
Doctoral theses at NTNU, 2008:228

Frank Alexander Kraemer

Engineering Reactive Systems

A Compositional and Model-Driven Method

Based on Collaborative Building Blocks

Frank Alexander Kraemer

Engineering Reactive Systems

A Compositional and Model-Driven Method

Based on Collaborative Building Blocks

Thesis for the degree of philosophiae doctor

Trondheim, July 2008

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and
Electrical Engineering

Department of Telematics

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Telematics

© Frank Alexander Kraemer

ISBN 978-82-471-1146-8 (printed version)
ISBN 978-82-471-1147-5 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:228

Printed by NTNU-trykk

to my folks
and family.

ABSTRACT

This thesis introduces SPACE, an engineering method for reactive systems which
enables the rapid composition of services from reusable building blocks. In con-
trast to traditional approaches which often focus on reuse of separate system
components, we use collaborations as the main specification units and building
blocks. Collaborations are distributed, stateful functions related to a certain
task. They span across several components and describe both the local behav-
ior of all participating components as well as the necessary interactions in an
explicit form. We express collaborations by a combination of UML 2.0 collabo-
rations and activities. To encapsulate their internals, we use a special form of
UML state machines to describe their externally visible behavior, so that build-
ing blocks can be composed without understanding inner details. This opens up
new possibilities for the reuse of specifications, since solutions to specific tasks
that incorporate several components can be encapsulated within self-contained
building blocks. We describe how collaborative building blocks can be composed
by means of UML activities. There may be arbitrary composition levels, and
development may follow a top-down or bottom-up approach. In the end, a com-
plete system specification is obtained. To implement this specification, we have
developed an automated model transformation that synthesizes executable state
machines from the collaborations, which are implemented by code generation.

As a semantic foundation to reason about the correctness of our approach,
we use temporal logic, and in particular the compositional Temporal Logic of
Actions, cTLA. Since we formalize collaborations as cTLA processes which are
composed by joint actions, the property of superposition holds for them. This
means that properties of a collaborative building block are also maintained by
a system composed from it. This makes the incremental verification of systems
possible: during the analysis of a collaboration composed from others, we only
use the abstract external description of the sub-collaborations. This reduces the
state space during model checking, and we only need to check one composition
level at a time, that is, each collaboration separately. In addition, since we also
formalized the executable state machines for the execution, the model transfor-
mation from collaborations to components corresponds to a formal refinement
step, so that the correctness of the transformation is ensured as well.

The method is supported by a set of tools. Besides the quick composition of
systems in a drag-and-drop like manner, the tools create the state machines and
provide the automated analysis of collaborations and their composition on the
basis of incremental model checking.

“I’m writing a book on magic,”

I explain, and
I’m asked, “Real magic?”

By real magic people mean miracles,
thaumaturgical acts, and supernatural powers.

“No,” I answer, “Conjuring tricks, not real magic.”
Real magic, in other words, refers to the magic that is not real,

while the magic that is real, that can actually be done, is not real magic.

Lee Siegel, Net of Magic: Wonders and Deceptions in India. Univ. of Chicago Press, 1991.

PREFACE

About the Magic in this Book∗

∗And Why You Should Read It

If you hold a book of some hundred pages in your hand, it is your good right
to ask: “Why should I read this one?” After all, to say it with the words of the
citation on the previous page, this book contains nothing but a handful of tricks
to build reactive systems with a little less headache.

But is it really just tricks?

For everybody who spends a substantial amount of time with learning, it is
very rewarding to get the time and money to learn some more and eventually
apply the learned to solve some real problems. With this background, my major
motivation behind this thesis was to find a method that is useful and practically
applicable. This is hard to achieve, because it is difficult to estimate how a
method turns out in the end, how it will be adopted, and, above all, how it
meets the changing demands of engineering and technology.

To reach this goal, I thought it would be most fruitful to combine existing
approaches, techniques, logics and languages in a new constellation. My primary
concern was to enable an effective form of reuse, because, as D’Souza and Wills
describe in their book on Catalysis, reuse does not mean that you can copy-
and-paste code. Effective reuse means to reuse knowledge, working designs and
analytic results in such a manner that one does not always have to understand
all details of the work already done. If one cares about reuse, one also has to
carefully handle composition, so that reusable elements can be combined effec-
tively to get something valuable. Indeed, it should just work like constructing
with LEGO bricks. However, while this analogy is used frequently, it is rarely
implemented right. Often, one still has to know too much about the details of
the building blocks, or the task of connecting them is very difficult in itself.

xii

Apart from this strong focus on reuse and composition, I tried to keep balance
between different aspects of a method in general:

– A balance between views and perspectives, and different levels of abstrac-
tions, so that design decisions are made at the right places. This also means
that details should not call for so much attention that the big picture is
lost, but exactly so much that they are handled correctly.

– A balance between theoretical and practical considerations. Obviously,
system specifications as well as the method itself must be sound and cor-
rect, and logic is the proper means to ensure that. But we should not use
logic for the sake of formalism, and not forget that there are numerous
other, quite subtle, practical considerations that need to be made as well.

– A balance between old and new, so that we carefully keep what has worked
in the past and do not invent the wheel again, but at the same time not
get paralyzed or intimidated by existing paradigms.

– A balance between what computers and what humans can do, so that these
two entities are addressed as a team. A method should allow us humans to
use our ingenuity, creativity and intelligence, and be assisted by computers
in tasks that we are not so good at.

I hope you appreciate these guidelines as well, and see most of them satisfied by
the proposed method. You may disagree here and there, and maybe come with
some new ideas. I am interested to learn more. And therefore I hope that also
some others may take this work as a starting point to solve some more problems,
just like I got inspired by so many other works as described in Part I.

So, if you ask me, why you should read this book, then I would probably
tell you that, besides the fact that you can build great systems with it, it’s the
constellation of the method’s elements and the balances between them that is
the real magic. The rest is just tricks.

Praises and Thanks

I was very lucky having two marvelous supervisors, Rolv Bræk and Peter Her-
rmann. The combination of their experience and knowledge and the resulting
discussions turned out to be very beneficial for this work. That I made the
way to Trondheim and stayed there goes considerably onto Rolv’s account. He
accepted me as student for my Master’s thesis in 2002 and was to a large degree
the reason why I decided to continue my work with a doctoral degree at the
department. Discussing systems engineering with Rolv has always been fun. He
has the ability of combining his considerable experience with the will to develop
new ideas and provides in that way a very fruitful ground for discussions, which
I enjoyed since the first meeting in his office. Peter joined the department right
after I finished the lecture of Leslie Lamport’s book Specifying Systems and con-
cluded some experiments on service specifications. I was more than surprised as

preface xiii

I found out that Peter not only was an expert in temporal logic, but also devel-
oped the compositional Temporal Logic of Actions in his own doctoral thesis.
That, obviously, helped to get things started very quickly. Peter was imme-
diately interested in the already existing ideas and was willing to get familiar
with them. For a researcher who already has enough areas of expertise maybe
something that should not be taken for granted in the first place. With Peter I
enjoyed especially the process of publishing. He had the patience to teach me
how to get ideas written down on an empty piece of paper. So, Rolv and Peter,
thank you very much for the work so far. The results in this thesis are also your
results. Without any of you, your expertise, continuous help, motivation and
patience, they would not have been possible. I hope we’ll continue with a lot
more stuff. I would also like to thank your wives and Turid and Gaby for their
hospitality and some good advices every now and then.

There are of course my other colleagues, a whole bunch of great people.
Among them I would like to mention Cyril, Fritjof, Finn Arve, Jacqueline, Ju-
dith, Haldor, Hien, Humberto, Leif Arne, Lill, Linda, Máté, Mazen, Richard,
Surya and Thanh. It was fun to work with all of you. Your continuous feedback
has influenced this work more than you might think, and your comments on the
publications certainly improved both contents and presentation. Thank you all.
From the other research groups I want to thank the heads of the departments
Svein and Norvald for their efforts, and must not forget Andreas, Harald, Jing
and Tord for their excellent company at dinner time. I also want to thank Geir
Hasnes, who every now and then dropped by at the department. Geir has a
clear opinion about virtually everything and is pretty articulate about what’s
right and wrong. Listening to him and explaining my ideas in return contributed
much to the creative process behind this thesis. Thanks, Geir.

At a visit in Tampere I was able to discuss with Reino Kurki-Suonio and
Tommi Mikkonen and their research group (in particular Risto Pitkänen, Perti
Kellomäkki, Timo Aaltonen and Mika Katara) many interesting aspects on sys-
tem engineering, and got valuable feedback on my work. Reino’s book on reactive
systems not only had a big influence on my way of looking at reactive systems as
action systems, but is also written so brilliantly that I stayed motivated enough
to learn the theory behind it. At similar occasions I could discuss my work
together with Daniel Amyot, Gregor von Bochmann and Gunter Mussbacher in
Ottawa, as well as Ina Schieferdecker, Birger Møller-Pedersen, Øystein Haugen,
Andreas Prinz and Ketil Stølen, who provided valuable insights and motivation
at the right time. A big thank you to all of you!

During the research I worked in two applied research projects, ARTS and
its follow-up ISIS, which gave me the opportunity get use cases and motivations
from industry colleagues, hereby to mention in particular Telenor with Reidar
Martin Svendsen, Steinar Brede, Frode Flægstad and Espen Nersveen, Gintel
with Frank Paaske and Ericsson (later Tellu) with Geir Melby and Knut Eilif
Husa. Good to know that someone is actually using all that stuff we make.

Thanks go also to the students I supervised over time during their studies,
among them Sebjørn Sæther Birkeland, Øystein Gisn̊as, Lars Erik Karlsen, Alf

xiv

Kristian Støyle, Ronnie Nessa and Nina Heitmann. I hope you learned some-
thing, I certainly learned from you. A special remark must be dedicated to
Vidar Sl̊atten, who not only shares the same supervisor (Peter), but also had
me as a supervisor for his project thesis and master thesis. His commitment and
enthusiasm helped very much to integrate model checking into the approach by
the tools that were the results of this work. Vidar, thanks a lot! Good luck with
your own thesis.

I want to mention also the helpful souls of the institute and faculty, Randi,
Mona and Hilde, helping me with a lot of complicated processes there are for a
researcher, like completing travel balances, sending faxes and filling out all these
documents needed to keep a university running. And of course our two helpful
ghosts, P̊al and Asbjørn, helping with equally important tasks. Thank you!

Several friends of mine also have their share in the process of writing this the-
sis over several years. Among them, (in order of appearance): Karim, Thomas,
Markus, Thomas, Martina, Daniel, Martin, Matthias, Jeremy, Synnøve, Øyvind,
P̊al, Christian, Kristin, Alexander, Runar, Øyvind, Andrea, Vasile, Sverre, Dot-
tore Marco, Johan, Jasper, Stefan and Bente. What fantastic friends you are,
in any respect. Sorry that I so often had no time for you because I was writing
another paper. A special thank goes to Jeremy, who patiently read the entire
thesis and freed it from various offenses against the English language.

In the end, it’s of course my family that I would like to thank and dedicate the
remaining pages of this thesis. Claudia, Zita, Wolfgang Ludwig, Getrud (Dodo)
and Änne. I am so glad I have you. Unfortunately my granfather, Wolfgang,
had to leave us this spring while I was writing the last pages of my thesis. I owe
him very much. He was the main reason why I became, like him and my father,
an engineer, probably due to the interest in technology that he encouraged with
all the funny things we invented in my early childhood.

And now, read on for some real magic.

Frank Alexander Kraemer
Gløshaugen, July 2008

INCLUDED PUBLICATIONS

1. Service Specification by Composition of Collaborations — An
Example.
Frank Alexander Kraemer and Peter Herrmann. Proceedings of the 2006 WI-IAT Work-
shops (2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology), IEEE Computer Society, 2006.

2. Aligning UML 2.0 State Machines and Temporal Logic for the
Efficient Execution of Services.
Frank Alexander Kraemer, Peter Herrmann and Rolv Bræk. Proceedings of the 8th
International Symposium on Distributed Objects and Applications (DOA), Volume 4276
of Lecture Notes in Computer Science, Springer, 2006.

3. Transforming Collaborative Service Specifications into Efficiently
Executable State Machines.
Frank Alexander Kraemer and Peter Herrmann. Proceedings of the 6th International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT), Vol-
ume 6 of the Electronic Communications of the EASST, 2007.

4. Synthesizing Components with Sessions from Collaboration-
Oriented Service Specifications.
Frank Alexander Kraemer, Rolv Bræk and Peter Herrmann. Proceedings of the 13th
Int. SDL Forum, Volume 4745 of Lecture Notes in Computer Science, Springer, 2007.

5. Design of Trusted Systems with Reusable Collaboration Models.
Peter Herrmann and Frank Alexander Kraemer. Proceedings of the Joint iTrust
and PST Conferences on Trust, Privacy, Trust Management and Security (IFIPTM),
Springer, 2007.

6. Formalizing Collaboration-Oriented Service Specifications using
Temporal Logic.
Frank Alexander Kraemer and Peter Herrmann. Proceedings of the Networking and
Electronic Commerce Research Conference (NAEC) ATSMA, 2007.

7. Engineering Support for UML Activities by Automated Model-
Checking — An Example.
Frank Alexander Kraemer, Vidar Sl̊atten and Peter Herrmann. Proceedings of the
4th International Workshop on Rapid Integration of Software Engineering Techniques
(RISE), 2007.

8. Arctis and Ramses: Tool Suites for Rapid Service Engineering.
Frank Alexander Kraemer. Proceedings of NIK-2007 (Norsk informatikkonferanse),
2007.

CONTENTS

Abstract vii

Preface xi

I Introduction and Overview 1

1 Introduction 3
1.1 Contributions . 6
1.2 Focus of this Thesis . 8
1.3 Guide to this Thesis . 9

2 Reactive Systems: Why they are Difficult 11
2.1 Reactive Systems and Reactive Components 11
2.2 Now, What’s So Difficult? . 12
2.3 Research Questions . 21

3 Background 25
3.1 Approaches Based on SDL and UML 25

3.1.1 SOM, the SDL-Oriented Method 26
3.1.2 TIMe, The Integrated Method 27
3.1.3 Real-Time Object-Oriented Modeling, ROOM 28

3.2 Model-Driven Development and MDA 28
3.3 Temporal-Logic-Based Approaches 30

3.3.1 Temporal Logic of Actions: TLA 30
3.3.2 Distributed Cooperation: DisCo 31
3.3.3 Compositional TLA: cTLA 32

3.4 Focus on Collaborative Behavior 32
3.4.1 Collaborations in Protocol Engineering 32
3.4.2 Constraint-Oriented Specification Style 33
3.4.3 Constraint-Oriented Protocol Specification in cTLA . . . 33
3.4.4 Collaborative Behavior in DisCo 34

xviii

3.4.5 Roles and Collaborations in OOram 35
3.4.6 Collaborations and UML 1.x 35
3.4.7 Catalysis . 35
3.4.8 CRC: Class, Responsibility, Collaboration 36
3.4.9 Design Patterns . 37
3.4.10 UML 2.0 Collaborations 37

4 The Engineering Method SPACE 39
4.1 Overview of the Approach . 39
4.2 The Nature of Specifications . 42

4.2.1 Building Blocks . 44
4.2.2 Composition of Building Blocks 45
4.2.3 Multiplicity . 46
4.2.4 Extensions to UML . 47

4.3 Semantics and Logical Reasoning 47
4.3.1 Collaborative Service Specifications: cTLA/c 47
4.3.2 Executable State Machines: cTLA/e 48
4.3.3 Automated Model Checking and Analysis 48
4.3.4 Manual Logical Reasoning 49

4.4 From Collaborations to Components 50
4.4.1 Generation of Component Structures 51
4.4.2 State Machine Synthesis 51
4.4.3 Extension of the Synthesis Algorithm 51
4.4.4 Refinement Proof from Activities to State Machines . . . 52

4.5 Tool Support for SPACE . 52

5 Survey of the Publications 55
5.1 Individual Contributions . 56
5.2 Published Papers . 56
5.3 Appendices . 61

6 Discussion 63
6.1 Innovations and Results . 63
6.2 Answers to the Research Questions 64
6.3 Practical Applicability of the Results 67
6.4 Related Approaches . 68

7 Future Work 71

II Included Publications 89

1 Service Specification by Composition of Collaborations — An
Example 93
1.1 Introduction . 95
1.2 Collaborations . 98

contents xix

1.3 Coupling and Composition . 100
1.4 Concluding Remarks . 101

2 Aligning UML 2.0 State Machines and Temporal Logic for the
Efficient Execution of Services 105
2.1 Introduction . 107
2.2 Service Execution Based on State Machines 110

2.2.1 Runtime Support Systems and Execution Frameworks . . 111
2.2.2 The Runtime Support System JavaFrame 111
2.2.3 State Machine Execution on other Platforms 112
2.2.4 Code Generation . 113

2.3 Executable Service Models in UML 2.0 113
2.4 Compositional Temporal Logic of Actions (cTLA) 115
2.5 cTLA/e: An Executable Form of cTLA 118

2.5.1 cTLA/e Process for State Machines 119
2.5.2 cTLA/e Process for the Global System 120

2.6 Executing cTLA/e Specifications 120
2.7 Related Work . 123
2.8 Concluding Remarks . 123

3 Transforming Collaborative Service Specifications into Effi-
ciently Executable State Machines 129
3.1 Introduction . 131
3.2 Collaborations and Activities for Service Composition 134
3.3 State Machines for Service Execution 134
3.4 Transformation from Activities to State Machines 136
3.5 The Transformation Algorithm 139
3.6 Correctness of the Transformation 143
3.7 Related Work . 147
3.8 Concluding Remarks . 148

4 Synthesizing Components with Sessions from Collaboration-
Oriented Service Specifications 153
4.1 Introduction . 155
4.2 Collaborations . 157

4.2.1 Describing Behavior of Collaborations 158
4.2.2 Composing Collaborations with Activities 160

4.3 Multiple Behavior Instances and Sessions 162
4.3.1 Identification of Session Instances 162
4.3.2 Choosing Session Instances with select 163
4.3.3 Reflecting on Sessions with exists 164
4.3.4 Modeling of Filters . 165

4.4 Mapping to the Component Model and Implementation 165
4.4.1 Component Model . 165
4.4.2 Mapping of Single-Session Collaborations 166
4.4.3 Mapping of Stateless Multi-Session Collaborations 167

xx

4.4.4 Mapping of Stateful Multi-Session Collaborations 167
4.4.5 Mapping and Implementation of select 168
4.4.6 Mapping and Implementation of exists 169

4.5 Concluding Remarks . 169

5 Design of Trusted Systems with Reusable Collaboration Models175
5.1 Introduction . 177
5.2 Trust Management Aspects . 180
5.3 Activity-Based Collaboration Models 182
5.4 Coupling Activities . 184
5.5 Implementation and Verification 188
5.6 Concluding Remarks . 190

6 Formalizing Collaboration-Oriented Service Specifications using
Temporal Logic 197
6.1 Introduction . 199
6.2 Specifications in SPACE . 202

6.2.1 UML 2.0 Collaborations 202
6.2.2 Activities for Elementary Collaborations 203
6.2.3 Activities for Compositional Collaborations 204
6.2.4 Multi-Session Collaborations 205

6.3 Temporal Logic and cTLA . 206
6.3.1 Simple cTLA Processes 207
6.3.2 Compositional cTLA Processes 208

6.4 Formalizing Collaborations . 211
6.4.1 Elementary Collaborations 211
6.4.2 Compositional Collaborations 213

6.5 Activities for Elementary Collaborations 214
6.5.1 cTLA Processes for Activity Elements 216
6.5.2 Production Rules for cTLA/c Actions 219
6.5.3 Example . 226

6.6 Composing Collaborations by Activities 230
6.6.1 Synchronous Coupling . 231
6.6.2 Asynchronous Coupling 232
6.6.3 Asynchronous Multi-Session Coupling 233
6.6.4 Final System Model . 236

6.7 Concluding Remarks . 237

7 Engineering Support for UML Activities by Automated Model-
Checking — An Example 243
7.1 Introduction . 245
7.2 Related Work . 247
7.3 Temporal Logic . 248
7.4 UML 2.0 Activities in the SPACE Approach 250

7.4.1 Informal Explanation of Activities 250
7.4.2 Semantics of UML 2.0 Activities in Temporal Logic . . . 252

contents xxi

7.4.3 Theorems for Well-Formed Activities 253
7.5 Developing and Model Checking the Example 254

7.5.1 Solution 1: A Naive Start 254
7.5.2 Solution 2: Improved Version with a Sequencer 255
7.5.3 Solution 3: A Building Block for Mixed Initiatives 256

7.6 Concluding Remarks . 258

8 Arctis and Ramses: Tool Suites for Rapid Service Engineering263
8.1 Introduction — The SPACE Approach 265
8.2 Support for Service Specifications in Arctis 267
8.3 Support for State Machines and Components in Ramses 268
8.4 Concluding Remarks . 268

III Appendices 271

A Tool Support for the Rapid Composition, Analysis and Imple-
mentation of Reactive Services 273
A.1 Introduction . 275
A.2 Composing Services from Building Blocks 277

A.2.1 Elementary Building Blocks 278
A.2.2 Composing Building Blocks 281

A.3 Automated Model Checking and Analysis 283
A.3.1 Semantics in Temporal Logic 283
A.3.2 Theorems for Correct Building Blocks 285
A.3.3 Error Trace Animation in Arctis 286
A.3.4 Automatic Diagnose and Fixes 288
A.3.5 A Building Block to Handle Mixed Initiatives 288
A.3.6 The Complete Treasure Hunt System 291

A.4 Automated Transformation . 292
A.4.1 State Machine for the Game Server 294
A.4.2 Correctness of the Transformation 296

A.5 Code Generation from State Machines 296
A.6 Related Approaches . 296
A.7 Concluding Remarks . 298

B Refinement Proof for a System 305
B.1 Introduction . 305
B.2 Semantics of the Activities in cTLA/c 307
B.3 Synthesized State Machines . 308
B.4 Semantics of the State Machines in cTLA/e 309
B.5 Refinement Proof cTLA/e ⇒ cTLA/c 311

xxii

C UML Profile for Collaborative Service Specifications 319
C.1 Introduction . 319

C.1.1 Token Flows in Activities 319
C.1.2 Activities and Call Behavior Actions 320

C.2 Building Blocks . 320
C.2.1 Block Type: Service Collaborations 321
C.2.2 Block Type: System Collaborations 321
C.2.3 Block Type: Activity Block 322
C.2.4 Block Type: Shallow Activity Block 323

C.3 Collaborations . 323
C.4 External State Machines (ESMs) 324
C.5 Activities . 327

C.5.1 Activity Partitions . 327
C.5.2 Initial Nodes . 328
C.5.3 Activity Final Nodes . 328
C.5.4 Flow Final Nodes . 329
C.5.5 Decision Nodes . 329
C.5.6 Waiting Decision Nodes 329
C.5.7 Fork Nodes . 330
C.5.8 Merge Nodes . 330
C.5.9 Join Nodes . 330
C.5.10 Call Operation Actions 330
C.5.11 Variables . 331
C.5.12 Send Signal Actions . 331
C.5.13 Accept Signal Actions . 332
C.5.14 Timers . 332
C.5.15 Activity Parameter Nodes 332
C.5.16 Call Behavior Actions . 333
C.5.17 Pins . 334
C.5.18 Activity Edges . 334

C.6 Assertions . 335
C.6.1 Occurrences of Action Executions 335
C.6.2 Mutually Exclusive Actions 336
C.6.3 Upper Queue Bounds . 336

D Building Blocks and Patterns for UML Collaborations and Ac-
tivities 339
D.1 Local Flows . 340
D.2 Time . 342
D.3 Environment . 343
D.4 Mixed Initiatives . 344

contents xxiii

E UML Profile for Executable State Machines 347
E.1 Introduction . 347
E.2 Executable State Machines . 348

E.2.1 Complementary Java Classes 350
E.2.2 Variables . 350
E.2.3 Actions . 351
E.2.4 Timers . 352

E.3 Signals . 352
E.4 Classes and Components . 353
E.5 Packages . 353

List of Figures 355

Index 359

Part I

Introduction and Overview

CHAPTER

ONE

INTRODUCTION

Specifying reactive systems is surprisingly difficult. Even if the technolo-
gies for implementation and execution are mature and well-known, it’s hard to
specify precisely what the system should do in the first place. This is due to the
nature of the problems these systems should deal with; in reality, many things
are going on at the same time, and we want our systems to support this appro-
priately. If you have ever tried to organize a visit to the cinema with a bunch
of friends via telephone, where all of them had to agree on a certain movie and
time, you know that coordinating many participants in reality can be hard. As
we will later see, reactive systems decompose into physically distributed compo-
nents, running on different devices. On a very detailed level, it’s difficult to get
the interactions between the system components right, so that no communica-
tion errors arise. But the devil is not only in the details: Even if we treat all
interactions with accuracy, we also have to ensure that the system as a whole
works properly and the services offered to the environment do what we expect.

What surprises is that most of the problems, once identified and considered in
isolation, are well-known and actually not so hard to solve. It is rather the sheer
complexity of functionality that is difficult, when everything comes together.
Most likely, the complexity of systems will even increase as the number of devices
in our environment grows. Much of their value will depend on how we manage
to connect them. Nevertheless, specifying such systems must get much cheaper
and more flexible than it is today. It is therefore important that we find a way
to specify quickly and flexibly how these devices may be coordinated.

4 chapter one

Obviously, a specification technique should allow us to factor out problems
and reuse solutions. This seems to be quite difficult, however. One inherent
reason for that is that a reactive system can be decomposed in two orthogonal
dimensions [Mik99]: We can divide a system into its physical components that
are spatially distributed (sometimes called vertical decomposition), or we can
separate its logical functions from each other and describe the distinct services
a system offers to its environment (focusing on a horizontal axis). Tradition-
ally there was a strong focus on the vertical axis, i.e., the component behavior,
expressed for instance by SDL processes, since such a description is ultimately
needed to implement a system. However, as it has been argued in the literature
(see, for example [DA85, VL85, Mik99, RGG01, KM03]), the horizontal axis
has its benefits when it comes to the documentation of a system’s functionality,
which often involves several components: Typically, the most difficult prob-
lems involve several components and the necessary interaction between them.
It is therefore desirable to understand, specify and analyze collaborative behav-
ior among several components in a more explicit way than it is possible in the
component-oriented view. This had influence on numerous approaches and devel-
opment techniques, for example DisCo [JKSSS90], OORAM [RWL95], Use Case
Maps [BC96], Catalysis [DW99], Micro Protocols [GKS02], CoSDL [RGG01],
STAIRS [HHRS05] and [DKMR05], which allow us to specify collaborative be-
havior among several components using different techniques.

Despite these efforts, we think that there is much to gain by further exploiting
the collaborative perspective. We envision an approach in which collaborations,
that is, the local behavior of participating components as well as the necessary
interactions that are related to a certain distributed function or task, are the
major specification units. In particular, we want to model collaborations in the
form of encapsulated building blocks which can easily be composed with each
other. However, while such an idea may seem quite straightforward, it turns out
that it is hard to get right in practice. There are several difficulties that need to
be solved for such an approach to work:

1. The nature of the building blocks and how they can be combined with
each other is a challenge in the first place. On the one hand, they need to
be self-contained and encapsulated in some way, so that we do not need
to understand them completely just to apply them. On the other hand, it
should be possible to combine them flexibly with other specification units
so that new systems may be constructed from them.

2. When we want to use existing building blocks as solutions within composed
service specifications, it is important that these specification units preserve
their properties during composition and implementation, that means, that
their properties are also present in the resulting system.

3. Even if models of the collaborative view are beneficial for the specification
of services and the reuse of building blocks, the traditional, component-
oriented perspective is still needed for the implementation. That means,

introduction 5

although we like to think of services in terms of collaborations, we even-
tually need components. In many approaches used in practice, models be-
longing to these different perspectives need to be aligned manually, which
is costly and a source of inconsistencies.

To solve these problems, we employ reasoning in temporal logic. In particular,
we use three principles from the Temporal Logic of Actions (TLA, [Lam02]),
the compositional Temporal Logic of Actions (cTLA, [HK00]), as well as
DisCo [JKSSS90]:

1. To address the first problem, we formalize collaborative building blocks as
cTLA processes consisting of a set of actions and variables. As such, they
are operational and can be analyzed for arbitrary properties. Composition
with other building blocks is done using the principle of joint actions found
in DisCo and cTLA.

2. The composition of building blocks by joint actions enables the formal
principle of superposition [KS05], according to which the composition of
processes preserves the safety properties of all sub-processes. This ensures
that once established properties of the behavior of building blocks are in
fact obeyed by the resulting system.

3. To ensure consistency between collaborations expressing services and the
components of the implementation, we follow an automated approach, in
which components and state machines are synthesized from the collabo-
ration using a model transformation. Formally, these two views are con-
nected by a refinement relation, meaning that each step executed by a com-
ponent’s state machine maps to a step of the collaboration. This principle
ensures that properties exhibited by the service specification are present
in the final implementation as well.

However, even solving these problems is not enough to enable a user-friendly ap-
proach in practice; after all, tackling the complexity of systems is an engineering
challenge in which theory has to be accompanied by pragmatics, experience and
tools. For that reason, this thesis explicitly addresses theoretical and practical
aspects. Suitable notations for the building blocks and their effective compo-
sition need to be developed, preferably based on a standard to increase their
acceptance and the availability of tool support. For this purpose, we use a
combination of UML 2.0 collaborations to cover the structural aspects of collab-
orations, UML 2.0 activities to describe behavior and precisely compose building
blocks, and a special form of UML 2.0 state machines to capture their external
behavior in so-called external state machines or ESMs. We map the syntax of
these notations to semantics defined by cTLA processes, so that the composition
method of joint actions is mapped to the behavioral composition of activities by
control flows. In this way, the underlying formalism can be completely hidden
from the engineers. We provide tool support to demonstrate that the concepts
proposed are effectively usable.

6 chapter one

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Service Specifications
UML Collaborations,
Activities

Composition

cTLA/e

cTLA/c

Library
Reusable
Building Blocks

Generation

 Code

Transformation
 Model

Fig. 1.1: The SPACE Engineering Method (from Paper 6)

As a result, we describe a method for the specification of reactive systems,
SPACE, outlined in Fig. 1.1. For the design of a new system or service, col-
laborative building blocks are taken from libraries containing generally useful
functionality or domain-specific building blocks. Building blocks may realize
simple functions or entire sub-services. Missing functionality can be added as
new building blocks. Building blocks may be composed to realize more com-
prehensive ones. Due to the formal setting, building blocks may be analyzed
using model checking. Due to the compositional semantics, this happens in-
crementally, i.e., block by block, which reduces the state space that has to be
analyzed. Once a service specification is complete and consistent, it is trans-
formed into components and state machines from which code can be generated.
In practice, the approach is supported by the tool set Arctis, which has been
implemented as part of this thesis and allows us to use all the features described
in the following. From a theoretical point of view, SPACE specializes cTLA
with the two styles cTLA/c for collaborations and cTLA/e for executable state
machines. These styles can be expressed graphically using UML, as illustrated
by the dashed lines in Fig. 1.1, which connect the modeling used by engineers
with their semantics and logical reasoning in cTLA.

We believe that the languages and the tools offered make the method ap-
pealing to practitioners as well as theoreticians. All models used have formal
semantics and can be analyzed to ensure correctness, and the implemented tools
relieve engineers from repetitive tasks so they can spend more time developing
solutions for the specific problems of their domain.

1.1 Contributions

Through the eight publications presented in Part II, an engineering approach
for reactive systems is developed and presented. It comprises three key features

introduction 7

that enable a rapid engineering process without compromising quality:

1. Services as Compositions of Collaborative Building Blocks

Systems and services can be composed from existing, reusable solutions
encapsulated as building blocks. Building blocks may be collaborative,
meaning that they describe the local behavior of several components as well
as the necessary interactions between them. This increases the potential for
reuse, since solutions that require the cooperation of several components
may be reused within one self-contained, encapsulated building block.

This means that collaborations encapsulate the buffered transmissions be-
tween components, including necessary synchronization mechanism to en-
sure sound communication. This also means that collaborations are cou-
pled within components, i.e., under local control where no intercepting
medium is introducing communication delays, which makes their compo-
sition much easier to handle. With the syntax of activities, this coupling
is intuitively based on the wiring of building blocks.

2. Automated Transition from Collaborations to Components

The thesis describes an automated transition from collaborations to com-
ponents, so that engineers only need to build and maintain one model. In
particular, this approach avoids a difficult, and typically time-consuming
manual synthesis of state machines.

3. Incremental Model Checking and Automated Analysis

The definition of collaborative building blocks and their semantics in tem-
poral logic enable an incremental strategy for model checking, since each
building block may be checked separately, which reduces the state space
during analysis. Moreover, the knowledge about building blocks enables
a highly automated analysis process. Model checking can be performed
without intervention of the user, and results can be shown to the user in
terms of the original context of activities. This means that users do not
have to study formal techniques in order to use their results.

The innovations and novelties implied by these key features are discussed in
detail in the respective papers and summarized and discussed in Chapt. 6. The
papers, the appendices and the implemented tool support together provide a
rather complete set of artifacts needed for the development of reactive systems
and services. In particular, these are:

– Two specification styles in cTLA that formalize specifications in the
collaboration-oriented view (cTLA/c, Paper 6) and the derived specifi-
cations of the executable component-oriented view (cTLA/e, Paper 2).

– Two corresponding UML profiles. One covers the UML models of the
collaborative service specifications in terms of UML 2.0 collaborations,
activities and ESMs (Papers 1, 4, 6, as well as a summary in App. C). The

8 chapter one

other one covers the models for the executable state machines (Paper 2 and
App. E).

– A mapping from activities to cTLA/c (Paper 6) and an automated imple-
mentation of this transformation to TLA+ (Paper 7).

– A mapping from the collaborative service specifications in form of UML 2.0
activities (formalized by cTLA/c) to the executable state machines (for-
malized by cTLA/e) in Paper 3. The mapping is implemented as an algo-
rithm implemented in Java.

– A set of reusable building blocks and some design rules (App. B).

– Tool support with Arctis and Ramses that support the proposed speci-
fication style, the analysis of models as well as the implementation via
transformation and code generation. The tools are introduced in Sect. 4.5
and Paper 8, and App. A provides a more comprehensive example of their
application.

During our research we worked on several case studies and examples, presented
in the papers of Part II and App A:

– Paper 1 and Paper 3 present a classic example of an access control system
that was also used in [BH93] and [BS01].

– Paper 2 presents a small system to track the location of devices.

– Paper 4 uses the example of a taxi control system to demonstrate how
multiple instances of collaboration sessions may be coordinated.

– Paper 5 presents a larger and more complex example for the management
of trusted auctions.

– Paper 6 discusses a home automation system utilizing most of the features
of the approach to exemplify the formalization of collaborations and their
composition.

– Paper 7 uses an intricate example of a hotel wake-up alert to demonstrate
how model checking can be used to support engineers. Especially, a build-
ing block to handle mixed initiatives is introduced.

– Appendix A presents the example of a mobile treasure hunt, which we use
to demonstrate the composition, analysis and implementation using the
tool support provided by Arctis and Ramses.

1.2 Focus of this Thesis

We will focus on the complexity of reactive systems that arises from the coordina-
tion of tasks and necessary interactions of components. Algorithmic complexity,
that means the complexity of transformational operations on data, is not con-
sidered. For the UML activities, this means in particular that we concentrate

introduction 9

on the behavior expressed by control flows and largely ignore data associated by
object flows. An expansion to handle data flows is part of future work, outlined
in Chapt. 7. Moreover, we consider user interfaces as a part of the environment
that communicate with the system by means of explicit signal transmissions.

Although temporal logic is especially powerful to reason about liveness
properties in specifications, we focus on safety properties, following Lamport’s
advice that “most of your effort should be devoted to examining the safety
part” [Lam02].

1.3 Guide to this Thesis

The work presented in the following consists of three parts.

Part I: Introduction and Overview

Part I continues in Chapt. 2 with an analysis of reactive systems and services
where we discuss some of the reasons that make these systems difficult to specify.
In particular, we present a number of questions that have guided our research.
In Chapt. 3 we present a number of approaches and paradigms that form the
background of our work and that inspired our method. We discuss a number of
existing engineering approaches that are used to develop reactive systems. We
also introduce the temporal logics TLA, DisCo and cTLA. Since collaborations
are the primary specification units of our approach, we provide an overview how
this concept has been used by others for the development of systems. There-
after, in Chapt. 4, we present our method SPACE. It is a combination of different
specification styles, formalizations, graphical languages and mappings to develop
systems rapidly based on reusable building blocks. Chapter 5 summarizes the
publications included in this thesis. We discuss our results in Chapt. 6 by pre-
senting our answers to the research questions of Chapt. 2 and present related
approaches. We close in Chapt. 7 with suggestions for future work.

Part II: Included Publications

Part II contains eight peer-reviewed and published papers. They are presented in
an order that builds up the core of the approach with the first three papers, then
expands successively and demonstrates its use by means of several examples.

– Paper 1 [KH06] gives an overview of the specification style used in our
approach. It is based on a combination of UML 2.0 activities and collab-
orations and special state machines (ESMs) to document the externally
visible behavior of collaborations.

– Paper 2 [KHB06] formalizes the executable state machine models that are
the target of our development process and discusses their execution.

– Paper 3 [KH07b] describes how the service specifications can be trans-
formed automatically into the state machine models.

10 chapter one

– Paper 4 [KBH07] expands the approach and the transformation so that
also systems with multiple instances of components can be specified and
transformed.

– Paper 5 [HK07] demonstrates the feasibility of the approach with an exam-
ple from the domain of trust management systems, an electronic auction
system.

– Paper 6 [KH07a] formalizes the collaborative specifications in temporal
logic by describing a mapping of UML activities to temporal logic and
describing their composition.

– Paper 7 [KSH07] shows how the concepts of the approach can be used in
model checking, so that engineers can be supported during the design of
services.

– Paper 8 [Kra07] provides a brief overview of the tool support for the ap-
proach through our tools Arctis and Ramses.

A comprehensive overview of the contributions of each paper is given in Chapt. 5.

Part III: Appendices

– Appendix A presents a submitted journal article that provides an overview
of the entire approach using an example. It is written from an engineering
perspective and presents the different steps of development, illustrated
with screenshots of the tools.

– Appendix B executes a refinement proof for a system example showing
that a set of state machines synthesized by the model transformation im-
plements the behavior described by the activities.

– Appendix C summarizes the modeling constraints and semantics for the
collaborative specifications based on activities by describing a UML profile.

– Appendix D provides an overview of building blocks and patterns we devel-
oped during our case studies. They cover different domains and concerns
and can be useful in many applications. We also explain some design rules
that should be taken as guidelines.

– Appendix E summarizes the conventions for the executable state machines
models on which our runtime model and the code generation is based. Like
App. C, the constraints are defined as a UML profile.

Ei pil og noen boksa
og sj̊a s̊a mange paradoksa.

CHAPTER

TWO

REACTIVE SYSTEMS: WHY THEY ARE
DIFFICULT

In this chapter we analyze some of the challenges that make reactive systems
difficult to specify and understand. After a consideration of reactive systems as
such and how they can be decomposed into physically distributed components
that can be described by extended finite state machines, we will argue that the
actual implementation of components once given in the form of state machines
is manageable. The difficulties are to create state machines for components in
the first place, and here we identify a number of challenges that will motivate
our search for solutions in the remainder of this work. In the end, we will state
the aims of this thesis in more detail by posing the research questions directing
our work.

2.1 Reactive Systems and Reactive Components

The systems in focus of our interest are reactive, which means, as Pnueli explains,
that they “maintain some interaction with their environment” [Pnu86]. The
environment consists of users and other components that are not under the
direct control of the system. As an example, we consider a system supporting the
transactions of an electronic auction, depicted on the left hand side of Fig. 2.1.
The system serves entities in the real world, namely a buyer, a seller and an
auction house.1 Since these real-world entities reside at different places, the
system is necessarily distributed. Depending on some design decisions, it may
have the structure as shown on the right hand side of Fig. 2.1, where each of the
real-world entities corresponds to a dedicated system component. Pnueli argues
further that a component of such a system should always be viewed as a reactive
component, as it “maintains a reactive interaction with the other components in
the system” [Pnu86].

1The example is discussed in detail in Paper 5. We currently disregard the fact that there
are several potential buyers from which only one wins a bid.

12 chapter two

System

Buyer SellerAuction House
Environment

Buyer SellerAuction House
Environment

System

c1 c2 c3

Fig. 2.1: An auction system

In the following and throughout all included publications, we mean by com-
ponents separate units that each have their own threads of control and can be
separately deployed and executed. Other terms used in the literature are, among
others, agents [ITU02], actors [SGW94, BHM02] or active objects [Obj07b]. Ob-
jects in the sense of encapsulated data as used in object-oriented programming
are in the following called passive objects, objects or simply data.

In order to decouple components from each other and to prevent that a com-
ponent has to block or wait actively until another component answers a request,
an asynchronous communication scheme is used, in which signals are transferred
via a medium that can be seen as a buffer. This is a quite flexible and general
communication paradigm, allowing for symmetric peer-to-peer communication,
as often necessary by the systems we consider. For a discussion of this commu-
nication paradigm, see for example [BF04].

2.2 Now, What’s So Difficult?

In the following, we will discuss the difficulties that can arise when specifying a
reactive system. We found it convenient to present our arguments in the form
of a dialog, inspired by [Lam89]. Although we want to focus on the problems,
one of the participants obviously already has some vague ideas about solutions
that influence the discussion.

When we build a reactive system, we eventually have to construct its reactive
components. But how do I describe these components?

The reactive behavior of the components can be expressed using a notation that
connects a stimulus (for example the reception of a signal) to a response, that
means, local actions and sending of signals to other components. Such a notation
is provided for example by extended finite state machines. A component can be
described by a single state machine, but often we find several state machines
within a component. State machines have been used for several decades, and
are standardized for example by the processes in SDL [ITU02]. We will later
discuss this in Paper 2, where we formalize this notation and align it to the
current standard of UML, which offers similar notations.

reactive systems: why they are difficult 13

Can’t I write code right away? Why do I need the state machines?

You could program right away, if your system is really small or only contains
very simple interactions. For systems of realistic size, however, you will likely
fail. The problem is the complexity introduced by the concurrency of the com-
ponents. Even though programming languages may support concurrency by
synchronization mechanisms and threading, these concepts do not always scale
to the needs we have (see, for example [Bræ79]). Using state machines, how-
ever, enables an effective scheduling scheme by an additional layer of process
multiplexing introduced by a special runtime support system, as discussed for
example in [BH93, San00] and Paper 2. This prevents numerous errors related
to the synchronization of tasks and threading. We can look back on several
decades of this practice, going back to early telephone switching systems and
methods as for example SOM [Bræ79].

That’s about 30 years ago. I guess someone has come up with modern platforms
that work completely differently. Is this still relevant?

You will be surprised how little really has changed. There may be new languages,
new standards and new technologies, but the underlying principles are still the
same. And they are very well applicable to a range of more recent platforms, as
well. For the remainder of our work, we will therefore see the state machines as
the target of our development efforts. Once we have the state machines, it is a
rather technical task to implement, deploy and execute them. We have provided
code generators [Stø04, Kra03] that produce executable components from them,
as described later in Paper 2.

Where’s the problem then?

Getting the components with their state machines right in the first place is a
major challenge. Most of the functionality provided by the systems we consider
can only be provided by cooperation of several components. This implies that
their behavior needs to be synchronized and coordinated, which, given our asyn-
chronous communication mechanisms, means that signals have to be exchanged
correctly. We can also speak of the interactions between a pair of components as
conversations. With an increasing number of interconnected and communicating
components, a component also needs to integrate more of these conversations,
to serve its communication partners properly.

I remember creating a state machine on my own. It was a small example, just
one state machine talking to three other components. I had to look all the time
into the state machines of the other components to ensure they were compatible
and pay attention not to forget anything. Luckily these state machines were easy
to debug — I got notified once a signal arrived in an unexpected state. So I added
transitions here and there, and in the end, it worked. But that was a tough job.

14 chapter two

Exactly. When doing this manually, for example by designing an SDL process
communicating with several other components, we have to be aware of which
signal may arrive from the other components, and which signals they are waiting
for. This means that we have to be aware of the state of conversation with each
of the communication partners in all of the control states of the state machine.
Seen from a practical point of view, that means we have to consider the state
machine diagrams of all the other communication partners while designing the
new one. While this may be acceptable for the communication with one partner,
holding control over several ones may obviously cause some headache.

Oh, yes...

But that is not the only difficulty when creating state machines. We also must
take into account that signal transfers are necessarily delayed, due to the com-
munication medium. This may lead to some intricate overall behavior with race
conditions and conflicts that makes it necessary to send additional signals to
resolve these situations. So besides looking at all the other state machines of
the communication partners, we also have to consider the possible state of the
communication channels.

I guess that’s why my system still crashes sometimes — my test cases probably
did not cover all of these cases. Maybe I should have applied model checking to
my system?

Model checking is quite powerful. It means to examine all reachable states of
a system and check if some of them harm general assumptions like freedom of
deadlocks, or more specific invariants like for example the exclusive access to
some resources. However, it is again the complexity of the systems that lets this
kind of examination quickly come to its limits as well. The number of states that
have to be examined often grows exponentially with the size of a specification.
This has as a result that the model checking either takes a long time, or exceeds
the memory limit of our machines. This problem is well-known and also called
state space explosion.

Ka-Boooom!

Exactly. To handle this problem, either the state space must be kept reason-
ably small by partitioning the system into different parts that can be checked
individually, or a simplified version of the system must be checked.

Couldn’t we just describe the interfaces of those components we are communi-
cating with, so that automatic checks get manageable?

A very good idea, indeed! Such behaviored interfaces, as we may call them, are
described for example in [CFN03, BK98, Men04, dAH01]. In [Flo03] such an

reactive systems: why they are difficult 15

idea is realized for SDL processes, where the observable behavior of a compo-
nent towards another one is abstracted by a projection. Using this projection,
an algorithm can check if your state machine under construction actually com-
municates correctly with the other components. And that works even without
examining the state space of the entire components, so that the algorithm is
very quick.

So then the algorithm is taking care of my troubles?

With the algorithm you may find errors related to a conversation between pairs
of state machines, but you still have to write the state machines manually. We
can call that a corrective approach, that tells you when you did something wrong.

But I guess the projections also help me to construct the state machines?

Yes, they do. Instead of looking at an entire state machine, you just have to
look at the projection, which of course is easier. To a certain degree, this can
also be used by a tool. In fact, we have experimented with tool support for
the synthesis of state machines based on given behavioral interfaces in [Gis06].
While such a tool can reduce the effort to edit state machines and can prevent
the introduction of errors in the first place, we still have to deal with difficult
synchronization situations manually.

That still sounds like many problems are solved?

There are some more challenges. In our eagerness we focused on how to initially
write down correct state machines. But writing them down, even if correctly,
does not mean we are finished. As you know, specifications (just like programs)
are only written once, but usually read many times more often. So we should not
only consider how costly it is to create a state machine, but also how costly it is
to understand it again after its creation, and how costly it is to change it. If all
the conversations are tightly interwoven with each other, this is difficult. Instead,
we should try to to retain the original conversation towards one interface, maybe
in some kind of building block. To synchronize the different conversations, we
connect the building blocks somehow. In this way we could see at a glance
how the different conversations are synchronized. Changing some conversation
would probably only affect the internals of the building block. Adding a new
conversation would change maybe at some points how the conversations are
connected, but not their internals.

Okay. I’m starting to understand. Given the situation that we design the entire
system, you would like to have an approach where we can select building blocks
that solve our problems and compose them together. The composition has two
benefits. First, we can quickly get a solution as we do not have to write specifi-
cations completely from scratch. Second, once we have a finished specification,

16 chapter two

the fact that it is composed of building blocks helps us to understand it, as we
may already know some of the building blocks. Right?

Right! You already went into reuse of specifications, a very important issue.
But let us stay for a moment at the correctness of specifications. Beyond the
correctness of the separate conversations between the components we just dis-
cussed, also the overall behavior of the system has to be performed correctly
by the set of components. In the auction system of Sect. 2.1, for example, it is
important that only one of the buyers gets the bid accepted, and that the others
loose the auction — a typical case of mutual exclusion. Such a property goes
beyond pure protocol correctness and we need to consider the overall behavior,
not only interfaces or single conversations.

Let me guess — model checking is still in the race? What about the ka-boooom?

We have to find a clever way to reduce the state space during model checking.
Maybe it is possible to use model checking incrementally, that means each build-
ing block of a system separately. And then we could use composition principles
that tell us what we get when combining these building blocks. We even could
abstract building blocks by simpler models just showing their external events,
so that also compositions of building blocks may be model-checked.

That would mean that we decompose the system so that the state space gets
manageable. As an engineer, I like the idea with the building blocks. But won’t
it be very hard to express the conversations with them, I mean, separately, as
you emphasized, and then precisely compose these conversations together with
the same power as if I compose my state machines?

I have some ideas, especially if I look at the way temporal logic allows us to
compose specifications. There you can have both; processes that are complete,
self-contained and operational. Yet you can compose each detail of them together
with other processes by joining their actions in a kind of instant rendezvous, also
called joint action.

Sounds interesting. But I’m still thinking about the state machines. One draw-
back of them is that one state machine only describes one side of some func-
tionality. As mentioned before, often I have to examine several state machines
just to find out what the system does. Look for example at Fig. 2.2. I have
drawn the components of the system and considered which responsibilities they
have in the system, similar to CRC cards.2 A buyer, for example, is involved in
bidding for a product, retrieving trust from the reputation server, reporting back
experiences about the seller, and in the end participating in a trusted sale. The
other components have similar tasks. If I want to understand the trusted sale,
for example, I need to look at the specification of the auction house, the buyer
and the seller. That is cumbersome. Am I the only one noticing that?

2CRC cards originate from the technique Class, Responsibilities, and Collaborators by Beck
and Cunningham, described in Sect. 3.4.8.

reactive systems: why they are difficult 17

Buyer
Bid for Product
Trust Retrieval
Report Experience
Trusted Sale

Seller
Offer Product
Trust Retrieval
Report Experience
Trusted Sale

Reputation System

Trust Retrieval
Report Experience

Auction House
Bid for Product
Trusted Sale

Fig. 2.2: Components of the auction system

What you are referring to is a problem also discussed in literature. The role
models of OOram [RWL95], for example, emphasize the collaboration of objects.
Mikkonen and Kurki-Suonio describe this as the two perspectives on an archi-
tecture [Mik99, KKSM04]. Many others have acknowledged this cross-cutting
nature of services as well (see, for example [KM03, RGG01, FK01]). The ser-
vice specifications described in [vBG86], for example, cover behavior executed
at several places.

You used the new term “service.” What exactly do you mean by that?

The term service is used with different meanings. A characterization of them
can be found in [QSPvS07]. For us, a service is simply some identified function-
ality that a system offers to its environment. This often requires that several
components of the system work together, hence the cross-cutting, horizontal na-
ture of services. A system can offer several services. How exactly you divide
the systems functionality into services, is up to you. In telecommunications, we
would often like to develop, deploy and maintain services separately, so that a
service can also have aspects that go beyond pure functionality, which, however,
we will not discuss in the following.

When we talk about a service specification we mean a complete functional
description of a behavior necessary to execute a service, that means the necessary
interactions as well as the local behavior of the participants. With the term
collaborative service specifications we emphasize that services span over several
components and that they may be composed from other services, also referred
to as sub-services.

Indirectly you already have identified the services in Fig. 2.2. If we rearrange
them and introduce two decomposition axes, the point with the services gets
clearer, as in Fig 2.3. It is inspired by a similar figure presented in the SISU
report [BMP95] and resembles the hat stand synthesis model of roles presented
in OOram [RWL95]. The horizontal axis shows the components of the system,
while the vertical axis shows the sub-functionalities between the sub-sets of par-
ticipants. Obviously, the notions of reactive components and reactive services
are orthogonal to each other. While components are a structuring mechanism
for the physical composition of a system, services are a structuring mechanism

18 chapter two

Bid for Product

Offer Product

Report Experience

Trust Retrieval

Trusted Sale

Buyer

buyer

buyer

client

client

Auction House

mediator

auctioneer

auctioneer

Reputation System

server

server

server

server

Seller

seller

seller

client

client

Components

Functions

Fig. 2.3: The auction system decomposed into its components and functions

for the system’s functionality. On the horizontal axis, the conversations can be
seen between the components that are necessary to coordinate their execution.

In the auction system, this means that a complete auction can be decom-
posed into sub-functionalities, such as offering a product, bidding for a product,
interacting with the reputation server and eventually dispatching the trusted
sale. Note that functionality can be decomposed over several levels and not just
one as shown here. In Paper 5 we will see, for example, that the trusted sale
sub-functionality can in turn be decomposed into more elementary functionali-
ties. In Sect. 3.4.10 we will come back to this figure and present it in a more
convenient, more recent and standardized form.

I see. This figure instantly provides an overview of the functions. I like it. And
I guess these horizontal tasks can be described for example by message sequence
charts?

That’s one possibility, yes. And indeed, they have been used for a long time
as well, to complement the aspects not covered by state machines. But remem-
ber there are also other types of diagrams to choose from when showing cross-
cutting behavior, as for example Petri nets [Mer79], activities [Obj07b], use case
maps [BC96], or non-graphical descriptions like joint actions, for example from
the DisCo language [JKSSS90].

reactive systems: why they are difficult 19

So the state machines aren’t that great, after all?

Be careful, we are speaking about the horizontal axis now, covering collaborative
behavior. For such collaborative behavior, state machines may not be the ideal
notation for a specification, as we discussed. But they are still the best way
to specify the reactive behavior of components. Remember the platforms and
experience we have for their execution, that’s nothing you simply want to throw
away. And there really is no need for it, either.

Then you advocate two description forms?

Yes. One description form to capture the collaborative behavior of the system
which tells us what each service does and how they are composed from sub-
services. Another one to describe how the components execute their behavior,
and here, as you may imagine, we use state machines. Most of the approaches
characterized in [AE03] use two description forms, often with state machines as
the one close to an implementation.

That sounds idealistic to me. It already takes lots of persuasion to get program-
mers to model state machines. And now they should use some other description
in addition? Even if you actually get them to write these two models initially,
they will never maintain both of them when they change the system’s implemen-
tation. The result of that idea is that you have some sketches of the services in
a collaborative model, which, however, are completely out of sync with the actual
components.

We already mentioned code generation from the state machines. If code gen-
eration is completely automated, having the code synchronized with the state
machine models can be done by re-generating it once the state machines changed.
A similar strategy should also work from collaborative service specifications to-
wards the state machines. The state machines could be derived from the collab-
orative models automatically, which then are the only specification of the system
that is edited manually. The surveys in [PS91, AE03, LDD06] give an overview
of some existing approaches. Often, state machines are derived from scenario
descriptions given for example by MSCs, but also other languages are used. For
such an approach to be effective in our setting, we have to develop a completely
automated transformation from the service specifications that also takes into
account the idea of composing reusable and encapsulated building blocks and
the notation that we are using for them.

But now we are already starting to talk about possible solutions. Let’s stick
to the problems. That was just to make clear that we can keep state machines
and also have collaborative specifications.

I guess one challenge is how to specify the services in such a form that the
behavior of the components can be completely derived from them?

20 chapter two

Yes. And this does not only mean that we have to describe the precise behavior
of the trusted sale, but also how this functionality (or sub-service) is connected
to the other functionalities, for example the trust retrieval. Only if we manage
to address that as well, there is a chance that we can derive the components
completely automatically.

That also puts the idea of the reusable building blocks in a new light. I guess
we are not reusing elements of the component-oriented perspective, the state ma-
chines, but elements from the collaboration-oriented one? I just wonder, weren’t
components with state machines designed to be reusable?

Our experience with the reuse of components in our kind of systems is rather
discouraging. Especially for application-specific functionality, reuse of entire
components is quite limited. Granted, there are some components, usually those
providing very basic functionality, that can be directly reused. However, we have
seen how nicely the example in Fig. 2.3 could be decomposed into small, col-
laborative functions like the trust retrieval. It seems more likely to find another
application that may reuse the trusted sale than the entire component of the
buyer, for example. So there is a potential of reuse far beyond what components
give us as soon as we look at the services and sub-services of the horizontal
perspective. Speaking of that — do you remember the problem of the mixed
initiative3 you once had?

Yes! Identifying the mixed initiative in the first place was hard, but then I used
the solution proposed in [Flo03] and it worked. I had to add several transitions
to both state machines. That was a bit tricky, since it was not possible to just
copy the solution and paste it into my state machine. I had to understand the
solution first and apply it manually, as the state machine was also handling
another conversation, so that I had to interweave the states of the solution with
the ones I already had. But after a while I got it right.

Good job. And the right way to do it if you have state machines. But now think
of the idea with the building blocks. Wouldn’t it be great if you just could reuse
a building block solving exactly that problem? As the problem involves several
parties that have to be coordinated, the building block should be collaborative,
in other words address the behavior of more than one component. This means
we would define this building block on the level of collaborations and services.

That sounds quite good. Maybe these building blocks could also solve another
issue with the state machines: I know my state machine is correct now, but
please don’t ask me to change anything. Then I would have to understand each
transition and which problem it solves again.

That happens if applying a building block means you have to look into its de-
tails. In the state machine, for example, you have to apply the solution to the

3Mixed initiatives are discussed in Paper 7.

reactive systems: why they are difficult 21

transitions that already handle other functionalities or conversations, and that is
complicated. Instead, we should refer to a building block that stays structurally
intact, so that we can recognize it when we read our specification again. Maybe
that is possible with some diagrams of the collaboration-oriented perspective.

If I remember right, model-checking was part of a solution. However, I think it
is sometimes quite difficult to apply.

It’s not that difficult. But I agree, some engineers may want to focus on their
problem domain and not spend the effort and learn model checking or formal
methods in general. Maybe we can help here with some tool support. In some
cases we could automatically find design flaws.

Then the users would not even notice that they actually use formal techniques
to check their design. Smart. I think I have read about this idea in [Rus00].
However, I have bad experience with modeling tools so far. Some are more like
drawing tools for UML or SDL. They often tell me nothing really interesting
about my system.

The tools you talk about have the sheer impossible task when they want to im-
plement for example the UML standard. That is only a language, not a method
in itself. But to create good tools, you certainly have to know in which way the
users want to work, which means you have to know about the method. Captur-
ing all features of UML may be too much for a single tool, which then has to
be quite generic — a drawing tool, as you say. You, for example, use state ma-
chines as executable specifications for reactive components. Another customer
could use them for an abstract business process. A tool really helping you in
validation and verification has to know more about your domain of application.
Therefore, we should always be aware of the execution semantics underlying our
models. And for that we have a solid basis with the executable state machines,
no matter what ideas we develop for the collaborative perspective. �

2.3 Research Questions

The introduction as well as the fictional conversation in the last section raised
some questions that have established the objectives of this thesis. As an overall
question, we ask:

1. What should be the basis for an expressive approach that lets us
rapidly compose services from reusable elements?

We argued in the previous section, that the potential for reuse is higher if the
reusable elements are part of the collaboration-oriented perspective, so that func-
tionality involving several components may be reused directly. However, for the
implementation, we still need the description of separate components that de-
scribes how they coordinate the different services in which they participate. This
poses another question:

22 chapter two

2.1 How can we bridge the gap between collaboration-oriented, hori-
zontal models focusing on functional decomposition of a system into
services, and vertical models decomposed into components?

If the components with their state machines could be synthesized completely
automatically from a collaboration-oriented specification, consistency between
both perspectives could be ensured by construction. We narrow and rephrase
therefore the previous question by asking:

2.2 Can state machines and components be synthesized completely
from collaboration-oriented specifications?

A prerequisite for a positive response is that collaboration-oriented models are
more than just incomplete scenarios that guide a manual design step for com-
ponents, but specify the complete system behavior. This implies two detailed
follow-up questions:

3.1 How can collaborative elements be expressed separately and in a
self-contained, complete way?

3.2 How can collaborative elements be composed, so that detailed de-
pendencies between sub-functionalities can be expressed precisely?

We pointed out in the previous section that reuse only unfolds its full potential
if reused elements stay structurally as well as behaviorally intact after their
composition, so that the acquired knowledge about a building block can be
reused as well. As we want developers to work on graphical models as provided
by UML, we ask:

4. Which (graphical) notation supports a flexible, precise composition
that preserves the integrity of building blocks?

We anticipate that the application of formal methods and model checking will
play a major role in ensuring value and consistency of specifications. We al-
ready acknowledged that model checking faces the challenge of complexity, and
therefore ask:

5. Can the individual reusable elements be analyzed separately?

Analyzing reusable elements separately is only valuable if we can ensure, that the
composed ensemble maintains the properties of the individual building blocks.
Furthermore, related to questions 3.1 and 3.2, we must ensure that also the
executable system that is derived from the composed building blocks is correct,
and we ask:

6. How can the correctness of a composed and eventually imple-
mented system be ensured?

reactive systems: why they are difficult 23

Many developers avoid using formal methods as they fear the initial costs of
learning these techniques or do not see an immediate benefit for their problem
domain. We therefore pose our last question:

7. How can the threshold to applying formal analysis be kept low for
a practitioner?

We will elaborate our answers to these questions in the papers of Part II, and
recapitulate them in our discussion in Chapt. 6.

CHAPTER

THREE

BACKGROUND

The research questions posed in the previous chapter are not of a pure scientific
character. To answer them, we also need to consider the overall engineering
process for system development. There exists a considerable number of meth-
ods that guide the development of software and systems. Not all of them are
targeted specifically at the design of reactive systems; their focus varies from
object-oriented design over the design of embedded real-time systems to the
specification of telecommunication systems. We limit ourselves to methods tar-
geting reactive systems using the standards of SDL and UML in Sect. 3.1, since
the components that we eventually generate are based on models originating
from these approaches. In particular, we will discuss SOM in Sect. 3.1.1 as it
establishes the execution mechanisms based on state machines that we will use.
In Sect. 3.2, we consider model-driven development and in particular the Model-
Driven Architecture and how it relates to the discussed engineering approaches,
since we want to make a model transformation a part of our approach, as we
already outlined in the previous chapter. Because our reasoning is based on
temporal logic, we introduce in Sect. 3.3 briefly the Temporal Logic of Actions,
TLA, as well as the two related logics and approaches, DisCo and cTLA. In the
previous chapter we motivated our interest for the notion of collaborations and
anticipated that this concept will be used as major specification unit in our ap-
proach. We will therefore consider in Sect. 3.4 how the notion of collaborations
has been used in other approaches, and how this concept evolved over time.

3.1 Approaches Based on SDL and UML

For the development of reactive communication systems based on the Specifica-
tion and Description Language (SDL, [ITU02]), a number of methods have been
developed, among them SOM [BHS81], TIMe [BGH+97], SPECS [OFMP+94],
and SOMT [Tel02]. While these approaches vary in their details and empha-
sis of certain aspects, partly due to the evolution of the SDL standard, they

26 chapter three

have many similarities. In fact, an appendix [ITU03] of the SDL-92 standard
contains guidelines for using SDL that are based on most of these existing ap-
proaches. The current standard contains a revised version of these guidelines
called SDL+ [ITU97b] (see also [Ree96]). Two methods that contributed in par-
ticular to the design and execution models for our approach presented were SOM
which is presented in Sect. 3.1.1 and TIMe which is presented in Sect. 3.1.2.

The Unified Modeling Language (UML, [RJB05]) has its origins in the meth-
ods Booch [Boo91], OMT [LSR87, RBL+91], as well as OOSE [JCJÖ92] and
focuses on object-oriented software engineering. A number of other approaches,
notations and methods are built upon UML and have contributed to its evolu-
tion, for example by extending and elaborating its notations or building semantic
foundations. Examples are Catalysis [DW99], Executable UML [MB02] based
on the Shlaer-Mellor method [SM92], and ROOM [SGW94]. A survey of other
object-oriented methods can be found in [Wie98].

Although UML is merely a meta-model and collection of languages and not
a method, it shapes to a large degree how systems can be specified. Methods
specifically addressing UML are for example the Unified Process [JBR99] or
its commercial version from Rational, RUP [KK03]. UML also has a central
position within the model driven architecture, as we will present in Sect. 3.1.3.
We will have a closer look at ROOM in Sect. 3.1.3 and present Catalysis with
a focus on collaborations in Sect. 3.4.7. With its version 2.0 [Obj05], UML
was considerably revised and contained elements from Catalysis, ROOM and
especially SDL and MSC. We will present the aspects of UML 2.0 relevant for
this work in Sect. 3.4.10 and the papers of Part II.

3.1.1 SOM, the SDL-Oriented Method

The work with SOM1 [BHS81] started around 1976 to offer method guidelines
for the design of telecommunication systems. Complementary to the descrip-
tion of behavior based on state machines, SOM provided structural diagrams,
which were not supported by early versions of SDL. These structural diagrams
show processes connected by signal channels and identify processes with spe-
cial categories of functionality, as for example resource allocation, translation
and routing. In addition, SOM made use of graphical situation descriptions
embedded into state symbols to characterize states for ease of understanding
and validation. The early versions of SOM used simple sequence diagrams and
story boards (so-called cartoons) to specify scenarios. This was later replaced
by MSC, and the EFSM notation was replaced by SDL processes when these
languages matured.

SOM not only dealt with the definition of system designs, but also with imple-
mentation and execution issues. To implement a system, SOM by default used a
runtime support system (RTS) for extended finite state machines (EFSMs) that
was shared among many state machine instances. This provided a lightweight

1The acronym SOM was initially spelled Structure-Oriented Method. This name was later
adjusted to emphasize its suitability for SDL.

background 27

concurrency support that was necessary since the concurrency support offered
by programming languages such as CHILL [Rek82, ITU99] is “too general to give
an efficient implementation” [BHS81]. Instead, the EFSM support introduces
an additional multiplexing level for processes. Since the execution times for each
transition is negligible, no preemption among the state machines is necessary.
This enables efficient scheduling schemes and freedom in the realization of the
implementation mechanisms. The software architecture suggested by SOM is
divided into three parts:

– the EFSM support as described above, responsible for scheduling and ex-
ecution of state machines.

– interface software, for signal transmissions between components, using in-
put and output processes of the underlying hardware

– application-specific procedures called by the transitions of the state ma-
chines and the corresponding data.

As we have argued in the previous chapter, this architecture is still useful in
combination with current technologies. For that reason, we will take SOM’s
execution model for state machines also as basis for our approach, as we will
present in Chapt. 4 and detail in Paper 2 of Part II.

3.1.2 TIMe, The Integrated Method

TIMe was developed in the SISU projects [SIS96], that were carried out between
1988 and 1996. The method is covered in a textbook [BH93] and further elab-
orated in an electronic handbook [SIN99]. While the execution and modeling
paradigms based on the state machines were largely carried over from SOM,
TIMe integrated the now matured version of SDL with the use of Message Se-
quence Charts (MSC, [ITU04]) and some parts of UML: UML to capture objects
and their relations, MSCs to specify interactions between components, and SDL
processes for the local behavior of components.

TIMe supports the two perspectives on systems outlined in Sect. 2.2 by
distinguishing between objects and properties. Objects correspond to what we
call components, i.e., the description of structural parts in the system, how
they are composed and connected, and what their behavior is. Property models
describe properties of objects or groups of objects from the outside. Property
models were mainly expressed by MSCs. For object models, UML classes and
SDL processes were used.

Similarly to other methods, TIMe distinguishes between problem analysis,
specification, design, implementation and instantiation. During the specifica-
tion, properties are described. TIMe gives advice on how to build designs in the
form of SDL processes based on these properties, and how they are kept consis-
tent with the property models. While tools may help for the alignment of some
elements (for example to ensure that signal names in MSCs correspond to those
in SDL processes) this alignment is mostly carried out manually. TIMe further

28 chapter three

describes the implementation design, i.e., how to implement an SDL description,
and discusses the mechanisms for execution.

TIMe proposes the usage of frameworks as a means to organize reuse across
system families. Following this approach, a system is partitioned into an
application-specific part and an infrastructure part, where the latter can be
reused in other systems. As an example of this type of reuse we refer to Ser-
viceFrame [BHM02]. In this framework, system components (called actors) are
amended with some default behavior that can be used to create sessions between
them, using a dedicated protocol. The default behavior controls the life cycle of
actors, which consists of some management states (like idle and paused) and an
active state playing. Application-specific logic is added by extending the state
playing with transitions and logic.

Like most of the SDL-based approaches, TIMe has a strong focus on com-
ponents as the design units. Although collaborative behavior among several
components can be described by means of MSCs, direct reuse of such behavior
is rather difficult. Although some reuse is possible using the framework approach
explained above, in the end, application-specific logic must be provided in the
form of state machines for each participating component. We will therefore, as
already indicated in the last chapter, try to reuse collaborative behavior in a
more direct way, as described later.

3.1.3 Real-Time Object-Oriented Modeling, ROOM

Selic et al. describe ROOM (Real-Time Object-Oriented Method, [SGW94,
SGME92]), which uses many concepts known from SDL (see [Wie98] for a com-
parison). Similar to SDL, ROOM expresses system designs in form of inter-
connected objects, called actors, which have their own thread of control. The
behavior of these actors is described by state machines similar to Harel state
charts [Har87], called ROOM charts. They describe local behavior triggered by
signal receptions. Similar to gates and channels in SDL, actors send their mes-
sages via ports. In ROOM, however, protocol specifications may be attached to
ports, specifying the legal message sequences. The method is supported by tools
from ObjecTime (later Rational and IBM), and offers the animation of speci-
fication as well as automatic code generation [SGME92]. The code is executed
with help of a runtime system, based on similar principles as those described
in 3.1.1 (see [SFR97]). ROOM was later aligned with UML [Sel98] from which
UML-RT developed, and elements from ROOM found they way into UML 2.0.

The problems with reuse of collaborative behavior discussed already in
Sect. 3.1.2 also apply for ROOM.

3.2 Model-Driven Development and MDA

With the Model-Driven Architecture (MDA, [Obj03]) the Object Management
Group (OMG) described a framework for software development approaches and
argues for the extensive use of models within a development process and the

background 29

(possibly automated) transformation of these models to executable code. The
aim is to provide more independence from specific platforms, so that applica-
tion or business logic (as a valuable assets) does not have to be changed when
implementations evolve. As the MDA guide [Obj03] acknowledges and Sher-
ratt [She05] points out, these ideas are rather well-known. For example, Bræk
uses the term translation-based approach in [Bræ00] for an SDL based approach
that focused on the definition of models, the separation of application logic and
platforms and the use of automated code generation. Another term for a simi-
lar paradigm is specification-driven development, as used for example in [Pit06].
For that reason, it may be more accurate to understand MDA as a consolidation
or standardization effort to align languages, notations, viewpoints, techniques
and tools to enable such model-driven approaches in a range of domains. These
standards include

– a language called Meta Object Facility (MOF, [Obj06]) to define meta-
models for other languages, like UML,

– model-based transformation languages like QVT [Obj07a] to define auto-
mated mappings between models,

– profiling mechanisms, that means the extension of UML models by stereo-
types, for example to annotate models in order to guide transformations
and add semantics.

MDA declares three viewpoints on a system: a computation-independent
viewpoint, a platform-independent viewpoint and a platform-specific view-
point [Obj03]. The corresponding models are also referred to as CIM, PIM
and PSM. In SDL-based methods like TIMe, a computation independent view
may be provided by a property model, for example in form of MSC, focusing on
the interactions of the system with the environment. A SDL design consisting
of blocks and processes corresponds to a platform independent viewpoint (as
SDL specifications may be implemented on different middleware platforms and
programming languages). A concrete implementation derived from SDL, for ex-
ample in CHILL, would then constitute a platform specific model (see [BM05]).

Apart from the causal relationships of CIM, PIM, PSM and the resulting
implication on which models have to be elaborated or transformed in which
sequence, MDA does not explicitly specify a detailed development process and
gives only generic method guidelines. Therefore, MDA must be adapted in
order to provide working solutions. For instance, executable UML is related
to MDA in [RFW04]. In [BM05] and [KGW06], existing and established SDL-
based approaches are expressed within the framework of MDA. Using the profile
in [ITU07], SDL specifications can be expressed as UML 2.0 models, so that the
SDL-based approaches described above can be used with the MDA framework
as well.

The focus on modeling implied by MDA provides a good working ground for
formal techniques. Similar to work around the SDL language, formal approaches
can be used to define the semantics of models, analyze them or reason about re-
finement relations between models. For instance, STAIRS [HHRS05] defines se-

30 chapter three

mantics and refinement operations of UML sequence diagrams. In [GH04], Graw
and Herrmann use cTLA to formalize UML models on different abstraction lev-
els and show their correspondence by cTLA refinement proofs. Pitkänen [Pit06]
defines a specification-driven approach based on UML and the DisCo language
and formalism which also fit into the MDA framework.

For our work in the following, MDA is a technical framework in which we
define our UML-based models, their semantics by means of profiles, and bridges
between them by means of model transformations.

3.3 Temporal-Logic-Based Approaches

The model-based approaches as outlined above may be complemented by logic
reasoning. SDL, for example, has its semantics defined by means of the ab-
stract state machine logic and counts therefore as a formal description technique
(FDT). This is relevant when we want to describe the semantics of a language,
reason about properties of specifications and verify that an implementation actu-
ally implies the desired behavior expressed by a specification. For our work, we
have chosen temporal logic as basis for logical reasoning, since, as already men-
tioned in the introduction, we consider the properties of superposition, the joint
action composition and the refinement relations as a suitable means to ensure
consistency in our approach. Therefore, we introduce in the next sections the
Temporal Logic of Actions (TLA, [Lam94]), DisCo [JKSSS90] and compositional
TLA (cTLA, [HK00]).

3.3.1 Temporal Logic of Actions: TLA

The Temporal Logic of Actions (TLA, [Lam94]) is a variant of linear-time tempo-
ral logic. It describes behavior as an infinite sequence of states2, where a state is
an assignment of values to variables. Actions are defined as boolean expressions
on primed and unprimed variables. Primed variables refer to the next state, so
that an action can be true or false for a pair of states. If an action is true, it
describes a step between two states. Specifications are given as a conjunction
of an initial state and disjunctions of all actions. Liveness properties can be
added in the form of weak and strong fairness formulas that are conjoined to the
specification, as well.

In [AL95], Abadi and Lamport describe the composition of specifications
based on shared states. In this composition style, two components communicate
via a shared variable. Alternatively, composition can also be done by joint
actions [BKS88], as used for example in DisCo and cTLA. In a joint action,
several actions that are attributed to different components execute within the
same step (as conjunction). A taxonomy of these different composition styles is
given in [Lam02].

One important question during system development, as mentioned above, is
if a certain specification implements another one. In TLA, this implementation

2Finite behaviors are expressed by infinite ones which stutter from a certain state on.

background 31

relationship corresponds to logical implication. To prove a refinement relation-
ship, one can give a refinement mapping [AL91] that maps the variables of the
different specifications to each other, possibly introducing new ones. We give an
example for a refinement proof in App. A.

Specifications are written in the language TLA+. This language can (with
some restrictions) serve as input for the model checker TLC [YML99]. With this
tool, theorems on specifications can be verified mechanically. As usual in model
checking, once TLC finds a theorem violated, it presents an error trace, showing
the state sequence that leads up to the violation of the theorem. Details about
TLC are presented in Paper 7.

3.3.2 Distributed Cooperation: DisCo

The specification technique and language DisCo [JKSSS90] describes reactive
behavior of distributed objects based on the principles of action systems [BKS83]
introduced by Back and Kurki-Suonio. Although the principles used in DisCo
have been developed before the occurrence the Temporal Logic of Actions, the
semantics of DisCo are defined in TLA, as described in [Jär92, KS05]. Operations
involving several objects are expressed in form of joint actions [BKS88], which
describe a synchronization between the participating objects. Objects not part
of a joint action remain unchanged. Groups of related actions and objects are
combined in the specification units of DisCo, so-called layers.

Several layers can describe a system on various levels of abstraction, and
joint actions modeling a synchonization among several objects within one atomic
step may be refined to use certain communication mechanisms [KSM98, KS05].
The refinement of layers is based on the principle of superposition [BKS83]. A
superposition step extends an existing specification layer and yields a new one.
In a superposition step, additional variables and actions may be introduced.
However, each action must either be a new action (that means the original
specification stutters) or a refinement of an existing action. This is a constructive
way of refinement; it ensures that original safety properties are maintained, so
that the new specification implies the original one. With its syntax, the DisCo
language supports the definition and superposition of layers. Several layers may
also be composed with each other. Such a composition step corresponds to a
simultaneous superposition of the composed layers.

The superposition-based design allows different development strategies, de-
scribed in [KS05]. In a top-down manner, an initial abstract specification layer
may be refined until the desired degree of details is reached. Following a bottom-
up strategy, layers modeling system parts are composed until the total system
specification is obtained. In addition, following an aspect-oriented style, layers
may have a common predecessor but address different areas of concerns. These
different layers are then composed to a complete system specification.

With the DisCo tools [AKP01], specifications may be animated, and formally
verified using a mapping [Kel97] to the input of the PVS theorem prover [ORS92].

32 chapter three

3.3.3 Compositional TLA: cTLA

With compositional TLA (cTLA, [HK00]) Herrmann and Krumm describe an
extension to TLA that facilitates the composition of system specifications from
processes. There are two forms of processes, simple ones and compositional ones.
A simple cTLA process consists of variables and actions, similar to a TLA+ spec-
ification. Actions may only access variables declared within the same process.
Compositional processes declare instances of the processes. These instances are
composed using the principles of joint actions: Each joint action of the com-
positional process is a conjunction of actions of the instantiated sub-processes.
Each instantiated process contributes with exactly one action to the joint action:
either a regular action, or a stuttering step. Action parameters can be used to
pass values between process instances. Through these constraints, process com-
position in cTLA has the properties of superposition as described above for the
composition of layers in DisCo. To support the construction of valid process
compositions, cTLA provides a programming-language-like syntax.

The compositional style is especially useful when verifying systems, as we will
explain in Sect. 3.4.3, where we present the application of cTLA to the domain
of protocol engineering. Further details on cTLA are introduced in papers 2, 3,
6 and 7.

3.4 Focus on Collaborative Behavior

The engineering approaches based on SDL and UML presented in Sect. 3.1 ex-
press collaborative behavior mainly by means of MSCs or UML interactions,
often in the form of incomplete scenarios, without focus on the necessary local
behavior. In the following, we will discuss various other ways to specify collabo-
rative behavior, and pay special attention to approaches that express complete
behaviors.

3.4.1 Collaborations in Protocol Engineering

Communication between physical components is based on communication pro-
tocols, which are essentially collaborations: Not only must the exchanged data
units have specific formats, but also the sequence in which messages are ex-
changed between the protocol entities must follow certain ordering rules. In the
OSI reference model [ITU97a], collaborations are going on among the proto-
col entities within a protocol layer, utilizing the communication primitives (or
services, as they are called in that context) of the lower layers.

Different specification styles and notations have been used to specify proto-
cols, among them state machines, Petri nets, programming languages or com-
binations of these languages. A survey can be found in [BD02]. The different
languages put more or less emphasis on an explicit representation of the col-
laborations. In this context, Diaz and Azema [DA85] emphasize the suitabil-
ity of Petri nets as they “allow an explicit specification of the synchronization

background 33

constraints between different state machines”, while the “state machine repre-
sentation does not explicit the interactions that exist between machines.” Mer-
lin [Mer76, Mer79] describes a protocol engineering approach based on petri nets
and presents a specification of the alternating bit protocol where one Petri net
covers both protocol entities, the sender and the receiver. Similarly, Yamaguchi
et al. [YEFvBH03] use extended Petri net models covering several protocol en-
tities within one net, similar to the service specifications by von Bochmann and
Gotzhein in [vBG86].

Another explicit representation of collaborative behavior is used in the de-
scription of the transmission control protocol (TCP, [Pos81]). A state machine
is used to show the global states of a connection. However, the local behavior
necessary to execute the protocol is not included in this diagram. More tra-
ditional state/transition based instructions for each protocol side are given for
that purpose.

Despite these examples where collaborations are used in a quite explicit
manner, it seems that protocols are most often described with the local be-
havior of the separate protocol entities. The protocol for basic call control in
ISDN [ITU98] is for example specified by SDL processes for the user and the
network, alongside some MSCs that illustrate some scenarios.

3.4.2 Constraint-Oriented Specification Style

Bolognesi and Brinksma [BB87] introduced the constraint-oriented specification
style as one of four architectural specification styles [VSvS88, VSvSB91]. In
contrast to a component-oriented style (called resource-oriented in [VSvS88]),
where a system specification is decomposed into its physical components, in the
constraint-oriented style, a system is decomposed in to a set of constraints, each
one possibly spanning over several components. Therefore, constraints can be
applied to collaborative behavior, focusing on a certain concern or task. This is
especially useful in early design phases to capture requirements, as pointed out
in [VSvSB91].

In [BB87], this style was applied to LOTOS, and [Bol00] describes an align-
ment with the object-oriented principles of Java. Herrmann and Krumm [HK98]
used this style in combination with cTLA for the specification and verification
of communication protocols, as described in the following.

3.4.3 Constraint-Oriented Protocol Specification in cTLA

Processes in cTLA may not only represent physical resources of a system,
but also constraints spanning over several components, enabling a constraint-
oriented specification style as introduced above.

In [Her97, HK98], these properties are utilized to define a framework for the
specification of transport protocols in cTLA. This framework contains various
elements that can be combined to compose more complex protocol functional-
ities. Fig. 3.1 illustrates the construction of a communication service. On the
left hand side, the service specification, i.e., the externally visible behavior of

34 chapter three

N-ProtocolN-Service

Service Constraint 1

Service Constraint 2

Service Constraint n

...

A
P
M

A
P
M

A
P
M...

Entity S

A
P
M

A
P
M

A
P
M...

Entity R

(N-1)-Service

In Rq Cf In
S

Rq Cf
S R R

Fig. 3.1: Protocol specifications with cTLA (adapted from [Her97])

the service layer at the locations of the service access points, is given as a com-
position of basic service constraints, which the service must fulfill. These service
constraints span over both participants. Examples for such service constraints
are flow control or the absence of errors like re-orderings.

On the right hand side, the realization of this service specification is de-
scribed. Each protocol entity is composed of a number of abstract protocol
mechanisms (APM) that model basic functionality, as for example the man-
agement of sequence numbers. For the communication between the protocol
entities, a lower layer service specification is used, in turn described as a service
specification composed of individual service constraints.

The approach enabled by cTLA has properties that help to verify behav-
ior: To prove that a certain set of protocol mechanisms fulfill a certain service
constraint only a subgroup of service mechanisms (together with the underlying
communication medium) have to be composed and considered. Due to the prin-
ciple of superposition that holds for the process compositions, constraints can
be composed together and the resulting system specifications obeys all of them.
For this reason, we will use cTLA as semantic foundation for our method, as we
will discuss later.

3.4.4 Collaborative Behavior in DisCo

As described in Sect. 3.3.2, the joint action specifications of DisCo describe be-
havior among its objects. Often, those joint actions and objects are grouped
together within one specification layer that serve some common task, similar to
the way we have decomposed the example in Sect. 2.2. In earlier work [KSK88],
Kurki-Suonio and Kankaapää model a telephone exchange system, in which col-
laborations among participants are described explicitly using virtual objects.
These objects describe the abstract states of the system as they occur in the
initial (textual) description of the system requirements. As they do not directly
interfere with the resources in the system, they can be seen as observers for be-
havior going on between the participants of the system and therefore also called
wiretappers. Their behavior can be described by state charts, similar to the de-
scription used in the TCP protocol documentation described above. In this way,
the collaborative description style from requirements is maintained and terms of

background 35

s: Sellera: Auction
House

r: Reputation
Serverb: Buyer

offer product
trust retrieval

report experience

trusted sale

bid for product

report experience

trust retrieval

Auction
House

Reputation
Server

offer product

trust retrieval

report experience

bid for product

report experience

trust retrieval

SellerBuyer trusted sale

Fig. 3.2: Catalysis collaboration and action sequence diagram

the requirements find their direct correspondence in the system specification.

3.4.5 Roles and Collaborations in OOram

The Object-Oriented Role Analysis Method (OOram, [RWL95], formerly
OORASS [RAB+92]) is the first object-oriented method that made collabora-
tions a “central way of thinking” [DW99]. OOram uses models that focus on
behavior among components, as we have already outlined in Sect. 2.2. OOram
explicitly uses the notion of collaborations by providing so-called collaboration
views. These diagrams show how a set of roles, connected by ports and connec-
tors, interact with each other. OOram focuses mainly on the features of roles
that an object is composed of and less on the detailed behavior. Scenarios are
described with an adapted form of message sequence charts. The collaborations
employed in OOram had influence on the roles used in TIMe and influenced the
concept of collaborations in Catalysis and the UML standard.

3.4.6 Collaborations and UML 1.x

In UML 1.3 [Obj00] and 1.4 [Obj01], collaborations are introduced as modeling
elements. They describe how a set of participants (objects) are related to each
other and communicate to handle a certain task. Collaboration diagrams show
the interactions between the participants using messages, depicted as arrows. To
define the order of interactions, sequence numbers are attached to the messages.

3.4.7 Catalysis

D’Souza and Wills describe the Catalysis approach [DW99], which has its roots
in early UML-based techniques. Based on the ideas of joint actions in DisCo
and the collaborations in OOram, Catalysis uses collaborations as specification
units that complement component-oriented models.

A collaboration diagram in Catalysis shows how a number of objects may
execute a set of joint actions together to accomplish a certain task. Figure 3.2
shows the trusted auction system as a Catalysis collaboration diagram. These
joint actions are assumed to take some time, and it is possible to attach pre- and
post-conditions to them, expressing how the state of the participating objects

36 chapter three

Trusted Sale

Auction House

Bid for Product Auction House

Seller
Buyer

Trust Retrieval

Report Experience

Trusted Sale

Buyer

Bid for Product

Reputation S.

Auction House

Seller
Buyer

Trust Retrieval

Report Experience

Reputation Server

Client

Trust Retrieval

Report Experience

Trusted Sale

Seller

Offer Product

Reputation S.

Auction House

Seller
Buyer

Fig. 3.3: CRC Cards for the trusted auction system

change by its execution. A joint action may be refined by a collaboration in
a kind of refinement relation, which is called “zooming” in Catalysis. This re-
finement is, however, not treated formally. Action sequence diagrams document
possible sequences of joint actions. Similar to MSCs, objects are represented by
a lifeline. Joint actions are shown as lines orthogonal to the lifelines, connecting
those objects involved in a joint action. At the crossing points, the local oc-
currences of actions are depicted by ellipses, with the possibility to identify the
initiator of a joint action by a filled ellipse. In addition to these diagrams, Catal-
ysis also uses diagrams similar to interaction diagrams of UML 1.4. Moreover,
to illustrate the state changes of a joint action, it is possible to show snapshots
of the involved objects, their connections and some of their variable values. A
pair of snapshots can be used to illustrate the before and after states of a joined
action, for instance.

While the concept of Catalysis collaborations allows us to focus on collab-
orative behavior, the final system design is given in the form of objects and
operations, so that catalysis, in the end, is rather component-centered. The col-
laborations are merely used as guides through the design and implementation
process, and are not utilized in a rigorous validation or verification.

