. Thusstates“1” and “4” are not equivalent, and states“3”
and “6”, and “2" and “5” are not equivalent.

(1) (4)
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Figure 6.43 : Equivalence and gathering.
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When gathering is applied before minimisation, non-observable t-transitions can be
removed. On the other hand, minimisation may lead to anew transition graph that can be
further reduced by gathering. It may not be possible to gather two states because they
define an input event that leads to distinct successor states before minimisation, while
after minimisation these two successor states may be replaced by asingle state. Therefore
gathering should be re-applied after minimisation. Again, this new gathering transforma-
tion may introduce new dstates that are strongly equivalent with other states. Thus
gathering and minimisation should be applied in an iterative manner on the transition
chart until one of the transformation does not modify the transition chart any more. Asthe
graph has afinite number of states, the number of transformationsisfinite. In most cases,
there will be no need for iterating the transformations several times. The need for many
iterations is a symptom of a complex - and possibly bad - design, where distinct states
describe identical triggering conditions.

Gathering and strong minimisation may fail to identify statesthat exhibit the same observ-
able association behaviour. Thisisthe case when some states in the transition chart cannot
be found equivalent before some other states are gathered, and conversely. An exampleis
shown in Figure 6.44. The machine has a simple observable behaviour: it can consume
thesignals“A” and “B” successively in an iterative manner. The complex transition chart
can not be reduced by gathering and strong minimisation however. States“1” and “2” can-
not be gathered before states “3” and “5” are found to be equivalent. States “3” and “5”
cannot be found to be equivalent before states “3” and “4” are gathered. States “3” and
“4" cannot be gathered before states “2” and “1” are found to be equivalent.
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Figure 6.44 . Srong equivalence and gathering: failing to reduce chart.

Thisexample describesaspecia case of cyclic dependency that is quite similar to the case
shown in Figure 6.42. The t-transitions between states “2” and “1”, and between states
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“3" and “4” prevent us from considering the states as equivalent. We need to dightly
change the definition of state equivalence in order to be able to resolve such cyclic
dependencies.

6.3.3.3 State equivalence (revised)

The new definition of state equivalence uses the concept of 1-state defined as follows:

Definition: t-state

The 1-dtate of a state S is a state that describes the same triggering events as the state S
and provides the same save behaviour. Each triggering event leads to the same state when
applied to S and its T-state. In addition to these triggering events, the 1-state defines a 1-
transition to itself.

Thus a t-state can be seen as the result of atransformation that adds at-transition from a
state to itself. An example is shown in Figure 6.45. A naming convention is introduced:
the prefix “1-" is added to a state name to designate its t1-state.

transformation

T
to t-state ——1
—_—

Figure 6.45: t-state.

Definition: Sate equivalence

Two states are equivalent if their t-states define the same triggering and save events, and
their successor states are equivalent. Exit states are equivalent if they define the same exit
conditions.

The t-transition introduced in the t-state is not observable. However it is essential when
comparing the triggering events of two states, when one of them defines a t-transition to
the other one. Using this definition of state equivalence, the t-states “1-1" and “1-2" of
states “1” and “2” on Figure 6.44 define the same triggering events. They may thus be
assumed to be equivalent. The state “1-1" defines two t-transitions, oneto “1-1" and one
to “1-2". For each successor state of “t-1" triggered by 1, i.e. “1-1” and “1-2", thereis one
equivalent successor state of “t1-2” triggered by 1: “1-2”, and conversely.



124 6 Service association role modelling

Definition: Minimisation

Minimisation isatransformation that replaces equival ent states by asingle state. The new
state defines the same triggering and save events as the initial states, and each successor
state is either the initial successor state, or a new state obtained from the replacement of
theinitial equivalent successor states. Any t-transition defined from the new state to itself
isremoved. Minimisation merges entry conditions by alogical “or”.

T-rule Minimisation
After minimisation, atransition chart exhibits the same observabl e association behaviour
astheinitial transition chart.

Justification:
The introduction of a t-transition from the states to themselves in the definition of equiv-
alenceis harmless. The new t-transition does not introduce any observable behaviour.

For the same reasons as for strong equivalence, gathering and minimisation should be
applied in an iterative manner to the transition chart. In the following, we will assume that
these transformations have been applied to the a-role transition charts.

6.4 Event ordering and causality

Thetransformation of a-role state graphsto transition chartslead to a-roleswhere internal
behavioursand non-visible interactionstaking place before the sending of asignal arerep-
resented in a quite similar way: by a state. Thisisillustrated on Figure 6.46: the two s-
rolesare projected to identical a-role behaviours. While the o-state“0-2” in case (a) indi-
cates that the signal “B” is sent as a direct consequence of the consumption of the signa
“A”, the state “2” in case (b) indicates that the signal “B” is sent following some non-vis-
ible action made after signal consumption. Case (a) describes the causality of signad
sending (i.e. receiving “A”). Case (b) hidesit.

The two a-roles provide slightly different observable behaviours:

* Incase(d),“B” dwaysoccursif thestate“o-2” isentered, and no other event can occur
between “A” and “B”. An observer can send the signal “C” immediately after “A” is
sent. The signal is stored in the input port and consumed in state “3”.

* Incase(b), ontheother hand, “B” may occur. It occurs provided that some non-observ-
able behaviour triggers the transition. When an observer sends “C” immediately after
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“A”, the signal may be discarded “C”. In case (b), “C” should not be sent before “B”
has been received.

While hiding causality, case (b) also sets strong requirements on the ordering in which
events take place in the complementary a-role. Note that the behaviour required by the a
rolein case (b), also interacts consistently with the a-role in case (a).
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Figure 6.46 . Causality and event ordering.

By hiding the nature of the a-role states to an externa observer, we may enforce a strict
signal ordering on the complementary a-role. A complementary a-role that behaves well
with strict ordering interacts consistently independent of the nature of the internal states
provided that the spontaneous transitionsin the initial a-role occur.

Conversely, when it is desirable to relax the ordering requirements on the complementary
arole, for example for optimisation purposes, save may be introduced. An example is
shownin Figure 6.47. Recall thedesign rule " Save and ordering": using save for enforcing
input ordering should only be applied in specia cases. Note that the rule "Ordering with
save and concurrency" has been followed in Figure 6.47: signal “C” is retrieved in state
“3” where no non-visible signals can be consumed.
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Figure 6.47 : Relaxing event ordering.

6.5 Equivoquetransitions

Definition: Equivoque transitions
Two or more transitions are equivoque1 when they are defined for the same state and the
same event (i.e input, output or T-event), and lead to distinct non-equivalent states.

Equivoque transitions lead to non equivalent-states, and then to divergent behaviours. In
in some cases, these divergent behaviours are perceived as ambiguous, i.e. an externd
observer is uncertain about which further behaviour initiative should be taken. A-roles
and the s-roles they are derived from should be specified such that ambiguous behaviours
are avoided. Thiswill be discussed in Chapter 7. Sections 6.5.1 to 6.5.3 introduce differ-
ent kinds of ambiguity.

In Figure 6.48, the two transitions triggered by the input event “A” in state “1” lead to
non-equivalent states, states “2” and “3”. The transitions are equivogque. However no
ambiguity is introduced: as the states “2” and “3” represent conditions in which signals
are sent, an external observer is able to perceive which behaviour has been selected.

1. According to M erriam-Webster, equivogue means subject to two or more interpretations and usually used
to mislead. Synonyms: equivocal, obscure, ambiguous.
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Figure 6.48 : Equivoque transitions triggered by an input event.

In Figure 6.49, the equivoque transitions are triggered by an output event. Case (a) results
from the abstraction of a decision, and case (b) from the abstraction of an interaction on
another association. The equivoque transitions are described in two slightly different
ways in the transition charts, but they represent identical observable behaviours.

) (
)|

(a) Abgtracting a decision node (b) Abstracting non-visibleinput signals

{
4||:I_{]
— W H N>
VH
- 0 wkd >
NS

Figure 6.49 : Equivoque transitions triggered by an output event.

In Figure 6.50, the equivoque transitions are triggered by t-events. As state “1” and “2”
have distinct input behaviours, they cannot be gathered. Similarly “1” and “3” cannot be

gathered.

Figure 6.50 : Equivogue transitions triggered by a t-event.
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6.5.1 Input ambiguity

When equivoque transitions lead to non-equivalent states in which different signals are
consumed, an external observer may not be able to determine which signals are being
expected. An example was given in Figure 6.50, and similar cases where the equivoque
transitions are triggered by an output or input events are shown in Figure 6.51. An exter-
nal observer cannot distinguish state “2” from state “ 3", and thus cannot determine which
signals are expected after A. We call this kind of ambiguous behaviour an *input ambigu-
ity”. The behaviour of the a-role is not predictable, or non-deterministic.
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(a) after signal sending (b) after signal consumption

Figure 6.51 : (Srong) input ambiguity.

We distinguish between two forms of input ambiguity: weak and strong input ambiguities.
In weak input ambiguity, an external observer may determine some of the signalsthat are
expected by the a-role state machine, but not all. In that case the machine can enter distinct
states, and there is an overlap between the set of input signals expected in the states. In
strong input ambiguity, that we will ssimply call input ambiguity, there is no such overlap.
Examples of strong and weak input ambiguity are shown in Figure 6.51 and Figure 6.52.
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Figure 6.52 : Weak input ambiguity.
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Definition: Weak input ambiguity
A weak input ambiguity occurs when at some stage of an interaction, an external observer
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knows that only input(s) may occur, but is only able to determine some of the input(s)
expected by the a-role state machine, but not all. The behaviour of the a-role is said to
present aweak input ambiguity, or to be weakly input-ambiguous.

Definition: Strong input ambiguity or input ambiguity

A (strong) input ambiguity occurs when at some stage of an interaction, an external
observer knows that only input(s) may occur, but is not able to determine any of the
input(s) expected by the a-role state machine. The behaviour of the a-roleissaid to present
a (strong) input ambiguity, or to be (strongly) input-ambiguous.

Branching in a state graph does not necessarily represent an ambiguous input behaviour.
The behaviour in the example shown in Figure 6.53 appears to be quite similar to the
behaviour in case a of Figure 6.51. Both state machines provide the same sets of traces:
(*A”,“B”) and (“A”, “C"). However while in the first example the consumption of “B”
(or “C") may fail after the sending of “A”, the consumption of signal “B” (and “C") is
always possible after the sending of “A” in the second example.

Figure 6.53 : Branching, but deterministic behaviour.

Input ambiguity does not necessarily occur immediately after the equivoque transitions.
Several trangtions that exhibit an identical behaviour may succeed equivoque transitions
before the ambiguity takes place. Thisisillustrated in Figure 6.54. Notice that although
the states “2” and “3” provide the same observable transitions, they are not equivalent,
since their successors are not equivalent.

Also in Figure 6.52, the weak input ambiguity that occurs immediately after the equiv-
oque transitions may lead to new ambiguous behaviours. An external observer may not
be able to determine the behaviour occurring after “B”. In the case where the states “4a’
and “4b” are distinct, and are not followed by distinct signal sending, a new ambiguity
may occur.
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Figure 6.54 : Input ambiguity occurring after identical signal sequences.

In Section 6.7 we will see that input ambiguity can occur when t-events are combined
with output events in a state.

6.5.1.1 Input ambiguity withdrawn by save

An ambiguity indicates that an external observer is uncertain about which further behav-
iour initiative is expected. By considering only input events, our definitions of input
ambiguity are too strict. The introduction of save may clear away an input ambiguity. An
exampleis shown in Figure 6.55. The equivoque transitions lead to states where “B” and
“C” may be consumed in different orders. An external observer may send “B” and “C” in
any order. Note that in the case where the states “6a’ and “6b” are distinct, and are not
followed by distinct signal sending, a new ambiguity may occur.
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Figure 6.55: Srong input ambiguity and save.

This caseis seldom encountered when the design rule "Save and ordering" is enforced. It
will not be further considered in thisthess.
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6.5.2 Mixed ambiguity

In the previous exampl es, the equivoque transitions lead to states were distinct signalsare
either sent or consumed. Sending and consumption may also be mixed as shown in
Figure 6.56. Here one state sends a signal while the other iswaiting for the reception of a
signal. An external observer is ableto perceive the sending of “C”, but this sending does
not necessarily take place. An externa observer cannot distinguish whether the a-role
state machine has entered state “2”, and iswaiting for signal “B”, or whether the machine
has entered state “ 3", and is waiting for some non-visible event to happen before sending
signal “C”. We call this kind of ambiguous behaviour a“mixed ambiguity”.

mixed ambiguity

Figure 6.56 : (Srong) mixed ambiguity.

Similarly to input ambiguity, we distinguish between two forms of mixed ambiguity:
weak and strong mixed ambiguities. In weak mixed ambiguity, an external observer may
determine some of the events expected by the a-role state machine. This means that the
machine can enter distinct states, and that there is an overlap between the set of input and
output eventstriggering these states. We use the terms“input overlap” to denote that com-
mon input events may occur in these states, and “ output overlap” to denote that common
output events may occur in these states. In strong mixed ambiguity, that we will smply
call mixed ambiguity, there is no such overlap. Strong and weak mixed ambiguity are
illustrated in Figure 6.56 and Figure 6.57
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Figure 6.57 : Weak mixed ambiguity.
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Definition: Weak mixed ambiguity

A weak mixed ambiguity occurs when at some stage of an interaction, an external
observer knows that both input(s) and output (s) may occur, but is only able to determine
some of the input or output events expected by the a-role state machine, but not al. The
behaviour of the a-role is said to present aweak mixed ambiguity, or to be weakly mixed-
ambiguous.

Definition: Strong mixed ambiguity or mixed ambiguity

A (strong) mixed ambiguity occurs when at some stage of an interaction, an external
observer knows that both input(s) and output (S) may occur, but is not able to determine
any of the input or output events expected by the a-role state machine. The behaviour of
the arole is said to present a (strong) mixed ambiguity, or to be (strongly) mixed-
ambiguous.

6.5.2.1 Mixed ambiguity withdrawn by save

Similarly to input ambiguity, save may clear away a mixed ambiguity. An example is
shown in Figure 6.58. For the same reasons as with input ambiguity, this case will not be
further considered in thisthesis.

Figure 6.58 : Srong mixed ambiguity and save.

6.5.3 Termination ambiguity

When combined with the sending or consumption of asignal, termination may also create
ambiguity. Thisis shown in Figure 6.59. In case (a), an external observer cannot deter-
mine whether the a-role state machine has terminated, or is waiting for the reception of a
signal. Thisisaspecia form of input ambiguity. In case (b), an external observer cannot
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determine whether the state machine hasterminated, or iswaiting before sending asignal.
Thisisaspecia form of mixed ambiguity.

Definition: Termination ambiguity

A termination ambiguity occurswhen at some stage of an interaction, an external observer
is not able to determine whether the a-role state machine has terminated, or iswaiting for
an input or output event to occur. The behaviour of the a-role is said to present atermina-
tion ambiguity, or to be termination-ambiguous.

(b)
Figure 6.59 : Termination ambiguity.

6.5.4 Exit condition ambiguity

Equivoque transitions may lead to exit states attached distinct exit conditions. In that case,
an external observer is not able to determine which exit condition applies. An exampleis
shown in Figure 6.60.

Figure 6.60 : Exit condition ambiguity.

Definition: Exit condition ambiguity

An exit condition ambiguity occurs when an external observer knows that the a-role state
machine has terminated, but is not able to determine which exit condition is attached to
the termination. The behaviour of the a-roleis said to present an exit condition ambiguity.
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6.6 Mixed initiatives

In most of the examples discussed so far, states have represented conditions where signals
were either sent or consumed. Such states describe asymmetric obligations between a
roles, where an interaction can be initiated by only one of the a-roles, and where each new
interaction step can be triggered by only one of the aroles. More complex interactions
may be defined in which both a-roles are alowed to take the initiative to trigger a new
interaction step, i.e. to send a signal. We call this form of behaviour mixed initiatives. In
the a-role state graph, mixed initiatives are represented by states where both the consump-
tion and sending of signals are enabled.

Definition: Mixed initiative state
A mixed initiative state is a state where both signal consumption and sending can occur.

As a-roles communicate asynchronously, they perceive the occurrence of communication
at different moments of time. The reception of a signal is perceived some time after its
sending. When an a-role and its complementary a-role are both enabled to send a signal
during the same interaction step, the signals may cross each other. Such behaviour may
lead to unspecified signal reception, and deadl ocks where each a-role state machine waits
for the other machine’s answer.

Mixed initiatives serve two main purposes.

» Mixed initiatives may describe concurrent behaviours, where each interacting a-role
state machine may take the initiative to select one of the behaviours. In that case, the
crossing of signalsleadsto aconflict. Thisform of behaviour iscalled “conflicting ini-
tiatives’ in [Bragk and Haugen 1993]

» Mixed initiatives may describe alternative orderings of input and output events, i.e. an
event may be sent indifferently before or after the reception of another event. In that
case, two interacting a-roles do not necessarily perceive the same orderings of events.

Figure 6.61 illustrates these two purposes:

* Incase (a), the machine either selects the behaviour (“A”, “C”), or is requested by the
complementary machine to perform the other behaviour (“B”, “D”). If thesignals“A”
and “B” cross each other, the signal “B” is recelved while the machineisin state “2”
leading to an unspecified signal reception. In the worst case, the complementary
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machine behaves similarly, leading to a deadl ock.

In case (b), the two sequences describe the same events occurring in different orders.
The two aternative sequences lead to the same state; thus the further behaviour does
not depend on the ordering of events. Thisis an essential point asthe machine and the
complementary machine may not perceive the same orderings. when the machine
receives the signal “B” before it sends “A”, it can deduce that the complementary
machine has sent “B” before receiving “A”; on the other hand, if the machine receives
“B” after it hasitself sent thesignal “A”, it cannot determine whether the complemen-

tary machine has sent “B” after or before receiving “A”, i.e. in the same order or in a
different order.

ﬁ)\ /<—>

‘ A > B mixed initiative states ‘ A > B ‘
) (C > ()
| I | I
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(a) concurrent behaviours (b) alternative event orderings

Figure 6.61 : Mixed initiatives. two main purposes.

A-rolesand the s-roles they are derived from should be specified in such away that poten-
tial conflicts are detected and resolved. In the case of alternative orderings, the alternative

behaviour sequences should converge to a common behaviour. This will be discussed in
Chapter 7.
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6.7 Acuter-transitions

Definition: Acute t-transitions
Acute! T-transitions are t-transitions that cannot be removed from the a-role transition
chart by gathering and minimisation.

The states linked by acute t-transitions are statesthat provide distinct input or save behav-
iours, that introduce save ambiguity, or do not enforce input ordering consistently.
Section 6.3.2 about "State gathering" has described those cases. Acute t-transitions
require special attention. They may lead to ambiguous behaviours, either as triggers of
eguivoque transitions as explained in Section 6.5, or when combined with other transi-
tions. This section focuses on the combination of t-transitions with other transitions.

Notethat acute T-transitions are asymptom of ambiguity, but do not necessarily mean that
a machine presents ambiguity. Gathering requires the successor states triggered by iden-
tical input events to be identical. Successor states may be distinct without introducing
ambiguity, but only output divergence. Thisis shown in Figure 6.62. States “1” and “2”
cannot be gathered as the triggering by “A” lead to distinct states. However, an external
observer is able to determine the further machine behaviour after receiving “B” or “C”.

Hit
Bend

Figure 6.62 : Acute t-transition with no ambiguity.

6.7.1 Mixed ambiguity

InFigure 6.63, the t-eventslink statesthat provide distinct input behaviours. In both cases
the t-event is combined with an output event “A”. As the t-transitions cannot be per-
ceived by an external observer, the combination of these triggering events introduces
ambiguity. Case (a) describes amixed ambiguity: an external observer isnot ableto deter-

1. According to Merriam-Webster, the term “acute” can be associated with theideas of sudden onset, urgent
attention and uncertain outcome.
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mine whether output “A” or input “B” will occur. Case (b) describes a weak mixed
ambiguity: output “A” can always occur, but input “B” may not always be consumed. In
case (b), the behaviour “A” may lead to new ambiguity depending on the definition of the
states“2a’ and “2b”. Notethat in both casesit is possible to transform the graph by insert-
ing a state between state “1” and the sending of signal “A” without modifying the
observable association behaviour. This is the reverse operation of gathering. After this
transformation, state“1” describes equivoque t-transitions. Thus, the analysis of this case
can be donein asimilar way as the analysis of equivoque transitions.

1 ) 1
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() mixed ambiguity (b) weak mixed ambiguity

Figure 6.63 : Acute t-transition and mixed ambiguity (1).

Similarly, a mixed ambiguity can occur when acute t-events are combined with input
events. Thisisillustrated in Figure 6.64. Here the insertion of a state between state “1”
and “B” modifies the observable association behaviour. Thus the graph cannot be trans-
formed so that state “1” describes equivoque t-transitions.

|
Figure 6.64 : Acute t-transition and mixed ambiguity (2).

6.7.2 Input ambiguity

The combination of t-events with input events may also lead to input ambiguity. Thisis
illustrated in Figure 6.65. Here the stateslinked by the acute T-transitions also provide dis-
tinct input behaviours. Case (a) describes an input ambiguity: an external observer is not
able to determine whether input “A” or input “B” is expected. Case (b) describes a weak
input ambiguity: input “A” is aways expected, but input “B” is not always expected. In
case (b), the behaviour “A” may lead to new ambiguity depending on the definition of the
states “2a’ and “2b”.
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Figure 6.65: Acute t-transition and input ambiguity.

A dight difference exists between input ambiguity occurring after equivoqgue transitions
and input ambiguity occurring in relation with an acute t-transition. While equivoque
transitions lead to aparticular behaviour condition (i.e. one stateis entered that setsa con-
dition for signal consumption), the acute t-transition describes a change of behaviour
condition. Thischange may occur at any time. In the case of equivoque transitions, acom-
plementary a-role wonders which signals are expected. In the case of acute t-transition, it
wonders which signals and when. However, this difference does not influence the valida-
tion analysis.

6.7.3 Termination ambiguity

Asasgpecial form of input or mixed ambiguity, termination ambiguity can also occur when
at-event iscombined with an input or output event. Thisisillustrated in Figure 6.66. An
external observer isnot ableto determine whether the a-rol e state machine has terminated,
or iswaiting for atriggering event to occur.

Figure 6.66 : Acute t-transition and termination ambiguity.

6.7.4 Termination occurrence ambiguity

Termination occurrence ambiguity is a weak form or ambiguity. As gathering is not
applied to exit states, T-transitions may remain before exit states. In that case, an externd
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observer isableto determinethat the a-role will terminate, but not when. Thisisillustrated

in Figure 6.67.
1
T

Figure 6.67 : Acute t-transition and termination occurrence ambiguity.

Definition: Termination occurrence ambiguity

A termination occurrence ambiguity occurs when an external observer knows that the a
role state machine will terminate, but is not to determine when. The behaviour of the a
roleis said to present a termination occurrence ambiguity.

6.7.5 Saveambiguity

Save ambiguity is a weak form of ambiguity. As an external observer cannot determine
whether or not a signal can be saved, it may reserve itself from sending the signal.
Figure 6.68 illustrates this form of ambiguity. An external observer should not send “B”.
) )
i — T
2 A ‘ < 2 >
( 3 > 3
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Figure 6.68 : Save ambiguity.

6.7.6 Ordering ambiguity

Ordering ambiguity is also a weak form of ambiguity. As an external observer can only
determine one of the input ordering, it may restrict to that order. Figure 6.69 illustratesthis
form of ambiguity. An external observer should restrict to sending “A”.

6.8 Set-based notation

This thesis defines several algorithms for the manipulation and analysis of transition
charts. As the graphical state machine representation is not suited for the definition of
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Figure 6.69 : Ordering ambiguity.

algorithms, we introduce a notation based on the definitions of sets and functions that
associate elementsin these sets.

We assume that the a-role state machines have been transformed adding o-states. Thus
transitions between states are attached a single event. The arole state machines are
defined by:

« afiniteset S={s;, s,..., Sy} Of states.

« afinitesst E={ey, e,,..., &} of eventsthat trigger transitions. This set is the union of
four digoint sets:

o | ={iy, ip,...,Ig, asetof inputs

* O={04, 0y,..., 0}, aset of outputs

» Empty ={¢€}, where € represents the empty event. It only triggersinitial states.
» 7Jau={1}, wheret represents the t-event.

» astate trangtion relation T. To each pair (s, €) of Sx E, T associates a set of zero or
more immediate successor states (a subset of S).

* |If T (s, €) isempty, there exists no transition from the state sfor the event e.

» |If T (s, €) contains several states, the successors states are either equivalent or the
transitions are equivogue.

» asaverelation Sv. Sv associates aboolean value true or falseto each pair (s, €) of Sx E.

 Sv(s e istrueif eissavedin s, otherwiseit isfalse.
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* Sv(s e isfasewhenT (s, €) isnot empty.
In addition to these sets and relation, we define:
« afiniteset §;={04, 05,..., 0} Of O-states. S;isasubset of S

» afiniteset §)={Sy1, Sop.--» S} Of initial states. Sy isasubset of S An entry condition
¢; may be associated to state s,

» Thereexists no trangition leading to an initia state.

» Aswe assume that the machine has been transformed adding o-states, T (s,;, €) is
empty for all events except the empty event €.

» afiniteset S, ={Se, Seps---» Sen Of eXxit states. S;isa subset of S, An exit condition ¢;
may be associated to state syt

* S.canbederived fromS Eand T. For all einE, T (sy, €) is empty, since no transi-
tion from the state sy is defined.

» therelation enable. To each state s of S enable associates the set of events that trigger
transitionsfrom s. The event e belongsto enable (s) if and only if T (s, €) is not empty.

 therelation input-enable. To each state s of S input-enable associates the set of input
events that trigger transitions from s. The event e belongs to input-enable (s) if and
only if ebelongsto | and T (s, €) is not empty.

 therelation output-enable. To each state sof S output-enable associates the set of out-
put events that trigger transitions from s. The event e belongs to output-enable (s) if
and only if ebelongsto O and T (s, €) is not empty.

» the relation save. To each state s of S save associates the set of events that may be
saved s. The event e belongsto save (s) if and only if Sv (s, €) istrue.

1. Conditions attached to the s-roles are maintained during projection to a-roles. Conditionsin SDL are
expressed as labels.
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We define the complement relations on the sets of states and events. These relations will
be relevant in Chapter 7 for the generation of complementary a-roles. The complement
relations are represented by an overline. They are defined such that:

+ Each state s of Sis associated a complement state s. Sis the set of s.

» Thecomplement relation does not maintain the save behaviour. The complement of
ao-stateis not a o-state.

 The complement state of an initia stateisan initial state, and we define s, = Sy;.
Thus S, = S, If acondition is attached to an initial state, it is aso attached to its
complement state.

 The complement state of an exit state is an exit state, and we define s = S5 Thus
S.=$ If acondition isattached to an exit state, it isal so attached to its complement
state.

