
A diagrammatic notation

for modeling access

control in tree-based data

structures

Thesis for the degree doktor ingeniør

Trondheim, May 2008

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics

and Electrical Engineering

Department of Telematics

Arne Øslebø

NTNU

Norwegian University of Science and Technology

Thesis for the degree doktor ingeniør

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Telematics

© Arne Øslebø

ISBN 978-82-471-8902-3 (printed version)

ISBN 978-82-471-8916-0 (electronic version)

ISSN 1503-8181

Doctoral theses at NTNU, 2008:142

Printed by NTNU-trykk

Abstract

In modern multi -user computer and network systems, accesscontrol is an important
aspect of theoverall security of agiven system. Theproblem is that as thenumber of
usersandsystemsthat arebeingcontrolled increases, it can quickly becomedifficult
to keep track of exactly who hasaccessto what. Another problem is that with todays
heterogeneous systems, systems of the same type but from different vendors often
havedifferent methods for configuringaccesscontrol.

Many systems like SNMP entities, HTTP servers, LDAP, XML based informa-
tion etc. have one thing in common, they all store their information in a treebased
structure. Based on this fact this thesis describe two graphical modeling languages
that can be used for specifying the accesscontrol setup in most systems that store
information in a treebased structure.

The Tree-based Accesscontrol Modeling Language (TACOMA) is the simplest
language that is defined. It is easy to learn and use as it has only 7 symbolsand two
relations. With this languageit ispossibleto define the exact accesscontrol rules for
usersusingagraphical notation. Thesimplicity of the languagedo however come at
a cost: it i s best suited for small or medium sized tasks where the number of users
and objectsbeingcontrolled are limited.

To solve the scalabilit y problem a second language is also presented. The Pol-
icy Tree-based Accesscontrol Modeling Language (PTACOMA) is a policy based
version of TACOMA that doubles the number of symbols and relations. While it i s
harder to learn it scales better to larger tasks. It also allows for distributed specifica-
tion of accessruleswhere administratorsof different domainscan beresponsible for
specifyingtheir own accesscontrol rules. Domainscan beorganized in ahierarchical
manner so that administrators on a higher level can create policies that have higher
priority and therefor limitswhat administratorsat lower levelscan do.

The thesis describes the two languages in detail and provides a comparison be-
tween them to show the strong and weak points of each language. There is also a
detailed case study that shows how the two languages can be used for specifying
accesscontrol in SNMPv3.

iii

iv

Preface

This is my thesis for the degreeof doktor ingeniør at the department of Telematics,
NorwegianUniversity of Science andTechnology(NTNU). Thework started in 1997
and is now finally finished. The first four years were done as a research fellow at
NTNU and was supported by a joint grant from the Norwegian Research Council ,
Alcatel, Ericsson, Siemens and Telenor. Since 2001the work was done in parallel
with my work at theResearch andDevelopment groupin UNINETT.

While thework at UNINETT has not been directly related to thework presented
in this thesis, I have been able to combine some of the work and use results from
UNINETT in a large case study.

My supervisor for thisresearch hasbeen Prof. Steinar Andresen andI would like
to thank him for his patience and support in finishing this work. I would also like
to thank Olav Kvittem at UNINETT for his support and for providing me valuable
feedback onearlier versionsof the thesis.

I would also liketo thank my wife and daughters, Noriko, Lisa andNina, for their
patiencewhileI worked onwritingthethesis. Without their support I would not have
been able to complete it.

v

vi

Contents

1 Introduction 1
1.1 Backgroundandmotivation . 1

1.1.1 Diagrams . 1
1.1.2 MIB View ModelingLanguage 2
1.1.3 A diagrammaticnotationfor modelingtree-basedaccesscon-

trol . 4
1.2 Outlineof the thesis . 4

2 AccessControl 7
2.1 Introduction . 7
2.2 Mandatory AccessControl . 8

2.2.1 LatticeModel . 8
2.3 Discretionary AccessControl . 9

2.3.1 AccessMatrix Model . 9
2.4 RoleBased AccessControl . 9

2.4.1 CoreRBAC . 10
2.4.2 Hierarchical RBAC . 11
2.4.3 StaticsSeparation of Duty relations 11
2.4.4 Dynamic Separation of Duty relations 11

2.5 ExtensibleAccessControl MarkupLanguage 11

3 Treestructures 13
3.1 Treestructure fundamentals . 13

3.1.1 Graphs . 13
3.1.2 Trees . 14

3.2 Accesscontrol in treestructures 16

4 Tree-based AccessControl Modeling Language 19
4.1 TACOMA overview . 19

4.1.1 Editors . 19
4.1.2 TACOMA Parser . 22
4.1.3 TACOMA ACL optimizer 22
4.1.4 TreeGenerator . 22
4.1.5 ACL Configurator . 22

vii

viii CONTENTS

4.2 Notation . 23
4.2.1 Diagrams . 23
4.2.2 Relations . 23
4.2.3 Symbols . 24

4.3 EOID functions . 39
4.4 Hierarchy . 41
4.5 User administration . 42
4.6 RBAC support . 43
4.7 XACML support . 43
4.8 Formal specification . 43

4.8.1 Metamodel . 43
4.8.2 XML Schema . 45
4.8.3 Shortcomingsof the formal specification 45

4.9 TACOMA XML format . 46

5 Policy Tree-based Accesscontrol Modeling Language 51
5.1 Introduction to domainsand policies 51

5.1.1 Policy based management 51
5.1.2 Policy attributes . 52
5.1.3 Policy servers . 53

5.2 PTACOMA overview . 53
5.2.1 Policy-based paradigm . 54

5.3 Notation . 54
5.3.1 Relations . 56
5.3.2 Symbols . 57

5.4 PTACOMA metamodel . 63
5.4.1 Main diagram . 64
5.4.2 Roledefinition . 64
5.4.3 Typedefinition . 66
5.4.4 Policies . 69
5.4.5 Separation of duty policies 69
5.4.6 Policy view definitions . 69

5.5 Domain hierarchy . 71
5.6 Policy conflicts . 71
5.7 Distributed management . 73
5.8 PTACOMA XML format . 74

6 TACOMA and PTACOMA compar ison 91
6.1 Complexity . 91
6.2 Scalabilit y . 91
6.3 Maintainabilit y . 92
6.4 Distributed specification of accesscontrol 92
6.5 Example . 92
6.6 Summary . 97

CONTENTS ix

7 Casestudy: Using PTACOMA to Model AccessControl in a LargeScale
Deployment of PassiveMonitor ing Probes 99
7.1 MonitoringAPI . 99

7.1.1 Distributed MAPI . 101
7.1.2 MAPI security mechanisms 101
7.1.3 SNMPaccess . 101

7.2 Management information . 103
7.2.1 Interface . 103
7.2.2 Organization . 104
7.2.3 User .104
7.2.4 Flow .104
7.2.5 Function . 105
7.2.6 Argument . 105

7.3 Using theMAPI MIB . 106
7.4 Accesscontrol requirements . 106
7.5 SNMPv3 USM and VACM configuration 107

7.5.1 UNINETT administrator 107
7.5.2 Guest users . 107
7.5.3 Customer administrators 108
7.5.4 Full configuration . 108

7.6 PTACOMA diagrams . 108
7.6.1 UNINETT administrators 108
7.6.2 Guest users . 109
7.6.3 Customer administrators 109

7.7 Summary and conclusions . 111

8 Conclusionsand fur ther work 113
8.1 Conclusions .113
8.2 Related work .114
8.3 Further work .114

A Lisof Acronyms 117

B SimpleNetwork Management Protocol 119
B.1 History .119
B.2 Framework .120

B.2.1 Management InformationBase 120
B.2.2 Structureof Management Information 120

B.3 SNMPv3 referencemodel . 121
B.4 User-based Security Model . 122

B.4.1 usmUserTable . 122
B.4.2 Adding users . 124
B.4.3 Deleting users . 125
B.4.4 Changing keys . 125

x CONTENTS

B.5 View-based AccessControl Model 125
B.5.1 vacmSecurityToGroupTable 126
B.5.2 vacmAccessTable . 126
B.5.3 vacmViewTreeFamilyTable 128
B.5.4 Creating MIB views . 128

C Prototype implementation of TACOMA and PTACOMA for configur ing
SNMPv3 accesscontrol 131
C.1 Introduction .131

C.1.1 DOM and SAX . 132
C.2 TACOMA Parser . 132

C.2.1 getAccessRules . 133
C.3 ConfiguringSNMPaccesscontrol 134
C.4 Limitations .134
C.5 PTACOMA implementation . 134
C.6 Conclusions .137

D TACOMA XML Schema 139

E PTACOMA XML Schema 145

F MAPI MIB 169

Bibliography 179

List of Figures

2.1 Accesscontrol . 7
2.2 Rolehierarchy . 11
2.3 XACML core framework . 12

3.1 Directed and undirected graphs . 13
3.2 Freetree . 15
3.3 Forest . 15
3.4 Rooted tree . 15
3.5 Accesscontrol . 17

4.1 TACOMA framework . 20
4.2 TACOMA diagram . 21
4.3 Treestructure . 21
4.4 TACOMA symbolsand relations 23
4.5 TACOMA user . 24
4.6 Illegal TACOMA user symbol example 25
4.7 Legal TACOMA user symbol example 26
4.8 TACOMA entity . 28
4.9 ExcludeTACOMA entity . 29
4.10 Global TACOMA entity . 30
4.11 TACOMA children symbol . 33
4.12 TACOMA subtreesymbol . 34
4.13 Table treestructure . 35
4.14 TACOMA table row symbol . 36
4.15 TACOMA groupsymbol . 38
4.16 TACOMA groupcontents . 39
4.17 TACOMA groupexpanded . 40
4.18 TACOMA hierarchy conflicts . 42
4.19 TACOMA MetaModel . 44
4.20 TACOMA dependency loop . 45
4.21 TACOMA diagram without entity symbol 46
4.22 TACOMA XML structure . 49

5.1 Policy server . 53
5.2 PTACOMA components . 55

xi

xii LIST OF FIGURES

5.3 PTACOMA diagram . 56
5.4 PTACOMA symbols . 56
5.5 PTACOMA subject relation . 57
5.6 PTACOMA role example . 65
5.7 PTACOMA role example - domain contents 65
5.8 PTACOMA domain arithmetic example - groupcontents 66
5.9 PTACOMA domain arithmetic example 67
5.10 PTACOMA alternativedomain arithmetic syntax 67
5.11 PTACOMA roledefinitions . 68
5.12 PTACOMA type example . 70
5.13 PTACOMA type example - domain contents 70
5.14 PTACOMA separation of duty policy examples 71
5.15 PTACOMA policy view example 72
5.16 PTACOMA policy view example - domain contents 72
5.17 PTACOMA XML structure . 77
5.18 Main diagram metamodel . 78
5.19 Roledefinitionmetamodel . 79
5.20 Usersand domainsmetamodel . 80
5.21 Domain modelingmetamodel . 81
5.22 Typedefinitionmetamodel . 82
5.23 Entitiesand domainsmetamodel 83
5.24 Policy metamodel . 84
5.25 Policy subject metamodel . 85
5.26 Constraint metamodel . 86
5.27 Policy target metamodel . 87
5.28 PTACOMA separation of duty policiesmetamodel 88
5.29 Policy view definitionsmetamodel 89
5.30 PolicyView group of entitiesmetamodel 90

6.1 Initial department A TACOMA diagram 93
6.2 Initial department B TACOMA diagram 93
6.3 Modified department A TACOMA diagram 94
6.4 TACOMA diagram of GroupA . 94
6.5 Modified department B TACOMA diagram 95
6.6 Initial department A PTACOMA diagram 95
6.7 Initial department B PTACOMA diagram. 96
6.8 Modified department A PTACOMA diagram 96
6.9 Blocking users from department B 97

7.1 PTACOMA diagram for UNINETT administrators 109
7.2 PTACOMA diagram for guest users 110
7.3 MAPI accessgroupcontents . 110
7.4 PTACOMA diagram for local accessfor customer administrators. . 111
7.5 PTACOMA diagram for remote accessfor customer administrators . 112

LIST OF FIGURES xiii

8.1 XACML constraints in PTACOMA 115

B.1 SNMPframework . 120
B.2 SNMPv3 referencemodel . 121
B.3 USM MIB structure . 123
B.4 VACM MIB structure . 127
B.5 VACM accesscontrol process . 128

C.1 TACOMA Parser design . 133
C.2 Domain D1 .135
C.3 Domain D2 .135
C.4 ifTablepolicy .136

xiv LIST OF FIGURES

List of Tables

2.1 Accessmatrix . 9

4.1 Table example . 35

6.1 TACOMA and PTACOMA weak andstrong points 97

7.1 MAPI MIB accesscontrol for customer administrators 107
7.2 MAPI MIB accesscontrol for guest users 107

B.1 Object identifiers for mibA . 129
B.2 vacmViewTreeFamilyTable entries 129

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Thischapter describesthebackgroundandmotivation behindthethesisand provides
an overview of how the rest of the thesis isorganized.