3.4.8 CRC: Class, Responsibility, Collaboration

Beck and Cunningham developed a practical technique for learning about the
global interactions within object-oriented programs called CRC (Class, Respon-
sibility, Collaboration, [BC89]). Each class that is part of a system is represented
by a paper index card. Fig. 3.3 shows an example for some classes of our trusted
auction system from Sect. 2.2. The left column of a card identifies all respon-
sibilities of a class, and the right column lists the collaborators. The cards are
used as a basis for a process to identify the collaborations among objects and find
out their responsibilities. Developers are encouraged to move the cards around

background 37

ts: Trusted
Sale

a: Auction
House

b: Buyer s: Seller

rs: Reputation
System

str: Trust
Retrieval

sre: Report
Experience

btr: Trust
Retrieval

bre: Report
Experience

op: Offer
Product

bp: Bid For
Product

sellerbuyer

mediator

client client client

server

serverserver

server

client

buyer seller

auctioneerauctioneer

Trusted Auction System

Fig. 3.4: UML 2.0 collaboration for the Trusted Auction System

and execute some scenarios. During this process, classes may be modified, new
classes may be introduced and responsibilities may be re-assigned when a sce-
nario reveals better solutions for a problem. This technique is therefore most
useful in very early design phases, where detailed collaborations have to be elab-
orated in the first place.

3.4.9 Design Patterns

Design patterns [BC87, Coa92] are used to document solutions to reoccur-
ring problems in object-oriented programs. As these solutions usually involve
several objects, patterns essentially describe collaborative behavior. The de-
scription style used for design patterns is often quite informal and illustrative;
in [GHJV95], for instance, patterns are specified by UML class diagrams for the
method signatures of the participants and the connections among them, while
the behavior is covered implicitly by code fragments of some illustrative sequence
diagrams. This implies that patterns have to be understood and integrated man-
ually by a programmer.

3.4.10 UML 2.0 Collaborations

Influenced by methods such as Catalysis and OOram described above, the con-
cept of collaborations was reworked in version 2.0 of UML [Obj07b]. (The origi-
nal collaboration diagrams of UML 1.x are now called communication diagrams.)
Fig. 3.4 shows a UML 2.0 collaboration3 of the trusted auction system known

3To distinguish between the general concept of collaborations and the specific UML ele-
ments, we will in the following refer to the latter explicitly as UML collaborations.

38 chapter three

from the introduction. Participants of the system are depicted by collaboration
roles, such as the buyer b or the seller s. The system is decomposed into sub-
functionalities (or sub-services, as we may call them) by so-called collaboration
uses. Although the employed notation is different from the one presented in 2.3,
its information content is effectively equivalent. The collaborations are showing
the horizontal decomposition of a system, such as the collaboration views in
OOram. The trusted auction example will be discussed in detail in Paper 5.

The UML standard focuses in particular on the structural aspects of UML
collaborations. UML does not, however, elaborate detailed semantics of the be-
havioral implications of the structural composition. Collaborations are intended
as a context in which behaviors may be defined. Compared to the other uses of
collaborations, and what we need, this is an obvious shortcoming. We will later
see how a combination of collaborations with activities may solve this problem.

“Ah, remember Ted, pieces of the puzzle make funny shapes,
but they still fit together in the end.”
– Nicky Flippers, Hoodwinked

CHAPTER

FOUR

THE ENGINEERING METHOD SPACE

The papers of Part II introduce SPACE 1 as one concrete constellation of nota-
tions, semantics and algorithms to form an engineering method. In this chapter,
we present the approach in its entirety. We start in Sect. 4.1 with a compila-
tion of the key decisions that shaped our work and we outline the development
process implied by SPACE. We continue in Sect. 4.2 with an overview of the
UML specifications and their features. The semantic foundation of the method
based on temporal logic is explained in Sect. 4.3. In this section we also provide
an overview of how logical reasoning can be done, especially with respect to the
verification of implementations and the automatic model checking. In Sect. 4.4,
we provide an overview of the model transformation from collaborations to ex-
ecutable components. We close in Sect. 4.5 with a presentation of the provided
tool support.

4.1 Overview of the Approach

Based on the challenges observed in Chapt. 2, the experience from the methods
presented in Sect. 3.1, the properties of temporal logic approaches from Sect. 3.3,
as well as the discussion on the role of collaborations in specifications in Sect. 3.4,
we present here the five key decisions that formed our approach and guided our
efforts to answer the research questions of Sect. 2.3.

1. Collaborations as Major Specification Units

We use collaborations as main specification units. However, in contrast
to approaches like Catalysis (Sect. 3.4.7), we let collaborations be the
only manually edited specification units, from which everything else is
derived. Therefore, collaborations describe complete behavior between a
set of participants like processes in cTLA or layers in DisCo. This includes

1The name came up in a discussion with Geir Hasnes. Since then, SPACE stands for
specification by activities, collaborations and external state machines.

40 chapter four

both their local behavior and the necessary interactions. The specifications
for collaborations are given as coherent, self-contained building blocks. To
abstract from internal details, they have in addition a description only
referring to the externally visible events used for composition.

2. cTLA as Foundation for Logical Reasoning

As a formal basis we chose temporal logic and in particular cTLA. We
formalize collaborations as cTLA processes with the style cTLA/c. This
enables us to reason about refinement relations between models, and to
use the composition mechanism of joint actions to support superposition.
However, we will hide this formalism completely from the engineers work-
ing with the approach. Instead, we use UML activities which are capable
of expressing collaborative behavior and the joint action composition in a
visual form.

3. Analysis via Model Checking

To ensure the correctness of collaborations and their composition, we use
model checking. However, instead of checking the entire system, we uti-
lize the compositional properties guaranteed by our collaboration seman-
tics in cTLA. According to them, we can check collaborations separately.
Compositions of collaborations are checked using the abstract external de-
scriptions, effectively reducing the state space. Due to the superposition
principle, we know that the composed system will behave as expected.

4. Execution Model Based on State Machines

Like SOM and ROOM, we define a runtime support system for the event-
based execution of state machines that will be the basis for the operational
semantics based on run-to-completion steps. We will formalize this run-
time system in temporal logic with the style cTLA/e, to enable reasoning
as described in the next point.

5. Component Synthesis by a Model Transformation

Similar to SDL-methods such as TIMe, we utilize a multi-model approach,
where one model focuses on the collaboration-oriented decomposition,
while the other model decomposes a system into its components. However,
we want to synthesize the component-oriented model completely from the
collaboration-oriented model via a model transformation with the tech-
niques of the Model Driven Architecture, MDA. To ensure the correctness
of this transformation, we will establish and prove a refinement relations
between the activities as source and the state machines as target models,
that means a refinement between cTLA/c and cTLA/e specifications.

Figure 4.1 provides an overview of the development process implied by the ap-
proach. To ensure the consistency the building blocks and specifications as well
as the correctness of the transformation, we use temporal reasoning across the
entire approach, illustrated by the dashed lines. In the following, we will go
through each element of Fig. 4.1.

the engineering method space 41

State Machines
Composite Structures

1

2

3

4

5

6

7Library of
Building Blocks

Collaborative Service
Specifications

Composition Transformation Code Generation

Execution and
Runtime Support

cTLA/c cTLA/e

a6

a10

a7

a11

a8

a12

a9

a13

a1

a3

a2

a4

a5

b3b4b5b6

b1b2
c1c2

c3c4

c5c6

d1d2

d3d4

(A)(B)(C)(D)

\leftrightharpoonsfill...36
\leftrightsquigarrow()27
\leftrightsquigarrow(!)26
\Leftscissors(S).......45
\leftslice(!)..........17
\leftsquigarrow()....27
\leftsquigarrow(!).....27
\leftt()..............13
\leftthreetimes().....39
\leftthreetimes(").....16
\leftthumbsdown()....46
\leftthumbsup()......46
\lefttorightarrow()...27
\Lefttorque(&)........43
\leftturn(!)..........51
\legm()..............10
\legr()..............10
\length().............13
\Leo(ä)...............42
\leo(")...............42
\leq()...............25
\leq(≤)............24,25
\leqq()..............25
\leqq(#)..............24
\leqslant($)..........24
less-thansigns..seeinequalities
\lessapprox().........25
\lessapprox(%).........24
\lessdot()...........25
\lessdot(!)...........24
\lesseqgtr()..........25

\lesseqgtr(&)..........24

\lesseqqgtr().........25

\lesseqqgtr(').........24

\lessgtr()...........25
\lessgtr(≶)...........24
\lesssim()...........25
\lesssim())...........24
\Letter()............53
\Letter(Bvs.).......56
\Letter(B)............43
letter-likesymbols.....30,31
letters.........seealphabets

barred.............57
non-ASCII...........8
slashed............58
variantLatin........30

\LF(!)................43
\lfilet().............32

\lFloor("").............33
\lfloor(").............32
\lg(lg)................29

\lgroup()............32

\LHD(#)...............17
\lhd(*)............16,17
\lhdbend(!)..........49
\Libra(æ).............42
\libra($)............42
\lightbulb(A)..........64
lightbulb.mf(file)....62,63
lightbulb.sty(file)......64

lightbulb10.2602gf(file)..62
lightbulb10.dvi(file)....62
lightbulb10.mf(file)..62–64
lightbulb10.tfm(file)....64

\Lightning(Evs.).....56
\Lightning(E)..........43

\Lightning().........53
\lightning("vs.%)......56
\lightning(")..........27
\lightning(%)..........51
\lim(lim)...........29,65
\liminf(liminf)......29,65
limits.................29
\limsup(limsup).....29,65
linearimplicationsee\multimap

\Lineload(L)..........43
linguisticsymbols......8–10
\lJoin(").............22
\ll()................25
\ll(#)...............24
\llap.................59
\llbracket(#)..........32
\llceil(#).............31
\llcorner()...........31
\llcorner(+)...........31
\llcurly()...........22
\Lleftarrow(,)........26
\llfloor($)............31
\lll()...............25
\lll(≪vs.).........56
\lll(≪)..............24
\llless..........see\lll

\llparenthesis(%).......31

\lmoustache()........32

\ln(ln)...............29
\lnapprox()..........25
\lnapprox(")..........24
\lneq()..............25
\lneq(#)..............24
\lneqq().............25
\lneqq($).............24
\lnot............see\neg

\lnsim().............25
\lnsim(%).............24
localring(O)..seealphabets,

math
\log(log)...........29,65
log-likesymbols.......29,65
logicaloperators

and.........see\wedge

not...see\negand\sim

or...........see\vee

\logof(&).............21
lollipop.......see\multimap

longdivision............35
\Longleftarrow(⇐=).....26
\longleftarrow(←−).....26
\Longleftrightarrow.....52
\Longleftrightarrow(⇐⇒)26
\longleftrightarrow(←→)26
\Longmapsfrom(⇐=&)......27

\longmapsfrom(←−')......27
\Longmapsto($=⇒).......27
\longmapsto()−→).......26
\LongPulseHigh().....41
\LongPulseLow().....41
\Longrightarrow(=⇒)....26
\longrightarrow(−→)....26
\looparrowdownleft()..27
\looparrowdownright()..27
\looparrowleft()......27
\looparrowleft(.)......26
\looparrowright().....27
\looparrowright(/).....26
\Loosebearing($).......43
\lor.............see\vee

\LowerDiamond().......48
lowering...see\textlowering

\lozenge(♦)...........38
\Lparen().............40
\lrcorner()...........31
\lrcorner(1)...........31
\lrJoin.........see\Join

\lrtimes(%)............22
\Lsh()...............27
\Lsh(2)...............26
\Lsteel(™)............43
\ltimes()............18
\ltimes(&)............16
\ltriple..............33
Luecking,Dan...........59
\lVert(||)..............33
\lvertneqq()..........25
\lvertneqq(')..........24
\lz()................10

M
\M.....................8
\m.....................8
macron.........seeaccents
majuscules.............29
\makeatletter..........60
\makeatother...........60
\MALE(‚)..............43
\Male(|)..............43
\male(♂)..............43
\MaleMale(ƒ)..........43
\maltese(3)...........15
\manboldkidney(").......51
\manconcentriccircles(#)51
\manconcentricdiamond($)51
\mancone(%)...........51
\mancube(&)...........51
\manerrarrow(').......51
\manfilledquartercircle(()51
manfnt(package).49,51,69,70
\manhpennib()).........51
\manimpossiblecube(*)...51
\mankidney(+)..........51
\manlhpenkidney(,)......51
\manpenkidney(-).......51

\manquadrifolium(.)....51
\manquartercircle(/)....51

79

\leftrightharpoonsfill...36
\leftrightsquigarrow()27
\leftrightsquigarrow(!)26
\Leftscissors(S).......45
\leftslice(!)..........17
\leftsquigarrow()....27
\leftsquigarrow(!).....27
\leftt()..............13
\leftthreetimes().....39
\leftthreetimes(").....16
\leftthumbsdown()....46
\leftthumbsup()......46
\lefttorightarrow()...27
\Lefttorque(&)........43
\leftturn(!)..........51
\legm()..............10
\legr()..............10
\length().............13
\Leo(ä)...............42
\leo(")...............42
\leq()...............25
\leq(≤)............24,25
\leqq()..............25
\leqq(#)..............24
\leqslant($)..........24
less-thansigns..seeinequalities
\lessapprox().........25
\lessapprox(%).........24
\lessdot()...........25
\lessdot(!)...........24
\lesseqgtr()..........25

\lesseqgtr(&)..........24

\lesseqqgtr().........25

\lesseqqgtr(').........24

\lessgtr()...........25
\lessgtr(≶)...........24
\lesssim()...........25
\lesssim())...........24
\Letter()............53
\Letter(Bvs.).......56
\Letter(B)............43
letter-likesymbols.....30,31
letters.........seealphabets

barred.............57
non-ASCII...........8
slashed............58
variantLatin........30

\LF(!)................43
\lfilet().............32

\lFloor("").............33
\lfloor(").............32
\lg(lg)................29

\lgroup()............32

\LHD(#)...............17
\lhd(*)............16,17
\lhdbend(!)..........49
\Libra(æ).............42
\libra($)............42
\lightbulb(A)..........64
lightbulb.mf(file)....62,63
lightbulb.sty(file)......64

lightbulb10.2602gf(file)..62
lightbulb10.dvi(file)....62
lightbulb10.mf(file)..62–64
lightbulb10.tfm(file)....64

\Lightning(Evs.).....56
\Lightning(E)..........43

\Lightning().........53
\lightning("vs.%)......56
\lightning(")..........27
\lightning(%)..........51
\lim(lim)...........29,65
\liminf(liminf)......29,65
limits.................29
\limsup(limsup).....29,65
linearimplicationsee\multimap

\Lineload(L)..........43
linguisticsymbols......8–10
\lJoin(").............22
\ll()................25
\ll(#)...............24
\llap.................59
\llbracket(#)..........32
\llceil(#).............31
\llcorner()...........31
\llcorner(+)...........31
\llcurly()...........22
\Lleftarrow(,)........26
\llfloor($)............31
\lll()...............25
\lll(≪vs.).........56
\lll(≪)..............24
\llless..........see\lll

\llparenthesis(%).......31

\lmoustache()........32

\ln(ln)...............29
\lnapprox()..........25
\lnapprox(")..........24
\lneq()..............25
\lneq(#)..............24
\lneqq().............25
\lneqq($).............24
\lnot............see\neg

\lnsim().............25
\lnsim(%).............24
localring(O)..seealphabets,

math
\log(log)...........29,65
log-likesymbols.......29,65
logicaloperators

and.........see\wedge

not...see\negand\sim

or...........see\vee

\logof(&).............21
lollipop.......see\multimap

longdivision............35
\Longleftarrow(⇐=).....26
\longleftarrow(←−).....26
\Longleftrightarrow.....52
\Longleftrightarrow(⇐⇒)26
\longleftrightarrow(←→)26
\Longmapsfrom(⇐=&)......27

\longmapsfrom(←−')......27
\Longmapsto($=⇒).......27
\longmapsto()−→).......26
\LongPulseHigh().....41
\LongPulseLow().....41
\Longrightarrow(=⇒)....26
\longrightarrow(−→)....26
\looparrowdownleft()..27
\looparrowdownright()..27
\looparrowleft()......27
\looparrowleft(.)......26
\looparrowright().....27
\looparrowright(/).....26
\Loosebearing($).......43
\lor.............see\vee

\LowerDiamond().......48
lowering...see\textlowering

\lozenge(♦)...........38
\Lparen().............40
\lrcorner()...........31
\lrcorner(1)...........31
\lrJoin.........see\Join

\lrtimes(%)............22
\Lsh()...............27
\Lsh(2)...............26
\Lsteel(™)............43
\ltimes()............18
\ltimes(&)............16
\ltriple..............33
Luecking,Dan...........59
\lVert(||)..............33
\lvertneqq()..........25
\lvertneqq(')..........24
\lz()................10

M
\M.....................8
\m.....................8
macron.........seeaccents
majuscules.............29
\makeatletter..........60
\makeatother...........60
\MALE(‚)..............43
\Male(|)..............43
\male(♂)..............43
\MaleMale(ƒ)..........43
\maltese(3)...........15
\manboldkidney(").......51
\manconcentriccircles(#)51
\manconcentricdiamond($)51
\mancone(%)...........51
\mancube(&)...........51
\manerrarrow(').......51
\manfilledquartercircle(()51
manfnt(package).49,51,69,70
\manhpennib()).........51
\manimpossiblecube(*)...51
\mankidney(+)..........51
\manlhpenkidney(,)......51
\manpenkidney(-).......51

\manquadrifolium(.)....51
\manquartercircle(/)....51

79

Fig.8.Graphsfromactivities(A,C)refinethoseobtainedviacTLA(B,D)

actionisactivemuststayintheplaceofthecallbehavioractionaslongas
thecalledactivityisexecuting.Whenanoutputisavailable,thecorresponding
outgoingarcofthecallbehavioractioncanfire.Foractivitieswithaninitial
token,weassumethatthecorrespondinginputpincontainsatokenintheinitial
stateenablingtostarttheactivityrightinthebeginning.

Thecouplingofthetwocompositionoperatorsisperformedassketchedin
Fig.7.AsoutlinedinSect.3,oneoperatorfacilitatestocoupletwodecisionsin
separateactivitieswitheachotherwheretwobranchesofthedecisionsarelinked
byadashedline.InourcTLA-basedformalmodel,weexpressthisbycoupling
theactionsdescribingthebranchesofthetwodecisions.First,wecouplethe
twocTLAactionsmodelingthelinkedbranches.Forinstance,inthecoupling
infragmentβinFig.5thiscausesthatthebranches[cond]and[...]are
onlycarriedoutjointly.Likewise,wecouplethetwocTLAactionsmodelingthe
otherbranchesofthedecisions,enforcingthatthetwo[else]branchesareonly
executedtogetheraswell.Sincedecisionontherightsideofβmustnothave
anadditionallocalcondition,thecouplingcannotcontaindecisionconditions
whichmayblocktheflows.

InFig.5,wealsoshowthatconjoineddecisionsβcanbetransformedto
asingledecisionasdepictedinα.Fig.8showsfragments2αandβintheir
graphicalcTLAformAandBthatwasobtainedthroughatransformation
accordingtoTab.1.Toprovethatthistransformationstepdoesnotspoilthe
correctnessofthesystem,weperformthecTLA-basedrefinementproofA⇒B.
Oneway,toverifyinTLAandcTLAthatamoredetailedsystemAimplies(i.e.,
isarefinementof)amoreabstractsystemB,istosearchaso-calledrefinement
mapping[19].Fortheproofofsafetyproperties,i.e.,that“nothingbadwill
happen”,themappinghastofulfilltwoproperties3:

P1:AninitialstateofAismappedtoaninitialstateofB.
P2:Eachpairofstates(s,s′)fulfillinganactioninAismappedtoapairof

states(t,t′)whichfulfillsanactioninBorastutteringstep(i.e.,t=t′).

2Thefragmentscontaintransitionsthatcanhaveseveralinputandoutputplaces.
Forexample,Bconsistsoftwotransitions,thatcanfireiftherearetokensinboth
b1andb2.Ifoneofthemfires,tokensaremovedtoeitherb3andb4ortob5andb6.

3Furthermore,apropertyconsideringthelivenessofthesystem,i.e.,that“something
goodwilleventuallyhappen”,hastohold.Whilewecanprovethatourtransforma-
tionsfulfillalsotheselivenessproperties,inthispaperwerestrictustosafetyproofs
forthesakeofbrevity.

Fig. 4.1: The SPACE Engineering Approach

1 2 3
4 5 6
7 8 9

Collaborations as the major specification can be designed, analyzed and
reused as building blocks in the form we introduce in Paper 1 and summarize
in Sect. 4.2.1. We will formalize collaborations in temporal logic to define their
semantics in Paper 6. Engineers design the behavior of collaborations by writing
UML activities. To hide details of the collaborative behavior, once a collabo-
ration is reused, it has only to be considered by an external description. This
external description is also exploited under model checking to reduce the state
space. To reason about the correctness of the specifications, the correctness of
their composition as well as the transformation, we introduce formal reasoning
on the level of collaborative service specifications using temporal logic specifi-
cation style cTLA/c (c for collaborative). One may build libraries of building
blocks dedicated to certain domains, such as trust management, as we describe
in Paper 5.

1 2 3
4 5 6
7 8 9

Since collaborations are temporal logic processes, we use the composition by
joint actions of cTLA to compose collaborations with each other, as explained
in Paper 6. This composition mechanism is general and can express all kinds
of dependencies. Graphically, this composition mechanism can be mapped to
activities as introduced in Paper 1, so that an engineer composing collaborative
building blocks just has to instantiate them as sub-activities and connect them
via activity flows using arbitrary glue logic. In this way, a system can be built
successively, following either a bottom-up or top-down approach. In the end, a
system is specified with a collaboration on the highest decomposition level.

1 2 3
4 5 6
7 8 9

Due to the semantics of the behavior as well as the composition in temporal
logic, service specifications may be analyzed formally. While many checks are
purely syntactical, the most interesting properties are assured via automated
model checking, as exemplified in Paper 7 and presented in more detail in
Sect. 4.3.3.
1 2 3
4 5 6
7 8 9

From such a complete, collaborative system specification we synthesize the
components using an automated model transformation described in Paper 3,

42 chapter four

Paper 4, and summarized in Sect. 4.4. This is possible because the collabora-
tions and the compositions specify the complete behavior. As mentioned, this
transformation corresponds to a refinement step from cTLA/c to cTLA/e, dis-
cussed in Sect. 4.4.

1 2 3
4 5 6
7 8 9

For the component models that are the result of this transformation, we use
state machines as provided by SDL. We will, however, express them using stereo-
typed UML 2.0 state machines, as this is the input for our code generators, and
to keep all employed models in the realm of UML. To enable the aforementioned
refinement proof, we formalize the execution of state machines in temporal logic
as well. We do this by prescribing a special specification style, called cTLA/e.
It is introduced in Paper 2 and 4.3.2.

1 2 3
4 5 6
7 8 9

From these executable state machines, we can generate executable code via
code generation, as described in [Kra03, Stø04].
1 2 3
4 5 6
7 8 9For the execution we have chosen the principles going back to SOM (see
Sect. 3.1.1) based on a runtime-support system. As one concrete framework we
use ServiceFrame as briefly introduced in 3.1.2 and Paper 2.

4.2 The Nature of Specifications

In the following, we will present the specification style used in SPACE. Most of
the papers of Part II present detailed examples. Therefore, we only outline the
main features the specifications here with the aim to provide and illustrate the
general specification structure and main points; for the details, we refer to the
individual papers and the appendix.

Figure 4.2 illustrates the decomposition of the Trusted Auction System pre-
sented in Paper 5. At the system level, a UML collaboration, stereotyped as
�system�, identifies by means of collaboration roles the components of the sys-
tem, for example the seller s and the buyer b. Between them, occurrences of
sub-services are denoted by collaboration uses, which refer in turn to collabora-
tions, as for instance the trusted sale ts.

As mentioned in Chapt. 3.4.10, UML collaborations alone do not specify any
behavior, but only show how functionality may be decomposed. Therefore, as
Paper 1 introduces, we attach to each UML collaboration a UML activity which
focuses on the behavior of collaborations as well as how behaviors of subordinate
collaborations are composed. Figure 4.3 illustrates the corresponding decompo-
sition of the system using activities. In comparison to the UML collaborations,
the activities can also refer to building blocks that involve only local behavior
of a single component, such as timeliness observer. The detailed specification of
the trusted auction example is explained in Paper 5.

the engineering method space 43

ts: Trusted
Sale

a: Auction
House

b: Buyer s: Seller

rs: Reputation
System

str: Trust
Retrieval

sre: Report
Experience

btr: Trust
Retrieval

bre: Report
Experience

op: Offer
Product

bp: Bid For
Product

sellerbuyer

mediator

Trusted Auction System
«system»

Trusted Sale

buyer seller

pc: Policy
Combination

ms: Mediated
Sale

Report Experience

client reputation
server

Mediated Sale

buyer sellermediator
Policy Combination

a b

Trust Retrieval

client reputation
server

Fig. 4.2: Illustration of a system’s decomposition by UML collaborations

Trusted Auction
buyer seller

MakeBid

WinBid

EndBidLoseBid

bto:
Timeliness
Observer

timeout

inTime late

okelse

check
product

po
sit

iv
e

ts: Trusted
Sale

(buyer, seller,
mediator)

MakeBid

WinBid

sto:
Timeliness
Observer

inTimelate

reputation system

sell trusted

non-trusted

buy trusted

non-trusted
buy

ne
ga

tiv
e

co
nfi

rm

co
nfi

rm

ne
ga

tiv
e

po
sit

iv
e

co
nfi

rm

hi
gh

 t
ru

st

lo
w

 t
ru

st

no trust

lo
w

 t
ru

st

no
 t

ru
st

hi
gh

 t
ru

st

pa
ym

en
t

co
nfi

rm
de

liv
er

y

bre:
Report Experience

str:
Trust Retrieval

sre:
Report Experience

btr:
Trust Retrieval

j2

j1

d1

i1

timeout

sell

«system»

startstart

8 Peter Herrmann and Frank Alexander Kraemer

Mediated Sale

payment

buyer mediator

confirmed
delivery

seller

ReqPayM ReqDelM

ReqDelB ReqPayS

CnfPayB CnfDelS

CnfDelM CnfPayM

confirmed
payment

product
send send

j2

f1 j1
f3

f2

j3

Fig. 3. Activity Mediated Sale

leaving f1 reaches the send action ReqPayM. We use send actions to model the
transfer of signals to external applications which are not an inherent part of
the modeled application. For instance, the accounting unit of the buyer is an
example of an external system which is notified by ReqPayM to issue the pay-
ment to the mediator. The other token leaving f1 is forwarded to the mediator
which is notified thereby about the start of the payment. Likewise, the seller
calls its delivery unit to send the product to the mediator which is expressed by
the send action RegDelM and notifies the mediator as well. When the payment
arrives at the mediator, it is notified by its accounting unit using the receive
action CnfPayM while CnfDelS reports the reception of the product. Similar
to send actions, we use receive actions to model incoming signals from the en-
vironment. All tokens coming from the two receive actions and from the buyer
resp. seller lead to the join node3 j1. A flow may only leave a join if tokens have
arrived on all of its incoming edges. During the execution of the join, all but
one token are removed and the remaining token leaves it via its outgoing edge.
The token leaving j1 continues to the fork f3 from which both deliveries to the
final recipients and the notifications are issued. Thus, by the combination of j1
and f3 we guarantee that deliveries are only carried out if both the payment
and the product have arrived at the mediator.

The notification for the buyer heads to the join node j2 and can only be
forwarded if the buyer’s delivery unit reports the product’s reception which
is specified by the receive action CnfDelM . The token passing j2 leaves the
activity via the output pin delivery confirmed. Likewise, the seller sends a con-
firmation of the payment via payment confirmed after receiving the money. As
the two activities introduced above, Mediated Sale can be provided by the trust
management expert. The only necessary cooperation with the software engineer
is to agree about the formats of the transmissions with the various accounting
and delivery units.
3 UML uses identical symbols for join and fork nodes. They can be distinguished by

the number of incoming and outgoing edges. Fork nodes have exactly one incoming
edge while join nodes have exactly one outgoing edge.

2x2 Policy Decider
a-side b-side

a1

a2
b1

b2

a2b2 a2b1 a1b1 a1b2 a1b1 a2b1 a2b2 a1b2

Report Experience

positive

client reputation system

add positive
report

add negative
report

report

negative
report

confirm
report

Timeliness Observer

inTime

timeout

too Late

event
start

Trust Retrieval
client reputation system

tv>Maxthres
high

low
tv!Maxthres !

no
else

tv >Minthres

retrieve
trust value

evaluate
trust value

trust

trust

trust

get trust
value

sell

sell

trusted

non-trusted

payment
confirmed

buy
trusted

buy
non-trusted

delivery
confirmed

Trusted Sale
buyer seller

ms:
Mediated Sale

(buyer,seller,mediator)

CnfDelS

bn,snbt,snbt,st bn,st

ReqPayS

pc: 2x2 Policy Combination

CnfPayB

ReqDelB

ReqPayS ReqDelB

bn,sn bt,stbt,sn bn,st

bt

bn

st

sn

paym.
cnf.

del.
cnf.

payment product
sendsend

j1 j2

Fig. 4.3: Illustration of a system’s decomposition by UML activities

44 chapter four

4.2.1 Building Blocks

Paper 1 introduces the building blocks used for specifications along some ex-
amples. Building blocks are the units of specifications; they may be designed,
analyzed and reused separately from each other. The behavior and structure of
building blocks are described by the following diagrams:

– The structure is described by a UML 2.0 collaboration. If the building
block is elementary, like Trust Retrieval in Fig. 4.2, it only declares the
participants (as collaboration roles) and connections between them. If it
is composite, like Trusted Sale, it may additionally refer to other collabo-
rations between the collaboration roles by means of collaboration uses.

– The internal behavior is described by a UML activity. It is declared as the
classifier behavior of the collaboration and has one activity partition for
each collaboration role in the structural description. For each collaboration
use, the activity declares a corresponding call behavior action referring to
the activities of the employed building blocks. To compose the behavior
with other building blocks, activity parameter nodes are used that can
be connected to other elements when the activity is referred to by a call
behavior action in a composite collaboration.

– The external behavior is represented by a special UML state machine, a
so-called external state machine or ESM. Its transitions refer to the activ-
ity parameter nodes of the activity. In this way, it specifies the allowed
sequence in which tokens may pass through the parameter nodes of the
activity. This can be used as a contract when the building blocks is in-
stantiated and composed. In model checking, the ESM is used to reduce
the state space, as it abstracts away some inner states.

Depending on the number of participants, connectivity to other blocks and level
of decomposition, we distinguish three different kinds of building blocks, which
use different combinations of the diagrams itemized above.

– The most general building block is a collaboration with two or more partic-
ipants providing functionality that is intended to be composed with other
functionality, like Trusted Sale in Fig. 4.3. We refer to such a building
block as a service collaboration.

– A special building block is a system collaboration, which is a collaboration
on the highest composition level, like for intance Trusted Auction System.
In contrast to a service, a system is closed and cannot be composed with
other building blocks. Consequently, it has no ESM as its activity has no
activity parameter nodes.

– Building blocks that involve only local behavior of one participant are
referred to as activity blocks. They are represented by activities and ESMs
and have no UML collaborations. An example is Timeliness Observer in
Fig. 4.3.

the engineering method space 45

«esm» Trust RetrievalTrust Retrieval
client reputation system

tv>Maxthres
high

low
tv≤Maxthres ∧

no
else

tv >Minthres

retrieve
trust value

evaluate
trust value

trust

trust

trust

get trust
value

reputation
systemclient

Trust Retrieval

active

get trust
value

high
trust

low
trust

no
trust

(UML Activity)
Internal Behavior

(UML State Machine «esm»)
External BehaviorStructure

(UML Collaboration)

Fig. 4.4: Diagrams for a building block

4.2.2 Composition of Building Blocks

For the composition, UML collaborations and UML activities are used com-
plementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the
behavioral aspects for composition. For this purpose, call behavior actions are
used, as explained in Paper 1. Each call behavior action represents an instance
of a building block and refers to an activity. For each activity parameter node
of the referred activity, a call behavior action declares a corresponding pin. Pins
have the same symbol as activity parameter nodes and represent them on the
frame of a call behavior action. Arbitrary logic between pins may be used to syn-
chronize the events of the building block events and transfer data between them.
There are different kind of pins (resp. activity parameter nodes), illustrated on
the building block in Fig. 4.5:

– Starting pins (like start) activate the building block, which is the precon-
dition of any internal behavior.

– Streaming pins (like event and timeout) may pass tokens throughout the
active phase of the building block.

– Terminating pins (inTime or late) mark the end of the block’s behavior.

If collaborations may be started or terminated via several alternative pins, they
must belong to different parameter sets. This is visualized in UML by an addi-
tional box around the corresponding node. The sequence of allowed token passes
is further constraint by the description given by the ESM of the building block.

Timeliness
Observer

timeout

inTime late

start

event
streaming input pin

starting input pin

alternative, terminating output pins

streaming output pin

Fig. 4.5: Timeliness observer with pins

46 chapter four

control center

select one : id=order

else

select one : s.available

exists s : s.available

c

c

tour or

found t

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

acceptedcanceled

request tour

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

Taxi System

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

p: Position

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

z

x
y

Fig. 4.6: Illustration of session multiplicity

z

x
y

select one ...1

2

Fig. 4.7: Illustration of session selection

4.2.3 Multiplicity

The taxi control system presented in Paper 4 contains many taxis to be coordi-
nated and many operators receiving tour orders from customers. Fig. 4.6 shows
the system specification, with an activity partition for the taxi, the control cen-
ter and the operators. To reflect the multiplicity of taxis and operators, their
partitions are illustrated by several layers. This multiplicity of partitions im-
plies a certain multiplicity of collaborations that have to be coordinated by the
participants: Each taxi only has to handle one instance of each of the collabora-
tions with the control center. The control center, however, has to handle several
instances of the collaborations with the taxis and operators.

Figure 4.7 illustrates a situation with multiple collaboration instances (at
the sides) and a partition (in the middle) together with token flows between
the collaborations. A token arriving from any of the collaboration instances (1 2 3

4 5 6
7 8 9

)
simply enters the partition. Vice-versa, when a token should enter a specific col-
laboration instance from the partition (1 2 3

4 5 6
7 8 9

), we need to determine which instance
should receive the token. UML does not give any means to select such sessions.
Therefore, we described in Paper 4 a selection operator and explain in Paper 6
how such a selection is expressed in cTLA/c.

the engineering method space 47

local variable

vnv2
v1

ai

vn

a1

a2p1

a3

v3
p2 v4

an internal action

participant

collaboration

a2

a1

variable
communication

a3

Cel

a1 external action

Fig. 4.8: Illustration of an elementary collaboration (from Paper 6)

4.2.4 Extensions to UML

In order to utilize the diagrams of UML, we made some extensions using stereo-
types. System building blocks are marked by stereotype �system�. With
�environment�, collaboration roles may be marked as part of the environment,
whereafter no components will be synthesized for them. To express that col-
laborations between the same participants can be executed more than once,
collaboration uses, which in standard UML have no multiplicity attached, can
be marks as �multi-session�, as introduced in Paper 4. In addition, we define
some constraints on activity graphs to ensure our semantics and introduce a
specialized form of a decision nodes on which nodes may wait, to model stateful
behavior. All extensions are documented in detail in App. C. In the component-
oriented designs, the behavior of components is modeled by �executable� state
machines, which we discuss in detail in Paper 2 and App. E.

4.3 Semantics and Logical Reasoning

The semantics of SPACE is defined as two special specification styles in cTLA,
illustrated by the dashed lines in Fig. 4.1. Collaborative service specifications
expressed as UML activities are interpreted as cTLA/c formulas, while the exe-
cutable state machines find their correspondence in cTLA/e formulas. Therefore,
reasoning about refinement and the proof of properties in general is available, so
that the approach is a formal description and development technique (FDDT)
based on cTLA.

4.3.1 Collaborative Service Specifications: cTLA/c

In Paper 6, we describe the specification style cTLA/c, which formalizes the
collaborative service specifications introduced in Paper 1. Collaboratins are
mapped to cTLA processes. In contrast to general cTLA processes, cTLA/c
contains the notions of participants, illustrated by the compartments of the ele-
mentary collaboration in Fig. 4.8. Actions are assigned to a participant and may

48 chapter four

UML Activity

1

TLA+ Module

Theorems 2

No errors found.

Error Trace
Violated Theorem

ab skjhdf o dhe T d
sjsdo sfjfi f
fdjfjfd
kdbs dfkjdxcvbxbsdfb
djdjdjd
d v
fjdfd dododsdfbsvbcv

sjhd
ab skjhdf o dhe T d
sjsdo sfjfi f
fdjfjfd
kdbs dfkjd
djdjdjd
d vsoh
fjdfd dodod jkshdfgius oiuhg so

fjdfd dodod
fgffp sps s
sjhd sdfghsfpiouh posiudhfs

sdfjghsd ipoio
df odf posdif poi

Arctis Formulator TLC

or

3

Fig. 4.9: Automated model checking in Arctis (Steps 1 and 2)

only access variables assigned to the same participant. To communicate, actions
can access special, queue-like communication variables between the participants.

While cTLA/c is independent of any specific graphical representation, we
chose to use UML activities in our approach. Therefore, Paper 6 also provides
a set of production rules that generate cTLA/c from activities. These rules are
formulated such that several activity elements of a flow are handled within the
same cTLA action, representing a run-to-completion step during execution. This
is important for the refinement proofs, in which we can show that the behavior
of a system generated in form of state machines implies the original activities,
as shown later.

4.3.2 Executable State Machines: cTLA/e

The state machines we use for the implementation of components via code gener-
ation have some constraints that we capture by the specification style of cTLA/e.
In this style, each cTLA action corresponds to a state machine transitions. The
communication of the participants via the communication variables is mapped
to separate send and receive actions, and each transition must be triggered by
either a reception of a signal or the expiration of a local timer, which is modeled
by special local variables. The details are elaborated in Paper 2, where we also
show the correspondence of this logical representation with the execution model
and implementation.

4.3.3 Automated Model Checking and Analysis

Due to the semantics in temporal logic, we may use the model checker TLC to
analyze specifications. Following the suggestion of Rushby [Rus00], we would
like to hide the details of this process from the users, so that they do not need
to work on formulas. Instead, users should be informed about problems in their
specifications by explanations that refer to certain elements of the specification
and tell what’s wrong. For that purpose, we combine model checking with a
syntactical analysis and interpretation and start the necessary tools from within
the editor. An example showing how engineers can be supported in that way
is presented in Paper 7. Figure 4.9 outlines the first part of the analysis prcess
enabled by our tools.

the engineering method space 49

Error Trace

Violated Theorem

UML
Activity

Animated Trace
Explanation
Automated Fixes

Symptoms

S D F

Arctis Analyzer3

Diagnoses Fixes

Fig. 4.10: Automated model checking in Arctis (Step 3)

1 2 3
4 5 6
7 8 9

In the first step, an activity is transformed into its TLA+ formula using the
Arctis Formulator developed in [Sl̊a07]. In addition to the TLA actions needed
to model the token flows of the activity, a number of theorems are added that
must hold for the specification. These theorems are of two types:

– General theorems that must hold for any activity with our semantics, en-
suring properties such as 1-boundedness of inner places (see Paper 3).

– Theorems derived from additional assertions added by the developer, such
as the mutual exclusion of certain actions (see App. B).

1 2 3
4 5 6
7 8 9

In the second step, the TLC model checker is used to verify the specification
against the theorems. If no theorem is violated, the analysis ends successfully.
Otherwise, TLC reports which theorem is violated and presents a (textual) trace
showing behavior up to the error, and the analysis continues with step 3, depicted
in Fig. 4.10.

1 2 3
4 5 6
7 8 9

In a third step, the Arctis Analyzer takes the original activity, the theorem
that is violated and the error trace as inputs. The violated theorem constitutes
a symptom. Based on it, a number of diagnoses are considered. These diagnosis
may trigger syntactic inspections on the original activity and the error trace
to check if they apply. Depending on these additional inspections, explanations
about the possible cause of the error may be provided to the user. In some cases,
automated fixes can be provided based on a diagnosis. In addition, the error
trace leading to the violation is visualized as animated tokens in the activity
editor. For more details, especially for which errors can be found and fixed, we
refer to the work of Sl̊atten [Sl̊a08]. A comprehensive example with screenshots
of an analysis is given in App. A.

4.3.4 Manual Logical Reasoning

If a user desires, an analysis based on temporal logic can also be done manually,
based on the TLA modules of a building block. This corresponds to the approach
shown for example in [Her06]. Such reasoning may also be applied when tools
and algorithms are developed, as we will see in Sect. 4.4.4, where the correctness
of a transformation is ensured by a refinement proof.

50 chapter four

c: Control Center

t: requestoro: order
[1..*]

t: requestort: requestor
[1..*]

t: requestors: status
[1..*]

t: requestorp: position
[1..*]

op: Operator

t: requestoro: order
[1..*]

taxi

«multi-
t: Tour

tour

canceled

tour

«multi
s: Status

set free

set busy

accepted

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

Taxi System
control center

select one : id=order

else

select one : s.available

exists s : s.available

c

c

-session»
 Update

session»
 Request

canceled

request
tour

accepted

session»
tion

operator

«multi-s
o: Tour
tour or

found t

no taxi

ession»
 Order

-session»
 Update

session»
 Request

canceled

request
tour

accepted

session»
tion

-session»
 Update

session»
 Request

canceled

request
tour

accepted

session»
tion

«multi-s
o: Tour
tour or

found t

no taxi

«multi-s
o: Tour
tour or

found t

no taxi

ession»
 Orderession»

 Order

t2: Taxi

Fig. 4.11: Illustration of the component synthesis

4.4 From Collaborations to Components

To keep the models from the collaboration-oriented and the component oriented
perspectives consistent with each other, we use a synthetic approach in which
the components are entirely generated from the collaborations. This keeps the
components consistent by construction. In this transformation, basically three
things happen:

– The behavior expressed for each collaboration role is mapped to UML
composite structures and session state machines, corresponding to the ex-
ecution model.

– The collaboration behaviors expressed by the activities are split accord-
ingly, and the flows crossing partitions are replaced by signal transmissions.

– The implicit state presentation of activities in the form of all possible token
markings is transformed to a presentation using explicit control states in
state machines.

The transformation of the collaborative service models to executable components
is treated in Papers 3 and 4. Paper 3 discusses the detailed synthesis of state
machines from activities. Paper 4 is concerned with the generation of composite
structures containing those state machines so that also multi-sessions may be
handled.

the engineering method space 51

4.4.1 Generation of Component Structures

Figure 4.11 illustrates how the example of the taxi control system presented in
Paper 4 is transformed into components. Each collaboration role (resp. activity
partition) of the taxi system is implemented as a separate component. System
components are modeled as UML classes. UML classes can define their behavior
by means of a classifier behavior, which in our case is described by a state
machine. This is a kind of default behavior; in addition, UML classes may
declare further inner parts which can be state machines as well.

Since a taxi is only involved in collaborations with a single session (relative
to partition taxi), all behavior can be integrated into the classifier behavior
state machine of each taxi component. For the control center partition, the
transformation results in a more complex component. The behavior executed by
the control center partition is implemented by the classifier state machine of the
component, while the behavior of the multiple sessions which the control center
maintains with each taxi and operator is implemented by state machine arrays
providing one state machine instance per collaboration instance. The details of
this mapping of multiplicity and especially how the sessions are coordinated is
described in Paper 4.

4.4.2 State Machine Synthesis

Paper 3 explains the mapping between cTLA/c described in form of activities to
the state machines of cTLA/e. Some concepts of activities have their direct cor-
respondence in state machines, such as decisions, guards and operations, which
can merely be copied. The challenge, however, is to map the states of activities
representing the implicit token markings to the explicit control states of state
machines. For this purpose, the different run-to-completion steps of an activity
have to be found and then transformed into state machine transitions. One ac-
tivity flow will often have to be represented by several state machine transitions
to handle different token marking states. For example, a join node with two
incoming edges needs at least four transitions: A transition for each incoming
edge for the case that the join is not yet complete, and one for each incoming
edge for the case that all other incoming edges can offer a token, so that the
join may fire. The number of transitions increases further if the join node is
combined with other stateful nodes. To construct the transitions, the algorithm
considers all possible token markings within a partition.

4.4.3 Extension of the Synthesis Algorithm

As argued in Paper 3, the separate and purely syntactical consideration of the
partitions may result in transitions in the synthesized state machines that are
never executed. While this is not a real problem, we have also written a vari-
ant of the algorithm, which considers all partitions and does not produce any
superfluous transitions. This comes at the cost of a larger state space during
synthesis, as not only the token markings of the partition under construction

52 chapter four

Paper 3 / Arctis TransformerUML Activity

cTLA/c

Paper 6 / Arctis Formulator

UML State Machine

cTLA/e

Paper 2

a6

a10

a7

a11

a8

a12

a9

a13

a1

a3

a2

a4

a5

b3b4b5b6

b1b2
c1c2

c3c4

c5c6

d1d2

d3d4

(A)(B)(C)(D)

\leftrightharpoonsfill...36
\leftrightsquigarrow()27
\leftrightsquigarrow(!)26
\Leftscissors(S).......45
\leftslice(!)..........17
\leftsquigarrow()....27
\leftsquigarrow(!).....27
\leftt()..............13
\leftthreetimes().....39
\leftthreetimes(").....16
\leftthumbsdown()....46
\leftthumbsup()......46
\lefttorightarrow()...27
\Lefttorque(&)........43
\leftturn(!)..........51
\legm()..............10
\legr()..............10
\length().............13
\Leo(ä)...............42
\leo(")...............42
\leq()...............25
\leq(≤)............24,25
\leqq()..............25
\leqq(#)..............24
\leqslant($)..........24
less-thansigns..seeinequalities
\lessapprox().........25
\lessapprox(%).........24
\lessdot()...........25
\lessdot(!)...........24
\lesseqgtr()..........25

\lesseqgtr(&)..........24

\lesseqqgtr().........25

\lesseqqgtr(').........24

\lessgtr()...........25
\lessgtr(≶)...........24
\lesssim()...........25
\lesssim())...........24
\Letter()............53
\Letter(Bvs.).......56
\Letter(B)............43
letter-likesymbols.....30,31
letters.........seealphabets

barred.............57
non-ASCII...........8
slashed............58
variantLatin........30

\LF(!)................43
\lfilet().............32

\lFloor("").............33
\lfloor(").............32
\lg(lg)................29

\lgroup()............32

\LHD(#)...............17
\lhd(*)............16,17
\lhdbend(!)..........49
\Libra(æ).............42
\libra($)............42
\lightbulb(A)..........64
lightbulb.mf(file)....62,63
lightbulb.sty(file)......64

lightbulb10.2602gf(file)..62
lightbulb10.dvi(file)....62
lightbulb10.mf(file)..62–64
lightbulb10.tfm(file)....64

\Lightning(Evs.).....56
\Lightning(E)..........43

\Lightning().........53
\lightning("vs.%)......56
\lightning(")..........27
\lightning(%)..........51
\lim(lim)...........29,65
\liminf(liminf)......29,65
limits.................29
\limsup(limsup).....29,65
linearimplicationsee\multimap

\Lineload(L)..........43
linguisticsymbols......8–10
\lJoin(").............22
\ll()................25
\ll(#)...............24
\llap.................59
\llbracket(#)..........32
\llceil(#).............31
\llcorner()...........31
\llcorner(+)...........31
\llcurly()...........22
\Lleftarrow(,)........26
\llfloor($)............31
\lll()...............25
\lll(≪vs.).........56
\lll(≪)..............24
\llless..........see\lll

\llparenthesis(%).......31

\lmoustache()........32

\ln(ln)...............29
\lnapprox()..........25
\lnapprox(")..........24
\lneq()..............25
\lneq(#)..............24
\lneqq().............25
\lneqq($).............24
\lnot............see\neg

\lnsim().............25
\lnsim(%).............24
localring(O)..seealphabets,

math
\log(log)...........29,65
log-likesymbols.......29,65
logicaloperators

and.........see\wedge

not...see\negand\sim

or...........see\vee

\logof(&).............21
lollipop.......see\multimap

longdivision............35
\Longleftarrow(⇐=).....26
\longleftarrow(←−).....26
\Longleftrightarrow.....52
\Longleftrightarrow(⇐⇒)26
\longleftrightarrow(←→)26
\Longmapsfrom(⇐=&)......27

\longmapsfrom(←−')......27
\Longmapsto($=⇒).......27
\longmapsto()−→).......26
\LongPulseHigh().....41
\LongPulseLow().....41
\Longrightarrow(=⇒)....26
\longrightarrow(−→)....26
\looparrowdownleft()..27
\looparrowdownright()..27
\looparrowleft()......27
\looparrowleft(.)......26
\looparrowright().....27
\looparrowright(/).....26
\Loosebearing($).......43
\lor.............see\vee

\LowerDiamond().......48
lowering...see\textlowering

\lozenge(♦)...........38
\Lparen().............40
\lrcorner()...........31
\lrcorner(1)...........31
\lrJoin.........see\Join

\lrtimes(%)............22
\Lsh()...............27
\Lsh(2)...............26
\Lsteel(™)............43
\ltimes()............18
\ltimes(&)............16
\ltriple..............33
Luecking,Dan...........59
\lVert(||)..............33
\lvertneqq()..........25
\lvertneqq(')..........24
\lz()................10

M
\M.....................8
\m.....................8
macron.........seeaccents
majuscules.............29
\makeatletter..........60
\makeatother...........60
\MALE(‚)..............43
\Male(|)..............43
\male(♂)..............43
\MaleMale(ƒ)..........43
\maltese(3)...........15
\manboldkidney(").......51
\manconcentriccircles(#)51
\manconcentricdiamond($)51
\mancone(%)...........51
\mancube(&)...........51
\manerrarrow(').......51
\manfilledquartercircle(()51
manfnt(package).49,51,69,70
\manhpennib()).........51
\manimpossiblecube(*)...51
\mankidney(+)..........51
\manlhpenkidney(,)......51
\manpenkidney(-).......51

\manquadrifolium(.)....51
\manquartercircle(/)....51

79

\leftrightharpoonsfill...36
\leftrightsquigarrow()27
\leftrightsquigarrow(!)26
\Leftscissors(S).......45
\leftslice(!)..........17
\leftsquigarrow()....27
\leftsquigarrow(!).....27
\leftt()..............13
\leftthreetimes().....39
\leftthreetimes(").....16
\leftthumbsdown()....46
\leftthumbsup()......46
\lefttorightarrow()...27
\Lefttorque(&)........43
\leftturn(!)..........51
\legm()..............10
\legr()..............10
\length().............13
\Leo(ä)...............42
\leo(")...............42
\leq()...............25
\leq(≤)............24,25
\leqq()..............25
\leqq(#)..............24
\leqslant($)..........24
less-thansigns..seeinequalities
\lessapprox().........25
\lessapprox(%).........24
\lessdot()...........25
\lessdot(!)...........24
\lesseqgtr()..........25

\lesseqgtr(&)..........24

\lesseqqgtr().........25

\lesseqqgtr(').........24

\lessgtr()...........25
\lessgtr(≶)...........24
\lesssim()...........25
\lesssim())...........24
\Letter()............53
\Letter(Bvs.).......56
\Letter(B)............43
letter-likesymbols.....30,31
letters.........seealphabets

barred.............57
non-ASCII...........8
slashed............58
variantLatin........30

\LF(!)................43
\lfilet().............32

\lFloor("").............33
\lfloor(").............32
\lg(lg)................29

\lgroup()............32

\LHD(#)...............17
\lhd(*)............16,17
\lhdbend(!)..........49
\Libra(æ).............42
\libra($)............42
\lightbulb(A)..........64
lightbulb.mf(file)....62,63
lightbulb.sty(file)......64

lightbulb10.2602gf(file)..62
lightbulb10.dvi(file)....62
lightbulb10.mf(file)..62–64
lightbulb10.tfm(file)....64

\Lightning(Evs.).....56
\Lightning(E)..........43

\Lightning().........53
\lightning("vs.%)......56
\lightning(")..........27
\lightning(%)..........51
\lim(lim)...........29,65
\liminf(liminf)......29,65
limits.................29
\limsup(limsup).....29,65
linearimplicationsee\multimap

\Lineload(L)..........43
linguisticsymbols......8–10
\lJoin(").............22
\ll()................25
\ll(#)...............24
\llap.................59
\llbracket(#)..........32
\llceil(#).............31
\llcorner()...........31
\llcorner(+)...........31
\llcurly()...........22
\Lleftarrow(,)........26
\llfloor($)............31
\lll()...............25
\lll(≪vs.).........56
\lll(≪)..............24
\llless..........see\lll

\llparenthesis(%).......31

\lmoustache()........32

\ln(ln)...............29
\lnapprox()..........25
\lnapprox(")..........24
\lneq()..............25
\lneq(#)..............24
\lneqq().............25
\lneqq($).............24
\lnot............see\neg

\lnsim().............25
\lnsim(%).............24
localring(O)..seealphabets,

math
\log(log)...........29,65
log-likesymbols.......29,65
logicaloperators

and.........see\wedge

not...see\negand\sim

or...........see\vee

\logof(&).............21
lollipop.......see\multimap

longdivision............35
\Longleftarrow(⇐=).....26
\longleftarrow(←−).....26
\Longleftrightarrow.....52
\Longleftrightarrow(⇐⇒)26
\longleftrightarrow(←→)26
\Longmapsfrom(⇐=&)......27

\longmapsfrom(←−')......27
\Longmapsto($=⇒).......27
\longmapsto()−→).......26
\LongPulseHigh().....41
\LongPulseLow().....41
\Longrightarrow(=⇒)....26
\longrightarrow(−→)....26
\looparrowdownleft()..27
\looparrowdownright()..27
\looparrowleft()......27
\looparrowleft(.)......26
\looparrowright().....27
\looparrowright(/).....26
\Loosebearing($).......43
\lor.............see\vee

\LowerDiamond().......48
lowering...see\textlowering

\lozenge(♦)...........38
\Lparen().............40
\lrcorner()...........31
\lrcorner(1)...........31
\lrJoin.........see\Join

\lrtimes(%)............22
\Lsh()...............27
\Lsh(2)...............26
\Lsteel(™)............43
\ltimes()............18
\ltimes(&)............16
\ltriple..............33
Luecking,Dan...........59
\lVert(||)..............33
\lvertneqq()..........25
\lvertneqq(')..........24
\lz()................10

M
\M.....................8
\m.....................8
macron.........seeaccents
majuscules.............29
\makeatletter..........60
\makeatother...........60
\MALE(‚)..............43
\Male(|)..............43
\male(♂)..............43
\MaleMale(ƒ)..........43
\maltese(3)...........15
\manboldkidney(").......51
\manconcentriccircles(#)51
\manconcentricdiamond($)51
\mancone(%)...........51
\mancube(&)...........51
\manerrarrow(').......51
\manfilledquartercircle(()51
manfnt(package).49,51,69,70
\manhpennib()).........51
\manimpossiblecube(*)...51
\mankidney(+)..........51
\manlhpenkidney(,)......51
\manpenkidney(-).......51

\manquadrifolium(.)....51
\manquartercircle(/)....51

79

Fig.8.Graphsfromactivities(A,C)refinethoseobtainedviacTLA(B,D)

actionisactivemuststayintheplaceofthecallbehavioractionaslongas
thecalledactivityisexecuting.Whenanoutputisavailable,thecorresponding
outgoingarcofthecallbehavioractioncanfire.Foractivitieswithaninitial
token,weassumethatthecorrespondinginputpincontainsatokenintheinitial
stateenablingtostarttheactivityrightinthebeginning.

Thecouplingofthetwocompositionoperatorsisperformedassketchedin
Fig.7.AsoutlinedinSect.3,oneoperatorfacilitatestocoupletwodecisionsin
separateactivitieswitheachotherwheretwobranchesofthedecisionsarelinked
byadashedline.InourcTLA-basedformalmodel,weexpressthisbycoupling
theactionsdescribingthebranchesofthetwodecisions.First,wecouplethe
twocTLAactionsmodelingthelinkedbranches.Forinstance,inthecoupling
infragmentβinFig.5thiscausesthatthebranches[cond]and[...]are
onlycarriedoutjointly.Likewise,wecouplethetwocTLAactionsmodelingthe
otherbranchesofthedecisions,enforcingthatthetwo[else]branchesareonly
executedtogetheraswell.Sincedecisionontherightsideofβmustnothave
anadditionallocalcondition,thecouplingcannotcontaindecisionconditions
whichmayblocktheflows.

InFig.5,wealsoshowthatconjoineddecisionsβcanbetransformedto
asingledecisionasdepictedinα.Fig.8showsfragments2αandβintheir
graphicalcTLAformAandBthatwasobtainedthroughatransformation
accordingtoTab.1.Toprovethatthistransformationstepdoesnotspoilthe
correctnessofthesystem,weperformthecTLA-basedrefinementproofA⇒B.
Oneway,toverifyinTLAandcTLAthatamoredetailedsystemAimplies(i.e.,
isarefinementof)amoreabstractsystemB,istosearchaso-calledrefinement
mapping[19].Fortheproofofsafetyproperties,i.e.,that“nothingbadwill
happen”,themappinghastofulfilltwoproperties3:

P1:AninitialstateofAismappedtoaninitialstateofB.
P2:Eachpairofstates(s,s′)fulfillinganactioninAismappedtoapairof

states(t,t′)whichfulfillsanactioninBorastutteringstep(i.e.,t=t′).

2Thefragmentscontaintransitionsthatcanhaveseveralinputandoutputplaces.
Forexample,Bconsistsoftwotransitions,thatcanfireiftherearetokensinboth
b1andb2.Ifoneofthemfires,tokensaremovedtoeitherb3andb4ortob5andb6.

3Furthermore,apropertyconsideringthelivenessofthesystem,i.e.,that“something
goodwilleventuallyhappen”,hastohold.Whilewecanprovethatourtransforma-
tionsfulfillalsotheselivenessproperties,inthispaperwerestrictustosafetyproofs
forthesakeofbrevity.

Refinement Proof (App. A)

Fig. 4.12: Connections between formulas and diagrams

need to be considered, but also those in the other partitions as well as the queue
places between partitions. However, the algorithm does not have to deal with the
entire state space of the complete system either, since those collaborations that
are not directly involved in the state machines under construction are replaced
by their ESMs, in similar ways as in the strategy employed in model checking.
So far, all examples tested were transformed within fractions of a second even
for the extended version. Therefore, we plan to use the first variant only in those
cases, where the state space is too large for the second variant. Both algorithms
have been implemented as part of Arctis, which is presented in Sect. 4.5 and
Paper 8.

4.4.4 Refinement Proof from Activities to State Machines

The transformation algorithm maps the activities to state machines so that there
is a refinement relation between the corresponding cTLA styles. This means that
the behavior of the state machines implements (or implies) the behavior of the
activities. Figure 4.12 illustrates these relations. The correctness of the transfor-
mation of a system can be proven by a refinement proof using the corresponding
formalizations. For the state machines, cTLA/e formulas can be derived accord-
ing to the definitions of Paper 2. For the activities, the cTLA/c formula can be
derived by the rules in Paper 6 or automatically by the algorithm implemented
in [Sl̊a07] as the Arctis Formulator. Detailed guidelines are provided in Paper 3,
and we execute such a proof in App. A.

4.5 Tool Support for SPACE

Tools are an integral part of our strategy for rapid service development. Obvi-
ously, tools accelerate the development by providing editing support, automated
model transformation and code generation, and reveal errors by consistency
checks and model checking. Moreover, tools are an effective way to document
a method and guide its users, which in the end also facilitates the application
of formal methods by practitioners. We also used tools as one criteria in the
evaluation of our approach, as discussed in Chapt. 6.

SPACE is compliant with UML 2.0. The proposed extensions to UML collab-
orations, activities and state machines as outlined in Sect. 4.2.4 and documented
in App. C and App. E can be covered by UML profiles. Therefore, any modeling

the engineering method space 53

Engineer

Library

Model
Transformer

TLC Model
Checker Formulator

Syntactic
Inspectors

Code
Generator

Service Design Models
UML State Machines

Executable System
Service Application Code

Service Specifications
UML Activities

Arctis Ramses

Analyzer

Editor

Fig. 4.13: Tool support for SPACE by Arctis and Ramses

tool compliant with UML 2.0 and the possibility to define profiles should be
able to create the collaborative service specifications as proposed in this work.
The implemented transformations of models to state machines respective TLA+

modules can be integrated into existing tools by accessing a common UML repos-
itory, such as the one provided by the Eclipse Modeling Project [Ecl].

Nevertheless, we decided to support SPACE by our own tailored set of tools.
This has the advantage that editing tools can directly support the claimed speci-
fication style, so that it is easier for the engineers to construct valid specifications.
For instance, building blocks may simply be dragged into the editor to instanti-
ate them, and error traces may be animated directly in the editor, as described
in Sect. 4.3.3. The tools are partitioned into two sets of plug-ins:

– Arctis supports the construction of collaborative service specifications
based on the building blocks expressed by UML 2.0 collaborations and
activities, as well as the analysis of them and the transformation to the
state machine-based models of Ramses.

– Ramses covers the more traditional, component-oriented part of the devel-
opment, facilitating the implementations of state machine-based models as
known from SOM or TIMe, similar to SDL.

The structure of the tools is sketched in Fig. 4.13. Arctis provides an editor for
the service specifications which allows a user to create collaborations from scratch
or compose existing ones taken from a library to create composite collaborations.
In addition, Arctis contains the Formulator for TLA+, the Analyzer and the
model transformation as introduced above. The external model checker TLC is
invoked by Arctis from the command line, invisible to the user.

A brief overview of the tools is provided in Paper 8. In Paper 7, we demon-
strate the analysis via model checking of an example. A closer view of the tools
with a more comprehensive example and screenshots is provided in App. A.

CHAPTER

FIVE

SURVEY OF THE PUBLICATIONS

Part II contains eight papers published between July 2006 and November 2007.
To illustrate how the results of the individual papers contribute to the objectives
of the thesis, we use the two-dimensional map in Fig. 5.1. Its horizontal axis
sketches the development process presented in Fig. 4.1 on page 41. It starts with
the library of reusable building blocks and their composition into service speci-
fications, which are transformed into the component-oriented descriptions based
on state machines, that are used to create an executable implementation via
code generation. On the vertical axis, we distinguish between three conceptual
levels:

– The logic level of formal reasoning. It is used to define the semantics and
ensure the consistency of the specifications and their composition, as well
as the correctness of the model transformation. In addition, it provides
the basis for model checking.

– The modeling level, that means the level visible to the engineer developing
a new system. It consists of the UML models of building blocks and
composed systems. We also count the Java programs produced by the
code generators for the implementation and execution as a part of this
level.

– The level of tool support. This level assists the creation of systems using
the modeling and programming concepts of the model level, indirectly
ensuring the application of the concepts from the logic level. In addition,
transformations synthesize the executable state machines.

The logical level is covered by the formalisms of cTLA/c and cTLA/e. On the
modeling level, the formal constraints of cTLA/c and cTLA/e are captured by
the two profiles we apply to UML and the techniques described in the papers as
well as the generated Java programs. At the tool level, we distinguish between
Arctis for service specifications and Ramses for state machines.

56 chapter five

Logic

Modeling

Tools

cTLA/c cTLA/e

RamsesArctis

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

UML Collaborations, Activities, ESMs UML State Machines Java

Fig. 5.1: Conceptual map of the papers’ content

5.1 Individual Contributions

Most of the papers were published together with my supervisors Peter Herrmann
and Rolv Bræk. I was the first author of all papers with exception of Paper 5.
In Paper 1, I developed the main ideas of the approach, and was responsible
for about 90% of the paper. In Paper 2, around 70% of the contents go to
my account. The transformation algorithm presented in Paper 3 was developed
together with Peter Herrmann, and I wrote 70% of the paper. As mentioned
in Sect. 4.4.3, I implemented in addition an extended algorithm for the case
that full model checking is possible. I developed the mechanisms for selection of
multi-sessions described in Paper 4 and was responsible for 80% of the paper.
In Paper 5, I was mainly concerned with the application of the approach to the
example and its implications on the development method; trust-related aspects
are mainly contributed by Peter Herrmann, so that my contribution of the paper
is about 30%. The formalization of our approach in cTLA in Paper 6 was done
in cooperation with Peter Herrmann, and my portion of the article is about 70%.
Paper 7 presents the application of model checking based on the tool developed
by Vidar Sl̊atten in [Sl̊a07] under my guidance. I developed the initial example
and wrote about 90% of the paper. For the submitted paper presented in App. A
I have a similar share with the other authors as in Paper 7 so that my part of
writing accounts for around 85%. I was the sole author of Paper 8 as well as of
all chapters of Part I and appendices B to E.

5.2 Published Papers

In the following, we give a brief summary of each paper and how it contributes
to the overall objectives of this thesis. We mark the primary areas addressed by
a paper on the two-dimensional map introduced above.

survey of the publications 57

Paper 1, together with Peter Herrmann:

Service Specification by Composition of Collaborations – An Example

Proceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM International Conference

on Web Intelligence and Intelligent Agent Technology), IEEE Computer Society, 2006.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

This paper is the first one presenting the paradigms used in SPACE. It provides
an overview of the specification technique with collaborations and activities ex-
emplified by an access control system. The concept of collaborations as building
blocks is described. We present how UML activities can express the behavior
of collaborations as well as describe how collaborations are composed precisely,
utilizing activity parameter nodes and pins. We introduce the external state
machines (ESMs) and explain how they define the externally visible behavior of
building blocks. We demonstrate that collaborations can be used as one form
of interface description, in which also local behavior of the partner using the
interface is included. In the end, we proposed plans for the tool support and the
model transformation into executable state machines, presented in Paper 3.

Paper 2, together with Peter Herrmann and Rolv Bræk:

Aligning UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services

Proceedings of the 8th International Symposium on Distributed Objects and Applications

(DOA), Volume 4276 of Lecture Notes in Computer Science, Springer, 2006.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

To enable a correctness-preserving, automated development approach, we es-
tablish the target modeling and specification style for our approach based on
executable state machines. For that purpose, we describe the event-based ex-
ecution of extended finite state machines based on a runtime-support system,
similar to those used in SOM (see Sect. 3.1.1). To enable an easy and effi-
cient scheduling mechanism, we describe constraints on UML 2.0 state machines
which are summarized by a profile for executable state machines (see App. D).
Moreover, we introduce the cTLA specification style cTLA/e to describe state
machines corresponding to this profile. We continue by pointing out how the
separate processes for the state machines may be composed to form a global sys-
tem. In the end, we show how a correct implementation actually is a refinement
of a cTLA/e process, and which properties cTLA/e processes (resp. executable
state machines) have.

58 chapter five

Paper 3, together with Peter Herrmann:
Transforming Collaborative Service Specifications into Efficiently Ex-
ecutable State Machines
Proceedings of the 6th International Workshop on Graph Transformation and Visual Modeling

Techniques (GT-VMT), Volume 6 of the Electronic Communications of the EASST, 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

We develop the transformation from activities to the executable state machines
that is pivotal for the entire approach. After a recapitulation of the component-
oriented and collaboration-oriented models, we start by considering the princi-
ples for mapping the concepts of activities to those of state machines. The most
important difference is that state machines have an explicit control state, while
activities represent states implicitly by token markings. In addition, activity
flows crossing partition borders need to be replaced by signal transmissions. We
continue by explaining an algorithm in detail which transforms activities given
in an UML repository into state machines. The algorithm considers which ele-
ments of an activity imply events that trigger transitions in the corresponding
state machine. For each of these events, and for each possible state, the algo-
rithm creates state machine transitions by following the elements of the activity
graph. The algorithm is implemented in the Arctis tool set presented in Pa-
per 8. In the end, proof guidelines are given which explain in detail how the
actions of the activities (cTLA/c) are mapped to the actions of the state ma-
chines (cTLA/e), so that the correctness of the transformation can be proven by
a refinement proof in temporal logic, as we demonstrate in App. B.

Paper 4, together with Rolv Bræk and Peter Herrmann:
Synthesizing Components with Sessions from Collaboration-Oriented
Service Specifications
Proceedings of the 13th Int. SDL Forum, Volume 4745 of Lecture Notes in Computer Science,

Springer, 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

In real systems, there are typically multiple instances of certain components,
for example to provide access for several users. This usually implies that also
multiple instances of collaborative behavior (also called sessions) are executed
at the same time. When we compose such systems, we often need to specify pre-
cisely which exact session instance we want to address. However, although UML
allows call behavior actions in activity to execute with several parallel sessions,
it does not offer suitable means to coordinate them with the precision we need.

survey of the publications 59

Therefore, we introduce stereotypes to model multi-session collaborations and
operators for the management of session instances. While the select operator
can be used to select specific instances from a set of sessions, the exists operator
models decisions depending on current state of the sessions of a collaboration.
We demonstrate this extension to specifications by means of the taxi control
center, already mentioned in Sect.4.2.3. In addition, we describe how the exist-
ing transformation algorithm and code generators are extended to handle these
extensions as well.

Paper 5, together with Peter Herrmann:

Design of Trusted Systems with Reusable Collaboration Models

Proceedings of the Joint iTrust and PST Conferences on Trust, Privacy, Trust Management

and Security (IFIPTM), International Federation for Information Processing, Springer, 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

We present the application of SPACE to the domain of trust management by
developing a trusted auction system. The example, already introduced as illus-
trations in Sect. 2.2 and 4.2, shows how a rather complex system gets manageable
and understandable using the decomposition into collaborative building blocks.
It is especially demonstrated how each of the building blocks can be understood
separately, as they document collaborative behavior related to a certain task in
a self-contained manner. We also stress another aspect supported by the devel-
opment approach: The collaborative building blocks provide a basis for precise
communication among experts of different domains. In the example given, an
expert of trust can design generally useful collaborations for trust-based systems,
while an expert in the domain of electronic sale systems may use these building
blocks without a detailed knowledge of their contents.

Paper 6, together with Peter Herrmann:

Formalizing Collaborative Service Specifications using Temporal Logic

Proceedings of the Networking and Electronic Commerce Research Conference (NAEC)

ATSMA, 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

This paper establishes the semantic foundation of the collaborative building
blocks and how they are composed. We start the discussion by a recapitulation
of the specification style used in the approach based on UML 2.0 collabora-
tions and activities by an example form the home automation domain, including
multi-session collaborations. We then describe the specification style cTLA/c

60 chapter five

for collaborations, already briefly outlined in Sect. 4.3.1. Elementary collab-
orations are mapped to simple cTLA processes, and composite collaborations
are expressed by corresponding compositional cTLA processes. We formulate a
set of production rules that describe how the graph of an activity consisting of
activity nodes and edges is transformed to cTLA actions, and provide an ex-
ample. To create entire systems, collaborations are composed, which, given the
semantics in cTLA/c, can be formalized as cTLA process compositions. When
the action of one collaboration is joint with the action of another one, there is
a synchronous composition. Asynchronous composition comes in two variants:
one where no multiplicity is involved, and one where only specific session in-
stances are selected for composition. Both kinds are explained. In the end, we
point out how the composition leads to a global specification that describes the
behavior of the entire system.

Paper 7, together with Vidar Sl̊atten and Peter Herrmann:
Engineering Support for UML Activities by Automated Model-
Checking

Proceedings of the 4th International Workshop on Rapid Integration of Software Engineering

Techniques (RISE), 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

We exemplify how the mapping from UML activities to temporal logic provided
by Paper 6 can be used for the model checking of service specifications. For
that, we use the Arctis Formulator (see Sect. 4.5 and [Sl̊a07]) to generate a
TLA+ module for each building block of the system, which are then checked in-
crementally (block by block) using TLC. The automatically generated theorems
lead to the detection of errors that can be presented to the users which do not
need to be experts in the field of formal techniques: Once an error is found, the
corresponding trace is visualized within the activities, illustrating the problem
to the engineer. In particular, the example highlights how situations in which
several communication partners can take simultaneous initiatives, can be solved
by introducing a reusable building block. Once the need for this building block
is identified, its application is much easier and faster compared to a manual
introduction of the solution on the level of state machines.

survey of the publications 61

Paper 8:

Arctis and Ramses: Tool Suites for Rapid Service

Proceedings of NIK-2007 (Norsk informatikkonferanse), 2007.

Logic

Modeling

Tools

Library Composition Service-Spec. Transform. Comp.-Spec.Comp.-Spec. Code Gen. Execution

In this paper we briefly outline the SPACE approach and describe the tools
that Arctis provides to support the development of collaborative service spec-
ifications. In particular, these are tools for editing and syntactically inspect-
ing specifications, tools for analyzing specifications based on model checking as
demonstrated in Paper 7, and the model transformation presented in Paper 3.
Ramses is presented with a focus on its code generation capabilities.

5.3 Appendices

Appendix A, together with Vidar Sl̊atten and Peter Herrmann:

Tool Support for the Rapid Composition, Analysis and Implementa-
tion of Reactive Services

Submitted to a journal for review.

We present the Arctis and Ramses tools using the example of a mobile treasure
hunt, which is composed from a number of reusable building blocks. After a
general introduction to our approach, we use Arctis to analyze a collaboration by
means of the model checker TLC. The feedback to users by means of animated
error traces and diagnoses and proposals for improvements is demonstrated.
We close by transforming the system into executable components and discuss a
number of related approaches.

Appendix B:

Refinement Proof for a System
We present a refinement proof for an example system (following the guidelines
provided in Paper 3) that the behavior of the automatically synthesized state
machines implies the behavior described by the activities of the collaborative
service specifications. As both the formula for the activity and the state machines
are written in TLA+, we also use the model checker TLC to demonstrate that
the given refinement mapping is correct.

Appendix C:

UML Profile and Semantics for Service Specifications
This report summarizes the syntax of service specification and the semantics
of activities based on token flows. This form of description complements the

62 chapter five

formalization in terms of cTLA/c given in Paper 6. All stereotypes are explained
and summarized as UML profile, which is the base for the tools presented in
Paper 8 and [Sl̊a07].

Appendix D:
Building Blocks, Patterns and Design Rules for Collaborations and
Activities
This report is a collection of useful building blocks, patterns and design rules
that we gathered during our case studies. In comparison to App. B, it focuses
on the strategies for solving certain re-occurring problems effectively.

Appendix E:
UML Profile for Executable State Machines
This report summarizes the syntax of the composite structures and executable
state machines in form of a UML profile. This profile serves as a starting point for
code generators, since models synthesized by Arctis conform to its constraints.

CHAPTER

SIX

DISCUSSION

The contributions of this work are presented in detail in the individual papers of
Part II. In this chapter, we focus on the approach in its entirety. To do so, we
start in Sect. 6.1 by presenting the main contributions of our work, as already
briefly outlined in Sect. 1.1, and review our research question from Sect. 2.3 in
Sect. 6.2. We close with some comments on the practical applicability of our
results in 6.3 and discuss related work in 6.4.

6.1 Innovations and Results

We want to point out three characteristics of our method that support the over-
all goal of accelerating the development of reactive services and which, in our
opinion, contribute to innovation in the area of service engineering:

1. Services as Compositions of Collaborative Building Blocks

Due to the external description by ESMs, the internals of the building blocks
do not have to be considered when they are instantiated and composed. The
formal semantics of the building blocks in TLA and cTLA, the chosen composi-
tion principle of joint actions and the property of superposition ensure, that the
behavior of a building block is preserved in the composed system. Despite this
formal setting of the semantics, the user only works on UML models in a rather
intuitive way, since we managed to map the collaborations as well as the joint
action composition to the visual representation in UML activities. Because the
building blocks stay structurally intact during composition, the resulting spec-
ification can also later be understood as a combination of existing and already
known elements.

64 chapter six

2. Automated Transition from Collaborations to Components

Developers specify systems entirely using collaborative building blocks. This
enables a focus on the functional decomposition of the system’s services and
present collaborative behavior in a self-contained, compact form crossing compo-
nent borders. The state machines necessary for the efficient implementations are
consistent with the activities by construction, due to the automated transforma-
tion. Because of the formal refinement mapping underlying the transformation,
the behavior implied by the activities of the collaboration-oriented perspective
is maintained by the behavior implemented by means of the state machines.

This means in particular that a manual and time-consuming synthesis of
state machines is not necessary. Obviously, for this to be possible, the activities
have to be constructed first. We claim, however, that this is easier than the
construction of consistent state machines since activities represent their states
only indirectly by token markings and because of the joint action composition
we apply. It is therefore more convenient to compose behavior that is executed
in parallel and synchronized at some points, as it is often necessary in service
compositions.

3. Incremental Model Checking and Automated Analysis

We demonstrated how model checking can be applied incrementally to
collaboration-oriented specifications. Due to the semantics we described in tem-
poral logic, the composition mechanism of joint actions and the principle of
superposition, the resulting system is correct as well.

The input for the model checking is produced automatically from the UML
activities, alongside theorems that describe generally desirable behavior. We
discussed how the results of model checking can be presented to the users in a
meaningful way, and how error traces can be visualized by animations within
the UML activities. These principles in combination with the proposed tools
should make formal reasoning effectively usable to practitioners.

6.2 Answers to the Research Questions

To review our results, we recapitulate the research question posed in Sect. 2.3.

1. What should be the basis for an expressive approach that lets us rapidly
compose services from reusable elements?

The main idea was to use collaborations as operational, complete and self-
contained building blocks, as presented in Paper 1 and demonstrated on a
larger example in Paper 5. Thinking in terms of collaborations facilitates
the understanding of specifications, since they can be decomposed accord-
ing to their functions, which enables a horizontal view as illustrated earlier
in Fig. 2.3 on page 18. This means that services can be shown as composi-
tions of sub-services, and that their behavior can be presented in a rather

discussion 65

self-contained form. This is in contrast to component-oriented descrip-
tions, where service behavior is presented implicitly by the combination of
several component descriptions. In our approach, service behavior may be
understood in isolation first, then composed with other service behaviors
to realize more complex services.

To realize this idea, we had to find a suitable formalism for the building
blocks that we could use to define their semantics and how they may be
composed. For this purpose, we chose temporal logic, as it enables the
composition principle of joint actions as well as the property of superpo-
sition. The users of the approach, however, just work on a combination of
UML collaborations and activities which are interpreted by tools according
to their formal semantics.

2.1 How can we bridge the gap between collaboration-oriented, horizontal mod-
els focusing on functional decomposition of a system into services, and
vertical models decomposed into components? and

2.2 Can state machines and components be synthesized completely from
collaboration-oriented specifications?

With the presentation of the synthesis algorithm in Paper 3 and the exten-
sion in Paper 4 to handle multiple sessions we showed that an automated
transformation from the activities to executable state machines is possible.
The implementation of the algorithm demonstrated the practicality of this
approach. As an effect, developers only need to consider the collabora-
tions with their behavior expressed by activities. The component-oriented
models containing the state machines for the execution are synthesized
automatically, which makes them correct by construction.

3.1 How can collaborative elements be expressed separately and in a self-
contained, complete way? and

3.2 How can collaborative elements be composed, so that detailed dependencies
between sub-functionalities can be expressed precisely?

We express collaborations as special cTLA processes (see Paper 6) that
describe their behavior in a complete way, covering both the local behavior
of the participants as well as the necessary interactions. By specifying the
externally visible behavior by extra state machines (ESMs), building blocks
can be understood and analyzed in isolation.

For the composition we use the principle of joint action composition sup-
ported by cTLA processes as the semantic foundation of collaborations.
This is an elementary composition mechanism that may describe all nec-
essary kind of dependencies and synchronizations between collaborations.
It enables synchronous coupling, which is needed if actions of two col-
laborations should be joint and implemented by the same state machine
transition. This composition principle enables also buffered couplings by
the introduction of dedicated coupling processes or variables.

66 chapter six

4. Which (graphical) notation supports a flexible, precise composition that
preserves the integrity of building blocks?

As a graphical representation of the formal description of collaborations
we have chosen UML activities as presented in Paper 1. For that purpose,
we described their formal semantics in a rule-based manner in Paper 6. As
illustrated by various examples, they enable expressive compositions of be-
haviors. We also pointed out that multiple instances of collaboration may
be coordinated and composed using an extension developed in Paper 4.

Some activities may seem complex at first glance. We must emphasize,
however, that they specify a complete solution of a problem and not only
a scenario, so that a system’s behavior implementation may be derived
from them. For example, the internals of the mixed initiative building
block (as introduced in Paper 3 and detailed in App. D) may look over-
whelming at first. A solution in state machines, however, is also difficult
to understand, as more than one side has to be considered in order to un-
derstand the complete behavior. Using activities has the advantage that
the entire solution can be encapsulated in one collaborative building block
that may be abstracted by a much less complex ESM. This building block
can from then on be reused without ever looking at its internals again. In
a state-machine-based solution, one always has to look at the details when
state machines are created.

5. Can the individual reusable elements be analyzed separately?

Our understanding of collaborations as special cTLA processes defined in
Paper 6 makes it possible to analyze them for behavioral properties using
logical reasoning and model checking as shown in Paper 7. Concerning the
analysis by model checking, we only have to check one collaboration at a
time and verify that its internal behavior (described by the activity) is a
refinement of its external behavior (described by its ESM). When model
checking composite collaborations, only the ESMs of the directly included
collaborations have to be taken into account, not the entire system or the
entire hierarchy of collaborations. This reduces the state space during the
analysis considerably.

6. How can the correctness of a composed and eventually implemented system
be ensured?

In Paper 6 we demonstrate how the collaborations are composed to sys-
tems, using the process composition mechanisms of cTLA. The superposi-
tion principle ensures that properties of a collaboration are present in the
composed system. The correctness of the collaborations can be ensured by
model checking as exemplified in Paper 7.

To ensure that the implementation based on components and state ma-
chines obey these properties as well, we formalized their execution seman-
tics in Paper 2. In Paper 3, we present how to go from collaborations
to components via an automated transformation from activities to state

discussion 67

machines. In addition, we showed that this transformation is correctness-
preserving, as the state machines (formalized in cTLA/e) imply the be-
havior of the activities (described by cTLA/c) so that cTLA/e⇒ cTLA/c
holds. In App. B we present such a refinement proof. Moreover, the imple-
mentation of the model transformation was tested by transforming many
example specifications into state machine and ensuring by a manual in-
spection that their behavior is correct. For that we used our experience in
the design of state machines and ensured that the state machines synthe-
sized by the transformation were equivalent to state machines we would
have written manually, for example by following the guidelines in [BH93].

7. How can the threshold to applying formal analysis be kept low for a prac-
titioner?

As described, an engineer applying the approach to build reactive systems
does not have to think in terms of formulas; the main specification lan-
guage is UML activities which can be interpreted and understood by token
flow semantics. The main benefits of formal reasoning, namely the com-
positional features, the possibility of ensuring certain properties and the
refinement to an executable implementation, are facilitated by the tools
described in Sect. 4.5, Paper 8 and [Sl̊a07, Sl̊a08]. Due to the semantics
provided in Paper 2 and 6, each specification can be presented as UML
diagrams and a temporal formula. While the diagram may be easier ac-
cessible for the practitioner, the temporal formula allows for a thorough
analysis, as shown in Paper 7. Here, we could show how model checking
can be used in a rather automated way, so that the formal specification as
well as the theorems to be proved are generated automatically, and where
results of the analysis can be presented to the user in the context of the
original activity.

6.3 Practical Applicability of the Results

Our experiences from the application of the approach are indeed very positive.
The chosen specification style allows us to focus on the properties of systems
we are most interested in, namely the coordination of collaborative behavior
consisting of the synchronization of tasks among components. The token flow
semantics of activities seem to be easily understandable when the token flows
are animated, as shown in Sect. 4.5 and Paper 7. We used this technique in
the presentation of our work at conferences, and got very positive feedback
from the audience, as people were impressed how easily they could understand
the specifications. This is especially encouraging as we presented the complete
specifications (from which executable state machines can be generated) and had,
as usual at conferences, only little time.

With the tool support we were able to realize, we proved that the proposed
concepts are implementable and that the proposed techniques work also in a
practical setting. Beyond our own tools, the approach can also be used by any

68 chapter six

UML compliant tool supporting UML profiles to edit service specifications. As
the analysis and transformation tools fit within the framework of MDA and are
compatible with UML 2.0, it should be possible to integrate them into other
tools as well.

The examples we did as case studies and used in the papers were chosen so
that they cover most of the situations needed in real systems, yet are compact
enough to be presented completely within the space constraints of an article.
We claim, however, that the approach scales well and also can handle specimen
of real system specifications. In fact, as we argue in Paper 7, we do not expect
collaborations to get considerably more complex than the ones we presented. We
rather expect that there will be additional levels of decomposition. This does
not obstruct the formal analysis, as it has to consider only one decomposition
level at a time. For the transformation, we have described strategies (see Paper 3
and Sect. 4.4) to handle complexity as well.

We are currently working on further examples within the applied research
project Infrastructure for Integrated Services (ISIS, [ISI07]) for the domain of
home automation. In addition, a master’s thesis is currently under development
that evaluates the approach based on a larger example of a reactive system.

6.4 Related Approaches

Work related to the individual contributions are discussed in the respective pub-
lications. In the following, we focus on related approaches with a comparable
overall intent.

Collaborations as reusable specification units in DisCo are treated by Kel-
lomäkki and Mikkonen [KM00]. They describe templates to capture patterns
involving several objects in so-called archived steps. These are refinement steps
consisting of a context specification and a solution specification, where the latter
is a refinement of the former one. Due to the superposition principle of DisCo
specifications as explained in Sect. 3.3.2, properties once verified for the solution
layer of an archived step are obeyed also by the application using an instance of
the pattern. This means that the verification and design effort are reusable. In
comparison with our building blocks, patterns are integrated into the specifica-
tion by composing DisCo layers, which means to extend certain actions. While
this opens for some more flexibility, users work directly on DisCo actions instead
of the graphical representation of activities as in our case.

Another approach utilizing the notion of patterns is that of the SDL pattern
approach by Geppert et al. [GR01]. In this approach, a pattern is described
by a set of separate SDL process fragments which are added to the SDL pro-
cesses under construction. This task is supported by the SDL pattern tool
(SPT, [DEG04]) which is integrated into the Telelogic Tau SDL tool. After the
application of a pattern, the system specification may have to be further refined
to be executable [GR01]. Validation is done on the resulting SDL model using
standard tools for simulation or state space analysis. This means that validation
does not directly draw benefits from the definition of patterns. Moreover, once

discussion 69

patterns are integrated, they are often tightly interwoven with each other, and
not separated in form of building blocks. When the design is maintained or
enhanced later, this implies the challenges we problematized in Sect. 2.2.

Rößler et al. developed with CoSDL [RGG01] an experimental language to
address collaborative behavior in a more explicit form. In [RGG02], a three-
step process is proposed, in which individual collaborations are first developed
in isolation. In a second step, collaborations are analyzed manually for their
dependencies concerning certain control states and data, and assigned to system
components that should realize them. Finally, the collaborations are imple-
mented manually following some guidelines. Similar to the pattern approach,
validation is done once the system is completely specified by SDL processes,
using standard tools. To build systems from collaborations, [RGG01] describes
operations for the sequential, parallel and exclusive composition of collabora-
tions. In our experience, however, collaborations often execute in parallel, with
some synchronization every now and then, for example to exchange some data.
If such a composition is not supported, collaborations have to be partitioned into
parts that can be composed with the available composition operators, which may
lead to collaborations that are too small to be effectively reused.

To facilitate reuse in the design of communication systems, Gotzhein et al.
propose an approach based on micro protocols [GKS02], which are character-
ized as “ready-to-use, self-contained, distributed components” [FG07]. A micro-
protocol is specified by an SDL package containing a state machine description
for each protocol entity, expressed as separate composite states in SDL 2000 or
processes in SDL-96 [GKS02]. The tool described in [FG07] documents a micro
protocol by its incoming and outgoing signals as a set of scenarios. An example
is presented in [FGG+05], in which an existing system is extended with a safety
mechanism that monitors the activity of a control unit and triggers a fail-safe
behavior if the unit does not respond. To do so, a watchdog micro protocol is
added on the observer side, and a heartbeat protocol is added to the controller
side. To connect the protocol with the existing system, a virtual transition
within the watchdog has to be refined, which means that the engineer needs to
consider some of the internals of the micro protocol. The significant difference
from our work is the fact that micro protocols are reusable units on the level
of distributed state machines, while our reuse happens on the level of activities,
which are transformed in a subsequent step into state machines. Concerning the
example in [FGG+05], we would therefore add only one collaboration (expressed
as activity) that encapsulates the watchdog and heartbeat functionality within
one building block.