« Each event e of E, is associated a complement event e. E is the set of e.

for eachi of 1, i isdefined as the output of the same signal. I is the set of i.
« for each o of O, oisdefined as the input of the same signal. O is the set of o.
« the complement event of £isdefined ase = &, and Empty = {&}

+ the complement event of risdefined ast =1, and 7au = {1}

« Eistheunionof I, O, Empty and 7au.

6.9 Minimisation algorithm

The am of minimisation is to reduce the size of a state machine by replacing equivalent
states by a single state. Minimisation is usually applied before the analysis of large state
machines, for example when performing reachability analysis, or at design time when
requirements are set on the maximum size of machines, for example when developing
logical circuits. In our approach, as we first validate elementary a-roles, the size of state
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machines we deal with is quite modest; obtaining size reduction is not absolutely neces-
sary. Minimisation is however of interest when applied together with gathering:

» |t facilitates the identification of equivoque transitions. Equivoque transitions lead to
non-equivalent states. As minimisation removes the equivalent states, equivoque tran-
sitions are easlly identified after minimisation: equivoque transitions are defined for
the same state and same event.

* |t enablesoneto generate the canonical form of the specification of the consistent com-

plementary a-role. It should be applied to a-roles before the generation of consistent
complementary a-roles (see Section 7.1).

Recall that states are said to be equivaent when their T-states define the same triggering
and save events, and their successor states are equivaent. By replacing equivalent states
by a single state, a state machine can be reduced to an equivalent state machine, i.e. a
machine that shows the same observable behaviour. The example in Figure 6.70, taken
from [Holzmann 1991], illustrates the minimisation of a state machine.
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Figure 6.70 : Minimisation to an equivalent state machine.

We propose a minimisation algorithm inspired by [Hennie 1968] and [Holzmann 1991].
Hennie's algorithm is based on the notion of k-equivalence where states are k-equivalent
if they are not distinguishable by an experiment1 of length k. The agorithm generates par-

1. i.e. asequence of observable events.
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titions of k-equivalent states; partitions are refined step-wise. Hennie's algorithm only
appliesto deterministic machines. Holzmann proposes a similar algorithm that makes use
of a state matrix instead of partitions, and that handles both deterministic and non-deter-
ministic machines. Our agorithm combines the partition approach and applies to
deterministic and non-deterministic machines.

As o-states have a particular semantics, a o-state can only be equivalent to a o-state, not
to an ordinary state.

Algorithm 6.1: Minimisation
1. Generate t1-states

/* add a t-transition froma state to itself */
For each state pin S
set T(p, ) =p

2. Build a partition P; of 1-equivalent states

/* conpare set of enabled and saved events */
For all states p,q in S
if enable(p) = enable (g) and save (p) = save (Q)
if pis not an exit state
set p and g in the sane bl ock of partition P1
el se
if p and q define identical exit conditions
set p and g in the sane bl ock of partition P1

3. Build the partition P, of k-equivalent states fromPy_4
[* if the successors of (k-1)-equivalent states

in a block B of the partition P, ; are not equival ent,
split block B */

For each block B in P4

For all states p, qin B
| f for each e in enabl e(p)
{
for each s in T(p,e), Os in T (q,e)
such that s, s’ belong the sanme bl ock of Py 4
and
for each s in T(qg,e), Os in T (p,e)
such that s, s’ belong the sanme bl ock of Py 4

}
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set p and g in the sane bl ock of partition B

If (Px., and P differ) and
sonme block in P, contains nore than one state
repeat step 3 with k=k+1

Define a reduced state machi ne by

retaining a single state fromeach block in Py.

If the state is an initial state, deduce an
OR-condition fromthe conditions associ ated

to the states in the block. Attach this entry
condition to the state.

If the state is an exit state, maintain the

condition of the state.

redefining the transition T using the equival ent states.
renove any t-transition froma state to itself.

When each state has only one successor after the occurrence of any event e (i.e. T(s, €) is
either empty or contains one state), the step 2 of the algorithm can be simplified as
described in Algorithm 6.2. In that case the machine does not contain any equivoque state,
and has a deterministic behaviour.

Algorithm 6.2: Minimisation (simplified - no potential equivoque transitions)

1.

2.

3.

4.

5.

Cenerate t1-states: as step 1 in Algorithme6.1

Build a partition P;: as step 2 in Algorithm®6.1

Build the partition P, of k-equivalent states fromP,_;

For each block B in P4
For all states p, qin B

| f for each e in enabl e(p)
T(p,e) and T (q,e) belong the sanme bl ock of Py 4

set p and g in the sane block of partition B
Repeat: as step 4 in Algorithm®6.1

Define a reduced machine: as step 5 in Algorithm®6.1

When applying Algorithm 6.2 on the state machine described in Figure 6.42 on page 120,
we obtain the following partitions of 1-equivaent states: P; = {(1,4), (2,5), (3,6)}. Py is
then refined into a partition of 2-equivalent states P,. The block (1,4) of P; isfirst consid-
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ered. The successors of state 1 by event A and B are respectively 2 and 3. The successors
of state 4 by event A and B arerespectively 5 and 6. Asthe states 2, 5 and 3, 6 belong the
same blocksin the partition of P1, the block (1,4) remains unchanged in P2. By reasoning
similarly on blocks (2,5) and (3,6), the partition P, isfound to beidentical to P;. Thusstep
2 of the algorithm need not to be repeated. A reduced machine is defined that contains the
states 1, 2, 3.

6.10 Summary

In this chapter, we have defined a projection from s-roles to aroles. The projection
abstracts non-observable behaviours of s-roles. Interna actions and non-visible signals
are hidden. The consumption of non-visible signalsis transformed to spontaneous transi-
tions. A notation inspired from SDL is proposed for modelling aroles. A set-based
notation is also defined; this notation will be used in the definition of validation ago-
rithmsin Chapter 7.

The proposed projection assumes that:

» All communication between s-roles take place by the exchange of signals, and that sig-
nals exchanged on an association between two s-roles are conveyed on the same
communication path.

* The s-role state graph has been transformed in order to remove enabling conditions.
Thisis possible as communication between s-rolesis restricted to signal exchange.

» Thevalid association input signal sets and valid association output signal sets related
to distinct s-role associations are digoint.

The projection maintains the observabl e association behaviour provided that:

» S-roles are designed according to the design rule "Save consistency". This means that
the saving of a signal should be re-iterated in the successor state(s) of the state where
save can occur until the consumption of the saved signal is specified.

» S-roles are designed according to the design rule "Ordering with save and concur-
rency”. This means that using save in the modelling of alternative signal orderings
should not overlap with the modelling of concurrent behaviours.
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The arole state graph obtained by projection can be transformed in order to facilitate
interface validation. The chapter has proposed three transformations:

* A-role state graphs are transformed to transition charts. A transition chart is akind of
state graph where transitions between states are attached a single event: an input, an
output or a silent event (t-event). The transformation is performed through the inser-
tion of o-states.

» State gathering is applied in order to remove non observable t-transitions. We define
two transformations: strong gathering and weak gathering. Weak gathering only main-
tains the observable behaviour provided that spontaneous transitions can occur. Strong
gathering always maintains the observable behaviour.

* Minimisation is applied in order to replace equivalent states by asingle state. A mini-
misation algorithm based on the classification of states into equivalence partitions is
defined.

In the following, we will assume that these transformations have been applied to the a
role transition charts.

Finally, we have also identified particular anomal ous specification patterns:
» Equivoque transitions and acute T-transitions may lead to ambiguous behaviours.
* Mixed initiative states may lead to conflicting behaviours.

Ambiguous and conflicting behaviours are usually symptoms of errors, and will require
special care during interface validation. Ambiguous and conflicting behaviours are prop-
erties of state machine types - not instances. They can beidentified at system design.
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2
| nterface validation

The purpose of interface validation isto ensure that the interfaces, i.e. service association
roles (a-roles), on associations between service roles (s-roles) interact consistently. This
chapter discusses the validation of interactions between elementary s-roles. The valida
tion of interactions between composite s-rolesis presented in Chapter 8.

Depending on the specification approach, a-roles may be specified before s-roles are
themselves defined, or they may be obtained by projections of s-roles on an association.
In other words, a-roles may either be seen as the desirable behaviour of an s-role on an
association, or the actual behaviour of an s-role on an association. Similarly, interface val-
idation can be used as a method for producing desirable behaviours or checking actual
behaviours. Applied asa constructive method, interface validation aimsto generate adual
consistent a-role from a particular a-role. Applied as a corrective method, interface vali-
dation aims to check the consistency of two a-roles.

This chapter describes first the constructive method. When discussing the generation of
dual a-roles, we propose solutions to handle ambiguous and conflicting behaviours. The
discussion results in a set of design rules that support the development of well-formed
machines. These rules are aso essential in the corrective method. Rather than directly
checking the consistency of two a-roles, we identify first whether or not the a-roles
present the right properties for interacting consistently with other a-roles. Thus we can
avoid to apply consistency checking on poorly designed s-roles and a-roles.

A main advantage of the approach is that the techniques that are proposed, can be easly
understood. Simplicity is however achieved at the sacrifice of some shortages. They are
discussed in Section 7.3.

The assumptions and design rules introduced in Chapter 6 apply. The signals exchanged
between a-roles are conveyed on the same communication path, and thus signal ordering
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is preserved during transport. A-roles are described by transition charts, and equivalent
states have been reduced by minimisation.

7.1 Dual service association role

In this section, we discuss the problem of specifying an a-role that interacts consistently
with agiven a-role. Intuitively, we tend to believe that aconsistent a-role can be produced
by mirroring, where mirroring is a transformation that maintains the structure of the
graph, and transformsinputsto outputs and outputs to inputs. We will show that mirroring
failsto work when equivoque transitions or acute t-transitions are introduced. Mixed ini-
tiatives states also require special care.

In our discussion, we consider the whole behaviour of theinitial a-role state machine, not
only parts of it. We aim to specify complementary a-roles that, through interaction with
the initial a-roles, provide the full behaviour expected by the initial a-roles. We assume
that any state in theinitial a-role machine isreachable froman initial state through some
sequence of events. With that assumption, we know that any anomal ous behaviour speci-
fied in the machine can be reached and execute.

Definition: Dual service association role

A dua aroleisacomplementary a-role of agiven arole, that interacts consi stently1 with
this given a-role. The full behaviour of the a-role can be covered through interaction
between the a-role and the dual a-role.

Recall that the consumption of signals from other associations, are projected to spontane-
ous transitions in the a-role. Spontaneous transitions may occur at any time. Asour aim
isnot identify deadl ocks? that may occur following errors of the non-visible behaviour of
an srole, e.g. errors on other associations, we assume that any spontaneous sending
described by the a-roles can occur. With this assumption, we are able to check that a-roles
interact consistently when they provide the expected behaviour.

7.1.1 Mirroring

Definition: Mirroring
Mirroring is atransformation on astate graph that produces a complement state graph: the
structure of the graph is maintained, inputs are transformed to outputs, outputs to inputs,

1. Interaction consistency has been defined in Section 5.5
2. A deadlock may occur when none of the spontaneous sending described in a state ever occurs.
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and empty events and T-eventsremain respectively empty eventsand T-events. Save isnot
maintained by mirroring. Conditions associated with initial and exit states are associated
with the complement states.

Observe that:
» Assaveisnot maintained by mirroring, o-states are mirrored to normal states.

» As the graph structure is maintained, exit nodes are transformed to exit nodes, and
cycles are preserved.

Figure 7.1lillustrates the mirroring of astate graph. Notice that without the insertion of an
o-state, the signal sending in the initial state would be transformed to a signal consump-
tionin aninitial state; thisisnot allowed in SDL. The insertion of o-states facilitates the
mirroring transformation.

> mirrorsto (2 >< 3>
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Figure 7.1 : Mirroring a state machine.
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Algorithm 7.1 defines a mirroring agorithm in a pseudo-code form. The state graph is
transformed in depth-first manner starting from each initial state (a graph may contain
severd initial states). The agorithm may apply to any state graph showing deterministic
or non-deterministic behaviour. It makes use of the notation introduced in Section 6.8.

Algorithm 7.1: Mirroring
main ()

{
[* define graph elenents: states and events */
S =S, /* maintain any associ ated condition */



152 7 Interface validation

r=1; 0=0
[* set of mrrored states, initialise to enpty */
M= {};

/* start fromall initial states */
for each s, in S,

if sopis not in M
mrror (Sg);

}

mrror (s) /* mrror the transition relation */
{

add s to M

if sis a o-state
generate new state nane s

for each e in E

define T(s, e) = s, €);

for each successor n of s
if nis not in M
mrror (n);

}

7.1.1.1 Mirroring simple machines: no equivoque transitions, no mixed initiative

V-rule: Mirroring and duality

Thedua a-role of an a-role that

- does not contain any equivoque transitions, and

- does not contain any acute T-transition, and

- does not contain any mixed initiative state,

can be obtained by mirroring.

Theinitial a-role and the a-role obtained by mirroring interact consistently provided that
- they both start execution consistently, i.e. the machines should be entered using consi st-
ent entry conditions, and

- any spontaneous sending can occur.

Noticethat, aswe assume that machines are minimized before applying mirroring, theini-
tial states, if several exist, are not equivalent, and thus are associated different entry
conditions.
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In the example shown in Figure 7.1, the a-role obtained by mirroring is a dual a-role of
theinitial a-role. This can easlly be checked by considering all possible behaviours.

Justification:

We first prove that each state is mirrored to a consistent state (i.e. a state it interacts con-
sistently with):

- Asastate is mirrored to a complement state that is enabled by complement events and
no other events: a state can consume any event sent its complement state, and any event
sent by a state can be consumed by its complement state. The full behaviour of each state
is covered.

- Following the assumption that any spontaneous sending can occur, at least one of the
output event described by a state that only describes spontaneous event sendings, occurs.
No deadlock following that the machine never sends in such state occurs.

- As states are not mixed initiative states, their mirrored states are not mixed initiative
states. Only one of the machines initiates a new transition; as any trigger is specified as
input in the complement state, unspecified signal reception does not happen. Only one
machine waits for an event sent by the other; thus deadlock following machines waiting
for each other is also avoided.

- An exit node is mirrored to an exit node and exit conditions are maintained. Thus,
improper termination is avoided.

Now that we have proved that states and their mirrored states are consistent, we prove that
transitions and their complement transitions preserve consistency:

- Astransitions are not equivogue, each state have a unique successor succ for each event.
The successor state of acomplement state triggered by the complement event, i.e. T(s, €),
isdefined in mirroring as T (s, €). It is the complement state of the successor state succ,
and thus is consistent with the successor succ. Each transition is transformed, and each
successor state can be reached providing full behaviour.

- Asthe graph does not contain any equivoque transitions, an empty transitionin aninitial
state leadsto asingle state. Such empty transition is mirrored to an empty transition. They
lead to states that interact in a consistent manner.

- As the graph, and thus the mirrored graph, does not contain any acute t-transition, the
transitions occur in a coordinated manner: atransition in one graph istriggered by atran-
sition in the complement graph, and conversaly.

Finally, as we have proved that states and their mirrored states are consistent, and that
transitions and their complement transitions preserve consistency, we prove that execu-
tion is started consistently:

- Mirroring maintains entry conditions, i.e. amirrored stateis attached the same entry con-
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dition asthe initial state.
- Theinitia machine and the mirrored machine are entered using consistent entry condi-
tions. In the same manner as any trangition, initial transitions preserve consistency and
lead to consistent states.

From this justification, we can aso deduce that the full behaviour of the dual a-role can
be covered through interaction between the a-role and the dual a-role.

7.1.1.2 Event ordering and save

The information about signal saving is not maintained in the mirrored graph. Thisis not
needed, as mirroring preserves the structure of the state graph, and thus the ordering of
event sequences. Mirroring enforces a strict ordering on the dual a-role. As explained in
Section 6.4 on page 124, it may be desirable to relax the ordering requirements. Thisis
possibleif thelist of eventsthat may be saved intheinitial stateisattached to the mirrored
state. In that case, events may be re-ordered. Information about o-states can aso be
attached to the mirrored states. The designrule " Save consistency” facilitatesthe re-order-
ing operation: we know that any save signal can be consumed after saving.

Figure 7.2 illustrates the pertinence of save information. In case (a), the dua role is
obtained by mirroring, and events are strictly ordered. If information about the saving of
“C” instate“2” is made available in the mirrored role, the sequence of eventsin the dual
role can bere-ordered. Thisisshownin case (b). As“B” may be sent at any time, the sig-
nal “B” should be saved in state “2a”. In the new dual role, the sending of “C” may be
done at once without waiting for “B”.
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Figure 7.2 . Mirroring and event re-ordering.
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In therule"Save and ordering", we have advised that the use of save for modelling alter-
native ordering should be restricted to special cases. The detailed description of re-
ordering is left for further work.

7.1.2 Equivoquetransitions

In this section, complexity is added to the a-role graphs by introducing equivoque transi-
tions. We show that it is not possible to define dual a-rolesfor a-roles that contain strong
input ambiguity or strong mixed ambiguity. Mirroring also fails to produce dual a-roles
when applied directly to a-roles that contain equivoque transitions, even if they do not
present any strong behaviour ambiguity. The machine should be transformed before mir-
roring. We first define a set of transformation and validation rules that apply to machines

containing equivoque transitions. Then we introduce algorithms for the manipulation of
such machines.

As an illustration of the problem, Figure 7.3 presents a state machine containing equiv-
oque transitions. In this example, the equivoque transitions do not lead to any input or
mixed ambiguity. An external observer is able to perceive which behaviour is selected
when receiving “C” or “D”. However, the state machine obtained by mirroring presents
an input ambiguity. The initial machine cannot, after the consumption of “B”, determine
whether the mirrored machine is waiting for “C” or “D”, and thus whether “C” or “D”
should be sent.
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Figure 7.3 : Mirroring and equivoque transitions.
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7.1.2.1 Bascrules

T-rule: Mirroring and equivoque transitions
The a-role obtained by mirroring an a-role that contains equivoque transitions, contains
eguivoque transitions. Equivogue transitions are mirrored to equivoque transitions.

Justification:

Thisisobvious. As mirroring maintains the structure of graph, i.e. both states and transi-
tions, distinct behaviour sequences occurring after equivoque transitions are mirrored to
distinct behaviour sequences.

This straightforward rule will be needed in the justification of some of the next rules.

T-rule: Mirroring and equivoque transitions, but no ambiguity

The a-role obtained by mirroring an a-role that contains equivoque transitions, but does
not present any strong or weak input ambiguity, any strong or weak mixed ambiguity, any
termination ambiguity, nor exit condition ambiguity always presents an input ambiguity.

Justification:

We know that equivoque transitions are mirrored to equivoque transitions. The equivoque
transitions lead to distinct behaviour. Asthe initial machine does not present any ambigu-
ity, theinitial divergent behaviour necessarily occurs as signal sending. These outputs are
transformed to inputs by mirroring, and thus the complementary behaviour of the initial
divergent behaviour occurs by signal consumption. This means that the mirrored machine
presents an input ambiguity.

V-rule: Duality and strong input ambiguity
Provided that strong input ambiguity is not withdrawn by savel, itisnot possibleto spec-
ify adual a-rolefor an a-role that presents an input ambiguity.

Justification:

There exists some stage of the interaction where an external observer knows that the a-
role state machine expects only input(s), but is not able to determine which input(s) is
(are) expected. Since strong input ambiguity is not withdrawn by save, the machine does
not save any of the expected input. At that stage, sending asignal may lead to an unspec-
ified signal reception. Thus it is not possible to specify a complementary a-role that
interacts consistently with the initial a-role.

1. See Section 6.5.1.1.
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T-rule: Mirroring and duality: equivoque transitions, no ambiguity
The a-role obtained by mirroring an a-role that contains equivoque transitions, but does
not present any ambiguity, is not adual a-role of that a-role.

Justification:

We know that the a-role obtained by mirroring presents an input ambiguity. At some stage
of the interaction, the a-role does not know which input(s) is (are) expected by the mir-
rored a-role. Thus sending asignal may lead to an unspecified signal reception. The two
aroles do not interact consistently.

V-rule: Duality and strong mixed ambiguity
Provided that strong input ambiguity is not withdrawn by savel @ Pa9€ 156 it s not possi-
ble to specify adual arole for an a-role that presents a mixed ambiguity.

Justification:

There exists some stage of the interaction where an external observer knows that both
input(s) and output (s) may occur, but is not able to determine any of the input or output
events expected by the a-role state machine. Since strong input ambiguity is not with-
drawn by save, the machine does not save any of the expected input. At that stage, sending
asignal may lead to an unspecified signal reception, and waiting for asignal to adeadlock.
Thus it is not possible to specify a complementary a-role that interacts consistently with
theinitia a-role.

V-rule: Duality and termination ambiguity
It is not possible to specify a dual arole for an arole that presents a termination
ambiguity.

Justification:
Astermination ambiguity is either aspecial case of input ambiguity or mixed ambiguity,
the rule can be deduced from the validation rules related to input and mixed ambiguities.

T-rule: Mirroring and duality: weak input ambiguity
Provided that weak input ambiguity isnot withdrawn by save, the a-role obtained by mir-
roring an a-role that presents a weak input ambiguity, is not adual a-role of that a-role.

Justification:
There exists some stage of the interaction where the a-role state machine expects only
input(s), but the set of expected inputs vary. The machine may enter different statesin a
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non-deterministic manner. Mirroring transforms any input expected at that stage to an out-
put in the mirrored machine. Non-determinism is preserved by mirroring, meaning that
the mirrored machine may enter a state where it sends an event that is not expected by the
initial machine. Thisis an unspecified signal reception. Thus the mirrored a-roleis not a
dual arole of theinitial a-role.

Inorder to facilitate the understanding of that rule, an exampleisshowninFigure 7.4. The
initial and mirrored machines enter state “2” or “3” in a non-deterministic manner. If the
mirrored machine enters state “3” and sends signa “C” while the initial machine enters
state “2”, an unspecified signal reception occurs.
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Figure 7.4 . Mirroring and weak input ambiguity.

T-rule: Mirroring and duality: weak mixed ambiguity
Provided that weak mixed ambiguity isnot withdrawn by save, the a-role obtained by mir-
roring an a-role that presents a weak mixed ambiguity, isnot adual a-role of that a-role.

Justification:

Thejustificationissimilar to that of the previousrule. There exists some stage of theinter-
action where the both input and output events may happen, but the set of expected events
vary. Both machines may enter different states in a non-deterministic manner, and one of
the machine may send an event that is not expected by the complementary machine. Thus
the mirrored a-role is not adual a-role of theinitia a-role.

Inorder to facilitate the understanding of that rule, an exampleisshowninFigure 7.5. The
initial and mirrored machines enter state “2” or “3” in a non-deterministic manner. If the
initial machine enters state “3” and sends signal “C” while the mirrored machine enters
state“2”, an unspecified signal reception occurs. Noticethat theinput overlapintheinitia
machine is transformed to an output overlap in the mirrored machine,
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Figure 7.5 : Mirroring and weak mixed ambiguity.

7.1.2.2 ldentifying equivoque transitions and diver gent behaviour

As a-roles containing equivoque transitions cannot be mirrored to dual a-roles, it isessen-
tial to be able to detect equivoque transitions. We propose algorithms for marking the
states where equivoque transitions happen, and categorising the divergence of behaviour
they lead to. The categorisation is important as we know that it is not possible to produce
adual a-role of an a-role presenting astrong input, strong mixed or termination ambiguity.
In the case such ambiguity isfound, the designer should re-specify the a-role. Design rules
for removing ambiguity are presented in Section 7.1.2.5.

A divergence of behaviour does not necessarily occur in the states immediately following
equivoque transitions. The identification of divergent behaviour requires traversing the
state graph. Figure 7.6 describes a case where several and different kinds of behaviour
divergency occur after equivoque transitions.

-— equivoquetranstions —p

i

|
(

WK W
WK W

'

L)
2 ) (

T
C
N
4

I
D

T

o mym oK M

I < W
] . -
ey
input ambiguity | \ / |
| |

observable divergence

identical behaviour /

Figure 7.6 : Divergent behaviour occurring after identical signal sequences.
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Algorithm 7.2 supports the identification of states that define equivoque transitions. The
state graph is analysed in depth-first manner starting from each initial state. We assume
that the graph has been minimized and does not contain any equivalent states. The algo-
rithm makes use of the notation introduced in Section 6.8.

Algorithm 7.2: Identifying equivoque transitions
main ()

{
[* Assunpti on:
- the graph has been m nim zed - no equival ent states
*/
EQ = {}; /* set of equivoque states */
W= {}; /* working set */
[* start fromall initial states */
for each sy in Sy

if sois not in W
i dentify-equivoque(sy);

}

i denti fy-equivoque (S)

{
add s to W

for each e in enable (5s)
if T (s, e contains nore than one elenent add s to EQ
for each successor n of s /* elenent of T (s, e) */
if nis not inW
i denti fy-equivoque (n);

}

Algorithm 7.3 supports the characterisation of divergence of behaviour occurring after
equivoque transitions. Equivoque transitions should first be identified using
Algorithm 7.2. The divergence of behaviour is either classified as output divergence,
strong or weak input ambiguity, strong or weak mixed ambiguity, termination ambiguity,
or exit condition ambiguity. When a divergence of behaviour is identified, the states
where it occurs, are stored together with the state where the equivoqgue transitions occur.
The state graph is analysed in a depth-first manner starting from each state where equiv-
oque transitions occur:

» Thealgorithm first identifieswhich kind of divergence occursin the statestriggered by
the equivoque transitions. In the case of input or mixed ambiguity, the divergence is
classified as “weak” if the successor states describe some behaviour overlap.
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» The analysis is repeated step-wise, when distinct successor states can be reached by
identical behaviour sequences after the occurrence of equivoque transitions.

Theagorithm failsto identify when distinct sets of equivoque transitions lead to the same
states. In order to avoid non-progress cycles in the algorithm, the analysis of states that
have aready been analysed is not repeated. This means that a divergence of behaviour is
related to a single set of equivoqgue transitions, while it may also occur after some other
set of equivoque transitions.

Theagorithm does not take into account save signal s attached to states, and does not iden-
tify when input or mixed ambiguities are withdrawn by save (see Section 6.5.1.1 and
Section 6.5.2.1). This means that some behaviours may be classified as ambiguous while
they in fact are not.