1.1 Background and motivation

“A picture is worth a thousandwords” . This is amaxim well known to most people,
althoughit is often mistakenly quoted asbeingaChineseproverb belonging to Con-
fucius. Itsorigin isactually two articlespublished in thetrade journal “Printer’s Ink”
in 1921and 1927 byFrederick Barnard[1, 2]. The first article was titled “One Look
Is Worth a Thousand Words” and talked in general about the benefits of advertising
with pictures on street cars. In this article the proverb was attributed to a “famous
Japanese philosopher” . In 1927 he revised the saying to “One picture is worth ten
thousand words” and this time he claimed it was a “Chinese proverb” . By calli ng it
aChineseproverb Frederick Bernard thought hiswordswould bemorebelievable.

Today the proverb is known all over the world and few question its validity. In
computer science andtelecommunication pictures, diagramsand graphical notations
have been used for a longtime to help programmers and system operators to under-
stand the complexitiesof modern computer and communicationsystems.

1.1.1 Diagrams

The most common visualization method used in computer science and telecommu-
nication isdiagrams. They are used as away to understand the complex architecture
of modern systems. A diagram is a method for conveying a message by means of
drawing lines. TheMerriam-Webster dictionary[3] defines adiagram as:

“a graphic design that explains rather than represents; especially : a drawing
that shows arrangement andrelations(as of parts)” .

The earliest formsof diagramsaremaps. Mapsare considered diagramsbecause
they relate physical distance between locations in the world and physical distance

1

2 CHAPTER 1. INTRODUCTION

of these locations on paper. At the same time they abstract out details, for example
roads are represented by straight lines, coastlinesare abbreviated etc.

It is this abstraction of details that make diagrams very useful for dealing with
complex computer and communication systems. In computer science and telecom-
munication there are many examplesof highly successful graphical notations.

One well known notation is Entity-Relationship diagrams. These diagrams are
used for high level modeling of complex databasesystemsand help designers create
accurate and useful conceptual models. The E-R diagram was created by Professor
Peter Chen[4] to serve as a tool for communication between designers and users.
Chen recognized that users and developers often have difficulties communicating
and that a visual diagrammatic notationcould help bridge this gap. An E-R diagram
presents a visual overview of the data and relationships between data in a database
in away that is relatively easy to understandeven for normal users.

Another exampleof adiagrammatic languageistheSpecificationandDescription
Language (SDL)[5]. The development of this language started in 1972and it was
designed as a language for specifying and designing telecommunication systems.
Today the language can be used to develop any real time concurrent system. The
purposeof SDL is to help developersunderstandandmodel the complex behavior of
real time concurrent systemsand protocols.

For development of large andcomplex object oriented softwaresystems, theUni-
fied Modeling Language (UML)[6] is commonly used. UML is a collection of sev-
eral diagram types that makes it possible for developers to model both the static and
dynamic propertiesof large andcomplex softwareprojects.

These are just a few examples of the many graphical notations that successfully
havemade complex matterseasier to handle.

1.1.2 MIB View Modeling Language

Based on the fact that visual representation using diagrams helps people to better
understandcomplex systems, thework described in thisthesis started out asresearch
intofindinganeasy methodfor specifyingaccesscontrol configurationsin theSimple
Network Management Protocol (SNMP).

SNMP was released as a draft standard in 1988and became afull standard in
1990[7, 8, 9]. Since its release, SNMP has been the most commonly used protocol
for monitoring network equipment in TCP/IP networks like the Internet and big in-
tranets. Today, not only network devices like routers and switches support SNMP,
but also most other devices that are connected to a network like printers and servers
havebuilt i n support for it.

One weaknesswith the first and second version of SNMP is that they both share
avery weak security model where theonly authentication isapassword sent in clear
text over thenetwork. This lack of security isoneof the reasons why SNMPis most
commonly used for monitoringand only rarely used for configuring devices.

When thework onthisthesis started, thedraft version of SNMPv3[10, 11, 12, 13,
14, 15, 16, 17, 18] had just been released. SNMPv3 supports proper security mech-

1.1. BACKGROUND AND MOTIVATION 3

anisms like strongauthentication and accesscontrol. Many organizations and com-
panies had complained about the weak security in SNMP and at that time many ex-
pected that SNMPv3 would increasetheusageof SNMPfor configurationas it could
now bedone in asecureway. In oneof thefirst published booksabout SNMPv3[19]
the author wrote in thepreface:

“ I have this image in my mind of SNMPv3 as a series of dark clouds that are
rolli ng in over the horizon. Like it or not the storm is coming andyou’d better be
prepared for it”

So far this storm has not come, one reason being that operators do not want yet
another system of user authentication to keep track of. The IETF has now started
a working group called Integrated Security Model for SNMP (ISMS)[20], which
works on extending SNMPv3 so that it can use external authentication systems like
TACACS1 or RADIUS2.

The access control mechanism defined in SNMPv3 is the View-based Access
Control Model (VACM). One of the goals when developing this model was that it
should add as littl e overhead as possible when processing SNMP packets and an
implementationshould have asmall footprint. Thereasonfor thesedesign goalswas
that SNMPisoften implemented on network equipment with limited resources. One
cost of thelow overhead andsmall i mplementationfootprint of VACM, isthat it does
not scalewell for a largenumber of different users andfine grained accesscontrol.

The accesscontrol mechanisms in VACM are controlled througha MIB called
theVACM MIB. TheVACM MIB contains four tables that together decides if auser
is allowed accessto a managed object or not and what type of accesshe is granted.
When thesetablesgrow large, it can quickly becomedifficult to keep track of exactly
who have accessto what.

There are commercial toolsavailablethat implementsagraphical interfaceto the
VACM tables. This ishowever not enoughsincethemanagerscontrolli ngthe access
rights still have to manipulate the tables directly without any abstractions. This was
the motivation behind this thesis. It started out as a work on defining a graphical
modeling languagethat could beused for configuringthe accesscontrol andsecurity
parameters in SNMPv3.

This research first resulted in the MIB View Modeling Language (MVML)[21].
MVML is a simple graphical notation with few symbols and relations specially de-
signed for specifying MIB views for VACM. This language was foundto be very
easy to learn and use for small and medium sized networks.

To handle large networks with a high number of users and managed objects, the
Policy-based MIB View ModelingLanguage (PMVML) was created. PMVML uses
a policy based paradigm for specifying accesscontrol. The cost for being able to
scale to large networks is an increase in complexity. PMVML doubled the number
of availablesymbolsand relations.

1Terminal AccessController AccessControl System
2RemoteAuthenticationDial-In User Service

4 CHAPTER 1. INTRODUCTION

1.1.3 A diagrammatic notation for modeling tree-based access
control

As the work on implementing a prototype for MVML and PMVML progressed, it
became apparent that the methods used could easily be made more generic and be
applied to almost any application that store information in a tree-based structure.
Some examples are SNMP, LDAP or even web pages on a HTTP server that stores
thefiles in a tree-based filesystem.

Thework presented in thisthesisisthereforetwo general purposegraphical mod-
eling languagesfor specifyingaccesscontrol for applicationsandsystemsthat stores
information in a treebased structure. The two languagespresented are:

Tree-based Accesscontrol Modeling Language (TACOMA) asimplenotationwith
few symbolsandrelations. It was developed with ease of use as thepri-
mary goal. It is however best suited for small and medium sized tasks
with a limited number of usersand objects.

Policy Tree-based Accesscontrol Modeling Language (PTACOMA)[22] a more
advanced notation which builds on TACOMA and doubles the number
of symbolsandrelations. It can beused for largetaskswith ahigh num-
ber of users and objects at the cost of being more difficult to learn and
use. It isbased on policiesandtogether with aproper editor it allowsfor
distributed specification of accesscontrol that can span multiple admin-
istrativedomains.

Configuring access control in applications and systems can often be challenging.
First of all each typeof application or system usually havevery different methodsfor
doing the configuration and each methodmust be learned properly so that accessto
protected resources are not granted by mistake. Even systems of the same type but
from different vendors can often have different methods for configuring the access
control.

Instead of having to learn and master all these different methods for configur-
ing accesscontrol, the graphical modeling languages described in this thesis can be
used. Depending onthenumber of usersandresourcesbeingcontrolled, administra-
tors only have to learn one or two graphical modeling languages for configuring all
applicationsand devices that stores information in treebased structures.

1.2 Outlineof the thesis

The thesis consists of 8 chapters where the main work is described in chapter 4
through 7.

Chapter 2 givesashort introduction to variousaccesscontrol models.
Chapter 3 introduces the mathematical properties of trees and discusses access

control in treebased structures.

1.2. OUTLINE OF THE THESIS 5

Chapter 4 presents theTree-based AccessControl ModelingLanguage. Thesyn-
tax of the modeling language is described in detail and all symbols defined in the
language aredescribed. Thischapter also describesan XML format that can beused
for storingTACOMA diagramsandwhich also act asaformal definition of thestruc-
tureof the language.

Chapter 5 describes the policy based version of TACOMA called PTACOMA.
It starts by giving a short introduction to domains and policies and then follows the
same outline as chapter 4 where it provides a detailed description of all available
symbols. An XML format is also described and some simple examples on how the
language can beused are given.

Chapter 6 compares the two languages defined in the thesis and discusses the
strengthsandweaknessesof each language. The chapter also providesarationalefor
why both languagesare useful.

Chapter 7 is a case study which showshow PTACOMA can be applied for spec-
ifyingaccesscontrol in SNMPv3 for a real world use case.

Chapter 8 summarizes the work presented in the thesis, provides some conclu-
sionsand discusses further work.

Appendix B is an overview of SNMP with focus on the security mechanisms of
SNMPv3.

Appendix C describesaprototypeimplementation of TACOMA andPTACOMA
for configuring accesscontrol in SNMP entities.

6 CHAPTER 1. INTRODUCTION

Chapter 2

AccessControl

Thischapter providesashort introductionto accesscontrol and givesan overview of
variousexistingaccesscontrol models.

2.1 In troduction

Thetask of accesscontrol in asystem isto limit what authenticated usersare allowed
to access in the system. Figure 2.1 shows a high level abstraction of how access
control works. A user, usually called subject, whowantsto accessaresource, usually
called object, in the system is first authenticated by the authentication system. The
task of the authentication system is to verify the identity of subjects trying to access
thesystem. Subjectsdo not haveto bereal users, but can also be applicationsrunning
on behalf of a user.

If the subject is properly identified, then the request is passed on to the access
control system. The accesscontrol system checks with an authorization database to
seeif theuser isallowed to accesstheobject. There can bedifferent typesof access,
li ke read, write, create etc., and each subject can have limited or noaccessto objects
based onthe type of access. To control which subject has accessto which objects, a
security administrator can update the authorization database.

Figure2.1: Accesscontrol

7

8 CHAPTER 2. ACCESSCONTROL

The authorization database is rarely implemented as a centralized database, but
instead it is often distributed where for example each object has a list of attributes
deciding who can access it. It is also important to realize that in many systems,
subjectscan themselvesbeobjectsand be controlled by the accesscontrol system.

Research into access control models has been going on for many years. The
U.S. Department of Defense (DoD) was amongthe first to formalize accesscontrol
models. This work was part of the Trusted Computer System Evaluation Criteria
(TCSEC)[23]. In this document two different access control models are defined:
Discretionary AccessControl(DAC) and Mandatory AccessControl (MAC).

It has later been shown that these two models do not always fulfill the needs of
organizations outside the DoD and a lot of research have gone into defining a new
accesscontrol model called Role-Based AccessControl (RBAC)[24, 25, 26, 27, 28].
In 2004RBAC was standardized by the InterNational Committee for Information
TechnologyStandards (INCITS).

2.2 Mandatory AccessControl

Mandatory AccessControl (MAC) wasfirst specified byTCSEC andisheavily based
on milit ary requirements. MAC is a model that limits access to objects based on
the sensitivity of the information contained in the object. The level of sensitivity
is represented by a label. The sensitivity levels are hierarchical in nature and can
typically be top secret, secret, confidential or unclassified. Subjects are assigned
a security clearance and access to objects are granted or denied depending on the
relation between clearanceof thesubject and thesecurity label of theobject.

2.2.1 Latt iceModel

A formal model of the MAC model using lattices was developed by Denning[29].
In this model there is a set of subjects S , objects O and security levels L . All
subjectsand objectsare then assigned aspecific security level. To decide if asubject
s∈ S can accessan object o ∈ O the model looks at the relationship between the
security level, clearance, of the subject and the security level, classification, of the
object. Accessispermitted if the clearancedominates the classification, otherwise it
is denied.

The work by Denning defines a relation ≥ which can be used to compare two
security levels to decide if access is granted or denied. Assume that objects can
have different sensitivity levels like top secret (TS), secret (S), confidential (C) or
unclassified (U) which hasanatural orderingso that TS> S>C >U . The collection
of object sensitivity is then R = {TS,S,C,U}. For any user that needs to access
objects there will be a collection of necessary objects called compartments. Let this
collection of compartments be T . We then have L = R×T and a security level
l ∈ L is a pair (lR , lT) where lR ∈ R and lT ∈ T . The relation ≥ can then be
defined as:

2.3. DISCRETIONARY ACCESSCONTROL 9

o1 o2 o3 o4

s1 read,write read read read, write
s2 read read
s3 execute read read, execute

Table2.1: Accessmatrix

(l ≥ l ′) ⇔ (lR ≥ l ′
R

) and (lT ⊇ l ′
T

) for l , l ′ ∈ L .
With this relation a subject s∈ S with clearance ls ∈ L is given accessto an

object O with classification lo ∈ L if and only if ls≥ lo.