In [CB06a], Castejón and Bræk use goal sequence diagrams [CB06b] to de-
scribe the intended order of execution of a set of collaboration uses. The behavior
of collaborations is described by UML sequence diagrams, focusing on the in-
teractions between participants in terms of signal transmissions. In contrast to
our representation of collaboration uses by single call behavior actions in activi-
ties, goal sequence diagrams display different phases or states of a collaboration
as distinct elements, and connections between these elements denote orderings

70 chapter six

between collaborations. These orderings define desired scenarios, from a global
point of view, which may be convenient in early design phases. Since this may
imply undesired scenarios in an implementation, goal sequence diagrams are
analyzed for such situations in [CvBB07].

The SIMS project [SIM07] also uses UML collaborations for the development
of services, based on the work on behavioral projections and interface compat-
ibility by Floch [Flo03] and on progress labels by Sanders [San07]. In SIMS,
elementary collaborations, so-called semantic interfaces, consist of two commu-
nication peers. Each peer has a description of its observable behavior attached.
Components bound via semantic interfaces interact correctly if both obey the
interface descriptions. In SIMS, composite collaborations describe how a group
of components may interact using elementary collaborations to achieve some de-
sirable outcome, named goal. So-called goal sequence diagrams identify possible
strategies of the composite collaboration to achieve a goal [CFS08]. While the
definition of compatible interfaces as well as the implied goal dependencies are
helpful when constructing the service components, the SIMS approach currently
implies a manual synthesis of state machines to integrate all semantic interfaces.
As we argued in Sect. 2.2, this task can be quite difficult and time-consuming. In
particular, when semantic interfaces are combined in a new manner, a new state
machine has to be constructed. With respect to verification, SIMS is focusing
on interface behavior rather than overall correctness of a service. The current
SIMS method is somewhat complementary to our approach, as SIMS focuses on
the case that parts of a system are only known by their interface. There may
be several reasons for such a situation, for example that different parts belong
to different operators that do not want to reveal implementation details, or that
legacy components are used from which we only know the external behavior.
In our work, collaborations typically also cover the local behavior of all partic-
ipants. In future work, these paradigms could be aligned, as we will outline in
Chapt. 7.

CHAPTER

SEVEN

FUTURE WORK

Full Support for Data We are currently working on a full support for data
flows. While we already treated data formally in Paper 6, it has to be supported
by the tools as well, in particular the transformation algorithm. For this, we will
allow UML object nodes and object flows in activities according to [Obj07b]. As
UML lacks a concrete action language, we employ Java methods that are linked
to the UML model to express the contents of call operation actions. Changes
to the transformation algorithm will not be fundamental since the state ma-
chine transitions are constructed in the same manner as before. The necessary
additions affect only the way effects of transitions and Java code are written.

Related to the handling of data is also the possibility to parametrize build-
ing blocks. The mixed initiative building block, for instance, currently only
handles control flows. In some cases, we may want to transport data within the
initiatives, which typically is specific for a certain application. Instead of hav-
ing extra building blocks for each possible type, we may employ generic UML
templates [Obj07b], that allow the specification of concrete data types once a
template is applied. In Arctis, such a parameterization should be implemented
as part of the instantiation process of building blocks.

Further Analysis of Building Blocks and Semantics We have described
a framework to analyze the behavior of building blocks using model checking (see
Sect. 4.3.3 and the work of Sl̊atten [Sl̊a07, Sl̊a08]). This analysis will be expanded
by additional theorems and interpretations of error situations. This includes
further studies about semantics for activities, depending on mechanisms from
the underlying execution mechanisms. We assume for instance, that different
activity flows can overtake each other, as presented in Paper 7. This is useful if
different flows should be implemented using different channels, due to security
aspects, for example. In some cases, however, it is reasonable to assume that
all signals between a pair of components (resp. activity partitions) are sent by
the same communication medium and that their order is preserved. Since this
can simplify some designs, such options should be made available to engineers.

72 chapter seven

Similarly, an underlying platform could offer some functionality to terminate
sessions between components or to identify obsolete signals, which could be
utilized for the termination of collaborations.

Reasoning about Real-time Properties For some domains, reasoning
about real-time properties may be desirable. As this has been solved already
for TLA (see [Lam05]) and cTLA (see [GHK00]), it is very likely that the intro-
duced solutions can also be used within SPACE, with appropriate additions to
the modeling elements.

Advanced Coupling Operators To further facilitate the constraint-oriented
specification style [VSvS88] as described in Sect.3.4.2, additional coupling oper-
ators may be introduced. For example, decisions in one collaboration may be
directly coupled to decisions in other collaborations. This is especially useful in
the security domain, as exemplified for pure cTLA in [Her06].

Replacement of Collaborations In the current version of the approach, one
building block has exactly one ESM for the external behavior and one activity
specifying the internal implementation of the collaboration. In some cases, it
may be desirable to realize the same ESM behavior by different activities, possi-
bly with a different number of participants. For example, an authorization could
be performed locally, but also using a third party. While such a replacement
simply implies different refinement mappings between an ESM and an activity,
such flexibility must be integrated also technically into the approach. More-
over, it should be studied how only the local, internal behavior of some of the
participants in a collaboration may be exchanged.

Using Existing Components via Behavioral Interfaces In some cases,
it may be desirable to only specify and implement certain parts of a sys-
tem, while other parts are only described by interfaces, for example the ones
in [Flo03, San07]. In our method, interfaces between components are internal to
collaborative building blocks. To incorporate such interfaces into our method, a
two-step approach seems to be feasible, as we briefly hinted at in Paper 1: In a
first step, a building block with two participants is constructed. One participant
is part of the environment, the other one is part of the system under construc-
tion. The behavior of the building block is constructed so that the behavior
observed between system and environment is compatible with the original inter-
face description. In a second step, the resulting building block can be composed
in the well-known form with the activities so that the behavior towards this
component may be integrated into the overall service specification.

Run-Time Configurations Related to the previous point is the dynamic con-
figuration of a system at run-time. Services (or collaborations in general) can
be seen as units not only during design-time, but also at run-time. In some sys-
tems, it may be desirable to deploy new functionality at run-time, by exchanging

future work 73

existing ones or making new ones available via some discovery mechanism. This
form of dynamism is currently not directly addressed by our approach. Given
a replacement functionality, a service specification could simply refer to an ab-
stract external description, while the internal behavior is chosen at run-time.
This would require some semantics for management and possibilities to reason
about the current configuration. Criteria for the selection of collaborations may
be taken for example from the work of Csorba et al. [CHH08], which describes a
cost analysis based on the collaborative specifications employed in SPACE using
the Cross Entropy Ant System (CEAS, [HW01]).

Additional Specifications on Higher Levels of Idealization The service
specifications based on activities are complete and formal descriptions. In early
development phases it may be desirable to sketch some behavior of the system in
form of scenarios, meaning possibly partial or informal behavior. Although such
incomplete descriptions are not sufficient to create a complete implementation,
there may be a systematic way to refine them until a valid SPACE specification
is obtained which can be analyzed and implemented as we described.

Bibliography

[AE03] Daniel Amyot and Armin Eberlein. An Evaluation of Scenario
Notations and Construction Approaches for Telecommunication
Systems Development. Telecommunication Systems, 24(1):61–94,
2003.

[AKP01] Timo Aaltonen, Mika Katara, and Risto Pitkänen. DisCo Toolset
– The New Generation. Journal of Universal Computer Science,
7(1):3–18, January 2001.

[AL91] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement
Mappings. Theoretical Computer Science, 82(2):253–284, May
1991.

[AL95] Mart́ın Abadi and Leslie Lamport. Conjoining Specifications.
ACM Transactions on Programming Languages and Systems,
17(3):507–535, May 1995.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks and ISDN
Systems, 14(1):25–59, 1987.

[BC87] Kent Beck and Ward Cunningham. Using Pattern Languages for
Object Oriented Programs. Technical Report CR-87-43, Tektronix
Inc., Presented at the OOPSLA’87 Workshop on Specification and
Design for Object-Oriented Programming, September 1987.

[BC89] Kent Beck and Ward Cunningham. A Laboratory for Teaching
Object-Oriented Thinking. ACM SIGPLAN Notices, 24(10):1–6,
1989.

[BC96] Ray J. A. Buhr and Ron S. Casselman. Use Case Maps for Object-
Oriented Systems. Prentice-Hall, Inc., 1996.

[BD02] Fulvio Babich and Lia Deotto. Formal Methods for Specification
and Analysis of Communication Protocols. IEEE Communications
Surveys and Tutorials, 4(1), 2002.

[BF04] Rolv Bræk and Jacqueline Floch. ICT Convergence: Modeling
Issues. In Daniel Amyot and Alan W. Williams, editors, SAM’04
- Fourth SDL and MSC Workshop, volume 3319 of Lecture Notes
in Computer Science, pages 237–256. Springer, 2004.

[BGH+97] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger
Møller-Pedersen, and Richard Sanders. Quality by Construction
Exemplified by TIMe — The Integrated Methodology. Telektron-
ikk, 95(1):73–82, 1997.

76

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practi-
tioner Series. Prentice Hall, 1993.

[BHM02] Rolv Bræk, Knut Eilif Husa, and Geir Melby. ServiceFrame
Whitepaper. Ericsson NorARC, Asker, Norway, April 2002.

[BHS81] R. Bræk, O. Helle, and F. Sandvik. SOM — A SDL Compatible
Specification and Design Methodology. In 4th International Con-
ference on Software Engineering for Telecommunication Switching
Systems, Conventry, volume 198, pages 111–117, July 1981.

[BK98] Manfred Broy and Ingolf Krüger. Interaction Interfaces - Towards
a Scientific Foundation of a Methodological usage of Message Se-
quence Charts. In ICFEM ’98: Proceedings of the Second IEEE
International Conference on Formal Engineering Methods, page 2,
Washington, DC, USA, 1998. IEEE Computer Society.

[BKS83] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process
Nets with Centralized Control. In PODC ’83: Proceedings of
the Second Annual ACM Symposium on Principles of Distributed
Computing, pages 131–142, New York, NY, USA, 1983. ACM.

[BKS88] R. J. R. Back and Reino Kurki-Suonio. Distributed Cooperation
With Action Systems. ACM Transactions on Programming Lan-
guages and Systems, 10(4):513–554, 1988.

[BM05] Rolv Bræk and Geir Melby. Model-Driven Service Engineering. In
Sami Beydeda, Matthias Book, and Volker Gruhn, editors, Model-
Driven Software Development, pages 385–401. Springer, 2005.

[BMP95] Rolv Bræk and Birger Møller-Pedersen. Common Methodology.
Technical Report 1112-6, SISU II Project, 1995.

[Bol00] Tommaso Bolognesi. Toward Constraint-Object-Oriented Devel-
opment. IEEE Trans. Softw. Eng., 26(7):594–616, 2000.

[Boo91] Grady Booch. Object Oriented Design with Applications.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,
USA, 1991.

[Bræ79] Rolv Bræk. Unified System Modelling and Implementation. In In-
ternational Switching Symposium, pages 1180–1187, Paris, France,
May 1979.

[Bræ00] Rolv Bræk. On Methodology Using the ITU-T Languages and
UML. Telektronikk, 4:96—106, 2000.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development
of Interactive Systems: Focus on Streams, Interfaces, and Refine-
ment. Springer, 2001.

bibliography 77

[CB06a] Humberto N. Castejón and Rolv Bræk. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied Scenarios.
In SCESM ’06: Proceedings of the 2006 International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools,
pages 37–43, New York, NY, USA, 2006. ACM Press.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing Collabo-
ration Goal Sequences for Service Choreography. In Elie Najm
and Jean-François Pradat-Peyre, editors, 26th IFIP WG 6.1 Intl.
Conf. on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of Lecture Notes in Computer Science.
Springer, September 2006.

[CFN03] Cyril Carrez, Alessandro Fantechi, and Elie Najm. Behavioural
Contracts for a Sound Assembly of Components. In 23rd IFIP
International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2003), pages 111–126, 2003.

[CFS08] Cyril Carrez, Jacqueline Floch, and Richard Sanders. Describing
Component Collaboration using Goal Sequences. In René Meier
and Sotirios Terzis, editors, Distributed Applications and Interop-
erable Systems - Proceedings of DAIS 2008, Oslo, Norway, volume
5053 of Lecture Notes in Computer Science, pages 16–29. Springer,
2008.

[CHH08] Máté J. Csorba, Poul E. Heegaard, and Peter Herrmann. Cost-
Efficient Deployment of Collaborating Components. In René Meier
and Sotirios Terzis, editors, Distributed Applications and Interop-
erable Systems - Proceedings of DAIS 2008, Oslo, Norway, vol-
ume 5053 of Lecture Notes in Computer Science, pages 253–268.
Springer, 2008.

[Coa92] Peter Coad. Object-Oriented Patterns. Communications of the
ACM, 35(9):152–156, September 1992.

[CvBB07] Humberto N. Castejón, Gregor von Bochmann, and Rolv Bræk.
Realizability of Collaboration-based Service Specifications. In
Proc. of 14th Asia-Pacific Soft. Eng. Conf. (APSEC’07). IEEE
Computer Society, December 2007.

[DA85] M. Diaz and P. Azema. Petri Net Based Models for the Specifi-
cation and Validation of Protocols. In Advances in Petri Nets –
Proceedings of the European Workshop on Applications and The-
ory in Petri Nets, volume 188 of Lecture Notes in Computer Sci-
ence, pages 101–121, London, UK, 1985. Springer-Verlag.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface Automata.
SIGSOFT Softw. Eng. Notes, 26(5):109–120, 2001.

78

[DEG04] Jörg Dorsch, Anders Ek, and Reinhard Gotzhein. SPT - The SDL
Pattern Tool. In Daniel Amyot and Alan W. Williams, editors,
System Analysis and Modeling, 4th International SDL and MSC
Workshop, SAM 2004, Ottawa, Canada, June 1-4, 2004, Revised
Selected Papers, volume 3319 of Lecture Notes in Computer Sci-
ence, pages 50–64. Springer, 2004.

[DKMR05] Martin Deubler, Ingolf Krüger, Michael Meisinger, and Sabine
Rittmann. Modeling Crosscutting Services with UML Sequence
Diagrams. In Lionel C. Briand and Clay Williams, editors, Pro-
ceedings of the 8th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), volume 3713 of Lec-
ture Notes in Computer Science, pages 522–536. Springer, 2005.

[DW99] Desmond Francis D’Souza and Alan Cameron Wills. Objects,
Components, and Frameworks with UML: the Catalysis Approach.
Addison-Wesley, 1999.

[Ecl] Eclipse Modeling Project. http://www.eclipse.org/modeling.

[FG07] Ingmar Fliege and Reinhard Gotzhein. Automated Generation
of Micro Protocol Descriptions from SDL Design Specifications.
In Emmanuel Gaudin, Elie Najm, and Rick Reed, editors, SDL
Forum, volume 4745 of Lecture Notes in Computer Science, pages
150–165. Springer, 2007.

[FGG+05] Ingmar Fliege, Alexander Geraldy, Reinhard Gotzhein, Thomas
Kuhn, and Christian Webel. Developing Safety-Critical Real-Time
Systems with SDL Design Patterns and Components. Computer
Networks, 49(5):689–706, 2005.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular Verifica-
tion of Collaboration-Based Software Designs. In ESEC/FSE-9:
Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 152–163, New York,
NY, USA, 2001. ACM Press.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and
Validation using Roles. PhD thesis, Norwegian University of Sci-
ence and Technology, 2003.

[GH04] Günter Graw and Peter Herrmann. Transformation and Verifica-
tion of Executable UML Models. Electronic Notes on Theoretical
Computer Science, 101:3–24, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

bibliography 79

[GHK00] Günter Graw, Peter Herrmann, and Heiko Krumm. Verification
of UML-Based Real-Time System Designs by means of cTLA. In
Proceedings of the 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC2K), pages
86–95, Newport Beach, 2000. IEEE Computer Society Press.

[Gis06] Øystein Gisn̊as. A Constructive Approach to Support the De-
sign of State Machines. Master’s thesis, Norwegian University of
Science and Technology, June 2006.

[GKS02] Reinhard Gotzhein, Ferhat Khendek, and Philipp Schaible. Mi-
cro Protocol Design: The SNMP Case Study. In Edel Sherratt,
editor, Telecommunications and beyond: The Broader Applicabil-
ity of SDL and MSC. Third International Workshop on SDL and
MSC (SAM 2002), Revised Papers, volume 2599 of Lecture Notes
in Computer Science, pages 61–73. Springer, 2002.

[GR01] Birgit Geppert and Frank Rößler. The SDL Pattern Approach —
A Reuse-Driven SDL Design Methodology. Computer Networks,
35(6):627–645, 2001.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Sci. Comput. Program., 8(3):231–274, 1987.

[Her97] Peter Herrmann. Problemnaher korrektheitssichernder Entwurf
von Hochleistungsprotokollen. PhD thesis, Universität Dortmund,
1997.

[Her06] Peter Herrmann. Temporal Logic-Based Specification and Verifi-
cation of Trust Models. In Ketil Stølen, William H. Winsborough,
Fabio Martinelli, and Fabio Massacci, editors, iTrust 2006, vol-
ume 3986 of Lecture Notes in Computer Science, pages 105–119,
Heidelberg, 2006. Springer–Verlag.

[HHRS05] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and
Ketil Stølen. STAIRS Towards Formal Design with Sequence Di-
agrams. Journal of Software and Systems Modeling, 4:355–367,
2005.

[HK98] Peter Herrmann and Heiko Krumm. Modular Specification and
Verification of XTP. Telecommunication Systems, 9(2):207–221,
1998.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK07] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Sandro Etalle
and Stephen Marsh, editors, Trust Management, volume 238,

80

pages 317–332. IFIP International Federation for Information Pro-
cessing, Springer, 2007.

[HW01] Bjarne E. Helvik and Otto Wittner. Using the Cross-Entropy
Method to Guide/Govern Mobile Agent’s Path Finding in Net-
works. In MATA ’01: Proceedings of the Third International
Workshop on Mobile Agents for Telecommunication Applications,
pages 255–268, London, UK, 2001. Springer-Verlag.

[ISI07] ISIS Project Website. http://www.isisproject.org/, 2007.

[ITU97a] ITU-T. Recommondation X.901: Open Distributed Processing —
Reference Model: Overview, August 1997.

[ITU97b] ITU-T. SDL+ Methodology: Manual for the use of MSC and SDL
(with ASN.1). Supplement 1 to Z.100, 1997.

[ITU98] ITU-T. Recommondation Q.931: ISDN User-Network Interface
Layer 3 Specification for Basic Call Control, May 1998.

[ITU99] ITU-T. Recommendation Z.200: CHILL - The ITU-T Program-
ming Language, 1999.

[ITU02] ITU-T. Recommendation Z.100: Specification and Description
Language (SDL), August 2002.

[ITU03] ITU-T. Z.100: Appendices I and II, March 2003.

[ITU04] ITU-T. Recommendation Z.120: Message Sequence Charts
(MSC), 2004.

[ITU07] ITU-T. Recommondation Z.109: SDL-2000 combined with UML,
June 2007.

[Jär92] Hannu-Matti Järvinen. The Design of a Specification Language for
Reactive Systems. PhD thesis, Tampere University of Technology,
1992.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified
Software Development Process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[JCJÖ92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Övergaard. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, 1992.

[JKSSS90] H.-M. Järvinen, Reino Kurki-Suonio, M. Sakkinen, and K. Systä.
Object-Oriented Specification of Reactive Systems. In Proceed-
ings of the 12th International Conference on Software Engineer-
ing, pages 63–71. IEEE Computer Society Press, 1990.

bibliography 81

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Syn-
thesizing Components with Sessions from Collaboration-Oriented
Service Specifications. In Emmanuel Gaudin, Elie Najm, and Rick
Reed, editors, SDL 2007, volume 4745 of Lecture Notes in Com-
puter Science, pages 166–185. Springer–Verlag Berlin Heidelberg,
September 2007.

[Kel97] Pertti Kellomäki. Mechanical Verification of Invariant Properties
of DisCo Specifications. PhD thesis, Tampere University of Tech-
nology, 1997.

[KGW06] Thomas Kuhn, Reinhard Gotzhein, and Christian Webel. Model-
Driven Development with SDL - Process, Tools, and Experiences.
In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reg-
gio, editors, MoDELS, volume 4199 of Lecture Notes in Computer
Science, pages 83–97. Springer, 2006.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Proceed-
ings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Formaliz-
ing Collaboration-Oriented Service Specifications using Temporal
Logic. In Networking and Electronic Commerce Research Con-
ference 2007 (NAEC 2007), pages 194–220, USA, October 2007.
ATSMA Inc.

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming
Collaborative Service Specifications into Efficiently Executable
State Machines. In Karsten Ehring and Holger Giese, editors, Pro-
ceedings of the 6th International Workshop on Graph Transforma-
tion and Visual Modeling Techniques (GT-VMT 2007), volume 7
of Electronic Communications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk.
Aligning UML 2.0 State Machines and Temporal Logic for the Effi-
cient Execution of Services. In R. Meersmann and Z. Tari, editors,
Proceedings of the 8th International Symposium on Distributed
Objects and Applications (DOA), 2006, Montpellier, France, vol-
ume 4276 of Lecture Notes in Computer Science, pages 1613–1632.
Springer–Verlag Heidelberg, 2006.

[KK03] Per Kroll and Philippe Kruchten. The Rational Unified Process
Made Easy. Addison-Wesley, 2003.

82

[KKSM04] Mika Katara, Reino Kurki-Suonio, and Tommi Mikkonen. On the
Horizontal Dimension of Software Architecture in Formal Speci-
fications of Reactive Systems. In Iowa State University Depart-
ment of Computer Science, editor, FOAL 2004 Proceedings, Foun-
dations of Aspect-Oriented Languages Workshop at AOSD 2004,
pages 37–43, 2004.

[KM00] Pertti Kellomäki and Tommi Mikkonen. Design Templates for Col-
lective Behavior. In Elisa Bertino, editor, Proceedings of ECOOP
2000, 14th European Conference on Object-Oriented Program-
ming, volume 1850 of Lecture Notes in Computer Science, pages
277–295. Springer–Verlag, 2000.

[KM03] Ingolf Krüger and Reena Mathew. Component Synthesis from
Service Specifications. In Scenarios: Models, Transformations and
Tools, volume 3466 of Lecture Notes in Computer Science, pages
255–277. Springer, 2003.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Kra07] Frank Alexander Kraemer. Arctis and Ramses: Tool Suites for
Rapid Service Engineering. In Proceedings of NIK 2007 (Norsk
informatikkonferanse), Oslo, Norway. Tapir Akademisk Forlag,
November 2007.

[KS05] Reino Kurki-Suonio. A Practical Theory of Reactive Systems.
Springer, 2005.

[KSH07] Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann.
Engineering Support for UML Activities by Automated Model-
Checking — An Example. In Proceedings of the 4th International
Workshop on Rapid Integration of Software Engineering Tech-
niques (RISE), November 2007.

[KSK88] Reino Kurki-Suonio and T. Kankaanpää. On the Design of Reac-
tive Systems. BIT, (28):581–604, 1988.

[KSM98] Reino Kurki-Suonio and Tommi Mikkonen. Abstractions of Dis-
tributed Cooperation, their Refinement and Implementation. In
B. Krämer, N. Uchihira, P. Croll, and S. Russo, editors, Proceed-
ings of the International Symposium on Software Engineering for
Parallel and Distributed Systems, pages 94–102. IEEE Computer
Society, April 1998.

[Lam89] Leslie Lamport. A Simple Approach to Specifying Concurrent Sys-
tems. Communications of the ACM, 32(1):32–45, January 1989.

bibliography 83

[Lam94] Leslie Lamport. The Temporal Logic of Actions. ACM Trans-
actions on Programming Languages and Systems, 16(3):872–923,
May 1994.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[Lam05] Leslie Lamport. Real-Time Model Checking Is Really Simple. In
Dominique Borrione and Wolfgang J. Paul, editors, Correct Hard-
ware Design and Verification Methods, (CHARME 2005), vol-
ume 3725 of Lecture Notes in Computer Science, pages 162–175.
Springer, 2005.

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A Compara-
tive Survey of Scenario-Based to State-Based Model Synthesis Ap-
proaches. In SCESM ’06: Proceedings of the 2006 International
Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, pages 5–12, New York, NY, USA, 2006. ACM Press.

[LSR87] M. E. S. Loomis, A. V. Shah, and James Rumbaugh. An Ob-
ject Modeling Technique for Conceptual Design. In G. Goos and
J. Hartmanis, editors, ECOOP ’87 – European Conference on
Object-Oriented Programming: Paris, France, June 1987. Pro-
ceedings, volume 276 of Lecture Notes in Computer Science, pages
192–202. Springer, 1987.

[MB02] Stephen J. Mellor and Marc Balcer. Executable UML: A Foun-
dation for Model-Driven Architectures. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[Men04] Vladimir Mencl. Specifying Component Behavior with Port State
Machines. Electronic Notes in Theoretical Computer Science,
101:129–153, 2004.

[Mer76] Philip M. Merlin. A Methodology for the Design and Implemen-
tation of Communication Protocols. IEEE Transactions on Com-
munications, 25(6):614–621, June 1976.

[Mer79] Philip M. Merlin. Specification and Validation of Protocols. IEEE
Transactions on Communications, 27(11):1671–1680, November
1979.

[Mik99] Tommi Mikkonen. The two Dimensions of an Architecture. In
WICSA1, First Working IFIP Conference on Software Architec-
ture, 1999.

[Obj00] Object Management Group. OMG Unified Modeling Language
Specification Version 1.3, March 2000.

[Obj01] Object Management Group. Unified Modeling Language: Super-
structure, version 1.4, September 2001. ptc/2006-09-67.

84

[Obj03] Object Management Group. MDA Guide Version 1.0.1,
omg/2003-06-01 edition, June 2003.

[Obj05] Object Management Group. Unified Modeling Language: Super-
structure, version 2.0, July 2005. formal/2005-07-05.

[Obj06] Object Management Group. Meta Object Facility (MOF) Core
Specification Version 2.0, January 2006.

[Obj07a] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, July 2007.

[Obj07b] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.2, November 2007. formal/2007-11-01.

[OFMP+94] Anders Olsen, Ove Færgemand, Birger Møller-Pedersen, Rick
Reed, and J.R.W. Smith. Systems Engineering Using SDL-92.
Elsevier North-Holland, Inc., Amsterdam, The Netherlands, 1994.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Pro-
totype Verification System. In CADE-11: Proceedings of the 11th
International Conference on Automated Deduction, pages 748–
752, London, UK, 1992. Springer-Verlag.

[Pit06] Risto Pitkänen. Tools and Techniques for Specification-Driven
Software Development. PhD thesis, Tampere University of Tech-
nology, August 2006.

[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Specification
and Verification of Reactive Systems: A Survey of Current Trends.
Current Trends in Concurrency. Overviews and Tutorials, pages
510–584, 1986.

[Pos81] J. Postel. RFC 793: Transmission Control Protocol, 1981.

[PS91] Robert L. Probert and Kassem Saleh. Synthesis of Communica-
tion Protocols: Survey and Assessment. IEEE Transactions on
Computers, 40(4):468–476, 1991.

[QSPvS07] Dick A. C. Quartel, Maarten W. A. Steen, Stanislav Pokraev, and
Marten van Sinderen. COSMO: A Conceptual Framework for Ser-
vice Modelling and Refinement. Information Systems Frontiers,
9(2-3):225–244, 2007.

[RAB+92] Trygve Reenskaug, Egil P. Andersen, Arne Jorgen Berre, Anne
Hurlen, Anton Landmark, Odd Arild Lehne, Else Nordhagen,
Eirik Ness-Ulseth, Gro Oftedal, Anne Lise Skaar, and P̊al Stenslet.
OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems. Journal of Object-oriented Program-
ming, 5(6):27–41, October 1992.

bibliography 85

[RBL+91] James Rumbaugh, Michael Blaha, William Lorensen, Frederick
Eddy, and William Premerlani. Object-Oriented Modeling and De-
sign. Prentice Hall, 1991.

[Ree96] Rick Reed. Methodology for Real Time Systems. Comput. Netw.
ISDN Syst., 28(12):1685–1701, 1996.

[Rek82] Kristen Rekdal. CHILL—The Standard Language for Program-
ming SPC Systems. IEEE Transactions on Communications,
30(6):1318–1328, June 1982.

[RFW04] Chris Raistrick, Paul Francis, and John Wright. Model Driven
Architecture with Executable UML. Cambridge University Press,
New York, NY, USA, 2004.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein.
Collaboration-Based Design of SDL Systems. In Proceedings of
the 10th International SDL Forum Copenhagen on Meeting UML,
pages 72–89. Springer-Verlag, 2001.

[RGG02] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. CoSDL: An
Experimental Language for Collaboration Specification. In Edel
Sherratt, editor, Proceedings of the 3rd SAM Workshop, volume
2599 of Lecture Notes in Computer Science, pages 1–20. Springer,
2002.

[RJB05] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual, Second Edition. Addison-
Wesley, 2005.

[Rus00] John Rushby. Disappearing Formal Methods. In High-Assurance
Systems Engineering Symposium, pages 95–96, Albuquerque, NM,
November 2000. ACM.

[RWL95] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with
Objects, The OOram Software Engineering Method. Prentice Hall,
1995.

[San00] Richard Sanders. Implementing from SDL. Telektronikk,
96(4):120–129, 2000.

[San07] Richard Sanders. Collaborations, Semantic Interfaces and Ser-
vice Goals: A Way Forward for Service Engineering. PhD thesis,
Norwegian University of Science and Technology, 2007.

[Sel98] Bran Selic. Using UML for Modeling Complex Real-Time Sys-
tems. In Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES),
volume 1474 of Lecture Notes In Computer Science, pages 250–
260. Springer-Verlag, 1998.

86

[SFR97] M. Saksena, P. Freedman, and P. Rodziewicz. Guidelines for Au-
tomated Implementation of Executable Object Oriented Models
for Real-Time Embedded Control Systems. In Proceedings of the
18th IEEE Real-Time Systems Symposium (RTSS), pages 240–
251, Washington, DC, USA, 1997. IEEE Computer Society.

[SGME92] Bran Selic, Garth Gullekson, Jim McGee, and Ian Engelberg.
ROOM: An Object-Oriented Methodology for Developing Real-
Time Systems. In Proceedings of the Fifth International Work-
shop on Computer-Aided Software Engineering (Case’92), pages
230–240. IEEE Computer Society, July 1992.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, Inc., New York,
NY, USA, 1994.

[She05] Edel Sherratt. Model-Driven Development of Reactive Systems
with SDL. In Andreas Prinz, Rick Reed, and Jeanne Reed, editors,
Proceedings of the 12th SDL Forum, volume 3530 of Lecture Notes
in Computer Science, pages 224–233. Springer, 2005.

[SIM07] SIMS Project Website. http://www.ist-sims.org/, 2007.

[SIN99] SINTEF Telecom and Informatics. TIMe: The Integrated Method
Electronic Handbook. Available at http://www.sintef.no/time/,
1999.

[SIS96] SISU II Project. http://www.sintef.no/units/informatics/projects/sisu/,
1996.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifica-
tions in TLA with TLC. Project Thesis, August 2007. Norwegian
University of Science and Technology, Trondheim, Norway.

[Sl̊a08] Vidar Sl̊atten. Automatic Detection and Correction of Flaws in
Service Specifications. Master’s thesis, Norwegian University of
Science and Technology, June 2008.

[SM92] Sally Shlaer and Stephen J. Mellor. Object Lifecycles: Modeling
the World in States. Prentice Hall, 1992.

[Stø04] Alf Kristian Støyle. Service Engineering Environment for AMI-
GOS. Master’s thesis, Norwegian University of Science and Tech-
nology, 2004.

[Tel02] Telelogic. Tau 4.4 User’s Manual. Malmö, 2002.

[vBG86] Gregor von Bochmann and Reinhard Gotzhein. Deriving Proto-
col Specifications from Service Specifications. In SIGCOMM ’86:

bibliography 87

Proceedings of the ACM SIGCOMM conference on Communica-
tions architectures & protocols, pages 148–156, New York, NY,
USA, 1986. ACM Press.

[VL85] Chris A. Vissers and Luigi Logrippo. The Importance of the Ser-
vice Concept in the Design of Data Communications Protocols.
In Proceedings of the IFIP WG6.1 Fifth International Conference
on Protocol Specification, Testing and Verification V, pages 3–
17, Amsterdam, The Netherlands, The Netherlands, 1985. North-
Holland Publishing Co.

[VSvS88] Chris A. Vissers, Guiseppe Scollo, and Marten van Sinderen. Ar-
chitecture and Specification Style in Formal Descriptions of Dis-
tributed Systems. In Sudhir Aggarwal and Krishan K. Sabnani,
editors, Protocol Specification, Testing and Verification, volume
VIII, pages 189–204, Amsterdam, The Netherlands, 1988. North-
Holland.

[VSvSB91] Chris A. Vissers, Guiseppe Scollo, Marten van Sinderen, and Hen-
drik Brinksma. Specification Styles in Distributed System Design
and Verification. Theoretical Computer Science, 89:179–206, 1991.

[Wie98] Roel Wieringa. A Survey of Structured and Object-Oriented Soft-
ware Specification Methods and Techniques. ACM Computing
Surveys, 30(4):459–527, 1998.

[YEFvBH03] Hirozumi Yamaguchi, Khaled El-Fakih, Gregor von Bochmann,
and Teruo Higashino. Protocol Synthesis and Re-Synthesis with
Optimal Allocation of Resources based on Extended Petri Nets.
Distrib. Comput., 16(1):21–35, 2003.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Meth-
ods (CHARME’99), volume 1703 of Lecture Notes in Computer
Science, pages 54–66. Springer-Verlag, 1999.

Part II

Included Publications

The papers are presented with their originally published content. The layout of
some figures has been adjusted to fit the paper format of this print. In some
cases, additional notes not part of the original publication are given after the
bibliographies.

PAPER

ONE

SERVICE SPECIFICATION BY
COMPOSITION OF COLLABORATIONS —

AN EXAMPLE

Frank Alexander Kraemer and Peter Herrmann.

Presented at the 2nd International Workshop on Service Composition (SER-
COMP), Oct. 31th — Nov. 3rd, 2006 Hong Kong, China.

Published in Proceedings of the 2006 WI-IAT Workshops (2006
IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology), IEEE Computer Society, 2006.

The original publication is available at www.ieeexplore.ieee.org via
http://dx.doi.org/10.1109/WI-IATW.2006.121.

Is not included due to copyright

PAPER

TWO

ALIGNING UML 2.0 STATE MACHINES
AND TEMPORAL LOGIC FOR THE

EFFICIENT EXECUTION OF SERVICES

Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk.

Presented at the 11th International Conference on Distributed Objects and Ap-
plications (DOA), October 31 — November 3, Montpellier, France.

Published in On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, Volume 4276 of Lecture Notes of Computer Science, p.
1613-1632, Springer, 2006.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/11914952_41.

Aligning UML 2.0 State Machines and Temporal

Logic for the Efficient Execution of Services

Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk

Abstract. In our service engineering approach, services are specified by UML 2.0
collaborations and activities, focusing on the interactions between cooperating entities.
To execute services, however, we need precise behavioral descriptions of physical system
components modeling how a component contributes to a service. For these descriptions
we use the concept of state machines which form a suitable input for our existing
code generators that produce efficiently executable programs. From the engineering
viewpoint, the gap between the collaborations and the components will be covered by
UML model transformations. To ensure the correctness of these transformations, we
use the compositional Temporal Logic of Actions (cTLA) which enables us to reason
about service specifications and their refinement formally. In this paper, we focus on
the execution of services. By outlining an UML profile, we describe which form the
descriptions of the components should have to be efficiently executable. To guarantee
the correctness of the design process, we further introduce the cTLA specification style
cTLA/e which is behaviorally equivalent with the UML 2.0 state machines used as
code generator input. In this way, we bridge the gap between UML for modeling and
design, cTLA specifications used for reasoning, and the efficient execution of services,
so that we can prove important properties formally.

2.1 Introduction

The ongoing convergence of the communication and the computing domain en-
ables a wide range of advanced services, involving a complex mixture of technolo-
gies, devices and networks. The development has reached a degree of complexity
in which formal reasoning about specifications and corresponding tool support
are increasingly important to design services of high quality within acceptable
time and cost limits. In consequence, service engineering has become a discipline
in its own right. In earlier publications we demonstrated the close conceptual
relationship between services and collaborations, and the suitability of collabo-
rations as a framework for service specifications [SCKB05, RB06, CB06]. Col-
laborations model cross-cutting, partial behavior involving several participants.
Service specifications consisting of several sub-functionalities may be constructed
from collaborations, which can be reused in several services.

While we use the concept of UML 2.0 collaborations [Obj05] to model the
structural aspects of collaborations and services, we use UML 2.0 activities to
specify their behavior. Figures 2.1 and 2.2 describe a service that retrieves
the locations of small devices as part of a group communication service. In
Fig. 2.1, we use icons for the collaboration roles and omit the frame of the
system collaboration for clarity. Each device is connected to one local node,
and all local nodes are connected to one central node. Sensors capture the

108 paper 2

cn

l1 l2
d1

d2 d3

s1 s2

r2:RequestPos

u1:UpdatePos u2:UpdatePos

r1:RequestPos r1:RequestPos

Central Node

Local Node

Sensor

Device

Legend

Fig. 2.1: Collaboration for the entire system

sensor

UpdatePos

UpdateUpdate

local node

update
local db

UpdateUpdate

update
local db

central node device

RequestPos

PosReqPosReq

local node

check local db

Pos

get pos

central node

Pos Retrieve Retrieve

ResponseResponse

Pos

Fig. 2.2: Activities describing collaborations GetPosition and UpdatePosition

movement of the devices and update the position information in the local nodes.
This is specified by the collaboration uses u1 and u2 of the collaboration type
UpdatePos. The behavior of this collaboration type is expressed in detail by
the activity on the left side of Fig. 2.2. The sensors send updates of the device
positions to their connected local node, which updates the entry in its local
table. Thereafter, the local node forwards the update to the central node, which
refreshes the central table containing the location of all devices. Furthermore,
devices can ask their local node for the position of other devices. This behavior
is specified by collaboration RequestPos outlined on the right side of Fig. 2.2.
Device d1 can, for instance, ask for the position of d2 by sending PosReq to its
local node. As d2 is registered on the same local node, l1 has the position of it
in its local table and can therefore answer right away. If d1 asks for d3, then l1
sends a request to the central node and returns the reply to d1.

Our experiences using collaborations and activities to specify services are
very encouraging, as collaborations allow intuitive but yet precise specifications
of services. In order to execute a service, however, a behavioral description for
each participating component is needed that can be efficiently executed in form
of a program running on available platforms. To accomplish that, we follow the

aligning uml 2.0 state machines and temporal logic 109

Service Specifications
UML Collaborations,
Activities

Executable Service Model
UML State Machines,
Composite Structures

Executable System
Service Application Code
Execution Framework

Code GenerationModel Transformations

cTLA/ecTLA Formal Refinement Steps semantic mapping

En
gi

ne
er

in
g

R
ea

so
ni

ng

Fig. 2.3: Development approach using UML and cTLA

approach of stepwise refinement, adding more and more details until we get mod-
els that can be directly transformed into executable code. We intend to achieve
these design steps by a set of model transformations in the spirit of MDA, as
shown in the engineering part of Fig. 2.3. The result of the model transforma-
tions is an executable service model that is based on UML 2.0 state machines and
composite structures. It is the input for our existing code generators that can
generate programs executing the services on various Java platforms, appropriate
for both the telecommunication as well as for the computing domain (cf. [BF04]).

To ensure the correctness of these transformations, we need a formal reason-
ing technique. The temporal logic cTLA [HK00a] offers operators and techniques
suitable for refinement [MK95], and it can capture such transformation steps in
a formal way quite well, as shown in [HK00a, Her03, Her06]. Moreover, the
composition of services from collaborations can be directly expressed with the
well-understood concept of process composition in cTLA.

Of course, a correctness-preserving development approach is only meaningful
if we can guarantee that the generated code corresponds to the executable service
model. Thus, we have to clarify formally that the executable code is a correct
refinement of the executable service model in spite of the practical limitations of
execution frameworks such as finite message buffers. For this sake, we introduce
a cTLA specification style cTLA/e. It corresponds directly to the executable
service model and describes which form a cTLA specification must have to be
efficiently executable on existing service platforms. In this way, we establish
a relationship between an intuitive service execution model in UML 2.0, the
efficient execution of services on real platforms, and a formal model allowing
reasoning and analysis.

In the following, we describe the execution platform in Sect. 2.2 and outline
a profile for the executable service model based on UML 2.0 state machines in
Sect. 2.3. This execution model is based on the experience of about three decades
of system engineering and originates from the SDL-based design methodology
SOM [Bræ79], which described the basic modeling and execution mechanisms
also used in the projects SISU and SISU II [SIS96]. These projects resulted in
the system engineering method TIMe [BGH+97] and had a “major impact on the
SDL methodology guidelines as well as on the SDL and MSC standards” [MT01,
p. 171]. As UML 2.0 adopted most of the language elements for the SDL mech-

110 paper 2

anisms used in TIMe, we use it as a base for our model description. In addition,
we sketch the specification technique cTLA in Sect. 6.3 and the specification
style cTLA/e in Sect. 2.5. In Sect. 2.6 we outline the conformance of the exe-
cutable service model with the executable system based on cTLA/e and discuss
the properties a cTLA/e specification should have in order to properly address
practical software and hardware limits. We close with a reflection about related
approaches and some concluding remarks.

2.2 Service Execution Based on State Machines

Systems that execute services fall into the category of reactive systems as char-
acterized by Pnueli [Pnu86]. A service typically requires the coordinated effort
of several physically distributed devices [FB00], so that a system delivering a
service needs to be decomposed into a number of reactive components running
on different execution nodes. To define the behavior of the service components,
we use communicating extended finite state machines in the form of UML 2.0
state machines. Similar descriptions are applied in ROOM [SGW94] as well as
in the formal description techniques Estelle [Est97] and SDL [ITU02]. We as-
sume that state machines communicate asynchronously using buffered message
passing. This enables both asymmetrical client-server interactions typical for
the computing domain as well as symmetrical peer-to-peer interactions common
in the telecom domain (cf. [BF04]). Buffered communication also helps to de-
couple the different state machine instances and simplifies distribution, as this
mechanism can be implemented for local as well as for remote communication
without making changes to the model.

State machines define an executable abstract machine that can be imple-
mented as a virtual machine layer providing runtime support. This gives the
benefits of virtual machines in terms of adaptability and portability of applica-
tions. Contrary to other virtual machine approaches, the communicating state
machines enable a highly efficient solution due to the following reasons:

– Asynchronous message passing avoids blocking on message sending.

– Transition-based execution models enable a very simple scheduling.

– Several state machines can be efficiently integrated in one native process.

– Generic mechanisms for input protection, error handling, and testing can
be provided easily as part of the runtime support.

In this section, we outline how state machines can be executed using run-
time support systems or execution frameworks. As an example, we present the
runtime support system JavaFrame that facilitates execution of state machines
on Java. Thereafter, we sketch other execution frameworks built on JavaFrame.

aligning uml 2.0 state machines and temporal logic 111

2.2.1 Runtime Support Systems and Execution Frame-
works

To achieve a good performance of the executable code, the integration of state
machines to native processes (e.g., operating system processes, Java threads)
plays a significant role. A naive approach is to execute each state machine in-
stance in a separate native process. This, however, would result in a significant
space and time penalty caused by excessive context switching of the operating
system. Therefore the common practice is to integrate several state machine
instances into a single native process, which is called light integration in [MT01].
Scheduling of such state machines is extremely space and time efficient, providing
the state machines have equal priority and can be allowed to run each transi-
tion to completion. Support for state machines can be integrated into a general
virtual machine layer supporting the execution of state machines, the so-called
runtime support system (RTS). Alongside process management and scheduling,
an RTS can offer a range of services to the application layer, such as commu-
nication, timer routines, instance creation, logging, debugging and monitoring,
as well as mobility management and load control. This approach has been used
on numerous performance-critical products by many different companies in the
telecommunication and automotive industry. Layered approaches can also be
found in the computing domain. Instead of an RTS, one uses execution plat-
forms like J2EE or newer platforms as for example JAIN SLEE [LF04], which
try to more directly target the needs of traditional telecommunication services.

2.2.2 The Runtime Support System JavaFrame

To illustrate runtime support, we introduce JavaFrame [HMP00], which is an
RTS and Java execution framework facilitating the execution of UML 2.0 state
machines. It is based on an RTS in C++ presented by Bræk and Haugen
in [BH93], which implements an abstract SDL machine. JavaFrame provides
a scheduler and base classes for state machines that can be extended with
application-specific logic. Mediator objects encapsulate various communication
protocols and routing functionality to send signals between state machines. Me-
diators can also be used to connect the state machines to environments not
modeled by state machines.

With the behavior in form of single transitions, state machines naturally offer
scheduling units that can be executed individually. Transitions are programmed
in JavaFrame using transition methods containing nested if-statements. These
if-statements differentiate the available trigger and the current control state and
thereby realize the transition table of the state machine. The bodies of these
nested statements contain the code that is executed as the effect of the transition.
In particular, signals are sent to other state machines, operations are performed
on local data or timers, and the next control state is determined. If an incoming
signal should not be handled in the current state, it can be deferred by putting
it into a dedicated defer queue, which is moved back into the input queue when
another transition is executed. This corresponds to the save-concept of SDL.

112 paper 2

A scheduler controls a set of state machine instances and dispatches the events
in their input queues by executing their transitions with the transition method
described above, using a FIFO ordering of queues. Following the action-oriented
approach [MT01, BH93], the state of each state machine instance is stored ex-
plicitly in a data structure. This facilitates an efficient implementation, where
the scheduler can manage the states of a large number of state machine instances.
To execute a transition, the scheduler retrieves the current state and makes it
available to the transition method as a parameter once a transition should be
executed. Consequently, the transition method is reentrant, and needs to be
provided only once per state machine type.

With this transition method, JavaFrame handles the selection of transitions
and their execution in one single method call (as opposed to a more general
solution, where transition selection and execution are implemented in separate
methods [MT01]). This simplifies the scheduler further and considerably reduces
the computation time to find an enabled transition, as the scheduler simply calls
the transition method each time an event is available in the input queue. In
consequence, transitions are enabled depending on their source state and their
trigger only, and must not contain additional enabling conditions. In practice,
this is not a real constraint, as transitions still may include decisions.

The scheduler of JavaFrame runs in one Java thread and executes only one
transition at a time. In this way, JavaFrame complies to the run-to-completion
semantics assumed in modeling languages like SDL, ROOM, and UML. The fact,
that the Java thread of the scheduler may be interrupted by another thread,
is not problematic, as these do not access any data of the interrupted state
machine. The simple structure of the transition method (i.e., with the nested
conditional statements) also implies that if several transitions are enabled in
the same source state by the same input trigger, only the first one written in
the transition method will be executed, while the code of the other transitions
is never reachable. Such a situation can easily be avoided by combining these
competing transitions to a single one, which contains a choice leading to the
different effects of the original transitions.

2.2.3 State Machine Execution on other Platforms

JavaFrame can be used directly to implement state machine-based specifications
on the standard Java platform . Due to its simplicity, it may also be seen as a
prototype that can guide the implementation of execution frameworks on other
platforms. To facilitate the execution of telecommunication services further,
a prototypical service execution framework [BHM02] was devised by Ericsson
extending the basic execution mechanisms with concepts targeted to service en-
gineering and deployment. Specifically for the domain of telecommunication ser-
vices, ServiceFrame contains a part defining service components like user agents
and terminal agents. In addition, a number of resource adapters were defined to
connect the system to existing technologies, interfaces and transport protocols
like Parlay-X, SIP, as well as Bluetooth connections and location tracking via
GSM or WLAN for mobile devices. The part for the execution of services, called

aligning uml 2.0 state machines and temporal logic 113

cn: Central Node

l1:LocalNode l2:LocalNode

d1:Device d2:Device d3:Device

s1:Sensor s2:Sensorc c
s s

d d

Fig. 2.4: Object diagram of the system

ActorFrame [MH05], is an extension of JavaFrame, adding routing mechanisms,
an addressing scheme and protocols for the management of the system struc-
ture. The initial version of ActorFrame was implemented on the standard Java
platform, J2SE, followed by versions running on the J2EE [Mel03] and later also
the platform, which makes it possible to run parts on the system also on mobile
devices.

2.2.4 Code Generation

As parts of our integrated service engineering tool suite Ramses [KS06], we
developed code generators [Kra03, Stø04] for the ActorFrame platform, both
the J2EE as well as the J2SE version. Based on them, a number of prototypical
service applications were realized and deployed, including services running in
the operational network of the Norwegian telecom operator Telenor. As input,
Ramses uses UML 2.0 models based on state machines as presented in the next
section.

2.3 Executable Service Models in UML 2.0

In the following, we outline a profile in UML 2.0 that can be directly mapped
to an execution in JavaFrame-based systems. The complete profile is presented
in [Kra06]. In particular, we introduce constraints on transitions to facilitate
scheduling and refine some semantic variation points of UML 2.0.

Figure 2.4 shows an object diagram of our example system with a number of
devices, two local nodes, and the central node in the middle. Each state machine
owns some ports that are used to transmit the signals to other state machines
via the links connecting them. A state machine can send a signal by putting it
into the output queue of a port. Thereafter, the signal is transmitted via a link.
At the receiver side, the signal is added to the common input queue of the state
machine. If one port is connected to several others, the signal contains some
routing information that can be used by the sending port to choose the correct
receiver. We assume hereby that signals are transferred in an order-preserving
and reliable way, and that the queues are unbounded.1

1In Sect. 6, we describe in the context of the formal method cTLA under which circum-
stances these practical limitations can be handled.

114 paper 2

idle

idle

p:=localPos.get(d)
idle

localPos.update(a,p)

idle

c

s

d

«executable» stm LocalNode

idle

retrieving
Update / defer
PosReq / defer

retrieving
Update / defer
PosReq / defer

[p≠null] [else]

Response(a,d,p) via dUpdate(a,p) via c

Update(a,p)

PosReq(a,d)

Response(a,d,p)Response(a,d,p) via c Retrieve(a,d,L) via c

localPos: LocalPositionMap
L: NodeAddress
a, d: DeviceAddress
p: Position

Fig. 2.5: State machine for a local node

Figure 2.5 shows the state machine for a local node. For the execution model,
we use only a subset of UML 2.0 state machines. In particular, we assume
that a state machine has exactly one region and that transitions have a certain
structure, which is described later. To distinguish such state machines from other
state machines in UML, we mark them with the stereotype �executable�.

As in JavaFrame, events are either the reception of signals or the expiration
of local timers. UML assumes the events arriving at a state machine to be
stored in an event pool, and gives no further rules for the order of dispatching
them, intentionally allowing different strategies. We assume the input pool to
be a FIFO queue like in SDL processes, so that events are dispatched in the
order of their arrival. This matches the scheduling procedure in JavaFrame.
Deferred events are specified in UML by writing them into the state symbol with
the keyword /defer. For example, in the state retrieving in Fig. 2.5, incoming
Update or PosReq signals are deferred, until Response arrives and the state
machine changes into state idle.

Actions can be executed as the effect of transitions. A state machine operates
on its auxiliary variables, controls local timers, and sends signals to other state
machines. Actions may also call operations defined for the auxiliary data. Such
actions must execute within the same run-to-completion step and therefore be
local and not waiting on external events. In our example, after receiving an
update, the state machine updates the local data structure localPos by using
its operation update(). Send signal actions can be used to transmit signals to
other state machines. We assume that these actions are assigned to a port (using
the keyword via) and that the signals contain information so that the port may
decide about the destination. The local node, for instance, includes its own
address L in signal Retrieve that is sent via port c towards the central node.
This address may be used by the output port of the central node to route signal
Response for the answer.

As we only use simple states and pseudo states of the kinds choice and initial,
we may distinguish the following forms of transitions:

– A simple transition connects two control states without any decisions or

aligning uml 2.0 state machines and temporal logic 115

pseudo states.

– A compound transition is similar to a simple transition but can contain
choices, so that its effects and the target state can depend on a decision.
The decision is made by the guards that are declared on each branch
originating from a choice. UML requires that at least one of these guards
is true, so that a compound transition can always be completed once it is
started.

– An initial transition originates from an initial pseudo state and is executed
when the state machine is started. Each state machine has exactly one
initial transition. Like a compound transition, an initial transition may
also use choices that result in different branches.

Due to the scheduling mechanism in the execution platform, we assume that
all transitions, that do not originate in an initial pseudo state, have exactly
one trigger that matches either a signal reception or a timer expiration event.
The scheduler assumes a transition to be enabled if the state machine is in
the declared source state and the next event to be dispatched matches the one
declared as trigger by the transition. In consequence, a transition may not
declare any additional guards that would prevent its execution. We further
assume that an event is not deferred in a state if a transition originates from
that state with the same event as trigger. Thus, an incoming event is either
consumed by a transition or deferred in a given state.

2.4 Compositional Temporal Logic of Actions
(cTLA)

Lamport’s Temporal Logic of Actions (TLA, [Lam02]) is a linear-time temporal
logic modeling the behavior of a system as a set of infinitely long state sequences

〈s0, s1, s2, . . .〉.

Thus, the TLA semantics fits excellently with that of the state machines intro-
duced above which, in the end, also model infinite sequences of states si starting
with an initial state s0. Compositional TLA (cTLA, [HK00a]) was derived from
TLA to provide more easily comprehensible specifications and offer a more flex-
ible composition of specifications. cTLA is oriented at programming languages
and introduces the notion of processes. A cTLA process can be in a simple form
which directly describes system behavior by means of state transition systems.
A process can also be compositional and describe systems as a combination of
other process instances each specifying a sub-functionality of the system.

An example of a simple process type is sketched in Fig. 2.6. The header
LocalNode declares the name of the process type while generic module parameters
like DeviceAddr enable to specify a spectrum of similar process instances by a
single process type. Signals is a constant record-typed expression. The body of

116 paper 2

PROCESS LocalNode (DeviceAddr: ANY; MyDevices: SUBSET(DeviceAddr);
NodeAddr: ANY; MyAddress: NodeAddr;
Pos: ANY; unknownPos: Pos)

CONSTANTS
Signals

∆
= [[t: {Start, Update, PosReq, Response, Retrieve};

a: DeviceAddr; d: DeviceAddr; l: MyAddr; p: Pos]] ;
VARIABLES

state: {initState, idle, retrieving}; localPos: [MyDevices → Pos];
inQueue: QUEUE OF Signals; deferQueue: QUEUE OF Signals;
outQueueC: QUEUE OF Signals; outQueueD: QUEUE OF Signals;

INIT
∆
=

state = initState ∧ inQueue = EMPTY ∧ deferQueue = EMPTY ∧
outQueueC = EMPTY ∧ outQueueD = EMPTY ∧ localPos ∈ [MyDevices → Pos];

ACTIONS
enqueue (inSignal : Signals)

∆
=

inQueue ′ = inQueue ◦ 〈inSignal〉 ∧ state 6= initState ∧
UNCHANGED 〈deferQueue, state, outQueueC, outQueueD, localPos〉;

dequeueC (outSignal : Signals)
∆
=

outQueueC 6= EMPTY ∧ outSignal = FIRST(outQueueC) ∧
outQueueC ′ = TAIL(outQueueC) ∧
UNCHANGED 〈inQueue, deferQueue, state, outQueueD, localPos〉;

dequeueD (outSignal : Signals)
∆
= . . . ;

initial
∆
= state = initState ∧ state ′ = idle ∧

localPos ′ = [d ∈ MyDevices | d 7→ unknownPos] ∧
UNCHANGED 〈inQueue, deferQueue, outQueueC, outQueueD〉;

INTERNAL ACTIONS

update
∆
= state = idle ∧ FIRST(inQueue).t = Update ∧

state ′ = idle ∧
inQueue ′ = deferQueue ◦ TAIL(inQueue) ∧ deferQueue ′ = EMPTY ∧
localPos ′ = [localPos EXCEPT FIRST(inQueue).a 7→ FIRST(inQueue).p] ∧
outQueueC ′ = outQueueC ◦ 〈 [[t 7→ Update; a 7→ FIRST(inQueue).a;

d 7→ FIRST(inQueue).d; l 7→ MyAddress;
p 7→ FIRST(inQueue).p]] 〉 ∧

UNCHANGED 〈outQueueD〉;
requestPos

∆
= state = idle ∧ FIRST(inQueue).t = PosReq ∧

state ′ = IF FIRST(inQueue).a ∈ MyDevices THEN idle ELSE retrieving ∧
inQueue ′ = deferQueue ◦ TAIL(inQueue) ∧ deferQueue ′ = EMPTY ∧
localPos ′ = localPos ∧
outQueueC ′ = outQueueC ◦ IF FIRST(inQueue).d ∈ MyDevices THEN EMPTY

ELSE 〈 [[t 7→ Retrieve; a 7→ FIRST(inQueue).a;
d 7→ FIRST(inQueue).d;
l 7→ MyAddress]] 〉 ∧

outQueueD ′ = outQueueD ◦ IF d = FIRST(inQueue).d ∈ MyDevices
THEN 〈 [[t 7→ Response; a 7→ First(inQueue).a;

d 7→ FIRST(inQueue).d; l 7→ MyAddress;
p 7→ localPos[First(inQueue).d]]]〉

ELSE EMPTY;

retrievePos
∆
= . . . ;

deferInRetrieving
∆
= state = retrieving ∧ FIRST(inQueue).t ∈ {Update, PosReq}

∧ inQueue ′ = TAIL(inQueue) ∧ deferQueue ′ = deferQueue ◦ 〈FIRST(inQueue)〉 ∧
UNCHANGED 〈state, localPos, outQueueC, outQueueD〉;

WF: dequeueC, dequeueD, initial, update, requestPos,
retrievePos, saveInRetrieving;

END

Fig. 2.6: cTLA/e process modeling the local node

aligning uml 2.0 state machines and temporal logic 117

a simple cTLA process type describes a state transition system. It contains a
set of variables like state or inQueue modeling the state space. The subset of
initial states is specified by the predicate INIT. The transitions are expressed
by actions (e.g., enqueue, dequeueC) which are predicates on pairs of a current
and a next state describing a set of transitions each. Variables in simple form
(e.g., inQueue) refer to the current state while the next state is described by
the so-called primed form (e.g., inQueue’). The statement UNCHANGED lists
variables not changed by an action. Action parameters like inSignal allow to
model different actions by a single representation. Actions can be distinguished
into two classes. External actions can be coupled with actions of the process
environment while internal actions cannot.

We can provide actions with weak and strong fairness properties guarantee-
ing that they are carried out in a lively manner. In particular, weak fairness
forces the execution of an activity if it would be enabled continuously otherwise.
Strong fairness forces the execution even if the action is sometimes disabled.
Unlike TLA, cTLA provides for conditional fairness assumptions to ensure the
consistency of the process compositions introduced below. A fairness statement
refers to periods of time in which an action is both enabled and the environment
of the process is ready to tolerate the action. The statement WF: dequeueC,
dequeueD,... indicates that the listed actions have to be carried out weak fairly.

A process type describes a set of TLA state sequences. The first state s0
of each modeled state sequence has to fulfill the initial condition INIT. The
state changes 〈si, si+1〉 either correspond with a process action or with a so-
called stuttering step in which the current and the next states are equal (i.e.,
si = si+1). The fairness assumptions have to be fulfilled as well. cTLA also
allows to define additional real time properties [GHK00] and the description of
continuous behavior [HK00b] which we omit here for the sake of brevity.

Compositional cTLA processes model systems as compositions of concurrent
process instances. Since the process variables are encapsulated and can only
be referenced by the actions of the process defining them, the system state
space is basically the vector of the variables of all process instances belonging to
the system. We compose processes with each other by coupling their external
actions to joint system actions. Formally, a system action is a conjunction of
the corresponding process actions which therefore are executed simultaneously.
A process may contribute to a system action with either exactly one process
action or with a stuttering step. An internal process action, however, must only
be coupled with stuttering steps of the other processes.

Figure 2.7 describes a compositional process type. It consists of the process
instances c, l1, l2, etc. which are listed in the section PROCESSES. At that
place, we also specify the module parameter instantiations (e.g., the parameter
myDevices of the instance l1 of process type LocalNode in Fig. 2.7 is instantiated
with the set {d1, d2}). The system actions are depicted in the lower part of
the specification2 as conjunctions of process actions. For instance, the system

2To keep the specification short, we omitted processes performing stuttering steps in each
system action description.

118 paper 2

PROCESS System
CONSTANTS

DevAddr
∆
= {d1, d2, d3}; NodeAddr

∆
= {l1, l2};

Ps
∆
= [[x : REAL; y : REAL; z : REAL]] ;

uPs
∆
= [[x 7→ 0, y 7→ 0, z 7→ 0]] ;

Sig
∆
= [[t : {Start, Update, PosReq, Response, Retrieve};

a : DevAddr; d : DevAddr; p : Ps]] ;
PROCESSES

cn: CentralNode (DeviceAddr ← DevAddr, Pos ← Ps, unknownPos ← uPs);
l1: LocalNode (DeviceAddr ← DevAddr, myDevices ← {d1, d2},

NodeAddr ← NodeAddr, MyAddress ← l1,
Pos ← Ps, unknownPos ← uPs);

s1: Sensor (DeviceAddr ← DevAddr, myDevices ← {d1, d2}, Pos ← Ps);
d1: Device (DeviceAddr ← DevAddr, myDeviceAddr ← d1, Pos ← Ps);

...initializations of local node l2, sensor s2 and devices d2 and d3...
INTERNAL ACTIONS
Initial

cnInitial
∆
= cn.initial; l1Initial

∆
= l1.initial; l2Initial

∆
= l2.initial;

d1Initial
∆
= d1.initial; d2Initial

∆
= d2.initial; d3Initial

∆
= d3.initial;

s1Initial
∆
= s1.initial; s2Initial

∆
= s2.initial;

local nodes ↔ central node (portC)

l1toc(sig: Sig)
∆
= l1.dequeueC(sig) ∧ c.enqueue(sig);

l2toc(sig: Sig)
∆
= l2.dequeueC(sig) ∧ c.enqueue(sig);

ctol1(sig: Sig)
∆
= c.dequeueC(sig) ∧ l1.enqueue(sig) ∧ sig.l = l1;

ctol2(sig: Sig)
∆
= c.dequeueC(sig) ∧ l2.enqueue(sig) ∧ sig.l = l2;

... actions for other connections ...
END

Fig. 2.7: cTLA/e process modeling the global system

action ctol1 corresponds to the joint execution of the process actions dequeueC
of process C and enqueue of l1 while the other processes perform stuttering
steps. The data transfer between c and l1 is modeled by the action parameter
sig. Moreover, we added an additional conjunct sig.l = l1 enabling the execution
of the action for certain action parameter settings only. In [HK00a] we proved
that compositional cTLA processes can be transformed into equivalent simple
processes which enables nested system specifications.

2.5 cTLA/e: An Executable Form of cTLA

cTLA is a powerful means to describe various forms of behavior. The cTLA
specifications, however, may have a form that is difficult to implement effi-
ciently. Therefore, we describe a special cTLA specification style (cTLA/e),
which directly models the mechanisms of the execution platforms exemplified by
JavaFrame in Sect. 2.2. cTLA/e determines a form for simple processes corre-
sponding to state machines explained in Sect. 2.5.1 and a form for compositional
processes to couple the state machines in Sect. 2.5.2.

aligning uml 2.0 state machines and temporal logic 119

2.5.1 cTLA/e Process for State Machines

In the following, we will sketch the cTLA/e models of state machines by the
specification of the local node from the example listed in Fig. 2.6. This process
corresponds to the state machine of the local node depicted in Fig. 2.5. One state
machine is represented by one cTLA/e process. The control state is described by
a cTLA variable state expressing the enumeration of the control state identifiers.
Incoming signals are placed in the data structure inQueue, which is a sequence
of signals with the operations FIRST() to obtain the first element and TAIL()
to get the queue after removing the first element. The operator ◦ denotes the
concatenation of queues. Similarly, the defer queue for signals is modeled by
the cTLA variable deferQueue. Signals are appended to the input queue by the
action enqueue, which has the received signal as action parameter.

For each port used to send signals to other state machines, the process con-
tains an output queue. 3 Signals are records, where the field t denotes the type
of the signal, a the device address calling for a position or part of an update, d
the device address for which a position is requested, l the address of a local node
retrieving a position, and p the position information. To send a signal via a
port, a transition adds it to the corresponding output queue. A dequeue action
defined for each port (e.g., dequeueC and dequeueD) is used to transmit the sig-
nals from the output queues to their respective receivers. Additional variables
represent the auxiliary variables of the state machine. For instance, a local node
stores the positions of its local devices in the map localPos.

Every transition of the state machine is represented by a cTLA action for-
mulated as a conjunction of several sub-actions ttrans = ten ∧ tnext ∧ tqm ∧
tsend ∧ taux, each having a distinct purpose:

– The enabling sub-action ten = ttrigger∧tprev determines whether a transition
is ready to execute. This depends on the first event in the input queue
(ttrigger) and the current control state (tprev). For example, the action
update defines a transition enabled in control state idle and for the signal
Update with state = idle ∧ FIRST(inQueue).t = Update. As an initial
transition has no trigger, sub-action ttrigger is omitted in action initial.

– The target state sub-action tnext specifies the change of the control state.
It simply is an assignment to the control state variable. For compound
transitions including several branches, the assignment can include an if-
statement. The target of the requestPos transition, for instance, is either
state idle or retrieving.

– The queue maintenance sub-action tqm describes the move of the content of
the defer queue to the front of the input queue, so that they are again avail-
able for consumption in the next state. The sub-action tqm , inQueue’=
deferQueue ◦ tail(inqueue) ∧ deferQueue’= EMPTY is identical for every

3In the example, no signals are sent from the local node to the sensor via port s. Therefore,
this port is not represented with an output queue.

120 paper 2

transition. As the defer queue is empty when the initial transition is exe-
cuted, it is not necessary to include this sub-action in the action initial.

– Sub-actions tsend model the transmission of signals, simply by appending
them to the corresponding output queue. The signals sent may depend
on conditions, which can be expressed by an if-statement. For example,
transition requestPos either sends Response via port D or Retrieve via port
C.

– Sub-actions taux specify the new settings of the local auxiliary variables.
The local position map localPos, for instance, is updated with the new
position in transition update.

Like on our execution platforms based on JavaFrame, deferred signals are moved
into a the dedicated defer queue by an explicit action. This action is a conjunct
ttrigger ∧ tprev ∧ tdefer, with tdefer performing the actual move into the defer queue.
For instance, in Fig. 2.6, deferInRetrieving removes the signals Update or PosReq
from the input queue and appends them to the defer queue.

Similarly to SDL, we model timers by means of signals. The starting, stop-
ping and triggering of a timer is specified by auxiliary cTLA actions. Once a
timer expires, the runtime support system places a signal representing the timer
expiration in the input queue. In our example system, we use timers in the
sensors which, however, are not listed for the sake of brevity.

2.5.2 cTLA/e Process for the Global System

The system is specified by a compositional cTLA process combining the processes
for the individual state machines, as shown in Fig. 2.7. After declaring constants
for the used types such as device addresses, signal formats and positions, it
defines a process instance for each state machine instance and passes parameters
to them. The configuration reflects the system structure given in Fig. 2.4 by
initializing local nodes and sensors with the device addresses attached to them.

According to the system structure, the corresponding dequeue and enqueue
actions are coupled together, so that signals can be transfered from an output
queue to the input queue of the receiver. In our example, we represent each link
between two state machines by an individual cTLA action. For example, the
links from the central nodes to each of the local nodes are represented by cTLA
actions ctol1 and ctol2 in which the additional conjuncts sig.l = l1 and sig.l =
l2 model the routing decision. To enable scalable system models, we can also
use coupling descriptions specifying various links and, in particular, dynamic
connections by a single cTLA system action (cf. [Her03]).

2.6 Executing cTLA/e Specifications

To provide the complete formal proof, that our code generators produce soft-
ware code implementing a cTLA/e specification correctly, we need to create a

aligning uml 2.0 state machines and temporal logic 121

fully-fledged cTLA model of the code, which is beyond the scope of this paper.
Therefore, we only provide a sketch of the proof. As mentioned previously, the
specification style cTLA/e was laid out in a way that its actions correspond with
the program steps of the generated code based on JavaFrame. Moreover, the
variables used in cTLA/e reflect directly the variables in the executable code.
For instance, the sub-action tqm is similar to the step of the implementation
where in a transition the first signal is removed from the input queue and previ-
ously deferred signals are moved to the front of the input queue in the order of
their deferral. Thus, we can describe the execution of a transition as an order
of steps:

Si
ttrigger−−−→ Ŝi,1

tprev−−→ Ŝi,2
taux−−→ Ŝi,3

tsend−−→ Ŝi,4
tnext−−→ Ŝi,5

tqm−−→ Si+1

As previously mentioned, the implemented state machines follow the run-to-
completion semantics, so that the sequence of steps is carried out without in-
terruptions by other events. Therefore, it is easy to prove formally that this
sequence implies the sequence

Si
stutter−−−−→ Si

stutter−−−−→ Si
stutter−−−−→ Si

stutter−−−−→ Si
stutter−−−−→ Si

ttrans−−−→ Si+1

That means the first five steps of the executed transition are mapped to stut-
tering steps in cTLA/e, while the last step is mapped to the cTLA/e action
modeling the entire transition in one (atomic) step. This is a well-known exam-
ple of a formally correct refinement step as described for example in [Lam96].
Likewise, we can verify that a signal deferral consisting of the steps

Si
ttrigger−−−→ Ŝi,1

tprev−−→ Ŝi,2
tdefer−−−→ Si+1

implements the cTLA/e defer action.
In cTLA/e, a signal transmission is modeled by three distinct actions: (1)

the transition putting the signal into an output queue, (2) the action transfer-
ring the signal from the output queue to the input queue of the receiver (as a
conjunction of two process actions) and (3) the transition triggered by the signal
that consumes it. Thus, action (2) is an abstraction of the transmission mech-
anism of a middleware layer in an implementation and the signals currently in
the cTLA/e output queues are assumed to be under transmission.

Of course, we have to consider that resources in the real world are limited and
computation steps take time. In particular, the size of signal queues is bounded
and buffer overflows may occur. In our example, a sensor may send position
updates so frequently, that the local node cannot process all of them. To avoid
this, we can introduce mechanisms already on the specification level. We may,
for instance, require the sensor to wait for an acknowledgment from the local
node before sending another update. Alternatively, updates may only be sent
when requested by the local node. In this case, one can verify by cTLA-based
invariant proofs that the queues do not exceed an upper bound. Furthermore,
we may use real-time reasoning to guarantee the boundedness of queues. For

122 paper 2

instance, we may enforce a minimum waiting time for the sensor and maximum
response time properties for other system actions using the real-time extension
of cTLA [GHK00]. Then we can prove that the local node can handle an up-
date signal even in peak situations before the next update is triggered. This is
complementary to the technique used in [BH93] which estimates the execution
time of transitions.

A deadlock can occur if there is a signal at the first position of the queue
that a state machine cannot handle in its current state (i.e., neither consume in
a transition nor defer). To prevent this kind of design flaw, we should verify by
means of cTLA invariant proofs that every incoming signal can be handled. In
our example, the local nodes have two states4 idle and retrieving. The signals
Update and PosReq can always be consumed in state idle (by the actions update
or requestPos in Fig. 2.6) and deferred in state retrieving (by action saveInRe-
trieving). In contrast, signal Response is only consumed in the state retrieving.
Therefore, we must verify the cTLA invariant, that this signal is only sent by
the central node if the local node is in the state retrieving. Based on the activity
diagram in Fig. 2.2 it is evident that this invariant is straightforward.

So far, we considered safety properties guaranteeing that “nothing wrong”
happens. Beyond that, the layout of cTLA/e, and the scheduling mechanisms
based on JavaFrame also allow assertions about liveness properties, describ-
ing that “...something good eventually happens...” [AS85]. In cTLA, liveness
is expressed by the fairness assumptions introduced in Sect. 2.4. The layouts
of cTLA/e and the JavaFrame-based scheduler guarantee that every transition
once enabled will eventually be executed, since the following properties hold:

– Due to the isolation of state machines and the fact that transitions are
enabled based on the source state and trigger event only, a transition once
enabled will remain enabled until it is executed.

– As explained in Sect. 2.2, there is at most one transition enabled for each
combination of a source state and a trigger event.

– Due to the cTLA invariant proof, all received signals can be handled.

– The scheduler serves all of its state machines in a round-robin fashion.

One can verify that these properties imply the strong fairness properties (and, in
consequence, the weak fairness properties) of the corresponding cTLA/e actions.
This is a valuable property of our execution platform, as it is the prerequisite to
include fairness reasoning on the more abstract specifications of our system as
well. If we can prove that fairness assumptions of more abstract collaborations
are fulfilled by the cTLA/e refinement, it is evident, that these assumptions are
also realized by the executable code.

4We can disregard the initial pseudo state initState here, as the originating initial transition
is enabled independently of the input queue and will be eventually executed due to its fairness
property.

aligning uml 2.0 state machines and temporal logic 123

2.7 Related Work

Closest related to our work is probably that of the specification approach and
language DisCo [KS05], which, like cTLA, is based on the Temporal Logic of
Actions. Similar to collaborations, DisCo is focusing on the cooperation of ob-
jects. Instead of processes as in cTLA, DisCo uses layers that may be composed
or refined. To facilitate a specification-driven approach, Pitkänen [Pit04, Pit06]
introduces an additional level of refinement called TransCo. This is a subset of
the DisCo language and oriented towards business components and transactions.
TransCo can be derived from DisCo by refinement and then further be trans-
lated into J2EE applications by an experimental code generator. The concept of
an intermediate formal language like cTLA/e or TransCo is also present in the
B-Method [Abr96], where a subset of B — called B0 — is closer to imperative
languages that are easier to implement. The intermediate languages TransCo,
B0, and cTLA/e focus on different domains or platforms. While TransCo targets
at transaction processing, and B0 is close to sequential code like ADA, cTLA/e
is an abstraction of the executable state machines described above.

In this paper, we focused on the formal treatment of an execution model to
ensure correctness of the resulting programs. If we extend our scope towards
the development of reactive systems in general, we naturally find other methods
with slightly different aims, specialized towards other domains. One approach
that seems to cover the step from specifications to executable code in a rather
complete way, is that of Burmester et al. in [BGHS04] which is integrated into
the FUJABA toolset. They focus on specifications of systems including real-
time properties. Similar to collaborations, they specify patterns that can be
verified independently and composed together. For the description of these pat-
terns, UML state machines extended with real-time properties are used. To
transform a specification into executable systems, an intermediate model is de-
scribed in [BGS05] that takes platform-specific aspects into consideration, such
as the assignment of state machine instances to execution threads. For the im-
plementation they propose a direct mapping of one state machine instance to
one real-time execution thread, instead of using a scheduler that takes advantage
of the state machines, as described in Sect. 2.2.

2.8 Concluding Remarks

We described how distributed services can be efficiently executed based on com-
municating state machines. Moreover, we outlined the mechanisms of JavaFrame
to exemplify how execution platforms and support systems can be constructed.
It was further discussed which form UML 2.0 state machines should have in
order to be easily transformable to programs using the presented execution
mechanisms. We defined a cTLA specification style (cTLA/e) to combine the
correctness-preserving service design with the efficient execution mechanisms.
cTLA/e is dedicated to an easy and correct mapping of the state machines form-
ing the input of JavaFrame-based implementations. We made plausible that the

124 paper 2

implementations fulfill interesting properties concerning the fairness of execution
and we outlined how boundedness of signal queues can be ensured.

We described a triangle relationship between the efficient execution of ser-
vices, the intuitive modeling based on UML, and the formal analysis based on
temporal logic with cTLA/e. This relationship also aligns the scopes of three
different kinds of engineers that perform activities in service engineering:

– Execution platform designers create mechanisms for the execution and de-
ployment of services that need computational models allowing an efficient
execution, such as the state machines presented in Sect. 2.2.

– Service engineers focused on specific applications want to have suitable
modeling concepts and generally accepted notations, such as the UML 2.0
state machines of Sect. 2.3.

– Providers of tools for modeling, analysis, and transformations need a for-
mal logic like cTLA of Sect. 2.4 to to reason about the correctness of tools
and methods.

With cTLA/e we provided such an alignment for the execution of services. It
is the final stage in our strategy to generate executable components from for-
mal collaborations describing the services. In addition to cTLA/e, we developed
another cTLA specification style modeling collaborations which uses UML 2.0
collaborations for a structural description and UML activities for the behavioral
part, like the ones briefly presented in the introduction. In the next step, we will
specify how this cTLA style can be refined to cTLA/e. In particular, we want to
provide service engineers with the suitable means for the correctness-preserving
top-down construction of distributed services. Here, cTLA already proved its ca-
pability for various application domains [HK00a, Her03, Her06, HK00b]. As part
of this work we have to reduce collaborations to component models as needed
for the execution. This means to re-arrange the process structure described by
the collaborations and to split it into the behavior that each service component
contributes to a collaboration. An integral part of such a refinement is the adap-
tion of the process couplings and the cTLA actions into the form we described
by cTLA/e.

The combination of UML 2.0 modeling with cTLA-based reasoning offers a
number of practical advantages for service engineering in general. Most promi-
nent is the realization of the correctness-preserving refinement as UML 2.0 model
transformations. Here, the cTLA refinement steps are a fundament for creat-
ing MDA tools performing suitable model transformations. While these tools
use cTLA formalizations of the UML models and the refinement steps, for the
service engineer cTLA will in fact be invisible. �

Bibliography

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, New York, NY, USA, 1996.

aligning uml 2.0 state machines and temporal logic 125

[AS85] Bowen Alpern and Fred B. Schneider. Defining Liveness. Information
Processing Letters, 21(4):181–185, Oct. 1985.

[BF04] Rolv Bræk and Jacqueline Floch. ICT Convergence: Modeling Issues.
In Daniel Amyot and Alan W. Williams, editors, SAM’04 - Fourth
SDL and MSC Workshop, volume 3319 of Lecture Notes in Computer
Science, pages 237–256. Springer, 2004.

[BGH+97] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger Møller-
Pedersen, and Richard Sanders. Quality by Construction Exemplified
by TIMe — The Integrated Methodology. Telektronikk, 95(1):73–82,
1997.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental Design and Formal Verification with UML/RT in the
FUJABA Real-Time Tool Suite. In Proc. of the International Work-
shop on Specification and Validation of UML Models for Real Time
and Embedded Systems, SVERTS2004, Satellite Event of the 7th In-
ternational Conference on the Unified Modeling Language, UML2004,
pages 1–20, October 2004.

[BGS05] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-Driven
Architecture for Hard Real-Time Systems: From Platform Inde-
pendent Models to Code. In Proceedings of the European Confer-
ence on Model Driven Architecture — Foundations and Applications
(ECMDA-FA’05), Nürnberg, Germany, volume 3748 of Lecture Notes
in Computer Science, pages 25–40. Springer, 2005.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall, 1993.

[BHM02] Rolv Bræk, Knut Eilif Husa, and Geir Melby. ServiceFrame Whitepa-
per. Ericsson NorARC, Asker, Norway, April 2002.

[Bræ79] Rolv Bræk. Unified System Modelling and Implementation. In Inter-
national Switching Symposium, pages 1180–1187, Paris, France, May
1979.

[CB06] Humberto N. Castejón and Rolv Bræk. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied Scenarios.
In SCESM ’06: Proceedings of the 2006 International Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, pages
37–43, New York, NY, USA, 2006. ACM Press.

[Est97] ISO. ESTELLE: A Formal Description Technique Based on an Ex-
tended State Transition Model, International Standard ISO/IEC 9074
edition, 1997.

126 paper 2

[FB00] Jacqueline Floch and Rolv Bræk. Towards Dynamic Composition of
Hybrid Communication Services. In SMARTNET ’00: Proceedings of
the IFIP TC6 WG6.7 Sixth International Conference on Intelligence
in Networks, pages 73–92, Deventer, The Netherlands, 2000. Kluwer,
B.V.

[GHK00] Günter Graw, Peter Herrmann, and Heiko Krumm. Verification
of UML-Based Real-Time System Designs by means of cTLA. In
Proceedings of the 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC2K), pages 86–
95, Newport Beach, 2000. IEEE Computer Society Press.

[Her03] Peter Herrmann. Formal Security Policy Verification of Distributed
Component-Structured Software. In Hartmut König, Monika Heiner,
and Adam Wolisz, editors, Proceedings of the 23rd IFIP Interna-
tional Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE’2003), Berlin, Germany, volume 2767 of
Lecture Notes in Computer Science, pages 257–272. Springer-Verlag,
September 2003.

[Her06] Peter Herrmann. Temporal Logic-Based Specification and Verifica-
tion of Trust Models. In Ketil Stølen, William H. Winsborough,
Fabio Martinelli, and Fabio Massacci, editors, iTrust 2006, volume
3986 of Lecture Notes in Computer Science, pages 105–119, Heidel-
berg, 2006. Springer–Verlag.

[HK00a] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK00b] Peter Herrmann and Heiko Krumm. A Framework for the Hazard
Analysis of Chemical Plants. In Proceedings of the 11th IEEE In-
ternational Symposium on Computer-Aided Control System Design
(CACSD’2000), pages 35–41, Anchorage, 2000. IEEE CSS, Omni-
press.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame — Frame-
work for Java Enabled Modelling. In Proceedings of Ericsson Con-
ference on Software Engineering, September 2000.

[ITU02] ITU-T. Recommendation Z.100: Specification and Description Lan-
guage (SDL), August 2002.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Kra06] Frank Alexander Kraemer. Profile for Service Engineering: Exe-
cutable State Machines. Avantel Technical Report 2/2006 ISSN 1503-
4097, Department of Telematics, NTNU, Trondheim, Norway, March
2006.

aligning uml 2.0 state machines and temporal logic 127

[KS05] Reino Kurki-Suonio. A Practical Theory of Reactive Systems.
Springer, 2005.

[KS06] Frank Alexander Kraemer and Haldor Samset. Ramses User Guide.
Avantel Technical Report 1/2006, Department of Telematics, NTNU,
Trondheim, Norway, 2006.

[Lam96] Leslie Lamport. Refinement in State-Based Formalisms. Technical
Report 1996-001, Digital Equipment Corporation, Systems Research
Center, Palo Alto, California, 1996.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[LF04] Swee Boon Lim and David Ferry. JAIN SLEE 1.0 Specification, Final
Release. Sun Microsytems, Inc. and Open Cloud Ltd., 2004.

[Mel03] Geir Melby. Using J2EE Technologies for Implementation of Actor-
Frame Based UML 2.0 Models. Master’s thesis, Agder University
College, Grimstad, Norway, May 2003.

[MH05] Geir Melby and Knut Eilif Husa. ActorFrame Developers Guide.
Ericsson NorARC, Asker, Norway, September 2005.

[MK95] Arnulf Mester and Heiko Krumm. Composition and Refinement Map-
ping based Construction of Distributed Applications. In Proceedings
of the Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, Aarhus, Denmark, 1995. BRICS.

[MT01] Andreas Mitschele-Thiel. Systems Engineering with SDL: Developing
Performance-Critical Communication System. John Wiley & Sons,
Inc., New York, NY, USA, 2001.

[Obj05] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.0, July 2005. formal/2005-07-05.

[Pit04] Risto Pitkänen. A Specification-Driven Approach for Development
of Enterprise Systems. In Proceedings of the 11th Nordic Workshop
on Programming and Software Development Tools and Techniques
(NWPER’04), Turku, Finland, August 2004.

[Pit06] Risto Pitkänen. Tools and Techniques for Specification-Driven Soft-
ware Development. PhD thesis, Tampere University of Technology,
August 2006.

[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Specification
and Verification of Reactive Systems: A Survey of Current Trends.
Current Trends in Concurrency. Overviews and Tutorials, pages 510–
584, 1986.

128 paper 2

[RB06] Judith E. Y. Rossebø and Rolv Bræk. Towards a Framework of Au-
thentication and Authorization Patterns for Ensuring Availability in
Service Composition. In Proceedings of the 1st International Con-
ference on Availability, Reliability and Security (ARES’06), pages
206–215. IEEE Computer Society Press, 2006.

[SCKB05] Richard Sanders, Humberto N. Castejón, Frank Alexander Kraemer,
and Rolv Bræk. Using UML 2.0 Collaborations for Compositional
Service Specification. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, Inc., New York, NY, USA,
1994.

[SIS96] SISU II Project. http://www.sintef.no/units/informatics/projects/sisu/,
1996.

[Stø04] Alf Kristian Støyle. Service Engineering Environment for AMIGOS.
Master’s thesis, Norwegian University of Science and Technology,
2004.

Comment

In Fig. 2.2, we used pairs of send and accept signal actions to model commu-
nication between activity partitions, for example Update in activity UpdatePos.
This article was the first one published. In all later publications and the current
version of our specification style, we use send and accept signal actions only to
communicate with the environment. Comunication between different partitions
is done by simple activiy flows, represented as single lines.

PAPER

THREE

TRANSFORMING COLLABORATIVE
SERVICE SPECIFICATIONS INTO

EFFICIENTLY EXECUTABLE STATE
MACHINES

Frank Alexander Kraemer and Peter Herrmann.

Presented at the 6th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT) March 31 – April 1, 2007 Braga, Protugal.

Published in Graph Transformation and Visual Modeling Techniques, Volume 6
of Electronic Communications of the EASST, 2007.

Transforming Collaborative Service

Specifications into Efficiently Executable State

Machines

Frank Alexander Kraemer and Peter Herrmann

Abstract. We describe an algorithm to transform UML 2.0 activities into state ma-
chines. The implementation of this algorithm is an integral part of our tool-supported
engineering approach for the design of interactive services, in which we compose services
from reusable building blocks. In contrast to traditional approaches, these building
blocks are not only components, but also collaborations involving several participants.
For the description of their behavior, we use UML 2.0 activities, which are convenient
for composition. To generate code running on existing service execution platforms,
however, we need a behavioral description for each individual component, for which we
use a special form of UML 2.0 state machines. The algorithm presented here transforms
the activities directly into state machines, so that the step from collaborative service
specifications to efficiently executable code is completely automated. Each activity
partition is transformed into a separate state machine that communicates with other
state machines by means of signals, so that the system can easily be distributed. The
algorithm creates a state machine by reachability analysis on the states modeled by a
single activity partition. It is implemented in Java and works directly on an Eclipse
UML2 repository.

3.1 Introduction

In a highly competitive market for modern networked services, it is important
to deliver new services with short development times, in order to react on new
customer demands quickly and to keep development costs low. These efforts are
hampered by the typically high complexity of such services, which arises mainly
from the fact that a service needs the coordinated effort of several participating
components (cf. [FB00]). Hence, if we want to understand what a service does,
we have to look at the behavior of all its participating components. Moreover,
when services need to be adjusted or composed from other services, we must
consider the descriptions of all participating components again and make sure
that they interact correctly. Literature (e.g., [RGG01]) as well as experience
from our own work [SCKB05, KH06, KHB06] stated that there are two dominant
perspectives on a system delivering services:

– In the component-oriented perspective, systems are decomposed into phys-
ically distributed components, which are modeled separately. Services are
specified indirectly by the composed behavior of the components. This
perspective is well supported by traditional standards like SDL and its
descriptions are easily transformable into executable code.