Algorithm 7.3: Classifying the divergence of behaviour after equivoque transitions
main ()

{
[* Assunpti on:
- equivoque states are stored in EQ (Algorithm7.2)
*/
leqg = EQ /* initial set of equivoque states*/
W= {}; /* working set - contains anal ysed state tuples */

[* The follow ng sets contain elenents of the form
(eq, div) where
eq i s an equi voque state,

div a state tuple (sj, S;j

j»---) Where behaviour

di ver ges
*/
D-out = {}; /* output divergence */
Din-s ={}; /* strong input anbiguity */
Din-w={}; /* weak input anbiguity */
Dmx-s ={}; /* strong m xed anbiguity */
Dmx-w={}; /* weak m xed anbiguity */
Dterm={}; /* termnation anbiguity */

D-termcond = {}; /* exit condition ambiguity */

/[* start fromall equivoque states */
for each eqin Igq

remove eq froml g,

for each a in enable (eq)
if T (eq, a) contains nore than one el enent
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if T (eq, a) is not in W
i dentify-divergence (eq, T(eq, a));
}

i dentify-divergence (s-eq, SUCC)

{
add SUCC to W

Events = {}; /* events in successor states */
for each p in SUCC
add enabl e(p) to Events;

if Events is enpty /* successors are exit states */
add (s-eq, SUCC) to D-termcond; /* exit cond. anbig. */
return;

Common- Events = {}; /* common events i n successor states */
for one p in SUCC
set Common- Events to enabl e(p);
for each pin SUCC /* find intersection of event sets */
set Common- Events to Comon- Events [ enabl e(p);

/* identify divergence */
if for sone e in Events,
e is not in enable(p) for sone pin SUCC/* divergence */

{
if T(g, e) is elenment of S, for sone g in SUCC/* exit */

if T(r, e) is not element of S, for sone r in SUCC
add (s-eq, SUCC) to D-term /* termnation anbig. */

if Events is included in O/* output divergence */
add (s-eq, SUCC) to D out;

else if Events is included in | /* input anbiguity */
i f Common-Events is enpty
add (s-eq, SUCC) to D-out-s; /* strong */

el se
add (s-eq, SUCC) to D-out-w, /* weak */

else /* mxed anbiguity */
i f Common-Events is enpty
add (s-eq, SUCC) to D-m xed-s; /* strong */
el se
add (s-eq, SUCC) to D-m xed-w;, /* weak */
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/[* identify partially commobn behavi our and anal yse it */

for each e in Events
s-num = 0; /* nunber of successor states */
S-SUCC = {}; /* set of successor states */
for each pin SUCCif e is in enable(p)
add T(p, e) to S SUCC,
S-num = s-num + 1;
n-eq = p;
if S SUCC contains nore than one el enent
if SSUCCis not in W
if s-numis equal to 1 /* equivoque transitions */
remove n-eq froml g,
i dentify-divergence (n-eq, S SUCC);
el se
i dentify-divergence (s-eq, S SUCC);
}

7.1.2.3 Equivoquetransitionswith no ambiguity

Given an a-role that contains equivogue transitions, but does not present any ambiguity,
we have shown that adual a-role cannot be obtained by mirroring. However, it ispossible
to specify adual arole for such an arole. We will show that a simple transformation that
merges the behaviour occurring after the equivoque transitions should be applied before
mirroring.

Figure 7.7 illustrates this transformation. Mirroring failed to generate adual a-rolefor the
initial machine (see Figure 7.3). However, the machine obtained after “merging” and mir-
roring, as described in case () on Figure 7.7, isadual a-role of the initial machine. This
can be easily checked by considering all possible behaviours. Theinitial machinewasfirst
transformed to an intermediary machine by merging the states exhibiting the non-distin-
guishable behaviours and occurring after the equivoque transitions. The transformation
removes ambiguity, and enables to produce, by mirroring, a machine that presents no
ambiguity. Notice that the initial machine does not need to be modified: the equivoque
transitionsare not removed. Astheinitial machine controlsthe interaction when thediver-
gence of behaviour occurs (i.e. the machine sendsasignal), it is possible to specify adua
machine.
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Figure 7.7 . Equivoque transitions. merging behaviour before mirroring.

7.1.2.3.1 Merging

Definition: Merging

Merging is atransformation that applies distinct states reachable from a state triggered by
eguivoque transitions through the same sequence of events. Merging producesanew state
that exhibits the behaviour of the merged states (i.e. can betriggered by all eventsthat can
trigger any of the merged states). The transitions from the state triggered by equivogue
transitions to the states being merged are replaced by atransition to the merged state.
Merging does not apply to exit states.

Merging will mainly be applied on state machines that do not present any input, mixed or
termination ambiguity. However as discussed in Section 7.1.2.5, merging is also of inter-
est when re-designing an a-role that presents input or mixed ambiguity. Merging is never
applied on machines that present a termination ambiguity, this because exit states have a
particular semantics (the machine stops), and should not be merged with non-exit states.
The merging transformation may be extended in order to handle the merging of distinct
exit states. Thisisactual when a state machine presents an exit condition ambiguity. This
isfurther explained in Section 7.1.2.4

A state machine may present several ambiguities after the occurrence of equivoque tran-
sitions. Every branch in the graph that succeeds a set of equivoque transitions is merged.
Figure 7.8 illustrates the merging transformation on a slightly more complex example
thanin Figure 7.7. Firgt, the states following the equivoque transitions are merged: states
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“2" and“9” aremerged to state “2-9”. The new state can betriggered by the events of state
“2',1.e.“B”,“C” and “G”, and the events of state “9”, i.e. “B” and “C”. The transitions
triggered by “B” and “G” lead to single states; they remain unchanged. The transitions
triggered by “C” lead to distinct states “4” and “10”. The states “4” and “10” can be
reached by the same sequence of eventsfrom state“1”, i.e. “A” and “C”; they are merged
tostate“4-10". The new stateistriggered by asingle event D. The merging continues until
no more distinct states need to be merged.
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Figure 7.8 . Merging.

T-rule: Merging and equivoque transitions

An a-rolethat contains equivoque transitions and does not present any termination ambi-
guity is transformed by merging to an arole that does not contain any equivoque
transitions.

Justification:
By definition of merging, states reachable from a state triggered by equivoque transitions
are merged to a single state. Thus equivoque transitions are merged to asingle transition.

Algorithm 7.4 defines a merging algorithm in a pseudo-code form. We assume that the
machine does not present any termination ambiguity or exit condition ambiguity (merging
is never applied on exit states). We also assume that the machine does not contain any
equivalent states. The state graph is transformed step-wise in depth-first manner starting
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from each state where equivoque transitions occur. Distinct states that are reachable from
that state through the same sequence of events are merged to a new state; this state is
defined with the transitions of the merged states. The merging is repeated for the distinct
successor states triggered by the same event.

Algorithm 7.4: Merging
main ()

{
[* Assunptions:
- no equival ent states
- no termnation anbiguity
*/
/* Equi voque states are stored in EQ (Algorithm?7.2) */

W= {}; /* working set - contains merged state tuples */

/* merged-state is a relation that keeps track of
t he associ ation between a tuple of nerged states
and their nerged state */

[* start from an equivoque state */
for each s in EQ

renove s fromEQ

for each e in enabl e(s)

if T (s, e contains nore than one el enent
nmerge (s, e);

}

merge (s, e)

{

if every p of T(s, e) is element of S /* any exit */
report-error (exit condition anbiguity);
return;

if some p of T(s, e) is elenment of S /* one exit */
report-error (termnation anbiguity);
return;

if T(s, €) is not in W

{
add T(s, e) to W

create new state n; /* add n to S */
set nerged-state(T(s, e)) to n;
SUCC = T(s, e);
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T(s, €) =n; /* redefine transition */

for each ain E, set T(n, a) = {}; /* initialisation */
for each q in SUCC

for each a in enable(q)

add T(g, a) to T(n, a)

add a to enabl e(n);

for each a in enabl e(n)
if T(n, a) contains nore than one el enent
nmerge (n, a)

}

else /* the nerged state already exists */
T(s, e) = nerged-state(T(s, e));
}

The merging algorithm does not remove any state from the graph. Some of the merged
states may, after merging, no longer be reachable from the initial states. These states can
be easily removed by applying Algorithm 7.5. The merging transformation may aso
introduce new equivalent states. Equivalent states should be replaced by a single state by
minimisation (Algorithm 6.2). When these two transformations have been performed, the
mirroring transformation can be applied.

Algorithm 7.5: Removing non-reachable states
main ()

{

W= {}; /* working set - reachable states */

/* start fromall initial states */
for each s, in S,

if sois not in W
mar k- successor (Sg);
set Sto W
}

mar k- successor (S)

{
add s to W

for each successor n of s
if nis not in W
mar k- successor (n);
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7.1.2.3.2 Merging and save

The proposed definition of merging ignores the saving of signals. As a consequence, an
arole is transformed by merging to an arole that may provide a modified observable
association behaviour.

Two case examples are shown in Figure 7.9. In the case (a), the states to be merged define
identical setsof saved signals. The design rule" Save consistency” is enforced by consum-
ing the signal in the successor state “3”. An external observer may send “D” immediately
after “A”. When it receives “B” or “C”, the machine proceeds. After merging, the same
behaviour may lead to the discarding of “D” and a deadlock. In case (b), the states to be
merged define distinct sets of saved signals. This caseillustrates akind of save ambiguity:
an external observer cannot determine from any observable event that the signal “D” can
be saved. Also in that case, an external observer perceives distinct behaviours before and
after merging. When sending “D” immediately after “A”, the arole before merging
always proceeds after “B” isreceived. After merging, it sometimes deadlocks.
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asliljastl
@Q/c/D/\B>C> uu
) ()

mergesto
—_—

D

I
(a) identical save sets (b) digtinct save sets

Figure 7.9 . Merging and save.

We may redefine the merging transformation so that the save set of a state obtained by
merging, is defined as the intersection of the save sets of the states being merged. For
example, state “X” merged from case (@) of Figure 7.9 would define the save set “D”. In
the case where the state being merged defined distinct save sets, the new merging trans-
formation does not maintain the observabl e association behaviour. For example, state“ X”
merged from case (b) in Figure 7.9 would not define any save set as when using theinitia
merging transformation. Algorithm 7.4 is easily extended so that a save set is computed
and attached to the merged state.
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The merging of two or more o-states is a particular case and should lead to a o-state.
Recall that the semantics of o-states is also different from other states, in that one of the
output events described in o-state always occurs.

We intend to apply merging before mirroring. Merging and mirroring should be defined
consistently. When the information about signal saving is not maintained in the mirrored
graph, maintaining save during merging is not needed. Both merging and mirroring
enforcesastrict ordering on the dual a-role. Otherwise, when mirroring maintainsthe save
information?, merging should maintain save.

V-rule: Merging and save ambiguity

Assume an a-role containing equivoque transitions, but no input, mixed, termination or
exit condition ambiguity. If some of the states being merged define distinct save sets, the
arole presents a save ambiguity.

Justification:

Asthe a-role does not present any input, mixed, termination or exit condition ambiguity,
the divergence of behaviour occurring after the equivogue transitionsis perceived through
output events. The states between the state triggered by the equivoque transitions and the
states triggered by these output events are merged. An external observer cannot distin-
guish between the states being merged. If some of these states define distinct save sets, an
external observer cannot determine which signals can be saved, except the common sig-
nalsin the save sets.

When an a-role presents a save ambiguity, acomplementary a-role cannot take advantage
of save, except for the common signals in the save sets. Therefore it is acceptable that
merging ignores signals that are not common to the save sets.

D-rule: Merging and save ambiguity
We advice to redefine a-roles? presenting save ambiguities such that save sets of states
being merged define identical save sets.

T-rule: Merging and o-state
Themerging of ao-state with anon o-state may modify the observabl e association behav-
iour provided by an a-role.

1. asdescribed in Section 7.1.1.2.
2. When a-roles are derived from s-roles, the s-roles need to be redefined.
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Figure 7.10 : Merging and o-state.

Justification:

The state obtained by merging is not ac-state and then behaves differently from theinitial
o-state. An example is shown in Figure 7.10. When interacting with the initial role, an
external observer that sends “D” immediately after “A” observes that the a-role always
proceeds after “C” isreceived. When interacting with the a-role obtained by merging, an
external observer that sends“D” immediately after “A” observes that, in some cases, the
arole deadlocks after “C” isreceived.

In that case, redesigning the a-role ismore complex. We rather proposeto enforce astrong
ordering on the complementary a-role.

Definition: Merging with save

“Merging with save” extends the merging transformation:

- The save set of a state obtained by merging, is defined asthe intersection of the save sets
of the states being merged.

- o-states are merged to a o-state.

T-rule: “Merging with save” and obser vable behaviour

An a-role that contains equivoque transitions, but that

- does not present any input, mixed, termination or exit condition ambiguity,

- and does not contain any acute T-transitions,

istransformed by “merging with save” to an a-role that exhibits the same behaviour pro-
vided that the states being merged define identical save sets, and that o-states are only
merged with other o-states.
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Justification:

States being merged are distinct states that are reachable from a state triggered by equiv-
oque transitions through the same sequence of events. We have to show that a merged
state and its successor states behave as the states being merged and their successors. The
states should be triggered by the same events, and signals should be stored and retrieved
in/from the input port in the same manner.

Asthe a-role does not present any input, mixed, termination or exit condition ambiguity,
the divergence of behaviour only occurs through output events. The states being merged
either define the same set of events, or they define different output events.

- If the states being merged define the same events, the merged state also defines this set
of events. Thus, the merged state is triggered in the same manner as the initial states. For
each event, the successor state(s) of the initial statesis (are) either identical or differ. In
the first case, triggering obviously leads to the same behaviour. In the second case, the
successor states are merged. By applying the reasoning recursively, the successor states
can be shown to be triggered by the same events.

- If the states being merged define different output events, the merged state defines the
union of the output events, and no other event. Thus, the merged state is triggered by the
same events as the initial states. Each event defined in a single initial state leads to the
same successor in the merged state, and triggering obviously leads to the same behaviour.
For each other event, the successor state(s) of the initial statesis (are) either identical or
differ. In the first case, triggering obvioudy leads to the same behaviour. In the second
case, the successor states are merged. By applying the reasoning recursively, the successor
states can be shown to be triggered by the same behaviour.

The states being merged define the same save set, and that save set is maintained by merg-
ing. Thus, signalsare stored in the input port in the same manner before and after merging.
Thus, signalsremain in the input port smilarly before and after merging.

o-states are only merged to ao-states, thusa signal sending always occurs asin theinitia
o-state.

7.1.2.3.3 Merging and duality

V-rule: Merging and duality

The dual a-role of an a-role that contains equivoque transitions, but that

- does not present any input, mixed, termination or exit condition ambiguity, and
- does not contain any acute t-transitions, and

- does not contain any mixed initiative state,

can be obtained by mirroring the a-role obtained by merging theinitia a-role.
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Theinitial arole and the a-role obtained by merging and mirroring interact consistently
provided that

- they both start execution consistently, i.e. the machines should be entered using consist-
ent entry conditions, and

- any spontaneous sending can occur.

Justification:

This can be easily shown when the states being merged define identical save sets, and the
merging transformation maintains the save sets. In that case the merged a-role exhibitsthe
same behaviour as theinitial a-role. We know that the merged a-role does not contain any
eguivoquetransitions. It iseasy to show that it does not contain any acute T-transition, and
any mixed initiative state. According to the validation rule "Mirroring and duality", adual
arole of the merged role can then be obtained by mirroring. The merged a-role and dual
arole interact consistently providing they start execution consistently and the spontane-
ous transitions can occur. As the merged a-role and initial arole exhibit the same
behaviour, the dual a-role of the merged a-roleis aso adual a-role of theinitia arole.
The validation rule "Mirroring and duality" applies for a mirroring transformation that
does not maintain the save information. As we assume that spontaneous sendings can
occur, signal sending in ao-state behavesasinanon- o-state. A strict ordering isenforced
on the a-role obtained by mirroring. Thus, thisa-role interacts consistently with theinitia
arole al'so when no save assumptions are made on the merging transformation and on the
roles being merged.

It is possible to relax the ordering requirements on the dual a-role. Save sets should be
maintained by merging, and save information attached to the mirrored a-role such that re-
ordering can be applied. A-roles presenting save ambiguities should be redefined before
the generation of dual roles. When transformations are applied on a-rolesthat present save
ambiguities, the dual a-roles enforce stricter event sequence ordering.

7.1.2.4 EXxit condition ambiguity

Recall that an exit condition ambiguity occurs when an external observer is not able to
determine which exit condition is associated to a termination. The identification of the
exit condition is especially relevant when roles are composed sequentially. Exit condi-
tions may be used to control the choice of the further behaviour. However, we will seein
Chapter 8 that the composition of roles across actors does not require roles to be com-
posed similarly in two interacting actors. A composite role may not need to know which
exit condition is associated to a termination of its complementary role.
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A simple approach has been chosen for the projection of exit state: the exit condition is
maintained by projection. In some cases, the condition may however only be relevant for
interactions on other associations. In order to deal with such cases, we rather introduce an
extension to SDL and make use of this extension in the definition of improper termination
(see Section 5.5). Recall that two a-roles may terminate properly even though their con-
ditions of termination are not identical. The conditions should be consistent, i.e. one of the
condition should cover the other condition.

We introduce the OR-logical expression of exit conditions in SDL. When a composite
state exits through a return node attached the condition “cl or ¢2”, this means that any of
the condition may be true - indifferently. The condition “cl or ¢2” covers the two condi-
tions“cl” and“c2’. Theexit condition “any” isrepresented by the SDL “DEFAULT” (i.e.
no label is attached to the return node), and represents any other condition than those spe-
cifically expressed in the graph. Thus if the exit condition “c1” is defined in the graph,
“any” does not cover “cl”.

We propose to extend the merging transformation so that it handles the merging of exit
states attached distinct exit conditions.

Definition: X-merging

X-merging is atransformation that applies distinct states reachable from a state triggered
by equivoque transitions through the same sequence of events. It applies to all states
except the exit statesin asimilar way as merging. Through x-merging, exit states attached
distinct exit conditions are merged to a state attached the OR-expression of these condi-
tions. Exit states are not merged with non-exit states.

Figure 7.11 illustrates the transformation. The machine obtained by x-merging can be
mirrored to a machine that interacts consistently with the initial machine.

1

."‘ cond-1 OR cond-2

initial a-role a-roleafter x-merging

Figure 7.11 : X-merging.
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V-rule: X-merging and duality

The dual a-role of an a-role that contains equivoque transitions, but that

- does not present any input, mixed, termination ambiguity, and

- does not contain any acute t-transitions, and

- does not contain any mixed initiative state,

can be obtained by mirroring the a-role obtained by transforming the initial a-role by x-
merging.

Theinitial a-role and the a-role obtained by x-merging and mirroring interact consistently
provided that

- they both start execution consistently, i.e. the machines should be entered using consi st-
ent entry conditions, and

- any spontaneous sending can occur.

Justification:

Thisruleis based on the previous validation rule “"Merging and duality”. Exit condition
ambiguity is added, and merging replaced by x-merging. We can follow the same reason-
ing as previously. “X-merging with save” preserves the observable behaviour except the
exit conditions. However the exit states after x-merging are attached an exit condition that
covers the initial exit conditions. That condition is maintained in the mirrored role, that
according to the definition of improper termination, will then interacts consistently with
theinitia role.

Algorithm 7.4 iseasily extended to x-merging so that exit states and their attached condi-
tions are merged. In the following, we will use the term merging instead of x-merging.

7.1.2.5 Strong ambiguities

Asshown previoudly, it isnot possibleto specify dual a-rolesfor a-rolesthat present input,
mixed or termination ambiguity. Designers need therefore to re-specify the s-rolesand a
roles in order to remove the ambiguity. In this section, we propose simple design rules.
Designers may prefer to modify the state machine differently; designers' choices may
depend on the application being designed.

D-rule: Removing input ambiguity
Input ambiguity should be removed. Input ambiguity in the a-role may be removed by
merging. When a-roles are derived from s-roles, re-design applies to s-roles.
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Figure 7.12 illustrates this design rule. The states where input divergence occurs are
merged to a new state that can consume any of the inputs of the states to be merged.
Algorithm 7.4 can be easlly extended in order to remove input ambiguity in the a-role by
merging. States with input ambiguity were identified in Algorithm 7.3.

— v — ! mergesto

)| ——

1
2

-3
1
B

] 5! APXE
« ) ) C« ) s )

Figure 7.12 : Re-design: removing input ambiguity.

D-rule: Removing mixed ambiguity

Mixed ambiguity should be removed. Mixed ambiguity may be removed by merging.
When a-roles are derived from s-roles, re-design applies to s-roles. The states where
mixed ambiguity occur are merged to amixed initiative state. The rules defined for mixed
initiative states should then be applied (see Section 7.1.3).

Figure 7.13 illustrates this design rule. The states where behaviour divergence occurs are
merged to anew state “2-3” that can consume any of the inputs and send any output of the
states to be merged. As we will see in Section 7.1.3, a dua state of the mixed initiative
state cannot be derived by smple mirroring. Algorithm 7.4 can be easily extended in
order to remove mixed ambiguity in the a-role by merging. States with mixed ambiguity
were identified in Algorithm 7.3.

Figure 7.13 : Re-design: removing mixed ambiguity.

Recall that merging should not be applied on machines that present termination ambigu-
ity. Exit states that have a particular semantics should not be merged with non-exit states.
Adding the sending of asignal before the exit state solvesonly partially the problem. This
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isillustrated by the examples on Figure 7.14. In case a, the modified machine contains
equivoque transitions, but does not present any ambiguity. A dua association can be
obtained by merging and mirroring (see Section 7.1.2.3.3). In case b, the modified
machine presents a mixed ambiguity. The ambiguity may be removed by merging; how-
ever merging leads to an undesirable form of mixed initiative state; this is further
explained in Section 7.1.3.5.

2 EXIT

B ‘ ‘ Exit >
&
(b)

Figure 7.14 : Re-design: removing termination ambiguity.

@

D-rule: Removing termination ambiguity

Termination ambiguity should be removed. Adding the sending of atermination indica-
tion signal before the exit state is a satisfying solution in the case where the other state(s)
triggered by the other equivoque transition(s) defines (define) only outputs. Otherwisethe
state machine should be re-defined; the rules specified for mixed initiative states may be
followed (see Section 7.1.3.5). When a-roles are derived from s-roles, re-design applies
to s-roles.

7.1.2.6 Weak input and mixed ambiguities

By definition of a dual a-role, the full behaviour of the initial a-role should be covered
through interaction between the a-role and the dual a-role. Observe that when werelax the
constraint of full behaviour, a consistent complementary a-role can be generated by an
extended mirroring transformation. The generated a-role interacts consistently with the
initial a-role, also when the state presenting a weak ambiguity is reached.

Thisisillustrated in Figure 7.15. The initia a-role presents aweak input ambiguity. This
aroleisfirst reducedin order to remove non-common input behavioursfrom the state pre-
senting ambiguity. Here the input “C” is removed. Then merging and mirroring can be
applied on the reduced a-role. The complementary a-role does not provide the full behav-
iour expected by the initial a-role. The behaviour “C” never occurs when these two roles
interact. It isnot adual a-role. We call it a“reduced” dual a-role.
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Figure 7.16 showsasimilar case with weak mixed ambiguity. The non-common input “B”
isremoved. The arole in case (d) interacts consistently with the initial a-role. However
the behaviour “B” never occurs when these two roles interact.
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Figure 7.16 : Weak mixed ambiguity: reducing and merging before mirroring.

Although these transformations enable the generation of partial complementary consist-
ent aroles, they cannot be considered as a satisfying solution. Weak input and mixed
ambiguities are a symptom of poor design, and s-roles should be re-designed. The
approach using behaviour reduction may be used when s-roles cannot be re-designed.
Otherwise the following design rule should applied.

D-rule: Weak input and mixed ambiguities

Weak input and mixed ambiguities should be removed. They may be removed following
the rules defined for strong ambiguities.



178 7 Interface validation

7.1.3 Mixed initiatives

Mixed initiatives occur when an a-role and its complementary a-role both can take an ini-
tiative to send during the sameinteraction step. If two associated a-rolestake theinitiative
to send smultaneously, the signals may cross each other, and the a-roles perceive the
order of occurrence of events differently. This should be taken into account when speci-
fying a-roles. In state machines, mixed initiatives are represented by mixed initiative
states. This section define rules applying to such machines. Recall that mixed initiatives
may either represent concurrent behaviours or alternative orderings (see Section 6.6).
These two forms of mixed initiative require slightly different rules.

7.1.3.1 Input consistency

When two machines take the initiative to send ssmultaneously, the signals they send are
received in the states triggered by signal sending in the other machines. In order to avoid
unspecified signal reception, the signals specified as inputs in mixed initiative states
should be specified as inputsin the states following signal sending in the mixed initiative
states. Thisisaform of input consistency as described by [Bragk and Haugen 1993].

Definition: Input consistency

A stateisinput consistent with another state, if the set inputs enabled in this state contains
the set of inputs enabled in the other state. Two states are input consistent if they accept
the same set of inputs.

A simple example of input consistency is shown in Figure 7.17. The initial machine may
either take the initiative to send “A”, or may consume “B”. If the signals“A” and “B”
cross each other, the signal “B” isreceived while the machineisin state “2” leading to an
unspecified signal reception. To avoid this unspecified signal reception, the machine is
made input consistent, i.e. the signal “B” is added as input in state “2”. The behaviour
occurring in the new state “6” will be discussed in Section 7.1.3.2.

D-rule: Mixed initiative and input consistency
Any statetriggered by an output from amixed initiative state should be defined input con-
sistent with the mixed initiative state.

Justification:
We assume that any of the inputs specified in amixed initiative state may be sent by the
complementary machine. Any of theseinputs may be received after an output specified in
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Figure 7.17 : Mixed initiatives: input consistency.

the mixed initiative state is sent; this is the case when the signals cross each other. Thus,
in order to avoid unspecified signal reception, any of the inputs specified in amixed ini-
tiative state should also be specified in any state triggered by an output from a mixed
initiative state.

Note that alternative event orderings as introduced in Section 6.6 enforces this design
rule.

Applying thisdesign rule may lead to the introduction of new mixed initiative states. This
is the case if the successor state of the mixed initiative state defines some output. An
example is shown in Figure 7.18. Of course, in that case the rule should also be applied
on the successor state “4” of the new mixed initiative state “2". Concurrent behaviours
that encompass successive sendings (as in this example “A”, “C") may lead to complex
specifications and should be avoided; thisis discussed in Section 7.1.3.2.2.

)
EDPEN
= ) )
PED YN
new mixed initiative @ s

Figure 7.18 : Mixed initiative state introduced by input consistency.

input consistency

\

V-rule: Mixed initiative and input consistency
An arole and its complementary a-role involved in a mixed initiative may interact in a

non-consistent way if their machines are not specified following the design rule “mixed
initiative and input consistency”.
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Justification:

As both a-roles are involved in amixed initiative, they may both take initiative to send a
signal. If they take the initiative to send simultaneously, the signals are received in the
states triggered by sending from the mixed initiative states. If these states are not input
consistent with the mixed initiative states as recommended by the design rule, unspecified
signal receptions occur: the a-roles do not interact consistently.

Note that it is possible to produce a consistent complementary a-role for an a-role whose
machine contains a mixed initiative state, but does not follow the design rule “mixed ini-
tiative and input consistency” . The a-rolesinteract consistently when the complementary
arole is not enabled to take an initiative in the complement state of the mixed initiative
state. In that case, the full behaviour expected by the a-roleis not covered.