2.3 Discretionary AccessControl

Discretionary Access Control (DAC) is the second access control model that was
specified in TCSEC. In DAC the owner of an object controls the accesscontrol per-
missions of it and it is up to the owner’s discretion to assign accesspermission to
objects. DAC is a model often found in commercial systems, one example being
UNIX filesystems.

2.3.1 AccessMatr ix Model

Most systems that supports DAC uses an accessmatrix model which was first intro-
duced byLampson[30]. Thismodel usesamatrix where therowsare indexed by the
subjectsS and the columnsby theobjectsO . All accesspermissionsheld by auser
s∈S over an object o∈O is specified in thematrix entry (s,o). Table2.1 showsan
exampleof an accessmatrix.

In this table we can for example see that the entry (s2,o4) gives user s2 read
access to object o4. In real world systems the access matrix will contain a lot of
empty entries and can be very large. For this reason DAC is rarely implemented as
a real matrix. The table is usually stored either by column or by row. Storing by
columns means that each object has an AccessControl List(ACL) associated with it
and this list contains the accessrights of each subject that are allowed accessto the
object. For exampleobject o2 would have an ACL like this: (s1, read),(s4, read).

Storing byrow meansthat each subject hasa list of capabiliti esthat showswhich
objects the subject can accessand the type of accessthat is allowed. Subject s3 has
the followingcapabiliti es: (o1,execute),(o2, read),(o4, readexecute).

2.4 RoleBased AccessControl

While many commercial systems have implemented DAC, many systems have also
implemented some sort of role based accesscontrol for many years[31]. The basic

10 CHAPTER 2. ACCESSCONTROL

principal behindRole-Based AccessControl(RBAC)[32] is that instead of givingac-
cessrightsdirectly to subjects, they are given to roles and then subjects are assigned
oneor moreroles to allow accessing objects.

RBAC isan advanced concept andrequirementsvariesa lot among different sys-
tems. Because of this the RBAC standard is divided into four parts where only one
of them is mandatory to support. The rest are optional and can be added if needed.
The four partsare:

Core RBAC the essential aspectsof RBAC that all systemsmust support.

Hierarchical RBAC adds support for hierarchical roles.

SSD Static Separation of Duty relations.

DSD Dynamic Separation of Duty relations.

2.4.1 Core RBAC

The Core RBAC model specifies element sets and relations that are mandatory for
all systemsthat supportsRBAC. Thefivebasic data elementsare:

USERS aset of users that are allowed accessto thesystem

ROLES aset of roles that can be assigned to users

OBS aset of objects that can be accessed by roles

OPS aset of operations that can beperformed on objects

PRMS a set of permissions that allows specific operations to be applied to spe-
cific objects

In addition to these five basic data elements, there is also a set called SESSIONS.
A session is a mapping between a user and one or more roles that are assigned to
the user. This means that a user can have different roles depending onthe current
session.

One important aspect of RBAC is that permissions to accessobjects are always
given to roles and never directly to a user. If one single user needs more access, a
new roleshould be created and given accessandtheuser should be assigned thisnew
role. A use can havemultiple roles.

2.5. EXTENSIBLE ACCESSCONTROL MARKUPLANGUAGE 11

Figure2.2: Rolehierarchy

2.4.2 Hierarchical RBAC

Hierarchical RBAC makes it possible to create ahierarchy of roles where one role
can inherit accessrulesfrom other roles. Figure2.2 showsan exampleof this. In this
figure we can seethat role R1inherits R0 and role R3 inherits both R1 and R2. The
fact that a role rx inherits role ry means that all privileges of ry is also privileges of
rx[33].

While hierarchical RBAC is optional, it i s a feature that is commonly used by
productsoffering rolebased accesscontrol.

2.4.3 StaticsSeparation of Duty relations

Separation of duty is an important feature in many systems. The idea is that for
criti cal tasks it should not be possible for one single person to have access to do
everythingand that the task has to beseparated between two or morepeople.

With static separation of duty (SSD) there are rules that dictates which roles a
user might be assigned. As an example arule might dictate that a user that has been
assigned role r0 can not also be assigned role r1.

2.4.4 Dynamic Separation of Duty relations

With dynamic separation of duty (DSD) the rules dictating which roles a user can
have, can be dynamic and change according to which session the user uses. For
example if a user is assigned role r0, a DSD rule can say that the user can only take
on role r1if hedeactivatesrole r0.

2.5 ExtensibleAccessControl Markup Language

The Extensible Access Control Markup Language (XACML)[34, 35] is an XML
based language standardized by Organization for the Advancement of Structured
Information Standards (OASIS) for specifying accesscontrol requirements. It is a

12 CHAPTER 2. ACCESSCONTROL

Figure2.3: XACML core framework

general purpose language designed for supporting the needs of most authorization
systems.

Thestandard documentsdescribingXACML defines both thesyntax for thepol-
icy language as well as a request and response format for querying policy systems.
The core framework for XACML is shown in figure2.3.

This figure shows the 6 usual steps in XACML for deciding if an action is per-
mitted or not:

1. Access request: the access requester, for example an application, sends an
accessrequest to thepolicy enforcement point.

2. XACML request: the policy enforcement point (PEP) sends an XACML re-
quest message to the policy decision point (PDP). The format of this message
is specified by XACML.

3. Fetch policy: thePDP will l ook at theXACML Request, identify the targeted
resources of the request and fetch all policies that governs these resources.

4. Fetch optional att r ibutes: apolicy specified inXACML can include attributes
andconditionsthat these attributeshaveto fulfill for thepolicy to bevalid. This
can for examplebeused for creatingapolicy sayingthat auser only hasaccess
as longas the load onthesystem is low.

5. XACML response: responseback to thePEP can be: permit, deny, not appli -
cableor indeterminate.

6. Access resource: if PEP receives back a permit response, access to the re-
sourceiscarried out.

Chapter 3

Treestructures

Thischapter providesan overview of themathematical propertiesof trees. To be able
to understand these properties better, the chapter starts by givinga general overview
of graphs. The chapter ends by describing accesscontrol mechanisms in tree-based
structures.

3.1 Treestructure fundamentals

Storing information in a treestructure is a methodmuch used in computer science.
Trees are aspecial form of graphs so to understand the mathematical properties of
trees, onemust first understand thebasics of graphs.

3.1.1 Graphs

There are two main types of graphs, directed and undirected. Figure 3.1 shows an
example of these two types of graphs where graph (a) is directed and (b) is undi-
rected. This figure is used to define the various aspects and terminology for graphs.
The overview of graphs in this section is not complete and only enough basic prop-
erties are given to be able to understand the description of trees given later in the
chapter.

1 2 3

(a)

1 2 3

(b)

Figure3.1: Directed and undirected graphs

13

14 CHAPTER 3. TREE STRUCTURES

The circles in figure3.1 are called verticesandthelinesbetween them areedges.
In a directional graph, the edges are drawn using an arrow while undirectional
graphs use asimple line. The common mathematical notation of a graph G is G =
(V,E) where V is a finite set of vertices and E is a binary relation onV specifying
edges.

With thisnotation thegraph(a) in thefigure can bewritten as:
G = ({1,2,3},{(1,2),(2,2),(3,2)}.
The only difference between a directed and an undirected graph, is that in an

undirected graph the edge set E consists of unordered pairs of vertices. A single
edge of a graph is a set {u,v} where u,v ∈ V. For undirected graphs u 6= v also
applies. Theset {u,v} is commonly written using thenotation (u,v).

A path in a graph G = (V,E) from a vertex u to a vertex u′ is a sequence of
vertices,< v0,v1,,vk >, where u = v0, u′ = vk and (vi−1,vi) ∈ E for i = 1,2, ...k.
The number of edges in the path is considered the length of the path. If all vertices
in apath are distinct, thepath iscalled simple.

In asimplegraph, thepath < v0,v1, ...,vk > formsa cycle if v0 = vk and thepath
containsat least one edge. An acyclic graph isa graph that containsnocycles.

An undirected graphisconnected if every pair of vertices isconnected byapath.

3.1.2 Trees

There are different types of trees. A free tree as shown in figure 3.2 is a connected,
acyclic, undirected graph. If an undirected graph is acyclic but disconnected, it i s
a forest as shown in figure 3.3. If G = (V,E) is an undirected graph, the following
properties for a freetreeis true[36]:

1. G isa freetree

2. Any two vertices in G are connected by auniquesimplepath.

3. G is connected, but if any edge is removed from E, the resulting graph is dis-
connected.

4. G isconnected, and |E| = |V|−1

5. G isacyclic, and |E| = |V|−1

6. G isacyclic, but if any edge isadded to E, theresulting graphcontainsa cycle.

Figure 3.4 shows a rooted tree. In a rooted treeone of the vertices is distin-
guished from theothers and is called the root of the tree. A vertex in a rooted treeis
often referred to as anode. In figure3.4 node1 is the root of the tree.

In a rooted treeT with root r, any node y on the direct path from r to x is an
ancestor of x. If y isan ancestor of x, then x isadescendant of y. In figure3.4 node
9 isadescendant of node2 and node4 is an ancestor of both node7 and 8.

3.1. TREE STRUCTURE FUNDAMENTALS 15

Figure3.2: Freetree

Figure3.3: Forest

1

32

5 6

9

4

7 8

depth 0

depth 1

depth 2

depth 3

Figure3.4: Rooted tree

16 CHAPTER 3. TREE STRUCTURES

By definitionall nodesarebothan ancestor andadescendant of itself. If x 6= y and
y is an ancestor of x, then y is a proper ancestor of x and x is a proper descendant
of y.

A subtree rooted at anodex is the treerooted at x containing thedescendantsof
x. In figure 3.4 thesubtreerooted at node2 will i ncludenode2, 5, 6 and 9.

On thepath from root r of a treeT, to anodex, the last edgeon thepath is (y,x).
Herey is theparent of x andx isa child of y. When two or morenodeshavethesame
parent, they aresiblings. Theonly nodein T that doesnot have any parent is theroot
node r. A nodewith no descendants iscalled a leaf.

Thedegreeof anodex in a rooted treeT is thenumber of descendants that node
x have. The length of the path from the root r to a node x is called the depth of x in
T. In figure3.4 node6 have adepth of 2.

3.2 Accesscontrol in treestructures

Many applicationsthat store information in treebased structuresneed accesscontrol
to be able to restrict access to certain nodes or subtrees in the main treestructure.
This thesis will use anotation for specifying accesscontrol where accessrules are
used to either includeor excludenodes or subtrees from themain tree.

The collection of accessrules, R, that specifies which nodes a user has accessto
in a tree can be written as R= (T,A) where T = (V,E) is the tree and A is a set of
tuples of the type {N, I ,S}, where N is a node N ∈ V, I ∈ {i,e} specifies if a node
is included or excluded and S∈ {s,c,n} specifies if access is granted to the entire
subtreerooted at N, the children of N or just thenodeN.

With this notation it is always assumed that all descendants of a node N is in-
cluded when S∈ {s,c}. If only proper descendants are wanted, then two rules will
have to be specified. One that includes all descendants and one that removes the
parent nodeso that only proper descendants are left.

Figure3.5 showsatreeT whereuser U hasaccessto node2, 4, 5 and 6. Thiscan
bewritten as RU = (T,A) where

T =({1,2,3,4,5,6,7,8,9},{(1,2),(1,3),(1,4),(2,5),(2,6),(5,9),(4,7),(4,8)})
and A = {(2, i,c),(4, i,n)}.

Given a function f (R) that returns all nodes that R provides access to, R′ =
(T ′,A′) is equal to R= (T,A) if and only if f (R′) = f (R). For figure 3.5 it is also
possibleto writeR′

U = (T,A′) whereA′ = {(2, i,s),(9,e,n),(4, i,n)}. In thisexample
R′ = R because f (R′) = f (R) = {2,4,5,6}

It is often advisable to optimizethe number of entries in the set A. The set A′ is
an optimization of A if f (A) = f (A′) and |A′| < |A|. A′ is fully optimized if there do
not exist an A′′ where f (A′′) = f (A′) and |A′′| < |A′|.

For many uses of the modeling languages described in this thesis, the set T will
changedynamically and not be fully known when specifyingaccesscontrol. There-
minder of thethesiswill t herefor mostly concentrateonthe content of A when talking
about accessrules for a specific user U . In addition to this, accesscontrol rules will

3.2. ACCESSCONTROL IN TREE STRUCTURES 17

1

32

5 6

9

4

7 8

Figure3.5: Accesscontrol

be tied to specific entities. If talking about the access rules for a specific user U
on a specific entity E the notation UE = A will be used. The complete collection
of accessrules for a user, U , is then the set containing the rules for all the entities,
U = {UE1,UE2,,UEn}.

Extended object identifiers

In thenotationabovethevariousnodes in the treestructureshavebeen addressed by
its number. In real world situations, nodes in treestructures can have similar names
and will have to be addressed by aname that traverses the treefrom the root nodeso
that each node can be uniquely identified. To accomplish this, this thesis introduces
the concept of extended object identifiers (EOIDs). EOIDs are asuperset of normal
object identifiers (OIDs). Normal OIDs are an ASN.1 data type that can be used as
reference to data objects and are ordered lists of non-negative numbers. In Internet
RFCs[37, 38] OIDs are usually written using a character string where the numbers
are separated byadot. For example theOID “1.2.5.9” points to node9 in figure3.5.