132 paper 3

Code Generation
Model
Transformation

Collaboration-Oriented:
UML 2.0 Collaborations + Activities

Component-Oriented:
UML 2.0 State Machines

Executable
System

Service
Composition

Libraries of Reusable
Service Building Blocks

Fig. 3.1: Engineering approach for interactive services

– In the collaboration-oriented perspective, services are modeled by a num-
ber of collaborations as the main structuring elements. A collaboration
specifies the interactions between the components involved in it, as well
as the corresponding local behavior of the components to accomplish the
service. Collaborations describe services in a self-contained form and may
be composed from other ones. Within an application domain, collabora-
tions contributing to a service are often similar which makes them ideal
elements of reuse.

These two perspectives are the shaping forces behind our approach for the rapid
engineering of interactive services, outlined in Fig. 3.1. Services are composed
from collaborations that identify the interactions as well as the local behavior
of a set of components that are necessary to fulfill a certain task. To express
the structural aspects of collaborations as well as their composition (e.g., the
participants and which roles they play in a service), we use the conforming
concept of UML 2.0 collaborations. For the behavioral aspect (e.g., what a
collaboration does as well as how collaborations are coupled together), we use
UML 2.0 activities.

As an example, we consider an access control system (ACS) [BH93, BS01]. It
controls the opening mechanism of a door and lets pass only authorized people
that can prove their identity by presenting a security card and a secret number
at an input panel. The opening mechanism and input panel are connected to a
local station installed close to the door. Once a user draws the card and enters
the pin, the resulting data (called pid) is transferred to a central station that
authenticates the user and checks authorization right by querying two servers.
If both, the authentication and authorization are successful, ok is sent back to
the local station that opens the door.

In [KH06] we introduced how the ACS can be easily composed from reusable
collaboration elements expressed by a combination of UML 2.0 collaborations for
the structure (Fig. 3.2) and activities for the behavior (Fig. 3.3). These diagrams
describe the system from a collaboration oriented perspective. To execute the
system, however, we need a description of the behavior of the individual com-
ponents, i.e., a description from a component-oriented perspective, as outlined
above. In our approach, we use for this purpose so-called executable UML 2.0
state machines and composite structures, that are a suitable input for our code
generators. To automate the step from the collaboration-oriented specifications
in form of activities to the component-oriented design in form of state machines,

transforming collaborative service specifications 133

local
station

:Door Control

door

panel

:Panel Control
authorization

 server

:Authenticate

:Authorize

authentication
server

central
station

:Transfer

Fig. 3.2: Collaboration to compose the sub-services of the access control system

Transfer

Door Control

Authenticate

Authorize

local station
Access Control System

central station

authorization server

authentication server

unlock

lock

nok

pid

ok

nok

pid prep1

[ok1]

[nok2]

val1

retrieve

prep2

val2

retrieve

[ok2]

[nok1]

ok w1

w2

w3

w4

d1

d2

f1

j1

j2

j3

j4

m1

Panel Control

res1

res2

Fig. 3.3: Activity diagram modeling the detailed behavior of the system

we use a model transformation performed by the algorithm described in this
article. Evidently, the introduction of such an automated transformation step
accelerates the development of services drastically. In addition to the omission of
manual labor for constructing the state machines, no new errors are introduced.
Whenever a service specification needs to be updated, the state machines are
simply generated again to ensure consistency. The algorithm creates the state
machines without any intermediate representation and is therefore quite efficient
concerning memory usage. Before we describe the principles of the transforma-
tion in Sect. 3.4 and the detailed algorithm in Sect. 3.5, we outline in the next
two sections the two development perspectives outlined above. Sect. 3.6 sketches
then a proof of the correctness of the transformation in temporal logic. We close
with a discussion of related approaches and some concluding remarks.

134 paper 3

3.2 Collaborations and Activities for
Service Composition

While the collaboration in Fig. 3.2 shows how the system is composed struc-
turally from elementary collaborations that were taken from a library, the ac-
tivity diagram in Fig. 3.3 states how their behavior is coordinated. For each
collaboration use of Fig. 3.2 (e.g., Authenticate), we find a structured node (in
dashed lines) in the activity that specifies the behavior contributed by the col-
laboration use. Each collaboration role of Fig. 3.2 (e.g., central station) is a
location of computation and represented by an activity partition in Fig. 3.3.
The door and the panel are part of the environment, and, hence, do not have
their own activity partition. Instead, they communicate with the local station
by explicit signal send and receive actions. The local station receives a pid from
the panel control and forwards it via the transfer collaboration to the central
station. Depending on the result received from the central station (ok or nok),
the local station will either cause the panel to display nok and leave the door
locked, or it will cause the panel display to show ok and unlock the shutter of
the door. In this case, a timer will be started which locks the door shutter again
after a while. As activities have a Petri net like semantics [Obj06], we can use
tokens and places to understand the behavior of the diagram in Fig. 3.3. Once a
token representing a pid arrives at the central station, it is prepared (described
by the operations prep1 and prep2) and sent to the authentication respective
the authorization server. For that, the token is duplicated at the fork node f1,
so that the subsequent behaviors may happen in parallel. Both servers evaluate
the pid and send their results back to the central station.

The results may arrive in any order. For example, if the result of the autho-
rization server arrives first, it is evaluated by the central station (operation val2)
which branches in decision d2 depending on the validity of the authorization.
If the result was valid, a token is placed in w4. This node is an extension of a
decision node (cf. [KH06]) as tokens can rest in it. It is represented by a filled
diamond. The central station waits now for the arrival of the authentication re-
sult, which is evaluated in val1, and a token is placed either on w1 or w2. When
the other result arrives, two waiting decisions hold one token, so that exactly
one of the join nodes j1..j4 can fire. Obviously, j4 fires in the case that both
results were ok and causes the central station to send an ok to the local station.
In the other three cases (when at least one result is nok) one of the other join
nodes j1..j3 fires. These cases are combined by merge node m1 and a nok is
sent to the local station. We assume that the panel control only sends a new pid
after it received an ok or a nok.

3.3 State Machines for Service Execution

Fig. 3.4 presents the executable UML state machines generated by our algo-
rithm from the activity in Fig. 3.3. The state machines interact with each other

transforming collaborative service specifications 135

Central Station
0

2
Res1 / d

nok1

NOK

nok2

0

NOK

ok2

0

prep1
Req1

Req2
prep2

-

*

0

Local Station

0

Res1

0

retrieve

0

Res2

0

retrieve

Authentication Server Authorization Server

4
Res1 / d

ok1

val1 val2

val2

NOK

nok2

0

OK

ok2

0

val2

8
Res2 / d

nok2

NOK

nok1

0

NOK

ok1

0

16
Res1 / d

ok2

val1

NOK

nok1

0

OK

ok1

0

val1

Res1

Res2

Res2 PID

Req1 Req2

Res2 Res1 Res1

1

lock

0

timer
NOK

-

NOK

*

PID

-

PID

*

OK
unlock

1

set timer

OK

*

Fig. 3.4: Executable state machines for the system components

by transmitting signals which are buffered in event queues. Similar to SDL,
UML allows for the use of send signal actions and signal triggers to describe the
transmission and reception of signals. Each state machine has an initial state
and a number of transitions that are triggered by either signal receptions or by
timeouts. Transitions may include choices guarded by constraints (like ok1). As
an effect, a transition may execute actions such as the sending of signals, the
call of an operation (like val1) or the control of a timer. States can declare an
event to be deferred by listing it in their body followed by the keyword “/defer”
(abridged here to “/d”). This event is left in the queue until a state is entered
that does not defer it anymore but declares a transition for its consumption. For
compactness, we presented a transition that can be executed from any control
state by referring to a state called “*”. After it executes, the state machine
returns into its originating state, denoted by “-”.

As these executable state machines are the input for our code genera-
tors [Kra03], they must fulfill some constraints to achieve efficient code. In
particular, they are event-driven, which means that each transition is only ex-
ecuted as the reaction to either the creation of the state machine itself, the
reception of a signal, or the expiration of an internal timer. In consequence,
transitions are enabled based purely on their source state and trigger, so that

136 paper 3

guards may only be declared on branches following choices. Moreover, for each
pair of control state and trigger, merely one transition may be declared to pre-
vent fairness conflicts between competing transitions.

These executable state machines have a long tradition in the telecommuni-
cation area (see for example [Bræ79]) and facilitate the efficient implementation
on a range of different platforms and architectures, including J2EE. We defined
in [KHB06] their execution semantics in terms of temporal logic and described,
how they can be efficiently implemented using a scheduler as virtual machine
layer. Of course, the constraints on the executable state machines needed to
generate efficient code highly influence the layout of our algorithm which we
discuss in the following.

3.4 Transformation from Activities to
State Machines

In our approach, an activity partition corresponds to one physical point of exe-
cution. We therefore generate one state machine for each activity partition. This
also makes it possible to consider the activity partitions separately and not the
entire activity, as discussed later. To separate the partitions from each other,
we have to cut those edges which cross partition borders. These edges model
the control flows between different system components. As communication be-
tween the state machines is done entirely by means of signals, a flow crossing the
boundaries of activity partitions must be implemented as a signal transmission.
In activities, flows between actions occur instantaneously, i.e., a token leaves an
action and enters a subsequent one without resting in the flow. The transmission
between state machines, however, is buffered. Introducing signal transmissions
in flows between partitions therefore implies virtual places that may hold tokens.
We add these places where flows enter a partition, as illustrated in Fig. 3.5 by
the circles with the queue symbols inside. These so-called queue places, which
are also attached to receive actions, simulate the input queue of the state ma-
chines implementing an activity partition. In the model, these input queues are
of unlimited capacity.1 Thus, the virtual places are unbounded (i.e., can hold
any number of tokens).

As described above, the state machines execute a transition as a reaction to
the arrival of a signal. This event corresponds to the emission of a token from
the virtual queue places. Hence, when we construct a transition, we simulate
the emission of one token from a queue place. The token passes along the flows
and nodes of the activity diagram until it reaches a control node where it has
to wait for further events to happen. These are three kinds of nodes: (1) Join
nodes synchronize different flows, that may arrive in any order. An incoming
token may have to wait for the other incoming flows to arrive. (2) Waiting
decisions synchronize competing join nodes (see Sect. 3.2). A token has to rest

1Of course, in an implementation, buffer capacity is limited, which can be addressed the
means described in [KHB06].

transforming collaborative service specifications 137

Access Control System
central station

nok

pid
prep1

[ok1]

[nok2]

val1

prep2

val2

[ok2]

[nok1]

ok

w1

w3

w4

d1

d2

f1

j1

j2

j3

j4

m1

w2

res1

res2

Fig. 3.5: Places for the nodes

inside a waiting decision if none of the succeeding joins can fire. (3) Timer nodes
may contain tokens describing that the timers are active. At these nodes and
also at initial nodes, we append inner places. For instance, Fig. 3.5 illustrates
the inner places of the central station in which tokens rest to wait for further
input events. In contrast to the queue places, these inner places will constitute
the control states of the state machine. For instance, the token in the waiting
decision w2 of Fig. 3.5 means that a valid authentication result arrived and that
the central node waits for the result of the authorization. (The join nodes do
not have own places, as all their incoming flow originate from waiting decisions,
which hold the token instead.) For the number of control states to be finite, the
number of tokens in an inner place must be bounded. Moreover, to keep the
state space small, we allow only one token in each inner place. This is not a
limitation since tokens that would fill an inner place are stored in the unlimited
queue places as discussed later. The set of control states for one state machine
is then the powerset of the inner places.

We can construct a state machine transition by following the passing of the
tokens between two stable token markings. The marking of the inner places
before passing the tokens define the source state of the transition and the next
stable marking refer to the target state. The token taken from a queue place
models the input signal consumed by the transition. The activity nodes passed
by the token are transformed in the following way: Call operation actions and
send signal actions are simply copied into the effect of a transition. Decision
nodes with guards are added to the transition and lead to different branches. A
flow leaving the current activity partition is translated to a send signal action.
Fork nodes duplicate tokens, to that the subsequent flows are executed in paral-
lel. In the transition, this is mapped by executing their actions interleaved. For
instance, the transition triggered by PID in Central Station in Fig. 3.4 simply
executes first the action prep1 and then prep2. Initial nodes emit tokens once
the activity is started and are treated by the initial transition of a state machine.

138 paper 3

Scenario before
i) join input arrives

ii) join fires

after

iv) waiting decision
 fires join

iii) waiting decision
 is loaded

Fig. 3.6: Rules for token transitions

A problem is the handling of joins. The passing of a token after all incoming
flows arrived would result in a transition without a trigger event, violating con-
straints of our event-driven state machines. Therefore we use the token passing
rules illustrated in Fig. 3.6. When a token arrives at a join and there are other
incoming edges that do not yet offer a token (since their flow did not arrive yet),
the token is stored and a new stable control state is reached (i), awaiting the
next event. If, however, the arriving token completes the join (ii), the transi-
tion continues with its outgoing edge, and all tokens of the incoming edges are
removed. Waiting decisions work similarly, but consider a set of subsequent join
nodes. If none of these joins is ready, the decision is filled with a token (iii),
and a new stable state is reached. If one of the joins is ready, the transition
continues at its outgoing edge, consuming the token from the decision node (iv).

In addition to the events of signal reception resulting from the split control
flows, explicit signal receptions contribute to the set of unbounded queue places.
Furthermore, timers are sources of events. When a timeout occurs, a token is
emitted on the timer’s outgoing edge. The transition is then constructed in the
same way as for signal receptions. Some events may lead to states describing
that an inner place contains more than one token. For example, if the central
station is connected to several local stations, a pid could arrive while another
pid is under evaluation. In this case it might happen, that, after the central
station received a valid res1 and waits for res2, another valid res1 is coming,
which requires node w2 to hold two tokens. To prevent this, we do not create a
transition for flows leading to a marking with several tokens in an inner place,
but defer the incoming event, which may proceed after the inner place is emptied.

transforming collaborative service specifications 139

3.5 The Transformation Algorithm

To realize the transformation from activities to state machines introduced above,
we can proceed in quite different ways. For instance, one could perform a com-
plete reachability analysis over all allowed token allocations in the previously
introduced inner and queue places of an activity and create a transition for
every step. The disadvantage is that, especially in highly concurrent systems,
the number of reachable states is very large, rendering the approach not scal-
able. Another possibility would be to perform a purely syntactical analysis of
an activity. Here, for each edge between places, a set of transitions is generated.
Thereby, a separate transition is created for all states in which tokens are con-
tained in the corresponding places. This algorithm is quite efficient since every
inner place of the activity is checked only once, but will lead to a large number of
transitions leaving unreachable states. To prevent these disadvantages, we follow
an intermediate approach. Reflecting that for every activity partition a separate
state machine is created, we perform a reachability analysis over the states of
an activity partition only, which are constituted by its inner places. Thus, the
number of reachable states is kept small. Starting from the initial state, for each
reached state and every possible input signal a separate transition is created. As
we handle each incoming signal in all control states, some of these transitions
may be never fired (if their input signal cannot occur in the state). However,
an unnecessary transition would simply result in a code fragment that is never
executed. While this is not a real problem, nevertheless, we plan to eliminate
these transitions using interface descriptions of the other partitions. These in-
terface descriptions may be offered as part of the collaboration building blocks
of a library.

In the following, we explain our algorithm in detail. Fig. 3.7 depicts the
main loop (lines 7 to 27). As in most reachability analysis algorithms, this loop
guarantees that all reachable markings of an activity partition are analyzed.
The markings yet to be checked are listed in the variable reachable while visited
contains all markings which were already analyzed. In the initial part of the
algorithm (1..6), a new and empty state machine is created. Thereafter, the first
marking to be checked, the initial transition of the state machine and the set
of events to be received by the state machine are computed. As our algorithm
creates a state machine transition for each pair of reachable marking and event
(see Sect. 3.4), the loop contains a nested for-loop (10..26) cycling through all
events. The for-loop contains two nested if-statements. The first one (11..25) is
used to ignore events triggered by a timer which is not active in the current
state. The second if-statement enables us to handle violations of the desired
1-boundedness property correctly. If the traversal of an edge in the checked
activity would lead to two or more tokens in any inner place, the algorithm does
not create a transition but defers the event in the current state (13). Otherwise,
a new transition is built in the else-statement (15..23).

The transitions of a state machine are created by means of the recursive
method buildTransition (20), listed in Fig. 3.8 and 3.9. It considers the traver-

140 paper 3

transform(ActivityPartition a) : StateMachine

1

transform(ActivityPartition a) : StateMachine

1 var stm: StateMachine = new StateMachine()
2 var firstState: State = computeFirstState(a)
3 createInitialTransition(firstState, stm)
4 var events: Set of Event = computeEvents(a)
5 var visited: Set of State = ∅
6 var reachable: Set of State = {firstState}
7 while reachable "= ∅ do
8 var current: State = reachable.removeFirst();
9 visited = visited ∪ {current}

10 for all e ∈ events do
11 if ¬(e is timeout ∧ timerActive(current)) then
12 if harmsBoundedness(current, e) then
13 current.deferEvent(e)
14 else
15 var t: Transition = new Transition(stm);
16 t.setSource(current)
17 t.setTrigger(e)
18 var marking: long = getMarking(current)
19 if e is timeout then marking = unsetTimer(e,marking)
20 var Edge edge = retrieveEdge(e)
21 var targets: Set of State
22 = buildTransition(edge,marking,t,a,stm)
23 reachable = reachable ∪ (targets / visited)
24 end if
25 end if
26 end for
27 end while
28 return stm. !

Fig. 1: Main control
Fig. 3.7: Main control

sal of a token from one stable marking to another. For each edge part of the
flow triggered by the event it is called recursively and builds the corresponding
transition along the way. The method returns the set of stable states reached
by the transition. It is a set, as a flow may lead to several distinct reachable
states after a decision node. The returned states are used by the main loop
to determine the reachable markings of the partition yet to be checked. The
method contains an order of nested if-statements describing the behavior for
each possible node in the analyzed activity edge. It returns if the edge leaves
the partition (2), reaches a join which cannot be fired in the current activity
marking (12), starts a timer (17), arrives at a waiting decision in which none of
the corresponding joins can be fired in the current marking (50), or reaches a
flow final resp. activity final node (58, 62). In all these cases a new stable state
is reached and the created transition can be completed. When another edge is

transforming collaborative service specifications 141

buildTransition(Edge edge, long c, Transition t, ActivityPartition a, StateMachine
stm) : Set of State

1

transform(ActivityPartition a) : StateMachine

1 var node: Node = edge.getTarget()

2 if leavesPartition(edge,a) then
3 addSendSignalAction(t,edge)
4 var target: State = getState(c)
5 t.setTarget(target)
6 return {target}
7 else if node is join then
8 if canFire(join,c) then
9 var n: long = markingAfterJoinFired(c)

10 return buildTransition(outgoing(edge),n,t,a,stm)
11 else
12 var n: long = markingAfterJoinInputArrived(c)
13 var target: State = getState(n)
14 t.setTarget(target)
15 return {target}
16 end if

17 else if node is timer then
18 addSetTimerAction(t,node)
19 var n : long = markingAfterTimerSet(c)
20 var target: State = getState(n)
21 t.setTarget(target)
22 return {target}
23 else if node is send action then
24 addSendSignalAction(t,node)
25 var target: State = getState(c)
26 t.setTarget(target)
27 return buildTransition(outgoing(node),c,t,a,stm)

28 else if node is call operation action then
29 t.addEffect(node)
30 return buildTransition(outgoing(node),c,t,a,stm)

31 else if node is merge then
32 return buildTransition(outgoing(node),c,t,a,stm)f
33 end if

Fig. 1: Main control

Fig. 3.8: Method to build a transition (beginning)

reached, the transition is not yet complete and its building process has to be
continued by a recursive call of buildTransition. These cases are a join which
can be executed after being reached by a token on the analyzed edge (10), a send
action (27), an operation call (30), a merge (32), a decision (40), a waiting decision

142 paper 3

2

31 else if node is merge then
32 return buildTransition(outgoing(node),c,t,a,stm)
33 else if node is decision then
34 var p: Pseudostate = new Pseudostate(stm,CHOICE)
35 var reachable: Set of State
36 for all o ∈ node.outgoings() do
37 var t = new Transition(stm)
38 t.setSource(p)
39 t.setGuard(o.getGuard())
40 var r: Set of State = buildTransition(o,c,t,a,stm)
41 reachable = reachable ∪ r
42 end for
43 return reachable

44 else if node is waiting decision then
45 for all o ∈ node.outgoings() do
46 var join: Node = o.target;
47 if canFire(join, marking) then
48 return buildTransition(o,c,t,a,stm)
49 end if
50 end for //no join could fire
51 var n : long = markingAfterDecisionSet(c)
52 var target: State = getState(n)
53 t.setTarget(target)
54 return {target}

55 else if node is fork then
56 collectEffects(outgoings(node),t)
57 return computeForkedState(outgoings(node))

58 else if node is flow final then
59 var target: State = getState(c)
60 t.setTarget(target)
61 return {target}

62 else if node is activity final then
63 t.setTarget(new FinalState(stm))
64 return {}
65 end if !

Fig. 3.9: Method to build a transition (end)

from which a corresponding join can be fired after being reached by a token (48),
and a fork (57). While most steps in creating a transition follow directly the
ideas presented in Sect. 3.4, we will look now on the decisions and forks which
are a little subtle. A decision leads to the addition of a choice pseudo state to
the transition behind which more than one continuing transition fragments are

transforming collaborative service specifications 143

added. This is done by the for-loop (36..42) which calls buildTransition for each
of the choice’s branches. The parallel emission of tokens at forks is addressed
at (55). As one state machine executes only one action at a time, we map parallel
executing flows inside one activity partition to an interleaved execution, which
is a correct refinement. This execution is computed by the method collectEffects
which is not listed here for the sake of brevity.

3.6 Correctness of the Transformation

To verify that the algorithm carries out transformations in a correctness-preser-
ving manner, we use the linear-time temporal logic cTLA [HK00] as a formalism
which is based on Leslie Lamport’s TLA [Lam02]. cTLA enables the description
of resources and constraints in a process-like notion and provides a coupling
structure based on conjoining actions (i.e., predicates on pairs of states describing
sets of transitions). Refinement verifications are carried out as temporal logic
implication proofs (cf. [Lam02]). As the semantics of activities is based on Petri-
nets [Obj06], UML 2.0 activities can easily be expressed by cTLA processes as
pointed out in [GH04]. An activity, basically, is a cTLA system description
consisting of processes each describing a single activity partition. The variables
of a process model its inner places while each queue place of a partition is
described by a separate input queue.

For the state machines forming the input of our code generators, we de-
fined a special dialect cTLA/e [KHB06] which describes the coupling between
components by assigning a single input queue to each component. A state ma-
chine transition is specified by a cTLA action which reflects that the transition
depends only on the current state and the first signal in the input queue. More-
over, each component contains an extra queue to handle deferred events. The
refinement of specifications modeling activities to cTLA/e-based descriptions is
carried out by a sequence of correctness-preserving refinement steps accompa-
nied by cTLA/TLA implication proofs (cf. [Lam02]). For the sake of brevity, we
do not give a thorough introduction to cTLA here and sketch the proof steps
only briefly.

To verify formally that a state machine S derived from an activity partition
A keeps all the functional properties state by A, we must perform by temporal
logic deductions that the implication S ⇒ A holds. According to Abadi and
Lamport [AL91], this can be achieved by finding a so-called refinement mapping
from the states of S to those of A. A refinement mapping takes into account that
cTLA models applications as state transition systems. A system formula consists
of an initial condition describing the set of initial states, cTLA actions which
are predicates on a pair of a current state and a next state and model a set of
state transitions each, and liveness properties expressed by fairness assumptions
on actions which enforce that actions are eventually executed when they are
consistently enabled. A refinement mapping fulfills the following properties:

– An initial state of S is mapped to an initial state of A.

144 paper 3

– Each cTLA action of S is either mapped to an action of A or to a so-
called stuttering step in which the mapped current and next states of A
are identical.

– Each fairness assumption of A is provided by the fairness assumptions of
S (i.e., if an action ψ of A is consistently enabled, the fairness assumptions
of S enforce a state sequence in which eventually an action is carried out
which is mapped to ψ).

In Sect. 3.4 we stated that the state space of an activity partition A is partly
defined by its inner places which are placed before joins, at decision nodes, at
initial nodes, and at timers. Moreover, it contains queue places which are situ-
ated at points where an incoming flow passes the partition border and on receive
actions. The state space of a state machine is defined in [KHB06] and consists
of the literal states of the state machine, an input queue, a defer queue, output
queues for all connected state machines, and flags for each timer. Furthermore,
activities may contain auxiliary variables which our algorithm directly maps to
auxiliary variables of the corresponding state machines. Every auxiliary variable
must be read and modified in one activity partition only. To outline the correct-
ness of the algorithm, we introduce a mapping of the state space from S to that
of A and sketch thereafter that it fulfills the refinement mapping properties:

– To find a mapping from S to the queue places of A, we have to consider
the state machines Sn linked with S since the queue places describe the
interaction between different system elements. At an activity partition,
we have a separate queue place for every signal type st while in the corre-
sponding state machine, we have central queues for all signals. Moreover,
in the activity we do not distinguish if a signal is still at the side of the
outgoing partition, already in the incoming partition, or deferred. Reflect-
ing these properties, we map all signals s of type st, which are either in
the output queue of a neighboring state machine Sn, in the input queue of
S, or in its defer queue, to the queue place qpst for st in A:

∀st : qpst = {s| ∧ s.type = st

∧ s ∈ inputQS ∪ deferQS ∪
⋃

Sn∈NeighborsS

Sn.outputQS}

(3.1)

– A mapping of S to the inner places of A located at joins, decision nodes,
and initial nodes has to consider that we use 1-boundedness in the inner
places ip and that the algorithm creates the states of S as a string of flags
flip each being set to 0 if the corresponding inner place ip is empty and
to 1 if ip contains a token to:

∀ip : ip = if flip = 1 then {to} else {}

– To find a mapping from S to the inner places of A describing a timer
is a little more complex. Indeed, the algorithm adds also a flag flt for

transforming collaborative service specifications 145

each timer t in A to the state representation in S. Nevertheless, to find
a decent mapping, one has to consider the handling of timers in state
machines. When a timer expires, it creates a signal which is attached to
the local input queue. Thus, we must map both the states of S in which
the flag flt of timer t is enabled and in which a signal st caused by t is in
the input or defer queue to a setting in A where a token to is on the inner
place ipt of t. That is expressed by the mapping listed below:

∀ipt : ipt = if flt = 1 ∨ st ∈ inputQS ∪ deferQS then {to} else {}

– The mapping from the auxiliary variables from S to those of A is the
identity function.

In the first step of the proof that the function listed above fulfills the refinement
mapping properties, we have to verify that the initial state of S is mapped to
that of A. Initially, the queue places in A are empty while the input, output,
and defer queues of S do not contain elements as well. Thus, the mapping of
the queue places fulfills the property. The inner places of A are empty except
those located at an initial node and the algorithm maps this token placement
to the initial state of S in which just the flags representing the inner places of
the initial nodes are set to 1. Since the auxiliary variables of S and A contain
the same initial settings, therefore, the initial state of S is mapped to the initial
state of A.

Next, we prove that every cTLA action in the model of the state machine S is
mapped either to a cTLA action of the activity partition A or to a stuttering step.
As introduced in [KHB06], the model of S contains different kinds of actions.
One type describes the transitions of S and for each transition trf , a cTLA action
φtrf

is defined. The algorithm creates trf only if a flow f exists modifying the
token setting of A. In the following, we state a number of properties preserved
by the algorithm in the creation of the corresponding transition trf which are
used for the refinement proof:

1. A transition trf is only created if in its source state all flags flip repre-
senting the inner places ip of f , which must contain tokens to enable the
execution of f , are set to 1.

2. The algorithm creates trf only for a flow f if the execution of f does not
violate the 1-boundedness property of the inner places in A.

3. If the queue place in f , from which a token is removed, has the type st,
trf is only triggered if st is at the front of the input queue.

4. By executing a transition trf which does not leave an initial state, the
signal at the front of the input queue is consumed.

5. A transition trf consuming a signal from the input queue, which was cre-
ated by a timer, is generated if the corresponding flow f starts at an inner
place describing a timer node.

6. The target states of trf are generated by starting with the source state
and resetting the flags representing inner places, from which tokens were
removed, to 0 while those with a new token are set to 1.

146 paper 3

7. If in the flow f a token crosses the border to a partition An or heads to
a send action with destination An, trf puts a send signal into the output
queue devoted to the state machine Sn realizing An.

8. A call operation action passed in f is reflected by adding its code to trf .
Here, we demand that an auxiliary variable may be modified only once in
f and, in consequence, in trf .

Assuming that φtrf
is the cTLA action modeling trf and ψf those of the flow

f , these properties are sufficient to prove the implication φtrf
⇒ ψf . By the

first three properties, we can assure that the enabling condition of φtrf
implies

that of ψf since according to the mapping all necessary tokens are set (1), the
1-boundedness after carrying out f is preserved (2), and the queue place, from
which f leaves, contains an element (3).

The other properties are used to verify that the effects of φtrf
are correctly

mapped to those of ψf . The elimination of a signal of type st from the input
queue is mapped to the removal of a token from the queue place st (4). In
addition, if trf consumes a signal st created by a timer from the input queue,
st is mapped to a flow f removing a token from the corresponding timer node
(5). We can further verify that trf is a correct realization of the token flow
between the inner places in f (6). The delivery of a signal s to an adjacent state
machine Sn does not spoil the corresponding mapping of Sn to a neighboring
activity partition An since s is added to an incoming queue place of An if S
puts it to its output queue devoted to Sn (7). Finally, it is guaranteed that the
auxiliary variables are correctly mapped (8). It is not difficult to verify that
these properties imply that the mapping listed above maps φtrf

to ψf which is
omitted, however, for brevity.

Other cTLA actions in S specify the execution of timers and the addition of
timer signals to the input queue, model the deferral of a signal by transferring it
from the input to the defer queue, and describe the transfer of signals from the
neighbor’s output queue to the own input queue. It can be easily shown that
these actions lead to stuttering steps in A.

In the third step, we have to verify that the fairness assumptions of the
actions ψf describing the flows in A are kept. The algorithm guarantees that
for every token placement in the inner nodes of A enabling a flow f , a transition
trf is generated implementing f . Thus, with respect to the first two properties
listed above, an action trf is enabled whenever f can fire. The only impeding
condition is the third property since trf may only be executed if the signal s
consumed by it is at the first place of the input queue. According to the mapping,
however, the cTLA action ψf specifying f can be enabled if s is either in the
output queue of the neighboring state machine Sn or in any place on the input
or defer queues of S. Thus, we must verify that s is eventually being moved to
the front of the input queue where it will remain consistently until an action φtrf

is executed. If s is still in the output buffer of Sn, it will be moved to the end of
the input buffer of S by the fair2 action modeling the transmission from Sn to

2In [HK00] we established that liveness can only be guaranteed in a distributed system
if transmitted messages are eventually being delivered. This is expressed by the fairness

transforming collaborative service specifications 147

S. Since signals before s in the input resp. defer queue are either continuously
being deferred or eventually being consumed, s will eventually be consistently
at the front of the input queue. If f is not enabled, s may be deferred itself but
is brought back to the front of the input queue by other transitions. As there is
only a finite number of transitions trf modeling f , in consequence, one of those
will be consistently being enabled if f can be triggered infinitely often as well.
Due to the fairness assumption of the corresponding cTLA action φtrf

it will be
eventually fired which, because of the mapping, causes also the triggering of ψf .

Thus, we could verify that the mapping listed above is a refine mapping.
According to [AL91], we thereby proved that the state machine S together with
its neighboring state machines Sn produced by the algorithm is a correct imple-
mentation of the activity partition A. Since this proof can be carried out for all
partitions of the activity, we established that the algorithm transforms activities
to state machines in a correct way.

3.7 Related Work

To our best knowledge, the algorithm presented here is the first one that di-
rectly transforms UML 2.0 activity diagrams into the executable state machines
described above. Our work is related to that of Eshuis on model checking of
activity diagrams [Esh06], in which activity diagrams are transformed into the
input language of NuSMV, a symbolic model verifier [CCG+02]. We could not
adapt this algorithm for our work, since, as discussed in Sect. 3.5, syntactical
algorithms cause in our field of application a high number of considered unreach-
able states. To execute activity graphs, Eshuis and Wieringa [EW01] describe an
algorithm for an event router to coordinate the behavior of components. Aiming
at workflow systems, their execution differs from ours as it assumes a centralized
architecture and the activity is considered as a whole, rather than splitting up
the activity into its partitions and creating distributed state machines as we do.

There is a number of approaches that take scenario descriptions based on
sequence diagrams (like MSCs or UML sequence diagrams) to synthesize state
machines [MZ99, WS00, KGSB99, UKM03]. While the resulting state machines
are similarly executable as the ones we described, the input of these synthesizers
in form of sequence diagrams differs from activity diagrams. Sequence diagrams
often specify only a set of scenarios rather than a complete behavior, which may
lead to behaviors that are not expressed explicitly. They focus on the interactions
and identify signals. In contrast, activities focus on the operations and decisions
that have to be performed by its participants, and our algorithm generates the
necessary interactions in form of signal transmissions automatically.

Use case maps (UCM, [BC96]) offer a notation that is close to that of UML
activities, as they also allow the specification of behavior in terms of causal
paths that may involve several components. Yong He et al. conducted an ex-
periment [HAW03] in which a specification expressed by use case maps was

assumption on the action specifying the transmission.

148 paper 3

transformed into message sequence charts. These, in turn, were transformed
into executable SDL specifications using the tool MSC2SDL [MZ99]. Similar to
that, Castejón [Cas05] outlines an algorithm that takes specifications in UCM
and UML 2.0 collaborations to generate state machines from sequence diagram
fragments contained in the collaborations.

3.8 Concluding Remarks

We described an algorithm that transforms UML 2.0 activities into a UML 2.0
state machines, from which we can easily generate efficiently executable code.
The algorithm is implemented in Java and integrated into our Eclipse-based
tool suite, so that we now have a complete automated development process from
collaborative specifications based on activities to implementations on various
platforms. As input and output we use models stored in the Java UML 2.0
repository from the Eclipse UML2 project. The algorithm does not construct an
intermediate graph, but only UML model elements that are part of the desired
output state machines, so that it is efficient with respect to the memory needed.
The time for the transformation of the presented example is negligible; the state
machines appear practically instantly. Moreover, we expect the algorithm to
scale well also for more complex systems, as the increased complexity of a system
leads more to a higher number of partitions than to more complex ones causing
only a linear increase.

This work describes a step of a more comprehensive engineering approach
for the creation of interactive services by correctness-preserving design steps.
Initially, a service specification is composed from various abstract collaborations
that, to a large extent, can be obtained from domain-specific libraries. Such
abstract collaborations are often quite simple and can also be understood by
customers, who are not experts in software technology but want to focus on
their actual business. In succeeding steps, such abstract specifications are in-
crementally refined until the specification has a degree of detail that enables
direct translation to software. Due to the algorithm, we are now able to perform
these refining design steps entirely in the collaboration-oriented perspective. As
pointed out in [KH06], for this purpose we can use the activities with their
convenient properties as reusable building blocks. �

Bibliography

[AL91] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement
Mappings. Theoretical Computer Science, 82(2):253–284, May 1991.

[BC96] Ray J. A. Buhr and Ron S. Casselman. Use Case Maps for Object-
Oriented Systems. Prentice-Hall, Inc., 1996.

transforming collaborative service specifications 149

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall, 1993.

[Bræ79] Rolv Bræk. Unified System Modelling and Implementation. In Inter-
national Switching Symposium, pages 1180–1187, Paris, France, May
1979.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces, and Refinement.
Springer, 2001.

[Cas05] Humberto N. Castejón. Synthesizing State-machine Behaviour from
UML Collaborations and Use Case Maps. In Andreas Prinz, Rick
Reed, and Jeanne Reed, editors, 12th International SDL Forum,
Grimstad, Norway, volume 3530 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Ed Brinksma and Kim Guldstrand Larsen, edi-
tors, Proceedings of the 14th International Conference on Computer
Aided Verification (CAV 2002), Copenhagen, Denmark, volume 2404
of Lecture Notes in Computer Science, pages 359–364. Springer, 2002.

[Esh06] Rik Eshuis. Symbolic Model Checking of UML Activity Dia-
grams. ACM Transactions on Software Engineering and Method-
ology, 15(1):1–38, 2006.

[EW01] Rik Eshuis and Roel Wieringa. An Execution Algorithm for UML
Activity Graphs. In UML’01: Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 47–61, London, UK, 2001. Springer-
Verlag.

[FB00] Jacqueline Floch and Rolv Bræk. Towards Dynamic Composition of
Hybrid Communication Services. In SMARTNET ’00: Proceedings of
the IFIP TC6 WG6.7 Sixth International Conference on Intelligence
in Networks, pages 73–92, Deventer, The Netherlands, 2000. Kluwer,
B.V.

[GH04] Günter Graw and Peter Herrmann. Transformation and Verification
of Executable UML Models. Electronic Notes on Theoretical Com-
puter Science, 101:3–24, 2004.

[HAW03] Yong He, Daniel Amyot, and Alan W. Williams. Synthesizing SDL
from Use Case Maps: An Experiment. In Rick Reed and Jeanne

150 paper 3

Reed, editors, Proceedings of the 11th SDL Forum, Stuttgart, Ger-
many, 2003, volume 2708 of Lecture Notes in Computer Science,
pages 117–136. Springer, 2003.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From
MSCs to Statecharts, 1999.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specification
by Composition of Collaborations — An Example. In Proceedings of
the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology),
pages 129–133. IEEE Computer Society, 2006. 2nd International
Workshop on Service Composition (Sercomp), Hong Kong.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Pro-
ceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, volume 4276
of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg, 2006.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[MZ99] Nikolai Mansurov and D. Zhukov. Automatic Synthesis of SDL
Models in Use Case Methodology. In Rachida Dssouli, Gregor von
Bochmann, and Yair Lahav, editors, SDL Forum, pages 225–240.
Elsevier, 1999.

[Obj06] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1, April 2006. ptc/2006-04-02.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein.
Collaboration-Based Design of SDL Systems. In Proceedings
of the 10th International SDL Forum Copenhagen on Meeting UML,
pages 72–89. Springer-Verlag, 2001.

[SCKB05] Richard Sanders, Humberto N. Castejón, Frank Alexander Kraemer,
and Rolv Bræk. Using UML 2.0 Collaborations for Compositional
Service Specification. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

transforming collaborative service specifications 151

[UKM03] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of Behav-
ioral Models from Scenarios. IEEE Trans. Softw. Eng., 29(2):99–115,
2003.

[WS00] Jon Whittle and Johann Schumann. Generating Statechart Designs
from Scenarios. In ICSE ’00: Proceedings of the 22nd International
Conference on Software Engineering, pages 314–323, New York, 2000.
ACM Press.

PAPER

FOUR

SYNTHESIZING COMPONENTS WITH
SESSIONS FROM

COLLABORATION-ORIENTED SERVICE
SPECIFICATIONS

Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann

Presented at the 13th SDL Forum, September 18 – 21, 2007, Paris, France.

Published in SDL 2007, Volume 4745 of Lecture Notes of Computer Science,
p. 166–185, Springer, 2007.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/978-3-540-74984-4_11.

Synthesizing Components with Sessions from

Collaboration-Oriented Service Specifications

Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann

Abstract. A fundamental problem in the area of service engineering is the so-called
cross-cutting nature of services, i.e., that service behavior results from a collabora-
tion of partial component behaviors. We present an approach for model-based service
engineering, in which system component models are derived automatically from collab-
oration models. These are specifications of sub-services incorporating both the local
behavior of the components and the necessary inter-component communication. The
collaborations are expressed in a compact and self-contained way by UML collabora-
tions and activities. The UML activities can express service compositions precisely, so
that components may be derived automatically by means of a model transformation.
In this paper, we focus on the important issue of how to coordinate and compose col-
laborations that are executed with several sessions at the same time. We introduce an
extension to activities for session selection. Moreover, we explain how this composition
is mapped onto the components and how it can be translated into executable code.

4.1 Introduction

In its early days, reactive software was mainly structured into activities that
could be scheduled in order to satisfy real-time requirements. As a result, the
rather complex and stateful behavior associated with each individual service
session and resource usage was fragmented and the overall behavior was often
difficult to grasp, resulting in quality errors and costly maintenance.

The situation was considerably improved by the introduction of state ma-
chines modeling stateful behavior combined with object-based and later object-
oriented structuring. By representing individual resources and sessions as state
machines, their behavior could be explicitly and completely defined. This prin-
ciple helped to substantially improve quality and modularity, and therefore be-
came a widespread approach. It also facilitates the separation between abstract
behavior specifications and implementation, and enabled model-driven develop-
ment in which executable code is generated automatically from state machines.
SDL [ITU02] was developed as a language to support this approach and, con-
sidering its adoption and support, we must say that it has been successful at
it.

However, there is a fundamental problem. Service behavior is normally dis-
tributed among several collaborating objects, while objects take part in several
different services. By structuring according to objects, the behavior of each in-
dividual object can be defined precisely and completely, while the behavior of a
service is distributed across the objects. This is often referred to as the “cross-
cutting” nature of services [KM03, RGG01, FK01], and is one of the underlying

156 paper 4

componentcollaboration

composite
collaboration

collaboration
role

intra-component

inter-component

Communication: x1 x2 x3

c1

c3

c2r1 r2

r4r3

Fig. 4.1: Relationships between components and collaborations

reasons why compositional service engineering is such a challenge. Fundamen-
tally, the behavior of services is composed from partial object behaviors, while
object behaviors are composed from partial service behaviors.

A promising step forward to solve this problem is to adopt a collaboration-
oriented approach, where the main structuring units are formal specifications
of services containing both the partial object behavior and the interactions be-
tween the objects needed to fulfill the service. These specifications are called
collaborations. Albeit many of the underlying ideas have been around for a long
time [RWL95, RAB+92], the new concept of UML 2.0 collaborations [Obj07]
provides a modeling framework that opens many interesting opportunities not
fully utilized yet. First of all, collaborations model the concept of a service very
nicely. They define a structure of partial object behaviors, the collaboration
roles, and enable a precise definition of the service behavior. They also provide
a way to compose services by means of collaboration uses and role bindings.

Figure 4.1 shows a coarse system architecture illustrating the relations be-
tween collaborations and objects (referred to as components in the following).
A service is delivered by the joint behavior of the components x1 to x3, which
may be physically distributed. The service described by collaboration c1 can
be composed from the two sub-services modeled by collaborations c2 and c3.
The necessary partial object behavior used to realize the collaborations is rep-
resented by so-called collaboration roles r1 to r4. Note how the collaborations
cut across the components and define inter-component behavior. Orthogonal
to this, component behavior is defined by composition of collaboration roles.
Communication between components is assumed to be based on asynchronous
message passing only (cf. [BF04]), while communication within one component
may also use shared variables and synchronously executed actions (i.e., an event
in one collaboration can cause actions in another collaboration).

We have found that collaboration-oriented decomposition tends to result in
sub-collaborations corresponding to interfaces and service features [SBvBA05]
with behavior of limited complexity that may be defined completely and be
reused in many different services. This simplifies the task of defining inter-
component behavior and separates it from the intra-component composition.
It has been shown in [CB06b, CB06a] that collaborations also provide a basis
for analysis and removal of errors at a higher level of abstraction than detailed
interactions.

synthesizing components with sessions 157

2

r4r3

r2r1

c3

c2
c1

x1 x2 x3
componentcollaboration

composite
collaboration

collaboration
role

intra-component

inter-component

Composition:

Fig. 1. Components and collaborations

Library

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Service Specifications
UML Collaborations,
Activities

Code GenerationModel Transformation

Fig. 2. Approach

A promising next step forward is to adopt a collaboration-oriented approach,
where the main structuring units are collaborations and their partial object
behaviors, called roles. This is made practically possible by the new UML2 col-
laboration concept, albeit many of the underlying ideas have been around for
a long time [OORAM and others]. As we shall, see in the following this opens
many interesting opportunities.

Figure 1 illustrates with a coarse system architecture the relations between
a service, collaborations and components. A service is delivered by the system
through the components x1 to x3, which may be physically distributed. The
collaboration role behavior necessary is expressed by the logic denoted by the
circles r1 to r4.

However, instead of expressing the behavior of the system in terms of its com-
ponents, we decompose the service into sub-services described by sub-collaborations
c2 and c3.

Communication between components (“inter-component”) is asynchronous
by means of buffered signals (cf. [1]), while the communication within one compo-
nent may in addition include shared variables as well as synchronously executed
actions, where statements belonging to one collaboration are executed within the
same state machine transition as statements belonging to another collaboration.
(The event in one collaboration can cause actions in another collaboration.)

Explain that we transform to get code, and show the approach. implemented
java platforms, explain for this, but very general

Service Specifications
UML Collaborations,
Activities

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Library

Service Engineering
Composition of Services
from Building Blocks

x1 x2 x3

Code Generation

Model Transformation

Fig. 4.2: Service Engineering Approach

A well established approach is to model “horizontal” collaborative behavior
using MSCs or UML sequence diagrams. They provide the desired overview,
but will normally not be used to define the complete behavior. In this paper, we
present our approach (see also [KH07, KH06]) in which the complete behavior
of collaborations is defined using UML activity diagrams. We offer an exten-
sion to UML that enables to compose also behavior that is executed simultane-
ously in several sessions. This enables a complete and precise definition of the
inter-component behavior of each collaboration as well as the intra-component
behavior composition of collaborations, without the need to specify interaction
details. The approach enables an automatic synthesis of component behaviors
in the form of state machines from which executable code is automatically gen-
erated, as illustrated in Figure 4.2. By defining the semantics of activities and
state machines using the temporal logic cTLA [HK00], we are able to verify by
formal implication proofs that the transformations of the collaboration-oriented
models to the state machines are correct (see [KH07]). This formal aspect,
however, is not the focus of this paper. In the following we first introduce the
collaboration-oriented specification approach by means of an example, and show
how multiple session instances can be coordinated. Afterwards, we describe the
transformation from collaboration to component behavior.

4.2 Collaborations

In Fig. 4.3 we introduce a taxi control system. Several taxis are connected to a
control center, and update their status (busy or free) and their current position.
Operators accept tour orders from customers via telephone. These orders are
processed by the control center which sends out tour requests to the taxis. Taxis
may also accept customers directly from the street, which is reported to the

158 paper 4

control

Tour Request

Status Update

Tour Request

Tour Order

operators

Tour Order

Tour Order

Tour Order center
Position

Position

Status Update

Fig. 4.3: Illustration of the system

c: Control
Center

taxi: Taxi
[1..*]

taxi requestor

«external»
op: Operator[1..*]

operator

o: Tour
Order

Taxi System

p: Position
observerobserved

t: Tour
Request

s: Status
Update

Fig. 4.4: UML Collaboration

control center by a status update to busy. Fig. 4.4 defines this as a UML 2.0
collaboration. Participants in the service are represented by collaboration roles
taxi, c, and op. For the taxis and the control center we will later generate
components. The operators are part of the environment and therefore labeled as
�external�. The control center c has a default multiplicity of one, while there
can be many taxis and operators in the system, denoted by multiplicity [1..*].
Between the roles, collaboration uses denote the occurrence of behavior: taxis
and control center are interacting with collaborations Status Update, Position
and Tour Request, while the operators are cooperating with the control center by
means of collaboration Tour Order. In this way, the entire service, represented
as collaboration Taxi System, is composed from sub-services.

4.2.1 Describing Behavior of Collaborations

Besides being a so-called UML structured classifier with parts and connectors
as shown in Fig. 4.4, a collaboration is also a behaviored classifier and may as
such have behavior attached, for example state machines, sequence diagrams or
activities. As mentioned in the introduction, we use activity diagrams. They
present complete behavior in a quite compact form and may define connections
to other behaviors via input and output pins. In [KH06, HK07] we showed how

synthesizing components with sessions 159

Status Update
observerobserved

set
s2: Status = unknown;

s2:=status

set

free

busy

s1:=free

s1:=busy

create status=s1

free, busy, unknown

«enumeration»
Status

{observer} available () : boolean {
 return s2==free;}

s1: Status = free;

Fig. 4.5: Activity for Status Update

service models can be easily composed of reusable building blocks expressed as
activities.

The activity Status Update (Fig. 4.5) describes the behavior of the corre-
sponding collaboration. It has one partition for each collaboration role: observer
and observed. As depicted in Fig. 4.4, these roles are bound to c and taxi, so
that the observer is the control center that observes a taxi. A pleasant feature
of our approach is that we can first study and specify the behavior of the control
center towards one taxi and we later compose this behavior, so that the control
center may handle several taxis.

Activities base their semantics on token flow [Obj07, p.319]. Hence, a token
is placed into the initial node of the observer in Fig. 4.5 when the system starts.
The token moves through the merge node, upon which the observed party sends
its current status to the observer. The observer then updates its local variable s2.
From then on, the taxi pushes any status change to the control center. As these
changes depend on events external to this collaboration, they are expressed by
the parameter nodes set free and set busy. These are streaming nodes through
which tokens may pass while the activity is ongoing. Later, the parameter nodes
(represented by corresponding pins on call behavior actions) will be used to
couple the status update collaboration with the other collaborations. In addition,
we defined an operation available for the activity that we will later use to access
the status of a taxi from the control center. As this operation accesses variable s2
localized in the observer, we use the constraint {observer} to mark that it may
only be accessed from the side of the observer. The collaboration Position (not
shown) works similarly by notifying the observer about the current geographical
position.

The collaboration Tour Request depicted in Fig. 4.6 models the process of
notifying a taxi about a tour. It is started via parameter node request tour, which
starts timer t and places a token in waiting decision node w. A waiting decision
node is the extension of a decision node with the difference that it may hold a
token similar to an initial node, as defined in [KH07]. w is used in combination
with join nodes j1 and j2 to explicitly model the race between the acceptance of
the tour by the driver and the timeout mechanism. Another flow is forwarded
to the taxi which first checks its status. This is necessary as the taxi can in fact
be busy even if it was available when the requestor started. This is due to the

160 paper 4

Tour Request
requestortaxi

get status

accepted

elsefree

acceptedcanceled canceled

request

request

accept

tour

tour

tour

t

w

j1 j2

Fig. 4.6: Activity for Tour Request

inevitable delay of signals between the distributed components, so that the taxi
may have accepted a customer from the street while a request is on its way. In
general, the flows between the control center and the taxi (as well as all other
flows crossing partitions) are buffered. We describe this in a so-called execution
profile (see [Obj07, p. 321]) for our service specifications [Kra08] and model it by
implicit queue places, as described in [KH07]. If the taxi is still free, the control
flow is handed over to some external control not part of this collaboration. If
the taxi driver accepts the tour, the control flow returns, and a token is offered
to join node j1. If w still has its token, j1 can fire, emit a token on accepted on
the requestor side, and then terminate the collaboration on the taxi side with
an activity final node and output node accepted.1 In case the taxi turned busy
or a timeout occurs, a token is offered to j2. It fires if w still has its token, so
that the collaboration first notifies the requestor upon the cancelation and then
terminates the collaboration on the taxi side.

Note that the events accept tour and the timeout may both happen, as they
are initiated by different parties. This is a so-called mixed initiative [Flo03] that
must be resolved to prevent erroneous behavior in which one side accepts the
request while the other one considers the request as canceled. The taxi therefore
sends the acceptance of a tour first to the requestor and waits for a confirmation;
if the timer expired in the meantime, the acceptance is intercepted in j1 and the
collaboration terminates consistently with canceled on both sides.

4.2.2 Composing Collaborations with Activities

To generate state machines, components and finally the executable code for the
system components, the structural information about how the collaborations are
composed (as shown in Fig. 4.4) is not sufficient. In fact, we need to specify in
detail how the different events of collaborations are coupled so that the desired
overall behavior is obtained. For this purpose we use UML activities as well,

1As this ending is alternative to the cancelation of a tour request, it must be expressed by
its own UML parameter set, denoted by the additional box around the node.

synthesizing components with sessions 161

Taxi System
control centertaxi

«multi-session»
t: Tour Request

tour

canceled

tour

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a

«multi-session»
s: Status Update

set free

set busy

accepted

b

b

a

canceled

request tour

accepted

«multi-session»
o: Tour Order

select one : s.available

tour order

found taxi

no taxi found

select one : id=order

exists s : s.available

else

8

means that we can interpret the figure on the left like shown on the right, where
each mobile phone may be involved in several executions of the proximity service
(this is just an illustration).

OCL to specify if a phone may track itself.
Activity can cover this quite well.
Draw the activity for system.
Collaboration uses do not have a multiplicity attribute in UML. However,
So far, we have only considered that a collaboration is executed once at

a time. For instance, one execution of an SMS inquiry required exactly one
execution of the SMS listener collaboration.

UML activities may be executed (find term). These have not streaming pa-
rameters (to keep it simple). However, with the notion of collaborations it is
easy to identify the correct instance of behavior by its participants.

Using the SMS inquiry, we can now describe the position notification service.
It uses the SMS inquiry to ask a user if tracking should be allowed for a certain
observer. If the permission is granted, the observer registers for position updates
at the position gateway. Once the position gateway sends an position update
to the observer, the position is analyzed. If it lies within the specified area, the
observing user is notified with an SMS. The three call operation actions are used
to generate the corresponding notification text messages.

5 Formal Semantics

!
Give an impression on how we model that with cTLA, but without going into

formulas? A collaboration is a cTLA process. Abstraction processes, connected
formally by implication.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget
odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo
eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare
ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula
eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo.
Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum
fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,
lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In
hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet,
placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada
ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

operator
«external»

«multi-session»
p: Position

a:
Alarmstop

request
accept

{control center} nearest (ID[0..*], token) : ID[0..*] { ... }

c

c

Fig. 4.7: The Taxi System Activity

as they allow us to specify the coordination of executions of subordinate behav-
iors [Obj07, p. 318]. Using call behavior actions, an activity can refer to other
activities. Like this, the activity of a composite collaboration may refer to the
activities of its sub-collaborations and specify how they are coordinated.

Fig. 4.7 shows the activity for the composed taxi system. Again, each col-
laboration role is presented by its own activity partition. As the taxi system
collaboration is composed from several other collaborations, the activity refers
to them via the call behavior actions s, p, t and o. Let us first focus on the
partition for the taxi on the left hand side. It describes the local coupling be-
tween the collaborations a taxi participates in, including some additional logic
for the user interface of the taxi, modeled as activities for three buttons and
an alarm device that have been fetched from our library of reusable building
blocks [Kra07]. When the taxi partition starts, button busy is activated. The
driver presses it once a customer from the street orders a tour whereupon the
button emits a token at exit push. This updates the status of the taxi to busy
by coupling push of the busy button with set busy of the status collaboration.2

In addition, button ready is activated to signal the termination of the tour by
the driver. As the taxi participates in the collaboration Tour Request (repre-
sented by the call behavior action t), it must also handle the event when a tour
request arrives from the control center, which is accessible through the output
pin tour request of t. This event triggers the deactivation of the busy button,
and activates the accept button as well as an alarm to notify the driver. The
accept button, which is pushed if the driver accepts, notifies the collaboration t.
Depending on the final outcome of the tour request collaboration (it may still
be aborted by a timeout), either the ready button is activated and the status is
changed to busy, or the taxi remains available and the busy button is activated
again. The position collaboration needs no coupling, as it constantly sends the
position independently of the other behaviors.

2For presentation reasons, this flow is segmented graphically by connector b.

162 paper 4

4.3 Multiple Behavior Instances and Sessions

From the viewpoint of one taxi, there is exactly one collaboration session for
each of the three collaboration uses s, p, t towards the control center. This can
be handled easily with the UML activities in their standard form. The control
center, on the other hand, has to maintain these sessions with each of the taxi
cars. From its viewpoint, several instances of each of the collaboration uses s,
p and t are executed at the same time; one instance for each taxi. Moreover,
the tour order collaboration not only has to be executed concurrently towards
several operators, but each operator may also request new tours while others are
being processed. From the viewpoint of the control center, the collaborations
it participates in, are what we call multi-session collaborations. We express
this by applying a stereotype �multi-session� to the call behavior actions and
represent it graphically by a shadow-like border in those partitions where sessions
are multiple.3 Consequently, the call behavior actions (resp. sub-collaborations)
s, t, and p in Fig. 4.7 have a shadow within the control center partition, while o
is multiple both in the control center and the operators.4

This raises the question about how the different instances of collaborations
may be distinguished and coordinated, so that the desired overall system behav-
ior is obtained. A selection of sessions must take place whenever a token enters
a multi-session sub-collaboration (as for example via the pin at Ê). While in
some cases we may want to address all of the sessions, in other ones we like to
select only a subset or one particular session. The UML standard, however, does
not elaborate this matter but instead forbids streaming nodes on reentrant be-
haviors completely, as it is ambiguous which execution should receive streaming
tokens [Obj07, p. 398]. This is too restrictive, as most systems exhibit patterns
with several executions going on at a time, that possibly need coordination. We
therefore added the new operators select and exists to our execution profile.

4.3.1 Identification of Session Instances

First of all, the different sessions must be distinguished at runtime. This resem-
bles the well-known session pattern (see for example [Ris01, p. 191]) that is
found in client/server communication, where the server has some kind of identi-
fier to distinguish different sessions. Accordingly, each collaboration session has
an ID. For collaborations having one session instance for a specific participant,
the session ID can be chosen to be identical to that of the participant. For ex-
ample, we can use the ID of the taxi to identify the session instances of the Tour
Request, Status Update and Position collaboration. This is similar to SDL, in
which a process identifier pid of a communication partner is often used to refer
to a session. If there can be more than one session per communication partner
(the control center can for instance have several ongoing tour orders from the

3Technically, the corresponding partitions are stored as a property of the stereotype.
4In this paper we focus on the partitions taxi and control center and do not further look

into the operator partition.

synthesizing components with sessions 163

select := ‘select’ mod ‘:’ [{filter}] [‘/’ {filter}].
exists := ‘exists’ name ‘:’ filter [‘/’ {filter}].
mod := ‘one’ | ‘all’.
filter := name | ‘self’ | ‘active’ | ‘id=’ variable.

Fig. 4.8: EBNF for select and exists

same operator) any other unique identifier can be used; for collaboration Tour
Order we can use a unique order number.

4.3.2 Choosing Session Instances with select

When an operator accepts an order from a customer, a token leaves the output
pin tour order of o in Fig. 4.7. Let us ignore for the moment the decision and
assume it takes the upper branch, towards input pin request tour of t at Ê. At
this point we have to specify into which session instance of t the token should
enter. We do this by attaching an expression as guard to the edge entering the
input pin. If we would like to select all instances (by duplicating the token), we
could write select all, resulting in an alarm in each taxi, whether busy or free,
which is not desired. Instead, we would like to select only one of the free taxis.
This means, we want to access properties of the s: Status Update sessions. As
collaboration uses s and t have the same set of IDs, we would like to obtain an
ID of s for which the status is free. To enable the control center to check the
status of its taxis, we defined in the activity Status Update (Fig. 4.5) a boolean
operation available which is executable from the observer side. This operation is
used in the select statement. As there may be more than one free taxi, we further
specify by adding the keyword one that only one of them should eventually be
selected. The entire statement is then

select one : s.available.

If none of the taxis is free, no session is selected and the token flow simply stops.
We describe later how this situation is ruled out by an alternative behavior using
the decision node. If a tour request is canceled, another taxi can be contacted
(via connector c) by iterating a new tour request.

Once the selected taxi accepts the tour, a token leaves output pin accepted
and enters o: Tour Order. Here we have to select again which of the instances
should be chosen. As they are distinguished by the order number, we leave this
number as attribute order inside the token,5 and extract it by writing

select one : id=order.

5This implies an UML object flow instead of a simple control flow, which we do not show
here to keep the diagrams easier to comprehend.

164 paper 4

Taxi System
control centertaxi

m: Messaging

send to all

send personal

select all : /self

receive message
send

broadcast

personal

select one :
id=receiver

Fig. 4.9: Messaging service extension

The complete EBNF definition for session selection and existence is given in
Fig. 4.8. It allows specifying several filters (e.g., available) that are applied in
the order of their listing. In this way, we may flexibly use a sequence of filters, for
example to call the taxi that is closest to the street address. In this case we would
introduce a filter nearest which considers the location of the taxis provided by
collaboration p and computes the taxi which is closest to the customers position.
As we still want to select only free taxis, we can apply the available filter before,
and write select one : s.available nearest, so that an ID has to pass both filters.

To study another form of session selection, we extend the system with a
messaging service, where taxi drivers may send messages to each other; either
to a specific taxi or to all taxis. Parts of this addition are shown in Fig. 4.9.
Messages are sent via the control center, which maintains one instance of a
collaboration Messaging with each taxi. As we attach the select statement to the
incoming edges and not the nodes directly, a node may be entered with different
selection strategies, combined by a merge node. Personal messages arrive from
a taxi at pin personal and are forwarded by the ID stored as receiver, with the
known selection statement. Broadcast messages are sent to all other sessions,
except the session sending the message, expressed by select all : /self. The
slash allows to specify negative filters for exclusion. (If for any reason drivers
should send broadcasts just to free taxis, we would write select all : s.available
/self.)

4.3.3 Reflecting on Sessions with exists

In some cases we have to reason about the status of certain sessions. For example,
before we process a request from the tour order collaboration, we check if there
are any free taxis available at all. We do this with the operator exists that returns
a boolean value that can be the guard in a decision. In Fig. 4.7, we include
therefore exists s : s.available, where s.available denotes the filter introduced
above. Thus, in the example, the selection at Ê is only reached if at least one
taxi is free. If we want to make a decision depending on the fact whether there
are any currently ongoing collaboration sessions (which have an active token
flow) we may use the standard filter active.

synthesizing components with sessions 165

4.3.4 Modeling of Filters

A filter is modeled as an UML operation. Boolean filters only considering one
session can be defined as part of the activity describing the collaboration (like
available in Fig. 4.5). Filters that need to consider an entire set of sessions or
combine data from different collaborations are defined as part of the surrounding
activity, such as the filter nearest. In contrast to the boolean filter available,
nearest receives and returns an entire set of IDs, from which it can determine
the one with the minimal distance to the address given by the token. The address
is contained in the token, which is handed over to the filter by the parameter
token. In principle, the body of operations may be expressed as any kind of
UML behavior; in our current tool we use Java, embedded in a language-specific
UML OpaqueBehavior [Obj07, p. 446], since our code generators create Java
code.

4.4 Mapping to the Component Model and Im-
plementation

In the following, we will discuss how the collaboration models are transformed
into the executable component model of our approach. After introducing the
component model, we explain the translation of single-session behavior and
thereafter the mapping of multi-session behavior to state machines.

4.4.1 Component Model

Our component model is based on UML 2.0 state machines and composite struc-
tures. In [KHB06] we presented an UML profile with constraints ensuring that
state machines can be implemented efficiently on different platforms. The in-
ternals of such executable state machines are similar to SDL processes. They
communicate by sending signals, and transitions are triggered by either the re-
ception of a signal or the expiration of a timer. Transitions do not block, so that
they can be executed in one run-to-completion step without waiting.

We extend this model with components that may contain a number of state
machines. Such system components are described by UML classes, and contain
one dedicated state machine describing the so-called classifier behavior. This
state machine typically manages the lifecycle of the component as well as state-
less requests arriving from other components, as we shall see later. In addition,
a system component can contain further state machines. These are modeled as
UML parts owned by the structured classifier and have a type referring to a
state machine. In contrast to the static state machine expressed by the classifier
behavior, these parts may have a multiplicity greater than one, so that a system
component can hold any number of session instances of different state machine
types. A component structure generated by our transformation algorithm is il-
lustrated in Fig. 4.10 with two taxis and three operators. The taxis have only

166 paper 4

t: requestor

t1: Taxi

t2: Taxi

c: Control Center

StatusUpdate

t: requestort: requestoro: order
[1..*]

TourRequest

TourRequest

TourOrder

t: requestort: requestor
[1..*]

TourOrder

TourOrder

TourOrder

StatusUpdate

Position

Position

Fig. 4.10: Component structure and their internal session state machines

their default classifier state machines, while the control center component needs
additional session state machines, as we will explain in Sect. 4.3.

A system component keeps track of its state machine instances in a data
structure for reflection. Each state machine instance has an ID, so that each of
them may be addressed within the component by its part name and ID. State
machines may access data of other state machines within the same system com-
ponent. This is used when behavior in one state machine depends on variables
in another ongoing collaboration that is executed by another state machine.

4.4.2 Mapping of Single-Session Collaborations

In [KH07] we described an algorithm that transforms activities into executable
state machines. One activity partition is translated into at least one state ma-
chine. The algorithm scales well since only one partition needs to be considered
at a time, not the entire activity. The core idea of this transformation is to map
a flow crossing partition borders to a signal transmission between two state ma-
chines. Token movements within one partition are translated into state machine
transitions. A token starts hereby always at the reception of a signal (where a
flow enters a partition) or at a timer node, so that the resulting transitions are
triggered by signal receptions or timeouts. A token flow continues traversing
the activity graph until the next stable marking is reached, either in form of a
join node that cannot yet fire, a waiting decision, a timer node or by leaving
the current partition. This stable marking is encoded as control state of the
state machine. In this way, the algorithm constructs the entire state machine
by a state space exploration of the activity partition corresponding to the state
machine.

These basic transformation rules enable a direct mapping of activity flows
to state machine transitions as explained and verified in [KH07]. Moreover,
several single-session collaborations composed within the same partition may
be integrated within the same state machine by combining their state spaces.
Therefore, when we synthesize the component for a taxi, both the behavior for
the status update and the tour request collaborations may be implemented by
the default state machine, as shown in Fig. 4.10.

synthesizing components with sessions 167

0

0

no_taxi_found

s2[id]=s

status

0

0

«executable» stm Control Center

request_tour

for (Status s: s2) {
 s = Status.unknown;}

pos[id]=p

position

0

N_TAXIS = 1000;
s2: Status[0..N_TAXIS];
pos: Position[0..N_TAXIS];

0

select one : s.available select one : id=order

found_taxi

0

accepted

0

select one : id=order

exists s : s.available else

s: Status

«signal»
status

taxi: ID
p: Position

«signal»
position

taxi: ID
order: Integer

«signal»
request_tour

order: Integer

«signal»
no_taxi_found

order: Integer

«signal»
found_taxi

order: Integer

«signal»
tour_order

pos: Position
order: Integer

«signal»
accepted

order: Integer

«signal»
canceled

pos: Positionpos: Position

«external» «internal» «internal» «internal» «internal» «internal» «internal»«external»

tour_order, canceled

Fig. 4.11: The classifier behavior state machine for the control center

4.4.3 Mapping of Stateless Multi-Session Collaborations

When we analyze the collaboration for the status updates, we find that taxis
can send updates at any time, and that the central control has to be prepared
at any time to receive them. The behavior on the side of the central control
(partition observer in Fig. 4.5) is stateless, i.e., an update does not cause a
change of behavior, but only modifies data. Our algorithm detects this by looking
for partitions to be executed by the central control that do not contain any
activity nodes that imply waiting (joins, timers or waiting nodes). The algorithm
transforms status updates into one state machine transition that has identical
source and target control states. This means for the central control that it does
not have to distinguish separate control states for each taxi. Instead, the logic
to handle status updates of all taxis may be integrated into one single state
machine. The same holds for the behavior of the position collaboration, so that
both the status update and the position collaborations may be synthesized into
the default classifier behavior of the control center. Fig. 4.11 depicts the classifier
state machine of the control center. The just mentioned behavior for status and
position updates are carried out by the two transitions on the left side which are
triggered by the external signals status and position arriving from taxis. The
data about position and status has to be stored for each taxi individually, which
is done via the the arrays s2 and pos with the taxi IDs as keys.

4.4.4 Mapping of Stateful Multi-Session Collaborations

For stateful behavior towards multiple partners, the state must be kept for each
individual session. There are two principal solutions. One solution is to inte-
grate several sessions into one state machine and to distinguish the conversational
states by data structures. This, however, leads to state machines with many de-
cisions. The other solution is to use a dedicated state machine instance for each
session, such that the state of each session is represented by an individual control
state. If state machines are edited manually (for example in TIMe [BGH+97]),

168 paper 4

the second solution is preferred, as the state of conversation towards commu-
nication partners can be expressed explicitly by the control state of the state
machine, which makes them easier to understand [BH93]. This may be of minor
significance in an approach generating state machines automatically, but it is
nonetheless beneficial if results of the transformation shall be read by humans
or be validated with existing techniques [Flo03]. We therefore decided to use one
state machine for each session. The fact that this solution may lead to many
state machine instances is not problematic, as even large numbers of state ma-
chines may be implemented efficiently within the same native operating system
process by means of a scheduler (see, e.g., [KHB06, BH93]). A context switch
between such state machines just requires to retrieve the current state from a
data structure. In a solution integrating all sessions into one state machine, a
similar operation would be needed, as we also have to retrieve data belonging to
the current state of conversation with a communication partner.

4.4.5 Mapping and Implementation of select

The instances of stateful multi-session collaborations are represented locally by
session state machines, as we discussed above. Directing control flow to a single
or a set of collaboration instances means therefore to transfer control flow to the
individual session state machines within a component. This is done by notifying
the corresponding state machines via internal signals. In order to reduce the
possible interleaving of internal and external signals, we apply the design rule
given in [BH93] recommending that internal signals are assigned a higher priority
than signals coming from other components. In general, this leads to components
that complete internal jobs before accepting external input. In our case, it solves
the problem as any select signal sent to a session state machine will be handled
before an external signal can change its state.

Which state machine(s) should receive the signal(s) is determined by the
selection statements from the activities. The transformation therefore copies
each selection statement from the edge of the activity and attaches it to the
corresponding send signal action. The UML signal is created from the flow. It
includes parameters for the data contained in the activity token it represents.
The session selection at point Ê in Fig. 4.7 is, for example, done by the send
signal action request tour in the center of Fig. 4.11, with the attached selection
statement to determine the receiver address.

It is the task of the code generator to create Java statements from the selec-
tion expression that compute the actual addresses of the targeted state machine
instances. As discussed above, select uses a set of positive and negative filters,
with an additional flag indicating whether only one matching state machine in-
stance should be returned or all of them. The generated Java method simply
sends the set of state machine IDs through all of the filters specified in select
by using the Java code already expressed in the activity models. The standard
filters self and active are added accordingly. If a collaboration is started (such
as at point Ê) the code for the selection includes mechanisms to create new
state machine sessions or retrieves instances from a pool, which is not further

synthesizing components with sessions 169

discussed here.

4.4.6 Mapping and Implementation of exists

In contrast to the select statement, exists does not cause a handover of control
flow. It is used to get information about properties of the state machines of the
system component. As such, it is used in guards of decisions. Decision nodes in
activities are mapped directly to choice pseudostates in state machines that have
an outgoing transition for each edge leaving the decision node (see [KH07]). The
model transformation simply has to copy the exist guards of the activity edges
to the corresponding UML state transitions. The implementation of exists for
execution in Java is similar to that of select, with the difference that a boolean
value is returned if one session ID passed all filters.

4.5 Concluding Remarks

Much research effort has been spent on the problem of deriving component be-
haviors from service specifications [vBG86, YEFvBH03]. In many approaches,
the service behavior is specified in terms of sequence diagrams or similar nota-
tions, which are translated into component behaviors defined as state machines
(see [LDD06] for a survey). It is also possible to derive message sequence sce-
narios from higher-level specifications in the form of activity diagrams or Use
Case Maps [AHHC03], and then derive component behaviors in a second step.
A direct derivation from Use Case Maps was demonstrated in [Cas05]. In this
paper, however, we consider the direct and fully automated derivation of com-
ponent behavior from the specification of collaboration behavior expressed as
activities. While we presented the transformation from single-session collabora-
tions to state machines in [KH07], we have extended the notation of activities
and our transformation algorithm to handle also collaborations executed in sev-
eral sessions at the same time, as presented in this paper. The advantage of
our notation with select and exists is that they can express the relations be-
tween sessions explicitly on an abstract level and are still straight-forward to
map to state machines that can be implemented by our code generators [Kra03].
The transformation algorithm is implemented as an Eclipse plug-in and works
directly on the UML 2.0 repository of the Eclipse UML2 project.

We consider the specification of services in a collaboration-oriented way as a
major step towards a highly automatic model-based software design approach.
As depicted in Fig. 4.1, we hide the inter-component communication in the
collaborations and activities while the intra-component communication is carried
out by linking activities with each other in partitions of surrounding activities.
This makes it possible to express sub-services in separation, which facilitates the
general understanding of their behavior. Moreover, each collaboration models a
clear, separate task such that interaction-related problems like mixed initiatives
can be detected and solved more easily since only the problem-relevant behavior
is specified. The composition of collaborations profits from the input and output

170 paper 4

nodes of activities which form the behavioral interfaces of the collaboration roles.
Different collaborations can be suitably composed by connecting their nodes
using arbitrary activity graphs.

Another advantage of collaboration-oriented specifications is the higher po-
tential for reuse. Usually, the sub-services modeled by collaborations can be
used in very different applications (such as for example the distributed status
update expressed by the collaboration Status Update). These sub-services can
be modeled once by a collaborations which can be stored in a library. Whenever
such a sub-service is needed, its activity is simply taken from the library, instan-
tiated and integrated into an enclosing collaboration. In our example, Status
Update, Button, Alarm and Position are good candidates for reuse.

An ongoing research activity is the development of suitable tools for editing,
refining, analyzing, proving and animating collaboration-based models. This will
be performed within the research and development project ISIS (Infrastructure
of Integrated Services) funded by the Research Council of Norway. The concept
of our approach will be proven by means of real-life services from the home au-
tomation domain. We consider collaboration-oriented service engineering as a
very promising alternative to traditional component-centered design and under-
stand the extensions for modeling and transforming sessions, presented in this
paper, as an important enabler. �

Bibliography

[AHHC03] Daniel Amyot, Xiangyang He, Yong He, and Dae Yong Cho. Gen-
erating Scenarios from Use Case Map Specifications. qsic, 00:108,
2003.

[BF04] Rolv Bræk and Jacqueline Floch. ICT Convergence: Modeling
Issues. In Daniel Amyot and Alan W. Williams, editors, SAM’04
- Fourth SDL and MSC Workshop, volume 3319 of Lecture Notes
in Computer Science, pages 237–256. Springer, 2004.

[BGH+97] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger
Møller-Pedersen, and Richard Sanders. Quality by Construction
Exemplified by TIMe — The Integrated Methodology. Telektron-
ikk, 95(1):73–82, 1997.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practi-
tioner Series. Prentice Hall, 1993.

[Cas05] Humberto N. Castejón. Synthesizing State-machine Behaviour
from UML Collaborations and Use Case Maps. In Andreas Prinz,
Rick Reed, and Jeanne Reed, editors, 12th International SDL Fo-
rum, Grimstad, Norway, volume 3530 of Lecture Notes in Com-
puter Science. Springer, 2005.

synthesizing components with sessions 171

[CB06a] Humberto N. Castejón and Rolv Bræk. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied Scenarios.
In SCESM ’06: Proceedings of the 2006 International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools,
pages 37–43, New York, NY, USA, 2006. ACM Press.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing Collabo-
ration Goal Sequences for Service Choreography. In Elie Najm
and Jean-François Pradat-Peyre, editors, 26th IFIP WG 6.1 Intl.
Conf. on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of Lecture Notes in Computer Science.
Springer, September 2006.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular Verifica-
tion of Collaboration-Based Software Designs. In ESEC/FSE-9:
Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 152–163, New York,
NY, USA, 2001. ACM Press.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and
Validation using Roles. PhD thesis, Norwegian University of Sci-
ence and Technology, 2003.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK07] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Sandro Etalle
and Stephen Marsh, editors, Trust Management, volume 238,
pages 317–332. IFIP International Federation for Information Pro-
cessing, Springer, 2007.

[ITU02] ITU-T. Recommendation Z.100: Specification and Description
Language (SDL), August 2002.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Proceed-
ings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

[KH07] Frank Alexander Kraemer and Peter Herrmann. Transforming
Collaborative Service Specifications into Efficiently Executable

172 paper 4

State Machines. In Karsten Ehring and Holger Giese, editors, Pro-
ceedings of the 6th International Workshop on Graph Transforma-
tion and Visual Modeling Techniques (GT-VMT 2007), volume 7
of Electronic Communications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk.
Aligning UML 2.0 State Machines and Temporal Logic for the Effi-
cient Execution of Services. In R. Meersmann and Z. Tari, editors,
Proceedings of the 8th International Symposium on Distributed
Objects and Applications (DOA), 2006, Montpellier, France, vol-
ume 4276 of Lecture Notes in Computer Science, pages 1613–1632.
Springer–Verlag Heidelberg, 2006.

[KM03] Ingolf Krüger and Reena Mathew. Component Synthesis from
Service Specifications. In Scenarios: Models, Transformations and
Tools, volume 3466 of Lecture Notes in Computer Science, pages
255–277. Springer, 2003.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Kra07] Frank Alexander Kraemer. Building Blocks, Patterns and Design
Rules for Collaborations and Activities. Avantel Technical Re-
port 2/2007 ISSN 1503-4097, Department of Telematics, NTNU,
Trondheim, Norway, March 2007.

[Kra08] Frank Alexander Kraemer. UML Profile and Semantics for Ser-
vice Specifications. Avantel Technical Report 1/2007 ISSN 1503-
4097, Department of Telematics, NTNU, Trondheim, Norway,
June 2008.

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A Compara-
tive Survey of Scenario-Based to State-Based Model Synthesis Ap-
proaches. In SCESM ’06: Proceedings of the 2006 International
Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, pages 5–12, New York, NY, USA, 2006. ACM Press.

[Obj07] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.1, February 2007. formal/2007-02-03.

[RAB+92] Trygve Reenskaug, Egil P. Andersen, Arne Jorgen Berre, Anne
Hurlen, Anton Landmark, Odd Arild Lehne, Else Nordhagen,
Eirik Ness-Ulseth, Gro Oftedal, Anne Lise Skaar, and P̊al Stenslet.
OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems. Journal of Object-oriented Program-
ming, 5(6):27–41, October 1992.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein.
Collaboration-Based Design of SDL Systems. In Proceedings of

synthesizing components with sessions 173

the 10th International SDL Forum Copenhagen on Meeting UML,
pages 72–89. Springer-Verlag, 2001.

[Ris01] Linda Rising, editor. Design Patterns in Communications Soft-
ware. Cambridge University Press, New York, NY, USA, 2001.

[RWL95] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with
Objects, The OOram Software Engineering Method. Prentice Hall,
1995.

[SBvBA05] Richard Sanders, Rolv Bræk, Gregor von Bochmann, and Daniel
Amyot. Service Discovery and Component Reuse with Semantic
Interfaces. In Proceedings of the 12th SDL Forum, 2005.

[vBG86] Gregor von Bochmann and Reinhard Gotzhein. Deriving Proto-
col Specifications from Service Specifications. In SIGCOMM ’86:
Proceedings of the ACM SIGCOMM conference on Communica-
tions architectures & protocols, pages 148–156, New York, NY,
USA, 1986. ACM Press.

[YEFvBH03] Hirozumi Yamaguchi, Khaled El-Fakih, Gregor von Bochmann,
and Teruo Higashino. Protocol Synthesis and Re-Synthesis with
Optimal Allocation of Resources based on Extended Petri Nets.
Distrib. Comput., 16(1):21–35, 2003.

Comment

Tour Request in Fig. 4.6 uses activity final nodes to terminate the collaboration.
We changed this kind of termination with the profile in App. A, so that only
terminating parameter nodes are needed. Activity final nodes are then only used
on the system level.

PAPER

FIVE

DESIGN OF TRUSTED SYSTEMS WITH
REUSABLE COLLABORATION MODELS

Peter Herrmann and Frank Alexander Kraemer.

Presented at the Joint iTrust and PST Conferences on Privacy, Trust Manage-
ment and Security (IFIPTM), July 30 - August 2, 2007 Moncton, Canada.

Published in IFIP International Federation for Information Processing, Volume
238, p. 317-332, Springer, 2007.

The original publication is available at www.springerlink.com via
http://dx.doi.org/10.1007/978-0-387-73655-6_21.

Design of Trusted Systems

with Reusable Collaboration Models

Peter Herrmann and Frank Alexander Kraemer

Abstract. We describe the application of our collaboration-oriented software engi-
neering approach to the design of trust-aware systems. In this model-based technique,
a specification does not describe a physical system component but the collaboration
between various components which achieve system functions by cooperation. A system
model is composed from these collaboration specifications. By a set of transforma-
tions, executable code can be automatically generated. As a modeling language, we
use UML 2.0 collaborations and activities, for which we defined a semantics based
on temporal logic. Thus, formal refinement and property proofs can be provided by
applying model checkers as well. We consider our approach to be well-suited for the
development of trust-based systems since the trust relations between different parties
can be nicely modeled by the collaborations. This ability facilitates also a tight coop-
eration between trust management and software engineering experts which are both
needed to create scalable trust-aware applications. The engineering approach is in-
troduced by means of an electronic auction system executing different policies which
are guided by the mutual trust of its principals. While the approach can be used for
various trust models, we apply Jøsang’s Subjective Logic in the example.

5.1 Introduction

Since the turn of the millenium, the management of trust has gained more and
more momentum. While this field is inherently multi-disciplinary and researchers
from psychology, sociology, philosophy, law and economics work on trust issues
for many years, computer science seems to be the driving force behind the current
advances. An important reason for that is the maturing of the internet-based
consumer commerce [Che99]. The acceptance of e-commerce services depends
directly on the trust the different parties involved in it can build up in each
other. In the internet, however, commerce partners are often unknown, live in
another country with a different legal system, and are selected on an ad hoc
basis guided by the best offer. Therefore, traditional trust building mechanisms
like personal experience, recommendations by friends, or the general reputation
“in town” cannot be used in the same way as in traditional commerce. The trust
management community started to overcome this deficiency by developing trust
models consisting of both representations for trust in computers and related
mechanisms specifying the building of trust. Some of these models describe
trust in a more general way from either a mathematical-philosophical perspective
(e.g., [Jøs01, JF01]) or from a sociological-cognitive view (e.g., [FC01, Mez04]).
Other approaches are devoted to realize trust building mechanisms which take
the practical limits of computer systems and networks into account [BFL96,
GS02, ARH00, AD01, AM04].

178 paper 5

The invention of computer-readable trust mechanisms facilitates the design
of applications incorporating trust. Most approaches enhance or replace tra-
ditional security mechanisms at points where they are not suitable for modern
ad hoc-networks. In particular, a number of solutions were developed for ac-
cess control of both peer-to-peer networks [XL02, KSGM03, Ing05] and business
processes for web services [BS02, YWS03, KM04] while other tools approach
authorization [LWBW06], authentication and identity management [PM06] as
well as privacy [Pea05]. A second field of application design is devoted to fed-
erate systems combined of separate partners and, in particular, to determine
the kind of mutual protection of the partners. Here, a wide field starting at
security-protecting routing algorithms [JO06] via the formation of virtual or-
ganizations [KHKR06] to the trust-based protection of component-structured
software [Her03, LTM06] and the protection of collaborations of pervasive de-
vices [QHC06] is covered. It does not require prophetic skills to expect that
there will be a lot more trust-encompassing systems to come in various applica-
tion domains.

As the design of trust-based systems can be quite complex, it has to incorpo-
rate typical software engineering techniques. The application of these techniques
is usually so difficult that experienced software engineers are required. Thus, to
develop a trust-aware system, we need experts both for the trust management
and for software engineering who have to cooperate very closely since the trust
management functions of a system are tightly interwoven with the rest of the sys-
tem logic. Ideally, the trust management developer should be able to integrate
trust models into a system design process without necessarily understanding the
full application logic, while the software designer should be capable to make
the general software engineering decisions without comprehending the complete
functionality of the underlying trust management model.

We consider our software engineering approach based on collaboration-orien-
ted formal system models [KH06] as a solution to this problem. Most model-
ing techniques combine system specifications from models specifying a separate
physical software component each. In contrast, in our technique a specification
building block describes a partial system functionality which is provided by the
joint effort of several components cooperating with each other. Every component
taking part in a collaboration is represented in the form of a so-called collabo-
ration role. The behavior models of collaborations specify both the interactions
between the collaboration roles as well as local behavior of collaboration roles
needed to provide the modeled functionality. Collaborations may be composed
with each other to more comprehensive collaborations by means of collaboration
uses. Thus, hierarchical system models are possible.

As an example, we depict in Fig. 5.1 the collaboration uses of the high-
est hierarchical level to model a trusted electronic auction system which will
be introduced in detail in sections 5.3 and 5.4. The system specifies an auto-
matic internet-based auction system which could, for instance, be built upon the
web services offered by eBay. From a trust management perspective, the major
problem of such a system is the sale between the winning buyer and the seller

design of trusted systems 179

ts: Trusted
Sale

a: Auction
House

b: Buyer s: Seller

rs: Reputation
System

str: Trust
Retrieval

sre: Report
Experience

btr: Trust
Retrieval

bre: Report
Experience

op: Offer
Product

bp: Bid For
Product

sellerbuyer

mediator

Fig. 5.1: Collaboration of the Trusted Auction System

after the auction since the reluctance of one party to pay resp. to deliver the
product may cause damage to the other side. As a solution, we provide a trust-
encompassing application based on a reputation system (e.g., the eBay feedback
forum). According to their mutual trust, both parties can decide how to carry
out the sale. As a consequence, the example system incorporates four major
components: the winning buyer, the seller, the reputation system and the auc-
tion house. Its functionality is expressed by means of seven collaboration uses
depicted in Fig. 5.1. The collaboration use btr models the access to the reputa-
tion system by the buyer in order to retrieve the current trust of the community
in the seller. We will see in Sect. 5.4 that this retrieval is done before bidding
for the product. Likewise, the collaboration use str describes the retrieval of the
buyer’s trust value by the seller which takes place after the auction. According
to the mutual trust, the buyer and seller perform the sale which is modeled by
ts. Indeed, this collaboration is a composition from more basic collaborations
specifying four different modes which depend on the trust of the participants in
each other. After finishing the sale, both parties report their mutual experiences
to the reputation system which is expressed by the collaboration uses bre and
sre. The remaining collaboration uses op and bp describe the offering of goods
by the seller and the bidding of the buyer. As these collaboration uses are not
relevant from a trust management perspective, they are not discussed further.

Fig. 5.1 is a collaboration in the popular graphical modeling language
UML 2.0 (Unified Modeling Language [BRJ99, Obj06]). These diagrams are
used to describe the basic structure of a collaboration (i.e., the collaboration
uses forming it and the relation between the roles of the collaboration uses and
those of the comprehensive collaboration). To specify the behavior of the col-
laborations and the logic combining collaboration uses is described by UML
activities which are introduced in Sect. 5.3.

As trust relations are inherently collaborative and always comprise at
least a trustor and a trustee, we consider the collaboration-oriented specifi-
cation style very helpful to develop trust-based systems. The reduction of
systems to sub-functionalities supports their understanding to a high degree
(cf. [KH06, SCKB05, RB06, CB06]). As discussed in Sect. 5.2, we consider this

180 paper 5

property useful to provide trust management experts and software developers
with a fundament for tightly interwoven cooperation. In addition, the model
structure enables a higher reuse of collaborations. In many distributed applica-
tion domains, the system components cooperate with each other by means of a
relatively small number of recurrent sub-functionalities which can be specified
once and thereafter stored in a library. System developers can create their spec-
ifications in a relatively simple way by selecting collaborations from the library,
instantiating them, and composing them to a system description. In our exam-
ple, btr, str, bre, and sre are instantiations of the collaborations Trust Retrieval
resp. Report Experience which are suitable building blocks to create applications
using reputation systems.