7.1.3.2 Concurrent behaviours: conflict resolution

In the case of concurrent behaviours, conflicts may occur. State machines should be spec-
ified such that conflicts can be detected and resolved. In this section, we propose some
design patterns for the resolution of conflicts.

Conflicts occur when a machine and its complementary machine send signals to each
other simultaneoudly. A conflict is perceived when an input specified in amixed initiative
state is received in the state following signal sending in the mixed initiative state. A con-
flict can be detected in both interacting machines. Enforcing the input consistency design
rule provides a means to detect conflicts.

Machines involved in a conflict should agree on how to further proceed. The purpose of
conflict resolution is to come to an agreement. Conflict resolution requires coordination
between the interacting machines. Two main coordination patterns may be defined:

» A coordinator may be assigned at design time. An exampleisdescribed in Figure 7.19.
The machine on the left-hand side coordinates the conflict resolution. The signal
“resolve” represents the decision taken at conflict resolution. For example, the signal
“D” may be sent if the behaviour (“B”, “D”,...) isretained. Note that the machine and
the complementary machine interact consistently. This can be checked by considering
al possible behaviours. We observe that the states where the conflict is detected, i.e.
state “2" in the machine (@) and state “3” in the complementary machine (b), do not
mirror their complement states. The states describing conflict resolution, i.e. state “6”
in both machines, mirror each other.



7.1 Dual service association role 181

input c ns'stenc,y—|1—>—‘|\ / <:>—| -
|
v

~N

N
kl o wig @
S~

—~
o
~—
TN
IN
%
~—

conflict detection -resolve
B conflict resolution y
) ")
(a) machine (b) complementary machine
Figure7.19: Mixed initiative: conflict detection and resolution, one coordinator.

* A coordinator may be selected at run-time as shown in Figure 7.20. The selection
should result from a commonly defined analysis. This approach introduces a new
mixedinitiative state (state“6”) in both machines. Following the analysis, oneand only
one side should take the coordination of the conflict resolution: the signal “resolve”
should be sent by only oneside. If not, the analysishasfailed: divergent decisions have
been reached on the distinct sides. Thisis an error case. As in the previous example,
the machine and the complementary machine interact consistently. We also observe
that the conflict detection states, i.e. “2” and “3”, do not mirror their complement
states, while the conflict resolution states, i.e. “6”, do. Asthe states“6” are mixed ini-

tiative states, they lead to new conflict detection states, “7” and “8”, that do not mirror
their complement states.
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Figure 7.20 : Mixed initiative: dynamically assigned conflict coordinator.
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D-rule: Mixed initiative and conflict

In the case where a mixed initiative state describes concurrent behaviours, a behaviour
conflict is detected when some state following signal sending in amixed initiative state
receives a signal specified as input in the mixed initiative state. Conflict resolution
requires coordination. A conflict resolution coordinator can be assigned either at design
timeor at run-time.

7.1.3.2.1 Negotiation

The selection of a coordinator at run-time may be refined by adding a negotiation phase.
Thisis shown in Figure 7.21. Conflict resolution does not take place at once, but after a
negotiation leading to the selection of a coordinator. In this example, negotiation is initi-
ated by both sides; this introduces new mixed initiative states “1n”. Note that these new
mixed initiative states represent alternative orderings, not concurrent behaviours. These
states and their successors “2n” mirror their complement states; the alternative orderings
lead to the common state “3n” and its complement state “3n”.

S)xm ﬁ\ »
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Figure 7.21 : Mixed initiative: negotiation.



7.1 Dual service association role 183

7.1.3.2.2 Sgnal sending sequences

A particular case occurswhen a concurrent behaviour describes the sending of a sequence
of signals. The detection of conflict may occur at any step in the sending sequence.

An exampleisshown in Figure 7.22. The signals“A” and “C” may be sent successively.
If both machines take initiative ssimultaneously, the signa “B” may either be received
before or after the sending of “C”. The conflict is perceived by the machine in state “2”
or “4” when “B” is received. In the complementary machine, the conflict may either be
detected by the reception of “A” or “C”. On entering the state “1d”, the complementary
machine is not able to determine whether the signal “C” has been sent or not. In order to
avoid the introduction of a new mixed initiative state, the conflict resolution should be
coordinated by the machine. If multiple sendings can take place after the sending of “A”,
new conflict detection and resolution states are added in a cascade manner. As the struc-
ture of the state graph is not preserved in the complementary machine, the relations
between the conflict resolution states of the machine and the complementary machine
may become very complex.

(a) machine (b) complementary machine

Figure 7.22 : Concurrent behaviours: sending sequence.

In this example, the machine in case (@) is able to determine at which step in the sending
sequence the conflict occurs. When both machines are able to send a sequence of signals,
the conflict detection becomes cumbersome. An example is shown in Figure 7.23. The
different conflict detection states correspond to different conflict sequences. The same
names are used in both machines for the identical conflict sequences. For example, the
states“3d” correspondto signals“B”, “D” crossing “A”. On entering the state “1d”, none
of the machineis not able to determine whether the second signal in the sequence has been
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sent or not. Therefore the conflict cannot be resolved without the introduction of a new
mixed initiative state. On the other hand, on entering the state “2d”, the machine is not
able to determine whether the signal “D” has been sent or not. On entering the state “3d”,
the complementary machineis not able to determine whether the signa “C” has been sent
or not. In these states mixed initiatives may be avoided. As shown by this example, the
structure of the graph becomes complex and it is cumbersome to establish the relations
between conflict detection states when multiple sendings are allowed in amixed initiative
state.

(a) machine (b) complementary machine

Figure 7.23 : Concurrent behaviours. multiple conflict detection states.

We recommend to avoid specifications that make the specification of the dual machine
difficult, and that do not maintain simple relations between the conflict detection states of
the machine and the complementary machine. We advice to avoid sending sequences in
concurrent behaviours.

D-rule: Mixed initiative and signal sending sequences
Concurrent behaviours described by mixed initiatives should not specify signal sending
sequences. Signal sending and consumption should take place alternatively.

As a consequence of thisrule, signal reception sequences do not occur.
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7.1.3.3 Alternativeinput and output event orderings

A mixed initiative behaviour that describes alternative input and output event orderings
has the following characteristics:

» The same set of events take place in the aternative sequences. The sequences differ in
their ordering of events.

* A machine and its complementary machine may perceive different input and output
orderings. Asinteractions on an association are sent over a single communication path,
inputs are received in the same order as sent.

» The same behaviour takes place after any of the alternative sequences. Thus the alter-
native sequences lead to a common state.

Alternative event orderings do not require conflict resolution. The main concern during
validation isto ensure that the sequences lead to the same state.

Figure 7.24 illustrates an example where the sequences |ead to distinct states (state “4” or
“B"); we assume these states to be non-equivalent. A machine that sends a signal before
it recelves a signa, is not able to determine the event ordering chosen at the other
machine. For example, when in state “4”, the machine in case (a) cannot determineif the
complementary machine has reached state “4” or “5”. When two machines send signals
to each other simultaneously (signal crossing), none of them isable to determine the event
ordering at the complementary machine, and further behaviour is not predictable. This
ambiguity may be removed by letting the machines exchange some status information.
One machine should coordinate this ambiguity resolution, otherwise new mixed initiative
states are introduced. This approach introduces extra signalling, and any optimisation
benefit gained from letting the machines communicate in any order islost.
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Figure 7.24 : Alternative input and output event orderings. ambiguity.
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D-rule: Input/output event orderings and further behaviour
Alternative input/output event orderings should lead to a common state.

Alternative input/output events orderings may involve more than two events. An example
is shown in Figure 7.25. Notice that the input consistency rule is enforced. When more
than two events are introduced, the state graph becomes complex, and the identification
of orderings cumbersome. We advice therefore to avoid usng multiple event orderings
except in special cases, such as negotiation or error indication, and to limit the number of
events to two in the sequences.
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Figure 7.25: Event ordering: four events.

D-rule: Input/output event orderings and event sequence length
The event sequence in alternative input/output event orderings should not contain more
than two events, i.e. one input and one output.

Note that this design rule does not restrict the number of events sent or recelved in a state
to two. The mixed initiative state may specify several input and output events. Only the
length of sequenceis restricted.

Differently from concurrent behaviours, the dual machine of a machine describing alter-
native event orderings mirror each other. The negotiation phase in the example shown in
Figure 7.21 illustrates this property.
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7.1.3.4 Concurrent behavioursand input/output event ordering

A particular case occurs when a signal specified as input in a mixed initiative state can
also be consumed “normally” in a state following signal sending in the mixed initiative
state. By “normally”, it is meant that the input is not specified in order to enforce input
consistency, but is part of a normal behaviour. This input may either occur first in the
mixed initiative state, or after sending asignal.

Anexampleisshownin Figure 7.26. Thesignal “B” may either be consumed in the mixed
initiative state “1”, or after sending “A” in state “2”. In the complementary machine the
sending of “B” may occur after the consumption of “A”. However, when “B” is received
in the machinein state “2”, we cannot deduce that “B” was sent after “A”; “B” may aso
has been sent by the complementary machine in state “1” meaning that the two machines
have taken conflicting initiatives. We observe that only the complementary machine is
able to detect whether a “normal” behaviour or a conflict has occurred. The machine is
not able to distinguish state “4” from state “7” in the complementary machine. Thisisa
form of ambiguity that is cognate to the ambiguity introduced by equivoque transitions.
A smple way to remove any ambiguity isto define the states“4” and “7” identical. This
corresponds to the case of alternative input/output event orderings. If states“4” and “7”
are kept distinct, they should lead to further behavioursthat are distinguishable. For exam-
ple, distinct signals may be sent in the trangitions from the states “4” and “7” of the
complementary machine. The state “4” of the machine should be able to consume any of

these signals.
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Figure 7.26 : Concurrent behaviours and event ordering.

In this example, the complementary machine can easily detect the occurrence of a con-
flict. In the case where both machines define “normal” behaviours that may be mistaken
for concurrent behaviours, the conflict detection becomes cumbersome. An example is
shown in Figure 7.27. If the machine isin state “4”, and the complementary machine in
state “ 77, none of the machines can deduce immediately that a conflict has occurred. An



188 7 Interface validation

interaction is needed to do so. A simple approach isto define the states “4” and “7” iden-
tical dealing with the case as dternative orderings.
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Figure 7.27 : Concurrent behaviours: ambiguous conflict.

We recommend to avoid specifications that make the detection of conflicts difficult, or the
specification of states following the conflict detection dependent of other states. Mixed
initiatives should either describe concurrent behaviours or aternative orderings.

D-rule: Mixed initiative pur poses
Mixed initiatives should either describe concurrent behaviours or alternative orderings,
not both.

7.1.3.5 EXxit states

A special case of mixed initiative occurs when the successor state of the mixed initiative
after signal sending is an exit node. As an exit state has no successor, the design rule
“mixed initiative and input consistency” cannot be followed.

An exampleisgiven in Figure 7.28. In the case where a mixed initiative takes place, the
signal “A” arriveswhen the machine has stopped. The conflict can be detected inthe com-
plementary machine. Only one choice is open to avoid improper termination: the
complementary machine should terminate. In this example, athough the signal “A” may
be lost, the termination is done properly, and the arole interaction is considered as
consistent’.

In some cases, mixed initiatives may lead to improper termination as shown in
Figure 7.29. In this example, both behaviours lead to exit nodes attached distinct exit
conditions.

1. Our definition of interaction consistency does not encompass the loss of signal.
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Figure 7.28 : Mixed initiative: termination.
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Figure 7.29 : Mixed initiative: improper termination.

V-rule: Mixed initiative and termination
An arole and its complementary a-role involved in a mixed initiative leading to exit
nodes attached distinct exit conditions, may interact inconsistently.

Justification:

As both a-roles are involved in amixed initiative, they may both take initiative to send a
signal. If they take the initiative to send simultaneoudly in the mixed initiative states pre-
ceding the exit nodes, they terminate with inconsistent exit conditions. Such interaction
leads to improper termination: the a-roles do not interact consistently.

Note that it is possible to produce a dual arole for an a-role whose machine contains a
mixed initiative state followed by exit nodes with distinct exit conditions. For example,
the a-roles interact consistently when the complementary a-role is not enabled to take an
initiative in the complement state of the mixed initiative state. In that case the dual a-role
does not provide the full behaviour expected by the a-role.

Although consistent, the kind of behaviour shown in Figure 7.28 is problematic when s-
roles are composed. Signal “A” may be received by an s-role executing after the termina-
tion of the s-role providing the a-role described in case (a). S-roles should be specified
without making too many assumptions about the s-roles they are composed with. Thefol-
lowing design rule contributes to thisaim.
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D-rule: Mixed initiative and termination
A-roles should be designed such that exit states do not directly succeed any mixed initia-
tive state.

7.1.3.6 Specifying adual a-role

After this discussion about the desirable properties of an a-role whose machine contains
mixed initiative states, we now proceed to produce adual a-rolefor such an a-role. Asthe
the full behaviour of the a-role can be covered through interaction between the a-role and
the dual a-role, any mixed initiative behaviour specified in the a-role may occur.

We assume that input, mixed and termination ambiguity have been removed (see
Section 7.1.2.5). We also assume that the design rules defined for mixed initiatives have
been followed. Recall these design rules:

* "Mixed initiative and termination” on Page 190

» "Mixed initiative purposes' on Page 188

» "Mixed initiative and input consistency" on Page 178

» "Mixed initiative and conflict" on Page 182

* "Mixed initiative and signal sending sequences” on Page 184

* "Input/output event orderings and further behaviour" on Page 186

» "Input/output event orderings and event sequence length" on Page 186

V-rule: Event ordering and duality

Thedua a-role of an a-role that

- does not present any input, mixed and termination ambiguity, and

- does not contain any acute t-transitions, and

- does not present any mixed initiative that describes concurrent behaviours, and

- enforces the design rules defined for mixed initiatives,

can be obtained by merging and mirroring.

Theinitial arole and the a-role obtained by this transformation interact consistently pro-
vided that

- they both start execution consistently, i.e. the machines should be entered using consist-
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ent entry conditions, and
- any spontaneous sending can occur.

Justification:

Reasoning is performed on all states, except the mixed initiative states and their succes-
sors, in the same manner as for machines that do not contain mixed initiative states. Each
state is merged/mirrored to a consistent state, and transitions from those states preserve
consistency.

When mirroring mixed initiative states to complement states, we ensure that the states
interact consistently with the complement states when initiatives are not taken ssmultane-
ously by both sides. The states following the mixed initiative states mirror each other and
thus interact consistently.

If initiatives are taken ssmultaneously, the sent signals cross each other:

- Aswe assume that the event sequence length is restricted to two, and as the mixed initi-
atives do not describe any concurrent behaviours, no other signal than the signals sent in
the mixed initiative state and its complement mixed initiative state may cross.

- Inthe initial machine, input consistency ensures that the next state after sending is ena-
bled to consume the crossing signal sent by the other machine.

- Asthe event sequencelength isrestricted to two, any signal that may be sent in the mixed
initiative state may also be sent in the next state after consumption of asignal in amixed
initiative state. When mirrored these transitions enforce input consistency in the comple-
mentary machine: any signal that may be consumed in the complement mixed initiative
state may also be consumed in the next state after sending a signal. Input consistency in
the complementary machine ensuresthat the next stateis enabled to consume any crossing
input.

Thus we can deduce that the machine interact consistently with the complementary
machinein any state following the mixed initiative state. Both orderingslead to acommon
statein the initial machine that is mirrored to acommon complement state. This common
state is either a non-mixed initiative state and is consistent with is complement state, or a
mixed initiative state representing new alternative orderings and the previous reasoning
can be repeated.

V-rule: Mixed initiative and duality

Thedua a-role of an a-role that

- does not present any input, mixed and termination ambiguity, and
- and does not contain any acute t-transitions, and

- enforces the design rules defined for mixed initiatives,



192 7 Interface validation

can be obtained by merging and mirroring all states, except the statesfollowing mixed ini-
tiative states that represent concurrent behaviours. Such states should be transformed as
followed:

- A state following signal sending is transformed to a complement state. Any signal and
transition from the state that do not serve conflict detection are transformed by mirroring.
The consumption of any signal enabling the detection of aconflict inthe a-roleis not mir-
rored. As conflict detection is defined relative to the preceding mixed initiative state,
distinct complement states are generated for states that have severa predecessors.

- A state following signal consumption is transformed to a complement state. Any signal
and transition in that state are transformed by mirroring. The complement state is made
input consistent with its preceding mixed initiative state. The state following the con-
sumption of a signa enabling the detection of a conflict in the complementary arole
mirrors the next state after the detection of the same conflict in theinitial a-role.
Theinitial arole and the a-role obtained by this transformation interact consistently pro-
vided that

- they both start execution consistently, i.e. the machines should be entered using consist-
ent entry conditions, and

- any spontaneous sending can occur.

Justification:

Reasoning is performed on all states, except the mixed initiative states and their succes-
sors, in the same manner as for machines that do not contain mixed initiative states.
Reasoning on mixed initiative states that represent alternative event orderings has been
done above. As we assume that mixed initiative states either describe concurrent behav-
iours or aternative orderings, we just need to reason on concurrent behaviours.

By mirroring mixed initiative states to a complement state, we ensure that the states inter-
act consistently with the complement state when initiatives are not taken simultaneously
by both sides. The statesfollowing the mixed initiative states can a so be shown to interact
consistently in that case:

- If the initiative was taken by the initial a-role, only the complementary a-roleis enabled
to send some signal, this because of the rule "Mixed initiative and signal sending
sequences'. The complementary a-roleisonly enabled to send signal s expected by theini-
tial machine, this because we have restricted mirroring to signals not involved in conflict
detection. Here note the importance of generating distinct successors for distinct mixed
initiatives.

- If the initiative was taken by the complementary a-role, only theinitial a-roleis enabled
to send some signal, this because of the rule "Mixed initiative and signal sending
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sequences'. Asthe statestriggered by signal consumption have been transformed by mir-
roring, the complementary a-role can consume the signals sent by theinitia a-role.

In the case where both a-roles take the initiative to send simultaneously, the signals cross
each other:

- As we assume that no successive signal sendings occur in a concurrent behaviour, only
two signals may cross each other.

- The consumption of these signalsis enforced as both machines follow the input consi t-
ency design rule. The conflict is detected in both machines. As the behaviours occurring
after conflict detection complement each other, the machines interact consistently after
the detection of a conflict.

The transformation described by the rule does not require distinct complement states to
be generated for states succeeding the mixed initiative state after signal consumption. The
generation of distinct states would however ensure that the complement state is not ena-
bled to consume more signals than strictly necessary.

Giventhisvalidation rule, we are able specify an algorithm that generatesa dual a-role for
an a-role containing mixed initiative states. Before the generation of a dual a-role, the
mixed initiative states should be identified, and the machine should be checked against
the design rules defined for mixed initiatives. Algorithm 7.6 performs these operations.
The algorithm considersfirst amixed initiative state as an alternative ordering. If therule
"Mixed initiative purposes’ is not enforced, an error is generated when checking the
ordering sequences. We assume that the graph has been minimized (Algorithm 6.1), and
that merging has been applied in order to remove input, mixed and termination ambiguity.
The algorithm makes use of the notation introduced in Section 6.8.

Algorithm 7.6: Identifying mixed initiative states and checking design rules
main ()

{
[* Assunptions:

- the graph has been m nim zed
*/

/* set of mxed initiative states */
CB = {}; /* conflicting behaviours*/
AO = {}; /* alternative orderings*/

W= {}; /* working set */
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[* start fromall initial states */
for each s, in S,

if sois not in W

identify-m xed-state (s,);

/* design rule: "Mxed initiative and term nation"*/
for each sin AOor CB

check-term nation (s);

[* design rule: "Mxed initiative and i nput consi stency"*/
for each sin AOor CB

check-i nput - consi stency (s);

/* design rules:

"I nput/out put event orderings and further behaviour"

and

"I nput/out put event orderings and event sequence | ength"*/
for each s in AO

check-1/ O orderings (s);

[* design rule:
"Mxed initiative and signal sending sequences" */
for each sin CB

check- sendi ng- sequence (s);

}

identify-m xed-state (s)

{
add s to W

if input-enable (s) is not enpty
and output-enable (s) is not enpty /* mxed state */
for each i in input-enable (s)

n="TF¢(s, 1);

/* seek after event permutation */

if some o in output-enable (s) belongs to enable (n)

add s to AQ /* alternative orderings */
if sis not in AO
add s to CB

for each e in enable (5s)

for each successor n of s /* elenent of T (s, e) */
if nis not inW
identify-m xed-state (n);
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check-term nation (s)
{
for each e in enable (5s)
for each successor n of s /* elenent of T (s, e) */
if n belongs to Sg

report-termnation-error (S);

}

check-i nput - consi stency (s)
{
for each o in output-enable (s)
n=TF(s, 0);
for each i in input-enable (5s)
if I is not in enable (n)
report-input-consistency-error (s, n);

}

check-1/ 0O orderings (s)

{

for each o in output-enable (s)
if enable (T (s, 0)) differs frominput-enable (s)
report-event-ordering-error (s, 0);

for each i in input-enable (5s)
if enable (T (s, 1)) differs from output-enable (s)
report-event-ordering-error (s, i);

for each i in input-enable (s) and o in output-enable (s)
if T(T (s, o), i) differs fromT (T (s, i), 0)
report-further-behaviour-error (s, i, 0);

}

check- sendi ng- sequence (s)

{

for each o in output-enable (s)
if output-enable (T (s, 0)) is not enpty
report-sendi ng- sequence-error (s, T (s, 0));

/* check al so successive consunptions with respect to
the conplenentary a-role */
for each i in input-enable (s)
if input-enable (T (s, 1)) is not enpty
report-consunption-sequence-error (s, T (s, 1));
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Algorithm 7.7 enables one to generate adual a-role of an a-role that does not present any
input, mixed and termination ambiguity, and enforces the design rules defined for mixed
initiatives. It also assumes that the a-role does not contain any acute t-transitions. The
mixed initiative states are identified by applying Algorithm 7.6. A machine that contains
equivoque transitions should be transformed by merging (Algorithm 7.4). Note that a new
complement state is generated for each state following amixed initiative state. Asconflict
detection isrelative to the preceding mixed initiative, this ensures that the proper signals
are transformed by mirroring.

Algorithm 7.7: Generating adua arole
main ()

{
[* Assunptions:
- the graph has been m nim zed
- no input,mxed or termnation anbiguity
- no acute t-transitions
- mxed initiative states have been identified
- mxed initiative rules are enforced
- nmergi ng has been applied
*/
/[* Mxed initiative states represented concurrent
behaviours are stored in CB (Algorithm7.6) */

[* define graph elenents: states and events */
S =S, /* maintain any associ ated condition */
r=1; 0=0

/* set of mrrored or transforned states */
W= {};

/* start fromall initial states */
for each s, in S,

if sois not in W
mrror (Sg);

}

mrror (s)

{
add s to W

for each e in E

define T(s, e) = s, €);
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if sis not in CB
for each successor n of s
if nis not inW
mrror (n);
el se
generate-initiative-successors (S);

}

generate-initiative-successors (S)

{

[* transform states after signal sending */
for each o in output-enable (s)
create new state x; /* add x to S */

set T(s, 0) = x;
for each ein E/* initialise */

define T(x, e) = {};

for each i in input-enable (T(s, 0))
if I is not in enable (s)

set T(x, 1) = T(C T(s, o), 1);

/* transform states after signal consunption */
for each i in input-enable (s)
create new state x; /* add x to S */

set T(s, 1) = Xx;

for each e in E/* initialise */
define T(x, e) = {};

for each o in output-enable (T(s, 1)) /* mrror */
set T(x, 0) = T( T(s, 1), 0);

for each o in output-enable (s) /* input consistency */
set T(x, 0) = T( T(s, 0), 1);

[* proceed in the graph */

for each successor of successor nof s /* T (T(s, e), e) */
if nis not inW
mrror (n);
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7.1.4 Acutert-transtions

Finally after equivoque transitions and mixed initiatives, complexity is added to the a-role
graphs by introducing acute t-transitions. Acute t-transitions often lead to ambiguity, but
not always. The validation rules related to input and mixed ambiguity introduced in
Section 7.1.2.1 apply. It is nhot possible to produce dual a-roles when t-transitions lead to
ambiguity.

This section proposes two kinds of techniques:

* Re-design of the s-roles following design rules that enable remaining t-transitions to
removed from the a-role state graph.

» Transformations that ensure that a dual a-role can be generated even though some 1-
transitions are not removed.

Notice that re-design towards the removal of T-transitions applies to s-roles. As T-transi-
tions in the a-role graphs are obtained by projection of non-visible interactions in the s-
role graphs, their removal require re-design the s-roles.

Acute t-trangitions are t-transitions that have not been removed by gathering from the a
role because their removal would modify the observable behaviour. Recall that we have
proposed two definitions of gathering: strong and weak gathering. Strong gathering main-
tains the machine observable behaviour in any case. Weak gathering only maintains the
observable behaviour provided that the spontaneous transitions can occur. We reconsider
any case of non-gathering in our reasoning. When a t-transition is not removed by strong
gathering, potential errorsthat can be introduced by weak gathering are considered.

T-transitions remain in the graph in the following cases (the cases where T-transitions can
only be removed by weak gathering are marked by *):

1. A signa specified as an input in the T-successor is not specified as input or save inthe
T-predecessor.

2. A signal specified asan input in the T-successor is specified asinput in the t-predeces-
sor, but the T-successor and t-predecessor transit to distinct successor states.

3. A signal specified as an input in the T-successor is specified as save in the t-predeces-
sor, but other inputs are al'so specified in the t-predecr.*
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4. A signal specified as a save in the t-successor is not specified as input* or saveinthe
T-predecessor.

5. A signal specified asasavein the 1-successor is specified asinput in the T-predecessor,
but other inputs are al'so specified in the T-successor.”

6. A signal specified as an input in the T-predecessor is not specified as input in the 1-
SUCCESSO.

7. A signal specified asan input in the T-predecessor is specified as input in the T-succes-
sor, but the T-successor and t-predecessor transit to distinct successor states.

8. A signal specified asasavein the t-predecessor isnot specified asinput* or saveinthe
T-SUCCESSO.

9. A signal specified asasavein the 1-predecessor is specified asinput in the T-successor,
but other inputs are al'so specified in the t-predecr.*

10.When the t-transitions links an exit state with a non-exit state. This case leads to ter-
mination occurrence ambiguity (see Section 6.7.4).

Figure 7.30 to Figure 7.33 and Figure 7.37 illustrate the different cases. We have grouped
cases that may be handled in asimilar way.

Recall that o-states never precede or succeed t-transitions, and thus, save is aways
explicitly specified in 1-successors and 1-predecessors.

7.1.4.1 Re-design towardstheremoval of 1-transitions
7.1.4.1.1 Input consistency

Figure 7.30 illustrates the case (6) where a signal specified as input in a T-predecessor is
not specified asinput in the T-successor. Here an external observer cannot determine when
the machineisenabled to handlethe signal “A”. Thisisaform of input inconsistency. The
machine can be re-designed specifying “A” asinput in the t-successor.