Extended OIDsintroduced in thisthesisare asuperset of normal OIDsasthey are
not limited to only simple non-negative numbers. An EOID is simply defined as a
stringthat uniquely identifiesoneor morenodes in atreestructure. The exact syntax
for an EOID will depend onthe application or system that is being referenced.

For example in an SNMP environment an EOID that points to the system name
could be all of the following:

• .1.3.6.1.2.1.1.5.0

• .iso.org.dod.internet.mgmt.mib-2.system.sysName.0

• SNMPv2-MIB::sysName.0

• sysName.0

18 CHAPTER 3. TREE STRUCTURES

Thelast entry only definesauniqueOID if there existsno other nodeswith thename
SysName.

An EOID can also contain wild cardsfor pointingto multiplenodes. For example
theEOID “1.4.* ” will point to both node7 and 8in figure3.4.

In an XML environment an EOID could follow the XPATH syntax to represent
oneor morenodes.

Chapter 4

Tree-based AccessControl Modeling
Language

Thischapter providesadetailed description of theTree-based Accesscontrol Model-
ingLanguage(TACOMA). It startsby describingthemain componentsneeded to use
TACOMA for accesscontrol configuration, describes in detail thesymbolsand rela-
tionsused in TACOMA and gives some examples on how the language can be used.
The chapter ends by giving an overview of an XML schema that helps to formaly
define theTACOMA language.

4.1 TACOMA overview

The Tree-based AccessControl Modeling Language is a general purpose graphical
notation that can be used for specifying and configuring accesscontrol in systems
that store information in a tree based structure. Figure 4.1 shows the TACOMA
framework and the various components that are needed for using TACOMA to con-
figure the accesscontrol in a system. Two goals when designing TACOMA were to
make it simple to use andeasy to implement support for new applications. So in this
figureonly the four boxeswith gray background have to bespecifically designed for
the application that TACOMA isbeing used to specify accesscontrol rules for.

All other boxes are generic code or formats that are common for all use of
TACOMA. Of the four boxes that have to be implemented specifically for an ap-
plication, the “Treegenerator” isonly needed if thenumber of accesscontrol entries
is being optimized and the “Application Attribute XML” schema is only needed if
applicationspecific attributesarebeing verified usingan XML schema.

4.1.1 Editors

An editor is used to draw TACOMA diagrams. An exampleof aTACOMA diagram
is shown in figure 4.2. This is a relatively simple diagram where one user, U1, is

19

20 CHAPTER 4. TACOMA

Figure4.1: TACOMA framework

4.1. TACOMA OVERVIEW 21

given accessto the children of node1.2 and thenode1.4 in entity E1. Thisgives the
followingset of accesscontrol rules: U1E1 = {(1.2,c, i),(1.4,n, i)}.

If thisdiagram isapplied to the treeT shown in figure4.3, theuser U1 would be
granted accessto nodes 2,4,5 and 6 or using the notation introduced in the previous
chapter wehave f (T,U1E1) = {2,4,5,6}.

1.2 1.4

U1

E1

Figure4.2: TACOMA diagram

1

32

5 6

9

4

7 8

Figure4.3: Treestructure

The editor used for drawing TACOMA diagrams can be specially designed for
this task in which case it will support storing the diagrams directly in the TACOMA
XML format. It is however also possible to use astandard UML editor which stores
diagrams in the XMI[39] format. An XSLT schema can then be used to translate
XMI files to TACOMA XML files.

The advantage of being able to use astandard UML editor is that there already
exist goodeditors on the market, both commercial and open source. Many UML

22 CHAPTER 4. TACOMA

editorsalso havegoodsupport for team work wheremultiplepeople can work onthe
samediagrams. Thisisan advantagefor largesystemswheredifferent administrators
can be responsible for different parts of aTACOMA diagram.

4.1.2 TACOMA Parser

The TACOMA parser takes a TACOMA XML file as input, verifies the XML file
against the TACOMA XML schema and generates a list of access rules for each
user and entity in the diagram. These accesscontrol rules are then forwarded to the
TACOMA ACL optimizer.

The parser can also use an application specific XML schema to further validate
the TACOMA diagram. Since TACOMA has been designed as a generic language
usable for specifying accesscontrol for a wide range of applications and systems,
most attributes in the language are generic. An application specific XML schema
can put further restrictionson thevaluesof attributes.

4.1.3 TACOMA ACL optimizer

Thelist of accessrulesgenerated bytheTACOMA Parser will often not beoptimized
when it comes to having the minimum number of access rules. The goal of the
TACOMA ACL optimizer is to take the list of access control rules and for each
user and entity find the fully optimized UE. To do this the optimizer needs the full
description of the treeT that the accesscontrol rules are applied to.

It is not always possible to get full specification of the tree T since T often
changes dynamically and therefor the TACOMA ACL optimizer will not always be
able to fully optimizeUE. In many cases it will however be possible to do some
optimizationeven with adynamic treeT.

4.1.4 TreeGenerator

The TreeGenerator provides the description of the treeT that the TACOMA ACL
optimizer needs. Thisgenerator must bespecifically implemented for the application
that TACOMA isused to specify accesscontrol rules for.

For example if TACOMA is used for SNMP then this treegenerator would be a
small application that can parse SNMP SMI documents and generate the treestruc-
turebased onthem.

4.1.5 ACL Configurator

The ACL Configurator also needs to be implemented specifically for the application
that TACOMA is used to model access control rules for. The ACL Configurator
receives the list of accesscontrol rules and uses them to dothe appropriate configu-
ration needed to implement the accesscontrol according to theTACOMA diagram.

4.2. NOTATION 23

4.2 Notation

The Tree-based AccessControl Modeling Language is a relatively simple graphical
notationwith only two relationsand eight symbols.

Figure 4.4 showsall thesymbolsandrelationsdefined in TACOMA.

TableCol

SubtreeNode

User

TableRow

GroupEntity

Children

<<not>>

ExcludeInclude

Figure4.4: TACOMA symbolsandrelations

4.2.1 Diagrams

In TACOMA two different typesof diagramsareused. One is the top level diagrams
that collect all symbols that define the accessrights to users for a specific type of
accesslike read-only, read-write etc. A top level diagram might contain oneor more
groupsymbols and each groupsymbol also have agroup diagram attached to them
where the content of thegroupis defined1.

If the accessrules for a user are different for different accesstypes, there will be
multiple main diagrams with one diagram for each accesstype. If the accessrules
are thesame for multiple accesstypes, only onemain diagram isneeded.

4.2.2 Relations

There areonly two relationsdefined in TACOMA, include andexclude. The include
relationisused to includenodesin the accessrightswhilethe excluderelationisused
for excluding them.

1Seethedescription of thegroupsymbol for moredetails.

24 CHAPTER 4. TACOMA

4.2.3 Symbols

The description of each available symbol in TACOMA is divided into two sections.
The first section provides a general introduction to the semantics of the symbol and
gives an example on how to use it. The second section describes the attributes of
the symbol. Some attributes are common for all symbols and the description of
these attributesare repeated for each symbol so that thedescription of all symbols is
completewithout having to reference adescription of another symbol.

Thedescription of attributesisalso divided into two parts. First there isageneral
description of what the attributeisused for andthen thereisaformal definition of the
syntax of the value(s) the attribute can be assigned. This formal definition is written
using the syntax of XML Schema[40]. Many attributes are optional and the names
of these arewritten usingan italic font.

User

The user symbol represents one or more users that are allowed accessto an entity.
If the user symbol represents multiple users then all the users will have the same
accessrights. A user can not belongto more than oneuser symbol in thesamemain
diagram.

It is possible for a user symbol to include or exclude user rights of other users.
Figure 4.5 shows one exampleof this. In thisfigure user U1 will have the following
accessrights: U1= U2+U3−U4. Assumethat each user hasaccessto somenodes
in the treestructure shown in figure 4.3 so that f (U2) = {5,9}, f (U3) = {6} and
f (U4) = {9}. User U1 would then have accessto f (U1) = {5,6}.

U2 U4

U1

U3

<<not>>

Figure4.5: TACOMA user

Only a single instanceof the same user symbol can have any children. All other
user symbolsthat references thesameuser symbol instance arenot allowed any chil -
dren. Figure 4.6 shows a TACOMA diagram that is not legal because user symbol
U1 has two instances that both have children. To be alegal TACOMA diagram it

4.2. NOTATION 25

would have to be changed as shown in figure 4.7 where only onesingle instancehas
children and thesecondinstancesimply refers to it.

1.4.7

1.2.6

U2

U1

U1

E1

E1

Figure4.6: Illegal TACOMA user symbol example

This restriction is enforced so that there will only be one single placewhere the
accessrules of auser is specified.

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsinaTACOMA
document.

<element name="id" type="ID"/>

name nameof user. No formal meaning.

<element name="name" type="string"/>

securityName, password, certificate these attributes are used to specify the access
control specific username of a user and password or certificate. This
username is the name auser must use to authenticate himself to an en-
tity when hewant to accessit.

26 CHAPTER 4. TACOMA

1.4.71.2.6

U2U1

U1

E1

Figure4.7: Legal TACOMA user symbol example

Passwords will normally only be used to set a default password when
creating new users throughTACOMA. When usinga certificate, the cer-
tificatewill , depending onthe implementation, either contain the certifi-
cate itself or a pointer to where the ACL Configurator can get hold of
it.

<element name="securityName">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="password"

type="string" use="optional"/>

<attribute name="certificate"

type="string" use="optional"/>

</extension>

</simpleContent>

</complexType>

</element>

all if this attribute is set, then the user symbol represents all users defined
in theTACOMA diagram.

<element name=’’all’’>

<simpleType>

<restriction base="string">

<enumeration value="yes"/>

<enumeration value="no"/>

4.2. NOTATION 27

</restriction>

</simpleType>

</element>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Entity

The entity symbol specifies which entity or entities a user has accessto. An entity
identifieswherethe accesscontrol rules should be configured. It can be aPC, arouter
or any other typeof equipment where the accesscontrol needs to be configured. The
entity symbol can also represent software. For example if a server is running two
HTTP servers, the entity symbol must uniquely identify which server that should be
configured.

If there aremultiple entity symbols in aTACOMA subtree, the topentity symbol
will act as a filter including or excluding only accesscontrol rights for that specific
entity. An exampleof this is shown in figure4.8. In thisdiagram user U2 isgiven ac-
cessto node1 for both entity E1 andE2. User U1 then includesthe accessright from
user U2 throughan entity symbol E1. Thismeans that user U1 will only include the
accessrightsbelongingto entity E1 from user U2. Thefollowingaccesscontrol rules
apply to thisdiagram: U2E1 = {(1, i,n)},U2E2{(1, i,n)}) andU1E1 = {(1, i,n)}.

It is also possible to explicitl y remove an entity from the accessrules as shown
in figure 4.9. In this figure we can seethat user U1 includes the accessrights from
user U2 and then excludesentity E2. Thismeans that user U1 inheritsall the access
rules from user U2 but then removesall rules related to entity E2. Thiswill result in
the exact same accesscontrol rulesas thepreviousfigure 4.8.

Figure 4.10 shows another important aspect of the entity symbol. In this figure
user U1 includesthe accessrightsof user U2andaddsthenode1.3. Thereisnoentity
symbol before the node 1.3, so this means that the node will be added to all entities
already included in the accessrights at deeper levels of the TACOMA diagram. We
then get U1E1 = {(1, i,n),(1.3, i,n)} andU1E2 = {(1, i,n),(1.3, i,n)}.

28 CHAPTER 4. TACOMA

1

U2

U1

E2

E1

E1

Figure4.8: TACOMA entity

4.2. NOTATION 29

1

U2

U1

E2

E2E1

<<not>>

Figure4.9: ExcludeTACOMA entity

30 CHAPTER 4. TACOMA

1

1.3

U1

U2

E2E1

Figure4.10: Global TACOMA entity

4.2. NOTATION 31

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsinaTACOMA
document..

<element name="id" type="ID"/>

name nameof entity. No formal meaning.

<element name="name" type="string"/>

addr Name or IP address of entity. If the application needs more than the
address to uniquely identify the entity, additional application specific
attributes should beused.

<element name="addr" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Node

The nodesymbol is used to includeor exclude asinglenode in the accessrights. To
identify the exact nodewithin the treestructure an extended object identifier (EOID)
is used. Theuseof anodesymbol has already been shown in figure4.8.

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsinaTACOMA
document.

<element name="id" type="ID"/>

name nameof nodesymbol. No formal meaning.

32 CHAPTER 4. TACOMA

<element name="name" type="string"/>

eoid EOID of thenode. The exact syntax of en EOID dependson thesystem
TACOMA isbeing used for configuringaccesscontrol for. TheEOID is
therefor defined as astring.

<element name="eoid" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name"

type="string" use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Children

The children symbol includesor excludes the children of anode in the accessrights.
An EOID isused to identify theparent node.

Figure 4.11 shows a TACOMA diagram using a children symbol. This figure
simply includesthe children of node1.2 inentity E1which givesthefollowingaccess
rule: U1E1 = {1.2, i,c} . Applying this accessrule to the treestructure T shown in
figure4.3 givesaccessto the following nodes: f (T,U1E1) = {2,5,6}.

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsinaTACOMA
document.

<element name="id" type="ID"/>

name nameof children symbol. No formal meaning.

<element name="name" type="string"/>

eoid EOID of the parent node of the children. The exact syntax of en EOID
depends on the system TACOMA is being used for configuring access
control for. TheEOID is therefor defined as astring.