By means of an algorithm [KH07], we can automatically transform the colla-
boration-oriented models into executable state machines from which in a second
step executable code can be generated [KHB06]. Moreover, we currently de-
velop a transformation to TLA+ [Lam02], the input syntax of the model checker
TLC [YML99] which facilitates formal proofs of system properties. This will be
further discussed in Sect. 5.5. Before that, we discuss in Sect. 5.2 the benefit of
our approach for the generation of trust management-based systems. Thereafter,
the specification of collaborations by UML collaboration diagrams and activities
is introduced by means of the trusted auction example in Sect. 5.3. The cou-
pling of collaboration uses to more comprehensive collaborations is outlined in
Sect. 5.4.

5.2 Trust Management Aspects

In recent years, numerous definitions for trust have been published. A signifi-
cant one was introduced by Jøsang [Jøs96] who distinguishes between trust in
humans and trust in computers. He calls humans as well as organizations formed
by humans with a free will passionate entities. In contrast, computers and other
entities without a free will are named rational entities. Trust in a passionate
entity is defined as “the belief that it will behave without malicious intent” while
trust in a rational entity is “the belief that it will resist attacks from malicious
agents” [Jøs96]. Both definitions have in common that a trustor can only be a
passionate entity since trust needs a free will. Nevertheless, in specific applica-
tion domains both the building of trust and its deployment selecting different
policies to deal with the trustee is so rational that it can be handed over to a
computer. A good example is the decision making process of banks whether
to provide loans or not. A bank’s behavior is basically guided by its trust in
a debtor that he will be able to pay back a loan. To build this trust, typical
mechanisms as the debtor’s behavior in previous cases (i.e., the debtor’s reputa-
tion) are taken into account and the decision is made according to fixed policies.
These policies can be implemented on a computer as already applied in some
banks.

For the representation of trust one can apply trust values. For instance,
Jøsang introduces so-called opinion triangles [Jøs01, Jøs99]. These are effectively

design of trusted systems 181

triples of probability values, the sum of which is always 1. Two of these values
describe the belief resp. disbelief in the trustee while the third one states the
uncertainty based on missing knowledge on the trustee. The building of trust is,
in consequence, described by traces of changing trust values. In between, a lot of
trust models were developed which are suited for computers (cf. [Jøs01, Mez04,
BFL96, GS02, ARH00, AD01, AM04]). The utilization of trust in dealing with
a trustee can also be realized on a computer by defining trust-related policies.
The actual policy can then be selected based on the current trust value.

Our collaboration-oriented software development approach is well-suited to
model the mechanisms used to describe the building of trust. A collaboration is
appropriate to describe the various functions of a trust model since every func-
tion affects more than one partner. Moreover, the collaborations can be used
as building blocks for trust-encompassing applications. For instance, the col-
laborations Trust Retrieval and Report Experience used in the trusted auction
model (see Fig. 5.1) describe the two aspects typically used in dealing with a
reputation system, i.e., the decision about how to deal with the trustee depend-
ing on its current trust value as well as improving the trustee’s assessment by
sending the reputation system a positive or negative experience report. Similar
collaborations can be defined to model other trust gaining mechanisms such as
considering one’s own experience or the recommendation by third parties. In
addition, to support the design of more complex trust building mechanisms, one
can add building blocks enabling the combination of different trust values.

The method is also useful to simplify the cooperation between the trust man-
agement experts and the software engineers. A trust expert can specify the trust
building functions of the system on its own by utilizing collaborations from a
library. The outcome will be a set of collaboration uses that the software engi-
neers can integrate into the overall system model without fully understanding
their internal behavior. The engineers only need to recognize that different trust-
based policies are possible but not the steps to decide which actual policy should
be used.

Somehow more difficult is the support of the cooperation between the two
expert groups in modeling the enforcement of the different trust policies. Here,
aspects of the general application functionality and special trust-related proper-
ties have to be combined. This can be achieved by a twofold proceeding. First,
characteristic trust-based functions may be used to enforce policies. These func-
tions can also be modeled by collaborations and used in several system models.
For instance, a sale between two parties with a low degree of trust in each other
can be performed by including a trusted third party which mediates the sale by
guaranteeing that a buyer cannot receive the product before sending the money,
while the seller must send the product before receiving the payment. It is easy
to model this as a collaboration which can be used by the software engineer
without understanding the exact functionality (see also Sect. 5.4).

Second, the trust expert can inform the software engineer about trust-related
functionalities the application has to follow. For instance, a requirement of the
trusted sale should be that the buyer only issues the money transfer to the seller

182 paper 5

without having evidence of receiving the product in time if her trust in the seller
is high. The software engineer considers these properties in the system develop-
ment. Afterwards, the trust expert can check that the system complies with the
properties by, for instance, proving them with the model checker TLC [YML99].
In the following, we will clarify how trust-based systems like the trusted auction
example can be developed using the collaboration-oriented specification style.

5.3 Activity-Based Collaboration Models

As depicted in Fig. 5.1, we use UML collaborations to specify the overall struc-
ture of system models composed from collaboration uses. In particular, a collab-
oration describes the different components forming a system and the assignment
of the roles of the collaboration uses to the components. To model the behav-
ior of a collaboration, UML offers various diagram types like state machines,
sequence diagrams, and activities [Obj06]. We decided to use activities mainly
for two reasons: First, activities are based on Petri Nets and specify behavior
as flows of tokens passing nodes and edges of a graph. This proved to represent
flows of behavior quite naturally and is therefore easy to understand (cf. [KH06]).
Second, activities are self-contained. Sequence diagrams, for instance, typically
describe in one diagram only a set of system scenarios rather than the complete
behavior. In contrast, activities facilitate the specification of the full behavior
of a collaboration within one diagram.

A typical example for an activity is Trust Retrieval which models the behavior
of the collaborations btr and str in the trusted auction example1 (see Fig. 5.1). It
is listed in Fig. 5.2 and describes the access of a caller to a reputation system in
order to retrieve a trustee’s reputation. Moreover, it models the decision about
a certain level of trust which may lead to different trust policies. Since the
collaboration comprises two different roles, the client of the reputation system
and the reputation system itself, we use two activity partitions in the diagram
which are named by the role identifiers. The interface of the collaboration to
its environment is located at the activity partition of the client and consists of
three output pins each describing a certain level of trust.2

The behavior of the activity is described by a token flow which is started
at the input node in the partition of the client. It passes a token from the
client via the partition border to the reputation system. The token contains an
identifier of the trustee which is computed in the call operation action retrieve
trust value. This call operation action contains the logic to access the number
of good and bad experiences with the trustee and to generate the current trust
value. The trust value is thereafter forwarded back to the caller and evaluated
in the call operation action evaluate trust value (i.e., the trust value is copied
to the auxiliary collaboration variable tv). Thereafter, the token proceeds to a

1We use Jøsang’s approach [Jøs01, JK98] to specify trust and trust building in the example
but could adopt the specifications easily to other trust models.

2As these output pins are mutual exclusive, they belong to different parameter sets shown
by the additional box around them.

design of trusted systems 183

Trust Retrieval
client reputation system

tv>Maxthres
high

low
tv≤Maxthres ∧

no
else

tv >Minthres

retrieve
trust value

evaluate
trust value

trust

trust

trust

get trust
value

Fig. 5.2: Activity Trust Retrieval

Report Experience

positive

client reputation system

add positive
report

add negative
report

report

negative
report

confirm
report

Fig. 5.3: Activity Report Experience

decision node (�) from which it branches to one of three edges. The branching is
guided by the conditions of the decision node, which depend on two thresholds.
Finally, the token is forwarded to the activity environment via one of the output
pins high trust, low trust, or no trust. By passing one of the output pins, the
overall activity is terminated. A trust management expert can instantiate Trust
Retrieval simply by defining suitable thresholds.

Activity Report Experience (Fig. 5.3) models the report of positive or nega-
tive experiences with a trustee to the reputation system adjusting the trustee’s
reputation. It is started with a token passing one of the input pins positive
report or negative report. The tokens are forwarded to the reputation system
which adapts the trustee’s data base entry in the call operation actions. The
edges leaving the two call operation actions lead to a merge node (�) that merges
its incoming flows by forwarding all incoming tokens to the only outgoing edge.
In this way, after registering either a positive or negative report, the token is
passed back to the client’s output pin confirm report describing the confirmation
of the experience report.

The activity Mediated Sale introduced in Fig. 5.4 expresses a functionality
with several parallel flows. As discussed before, a mediator acts here as a trusted
third party which assures a fair sale by collecting the payment and the product
which are delivered to their recipients not before both are received by the me-
diator. The activity consists of three partitions for the buyer, the seller and the
mediator. It is started by two separate tokens arriving from the buyer through
the input pin send payment and from the seller via send product. The token
from the buyer heads to the fork node f1. In a fork node every incoming token
is reproduced and one copy is sent via every outgoing edge. One of the tokens
leaving f1 reaches the send action ReqPayM. We use send actions to model the

184 paper 5

Mediated Sale

payment

buyer mediator

confirmed
delivery

seller

ReqPayM ReqDelM

ReqDelB ReqPayS

CnfPayB CnfDelS

CnfDelM CnfPayM

confirmed
payment

product
send send

j2

f1 j1
f3

f2

j3

Fig. 5.4: Activity Mediated Sale

transfer of signals to external applications which are not an inherent part of the
modeled application. For instance, the accounting unit of the buyer is an exam-
ple of an external system which is notified by ReqPayM to issue the payment to
the mediator. The other token leaving f1 is forwarded to the mediator which
is notified thereby about the start of the payment. Likewise, the seller calls its
delivery unit to send the product to the mediator which is expressed by the send
action RegDelM and notifies the mediator as well. When the payment arrives
at the mediator, it is notified by its accounting unit using the receive action
CnfPayM while CnfDelS reports the reception of the product. Similar to send
actions, we use receive actions to model incoming signals from the environment.
All tokens coming from the two receive actions and from the buyer resp. seller
lead to the join node3 j1. A flow may only leave a join if tokens have arrived
on all of its incoming edges. During the execution of the join, all but one to-
ken are removed and the remaining token leaves it via its outgoing edge. The
token leaving j1 continues to the fork f3 from which both deliveries to the final
recipients and the notifications are issued. Thus, by the combination of j1 and
f3 we guarantee that deliveries are only carried out if both the payment and the
product have arrived at the mediator.

The notification for the buyer heads to the join node j2 and can only be
forwarded if the buyer’s delivery unit reports the product’s reception which is
specified by the receive action CnfDelM. The token passing j2 leaves the activity
via the output pin delivery confirmed. Likewise, the seller sends a confirmation
of the payment via payment confirmed after receiving the money. As the two
activities introduced above, Mediated Sale can be provided by the trust man-
agement expert. The only necessary cooperation with the software engineer is
to agree about the formats of the transmissions with the various accounting and
delivery units.

5.4 Coupling Activities

Activities are especially powerful for the composition of behaviors from exist-
ing ones. This is done by means of call behavior actions that refer to other

3UML uses identical symbols for join and fork nodes. They can be distinguished by the
number of incoming and outgoing edges. Fork nodes have exactly one incoming edge while
join nodes have exactly one outgoing edge.

design of trusted systems 185

sell

sell

trusted

non-trusted

payment
confirmed

buy
trusted

buy
non-trusted

delivery
confirmed

Trusted Sale
buyer seller

ms:
Mediated Sale

(buyer,seller,mediator)

CnfDelS

bn,snbt,snbt,st bn,st

ReqPayS

pc: 2x2 Policy Combination

CnfPayB

ReqDelB

ReqPayS ReqDelB

bn,sn bt,stbt,sn bn,st

bt

bn

st

sn

paym.
cnf.

del.
cnf.

payment product
sendsend

j1 j2

Fig. 5.5: Activity Trusted Sale

activities. The events of the activities may be coupled using all kinds of control
nodes and edges, so that arbitrary dependencies between the sub-activities may
be described. As activities are used in our approach to describe the behavior of
collaborations, this technique is applied to compose the collaborations behav-
iorally (while the UML collaboration in Fig. 5.1 shows the structural aspect of
this composition.) An example of a composed activity is Trusted Sale in Fig. 5.5
which is composed from the call behavior actions ms and pc referring to the
behavior of subordinate activities (resp. collaborations).

Trusted Sale describes the functionality of selling a product between a buyer
and a seller after finishing an auction. The two parties in the sale may either
have a high or a low degree of trust in the other one, which is modeled by the
two input pins in both the buyer and the seller partition. If the buyer has a
high degree of trust in the seller, she is willing to send the payment immediately
without waiting for the partner. That is described by the send action ReqPayS
to which a token is forwarded directly after entering the activity via buy trusted.
By this send action, the accounting unit of the buyer is notified to start the
payment to the seller. Likewise, the seller is ready to send the product to the
buyer immediately if he has a high level of trust which is expressed by the flow
to the send action ReqDelB.

Since both parties may either have high or low trust in each other, four
different trust relations between the two parties are possible and for each one a
separate sale policy is defined. Nevertheless, to decide about a sale policy, both
parties have to know the partner’s trust in themselves. As a mutual distributed
combination of policies is a quite common function in many networked systems,
we have a collaboration and a corresponding activity 2×2 Policy Combination
available from our general pattern library which can be applied here in the
form of the call behavior action pc. This activity has two input pins and four
output pins on each side. The two parties define the selected input policy by
transferring a token via the corresponding input pin which causes the delivery of

186 paper 5

tokens through those output pins describing the combination of the two policies
(e.g., if the buyer sends a token via input pin bt (for buy trusted) and the seller
via sn (for sell non-trusted), the tokens will eventually arrive at the output pins
bt,sn). The input nodes of Trusted Sale are connected with the corresponding
ones of pc and its output pins can be used as the starting points to model the
four sale policies (bt,st; bt,sn; bn,st; bn,sn):

– If both partners have a high degree of mutual trust (bt,st), they simply
send the payment resp. the product without waiting for the other. Each
partner completes the sale after the delivery has arrived. As the payment
has already been started, the buyer has to wait for a token arriving via
output pin bt,st in join j1 for the delivery of the product. The reception of
the product is described by the accept signal action ConfDelS forwarding
a token to j1 as well.4 Thus, j1 can be triggered and a token leaves the
activity Trusted Sale via the output pin delivery confirmed which specifies
the completion of the sale on the buyer’s side. The behavior in the partition
of the seller is similar.

– If the buyer has only a low trust in the seller but the seller a high one in
the buyer (bn,st), we use a policy in which the seller transfers the product
first and the buyer initiates the payment not before receiving the product.
Thus, the buyer does not send the payment initially, but waits for the
delivery of the product which is expressed by the token in join j2. After
the delivery is notified as modeled by a token heading from ConfDelS to
j2, the buyer initiates the payment, which is described by the send action
ReqPayS, and finishes the sale. The handling of this policy on the seller’s
side is identical to the first one since it behaves similarly in both policies.

– If the buyer has a high degree of trust in the seller which, however, trusts
the buyer only lowly (bt,sn), we use the reciprocal policy to that listed
above. Here, the seller does not send the product before receiving the
payment. As the effective behavior for the buyer is the same as for the
policy (bt,st), the flow from bt,sn is simply merged into the behavior for
bt,st.

– If both partners have a low degree of trust in each other (bn,sn), they
decide to rely on a mediator. This can be modeled by applying the activity
Mediated Sale introduced in Sect. 5.3. The pins bn,sn are simply connected
with the input pins of Mediated Sale and its output pins with the output
pins of Trusted Sale.

When one of the partners cheats by not sending anything, the activity is not
finished correctly but stops somewhere. We will see below that this case leads
to a negative rating of the partner.

4The token leaving ConfDelS is stored in a so-called waiting node (, cf. [KH07]) which
forwards it to join j1 or j2 depending on which join can be executed first.

design of trusted systems 187

Trusted Auction
buyer seller

MakeBid

WinBid

EndBidLoseBid

bto:
Timeliness
Observer

timeout

inTime late

okelse

check
product

po
sit

iv
e

ts: Trusted
Sale

(buyer, seller,
mediator)

MakeBid

WinBid

sto:
Timeliness
Observer

inTimelate

reputation system

sell trusted

non-trusted

buy trusted

non-trusted
buy

ne
ga

tiv
e

co
nfi

rm

co
nfi

rm

ne
ga

tiv
e

po
sit

iv
e

co
nfi

rm

hi
gh

 t
ru

st

lo
w

 t
ru

st

no trust

lo
w

 t
ru

st

no
 t

ru
st

hi
gh

 t
ru

st

pa
ym

en
t

co
nfi

rm
de

liv
er

y

bre:
Report Experience

str:
Trust Retrieval

sre:
Report Experience

btr:
Trust Retrieval

j2

j1

d1

i1

timeout

sell

Fig. 5.6: Activity Trusted Auction

The activity Trusted Sale exemplifies the interplay between both expert
groups. The trust management expert provides the software engineer with the
activity Mediated Sale and describes the four sale policies. Based on this in-
formation, the software engineer accomplishes the overall model of the trusted
sale which can be added to the library of building blocks for trusted systems
facilitating a later usage in other applications.

The last activity introduced here is Trusted Auction depicted in Fig. 5.6
which describes the behavior of the overall system. The collaboration uses it is
composed of (see Fig. 5.1) are represented by the call behavior actions btr, str,
bre, sre, and ts. While an electronic auction encompasses an arbitrary number of
buyers and sellers, we laid out the activity in a way that only the relation between
exactly one buyer and one seller is modeled by the activity. In consequence, the
whole application is described by multiple instances of Trusted Auction. For the
sake of brevity, we omitted the part in which the seller registers the product
since that is not relevant for trust management. Thus, the activity is started
by the buyer, who becomes active if she finds an interesting product. This is
expressed by the initial node i1 from which, at first, the trust level of the seller
is retrieved by accessing btr. If the reputation of the seller is so bad that there is
almost no trust, the buyer decides not to bid and the activity is terminated by a
final node (). If the buyer trusts the seller to at least some degree, she makes
a bid5 which is modeled by the send action MakeBid and waits in the receive
node WinBid for the end of the bidding. If the bid is not sufficient, a token

5For brevity, we assume that a buyer makes only one bid in an auction.

188 paper 5

is received via the accept signal action LoseBid and the activity is terminated
since no further action is necessary. If the bid won, a token leaves WinBid and
the trusted sale is started by forwarding a token to ts. Moreover, the instance
bto of activity Timeliness Observer is started. It specifies a timeout process to
detect late deliveries of the product which will be discussed below.

On the seller’s side, a flow is started after the auction is finished which is
expressed by EndBid. Thereafter, the reputation of the buyer is retrieved in
str and the trusted sale is started as well. Due to the nature of an electronic
auction system, the seller has to start the sale process even if he does not trust
the buyer at all. Furthermore, sto is initiated starting a timer as well. In the
case of a timeout, a token leaves the output pin timeout immediately, meaning
that the payment did not arrive in due time, and via sre a negative report on
the buyer is sent to the reputation system. The confirmation is forwarded to the
join node j1 used to synchronize the activity termination in the seller partition.
If the payment is confirmed, a token proceeds from ts to sto. If this confirmation
arrives at sto after the timeout, a token is issued at the output pin late which is
forwarded to j1. If the negative report was already confirmed, j1 can fire which
notifies the buyer’s side that the seller can accept to terminate the activity. If the
payment confirmation arrives in time, a token leaves the output pin inTime of
sto, issuing a positive report about the buyer. In addition, a token is forwarded
to j1 such that the buyer can be notified about the readiness for termination
after the experience report was confirmed.

The behavior after finishing the sale on the buyer’s side is similar except
for the decision d1. We assume that the delivery unit of the buyer attaches
information to the token sent to the activity Trusted Sale describing if the quality
of the product is sufficient. In that case, a positive report is triggered while a
bad condition of the product leads to a negative report. The join j2 can only
be executed if the delivery of the product was confirmed, the report about the
seller was attested and the seller reported that it is ready to terminate. The
execution of j2 causes the termination of the activity.

As in the activity Trusted Sale, this activity can be developed combining the
competence of the two expert groups. The trust management expert delivers
the activities describing the access to the reputation system as well as some
policies defining, for instance, which reports have to be issued to the reputation
system under which circumstances. This provides the software engineer with the
sufficient knowledge to develop the behavioral model specified by the activity.

5.5 Implementation and Verification

The fact that activities render a complete system behavior facilitates automatic
generation of code from the collaboration-oriented model which is performed in
a series of steps: At first, we apply the algorithm introduced in [KH07] which
transforms the activities into a set of UML state machines each describing a sys-
tem component. As we defined both the semantics of the activities and the state
machines based on the compositional Temporal Logic of Actions (cTLA) [HK00],

design of trusted systems 189

the correctness of the transformation could be verified by a cTLA refinement
proof sketch (cf. [KH07]). For our example, the algorithm in its current version
creates separate state machines modeling the behavior of the buyer, the seller,
the reputation system and the auction house acting as mediator. Due to the
varying complexity of the four components, the state machines have a quite dif-
ferent size. Since the behavior of the reputation system is stateless, its state
machine consists only of one control state and three transitions modeling the
retrieval of trust values as well as the addition of positive and negative experi-
ence report. In contrast, the state machine of the mediator consists of 15 control
states, while that of the buyer models the most complex functionality using 64
control states.

The state machines have a special “executable” form in which, except for
the initialization, all transitions are triggered by incoming signals from the
environment or from local timers. Since, in addition, the enabling condi-
tion of a transition depends only on the control state of the state machine
but not on its auxiliary variables, very efficient executable code can be gen-
erated. This kind of code generator has been built for nearly 30 years now
(see, for instance, [Bræ79, BGH+97]). To implement our example, we used
a generator creating Java code which is executed on the middleware platform
JavaFrame [HMP00]. During testing the application, we could not detect any
significant overhead. The application of the code generators, the related middle-
ware platforms, and a cTLA-based correctness proof are described in [KHB06].

The trust expert can check if the produced collaboration-oriented model ful-
fills the trust-related properties passed to the software engineer by applying an
animation tool. Moreover, due to defining the semantics of the activities by
cTLA, formal refinement and invariant proofs are also facilitated. For instance,
the property that the buyer may only start a payment to the seller immediately
if she has high trust in him can be expressed by an invariant. This excludes a
state in which (1) the trust level is low, (2) the payment was already sent to
the seller and (3) the product is not yet delivered. By a cTLA proof, one can
verify that the cTLA formula specifying the activity Trusted Sale always fulfills
the invariant. In the context of trusted systems, this kind of proof was intro-
duced in [Her06]. We currently develop a tool transforming activities directly
into the input syntax TLA+ [Lam02] of the model checker TLC [YML99] carry-
ing out the proofs automatically. Of course, model checkers are subject to the
state space explosion problem. Thus, the number of states to be inspected in a
scalable system can be too large to be handled by the checker. cTLA, however,
supports a coupling style reflecting the activity combinations in a quite natural
way. For each activity, a separate cTLA model is created and, in a proof, only
those models realizing the verified property need to be considered. For instance,
to prove the invariant listed above, only the states of the cTLA model repre-
senting the activity Trusted Sale must be checked. This quality of cTLA makes
our approach not only well-suited for the design and implementation of realis-
tic trust-based systems but also enables formal property proofs in a relatively
user-friendly way.

190 paper 5

5.6 Concluding Remarks

In this paper we introduced our collaboration-oriented software development
approach which facilitates system modeling by specifying the various cooper-
ations between the system components separately. We consider the approach
well-suited for the design of trust-aware systems since trust relations between
principals can be directly modeled as collaborations. This property enables the
tight cooperation of trust management experts and software engineers with-
out affording a too close insight in the competence of the other expert group.
The collaboration-oriented development approach is supported by the Research
Council of Norway (RCN) that approved the research and development project
ISIS (Infrastructure for Integrated Services). ISIS is mainly devoted to the cre-
ation of a tool set supporting the suitable design of collaboration-oriented sys-
tems. Moreover, we want to combine the methodologies of collaboration-oriented
software design and security protocol composition. As a result of this project,
we expect methods facilitating the engineering and deployment of secure and
trust-aware distributed systems. The work presented above is considered as a
major cornerstone for these research goals. �

Bibliography

[AD01] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-
Peer Information System. In Henrique Paques, Ling Liu, and David
Grossman, editors, Proceedings of the 10th International Confer-
ence on Information and Knowledge Management (CIKM’01), pages
310–317, New York, November 2001. ACM Press.

[AM04] Farag Azzedin and Muthucumaru Maheswaran. A TrustBrokering
System and Its Application to Resource Management in Public-
Resource Grids. In Proceedings of the 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), Santa Fe, April
2004. IEEE Computer Society Press.

[ARH00] Alfrarez Abdul-Rahman and Stephen Hailes. Supporting Trust in
Virtual Communities. In Proceedings of the 33rd Hawaii Interna-
tional Conference, volume 6, Maui, Hawaii, January 2000. IEEE
Computer Society Press.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust
Management. In Proceedings of the 17th Symposium on Security and
Privacy, pages 164–173, Oakland, 1996. IEEE.

[BGH+97] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger
Møller-Pedersen, and Richard Sanders. Quality by Construction
Exemplified by TIMe — The Integrated Methodology. Telektronikk,
95(1):73–82, 1997.

design of trusted systems 191

[Bræ79] Rolv Bræk. Unified System Modelling and Implementation. In In-
ternational Switching Symposium, pages 1180–1187, Paris, France,
May 1979.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley Longman, 1999.

[BS02] Pierro Bonatti and Pierangela Samarati. A Unified Framework for
Regulating Access and Information Release on the Web. Journal of
Computer Security, 10:241–272, 2002.

[CB06] Humberto N. Castejón and Rolv Bræk. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied Scenarios.
In SCESM ’06: Proceedings of the 2006 International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools,
pages 37–43, New York, NY, USA, 2006. ACM Press.

[Che99] Cheskin Research and Studio Archetype/Sapient. eCommerce Trust
Study, January 1999.

[FC01] Rino Falcone and Cristiano Castelfranchi. Social Trust: A Cogni-
tive Approach. In Cristiano Castelfranchi and Yao-Hua Tan, editors,
Trust and Deception in Virtual Societies, pages 55–90. Kluwer Aca-
demic Publishers, 2001.

[GS02] Tyrone Grandison and Morris Sloman. Specifying and Analysing
Trust for Internet Applications. In Proceedings of the 2nd IFIP
Conference on E-Commerce, E-Business & E-Government (I3E),
pages 145–157, Lisbon, 2002. Kluwer Academic Publisher.

[Her03] Peter Herrmann. Trust-Based Protection of Software Component
Users and Designers. In Paddy Nixon and Sotirios Terzis, editors,
Proceedings of the 1st International Conference on Trust Manage-
ment, LNCS 2692, pages 75–90, Heraklion, May 2003. Springer-
Verlag.

[Her06] Peter Herrmann. Temporal Logic-Based Specification and Verifica-
tion of Trust Models. In Ketil Stølen, William H. Winsborough,
Fabio Martinelli, and Fabio Massacci, editors, iTrust 2006, volume
3986 of Lecture Notes in Computer Science, pages 105–119, Heidel-
berg, 2006. Springer–Verlag.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame — Frame-
work for Java Enabled Modelling. In Proceedings of Ericsson Con-
ference on Software Engineering, September 2000.

192 paper 5

[Ing05] David Ingram. An Evidence Based Architecture for Efficient,
Attack-Resistant Computational Trust Dissemination in Peer-to-
Peer Networks. In Peter Herrmann, Valérie Issarny, and Simon
Shiu, editors, Proceedings of the 3rd International Conference on
Trust Management, LNCS 3477, pages 273–288, Paris, May 2005.
Springer-Verlag.

[JF01] Andrew J I Jones and Babak Sadighi Firozabadi. On the Charac-
terisation of a Trusting Agent — Aspects of a Formal Approach. In
Cristiano Castelfranchi and Yao-Hua Tan, editors, Trust and De-
ception in Virtual Societies, pages 157–168. Kluwer Academic Pub-
lishers, 2001.

[JK98] Audun Jøsang and S. J. Knapskog. A metric for trusted systems. In
Proceedings of the 21st National Security Conference. NSA, 1998.

[JO06] Christian D. Jensen and Paul O’Connell. Trust-Based Route Se-
lection in Dynamic Source Routing. In Ketil Stølen, William H.
Winsborough, Fabio Martinelli, and Fabio Massacci, editors, Pro-
ceedings of the 4th International Conference on Trust Management,
LNCS 3986, pages 150–163, Pisa, May 2006. Springer-Verlag.

[Jøs96] Audun Jøsang. The right type of trust for distributed systems.
In Proceedings of the UCLA conference on New security paradigms
workshops, pages 119–131, Lake Arrowhead, September 1996. ACM.

[Jøs99] Audun Jøsang. An Algebra for Assessing Trust in Certification
Chains. In J. Kochmar, editor, Proceedings of the Network and
Distributed Systems Security Symposium (NDSS’99). The Internet
Society, 1999.

[Jøs01] Audun Jøsang. A Logic for Uncertain Probabilities. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
9(3):279–311, June 2001.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifi-
cation by Composition of Collaborations — An Example. In Pro-
ceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

[KH07] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State
Machines. In Karsten Ehring and Holger Giese, editors, Proceedings
of the 6th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT 2007), volume 7 of Electronic
Communications of the EASST. EASST, 2007.

design of trusted systems 193

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Pro-
ceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, volume 4276
of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg, 2006.

[KHKR06] Florian Kerschbaum, Jochen Haller, Yücel Karabulut, and Philip
Robinson. PathTrust: A Trust-Based Reputation Service for Vir-
tual Organization Formation. In Ketil Stølen, William H. Wins-
borough, Fabio Martinelli, and Fabio Massacci, editors, Proceedings
of the 4th International Conference on Trust Management, LNCS
3986, pages 193–205, Pisa, May 2006. Springer-Verlag.

[KM04] Hristo Koshutanski and Fabio Massacci. Interactive Access Control
for Web Services. In Proceedings of the 19th IFIP Information Secu-
rity Conference (SEC 2004), pages 151–166, Toulouse, 2004. Kluwer
Academic Publisher.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-
Molina. The EigenTrust Algorithm for Reputation Management
in P2P Networks. In Proceedings of the 12th International World
Wide Web Conference, Budapest, May 2003. ACM.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[LTM06] Gabriele Lenzini, Andrew Tokmakoff, and Johan Muskens. Manag-
ing Trustworthiness in Component-Based Embedded Systems. In
Proceedings of the 2nd International Workshop on Security and
Trust Management, Hamburg, September 2006.

[LWBW06] Adam J. Lee, Marianne Winslett, Jim Basney, and Von Welch.
Traust: A Trust Negotiation Based Authorization Service. In Ketil
Stølen, William H. Winsborough, Fabio Martinelli, and Fabio Mas-
sacci, editors, Proceedings of the 4th International Conference on
Trust Management, LNCS 3986, pages 458–462, Pisa, May 2006.
Springer-Verlag.

[Mez04] Nicola Mezzetti. A Socially Inspired Reputation Model. In
Sokratis K. Katsikas, Stefanos Gritzalis, and Javier Lopez, edi-
tors, 1st European Workshop on Public Key Infrastructure (Eu-
roPKI 2004), LNCS 3093, pages 191–204, Samos Island, June 2004.
Springer-Verlag.

[Obj06] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1, April 2006. ptc/2006-04-02.

194 paper 5

[Pea05] Siani Pearson. Trusted Computing: Strengths, Weaknesses and
Further Opportunities for Enhancing Privacy. In Peter Herrmann,
Valérie Issarny, and Simon Shiu, editors, Proceedings of the 3rd In-
ternational Conference on Trust Management, LNCS 3477, pages
305–320, Paris, May 2005. Springer-Verlag.

[PM06] Siani Pearson and Marco Casassa Mont. Provision of Trusted
Identity Management Using Trust Credentials. In Ketil Stølen,
William H. Winsborough, Fabio Martinelli, and Fabio Massacci,
editors, Proceedings of the 4th International Conference on Trust
Management, LNCS 3986, pages 267–282, Pisa, May 2006. Springer-
Verlag.

[QHC06] Daniele Quercia, Stephen Hailes, and Licia Capra. B- Trust:
Bayesian Trust Framework for Pervasive Computing. In Ketil
Stølen, William H. Winsborough, Fabio Martinelli, and Fabio Mas-
sacci, editors, Proceedings of the 4th International Conference on
Trust Management, LNCS 3986, pages 298–312, Pisa, May 2006.
Springer-Verlag.

[RB06] Judith E. Y. Rossebø and Rolv Bræk. Towards a Framework of Au-
thentication and Authorization Patterns for Ensuring Availability in
Service Composition. In Proceedings of the 1st International Con-
ference on Availability, Reliability and Security (ARES’06), pages
206–215. IEEE Computer Society Press, 2006.

[SCKB05] Richard Sanders, Humberto N. Castejón, Frank Alexander Kraemer,
and Rolv Bræk. Using UML 2.0 Collaborations for Compositional
Service Specification. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

[XL02] Li Xiong and Ling Liu. Building Trust in Decentralized Peer-to-Peer
Electronic Communities. In Proceedings of the 5th International
Conference on Electronic Commerce Research (ICECR-5), Dallas,
November 2002. ATSMA, IFIP.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of Lecture Notes in Computer Science,
pages 54–66. Springer-Verlag, 1999.

[YWS03] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting
Structured Credentials and Sensitive Policies through Interoperable
Strategies for Automated Trust Negotiation. ACM Transactions on
Information and System Security, 6(1):1–42, February 2003.

design of trusted systems 195

Comment

In the example, we have specified activities in which several participants have
starting and terminating pins. In Trusted Sale in Fig. 5.5, for instance, the
start and termination is symmetric for the buyer and the seller. Since we did
not need this feature in other specifications, we did not further elaborate on the
implications of such a symmetric start and termination.

PAPER

SIX

FORMALIZING
COLLABORATION-ORIENTED SERVICE

SPECIFICATIONS USING TEMPORAL
LOGIC

Frank Alexander Kraemer and Peter Herrmann.

Presented at the 6th International Conference on Networking and Electronic
Commerce Research Conference 2007 (NAEC 2007) October 18 – 21, 2007 Lake
Garda, Italy.

Published in: Bezalel Gavish, ed., Proceedings of the International Conference
on Networking and Electronic Commerce Research Conference, p. 194-220,
ATSMA Inc. USA, 2007.

Formalizing Collaboration-Oriented Service

Specifications using Temporal Logic

Frank Alexander Kraemer and Peter Herrmann

Abstract. In our highly automated engineering approach, reactive services are spec-
ified using UML 2.0 collaborations and activities. This enables to focus on complete
behaviors between of a set of participants in isolation, and to decompose systems
according to the functionalities it should offer. Of course, precise semantics for the
specifications are necessary, as we use them as input for model checking and automatic
synthesis of components for implementation. For this reason we formalize the con-
cept of collaborations in the temporal logic cTLA by defining the specification style
cTLA/c. Collaborations are hereby represented as cTLA processes, and the composi-
tion of collaboration can be reduced to process couplings. While cTLA/c is general to
capture the semantics of different languages, we show in detail how UML 2.0 activities
are mapped to cTLA/c by a set of cTLA processes and production rules.

6.1 Introduction

A networked service is a system offering certain functionalities that are used
by concurrently acting entities in its environment. The service functions often
render a reactive behavior in the sense that they “maintain some interaction
with their environment” [Pnu86]. From a physical point of view, such a system
naturally decomposes into its components, that means the distributed entities
providing the system functionality. In the setting of a model-driven development
approach, the components may be expressed for example by SDL processes and
blocks [ITU02], or UML state machines and composite structures [Obj07]. These
component descriptions form the input for automatic code generation tools (see,
e.g., [Bræ79, Flo95, Vef85]).

For a system offering a whole bunch of functionalities to its environment,
such a component-based view leads to complex specifications as each compo-
nent model describes partial aspects of various functionalities. Instead, we de-
sire a specification style in which a specification block models all aspects of a
single functionality facilitating the individual development, deployment, invoca-
tion and maintenance of separate functionalities. As a functionality is basically
a service spanning over several components, we therefore need specifications de-
scribing the collaboration of various components. Modeling languages like UML
interactions [Obj07], MSC [ITU04] and Use Case Maps [BC96] offer a solution
by enabling the description of both partial and collaborative behaviors. We ap-
ply UML 2.0 collaborations to express static properties and UML 2.0 activities
to model collaborative behavior [HK07, KBH07, KH06].

Of course, the need for component models remains as, in the end, the compo-
nents are the entities which have to be created and deployed on different devices

200 paper 6

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Service Specifications
UML Collaborations,
Activities

Composition

cTLA/e

cTLA/c

Library
Reusable
Building Blocks

Generation

 Code

Transformation
 Model

Fig. 6.1: The SPACE Engineering Approach

to realize the system. Consequently, we often find system models utilizing dia-
grams of several types which describe a system from different viewpoints. This,
however, imposes the challenge of keeping the diagrams consistent. Given the
need to build services and to adjust their system functions rapidly, approaches
that rely on the discipline of its developers to maintain the diagrams manually
are rather naive. A consequent way to go is therefore to let developers create
only one group of diagrams and infer the others completely automatically, for
example by means of model transformations.

Several examples [CB06a, HK07, KBH07, KH06, RB06, SCKB05] illustrate
how the notion of collaborations can be used to specify services. All these spec-
ifications have in common that they decompose a system according to its tasks,
delay the construction of components to a later stage, and identify only partici-
pants relevant for the modeled functionality. Such tasks (or sub-functionalities
resp. sub-services) often show up in more than one application. They typically
have a concise objective or function, resulting in building blocks which can be
used for various service descriptions in a particular application domain.

With our approach for the specification by activities, collaborations and ex-
ecutable state machines (SPACE), we develop a tool-supported process that an-
alyzes and transforms collaborative service specifications in a highly automated
way [KH06]. The approach is outlined in Fig. 6.1. Often, a new service can be
composed from already existing collaboration patterns that may be adapted to
the operations and data types specific for the application under construction. An
engineer therefore may consider a library of reusable building blocks which are
subsequently composed obtaining a composite service specification. To come to
an executable system, the service specifications in terms of UML 2.0 activities
and collaborations are then transformed into UML 2.0 components and state
machines, as detailed in [KH07b]. From this representation, code generation is
quite straightforward, as for example explained in [KHB06]. In this way, the
engineer just works on the creation of the service specifications, while the rest of

formalizing collaboration-oriented service specifications 201

the approach is automated, so that consistency is ensured by construction. Tool
support for the SPACE approach exists in form of two integrated Eclipse-based
tool sets [Kra]. Arctis offers support for collaborative service specifications,
their analysis and transformation into executable state machines. These can
then be further analyzed by Ramses, which also offers code generators to create
implementations based on Java.

Of course, to guarantee the precise understanding of the models and the
correctness of the transformations, the approach requires formal reasoning on
the semantics of the languages used, the transformation tools, and the consis-
tency of building blocks and their composition. Temporal logic is a suitable
instrument for that. In particular, the principle of superposition supported by
cTLA [Her97, HK00] makes it possible to describe systems from different view-
points by individual processes that are superimposed (see Sect. 6.3.2). There-
fore, the development approach in Fig. 6.1 is complemented by formal reasoning
(shown on the left side). In a first step, we formalized the behavior of the state
machines with cTLA/e [KHB06]. This cTLA style defines a set of constraints for
cTLA specifications that directly reflect the special properties of the state ma-
chines needed to enable the generation of efficiently executable code. Due to this
foundation of the state machines, we can ensure that the generated program code
is compliant with the behavior described in the state machines (see [KHB06]).

In this paper, we focus on the definition of cTLA/c, a style of cTLA that
allows us to formalize the collaborative service specifications given by UML 2.0
activities. By expressing collaborations as cTLA processes, we can ensure that
a composed service maintains the properties of the individual collaborations it
is composed from. The semantic definition presented here enables us to prove
formally that the transformation from activities to state machines is correctness-
preserving. As sketched in [KH07b], this corresponds to substitute that an
activity modeled by the cTLA/c specification A is always transformed to a state
machine described by cTLA/e model S which is a correct refinement of A (i.e.,
S ⇒ A holds).

The semantic definition of collaborations and activities in form of temporal
logic is implemented as a transformation tool [Sl̊a07] which produces TLA+

modules from activities. These modules may then be used as input for the
model checker TLC [YML99]. The tool also generates a number of theorems, so
that collaborations may be analyzed for more advanced properties than simple
syntactic checks allow.

In Sect. 6.2, we introduce service specifications based on collaborations and
activities by means of an example. An introduction to general cTLA in Sect. 6.3
is followed by the presentation of the specification style cTLA/c in Sect. 6.4.
Thereafter, Sect. 6.5 is devoted to the formal definition of the UML 2.0 activities
used in our approach. For that, special cTLA specification blocks to model the
behavioral features of the activity nodes are used. In addition, we define a
set of production rules guiding the creation of the final cTLA/c specifications
according to the nodes and edges of an activity. In Sect. 6.6, we discuss how
these specifications modeling elementary service collaborations can be composed

202 paper 6

awning

living room

lightlightsoundtemperature

locationaccess
serverserver

garden
zonezone

Fig. 6.2: Illustration for a system configuration

Mobile Home Control

z: Zone
Manager [1..*]

l: Location
Server

a: Access
Server

p: Phone
[0..*]

h: Heater
[0..*]

«system»

t: Temperature
Update

1

access
server

server
location

phone

zonemanager
zonemanager

heaterz: Zone
Session

Fig. 6.3: System collaboration

to specify also composite specifications and service descriptions that may handle
several users and multiple sessions at a time.

6.2 Specifications in SPACE

As an example, we consider a system for home automation, which allows the
residents of a house to control various devices with their mobile phones. Devices
may be heaters and volume controls, lights, motors of awnings, or the intercom
with the door bell. The house is organized in zones covering different possibly
overlapping areas. Each device is assigned to a zone manager, as illustrated in
Fig. 6.2 with a zone for the living room and one for the garden. To make the user
interface easier, the control options offered by a mobile phone should depend on
its current location, so that one may adjust the room temperature of only the
room one currently stays in, or roll out the awnings when one is on the terrace.
For this reason, we assume that the position of the phones can be determined by
a location server with sufficient accuracy (e.g., by equipping them with WLAN
capabilities). Via this channel, the mobile phones may also communicate to the
zone managers. In addition to the location server, an access server keeps record
of the user authorizations and access rights, for example, to grant guests and
children only limited control.

6.2.1 UML 2.0 Collaborations

Figure 6.3 shows a UML 2.0 collaboration specifying the structure of the system.
For each participant it declares a collaboration role, i.e., a and l for the access and
location server, p representing the phones, z for the zone managers and h for a set
of heaters.1 With the stereotype �system� we express that Fig. 6.3 documents

1To keep the example manageable, we look here only at heaters as devices.

formalizing collaboration-oriented service specifications 203

heater

read value
else

changed

zone manager
Temperature Update

set value

update display

update device

i1

m1

t1

f1

d1

z1

z2
e2

e0

e4
e3

e6
o1

e7

o2

e9e8

e5 e1

Fig. 6.4: Activity describing the control of the temperature

the highest system level, and that its collaboration roles should be realized as
separate components.2 In addition to the type information, the collaboration
roles specify the multiplicity of the components. While access server and location
server have default multiplicity “1”, there may be any number of phones in the
system and an arbitrary number of zones, which in turn may be connected to
several heaters. The multiplicity of the connector end right to the zone manager
is “1”. This tells us that a heater is only connected to one zone manager while
one zone manager is connected to many devices.

Collaborations may refer to other collaborations by means of collaboration
uses, so that a specification may reuse existing building blocks or be decomposed
to reduce complexity. In this way, the specification in Fig. 6.3 expresses that a
zone communicates with the heaters by collaboration Temperature Update, which
is bound to the system by collaboration use t. Whenever a phone enters a zone,
the location server starts a zone session collaboration between the phone and the
entered zone, represented by collaboration use z. The labels at the lines which
connect the ellipse of the collaboration use describe to which collaboration roles
of the referring collaboration the collaboration roles of the referred collaboration
are bound.

6.2.2 Activities for Elementary Collaborations

As mentioned in the introduction, SPACE uses activities to describe the behavior
of collaborations. Activities can be understood as token flows, similar to Petri
nets. Let us first consider the activity for the elementary collaboration given
in Fig. 6.4 for the control of the room temperature with a heater. The activity
has two partitions, zone manager and heater, one for each collaboration role.
At startup, a token is emitted from the initial node i1, which then finds its
way through merge node m1 towards timer t1, where it starts the timer and
rests. When the timer expires, the token is emitted and duplicated within the
fork node f1. One token is then redirected via merge node m1 back to the
timer, which starts again. The other token flows via operation read value to
decision node d1. If the temperature changed, the token is sent to the zone

2For this reason, we also include the type names (like ZoneManager) which will be taken
as type names for the components to be generated.

204 paper 6

location server

u: Update

Zone Session

a: Authenticate

g: Get
Access Rights

access server phonemanager
zone

Fig. 6.5: Collaboration for a phone within a zone

manager. For the transmission, we assume a queue place on edges that cross
partitions (in the following called transfer edges), so that the token first rests
within the queue before it is read out by the zone manager. If the change
of temperature is insignificant and does not need to be reported to the zone
manager, the token flow is ended in the flow final node z1. A second flow starts
at the input parameter node update device, forwards to the heater, causes a value
change as expressed by the operation o2, and finally terminates at node z2.

6.2.3 Activities for Compositional Collaborations

The zone session referred from the collaboration in Fig. 6.3 is further detailed
in Fig. 6.5. It is in turn a composite collaboration with the collaboration roles
for the location and access server, a zone manager and a phone as its partici-
pants. All collaboration roles have their default multiplicity “1”, so that this
collaboration describes the cooperation of exactly one phone and one zone man-
ager, covering the behavior whenever a phone is within a certain zone. For
that, collaboration uses a, u and g refer to collaboration describing the retrieval
of access rights from a server, the authentication of the phone, and the bidi-
rectional update mechanisms between zone and phone. The detailed coupling
of these collaboration uses is described by Fig. 6.6. It has again one activity
partition for each of the collaboration roles. In addition, the collaboration uses
of Fig. 6.5 are represented as call behavior actions g, a and u. They refer to
other activities that describe their detailed behavior. Their pins are used to
couple them together, using some additional logic in the zone manager and the
phone. The collaboration starts when the location server detects that a phone
enters a zone, via input parameter node enter.3 Upon that, the zone manager
simultaneously invokes via the fork node the sub-collaborations g to retrieve the
access rights as well as a to request an authentication from the phone. Once the
access right information arrives, a token is placed into the waiting decision node.
This is an extension of a normal decision node with the difference that a token
rests in it until one of the downstream joins may fire [KH07b]. This is the case
when the authentication finishes. Depending on the outcome, either the left join
node may eventually fire, which causes the flow to stop, as the user is not au-
thenticated. Upon a successful authentication, the right join fires and the zone

3Activity parameter nodes are represented by pins owned by a call behavior actions when
their activity is referred to by another activity.

formalizing collaboration-oriented service specifications 205

g: Get Access
Rights

a: Authenticate
failed ok

compute
options

register
options

register
phone

u: Update

zone manager

phone

access serverlocation
server

Zone Session

remove
phone stop

update display

update device

enter

leave

update displayupdate device

Fig. 6.6: Collaboration for entering and leaving a zone

z: Zone Session

PosUpdate

extract
phone

extract
zone

else

leave

enter

«multi-session»

z: Zone Session

(phone, access server)
enter

leave

location server
Mobile Home Control

zone manager

t: Temperature
Update

heater

update device

update display update display

update device

select one : id=zone

select one : id=device
select one :

id=zone,phone

«system»

Fig. 6.7: Activity composing the entire system

manager computes the options that are offered to the phone. After the phone
has registered the options, the zone manager registers the phone enabling it to
handle updates. Collaboration u is started which manages the update handling,
so that the phone may send updates to the devices and vice versa.

6.2.4 Multi-Session Collaborations

Within one occurrence of a zone session, each collaboration role was considered
only once, and each collaboration use was executed only once at a time. The
collaboration for the entire system, Mobile Home Control in Fig. 6.3, however,
has several zones, heaters and phones. As a consequence, the collaborations z
for the zone sessions and t for the temperature updates are executed with several
executions (also called sessions) at the same time. The one location server is
invoked in several sessions of a zone session (with different zone managers and
phones). One zone manager is connected to many heaters, and maintains there-
fore several temperature update collaboration instances with them at the same

206 paper 6

time. We emphasize this by adding a shadow-like border to the call behavior
actions within those activity partitions that can choose from different collabora-
tion instances. In Fig. 6.7 this is the entire zone session, as both zone manager
and location server have to handle several instances. For the temperature up-
date, the collaboration is multiple only within the zone manager (which may be
connected to several heaters) but is single within the heater partition, as one
heater participates in only one temperature update session as it is connected to
only one zone manager. The activity of Fig. 6.7 starts within the location man-
ager that waits for the reception of position updates. Once a position update
arrives, it extracts the phone and zone information from the update and decides,
if the change of location should be interpreted as the entering or the leaving of a
zone. If the phone enters a zone, a zone session is started, if it leaves a zone, the
corresponding ongoing zone session is informed (and stopped). In both cases,
the token has to enter a specific zone session instance. UML activities may han-
dle several execution at the same time, that means, a call behavior action may
refer to several executions that go on at the same time. However, UML does
not provide means to distinguish the different session from each other, so that
we may compose them in a more advanced manner. We therefore introduced an
selection operator, that distinguishes different session instances by a set of filters
(see [KBH07]). To enter the zone session, we take the zone and the phone as
ID identifying the corresponding session. More filters that also take data within
the session instances into consideration, are described in [KBH07].

6.3 Temporal Logic and cTLA

Temporal logic enables to specify behavior which, according to Kurki-Suonio,
is the “abstraction of reactive executions” [KS05]. Since networked services are
reactive by nature, temporal logics are therefore suited to model the service
behavior formally. One can distinguish temporal logics in linear time logics
(LTL), which express behaviors by sets of infinite sequences of states, and in
branching time logics (BTL) modeling state orders by tree structures. While
the latter concept offers a higher degree of expressiveness, LTLs often lead to
easier understandable specifications.

A well-known LTL is Leslie Lamport’s Temporal Logic of Actions
(TLA, [Lam02]) in which behavior is described by special state transition sys-
tems as well as fairness properties. The TLA coupling method by means of
states common to several element specifications [AL95], however, makes it diffi-
cult to create constraint-oriented models in which not single physical components
but properties reflecting partial system behavior spanning several components
are specified [VSvSB91]. As our collaboration-oriented models demand exactly
this specification style, we use the compositional Temporal Logic of Actions
(cTLA, [Her97, HK00]). This is a variant of TLA which provides couplings
based on jointly executed transitions enabling to glue interacting constraints
nicely. Moreover, cTLA makes the description of state transition systems in a
process-like style possible. A cTLA process can either be in a simple form, mod-

formalizing collaboration-oriented service specifications 207

PROCESS Timer(TT: Any)
VARIABLES

i: {"idle", "active"};

tv: TT;

INIT
∆
= i = "idle" ∧ tv ∈ TT;

ACTIONS
start(it: TT)

∆
=

i = "idle" ∧ i ′ = "active" ∧ tv ′ = it;

expire(ot: TT)
∆
=

i = "active" ∧ ot = tv ∧ i ′ = "idle" ∧ unchanged(tv);

expireAndRestart(it, ot: TT)
∆
=

i = "active" ∧ ot = tv ∧ tv ′ = it ∧ unchanged(i);

END

Fig. 6.8: cTLA process for Modeling Activity Timers

eling the state transition systems directly, or in a compositional form combining
several process instances which interact by the jointly fired transitions. In the
following, we introduce both process types in detail.

6.3.1 Simple cTLA Processes

Simple cTLA processes are used to model single resources or constraints of a
system. Figure 6.8 depicts a simple process which specifies a timer node of an
UML 2.0 activity. In the process header, the process name and a list of process
parameters are listed. The parameters enable to model several shapes of process
instances by a single process type. For example, the process parameter TT
describes the signature4 of the tokens modeled by a particular UML activity
so that we can use the process Timer for various token formats. As said, a
cTLA process models a state transition system, the state of which is described
by variables. In the example process, we use the variables i distinguishing if
the timer is idle or active and tv storing the data of an activity token passing
it. The set of initial states which hold in the beginning of executing a process
are defined by the predicate INIT. Here, the variable i is initially idle while tv
contains any data set from TT.

The transitions are specified by actions (e.g., start) which are predicates on
a pair of a current and a next state. Variable identifiers in simple form (e.g.,
i) refer to the current state while variables describing the successor state occur
in the primed form (e.g., i′). The conjuncts of an action referring only to
variables in the current state specify the enabling condition while those with
primed variable identifiers express the state change. Thus, the action start is
enabled if variable i is “idle” while its execution leads to a new process state
change in which i carries the new value “active”. Actions may have parameters
modeling transfer between processes. For instance, start has the parameter it of
type TT describing the data set of a token arriving at the timer which is stored in

4Like in colored Petri nets (see [Jen91]), we assume activity tokens to contain special data
sets to specify the forwarding of data.

208 paper 6

the variable tv. Actions can be distinguished into two classes. External actions
denoted by the keyword ACTIONS may be coupled with actions of other processes.
In contrast, internal actions defined in a compartment headed with INTERNAL
ACTIONS must not be joined with actions of the process environment so that
they express purely local process behavior. In the process Timer we use only
externally visible actions. Moreover, we may provide the actions with fairness
assumptions guaranteeing a lively behavior. Since we concentrate in this paper
on safety aspects only, we do not discuss that in detail.

Formally, a cTLA process can be expressed as a TLA-formula, the so-called
canonical formula C :

C , INIT ∧ �[∃it, ot ∈ TT : start(it) ∨ expire(ot) ∨
expireAndRestart(it, ot)]〈i,tv〉

The conjunct at the left side of the formula states that the predicate INIT
holds in the first state of every state sequence modeled by C. The conjunct
on the right side starts with the temporal operator � (“always”) specifying
that the expression right to it has to hold in all states of all state sequences.
The TLA expression [pp]〈i,tv〉 defines that either the pair predicate pp holds or
that a stuttering step5 takes place in which the annexed variable identifiers do
not change their state (i.e., i′ = i ∧ tv′ = tv holds). As pair predicate pp we
listed the disjunction of the process actions in which the process parameters are
existentially quantified. This models that a state change in the process always
corresponds to the execution of one of its actions using any action parameters of
the set TT. Thus, the cTLA process specifies that the first process state fulfills
INIT and that all state changes follow the process actions or are stuttering steps.

As outline above, cTLA processes are special TLA formulas which, however,
follow certain constraints facilitating the cTLA-based action couplings. Mainly,
a process action may access only variables of the process, it is defined in, and, like
in DisCo [KS05], the actions can be uniquely identified which enables a reference
of process actions in compositional descriptions. Some other conventions are
necessary for guaranteeing liveness properties and are introduced in [Her97].

6.3.2 Compositional cTLA Processes

Compositional cTLA processes specify systems and subsystems as compositions
of simple cTLA process instances which cooperate by means of synchronously
executed process actions. Data transfer between the simple processes is modeled
by aligning the parameters of the coupled process actions. Since the variables of
the simple processes are encapsulated and cannot be read or modified by other
processes, a system state is defined as the vector of the process variables. The
system transitions are modeled by the synchronously executed process actions.
Each stateful simple process (i.e., each process in which variables are defined)
contributes to a system action by either exactly one process action or by a

5Stuttering steps are necessary for carrying out refinement proofs.

formalizing collaboration-oriented service specifications 209

PROCESS TemperatureUpdate

(TT: [[temp: NATURALS, ANY]];

VT: [[tsTemp, tsOldTemp: NATURALS; tsChg: BOOLEAN; ANY]])
CONSTANTS

ET = {"e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9"};

nv1 = [n ∈ VT × TT → VT

7→ [[n.1 EXCEPT !.tsOldTemp = n.1.tsTemp

EXCEPT !.tsChg = n.1.tsTemp 6= n.1.tsOldTemp];

nt1 = [n ∈ TT × TT → TT 7→ [[n.2 EXCEPT !.temp = n.1.tsTemp]]];

nv2 = [n ∈ VT × TT → VT 7→ [[n.1 EXCEPT !.tsTemp = n.2.temp]]];

nt2 = [n ∈ TT × TT → TT 7→ n.2];

gu1 = [n ∈ 1..2 × VT × TT → BOOLEAN

7→ IF n.1 = 1 THEN n.2.tsChg ELSE NOT n.2.tsChg];
PROCESSES

i1: Initial(TT);

t1: Timer(TT);

o1: Operation(nv1,nt1);

d1: Decision(2,gu1);

e6: Transfer(TT);

e8: Transfer(TT);

o2: Operation(nv2,nt2);
ACTIONS

act3(it: TT; ot: [ET → TT], iv: VT, ov: [ET → VT],

is: TT, os: SUBSET TT, last: SUBSET ET)
∆
=

i1.start(it)

∧ t1.start(it)

∧ os = {}

∧ ov = ["e0" 7→ iv, "e1" 7→ iv]

∧ ot = ["e0" 7→ it, "e1" 7→ it]

∧ last = {"e1"}

∧ e6.Stutter ∧ e8.Stutter;

. . .

END

Fig. 6.9: cTLA Process describing the activity Temperature Update

stuttering step modeling concurrency as interleaving. In consequence, a system
action is a conjunction of process actions and process stuttering steps.

Figure 6.9 models the cTLA specification of the UML activity Temperature
Update (see Fig. 6.4) as a compositional cTLA process with the same name. The
cTLA process is composed from the process instances listed in the section PRO-
CESSES. For example, t1 is an instance of the process type Timer introduced
above. The process parameter TT of t1 is instantiated with the process parame-
ter TT defined as a process parameter in the compositional process. The external
and internal system actions are specified in the blocks ACTIONS and INTERNAL
ACTIONS as conjunctions of process actions and process stuttering steps. We
depicted the system action act3 modeling the flow from the initial UML activity
node i1 to the timer t1. The action is a coupling of the actions start in both
composed processes i1 and t1 while the processes e6 and e8 perform stuttering

210 paper 6

PROCESS TemperatureUpdate

(TT : [[temp : NATURALS, ANY]];

VT : [[tsTemp, tsOldTemp : NATURALS; tsChg : BOOLEAN; ANY]])
CONSTANTS
ET = {"e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9"};

VARIABLES
i1xi : {"init","active"};

t1xi : {idle, active};

t1xtv: TT;

e6xq : QUEUE(TT);

e8xq : QUEUE(TT);
ACTIONS
act3(it: TT; ot: [ET → TT], iv: VT, ov: [ET → VT],

is: TT, os: SUBSET TT, last: SUBSET ET)
∆
=

i1xi = "init" ∧ it ∈ TT ∧ i1xi ′ = "active"

∧ t1xi = "idle" ∧ t1xi ′ = "active" ∧ t1xtv ′ = it

∧ ov = ["e0" 7→ iav, "e1" 7→ iv]

∧ ot = ["e0" 7→ it, "e1" 7→ it]

∧ last = {"e1"}

∧ unchanged(e6xq,e8xq);

. . .

END

Fig. 6.10: Simple form of cTLA Process Temperature Update

steps.6

Formally, a compositional cTLA process corresponds to the conjunction of
the canonical formulas of the composed simple processes and an additional cou-
pling constraint CC :

C , i1.C ∧ t1.C ∧ . . . ∧ o2.C ∧ CC
The coupling constraint defines the conjunction of the process actions to system
actions. Moreover, it defines some constraints on the process action fairness
properties which, together with the encapsulation of the process variables, guar-
antee that the cTLA composition principle fulfills the superposition property
(see [Her97]). Superposition [BKS89] ensures that each property of a simple
cTLA process holds also for each compositional one including it. As mentioned
in the introduction, this is an important ingredient to describe systems from
different viewpoints since we can define elementary service functions as sepa-
rate simple cTLA processes and compose these easily to both collaborative and
component-oriented system models. In addition, this property facilitates the
formal proofs vastly that component models realize collaboration-based ones.

A compositional cTLA process can be transformed to an equivalent process
in simple form as proven in [HK00]. Basically, the simple process comprises the
local variables of the included process instances as its variable set while the tran-
sitions are modeled by the expanded system actions. As an example, Fig. 6.10
depicts the process Temperature Update in simple form. This transformation

6The processes d1, o1 and o2 are not referred to since they are stateless.

formalizing collaboration-oriented service specifications 211

from compositional to simple cTLA processes is essential for our UML activity
modeling approach as we discuss in Sect. 6.5.

6.4 Formalizing Collaborations

The concept of UML 2.0 collaborations as introduced in Sect. 6.2 is rather struc-
tural and as such “describes a structure of collaborating elements” [Obj07]. Al-
though UML enables collaborations, being so-called behaviored classifiers, refer
to behaviors in form of interactions, state machines or activities, the coordina-
tion of these behaviors is not elaborated in detail. For our approach, however,
in which we want to specify systems completely by composing collaborations,
the behavioral part and the coordination of behavioral descriptions are essential.
Therefore, we understand collaborations first and foremost as processes jointly
executed by a set of participants. Composing systems from collaborations cor-
responds then to the task of synchronizing these processes. This demands for a
precise formal semantics describing both the behavior of collaborations as well
as their composition. This does by far not exclude UML; on the contrary, such
a well-defined formal basis enables us to use different UML diagrams, utilizing
their specific advantages where appropriate. For this reason, we defined the
cTLA style cTLA/c used to model collaborations in a way that several diagram
types can be formalized.

To illustrate cTLA/c, Fig. 6.11 depicts a collaboration from an abstract,
external viewpoint. It is a process between its participants p1 and p2. While
most of the behavior may be executed internally to the collaboration, we need
some mechanism to couple the collaborations with others during composition.
For example, the end of one collaboration could trigger the start of another one,
or collaborations may exchange data. For this, two principle solutions exist:
communication by variables and synchronously executed actions. Only relying
on the first one (i.e., allowing only producer/consumer synchronization) implies
buffering, so that it would always take two execution steps for a collaboration to
influence another one. In some cases, however, following the idea of constraint-
oriented modeling (see Sect. 6.3), we may want to describe that events happen
at the same time in several collaborations. Thus, both interaction principles can
be useful, and cTLA/c is laid out to support both of them. For synchronous
couplings, we simply conjoin the cTLA actions of different collaborations, while
for buffered communication, we assume that the collaborations are linked to
a special collaboration modeling the buffered communication. Both approaches
use the cTLA coupling principle of joint actions [Her97, HK00] (see also [KS05]).
In Fig. 6.11, the externally visible cTLA actions a1, a2 and a3 can be used to
couple C1 with other collaborations.

6.4.1 Elementary Collaborations

A collaboration that is not composed of other collaborations but describes its
behavior directly by its actions and variables is called an elementary collabo-

212 paper 6

p1
p2

C a2

a1
a3

Fig. 6.11: External view of a collaboration C

ration. For this, we use a simple cTLA process, as introduced in Sect. 6.3.1.
Ignoring fairness assumptions and process parameters, a simple cTLA process
can bee seen as a tuple Psimple = 〈Actint, Actext, V ar, Init〉, which declares the
set of its variables, internal and external actions and an initial statement. To
describe collaborations, we impose additional invariants on how cTLA processes
are written. This basically defines the style of cTLA/c. For an elementary
collaboration, we use the tuple

Cel = 〈Actint,Actext, Init,Varloc,Varcom,Part, pvar, pact, NT 〉.

Actint, Actext and Init have the same meaning as in Psimple. In addition, we
define the participants of a collaboration by the set Part = {p1 . . . pn}. As these
participants describe behavior to be executed by separate, physically distributed
components, we assume only buffered communication between the different par-
ticipants. This communication is expressed by special communication variables
defined by the set V arcom while the state variables of the participants by Varloc

(in which Varloc ∩ Varcom = {} holds and Varloc ∪ Varloc forms the set of all
variables Var). Function pvar , [Var→ Part] maps each variable to exactly one
participant.

– A local variable vl can be read and written only by the participant assigned
to it via the function pvar. These variables are used to model local data,
status of timers or the history of what has happened so far, to synchronize
interactions with other participants.

– A communication variable vc is a bag queue.7 It can be read by one partic-
ipant only while the other participants may add elements. We attach vc to
the partition which can read it and constrain the function pvar accordingly.

The actions modeling interaction with the environment of the collaboration
are described by the set actext, while actint models behavior that is not visible
from the outside. Similarly to the variables, each action is attached to a partic-
ipant via function pact , [Act→ Part]. An action ai attached to participant pi

may access local variables that are assigned to pi as well. In addition, it may add
elements to all communication variables of the neighboring collaborations, and
receive from communication variables assigned to pi. These definitions implied

7This was a mistake in the original publication. Communication variables are FIFO queues,
as indicated by the symbol in Fig. 6.12 and the cTLA process Transfer in Sect. 6.5.1.

formalizing collaboration-oriented service specifications 213

local variable

vnv2
v1

ai

vn

a1

a2p1

a3

v3
p2 v4

an internal action

participant

collaboration

a2

a1

variable
communication

a3

Cel

a1 external action

Fig. 6.12: A cTLA/c process for an elementary collaboration Cel

by cTLA/c on elementary collaborations are illustrated in Fig. 6.12. It is basi-
cally a bipartite graph showing the relationships between actions, participants
and local and communication variables.

For the execution of components, we use state machines as expressed by
cTLA/e, where actions correspond to state machine transitions that are triggered
either by the expiration of a timer or the arrival of a signal. To enable an
easier mapping from the actions of cTLA/c to the actions of cTLA/e in form
of an implication ScTLA/e =⇒ ScTLA/c, we require also cTLA/c actions to
be triggered. As the exact mode of triggering depends highly on the particular
concepts of the diagrams formalized, we simply take the tuple element NT to
mark all actions that are not triggered. Internal actions have always to be
triggered such that NT may only include external actions.

6.4.2 Compositional Collaborations

A compositional collaboration refers to other collaborations and composes their
behavior to describe its own behavior. For the description of a compositional
collaboration, we use the tuple

Ccomp = 〈Actint,Actext,Part, pact,Cu, bind,NT 〉
As for the elementary collaboration, Ccomp declares a set of internal and external
actions, a set of participants, and a function pact that assigns each action to
one participant. In addition, there is the set Cu of collaboration uses. The
participants of the instantiated collaborations are mapped to the participants
of the collaboration under construction by function bind , [Part → Part].
This enables us to use different partition names for the elementary and for the
compositional collaborations which can be mapped into each other. Fig. 6.13
gives an illustration. For formal simplicity, there are no variables defined directly
within a compositional collaboration. Coupling logic that needs variables and
cannot be expressed by action couplings only, can be included by using dedicated
collaborations.

As mentioned before, we use joined actions to couple collaborations. In
cTLA/c there are some restrictions concerning the topology of the collaborations,

214 paper 6

p1

p3

Ccomp

p2

c1
c2

c3

c4 c5

p4

a1

a2

action coupling
c6

Fig. 6.13: A cTLA/c process for a compositional collaboration Ccomp

and taking into account that internal actions must be triggered. Each action
within a compositional collaboration is a conjunction of one action of each the
n collaborations listed in Cu:

act =
∧

i=1...n

ai

with ai being an external action or a stuttering step of collaboration use i. For
the action coupling the following constraints must hold:

– Only actions mapped to the same participant may be coupled with each
other. Collaborations not bound to the same collaboration role must stut-
ter.

– Within each set of coupled actions, at most one action may be triggering.

– If none of a set of coupled actions has a link to the environment of the
composite collaboration Ccomp, the joint action act is internal. In this
case, exactly one of the bound actions must be triggered.

– If one of a number of bound actions is linked to the environment of Ccomp,
the joint action is external. Here, either one or none of the joined actions
must be triggered.

Following composition concept of cTLA, the compositional cTLA/c tuple
Ccomp can be expanded to an elementary collaboration such that hierarchical
collaboration structures are possible.

We abstain from describing a special syntax for the constraints introduced
by cTLA/c as we consider it only as a semantic concept behind other languages,
such as UML activities, as described in the following. Once a specification
semantically has the form of cTLA/c, it can be taken by our transformators and
code generators to create an executable system.

6.5 Activities for Elementary Collaborations

In SPACE, we use UML 2.0 activities to express the behavior of collaborations
as introduced in Sect. 6.2. A UML 2.0 collaboration is complemented by an

formalizing collaboration-oriented service specifications 215

activity which uses one separate activity partition for each collaboration role.
In the terms of cTLA/c, an activity partition corresponds to a collaboration
participant.

As already pointed out in Sect. 6.2, the semantics of UML 2.0 activities is
based on Petri nets [Obj07]. Thus, an activity basically describes a state tran-
sition system, with the token movements as the transitions and the placement
of tokens within the graph as the states. In consequence, the variables of a
cTLA/c specification model the actual token placement on the activity while its
actions specify the flow of tokens between places. Activity edges may cross par-
tition borders. According to the cTLA/c definition and due to the fact that the
partitions are implemented by distributed components, flows moving between
partitions are modeled by means of communication buffers while places assigned
to activity nodes are represented in cTLA/c by local variables.

We discussed above that certain variables of a cTLA/c collaboration may be
triggers. For activities, triggers are represented by initial nodes starting a flow
in the beginning, timer nodes which trigger a flow upon expiration, and edges
crossing a partition border in which a token in the corresponding communication
buffer is triggered to forward in the receiving partition.8 Moreover, a token may
be triggered from the activity environment which is expressed by flows passing
pins at the border of call behavior actions. This leads to flows which — from a
local view of a single activity — are non-triggered. Of course, in order to achieve
lively flows, non-triggered partial flows have to be connected with other flows in
a way that in the system description all flows start at a triggering node.

The properties on the triggering of flows lead to constraints on the alignment
of places to activity nodes since not every flow could be triggered if a token can
rest at any node. In general, we allow places only on nodes modeling either
entities that can trigger or locations in which a token has to wait for another
flow to synchronize. The first group comprises initial nodes, timer nodes, and
crossing points of edges through partition borders while the second one covers
the following cases:

– a join node in which a token must wait if the other incoming edges are not
yet filled,

– a waiting decision node (see Sect. 6.2) enabling a token to leave via different
joins (see [KH07b]), where are token has to wait if none of the succeeding
joins can fire.

In contrast, tokens do not rest within call operation actions. This is not useful
as no trigger is available which may lead a flow to leave the call operation action
after the invoked operation is finished (see [KHB06]). Instead, we consider the
execution of the operation “on-the-fly” by a token passing its call operation
action.

In the following, an activity is given by the tuple

A , 〈nodes, edges, type, part, location, guard〉
8This definition results from the need to transform activities to the special UML state

machines forming the input of our code generators (see [KH07b]).

216 paper 6

with nodes as the set of activity nodes. edges ⊆ subset nodes×nodes9 describes
the set of activity edges, while the function type ∈ [nodes → Type] assigns to
each activity node the node type which is an element of the set Type = {initial,
fork, join, merge, decision, waiting, timer, receive, send, input, output, operation,
callBehavior, inputPin, outputPin}. part models the set of partitions, while
location , [nodes ∪ edges → subset part\{}] assigns each node and edge
a non-empty set of partitions. Here, all nodes except for call behavior actions
must only be mapped to exactly one partition while edges may belong to several
partitions as they can arbitrarily cross partition borders. Guards are assigned to
all edges following a decision node by function guard , [edges→ Guards∪ {}].
In addition to the tuple A, we define functions outgoing and incoming as ,
[node→ subset edges] that give us the set of incoming and outgoing edges of a
node. In particular, only decision and fork nodes have more than one outgoing
edge, and only merge and join nodes have more than one incoming edge.

To define the semantics of activities using cTLA/c, we opted for an approach
that makes directly use of the composition mechanisms of cTLA.

1. We describe for some node types10 of an activity a separate cTLA process
which are introduced in Sect. 6.5.1. This already helps to understand the
semantics of the nodes.

2. To obtain a cTLA/c representation CA for an activity A, we define CA

as a compositional cTLA process and include for every activity node an
instance of the corresponding cTLA process modeling the node.

3. Thereafter, we create the actions of CA specifying A’s flows of tokens. In
particular, we traverse the edges of the activity. At a starting point of a
flow, a new cTLA action is created which is amended successively when
the traversal passes an activity node. The creation and amendment of the
actions is guided by a set of production rules introduced in Sect. 6.5.2. In
Sect. 6.5.3 we clarify the action creation with an example.

4. As CA is yet a compositional cTLA specification, we finally expand it to
an equivalent simple process as discussed in Sect. 6.3.2. The result of this
transformation is the formal model of the activity.

6.5.1 cTLA Processes for Activity Elements

As mentioned above, we model flows passing partition borders by buffered
queues. In consequence, the communication variables used for the communica-
tion between the participants in the cTLA/c definition are described by buffers
storing tokens. Thus, in the tuple Cel, introduced in Sect. 6.4, we define the
element Varcom as the set of queues of tokens containing a separate element for
each crossing of an edge through a partition border. Each queue is located at the

9subset S is also called power set of S
10For merges, forks, and final nodes special cTLA processes are not necessary as we will

discuss later.

formalizing collaboration-oriented service specifications 217

partition entered by the edge and the tuple element pvar is accordingly defined.
The places on the activity nodes on which tokens may rest can store at most
one token each. For input nodes, timers and waiting decisions, we assign one
place for the overall node while joins are provided with a separate place for each
incoming edge not leaving a waiting decision. In our cTLA/c processes, every
place is described by a boolean flag each modeling if the place is filled by a token
or not. Moreover, UML activities enable to use auxiliary variables to express
data. As tokens can store data in local signatures,11 we further need variables
storing their current signature if they rest on a place. In consequence, we define
the set Varloc of local states as the union of the flags describing the places and
the cTLA representations of the auxiliary variables resp. token signature stores.
Each place and the assigned signature store are directly linked with an activity
node local to a particular partition. In addition, we assume that each auxiliary
variable is also local to a partition, so that we can define the mapping pvar in a
straightforward manner.

The cTLA process types modeling the different activity node types have to
fulfill these constraints. Thus, initial nodes, joins (including waiting decisions),
timers and receive nodes are represented by cTLA processes defining their places
and token signature stores. The cTLA process modeling edges crossing parti-
tion borders defines meanwhile the communication queue specifying the parti-
tion change. In addition, for each partition, we describe a cTLA process storing
the local auxiliary variables. Decision, sending and operation nodes are repre-
sented as stateless cTLA processes since that helps to encapsulate their specific
properties. For brevity, we introduce only the cTLA processes for initial nodes,
decisions, timers, operations as well as for transfer edges which are necessary
to understand the example sketched in Sect. 6.5.3. A complete documentation
comprising the cTLA processes for all activity nodes is provided in [KH07a].

Before discussing the cTLA processes in detail, we introduce some generic
data types used as process parameters. VT describes the types of all auxiliary
variables in a partition. Here, we assume that a list of variables is expressed
by a single record element. The signature set of the tokens is represented by
the type TT, while ET is an enumeration providing each edge in an activity a
unique identifier.

Initial Nodes The variable i is the flag describing the place at an initial
node. The place is only filled in the initial system state (value “idle”) while it
will remain empty when the activity is running (value “active”). The leaving of
the token from the initial node is modeled by the action start which must only
be executed if the token is in its place (i.e., i = “idle”) and removes the token (i’
= “active”). The action parameter t specifies the signature of the token. Since
that is not defined explicitly, it may contain any correct value of set TT. start
is a trigger action modeling the start of a new token flow.

PROCESS Initial(TT: Any)

VARIABLES i: {"init","active"};

11This implies UML object flows [Obj07], which we do not consider here in detail.

218 paper 6

INIT
∆
= i = "init";

ACTIONS
start(t: TT)

∆
= i = "init" ∧ t ∈ TT ∧ i ′ = "active";

END

Timer Nodes A timer node12 contains also a place on which a token may rest.
In the corresponding cTLA process that was already introduced in Fig. 6.8, we
use a boolean flag i and a store tv for the token signature. An idle timer is
activated by an arriving token, represented by the cTLA action start. This
action uses the parameter it to model the parameters of the arriving token. It
is enabled if the place is empty (i.e., i = “idle”) which will, consequently, being
filled with the token (i.e., i’ = “active” ∧ tv’ = it). As we do not model time
explicitly yet, the timer can expire at any time, described by the action expire
which can only be executed if the place is filled. Here, i is set to “idle” and
the parameter ot specifying the signature of the leaving token is assigned with
tv. The third action, expireAndRestart models that the timer expires but is
restarted within the same step. This extra action is needed, as a conjunction
of action start and expire would assign contradicting values to the state which
would block it forever. expire and expireAndRestart are trigger actions.

Transfer Edges The queue modeling the transfer of a token from one partition
to another one is modeled by the variable q. It stores for every received token
the corresponding signature and delivers this information in FIFO order. The
arrival of a token with the signature it at the partition border is specified by the
action send while receive models the consumption of a token with signature ot.
According to this definition, the action start is assigned to the partition from
which the edge leads to the partition border while receive is part of the one
consuming the token. receive is a trigger action.

PROCESS Transfer(TT : Any)
VARIABLES
q: Queue(TT);

INIT
∆
= q = EMPTY;

ACTIONS
send(it: TT)

∆
= q ′ = append(q,it);

receive(ot: TT)
∆
= q 6= EMPTY ∧ ot = first(q) ∧ q ′ = tail(q);

END

Call Operation Actions An operation may change the values of local aux-
iliary variables of the partition, in which it is defined, as well as the signature
of the token flowing through it. We describe operations by the stateless cTLA
process Operation, which takes two functions as parameters nv and nt. These
parameters reflect that a call operation action may change both the signature
of the tokens and the auxiliary variables. Consequently, nv is a function that
describes the operation’s effect on the values of the auxiliary variables. Similarly,
nt describes the deriving of new token values. The method execute models the

12Technically, a timer node is a UML accept event action with a time event as its trigger.

formalizing collaboration-oriented service specifications 219

computation of new values according to these functions. As action parameters it
uses iv expressing the auxiliary variable setting and it specifying the token sig-
nature before executing the operation. The new value of the auxiliary variables
and the new token signature are described by the action parameters ov resp. ot.

PROCESS Operation(nv: [VT × TT → VT]; nt: [VT × TT → TT])
ACTIONS

execute (iv: VT; it: TT; ov: VT; ot: TT)
∆
=

ov = nv[iv,it] ∧ ot = no[iv,it];
END

Decision Nodes A decision is specified by a stateless cTLA process, too. It
may have n outgoing edges modeled by the process parameter of the same name.
The other parameter is a function characterizing the guards of the outgoing
edges. Its domain set is a tuple defining the identifier of the guard as a number
between 1 and n as well as the current value of the auxiliary variables and the
token signature. The tuples are mapped to boolean values. The action decide
reflects a semantics according to which exactly one guard of a decision node has
to be true. The parameter e refers to the number of the checked guard and the
action may only be executed for this guard if all guards with smaller numbers
ed are not executable and either the guard of e holds or e is the highest number.
The latter condition reflects that one guard should always contain the value else.

PROCESS Decision (n: NATURALS; gu: [1..n × VT × TT] → BOOLEAN])
ACTIONS

decide(e: 1..n; av: VT; t: TT)
∆
=

∀ ed ∈ {1..n}:
ed < e ⇒ ¬ gu[ed,av,t] ∧ e = n ∨ gu[e,av,t];

END

6.5.2 Production Rules for cTLA/c Actions

The processes for the activity nodes explained in the last section are instantiated
as part of the cTLA process for the activity CA and constitute the state space
for this process. They also declare actions for their respective nodes, which, in
the following, have to be coupled in accordance with the activity edges building
the system edges of CA.

We decided to present the way producing the system actions from the local
process actions as a set of rules, so that each activity element can be discussed
separately. There are two types of rules:

– Rules that create a new action. These rules treat triggering nodes like
timers or incoming transfer edges. As well as edges starting at an input or
output pin of a call behavior action. They simply start the construction
of a new action in CA.

– Rules that replace an existing action. These rules model the continuation
of a flow. They start at an edge that is not triggering, take the already
produced action act for the upstream graph and add a conjunct c to the

220 paper 6

existing action, so that a new action act? = act ∧ c is created. This new
action replaces the existing one. Except for the special case in which a flow
reaches the activity node that triggered it, this replacement corresponds
to a cTLA process composition. The existing action is encapsulated as
external action within a process and then composed in a compositional
process together with another process encapsulating the additional sub-
action c. The result can then be expanded to a simple cTLA process, which
is equivalent to a (maybe more intuitive) replacement of the action. If a
flow reaches the node from which it started, we have to replace the action
specifying the triggering by another one modeling both the triggering and
the consumption of a token. E.g., for a timer, the action expire defined in
process Timer (see Fig. 6.8) has to be exchanged by expireAndRestart. In
this case, we have a genuine replacement.

Each production rule is presented in two parts. The first compartment col-
lects the preconditions of the rule. It refers to the structure of an activity
and defines the activity edges resp. nodes for which the rule can be used.
Moreover, the cTLA action to be replaced is listed. As an additional precon-
dition, we need to remember when traversing an activity which of its edges
have still to be visited. In a production rule, we therefore use the function
toV isit ∈ [Act → subset ET] storing for a particular cTLA action the edges
still to be passed.

The second compartment shows the effect of the rule. It gives instructions
whether a new action should be created or an existing one should be replaced,
and how the emerging action is constructed. It also declares any changes to the
function toV isit by updating the set of edges still to be visited for an action.

The construction of an action begins with one of the starting points of an
activity, that means at initial nodes, at the exit of timers (which means expi-
ration), when an edge enters a partition, or when an external signal arrives.
The rules Initial, TimerExpire, TransferEnter and Receive introduced
below describe hereby how the action is written. Afterwards, other rules are
applied to it guided by the nodes and edges that follow in the activity graph. A
new action is created by adding conjuncts to the original one. In case we reach
a decision or join node, the action created from the incoming graph is replaced
by an entire set of actions. The construction of an action is finished when a new
stable state is reached in the activity partition, that means that we either leave
the partition, rest in a join or waiting decision, set a timer or reach a final or
receiving node. Moreover, the leaving of a flow through the pin of a call behavior
action is also a stopping point.

The actions under construction have the signature
act(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)

The parameter it specifies the value of the token when the flow starts. While
the function ot describes the token signature after leaving a particular edge.
Similarly, parameters iv and ov describe the values of the local variables after
the flow starts and after traversing a particular edge. Signals sent within an

formalizing collaboration-oriented service specifications 221

action are described with parameter os, and signals received by is. Parameter
last keeps track of the edges in an action after those the flow stops. This is
needed to support the storage of the auxiliary variables discussed in Sect. 6.5.1.

In the following we will show the rules for initial nodes, merges, forks, timers,
operations, transfer edges as well as decisions and flow final nodes. The remain-
ing rules are listed in [KH07a].

Initial Nodes As an initial node is a trigger, it is the startpoint for the pro-
duction of an action. The rule is enabled for an initial node i with an outgoing
edge e. It creates action act, which is coupled with action start to the process
instance corresponding to the initial node, pi. As the flow is not yet finished,
last is empty. The node neither produces any output signals (os = {}) and
does not change the value of the variables or token, so that ov and ot remember
their respective initial values for this edge. As we continue the production of the
action with whatever comes after edge e, we store it as still to be visited.

Initial

∃ i, e : type(i) = “initial”
outgoing(i) = {e} e

i

→ Create act with

act(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

pi.start(it)

∧ ov = [e 7→ iv] ∧ ot = [e 7→ it]

∧ os = {} ∧ last = {}

toV isit′ = [toV isit except ![act?] = {e}]

Transfer Edges Edges crossing partition borders are handled by two rules,
TransferLeave modeling the leaving of the current partition, and Transfer-
Enter for edges entering a partition. TransferLeave is a rule that adds a
conjunct invoking send on process pt modeling the buffered communication. As
the flow ends where it leaves the partition, the edge is removed from the edges
that must be visited but entered to the set last describing final edges. The rule
for receiving (not shown) is similar to the expiration of a timer or an initial node.
It creates a new action referring to the triggered action receive of the transfer
process.

222 paper 6

TransferLeave

∃ e, p1, p2, act : e ∈ edges
location(e) = 〈p1, p2〉
e ∈ toV isit[act] e

p1 p2

→ Replace act by act? with

act?(. . .)
∆
= ∃ lasto: act(it, ot, iv, ov, is, os, lasto)

∧ pt.send(ot[e]) ∧ last = lasto ∪ {e}

toV isit′ = [toV isit except ![act?] = toV isit[act] \ {e}]

Flow Final Nodes Flow final nodes simply terminate a token flow. The
original action is finished by noting its last edge.

FlowFinal

∃ z, e, act : type(z) = “flowFinal”
incoming(z) = {e}
e ∈ toV isit[act]

e

z

→ Replace act by act? with

act?(. . .)
∆
= ∃ lasto: act(it, ot, iv, ov, is, os, lasto)

∧ last = last ∪ {e}

toV isit′ = [toV isit except ![act?] = toV isit[act] \ {e}]

Call Operation Actions As described above, operations are modeled as func-
tions that assign new values to the token passing through it as well as the vari-
ables, modeled by the cTLA process Operation with its action execute. This
action is coupled with the original one, and the production continues with the
outgoing edge of the operation. The values ot and ov for the outgoing edge
j reflect the changes carried out by the operation which are described by the
action parameters newv and newt.

formalizing collaboration-oriented service specifications 223

Operation

∃ op, e, j, act : type(op) = “operation”
incoming(op) = {e}
outgoing(op) = {j}
e ∈ toV isit[act]

op
e

j

→ Replace act by act? with

act?(. . .)
∆
= ∃ oto, ovo, newv, newt:

act(it, oto, iv, ov, is, os, last)

∧ po.execute(ivo[e],oto[e],newv,newt)

∧ ov = [ovo EXCEPT !j 7→ newv]

∧ ot = [oto EXCEPT !j 7→ newt]

toV isit′ = [toV isit except ![act?] = toV isit[act] ∪ {j} \ {e}]

Timer For a timer, three rules determine the creation and coupling of actions.
The expiration of a timer triggers an action. Rule TimerExpire defines there-
fore the creation of a new action that starts with the outgoing edge of the timer,
similarly to an initial node. It couples the expire action of the timer process pt,
so that this action is only enabled if the timer is active.

TimerExpire

∃ t, e : type(t) = “timer”
outgoing(f) = {e} e

t

→ Create act with

act(. . .)
∆
=

pt.expire(it)

∧ ov = [e 7→ iv] ∧ ot = [e 7→ it]

∧ os = {} ∧ last = {}

toV isit′ = [toV isit except ![act?] = {e}]

To start a timer, action pt.start() is conjoined with the action modeling the
rest of the subgraph. It must only be used if the flow started from another
element than the timer itself. In the precondition, this is stated by adding the
condition t /∈ visited[act] describing that the timer t is not in the list of visited
nodes.

224 paper 6

TimerStart

∃ t, e, act : type(t) = “timer”
incoming(f) = {e}
e ∈ toV isited[act]
t /∈ visited[act]

e
t

→ Replace act by act? with

act?(. . .)
∆
=

∃ lasto: act(it, ot, iv, ov, is, os, lasto)

∧ pt.start(ot[e])

∧ last ′ = last ∪ {e}
toV isit′ = [toV isit except ![act?] = toV isit[act] \ {e}]

Rule TimerExpireRestart (not shown) is used instead of TimerStart if
a timer expires and is restarted within the same action. This is stated in the
precondition by t ∈ visited[act]. For the result, the only difference is that
action expireAndRestart instead of just expire or start is called.

Merge Nodes Merge nodes copy the behavior following the node to the behav-
ior started before the node. The rule is applied to all actions already produced
for each of the incoming edges. As an merge does neither change the token
signature nor the values of the auxiliary variables, ot and ov are set to the same
values for j as for the incoming edge ep.