Specifying “A” as save (instead of input) in the T-successor isan alternative approach that
at thefirst glance seems simpler. However astherule " Save consistency" isenforced, “ A”
has to be specified as input in some successor states of state “3”. This may require other
modificationsto be done to the graph. In the case where this alternative using save is cho-
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sen, the t-trangition from state “2” to “3” in Figure 7.30 is only removed by weak
gathering. Gathering may hide a potential deadlock in state“2”. The designer should con-
sider the s-role behaviour projected to that t-transition before applying weak gathering.

We recommend to choose the alternative using input. In this alternative, “A” can be con-
sumed in any state.

T
2
T
add input “A” ( 3 ) ( 4 >
(6)

Figure 7.30 : Acute t-transitions withdrawn through input consistency.

D-rule: t-transitions and input consistency

A signal input should be re-iterated in the successor states of a state where input is spec-
ified, when the transitions to these successors describe non-visible interactions®. The
successor states should then be input consistent with the state where input is specified.

This rule does not set any constraint on the successor state triggered by the added input
and may lead to the case (7) illustrated in Figure 7.33.

It may be possible to produce a consistent complementary a-role of an a-role that does not
follow therule. Thisisthe case when the machine can further proceed without consuming
the signal whose input is not re-iterated. In case (6) in Figure 7.30, the machine may pro-
ceedin state“3” by sending avisible signal. Then, acomplementary machine that ignores
“A” may interact consistently with the machine. Input inconsistency is however a symp-
tom of poor design, and the corresponding s-roles should be re-designed.

The rules "t-trangitions and input consistency” and "Mixed initiative and input consist-
ency" are cognate. In the first rule, successor states are triggered by transitions that
describe non-visibleinteractions. In the second rule, successor statesaretriggered by non-
visible signal's, but do send some visible signal. We propose to define asingle rule:

D-rule: Input consistency
A signal input should be re-iterated in the successor states of a state where input is spec-
ified, when the transitions to these successors are triggered by non-visible signals. The

1. i.e. the transitions are triggered by non-visible signals and do not send any visible signal.
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successor states should then be input consistent with the state where input is specified.

In the following, we assume that s-roles are designed according to the rule "Input
consistency".

7.1.4.1.2 Backward save and input consistencies

Figure 7.31 illustrates the cases (1), (4) and (8) where an external observer cannot deter-
mine when the machine is enabled to handle a received signal. Note that case (8) is an
error case aswe assumethat s-roles are designed according to therule" Save consistency”.
In case (4), the machine can be ssimply re-designed adding “A” as save in the T-predeces-
sor. Adding save enforces backward save consistency. The t-transition from state “1” to
“2" can then be removed by strong gathering.

In case (1), the machine can be re-designed adding “A” as save or input in the T-predeces-
sor. The aternative using save issimple but the T-transition from state “1” to “2” can then
only be removed by weak gathering. The alternative using input usually requires more
complex modifications to be madein the graph. Again the designer should consider the s-
role behaviour projected to that t-transition before applying weak gathering.

)

(or save“A™) add save“A”

(8) saveinconsistency

Figure 7.31 : Acute t-transitions withdrawn through save.

We introduce two design rules "Backward input consistency” and "Backward save con-
sistency". Depending on the s-role behaviour projected to t-transitions, the designer can
select which rule is appropriate. The rule "Backward input consistency" is a safe choice,
but may not be appropriate in some applications. The rule does not set any constraint on
the successor state triggered by the added input and may lead to the case (7) illustrated in
Figure 7.33.

D-rule: Backward input consistency

The consumption of a signal should be specified in the predecessor state(s) of a state in
which the signa is specified as input, when the transitions from these predecessors
describe non-visible interactionst @ P20€ 200 A predecessor state specified according to
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thisrule is said to maintain backward input consistency, or to be backward input consist-
ent with its successor state(s). An s-role specified according to this rule is said to be
backward input consistent.

D-rule: Backwar d save consistency

The saving of a signa should be specified in the predecessor state(s) of a state in which
the signal is specified as input or save, when the transitions from these predecessors
describe non-visible interactions! ©" P29¢200 and when the signal is not specified asinput
in these predecessors. A predecessor state specified according to thisruleis said to main-
tain backward save consistency, or to be backward save consistent with its successor
state(s). An s-role specified according to this rule is said to be backward save consistent.

In some cases, consistent complementary a-roles may be produced for aroles that are
non-backward consistent. Thisistrueif, in each state, backward consistency is supported
for some signals, but not all. However, non- backward consistency is a symptom of poor
design, and the corresponding s-roles should be re-designed.

In the following, we assume that s-roles are designed according to the rules "Backward
input consistency" and "Backward save consistency".

7.1.4.1.3 Ordering

Figure 7.32 illustrates the cases (3), (9) and (5) where an external observer cannot deter-
mine in which order signals are handled. Both machines present an ordering ambiguity.
The t-transitions are neither removed by strong or weak gathering.

In order to limit the complexity of s-roles, we have earlier advised to avoid using save for
modelling alternative orderings (recall the design rule "Save and ordering"). In the case
where ordering is necessary, we advice to design s-roles such that ordering is maintained
by transitions triggered by non-visible signals. In Figure 7.32, the s-roles should be re-
designed such that states“1” and “2” either enforce no orders, or identical orders.

D-rule: t-transitions and ordering
Input orderings enforced using save should be maintained by transitionstriggered by non-
visible signals.

When this rule is applied on the cases of Figure 7.32, signal “A” is either saved in both
states“1” and “2”, or specified asinput in both states.
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(3 and (9) ©)

Figure 7.32 : Acute t-transitions withdrawn through ordering.

In the following, we assume that s-roles are designed according to therule " 7-transitions
and ordering".

7.1.4.2 Removing ambiguities

We assume that the design rules defined in Section 7.1.4.1 have been applied alowing
most cases of acute T-transitions to be removed. The cases (2), (7) and (10) may remain.
These cases are often symptoms of ambiguity. Wefirst present cases (2) and (7). We post-
pone the discussion of case (10) to Section 7.1.4.2.1. This case relates to termination
occurrence ambiguity, aform of ambiguity that has not yet been discussed.

An example of the cases (2) and (7) isillustrated by Figure 7.33. Here the consumption of
“A” leads to divergent behaviours represented by the distinct states “3” and “4”. In the
worst case, the machine presents an input or mixed ambiguity.

We may consider two approaches:

» T-transitionscan be removed by aligning the behaviours occurring in the T-predecessor
and T-successor. In Figure 7.33, this means re-designing the s-role such that state “3”
and “4” are made identical.

* Ambiguities, if any, can be removed in a similar way as proposed in Section 7.1.2.5
and Section 7.1.2.6. When the graph does not contain any ambiguity, but only presents
an output divergence, t-transitions will remain in the graph. Thisis not a symptom of
errors, but of desirable interaction between associations.

We propose to apply the second approach. The second approach islessstrict asit does not
require the re-design of s-roles that do not present any ambiguity.
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(2) and (7)
Figure 7.33: Acute t-transitions leading to divergent behaviours.

As illustrated in Figure 7.34, an acute t-transition case can be transformed to an equiv-
oque transition case by the insertion of a new state and a t-transition. We call this
transformation at-insertion. The two machines behave in asimilar way provided that the
inserted t-transition can occur. This can easily be checked by considering al possible

behaviours.
% " s, GO GO
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(j (3 )+ )
(2 and (7)

Figure 7.34 : t-insertion: transformation to equivoque t-transitions.

Definition: t-insertion

T-insertion is a transformation that applies to states triggered by both t-events and input
events. For each input event, T-insertion inserts a t-transition to a new state triggered by
that input. The input events are saved in the states where T-transitions have been added.

T-rule: T-insertion
After T-insertion, atransition chart exhibits the same observabl e association behaviour as
theinitia transition chart provided that the new inserted t-transition (S) can occur.

Justification:

T-insertion is areverse operation of weak gathering, and thus similarly to weak gathering
maintains the observable association behaviour with the assumption that the t-transition
can occur.

When the a-role graph has been transformed by t-insertion, the identification of ambigu-
ous behaviours can be done applying Algorithm 7.3. S-roles that present input, mixed or
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termination ambiguity should be re-designed. | nput and input ambiguities can be removed
by merging. Termination ambiguity requires a more complex re-design. This was
explained in Section 7.1.2.5. Re-design by merging leads to identical s-roles as when 1-
transitions are removed by aligning the behaviours of the t-predecessor and T-successor.

Anexampleisshownin Figure 7.35. After merging, the states“1” and “2-2n" can be gath-
ered, and thus the t-transition can be removed.

T -insertion

prale E5
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s\<>
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Figure 7.35: Re-design: removing input ambiguity and acute t-transitions.
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When ambiguities have been removed, the graph may still contain T-transitions. These t-
transitions necessarily lead to a divergent output behaviour. Inasimilar way as for equiv-
oque transitions (see Section 7.1.2.3.3), adual a-role can be obtained by mirroring the a
role obtained merging the initial a-role. The t-transitions should be ignored during mir-
roring. They may be removed by gathering before mirroring. An example is shown in
Figure 7.36. Cases (b) and (c) are intermediary machines. Gathering is applied on the
intermediary machine (c) before mirroring. The initial machine and the machine in (d)

interact in a consistent manner. This can easily be checked by considering all possible
behaviours.

T-insertion <T> . mefgSTO Mas{mirrms m
COCL) GO
24 | >r ] >
*( s ) 25 ] )
(o[> [=o[=) (=
( 5 )( 5 ) < 5 )( 5 ) (d) dual machine

(a) initial machine (b) 1st intermediary machine (¢) 2nd intermediary machine

N

o ®

Figure 7.36 : t-insertion, merging, gathering and mirroring.
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7.1.4.2.1 Termination occurrence ambiguity

A termination occurrence ambiguity occurs when an external observer knows that the a
role state machine will terminate, but is not able to determine when. An example is shown
in case (@) of Figure 7.37. The t-trangition here indicates that some interaction is taking
place on other associations before termination.

(a) initial machine (b) dual machine

Figure 7.37 : Acute t-transition and termination occurrence ambiguity.

Asitisausual casethat interactions on the different associations an s-roleisinvolvedin,
do not terminate simultaneously, we do not propose to re-design s-rolesin order to avoid
termination occurrence ambiguity. Such re-design would require a strict ordering of ter-
mination leading to less flexible bindings between s-roles. It would also introduce
supplementary signalling leading to increased traffic load. Instead, we rather propose to
take into account termination occurrence ambiguity when composing roles across actors.
Thiswill be explained in Chapter 8.

Interaction consistency does not require the ssmultaneous termination of two interacting
aroles. We only need to ensure that no signal is sent to an a-role that has terminated, and
that exit conditions are consistent. An a-role that present a termination occurrence ambi-
guity may never terminate. Thisrepresentserrorsin the s-rolefollowing interaction errors
on other associations. Provided that any spontaneous behaviour described by the a-roles
can occur, a-roles terminate even when they present an occurrence ambiguity. A dual a
role can then be specified for an a-role that presents a termination occurrence ambiguity.
The non-exit state node and exit state should be gathered before mirroring. The transfor-
mation is shown in Figure 7.37. In the case of equivoque t-transitions leading to exit
states, the exit states should be merged before gathering and mirroring.
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7.1.4.3 Specifying adual a-role

We are now also able to handle aroles that contain t-transitions. We assume that the
design rules defined for machines containing t-transitions have been followed. Recall
these design rules:

* "Input consistency" on Page 200

» "Backward input consistency” on Page 201
» "Backward save consistency"” on Page 202
» "t-trangtions and ordering" on Page 202

We propose arule that is built upon the rule defined for mixed initiative states. T-transi-
tions are added.

V-rule: Duality

Thedua a-role of an a-role that

- does not present any input, mixed and termination ambiguity, and

- enforces the design rules defined for acute t-transitions, and

- enforces the design rules defined for mixed initiatives,

can be obtained by transforming the a-role chart by t-insertion, and then merging and mir-
roring al states, except the states following mixed initiative states that represent
concurrent behaviours.

Acute t-trangitions leading to an exit state should be removed before mirroring i.e. the
non-exit state and exit state should be replaced by an exit state. Thistransformation should
maintain any exit condition attached to the exit node. In the case of equivoque t-transi-
tions leading to exit states, merging should be applied first.

Other acute T-transitions should be removed before mirroring, i.e stateslinked by at-tran-
sition arereplaced by a single state.

The states that follow mixed initiative states that represent concurrent behaviours, should
be transformed as followed:

- A state following signal sending is transformed to a complement state. Any signal and
transition from the state that do not serve conflict detection are transformed by mirroring.
The consumption of any signal enabling the detection of aconflict inthe a-roleisnot mir-
rored. As conflict detection is defined relative to the preceding mixed initiative state,
distinct complement states are generated for states that have several predecessors.



208 7 Interface validation

- A dtate following signal consumption is transformed to a complement state. Any signal
and transition in that state are transformed by mirroring. The complement state is made
input consistent with its preceding mixed initiative state. The state following the con-
sumption of a signa enabling the detection of a conflict in the complementary arole
mirrors the next state after the detection of the same conflict in theinitial a-role.
Theinitial arole and the a-role obtained by this transformation interact consistently pro-
vided that

- they both start execution consistently, i.e. the machines should be entered using consi st-
ent entry conditions, and

- any spontaneous transition can occur.

Justification:

Thisruleis built upon the rule defined for mixed initiative states. Acute t-transitions are
added. Reasoning can be performed for all states and transitions as previoudy, except for
the states linked by t-transitions.

As the design rules defined for acute T-transitions have been enforced, we know that the
T-successors and t-predecessors linked by t-transitions cannot be gathered because they
defineidentical inputs that lead to distinct states, or because they lead to exit states.

- Let usfirst consider 1-trangitions leading to an exit state. Provided that the t-transition,
a spontaneous transition, can occur, the removal of these t-transitions do not influence the
interaction at termination. When the interaction before thistransition is consistent before
the removal, it is also after the removal.

- Let us consider the other case. Astheinitial machine does not present any mixed ambi-
guity, the t-successors and t-predecessors necessarily define the same sets of input events,
and no output events.

We focus on the transformation of the states linked by t-transitions. After T-insertion and
merging, the states are linked by a single t-transition. This t-transition is removed before
mirroring. The new single state defines the same set of events as the merged T-successor.
Astheinitial machine does not present any mixed ambiguity, this state defines only input
events. This set is also the sets of events defined by the t-successor and T-predecessor in
theinitial machine. The state obtained by mirroring complements the merged t-successor,
and thus defines only output events. Any of these outputs can be received by the initia
machine either before or after the triggering of the t-transition. Thus the mirrored state
interacts consistently with the 1-successor and t-predecessor in the initial machine.

As for states and transitions succeeding the t-transition, the same reasoning as for
machines that do not contain t-transitions apply.
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A simple algorithm can be defined for T-insertion. In that way, acute T-transition cases are
transformed to equivoque t-trangition case. This algorithm should be applied before
Algorithm 7.2. Equivoque t-transitions are then identified as other equivoque transitions
by the algorithm. Then behaviour divergence can be classified using Algorithm 7.3. No
change to the algorithm is required. Merging can be performed using Algorithm 7.4. No
change to the algorithm isrequired. Algorithm 7.7 should be extended such that t-transi-
tions are removed before mirroring.

7.1.5 Summary

In Section 7.1 interface validation has been applied as a constructive method in order to
produce adua consistent a-role from a particular a-role. We have proposed design rules
and algorithms that enable the generation of dual a-roles. The method applies on s-roles
and a-roles independently of any connected roles. As many considerations have to be
taken into account, this section presents a short summary of the validation steps.

Validationisapplied on an a-role transition chart. We assume that the chart has been gath-
ered and minimized as explained in Section 6.3. Minimisation facilitates the identification
of equivoque transitions. The following design and transformation rules are then applied:

1. The state graph is checked against the design rules defined for acute t-transitions. A
list of theserulesis provided in Section 7.1.4.3 on page 207.

2. T-insertion is applied on the state graph before the identification of equivoque transi-
tions (Algorithm 7.2) and the classification of divergent behaviour (Algorithm 7.3).

3. The state graph isre-designed in order to remove any termination ambiguity. See Sec-
tion 7.1.2.5 on page 174.

4. The state graph is re-designed in order to remove any strong or weak input or mixed
ambiguity. This can be achieved by merging. See Section 7.1.2.5 on page 174 and Sec-
tion 7.1.2.6 on page 176.

5. The state graph is checked against the design rules defined for mixed initiative states.
A list of theserulesis provided in Section 7.1.3.6 on page 190. Note that input consist-
ency is aready enforced by design rules defined for acute T-transitions.
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6. When the state graph contains equivoque transitions, merging is applied before gener-
ating a dua arole (Algorithm 7.4). Any non-reachable states and equivalent states
introduced by merging should be removed (Algorithm 7.5). See Section 7.1.2.3 on
page 163.

7. A dual a-role can be obtained by applying avariant of Algorithm 7.7 where the t-tran-
sitionsin non-initial states are removed by gathering before mirroring. Thisalgorithm
takes mixed initiatives into account.
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7.2 Consistency checking

In this section, we discuss the corrective issues of interface validation i.e. the problem of
checking that two a-roles interact consistently. While dua a-roles are specified such that
the full behaviour expected by theinitial a-roles can be covered, we do not, at consistency
checking, constrain two interacting a-roles to explore the full behaviour. Thisis possible
as our definition of interaction consistency does not address non-executable transitions,
i.e. our definition does not require every a-role transition to be executed.

Despite this difference, several of theissuesrelated to the specification of dual a-rolesare
relevant. A-roles (or s-roles) should be defined without making the assumption that inter-
actionswith particular complementary a-rolesmakeit possibleto relax design constraints.
A-roles should not present any ambiguity, and patterns that introduce complexity such as
aternative orderings should be avoided.

For the same reasons as in Section 7.1, we assume that any spontaneous behaviour
described by the a-roles can occur.

Section 7.2.1 introduces partial interaction behaviours and defines the concepts of con-
tainment and obligation. Section 7.2.2 addresses some issues related to entry conditions.
Section 7.2.3 shortly discusses the rules introduced when specifying dual a-rolesin the
context of consistency checking. Algorithms for consistency checking are specified in
Section 7.2.4. Finaly, we address the problem of state space explosionin Section 7.2.4.3.

7.2.1 Containment and obligation

For two s-roles to interact consistently, each s-role should at least provide the a-role
behaviour “required” by its complementary s-role. The provided a-role behaviour should
“contain” the required a-role behaviour [Brak 1999]. Required a-roles can be defined in
different ways leading to different containment relations. An s-role may require the com-
plementary s-role to provide an a-role that enablesthe full interaction behaviour provided
by itsown a-role to be covered, or it may accept the interaction behaviour to be partially
covered. From a consistency checking viewpoint, an s-role should be able to handle any
request received from its complementary s-role. On the other hand, whether or not an s-
role should be able to reply arequest by any alternative answer expected by its comple-
mentary s-role may be discussed. Thisissue isrelated to the concept of contract between
s-roles[Heiler 1995], and is outside the scope of consistency checking. Instead of elabo-
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rating the concept of required aroles, we rather define of containment as a relation
between two interacting a-roles.

Definition: Containment

A containment relation exists between two interacting a-roles when, in each state reached
during the interaction, any arole is able to at least consume any of the signals received
from its complementary a-role. We also say that the input behaviour of each a-role con-
tains the output behaviour of the other a-role.

The definition does not constrain signals to be consumed at once when they are received.
Signals may be saved in the input port. An a-role may be able to consume more signals
than those actually produced by the complementary a-role, hence the name of contain-
ment. The containment relation between a-roles ensures that unspecified signal reception
does not occur.

The containment relation between a-roles is illustrated in Figure 7.38. In state “1”, the
input behaviour of the complementary machine (b) contains the output behaviour of the
machine (a). Conversely in state “2”, the input behaviour of the machine containsthe out-
put behaviour of the complementary machine. In that case, although the sequence
behaviour (“B”, “D”) never occurs, the machines interact consistently. The events that
never occur during the interaction are represented by adash line.

)

(a) machine (b) complementary machine

Figure 7.38 : Containment.

In this example, each interaction step leadsto atransition to a new state in both machines.
The states of the machines can easily be associated, and the containment relation can eas-
ily be checked. The introduction of save increases the complexity of containment
checking. The state of amachinethat savesasignal remains unchanged, and thus machine
states cannot always be easily associated. An exampleis shown in Figure 7.39. When the
machine (a) sendsthesignal “A”, it trangitsto state“2”. On the other hand, the state of the
complementary machine (b) remains unchanged. Later, in state “2a’ the complementary
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machine retrieves the saved signal “A” from the input port and transit to state “3”. The
state of the machine (@) remains unchanged.
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(a) machine (b) complementary machine

Figure 7.39 : Containment and save.

The containment rel ation between a-roles does not ensure that the a-roles interact consi st-
ently inal cases. If, at some point of the interaction, none of the interacting a-rolesisable
to send a signal and the input ports of both machines are empty, a deadlock occurs.
Another constraint, that we call obligation, has to be set on the a-roles.

Definition: Obligation

An obligation relation exists between two interacting a-roles when, at each interaction
step where the input ports of the a-role machines are empty, at least one of the interacting
aroles can send asignal.

The obligation relation between a-roles ensures that deadlocks do not occur following the
aroleswaiting endlesdy for each other. When all received signals have been consumed,
one of the a-roles should be able to send asignal.

A designer should especially observe that the obligation relation is enforced in the case of
mixed initiatives. Figure 7.40 describes the containment and obligation relations of a
mixed initiative case. In state “1”, only one of the machines, machine (a), takes the initi-
ative to send. Note that the machine is specified to handle a mixed initiative, and thusis
input consistent. A genera ruleisthat machines should be specified making the assump-
tion that their complementary machines provide a full behaviour. Here the machine (@) is
designed without taking into account that the complementary machine never sends “B”
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(a) machine (b) complementary machine

Figure 7.40 : Containment and obligation.

Both the containment and obligation relations between a-roles ensure that improper ter-
mination does not occur. Assume that one of the a-roles terminates. The other a-roleis
either still active or terminates. In the caseit isactive, it is only enabled to retrieve saved
signals from the input port, if any. Then it should terminate. The active a-role cannot send
any signal, otherwisethe containment would not be enforced. When all saved signalshave
been consumed, the active a-role cannot wait for any signal, otherwise the obligation rela-
tion would not be enforced. Thus the two a-roles necessarily terminate in a coordinated
manner. As any exchanged signal can be consumed, the a-roles necessarily agree on the
exit condition.

V-rule: Containment and obligation
Two aroles interact consistently if and only if they are related by both containment and
obligation.

Justification:

Containment ensures that unspecified signal reception does not occur. Obligation ensures
that deadlock does not occur. Containment and obligation ensure that improper termina-
tion does not occur. Thustogether the two relations between a-roles ensure that the a-roles
interact consistently.

Conversdly, if two a-rolesinteract consistently, any signal received from the complemen-
tary a-role can be consumed. Thisleads to containment. No deadlock occurs, and thus at
least one a-role is able to send when the input ports are empty. Thisleads to obligation.

In order to check that two a-roles interact consistently, we propose to check that they are
related by containment and obligation. As afollowing of containment, this meansthat we
do not require the full behaviour described by the a-roles to be covered.
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7.2.2 Entry conditions

During the generation of dual a-roles, the entry conditions of theinitial a-role have been
transformed to identical entry conditions in the complementary a-role. All the validation
rules have assumed that machines are entered using consistent entry conditions. At con-
sistency checking, we do not require that each entry condition in one arole can be
associated with a consistent entry condition in the complementary a-role. One reason is
that we do not constrain a-roles to explore the full behaviour described by their graphs.
Thus some entriesin agraph may never be used during interaction. Another reason isthat
we have introduced entry conditionsin order to enable different forms of s-roletriggering
(see Chapter 3) and to facilitate sequential composition (see Section 4.1). Different forms
of triggering may be applied in two interacting actors using different entry conditions.

At consistency checking, wewill mark in the graph the entriesthat have no matching con-
sistent entry in the complementary graph. These entries should only be used in implicit
triggering. We will also ensure that there exit at least two consistent entries in the inter-
acting a-roles.

7.2.3 Reviewing rules and assumptions

Following the containment relation, we do not require two interacting a-roles to be able
to execute the complete behaviour specified by their transition charts. Some of the transi-
tions in the charts may never execute. These transitions may be ignored at consistency
checking (i.e. in the corrective validation approach), and in some cases this means that
design rules defined in the constructive validation approach can be relaxed.

In the example shown in Figure 7.40, the consumption of “B” in state“1” can beignored,
and the input consistency constraint set on the machine (a) may be relaxed. In a similar
way, an input ambiguity introduced by non-executable equivoque transitions may be
ignored.

We recommend a-rolesto be designed assuming afull behaviour coverage, evenif wecan
identify, at consistency checking, that some behaviour is not executed. In that way, a-roles
are able to interact with complementary a-roles that either provide partial or full behav-
iours. A-roles should be defined such that it is possible to generate dual aroles. The
designrulesintroducedin Section 7.1yield for any part of the a-roletransition graph inde-
pendently of a particular interaction the a-role is involved in. A-roles should not present
any input or mixed ambiguity, and they should be input consistent.
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Furthermore, we also recommend a-rolesto be designed such that analysing their interac-
tions with other aroles is facilitated. The rules that lead to reduced complexity in the
constructive method also reduce the complexity of consistency checking. For example,
sending signal sequences in mixed initiative states should be avoided. A list of the rules
isgivenin Section 7.1.5 on page 209.

D-rule: A-roleand consistency checking
A-roles should be designed independently of any particular interaction they are involved
in. They should be designed assuming that their full behaviour is to be executed.

7.2.4 Algorithms

In this section we define two algorithms that support the consistency checking of two
interacting a-roles. Thefirst agorithm, Algorithm 7.8, assumesthat the save featureis not
used in the a-role state graphs. This assumption simplifies the analysis and enables us to
first introduce the basic elements of consistency checking. Save is added in
Algorithm 7.9.

Both agorithms assume that the design rules defined in Section 7.1 have been applied.
The a-role state graphs do not present any ambiguity and conflicts are properly handled
after mixed initiative states. Also thedesign rulesrelated to mixed initiatives and ordering
are enforced facilitating the analysis of the graphs.

The algorithms are performed on merged machines. This enables us to handle output
divergence. Given the assumptions made on the machines, we know that the merged
machines exhibit the same observable behaviour astheinitial machines when the merged
states define identical save sets, and o-states are maintained. In that case, we can deduce
that the initial machines interact properly, when the merged machines do. In the case
where some of the merged states define distinct save sets, the machines present save ambi-
guity and the ambiguous save should not be exploited. Thus merging removes a
superfluous behaviour. If the merged machines that reduce the reception behaviour of the
initial machines interact consistently (without save), the initial machines also do. Note
that as afollowing of merging, any event triggers asingle transition.