4.2. NOTATION 33

 1.2

U1

E1

Figure4.11: TACOMA children symbol

<element name="name" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Subtree

The subtreesymbol includes or excludes a subtreein the accessrights. An EOID is
used to identify theroot nodeof thesubtree. Just aswith the children symbol, if only
proper descendants should be included the root nodeof thesubtreeshould explicitl y
be excluded.

Figure 4.12 shows an example on how to use the subtreesymbol. This figure
provides the user U1 accessto the subtreewith root node 1.2 in entity E1, U1E1 =

34 CHAPTER 4. TACOMA

{1.2, i,s}. Applying thisaccessrule to the treestructureT shown in figure 4.3 gives
accessto the following nodes: f (T,U2E1) = {2,5,6,9}.

 1.2

U1

E1

Figure4.12: TACOMA subtreesymbol

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsin theTACOMA
document.

<element name="id" type="ID"/>

name nameof children symbol. No formal meaning.

<element name="name" type="string"/>

eoid EOID of the parent node of the children. The exact syntax of en EOID
depends on the system TACOMA is being used for configuring access
control for. TheEOID is therefor defined as astring.

<element name="name" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

4.2. NOTATION 35

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Table row

The table row symbol represents a row in a virtual table. Using tables is a common
method for organizing data but the exact method for representing a table in a tree
structure can vary depending onthesystem that is beingconfigured.

In SNMP, tables are avery common. The EOID for a cell i n a generic table is
written asT.C.I whereT is theEOID for thetable, C is the column and I is the index
of the row. To give accessto aspecific row in a table, T and I will be constant andC
will be awildcard so that all columnsof the table is included.

Figure 4.13 shows how table 4.1 can be represented in a treestructure in SNMP.
In this figure node T is the base node for the table, nodes C1, C2 and C3 are the
columns of the table and nodes I1, I2 and I3 are the index values representing the
rows. All nodes with the same index belongs to the same row. This is ill ustrated in
thefigureby nodeswith gray backgroundwhich all belongto thesamerow.

B C1 C2 C3
I1
I2
I3

Table4.1: Table example

T

C1

I1 I2 I3

C2

I1 I2 I3

C3

I1 I2 I3

Figure4.13: Table treestructure

36 CHAPTER 4. TACOMA

Figure 4.14 shows an example of how to use the table row symbol. This figure
simply includes one row in table T from entity E1. Assuming that the table row
symbol has an attribute index= I2, the diagram gives the following access rules:
U1E1 = {T. ∗ .I2, i,n}. Applied to table T in figure 4.13 this rule would provide
accessto f (T,U1E1) = {T.C1.I2,T.C2.I2,T.C3.I2}.

T

U1

E1

Figure4.14: TACOMA table row symbol

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsin theTACOMA
document.

<element name="id" type="ID"/>

name nameof tablesymbol. No formal meaning.

<element name="name" type="string"/>

eoid EOID of the table. The exact syntax of en EOID dependson thesystem
TACOMA isbeing used for configuringaccesscontrol for. TheEOID is
therefor defined as astring.

<element name="eoid" type="string"/>

4.2. NOTATION 37

index index of the row in the table. Uses thesamesyntax as an EOID.

<element name="index" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Table column

This symbol is almost identical to Table row except that it represents a table column
instead of a row. For some applications like SNMP, this symbol is redundant since
table columns can be addressed using a simple subtreesymbol. Other applications
or systemsmight represent a table in a different manner in the treestructure and this
symbol might beneeded to be able to represent a table column.

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsin theTACOMA
document.

<element name="id" type="ID"/>

name nameof tablesymbol. No formal meaning.

<element name="name" type="string"/>

eoid EOID of the table. The exact syntax of en EOID dependson thesystem
TACOMA isbeing used for configuringaccesscontrol for. TheEOID is
therefor defined as astring.

<element name="eoid" type="string"/>

index index of the column in the table. Uses thesamesyntax as an EOID.

38 CHAPTER 4. TACOMA

<element name="index" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

Group

The groupsymbol is used for grouping together related symbols to make diagrams
easier to read and to be able to reuse parts of a TACOMA diagram. A groupsymbol
can have itsown diagram attached to it where the content of thegroupisdrawn.

Figure 4.15 shows an example on how the group symbol can be used. In this
figure user U1 is given accessto everything that is defined inside the groupG. User
U2 isgivenaccesstoeverythingin groupG except node1.4. The contentsof groupG
is shown in figure 4.16. With this figure we get the followingaccessrights: U1E1 =
{(1.2, i,c),(1.4, i,n)},U1E2 = {(1, i,n)},U2E1 = {(1.2, i,c)}andU2E2 = {(1, i,n)}.

Figure 4.17 shows how the diagram in figure 4.15 would look if the contents of
groupG was drawn directly without theuseof a groupsymbol.

G
G

1.4

U1 U2

<<not>>

Figure4.15: TACOMA groupsymbol

4.3. EOID FUNCTIONS 39

1.2 11.4

E2E1

Figure4.16: TACOMA groupcontents

Att r ibutes

id UniqueID of symbol. Thescopeof theID isall diagramsin theTACOMA
document.

<element name="id" type="ID"/>

name nameof group. No formal meaning.

<element name="name" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

4.3 EOID functions

To be ableto createmoregeneric accesscontrol rulesit ispossibleto usevarioustype
of functions inside an EOID. The table row symbol is a very goodexample on how

4
0

C
H

A
PT

E
R

4.TA
C

O
M

A

1.21.2 1 11.4

1.4

1.4

U1
U2

E1E1 E2 E2

<<not>>

Fig
ure

4.1
7:

TA
C

O
M

A
gro

u
p

expan
ded

4.4. HIERARCHY 41

this can useful. In this symbol it i s possible to use some predefined functions when
specifying the index attributeof the table row symbol. Thepredefined functionswill
then return all or part of the EOID used as index for the row. The exact functions
availablewill depend om the implementation of TACOMA and which type of appli -
cation accesscontrol is being configured for. Threefunctions that can commonly be
used are:

userID() many systemshave auniqueinteger, user ID, that identifiesusers for the
system. This function returns theuser ID of users.

userSecurityName() returns thesecurity nameof auser.

attr(attrName) returns theuser attributeswith thenameattrName.

Asan exampleon how the abovefunctionscan beused, assumethat user U1 in figure
4.14 hasauser id of 1000. Thetablerow symbol hasthefollowingEOID asan index
value: 1.2.userID().3. Thefull EOID that will beused for user U1 in the accessrights
will t hen be1.2.1000.3.

If the function used in the index returns multiple values, one row for each value
will be included. Thiscan for examplebewhen auser hasmorethan oneinstanceof
an attributeused by the attr(attrName) function.

The userSecurityName() and attr() functions are examples of functions that can
beprocessed by theTACOMA parser while theuserID() functionmust beprocessed
by the applicationspecific ACL Configurator.

4.4 Hierarchy

The examplediagramsthat have already been shown clearly demonstratesthehierar-
chical natureof TACOMA. TACOMA itself followsatree-based structure to specify
accesscontrol. In this hierarchy it is easy to encounter situations where accesscon-
trol rules at different layers in the hierarchy are in conflicts. Rules at one level may
provide accessto some resources while rules at another level can deny accessto the
same resources. The general rule in TACOMA is that accesscontrol rules should be
calculated using a bottom-up approach where the accessrules for each user symbol
is calculated by recursively going deeper in the treeto find the end nodes and then
calculate the accessrules in abottom-upfashion.

Rules at higher levels supersedes rules at lower levels and if there are any dis-
crepancies at thesame level, rules excludingaccessrightshavepriority over include
rules.

Figure 4.18 shows an example of some conflicts. To decide the accessrules for
user U1 andU2 in this diagram we start at the end nodes and oneach level include
rules are applied first and then excludesincethey havehigher priority. User U2 first
includesthe entity symbol E1 which again includesthesubtreesymbol 1.2. Thispro-
videsthe accessruleU2E1 = {1.2, i,s}. User U2 then excludesthesubtree1.2.5 from

42 CHAPTER 4. TACOMA

1.2

1.2

 1.2.5

1.2.5U2

U1

E1

<<not>>

<<not>>

Figure4.18: TACOMA hierarchy conflicts

all entities already included in the accessrights, U2E1 = ({1.2, i,s},{1.2.5,e,s}). If
these two rules are applied to the treestructure T in figure 4.3, then user U2 has
accessto the following nodes: f (T,U2) = {2,5,6,9}−{5,9}= {2,6}.

User U1 starts by including all the access rights from U2, then includes node
1.2.5 andexcludes the children of node1.2:

U1E1 = ({1.2, i,s},{1.2.5,e,s},{1.2.5, i,n},{1.2,e,c}).
Since exclude have higher priority than include, user U1 do not have accessto

any nodes since: f (T,U1) = {2,6}+{5}−{2,5,6}= {}.

4.5 User administration

It ispossibleto also let TACOMA create and deleteusers in asystem. If this isdone,
then all creatingand deleting of user accounts should bedonethroughTACOMA and
not through other mechanisms.

To create auser it i s enoughto just add a new user symbol where either a pass-
word or certificate is added. The ACL Configurator will detect that the new user
does not exist in the system being configured, and will t hen automatically create a
new user. System specific attributes for the user, li ke full name, email addressetc.
can be added to theuser symbol using oneor more attr attributes.

If TACOMA is also set up to delete users, then it is enoughto just delete all
referencesof auser in theTACOMA diagram. TheACL Configurator should retrieve

4.6. RBAC SUPPORT 43

a full li st of users from the system and delete the ones that are not references in the
TACOMA diagram.

4.6 RBAC suppor t

TACOMA wasdesigned to be as simple as possible to learn and use and thenumber
of symbol was therefor kept to a minimum. Because of this there is no inherent
support for rolebased accesscontrol.

It is however fully possible to use the concept of roles by taking full advantage
of the group symbol in TACOMA. By following a design paradigm for TACOMA
diagrams where users are never given direct accessto any resources except through
groupsymbols, then the groupsymbols will act as roles and byassigning the group
to ausesymbol throughan includerelation, theuser is assigned this role.

4.7 XACML suppor t

It is fully possible to create simple XACML policies based onTACOMA diagrams.
Instead of letting the “TACOMA ACL Configurator” module configure accesscon-
trol directly in an entity, it can create aset of simpleXACML policies. It ishowever
not possibleto take advantageof themore advanced featuresof XACML like check-
ingthevaluesof attributeswhen policiesare evaluated or forming policy hierarchies.

4.8 Formal specification

The description so far of TACOMA has been an informal specification of the lan-
guage to help understand how the language works and how it can be used. A more
formal specification that defines how the various symbols can be connected to each
other are provided asametamodel and asan XML schema. These two formal speci-
fications are able to model most aspects of theTACOMA language.

4.8.1 Meta model

Figure4.19showsthemetamodel for theTACOMA language. What thismetamodel
showsisthat youcan havetwo typesof diagrams, MainDiagram andGroupDiagram,
and both diagrams can contain both symbols and relations. At least one symbol in
each diagram is required.

Further more the metamodel shows that only groupsymbols without a diagram
and user symbolscan haveboth include andexcluderelationsoriginatingfrom them.
The entity symbol can only have include relation from it and all symbols can have
both include and excluderelations to them.

Themodel also showsthat auser symbol that referencesanother user symbol can
not have any children.

4
4

C
H

A
PT

E
R

4.TA
C

O
M

A

SymbolWithoutRelation

GroupWithoutDiagram

SymbolWithRelation

GroupWithDiagram

GroupDiagramMainDiagram

TableRowDiagram Children

Relation

UserRef

Exclude Include

Subtree

Symbol

User

Entity

Node

reference

1 0..*

−from1..*

0..1contains

1..*

1..*

−belong

−to

0..*
0..1

−from

1..*

0..1

Fig
ure

4.1
9:

TA
C

O
M

A
M

eta
M

o
del

4.8. FORMAL SPECIFICATION 45

4.8.2 XML Schema

As a help to the meta model, there is also an XML schema that formally describes
theTACOMA language. This schemaputs somefurther restrictionson the language
that themetamodel isnot capableof modeling.

The most important aspect of the XML schema is that it sets requirements for
unique IDs of all symbolsand requires that referencesymbolsare actually referenc-
ingan existing instanceof thesymbol.

Readingtheschema canalso help usersfurther understandthestructureof TACOMA
diagrams. TheXML Schema for TACOMA can be foundin Appendix D.

4.8.3 Shor tcomings of the formal specification

While the meta model in combination with the XML schema manages to formally
specify most aspects of the TACOMA language, there are some issues that are not
possible to formally specify using thesemethods.

Oneissueisdependency loops. Infigure4.20we canseethat userU1 includesthe
accessrightsof user U2 at thesametime asuser U2 includestherightsof U1. It can
be argued that in asituation like this, both users should simply be assigned thesame
accessrights so that weget U1E1 = U2E1 = ({1.2.6, i,n},{1.4, i,n}). Doingthiscan
however quickly lead to inconsistency, especially when thedependency loopsoccurs
in different diagrams, so it is considered ill egal in TACOMA to have dependency
loops.

1.2.6 1.4

U1

U1 U2

U2

E1 E1

Figure 4.20: TACOMA dependency loop

Another less sever problem with the formal specification of TACOMA, is that
both the meta model and the XML schema permits diagrams that do not make any

46 CHAPTER 4. TACOMA

sense as demonstrated in figure 4.21. In this diagram we can seeuser U1 assigned
accessto node 1.2 but sincethere is no entity symbol the diagram does not actually
provide accessto any resources.