Merge

∃m, ep, j, act : type(m) = “merge”
ep ∈ incoming(m)
outgoing(m) = {j}
ep ∈ toV isit[act]

e1 e2 en

mj

...

→ Replace act by act? with

act?(. . .)
∆
=

∃ ovo, oto: act(it, oto, iv, ovo, is, os, last)

∧ ov = [ovo EXCEPT !j 7→ ovo[ep]]

∧ ot = [oto EXCEPT !j 7→ oto[ep]]

toV isit′ = [toV isit except ![act?] = toV isit[act]∪{j} \ {ep}]

Decision Nodes Decision nodes multiply the incoming actions by the num-
ber of its outgoing edges (the alternatives). Therefore, the incoming action is
replaced by a set of actions. The original content of the incoming action is main-
tained, it is just expanded with the additional call of the decision action of the
decision process.

formalizing collaboration-oriented service specifications 225

Decision

∃ d, e, act : type(d) = “decision”
incoming(d) = {e}
outgoing(d) = {i1 . . . jn}
e ∈ toV isit[act] j1 j2 jn

de

...

→ Replace act by actp for all p ∈ {1 . . . n} with

actp(. . .)
∆
= ∃ ovo, oto: act(it, oto, iv, ovo, is, os, last)

∧ pd.decide(p, ov[e], ot[e])

∧ ov = [ovo EXCEPT !jp7→ ovo[e]]

∧ ot = [oto EXCEPT !jp7→ oto[e]]

toV isit′ = [toV isit except ![actp] = toV isit[act]∪ {jp} \ {e}]

Fork Nodes Forks multiply a token and emit one token on each outgoing
edge. All the behaviors implied until all tokens rest, are executed within one
step, so that the whole behavior has to be modeled within one action. Therefore,
all outgoing edges are added to the edges still to be visited for the action under
construction. Since the fork does not change the value of the tokens or variables,
the functions for token and variable values are updated to match the incoming
values for each outgoing edge.

Fork

∃ f, e, {j1 . . . jn}, act : type(f) = “fork”
incoming(f) = {e}
outgoing(f) = {j1 . . . jn}
e ∈ toV isit[act]

j1 jn...

e
f

→ Replace act by act? with

act?(. . .)
∆
= ∃ ovo, oto: act(it, ot, iv, ov, is, os,last)

∧ ov = [ovo EXCEPT !j1 7→ ovo[e] EXCEPT ! · · ·
EXCEPT !jn 7→ ovo[e]]

∧ ot = [oto EXCEPT !j1 7→ oto[e] EXCEPT ! · · ·
EXCEPT !jn 7→ oto[e]]

toV isit′ = [toV isit except ![act?] = toV isit[act] ∪
{j1, . . . , jn} \ {e}]

The produced action couplings conform to the constraints in cTLA/c.

– The production of an action always stays within the partition where the
production started. Edges leaving a partition terminate the production
of an action by a corresponding send action of a transfer process. Conse-

226 paper 6

quently, all produced actions can be assigned to exactly one participant of
the cTLA/c process under construction.

– Actions are by default internal (i.e., ∈ Actint). Only if they pass an input
or output node (such as update display or update device in Fig. 6.4), they
are declared external.

– Just for flows starting at an input or output node, actions are created
that do not contain a trigger. According to the definition above, however,
these actions are external and the cTLA/c claims for non-triggered actions
are met. These actions are added to the set NT listing the non-triggered
actions. Due to the structure of activities and the layout of the rules, a
sub-graph corresponding to an action can never contain more than one
trigger.13

6.5.3 Example

We will now use the rules to produce parts of the cTLA/c process for the activity
Temperature Update given in Fig. 6.4. First, we instantiate processes i1, t1,
o1, d1, e6, e8 and o2 for the corresponding activity nodes, as shown in the
corresponding cTLA process in Fig. 6.9. In the following, we will stepwise create
some of the actions for the partition of the heater.

Step 1: We choose to start with the initial node i1 and apply rule Initial to
edge e0, which leads to the construction of action act1. As no signal has yet been
sent, os is empty. There is no final edge, as the flow continues. The variables
did not change with the initial node, such that ov notes the original value iv for
edge e0. The same applied for the value of the token managed by ot.

act1(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

i1.start(it)

∧ ov = ["e0"7→ iv] ∧ ot = ["e0"7→ it]

∧ os = {} ∧ last = {}

Step 2: We continue with this flow by applying rule Merge to edge e1 and the
already created action act1. It is replaced by act2, which is an extension of act1.
A merge does not change tokens or variables, so ov and ot are complemented
with an entry for edge e1.

act2(. . .)
∆
=

∃ ovo, oto: act1(it, ovo, iv, oto, os, is, last)

∧ ov = [ovo EXCEPT !"e1"7→ ovo("e0")]

13In faulty activities, sub-graphs may exist that have neither a triggering element nor a
connection via a parameter node. These constructs would not cause an action to be produced,
as none of the actions could be applied in the first place. These situations may be detected
by syntactic inspections. As such sub-graphs do not express any useful behavior, they are
forbidden.

formalizing collaboration-oriented service specifications 227

∧ ot = [oto EXCEPT !"e1"7→ oto("e0")]

We expand act2 by replacing act1 with its actual definition:

act2(. . .)
∆
=

∃ ovo, oto:

i1.start(it)

∧ ovo = ["e0"7→ iv] ∧ oto = ["e0"7→ it]

∧ os = {} ∧ last = {}

∧ ov = [["e0"7→ iv] EXCEPT ! "e1"7→ ["e0"7→ iv]("e0")]

∧ ot = [["e0"7→ it] EXCEPT ! "e1"7→ ["e0"7→ it]("e0")]

We can replace the existentially quantified terms ovo and oto by the equal func-
tion definitions. Further, [”e0” 7→ x](”e0”) is of course x, so that we can simplify
act2:

act2(. . .)
∆
=

i1.start(it)

∧ os = {} ∧ last = {}

∧ ov = ["e0"7→ iv, "e1"7→ iv]

∧ ot = ["e0"7→ it, "e1"7→ it]

Step 3: Rule TimerStart is now applicable to act2 and edge e1. It extends
act2 by adding action t1.start from the timer process and updates last.

act3(. . .)
∆
=

∃ lasto: act2(it, ot, iv, ov, is, os, lasto)

∧ t1.start(ot["e1"])

∧ last = lasto ∪ {"e1"}

After expansion of act2 and removal of true conjuncts, we get

act3(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

i1.start(it)

∧ os = {}

∧ ov = ["e0"7→ iv, "e1"7→ iv]

∧ ot = ["e0"7→ it, "e1"7→ it]

∧ t1.start(it)

∧ last = {"e1"}

No more rules can be applied to act3, as there are no more edges to visit for
this action. The action is complete now and can be added to the cTLA process
describing Temperature Update (see Fig. 6.9).

Step 4: Rule TimerExpire can be applied to edge e2, which results in the
creation of act4:

act4(. . .)
∆
=

t1.expire(it)

∧ ov = ["e2"7→ iv]

∧ ot = ["e2"7→ it]

∧ os = {} ∧ last = {}

228 paper 6

Step 5: Edge e2 flows into fork f1, so that rule Fork may be applied to act4.
It replaces act4 by act5 (here with act4 already expanded).

act5(. . .)
∆
=

t1.expire(it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it]

∧ os = {} ∧ last = {}

toV isit[act5] contains now both outgoing edges, e3 and e4.

Step 6: Following edge e3 into m1, rule Merge is applicable. It simply com-
plements ov and ot with entries for edge e1.

act6(. . .)
∆
=

t1.expire(it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it]

∧ os = {} ∧ last = {}

Step 7: Continuing edge e1 we enter timer t1. As the currently traversed
activity flow started at this node, we apply rule TimerSetExpire instead
of rule TimerSet. Therefore, the action expire of process t1 is replaced by
expireAndRestart that handles a flow immediately restarting the timer from
which is was triggered.

act7(. . .)
∆
=

t1.expireAndRestart(it, it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it]

∧ os = {} ∧ last = {"e1"}

Step 8: To handle the operation by following edge e4, we replace act7 with
act8 that adds the conjuncts according to rule Operation. The operation is a
function o1nav that computes new values for all the variables in the partition,
and an o1nto that computes the value of a new token.

act8(. . .)
∆
=

t1.expireAndRestart(it, it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it]]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it]]

∧ os = {} ∧ last = {"e1"}

∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

formalizing collaboration-oriented service specifications 229

Step 9: We apply rule Decision. It replaces action act8 with one action for
each outgoing branch. For the branch of edge e6 we get act9, for the e7 branch
we get act10

act9(. . .)
∆
=

t1.expireAndRestart(it, it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e6"7→ o1nav[iv,it]]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e6"7→ o1nto[iv,it]]]

∧ os = {} ∧ last = {"e1"}

∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

∧ d1.decide(1,o1nav[iv,it], o1nto[iv,it])

act10(. . .)
∆
=

t1.expireAndRestart(it, it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e7"7→ o1nav[iv,it]]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e7"7→ o1nto[iv,it]]]

∧ os = {} ∧ last = {"e1"}

∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

∧ d1.decide(2,o1nav[iv,it], o1nto[iv,it])

Step 10: When we continue with action act9 and edge e6, we apply rule
TransferSend and replace it by action act11, that simply adds an conjunction
sending the token. As the set of edges to visit is empty for this edge, this is an
action present in the final process.

act11(. . .)
∆
=

t1.expireAndRestart(it, it)

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e6"7→ o1nav[iv,it]]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e6"7→ o1nto[iv,it]]

∧ os = {} ∧ last = {"e1", "e6"}

∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

∧ d1.decide(1,o1nav[iv,it], o1nto[iv,it])

∧ e6.send(o1nto[iv,it])

Step 11 Also act10 may be finalized by applying rule FlowFinal with edge
e7. We obtain action act12, which is like act3 and act11 one of the final coupling
actions.

act12(. . .)
∆
=

t1.expireAndRestart(it, it) this has input and output

∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e7"7→ o1nav[iv,it]]

∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e7"7→ o1nto[iv,it]]]

230 paper 6

i1

m1

t1

e0

e1

read value
changed

t1

f1

d1

e2
e4

e6
o1

e5

m1

e3

e1

read value
else t1

f1

d1

z1
e2

e4

o1

e7 e5

m1

e3

e1

act3: act11:

act12:

Fig. 6.14: The subgraphs covered by the produced actions

∧ os = {} ∧ last = {"e1", "e7"}

∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

∧ d1.decide(2,o1nav[iv,it], o1nto[iv,it])

Above, we sketched the production of the three actions act3, act11 and act12
modeling the flows listed in Fig. 6.14. In a similar way, we can produce the
other cTLA actions modeling flows in the activities of our Mobile Home Control
example.

All-in-all, the production rules give a powerful means to formalize UML 2.0
activities as they are used in SPACE. If necessary, the generation process can
be automated as done in [Sl̊a07] for checking activities with the model checker
TLC14 [YML99].

6.6 Composing Collaborations by Activities

Following the style of cTLA/c, a composite activityA referring to n sub-activities
A1, . . . , An is modeled by a compositional cTLA/c tuple Ccomp as described in
Sect. 6.4.2. For each collaboration use (and consequently call behavior action
of A) that is declared in the UML specification, Ccomp.Cu contains the elemen-
tary cTLA/C tuples cel1 , . . . , celn . The compositional cTLA process C realizing
Ccomp includes the cTLA process instances c1, . . . , cn specifying the elementary
collaborations. Besides the behavior within the call behavior actions, there may
be arbitrary complex logic in A, coupling the referred sub-activities. This be-
havior of A without its sub-activities is an activity itself represented in C as its
own cTLA/c process c0. Thus, if A contains n call behavior actions, the com-
posite collaboration Ccomp.Cu has n+ 1 processes as elements, c0, . . . , cn. As an
example, we refer to the activity Zone Session depicted in Fig. 6.6. The mapping
from the activity to a compositional cTLA/c process is illustrated in Fig 6.15.
Activity A is cut into the activities modeled by the call behavior actions g ≡ A1,
a ≡ A2, and u ≡ A3 as well as the one surrounding the call behavior actions A0.
These are expressed by simple cTLA/c processes.

The participants Ccomp.Part of the compositional cTLA/c process corre-
spond to the activity partitions resp. collaboration roles of the UML collab-

14As TLC is based on the TLA modeling language TLA+, Sl̊atten had to modify the cTLA
descriptions which, due to the foundation of cTLA (see Sect. 6.3), was straightforward.

formalizing collaboration-oriented service specifications 231

A
A0

A1
A2
A3

c0 c1
c2
c3

Cp2

p3p1

p0

Fig. 6.15: Mapping activities to a compositional cTLA/c process C

oration. Following the collaboration role binding of the UML collaboration
resp. the topology and partition mapping of the corresponding activity, the
function Ccomp.bind maps each external action of c0, . . . , cn to a participant in
Ccomp.Part.

6.6.1 Synchronous Coupling

The link between an activity (like A0) and an activity referred from it (like A1)
is described by the input and output pins of call behavior actions. An input
pin models a flow of tokens from A0 to another activity Ai while an output pin
specifies an opposite flow. Every pin has exactly one incoming as well as one
outgoing edge which makes the formal definition of the coupling straightforward.
Due to the production rules introduced in Sect. 6.5.2, an edge heading to a pin
can be modeled by an arbitrary number of cTLA actions outp1, . . . , outpk while
an edge leaving a pin is modeled by a number of cTLA actions inp1, . . . , inpl.
These actions use the action parameter signature introduced in Sect. 6.5.2. As-
suming that an input or output pin of the call behavior action hosting activity
Ai is reached by an edge with the marking eo and left by the edge ei, we define
k · l-many system actions actq,r with q ∈ {1..k}, r ∈ {1..l} of the corresponding
cTLA process c as follows15 (v, w ∈ {0, i}, v 6= w):

C.actq,r(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

∃ oto, ovo, iso, oso, lasto, oti, ovi, isi, osi, lasti:

Cv.outpq(it,oto,iv,ovo,iso,oso,lasto)

∧ Cw.inpr(oto["eo"],oti,ovo["eo"],ovi,isi,osi,lasti)

∧ ot = FMERGE(oto,oti) ∧ ov = FMERGE(ovo,ovi)

∧ is = iso ∪ isi ∧ os = oso ∪ osi
∧ last = (lasto ∪ lasti) \ {"eo"};

Given that the activities are syntactically correct and consistent with the UML
collaborations they complement, these couplings produce valid cTLA/c process
couplings.

15FMERGE is a function merging two functions with mutually exclusive domains to one
that is defined on the union of these domains and preserves both original mappings.

232 paper 6

– Due to the fact, that the pins are unambiguously allocated to one partition
p, all output and input actions belong to p as well. Thus, we can assign the
system action c.actq,r to p as well which will be reflected in the function
pact of tuple Ccomp.

– In addition, c.actq,r contains a trigger if and only if cv.outpq contains a
trigger, too (i.e., c.actq,r ∈ Ccomp.NT ⇔ cv.outpq ∈ cv.NT holds).

– If the edge modeled by both outpq and inpr is only attached to the pin
linking them and to no other one, actq,r will be internal and is consequently
added to Ccomp.Actint. Otherwise, it is an external action and added to
Ccomp.Actext.

– If outpq is not attached to another link, it is triggered according to the
production rules. Thus, actq,r is triggered as well if it is an internal action.
So, the synchronous coupling follows the cTLA/c constraint that internal
actions must have triggers.

Besides of the process actions modeling the coupling of activities by input and
output pins, the local activities A0 to An may have also internal local actions and
A0 may have actions describing its links to the pins of the call behavior action
in which it is defined. For each of these actions, a system action is defined in
C guaranteeing that they are also executed in C. Moreover, these actions are
added to Ccomp.Actint or Ccomp.Actext.

6.6.2 Asynchronous Coupling

The synchronous coupling of collaborations is possible whenever the actions that
should be coupled are bound to the same collaboration role in the enclosing col-
laboration. This means that, in a component-oriented specification produced by
model transformation, they can be implemented within the same state machine
and hence be executed within the same state machine transition. For imple-
mentation purposes, however, we may want that also partitions bound to the
same collaboration role may be realized by different state machines of the same
component. A reason for that might be, for example, to let different parts of a
collaboration be executed on different operating system threads to prevent long-
running operations from blocking other behaviors. As passing events between
different state machines is always buffered in our approach (see [KHB06]), this
implies an asynchronous coupling between the processes.

In this case, we can add a stereotype to call behavior actions that should be
coupled asynchronously. For the cTLA/c model we assume that activities A0

and Ai to be linked via buffers are not coupled directly but via a collaboration
B modeling the buffering of tokens. B is specified by a cTLA process cB similar
to Transfer from Sect. 6.5.1. In contrast to Transfer, however, both actions
send and receive are associated to the same partition P in which the pin is
located. Assuming k different output actions outp1, . . . , outpk and l input actions
inp1, . . . , inpl, the buffered coupling from activity v to activity w is specified by

formalizing collaboration-oriented service specifications 233

the k + l-many system actions assigned to C specified in the following (with
q ∈ {1..k}, r ∈ {1..l}):

C.sendq(. . . , ot : [ET → TT], . . .) ,
cv.outpq(. . . , ot, . . .) ∧ cB .send(ot(“eo”))

C.receiver(it : TT, . . .) ,
cB .receive(it) ∧ cw.inpr(it, . . .)

 v, w ∈ {0, i},
v 6= w

The l actions C.receiver have a trigger. In contrast, the actions C.sendq are only
trigger actions if the bound action Cv.outpq is also triggered (i.e., C.sendq ∈
Ccomp.NT ⇔ cv.outpq ∈ Celv .NT holds). The other settings of Csendq

and
Creceiver in the cTLA/c tuple Ccomp are similar to those of the synchronous
case.

6.6.3 Asynchronous Multi-Session Coupling

To make our approach SPACE versatile for the development of real services, we
must be able to deal with a number of different components providing identical
functionality. For instance, the Mobile Home Control specification depicted in
Fig. 6.7 is only useful if it specifies an arbitrary number of zone managers and
telephones. To model several entities of a particular type, in the UML 2.0 collab-
orations the components may contain multiplicities (e.g, arbitrary many entities
of the phone p and heater h as well as at least one entity of the zone manager z
may occur). To achieve this multiplicity for the behaviors, cTLA/c may contain
not only simple collaborations but also collaboration arrays each defining a whole
number of identical simple collaborations. In cTLA/c, an collaboration array
with multiplicity m corresponds to m-many simple collaboration instances each
providing the same behavior. We express multiple occurrences of a collaboration
by cTLA array processes as shown below for the zone session:

PROCESS ZoneSessionMult (m: INTEGER; . . .)
ARRAY

id: 1..m OF z: ZoneSession(. . .);
END

In general, this cTLA array operator (see also [Her97]) defines for each variable
v of type V Type an array variable zXv of type [1..m → vType] keeping m-
many values of v. Likewise, every action of z gets a new parameter id : 1..m
describing which occurrence of zXv is accessed. In this way, we can specify
several concurrent sessions of a certain collaboration by one cTLA array process.

To determine the number of instances of a collaboration (i.e., the parameter
m in the array process), we have to analyze the multiplicities of the participants
bound to it. A meaningful solution is to provide a collaboration instance for
each combination of participant instances. In the example, this is done for the
activity Zone Session. IfNp is the number of phones modeled andNz the number
of zone managers, we create, as the other participating collaboration roles are
not defined multiple, Np ·Nz-many instances of the zone session collaboration.16

16The formal existence of a session instance does not necessarily imply an ongoing behavior or
demand real system resources, as an execution platform may instantiate needed state machines

234 paper 6

For the activity Temperature Update, however, a similar determination of the
number of instances would not be useful since one heater is only connected to
one zone manager. Therefore it is sufficient to provide only on activity instance
for each heater in the system.

On the other side, it could be useful to create more than one instance for every
combination of collaboration roles. This is not possible to express in standard
collaborations, as UML does not foresee multiplicities on collaboration uses. In
these cases we therefore add a stereotype as part of our profile [Kra08] to the
collaboration use marking that it can be execute several times among the same
participants. The multiplicity of the collaboration use is then multiplied with
that of its participants, and the ID for the session takes the sequence number as
an additional field.

Every activity referred by an call behavior action that represents a multi-
session collaboration is formally modeled by one cTLA array process. For the
activity describing the surrounding part of the call behavior actions, we face the
problem that its partitions may have a different multiplicity. For instance in
Fig. 6.3, we have one location server, Nz zone managers and Nh heaters. Thus,
we cannot describe all partitions with a single activity process as in the singular
case from Sect. 6.6.1. Instead, we define a separate activity process for every
partition expressed by an cTLA/c tuple. Formally, the partitions representing
a collaboration role with multiplicity larger than “1” are also specified by cTLA
array processes.

The multiplicity of the collaborations has consequences for the coupling. In
some cases we may still apply the couplings from the previous sections even if
the originating collaboration role is multiple. This is the case if from a partition
P only one activity instance Ai can be reached (e.g., it holds for the heaters, as
each of them is only connected to one zone manager activity). In consequence,
the decision how to traverse between P and the call behavior action hosting
Ai is unambiguous and we can use the synchronous or asynchronous couplings
discussed in the preceding subsections. In the activities, this situation is made
visible by the lack of the shadow-like border around the call behavior action.

In contrast to that, shadow-like borders of call behavior actions highlight
crossovers in which selections are necessary. This is generally only the case for
flows into a call behavior action, as every outgoing flow is univocal due to the
fact that an activity instance is non-ambiguously attached to an instance of all
partition instances to which it is attached. For input flows, we use the special
statement select [KBH07] already mentioned in Sect. 6.2.4. This statement is
attached to each flow entering a call behavior action when there are multiple
sessions to choose from. The statement simply describes a list of filters that
can be applied successively to find those collaboration instances that should be
notified. Filters can access data within the token or within the variables of the
current partition and may also depend on the data within the individual sessions
that it chooses among, which is possible as they are implemented within the same
component and only requires read-access.

only when the behavior actually starts.

formalizing collaboration-oriented service specifications 235

In cTLA/c, we model this coupling by linking the two collaborations via a
special collaboration Cs implemented in cTLA as follows:

PROCESS SelectActivity(mc, mp: INTEGER;

select: [AVT × TT → SUBSET {1..mc}])
CONSTANTS PartId

∆
= [{1..mc} → {1..mp}];

VARIABLES
q : [1..mc → QUEUE(TT)];

INIT
∆
= ∀ i ∈ {1..mc}: q[i] = EMPTY;

ACTIONS
send(id: {1..mp}; iav: AVT; it: TT)

∆
=

q ′ = [c ∈ {1..mc} 7→
IF (PartId[c] = id ∧ c ∈ select[iav,it])

THEN APPEND(q[c],it) ELSE q[c]];

receive(id: {1..mc}; ot: TT)
∆
=

q[id] 6= EMPTY ∧ ot = FIRST(q[id])

∧ q ′ = [q EXCEPT! id 7→ TAIL(q[id])];
END

The parameters of the process are mc describing the number of instances of the
activity Ai bound in the call behavior action, mp as the number of instances for
the partition P , and select as a function describing the select statement assigned
to the input pin. In particular, select maps settings of the auxiliary variables in
P and the signature of the token traversing through the pin to the set of the
instance identifiers which should get a copy of the token. PartId is a function
mapping the identifier of Ai’s instance to those of P . The process has a queue
for every instance of Ai as specified by the array variable q. The action send
models the appending of tokens to the buffers according to the select statement.
Its parameter id refers to the identifier of the partition instance. Of course, a
token may only be send to instances of the activity in the call behavior action
attached to P as expressed in the condition PartId[c] = id. Moreover, it has
to follow the select statement as specified by c : in : select[iav, it]. The action
receive describes the consumption of an element from the queue by an instance
of Ai with the identifier id.

In consequence, send is coupled with each of the k actions outp1, . . . , outpk

of the cTLA array process c0m generated from c0 modeling the flow eo towards
the input buffer. Here, the parameter id of the action created by the cTLA
array operator is mapped to id in send. In the same way, the action receive is
joined with the l-many actions inp1, . . . , inpl of the process cim specifying the
downstream flow ei of the pin (with q ∈ {1..k}, r ∈ {1..l}):

C.sendq(id : 1..mp; . . . ; ot : [ET → TT]; . . . ; ov : [ET → V T]; . . .) ,
com.outpq(id, . . . , ot, . . . , ov, . . .) ∧ cs.send(id, ot[“eo”], ov[“eo”])

C.receiver(id : 1..mc; it : TT, . . .) ,
cs.receiver(id, it) ∧ cim.inp(id, it, . . .)

For flows through an output pin, we have, as mentioned above, no freedom to
select an activity. Thus, this flow is specified by a simple buffer as introduced
in Sect. 6.6.1.

236 paper 6

6.6.4 Final System Model

After composing all cTLA/c representations of the UML activities with each
other, we achieve a preliminary cTLA/c system description CpSys. This model
consists only of internal actions actpSys each having a dedicated trigger. This
reflects that all call behavior actions are properly bound and each pin has exactly
one upstream and downstream link. In the activities, we model the interaction
of a service with its environment (e.g., the service user functionality) by means
of special signals expressed by send and receive nodes [KH06]. Formally, these
signals are described by the action parameters is and os which model the sets
of signals coming from resp. heading towards the environment.

To achieve the final cTLA/c system model CSys, we still have to specify the
handling of the local auxiliary variables defined in the activities. This is done
that lately in order to enable the access of all auxiliary variables defined for a
component participant P from all activity partitions, the collaboration roles of
which are assigned to P . To model the auxiliary variables, we use the process
AuxVar :

PROCESS AuxVar (initavt: VT;

navt: [SUBSET ET × [ET → VT] → VT])
VARIABLES
store: VT;

INIT
∆
= store = initavt; ACTIONS

access (current: VT; finedge: SUBSET ET; new: [ET → VT])
∆
=

current = store ∧ store ′ = navt[finedge,new];
END

Here, the auxiliary variables are stored in a variable store which initially car-
ries the values expressed by the process parameter initavt. The access to the
store is modeled by the action access which in a single step accesses the current
value of the auxiliary variables (with action parameter current) and stores the
new one reflecting the atomicity of a cTLA action. The problem of handling
auxiliary variables is that flows modeled by an action may be forked and the
resulting downstream flows may pass different call operation actions which can
create conflicting variable assignments. To solve this problem, we defined a pro-
cess parameter navt. It is provided by the set of final edges in a flow and the
corresponding variable settings from which a unique setting is computed. This
function is applied in the action access to calculate the new value of the variable
store.

For every single participant, we define an instance of AuxVar and for every
multiple partition one of the corresponding array process modeling mp instances
of the partition variables. Every action actpSysk

of CpSys assigned to the parti-
tion P is linked with the action P.access storing the auxiliary variables for the
instance id of partition P to which actpSysk

is assigned:

actSysk
(id : 1..mp; is, os : SUBSET TT) ,

∃ : its, ots, ivs, ovs, lasts :
actpSysk

(id, its, ots, ivs, ovs, is, os, lasts)∧
P.access(id, ivs, lasts, ovs)

formalizing collaboration-oriented service specifications 237

Besides the identifier id, the resulting system action actSysk
uses only is and

os as parameters modeling that the external signals are the means to interact
with the environment. The overall system specification CSys defines now the
formal semantics of the full service model described by UML 2.0 collaborations
and activities following the SPACE approach.

6.7 Concluding Remarks

We presented cTLA/c, a style of the compositional Temporal Logic of Actions
that captures the behavior of collaborative system specifications. We think of
cTLA/c foremost as a background technique to understand the formalism of
collaborative specifications expressed in other languages, such as UML. In our
approach, we use UML 2.0 collaborations in combination with activities, and
have therefore presented how they can be transformed to cTLA/c specifications
and in this way provide them with a non-ambiguous formal semantics. The pro-
vision of a formal semantics does not end in itself but, in our opinion, is a central
ingredient for the automated development of high-quality software. It is the ba-
sis for meaningful semantic checks as, for instance, to be done with the model
checking approach introduced in [Sl̊a07]. With such kind of methods, one can
analyze collaborative service specifications thoroughly and ensure, for instance,
that different views using distinct diagrams describe one consistent execution
model. Another application for the formal semantics based on cTLA/c is model
transformation. It provides us with the means to verify formally that transfor-
mation tools generate target models that fulfill the behavioral constraints of the
source models. As presented in [KH07b], we checked that the transformation
from UML activities to state machines is correctness-preserving.

In the moment, the service specifications in form of collaborations and ac-
tivities are the most abstract ones that are used in our approach. Nevertheless,
there may be further layers of abstraction in specifications. These specifications
could consider collaborations on higher abstraction levels, which may be useful
in early specification attempts when the complete system behavior or aspects of
distribution are not yet known and must successively be elaborated. For that,
notations like goal sequences [CB06b, San07] or DisCo [KSM98] may be useful.
As cTLA resp. cTLA/c can also be used to specify such abstract models, we
can carry out formal logic proofs to guarantee the correctness of the manual
or automated refinement steps from these very abstract specifications to those
used in SPACE. Thus, a complete formal and highly automated development of
distributed services all the way from very abstract scenario-based descriptions
to executable code will be feasible. �

Bibliography

[AL95] Mart́ın Abadi and Leslie Lamport. Conjoining Specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–

238 paper 6

535, May 1995.

[BC96] Ray J. A. Buhr and Ron S. Casselman. Use Case Maps for Object-
Oriented Systems. Prentice-Hall, Inc., 1996.

[BKS89] R. J. R. Back and Reino Kurki-Suonio. Decentralization of Pro-
cess Nets with Centralized Control. Distributed Computing, 3:73–87,
1989.

[Bræ79] Rolv Bræk. Unified System Modelling and Implementation. In In-
ternational Switching Symposium, pages 1180–1187, Paris, France,
May 1979.

[CB06a] Humberto N. Castejón and Rolv Bræk. A Collaboration-based Ap-
proach to Service Specification and Detection of Implied Scenarios.
In SCESM ’06: Proceedings of the 2006 International Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, pages
37–43, New York, NY, USA, 2006. ACM Press.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing Collabora-
tion Goal Sequences for Service Choreography. In Elie Najm
and Jean-François Pradat-Peyre, editors, 26th IFIP WG 6.1 Intl.
Conf. on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of Lecture Notes in Computer Science.
Springer, September 2006.

[Flo95] Jacqueline Floch. Supporting Evolution and Maintenance by Using
a Flexible Automatic Code Generator. In Proceedings of ICSE-17
– 17th International Conference on Software Engineering, Seattle,
April 1995.

[Her97] Peter Herrmann. Problemnaher korrektheitssichernder Entwurf von
Hochleistungsprotokollen. PhD thesis, Universität Dortmund, 1997.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK07] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Sandro Etalle
and Stephen Marsh, editors, Trust Management, volume 238, pages
317–332. IFIP International Federation for Information Processing,
Springer, 2007.

[ITU02] ITU-T. Recommendation Z.100: Specification and Description Lan-
guage (SDL), August 2002.

[ITU04] ITU-T. Recommendation Z.120: Message Sequence Charts (MSC),
2004.

formalizing collaboration-oriented service specifications 239

[Jen91] Kurt Jensen. Coloured Petri Nets: A High Level Language for Sys-
tem Design and Analysis. In Proceedings of the 10th International
Conference on Applications and Theory of Petri Nets, pages 342–
416, London, UK, 1991. Springer-Verlag.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Ser-
vice Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed,
editors, SDL 2007, volume 4745 of Lecture Notes in Computer Sci-
ence, pages 166–185. Springer–Verlag Berlin Heidelberg, September
2007.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Pro-
ceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Semantics of UML
2.0 Activities and Collaborations in cTLA. Avantel Technical Report
4/2007 ISSN 1503-4097, Department of Telematics, NTNU, Trond-
heim, Norway, September 2007.

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State
Machines. In Karsten Ehring and Holger Giese, editors, Proceedings
of the 6th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT 2007), volume 7 of Electronic
Communications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Pro-
ceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, volume 4276
of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg, 2006.

[Kra] Frank Alexander Kraemer. The Ramses and Arctis Tools.
http://www.item.ntnu.no/∼kraemer/tools.

[Kra08] Frank Alexander Kraemer. UML Profile and Semantics for Service
Specifications. Avantel Technical Report 1/2007 ISSN 1503-4097,
Department of Telematics, NTNU, Trondheim, Norway, June 2008.

[KS05] Reino Kurki-Suonio. A Practical Theory of Reactive Systems.
Springer, 2005.

240 paper 6

[KSM98] Reino Kurki-Suonio and Tommi Mikkonen. Abstractions of Dis-
tributed Cooperation, their Refinement and Implementation. In
B. Krämer, N. Uchihira, P. Croll, and S. Russo, editors, Proceedings
of the International Symposium on Software Engineering for Paral-
lel and Distributed Systems, pages 94–102. IEEE Computer Society,
April 1998.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[Obj07] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.1, February 2007. formal/2007-02-03.

[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends. Cur-
rent Trends in Concurrency. Overviews and Tutorials, pages 510–
584, 1986.

[RB06] Judith E. Y. Rossebø and Rolv Bræk. Towards a Framework of Au-
thentication and Authorization Patterns for Ensuring Availability in
Service Composition. In Proceedings of the 1st International Con-
ference on Availability, Reliability and Security (ARES’06), pages
206–215. IEEE Computer Society Press, 2006.

[San07] Richard Sanders. Collaborations, Semantic Interfaces and Service
Goals: A Way Forward for Service Engineering. PhD thesis, Nor-
wegian University of Science and Technology, 2007.

[SCKB05] Richard Sanders, Humberto N. Castejón, Frank Alexander Kraemer,
and Rolv Bræk. Using UML 2.0 Collaborations for Compositional
Service Specification. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications
in TLA with TLC. Project Thesis, August 2007. Norwegian Univer-
sity of Science and Technology, Trondheim, Norway.

[Vef85] Eirik A. M. Vefsnmo. DASOM — A Software Engineering Tool for
Communication Applications Increasing Productivity and Software
Quality. In ICSE ’85: Proceedings of the 8th international conference
on Software engineering, pages 26–33, Los Alamitos, CA, USA, 1985.
IEEE Computer Society Press.

[VSvSB91] Chris A. Vissers, Guiseppe Scollo, Marten van Sinderen, and Hendrik
Brinksma. Specification Styles in Distributed System Design and
Verification. Theoretical Computer Science, 89:179–206, 1991.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working

formalizing collaboration-oriented service specifications 241

Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of Lecture Notes in Computer Science,
pages 54–66. Springer-Verlag, 1999.

PAPER

SEVEN

ENGINEERING SUPPORT FOR UML
ACTIVITIES BY AUTOMATED

MODEL-CHECKING — AN EXAMPLE

Frank Alexander Kraemer, Vidar Sl̊atten and Peter Herrmann.

Presented at the 4th International Workshop on Rapid Integration of Soft-
ware Engineering Techniques (RISE 2007) November 26 – 27, 2007 Luxembourg.

Published in: Nicolas Guelfi, ed., Proceedings of the 4th International Workshop
on Rapid Integration of Software Engineering Techniques (RISE 2007), p. 51-66,
University of Luxembourg, 2007.

Engineering Support for UML Activities

by Automated Model-Checking — An Example

Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann

Abstract. In our approach for the engineering of reactive services, we specify systems
as collaborations by means of UML 2.0 activities. In automated and correctness-
preserving steps, these models are transformed into executable code. As the semantics
of the models are defined using temporal logic, we can utilize model checking to prove
that the collaborations fulfill certain general well-formedness properties. This is quite
important since communication delays in the interactions between the participants
realizing a collaboration aggravate the design of correct collaborative behavior. The
well-known state space explosion problem of model checkers is mitigated by using
special external state machines which define the interface behavior of sub-activities.
The generation of the formal input for the model checker TLC from the activities is
completely automated, so that the engineers working on the activities do not need
to be experts in temporal logic and model checking. In this paper, we describe the
utilization of TLC to detect and correct design errors by means of an example.

7.1 Introduction

In our engineering approach for reactive services SPACE [KBH07, KH06, KH07b,
KHB06, HK07], system specifications are composed of building blocks that model
functionality related to a certain task. The building blocks are collaborations
covering several components. In addition to the necessary interactions, they also
define the local behavior of all the participating components. We use UML 2.0
activities to describe the behavior of collaborations. Activities can be divided
into several partitions, each identifying the tasks of the individual participating
components. Control flows are represented explicitly and may be synchronized
by a number of control nodes. Moreover, activities can be decomposed into sub-
activities, so that systems may be built from already existing building blocks.

Enabling collaborations as the structuring units of service specifications is
beneficial in various respects. First, services usually involve several participat-
ing components. Describing them by collaborations gives a holistic view of the
service which can be understood without combining all the component descrip-
tions. Second, the degree of reuse is potentially higher since a collaboration
solves only a certain subtask and is therefore more likely to be useful in other
applications than entire components that typically combine several tasks making
them very specific (see for example [HK07]).

Figure 7.1 outlines the development process along with the tools supporting
it. An engineer works on collaborative service specifications, using a library
of reusable building blocks providing solutions to reoccurring problems. The
building blocks can be composed together with additional “glue” logic using an
editor for activities. For the execution of the services, however, descriptions

246 paper 7

Engineer

Library

Model
Transformer

TLC Model
Checker

TLA
Generator

Syntactic
Inspectors

Editing
Code

Generator

Service Design Models
UML State Machines

Executable System
Service Application Code

Service Specifications
UML Activities

Fig. 7.1: Tool Support for the SPACE engineering approach

of the system components are needed. We hereby follow a specification-driven
approach, in which the service specifications composed of the collaborations
are automatically transformed to component-oriented service design models in
the form of UML 2.0 state machines, as described in [KH07b]. This has the
benefit that consistency between the different development stages is ensured, and
engineers just have to maintain the service specifications. The state machines
are then the input for our code generators that produce executable code for
various platforms (see [KHB06]).

For such an approach and its tools to be correct, formal reasoning is needed
to guarantee that properties described by the individual collaborative building
blocks are preserved by the composed system. Furthermore, we must ensure that
these properties are also maintained by the model transformation to state ma-
chines and the implementation on the various execution platforms. For this, we
use the compositional Temporal Logic of Actions (cTLA, [HK00]). We formal-
ized both the service specifications in terms of activities [KH07a] as well as the
state machines [KHB06]. The coupling principle of cTLA supports the property
of superposition [BKS89], in which properties of a part of the system (i.e., the
individual building blocks) are also valid for the composed system. This makes
it possible to map the composition of activities and state machines directly to
the cTLA couplings. The model transformation and code generation correspond
to refinement steps. Thus, we can use cTLA refinement proofs to verify that
these steps are correct (see [KH07b, KHB06]).

This approach is already beneficial for specification quality, since the ab-
straction level of the models is higher which allows for a better understanding
of the behavior. Coding errors are avoided due to the automatic translation. Of
course, the abstract specification models need to be correct in the first place.
While some properties may be ensured by a purely syntactic analysis, others
require us to consider entire behaviors, for example, that interface events of
building blocks have to occur in a certain order. This is usually hard to guar-
antee manually as behavior involving several components can get quite complex
due to the unavoidable delays of the communication medium connecting them.
To assure correctness of such behaviors, model checking (i.e., the examination
of all reachable states a behavioral description implies) can be used. This tech-
nique, however, presupposes a certain amount of expertise in formal reasoning,
which we do not want to claim from the engineers using our approach. A possi-

engineering support for uml activities 247

bility to overcome this situation is, as Rushby suggests in “Disappearing Formal
Methods” [Rus00], to wrap formal techniques within tools so that they are not
perceived as difficult anymore, and to increase their user-friendliness. The idea
behind this is that a user does not necessarily need to understand the details of
a formal technique and model-checking, if an automated checking tool gives un-
derstandable feedback addressing the problem in the language of the engineer’s
domain.

In this paper, we focus on such an approach. Utilizing the formalization
of the activities in cTLA, we developed in [Sl̊a07] an automatic transformation
tool from UML 2.0 activities to TLA+, the input language of the model checker
TLC [YML99]. TLC can check a specification for various temporal properties
that are stated in form of theorems. For each activity, we automatically generate
a set of theorems which claim certain properties to be kept by activities in
general. Examples of these properties are the correct usage of building blocks
within the activity, that the activity itself satisfies a certain externally visible
behavior, and that queues used for transmissions are bounded. When TLC
detects that a theorem is violated, it produces an error trace displaying the
state sequence that leads to the violation. This trace can be given in terms of
easily comprehensible token markings within an activity as well. So, an engineer
using our tools does not have to write or understand the temporal logic formulas.

The presented approach for model checking makes use of the compositional
nature of our service specifications. As described in [KH07a], a system com-
posed of collaborations guarantees the properties of each single collaboration to
be maintained. This follows directly from the semantics based on cTLA [HK00]
and the principle of superposition. The activities describing the complete be-
havior of collaborations may be specified in a more abstract form by means of
special state machines that refer to externally visible events dedicated for com-
position. When model checking a composite specification, only these abstract
specifications have to be taken into account, which reduces the state space. Thus,
we check each collaboration separately and do not consider the entire hierarchy
which effectively mitigates the likelihood of state space explosions.

After discussing some related work done on formal checking of UML models,
we give an introduction to temporal logic as well as the model checker TLC in
Sect. 3. We proceed by introducing an example specification based on activities,
and explain the semantics of activities in temporal logic in Sect. 4. Thereafter,
we use our tools in Sect. 5 to develop one building block of the example, starting
with a naive solution which we incrementally correct based on the feedback of
the model checking. We close in Sect. 6 with some concluding remarks.

7.2 Related Work

Formal checks on UML models are done as part of OMEGA [Hoo02], FU-
JABA [BGHS04] and HUGO [BBK+04]. However, these approaches mainly
concentrate on state machines or sequence diagrams, not on activities as in our
case. In [GM05], UML activities are translated into PROMELA, the input lan-

248 paper 7

guage for the SPIN model checker [Hol03]. In [Stö05], a mapping from UML 2.0
activities to Colored Petri Nets is described enabling the usage of Petri net tools
for analysis. In [DS03], UML activities are transformed into the π-calculus where
safety and liveness properties can be expressed using the modal mu-calculus and
checked using the MWB tool [VM94]. Eshuis [Esh06] uses NuSMV, a symbolic
model verifier to check the consistency of activity diagrams. The difference of
these approaches to ours mainly lies in the domain that activities are used for
and the chosen semantics. While they focus on activities more from a perspective
of business processes assuming a central clock or synchronous communication,
we need for our activities reactive semantics [KH07a] reflecting the transmis-
sion of asynchronous messages between distributed components. This semantics
enables us to generate the executable state machines defined in [KHB06].

7.3 Temporal Logic

The model checker TLC is based on Leslie Lamport’s Temporal Logic of Actions
(TLA, [Lam94, Lam02]), which is also the basis of cTLA. TLA is a linear-
time temporal logic in which behavior is expressed by infinite state sequences.
The corresponding syntax is TLA+ that enables describing system behavior by
special state transition systems and additional fairness properties. Fig. 7.2 is an
example of a TLA+ specification. After a frame containing the module name
(i.e., HotelWakeUpSystem), it uses the expression extends Naturals describing
the import of a module including definitions, operators and axioms to model
the natural numbers. The states of the state transition system are modeled by
variables (here i, t, h and a). The predicate Init specifies the set of values the
variables shall have in the initial state. The transitions are described by actions
each specifying a pair of a current state and its successor state. Here, the current
state is referred to by variable identifiers in a simple form while the next state is
modeled by primed variable identifiers. An example is the action initial which
may be executed if the variable i has the value 1 and h has the value “off”. After
its execution, i will carry the value 0 which is described by i′ = 0. In addition, h
will have the value “started” in the following state while the two other variables
a and t do not change their values during the execution of the action. The
set of system transitions is modeled as the disjunction of the system actions
which is expressed by the definition Next, the so-called next-state relation. The
overall system description is modeled by the canonical formula Spec. The first
conjunct of this temporal formula defines that the predicate Init holds in the
first state of every state sequence modeled by Spec. The second conjunct uses
the temporal operator � (“always”) specifying that the rest of the conjunct is
valid in all states of all state sequences describing the behavior of the system.
The TLA expression [Next]〈i,t,h,a〉 determines that a state transition has to be
either a stuttering step in which all variables listed in the subscript maintain
their values or satisfies the condition Next. Thus, every state sequence begins
with a state fulfilling Init and corresponds only to state transitions which either
meet one of the system actions or are stuttering steps. Further conjuncts may

engineering support for uml activities 249

module HotelWakeupSystem
extends Naturals
variables i , t , h, a

Init
∆
=

∧ i = 1 ∧ t = 0
∧ h = “off” ∧ a = “off”

initial
∆
=

∧ i = 1 ∧ i ′ = 0
∧ h = “off” ∧ h ′ = “started”
∧ unchanged 〈a, t〉

startAlert
∆
=

∧ h = “started” ∧ h ′ = “alerting”
∧ a = “off” ∧ a ′ = “active”
∧ unchanged 〈i , t〉

stopAlert
∆
=

∧ h = “alerting” ∧ h ′ = “stopped”
∧ a = “active” ∧ a ′ = “off”
∧ unchanged 〈i , t〉

aborted
∆
=

∧ h = “stopped” ∧ h ′ = “off”

∧ t = 0 ∧ t ′ = 1
∧ unchanged 〈i , a〉

confirmed
∆
=

∧ h = “stopped” ∧ h ′ = “off”
∧ t = 0 ∧ t ′ = 1
∧ unchanged 〈i , a〉

timeout
∆
=

∧ t = 1 ∧ t ′ = 0
∧ h = “off” ∧ h ′ = “started”
∧ unchanged 〈i , a〉

Next
∆
=

∨ initial ∨ startAlert ∨ stopAlert
∨ aborted ∨ confirmed ∨ timeout

Spec
∆
= Init ∧ ![Next]〈i, t, h, a〉

t0
∆
= !((i = 1) ⇒ (h = “off”))

t1
∆
= !((h = “stopped”) ⇒ (t = 0))

t2
∆
= !((h = “started”) ⇒ (a = “off”))

t3
∆
= !((h = “alerting”) ⇒ (a = “active”))

t4
∆
= !((t = 1) ⇒ (h = “off”))

Fig. 2. TLA Module

valid in all states of all state sequences describing the behavior of the system.
The TLA expression [Next]〈i,t,h,a〉 determines that a state transition has to be
either a stuttering step in which all variables listed in the subscript maintain
their values or satisfies the condition Next. Thus, every state sequence begins
with a state fulfilling Init and corresponds only to state transitions which either
meet one of the system actions or are stuttering steps. Further conjuncts may
be used to describe liveness properties by fairness assumptions on actions which,
however, is not discussed in this paper.

The second paragraph of the specification contains a list of properties t0 to
t4 which shall be kept by the system. As they all start with the always operator,
they state invariant behavior (e.g., if variable i has value 1, h must be “off”).
To verify an invariant, one has to prove that it holds in the initial condition Init
and that it is preserved by every system action.

The compositional Temporal Logic of Actions (cTLA [6]) mentioned in the
introduction is a derivative of TLA. It resolves a shortcoming of TLA which
is limited to compositions based on joined variables [23]. In contrast, cTLA
combines modules by defining joined system actions as simultaneously executed
module actions which is a prerequisite for constraint-oriented models [24]. There,
one specifies not single physical components but properties describing partial
system behavior which spans several components. As the UML 2.0 collabora-

Fig. 7.2: TLA Module

be used to describe liveness properties by fairness assumptions on actions which,
however, is not discussed in this paper.

The second paragraph of the specification contains a list of properties t0 to
t4 which shall be kept by the system. As they all start with the always operator,
they state invariant behavior (e.g., if variable i has value 1, h must be “off”).
To verify an invariant, one has to prove that it holds in the initial condition Init
and that it is preserved by every system action.

The compositional Temporal Logic of Actions (cTLA [HK00]) mentioned
in the introduction is a derivative of TLA. It resolves a shortcoming of TLA
which is limited to compositions based on joined variables [AL95]. In contrast,
cTLA combines modules by defining joined system actions as simultaneously
executed module actions which is a prerequisite for constraint-oriented mod-
els [VSvSB91]. There, one specifies not single physical components but proper-
ties describing partial system behavior which spans several components. As the
UML 2.0 collaboration and activity-based models used in our approach demand
this particular specification style, we used cTLA instead of TLA to define their
semantics [KH07a]. cTLA uses a process-like specification style which encom-
passes both simple and compositional process descriptions. As the compositional
process models can be transferred to simple ones (see [HK00]) and the simple
processes are basically defined by the same canonical formulas as TLA+, it is
quite straightforward to transform the UML activities to TLA+ modules like

250 paper 7

 Room 7
Ready

Alarm Abort

Fig. 7.3: Reception
Panel

a: Alarm

stop
start

h: Hotel Wakeup

display "Ready"

aborted confirmed

start

display "Aborted"

display "Confirmed"

reception
Hotel Wakeup System

guest room

stop alarm
start alarm

Fig. 7.4: Activity for the entire system

the one depicted in Fig. 7.2. This is done by the tool introduced in [Sl̊a07] such
that we can use the model checker TLC [YML99] to automatically prove that
the activities fulfill certain properties since TLC uses TLA+ specifications as
input. TLC performs an exhaustive exploration of all reachable system states
and verifies that invariant properties are maintained by every checked state.1 In
the case of a failure, a path of states leading to the one not fulfilling a property
is shown which facilitates the search for the error and can be visualized in the
UML activities.

7.4 UML 2.0 Activities in the SPACE Approach

In order to study an intricate The system is partly automated, as the requests
for wake-up alarms are noted manually by the receptionist in a book. The guests
prefer to be woken by an alarm instead of a direct phone call, to avoid contact
with the personnel at an early morning hour. To convince the receptionist
that they really are awake, they confirm the alarm by pressing a button. The
reception has a control panel with two buttons and a display for each of the guest
rooms, illustrated in Fig. 7.3. At wake-up time, the receptionist pushes the alert
button which sounds the alarm in the guest room. If the guest confirms, the
display shows Confirmed for some seconds so that the receptionist knows that
the guest is actually awake. If the guest does not confirm, the receptionist can
abort the alert after some time, upon which he or she may visit the room and
rouse the guest with more drastic measures.

7.4.1 Informal Explanation of Activities

The behavior of the example system is described by the UML 2.0 activity shown
in Fig. 7.4. It is divided into two activity partitions, one denoting the hotel

1For liveness proofs not introduced here, TLC checks sequences of states.

engineering support for uml activities 251

start active stop
start

confirmed

aborted

start
alarm

stop
alarm

started alerting stopped

«esm» Hotel Wakeup «esm» Alarm

start

pushed

stop
active

«esm» Button

Fig. 7.5: External state machines

reception and one for a guest room.2 On the reception side, the activity contains
three operations to control the display by printing the messages Ready, Aborted
and Confirmed. On the side of the guest room, an alarm device is represented by
a so-called call behavior action. This is a node that may refer to other activities
(in the following referred to as sub-activities) and be used for decomposition. In
the system here, we do not know about the internals of the alarm, just that it
can be started by a token entering via start and stopped by a token via stop.
Similarly, h refers to another activity realizing the protocol between the reception
and the hotel room.3 In contrast to the building block for the alarm, h spans
over both activity partitions and as such describes a collaboration between the
reception and the guest room.

The system activity starts on the side of the reception at the initial node.
A token is emitted upon system startup and moved to a fork node, where it is
duplicated. One of the tokens continues to operation display Ready, causing the
display to show that the system is ready. Afterwards, it ends at a flow final
node. The other token leaves the fork and moves into the call behavior action
h via input pin start. This activates the Hotel Wakeup sub-activity. On this
level, we just need to know about its externally visible behavior, described by
the state machine Hotel Wakeup in Fig. 7.5. The stereotype �esm� applied to
it marks that the diagram denotes an external state machine (ESM, [Kra08])
for the sub-activity. Its transitions refer to the input and output pins of the
corresponding sub-activity, describing in which sequence tokens may be passed.
We see that after start, event start alarm will eventually happen, followed by stop
alarm. Thereafter, the sub-activity terminates as either aborted or confirmed,
depending on the behavior of the guest. On the side of the guest room, the flow
leaving start alarm and stop alarm of h is connected to start resp. stop of the
call behavior action a modeling the alarm. On the reception side, the display
informs the receptionist about the outcome via two distinct display messages
once sub-activity h terminates. As soon as the display messages Confirmed or
Aborted appear, a timer is started waiting for a certain time, so that the message
can be read. Upon a timeout, the display is reset to Ready and the hotel wake-up
can be used again.

A first (naive) solution for the internals of the call behavior action h: Hotel
Wakeup is shown in Fig. 7.6. Note that the dashed lines are not a concept
of UML activities but are here used to illustrate the preliminary state of the

2To keep the discussion simple, we only consider one room. Using the mechanisms presented
in [KBH07], this design can easily be expanded to multiple rooms.

3The decision to put the alarm and the display outside of the Hotel Wakeup h was here
mainly to ease the presentation of the contents of h as shown in Sect. 5.

252 paper 7

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

room

start

alarm

stop
alarm

start

Fig. 7.6: Solution 1

model which we will replace later, based on the findings of the model checking.
The flows in solid lines remain stable throughout all solutions. The activity

is composed from three buttons alert, confirm and abort from our library of
reusable building blocks [Kra07]. Their external behavior is described by �esm�
Button in Fig. 7.5. There, a button is activated via start. In this state, it may
be pushed by the user, which causes its termination via pushed. It may also be
stopped by a token through stop, whereupon any pushes by the user are ignored.

When the Hotel Wakeup collaboration is started, the alert button is activated
immediately. Once it is pressed, a token is emitted via pushed, activating the
abort button. At the same time, the flow continues towards the partition for the
guest room. As the partitions will be implemented by different, physically remote
components, we assume a buffered communication between activity partitions.
Therefore, a token waits for an arbitrary time in a virtual queue place where
a flow crosses partition borders. This corresponds to the transmission through
a physical medium. When the flow from the alert button is received by the
guest room partition, the confirm button is activated, and a token is branched
off towards the output node start alarm to notify the alarm device. If the
confirm button is pushed, the alarm is stopped via output node stop alarm and
a confirmation is routed back to the reception partition where the collaboration
terminates via output pin confirmed. If the receptionist presses the abort button,
the guest room is notified to switch off the alarm and the confirmation button,
and the collaboration is terminated via aborted.

7.4.2 Semantics of UML 2.0 Activities in Temporal Logic

Formally, UML activities are based on Petri Nets and describe as such a state
transition system. In [KH07a] we defined the semantics of activities in terms of
cTLA, which can be easily mapped to TLA+, the input language for the model
checker TLC, as discussed in Sect. 7.3. The transformer from UML 2.0 activities
to TLA+ [Sl̊a07] uses UML activity models stored in the UML2 repository of
Eclipse as input. Roughly speaking, the tool maps each token movement of
an activity to an action in a TLA+ formula in which stateful nodes such as
timers, sub-activities, joins and accept signal actions are represented by their

engineering support for uml activities 253

own variables. The buffering of flows that cross activity partitions is formalized
by queue variables which are bags of tokens. Whenever a token leaves a source
partition, it is added to the corresponding queue place. In a second action, it is
removed from the queue place and continues the flow in the target partition.

As an example, the specification in Fig. 7.2 displays the TLA+ code generated
for the system activity depicted in Fig. 7.4. It consists of six actions,4 each
modeling a token movement. The module declares a variable for each stateful
node of the activity, that is, the initial node by variable i, the timer by t as well
as the sub-activities for the wake-up h and the alert a. For both the timer and
the initial node, we simply use an integer to store the number of tokens that are
resting in them. Initially, there is one token in the initial node (which means
the activity is ready to start) and no token in the timer (i.e., the timer is idle).
This is expressed with the initial predicate Init by i = 1 ∧ t = 0. The variables
for the sub-activities store the current states of the ESMs that represent their
externally visible behavior. Initially, both ESMs are in their initial state, so
that value “off” is assigned to h and a by Init. The six actions model the token
movements within the activity. Action initial specifies the start of the activity.
The token resting in the initial node is removed from it (i′ = 0) and enters h
via input pin start. The ESM of h (according to its definition in Fig. 7.5) makes
a transition to state started.5 When h is in state “started”, action startAlert
is enabled. It models the emission of a token from h via startAlert activating
the alarm (a′ =“active”). Eventually, the alarm will be deactivated again by
the execution of stopAlert. After that, the two actions aborted and confirmed
are enabled, modeling the termination of sub-activity h (by h′ =“off”). Due to
the merge node, both of these actions start timer t (by t′ = 1), enabling action
timeout, which restarts sub-activity h.

7.4.3 Theorems for Well-Formed Activities

An important property of our activity specifications is that the events of the
sub-activites are invoked in the order specified by their ESMs. This means
for example that whenever a token attempts to enter start of sub-activity h,
then h must not yet be activated, i.e., h =“off”. A token can be released
from the initial node whenever it has a token, i.e., i = 1. So, we want to
be sure that whenever there is a token in the initial node, the sub-activity is
not yet active. Formally, this is an implication (i = 1) =⇒ (h = “off”).
As this property must always hold, our tool writes the theorem as an invariant
t0 , �((i = 1) =⇒ (h = “off”)). The other theorems describe the other cases
in which the ESM of a sub-activity must not be violated by its environment. For
example, t4 ensures that whenever the timer is active (t = 1), sub-activity h may
be started again (h = “off”). The violation of ESMs is only one source of errors.
The current transformation tool also writes theorems to check the boundedness

4We adjusted the automatically chosen variable and action names for readability.
5The token is further forked into operation display Ready, which we can ignore here since

no stateful node is reached.

254 paper 7

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

off

off

active

off

active

off
off

off

off

off
off

State 1 State 2

State 3 State 4

off

started started

started

x1

x2

Fig. 7.7: Error trace of solution 1

of queues as well as assertions on the execution of operations that can be added
with additional stereotypes [Sl̊a07]. This is, however, not discussed here.

7.5 Developing and Model Checking the Exam-
ple

The use of model checking to correct activity-based service specifications is out-
lined by discussing the improvements of the hotel wakeup system. We start
by applying our transformation tool and create the TLA+ specification of the
system activity listed in Fig. 7.4. The outcome is the TLA module introduced
in Fig. 7.2 which is checked by TLC. The model checker notifies that 5 dis-
tinct states were generated and that no errors were found. Given the theorems
that are included in our automatically generated formal specification, this means
that the contracts of the used building blocks h and a are obeyed. Thus, we can
proceed by checking the design of the Hotel Wakeup activity.

7.5.1 Solution 1: A Naive Start

As an initial solution, we consider the activity introduced in Fig. 7.6. On a first
glance, it looks quite reasonable. When the alarm button is pushed, the guest
room is notified to activate the confirmation button. A push on their button
by either the receptionist or the guest stops the alarm and the respective other
button. However, when we model check this activity, TLC says that temporal
properties are violated and prints a trace of states that describes the behavior
up to the moment when the violation took place. This trace may be projected
onto the activity, as illustrated in Fig. 7.7. Hereby, the transfer queues are
shown as token places where the flows cross partitions, and the activity and its
sub-activities are amended with boxes showing the current state of their ESM.

engineering support for uml activities 255

State 1. The activity is not yet active and its ESM is in state off. The
queues a, b and c are empty, and all sub-activities are in state off as well.

State 2. A token was moved via the input node of the activity and activated
the alarm button, which is now in state active.

State 3. After the alarm button was pressed, a token was forwarded into
queue a and the abort button is now active. In this state, TLC reports that
a theorem is violated. This theorem states that whenever the abort button is
active (and may therefore emit a token at any time), the ESM of Hotel Wakeup is
in state stopped, as an outgoing token from abort would pass through parameter
node aborted (see Fig. 7.5). So, in the current state, the active abort button
could terminate the entire activity through flow x1 and contradict the ESM.
In practice this means that the system using Hotel Wakeup could assume the
alarm to be aborted after the abort button was pressed, although the alarm was
never started. To check for further errors before a redesign, the tool allows us
to ignore this error for a moment and let the abort button be pushed.

State 4. By pushing the abort button, a token was emitted via aborted and
another one is placed in queue b. In this state, the guest room may decide to
consume the token from queue b, which would then be moved via x2 into the
confirm button that is in state off, which is against the ESM of the button (see
Fig. 7.5). Obviously, the activity in Fig. 7.6 does not regard that due to the
transfer medium, an abort flow may overtake the alarm flow.

7.5.2 Solution 2: Improved Version with a Sequencer

The problem found in state 4 of solution 1, where the confirm button could be
stopped before it was even started, can be solved by adding a building block
of type Sequencer from our library [Kra07] to the new activity in Fig. 7.8. It
controls two flows arriving in any order at i1 and i2 such that their respective
outputs may only happen in the order o1 followed by o2. The problem found in
state 3 of the previous solution, according to which the ESM of Hotel Wakeup
was violated, can be solved by an additional flow f that returns from the hotel
room after the alarm was started. A new run of TLC on the activity in Fig. 7.8
reveals, however, that there are still flaws in the system. Figure 7.9 shows the
new error trace. The two first states are omitted as they correspond to the ones
of Fig. 7.7.

State 3. The alert button has been pressed and a token is waiting to cross
from partition reception to partition room in queue a. The abort button has
also received a token and is in state active.

State 4. The token waiting in queue a has passed through the sequencer
and activated the confirm button. The token was also forked so that a copy
left the activity via start alarm causing the ESM of Hotel Wakeup (Fig. 7.5) to
change from started to alerting. Both buttons are now waiting to be pushed.

State 5. The confirm button has been pushed sending a token via stop alarm
changing the state of the ESM to stopped. The token was also forked into the
queue c where it is waiting to enter the reception partition. The confirm button
has returned to state off.

256 paper 7

seq: Sequencer

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

room

start
alarm

stop
alarm

start
i1

i2

o1

o2

aborted

Fig. 7.8: Solution 2

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active
off

s0

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active
active

s1

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active
off

s1

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

off
off

s1

State 5

State 3

State 6

State 4started alerting

stopped stopped

x4

x3

Fig. 7.9: Error trace of solution 2

State 6. The receptionist pushed the abort button, which switched to off
and emitted a token into queue b, so that there is now one token in each of the
queues b and c. This harms, however, two theorems that protect the contracts
of the buttons. The confirm and stop button are both in state off, but tokens
are placed in the queues that flow into the stop pin of the buttons via flows x3
and x4, which would violate their ESMs.

7.5.3 Solution 3: A Building Block for Mixed Initiatives

State 6 of the trace in Fig. 7.9 reveals an intrinsic peculiarity of the system: Due
to the communication delay between the reception and the hotel room, both, an
abort and a confirmation, can be in progress simultaneously. This is since during
the alerting phase, both the receptionist and the hotel guest may take their ini-
tiative at nearly the same time. Although not always recognized, this situation
occurs frequently in reactive systems, and has several names such as conflict-
ing [BH93] or mixed initiative [Flo03] as well as non-local choice [BAL97]. As the
problem is quite general, our library of building blocks contains a collaboration

engineering support for uml activities 257

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

mi: Mixed Initiative
Secondary Starter

start
primarysecondary

started

prim. initiativeprim. action

sec. initiative sec. action

sec. accepted

sec. overruled

room

start

alarm

stop
alarm

start

Fig. 7.10: Correct solution with a building block to handle mixed initiatives

to handle mixed initiatives [Kra07]. This collaboration has two participants, a
primary and a secondary one. These names reflect which of the sides gets prior-
ity over the other if both sides take initiative. Two variants of the building block
exist, one where the primary participant starts the collaboration, and one where
the secondary one starts. In our system, we use the latter one and assign the
primary role to the guest room, so that a confirmation from a hotel guest has
priority over the abort from the reception. Fig. 7.10 shows the building block
already embedded into the new solution while the ESM showing the detailed in-
terleaving of its events is given in Fig. 7.11. For the sake of brevity, we look here
just at the externals of the block, as an engineer would do when reusing it. The
internals are similar to the building block Tour Request introduced in [KBH07].

After the start of the collaboration via start on the secondary side, started
notifies the primary side that the state is reached in which it may trigger an
initiative. We couple this action with the start of the alarm. Input pin prim.
initiative, denoting an initiative taken by the primary participant, is coupled
with the pushing of the confirmation button. As the primary side has priority,
we know that the confirmation will succeed, and can therefore stop the alarm
right away. If the secondary side takes initiative (input pin sec. initiative), the
primary side gets notified via sec. action, which is used to stop both the alarm
as well as the confirmation button.

On the secondary side we have to take into account that an initiative from the
abort button can be overruled by the confirmation of the guest room. Besides
the nodes to start the collaboration and to take initiative, the secondary side
has therefore three terminating output pins, from which only one will eventually
release a token.

– Pin primary action releases a token if the primary side took initiative, and
the secondary remained passive, i.e., only the guest confirmed. This leads
to stop the abort button and to terminate via confirmed.

– Pin sec. overruled models that both initiatives have been taken, from
which only the primary prevails. It is sensible to distinguish this case from
the first one, as the reception in this case does not have to switch off the
abort button, which already terminated because of its initiative.

258 paper 7

start

started

sec.
initiative

sec.
initiative

sec.
initiative

started

prim.
initiative

prim. action

sec.
action

sec.
accepted

sec.
overruled

prim.
initiative

«esm» Mixed Initiative Secondary Starter

Fig. 7.11: ESM for Mixed Initiative Secondary Starter

– Pin sec. accepted emits a token if the secondary initiative was the only
one, and the primary side did not start an initiative on its own, i.e., the
alarm was aborted without the confirmation button being pressed.

When we translate this activity into TLA+ and start TLC, we get the mes-
sage that all properties are fulfilled now. Thus, the activity handles all the
incorporated building blocks as prescribed by their respective ESMs. Moreover,
it respects its own ESM and can be correctly used within the system described
in Fig. 7.4. After checking the activity realizing the call behavior action a mod-
eling alarms we know that the overall service specification is well-formed and
can use it as input for the transformation steps producing executable code.

7.6 Concluding Remarks

We presented our service development approach SPACE that uses collaborations
as building blocks. Their behavior is described by UML 2.0 activities which we
can transform automatically into temporal formulas and a number of theorems
expressing relevant properties to be fulfilled by an activity. The correctness of
these theorems is model checked by TLC and its error messages lead to step-
wise improvements of the models. The approach works both bottom/up and
top/down. Sub-services may be arranged and their composition to larger ser-
vices may be checked. Vice-versa, as done for the hotel wakeup, we may first
assume a certain external behavior and then realize the internals of the service.
Of course, many real systems are more extensive than the example used for
the discussion here. The larger scale of these system results, however, mostly
in a higher number of collaborations to be executed than in more complicated
interactions. Thus, we will have a higher number of decomposition levels (see,
for instance [HK07]), while the complexity of the models describing individual
collaborations will remain of manageable size.

Once a collaboration between components in form of activities is model
checked, it can be used in other systems without further proof efforts. This
is feasible as the building blocks may be abstracted by their ESMs describing
their external behavior. Thus, if we check an activity containing a sub-activity,
we only have to consider the ESM of the sub-activity which hides the internal

engineering support for uml activities 259

states, such that the state space of the model checked activity is reduced. In
consequence, model checking is never done on the entire system with all its de-
tails, but it is enough to successively check activities on their decomposition level
separately. In this way, services and their compositions from sub-services may
be verified in a compositional way which effectively rules out state explosions.

With the automatic formulation of the temporal formulas and theorems we
created the base for user-friendly model checking of the service specifications
based on UML activities. In future versions, we may offer more advanced feed-
back to the user that may explain error situations further and suggest typical
improvements. This work will be performed as part of the research and develop-
ment project Infrastructure for Integrated Services ISIS, funded by the Research
Council of Norway, where we develop methods, tools and building blocks for
services in the domain of home automation. �

Bibliography

[AL95] Mart́ın Abadi and Leslie Lamport. Conjoining Specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–
535, May 1995.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic Detection of Pro-
cess Divergence and Non-Local Choice in Message Sequence Charts.
In Proc. of the 2nd Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’97), 1997.

[BBK+04] Michael Balser, Simon Bäumler, Alexander Knapp, Wolfgang Reif,
and Andreas Thums. Interactive Verification of UML State Ma-
chines. In Jim Davies, Wolfram Schulte, and Michael Barnett, ed-
itors, Proceedings of the International Conference on Formal Engi-
neering Methods, volume 3308 of Lecture Notes in Computer Science,
pages 434–448. Springer, 2004.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental Design and Formal Verification with UML/RT in the
FUJABA Real-Time Tool Suite. In Proc. of the International
Workshop on Specification and Validation of UML Models for Real
Time and Embedded Systems, SVERTS2004, Satellite Event of the
7th International Conference on the Unified Modeling Language,
UML2004, pages 1–20, October 2004.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall, 1993.

[BKS89] R. J. R. Back and Reino Kurki-Suonio. Decentralization of Pro-
cess Nets with Centralized Control. Distributed Computing, 3:73–87,
1989.

260 paper 7

[DS03] Yang Dong and Zhang Shensheng. Using π-Calculus to Formalize
UML Activity Diagram for Business Process Modeling. In Proceed-
ings 10th IEEE International Conference and Workshop on the En-
gineering of Computer-Based Systems, pages 47 – 54, Huntsville, AL,
USA, 2003.

[Esh06] Rik Eshuis. Symbolic Model Checking of UML Activity Dia-
grams. ACM Transactions on Software Engineering and Method-
ology, 15(1):1–38, 2006.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and Val-
idation using Roles. PhD thesis, Norwegian University of Science
and Technology, 2003.

[GM05] Nicolas Guelfi and Amel Mammar. A Formal Semantics of Timed
Activity Diagrams and its PROMELA Translation. In APSEC ’05:
Proceedings of the 12th Asia-Pacific Software Engineering Confer-
ence (APSEC’05), pages 283–290, Washington, DC, USA, 2005.
IEEE Computer Society.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK07] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Sandro Etalle
and Stephen Marsh, editors, Trust Management, volume 238, pages
317–332. IFIP International Federation for Information Processing,
Springer, 2007.

[Hol03] G.J. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, 2003.

[Hoo02] Jozef Hooman. Towards Formal Support for UML-based Develope-
ment of Embedded Systems. In Proceedings PROGRESS 2002 Work-
shop, STW, 2002.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Ser-
vice Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed,
editors, SDL 2007, volume 4745 of Lecture Notes in Computer Sci-
ence, pages 166–185. Springer–Verlag Berlin Heidelberg, September
2007.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Pro-
ceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

engineering support for uml activities 261

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Formalizing
Collaboration-Oriented Service Specifications using Temporal Logic.
In Networking and Electronic Commerce Research Conference 2007
(NAEC 2007), pages 194–220, USA, October 2007. ATSMA Inc.

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State
Machines. In Karsten Ehring and Holger Giese, editors, Proceedings
of the 6th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT 2007), volume 7 of Electronic
Communications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Pro-
ceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, volume 4276
of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg, 2006.

[Kra07] Frank Alexander Kraemer. Building Blocks, Patterns and Design
Rules for Collaborations and Activities. Avantel Technical Report
2/2007 ISSN 1503-4097, Department of Telematics, NTNU, Trond-
heim, Norway, March 2007.

[Kra08] Frank Alexander Kraemer. UML Profile and Semantics for Service
Specifications. Avantel Technical Report 1/2007 ISSN 1503-4097,
Department of Telematics, NTNU, Trondheim, Norway, June 2008.

[Lam94] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923, May 1994.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[Rus00] John Rushby. Disappearing Formal Methods. In High-Assurance
Systems Engineering Symposium, pages 95–96, Albuquerque, NM,
November 2000. ACM.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications
in TLA with TLC. Project Thesis, August 2007. Norwegian Univer-
sity of Science and Technology, Trondheim, Norway.

[Stö05] Harald Störrle. Semantics and Verification of Data Flow in UML
2.0 Activities. In Electronic Notes in Theoretical Computer Science,
volume 127, pages 35 – 52, 2005.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — A
Tool for the π-Calculus. In David Dill, editor, CAV’94: Computer
Aided Verification, volume 818 of Lecture Notes in Computer Sci-
ence, pages 428–440. Springer-Verlag, 1994.

262 paper 7

[VSvSB91] Chris A. Vissers, Guiseppe Scollo, Marten van Sinderen, and Hendrik
Brinksma. Specification Styles in Distributed System Design and
Verification. Theoretical Computer Science, 89:179–206, 1991.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of Lecture Notes in Computer Science,
pages 54–66. Springer-Verlag, 1999.

PAPER

EIGHT

ARCTIS AND RAMSES: TOOL SUITES FOR
RAPID SERVICE ENGINEERING

Frank Alexander Kraemer.

Presented as poster at Norsk informatikkonferanse (NIK) 2007, November 19 –
21, 2007 Oslo, Norway.

Published in the proceedings of Norsk informatikkonferanse 2007, Tapir
Akademisk Forlag, Trondheim.

Arctis and Ramses: Tool Suites for Rapid

Service Engineering

Frank Alexander Kraemer

Abstract. For our highly automated service engineering approach SPACE, we built
the tool suites Arctis and Ramses. Arctis focuses on abstract, reusable service speci-
fications that are composed from UML 2.0 collaborations and activities. It supports
the analysis of service specifications by model checking via TLC. A consistent spec-
ification can be transformed into UML state machines and components. For their
implementation, Ramses contributes code generators to create executable systems.

8.1 Introduction — The SPACE Approach

As most services involve several participating components, our engineering ap-
proach for reactive systems SPACE [KBH07, KH06, KH07a, KH07b, KHB06]
uses collaborative building blocks as reusable specification units to create more
comprehensive services through composition. Figure 8.1 outlines the approach.
A developer first consults a library to check if an already existing collaboration
block or a combination of several blocks solves a certain task. Missing blocks can
also be created from scratch and stored in the library for later reuse. The build-
ing blocks are expressed as UML models. The structural aspect, for example
the participants and their multiplicity, is expressed by means of UML 2.0 col-
laborations. For the detailed behavior, we use UML 2.0 activities. They express
the local behavior of each of the participants as well as their necessary interac-
tions in a compact and self-contained way using explicit control flows. Coupling
points later used for behavioral composition can be expressed by input and out-
put parameter nodes. To define in which sequence these nodes may be invoked
by the environment of a building block, we use so-called external state machines
(ESMs). They refer with their transitions to the input and output nodes and
define as such the externally visible behavior of a collaborative building block.

In a second step, the building blocks are combined to form more compre-
hensive services by composition. For this composition, we use UML 2.0 collab-
orations and activities as well. While collaborations provide a good overview of
the structural aspect of the composition, i.e., which sub-services are reused and
how their collaboration roles are bound, activities express the detailed coupling
of their respective behaviors. Each sub-service is represented by a call behavior
action referring to the respective activity of the building block. By connecting
the individual input and output pins of the call behavior actions, the events
occurring in different collaborations can be coupled with each other. The sur-
rounding activity may also contain additional nodes to add further behavior, so
that developers have powerful means to express the behavioral composition of
the sub-services. Once complete, the service specifications are analyzed using

266 paper 8

RamsesArctisEngineer

Library

Model
Transformer

TLC Model
Checker

TLA
Generator

Syntactic
Inspectors

Editing

Code
Generator

Collaborative
Building Blocks

Compositional
Service Specifications

Executable State Machines
and Components

Code

UML 2.0 Activity ESM

Components

State Machines

Composition Transformation

1 2 3

UML 2.0 Collaboration Collaboration

Activity

Fig. 8.1: A coarse sketch of the SPACE engineering approach and its tool
support

model checking, as we will see later. Note that steps 1 and 2 can be executed
iteratively, over several hierarchies, as each composed collaboration can in turn
be abstracted by an ESM and used as a building block in more comprehensive
specifications.
In a third step, the collaborative service specifications are transformed automati-
cally into executable state machines and components by a model transformation.
From these models, executable code can be generated easily in a successive step.
So, the only manual work is done on the building blocks and their composition.

To ensure the consistency of the approach, the semantics of its languages, the
composition mechanisms as well as the model transformation, we use Herrmann’s
compositional Temporal Logic of Actions (cTLA, [HK00]) as formal framework.
We have formalized the activities [KH07a] as well as the state machines [KHB06].
The composition of service specifications can be reduced to the mechanism of
process couplings in cTLA and the model transformation is a formal refinement
step. Practitioners need not understand this formalism and they can focus on
SPACE as an approach devoted to support the rapid creation of services. The
approach relies on three principles to speed up development:

– Collaborative Building Blocks. By focusing on building blocks that
are not only components but entire collaborations covering behavior of
several components in a self-contained way, services may be composed
of sub-services. This facilitates reuse, as sub-services typically serve an
isolated task and are more likely to be useful in other applications than
entire components.

arctis and ramses: tool suites for rapid service engineering 267

– Model Transformations and Code Generation. By using automated
steps from the more abstract service specifications towards the implemen-
tation, consistency is ensured between the specifications and coding errors
are avoided. As state machines are generated automatically, a difficult and
time-consuming manual synthesis is omitted.

– Formal Analysis of Models. By analyzing the abstract service specifi-
cations both in syntax and via model checking, errors can be found early
during the development and on a high abstraction level, where problems
can be studied independent from implementation details.

To effectively support these concepts, we have tool support [Kra] in the form of
Arctis for the specification via collaborative building blocks as well as Ramses
for the implementation of executable state machines. Both tools are realized as
Eclipse plug-ins using the UML 2.0 repository of the UML2 project.

8.2 Support for Service Specifications in Arctis

To support the construction of building blocks consisting of activities, collabora-
tions and ESMs, Arctis offers special actions and wizards, for example to create
the skeleton of an ESM from an activity. In addition, a number of inspections
ensures the syntactical consistency of building blocks.

For composite building blocks, where activities with their partitions and call
behavior actions must be synchronized with the collaboration, special actions are
available to update each of them. For example, Arctis automatically generates
a corresponding activity for the behavioral specification of the composition. For
each collaboration role, an activity partition is created and each collaboration
use is represented by a call behavior action with its pins. This skeleton is then
completed manually with activity flows and nodes that model the extra logic
to couple the sub-collaborations. A number of inspections are executed on the
model to check a consistent syntax. To analyze more advanced properties, we
use model checking.

Model Checking. Because of the mapping from activities to cTLA presented
in [KH07a], each activity diagram corresponds to a temporal formula. With the
tool presented in [Sl̊a07], this formula can be generated in form of TLA+ [Lam02]
and used as input for the model checker TLC [YML99]. If a collaboration is
composed from sub-collaborations, we only use the abstract ESMs during model
checking. This reduces the state space significantly. The superposition principle
of cTLA as well as a formal refinement relationship between an activity and its
ESM guarantee that also the complete system behaves correctly.

Model checking requires knowledge that we do not expect from the users of
our tools. Therefore, not only the TLA specifications but also the theorems to
ensure correct activities are generated automatically, either based on simple as-
sertions in the form of stereotypes attached to the activity, or based on standard

268 paper 8

assumptions about what makes an activity well-formed. In addition, it is tech-
nically possible to project an error trace from TLC which documents erroneous
behavior back into the activity diagram as token movements. In this way, the
results of model checking can be given to the users, without them needing to
know about temporal logic.

Transformation to State Machines. To create executable systems, we imple-
mented an algorithm [KH07b] performing a model transformation from activities
to state machines. The basic idea of this algorithm is to cut an activity into its
partitions that correspond to different state machines. A token marking corre-
sponds to a control state of a state machine, and each token movement is mapped
to a state machine transition. The algorithm explores the state space of the ac-
tivities by a partial model checking and constructs the necessary state machine
transitions. For collaborations that have to be executed in several parallel ses-
sions within one component, the transformation creates session state machines
as described in [KBH07].

8.3 Support for State Machines and Compo-
nents in Ramses

The models used for the design and execution of services goes back to early
computer-controlled telecommunication systems and is based on communicat-
ing state machines. With its version 2.0, UML can be used to express such
models. As general UML state machines allow behaviors that can be diffi-
cult to implement, we defined in [KHB06] a number of constraints on state
machines, which may be ensured by syntactic inspections. In addition, state
machines can be analyzed using validation algorithms based on the work of
Floch [Flo03] and Sanders [San07]. These algorithms are currently developed
further as part of the SIMS project [SIM07]. Currently, Ramses includes
code generators [Kra03, Stø04] for various versions of the ServiceFrame plat-
form [BHM02], a framework based on the state machine execution mechanisms
of JavaFrame [HMP00].

8.4 Concluding Remarks

The functionality of Arctis will be expanded within the NFR-funded research
and development project ISIS (Infrastructure for Integrated Services, [ISI07]).
This project incorporates NTNU, HiA, Telenor, Tellu and Ericsson and is work-
ing on the development of service applications in the domain of mobile home
automation. One aim is to introduce further abstraction levels in Arctis and
develop the principle of creating services from reusable collaboration building
blocks. �

arctis and ramses: tool suites for rapid service engineering 269

Bibliography

[BHM02] Rolv Bræk, Knut Eilif Husa, and Geir Melby. ServiceFrame Whitepa-
per. Ericsson NorARC, Asker, Norway, April 2002.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and Vali-
dation using Roles. PhD thesis, Norwegian University of Science and
Technology, 2003.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling Trans-
fer Protocols. Computer Networks, 34(2):317–337, 2000.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame — Frame-
work for Java Enabled Modelling. In Proceedings of Ericsson Confer-
ence on Software Engineering, September 2000.

[ISI07] ISIS Project Website. http://www.isisproject.org/, 2007.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Service
Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed, ed-
itors, SDL 2007, volume 4745 of Lecture Notes in Computer Science,
pages 166–185. Springer–Verlag Berlin Heidelberg, September 2007.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Proceed-
ings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technol-
ogy), pages 129–133. IEEE Computer Society, 2006. 2nd International
Workshop on Service Composition (Sercomp), Hong Kong.

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Formalizing
Collaboration-Oriented Service Specifications using Temporal Logic.
In Networking and Electronic Commerce Research Conference 2007
(NAEC 2007), pages 194–220, USA, October 2007. ATSMA Inc.

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State Ma-
chines. In Karsten Ehring and Holger Giese, editors, Proceedings of
the 6th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2007), volume 7 of Electronic Com-
munications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Aligning
UML 2.0 State Machines and Temporal Logic for the Efficient Execu-
tion of Services. In R. Meersmann and Z. Tari, editors, Proceedings of
the 8th International Symposium on Distributed Objects and Applica-
tions (DOA), 2006, Montpellier, France, volume 4276 of Lecture Notes

270 paper 8

in Computer Science, pages 1613–1632. Springer–Verlag Heidelberg,
2006.

[Kra] Frank Alexander Kraemer. The Ramses and Arctis Tools.
http://www.item.ntnu.no/∼kraemer/tools.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[San07] Richard Sanders. Collaborations, Semantic Interfaces and Service
Goals: A Way Forward for Service Engineering. PhD thesis, Nor-
wegian University of Science and Technology, 2007.

[SIM07] SIMS Project Website. http://www.ist-sims.org/, 2007.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications in
TLA with TLC. Project Thesis, August 2007. Norwegian University
of Science and Technology, Trondheim, Norway.

[Stø04] Alf Kristian Støyle. Service Engineering Environment for AMIGOS.
Master’s thesis, Norwegian University of Science and Technology,
2004.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking
TLA+ Specifications. In L. Pierre and T. Kropf, editors, Proceedings
of the 10th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (CHARME’99),
volume 1703 of Lecture Notes in Computer Science, pages 54–66.
Springer-Verlag, 1999.

Part III

Appendices

APPENDIX

A

TOOL SUPPORT FOR THE RAPID
COMPOSITION, ANALYSIS AND

IMPLEMENTATION OF REACTIVE
SERVICES

Frank Alexander Kraemer, Vidar Sl̊atten and Peter Herrmann.

Submitted to a journal for review.

Tool Support for the Rapid Composition,

Analysis and Implementation of Reactive

Services

Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann

Abstract. We present the integrated set of tools Arctis for the rapid development
of reactive services. In our approach, services are composed of collaborative building
blocks that encapsulate behavioral patterns expressed as UML 2.0 collaborations and
activities. Due to our underlying semantics in temporal logic, building blocks as well as
their compositions can be transformed into formulas and model checked incrementally
in order to guarantee that important system properties are kept. The process of model
checking is fully automated. Error traces are presented to the users as easily under-
standable animations, so that no expertise in temporal logic is needed. In addition,
the results of model checking are analyzed, so that in some cases automated diagnoses
and fixes can be provided as well. The formal semantics also enables the correct, au-
tomatic synthesis of the activities to state machines which form the input of our code
generators. Thus, the collaborative models can be fully automatically transformed into
executable Java code. We present the development of a mobile treasure hunt system
to exemplify the approach and the tools.

A.1 Introduction

Reactive systems consist of numerous devices like controllers, sensors and com-
putation nodes which must be connected to provide services together that each
single unit could not render separately. Unfortunately, the coordination of units
often turns out to be more difficult than expected. One reason for that is the
reactive nature of most systems dealing with several actuators or users; often,
these systems follow a symmetric peer-to-peer structure in which several units
may take initiative simultaneously. This makes the modeling of system synchro-
nizations difficult and demands suitable modeling techniques.

Another inherent reason is the so-called cross-cutting nature of services. Ob-
viously, to execute a service, we need a description of its physically deployable
components. Their behavior can be expressed by means of state machines, as
for example offered by SDL [ITU02] or UML [Obj07]. A service, however, is
typically collaborative and spans across several components, and one compo-
nent participates in several services. This collaborative dimension is orthogonal
to that of components [Mik99]. If we only use component descriptions, services
are specified only indirectly by the combined behavior of its participating com-
ponents. In contrast, a more explicit description in the form of collaborations
(see, for example [SCKB05]), not only has the benefit that service behavior can
be understood and analyzed in isolation, but also opens new possibilities for

276 appendix a

Service Specifications
UML Collaborations,
Activities

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Library
Service Engineering
Composition of Services
from Building Blocks

x1 x2 x3

Code Generation

Model Transformation

Composition and Analysis
s

s

c1

c1

c2

c2

x1 x2 x3

x1 x2 x3

+

Fig. A.1: The SPACE Engineering Approach

the reuse of services as sub-functions provided by several components: Both, lo-
cal functionality and solutions to problems that require coordination of several
components, can be used directly in various applications.

Based on the idea to enable the reuse of collaborative, reactive behav-
ior in the form of building blocks, we developed the engineering approach
SPACE [KH06, KH07a, KH07b], depicted in Fig. A.1. To build a system, an
engineer considers a library of reusable building blocks. In contrast to more
traditional components, these building blocks may cover collaborative behavior
among several components. They are expressed as a combination of UML 2.0
collaborations, activities and so-called external state machines (ESMs) to doc-
ument their externally visible behavior. The building blocks are composed to
more comprehensive ones, until the system specification is complete. After an
analysis and potential corrections, the produced system specification is trans-
formed automatically into state machines which can be implemented via code
generation. The approach comprises three key features that speed up develop-
ment:

– The design of a service is facilitated by applying reusable building blocks
that are general or domain specific collaborations which can be integrated
into several system descriptions. Due to the abstract description via exter-
nal interfaces expressed by the ESMs, the internals of the building blocks
do not have to be considered when they are applied.

– Engineers only work on collaborative, horizontal models expressed by ac-
tivities. The component-oriented models expressed by state machines are

tool support for reactive services 277

Editor
Model

Transformer

Analyzer
TLC Model

Checker

Code
Generator

TLA
Formulator

Archiving for Reuse

Animation
and Fixes

Reuse Composition

UML Activities,
Collaborations

Library

UML State Machines Java Code

Fig. A.2: Overview of the tool support

derived fully automatically; a difficult and time-consuming manual syn-
thesis of state machines is not necessary.

– Due to the mathematical background in temporal logic, the compositions
and transformations are sound. Beyond that, model checking is possible.
Due to the compositional properties of the approach, building blocks can
be analyzed in separation which reduces the state space during model
checking. As there exist many general criteria for a sound behavior of
building blocks, the process of model checking can be automated, and
engineers do not need to deal with any formal technique directly.