Following the design rules related to acute t-transitions and the assumptions on ambigu-
ity, it is possible to remove any remaining t-transition from the graph after merging.
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7.24.1 Simple checking: no save

Algorithm 7.8 checksthat any signal sent by an a-roleis properly handled by the comple-
mentary arole. The state graphs are analysed in a depth-first manner. States that have
been analysed are stored in aworking set so that analysisis not repeated. Note that pairs
of states, not single states, are stored in that set. Each pair of states consists in a state of
the machine and a state of the complementary machine Following containment, astate in
amachine may interact with several statesin the complementary machine. Any reachable
state combination needs to be checked.

Algorithm 7.8: Consistency checking (no save signals)
main ()

{
[* Assunptions:
- no save signals
- the graphs have been mnim zed
- no input,mxed or termnation anbiguity
- mxed initiative states have been identified
- mxed initiative rules are enforced
- T-insertion and nergi ng has been applied
on both graphs, and t-transition introduced
by t-insertion gathered.
- T-transitions before exit states have been
gat her ed.
- no acute T-transitions.
*/

/[* The two state machines are represented by sets
indexed by 1 and 2, e.g. S; and S, */

/[* Mxed initiative states represented concurrent
behavi ours are stored in CB; and CB, (Algorithm 7.6) */

/* set of checked pairs of states e.g. (Sj1,Sij2)*/
W= {};

/* check entry conditions */
for each si5in S

if cois not an entry condition for any s,, in Sy,
report-warning (no conplenentary entry condition);

for each sy, in Sy,
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if cois not an entry condition for any s 1N S
report-warning (no conplenentary entry condition);

[* start fromall initial states */
entry flag = fal se;
for each si5in S

get consistent s,,in Sy,

entry flag = true;

if (S10 +Sp) 1S not in W

/[* initial states are triggered by € */

if (T(S10 ,» €, T(Sp €)) is not inW

check-consistency (T(s15 ,€), T(Sy, ,€))

if entry flag = fal se
report-error (inconsistent entry conditions);

check-consi stency (s,t)

{
add (s,t) to W

/* exit states */
if enable(s) or enable(t) is enpty
check-exit-consistency(s, t)

/* non-exit states */
el se
if enable(s) is included in O /* only output events*/
check-s-out put (s,t)
el se
if enable(s) is included in I, /* only input events */
check-s-input (s,t)
else /* mxed state */
check-s-m xed (s,t)

check-exit-consistency (s,t) /* s ort: exit state */
{
if enable(s) is not enpty
report-error-inconsistent-termnation (s,t);
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return;

el se
if non-consistent exit conditions
report-error-inconsistent-termnation (s,t);
return;

check-s-output (s,t) /* s: only output events */
{

/* interacting state triggered by an output event */
if some e in enable(t) belongs to O

report-inconsistent-state (s,t);

/* no contai nnent */
if enable(s) is not included in enable(t)
report-inconsistent-state (s,t);

/* check next states */
for each e in enable(s)
if e belongs to enable(t)
if (T(s, e), T(t, €) is not in W
check-consistency (T(s, e), T(t, e))

check-s-input (s,t) /* s: only input events */
{
/* mssing obligation */
if enable (t) is included in I,
report-inconsistent-state (s, t);

/* no contai nnent */
if output-enable (t) is not included in enable(s)
report-inconsistent-state (s, t);

/* check next states */
for each e in output-enable (t)
if e belongs to enabl e(s)
if (T(s, €, T(t, e)) is not in W
check-consistency (T(s, €), T(t, e))
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check-s-mxed (s, t) /* s: mxed initiative state */
{
/* no contai nnent */
if output-enable (s) is not included in enable(t)
report-inconsistent-state (s, t);

/* no contai nnent */
if output-enable (t) is not included in enable(s)
report-inconsistent-state (s,t);

/[* t: mxed initiative state */
if output-enable (t) is not enpty
if s belongs to CB; /* concurrent behaviour */
if t does not belong to CB, /* purpose m smatch */
report-inconsistent-m xed-state (s,t);
if s does not belong to CB; /* ordering */
if t belongs to CB, /* purpose m smatch */
report-inconsistent-m xed-state (s,t);

/* check next states */
for each e in output-enable(s)
if e belongs to enable (t)
if (T(s, e), T(t, €)) is not in W
check-consistency (T(s, e), T(t, e))

for each e in output-enable(t)
if e belongs to enable (s)
if (T(s, €, T(t, e)) is not in W
check-consistency (T(s, €), T(t, e))

/* check conflict resolution */
if s belongs to CB; and t bel ongs to CB,

for each e in output-enable(s)
for each f in output-enable(t)
if e belongs to enable (t) and T belongs to enable (5s)

if ( T(T(s,e),T), T(T(t,f),e) ) is not in W
check-consistency ( T(T(s,e),f), T(T(t,f),e) )
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7.2.4.2 Adding save

Algorithm 7.9 takesinto account the save feature. The algorithm is built in asimilar way
as Algorithm 7.8 with the addition of a save queue. Unlike in the previous agorithm, the
interacting machines do not necessarily transit to a new state simultaneoudly. The state of
amachine that saves asignal remains unchanged.

When entering a new state, the presence of a signal in the save queue that can be con-
sumed leads to two kinds of behaviour:

» |fthenew stateisonly triggered by input signals, thefirst saved signal isretrieved from
the save queue and the machine transits to a new successor state. The state of the com-
plementary machine remains unchanged.

» |f the new state can be triggered by output signals, the first saved signal may either be
retrieved, or an output may be sent spontaneously. Thus only one of the machine tran-
sits to anew state, or both do.

Since the state of the save queue, i.e. its content, influences the behaviour of a machine,
the state of the save queue has to be taken into account during checking. A pair of inter-
acting states is considered as checked, when the states together with save queues in
identical states have aready been checked. In Algorithm 7.9, the working set is extended
to aset of tuples describing apair of states and their associated save queues. The addition
of save increases the number of global states to be consistency-checked. As the analysis
restricts to one association, the number of signalsin the save queue normally remains|ow.
A high number of saved signalsis a symptom of bad design.

The save queue of a machine should be empty on exit. This check is performed by
Algorithm 7.9.

The combination of save and mixed initiatives increases the complexity of conflict reso-
lution. An example is shown in Figure 7.41. The mixed initiative state can save signd
“C”. Supposethat “C” hasbeen saved in the predecessor of state“1”. A conflict following
the crossing of signals“A” and “B” is not detected immediately in state “2”. As“C” is
stored before“B” in the input port, the conflict detection takes placein state “5”. We rec-
ommend to avoid such behaviour specifications. “C” should either be consumed before
entering state “1” or saving should be re-iterated in state “2”.
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Figure 7.41 : Save and mixed initiative state (1).
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A special case occurs when a new save event, i.e. a save that is not re-iterated from the
predecessor state, is described in the mixed initiative state. An example is shown in
Figure 7.42. Thesignal “C” isfirst saved in“1”. Thus, after sending “ C”, the complemen-
tary machine expects the events occurring in “1” to appear. The reception of “A” in state
“3a’ isanormal case. Onthe other hand, the reception of “A” in state “3” indicates acon-
flict following the crossing of “A” and “B” . Notethat according to the design rule "Mixed
initiative and signal sending sequences’, the signal “B” should not be sent in state “3a’
Furthermore, according to the design rule "Mixed initiative purposes’, mixed initiatives
should either describe concurrent behaviours or alternative orderings, not both.
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Figure 7.42 : Save and mixed initiative state (2).

In addition to the design rules related to mixed initiatives already introduced, we propose
anew rule that facilitates consistency checking.

D-rule: Mixed initiative and save
A signal specified as save in a mixed initiative state should be specified as save in any
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successor state triggered by an output from the mixed initiative state.

In Algorithm 7.9, we assume that this design rule has been enforced.

Algorithm 7.9: Consistency checking
main ()

{

[* Assunptions:
- the graphs have been mnim zed
- no input,mxed or termnation anbiguity
- mxed initiative states have been identified

- mxed initiative rules are enforced - including the

re-iteration of save after output.

- T-insertion and nergi ng has been applied
on both graphs, and t-transition introduced
by t-insertion gathered.

- T-transitions before exit states have been
gat her ed.

- no acute t-transitions.

*/

/[* The two state machi nes are represented by sets
indexed by 1 and 2, e.g. S; and S, */

/[* Mxed initiative states represented concurrent
behaviours are stored in CB; and CB, (Algorithm7.6) */

/* set of checked tuples of states and save queues
e.g. (Sj1, Ki, Sj2, Kg)*/
W= {};

/* check entry conditions */
for each si5in S

if cois not an entry condition for any s,, in Sy,
report-warning (no conplenentary entry condition);

for each sy, in Sy,
if cois not an entry condition for any s;, in S,
report-warning (no conplenentary entry condition);

/* start fromall initial states */
entry flag = fal se;

223
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for each si5in S
get consistent s,,in Sy,
entry flag = true;
if (S10 Ko Spg +Kg) 1S not in W/* K, enpty queue */
/[* initial states are triggered by € */
if (T(S10 ,€),Ko, T(S20 8 ,Kp) is not in W
check-consistency (T(S1o ,€),Kg T(Sog +€),Kp):

if entry flag = fal se
report-error (inconsistent entry conditions);

}

check-consi stency (S, Ky, t, Ky)
/* K1 and Kk, are the machi ne save queues */

{
add (s, Ki,t, Ky) to W

/* exit states */
if enable(s) or enable(t) is enpty
check-exit-consistency(s, Ky, t, Kj);

/* non-exit states */

el se
if enable(s) is included in O /* only output events*/
check-s-output (s, Kq,t, Kj);

el se
if enable(s) is included in |4 /* only input */
check-s-input (s, Ky, t, Kp);

else /* mxed state */
check-s-mxed (s, Ky, t, Kp);

check-exit-consistency (s, K;,t, Ky) /* s ort: exit state */

{

/* both states are exit states */

if enabl e(s) and enabl e(t) are enpty
if Kg or Ky i's not enpty
report-error-save-termnation (s, Ky, t, Kjp);
i f non-consistent exit conditions
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report-error-inconsistent-termnation(s, Kp,t, Kp);

/* s. not an exit state */
else if enable(s) is not enpty
/* s sends to exit state t */
i f output-enable(s) is not enpty
report-error-inconsistent-termnation (s, Kq,t,Ky);
el se
/* retrieve signals from save queue */
if Ky is not enpty
if some event e in Kq belongs to input-enable (s)
nk; = get (Kq, €);
if (T(s, e), nKky, t, Kp) is not inW
check-consistency (T(s, €), nKy, t, Kjp);
el se
report-error-save-termnation (s, Kjp, t,Kjy);

/[* t: not an exit state */
else if enable(t) is not enpty
/* t sends to exit state s */
if output-enable(t) is not enpty
report-error-inconsistent-term nation(s, Ky, t, Kj);
el se
/* retrieve signals fromsave queue */
if K, is not enpty
if some event e in Ky, belongs to input-enable (t)
nky = get (Ky, e);
if (s, Ki, T(s, e), nky) is not in W
check-consi stency (s, Ki, T(S, €), nKj);
el se
report-error-save-termnation (s,Kq, t,Ky);

check-s-output (s,kKq,t,Ko) /* s: only output events */

{

/* s: check save consistency */

if Ky is not enpty
if some event e in kK; does not belong to save(s)
report-save-inconsistency (s, Kj);
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/[* t defines only output */
if enable(t) is included in G,

/[* t: check save consistency */

if K, is not enpty
if some event e in K, does not belong to save(t)
report-save-inconsistency (t,Kj);

[* t: signals sent by s can be saved */
for each e in output-enable(s)
if e belong to save(t)
Nk, = add (K,, €);
if (T(s, e), Kq, t, nKy) is not in W
check-consistency (T(s, €), Ki, t, nKj);
el se
report-inconsistent-state (T(s, €), Kp, t, nkKp);

/[* s: signals sent by t can be saved */
for each e in output-enable(t)
if e belong to save(s)
nK; = add (K, €);
if (s, nky, T(t, €), Ky) is not in W
check-consistency (s, nky, T(t, e), Ky);
el se
report-inconsistent-state (s, nkq, T(t, e), Ky);

[* t defines only input */
else if enable(t) is included in I,
/* retrieve saved signal if any */
if some event e in Ky, belongs to input-enable(t)
nky = get (Ky, e);
if (s, ki, T(t, e), nky) is not in W
check-consi stency (s, Ki, T(t, e), nK,);

/* no saved signal retreived */
el se
/* no contai nnent */
if enable(s) is not included
in union ( enable(t), save (t) )
report-inconsistent-state (s, Ki,t, Ky);

for each e in enable(s)
if e belongs to enable(t)
if (T(s, e), Ky, T(t, €, Ky) is not in W
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check-consistency (T(s, e), kg, T(t, €), Ky);
if e belongs to save(t)
Nk, = add (Kp, e€);
if (T(s, e), Ky, t, nKy) is not in W
check-consistency (T(s, e), Kq, t, nKp);

/[* t is a mxed state */
el se
/* should not happen as s is not able to handle
the crossing of signals.
*/
report-inconsistent-state (s,Kq,t,Ky);

check-s-input (s,Ky;,t,Ky) /* s: only input events */
{

[* t defines only input */

if enable (t) is included in I,

/* check for deadl ock */
if kK, and k, are enpty
report-inconsistent-state (s, ki, t, Kp);

/* retrieve saved signal if any */
el se
if no event e in Ky belongs to input-enable (s) and

no event e in Ky, belongs to input-enable (t)
report-inconsistent-state (s, Ky, t, Kjp);

if some event e in k; belongs to input-enable (s)
Nk, = get (K, €);

if (T(s, e), nky,t, Ky) is not in W
check-consistency (T(s, €), nKq, t, Ko);

if some event e in K, belongs to input-enable (t)
Nk, = get (K, €);

if (s, Ky, T(t, €), nky) is not in W
check-consistency (s, Ky, T(t, €), nKp);
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/[* t defines only output */
else if enable (t) is included in G,

if Ko 1S not enpty
if some event e in K, does not belong to save(t)
report-save-inconsi stency (t, Ky);

/[* s: retrieve saved signal if any */

if some event e in kK; belongs to input-enable (s)
Nk, = get (K, €);
if (T(s, e), nky, t, Ky) is not in W
check-consistency (T(s, e), nKy, t, Ky);

/* s: no saved signal retreived */
el se
/* no contai nnent */
if output-enable (t) is not included
in union ( enable(s), save (s) )
report-inconsistent-state (s, Ky, t, Kjp);

/[* s: signals sent by t are consuned or saved */
for each e in output-enable (t)
if e belongs to enabl e(s)
if (T(s, €), Ky, T(t, €), Ky) isnot in W
check-consistency (T(s, €), Ki, T(t, e), Kj);
if e belongs to save(s)
Nk, = add (Kq, €);
if (s, nky, T(t, e), Ky) is not inW
check-consi stency (s, nkq, T(t, €), Kjp);

/[* t is a mxed state */
el se

/[* s: retrieve saved signal if any */

if some event e in k; belongs to input-enable (s)
nK; = get (kKq, €); /* extract signal from queue */
if (T(s, e), nky, t, Ky) is not in W
check-consistency (T(s, e), nKy, t, Ky);

/* s: no saved signal retrieved */

el se

/[* t: check re-iteration of save */

if some event e in K, does not belong to save(t)
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report-save-inconsi stency (t, Ky);

/* no contai nnent */
if output-enable (t) is not included
in union ( enable(s), save (s) )
report-inconsistent-state (s, ki, t, Kp);

for each e in output-enable (t)
if e belongs to enabl e(s)
if (T(s, e), Kg, T(t, e), Ky) is not in W
check-consistency (T(s, e), kg, T(t, e), Ky);
if e belongs to save(s)
Nk, = add (Kq, €);
if (s, nky, T(t, €), Ky) is not inW
check-consi stency (s, nkq, T(t, €), Kjp);

check-s-mxed (s,Ky,t,Ky) /* s: mxed initiative state */
{
/* check re-iteration of save */
if Ky is not enpty
if some event e in kK; does not belong to save(s)
report-save-inconsistency (s, Kq);

[* t defines only input */
if enable (t) is included in I,

/[* t: retrieve saved signal if any */

if some event e in Ky, belongs to input-enable (t)
Nk, = get (Ky, €);

if (s, ki, T(t, e), nky) is not in W
check-consi stency (s, Ki, T(t, e), nKp);

/[* t: no saved signal retreived */

el se

/* no contai nnent */

if output-enable (s) is not included in enable(t)
report-inconsistent-state (s, Ky, t, Kp);

for each e in output-enable (s)
if e belongs to enable(t)

if (T(s, e), Kq, T(t, €, Ky) is not in W
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check-consistency (T(s, e), kg, T(t, €), Ky);
if e belongs to save(t)
Nk, = add (Kp, e€);
if (T(s, e), K, t, NKy) is not in W
check-consistency (T(s, €e), Kq,t, nKy);

/[* t defines only output */
else if enable (t) is included in I,

/* should not happen as t is not able to handle
the crossing of signals.

*/

report-inconsistent-state (s, Ky, t,Ky);

/[* t is a mxed state */
el se

[* t: check re-iteration of save */
if some event e in kK, does not belong to save(t)

report-save-inconsistency (t, Kj);

/* no contai nnent */
if output-enable (s) is not included in enable(t)
report-inconsistent-state (s, ki, t, Kp);

/* no contai nnent */
if output-enable (t) is not included in enable(s)
report-inconsistent-state (s, Ky, t, Kjp);

/* check purposes of mxed initiative */
if s belongs to CB; /* concurrent behaviour */

if t does not belong to CB,
report-inconsistent-m xed-state (s, Ky, t, Kjp);

if s does not belong to CB; /* ordering */

if t belongs to CB,
report-inconsistent-mxed-state (s, Ky, t, Ky);

for each e in output-enable(s)
if e belongs to enable (t)
if (T(s, e), Ky, T(t, €, Ky) is not in W
check-consistency (T(s, e), kg, T(t, €), Ky);

for each e in output-enable(t)
if e belongs to enable (5s)
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if (T(s, e), Kq, T(t, €, Ky) isnot in W
check-consistency (T(s, e), Ky, T(t, €), Kj);

/* check conflict resolution */
if s belongs to CB; and t bel ongs to CB,

for each e in output-enable(s)
for each f in output-enable(t)
if e belongs to enable (t) and f belongs to enable (5s)

if ( T(T(s, e),7), Ky, T(T(t,f),e), Ky) is not in W
check-consistency ( T(T(s, e),T), Ky, T(T(t,f),e), Ky);

7.2.4.3 Working space size

The introduction of the save feature prevents us from using a ssmple technique like mir-
roring for consistency checking. At the first glance, Algorithm 7.9 may appear complex.
However, even though several different cases have to be considered, the working set gen-
erated by the algorithm, i.e. the set of tuples of states and associated save queues, remains
small. As opposed to algorithms used for the generation of global state graphs in reacha-
bility analysis, our algorithm does not require alarge working space.

Recall that the main problem to be addressed in reachability analysisisthat of state space
explosion problem. The complexity of global state graph grows rapidly with the number
of states of the constituting state machines. The number of states is often too large for
exhaustive analysis. Consider the following example inspired from [Holzman 1991].

- A protocol isimplemented by two state machines having each 100 states and 1 message
gueue. The queues are restricted to 5 dots each, and the number of messages exchanged
is10. Each processcan bein 102 different states, so the two processescanbein 10% states.
Each queue may hold between 0 and 5 messages, where each message is 1 out of 10. The
total number of statesin theworst caseis

10%. ( Zj=05 10'

In the worst case, the number of statesis in the order of 10 different states. Hopefully
the number of effectively reachable states is much smaller than this worst-case number.
But still it remainshigh for small protocols, from 10° to 10 accordi ng to [Holzman 1991].
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In our approach, the number of states in the machines to be analysed is normally low:

» Theanaysisis performed on projection of s-roles, not on s-roles. In the case where an
sroleisinvolved in 3 associations, we may assume that 1/3rd of the s-role states are
dedicated to the interaction on each association. Thus, the number of statesin each pro-
jection is approximately 1/3rd of the number of statesin the s-role.

» Theanalysisis performed on elementary s-roles, e.g. the phases of a protocol. In the
case an s-roleiscomposed of three elementary s-roles, the number of states of each ele-
mentary s-role is approximately 1/3rd of the number of states in the composite s-role.

The number of states in each machine to be analysed is then approximately be reduced
with afactor of about 10, and in the global state space with afactor of 102,

The number of statesin the global state space can be reduced even more when the size of
the message queue is decreased. This is possible in our approach where Algorithm 7.9
does not make use of a message queue, but of a save queue. The design rules "Mixed ini-
tiative and signal sending sequences' and "Input/output event orderings and event
sequence length" contribute to simplifying the analysis:

» Following the rules related to mixed initiatives states, each machine is designed input
consistently, and the potential combinations of signal crossing are also kept low. The
purposes of the mixed initiatives are clearly identified, and conflict resolution, if any,
handled. Thisenablesusto check each branch following amixed initiative state against
a single branch in the complementary graph. No message queue is needed to perform
the analysis.

As the analysis restricts to one association, the number of signals in the save queue nor-
mally remains low. The design rules related to event ordering also contribute to limit the
number of slots in the save queue. We may reduce this number to 2, and then reduce the
total number of statesin the worst case with afactor of 10°.

Following these two reductions, the number of statesin the global spacein the worst case
isin the order of 10° different statesinstead of 101%. The number of effectively reachable
states is in fact much smaller. Both merging and the design rules related to mixed initia
tives states contribute to that reduction:

» Asexplained above, each branch following a mixed initiative state is checked against
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a single branch in the complementary graph

» Asthemachines are merged before Algorithm 7.9 isapplied, the machines do not con-
tain any equivoque transitions. A branch in the graph that would be checked against
severa branchesin the complementary graph before merging, can be checked against
asingle branch after merging.

Asevery branch in one state graph can be checked against a single branch in the comple-
mentary graph, we have not to consider the product of states of the two machines. If each
machine can be in 10 different states, the two can be in 20 different states. The introduc-
tion of the save queue of 2 dlots increases the number of statesin the global space with a
factor of 10*. Asthe desi gn rules "Save and ordering" and "Ordering with save and con-
currency" constrain the use of save, signalsare normally saved in afew states of the graph
reducing even more the number of statesin the global space. Actually, the save queue of
2 dotsis agenerous assumption. One sot should hold in most cases.

7.3 Accuracy of the validation results

A main advantage of the approach is that the techniques that are proposed, can be easly
understood. However, although these techniques are simple, they enable us to identify
severa anomalous behaviours. Simplification is achieved by emphasising the details sig-
nificant for the purpose of validation of the interfaces, and hiding other details. In that
way, the designer isableto comprehend single interfaces. Simplification, however, causes
some shortcomings that are discussed in this section.

7.3.1 Overgspecification

Decisions and signals on non-visible associations are hidden by projection. The projection
of an s-role may produce a non-deterministic a-role behaviour, and non-determinism may
lead to ambiguity. We fail to produce dual a-roles for a-roles that present ambiguity, and
have proposed the re-design of s-roles.

In some cases, however, decisions and signals on non-visible associations are observable
from complementary s-roles. Decisions are observable when there exist dependencies
between decisions across s-roles. Signals on non-visible associ ations are observable when
there exist dependencies between interactions on distinct associations.
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An example is shown in Figure 7.43. The collaboration sequence between three s-roles
“R1”, “R2 and “R3” describes two alternative behaviours. “R1” sends either signal “X”
or “Y” to both “R2 and “R3". In the first case, the s-role “R2” further expects the signal
“B” from “R3". In the second case, “R2” further expects the signal “C” from “R3". The
interactions between “R1” and “R2”, and between “R1” and “R3” are dependent, and fur-
ther govern the interaction between “R2” and “R3”.

The state machine of the s-role “R2” as seen from “R3” is also described in Figure 7.43.
By projection, the signals“X” and “Y” are hidden. Seen from “R3”, the a-role presentsan
input ambiguity. According to our design rules, the s-role “R2” should be re-designed. In
any case after “A”, the s-role should be prepared to both receive “B” and “C”. Further-
more, backward consistency should be enforced, and the state “2” should be able to save
“B” and “C”. After re-design, the s-role “R2” is overspecified.
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Figure 7.43 : Dependent and consistent interactions on distinct associations.

Asillustrated by thisexample, the projection may hide dependencies between interactions
on distinct associations, and lead to overspecification of the s-role graphs. The s-role
graphs become more complex. Overspecification is however harmless with respect to
consistency. It enforces the designer to produce robust specifications.

The projection transformation can be extended so that important dependencies between s-
roles can be maintained in the a-role graph. Theintroduction of a new projection transfor-
mation does not require changes to be made to the other validation techniques. In the
previous example, dependenciesbetween“X” and“B”,and“Y” and“C” can betakeninto
account such that the projected a-role defines a new state “2” that can both receive “B”
and “C”. The description of a new projection transformation is left for further work.
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7.3.2 Second order errors

An important assumption in the validation of aroles is that each a-role provides the
expected behaviour. We assume that spontaneous sending derived by projection from the
consumption of non-visible signals can occur. As the interactions on other associations
have been validated, we expect them to behave consistently and to not lead to any error.

The assumption is erroneous when applied on spontaneous t-transitions, and may hide
deadlocks resulting from dependencies between s-roles. An example is shown in
Figure 7.44.
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Figure 7.44 : Dependent and inconsistent interactions on distinct associations.

In the example on Figure 7.44, a “request-answer” pattern is applied between three s-
roles. A machine cannot proceed before a request has been answered. The interactions
between “R1”, “R2” and “R3” are inconsistent and lead to deadlock. A symptom of the
deadlock can be found in the a-role graphs, but not its cause. Seen from “R3”, the a-role
derived from therole graph of “R1” contains T-transitions. A way to remove the t-transi-
tion between the states “2” and “3” is to enforce backward input consistency, and apply
gathering. However, here, the request sent by “R1” should first be answered in state “2”,
before“R1” further proceeds and handles itself the request received from “R3”. Another
way to remove the t-transition in that case is to enforce backward save consistency, and
apply weak gathering. Weak gathering only maintains the observable behaviour provided
that spontaneous transitions can occur. Here applying weak gathering would hide the
deadlock error.
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The projection of s-roleslead to graphsthat may contain acute t-transitions. Acute T-tran-
sitions are symptoms of errors. Without the knowledge of the behaviour occurring on
other associations, we are not always able to handle properly the t-transitions. Their
removal may lead to second order errors. Backward save consistency and weak gathering
should be applied with care.

7.4 Summary

In this chapter, we have proposed an approach to interface validation. The approach
encompasses a constructive method for the specification of dual interfaces, and a correc-
tive method for consistency checking.