1.4

U1

Figure4.21: TACOMA diagram without entity symbol

4.9 TACOMA XML format

The following XML document shows how figure 4.15 and 4.16 would be written
when adhering to theTACOMA XML Schemadefined in appendix D.

<?xml version="1.0" encoding="iso-8859-1" ?>

<tacoma xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.oslebo.com/thesis/tacoma"

xmlns:tacoma="http://www.oslebo.com/thesis/tacoma"

xsi:schemaLocation="http://www.oslebo.com/thesis/tacoma tacoma.xsd"

version="1.0">

<delimiter>.</delimiter>

<wildcard>*</wildcard>

<escape>\</escape>

<allSymbols>

<user id="U1">

<name>U1</name>

<securityName password="pass1">u1</securityName>

</user>

<user id="U2">

<name>U2</name>

<securityName password="pass2">u2</securityName>

</user>

<groupWithDiagram id="G" diagram="GD">

<name>G</name>

</groupWithDiagram>

4.9. TACOMA XML FORMAT 47

<entity id="E1">

<name>E</name>

<address>10.0.0.1</address>

</entity>

<entity id="E2">

<name>E</name>

<address>10.0.0.2</address>

</entity>

<children id="C1.2">

<name>C1.2</name>

<eoid>1.2</eoid>

</children>

<node id="N1.4">

<name>N1.4</name>

<eoid>1.4</eoid>

</node>

<node id="N1">

<name>N1</name>

<eoid>1</eoid>

</node>

</allSymbols>

<mainDiagram id="m">

<accessType>read</accessType>

<name>Read Access</name>

<symbols>

<symbol ref="U1"/>

<symbol ref="U2"/>

<symbol ref="G"/>

<symbol ref="N1.4"/>

</symbols>

<relations>

<include>

<from>U1</from>

<to>G</to>

</include>

<include>

<from>U2</from>

<to>G</to>

</include>

<exclude>

<from>U2</from>

<to>N1.4</to>

</exclude>

</relations>

</mainDiagram>

48 CHAPTER 4. TACOMA

<groupDiagram id="GD">

<symbols>

<symbol ref="E1"/>

<symbol ref="E2"/>

<symbol ref="N1"/>

<symbol ref="N1.4"/>

<symbol ref="C1.2"/>

</symbols>

<relations>

<include>

<from>E1</from>

<to>C1.2</to>

</include>

<include>

<from>E1</from>

<to>N1.4</to>

</include>

<include>

<from>E2</from>

<to>N1</to>

</include>

</relations>

</groupDiagram>

</tacoma>

Figure 4.22shows theoverall structureof theXML document. The root element
of thedocument is “TACOMA” which contains some attributes that define theXML
Schema that should beused for validating thedocument.

Thefirst tag iscalled allSymbolsandcontains thedefinition of all symbols found
in all diagrams in the TACOMA XML file. So under this tag we can find the users
U1 andU2, thegroupsymbol G, the entitiesE1 andE2, the children symbol 1.2 and
the two nodes1.4 and 1.

Next follows the two diagrams, the main diagram and the group diagram. Both
diagram has the same structure with first one tag called symbols which contains one
referencefor each symbol in thediagram to symbolsdefined under allSymbols. Next
follows the tag relations which contain one entry for each include and exclude rela-
tion that are part of thediagram.

If therehad been other accesstypeswith different accessrights, therewould have
been multiple “mainDiagram” elements.

4.9. TACOMA XML FORMAT 49

Figure4.22: TACOMA XML structure

50 CHAPTER 4. TACOMA

Chapter 5

Policy Tree-based Accesscontrol
Modeling Language

This chapter providesa detailed description of thePolicy Tree-based Accesscontrol
Modeling Language (PTACOMA). It starts by providing a general introduction to
the concepts of domains and policies. It then describes the main components that
are needed to use PTACOMA and how they differ from the ones used in TACOMA.
All symbols and relations used in PTACOMA are described in detail and several
examples on how the language can be used are provided together with a detailed
description of thePTACOMA metamodel.

5.1 In troduction to domainsand policies

This is just a general introduction that describes the fundamental principals behind
domainsand policies. For moredetailed informationabout this subject seereferences
[41, 42, 43, 44].

5.1.1 Policy based management

In largenetworksthere can bethousandsof entitiesand usersthat haveto bemanaged
in various ways. Manually configuring these large numbers of entities and users is
not feasible. One commonmethodto handlethis is to usepolicy based management.

In [41] a policy is defined as a rule that governs the choice in behavior of a
system. Policiesareusually divided into two main categories, obligation policiesand
authorization policies. Obligation policies are used to define management actions
that must or must not be performed, such as when to do backup, what to do when
creating new users or installi ng new equipment etc.

Authorization policiesdefineswhich operationsusersare allowed or not allowed
to perform on managed entities and they can control which information should be

51

52 CHAPTER 5. PTACOMA

available to users. This means that authorization policies are used for specifying the
accesscontrol setup in entities.

A third category of policiesisalso sometimesused[42], namely security policies.
Security policiesarespecial typesof obligation policiesused for definingwhat to do
when certain security incidentsoccurs, for examplewhat should bedonewhen auser
tries more than threetimes to type in correct password, what happens when a DOS
attack isdiscovered, etc.

Policies can be abstract high level policies defined by businessgoals or various
agreements likeservicelevel agreementsor they can be low level policiesdescribing
certain low level entities. Usually policies start out as high level and then they are
refined into low level that can bemapped to specific technologies. This refinement is
not easy sinceonemain goal of policy based management isautomatic configuration
of entities based onthe policies. To help with this a lot of work have been done to
define languages that can be used for specifying policies in a formal way. A good
overview of someof these languages is given in [42].

5.1.2 Policy att r ibutes

Regardlessof which level a policy is on, high or low level, it i s commonly agreed
that they all havesomebasic attributes in common:

Modality specifies the type of policy. In [41] the following modes are defined:
positive authorization, negative authorization, positive obligation and
negative obligation. Positive and negative authorization policies will
permit or deny accessto resources while positive and negative obliga-
tion policieswill requireor deter somekind of action.

Subjects specifies which users or subjects that this policy applies to. This means
theusers that are authorized or obligated to dowhat thepolicy specifies.

Targets specifies the managed resources at which the policy is directed. For
authorization policies the targets specifies which resources that should
begranted or denied accessto.

Action this is also sometimes called the policy goal. It specifies which type of
action that is controlled by the policy. The action can for example be
read a file, write to a file etc. It can often be difficult to map high level
policies to specific actions.

Constraints thisattributeplacesadditional restriction onthe applicabilit y of thepol-
icy. Some typical constraints can be to limit the validity of policies to
specific times of the day, to allow accessonly as longas the resourceis
not too heavily loaded etc.

To avoid havingto specify policiesfor each managed entity or each user, subjectsand
targetsareusually expressed using domains, rolesandtypes. A domain isagrouping

5.2. PTACOMA OVERVIEW 53

Administrator
Policy
server

Policies

Users

Managed Entities

Configuration
data

Using

Figure5.1: Policy server

of resources for management purposes. This grouping can be based on function-
ality, physical location etc. Roles are used for users or subjects and represents the
responsibiliti es that auser have. Type is used for managed entities and describes the
capabiliti esof an entity. Both usersand entitiescan haveseveral rolesor types.

5.1.3 Policy servers

As already stated, oneof the ideas behind policy based management is to avoid hav-
ing to configure all managed entities manually. To manage this, various types of
policy servers are often used. A policy server is configured by the manager with the
correct policies, and then it is the policy server that configures the managed entities
on behalf of themanager. Figure5.1 showsan exampleof how thisworks.

When anew managed entity or user is added, the policy server should ideally be
able to detect thisautomatically and then configure the entitiesas necessary to fulfill
the current policies. How this is done in real world networks dependsheavily on the
applicationsandservices that are beingmanaged.

Managed entitiescan also havebuilt i n support for policy serversand query them
in real time for accesscontrol decisions. One example of this is the combination of
thePolicy Enforcement Point and thePolicy DecisionPoint in XACML.

Policy servers are also well suited for supporting policies with dynamic con-
straints. For example it ispossible to create apolicy that saysusers areonly allowed
accessas longas the load of thesystem isunder a certain level.

5.2 PTACOMA overview

ThePolicy Tree-based AccessControl ModelingLanguageisaversion of TACOMA
that scales better to higher numbers of managed entities, users and nodes in the tree

54 CHAPTER 5. PTACOMA

structures. Figure5.2 showsthenecessary componentsfor usingPTACOMA to con-
figure accesscontrol. Several of the components are the same as for TACOMA and
only the boxes with gray background are different. An editor is used to to draw
PTACOMA diagrams and just as for TACOMA it is possible to use standard UML
editors to draw the diagrams. The XML format used to store diagrams is different
compared to TACOMA so that it i sable to store the extrasymbolsand relations that
are available in thePTACOMA language.

The PTACOMA parser takes a PTACOMA XML file and generates a list of ac-
cesscontrol rulesthat aresent to thesameACL Optimizer that isusedwithTACOMA.
TheACL Configurator isalso thesamein both languages. Thismeansthat if support
for a specific application or system has been implemented for TACOMA, the same
implementationcan also beused with PTACOMA.

PTACOMA also has one new optional module called Policy Configurator. Since
PTACOMA is a policy based language it can be used for configuring policy based
systems directly. If it i s used for this, PTACOMA diagrams should not be converted
to accesscontrol li sts for the ACL Configurator but instead policies should be sent
directly to thePolicy Configurator.

5.2.1 Policy-based paradigm

Themain advantageof PTACOMA compared to TACOMA is scalabilit y. To achieve
better scalabilit y PTACOMA uses a policy-based paradigm and all policies are low
level positive or negative authorization policies. Figure 5.3 shows an example of a
PTACOMA diagram. In this figure there is one single policy, P1, that grants access
to the children of node 1.2 and node 1.4 in entity E1 for users with the role R1. We
can also seethat one single user, U1, is assigned this role. The accessrules for this
policy is: U1E1 = {(1.2, i,c),(1.4, i,n)}

If this policy is applied to the treestructure that was shown in figure 4.3, policy
P1 would providethe followingaccessrights: f (T,U1E1) = {2,4,5,6}

This is the same accessrights as the introduction example of TACOMA shown
in figure4.2 and demonstratesthefact that for simple accessrules, TACOMA can be
more intuitive and easier to use. The real advantage of PTACOMA comes when the
number of users, entitiesandcomplexity of rules increases.

Attributes of the policy P1 specifies what type of accessthat should be allowed,
for example if it i s read only, read-write etc. In TACOMA it is necessary to have
distinct diagrams for each type of accesswhile in PTACOMA the type of accessis
specified onaper policy basis.

5.3 Notation

ThePolicy Tree-based AccessControl Model Languageusesall of thesamesymbols
as in thesimpler Tree-structureAccessControl ModelingLanguage andextends this

5.3. NOTATION 55

Figure5.2: PTACOMA components

56 CHAPTER 5. PTACOMA

1.2

P1

1.4

U1

R1
R1 E1

<<s>>

Figure5.3: PTACOMA diagram

Table colPolicy view

Constraint

Table row

Children

Subtree

Domain Group PolicyEntity Node

Type UserRole

logicalsubjectexcludeinclude

<<not>> <<s>>
<<or>>
<<nand>>
<<and>>

Figure5.4: PTACOMA symbols

with several more relationsand 6symbols. Figure5.4 showsall thesymbolsdefined
in PTACOMA.

5.3.1 Relations

PTACOMA uses the include and exclude relation in the same way as in TACOMA.
In addition to these to relations, PTACOMA also have asubject relation that is used
for specifying the subjects of a policy. The include relation can not be used for this
as it can lead to confusion about what the subjects and targets are. As an example,
consider the policy shown in figure 5.5. In this figure we see apolicy that uses two
groups, G1 andG2, for its subjectsandtargets. Assumingthat thesetwo groupsboth
contains symbols like roles and entities there has to be away to tell which group

5.3. NOTATION 57

G2G1

P1

<<s>>

Figure5.5: PTACOMA subject relation

should beused for subjectsandwhich should beused for targets. So it isnot possible
to use asimple includerelationfor both groupsandto resolvethis, aseparatesubject
relation has been introduced.

There are also several relations like or, and, xor etc. that is used for domain
modeling. The exact number of these relations depends on the implementation of
PTACOMA.

5.3.2 Symbols

The symbols user, entity, children, node, subtree, table row and table column have
the same attributes as in TACOMA and the usage of the symbols are very similar.
The description of these symbols are therefore not repeated here and can instead be
found in chapter 4. The exact usage of all symbols are described in detail i n the
description of thePTACOMA metamodel in section 5.4.

Policy

The policy symbol specifies a policy and is the main symbol used in PTACOMA to
specify accessrights. All policy symbolswill haveother symbols related to them to
specify subjects, targets and constraints. The basic usage of the policy symbol was
shown in figure5.3.

A policy can specify the maximum, minimum or exact access rights. When a
policy specifies the maximum accessallowed for a role, then policies at lower level
domainsor groupsare allowed to removesomeof the accessrights. With aminimum
policy, other policiesat lower levelscan addto the accessrights. With exact rulesno
policiesat lower levelsare able to make any changes to the accessrights.