The theoretical foundations of the approach are detailed in [KH07a, KH07b,
KHB06]. In the following, we focus on tool support for the approach, imple-
mented by the Arctis plug-ins, as depicted in Fig. A.2. Building blocks are
composed by engineers using the Arctis editor. The result can either be com-
posite building blocks or entire systems, which are also special forms of building
blocks. If desired, building blocks may be archived in the library for later reuse.
To analyze a building block, its UML activity is transformed into a temporal
logic formula and transferred to the TLC model checker [YML99]. It verifies
the specification against theorems that we will explain later. If a theorem is
violated, the analyzer tries to identify possible reasons and presents an error
trace as animation in the activity to the engineer. Once a system specification
is consistent and sound, it may be implemented automatically using a model
transformation and code generation.

We will proceed as follows: In the next section, we present how our example
of a mobile treasure hunt is composed from building blocks using the Arctis
editor. In Sect. A.3, we present how Arctis supports the analysis of specifications
by automating model checking and the provision of corrections in some cases.
The transformation from activities to state machines is explained in Sect. A.4,
and the code generation process is summarized in Sect. A.5. We close with an
overview of related approaches and concluding remarks.

A.2 Composing Services from Building Blocks

As an example we develop a mobile treasure hunt, first described in [SB08].
In this game, a player receives a riddle via SMS. The answer of the riddle is

278 appendix a

associated with a certain location in the town the game takes place. To an-
swer, the player does not reply via an SMS but tries to reach the location.
Via GSM/GPS/WLAN positioning of the mobile phone, the player’s position is
known to the system; once at the correct goal, the next riddle is sent out until
the final place is reached. To make the game more difficult, players must reach
the target location within a limited time. For the discussion, we consider the re-
alization for one player at a time. Using the mechanisms described in [KBH07],
this specification can be expanded to handle multiple users as well.

The system is specified by a UML 2.0 collaboration as shown in the screen-
shot in Fig. A.3. On this level, the collaboration roles (depicted by rectangles)
represent the components of the system. The location server is responsible for
the positioning of mobile subscribers. The sms gateway provides sms-based
communication from the users into the system and vice versa. We assume, that
these components are realized and managed by an external operator; for our
specification, they are therefore part of the environment, marked with a corre-
sponding stereotype. In contrast, the three other components are constituents
of the system we are going to implement. The game server is responsible for
coordinating the game, assisted by the proximity and riddle servers. The col-
laboration uses (depicted as ellipses) decompose the overall functionality of the
treasure hunt system into sub-services. Between the game server and the sms
gateway, collaboration uses s1: Single SMS Notification and s2: Send SMS re-
alize the necessary interaction with the player. Collaboration use p: Proximity
Alert refers to a three-way collaboration between the location server, the game
server and an additional proximity server. Within this collaboration, the prox-
imity server constantly monitors the position of the user and alerts the game
manager once the user is at a specified target.1 A dedicated collaboration to
query riddles from a data base is r: Riddle Generation.

A.2.1 Elementary Building Blocks

The services offered by the network operator are encapsulated within dedicated,
collaborative building blocks. In addition to the interface behavior towards the
operator’s servers, such building blocks may also contain local behavior that
simplifies the task to implement and integrate them with the rest of the system.

As UML collaborations and collaboration uses focus only on structural issues
like role binding, we use a combination of UML activities and ESMs (external
state machines) for the description of behavior. Figure A.4 shows the external
representation for the building blocks encapsulating behavior towards the opera-
tor.2 On the right side, they are shown in their instantiated form as call behavior
actions. These are constructs of UML activities and can be composed within
an enclosing activity, as we will see in Sect. A.2.2. The pins at their sides are
used to control their behavior. As activities can be understood by token flow

1The decision to realize the proximity server as a separate component can be motivated by
different reasons, for example a load analysis as explained in [BH93].

2The building block for the location tracking is used within collaboration Proximity Alert,
as we will see below.

tool support for reactive services 279

F
ig

.
A

.3
:

E
cl

ip
se

w
or

kb
en

ch
w

it
h

th
e

A
rc

ti
s

lib
ra

ry
br

ow
se

r
an

d
ed

it
or

280 appendix a

active
in:init/

in:send/

active

in:subscribe/

unsubscribing

in:unsubscribe/
/out:update+
in:unsubscribe

unsubscribing

/out:terminated

/out:update

active
in:subscribe/

/out:message

Fig. A.4: Building blocks provided by a network operator

semantics [Obj07], building blocks (instantiated as call behavior actions) are
controlled by tokens passing their pins. The call behavior action s1: Single SMS
Notification has only two pins: Input pin subscribe activates the block, awaiting
an incoming SMS. This is issued by a token passing through the terminating
output pin sms, which in turn deactivates the building block. As parameter,
subscribe carries the number agreed upon with the operator that subscribers use
to send in messages. Pin sms provides objects of type Message for each incoming
SMS.

To document the valid sequences in which these pins may be invoked, we use
the ESMs which are expressed by stereotyped UML state machines shown to the
left of each building block. The labels of the transitions refer to the pins that
a token passes. A slash distinguishes cause and effect, seen from the context
instantiating the building block. The prefixes in: and out: are used to refer to
input or output pins, respectively.

Following the description from above, the externally visible behavior of s1:
Single SMS Notification is triggered in its starting transition from the outside via
in:subscribe/ and eventually terminates via /out:sms which is triggered from the
inside of the building block, i.e, it is spontaneous. Similarly, the building block
s2: Send SMS is started via pin init. From then on, however, the client side
may continuously send text messages via sms. As this is a so-called streaming

tool support for reactive services 281

node presented in black, tokens may pass while the block is active.
The block for the location tracking is a bit more complex. After a subscrip-

tion that tells which mobile user (identified by a mobile subscriber ID, MSID)
should be tracked, the client continuously receives updates while the subscriber
moves via streaming pin update. This is expressed by the spontaneous self-
transition /out:update which has state active as source and target. Once the
client is not interested in location data anymore, it may invoke pin unsubscribe,
upon which the building block unsubscribes from the location server and termi-
nates via terminated. The ESM also allows that an update is combined with an
simultaneous unsubscribe via transition out:update/in:subscribe. This is useful
when the reception of an update should be taken as trigger to unsubscribe.

The ESMs describe the behavior of the building blocks so that engineers may
instantiate and compose them to build more comprehensive services, without
looking at their internals. Furthermore, during the analysis of a building block
via model checking, the behavior of the building blocks it consists of is abstracted
by the ESMs as well, effectively reducing the state space. The internals of
building blocks are only needed when components and their state machines are
generated and are described by UML activities, as we will see in the next section.
The building blocks are stored within a UML repository managed by Arctis.
As each building block is a combination of a UML collaboration, an activity
and an ESM, Arctis provides an editor that keeps these three views consistent.
Syntactic inspections warn if any conventions are violated. Building blocks may
be searched via the library of building blocks shown on the left hand side of
Fig. A.3.

A.2.2 Composing Building Blocks

To create more comprehensive services from elementary building blocks, UML
activities are used to describe their precise behavioral composition. As an ex-
ample, we consider the collaboration for the proximity alert as described by the
activity in the lower part of Fig. A.5. (The figure shows a premature design
which we will analyze and improve in Sect. A.3.) The task of this sub-service is
to notify the client once a mobile user reaches a certain target position. Each
participant of the collaboration is represented by an activity partition. Prox-
imity alert refers to the location tracking service, represented by call behavior
action t. The client starts the sub-service by providing the MSID of the player to
track and the target location, encapsulated by an object of type Tracking Target.
When the tracking target arrives at the proximity server, it passes a fork node
which duplicates the token. One copy follows the lower edge to the operation
extractLocation in which the location is extracted and stored in the variable tar-
get. Within the same step, the other copy follows the upper flow leaving the
fork so that MSID is extracted from the tracking target and the track location
is started. From then on, the track location emits a token carrying the current
location via update every time the subscriber changes position. This updated
location is compared in the boolean operation closeEnough with the target lo-
cation stored in the variable target. If the position is not yet close enough to

282 appendix a

active

in:observe/

finishing

/out:alertin:unsubscribe/

/out:finished
finishing

Fig. A.5: First solution of the proximity alert

the target, the false branch is chosen and the flow ends in the flow final node.
If, however, the position is close enough to the target, the else branch is cho-
sen, which notifies the client via alert. Within the same step, a token is pushed
through unsubscribe of t, so that no more updates are received. Unsubscribe
tokens coming from the enclosing context are directly forwarded to the location
tracker. Likewise, the termination of t is forwarded to the client.

To create the specification, the location building block may simply be dragged
into the editor. Arctis manages the assignment to activity partitions based on
the role binding of the collaborations. As UML does not provide a language
syntax to describe actions executed within the operations like closeEnough, the
editor also maintains a Java file for each partition that contains corresponding
methods which may be edited by the service engineer.

tool support for reactive services 283

A.3 Automated Model Checking and Analysis

To analyze building blocks and complete systems, the Arctis editor constantly
checks the model for a number of syntactic constraints. For a more thorough
analysis of the behavior, Arctis employs the model checker TLC [YML99] based
on the Temporal Logic of Actions (TLA, [Lam02]). Fig. A.2 outlines this process:
When a building block is complete and syntactically correct, Arctis transforms
the UML activity into TLA+, the language for TLA, and starts the model checker
TLC. If TLC reports an error, our tool visualizes the error trace and analyzes
the results; in some cases, it provides diagnostics and proposes fixes that the
user may apply. In the following, we will describe the details of this process by
analyzing the proximity alert collaboration sketched in Fig. A.5.

A.3.1 Semantics in Temporal Logic

TLA specifications are structured as TLA+ modules that describe behavior as
sequences of steps. This mathematical interpretation fits well with the more
graphical representation of activity behavior as token flows; stable states in which
tokens rest in places are represented by the variables of a TLA specification, and
the token movements are specified by TLA actions (see [KH07a]). Figure A.6
lists the TLA+ module for the proximity alert, as generated by Arctis.3 In
its second line, the module declares the variables representing the states of the
specification, followed by their initial values given by Init. After that, the TLA
actions are declared, expressing the behavioral steps. The Next statement as well
as Spec define the actual specification as the disjunction of all of these actions.
The last part states some theorems which we will explain below. For details, we
refer to [Lam02]. As we focus on the analysis of the coordination of concurrent
behavior, we ignore in our TLA model the UML variables of the specification
(like target in Fig. A.5) and UML operations on it. We therefore look at the
version of the proximity alert in Fig. A.7, to make the discussion easier to follow.

Due to the refinement semantics employed in SPACE [KH07a], TLA actions
are formulated in such a way that tokens only rest on places where they wait for
other events to happen. This can be the expiration of a timer or the arrival of
another token in a partition. For the proximity alert, tokens rest at the flows that
cross partitions between client and proximity server, illustrated by the circles
q1..q4, and represented in the TLA+ module by the corresponding variables.
We assign integers to them saving the number of tokens in the corresponding
place. In addition, the ESM state of the location tracking building block is
represented by variable t. This means, when analyzing the proximity alert, we do
not consider the internal details of the location tracking, which reduces the state
space. As the collaboration is open, that means, depends on the interactions
from the enclosing context, we represent the variable of the enclosing ESM by
variable esm.

3For readability, we adjusted the automatically derived names of variables and actions.

284 appendix a

module ProximityAlert
extends Naturals
variables q1, q2, q3, q4, t , esm

Init
∆
=

∧ q1 = 0 ∧ q2 = 0 ∧ q3 = 0 ∧ q4 = 0
∧ t = “off” ∧ esm = “off”

observe
∆
=

∧ esm = “off” ∧ esm ′ = “active”
∧ q1′ = q1 + 1
∧ unchanged 〈q2, q3, q4, t〉

subscribe
∆
=

∧ q1 > 0 ∧ q1′ = q1− 1
∧ t = “off” ∧ t ′ = “active”
∧ unchanged 〈q2, q3, q4, esm〉

update
∆
=

∧ t = “active” ∧ t ′ = “terminating”
∧ q2′ = q2 + 1
∧ unchanged 〈q1, q3, q4, esm〉

unsubscribe
∆
=

∧ esm = “active” ∧ esm ′ = “finishing”
∧ q3′ = q3 + 1
∧ unchanged 〈q1, q2, q4, t〉

unsubscribe2
∆
=

∧ q3 > 0 ∧ q3′ = q3− 1
∧ t = “active” ∧ t ′ = “terminating”
∧ unchanged 〈q1, q2, q4, esm〉

alert
∆
=

∧ q2 > 0 ∧ q2′ = q2− 1
∧ esm = “active” ∧ esm ′ = “alerted”
∧ unchanged 〈q1, q3, q4, t〉

term1
∆
=

∧ t = “terminating” ∧ t ′ = “off”
∧ q4′ = q4 + 1
∧ unchanged 〈q1, q2, q3, esm〉

term2
∆
=

∧ q4 > 0 ∧ q4′ = q4− 1
∧ esm = “finishing” ∧ t ′ = “finished”
∧ unchanged 〈q1, q2, q3, t〉

Next
∆
=

∨ observe ∨ unsubscribe ∨ unsubscribe2
∨ alert ∨ subscribe ∨ update
∨ term1 ∨ term2

Spec
∆
= Init ∧ ![Next]〈q1, t, q3, q2, esm〉

t deadlock
∆
= ! ∨ enabled (Next)

∨ esm = “finished”

t bounds
∆
= ! ∧ (q1 ≤ 5) ∧ (q2 ≤ 5)

∧ (q3 ≤ 5) ∧ (q4 ≤ 5)

t q1
∆
= !((q1 > 0) ⇒ (t = “off”))

t q2
∆
= !((q2 > 0) ⇒ (esm = “active”))

t q3
∆
= !((q3 > 0) ⇒ (t = “active”))

t q4
∆
= !((q4 > 0) ⇒ (esm = “finishing”))

Figure 1: TLA Module

1

Fig. A.6: TLA+ module for the semantics of ProximityAlert

In the initial state (declared by Init) all queues are empty (q1..q4 = 0) and
the ESM of t as well as the enclosing ESM are in state off.4 In this state, only
action observe is enabled and can be executed. Actions refer to pairs of states,
where unprimed variables (like q1) model the current state and primed variables
(like q1′) refer to the next state. Consequently, action observe describes that
the enclosing ESM changes from off to active and a token is placed into queue
q1. In the UML activity, this corresponds to a token entering via observe and
flowing into the transmission medium between the client and proximity server.

The other actions represent the residual steps our specification describes.
Thus, subscribe models the arrival of a token in the proximity server upon which
the location tracking is started. Action update represents that a new location
arrived, upon which the client is notified via q2 anf the location tracking is termi-

4When used as instantiated building blocks, the initial ESM state and all final states are
mapped to the single state off, representing an inactive block. For the enclosing ESM of the
main activity, we distinguish between the initial state off and the terminated state finished to
reason about the life-cycle, as we will later see.

tool support for reactive services 285

q1

q2

q3

q4

Fig. A.7: Simplified Proximity Alert without data

nated.5 Actions unsubscribe and unsubscribe2 describe how the client terminates
the subscription to the proximity alert. Actions term1 and term2 model how
a termination by the client propagates towards the server, and alert represents
the notification of the client once the target is reached.

A.3.2 Theorems for Correct Building Blocks

A number of behavioral properties should hold for any building block. To check
them, Arctis adds theorems to the TLA specification, as listed in the last com-
partment of Fig. A.6.

– To prevent communication errors, queue places between partition borders
must be bounded. To detect violations, we state with theorem t bounds
that q1 to q4 must not exceed a certain number, here chosen to be 5. This
has to hold in any state of the specification, which is expressed by the
temporal operator � (always).

– A building block must be free of deadlocks, in which it does not reach any
of its final states. This is covered by theorem t deadlock, which states that,
at any time, the building block must either have reached a final state of its
ESM (encoded as finished), or that one of its actions has to be enabled.

– The sub-activities within a building block must be used according to the
ESM, so that pins are traversed only in the allowed order. In particular,
this means whenever there is a token that can flow into a pin of the sub-
activity, its ESM has to be in a state that accepts this token. For our
example this means that whenever a token is in queue q1 that could enter

5An update not matching the target location corresponds to a step without state change
which we left out for brevity.

286 appendix a

t via subscribe, then the ESM of t (see Fig. A.4) must be in state off, as
an entry via subscribe would activate it. Similarly, whenever a token from
q3 could unsubscribe, t has to be in state active. These constraints are
expressed by theorems t q1 and t q3.

– As the internal behavior of a building block must correspond to its exter-
nal description, similar theorems are created for the enclosing ESM. For
instance, whenever a token in q2 could traverse via alert, the enclosing
ESM (see Fig. A.5) has to be in state active, expressed by t q2. Theorem
t q4 works accordingly.

In addition to the general well-formedness properties described above, users may
add application-specific constraints in form of assertions expressed by dedicated
stereotypes in the UML activities. Examples for such properties are how often
certain operations may or must be executed, or if certain operations are mutual
exclusive.

A.3.3 Error Trace Animation in Arctis

Arctis generates the TLA+ module as described above and invokes the TLC
model checker. During the generation of the TLA+ module, a map from the
variable names used in TLA to the elements of the activity is constructed. There-
fore, if TLC reports that theorems are violated, our tool parses the textual error
trace provided by TLC and maps each state back into the original activity di-
agram. Figure A.8 shows the Arctis editor after TLC reported that a theorem
was violated. With a control bar, the user can jump through the error trace,
animated by tokens in the editor. The state of the activity and each of its build-
ing blocks are represented by the corresponding ESM states. In addition, the
pins of t and the parameter nodes6 of the enclosing activity are marked based
on their corresponding ESM states: A node that may release a token is marked
yellow, while one that must not be passed by a token is shown with a red cross.

– In the initial state 1, a token may enter the activity via observe (in yellow)
and place a token in queue q1. This changes the enclosing ESM to active,
and state 2 is reached.

– In state 2, the client may send an unsubscribe, placing a token into q3.

– In state 3, TLC reports that theorem t q3 is violated. We can see, that the
token in q3 could enter the ESM of t via unsubscribe. The ESM, however,
is in state off, because the token that should activate it still resides in q1.

6Conceptually, UML distinguishes between parameter nodes that are at the border of ac-
tivities and pins which represent parameter nodes once the activity is instantiated as call
behavior action. Both are represented by the same symbols.

tool support for reactive services 287

State 1

State 2

State 3

(initial)

q1

q2

q3

q4

q1

q2

q3

q4

q1

q2

q3

q4

Fig. A.8: Visualization of TLC’s error trace in Arctis

288 appendix a

Fig. A.9: Suggested improvement by Arctis with sequencing

A.3.4 Automatic Diagnose and Fixes

The presentation of the traces within the editor is already helpful, especially as
users do not have to consider any temporal logic formulas. In addition, Arctis
can in many cases provide a more distinct diagnosis and suggest improvements.
For that, each violated theorem triggers a number of pattern searches that take
the UML activity as well as TLC’s error trace as input. In the example, Arctis
detected a match for the situation that a token overtakes another one during the
transmission between partitions: Between state 2 and state 3, q3 is filled while
q1 has not yet been emptied. This may be intended by the designer. The fact,
that the token arriving in q3 harms a theorem, however, is a reason for Arctis
to report this situation.

As a remedy, Arctis proposes to add a sequencing construct, so that a token
in q3 can only proceed towards unsubscribe after q1 was consumed. The altered
design is shown in Fig. A.9, after Arctis added an additional fork, a join node
and a timer.7 Before a token can move from q3 into unsubscribe of t, it has to
wait in the join node until the other incoming flow can offer a token. This may
only happen after a token was consumed from q1, which enforces the desired
sequence. The additional timer prevents that tokens attempt to pass through
subscribe and unsubscribe within the same step.

A.3.5 A Building Block to Handle Mixed Initiatives

We let Arctis analyze the improved design. After a new analysis, Arctis reports
that a theorem was violated and presents the error trace. For brevity, we directly
consider its last state shown in Fig. A.10. We can see that in this state, a player
must have reached the target position, as one token is in queue q2. This token

7While elements are added and connected automatically, it is up to the user to adjust their
layout.

tool support for reactive services 289

q1

q2

q3

q4

Fig. A.10: New error situation in the altered design

may have only arrived there via pin update of t. However, in the meantime,
the client has chosen to unsubscribe, since the join node following q3 contains a
token as well. This reveals a situation that is typical for systems in which several
active components may take initiatives at the same time, due to the buffered
communication. These two initiatives are in conflict. Once identified, such a
situation can be handled by assigning primary and secondary priorities to the
conflicting partners. An initiative from the primary side is accepted in all cases.
For the secondary side, this means that it must be prepared to receive a primary
initiative even after it issued an initiative itself, and obey the primary one; the
secondary is in this case discarded. The solution may sound trivial, but such
situations are intricate to get right, as the generic solution is combined with the
complexity of the rest of the application. Thus, often it is not treated with the
appropriate care.

As mixed initiatives are so common in this kind of system, we provide special
building blocks in our library that solve such situations (see also [KSH07]). In
the following, we present one in which the side that starts the interactions has
secondary priority, called Mixed Initiative Secondary Starter, MISS for short.

The internal behavior is represented by a network of activity nodes that
implements the desired behavior, shown in Fig. A.11. This activity appears quite
complex on the first glance. However, an engineer using this building block never
has to look at the inside as presented here; the external description is sufficient.
It is given by two local ESMs in Fig. A.12 that describe the external behavior
on each of the participants of the building block. The side with secondary
priority starts the block. If the primary side takes initiative, the block eventually
terminates on the secondary side via primWins. If the secondary side takes its
initiative (in the treasure hunt this means that the timer expired), it has to wait

290 appendix a

Fig. A.11: Building block to handle mixed initiatives

«esm» stm secondary

started
in:start/

waiting

/out:primWins in:secInitiative/

/out:secAccepted/out:secOverruled

started
/out:started

/out:secWinsin:primInitiative/

«esm» stm primary

Fig. A.12: Local ESMs for both participants of MISS

for the primary side to either confirm via secAccepted or, if the primary side took
initiative in the meantime, be overruled and receive a secOverruled. The ESM
for the primary side is easier, as its initiative always succeeds, and no waiting
for a confirmation in necessary.

For the proximity alert, we apply the mixed initiative block with the starting
secondary side assigned to the client, as shown in Fig. A.13. In the strict sense,
this means a slight advantage for the players, as an arrival is counted if the cor-
responding notification reaches the proximity server before the timeout. Later,
during the usage of the proximity alert, we need to know if the initiative of the

tool support for reactive services 291

Fig. A.13: Correct Proximity Alert with the Mixed Initiative Building Block

«esm» stm Proximity Alert

active

in:observe/

/out:alert in:unsubscribe/

unsubscribing
/out:alertAnyhow/out:end

Fig. A.14: ESM for the corrected proximity alert

client was overruled. Therefore, we propagate this via the ESM of the proximity
alert in Fig. A.14 using alertAnyhow. The introduction of a building block to
handle this situation makes this design choice explicit. If we want to change this
policy (so that for example the arrival of the player should get priority over the
unsubscription), we would simply replace this block by one in which the primary
side starts and assigns the corresponding roles to the proximity server and the
client.

A.3.6 The Complete Treasure Hunt System

The complete behavioral system is described by the activity in Fig. A.15. Each
collaboration use from the system collaboration from Fig. A.2 is represented by
a corresponding call behavior action (s1, s2, p, r). In addition, it contains two

292 appendix a

auxiliary activity blocks t2: Timer to meassure time and c: Countdown as a
decrementing counter. These blocks are local to the game server and help to
describe the composition between the other collaborations. Therefore, Arctis
draws them in blue.

At startup, s1, s2 and counter c are initialized as tokens are emitted from
the three initial nodes i1..i3. Then, the single SMS notification s1 is waiting
for an incoming SMS to start a game. Once it arrives, the player’s MSID is
extracted, upon which a welcome message is produced and sent out via s2.
Within the same step, the riddle generator r is queried for the first riddle. It
answers by issuing the next target, the granted time for the completion as well
as the question in form of an SMS message. The target is used to start the
proximity alert collaboration p. In the same step, timer t2 is started with the
granted time as input and the question is sent out to the player. It is now up
to the player to move fast enough to the right target, upon which the proximity
alert terminates via alert, which stops the timer. In addition, a token is sent
through the countdown, which determines if more riddles should be sent out. In
this case, after decreasing its internal counter, it directs the token to continue,
which triggers another round. Otherwise, the game is ended successfully and a
message is sent to the player. In case the player arrives too late at the target, the
timeout from t2 causes an unsubscribe from the proximity alert and the player
is notified that the game is lost.

A.4 Automated Transformation

The UML activities of the building blocks together with the Java methods for
the content of the call operation actions constitute a complete system descrip-
tion. To split this description into separate components, the activities have to be
transformed into executable state machines that can be implemented via code
generation to run on our execution platforms, as we will detail in Sect. A.5. Some
concepts found in activities have their direct correspondence in state machines.
Call operation actions are executed as operations that are part of a transition.
Operations on variables stay largely unchanged, and decisions in activities map
to choice pseudostates in a state machine. The remaining concepts, however,
are fundamentally different (see [KH07b]):

– In contrast to the explicit control states of state machines, activities rep-
resent their states indirectly via the different token markings that occur
during the execution. The transformation has to find all reachable token
markings and map them to control states.

– The token movements must be mapped to transitions of state machines.
There is, however, no one-to-one mapping between activity flows and state
machine transitions either. Depending on the markings, one flow may have
to be represented by several state machine transitions. This is the case for
join nodes, where tokens have to wait until all incoming edges can fire.

tool support for reactive services 293
i1 i2

i3

F
ig

.
A

.1
5:

C
om

pl
et

e
sy

st
em

sp
ec

ifi
ca

ti
on

of
th

e
tr

ea
su

re
hu

nt
(s

cr
ee

n
ca

pt
ur

e)

294 appendix a

– As components communicate via buffered message exchange, flows crossing
partition borders have to be split up and translated into corresponding
signal transmissions. If a flow carries objects, signal types have to take
these objects as payload.

The search for reachable markings implies a state space exploration of the sys-
tem’s specification. To reduce the state space, we employ a strategy that, similar
to our strategy in model checking, utilizes the external behavior of the building
blocks as described by ESMs. Only one state machine is produced at a time.
Therefore, we only need to consider those building blocks with its internals that
directly contribute to the state machine under construction. The other building
blocks are abstracted by their ESMs. When we create the state machine for the
game server, for example, we may disregard the internals of t: Track Location,
while the other building blocks need to be integrated. To generate the state ma-
chine for the proximity server, only the building blocks for the mixed initiative
and the location tracking have to be seen from the inside.

The detailed algorithm to construct the state machine transition identifies
the events within a partition that correspond to events in state machines. These
are the expiration of timers and the arrival of signals (resp. tokens entering a
partition). By traversing the activity graph and taking into account the current
marking, the state machine transition is constructed successively. The details
of the algorithm are explained in [KH07b]. In the following, we illustrate the
transformation process for the game server component.

A.4.1 State Machine for the Game Server

Figure A.16 shows the state machine automatically produced by the Arctis trans-
formation from the activity of Fig. A.15. As general UML state machines can
be used in various ways, we describe in [KHB06] rules for transitions so that the
state machines may be executed efficiently. For example, each transition with
exception of the initial one must be scheduled by a signal or a timeout. The
application of these rules is noted by the stereotype executable.

The initial transition, initializes the counter and starts the SMS notification,
whereupon the state machine changes into state state 1 and waits for an incom-
ing SMS. Once the SMS arrives, the MSID of its sender is extracted, from which
a welcome message is generated that is sent back to the player. Within the same
transition, the riddle server is queried for a new riddle via signal GetRiddle8.
This implements the flow in Fig. A.15 starting within s1 via pin sms. In a simi-
lar way, the other flows in Fig. A.15 are transformed into transitions of the state
machine of Fig. A.16.

The generated state machine handles the mixed initiative between the timer
and the alert correctly. This is visible in control state state 4, reached after a
timeout, where the state machine is prepared to receive both an acknowledge-
ment of the timeout as well as a primary initiative modeling the arrival of the
player at the target.

8The signal names are derived from the names of activity edges, not shown here.

tool support for reactive services 295
«e

xe
cu

ta
bl

e»
 s

tm
 G

am
e

Se
rv

er

F
ig

.
A

.1
6:

E
xe

cu
ta

bl
e

st
at

e
m

ac
hi

ne
fo

r
th

e
ga

m
e

se
rv

er
ge

ne
ra

te
d

by
A

rc
ti

s

296 appendix a

A.4.2 Correctness of the Transformation

Obviously, it is important that the generated state machines behave exactly as
implied by the activities of the specifications. To ensure this, we use temporal
logic as well. Similar to the semantics of activities presented in Sect. A.3.1,
we defined formal semantics of the executable state machines in temporal logic
in [KHB06]. A system of state machines can therefore be presented as a TLA
specification SpecE . As the implementation relation corresponds to logical im-
plication in TLA, we have to prove that SpecE ⇒ SpecA holds, where SpecA
is the TLA specification of the system as expressed by activities (see [KH07a]).
This relationship can be shown by a TLA refinement proof as demonstrated
in [Kra08]. The necessary refinement mapping [AL91] is easy to find using the
guidelines described in [KH07b]. Note, however, that such a reasoning is only
necessary to ensure the soundness of the transformation once. During the imple-
mentation of systems, the service engineers can then rely on the tool to execute
the transformation correctly.

A.5 Code Generation from State Machines

The mechanisms for the execution of state machines go back to principles
found in telecommunication systems [BHS81] and use a run-time support sys-
tem that schedule the execution of the state machine transitions, further de-
scribed in [KHB06]. Through this additional level of multiplexing, many state
machine instances can be executed within the same operating system thread,
which is important for systems to scale. While these mechanisms can be imple-
mented on a variety of platforms, we focus currently on Java and use the Ser-
viceFrame/ActorFrame execution platforms [BHM02]. These frameworks take
care of addressing and routing. The implementation and scheduling of state ma-
chine transitions are based on JavaFrame [HMP00]. Code for these frameworks
is generated automatically with the tool described in [Kra03, Stø04]. The code
generator creates OSGi bundles for the components that can be deployed on
different machines.

A.6 Related Approaches

A number of other tools combine UML modeling with formal analysis tech-
niques. The majority of these approaches directly uses state machines as the
main specification units. HUGO [KM02], for example, verifies UML state ma-
chines against UML interactions using the SPIN model checker [Hol03], and
UPPAAL [LPY97] to check real-time properties. Fujaba [BGHS04] uses so-
called real-time state charts that represent behavioral patterns and utilizes HUp-
paal [ABB+01] for their verification. The specifications in OMEGA [Hoo02] are
based on state machines as well. Using the model checker IF [BGM02], they
are verified against properties expressed by special observer state machines, as
described in [OGO04].

tool support for reactive services 297

Analysis of activities is done for example in [GM05] via SPIN. In [DS03],
UML activities analyzed using π-calculus. Safety and liveness properties are
expressed using the modal mu-calculus and checked using the MWB tool [VM94].
Similarly, Eshuis [Esh06] uses the model checker NuSMV to check the consistency
of activity diagrams. The difference of these approaches to ours lies mainly in
the semantics employed for the activities and the domain of application. While
they focus on activities more from a perspective of business processes assuming a
central clock or synchronous communication, we need for our activities reactive
semantics [KH07a] reflecting the transmission of asynchronous messages between
distributed components.

There are other tools that present the results of a model checker in terms of a
graphical model. vUML [LP99] automatically creates PROMELA specifications
from UML state charts and model checks them using SPIN. Like us, they mostly
check general properties that the users do not specify manually, but they also
allow to declare certain states as erroneous or desired goals. Any error traces
are presented as sequence diagrams. Another tool is Theseus [GCKK06] which
visualizes error traces from the SPIN and SMV model checkers onto UML 1.4
state chart diagrams, and also generates UML sequence diagrams from the trace.
While both of the above tools visualize the trace, they do not try to find a reason
for the error. Moreover, as error traces are presented as sequence diagrams, the
user has manually find the relation to the original source model. In our case,
errors are visible within the same editor used to create the specification.

In [FF06], a method is proposed for visualizing soundness violations of work-
flow Petri nets [vdA98], detected by the Woflan tool [vdA99], in the WoPeD
tool [wop08]. Soundness violation is separated into five violation classes and a
list of eleven error reasons is presented. In the case of a violation, the violating
nodes are highlighted with the violation class and the error reason. If a violation
is caused by a certain firing sequence of the net, an animation can be shown.
Since this approach works on workflow Petri nets, it is quite close to the UML
activities used in our case. However, similar to the works on activities mentioned
earlier, focus lies on business processes, not on distributed, reactive components
with asynchronous communication.

The tool support provided by the SIMS project uses collaborations as well,
albeit in a form that is complementary to the current approach in Arctis. In
SIMS, elementary collaborations describe a pair of behavioral interfaces [CFS08].
These can be connected within composite collaborations to describe, how an
overall service goal may be achieved. Engineers are supported by validation
algorithms that check compliance of state machines with behavioral interfaces.
However, these state machines have to be constructed manually.

The SDL pattern tool (SPT, [DEG04]), supports the integration of patterns
into SDL designs. The patterns are integrated within the component oriented
perspective expressed by SDL processes. In contrast to our encapsulated building
blocks, patterns are expressed as SDL fragments that have to be integrated into
the state machine under construction.

298 appendix a

A.7 Concluding Remarks

Arctis is used and advanced within the applied research project ISIS (Infrastruc-
ture for Integrated Services) funded by the Research Council of Norway. In this
project we develop methods, tools and platforms for the rapid specification and
deployment of services in the domain of home automation. We believe that the
collaboration-oriented approach underlying Arctis is ideal in this setting: While
there exists a number of rather stable sub-services that provide some basic func-
tionality, it is the challenge to compose them quickly as demonstrated in the
example. Obviously, the development time of a reuse-based approach depends
heavily on which building blocks already exist. For the presented system, we
could reuse the blocks for SMS communication and location tracking as well as
the one to handle mixed initiatives from previous projects. Therefore, editing
the entire system as presented in Fig. A.13 and A.15 took us less than one hour.

In our opinion, the specification style supported by our approach is quite
intuitive. The main specification of the system as depicted in Fig. A.15 is very
close to an informal functional description that can be the result of a require-
ments analysis. It focuses on the distribution of responsibilities and decomposes
the system according to its sub-functions. In contrast, state machines (which in
our approach are never read by humans) provide a less comprehensive view. To
understand them, detailed signal transmission must be considered, and elements
related to a single function (like counters, timers or the coordination of mixed
initiatives) are mixed with each other. In activities, on the other side, related
functions are encapsulated within building blocks.

For the analysis, we follow the strategy proposed by Rushby in “Disappear-
ing Formal Methods” [Rus00], to hide formal methods in tools in such a way
that users are not directly concerned with them. In our experience, this strategy
not only reduces the threshold to analyze models thoroughly. This an incentive
for the use of rigorous modeling in the first place and integrates well with the
paradigms of the Model-Driven Architecture (MDA, [Obj03]). Based on case
studies within the ISIS project, we are currently expanding the analytical capa-
bilities of Arctis, so that more automated fixes and corrections can be offered.
That gives even better assistance to the engineers which, in consequence, reduces
development time further. �

Bibliography

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R.
D’Argenio, Alexandre David, Ansgar Fehnker, Thomas Hune,
Bertrand Jeannet, Kim G. Larsen, M. Oliver Möller, Paul Petters-
son, Carsten Weise, and Wang Yi. UPPAAL: Now, Next, and Future.
In Modeling and Verification of Parallel Processes, volume 2067 of
Lecture Notes in Computer Science, pages 99–124. Springer-Verlag,
2001.

tool support for reactive services 299

[AL91] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement
Mappings. Theoretical Computer Science, 82(2):253–284, May 1991.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental Design and Formal Verification with UML/RT in the
FUJABA Real-Time Tool Suite. In Proc. of the International
Workshop on Specification and Validation of UML Models for Real
Time and Embedded Systems, SVERTS2004, Satellite Event of the
7th International Conference on the Unified Modeling Language,
UML2004, pages 1–20, October 2004.

[BGM02] Marius Bozga, Susanne Graf, and Laurent Mounier. IF-2.0: A Val-
idation Environment for Component-Based Real-Time Systems. In
CAV ’02: Proceedings of the 14th International Conference on Com-
puter Aided Verification, volume 2404 of Lecture Notes in Computer
Science, pages 343–348. Springer-Verlag, 2002.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall, 1993.

[BHM02] Rolv Bræk, Knut Eilif Husa, and Geir Melby. ServiceFrame Whitepa-
per. Ericsson NorARC, Asker, Norway, April 2002.

[BHS81] R. Bræk, O. Helle, and F. Sandvik. SOM — A SDL Compatible
Specification and Design Methodology. In 4th International Con-
ference on Software Engineering for Telecommunication Switching
Systems, Conventry, volume 198, pages 111–117, July 1981.

[CFS08] Cyril Carrez, Jacqueline Floch, and Richard Sanders. Describing
Component Collaboration using Goal Sequences. In René Meier and
Sotirios Terzis, editors, Distributed Applications and Interoperable
Systems - Proceedings of DAIS 2008, Oslo, Norway, volume 5053 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2008.

[DEG04] Jörg Dorsch, Anders Ek, and Reinhard Gotzhein. SPT - The SDL
Pattern Tool. In Daniel Amyot and Alan W. Williams, editors, Sys-
tem Analysis and Modeling, 4th International SDL and MSC Work-
shop, SAM 2004, Ottawa, Canada, June 1-4, 2004, Revised Selected
Papers, volume 3319 of Lecture Notes in Computer Science, pages
50–64. Springer, 2004.

[DS03] Yang Dong and Zhang Shensheng. Using π-Calculus to Formalize
UML Activity Diagram for Business Process Modeling. In Proceed-
ings 10th IEEE International Conference and Workshop on the En-
gineering of Computer-Based Systems, pages 47 – 54, Huntsville, AL,
USA, 2003.

300 appendix a

[Esh06] Rik Eshuis. Symbolic Model Checking of UML Activity Dia-
grams. ACM Transactions on Software Engineering and Method-
ology, 15(1):1–38, 2006.

[FF06] Christian Flender and Thomas Freytag. Visualizing the Soundness of
Workflow Nets. In Proceedings 13th Workshop Algorithms and Tools
for Petri Nets, AWPN, pages 47–52, Hamburg, Germany, 2006.

[GCKK06] Heather Goldsby, Betty H. C. Cheng, Sascha Konrad, and Stephane
Kamdoum. A visualization framework for the modeling and formal
analysis of high assurance systems. In MoDELS, pages 707–721,
2006.

[GM05] Nicolas Guelfi and Amel Mammar. A Formal Semantics of Timed
Activity Diagrams and its PROMELA Translation. In APSEC ’05:
Proceedings of the 12th Asia-Pacific Software Engineering Confer-
ence (APSEC’05), pages 283–290, Washington, DC, USA, 2005.
IEEE Computer Society.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame — Frame-
work for Java Enabled Modelling. In Proceedings of Ericsson Con-
ference on Software Engineering, September 2000.

[Hol03] G.J. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, 2003.

[Hoo02] Jozef Hooman. Towards Formal Support for UML-based Develope-
ment of Embedded Systems. In Proceedings PROGRESS 2002 Work-
shop, STW, 2002.

[ITU02] ITU-T. Recommendation Z.100: Specification and Description Lan-
guage (SDL), August 2002.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Ser-
vice Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed,
editors, SDL 2007, volume 4745 of Lecture Notes in Computer Sci-
ence, pages 166–185. Springer–Verlag Berlin Heidelberg, September
2007.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specifica-
tion by Composition of Collaborations — An Example. In Pro-
ceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133. IEEE Computer Society, 2006. 2nd
International Workshop on Service Composition (Sercomp), Hong
Kong.

tool support for reactive services 301

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Formalizing
Collaboration-Oriented Service Specifications using Temporal Logic.
In Networking and Electronic Commerce Research Conference 2007
(NAEC 2007), pages 194–220, USA, October 2007. ATSMA Inc.

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State
Machines. In Karsten Ehring and Holger Giese, editors, Proceedings
of the 6th International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT 2007), volume 7 of Electronic
Communications of the EASST. EASST, 2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Pro-
ceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, volume 4276
of Lecture Notes in Computer Science, pages 1613–1632. Springer–
Verlag Heidelberg, 2006.

[KM02] Alexander Knapp and Stephan Merz. Model Checking and Code
Generation for UML State Machines and Collaborations. In
G. Schellhorn and W. Reif, editors, FM-TOOLS 2002: 5th Work-
shop on Tools for System Design and Verification, Report 2002-11,
Reisensburg, Germany, 2002. Institut für Informatik, Universität
Augsburg.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Kra08] Frank Alexander Kraemer. From Activities to State Machines: Re-
finement Proof for a System. Avantel Technical Report 1/2008, De-
partment of Telematics, Norwegian University of Science and Tech-
nology, 2008.

[KSH07] Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann.
Engineering Support for UML Activities by Automated Model-
Checking — An Example. In Proceedings of the 4th International
Workshop on Rapid Integration of Software Engineering Techniques
(RISE), November 2007.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[LP99] J. Lilius and I.P. Paltor. vUML: A Tool for Verifying UML Models.
14th IEEE International Conference on Automated Software Engi-
neering, pages 255–258, October 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nut-
shell. International Journal on Software Tools for Technology Trans-
fer (STTT), 1(1–2):134–152, December 1997.

302 appendix a

[Mik99] Tommi Mikkonen. The two Dimensions of an Architecture. In
WICSA1, First Working IFIP Conference on Software Architecture,
1999.

[Obj03] Object Management Group. MDA Guide Version 1.0.1, omg/2003-
06-01 edition, June 2003.

[Obj07] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.1, February 2007. formal/2007-02-03.

[OGO04] Iulian Ober, Susanne Graf, and Ileana Ober. Validation of UML
Models via a Mapping to Communicating Extended Timed Au-
tomata. In Susanne Graf and Laurent Mounier, editors, SPIN, vol-
ume 2989 of Lecture Notes in Computer Science, pages 127–145.
Springer, 2004.

[Rus00] John Rushby. Disappearing Formal Methods. In High-Assurance
Systems Engineering Symposium, pages 95–96, Albuquerque, NM,
November 2000. ACM.

[SB08] Haldor Samset and Rolv Bræk. Describing Active Services for Pub-
lication and Discovery. In Software Engineering Research, Manage-
ment and Applications (Selected Papers), Studies in Computational
Intelligence. Springer–Verlag, 2008. (to appear).

[SCKB05] Richard Sanders, Humberto N. Castejón, Frank Alexander Kraemer,
and Rolv Bræk. Using UML 2.0 Collaborations for Compositional
Service Specification. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

[Stø04] Alf Kristian Støyle. Service Engineering Environment for AMIGOS.
Master’s thesis, Norwegian University of Science and Technology,
2004.

[vdA98] W. M. P. van der Aalst. The Application of Petri Nets to Work-
flow Management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[vdA99] W. M. P. van der Aalst. Woflan: a Petri-net-based workflow analyzer.
Syst. Anal. Model. Simul., 35(3):345–357, 1999.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — A Tool
for the π-Calculus. In David Dill, editor, CAV’94: Computer Aided
Verification, volume 818 of Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 1994.

[wop08] The WoPeD Homepage, May 2008.

tool support for reactive services 303

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of Lecture Notes in Computer Science,
pages 54–66. Springer-Verlag, 1999.

APPENDIX

B

REFINEMENT PROOF FOR A SYSTEM

We present the specification of an example and prove, that the behavior of the
state machines synthesized by the transformation algorithm presented in Paper 3
is in fact an implementation of the specification given by its activity. Formally,
this means that the behavior of the state machines implies that of the activity,
which can be shown by a refinement proof. For that, we give a refinement
mapping between the two behaviors which we also verify with the model checker
TLC.

B.1 Introduction

Figure B.1 outlines our proceedings in the following. From an example activity
we first derive its formal specification in temporal logic (in cTLA/c style) us-
ing the rules provided in Paper 6. We will then use the model transformation
presented in Paper 3 (implemented by the Arctis Transformer) to produce the
executable state machines for the example. We derive their semantics in tempo-
ral logic (in cTLA/e style) as defined in Paper 2. To prove, that the behavior
of the synthesized state machines actually implements the behavior implied by
the activity, we verify that the cTLA/e specification refines the cTLA/c specifi-
cation.

As an example, we consider a collaboration which updates the clock of a

Paper 6 / Arctis FormulatorUML Activity

UML State Machines

Paper 3 / Arctis Transformer
(Sect. A.3)

cTLA/c

cTLA/e
Paper 2 (Sect. A.4)

Refinement
Proof (Sect. A.5)

a6a1
0

a7a1
1

a8a1
2

a9a1
3

a1a3

a2a4

a5

b3

b4

b5

b6

b1

b2

c1

c2

c3

c4

c5

c6

d1

d2

d3

d4

(A
)

(B
)

(C
)

(D
)

\
l
e
f
t
r
i
g
h
t
h
a
r
p
o
o
n
s
f
i
l
l
.
.
.
3
6

\
l
e
f
t
r
i
g
h
t
s
q
u
i
g
a
r
r
o
w
(

)
2
7

\
l
e
f
t
r
i
g
h
t
s
q
u
i
g
a
r
r
o
w
(!
)

2
6

\
L
e
f
t
s
c
i
s
s
o
r
s
(S
)

.
.
.
.
.
.
.
4
5

\
l
e
f
t
s
l
i
c
e
(!)
.
.
.
.
.
.
.
.
.
.
1
7

\
l
e
f
t
s
q
u
i
g
a
r
r
o
w
(

)

.
.
.
.
2
7

\
l
e
f
t
s
q
u
i
g
a
r
r
o
w
(!
)
.
.
.
.
.
2
7

\
l
e
f
t
t
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
3

\
l
e
f
t
t
h
r
e
e
t
i
m
e
s
(
)

.
.
.
.
.
3
9

\
l
e
f
t
t
h
r
e
e
t
i
m
e
s
("
)

.
.
.
.
.
1
6

\
l
e
f
t
t
h
u
m
b
s
d
o
w
n
(

)

.
.
.
.
4
6

\
l
e
f
t
t
h
u
m
b
s
u
p
(

)
.
.
.
.
.
.
4
6

\
l
e
f
t
t
o
r
i
g
h
t
a
r
r
o
w
(

)

.
.
.
2
7

\
L
e
f
t
t
o
r
q
u
e
(&
)

.
.
.
.
.
.
.
.
4
3

\
l
e
f
t
t
u
r
n
(!
)

.
.
.
.
.
.
.
.
.
.
5
1

\
l
e
g
m
(

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

\
l
e
g
r
(
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

\
l
e
n
g
t
h
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
1
3

\
L
e
o
(ä
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
e
o
("
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
e
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
q
(≤
)
.
.
.
.
.
.
.
.
.
.
.
.
2
4
,
2
5

\
l
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
q
q
(#
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
q
s
l
a
n
t
($
)

.
.
.
.
.
.
.
.
.
.
2
4

le
ss
-t
h
a
n
si
g
n
s
.
.
se
e
in
eq
u
a
li
ti
es

\
l
e
s
s
a
p
p
r
o
x
(
)
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
a
p
p
r
o
x
(%
)
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
d
o
t
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
d
o
t
(!
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
e
q
g
t
r
(
)
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
e
q
g
t
r
(&
)
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
e
q
q
g
t
r
(
)
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
e
q
q
g
t
r
('
)
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
g
t
r
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
g
t
r
(≶
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
s
i
m
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
s
i
m
()
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
L
e
t
t
e
r
(

)
.
.
.
.
.
.
.
.
.
.
.
.
5
3

\
L
e
t
t
e
r
(B
v
s.

)

.
.
.
.
.
.
.
5
6

\
L
e
t
t
e
r
(B
)

.
.
.
.
.
.
.
.
.
.
.
.
4
3

le
tt
er
-l
ik
e
sy
m
b
o
ls
.
.
.
.
.
3
0
,
3
1

le
tt
er
s
.
.
.
.
.
.
.
.
.
se
e
a
lp
h
a
b
et
s

b
a
rr
ed

.
.
.
.
.
.
.
.
.
.
.
.
.
5
7

n
o
n
-A
S
C
II
.
.
.
.
.
.
.
.
.
.
.
8

sl
a
sh
ed

.
.
.
.
.
.
.
.
.
.
.
.
5
8

va
ri
a
n
t
L
a
ti
n

.
.
.
.
.
.
.
.
3
0

\
L
F
(!
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
l
f
i
l
e
t
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
l
F
l
o
o
r
("")
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

\
l
f
l
o
o
r
("
)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
l
g
(l
g
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
g
r
o
u
p
(

)
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
L
H
D
(#)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
7

\
l
h
d
(*
)
.
.
.
.
.
.
.
.
.
.
.
.
1
6
,
1
7

\
l
h
d
b
e
n
d
(!)
.
.
.
.
.
.
.
.
.
.
4
9

\
L
i
b
r
a
(æ
)

.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
i
b
r
a
($
)

.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
i
g
h
t
b
u
l
b
(A
)

.
.
.
.
.
.
.
.
.
.
6
4

l
i
g
h
t
b
u
l
b
.
m
f
(fi
le
)

.
.
.
.
6
2
,
6
3

l
i
g
h
t
b
u
l
b
.
s
t
y
(fi
le
)

.
.
.
.
.
.
6
4

l
i
g
h
t
b
u
l
b
1
0
.
2
6
0
2
g
f
(fi
le
)
.
.
6
2

l
i
g
h
t
b
u
l
b
1
0
.
d
v
i
(fi
le
)

.
.
.
.
6
2

l
i
g
h
t
b
u
l
b
1
0
.
m
f
(fi
le
)

.
.

6
2
–
6
4

l
i
g
h
t
b
u
l
b
1
0
.
t
f
m
(fi
le
)

.
.
.
.
6
4

\
L
i
g
h
t
n
i
n
g
(E
v
s.

)

.
.
.
.
.
5
6

\
L
i
g
h
t
n
i
n
g
(E
)

.
.
.
.
.
.
.
.
.
.
4
3

\
L
i
g
h
t
n
i
n
g
(

)

.
.
.
.
.
.
.
.
.
5
3

\
l
i
g
h
t
n
i
n
g
("v
s.
%)
.
.
.
.
.
.
5
6

\
l
i
g
h
t
n
i
n
g
(")
.
.
.
.
.
.
.
.
.
.
2
7

\
l
i
g
h
t
n
i
n
g
(%)
.
.
.
.
.
.
.
.
.
.
5
1

\
l
i
m
(l
im
)
.
.
.
.
.
.
.
.
.
.
.
2
9
,
6
5

\
l
i
m
i
n
f
(l
im
in
f)
.
.
.
.
.
.
2
9
,
6
5

li
m
it
s

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
i
m
s
u
p
(l
im
su
p
)

.
.
.
.
.
2
9
,
6
5

li
n
ea
r
im
p
li
ca
ti
o
n

se
e
\
m
u
l
t
i
m
a
p

\
L
i
n
e
l
o
a
d
(L
)

.
.
.
.
.
.
.
.
.
.
4
3

li
n
g
u
is
ti
c
sy
m
b
o
ls

.
.
.
.
.
.

8
–
1
0

\
l
J
o
i
n
("
)

.
.
.
.
.
.
.
.
.
.
.
.
.
2
2

\
l
l
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
l
(#
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
l
a
p

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
9

\
l
l
b
r
a
c
k
e
t
(#
)

.
.
.
.
.
.
.
.
.
.
3
2

\
l
l
c
e
i
l
(#)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
o
r
n
e
r
(
)

.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
o
r
n
e
r
(+
)
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
u
r
l
y
(

)

.
.
.
.
.
.
.
.
.
.
.
2
2

\
L
l
e
f
t
a
r
r
o
w
(,
)

.
.
.
.
.
.
.
.
2
6

\
l
l
f
l
o
o
r
($)
.
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
l
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
l
l
(≪
v
s.

)

.
.
.
.
.
.
.
.
.
5
6

\
l
l
l
(≪
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
l
l
e
s
s

.
.
.
.
.
.
.
.
.
.

se
e
\
l
l
l

\
l
l
p
a
r
e
n
t
h
e
s
i
s
(%)
.
.
.
.
.
.
.
3
1

\
l
m
o
u
s
t
a
c
h
e
(

)

.
.
.
.
.
.
.
.
3
2

\
l
n
(l
n
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
n
a
p
p
r
o
x
(
)

.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
a
p
p
r
o
x
("
)

.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
e
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
e
q
(#
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
e
q
q
($
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
o
t

.
.
.
.
.
.
.
.
.
.
.
.

se
e
\
n
e
g

\
l
n
s
i
m
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
s
i
m
(%
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

lo
ca
l
ri
n
g
(O
)

.
.

se
e
a
lp
h
a
b
et
s,

m
a
th

\
l
o
g
(l
o
g
)
.
.
.
.
.
.
.
.
.
.
.
2
9
,
6
5

lo
g
-l
ik
e
sy
m
b
o
ls
.
.
.
.
.
.
.
2
9
,
6
5

lo
g
ic
a
l
o
p
er
a
to
rs

a
n
d

.
.
.
.
.
.
.
.
.
se
e
\
w
e
d
g
e

n
o
t

.
.
.
se
e
\
n
e
g
a
n
d
\
s
i
m

o
r

.
.
.
.
.
.
.
.
.
.
.

se
e
\
v
e
e

\
l
o
g
o
f
(&)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
1

lo
ll
ip
o
p

.
.
.
.
.
.
.
se
e
\
m
u
l
t
i
m
a
p

lo
n
g
d
iv
is
io
n

.
.
.
.
.
.
.
.
.
.
.
.
3
5

\
L
o
n
g
l
e
f
t
a
r
r
o
w
(⇐
=
)
.
.
.
.
.
2
6

\
l
o
n
g
l
e
f
t
a
r
r
o
w
(←
−)
.
.
.
.
.
2
6

\
L
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w

.
.
.
.
.
5
2

\
L
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w
(⇐
⇒
)

2
6

\
l
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w
(←
→
)

2
6

\
L
o
n
g
m
a
p
s
f
r
o
m
(⇐
=
&)..
.
.
.
.
2
7

\
l
o
n
g
m
a
p
s
f
r
o
m
(←
−').
.
.
.
.
.
2
7

\
L
o
n
g
m
a
p
s
t
o
($=
⇒
)

.
.
.
.
.
.
.
2
7

\
l
o
n
g
m
a
p
s
t
o
()−
→
)

.
.
.
.
.
.
.
2
6

\
L
o
n
g
P
u
l
s
e
H
i
g
h
(

)
.
.
.
.
.
4
1

\
L
o
n
g
P
u
l
s
e
L
o
w
(

)

.
.
.
.
.
4
1

\
L
o
n
g
r
i
g
h
t
a
r
r
o
w
(=
⇒
)
.
.
.
.
2
6

\
l
o
n
g
r
i
g
h
t
a
r
r
o
w
(−
→
)
.
.
.
.
2
6

\
l
o
o
p
a
r
r
o
w
d
o
w
n
l
e
f
t
(

)

.
.
2
7

\
l
o
o
p
a
r
r
o
w
d
o
w
n
r
i
g
h
t
(

)
.
.
2
7

\
l
o
o
p
a
r
r
o
w
l
e
f
t
(

)
.
.
.
.
.
.
2
7

\
l
o
o
p
a
r
r
o
w
l
e
f
t
(.
)
.
.
.
.
.
.
2
6

\
l
o
o
p
a
r
r
o
w
r
i
g
h
t
(

)
.
.
.
.
.
2
7

\
l
o
o
p
a
r
r
o
w
r
i
g
h
t
(/
)
.
.
.
.
.
2
6

\
L
o
o
s
e
b
e
a
r
i
n
g
($
)
.
.
.
.
.
.
.
4
3

\
l
o
r

.
.
.
.
.
.
.
.
.
.
.
.
.

se
e
\
v
e
e

\
L
o
w
e
r
D
i
a
m
o
n
d
(

)
.
.
.
.
.
.
.
4
8

lo
w
er
in
g

.
.
.
se
e
\
t
e
x
t
l
o
w
e
r
i
n
g

\
l
o
z
e
n
g
e
(♦
)

.
.
.
.
.
.
.
.
.
.
.
3
8

\
L
p
a
r
e
n
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
4
0

\
l
r
c
o
r
n
e
r
(
)

.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
r
c
o
r
n
e
r
(1
)
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
r
J
o
i
n

.
.
.
.
.
.
.
.
.

se
e
\
J
o
i
n

\
l
r
t
i
m
e
s
(%
)
.
.
.
.
.
.
.
.
.
.
.
.
2
2

\
L
s
h
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
7

\
L
s
h
(2
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
6

\
L
s
t
e
e
l
(™
)

.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
l
t
i
m
e
s
(
)

.
.
.
.
.
.
.
.
.
.
.
.
1
8

\
l
t
i
m
e
s
(&
)

.
.
.
.
.
.
.
.
.
.
.
.
1
6

\
l
t
r
i
p
l
e

.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

L
u
ec
k
in
g
,
D
a
n
.
.
.
.
.
.
.
.
.
.
.
5
9

\
l
V
e
r
t
(||)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

\
l
v
e
r
t
n
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
2
5

\
l
v
e
r
t
n
e
q
q
('
)
.
.
.
.
.
.
.
.
.
.
2
4

\
l
z
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

M

\
M
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8

\
m
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8

m
a
cr
o
n

.
.
.
.
.
.
.
.
.

se
e
a
cc
en
ts

m
a
ju
sc
u
le
s

.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
m
a
k
e
a
t
l
e
t
t
e
r

.
.
.
.
.
.
.
.
.
.
6
0

\
m
a
k
e
a
t
o
t
h
e
r

.
.
.
.
.
.
.
.
.
.
.
6
0

\
M
A
L
E
(‚
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
M
a
l
e
(|
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
m
a
l
e
(♂)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
M
a
l
e
M
a
l
e
(ƒ
)

.
.
.
.
.
.
.
.
.
.
4
3

\
m
a
l
t
e
s
e
(3
)

.
.
.
.
.
.
.
.
.
.
.
1
5

\
m
a
n
b
o
l
d
k
i
d
n
e
y
(").
.
.
.
.
.
.
5
1

\
m
a
n
c
o
n
c
e
n
t
r
i
c
c
i
r
c
l
e
s
(#)
5
1

\
m
a
n
c
o
n
c
e
n
t
r
i
c
d
i
a
m
o
n
d
($)
5
1

\
m
a
n
c
o
n
e
(%)
.
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
c
u
b
e
(&)
.
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
e
r
r
a
r
r
o
w
(')
.
.
.
.
.
.
.
5
1

\
m
a
n
f
i
l
l
e
d
q
u
a
r
t
e
r
c
i
r
c
l
e
(()
5
1

m
a
n
fn
t
(p
a
ck
a
g
e)
.
4
9
,
5
1
,
6
9
,
7
0

\
m
a
n
h
p
e
n
n
i
b
())
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
i
m
p
o
s
s
i
b
l
e
c
u
b
e
(*)
.
.
.
5
1

\
m
a
n
k
i
d
n
e
y
(+)
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
l
h
p
e
n
k
i
d
n
e
y
(,)
.
.
.
.
.
.
5
1

\
m
a
n
p
e
n
k
i
d
n
e
y
(-)
.
.
.
.
.
.
.
5
1

\
m
a
n
q
u
a
d
r
i
f
o
l
i
u
m
(.)
.
.
.
.
5
1

\
m
a
n
q
u
a
r
t
e
r
c
i
r
c
l
e
(/)
.
.
.
.
5
1

79

\
l
e
f
t
r
i
g
h
t
h
a
r
p
o
o
n
s
f
i
l
l
.
.
.
3
6

\
l
e
f
t
r
i
g
h
t
s
q
u
i
g
a
r
r
o
w
(

)
2
7

\
l
e
f
t
r
i
g
h
t
s
q
u
i
g
a
r
r
o
w
(!
)

2
6

\
L
e
f
t
s
c
i
s
s
o
r
s
(S
)

.
.
.
.
.
.
.
4
5

\
l
e
f
t
s
l
i
c
e
(!)
.
.
.
.
.
.
.
.
.
.
1
7

\
l
e
f
t
s
q
u
i
g
a
r
r
o
w
(

)

.
.
.
.
2
7

\
l
e
f
t
s
q
u
i
g
a
r
r
o
w
(!
)
.
.
.
.
.
2
7

\
l
e
f
t
t
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
3

\
l
e
f
t
t
h
r
e
e
t
i
m
e
s
(
)

.
.
.
.
.
3
9

\
l
e
f
t
t
h
r
e
e
t
i
m
e
s
("
)

.
.
.
.
.
1
6

\
l
e
f
t
t
h
u
m
b
s
d
o
w
n
(

)

.
.
.
.
4
6

\
l
e
f
t
t
h
u
m
b
s
u
p
(

)
.
.
.
.
.
.
4
6

\
l
e
f
t
t
o
r
i
g
h
t
a
r
r
o
w
(

)

.
.
.
2
7

\
L
e
f
t
t
o
r
q
u
e
(&
)

.
.
.
.
.
.
.
.
4
3

\
l
e
f
t
t
u
r
n
(!
)

.
.
.
.
.
.
.
.
.
.
5
1

\
l
e
g
m
(

)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

\
l
e
g
r
(
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

\
l
e
n
g
t
h
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
1
3

\
L
e
o
(ä
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
e
o
("
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
e
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
q
(≤
)
.
.
.
.
.
.
.
.
.
.
.
.
2
4
,
2
5

\
l
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
q
q
(#
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
q
s
l
a
n
t
($
)

.
.
.
.
.
.
.
.
.
.
2
4

le
ss
-t
h
a
n
si
g
n
s
.
.
se
e
in
eq
u
a
li
ti
es

\
l
e
s
s
a
p
p
r
o
x
(
)
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
a
p
p
r
o
x
(%
)
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
d
o
t
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
d
o
t
(!
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
e
q
g
t
r
(
)
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
e
q
g
t
r
(&
)
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
e
q
q
g
t
r
(
)
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
e
q
q
g
t
r
('
)
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
g
t
r
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
g
t
r
(≶
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
e
s
s
s
i
m
(
)

.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
e
s
s
s
i
m
()
)

.
.
.
.
.
.
.
.
.
.
.
2
4

\
L
e
t
t
e
r
(

)
.
.
.
.
.
.
.
.
.
.
.
.
5
3

\
L
e
t
t
e
r
(B
v
s.

)

.
.
.
.
.
.
.
5
6

\
L
e
t
t
e
r
(B
)

.
.
.
.
.
.
.
.
.
.
.
.
4
3

le
tt
er
-l
ik
e
sy
m
b
o
ls
.
.
.
.
.
3
0
,
3
1

le
tt
er
s
.
.
.
.
.
.
.
.
.
se
e
a
lp
h
a
b
et
s

b
a
rr
ed

.
.
.
.
.
.
.
.
.
.
.
.
.
5
7

n
o
n
-A
S
C
II
.
.
.
.
.
.
.
.
.
.
.
8

sl
a
sh
ed

.
.
.
.
.
.
.
.
.
.
.
.
5
8

va
ri
a
n
t
L
a
ti
n

.
.
.
.
.
.
.
.
3
0

\
L
F
(!
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
l
f
i
l
e
t
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
l
F
l
o
o
r
("")
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

\
l
f
l
o
o
r
("
)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
l
g
(l
g
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
g
r
o
u
p
(

)
.
.
.
.
.
.
.
.
.
.
.
.
3
2

\
L
H
D
(#)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
7

\
l
h
d
(*
)
.
.
.
.
.
.
.
.
.
.
.
.
1
6
,
1
7

\
l
h
d
b
e
n
d
(!)
.
.
.
.
.
.
.
.
.
.
4
9

\
L
i
b
r
a
(æ
)

.
.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
i
b
r
a
($
)

.
.
.
.
.
.
.
.
.
.
.
.
4
2

\
l
i
g
h
t
b
u
l
b
(A
)

.
.
.
.
.
.
.
.
.
.
6
4

l
i
g
h
t
b
u
l
b
.
m
f
(fi
le
)

.
.
.
.
6
2
,
6
3

l
i
g
h
t
b
u
l
b
.
s
t
y
(fi
le
)

.
.
.
.
.
.
6
4

l
i
g
h
t
b
u
l
b
1
0
.
2
6
0
2
g
f
(fi
le
)
.
.
6
2

l
i
g
h
t
b
u
l
b
1
0
.
d
v
i
(fi
le
)

.
.
.
.
6
2

l
i
g
h
t
b
u
l
b
1
0
.
m
f
(fi
le
)

.
.

6
2
–
6
4

l
i
g
h
t
b
u
l
b
1
0
.
t
f
m
(fi
le
)

.
.
.
.
6
4

\
L
i
g
h
t
n
i
n
g
(E
v
s.

)

.
.
.
.
.
5
6

\
L
i
g
h
t
n
i
n
g
(E
)

.
.
.
.
.
.
.
.
.
.
4
3

\
L
i
g
h
t
n
i
n
g
(

)

.
.
.
.
.
.
.
.
.
5
3

\
l
i
g
h
t
n
i
n
g
("v
s.
%)
.
.
.
.
.
.
5
6

\
l
i
g
h
t
n
i
n
g
(")
.
.
.
.
.
.
.
.
.
.
2
7

\
l
i
g
h
t
n
i
n
g
(%)
.
.
.
.
.
.
.
.
.
.
5
1

\
l
i
m
(l
im
)
.
.
.
.
.
.
.
.
.
.
.
2
9
,
6
5

\
l
i
m
i
n
f
(l
im
in
f)
.
.
.
.
.
.
2
9
,
6
5

li
m
it
s

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
i
m
s
u
p
(l
im
su
p
)

.
.
.
.
.
2
9
,
6
5

li
n
ea
r
im
p
li
ca
ti
o
n

se
e
\
m
u
l
t
i
m
a
p

\
L
i
n
e
l
o
a
d
(L
)

.
.
.
.
.
.
.
.
.
.
4
3

li
n
g
u
is
ti
c
sy
m
b
o
ls

.
.
.
.
.
.

8
–
1
0

\
l
J
o
i
n
("
)

.
.
.
.
.
.
.
.
.
.
.
.
.
2
2

\
l
l
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
l
(#
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
l
a
p

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
9

\
l
l
b
r
a
c
k
e
t
(#
)

.
.
.
.
.
.
.
.
.
.
3
2

\
l
l
c
e
i
l
(#)
.
.
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
o
r
n
e
r
(
)

.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
o
r
n
e
r
(+
)
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
c
u
r
l
y
(

)

.
.
.
.
.
.
.
.
.
.
.
2
2

\
L
l
e
f
t
a
r
r
o
w
(,
)

.
.
.
.
.
.
.
.
2
6

\
l
l
f
l
o
o
r
($)
.
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
l
l
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
l
l
(≪
v
s.

)

.
.
.
.
.
.
.
.
.
5
6

\
l
l
l
(≪
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
l
l
e
s
s

.
.
.
.
.
.
.
.
.
.

se
e
\
l
l
l

\
l
l
p
a
r
e
n
t
h
e
s
i
s
(%)
.
.
.
.
.
.
.
3
1

\
l
m
o
u
s
t
a
c
h
e
(

)

.
.
.
.
.
.
.
.
3
2

\
l
n
(l
n
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
l
n
a
p
p
r
o
x
(
)

.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
a
p
p
r
o
x
("
)

.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
e
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
e
q
(#
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
e
q
q
($
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

\
l
n
o
t

.
.
.
.
.
.
.
.
.
.
.
.

se
e
\
n
e
g

\
l
n
s
i
m
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5

\
l
n
s
i
m
(%
)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
4

lo
ca
l
ri
n
g
(O
)

.
.

se
e
a
lp
h
a
b
et
s,

m
a
th

\
l
o
g
(l
o
g
)
.
.
.
.
.
.
.
.
.
.
.
2
9
,
6
5

lo
g
-l
ik
e
sy
m
b
o
ls
.
.
.
.
.
.
.
2
9
,
6
5

lo
g
ic
a
l
o
p
er
a
to
rs

a
n
d

.
.
.
.
.
.
.
.
.
se
e
\
w
e
d
g
e

n
o
t

.
.
.
se
e
\
n
e
g
a
n
d
\
s
i
m

o
r

.
.
.
.
.
.
.
.
.
.
.

se
e
\
v
e
e

\
l
o
g
o
f
(&)
.
.
.
.
.
.
.
.
.
.
.
.
.
2
1

lo
ll
ip
o
p

.
.
.
.
.
.
.
se
e
\
m
u
l
t
i
m
a
p

lo
n
g
d
iv
is
io
n

.
.
.
.
.
.
.
.
.
.
.
.
3
5

\
L
o
n
g
l
e
f
t
a
r
r
o
w
(⇐
=
)
.
.
.
.
.
2
6

\
l
o
n
g
l
e
f
t
a
r
r
o
w
(←
−)
.
.
.
.
.
2
6

\
L
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w

.
.
.
.
.
5
2

\
L
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w
(⇐
⇒
)

2
6

\
l
o
n
g
l
e
f
t
r
i
g
h
t
a
r
r
o
w
(←
→
)

2
6

\
L
o
n
g
m
a
p
s
f
r
o
m
(⇐
=
&)..
.
.
.
.
2
7

\
l
o
n
g
m
a
p
s
f
r
o
m
(←
−').
.
.
.
.
.
2
7

\
L
o
n
g
m
a
p
s
t
o
($=
⇒
)

.
.
.
.
.
.
.
2
7

\
l
o
n
g
m
a
p
s
t
o
()−
→
)

.
.
.
.
.
.
.
2
6

\
L
o
n
g
P
u
l
s
e
H
i
g
h
(

)
.
.
.
.
.
4
1

\
L
o
n
g
P
u
l
s
e
L
o
w
(

)

.
.
.
.
.
4
1

\
L
o
n
g
r
i
g
h
t
a
r
r
o
w
(=
⇒
)
.
.
.
.
2
6

\
l
o
n
g
r
i
g
h
t
a
r
r
o
w
(−
→
)
.
.
.
.
2
6

\
l
o
o
p
a
r
r
o
w
d
o
w
n
l
e
f
t
(

)

.
.
2
7

\
l
o
o
p
a
r
r
o
w
d
o
w
n
r
i
g
h
t
(

)
.
.
2
7

\
l
o
o
p
a
r
r
o
w
l
e
f
t
(

)
.
.
.
.
.
.
2
7

\
l
o
o
p
a
r
r
o
w
l
e
f
t
(.
)
.
.
.
.
.
.
2
6

\
l
o
o
p
a
r
r
o
w
r
i
g
h
t
(

)
.
.
.
.
.
2
7

\
l
o
o
p
a
r
r
o
w
r
i
g
h
t
(/
)
.
.
.
.
.
2
6

\
L
o
o
s
e
b
e
a
r
i
n
g
($
)
.
.
.
.
.
.
.
4
3

\
l
o
r

.
.
.
.
.
.
.
.
.
.
.
.
.

se
e
\
v
e
e

\
L
o
w
e
r
D
i
a
m
o
n
d
(

)
.
.
.
.
.
.
.
4
8

lo
w
er
in
g

.
.
.
se
e
\
t
e
x
t
l
o
w
e
r
i
n
g

\
l
o
z
e
n
g
e
(♦
)

.
.
.
.
.
.
.
.
.
.
.
3
8

\
L
p
a
r
e
n
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
4
0

\
l
r
c
o
r
n
e
r
(
)

.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
r
c
o
r
n
e
r
(1
)
.
.
.
.
.
.
.
.
.
.
.
3
1

\
l
r
J
o
i
n

.
.
.
.
.
.
.
.
.

se
e
\
J
o
i
n

\
l
r
t
i
m
e
s
(%
)
.
.
.
.
.
.
.
.
.
.
.
.
2
2

\
L
s
h
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
7

\
L
s
h
(2
)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
6

\
L
s
t
e
e
l
(™
)

.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
l
t
i
m
e
s
(
)

.
.
.
.
.
.
.
.
.
.
.
.
1
8

\
l
t
i
m
e
s
(&
)

.
.
.
.
.
.
.
.
.
.
.
.
1
6

\
l
t
r
i
p
l
e

.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

L
u
ec
k
in
g
,
D
a
n
.
.
.
.
.
.
.
.
.
.
.
5
9

\
l
V
e
r
t
(||)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3

\
l
v
e
r
t
n
e
q
q
(
)
.
.
.
.
.
.
.
.
.
.
2
5

\
l
v
e
r
t
n
e
q
q
('
)
.
.
.
.
.
.
.
.
.
.
2
4

\
l
z
(
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
0

M

\
M
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8

\
m
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8

m
a
cr
o
n

.
.
.
.
.
.
.
.
.

se
e
a
cc
en
ts

m
a
ju
sc
u
le
s

.
.
.
.
.
.
.
.
.
.
.
.
.
2
9

\
m
a
k
e
a
t
l
e
t
t
e
r

.
.
.
.
.
.
.
.
.
.
6
0

\
m
a
k
e
a
t
o
t
h
e
r

.
.
.
.
.
.
.
.
.
.
.
6
0

\
M
A
L
E
(‚
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
M
a
l
e
(|
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
m
a
l
e
(♂)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
3

\
M
a
l
e
M
a
l
e
(ƒ
)

.
.
.
.
.
.
.
.
.
.
4
3

\
m
a
l
t
e
s
e
(3
)

.
.
.
.
.
.
.
.
.
.
.
1
5

\
m
a
n
b
o
l
d
k
i
d
n
e
y
(").
.
.
.
.
.
.
5
1

\
m
a
n
c
o
n
c
e
n
t
r
i
c
c
i
r
c
l
e
s
(#)
5
1

\
m
a
n
c
o
n
c
e
n
t
r
i
c
d
i
a
m
o
n
d
($)
5
1

\
m
a
n
c
o
n
e
(%)
.
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
c
u
b
e
(&)
.
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
e
r
r
a
r
r
o
w
(')
.
.
.
.
.
.
.
5
1

\
m
a
n
f
i
l
l
e
d
q
u
a
r
t
e
r
c
i
r
c
l
e
(()
5
1

m
a
n
fn
t
(p
a
ck
a
g
e)
.
4
9
,
5
1
,
6
9
,
7
0

\
m
a
n
h
p
e
n
n
i
b
())
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
i
m
p
o
s
s
i
b
l
e
c
u
b
e
(*)
.
.
.
5
1

\
m
a
n
k
i
d
n
e
y
(+)
.
.
.
.
.
.
.
.
.
.
5
1

\
m
a
n
l
h
p
e
n
k
i
d
n
e
y
(,)
.
.
.
.
.
.
5
1

\
m
a
n
p
e
n
k
i
d
n
e
y
(-)
.
.
.
.
.
.
.
5
1

\
m
a
n
q
u
a
d
r
i
f
o
l
i
u
m
(.)
.
.
.
.
5
1

\
m
a
n
q
u
a
r
t
e
r
c
i
r
c
l
e
(/)
.
.
.
.
5
1

79

F
ig
.
8
.
G
ra
p
h
s
fr
o
m
a
ct
iv
it
ie
s
(A
,C
)
re
fi
n
e
th
o
se
o
b
ta
in
ed
v
ia
cT
L
A
(B
,D
)

ac
ti
on
is
ac
ti
ve
m
us
t
st
ay
in
th
e
pl
ac
e
of
th
e
ca
ll
be
ha
vi
or
ac
ti
on
as
lo
ng
as

th
e
ca
lle
d
ac
ti
vi
ty
is
ex
ec
ut
in
g.
W
he
n
an
ou
tp
ut
is
av
ai
la
bl
e,
th
e
co
rr
es
po
nd
in
g

ou
tg
oi
ng
ar
c
of
th
e
ca
ll
be
ha
vi
or
ac
ti
on
ca
n
fir
e.
Fo
r
ac
ti
vi
ti
es
w
it
h
an
in
it
ia
l

to
ke
n,
w
e
as
su
m
e
th
at
th
e
co
rr
es
po
nd
in
g
in
pu
t
pi
n
co
nt
ai
ns
a
to
ke
n
in
th
e
in
it
ia
l

st
at
e
en
ab
lin
g
to
st
ar
t
th
e
ac
ti
vi
ty
ri
gh
t
in
th
e
be
gi
nn
in
g.

T
he
co
up
lin
g
of
th
e
tw
o
co
m
po
si
ti
on
op
er
at
or
s
is
pe
rf
or
m
ed
as
sk
et
ch
ed
in

F
ig
.7
.A
s
ou
tl
in
ed
in
Se
ct
.3
,o
ne
op
er
at
or
fa
ci
lit
at
es
to
co
up
le
tw
o
de
ci
si
on
s
in

se
pa
ra
te
ac
ti
vi
ti
es
w
it
h
ea
ch
ot
he
r
w
he
re
tw
o
br
an
ch
es
of
th
e
de
ci
si
on
s
ar
e
lin
ke
d

by
a
da
sh
ed
lin
e.
In
ou
r
cT
L
A
-b
as
ed
fo
rm
al
m
od
el
,w
e
ex
pr
es
s
th
is
by
co
up
lin
g

th
e
ac
ti
on
s
de
sc
ri
bi
ng
th
e
br
an
ch
es
of
th
e
tw
o
de
ci
si
on
s.
F
ir
st
,
w
e
co
up
le
th
e

tw
o
cT
L
A
ac
ti
on
s
m
od
el
in
g
th
e
lin
ke
d
br
an
ch
es
.
Fo
r
in
st
an
ce
,
in
th
e
co
up
lin
g

in
fr
ag
m
en
t
β
in
F
ig
.
5
th
is
ca
us
es
th
at
th
e
br
an
ch
es
[
c
o
n
d
]
an
d
[
.
.
.
]
ar
e

on
ly
ca
rr
ie
d
ou
t
jo
in
tl
y.
L
ik
ew
is
e,
w
e
co
up
le
th
e
tw
o
cT
L
A
ac
ti
on
s
m
od
el
in
g
th
e

ot
he
r
br
an
ch
es
of
th
e
de
ci
si
on
s,
en
fo
rc
in
g
th
at
th
e
tw
o
[
e
l
s
e
]
br
an
ch
es
ar
e
on
ly

ex
ec
ut
ed
to
ge
th
er
as
w
el
l.
Si
nc
e
de
ci
si
on
on
th
e
ri
gh
t
si
de
of
β
m
us
t
no
t
ha
ve

an
ad
di
ti
on
al
lo
ca
l
co
nd
it
io
n,
th
e
co
up
lin
g
ca
nn
ot
co
nt
ai
n
de
ci
si
on
co
nd
it
io
ns

w
hi
ch
m
ay
bl
oc
k
th
e
flo
w
s.

In
F
ig
.
5,
w
e
al
so
sh
ow
th
at
co
nj
oi
ne
d
de
ci
si
on
s
β
ca
n
be
tr
an
sf
or
m
ed
to

a
si
ng
le
de
ci
si
on
as
de
pi
ct
ed
in
α
.
F
ig
.
8
sh
ow
s
fr
ag
m
en
ts
2

α
an
d
β
in
th
ei
r

gr
ap
hi
ca
l
cT
L
A
fo
rm
A
an
d
B

th
at
w
as
ob
ta
in
ed
th
ro
ug
h
a
tr
an
sf
or
m
at
io
n

ac
co
rd
in
g
to
T
ab
.
1.
T
o
pr
ov
e
th
at
th
is
tr
an
sf
or
m
at
io
n
st
ep
do
es
no
t
sp
oi
l
th
e

co
rr
ec
tn
es
s
of
th
e
sy
st
em
,w
e
pe
rf
or
m
th
e
cT
L
A
-b
as
ed
re
fin
em
en
t
pr
oo
fA
⇒
B
.

O
ne
w
ay
,t
o
ve
ri
fy
in
T
L
A
an
d
cT
L
A
th
at
a
m
or
e
de
ta
ile
d
sy
st
em
A
im
pl
ie
s
(i
.e
.,

is
a
re
fin
em
en
t
of
)
a
m
or
e
ab
st
ra
ct
sy
st
em
B
,i
s
to
se
ar
ch
a
so
-c
al
le
d
re
fin
em
en
t

m
ap
pi
ng
[1
9]
.
Fo
r
th
e
pr
oo
f
of
sa
fe
ty
pr
op
er
ti
es
,
i.e
.,
th
at
“n
ot
hi
ng
ba
d
w
ill

ha
pp
en
”,
th
e
m
ap
pi
ng
ha
s
to
fu
lfi
ll
tw
o
pr
op
er
ti
es
3

:

P
1
:
A
n
in
it
ia
l
st
at
e
of
A
is
m
ap
pe
d
to
an
in
it
ia
l
st
at
e
of
B
.

P
2
:
E
ac
h
pa
ir
of
st
at
es
(s
,s
′)

fu
lfi
lli
ng
an
ac
ti
on
in
A
is
m
ap
pe
d
to
a
pa
ir
of

st
at
es
(t
,t
′)

w
hi
ch
fu
lfi
lls
an
ac
ti
on
in
B
or
a
st
ut
te
ri
ng
st
ep
(i
.e
.,
t
=
t ′
).

2
T
h
e
fr
a
g
m
en
ts
co
n
ta
in
tr
a
n
si
ti
o
n
s
th
a
t
ca
n
h
av
e
se
v
er
a
l
in
p
u
t
a
n
d
o
u
tp
u
t
p
la
ce
s.

F
o
r
ex
a
m
p
le
,
B
co
n
si
st
s
o
f
tw
o
tr
a
n
si
ti
o
n
s,
th
a
t
ca
n
fi
re
if
th
er
e
a
re
to
k
en
s
in
b
o
th

b1
a
n
d
b2
.
If
o
n
e
o
f
th
em
fi
re
s,
to
k
en
s
a
re
m
ov
ed
to
ei
th
er
b3
a
n
d
b4
o
r
to
b5
a
n
d
b6
.

3
F
u
rt
h
er
m
o
re
,
a
p
ro
p
er
ty
co
n
si
d
er
in
g
th
e
li
v
en
es
s
o
f
th
e
sy
st
em
,
i.
e.
,
th
a
t
“
so
m
et
h
in
g

g
o
o
d
w
il
l
ev
en
tu
a
ll
y
h
a
p
p
en
”
,
h
a
s
to
h
o
ld
.
W
h
il
e
w
e
ca
n
p
ro
v
e
th
a
t
o
u
r
tr
a
n
sf
o
rm
a
-

ti
o
n
s
fu
lfi
ll
a
ls
o
th
es
e
li
v
en
es
s
p
ro
p
er
ti
es
,
in
th
is
p
a
p
er
w
e
re
st
ri
ct
u
s
to
sa
fe
ty
p
ro
o
fs

fo
r
th
e
sa
k
e
o
f
b
re
v
it
y.

(Sect. A.2)

Fig. B.1: Commuting diagram illustrating the proceedings in this appendix

306 appendix b

Update Timeclient server

passed failed

Update Time
client server

start

start

failedpassed

Fig. B.2: External view of the Update Time building block

«system» Time System

r: Request

timeout

inTime late

request

response

passed failed

Update Time
client server

t:
Timeliness
Observer

client server

Timeliness Observer

update

inTime late

event
start

timeout

start

event

Request
request

response

client server

respond

Fig. B.3: Activity for the time update in a minimal environment

client from a time server based on a method described by Cristian [Cri89]. In this
method, the client simply sends a request to a time server, which responds with
the current time. The idea is that roundtrip delays of the request and response
between client and server are often so short that the clock of the client can be
updated with sufficient accuracy. We consider here the simple case that we ask
only a single time server and simply fail if the roundtrip delay exceeded a certain
limit. The external view on the building block of this collaboration is presented
in Fig. B.2 with its UML collaboration, external activity and ESM. We can see
that the client starts the collaboration, which eventually terminates via output
passed or failed. The internal view in Fig. B.3 reveals the details of the behavior,
which is composed of a simple request and a timeliness observer already known
from the trusted sale in Paper 5. When the time update starts, the client issues a
request to the server. At the same time, the timeliness observer is started. Only if
the response containing the time stamp is received before the timeliness observer
expired, the time of the client is updated and the collaboration terminates via
passed. Otherwise, it fails. As the system specification needs to be closed to be
transformed into state machines, we have placed the building block in Fig. B.3

refinement proof for a system 307

client server
Time Update

failedpassed

respond

update

Fig. B.4: Flattened activity

client server
Time Update

failedpassed

respond

e1 e2

w2
w1t1

q1

q2
i1

update

Fig. B.5: Illustration of variables

within a minimal environment.
Figure B.4 shows a flattened and simplified version of Fig. B.3. The call

behavior actions r and t have been replaced by the activities they refer to, and
Update Time of Fig. B.3 has been integrated with the enclosing Time System.
We use this equivalent1 activity instead, as it makes the discussion easier to
understand.

B.2 Semantics of the Activities in cTLA/c

Using the rules given in Paper 6, it is straightforward to write down the formal
semantics for the activity in the style of cTLA/c. As we will later use the
model checker TLC to verify our refinement mapping, we write the specification
directly in TLA+. This is possible, as the original and compositional cTLA/c
process can be transformed to a simple cTLA process that is equivalent to TLA+

(see [Her97]). For this task, we can also use the Arctis Formulator (see [Sl̊a07]
and Paper 7), which automatically generates a TLA+ module.2

Fig. B.5 illustrates the variables used in the formal specification for Fig. B.4
given in the TLA+ module of Fig. B.6. The activity has the inner places i1,
e1, e2, w1, w2 for initial nodes, join nodes and waiting decision nodes, as well
as t1 for the timer. Variables q1 and q2 model the buffered communication
medium in between. No variables are needed for the server partition, as it is
stateless. Due to the focus of our work, we currently ignore the data part of the
system, that means, the actual exchange of time stamps and operations on them.
All variables are assumed to be integers and count the tokens resting in them.
As specified by the initial condition AInit, all places are initially empty with
exception of the initial node i1, which is set to 1. The behavior of the activity
is described by the five actions start, respond, timeout, passed and failed.

start specifies the moving of the token from the initial node and its multiplica-
tion in the fork. As a result, the timer is started and the waiting decision
node w1 as well as the queue q1 are filled with one token each.

1The equivalence between the cTLA/c formulas of composite and flattened activities was
shown in Paper 6.

2In comparison to the specification presented here, the Arctis Formulator adds some vari-
ables to test additional theorems and uses rather generic names for variables and actions.

308 appendix b

respond represents the reaction of the server to the request by moving the token
through the call operation action respond to the queue place q2.

timeout models the expiration of the timer for the case that the response did
not yet arrive, that means that waiting decision node w1 is still filled. As
a result, the tokens are removed from w1 and t1 and a new token is placed
into the inner place at e2.

passed represents the case that the response arrives before a timeout happens,
that means that w1 still holds a token. This causes the activity to termi-
nate, which also deactivates the timer. As we focus only on the reactive
behavior and not on the data operations, the call operation update is not
mentioned.3

failed represents the case that the response arrives after a timeout, which means
that only the inner place e2 holds a token, which causes the activity to
terminate.

As the rules of Paper 6 only consider the syntax of the activity, they also produce
cTLA resp. TLA actions handling situations that will never occur. Action arrive
handles the arrival of a token from q2 when w1 and e2 are empty. Due to the
overall behavior, such a state is not reachable. Action timeout2 describes the
behavior of a timeout in case w1 is empty. This will never happen, as w1 could
have only be emptied by an arriving response, which, however, terminates the
timer. Action timeout3 handles the case when both waiting decisions are filled,
which, due to the firing rules, is not possible as they would have caused the
collaboration to terminate via passed. In addition, a token streaming from i1
into w1 could arrive for the case that w2 or e1 contain tokens. For this to
happen, i1 needs to have a token. As all actions besides start do not change i1,
it’s easy to see that this is only the case for the initial state, where w2 = 0 ∧
e1 = 0 holds. (We did not include these last actions to make the specification
easier to overlook.)

The behavior of the system in Fig. B.4 is hence described by formula ASpec
in Fig. B.6. A run with TLC reveals that this specification has six distinct states.