Dual a-roles can be specified provided that initial a-roles do not present any strong input,
mixed or termination ambiguity. When afull interaction behaviour is desirable, theinitia
aroles should support input consistency. Design rules have also been proposed that
reduce the complexity of the a-role descriptions and facilitate the specification of dua
roles. The design rules are simple and can easily be enforced by the designer manually or
with some design tool support. Mirroring and merging are the main techniques proposed
for the generation of dual roles.

At consistency checking, we require the a-roles to enforce the design rules introduced in
the constructive method. No assumption about the complementary a-roles are made. In
that way, a-roles are not dependent on a particular behaviour of their complementary a-
roles, and these complementary a-roles may easily be changed. The introduction of the
save feature forces usto introduce a consistency checking algorithm that is cognate to the
algorithms used for the generation of global state graphs. However our algorithm differs
from those algorithms in that it does not use any message queue, but a save queue. Both
merging and the design rules applied on s-roles and a-roles contribute to s mplify the anal-
ysis and to maintain the number of statesin the global state low.

The proposed validation approach has the following properties:

» Ambiguous and conflicting behaviours that lead to errors can be identified at design
time, before the validation analysis itself. The design rules enable the designer to
develop well-formed state machines.

» Validation is performed on state machine types - not instances. In that way, it can be
applied to the analysis of systems bound at run-time, and suits the needs of composi-
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tional systems.

» Theremoval of acutet-transitionssimplifiestheanalyss, and al so enablesthe designer
to comprehend single interfaces.

* When a component is replaced or added in a system, the analysis restrict to the com-
ponents of the system that interact with that new component. Other parts of the system
are not affected.

» Moadifications of the s-role that only have impact on one interface, do not require the
analysisto be repeated on al interfaces, but only to the modified interface.

While using projections ssmplify the validation analysis, it may lead to overspecification.
The identification of second order errors requires more knowledge than what is described
by the specification of single interfaces.
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8
Composition validation

The purpose of composition validation isto ensure that service roles are consistently com-
posed across actors. While Chapter 7 has addressed the validation of elementary s-roles,
this chapter addresses the validation of composite s-roles. Assuming that the s-roles being
composed interact consistently, we discuss how composition can be applied across actors
so that the composite s-roles also interact consistently.

As the sequential composition of s-roles is modelled using identical mechanisms as the
modelling of elementary s-roles, the techniques developed for the validation of elemen-
tary s-roles apply to s-roles composed sequentially. Concurrent composition introduces
new associations that are validated separately, also using the techniques of interface vali-
dation. The dynamic creation of s-roles requires new techniques.

8.1 Sequential collaboration composition

In this section, we assume that the identical form of composition, sequential composition,
is applied to the elementary s-roles in the interacting actors. In that case we say that the
elementary collaborations the actors contribute to, are composed sequentially. We first
discuss basic sequential composition. Then complexity is added by introducing guards,
choices and disabling.

As illustrated in Figure 8.1, different patterns of sequential collaboration composition
may be introduced depending on whether the actors involved in the composite collabora-
tion participate in any of the collaborations being composed or not. The notation
introduced in Chapter 2 is used to represent actors, s-roles and a-roles. In addition,
sequential composition is represented by an arrow that indicates the order of execution.

In case (a) of Figure 8.1, the composite collaboration consists of two collaborations com-
posed sequentially. The two collaborationsinvolve the same three actors that respectively

- 239 -
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first play thes-roles“A”, “B” and“C”, thenthe s-roles“D”, “E” and “F’. Case (b) differs
from (a) in that one of the actorsisnot involved in the first phase of the composite collab-
oration. Case (c) is a variant of case (b). It illustrates that an actor may be involved at
different phases of a composite collaboration.

G
(Dt Ep—dF)| | (Do Epi—dF)

@ (b)

Figure 8.1 : Sequential collaboration composition.

In asimilar way as for interface validation, we consider the composite s-roles from the
different associations they interact on. In that way, we also reason on projections at the
composite level. In case (a) of Figure 8.1, the transition from “B” to “E” will be observed
from two viewpoints: from the actor playing the composite s-role “A” followed by “D”,
and from the actor playing “C” followed by “F”".

We assume that the s-roles contributing to the elementary collaborations interact consist-
ently. In case (@) of Figure 8.1, “A” and “B” interact consistently aswell as“B” and “C”.
So do their successors “D” and “E”, and “E” and “F”. According to interface validation,
we know that elementary s-roles execute consistently until they terminate, provided that
they start executing in a coordinated way. Inconsistency will then be introduced by com-
position if some transition from an s-role to its successor leads to a non-coordinated start
of execution of the s-roles. Two kinds of non-coordinated start may be happen:

* Interacting s-roles are entered through non-consistent entry conditions.

* Interacting s-roles do not start executing simultaneously. In that case, a signal may be
sent to a complementary s-role that has not yet started, leading to unspecified signa
reception.

We first discuss the second case, i.e. “non-simultaneous start”. The case of “non-consist-
ent entry conditions’ is especialy of interest in a composition with choice, where the
instantiation of an s-role may depend on some condition. This case is discussed in
Section 8.1.4.



8.1 Sequentia collaboration composition 241

8.1.1 Non-simultaneous execution start

As s-roles are composed sequentially, s-roles start execution when their predecessorster-
minate. Thus non-simultaneous execution start occurs when the predecessor s-roles, if
any, do not terminate simultaneoudly. In Figure 8.2, the s-role “B” continues to interact
with “A” after the interaction between “B” and “C” has terminated. Seen from “C”, this
is atermination occurrence ambiguity. In that case, the s-role “C” and its successor “F’
are not able to observe the termination of “B”.

/
X
/ termination of “B” seen from “C”
/ 1 (termination occurrence ambiguity)
\ /
X
\ / -
; -
‘
“F” cannot observethe
O . termination of “B”

Figure 8.2 : Sequential composition and termination occurrence ambiguity.

termination of “B” seen from “A”

X \
\
\
) ~
O

Cases of non-simultaneous execution start also occur when the interacting actors are
involved in different phases of the composite collaboration. An s-role may not have any
predecessor, or its predecessor may not be involved in the previous phase of in the com-
posite collaboration. Both cases are illustrated in Figure 8.1. In (b), the s-role“F’ has no
predecessor, and cannot determine when the s-role“B” terminates. In (c), the predecessor
of “F” does not interact with “E”, the predecessor of “H”, and then “F’ cannot determine
when “H” starts. From a projection viewpoint, “E” is hidden from the composite s-role
“C” followed by “F".

The problem of unspecified signal reception caused by non-simultaneous execution start
can be handled in two ways:

» Constraints may be set on the composition of s-roles. S-roles should be composed so
that no signal is sent to an s-role that has not yet started. An s-role that cannot observe
the termination of the predecessor of its complementary s-role should not take the ini-
tiative to send a signal. We refer to this approach using the term “constraint based
approach” throughout this section.

» Signasthat may be received before the start of execution of an s-role should be han-
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dled at the enclosing composite s-role level. The signals should be saved so that they
can be retrieved from the input port when the s-role the signal is addressed to, starts.
We refer to thisapproach using theterm “ save based approach” throughout this section.

Figure 8.3 and Figure 8.4 present some cases of composition and give an introduction to
the constraints of compositi ont. The composite s-role, “A” followed by “D”, and the ter-
mination of “A” and the start of “D” are expanded.

In Figure 8.3, the projection of “A” does not present any termination occurrence ambigu-
ity. A complementary a-role can then observe the termination of “A” and the start of
execution of “D”. A complementary a-role may then taketheinitiativeto sendto“A”. The
composition shown in case (@) is consistent. In case (b) however, we cannot determine if
the composition is applied consistently without considering the termination of the com-
plementary of “A”.

no termination occurrence ambiguity

/ /
/ X>/ \/ *
/

/
e (A ) _ -

e y %
D:rD

o-0 \ o0

the complementary srole \ I:—“L:> the complementary sroleof “A”

\ -€— cantake ~—— should not present any

\ theinitiativeto send \ termination occurrence ambiguity
(D) D

@ (b)

Figure 8.3 : Constraints and sequential composition (1).

InFigure 8.4, the projection of “A” presents atermination occurrence ambiguity. The case
(a) shows a symptom of error. As a complementary a-role cannot determine the start of
execution of “D”, it should not send any signal. In case (b), similarly to the previous fig-
ure, the termination of the complementary of “A” needs to be considered.

Note that the transition between “A” and “D” in those figures occurs at once (before any
signal isretrieved in theinput port) when“A” hasterminated. This behaviour differsfrom

1. Inthe figures of this chapter, the modelling convention proposed for s-roles in Chapter 3 is followed: al
referencesto s roles are shown as instances of composite state types.
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termination occurrence ambiguity

/ T / T

o-0

the complementary s-role of “A”
-&—— should not present any

\ (gL} termination occurr ence ambiguity
\ z

(b)
Figure 8.4 . Constraints and sequential composition (2).

a spontaneous transition behaviour (t-transition) where signals may be retrieved from the
input port before the spontaneous transition is triggered.

The graph of the composite s-role remains simple when a constraint based approach is
used. It is not necessary to specify any information related to the interaction of the ele-
mentary s-roles at the composite level. However this solution is not always applicable. It
requires that at least one of the interacting s-roles is able to observe the start of its com-
plementary. Otherwise none of them is enabled to send and a deadlock occurs. An
exampleis shown in Figure 8.5. Neither “B” nor “C” can observe the termination of each
other. Thus neither “E” nor “F” should take the initiative to send to each other.

/
), & O, e
\ /o T /
\ / SN /
< \ / - \ / S
~ <
. (e
should not _> 4— should not
start sendingto“F” start sending to “E”

Figure 8.5: Sequential composition and deadlock.

Another drawback of aconstraint based approachisthat it preventsusfrom designing ele-
mentary s-roles independently from the s-rolesthey are composed with, and the way they
are composed. Ideally no assumption should be made about the context of execution start,
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because assumptions make service adaptation difficult. A change in an s-role that influ-
ences the observation of itstermination on one association, should not have impact on the
design of the successor s-roles, or on the design of the complementary s-roles on that
association.

Contrary to the constraint based approach, the save based approach introduces some com-
plexity in the graph of the composite s-roles, but service adaptation remains flexible.
Figure 8.6 presents an example where signal reception is handled at the composite level.
Here the occurrence of the termination of “A” cannot be observed by acomplementary s-
role. In order to ensure that no signal sent to “D” isreceived and discarded before the start
of “D”, thesignalsreceivedintheinitial state of “D”, here“M”, are saved at the composite
level in the state before “D”.

add save“M”

Figure 8.6 : Save and sequential composition.

This approach using save is a kind of backward save consistency (see Section 7.1.4.1.2).
The occurrence of the termination of “A” is not observable, and the transitions between
the end of interaction with “A” and the start of the s-role “D” isanon-visible behaviour.
By specifying save, backward save consistency is enforced at the composite level.

Another form of non-visible behaviour is introduced when an elementary s-role is not
observable by the complementary composite s-role. In that case, save can also be used to
enforce backward consistency at the composite level. Two examples are shown in
Figure 8.7. The srole “E” is not observable from the composite s-role that sends“M” to
“H”. The sender of “M” then cannot observe the start of “H”. In order to ensure that the
signal is not received and discarded before the start of “H”, the signal is saved at the com-
posite level. In case (a), the termination of “B” is observable, and the signal “M” needs
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only to be saved during the execution of “E”. In case (b), the termination of “B” is not
observable, and the signal “M” isalso savedin “B”.

/
/ (x )
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/ / %
B:rB — B:rB -

/L — l -

non- observable VPN /:%
srole — P o ErrE ., N ErE B

(b)
Figure 8.7 . Backward save consistency and sequential composition.

Observe that any signal specified as save in the initial state(s) of the elementary s-roles
should be handled in a similar way as signals being consumed. Backward save consist-
ency also appliesto signals specified as save.

D-rule: Backwar d save consistency and composite s-roles

A signal specified asinput or savein theinitial state of an s-role being composed sequen-
tially should be saved at the composite level in the predecessor s-role (s) of this s-role
when the predecessor s-role does not describe any visible interacti ont, or when it presents
atermination occurrence ambiguity according to the association from which the signal is
sent. Saving should be re-iterated backward at the composite level for the predecessor s-
roles until an s-role that describes an observable termination is reached. A composite s-
role specified according to thisrule is said to be backward save consistent.

Justification:
When this design rule is applied, unspecified signal reception due to non-simultaneous
execution start does not occur.

1. i.e. thetransitions of this s-role are triggered by non-visible signals and do not send any visible signal.
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The rule applies locally on the composite s-role. No assumption about the termination of
the complementary elementary s-roles needs to be done. For example, in case (b) of
Figure 8.3 on page 242, therole“D” can send asignal without taking into account whether
the predecessor of its complementary presents a termination occurrence ambiguity or not.
Furthermore, extensions of the complementary s-role that modify the occurrence of ter-
mination, have no impact on the design of “D”.

A designer may prefer to redesign the elementary s-roles and the composite s-role so that
no termination occurrence ambiguity and no non-observable s-role behaviour occur
before the reception of a signal in a starting s-role. Redesign along these lines is not
aways possible. Backward save consistency is.

In the following, we assume that composite s-roles are designed according to the design
rule "Backward save consistency and composite s-roles’.

8.1.2 Implicit and explicit triggering

Recall that three patterns of s-roles assgnment or triggering have been introduced in
Chapter 3. These triggering patterns are also shown in Figure 8.8:

» Spontaneoustriggering: an s-roleisinstantiated as part of alogical sequence of actions
of an actor.

» Implicit triggering: triggering is requested by another actor, and expressed by a stimu-
lus defined as part of the collaboration to be started and of the s-role to be assigned.

» Explicit triggering: triggering is requested by another actor, and expressed by a stimu-
lus defined explicitly for triggering purposes. This stimulus specifies the s-role to be
played.

The results of Section 8.1.1 restrict to the first form of triggering. In this section, we
extend these results to implicit and explicit triggering. Although these triggering patterns
usually apply in the case of sequential composition with choice (see Section 8.1.6), we
first consider them in basic sequential composition.

Again, we assume that the elementary s-rolesinteract consistently. Inconsistency can then
be introduced in the transition between s-roles. If we assume that s-roles are composed
sequentially with no disabling (see Section 8.1.7), a predecessor s-role in a sequence
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Figure8.8: Sroletriggering patterns.

should terminate before its successor is triggered. The triggering signal should not force
the termination of the predecessor s-role, i.ethetriggering signal should not be consumed
before the predecessor s-role has terminated its execution. In the case the sender of the
triggering signal cannot observe the termination of the predecessor, backward save con-
sistency should be enforced. Asthe input and save of asignal cannot be both specified in
astate, we propose to insert anew non-composite state at the composite level that handles
the reception of the triggering signal. Two examples are shown in Figure 8.9. The projec-
tion of the termination of “A” isconsidered from the association where“M” issent in case
(a), and from the association where “Play” is sent in case (b).

// // *
S K .
(A:rA)//, : S
[ Py |

add new staI_e» idle ) add new state

add save“M”

\ D:rD

(a) implicit triggering (b) explicit triggering

Figure 8.9 : Triggering and ter mination occurrence ambiguity.
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D-rule: Triggering and consistency

A non-composite state that handles the reception of theimplicit or explicit triggering Sig-
nal should be inserted in the composite s-role graph between the triggered s-role and its
predecessor, when the predecessor s-role does not describe any visible interacti onl, or
when it presents a termination occurrence ambiguity according to the association from
which thetriggering signalsare sent. The saving of triggering signals should bere-iterated
backward at the composite level for the predecessor s-roles until an s-role that describes
an observable termination is reached.

This design rule describes an extended backward save consistency. It ensures that signals
are saved as in backward save consistency, but also that they do not force termination.

In the following, we assume that composite s-roles are designed according to the design
rule "Triggering and consistency".

Note that when implicit triggering is used, the triggered s-role is entered through an entry
point. The operations performed in the composite s-role graph on the consumption of the
triggering signal should be consistent with the operations that are performed when the
triggering signal is consumed after entering the elementary s-role.

8.1.3 Granularity

In the previous examples, the same s-role granularity is enforced across actors, i.e. an s
rolein one actor interacts with asingle s-rolein another actor. This assumption on similar
granularity is acceptable as we have proposed to consider services and service features as
collaborations between roles. A roleisjustified by a collaboration.

Thekind of collaboration pattern shown in Figure 8.10, or more complex patterns, areleft
to further work. In Figure 8.10, we may choose to expand the composite s-role “B fol-
lowed by C”, or consider two distinct associations from“A” to “B” and from“A” to “C”.

In the following, we assume that the same s-role granularity is enforced across actors.

1. i.e. thetransitions of this s-role are triggered by non-visible signals and do not send any visible signal.
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Figure 8.10: Srole granularity across actors.

8.1.4 Checkingentry consistency

Inconsistency may be introduced when interacting s-roles are entered through non-con-
sistent entry conditions. This section gives guidelines for checking the consistency of
entry conditions.

During interface validation, consistent entries between interacting a-roles have been iden-
tified. The entriesthat have no matching consistent entriesin the complementary graph(s)
are also marked. These marked entries should never be used in spontaneous or explicit
triggering.

When interacting s-roles are triggered spontaneoudly or explicitly, we simply verify that
the entry conditions of s-roles are consistent. Recall the extension introduced in SDL that
enables us to express entry conditions as OR-logical expressions (Section 6.3.3.1.1 on
page 121). Using that extension, the expression “cl or ¢2” isallowed, and consistent with
“cl”. The default entry covers any condition except those explicitly defined in the s-role.
Thus the default entry in one s-role may be consistent with the named entry condition of
an other s-role.

When implicit triggering is used, the triggered s-role should always be entered through an
entry condition that refersto the point that follows the reception of thissignal inthe s-role
graph. It is not that entry condition which is used when checking the consistency of the
entry conditions between interacting s-role; it is the entry condition attached to the ele-
mentary s-role before the reception of the triggering signal that is used. For example, in
Figure 8.9 (a), itisnot theentry condition “M” that is used, but the default entry condition
in the graph, as the default entry precedes the reception of the triggering signa “M”.
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8.1.5 Guards

Guards have been proposed in Section 4.1.1 that prefix (or guard) the transition to a new
s-role. Again, inconsistency may be introduced in the transition between s-roles. Severd
kinds of errors may occur:

» Theguard forcesthe predecessor s-roleto terminate before it has reached an exit node.
To avoid such improper termination (seen from the analysis point of view), a non-com-
posite state should be inserted in the graph of the composite s-role before the guard is
specified. In Figure 8.11, the non-composite state “idle” isinserted before the guard.

. ArA >
. insert a
W > non-composite state
| > ide )
may forcethe —><cond>

—

premature termination of A < >
cond
D:rD >

D:rD

Figure 8.11 : Termination and guarded sequential composition.

* A complementary s-roletakestheinitiativeto send before the guard becomestrue. This
may happen when the condition expressed by the guard is not taken into account by the
complementary s-role or isnon-observablefromthiss-role. It can be avoided by apply-
ing backward save consistency asillustrated in Figure 8.12.
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Figure 8.12 . Backward save consistency and guarded sequential composition.
» The guard never becomes true.The value of a guard may depend on operations that

have already occurred in the collaboration, on operations being performed by the inter-
acting sroles that have not yet terminated, or on operations performed in
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collaborations performing concurrently. The identification of these operations and
their tracing during interaction may be complex. Techniques for the abstraction of var-
iables that contribute to the ssimplification of the analysis are proposed in [Boroday and
a. 2002]. In our approach we do not further elaborate on these techniques for checking
that guards behave correctly. Werather adviseto restrict the use of guards to conditions
that can be easily checked. The conditions may describe alocal event, e.g. the release
of alocal resource, or global event, e.g. the termination of some s-role contributing to
the collaboration. In the case where complex conditions need to be expressed, we pro-
pose to use timers for the detection of deadlocks. Thisisillustrated by Figure 8.13.

T

guard-time,

error detection

guard-time] Error >

D:rD )

Figure 8.13: Deadlock detection in guarded sequential composition.

D-rule: Guards and composite s-roles

The preconditions expressed by a guard in sequential composition should relate to local
or global conditionsthat can easily be checked. A non-composite state should be inserted
in the composite s-role graph between the guarded s-role and its predecessor when a pre-
condition can become true before the termination of the predecessor. Timers that enable
the detection of deadlocks should be specified in the case where the validation analysis
failsto ensure that deadlocks do not occur.

Observe that conditions that relate to the termination of an s-role are checked using the
techniques proposed for interface validation.

8.1.5.1 Synchronisation guards

Guards may be used as a mean to synchronise the transition to new s-roles across actors.
Guards are specified as continuous signal s and describe global conditions. The conditions
expressed by the guards usualy relate to the termination of the complementary s-roles.
Thisisillustrated in Figure 8.14.
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B has A has
terminated erminated

Figure 8.14 : Guards and synchronisation across actors.

Using synchronisation guards, none of the s-roles start sending before its complementary
has started, and the specification of save in the composite graph can be avoided. Thusthe
composite graph is ssimplified. Notice that, however, backward save consistency is still
maintained in Figure 8.14. The conditions expressed by the guards are observable from
the complementary s-roles, and can be considered as a visible interaction. Of course,
guards should not force any s-role termination, and a non-composite state should possibly
be inserted in the graph.

Avoiding save through synchronisation guards is not always possible. When a condition
expressed by a guard is not observable, using save is needed. An example is shown in
Figure 8.15. Here, “D” starts when “B” (and “A”) has (have) terminated. “D” may not
however be able to determine when “E” starts. This is the case when the s-role cannot
observe the composite s-role “C followed by F’. Using save may be required in the com-
posite s-role “B followed by E”. Thisisanormal case of backward save consistency.

A and C h, B has
termi nated erminat

non-observable
condition from “A->D"

Figure 8.15: Non-observable conditions and synchronisation across actors.

In this example, the condition “C has terminated” may implicitly be observed when “A”
interacts with “C”, or explicitly observed when the guard in the composite s-role “A fol-
lowed by D” is extended to include the termination of “C” (i.e. the guard is specified as
“A and C have terminated”). We advise that guards explicitly describe the condition of
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synchronisation. This facilitates the understanding of service models, their reuse and
extension.

Synchronisation guards contribute to ssimplify the composite s-role graph in the case
where a few s-roles are involved in the elementary collaborations. The specification of
save in the composite graph can be avoided. When severa s-roles are involved, the com-
plexity of thisform of synchronisation increases. A drawback with the solution is that the
addition of new s-roles in the collaboration may require modifications to be done to
guardsin severa composite s-roles. In that way, the solution is not flexible enough for the
purposes of service adaptation in adynamic context. Backward save consistency isamore
robust approach.

8.1.6 Choices

Using choice, aternative s-roles can be specified in a sequential composite s-role. Guards
and signals are used to control the selection of an s-role among aternative s-roles. The
same kinds of errors as described for basic and guarded sequential compositions may
occur, and can be avoided using identical solutions. In addition to these errors, the con-
sistency of the selection of behaviours across actors must be ensured.

Optionally, choiceisapplied in order to enter asingle s-role through alternative entry con-
ditions. This case can be treated in a similar way as the selection of one s-role among
severa s-roles.

Choiceis not necessarily enforced in every actor participating into the composite collab-
oration. Two composition patterns are shown in Figure 8.16. In case (a), distinct s-roles
are chosen in every actor at the end of the first elementary collaboration. While in (b),
choiceisonly applied in two of thethree actors. Inthat case, thes-role“F’ should interact
consistently with both “E1” and “E2”. “E1” and “E2” may provide identical or distinct a-
rolesto “F".

Again, asin the case of basic sequential composition, we assume the s-roles contributing
to the elementary collaborations interact consistently. Whilein basic sequential composi-
tion it is straightforward to identify the s-rolesthat an s-role interact with, and to perform
the consistency checks, choice introduces some difficulty. In each actor, the composite
roleis described as graph of elementary s-roles, and each elementary s-role may possibly
interact with several other elementary s-roles in each other actor. In case (@) of
Figure 8.16, the s-role “D1” may interact with the two successors of “B”, “E1” and “E2”.
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@ (b)
Figure8.16: Choice in collaboration composition.

The successors of “D1” may themselves interact with the successors of “E1” and “E2”".
Of course, we wish to reduce to number of consistency checks to be performed on ele-
mentary s-roles.

We assume that each s-role selected after a choice within an s-role interacts with asingle
s-role in another actor and that the interacting s-role pairs can be easily identified. This
assumption is acceptable as s-roles belong to collaborations. It is a collaboration rather
than an s-role that is selected in a choice. Behaviour overlap between collaborations is
however possible, as described as in case (b) of Figure 8.16.

We aso assume that the guards controlling the selection in choice represent abstract
states, and that the values of guards can be easily compared across actors. This means that
guards across actors should represent the same abstract states or closely related states. For
example, guards may represent global termination conditions, e.g. “success’ and “fail-
ure’, in a collaboration. This assumption is acceptable as the composite s-roles link
together elementary behaviours. We do not need to express detailed information in the
graph of acomposite s-role as we do in the graph of an elementary s-role.

Recall that two main mechanisms have been proposed for the selection of srolesin a
choice:

» The selection of abehaviour is controlled by guards expressed as predicates over con-
ditions. The initiative to select an s-role in a choice is taken locally. Of course, the
conditions may relate to aglobal event. Conditions are represented in SDL using exit
conditions or continuous signals, as shown in Figure 8.17.

» The selection of abehaviour istriggered by asignal, as shown in Figure 8.18. Theini-
tiative to select an dternative s-role is then taken externally.
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Figure 8.17 : Choice using predicates over conditions.

Figure 8.18 : Choiceusing triggering signals.

Different selection mechanisms may be applied in interacting actors. An example is
shown in Figure 8.19.

Asidentical concepts are used to model choice and to model e ementary s-roles, the same
kinds of anomal ous behaviours may occur:

» Theconditionsthat control the selection of an s-role may be non-observable from some
interacting s-role. The projection of the composite s-role on the association with that
actor contains equivoque s-role transitions, and a behaviour ambiguity may occur.
Ambiguity can be avoided when the s-roles the equivoque transitions lead to, take the
initiativeto send asignal in their initial state; the s-roles should send distinct signalsin
this case. When choiceis applied in the interacting s-role, the selection of a behaviour
can be triggered by these signals. This approach is illustrated in Figure 8.19. Another
solution isto define signalsthat explicitly describe the choice (i.e. as part of amanage-
ment s-role). This solution introduces complexity inthe graph of the composite s-roles,
but does not set any constraint on the modelling of s-roles.

» The sgnalsthat control the selection of an s-role are sent by distinct s-roles. The pro-
jections of the composite s-role on the two associations towards these s-roles contain
amixed initiative state, and a conflict may occur. Input consistency should be enforced
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at the composite level, and conflict resolved in asimilar way asin elementary s-roles.
This case illustrated in Figure 8.20 which shows a general solution to conflict resolu-
tion. Other solutions may be proposed.