Att r ibutes

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

58 CHAPTER 5. PTACOMA

<element name="id" type="ID"/>

name nameof entity. No formal meaning.

<element name="name" type="string"/>

accessType Typeof access, e.g. read-only, read-write etc.

<element name="name" type="string"/>

policyType Type of policy. Can be maximum access, minimum accessor exact ac-
cess.

<element name="policyType">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="min"/>

<xsd:enumeration value="max"/>

<xsd:enumeration value="exact"/>

</xsd:restriction>

</xsd:simpleType>

</element>

priority sets thepriority of apolicy. This can beused for specifying theorder of
which policieson thesame level isprocessed.

<element name="priority" type="integer"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

5.3. NOTATION 59

Domain

Thedomain symbol representsa collection of other symbolsthat arepart of thesame
administrative control. This symbol can be considered a more formal collection of
other symbolscompared to thegroupsymbol.

A domain symbol has its own diagram attached to it where the content of the
domain isdrawn. Thedomain symbol also actsasafilter wherethe children symbols
of thedomain is then limited in scopeto only thedomain or domains specified bythe
domain symbol.

When using the scope attribute of the domain symbol, it i s possible to represent
multiple domains by one single domain symbol. This makes it is possible to create
more generic high level policies. If users from multiple domains are assigned the
samerole, it i spossibleto createpolicies that providesaccessto entitiesonly in their
own domain, in all domainsexcept their own etc.

Att r ibutes

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>

name nameof entity. No formal meaning.

<element name="name" type="string"/>

scope specifies thescopeof thedomain symbol.

<element name="scope">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="this"/>

<xsd:enumeration value="all"/>

<xsd:enumeration value="allExceptThis"/>

<xsd:enumeration value="allExceptOwn"/>

<xsd:enumeration value="siblings"/>

<xsd:enumeration value="children"/>

</xsd:restriction>

</xsd:simpleType>

</element>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

60 CHAPTER 5. PTACOMA

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

Group

The groupsymbol has two different semantics in PTACOMA. First of all it can rep-
resent a collection of one or more other elements. This is used to group together
symbols that have something in common or that will be referenced multiple times.
This is identical to theuseof thegroupsymbol in TACOMA.

It can also beused for advanced arithmetic domain modelingwhere it ispossible
to express statements like: all userspart of domain A but not domain B.

Att r ibutes

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>

name nameof group. No formal meaning.

<element name="name" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

5.3. NOTATION 61

Role

Therolesymbol isused to creategeneric policiesfor all usersthat havethisrole. The
advantage of using the role symbol is that administrators can create general policies
based on the responsibiliti es of users instead of having to specify policies for each
user separately.

Att r ibutes

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>

name nameof role. No formal meaning.

<element name="name" type="string"/>

all if set, thisrolesymbol representsall roles. Can beused to createpolicies
that arevalid for all users.

<element name="all">

<simpleType>

<restriction base="string">

<enumeration value="yes"/>

<enumeration value="no"/>

</restriction>

</simpleType>

</element>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

62 CHAPTER 5. PTACOMA

Type

The type symbol is used for creating generic policies for all entities of the same
type. This makes it possible for administrators to create generic policies based on
capabiliti es of entities instead of having to do detail specification for each entity
separately.

Att r ibutes

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>

name nameof type. No formal meaning.

<element name="name" type="string"/>

all if set, this type symbol represents all types. Can be used to create poli -
cies that are valid for all typesof entities.

<element name="all">

<simpleType>

<restriction base="string">

<enumeration value="yes"/>

<enumeration value="no"/>

</restriction>

</simpleType>

</element>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

5.4. PTACOMA METAMODEL 63

Policy view

The policy view symbol is used for creating generic policies when the implementa-
tion of entities varies and it is not known in advance the exact accesscontrol rules
that are needed to fulfill thepolicy.

For exampleone administrator can create ahigh level policy saying that all users
should be allowed accessto read the system load of all entities. Other administra-
tors can then define the details of which nodes in the tree structure that needs to
be accessed to retrieve this information. This way we divide the responsibiliti es of
defining the accesspolicy from the implementation details of which nodes needs to
be accessed.

Att r ibute

id Unique ID of symbol. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>

name nameof role. No formal meaning.

<element name="name" type="string"/>

attr extra application specific attribute(s). An attribute has a name and a
value and is a methodfor includingapplication specific attributes to the
symbol.

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string"

use="mandatory"/>

</extension>

</simpleContent>

</complexType>

</element>

5.4 PTACOMA metamodel

The metamodel for TACOMA was relatively simple and all the semantics of the
language was captured by one singlemetamodel diagram. PTACOMA is a lot more
advanced and the metamodel now consists of 13 different diagrams that together
captures the semantics of the language. All these metamodels can be foundat the
end of thischapter.

64 CHAPTER 5. PTACOMA

5.4.1 Main diagram

Figure5.18showsthemetamodel that specifiesthe contentsof themain diagram and
domain diagrams. What this metamodel says is that a main diagram consists of one
or more symbols. These symbols can be agroup or domain symbol with diagrams
that contains the same symbolsas the main diagram. It can also be aset of symbols
that:

• Specifies separation of duty policies (SDPolicy)

• Specifies accesscontrol policies (Policy)

• Assignsusers to roles (RoleDefinition)

• Assignsentities to types (TypeDefinition)

• Specifies thedetailsof policy views (Policy Views)

All of thesesetsof symbolsare explained in detail i n the followingsections.
The groupsymbol in PTACOMA can either have anew diagram associated with

it or it can use include and exclude relationsdirectly to other symbols, similar to the
groupsymbol in theTACOMA language.

5.4.2 Roledefinition

A role definition diagram is used for assigning roles to users and the metamodel for
this kind of diagram is shown in Figure 5.19. A role definition starts with a set of
usersor domainsand then associates thesewith oneor moreroles. It isalso possible
to collect rolesymbolsin agroupandthen associatetheuser symbolswith thegroup.

Figure5.20showsthemetamodel for specifying usersand domains. Userscan be
specified by user symbols and groupsymbols containing users or other groups. It is
also possible to specify a domain symbol which means that all users of that domain
is assigned the role. Instead of a single domain, domain modeling where logical
expressionareused for domain arithmetic can also beused..

Figure 5.6 showsan exampleof a policy that uses the role symbol. In this figure
there is a policy P1 that provides accessto the node 1.4 in entity E1 for all users in
domain D1 that have the role R1. The contents of the domain D1 is shown in figure
5.7. In this figure there are threeusers, U1, U2 and U3, that are all assigned some
roles. As we can seefrom this diagram, both user U1 andU2 are assigned role R1.
Policy P1 would therefor provide the following accessrights: U1E1 = {(1.4, i,n)}
andU2E1 = {(1.4, i,n)}

Themetamodel for domain modelingis shown in figure5.21. In adiagram of this
type it is possible to have group or domain symbols connect with the usual include
and exclude relations as well as logical relations like and, or, xor etc. Figure 5.8
shows an example of this. This diagram is a valid domain modeling diagram that
specifies the rule: (D1andD2)not (D3or D4)

5.4. PTACOMA METAMODEL 65

D1

P1

1.4R1

E1

<<s>>

Figure5.6: PTACOMA role example

U3U2U1

R1 R2

Figure5.7: PTACOMA role example - domain contents

66 CHAPTER 5. PTACOMA

D3D1 D4D2

D1&D2 D3|D4

<<not>>

<<or>><<and>>

Figure5.8: PTACOMA domain arithmetic example - groupcontents

Figure 5.9 shows how this domain arithmetic can be used in a policy. In this
figure apolicy is shown that gives users with the role R1 accessto node 1.4 in all
entities belonging to the domains defined in groupG1. Assuming that the contents
of groupG1 is the domain arithmetic that was shown in figure 5.9, then the role R1
will begiven accessto node1.4 in all entities that are part of thedomains that fulfill
the rule: (D1andD2)not (D3or D4).

When modeling simpler rules like and, or and not, it i s possible to just use the
include end exclude relations as shown in figure 5.10. This figure models the same
expressionas before: (D1andD2)not (D3or D4).

The simplest form of a role definition was shown in figure 5.3 where user U1
was assigned the role R1. Figure 5.11 shows some more examples of role definition
diagramsthat all adheresto themetamodels shown in this section. In thisdiagram we
can seethat user U2 is assigned the role R1 as well as all roles defined in the group
G1. Thegroupsymbol related to theuser U2 isagroupreferenceto thedefinition of
the groupthat can be found onthe right side of the diagram. This definition simply
includes the relationR2 which means that user U2 isassigned the rolesR1 and R2.

There is also one graph where domain D1 is assigned role R1. This means that
all users that belongs to domain D1 are assigned the roleR1.

The last example shows that user U3 is also assigned role R1 but this is done by
first drawing a domain symbol D2 which then includes user U3. What this means is
that user U3 is assigned roleR1 only as longas he ispart of domain D2.

5.4.3 Typedefinition

Type definitions are specified in the same way as roles except that instead of user
symbols, entities are used, and instead of roles, types are used. The metamodel for
typedefinitionsare shown in figure5.22.

Similar to roledefinitions, atypedefinitions startswithentity or domainsymbols.
Themetamodel for this is shown in figure5.23.

Themetamodel for domain modeling is thesame as for roledefinitions.

5.4. PTACOMA METAMODEL 67

G1

P1

1.4

R1

<<s>>

Figure5.9: PTACOMA domain arithmetic example

D4

D1

D2

D3

<<not>><<not>>

Figure5.10: PTACOMA alternativedomain arithmetic syntax

68 CHAPTER 5. PTACOMA

D2
D1

G1

G1

U3

U2

R1

R1

R1 R2

Figure5.11: PTACOMA roledefinitions

5.4. PTACOMA METAMODEL 69

5.4.4 Policies

The metamodel for a policy is shown in figure 5.24. As we can seefrom this meta-
model, a policy consists of the policy symbol with one or more subject relations to
a set of subject symbols and one or more include or exclude relations to constraints
and targets.

A policy subject consists of role, group and domain symbols as shown in the
metamodel in figure 5.25. If just a domain symbol is used, it means that all users
of that domain will be the subject. It is also possible to use domain modeling as
described under the roledefinitionmetamodel.

Constraints are a collection of constraint symbols and groups. The metamodel
for this is shown in figure 5.26.

The objects of a policy can be specified using symbols like node, children, sub-
tree etc. in a similar way as accesscontrol is specified in the TACOMA language.
The metamodel for this is shown in figure 5.27. In addition to the symbols used in
TACOMA, it isalso possible to usedomain, type and policy view symbols.

When a type symbol is used instead of an entity, it means that the policy should
include all entities of this type as objects. This is demonstrated in figure 5.12 where
accessisgranted to userswith the roleR1 to node1.4 in all entitiesof the typeT1 in
domain D1.

The contentsof domainD1 is shown infigure5.13. In thisfigurethere aretwoen-
titiesand we can seethat only entity E2 isof the typeT1. The accessrules specified
by thepolicy will t hen beU1E2 = {(1.4, i,n)}

5.4.5 Separation of duty policies

Separation of duty policiesin PTACOMA can beused for creating policiesthat states
things like auser that is assigned role A can not be assigned role B. The first policy
in figure 5.14 shows an example of the previously mention policy and the second
policy states that all users assigned to role A must also be assigned to role C. The
metamodel for this typeof policies is shown in figure 5.28.

A separation of duty policy is specified using the same policy symbol as normal
policies, but only domain and role symbols are used with it to specify the subjects
and objectsof thepolicy. Constraintscan also be included to specify constraints like
timeof day thepolicy should be active etc.

5.4.6 Policy view definitions

The metamodel for defining the contents of a policy view is shown in figure 5.29.
A definition like this starts with one or more entity or type symbols that can also
be grouped together in groupsymbols. It is also possible to do domain modeling as
described earlier. Themetamodel for this is shown in figure 5.30.

These entity or type symbols are then connected to a policy view symbol using
the include relation. This means that the specified entities or types all i mplement

70 CHAPTER 5. PTACOMA

D1

P1

1.4

R1

T1

<<s>>

Figure5.12: PTACOMA type example

E1 E2

T3 T1T2

Figure5.13: PTACOMA type example - domain contents

5.5. DOMAIN HIERARCHY 71

P2P1

BA A C

<<s>><<s>> <<not>>

Figure5.14: PTACOMA separation of duty policy examples

thispolicy view. Thepolicy view symbol hasoneor morerelations that specifies the
exact nodes in the treestructure needs to be given accessto for fulfilli ng the policy
view. Specifying this isdone in thesameway as specifying targets for policies.

Figure 5.15 shows a simple policy that uses this symbol. In this figure the role
R1 isgiven accessto all entities in domain D2 that implements thepolicy view PV1.

Figure 5.16 shows the contents of the domain D2. There are two entities which
both define thepolicy view PV1. Theresultingaccessrules from thesetwo diagrams
would then be: U1E1 = {(1.4, i,n)} andU1E2 = {(1.3.4, i,n)}.

Aswe can seefrom this simple example, thepolicy view symbol iswell suited to
createhigh level policieswhere the administrator whocreates thepolicy do not need
to know all the minute details of how the accesscontrol has to be configured in the
actual entities.