B.3 Synthesized State Machines

When we use the activity of Fig. B.4 as input for our transformation algorithm,
it produces the two state machines shown in Fig. B.7. In comparison to the
original output, we have just changed the original (generic) names of the control
states and signals by more meaningful ones for readability. The state machine
does not include unreachable transitions as we used the enhanced algorithm
described in Sect. 4.4.3 which only considers reachable states.

3Paper 6 demonstrates how data can be included into cTLA/c-based specifications as well.

refinement proof for a system 309

module ATimeUpdate
extends Naturals

variables i1, t1, q1, q2, e1, e2, w1, w2

AInit ∆= ∧ i1 = 1 ∧ t1 = 0 ∧ q1 = 0 ∧ q2 = 0
∧ e1 = 0 ∧ e2 = 0 ∧ w1 = 0 ∧ w2 = 0

start ∆= ∧ i1 = 1 ∧ i1′ = 0 ∧ t1 = 0 ∧ t1′ = 1
∧ q1′ = q1 + 1
∧ w1 = 0 ∧ w1′ = 1
∧ unchanged 〈q2, e1, e2, w2〉

respond ∆= ∧ q1 = 1 ∧ q1′ = q1− 1
∧ q2′ = q2 + 1
∧ unchanged 〈i1, t1, e1, e2, w1, w2〉

timeout ∆= ∧ t1 = 1 ∧ t1′ = 0
∧ e2 = 0 ∧ e2′ = 1
∧ w1 = 1 ∧ w1′ = 0
∧ unchanged 〈i1, q1, q2, e1, w2〉

passed ∆= ∧ q2 > 0 ∧ q2′ = q2− 1
∧ w1 = 1 ∧ w1′ = 0
∧ t1′ = 0
∧ unchanged 〈i1, q1, e1, e2, w2〉

failed ∆= ∧ q2 > 0 ∧ q2′ = q2− 1
∧ e2 = 1 ∧ e2′ = 0
∧ t1′ = 0
∧ unchanged 〈i1, q1, e1, w1, w2〉

arrive ∆= ∧ q2 > 0 ∧ q2′ = q2− 1 (never executed)

∧ w1 = 0 ∧ e2 = 0 ∧ w2 = 0 ∧ w2′ = 1
∧ unchanged 〈i1, t1, q1, e1, e2, w1〉

timeout2 ∆= ∧ t1 = 1 ∧ t1′ = 0 (never executed)

∧ w1 = 0 ∧ e1 = 0 ∧ e1′ = 1
∧ unchanged 〈i1, q1, q2, e2, w1, w2〉

timeout3 ∆= ∧ t1 = 1 ∧ t1′ = 0 (never executed)

∧ w1 = 1 ∧ w1′ = 0 ∧ w2 = 1 ∧ w2′ = 0
∧ unchanged 〈i1, q1, q2, e1, e2〉

ANext ∆= start ∨ respond ∨ timeout ∨ passed ∨ failed ∨ arrive ∨ timeout2 ∨ timeout3

ASpec ∆= AInit ∧![ANext]〈i1, t1, q1, q2, e1, e2, w1, w2〉

1

Fig. B.6: TLA+ Module in cTLA/c style for the collaboration

B.4 Semantics of the State Machines in cTLA/e

Following the guidelines in Paper 2, we can write the semantics of the state
machines in the style of cTLA/e. Again, as we will use TLC to check our refine-

310 appendix b

idle

waiting

timedout
passed

failed

stop ts
Response

start ts
Request

ts

Response

idle

idle

Request
Response

stm Client stm Server

Fig. B.7: Result of the transformationrefinement proof for a system 281

module StateMachines
extends Naturals, Sequences

consume(signal , queue) ∆= ∧ Len(queue) > 0
∧ Head(queue) = signal
∧ queue ′ = Tail(queue)

consumeAndTerminate(signal , queue) ∆= ∧ Len(queue) > 0
∧ Head(queue) = signal
∧ queue ′ = 〈〉

transfer(source, target) ∆= ∧ Len(source) > 0 ∧ source ′ = Tail(source)
∧ target ′ = Append(target , Head(source))

Fig. A.8: TLA+ Module with auxiliary operators for state machines

expire models the expiration of the timer, in which the runtime support system
places an expired timer into the input queue of the state machine.

timeout models the consumption of the timeout message by the state machine.
Upon that, the client state machine changes its state from waiting to ex-
pired.

failing represents the arrival of the response signal after a timeout, causing a
transition into state failed. As this is a terminating transition, the local
input queues are emptied completely.

passing represents the consumption of the response signal before a timeout,
causing a terminal transition into state passed.

respond models the only action of the server machine which simply consumes a
request message from the input queue of the server and places a response
in its output queue. (As with the activity, we do not model the actual
retrieval of a time stamp and its inclusion in the signal.)

Fig. A.9: Illustration of variables for timer, control states and queues

Fig. B.8: TLA+ Module with auxiliary operators for state machines

ment mapping, we will use TLA+ as language. We use module StateMachines
in Fig. B.8 to define some useful operators. Operator consume checks a queue
for its first signal. If it is identical to the signal provided, comsume removes it
from the queue. Operator consumeAndTerminate works similar but empties the
entire queue. It is used when a state machine performs a terminating transition.
Operator transfer takes the head element of a source queue and moves it into
the target queue.

Figure B.9 illustrates the variables used by the TLA+ module ETimeUpdate
in Fig. B.10 that describes their semantics. The control states are represented
by variables state1 and state2. Each state machine has one input queue (for
signals and timeouts) and an output queue. The state of the timer is modeled
by variable ts, which is set to 1 if the timer is active. As specified by EInit, all
queues are initially empty and both control states are set to idle. Six actions
model the behavior of the state machines.

start is initially enabled and represents the initial transition that is executed
when the client starts. As a result, signal Request is sent via the output
queue of the client machine and the timer is started. (A runtime support
system as described in Paper 2 holds a list of active timers of all state

refinement proof for a system 311

machines it schedules. We represent this by ts = 1.) The client state
machine changes its control state from idle to waiting.

expire models the expiration of the timer, in which the runtime support system
places an expired timer into the input queue of the state machine.

timeout models the consumption of the timeout message by the state machine.
Upon that, the client state machine changes its state from waiting to ex-
pired.

failing represents the arrival of the response signal after a timeout, causing a
transition into state failed. As this is a terminating transition, the local
input queues are emptied completely.

passing represents the consumption of the response signal before a timeout,
causing a terminal transition into state passed.

respond models the only action of the server machine which simply consumes a
request message from the input queue of the server and places a response
in its output queue. (As with the activity, we do not model the actual
retrieval of a time stamp and its inclusion in the signal.)

In addition to these actions that correspond to the transition and timer mecha-
nisms of the state machines, two actions transAB and transBA model the trans-
mission of signals between the output and input queues of the client and server,
one for each direction.

A run with TLC shows that this specification has 22 distinct states. This
is more than for the activity, due to the fact that communication between the
state machines is buffered twice, in an output and input queue, and that the
expiration of a timer and its consumption are modeled as two distinct steps.

B.5 Refinement Proof cTLA/e ⇒ cTLA/c

As described in Paper 3, to prove that the state machines implement the behavior
described by the activities, we must prove that the specification ESpec refines

idle

waiting

timedout
passed

failed

stop ts
Response

start ts
Request

ts

Response

idle

idle

Request
Response

out1

in2in1

out2

state1 state2

ts

stm Client stm Server

Fig. B.9: Illustration of variables for timer, control states and queues

312 appendix b refinement proof for a system 283

module ETimeUpdate
extends Naturals, Sequences, StateMachines

variables in1, out1, state1, ts, in2, out2, state2

EInit ∆= ∧ in1 = 〈〉 ∧ out1 = 〈〉 ∧ state1 = “idle” ∧ ts = 0
∧ in2 = 〈〉 ∧ out2 = 〈〉 ∧ state2 = “idle”

start ∆= ∧ state1 = “idle” ∧ state1′ = “waiting”
∧ ts ′ = 1
∧ out1′ = Append(out1, “Request”)
∧ unchanged 〈in1, in2, out2, state2〉

expire ∆= ∧ ts = 1 ∧ ts ′ = 0
∧ in1′ = Append(in1, “ts”)
∧ unchanged 〈out1, state1, in2, out2, state2〉

timeout ∆= ∧ state1 = “waiting” ∧ state1′ = “expired”
∧ consume(“ts”, in1)
∧ unchanged 〈in2, out1, out2, state2, ts〉

failing ∆= ∧ state1 = “expired” ∧ state1′ = “failed”
∧ consumeAndTerminate(“Response”, in1)
∧ ts ′ = 0
∧ unchanged 〈in2, out1, out2, state2〉

passing ∆= ∧ state1 = “waiting” ∧ state1′ = “passed”
∧ consumeAndTerminate(“Response”, in1)
∧ ts ′ = 0
∧ unchanged 〈in2, out1, out2, state2〉

respond ∆= ∧ consume(“Request”, in2)
∧ out2′ = Append(out2, “Response”)
∧ unchanged 〈in1, out1, state1, state2, ts〉

transAB ∆= ∧ transfer(out1, in2)
∧ unchanged 〈in1, out2, state1, state2, ts〉

transBA ∆= ∧ transfer(out2, in1)
∧ unchanged 〈in2, out1, state1, state2, ts〉

ENext ∆= ∨ start ∨ expire ∨ timeout ∨ failing
∨ passing ∨ respond ∨ transAB ∨ transBA

ESpec ∆= EInit ∧ ![ENext]〈in1, out1, state1, out1, out2, state2, ts〉

Fig. A.10: TLA+ Module in cTLA/e style for the state machines
Fig. B.10: TLA+ Module in cTLA/e style for the state machines

ASpec, or that

ESpec⇒ ASpec (B.1)

refinement proof for a system 313

holds. For this proof, we search for a refinement mapping [AL91], which ex-
presses the variables of ASpec in terms of those in ESpec. Following the guide-
lines given in Paper 3, a refinement mapping can be found by considering how
the transformation maps the mechanisms of the activity to those of the state
machines.

The initial place of the activity holds one token when the system is not yet
started, that means when the client state machine is in state idle. Therefore, i1
can be expressed by the function

i1 , if state1 = “idle” then 1 else 0. (B.2)

In the activity, buffered communication between two partitions is modeled by
one queue place. In the state machines, a signal has to pass through two queues.
Therefore, the value of the queue place of an activity is the sum of signals in the
corresponding queues of that signal type of the state machines (see Paper 3).
We have defined the operator count(signal, queue). It takes a string denoting
the signal as well as a queue (a sequence of strings) as argument and returns the
number of occurrences of the string in the sequence.4 Using this operator, the
value q1 can be replaced by function

q1 , count(“Request”, out1 ◦ in2), (B.3)

where out1 ◦ in2 is the concatenation of both queues. The value for q2 maps
accordingly to

q2 , count(“Response”, out2 ◦ in1). (B.4)

As mentioned previously, the expiration of a timer is represented as one single
action in the activity, but as two actions within a state machine. In the first
action, the timer expires and a corresponding signal is placed in the input queue
(action expire of Fig. B.10). In the second action, the timer signal is actually
consumed (action timeout of Fig. B.10). While the first action is mapped to a
stuttering step in the activity, the second is mapped to the action timeout of of
Fig. B.6. For the mapping, this implies that the value of t1 is 1 whenever ts is
set or when there is a timer signal ts in the input queue. Therefore, t1 can be
replaced by

t1 , count(“ts”, in1) + ts. (B.5)

The inner places w2 and e2 both map to 0, as a token never rests in them. This
can be easily ensured by an invariant proof. For the other inner places, we find
a mapping to the control state of the state machine, so that

w1 , if state1 = “waiting” then 1 else 0 (B.6)

e2 , if state1 = “expired” then 1 else 0. (B.7)

As in [Lam02], we use F to equal every formula F in ATimeUpdate with the
original variables replaced by the refinement mappings given above. In addition,

4Operator count is defined in Fig. B.11 explained later. It uses SelectSeq of the sequence
module, detailed in [Lam02].

314 appendix b

subscripts e and a mark variables and actions to belong to either ETimeUpdate
or ATimeUpdate. As ESpec and ASpec define their own variables, we have to
prove

ESpec⇒ ASpec. (B.8)

With the definitions for ESpec and ASpec this is

EInit ∧�[ENext]vare
⇒ AInit ∧�[ANext]vara

, (B.9)

where vare is the sequence of all variables used in ESpec and vara the sequence
of all variables in ASpec. To prove this, we have to prove two implications:

EInit⇒ AInit (B.10)

�[ENext]varse
⇒ �[ANext]varsa

(B.11)

To prove B.10, we replace AInit by its definitions

EInit⇒∧ if state1 = “idle”then 1 else 0 = 1
∧ count(“ts”, in1) + ts = 0
∧ count(“Request”, out1 ◦ in2) = 0
∧ count(“Response”, out2 ◦ in1) = 0
∧ (if state1 = “waiting”then 1 else 0) = 0
∧ (if state1 = “expired”then 1 else 0) = 0
∧ 0 = 0
∧ 0 = 0

(B.12)

From the antecedent EInit we know that state1 = idle, ts = 0, and the queues
in1, out1, in2, out2 are empty. Put into the right side, we get

EInit⇒∧ 1 = 1
∧ count(“ts”, <>) + 0 = 0
∧ count(“Request”, <>) = 0
∧ count(“Response”, <>) = 0
∧ 0 = 0
∧ 0 = 0
∧ 0 = 0
∧ 0 = 0.

(B.13)

With the definition of count, we see that the right side is true, and B.10 is proven.
To show that B.11, we follow rule TLA2 from [Lam94] and prove

[ENext]varse
⇒ [ANext]varsa

. (B.14)

ENext is a disjunction of actions, so that we have to show that each action in
ENext implies ANext. As ANext is a disjunction of actions as well, this means

refinement proof for a system 315

that each action in ENext must imply an action in ANext or a stuttering step.
Fortunately, we do know which actions map to each other by considering what
the transformation described in Paper 3 does. In particular, with stuttera =
unchanged varsa

starte ⇒ starta, expiree ⇒ stuttera,

timeoute ⇒ timeouta, failinge ⇒ faileda, (B.15)

passinge ⇒ passeda, responde ⇒ responda,

transABe ⇒ stuttera, transBAe ⇒ stuttera.

We begin with starte ⇒ starta. With the mapping (B.2 to B.7) put into starta,
we get

starte ⇒∧ state1 = “idle” ∧ state1′ 6= “idle”

∧ (0 = count(“ts”, in1) + ts) ∧ (1 = count(“ts”, in1′) + ts′)
∧ count(“Request”, out1′ ◦ in2′) = count(“Request”, out1 ◦ in2) + 1
∧ state1 6= “waiting” ∧ state1 = “waiting”.

From the antecedent starte we know that state1 = “idle” and state1’=“waiting”,
so that the first and last lines are true, and it remains to prove

starte ⇒∧ (0 = count(“ts”, in1) + ts) ∧ (1 = count(“ts”, in1′) + ts′)
∧ count(“Request”, out1′ ◦ in2′) = count(“Request”, out1 ◦ in2) + 1.

The second line requires that the number of “Request” tokens in out1 and
in2 is increased by 1, which is exactly what starte does with out1′ =
append(out1, “Request”), where a new signal is added to out1, while in2’=in2.
This means we only have to show that

starte ⇒ (0 = count(“ts”, in1) + ts) ∧ 1 = count(“ts”, in1′) + ts′ (B.16)

From the antecedent starte we take ts’ = 1 and get

starte ⇒ (0 = count(“ts”, in1) + ts) ∧ (1 = count(“ts”, in1′) + 1) (B.17)

As in1’ = in1, this requires that ts = 0. However, starte does not say anything
about ts. Therefore, for starte ⇒ starta to be true, we must ensure that whenever
starte is enabled, ts = 0 holds. We can do this by defining invariant T such that

T , state1 = “idle”⇒ ts = 0. (B.18)

With rule INV1 from from [Lam94], this proof can be divided into

EInit⇒ T (B.19)

T ∧ [ENext]varse ⇒ T ′ (B.20)

316 appendix b

As the initial statement EInit specifies ts= 0, B.19 holds trivially. For B.20, we
must consider each action in ENext. Actions start, timeout, failing and passing
declare state1’ 6= “idle”, fulfilling B.20 as the antecedent of T is false. Actions
respond, transAB and transBA stutter for both state1 and ts, which in turn
fulfills B.20. Action expire sets ts to 0, therefore fulfilling the right side of T.
With that, B.19 holds for this action as well and we have proven starte ⇒ starta.
We continue with the proof of expiree ⇒ stuttera.

expiree ⇒∧ (if state1 = “idle”then 1 else 0)
= (ifstate1′ = “idle” then 1 else 0)

∧ count(ts, in1) + ts = count(ts, in1′) + ts′

∧ count(”Request”, out1 ◦ in2) = count(”Request”, out1′ ◦ in2′)
∧ (if state1 = “waiting” then 1 else 0)

= (if state1′ = “waiting” then 1 else 0)
∧ (if state1 = “expired”then 1 else 0)

= (if state1′ = “expired” then 1 else 0)
∧ 0 = 0
∧ 0 = 0

(B.21)

Action expiree guarantees state1 = state1’, making all lines with if-statements
true. As out1 = out1’ and in2 = in2’, count(”Request”, out1 ◦ in2) =
count(“Request”, out1’ ◦ in2’) holds as well, so that remains:

expiree ⇒ count(“ts”, in1) + ts = count(“ts”, in1′) + ts′ (B.22)

With ts = 1 and ts’ = 0 from expiree, we get

expiree ⇒ count(“ts”, in1) + 1 = count(“ts”, in1′) (B.23)

This requires that in queue in1’ must be one “ts” token more than in queue in1.
This is exactly what expiree guarantees with in1′ = append(in1, “ts”), so that
also this implication is true.

The proofs for the remaining actions of B.15 are similar and not carried out
explicitly. Instead of proving them manually, we can also use TLC to check the
refinement mapping. For this, we declare module Refinement in Fig. B.11. It
extends the ETimeUpdate module, so that the original specification of the state
machines ESpec and all variables of the state machines are present. Abstract
creates an instance of the module ATimeUpdate. This instantiation replaces the
original variables of ATimeUpdate with functions in terms of the state machine
variables as defined previously. To check the refinement property, we declare
the property Refinement and let TLC check it. A run reveals that no errors
are found, which means that the refinement mapping is correct and the state
machines imply the behavior of the activity. �

refinement proof for a system 317BIBLIOGRAPHY 287

module Refinement
extends ETimeUpdate

count(signal , queue) ∆= let match(n) ∆= n = signal
in Len(SelectSeq(queue, match))

Abstract ∆= instance ATimeUpdate with
i1 ← if state1 = “idle” then 1 else 0,
t1 ← count(“ts”, in1) + ts,
q1 ← count(“Request”, out1 ◦ in2),
q2 ← count(“Response”, out2 ◦ in1),
w1 ← if state1 = “waiting” then 1 else 0,
e2 ← if state1 = “expired” then 1 else 0,
w2 ← 0,
e1 ← 0

Refinement ∆= Abstract !ASpec

Fig. A.11: TLA+ Module for the refinement mapping

This requires that in queue in1’ must be one “ts” token more than in queue in1.
This is exactly what expiree guarantees with in1′ = append(in1, “ts”), so that
also this implication is true.

The proofs for the remaining actions of ?? are similar and not carried out
explicitly. Instead of proving them manually, we can also use TLC to check
the refinement mapping. For this, we declare module Refinement in Fig. ??. It
extends the ETimeUpdate module, so that the original specification of the state
machines ESpec and all variables of the state machines are present. Abstract
creates an instance of the module ATimeUpdate. This instantiation replaces the
original variables of ATimeUpdate with functions in terms of the state machine
variables as defined previously. To check the refinement property, we declare
the property Refinement and let TLC check it. A run reveals that no errors
are found, which means that the refinement mapping is correct and the state
machines imply the behavior of the activity. !

Bibliography

[AL91] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[Cri89] Flaviu Cristian. Probabilistic Clock Synchronization. Distributed Com-
puting, 3:146–58, 1989.

[Her97] Peter Herrmann. Problemnaher korrektheitssichernder Entwurf von
Hochleistungsprotokollen. PhD thesis, Universität Dortmund, 1997.

Fig. B.11: TLA+ Module for the refinement mapping

Bibliography

[AL91] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[Cri89] Flaviu Cristian. Probabilistic Clock Synchronization. Distributed Com-
puting, 3:146–58, 1989.

[Her97] Peter Herrmann. Problemnaher korrektheitssichernder Entwurf von
Hochleistungsprotokollen. PhD thesis, Universität Dortmund, 1997.

[Lam94] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923, May 1994.

[Lam02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications in
TLA with TLC. Project Thesis, August 2007. Norwegian University
of Science and Technology, Trondheim, Norway.

APPENDIX

C

UML PROFILE FOR COLLABORATIVE
SERVICE SPECIFICATIONS

C.1 Introduction

In the following, we describe a UML profile for collaborative service specifications
based on UML collaborations and activities. The discussion in the following is
rather technical. For examples we refer to the papers of Part II. The most rele-
vant chapters for this profile in the current UML standard [Obj07] are Chapt. 9
for Composite Structures (including UML collaborations), Chapt. 12 for Activ-
ities, Chapt. 15 for State Machines as well as Chapt. 11 and 13 for Actions and
Common Behaviors.

The remainder of this section explains the semantics of token flows based on
activity steps, and points out the difference between the definition of an activity
and its instantiation as building block. Sect. C.2 continues with a discussion
of the different kind of building blocks and how they are modeled in UML.
Constraints on UML collaborations are listed in Sect. C.3. Sect. C.4 continues
with the details of the state machines for the external behavior, and Sect. C.5
presents the constraints on UML activities to document the internal behavior of
building blocks.

C.1.1 Token Flows in Activities

The semantics of activities are based on token flows, as explained by the UML
standard [Obj07]. We specialize these semantics such that tokens move in run-
to-completion steps that correspond to state machine transitions, and therefore
only rest in certain places, and only if they have to wait for another event to
happen. Reason for this is to ensure a proper compositional semantics based
on cTLA as explained in Paper 6, and to enable a correct transformation of
activities to state machines as described in Paper 3. For instance, tokens do
not wait in call operation actions, as they are executed within a state machine

320 appendix c

Timeliness Observer

inTime late

event

timeout

start t:
Timeliness
Observer

inTime late

event

timeout

start

instantiation

activity
parameter node

input pin

Fig. C.1: Activity and a call behavior action referring to it

transition. When a token arrives at a join node via an edge, it only waits if
the other incoming edges of the join cannot offer a token yet; otherwise, the join
fires and the token continues without resting. Similarly, token rest within waiting
decision nodes (explained below), and accept event actions to wait for another
event. Since we model the asynchronous communication between partitions,
tokens wait at virtual queue places, as well.

A token movement from one stable state in which tokens wait for events to
the next stable state is in the following called an activity step. An activity step
spans over a a subgraph of an activity, consisting of edges and nodes which are
traversed by tokens within one step. The same activity nodes or edges may
be part of several activity steps. A decision node with two outgoing branches,
for example, can be understood as two different activity steps, one for each
alternative. Similarly, when a tokens enters a join node, there are different
activity steps, one for each possible configuration that influence if the join can
fire or not.

C.1.2 Activities and Call Behavior Actions

To clarify the difference between an activity and its instantiated form as call
behavior action, we refer to Fig. C.1. On its left hand side, it shows the activ-
ity of the Timeliness Observer, known from Paper 5. It is a complete activity
with internal activity nodes and edges. On its frame, there are activity param-
eter nodes that connect it to other elements once the activity is instantiated as
building block, as shown on the right hand side. This UML element is a call
behavior action, which only refers to the activity. The instance is named t. The
activity parameter nodes from the activity are represented on t by corresponding
input and output pins. These elements have the same symbol as the activity
parameter nodes, but are owned by the call behavior action t.

C.2 Building Blocks

The most general building block is a service collaboration. It has at least two
participants and can be connected to other blocks by means of activity parameter

uml profile for collaborative service specifications 321

Service Collaboration
System Collaboration

Activity Block
Shallow Activity Block

(UML Collaboration)
Structure

(UML State Machine «esm»)
External Behavior

(UML Activity)
Internal Behavior

(frame only)

Fig. C.2: Different kinds of building blocks

nodes. It is specified by a UML 2.0 collaboration for the structure, an activity
for the internal behavior and an external state machine (ESM) to document
the externally visible behavior. Based on this general service collaboration, we
define three more kinds of building blocks, namely system collaborations, activity
blocks and shallow activity blocks. The different diagrams needed to describe a
building block of a certain kind are listed in Fig. C.2.

C.2.1 Block Type: Service Collaborations

name: Authenticate

: Collaboration

name: Authenticate

:Activity

classifier
behavior

name: Authenticate

«esm»
:StateMachine

classifier
behavior

name: no.ntnu.item.arctis.examples

: Package

Fig. C.3: Repository model of a service collaboration building block

Fig. C.3 depicts a partial repository model (see [Boc03]) of a service collab-
oration to illustrate the connection between these elements. The container for a
service collaboration is a UML collaboration, which owns an activity as classifier
behavior. Similarly, the activity owns the ESM as a classifier behavior.

Constraints (Service Collaborations)

[1] A service collaboration is modeled as a UML collaboration, owned by a
package.

[2] A service collaboration has an ESM and an internal behavior.
[3] A service collaboration has at least two participants (i.e., collaboration

roles and activity partitions).

C.2.2 Block Type: System Collaborations

A system collaboration (Fig. C.4) is a service collaboration on the highest de-
composition level, i.e., it models the complete system. Its collaboration roles

322 appendix c

represent the system components. Its behavior is closed, that means its activ-
ity does not have activity parameter nodes that could be connected to other
elements. In consequence, a system collaboration does not have an ESM, and
cannot be composed with other building blocks.

name: TrustedAuction

«system»
: Collaboration

name: TrustedAuction

«system»
:Activity

classifier
behavior

name: no.ntnu.item.arctis.examples

: Package

Fig. C.4: Repository model of a system collaboration building block

«stereotype»
system

«metaclass»
Collaboration

«metaclass»
Activity

Fig. C.5: Stereotype �system�

Constraints (System Collaborations)

[1] A system collaboration is modeled as a UML collaboration with stereotype
�system� applied, owned by a package.

[2] A system collaboration does not have an ESM.
[3] The activity of a system collaboration is closed, i.e., does not have any

activity parameter nodes.
[4] The activity of a system collaboration is marked as �system� as well.

C.2.3 Block Type: Activity Block

An activity block (Fig. C.6) is a service collaboration with exactly one partici-
pant. It has no UML collaboration, so that it is only represented by an activity
with an ESM as classifier behavior.

name: TimelinessObserver

:Activity

name: TimelinessObserver

«esm»
:StateMachine

classifier
behavior

name: no.ntnu.item.arctis.examples

: Package

Fig. C.6: Repository model of an activity block

Constraints (Activity Blocks)

[1] An activity block is modeled by an activity owned by a package.
[2] An activity block has an ESM.
[3] An activity block has exactly one activity partition.

uml profile for collaborative service specifications 323

C.2.4 Block Type: Shallow Activity Block

In some cases, the external description of an activity block describes its entire be-
havior. This is the case for the Switch building block from App. D, for instance.
Instead of giving a (redundant) internal behavior by an activity, we apply the
stereotype �shallow� to the activity. A shallow activity block (Fig. C.7) only
declares the activity parameter nodes, but is otherwise empty.

name: Switch

«shallow»
:Activity

name: Switch

«esm»
:StateMachine

classifier
behavior

name: no.ntnu.item.arctis.examples

: Package

Fig. C.7: Repository model of a shallow activity block

«metaclass»
Activity

«stereotype»
shallow

Fig. C.8: Stereotype �shallow�

Constraints (Shallow Activity Blocks)

[1] A �shallow� activity is modeled by an activity with stereotype �shallow�
applied and is owned by a package.

[2] A �shallow� activity only has activity parameter nodes and no edges.
[3] A �shallow� activity does not have any partitions.
[4] A �shallow� activity has an ESM.
[5] All transitions of the ESM of a shallow building block are triggered by the

surrounding context.

C.3 Collaborations

As described above, the structural aspect of a building block (of kind service or
system collaboration) is described by a UML collaboration. System collabora-
tions are marked with the stereotype �system�.

If a collaboration role represents an entity of the environment, it is marked
by stereotype �environment�. When a collaboration is instantiated as collab-
oration use within an enclosing collaboration, then its environment roles may
only be assigned to environment roles of the enclosing collaborations.

The references of collaboration uses to other collaborations create a system
specification on several levels, as illustrated in Fig. 4.2 in Part I. The graph
structure of a system implied by these references must be a tree, i.e., none of
the directly or indirectly contained collaboration uses may refer back to the
collaboration and introduce cycles.

324 appendix c

Collaboration uses can be bound to collaboration roles that have a multi-
plicity with an upper value higher than ‘1’. By default, we assume that there
is executing at most one instance of a collaboration for each different set of
participating collaboration roles. If, however, between an identical set of partic-
ipant instances there may be several instances of a collaboration going on, the
corresponding collaboration use may be tagged with �multi-session�.

«metaclass»
CollaborationUse

«stereotype»
multi-session

Fig. C.9: Stereotype �multi-session�

«metaclass»
Property

«stereotype»
environment

Fig. C.10: Stereotype �environment�

Constraints (Collaborations)

[1] All collaboration roles of collaboration uses are bound.
[2] Collaboration roles marked as environment roles can only be bound to

other environment roles.
[3] All collaboration uses of a service collaboration refer to other service col-

laborations, but not systems.
[4] The graph implied by the references expressed by collaboration uses is a

tree.

C.4 External State Machines (ESMs)

ESMs describe the sequence in which tokens may pass the parameter nodes of
an activity. Each transition of an ESM specifies the activity parameter nodes
that are passed by tokens within a certain activity step.

«metaclass»
StateMachine

«stereotype»
esm

Fig. C.11: Stereotype �esm�

Constraints (External State Machines)

[1] An ESM has the stereotype �esm� applied.

uml profile for collaborative service specifications 325

[2] An activity that has activity parameter nodes has an ESM as classifier
behavior.

[3] An ESM has the same name as the activity it describes.
[4] An ESM contains exactly one region.
[5] An ESM region contains exactly one initial pseudostate.
[6] The only vertices in an ESM region are initial pseudostates, simple states

and final states.
[7] States within an ESM do not contain entry or exit actions.

For the composition it is important to know if a certain ESM transition is
triggered by the surrounding context, or if the ESM transition is spontaneous,
i.e., initiated by an event within the building block. An ESM transition therefore
refers to activity parameter nodes as triggers or effects. To assign activity pa-
rameter nodes accordingly, we use the stereotype �event� on an ESM transition
that refers with its properties triggers and effects to sets of activity parameter
nodes. (Why these are sets will be discussed further below.) The original UML
attributes effect and trigger of standard transitions, referring to behaviors and
signal or time events, are not used for this purpose and remain empty.

«metaclass»
Transition trigger: ActivityParameterNode [0..*]

effect: ActivityParameterNode [0..*]

«stereotype»
event

Fig. C.12: Stereotype �event�

Constraints (External State Machines, Transitions)

[1] Each transition of an ESM has the stereotype event applied.
[2] Transitions have no guard, effect or trigger.
[3] Each transition refers to one or several activity parameter nodes using

the attributes triggers and effects of the stereotype event applied to the
transition.

To visualize ESMs, transitions have labels which list the activity parameter
nodes they refer to. The label on a transition consists of a trigger and an effect
part, separated by a ‘/’. Figure C.13 shows the possible combinations when only
one pin is involved in a step. The timer symbol represents any triggered flow
arriving at a pin. Activity parameter nodes directly triggered by the enclosing
context are listed as triggers. In case (a), the building block is started from
the environment via pin s1. The label of the corresponding ESM transition is
therefore in:s1/. The prefix ‘in:’ points out that s1 is an input pin, so that the
ESM is also understandable without the activity. Case (b) depicts the similar
case as (a) but with a streaming pin. If the trigger is within the building block,
the pin is named in the effect part. For case (c) the ESM transition is labeled

326 appendix c

s1

in:s1/

i1
x1

/out:i1/out:x1(a) (c) (d)in:i1/

i1

(b)

Fig. C.13: ESM transitions referring to one pin

in:i1/out:i2

i1

(e) in:i1+in:i2/(f)

i2 i1

i2

/out:i1+out:i2(g)

i1

i2

/out:i2+in:i1(h)

i1 i2

Fig. C.14: ESM transitions referring to several pins

/out:x1, meaning that the building block, due to an internal event, terminates
via pin x1. In case (d), the environment must be prepared to accept a token
via pin i1 due to an internal event in the building block. In contrast to (c),
the building block stays active as i1 is an intermediate streaming node. Due to
the selected syntax, a ESM transition that is triggered from within a block only
declares effects, and therefore begins with a ‘/’.

In some cases, a token that enters a building block also exits the block within
the same activity step. This is the case in Fig. C.14 (e), for example. The
transition refers to i1 as the trigger, while i2 is listed as effect. In Fig. C.14 (f),
two input pins are triggered within the same step. This makes sense if a building
block encapsulates a number of operations, from which several may be executed
in the same activity step, for example. In this case, bot i1 and i2 are listed as
triggers. They are separated by a +. An ESM transition may also describe more
than one effect, as exemplified in case Fig. C.14 (g), where tokens pass through
i1 and i2 within the same step. This is useful in cases where a building block
emits tokens of different data types within the same step. In case (h), a token
first exits i2 and then re-enters the building block via i1. This is useful in cases
where an event triggered by a building block may lead to another effect on the
block, for example to terminate a block.

Since steps are always executed within the same state machine, i.e., must be
local, all parameter nodes referred by one ESM transition must be assigned to
the same partition. Furthermore, to simplify the implementation of tools, we
assume that a starting node is not coupled with any other nodes.

Constraints (External State Machines, Transitions)

[1] All activity parameter nodes referred by one transition (as trigger or effect
nodes) must be assigned to the same activity partition.

[2] If a transition refers to a starting node, it does not refer to other nodes.

uml profile for collaborative service specifications 327

The behavior expressed by the ESM must be consistent with that of the
activity it describes. Formally, an activity refines its ESM. This means, for each
activity step, there is a compatible ESM transition that describes the same token
movements through activity parameter nodes as the activity step, or the activity
step does not cross any activity parameter nodes. Sl̊atten describes theorems to
test the correct relation between an activity and an ESM in [Sl̊a07, Sl̊a08]. An
example of a corresponding analysis is given in Paper 7.

In some cases it may be desirable to give ESMs for each participant to doc-
ument the behavior towards each side separately. This can be achieved using
local ESMs. Like ESMs, they are modeled as UML state machines with the
stereotype �esm� applied. To assign them to a participant, they are owned
by the activity they describe and have the name of the activity partition they
represent.

Constraints (Local, External State Machines)

[1] A local ESM is owned by the activity it describes and has the name of the
partition it focuses on.

[2] A local ESM only refers to the activity parameter nodes assigned to the
partition it represents.

C.5 Activities

In the current version, we do not support UML activities of the level complete
structured activities or extra structured activities [Obj07]. Supported activity
nodes are initial nodes, fork nodes, join nodes, decision nodes, merge nodes, ac-
tivity final nodes, flow final nodes, call operation actions, call behavior actions,
send signal actions, accept event actions with signal events (accept signal ac-
tions), accept event actions with time event (timers), activity parameter nodes,
input pins and output pins.

We use a strict syntax concerning incoming and outgoing flows of actions.
This means, for example, that actions have exactly one incoming and one out-
going flow. If an action does not have an outgoing flow, it is interpreted that
any token emitted by the action is discarded, similar to a flow final node. If
an action should be started by several alternative flows, this should be specified
explicitly by a merge node. Similarly, if an action should start several flows,
a fork node should be used. Furthermore, we assume that each element has a
unique name.

C.5.1 Activity Partitions

Activity partitions model different places of computation. At execution time,
each partition is assigned to a certain component. For service and system col-
laborations, each activity partition corresponds to a collaboration role of the
UML collaboration of the building block. Since collaboration roles may have a

328 appendix c

multiplicity other than ‘1’, the activity partition may show this multiplicity as
well.

Constraints (Activity Partitions)

[1] If an activity is part of a system or service collaboration, it contains exactly
one activity partition for each collaboration role of the building block’s
collaboration.

[2] Activity nodes that are not call behavior actions must be assigned to ex-
actly one partition.

[3] Call behavior actions that represent an activity block must be assigned to
exactly one activity partition.

[4] Call behavior actions representing service collaborations are assigned to
activity partitions according to the role binding of their corresponding
collaboration use.

[5] Pins owned by call behavior actions are assigned to an activity partition in
a consistent manner to the role binding of the owning call behavior action
and the partition binding of the activity parameter nodes of the referred
activity.

[6] If the collaboration role corresponding to an activity partition is an
�environment�, the partition is marked as �external�.

C.5.2 Initial Nodes

An initial node initially holds one token, which is released to start the system.
To model the start of collaborations explicitly, only a system collaboration may
have an initial node. In contrast, ervice collaborations and activity blocks are
started using activity parameter nodes. We currently assume that at most one
activity partition of a system activity has initial nodes. They release their tokens
within the same activity step, which means that a set of initial nodes within one
partition is equivalent to one initial node with a subsequent fork node.

Constraints (Initial Nodes)

[1] Only system activities may have initial nodes.
[2] A system activity has at least one initial node.

C.5.3 Activity Final Nodes

An activity final node terminates an ongoing activity. Similar to the constraints
on initial nodes, activity final nodes must only be used on system level. To
terminate a service collaboration or an activity block, use the extended semantics
of terminating parameter nodes as described below.

Constraints (Activity Final Nodes)

[1] Only system activities may have activity final nodes.

uml profile for collaborative service specifications 329

C.5.4 Flow Final Nodes

Flow final nodes simply end a flow and consume any arriving token. In contrast
to an activity final node, a flow final node does not terminate the activity.

Constraints (Flow Final Nodes)

[1] Flow final nodes have exactly one incoming flow and no outgoing edge.

C.5.5 Decision Nodes

Decision nodes divert an incoming token to one of the outgoing edges which has
a guard that evaluates to true. Tokens do not rest in standard activity nodes,
but directly leave via one of the enabled outgoing edges.

Constraints (Decision Nodes)

[1] A decision node has at least two outgoing edges.
[2] A decision node has exactly one incoming edge.
[3] All edges originating at a decision node have a guard.
[4] A decision node has exactly one outgoing edge with an else guard, or, if it

has a boolean input, it has a pair of true and false branches.
[5] A decision node does not have a decisionInput behavior.

C.5.6 Waiting Decision Nodes

Waiting decision nodes are an extension to decision nodes. In contrast to stan-
dard decision nodes, tokens may rest in waiting decision nodes. To distinguish
them graphically from normal decision nodes, they are presented as filled di-
amonds. Waiting decision nodes are used in combination with join nodes, to
model that an event can cause different effects depending on what has happened
before.

«metaclass»
DecisionNode

«stereotype»
waiting

Fig. C.15: Stereotype �waiting�

Constraints (Waiting Decision Nodes)

[1] A waiting decision node has at least two outgoing edges.
[2] A waiting decision node has exactly one incoming edge.
[3] All edges starting at a waiting decision have distinct join nodes as targets.
[4] Edges starting at a waiting node do not have a guard.

330 appendix c

C.5.7 Fork Nodes

Fork nodes duplicate tokens, and the subsequent branches are executed within
the same activity step. To keep the transformation of forks manageable, we
currently claim some simplifications for the use of forks. See also the discussion
in Paper 3.

Constraints (Fork Nodes)

[1] Fork nodes have exactly one incoming flow.
[2] Fork nodes have have at least two outgoing flows.
[3] Flows originating from the same fork may never be merged within the same

activity step.
[4] Only one flow originating at a fork may have a decision within the same

activity step.

C.5.8 Merge Nodes

Merge nodes simply forward any node from the incoming edge to the one out-
going edge. Tokens do not wait in merge nodes.

Constraints (Merge Nodes)

[1] Merge nodes have at least two incoming edges.
[2] Merge nodes have at exactly one outgoing edge.

C.5.9 Join Nodes

Join nodes synchronize several incoming flows and continue with the outgoing
flows when all incoming flows can provide a token. Due to our semantics, tokens
do only wait in a join node if not all incoming edges may provide a token. If
a token runs into an edge that has token in all other incoming edges, the join
directly fires within the same activity step that moved the last missing token.
Paper 3 provides an illustration of these semantics.

Constraints (Join Nodes)

[1] Join nodes have at least two incoming edges.
[2] Join nodes have exactly one outgoing edge.

C.5.10 Call Operation Actions

Operations are represented in activities by call operation actions that refer to
an operation, owned by the activity. The content of call operation actions is
written by Java code linked to the UML model. This is, however, not discussed
in this version of the profile.

Tokens do not rest in call operation actions, but leave the node within the
same activity step they entered.

uml profile for collaborative service specifications 331

Constraints (Call Operation Actions)

[1] Call operation actions have exactly one incoming edge.

[2] Call operation actions have exactly one outgoing edge.

C.5.11 Variables

An activity can declare owned variables. Each variable must be assigned to an
activity partition. Since variables are not activity nodes and cannot be assigned
to a partition in standard UML, we use the stereotype �location� to assign an
activity partition to a variable, using the stereotype attribute partition.

«metaclass»
Variable

location: ActivityPartition

«stereotype»
location

Fig. C.16: Stereotype �location�

Constraints (Variables)

[1] A variable has �location� applied with the attribute partition set to one of
the activity partitions that are owned by the activity declaring the variable.

[2] Variables may only be used by actions and guards of the same partition
they are assigned to.

C.5.12 Send Signal Actions

Send signal actions are used to communicate with the environment by means of
explicit signals. Send signal actions typically occur in two-way collaborations,
where one participant represents the environment, so that the transformation
algorithm knows where the signal should be sent. In other cases, it is assumed
that the underlying platform routes the signals correctly, using addressing infor-
mation within the signal.

We assume that tokens do not rest in send signal actions, but leave the node
within the same activity step they entered.

Constraints (Send Signal Actions)

[1] Send signal actions have exactly one incoming edge.

[2] Send signal actions have exactly one outgoing edge.

332 appendix c

C.5.13 Accept Signal Actions

Accept signal actions are accept event actions that refer to a signal event. In
our specification style, the corresponding signal is sent by the environment. A
token waits within an accept signal action until the the signal is received. UML
allows accept event action to have no incoming flow, which means that they
are constantly enabled whenever the surrounding activity is active. We claim,
however, that accept signal actions have exactly one incoming flow, to make
their activation explicit. To listen continuously to the environment or to stop
waiting for a signal, we refer to the patterns and building blocks in App. D.

Constraints (Accept Signal Actions)

[1] Accept event actions have exactly one incoming edge.
[2] Accept event actions have exactly one outgoing edge.
[3] Accept event actions have exactly one trigger.
[4] The trigger of an accept event action modeling the reception of a signal is

a signal event.
[5] A signal event refers to a signal.

C.5.14 Timers

Timers are modeled by accept event action that refer to a time event. We
assume that time events always refer to a duration (given in milliseconds) which
determines the duration that a token rests within the accept event action before
it is released. Therefore, tokens wait in timers. To model periodic timers or
timers that can be aborted, we refer to the patterns and building blocks given
in App. D.

Constraints (Timers)

[1] Accept event actions have exactly one incoming edge.
[2] Accept event actions have exactly one outgoing edge.
[3] Accept event actions have exactly one trigger.
[4] The trigger of an accept event action representing a timer is a time event.
[5] A time event refers to a duration in milliseconds.

C.5.15 Activity Parameter Nodes

Activity parameter nodes are complemented by a parameter that they refer
to. The parameter determines the direction (in or out).1 The parameter also
determines if the parameter node is a streaming node, that means if tokens may
pass it while the activity is active.

Terminating nodes (non-streaming output parameter nodes) end an activity
similarly to an activity final node, as illustrated by the equivalent graphs in

1Direction inout is currently not supported.

uml profile for collaborative service specifications 333

Fig. C.17. For compactness and clarity, the presentation on the right hand side
is preferred, since activity final nodes should only be used on system level.

e1

x1 x1

e1

Fig. C.17: Equivalent notation for terminating pins.

If parameter nodes which start or terminate an activity are mutually exclu-
sive (i.e., if a collaboration can be started or terminated by alternative output
parameter nodes), their parameters refer to distinct parameter sets. This is
represented by an additional box around the activity parameter node.

If the call behavior action is marked as �multi-session�, then tokens do rest
within an activity parameter node (resp. pin), if its activity partition is listed in
the partitions of the multi-session stereotype on the call behavior action. This is
due to the necessary buffering between state machines, since multiple instances
are implemented by separate state machines. Tokens do not rest in activity
parameter nodes (resp. pins) that are coupled synchronously to an activity, i.e.,
when there are no multiple sessions. For details of the semantics, see Paper 6.

Constraints (Activity Parameter Nodes)

[1] An activity parameter node points to a parameter that declares parameter
direction and streaming.

[2] The parameter referred to by an activity parameter node has the same
name and the same type as the activity parameter node.

[3] Activity parameter nodes are not assigned to an external partition.

[4] Activity parameter nodes referring to an input parameter have exactly one
outgoing edge but no incoming one.

[5] Activity parameter nodes referring to an output parameter have exactly
one incoming edge but no outgoing one.

C.5.16 Call Behavior Actions

Call behavior actions are used to compose behavior within activities. They
represent instances of building blocks.

To mark that a collaboration is executed in several instances at the same
time, the stereotype �multi-session� can be applied to a call behavior action, as
described in Paper 4. Partitions that are, with respect to their own multiplicity,
connected to their own multiplicity to more than one session instance of the
collaboration, are included in the set attribute partitions of multiple activity
partitions.

334 appendix c

«metaclass»
CallBehaviorAction

partitions: ActivityPartition [0..*]

«stereotype»
multi-session

Fig. C.18: Stereotype �multi-session�

Constraints (Call Behavior Actions)

[1] A call behavior action refers to an activity as behavior.
[2] A call behavior action with more than one partition corresponds to a col-

laboration use of the collaboration of the enclosing activity.
[3] A call behavior action with more than one partition is contained in exactly

those partitions that correspond to the collaboration roles its correspond-
ing collaboration use is bound to.

[4] A call behavior action owns pins for each activity parameter node of the
activity it refers to.

C.5.17 Pins

As mentioned above and illustrated by Fig. C.1, pins owned by call behavior
action correspond to activity parameter nodes of the activity the call behavior
action refers to. This reference is done by name, i.e., for each parameter node
of an activity there exists a pin owned by the call behavior action.

Constraints (Pins on Call Behavior Actions)

[1] If the pin refers to a activity parameter node with a parameter with direc-
tion in, it is an input pin.

[2] If the pin refers to a activity parameter node with a parameter with direc-
tion out, it is an output pin.

[3] The type of a pin corresponds to the type of the activity parameter node
(and its parameter).

C.5.18 Activity Edges

A transfer edge is an edge that connects exactly two activity nodes which are
assigned to different partitions. Edges crossing partitions imply communication
between system components. Since communication is buffered, we assume a
(virtual) queue place in the edge that may hold an unlimited number of tokens.
This means that tokens do not move between partitions in one step, but rest
in the queue place. In consequence, tokens sent between two partitions may
overtake each other if they move along different edges.

For two partitions to communicate (i.e., have crossing edges), the collabora-
tion roles corresponding to the activity partitions must be connected by a con-
nector. Edges may not enter or leave external partitions, since communication
with the environment is modeled by explicit signal transmissions, as described
above.

uml profile for collaborative service specifications 335

Constraints (Activity Edges)

[1] Activity edges have source and target.
[2] Activity edges is contained exactly within the activity partitions of the

source and target nodes.
[3] If an edge crosses partitions, the corresponding collaboration roles have to

be connected.

When a flow enters a call behavior action from a partition that is marked as
multiple for that call behavior action, the edge must have a select statement. It
is represented by a stereotyped comment attached to an edge of the flow. The
syntax for the selection statement is described in [KBH07].

«metaclass»
Comment

«stereotype»
select

Fig. C.19: Stereotype �select�

To reason about sessions, the exists operator can be used as a guard at-
tached to an edge that succeeds a decision node. An exists guard is modeled
as stereotyped string expression, with the content according to the syntax given
in [KBH07].

«metaclass»
StringExpression

«stereotype»
exists

Fig. C.20: Stereotype �exists�

C.6 Assertions

Developer may ammend activities with additional information to assert certain
properties which will be checked during a behavioral analysis.

C.6.1 Occurrences of Action Executions

To each UML action, the developer may add the number of minimal and maximal
occurrences of an action within the execution of the surrounding collaboration.

«metaclass»
Action min: Integer

max: Integer

«stereotype»
executions

Fig. C.21: Stereotype �executions�

336 appendix c

C.6.2 Mutually Exclusive Actions

Often, within one collaboration execution, the occurrence of one action implies
that certain other actions do not happen (i.e., these actions are mutually ex-
clusive). Technically this is achieved by a stereotyped comment which can be
added to an activity containing the actions. In this way, several sets of mutually
exclusive actions may be specified.

«metaclass»
Comment

actions: Action[0..*]

«stereotype»
mutex

Fig. C.22: Stereotype �mutex�

C.6.3 Upper Queue Bounds

Flows crossing partition borders imply queue places that can hold more than one
token, representing a communication medium that buffers a number of signals.
The developer can often estimate how many signals (resp. tokens) may be in
the queue, and in most cases a queue must only hold one single token. So it is
advised to give upper bounds, which are then checked during model checking.
(If no upper bounds are given, the current version of the analysis chooses some
default values as bounds, see [Sl̊a07, Sl̊a08].) Since only transfer edges have
queues, the stereotype may only be applied to transfer edges.

«metaclass»
ActivityEdge

max: Integer

«stereotype»
bounds

Fig. C.23: Stereotype �bounds�

Bibliography

[Boc03] Conrad Bock. UML 2 activity and action models. Journal of Object
Technology, 2(4):pp. 43–53, July-August 2003.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Service
Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed, ed-
itors, SDL 2007, volume 4745 of Lecture Notes in Computer Science,
pages 166–185. Springer–Verlag Berlin Heidelberg, September 2007.

[Obj07] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.1.2, November 2007. formal/2007-11-01.

uml profile for collaborative service specifications 337

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications in
TLA with TLC. Project Thesis, August 2007. Norwegian University of
Science and Technology, Trondheim, Norway.

[Sl̊a08] Vidar Sl̊atten. Automatic Detection and Correction of Flaws in Service
Specifications. Master’s thesis, Norwegian University of Science and
Technology, June 2008.

APPENDIX

D

BUILDING BLOCKS AND PATTERNS FOR
UML COLLABORATIONS AND ACTIVITIES

This appendix provides building blocks (B) and patterns (P) which we have
developed within our case studies. The syntax amd semantics follows the profile
for collaborative service specifications presented in App. C. The patterns and
building blocks are presented in four groups:

– Local Flows (Sect. D.1) helps to control tokens within one activity par-
tition, for example to enforce a certain sequence between two flows, divert
flows or simply to count iterations.

– Time (Sect. D.2) introduces several building blocks to measure time and
schedule periodic events.

– Environment (Sect. D.3) lists several blocks and patterns to communicate
with the environment using explicit signal transmissions.

– Mixed Initiatives (Sect. D.4) provides a building block to handle situa-
tions in which two sides of a collaboration may start initiatives that have
to be coordinated.

Some building blocks include a form of array, in which certain structures are
repeated N times. We describe these building blocks for the case N = 2. The
First building block in the following section, for instance, is described for exactly
two incoming flows. It is currently left to the user to instantiate building blocks
for other values of N . (See also the discussion in Chapt. 7 in Part II.)

Elements part of a pattern are presented in black, with an illustration of their
context in grey. In some cases, we show building blocks in their instantiated form
as call behavior actions with an additional (informal) depiction of their behavior.

340 appendix d

D.1 Local Flows

UML provides by default fork nodes, join nodes, decision nodes and merge nodes
to coordinate several flows [Obj07]. We also provided waiting decision nodes to
model more complex stateful behavior in combination with join nodes. More-
over, shallow activity blocks may be used to define more advanced nodes that
coordinate several flows using ESMs as description. These extensions are de-
scribed by the profile in App. C.

P Dividing an Activity Step In some
cases, a token flow must be divided into sepa-
rate activity steps. For instance, the building
block shown to the right should be terminated
upon the occurrence of event. Usually, the
building block should declare an ESM transi-
tion /out:event+in:terminate so that a direct
coupling of these pins is allowed. If that is
not the case, and the building block cannot
be changed, a timer can be added in between.
This timer may be specified with a zero delay,
so that the subsequent activity step is sched-
uled directly afterwards. (Since other behav-
ior may interleave, it is, however, not guaran-
teed that the flow continues within the next
execution step.)

terminate

event

P Sequencer With the sequencer pattern
one may ensure that the flow i2 only continues
after i1. To prevent that o1 and o2 continue
within the same activity step, the additional
timer with a zero delay separates an activity
step started by the arrival of i1.

i1

i2

o1

o2

B Switch By default, a Switch forwards any
token coming into in to out1. As soon as a
token flows into pin switch, tokens from in are
diverged towards out1, until the switch is tog-
gled again, and so on.

in:start/

in:switch/ in:switch/

in:in/out:out1

in:in/out:out2

1

2

Switch

out1 out2

in

switch

start
«shallow»

building blocks and patterns 341

B First First lets only pass the tokens of
the incoming flow that arrives first. Tokens
arriving from the other flow are discarded. i2i1

First

x1 x2

start

«shallow»

reset

0

in:start/

1

in:i2/out:x2

2

in:i1/out:x1

in:reset/in:reset/

1

in:i2/ in:i1/out:x1

2

in:i1/ in:i2/out:x2

B Passing only a single token The One
building block only passes one single token
through in towards out. All subsequent to-
kens arriving via in are stopped.

One

out

in

start

«shallow»

reset

in:start/

in:in/out:out
in:in/

open

closed

in:reset/

B Counter The counter block is initially set
to a certain number and counts downwards
with each token traveling through count. As
long as the counter is not zero, the token is for-
warded towards next. If the counter reached
zero, it is diverged towards end. By ignor-
ing tokens emitted from next, the counter can
simply be used to count tokens and to trigger
an event via end once a certain number of to-
kens have been received. By using pin next,
the counter block can also be used to create a
loop with a fixed number of iterations.

set counterinit: int counter: int

count counter = counter -1

end next

counter
== 0

else

Counter

active
in:init/

active
in:count/nout:ext

in:count/out:end

342 appendix d

D.2 Time

In standard UML, timers are accept event actions referring to a time event.
In our profile, time events must specify a duration, not fixed points in time.
Therefore, a simple timer works as an delaying element, that keeps an incoming
token for a certain duration. Simple timers are only aborted if the surrounding
activity is terminated. We provide therefore a timer block which can be aborted
by an incoming token, as presented next.
B Timer A timer block can be stopped to

prevent a timeout event. timeout

stop

start

stopped

Timer

active
in:stop/out:stopped

in:start/

/out:timeout

stm Timer

B Periodic Timer Since we only allow
time event to specify time durations, periodic
timers are provided by a special building block
that activates the timer upon a timeout. Sim-
ilar to the timer block, the periodic timer may
be terminated at any time.

tick

stop

Periodic Timer

start

stopped

active
in:stop/out:stopped

in:start/

active

/out:tick

stm Periodic Timer

B Timeliness Observer The timeliness ob-
server can be used to measure if a certain event
happens within a certain time frame. After its
start, the timeliness observer waits for the ar-
rival of a token at event. If it arrives before the
timeout, the token triggers the termination via
inTime. Otherwise, a timeout is propagated
via timeout and the eventually arriving event
is diverged towards tooLate.

Timeliness Observer

inTime

timeout

too Late

eventevent
start

stm Timeliness Observer

active in:event/out:inTime

in:start/

late

/out:timeout

in:event/out:tooLate

building blocks and patterns 343

D.3 Environment

Communication with the environment is modeled using explicit signal transmis-
sions, that means, send signal actions and accept event actions with a signal
trigger (also called accept signal actions).

B Continuous Input Accept signal actions
emit their token once the signal arrives and de-
activate. To continuously receive signals, the
accept signal action may be restarted through
a fork node.

in

B Controlled Input The simple accept sig-
nal actions keep a token until the correspond-
ing signal is received or the surrounding ac-
tivity is terminated. To stop waiting for the
arrival of an external signal, the Controlled
Input building block can be used. It can
be stopped similarly to the timer block from
above. Depending on its implementation, the
controlled input corresponds to a button of
a user interface that can be enabled and dis-
abled.

start in

Input
input

stop stopped

active
in:stop/out:stopped

in:start/

/out:input

B Alternative Input In a situation where
one of several inputs is acceptable but it
should be ensured that only one is processed,
an array of controlled inputs is used, provided
by the Alternative Input building block.

active

in:start/

/out:i1 /out:i2

i1: Input
stop

in

i2: Input

in

stop

i1 i2

Alternative Input

start start

start

i1 i2

in: Alternative Input

start

344 appendix d

D.4 Mixed Initiatives

The Mixed Initiative Secondary Starter building block resolves situations in
which to participants can simultaneously take initiatives that have to be co-
ordinated. Examples are presented in Paper 7 and App. A.

B Mixed Initiative Secondary Starter. The two local ESMs for the primary
and secondary side document the behavior of this block. The secondary side
starts the block. After that, the secondary side may place its initiative or wait
for the primary side to take action. If only the primary side takes initiative,
the building block terminates via primWins. Otherwise, if only the secondary
side took initiative, the block terminates via secAccepted. If, however, both sides
take initiative, the block ends via secOverruled.

On the primary side, the behavior is simpler. Upon a token emitted from
started, the primary side may decide to take initiative via primInitiative or wait
until the secondary takes initiative via secWins.

Mixed Initiative Secondary Starter

start

started

secInitiative

secAccepted

secOverruled

primWins

primInitiative

secWins

primarysecondary

building blocks and patterns 345

«esm» Mixed Initiative Secondary Starter

in:start/

/out:primWins

in:secInitiative/

in:start/

/out:started

in:secInitiative/

/out:started

/out:primWins

/out:secWins

/out:secAccepted

/out:secOverruled

in:primInitiative/

in:secInitiative/

in:secInitiative/

in:primInitiative/

«esm» secondary «esm» primary

/out:secAccepted/out:secOverruled

/out:started

/out:secWinsin:primInitiative/

Bibliography

[Obj07] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.1.2, November 2007. formal/2007-11-01.

APPENDIX

E

UML PROFILE FOR EXECUTABLE STATE
MACHINES

This chapter documents the profile for executable service models based on state
machines and structured classifiers. It lists numerous constraints on UML models
and complementary Java classes to facilitate code generation and ensure proper
execution semantics.

E.1 Introduction

This profile uses UML state machines to specify the behavior of system compo-
nents. Since UML does not provide a language to write down actions, we use
additional Java classes that describe the detailed effect of state machine transi-
tions on data. Therefore, this profile does not only address UML models, but
also Java code. References between UML model and Java classes are by name,
and we assume that Java classes are provided alongside the files for the UML
model, for example within the same Eclipse project.

In addition to the connection of UML and Java, this profile has the pur-
pose to facilitate code generation and the provision of tool support, clarify
semantic variation points in the UML standard and ensure proper execution
semantics. These semantics are described in detail in Paper 2 on the basis
of cTLA [HK00]. The underlying model of state machines has been used in
SOM [BHS81], TIMe [BGH+97], and the ARTS project. The execution of state
machines is based on a runtime support system as described in [BH93] which
are implemented for example by JavaFrame [HMP00].

Figure E.1 illustrates the current usage of the profile within the Ramses and
Arctis tools Paper 8. Models corresponding to this profile can be constructed in
two ways. Using Arctis, executable state machines are synthesized automatically
from the collaborative service specification expressed as activities. The models
are correct by construction due to the analysis capability of Arctis and the cor-
rectness of the transformation. With Ramses, it is also possible to create the ex-

348 appendix e

Code
Generation

Arctis Model
Transformer

Ramses
Editors

«executable»
State Machines

UML

Java

Fig. E.1: Usage of the profile for executable state machines

ecutable state machines manually. The inspectors integrated into Ramses ensure
that the constraints implied by the profile apply. From models corresponding to
this profile, implementation can be derived using the code generators described
in [Kra03, Stø04].

The following sections list numerous constraints on UML models and Java
source code. For clarity, we also rephrase some facts implied by the UML stan-
dard and explain the motivation for the constraints. The most relevant chap-
ters for this profile in version 2.1.2 of the current UML standard [Obj07] are
Chapt. 15 for State Machines, Chapt. 9 for Composite Structures as well as
Chapt. 11 and 13 for Actions and Common Behaviors. The files containing the
model of this profile are provided within the Ramses tool Paper 8.

E.2 Executable State Machines

The constraints on executable state machines enable a quite simple scheduling
scheme and make it easy to implement them efficiently in different programming
languages, as described in Paper 2. Executable state machines are marked with
the stereotype �executable�.

«metaclass»
StateMachine

«stereotype»
executable

Fig. E.2: Stereotype �executable�

Constraints (State Machine Elements)

[1] A state machine has exactly one region.
[2] A region contains only states, final states and pseudo states.
[3] A pseudo state is of kind initial or choice.
[4] States do not have any entry or exit activities.
[5] States are not orthogonal or composite and do not refer to submachines.

Executable state machines are event-driven, which means that they only
execute a transition when they are triggered by an event. These events are

uml profile for executable state machines 349

either the reception of the signal or the expiration of a local timer. In addition,
the creation of the state machine is an implicit event that triggers the initial
transition. The transitions are executed by the scheduler in a run-to-completion
step. This means that only one transition is executed by a scheduler at a time.
Since a scheduler is mapped to one Java thread, the execution of a transition
may be interrupted as the corresponding Java thread is interrupted. Therefore,
state machines that share variables should always be scheduled within the same
Java thread, to avoid inconsistencies due to overlapping use of data.

When the final state of a state machine is reached, the state machine will
not be scheduled anymore. The run-time system may dispose all resources con-
cerning this state machine instance.

An executable state machine has one input queue accepting the signals from
any connected unit. The queue is ordered in a first-in, first-out manner, so that
events are processed in the order of their arrival. Signals (including timeout
signals) that are not declared in any outgoing transition of the current control
state (and are hence unexpected) are discarded. Platform-specific mechanisms
may report such an event, as it may be a sign for a design flaw.

Constraints (Triggers)

[1] A transition originating at an initial or choice pseudo state does not declare
a trigger, other transitions have exactly one trigger.

[2] The trigger of a transition is either a signal trigger or a time trigger.
[3] Deferrable triggers of a state are signal triggers.
[4] The only triggers are time triggers and signal triggers.
[5] If a state has a transition triggered by an event, the state does not defer

the event.

Executable state machines are non-blocking , that means that a transition
is enabled only due to the current control state of the state machine and the
declared trigger. They may not declare additional guards that may block exe-
cution. If a transition contains a decision, then at least one outgoing branch is
enabled. To enable choices to be implemented by if-statements in the transition
method (see Paper 2), and to prevent loops, there must be exactly one transition
entering a choice pseudo state.

Constraints (Choices)

[1] Only transitions originating from a choice declare guards.
[2] A choice pseudo state has at least two outgoing transitions.
[3] Exactly one outgoing transition from a choice state has an else guard.
[4] Choice pseudo states must have only one incoming transition.

350 appendix e

E.2.1 Complementary Java Classes

Each state machine is supplemented by two Java classes1, to express detailed
actions on data. For details about the implementation mechanisms, we refer
to [BH93, HMP00] and Paper 2.

– The status class keeps the variables of the state machine that are also
declared in UML. This additional representation in Java is necessary to
initialize the variables with values, using the dedicated method initialize.
Moreover, this class is passed as parameter to the methods for the actions
defined by transitions.

– The action class contains one method for each action. The methods are
declared as public static methods. As argument, each method receives the
signal triggering the transition calling the action, and an instance of the
status class, so that the state machine variables are accessible within the
body of the method.

Constraints (Java Classes)

[1] The Java action class may contain final static variables (constants), but
no instance (non-static) variables.

[2] For simplicity, the Java action class may not contain other methods than
those referred by UML. Additional utility classes can be stored within the
Java package of the state machine.

[3] The name of the Java action class is the name of the state machine with
the suffix ‘Actions’.

[4] The name of the Java status class is the name of the state machine with
the suffix ‘Status’ or ‘SM’.

[5] If the state machine is owned by a package, the name of the Java package
of the complementary Java classes are the name of the UML packages
concatenated with the name of the state machine (separated by a period).

If the state machine is the owned behavior of a class, the name of the
Java package of the complementary Java classes is the name of the UML
packages concatenated with the name of the class (separated by a period).

E.2.2 Variables

A state machine may declare a number of variables, modeled by UML properties.
Using some platform-specific reflection mechanism, a state machine may obtain
values of variables in other state machines that are part of the same component.

1The fact that these are modeled by two distinct classes is based on the original JavaFrame
system [HMP00].

uml profile for executable state machines 351

Constraints (Variables)

[1] All variables of a state machine refer to a typed element (a UML class or
a primitive type) that has the name of an existing Java class or a Java
primitive type.

[2] Each variable of the state machine is represented by a corresponding Java
variable in the Java status class of the state machine.

E.2.3 Actions

Actions are performed as effects of transitions. Send signal actions model the
transmission of signal via ports, call operation actions may refer to methods
within the Java action class of a state machine, and opaque actions may directly
contain some Java code.

The methods of a Java action class may perform any operations on data and
use Java APIs to connect the state machine with specific libraries. In addition,
access to platform-specific mechanisms can be used to operate on timers, ad-
dresses or to reflect about the system or component structure. In addition, the
Java method also contains action to send signals, as described below. Details
about such operations are documented by the specific platforms and not covered
here.

Several actions may be grouped in an activity. Transitions may refer to
activities that include these action directly or indirectly: If a transition declares
its effect directly, it owns the activity and all its contained actions. This means
that once the transition is deleted, also these actions are gone. Moreover, if
several transitions want to achieve the exact same effect, these would have to
be declared for each of them individually. Therefore, we recommend that a
transition refers to its effect indirectly, using a call behavior action. In this
way, activities are declared as owned behaviors of the enclosing state machine.
The effects of transitions contain a single call behavior action that refers to the
activity owned by the state machine. If a transition is deleted, only the call
behavior action is deleted, while the activity owned by the state machine can
still be referred to by other transitions.

Executable state machines send their signals via ports. Usually, these ports
are owned by the state machine directly. If the state machine is the classifier
behavior of a class, the state machine may also refer to ports directly owned by
the enclosing class.

Constraints (Transition Effects)

[1] If a transition has an effect, it is an activity.
[2] The effect of a transition may contain send signal actions, call behavior

actions, call operation actions, and opaque actions.
[3] A call operation action refers by name to a method in the Java action class.
[4] A call behavior action refers to an activity owned by the state machine.
[5] A send signal action refers to exactly one signal.

352 appendix e

[6] A send signal action refers to exactly one port, which is owned by the state
machine or the owning class of the state machine.

Since the sending of signals are important actions of a transition, they are
expressed explicitly in UML by send signal actions. This enables the presentation
of the state machines in diagrams, and a formal analysis of state machines by
tools. However, most signals have parameters that need to be initialized with
some data when they are sent. Most often, these parameters are created as part
of a transitions effect, which means that the values are present as local variables
within the Java method executed as effect of the transition. Therefore, sending
signals is done not only within UML, but also as as part of the Java action
method. The following constraints must hold so that UML send signal actions
are consistent with the Java actions.

Constraints (Java Actions for Sending Signals)

[1] Signals sent in Java code conform to the send signal actions in the model.
[2] Sending of signals in Java is unconditional, that means if a signal sending

is declared, the method will send the signal in all cases, and not depend
on an Java if-statement, for example.

E.2.4 Timers

UML allows to specify time events as triggers of transitions. A transition trig-
gered by a timeout owns a trigger, which points to a time event. The name of
the time event is taken as name of the timer. Time events must be owned by a
package.

UML does not provide actions to start, stop, or reset timers. These are
therefore put into the Java method called by a transition, using platform-specific
operations to handle timers.

E.3 Signals

Since signals may be accessed within the code of the Java action methods, UML
signals are represented by Java classes as well.

Constraints (Java Classes for Signals)

[1] The name of the Java class or the signal corresponds to that of the UML
signal.

[2] If the signal is owned by a UML package, the Java package name of the
class corresponds to the UML package name. If the signal is owned by a
class, its Java package name corresponds to the Java package name for the
UML class.

[3] Each parameter of the signal corresponds to a Java variable.

uml profile for executable state machines 353

According to the rule in [BH93], internal signals, that means, signals sent be-
tween the state machines within a component, should be processed with higher
priority than signals arriving from other components. For that reason, signals
that are sent within components are owned by the component, while signals sent
between components are owned by packages. Signal classes may extend frame-
work classes so that they inherit features for addressing, routing, serialization,
for instance.

E.4 Classes and Components

System components are deployable units, modeled as active classes in UML.2

State machines within a component are assumed to execute locally concentrated,
that means all state machines within one component are executed within the
same scheduler.

A �system� class may be used to depict the structure of a system. Its parts
are interpreted as component instances at run-time, and an execution framework
will start these system components. Note that this way of declaring a system
has been chosen for simplicity. UML deployment diagrams may be more suitable
for this task.

«metaclass»
Class

«stereotype»
system

Fig. E.3: Stereotype �system�

Constraints (Classes)

[1] The classifier behavior of a class is an executable state machine.
[2] Owned behaviors of a class are executable state machines.
[3] Inner parts of classes refer to other classes or to executable state machines.
[4] �system� classifiers do not have any owned behaviors.
[5] Parts of �system� classifiers refer to components.

The classifier behavior (a state machine) may access the data of the owned
state machines as well, for example to select one of them.

E.5 Packages

The constraints on packages are to enable easier tool support. Nested packages
are not allowed, as too many levels can make a model hard to access. Instead,

2Technically, it is not necessary that our components are modeled as UML components,
since no features of this meta-class are used. Nevertheless, a tool may decide to model them
as UML components to facilitate the difference to UML classes that may be used to model
other aspects of data.

354 appendix e

a hierarchical naming scheme for packages, similar to the one for Java packages
(see [GJSB00]), is recommended. Since packages are also used in the creation of
names for Java classes, it is recommended that UML packages are named with
valid names for Java packages.

Constraints (Packages)

[1] Packages do not contain packages.
[2] Packages have valid names for Java packages (see [GJSB00]).

Bibliography

[BGH+97] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger Møller-
Pedersen, and Richard Sanders. Quality by Construction Exemplified
by TIMe — The Integrated Methodology. Telektronikk, 95(1):73–82,
1997.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall, 1993.

[BHS81] R. Bræk, O. Helle, and F. Sandvik. SOM — A SDL Compatible Spec-
ification and Design Methodology. In 4th International Conference
on Software Engineering for Telecommunication Switching Systems,
Conventry, volume 198, pages 111–117, July 1981.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Lan-
guage Specification, Second Edition: The Java Series. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame — Frame-
work for Java Enabled Modelling. In Proceedings of Ericsson Con-
ference on Software Engineering, September 2000.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Obj07] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.2, November 2007. formal/2007-11-01.

[Stø04] Alf Kristian Støyle. Service Engineering Environment for AMIGOS.
Master’s thesis, Norwegian University of Science and Technology,
2004.

LIST OF FIGURES

1.1 The SPACE Engineering Method 6

2.1 An auction system . 12
2.2 Components of the auction system 17
2.3 The auction system decomposed into its components and functions 18

3.1 Protocol specifications with cTLA 34
3.2 Catalysis collaboration and action sequence diagram 35
3.3 CRC Cards for the trusted auction system 36
3.4 UML 2.0 collaboration for the Trusted Auction System 37

4.1 The SPACE Engineering Approach 41
4.2 Illustration of a system’s decomposition by UML collaborations . 43
4.3 Illustration of a system’s decomposition by UML activities 43
4.4 Diagrams for a building block . 45
4.5 Timeliness observer with pins . 45
4.6 Illustration of session multiplicity 46
4.7 Illustration of session selection 46
4.8 Illustration of an elementary collaboration 47
4.9 Automated model checking in Arctis (Steps 1 and 2) 48
4.10 Automated model checking in Arctis (Step 3) 49
4.11 Illustration of the component synthesis 50
4.12 Connections between formulas and diagrams 52
4.13 Tool support for SPACE by Arctis and Ramses 53

5.1 Conceptual map of the papers’ content 56

1.1 Access control system composed of collaborations 96
1.2 System activity to couple the collaborations of the access control

system . 97
1.3 Internal specification for the authentication 98
1.4 External specification for the authentication 99

356

1.5 Description for the door control 99
1.6 Approach for service engineering 101

2.1 Collaboration for the entire system 108
2.2 Activities describing collaborations GetPosition and UpdatePosition108
2.3 Development approach using UML and cTLA 109
2.4 Object diagram of the system . 113
2.5 State machine for a local node 114
2.6 cTLA/e process modeling the local node 116
2.7 cTLA/e process modeling the global system 118

3.1 Engineering approach for interactive services 132
3.2 Collaboration to compose the sub-services of the access control

system . 133
3.3 Activity diagram modeling the detailed behavior of the system . 133
3.4 Executable state machines for the system components 135
3.5 Places for the nodes . 137
3.6 Rules for token transitions . 138
3.7 Main control . 140
3.8 Method to build a transition (beginning) 141
3.9 Method to build a transition (end) 142

4.1 Relationships between components and collaborations 156
4.2 Service Engineering Approach . 157
4.3 Illustration of the system . 158
4.4 UML Collaboration . 158
4.5 Activity for Status Update . 159
4.6 Activity for Tour Request . 160
4.7 The Taxi System Activity . 161
4.8 EBNF for select and exists . 163
4.9 Messaging service extension . 164
4.10 Component structure and their internal session state machines . 166
4.11 The classifier behavior state machine for the control center . . . 167

5.1 Collaboration of the Trusted Auction System 179
5.2 Activity Trust Retrieval . 183
5.3 Activity Report Experience . 183
5.4 Activity Mediated Sale . 184
5.5 Activity Trusted Sale . 185
5.6 Activity Trusted Auction . 187

6.1 The SPACE Engineering Approach 200
6.2 Illustration for a system configuration 202
6.3 System collaboration . 202
6.4 Activity describing the control of the temperature 203
6.5 Collaboration for a phone within a zone 204

list of figures 357

6.6 Collaboration for entering and leaving a zone 205
6.7 Activity composing the entire system 205
6.8 cTLA process for Modeling Activity Timers 207
6.9 cTLA Process describing the activity Temperature Update 209
6.10 Simple form of cTLA Process Temperature Update 210
6.11 External view of a collaboration C 212
6.12 A cTLA/c process for an elementary collaboration Cel 213
6.13 A cTLA/c process for a compositional collaboration Ccomp . . . 214
6.14 The subgraphs covered by the produced actions 230
6.15 Mapping activities to a compositional cTLA/c process C 231

7.1 Tool Support for the SPACE engineering approach 246
7.2 TLA Module . 249
7.3 Reception Panel . 250
7.4 Activity for the entire system . 250
7.5 External state machines . 251
7.6 Solution 1 . 252
7.7 Error trace of solution 1 . 254
7.8 Solution 2 . 256
7.9 Error trace of solution 2 . 256
7.10 Correct solution with a building block to handle mixed initiatives 257
7.11 ESM for Mixed Initiative Secondary Starter 258

8.1 A coarse sketch of the SPACE engineering approach and its tool
support . 266

A.1 The SPACE Engineering Approach 276
A.2 Overview of the tool support . 277
A.3 Eclipse workbench with the Arctis library browser and editor . . 279
A.4 Building blocks provided by a network operator 280
A.5 First solution of the proximity alert 282
A.6 TLA+ module for the semantics of ProximityAlert 284
A.7 Simplified Proximity Alert without data 285
A.8 Visualization of TLC’s error trace in Arctis 287
A.9 Suggested improvement by Arctis with sequencing 288
A.10 New error situation in the altered design 289
A.11 Building block to handle mixed initiatives 290
A.12 Local ESMs for both participants of MISS 290
A.13 Correct Proximity Alert with the Mixed Initiative Building Block 291
A.14 ESM for the corrected proximity alert 291
A.15 Complete system specification of the treasure hunt (screen capture)293
A.16 Executable state machine for the game server generated by Arctis 295

B.1 Commuting diagram illustrating the proceedings in this appendix 305
B.2 External view of the Update Time building block 306
B.3 Activity for the time update in a minimal environment 306

358

B.4 Flattened activity . 307
B.5 Illustration of variables . 307
B.6 TLA+ Module in cTLA/c style for the collaboration 309
B.7 Result of the transformation . 310
B.8 TLA+ Module with auxiliary operators for state machines 310
B.9 Illustration of variables for timer, control states and queues . . . 311
B.10 TLA+ Module in cTLA/e style for the state machines 312
B.11 TLA+ Module for the refinement mapping 317

C.1 Activity and a call behavior action referring to it 320
C.2 Different kinds of building blocks 321
C.3 Repository model of a service collaboration building block 321
C.4 Repository model of a system collaboration building block 322
C.5 Stereotype �system� . 322
C.6 Repository model of an activity block 322
C.7 Repository model of a shallow activity block 323
C.8 Stereotype �shallow� . 323
C.9 Stereotype �multi-session� . 324
C.10 Stereotype �environment� . 324
C.11 Stereotype �esm� . 324
C.12 Stereotype �event� . 325
C.13 ESM transitions referring to one pin 326
C.14 ESM transitions referring to several pins 326
C.15 Stereotype �waiting� . 329
C.16 Stereotype �location� . 331
C.17 Equivalent notation for terminating pins. 333
C.18 Stereotype �multi-session� . 334
C.19 Stereotype �select� . 335
C.20 Stereotype �exists� . 335
C.21 Stereotype �executions� . 335
C.22 Stereotype �mutex� . 336
C.23 Stereotype �bounds� . 336

E.1 Usage of the profile for executable state machines 348
E.2 Stereotype �executable� . 348
E.3 Stereotype �system� . 353

INDEX

accept signal actions, 332
action class, 350
action sequence diagrams, 36
action systems, 31
active objects, 12
activities, 18, 276

semantics, 252, 283
semantics in cTLA, 48
UML, 265
understandability, 67

activity edges, 334
activity final nodes, 328
activity parameter nodes, 320, 332
activity partitions, 136, 250, 253, 327
activity steps, 319
actors, 12, 28
agents, 12
Alternative Input, 343
APM, 34
Arctis, 52, 102, 267, 347

Analyzer, 49, 53
animation of error trace, 286
editor, 277
Formulator, 49, 52, 53, 307
inspectors, 281
Transformer, 53, 283, 305, 308

aspect-oriented, 31
assertions, 335
asynchronous communication, 12
authentication, 178
authorization, 178

B, 123
Booch, 26

bottom-up, 31, 41, 258
boundedness, 49, 254

of queues, 336
building block, 44, 63, 265, 266, 276,

320
activity block, 44, 322
composite, 44
elementary, 44
parametrization, 71
service collaboration, 44, 321
shallow activity block, 323
system collaboration, 44, 321

building blocks
Alternative Input, 343
Button, 161, 252
Continuous Input, 343
Controlled Input, 343
Counter, 341
First, 341
Mixed Initiative, 256, 289, 344
One, 341
Periodic Timer, 342
Sequencer, 340
Switch, 340
Timeliness Observer, 188, 306, 342
Timer, 292, 342

business processes, 178
Button, 161, 252

call behavior action, 96, 251, 265, 320
call behavior actions, 333, 351
call operation action, 330
Catalysis, 26, 35, 37, 39
CEAS, 73

360

CHILL, 27
choice pseudostates, 115, 349
code generation, 13, 29, 113, 135, 268,

348
collaboration diagrams

in Catalysis, 35
in UML 1.x, 35

collaboration role, 323
multiplicity, 324

collaboration roles, 38
collaboration uses, 38
collaboration-oriented approach, 156
collaboration-oriented perspective, 132
collaborations, 132

multi-session, 162
single-session, 166
stateful multi-session, 167
stateless multi-session, 167
UML 2.0, 37, 96, 132, 156, 265,

276
collaborative service specifications, 17
colored Petri nets, 248
communication

asynchronous, 12
buffered, 110, 313
peer-to-peer, 12

communication diagrams, 37
complexity, 258

algorithmic, 8
handling of, 68

component-oriented perspective, 131
components, 12, 165, 353
composition, 63

behavioral, 265
by joint actions, 30
by shared states, 30
structural, 265

conflicting initiative, 256
constraint-orientation, 33, 72
constraint-oriented

models, 249
Continuous Input, 343
control states, 14, 50, 58, 111, 119, 135,

137, 166, 189, 268, 292, 310,
349

Controlled Input, 343
convergence, 107
conversations, 13
corrective approach, 15
CoSDL, 69
Counter, 341
CRC, 16, 36
cross-cutting, 17, 155
cTLA, 30, 32, 40, 115, 246, 249, 252,

266, 267
invariant proofs, 122
processes, 32, 65

cTLA/c, 40, 47, 305, 307
cTLA/e, 47, 118, 305

data flows, 71
deadlocks, 14, 122, 285
decision nodes, 329
deferred events, 114, 135
deployment diagrams, 353
design patterns, 37
DisCo, 18, 30, 31, 34, 39, 68, 123

EBNF, 164
Eclipse, 53, 148, 267
Eclipse Modeling Project, 53
effects, 351
electronic auction system, 178
encapsulation, 66
environment, 9, 11
�environment�, 47
ESM, 44, 63, 66, 251, 253, 265, 276,

280, 324
local, 327
syntax, 325
transition, 325

�esm�, 325
Estelle, 110
event-driven, 135, 348
example

access control system, 96, 132
complexity, 68
home automation system, 202
hotel wakeup alert, 250
location tracker, 107
mobile treasure hunt, 277

index 361

overview of, 68
taxi control system, 157
time update, 306
trusted auction system, 11, 16, 38,

42, 178
�executable�, 47, 348
Executable UML, 26
exists, 162, 335

fairness, 122, 248, 249
FDDT, 47
FDT, 30
First, 341
flow final nodes, 251, 329
fork nodes, 251, 330
formal reasoning, 246
FUJABA, 123, 247

glue logic, 41
goal sequence diagram, 69, 70

horizontal, 17, 19, 157
HUGO, 247

identity management, 178
implication, 31, 253
initial nodes, 253, 328
inner place, 307
invariant, 253
invariant proof, 122
ISDN, 33
ISIS, 68, 170, 190, 259, 268

J2EE, 111, 113
J2ME, 113
J2SE, 112, 113
JAIN SLEE, 111
Java, 148

APIs, 351
classes for state machines, 350
packages, 353
thread, 349

JavaFrame, 111, 112, 268
join nodes, 136, 330
joint action composition, 64
joint actions, 18, 31

Ka-Boooom, 14, 16

layers, 31
library, 265
linear-time temporal logic, 115
liveness, 9, 122, 249
LOTOS, 33

manual synthesis, 64
MDA, 28, 40, 68, 109

viewpoints, 29
merge nodes, 330
micro protocols, 69
Mixed Initiative, 256, 289, 344
mixed initiative, 66, 160, 256
model checking, 14, 16, 21, 66, 246,

259, 267
automated, 283
incremental, 64

model transformation, 109, 268
MOF, 29
MSC, 19, 26, 27, 32, 33, 109, 157
MSC2SDL, 148
mu-calculus, 248
multi-model approach, 40
�multi-session�, 47, 162, 333
multiplicity, 158
mutual exclusion, 49, 336
MWB, 248

non-blocking, 349
non-local choice, 256
NuSMV, 147, 248

object models, 27
ObjecTime, 28
observable behavior, 15
OMEGA, 247
OMT, 26
One, 341
OOram, 17, 35, 37
OOSE, 26
OSI reference model, 32

packages, 353
passive objects, 12
peer-to-peer, 12

362

peer-to-peer networks, 178
Periodic Timer, 342
Petri nets, 18, 32

colored, 248
Pi-Calculus, 248
pin, 320, 334

starting, 45
streaming, 45
terminating, 45

ports, 351
process coupling, 266
process multiplexing, 13
projection, 15
PROMELA, 247, 297
property models, 27
protocol engineering, 32
protocol layer, 32
PVS, 31

queue places, 136, 313, 334
QVT, 29

race conditions, 14
Ramses, 53, 113, 148, 267, 268, 347
Rational, 26
reactive components, 11
reactive systems, 11, 110
real-time properties, 72
real-time requirements, 155
refinement, 31

mapping, 305, 313
proof, 246, 305

repository, 267
reuse, 266
role binding, 45
ROOM, 26, 28, 40, 110
round-robin, 122
RTS, see runtime support system
run-to-completion steps, 48, 51, 319,

349
runtime support system, 13, 26, 111
RUP, 26

safety, 9
scheduler, 136
SDL, 12, 25, 40, 109, 110, 131, 135, 155

abstract machine, 111
SDL pattern approach, 68
SDL pattern tool, 68
SDL+, 26
select, 162, 335
semantic interface, 70
semantic variation point, 113, 347
send signal actions, 331, 351
Sequencer, 255
Sequencer, 340
service, 17
service engineering, 63
service specifications, 17
ServiceFrame, 28, 112, 268
session, 268
session ID, 162, 169
session pattern, 162
�shallow�, 323
Shlaer-Mellor Method, 26
signals, 352

discarding of, 349
internal, 352
priority, 168

SIMS, 70, 268
SISU, 17, 27, 109
snapshots, 36
SOM, 13, 25, 26, 42, 109
SOMT, 25
SPACE, 39, 265, 266

semantics, 47
tool support, 52

specification building block, 178
specification-driven, 123
SPECS, 25
SPIN, 248, 297
STAIRS, 29
state charts, 28
state machines, 12, 32

debugging, 13
executable, 134, 189, 305
execution semantics, 136
semantics in cTLA, 48
session, 268
support system, 27
synthesis, 51, 267

index 363

state space, 14, 40, 52, 66, 259, 267
explosion, 14
reduction, 16, 247

state transition system, 248
stateful behavior, 155
stateless

partition, 307
status class, 350
stereotypes

�environment�, 47
�esm�, 325
�executable�, 47
�multi-session�, 47, 162, 333
�system�, 47, 323

stuttering, 248
sub-service, 265
superposition, 31, 40, 64, 66, 246, 247,

267
superposition step, 31
Switch, 340
�system�, 47

TCP, 33
temporal logic, 268
TIMe, 25, 27, 40, 109, 167
Timeliness Observer, 188, 306, 342
Timer, 292, 342
timers, 137, 251, 311, 332, 352
TLA, 30, 115, 248, 267, 283
TLA+, 31, 102, 307
TLC, 31, 48, 102, 247, 250, 268, 277,

283, 305, 311
token

marking, 58, 64, 268
movement, 252, 320

tool support, 21, 67
top-down, 31, 41, 258
trace, 247, 254
tranformation, 64
TransCo, 123
transformation, 67, 308
transitions

compound, 115
effects, 351
initial, 115
simple, 114

translation-based approach, 29
triggers, 349
trust management, 177
trust models, 178

UML, 26
profile, 319

UML 1.x, 35
UML templates, 71
UML-RT, 28
UML2, 148, 267
UML 2.0

compliance, 52, 68
state machines, 132

Unified Process, 26
use case maps, 18

variables, 31, 331
auxiliary, 114
communication, 212
in state machines, 350
local, 212

virtual machine layer, 110, 136

waiting decision nodes, 136, 329

	Abstract
	Preface
	Table of Contents
	PART I
	1 Introduction
	2 Reactive Systems
	3 Background
	4 The Engineering Method SPACE
	5 Survey of the Publications
	6 Discussion
	7 Future Work
	Bibliography

	PART II
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6
	Paper 7
	Paper 8

	Part III
	Appendix A - Tool Support
	Appendix B - Refinement Proof
	Appendix C - UML Profile for Services
	Appendic D - Building Blocks and Patterns
	Appendix E - UML Profile State Machines