ArA

< condl N < cond2 > €—— non-obser vable

choice
(Derlj\ (D2rD2 \
~

(b) complementary s-role

output divergence
(no ambiguity)

(a) composite s-role (projection)

Figure 8.19 : Choice: equivoque s-roletransitions.

input consistency input consistency

conflict detection

_ —

D1 D2
with history with history

Figure 8.20 : Choice: input consistency and conflict resolution.

conflict resolution

D-rule: Ambiguity and composite s-roles

Ambiguity may occur when a choice made in a composite s-role is not observable by
some of the interacting s-roles. Ambiguity can be avoided by the sending of triggering
signals.

D-rule: Conflict and composite s-roles
Conflict may occur when the selection of abehaviour in acomposite s-roleistriggered by
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concurrent s-roles. By enforcing input consistency at the composite level, deadlock can
be avoided and conflict detected. Conflict resolution can be provided in asimilar way as
for elementary s-roles.

In addition to these anomalous behaviours, non-consistent behaviours may be selected
across actors. The consistency of guards should be checked. We have assumed that guards
represent abstract states, and that guards values can be easily compared across actors. It
should also be straightforward to check that a selection triggered by signals sent by an
actor is consistent with the selection done in that actor.

Similarly to guarded composition, none of the conditions controlling a selection may
become true. The design rule "Guards and composite s-roles" also appliesin choice, and
timers can be defined in order to detect deadlocks.

8.1.7 Disabling

Recall that disabling has been defined as a permanent interruption of acurrently executing
srole. The disabled s-roleisforced to complete its execution. Disabling should be distin-
guished from suspension where interruption is temporary. By inhibiting the execution of
an s-role, disabling also inhibitsthe normal execution of acollaboration. Disabling should
only be applied to handle error cases. An example is shown in Figure 8.21.

Figure 8.21 : Disabling using a priority signal.

We have proposed to describe disabling using a priority signal, i.e. a signa that is
retrieved from the input port before any other signals in the queue. In that way disabling
occurs immediately. The exit procedure of the disabled s-role, if any, is executed. Some
important termination operations may be performed, but no signal can be consumed from
the input port when executing this procedure. Neither isit possible to describe the empty-
ing of the input port in SDL. Note that as s-roles execute asynchronoudly, the disabled s-
role may also be addressed signals after the execution of the exit procedure. We cannot
then ensure that the input port is empty when entering the disabling s-role.
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The discarding of the signals addressed to the disabled s-rol el may be handled in the dis-
abling s-role, or at the composite level. As disabling s-roles usually handle general error
cases, their behaviour should not depend on the disabled s-roles. The specification of sig-
nal discarding in the composite s-role increases the complexity of the graph of this s-role.
When discarding has occurred, the discarding of the signals addressed to the disabled state
is normally not critical. Therefore we propose, as an exception, to tolerate the consump-
tion of those signals not to be described after disabling. This is aform of inconsistency
that wetolerate.

When an s-role is disabled, it should inform the s-rolesit interacts with. Usually these s-
roleswill also be disabled. The termination of s-roles and release of resources should be
properly handled across actors. A collaboration that aims to handle disabling should be
described. This collaboration is critical, and its consistency should be carefully checked.
A smple collaboration pattern is proposed in Figure 8.22.

_inform

msc Disabling |~ aSsociated s-roles
do not wait for A B C -
answer to requestza 1 1 =
~ Request-a — Disable _
~ Disthy Dissble [@———  _ discard
isable 47, 1 — — -
- [ = —
L I I

Figure 8.22 : Disabling all s-roles.

8.2 Concurrent collaboration composition

In this section, we assume the identical form of composition, concurrent composition, is
applied to the elementary s-rolesin the interacting actors. In that case we say that the ele-
mentary collaborations the actors contribute to, are composed concurrently. Asillustrated
in Figure 8.23, different patterns of collaboration composition may be introduced.

The concurrent s-roles may execute more or less dependently. In case (@) of Figure 8.23,
the s-roles “A” and “C” are dependent. The coordination between these s-roles is mod-
elled as an interaction on an association. On the other hand, the s-roles“B” and “D” are
independent. Case (b) is quite similar to (a). The independent s-roles “B” and “D” are
assigned to distinct actors. From a validation viewpoint, the two cases areidentical in that
the interaction on each association is validated separately. In case (c), thes-role“A” inter-

1.i.e. thesignalsinthe s-role valid input list.
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acts with two independent s-roles “B” and “D” that are composed concurrently. The
interactions between“A” and “B” and “A” and “D” are modelled using two distinct asso-
ciations. The interaction on each association is validated separately.

O :
oo (op <o)
@ (b) ©
Figure 8.23: Concurrent collaboration composition (1).

In the examples, concurrent collaboration composition introduces new associations that
are validated separately. In that way, no new mechanism is needed in the validation
analysis.

Complexity isadded when the composed s-roles are dependent. Dependencies between s-
rolesareillustrated in Figure 8.24. In (a), the s-roles“A” and “C” are dependent, as well
as“B” and“D”. A deadlock may beintroduced when the concurrent s-roles“A” and “C”,
share some resource, the concurrent s-roles“B” and “D” also do so, and the allocation of
the resource is not coordinated across the actors. Case (b) isasimplification of (a) where
two concurrent s-roles are replaced by asingle s-role.

@) : @)

@ (b)
Figure 8.24 : Concurrent collaboration composition (2).

The projection hides dependencies between interactions on distinct associations. This
may lead to overspecification of the s-role graphs, and in the worst case to second order
errors. The problem isnot new. It was a so a possible problem encountered by elementary
s-roles and has been discussed in Section 7.3. However the concurrent composition of s-
roles highlights the dependencies between associations. Recall that acute t-transitions are
symptoms of errors, and their removal may lead to second order errors.

8.2.1 Dynamic s-role composition

On way to model concurrent composition is to use process agents. Dynamic s-role com-
position can then be modelled by the creation of process agents at run-time. Following the
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dynamic composition of s-roles, new associations are added at run-time. An exampleis
shown in Figure 8.25.

Figure 8.25: Dynamic s-role composition.

In that example, the s-role “B” is created by “A”. The interactions between “A” and “B”
and “A” and “C’ are validated separately. During the validation of the interactions
between “A” and “B”, one of the design rules "Backward input consistency" or "Back-
ward save consistency" isenforced ensuring that any signal sent by “B” to“A” is handled
in any non-observable state preceding the consumption of that signal in “A”. Asthe cre-
ation of “B” ishidden in the projection transformation, the enforcement of the design rule
may lead to overspecification of the graph of the s-role “A”. Thisis the case when “A”
interacts with “C” before creating “B”, and when “B” sendsasignal to “A” immediately
after its creation.

In order to avoid this kind of overspecification, we propose to extend the projection trans-
formation, and to maintain the create operation in the projection on associationsthe create
relates to. This means that the creation of “B” is maintained in the projection of “A” on
the association between “A” and “B” in the previous example. This extension of the pro-
jection transformation isjustified by the fact that the creation operation is observed by the
s-role being created. The creation of “B” can be observed by “B” of course. We propose
to represent the creation operation by a special output event “create’. Thisisillustratedin
Figure 8.26.

When the extension of the projection is applied, no modification needs to be donein any
of the design rules "Backward input consistency” or "Backward save consistency”. The
event “create” should be transformed to aninitial state by mirroring during the production
of dual s-roles. Similarly, it should be considered as an entry point in consistency check-
ing. The validation analysis should be extended in order to ensure that no signal is sent
before the creation of the complementary s-role: no interaction on that association is
allowed between the a-role initial state(s) and the creation operation. This extension
applies both in the constructive and corrective approaches.
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project

Figure 8.26 : Projection extension: adding create.

The creation example is extended in Figure 8.27 by adding an interaction between the s-
roles“B” and “C”. Here the design rule "Backward save consistency"” enforces that any
signal sent by “B” to “C” issaved in any non-observable state preceding the consumption
of that signal inthes-role”C”. Again, the enforcement of the design rule may lead to over-
specification of the graph of an s-role, here “C”. In that case, the extension proposed for
the projection of create does not apply.

_~ create ™
N\

Figure 8.27 : Dynamic composition (2).

Overspecification is a drawback in a validation approach using projections. In order to
avoid overspecification, it is possible to extend the projection transformation so that
dependencies between visible and non-visible interfaces are highlighted and maintained
during projection. Particular events can be marked in the s-role graph and attached a par-
ticular semantics, so that they can be handled in special ways during projection. For
example, an event may be attached an s-role start semantics. Using marks should be
applied with care. Marks should be consistent with the semantics of interactions, and
should be kept consistent with the semantics of interactions when changes are introduced
in the system.
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Event marks are appropriate in the case where stable design patterns arefollowed in asys-
tem. For example, marks may be applied to the request pattern as proposed for the
dynamic assignment of s-rolesto actorsin ServiceFrame[Brak and al. 2002]. This pattern
isshown in Figure 8.28. Here the signal “request” may be attached a start semantics, and
maintained in the projection on the association between the requesting and invoked roles.

ManagerRole
1.Request
(Role) .
2.Assign
ReguestingRole - InvokedRole
3.Confirm

Figure 8.28 : Request pattern.

The detailed description of this extension is left for further work.

While overspecification is harmless with respect to interaction consistency, errors can be
introduced in dynamic composition when an s-role sends to an s-role that has not yet
started. In Figure 8.27, the s-role“C” should not send to “B” before“B” has been created.
In SDL, thiskind of error can be introduced as signals can be sent using gates and signal
routes rather that using the receiver identifier (Pld). It is ssmply avoided by enforcing the
following design rule.

D-rule: Addressing and dynamic s-role composition
Theexplicit address of the receiver should always be used when signals are sent to s-roles
that are created dynamically.

8.2.2 Sateaggregation: forcing termination

Static concurrent composition of instances of distinct s-roles can be modelled using state
aggregation. Again, interactions towards the different states in the partition should be val-
idated separately.

Recall that we have introduced an extension to the termination of a state aggregation (see
Section 4.2.2.1 on page 57). Using this extension the termination of a state in the partition
can force the termination of the state aggregation. While this extension facilitates the
modelling of concurrent composition, it complicates the specification of an s-role that
interacts consistently. Similarly to the disabling problem discussed above, errors can be
introduced by the forced termination of the state. It is not possible to ensure that the input
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port of the aggregate s-role is empty when the termination takes place. The designer
should be aware of thisweakness. The discarding of the signals addressed to the aggregate
s-role may be handled in the successor state or at the composite level. However the dis-
carding of the signals may also be tolerated asin the case of disabling.

8.3 Sequential and concurrent compositions

In this section, we assume that different forms of composition, sequential or concurrent
composition, can be applied within the interacting actors. This is illustrated in
Figure 8.29. Sequential composition is applied in one actor and concurrent composition
in the other actor. The concurrent s-roles may execute more or less dependently. Again,
the interactions towards the concurrent actors are validated separately. The start of execu-
tion of the s-roles should be coordinated. The techniques proposed in Section 8.1 can be

applied.

In case (a) of Figure 8.29, the s-role “D” cannot observe the termination of the predeces-
sor of “C”. Backward save consistency can be enforced in the composite s-role “A
followed by C” so that unspecified signal reception does not occur. In that case, whether
“B” and “D” are composed sequentially or concurrently does not matter.

In case (b), thes-roles“B” and “D” are dependent. The interaction between “D” and “C”
should not start before “A” has terminated. Dependencies between the interactions
between “B” and “D”, and “D” and “C” may lead to a deadlock. The ordering enforced
between“A” and “C” can be handled in asimilar way as an s-role creation, i.e. asif “A”
creates“ C”. The discussion of Section 8.2.1 applies here.

o(o)

@ (b)
Figure 8.29: Sequential and concurrent composition.

Again, the concurrent composition of s-roles highlights any dependencies between s
roles. The marking of events may enhance the validation method. Dependencies between
associations that propagate through composition complicate service adaptation. They
should thus be avoided.
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8.3.1 Sateaggregation: exit conditions

Recall that we have introduced an extension to exit points in state aggregation (see Sec-
tion 4.2.2.1 on page 57). Using this extension, an exit condition of a state aggregation can
be expressed asalogical expression of exit conditions of the statesin the partition. Check-
ing the consistency of choices requires special attention if choice is based on exit
conditions. The designer should distinguish between the termination of state aggregation
and the termination of a state partition.

An exampleisshown in Figure 8.30. Here, in each composite role, the choice is based on
the exit condition of the elementary predecessor s-role“success’ or “fail”. The elementary
srole “B” ismodelled using state aggregation and the exit condition of “B” is expressed
as conditions of the state partitions“B1” and “B2” . Observe that the exit condition of “B”
isnot observablefrom“A”; itistheexit condition of “B1” that can be observed from“A”.
Theexit conditions of “A” and “B” may not be consistent even though the exit conditions
of “A” and“B1” areconsistent. Similarly the exit condition of “B” is not observable from
“C".

success := <B1>success AND fail := <B1>fail OR
\ <B2>success s <B2>fail

Figure 8.30: Choice and state aggregation exit condition.

8.4 Summary

In this chapter, we have discussed the consistency of interactions between composite s-
roles. The same symptoms of error need to be addressed at the composite level as at the
elementary level, and the design rules proposed at the elementary level apply at the com-
posite level:

» The non-coordinated occurrence of events may lead to unspecified signal reception.
Unspecified signal reception can be avoided by enforcing backward save consistency.
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* Non-observable selection of behaviours may lead to ambiguity. Ambiguity can be
avoided by the sending of triggering signals.

» Conflicts may occur when a composite s-role interact with two or more concurrent s-
roles. Conflicts are detected, and deadlocks avoided by enforcing input consistency.

Concurrent composition introduces new associations that are validated separately.

Dependencies between associations are highlighted when reasoning at the composite
level. A validation approach based on projections provides restricted support for handling
errors following dependencies. Errors can be identified, but not their specific causes. A
solution based on the marking of dependent events has been shortly introduced. Depend-
encies between associations should be avoided in a dynamic context where it isdesirable
to adapt service a run-time.
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Conclusions

Thisthes's has addressed two main questions:
» How can we model services so that they can be easily modified - possibly at run-time?

» How can we ensure that service components that are modified or added dynamically
in asystem interact consistently with other system components?

Composition has been proposed as a means to achieve modularity and adaptability. Our
work has concentrated on fine-grained modularity enabling the partial modification of the
components involved the service.

In this chapter, we discuss the achieved results with respect to these research questions,
identify the limitations of the results and propose recommendations for further research.

9.1 Summary of results

Thisthesis provides:

» Design rules that should be applied during the definition of services. We distinguish
between two kinds of design rules:

* Modeling rules that aim at defining modular services. The rules relate to the com-
position of elementary behaviours. When these modeling rules are followed,
elementary behaviours can easily be composed.

» Correctnessrulesthat aim at defining service components that interact consistently.
Theserules areidentified during the discussion of validation. When the correctness
rules are followed, typical anomalous behaviours can be avoided. The rules are
applied before the validation analysis, and contribute to facilitating the analysis.

- 267 -
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» Validation transformations and algorithms that are applied in order to analysis serv-
ices. We may distinguish between two kinds of validation results:

» Consistency checking results that aim at validating the interactions between service
components.

* A means for describing semantic interfaces. Interfaces are described in terms of
service association roles (a-roles) that describe the visible interaction behaviour of
a service role (s-role) on an association. The modelling of interfaces using a-roles
should be of interest to the software architecture research community. The defini-
tion of component interfaces is a main research issue in software architectures; no
common architecture definition language has yet been agreed on.

9.2 Main contributions

The main contributions of the thesis are:

1. Techniques for modelling services in terms of roles. Earlier experience suggests that
role modelling provides better support for system adaptation and reuse than class mod-
elling. Roles and role collaborations focus on behaviours across a system boundary,
and enable us to better comprehend the contribution of acomputational object or actor
in aservice. In Chapter 3, we proposed to describe service roles (s-roles) in terms of
state machines using composite states. Roles can be assigned dynamically to actors at
run-time. We favour the use of the modelling language SDL because of its formal
semantics. However, our results are not bound to SDL. They may be applied on sys-
tems specified using other modelling languages that support state machines, for
example UML. Our study identifies original and innovative employment of the com-
posite states newly introduced in SDL 2000.

2. Techniques for modelling the composition of service roles (s-roles). In Chapter 4, we
have proposed different forms of composition, and modelled them formally using state
machines. Ideally s-roles should be specified without making assumptions about how
they are going to be composed with other s-roles. We define simple general design
rules that enable s-roles to be composed in a modular way. Using these rules, no sup-
plementary behaviour needs to be specified within the s-roles being composed
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sequentially. On the other hand, s-roles that are composed concurrently may require
explicit coordination behaviour. We have proposed design patterns for the coordination
of concurrent s-roles. The composition approach is attractive for several reasons:

* |t encouragesthe designer to produce modular service descriptions. The elementary
roles and collaborations are simple and can be easily understood.

» By nature, it providesamethod for adding or replacing elementary behaviours. New
functionality can aso be added at run-time. In that way, the composition approach
supports incremental service development and deployment.

» Dependencies between roles are highlighted during composition. Thus, the compo-
sition approach contributes to the understanding of dependencies between roles and
services.

* When components are involved in severa services, the contribution to different
services can be modelled by different roles that are composed in order to obtain the
whole component behaviour. In that way, role composition enables one to concen-
trate on individual services, and break down complex component behaviours.

» Composition can be exploited during validation. This contributes to reduce the
complexity of the analysis. As our validation approach takes into account the com-
positional properties of a system, it is also suited for the validation of components
bound at run-time.

The power of SDL to express useful behavioursis not restricted by the design rulesthat
have been proposed. The composition approach does not introduce any restriction as
to what functionality can be defined.

3. An abstraction technique, the projection, that contributes to simplifying the validation
of interactions between service roles. A projection is a simplified system description
or viewpoint that emphasi ses some system properties while hiding others. Rather than
analysing the whole system, projections are analysed. In our work, the projection only
retains the aspects significant for the purpose of validation of associations between s-
roles. The projection transformation of each SDL concept is formally described in
Chapter 6. An important property of the defined projection transformation is that it
maintai ns the observabl e association behaviour.
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4. Adescription of roleinterfaces that overcome the limitations of static object interfaces.
These interfaces called service associations roles (a-roles) are obtained by projection.
A-roles describe the dynamics of interactions between s-roles. In Chapter 6, we have
proposed a set of transformations on a-roles that aims at smplifying validation analy-
sis, but that also enables the designer to better comprehend interfaces. Three
transformations are proposed:

» A-rolestate graphs are transformed to transition charts, i.e. state graphs where tran-
sitions between states are attached a single event: an input, an output or a silent
event (t-event).

» State gathering is applied in order to remove non-observable t-transitions.
* Minimisation is applied in order to replace equivalent states by asingle state.

An important property of these three transformations is that they maintain the observ-
able association behaviour.

5. Aclassification of particular anomalous behaviour patterns. Ambiguous and conflict-
ing behaviours that can lead to errors can be identified at design time, before the
validation analysisitself. In Chapter 7, we have discussed the influence of these behav-
iours on the interaction between s-roles. We have proposed design rulesthat enable the
designer to avoid ambiguous behaviours and solve conflicting behaviours, and thus
develop well-formed state machines. These design rules promote quality (in terms of
design errors being removed) without imposing restrictions on what functionality can
be described.

6. A constructive validation method that supports the design of correct services. In
Chapter 7, we have proposed transformations for the generation of consistent comple-
mentary a-roles from particular a-roles.

7. A corrective validation method that provides support for checking that two comple-
mentary a-roles interact consistently. In Chapter 7, we have proposed a consistency
checking algorithm. This algorithm may be applied at run time. The proposed consi t-
ency checking algorithm stem from the algorithms used for the generation of global
state graphs. However our algorithm differs from those algorithms in that it does not
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use any message gqueue, but asave queue. The transformations and design rules applied
on s-roles and a-roles before consistency checking contribute to simplifying the anal-
ysis and to maintain the number of statesin the global state low.

8. Avalidation approach tightly integrated with the composition of serviceroles. Valida
tion analysis is applied incrementally. The validation approach is tightly integrated
with s-role composition. Elementary s-roles arefirst validated, and then their compos-
ite. Incremental validation contributes to simplifying the validation analysis, and the
compositional properties of a system can be taken into account during analysis. The
same symptoms of error need to be addressed at the composite level as at the elemen-
tary level. As sequential composition ismodelled using similar modelling mechanisms
aselementary s-roles, the techniques devel oped for the validation of elementary s-roles
can be reused during the validation of s-roles composed sequentially. Concurrent com-
position introduces new associations that are validated separately, also using the
techniques of interface validation. The dynamic creation of s-roles requires new
techniques.

9. Avalidation approach suited for the analysis of dynamic systems. The analysis concen-
trates on the logical consistency of the interaction behaviour between s-roles. The
analysis can be restricted to particular associations between s-roles. It is integrated
with the composition approach, and thus can take advantage of the system structure.
The analysis is applied on types, and is thus suited for the validation of components
bound dynamically at run-time.

10.Algorithms for the transformation of state graphs and their validation. Algorithms are
ameans to express the validation techniques in operative terms. We believe that they
can be easily implemented by CA SE tools. In Chapter 6, we have proposed a minimi-
sation algorithm based on the generation of partitions of k-equivalent states. In
Chapter 7, we have proposed algorithms for the identification of anomalous behav-
iours, for the generation of consistent complementary a-roles, and for consistency
checking.

9.3 Usability of results

A main question is whether or not the proposed design rules reduce the power of expres-
sion of SDL (or other modelling approach that uses state machines). We contend that the
validation approach does not restrict this power of expression, provided that one wishes



272 9 Conclusions

to design correct services. The design rules aim at eliminating logical interaction errors.
They make it difficult to develop incorrect services, and thus they are relevant for all
designers.

Another question is of course whether or not the kind of dynamic errorsthat are captured
frequently occur, and whether or not the effort required for performing validation is
worthwhile. Although we are not able to provide metrics for the frequency of dynamic
errors, we know from our long experience in system development, that almost every sys-
tem contains dynamic errors, and that new errors are frequently introduced when systems
are developed incrementally. Our approach contributes to identifying dynamic errors,
which are often the most costly errors to find. As for the effort required for performing
validation, we propose design rules that can be supported by design tools, and operational
validation algorithms that can be easily implemented. In that way, no effort is required
from the designers.

9.4 Requirementsto the approaches

The proposed validation techniques are considered easy to understand and apply. Current
verification and validation techniques often require high competence and knowledge in
formal modelling and reasoning from the system devel oper, and their use in the software
industry is rather moderate. Our approach, although thoroughly justified, remains com-
paratively simple to understand and use. In that way, the applicability of the proposed
approach is not limited to the validation in adynamic context. It should also be of interest
for the validation of static systems.

Comparing with the requirements identified in Section 1.2.4 on page 11, the following
may be said:

» Smplicity of the approaches. We have provided design rules that we believe are easy
to understand. They can be applied by the service developers, and possibly enforced
with the support of tools. The projection transformation is simple. The removal of t-
transitions enables the designer to comprehend single interfaces, and simplifies the
analysis techniques.

» Smplicity of the results. Service roles enable designers to better comprehend the con-
tribution of acomputational object or actor in aservice. The concept of s-roles enables
onetofocusonsingle“dices’ of behaviour that are easier to understand than compl ete
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behaviours.

* Incremental development. The modelling approach supportsincremental development.
So does the validation approach.

» Correctness. The design rules defined during the discussion of validation contribute to
the development of well-formed components.

» Execution framework independency. The proposed techniques can be used in any
framework where an object-oriented approach has been adopted.

* Operative terms. The transformations are described in terms of states, signals and
transitions.

9.5 Limitations

9.5.1 Hiding dependencies between associations

The main limitations of the validation approach have been presented in Section 7.3 on
page 233. While the projection transformation proposed contributes to simplifying the
validation analysis, it also ignores dependencies between interactions on hidden associa-
tions. Hiding may cause two kinds of shortcomings:

» Overspecification of s-roles. Hiding may introduce a non-deterministic a-role behav-
iour, while complementary s-roles are aware of the behaviour choice. The design rules
we have proposed will in such cases lead to overspecification. Overspecification is
harmless with respect to consistency. We have sketched some extensions of the projec-
tion transformation that enable dependencies to be taken into account. These
extensions should be further devel oped.

» Second order errors. The projection of s-roleslead to graphs that may contain acute 1-
transitions. Acute t-transitions are symptoms of errors. They may for example hide
deadlocks between severa s-roles. Without the knowledge of the behaviour occurring
on other associations, we are not always able to handle the t-transitions properly. Their
removal may lead to second order errors.
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952 UML vs. SDL

We have chosen to use the MSC language to describe collaboration sequences, and the
SDL language to specify service role behaviours rather than using the notations defined
in UML. A main reason for this choiceisthat the ITU-T languages have aformal seman-
tics that enables an unambiguous interpretation of the system specification.

To the best of our knowledge the latest SDL version, SDL-2000, is not yet widely used in
the industry. No CASE tools that support SDL-2000 are available yet. Since Telelogic,
one of themain SDL tools provider, is now focusing on the new version UML, UML 2.0,
we may wonder whether or not SDL-2000 will be adopted in the future, and whether or
not the results of thisthesis are relevant at all. However, we observe that effort has been
made in order to support the concepts of SDL-2000inUML 2.0[U22002]. Thenew UML
language is also formally defined, and should also enable an unambiguous interpretation
of the system specification. For those reasons, we believe that it will be possibleto convey
the techniques proposed in this thesis over to systems specified using the coming UML
2.0.

9.5.3 Lacking experimentation

The techniques proposed in this thesis have not yet been applied on any large prototype
case. Thiswas adeliberate decision when faced with a trade-off between prototyping and
theoretical progress. It should be mentioned though that the author has along experience
from system design and tool design [Floch 1995] which has been used as input and refer-
ences to ensure relevance and feasibility of the results.

9.6 Further research

The results of thesis and its limitationsinspire several areas for further work:

» Tool development. The proposed rules and algorithms should be integrated in CASE
tools. Tool support would facilitate the adoption of the techniques in the design
community.

» Abstracting dependencies between associations. As discussed in Section 9.5.1, hiding
may introduce shortages in the approach. We have sketched some extensions of the
approaches. These proposed extensions should be further developed, and possibly
other extensions identified and investigated.
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Dynamic adaptation and reconfiguration. Although the methods aims at defining
dynamic systems, we do not propose solutions for the dynamic adaptation of systems,
The techniques proposed in thisthesis are rather afoundation for further working with
adaptation. Work is needed in order to describe which kinds of adaptation can be sup-
ported through composition.

Role learning. The dynamic adaptation of services to new contexts may require the
downloading and assignment of new rolesto acomponent. Components should be able
to execute new role behaviours, and combine these new behaviours with existing ones.
Thisis what we call role learning. Learning is a known concept from the agent tech-
nology [Nwana 1996; Green and al. 1997]

Role negotiation. Several components are involved in a service, and divergent roles
may be selected in distinct components. For example, in abasic call, this may be the
case when acaller and callee have defined conflicting rolesto be sel ected when the cal -
lee user is busy. In that case, the selection of a behaviour may be the result of a
negotiation between components. Techniques for negotiation are proposed in the agent
technology.
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