5.5 Domain hierarchy

In PTACOMA there aretwo possiblehierarchiesof policies, thosethat areformed by
using groupsymbolsandthoseformed by domains. To resolvepossible conflicts, the
accessrulesare calculated usingatop-down approach based onthehierarchy formed
by domains. For each domain the hierarchy formed by groups are then calculated.
Policiesonahigher level hashigher priority than theonesonlower levelsandif there
are conflicts on thesame level, policieswith themost restrictive accesscontrol rules
should takeprecedence.

5.6 Policy conflicts

Oneissuewith apolicy based paradigm that can causeproblemsisconflictsbetween
multiple policies. Conflicts can happen when multiple policies have overlapping
subjects and/or targets. It is for example possible to have one policy that authorizes
user A accessto resource B while another policy denies this. It is also possible to

72 CHAPTER 5. PTACOMA

PV1

D2

P1

R1

<<s>>

Figure5.15: PTACOMA policy view example

PV1 PV1

E2E1

1.4 1.3.4

Figure5.16: PTACOMA policy view example- domain contents

5.7. DISTRIBUTED MANAGEMENT 73

have conflicts between obligation and authorization policies. An obligation policy
may dictateuser A to perform a certain task, while at thesametime an authorization
policy denies thenecessary accessneeded to perform the task.

Sincemany policiesarefirst specified asahigh level abstract policiesit can often
be difficult to detect conflicts. Most of the formal languages for specifying policies
supports somesort of automatic conflict detection[42], but manual interventionfrom
managers isoften needed.

Since PTACOMA is limited to low level authorization policies directed at only
treebased structures, it i srelatively easy to detect policy conflicts. When two policies
with different modality or conflictingconstraintsthat also havesomesimilar subjects
or targets theremight be a conflict.

Each policy defined using PTACOMA is converted into simple access control
rulesof theformat {N, I ,S} asdescribed in chapter 3. Each policy P will t hen have a
set AP that contains all the accesscontrol rules. There is a conflict between policies
if for a policy P there exist another policy P′ so that f (T,AP)∪ f (T,AP′) 6= θ and
I 6= I ′.

When a conflict is detected, policies that are defined in a higher level of the di-
agram hierarchy will t ake precedence over policies in lower levels. In PTACOMA
it is possible to specify maximum, minimum and exact accesspolicies. Maximum
policies specifies the maximum resources a user should have accessto and if a pol-
icy at lower levels grants more access, this accessis limited to what the maximum
policy at thehigher level specifies. A minimum accesspolicy specifies theminimum
resources a user should have accessto. If a policy at lower levels tries to restrict the
accessrightsof auser further, then thepolicy at thehigher level will t akeprecedence
and increase the accessrights. Exact accesspolicies, specifies the exact resources a
user should be able to accessand policiesat lower levelscan not changes this.

Whenconflictsarises, only the accesscontrol rulesthat areinconflict are changed.
If there exist other accesscontrol rulesthat arenot in conflict, thesewill be applied as
normal. With some applications this can cause unexpected results, so an implemen-
tation of PTACOMA should provide awarning to the user when conflicting policies
are detected.

Conflicts at the same level is not resolved automatically and a PTACOMA im-
plementationshould give awarningwhen thishappens. Oneway administratorscan
manually solve conflicts isto usethepriority attributeof thePTACOMA policy sym-
bol. If an administrator knowstheremight be conflictsbetween multiplepolicies, the
priority attribute can specify which policy should havethehighest priority when cal-
culating the accesscontrol rights. As this can cause unwanted effects it i s a feature
that should beused cautiously.

5.7 Distr ibuted management

One advantage with having multiple domains is that it i s possible to distribute the
task of specifying policies. Administratorson higher levelscan make broad policies

74 CHAPTER 5. PTACOMA

while administrators on lower levels can do detailed configuration or further dele-
gate authorization to other sub-domains. To be able to do this requires support for
distributed editing of PTACOMA diagrams by the editor where accessto diagrams
can be restricted. Administratorsof domains should only havepermission to change
diagrams for their own domain.

Many commercial UML editors already supports this today and will be well
suited for doing distributed configuration of PTACOMA accesscontrol rules. The
security of doing distributed management is solely dependent on the security of the
editor being used and isnot apart of thePTACOMA specification.

5.8 PTACOMA XML format

Just as for the TACOMA language, PTACOMA also has an XML Schema that acts
as a formal definition of the structure of the language. This schema is available in
Appendix E. The followingXML document shows how the PTACOMA diagram in
figure5.3 would bewritten when adhering to thePTACOMA XML Schema.

<?xml version="1.0" encoding="iso-8859-1"?>

<ptacoma xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.oslebo.com/thesis/ptacoma"

xmlns:tacoma="http://www.oslebo.com/thesis/ptacoma"

xsi:schemaLocation="http://www.oslebo.com/thesis/ptacoma ptacoma.xsd"

version="1.0">

<allSymbols>

<children id="C1.2">

<name>C1.2</name>

<eoid>1.2</eoid>

</children>

<entity id="E1">

<name>E1</name>

<address>10.0.0.1</address>

</entity>

<node id="N1.4">

<name>N1.4</name>

<eoid>1.4</eoid>

</node>

<policy id="P1">

<name>P1</name>

<accessType>read-only</accessType>

<policyType>exact</policyType>

</policy>

<role id="R1">

<name>R1</name>

</role>

<user id="U1">

<name>U1</name>

<securityName password="pass1">u1</securityName>

</user>

5.8. PTACOMA XML FORMAT 75

</allSymbols>

<mainDiagram id="m">

<roleDef>

<symbols>

<symbol ref="R1"/>

</symbols>

<usersAndDomains>

<symbols>

<symbol ref="U1"/>

</symbols>

</usersAndDomains>

<relations>

<include>

<from>U1</from>

<to>R1</to>

</include>

</relations>

</roleDef>

<policyDef>

<symbols>

<symbol ref="P1"/>

</symbols>

<subjects>

<symbols>

<symbol ref="R1"/>

</symbols>

</subjects>

<targets>

<symbols>

<symbol ref="E1"/>

<symbol ref="C1.2"/>

<symbol ref="N1.4"/>

</symbols>

<relations>

<include>

<from>E1</from>

<to>C1.2</to>

</include>

<include>

<from>E1</from>

<to>N1.4</to>

</include>

</relations>

</targets>

<subject>

<from>P1</from>

<to>R1</to>

</subject>

<relations>

<include>

<from>P1</from>

<to>E1</to>

76 CHAPTER 5. PTACOMA

</include>

</relations>

</policyDef>

</mainDiagram>

</ptacoma>

Figure 5.17 shows the overall structure of the XML document. It follows the
samebasic structure asTACOMA. Theroot element isptacoma andthen theallSym-
bols tag followsthat includesalist of all symbolsfoundin thePTACOMA document.
In thiscase we can seethedefinition of theuser symbol U1, the rolesymbol R1, the
policy symbol P1, the entity symbol E1, the children symbol C1.2 and the node
symbol N1.4.

Next follows the main diagram where the role and policy is defined. In this
diagram thereisfirst aroleDef tag which isused for assigning user U1 to theroleR1.
This isdoneby first specifying that roleR1 ispart of the roleDef tag and then define
user U1 under the tag usersAndDomains. This structure follows the metamodels for
PTACOMA. The last section under roleDef is relationswhich simply hasonesingle
includerelation that tiesuser U1 with the roleR1.

The policy definitionspecified inside thepolicyDef tag defines the actual policy.
This tag first usesasymbols tag to specify that thepolicy P1 ispart of thisdefinition.
Then comes the tags subjects and targets to specify the subjects and targets of the
policy. There isalso asubject relation for assigningroleR1 as thepolicy subject and
a relations section that ties the policy P1 with the entity E1. Entity E1 is tied to the
child symbol C1.2 and thenodeN1.4 inside the targets tag.

The PTACOMA XML Schema also defines several keys and key references to
make sure that the structure of the PTACOMA language is properly captured by the
Schema. There are for examplekeys that verifies that roles areonly assigned to user
symbol and not for example typesymbols.

5.8. PTACOMA XML FORMAT 77

Figure5.17: PTACOMA XML structure

7
8

C
H

A
PT

E
R

5.PTA
C

O
M

A

GroupWithoutDiagramGroupWithDiagram

Policy Role
Definition

DomainDiagram

SDPolicy
Type

Definition

GroupDiagram

PolicyViews

MainDiagram

Diagram

Relation

Exclude

Domain

IncludeSymbol

Group

to

1

0..*
−belongs

1

1

−belongs

−from

1..*

1

contains
1..*

1..*

Fig
ure

5.1
8:

M
ain

diagram
m

etam
o

del

5.8.
PTA

C
O

M
A

X
M

L
FO

R
M

A
T

7
9

GroupWithoutDiagram GroupWithDiagram

Users&Domains

GroupDiagram

Role
DefinitionRelation

Exclude

Symbol

Include

GroupRole

−from
1..* 1

−from

1..*

1

contains1..* 0..*

−belongs

1

1

−to

1..*

1

Fig
ure

5.1
9:

R
ole

definitio
n

m
etam

o
del

8
0

C
H

A
PT

E
R

5.PTA
C

O
M

A

GroupWithoutDiagram GroupWithDiagram

Users&Domains

DomainMod

Diagram
Relation

ExcludeInclude

User

−from
0..*

1

contains
1..* 0..*

−from

1..*

1

0..*

−to

1

−belongs
1

1

Fig
ure

5.2
0:

U
sers

an
d

d
om

ains
m

etam
o

del

5.8.
PTA

C
O

M
A

X
M

L
FO

R
M

A
T

8
1

GroupWithoutDiagram GroupWithDiagram

GroupDiagramDomainMod

Relation

Exclude

Domain

Include Logical

Group

−from

1..*

1

−belongs

contains 1..*1..*

−from

0..*

1

−to0..*

1

Fig
ure

5.2
1:

D
om

ain
m

o
delin

g
m

etam
o

del

8
2

C
H

A
PT

E
R

5.PTA
C

O
M

A

GroupWithoutDiagram

Enteties&Domains

GroupWithDiagram

GroupDiagram

Type
Definition

Relation

ExcludeInclude

Symbol

GroupType

−from
1..* 1

−from

1..*

1

contains1..* 0..*

−belongs

1

1

1..*

−to

1

Fig
ure

5.2
2:

Type
definitio

n
m

etam
o

del

5.8.
PTA

C
O

M
A

X
M

L
FO

R
M

A
T

8
3

Types&Enteties&dDomains

GroupWithoutDiagram GroupWithDiagram
DomainMod

DiagramRelation

ExcludeInclude

Entity

−from1..*

1

−belongs
1

1

−from

1..*

1

Fig
ure

5.2
3:

E
ntities

an
d

d
om

ains
m

etam
o

del

8
4

C
H

A
PT

E
R

5.PTA
C

O
M

A

Constraints Targets
Subjects

Relation

Exclude

Symbol

Include

Subject

Policy −from
1..*1

−from

1..*

1

−to

1

1..*

−to

1

1..*

Fig
ure

5.2
4:

Policy
m

etam
o

del

5.8.
PTA

C
O

M
A

X
M

L
FO

R
M

A
T

8
5

GroupWithoutDiagramGroupWithDiagram

DomainMod

GroupDiagram Subjects Relation

Exclude Include

Group Role
−from

0..*

1 −from

1..*

1

−to

0..*1

contains 1..*0..*

−belongs

1

1

Fig
ure

5.2
5:

Policy
su

bjectm
etam

o
del

8
6

C
H

A
PT

E
R

5.PTA
C

O
M

A

GroupWithoutDiagramGroupWithDiagram

GroupDiagram Constraints

Constraint

Relation

Exclude Include

Group

−to
0..*1

−belongs

1

1

−from

1..*

1

contains
0..* 1..*

Fig
ure

5.2
6:

C
o

nstraintm
etam

o
del

5.8.
PTA

C
O

M
A

X
M

L
FO

R
M

A
T

8
7

SymbolWithoutRelation

GroupWithoutDiagram

SymbolWithRelation

GroupWithDiagram

DomainMod

GroupDiagram

PolicyView TableRowChildren

Relation

Exclude

Targets

Include

SubtreeType

Entity

Node

contains1..*

0..*

−from1..*

1

−from 1..*

1

−to
1..*

1

−belongs
1

1

Fig
ure

5.2
7:

Policy
targetm

etam
o

del

8
8

C
H

A
PT

E
R

5.PTA
C

O
M

A

ConstraintsSubjects

SDPolicy

Relation

Exclude

Symbol

Include

Subject

Policy

−to

1..*

1

−from

1..*1

−to

1..*

1

−from

1..*

1

Fig
ure

5.2
8:

PTA
C

O
M

A
separatio

n
of

d
uty

p
olicies

m
etam

o
del

5.8. PTACOMA XML FORMAT 89

Types&Enteties&dDomains

SymbolWithoutRelation

GroupWithoutDiagram GroupWithDiagram

GroupDiagram

PolicyViews

PolicyView

TableRowChildren

Relation

Exclude

Targets

Include

Include

SubtreeNode

contains1..*

0..*

−from

1..*

1

−belongs 1
1

−from
1..* 1

from

1..*
−to

1

−to
1..*

1

Figure5.29: Policy view definitionsmetamodel

9
0

C
H

A
PT

E
R

5.PTA
C

O
M

A

Types&Enteties&dDomains

GroupWithoutDiagram GroupWithDiagram
DomainMod

DiagramRelation

ExcludeInclude

Entity Type

−from1..*

1

to
1..* 0..*0..*

−to
1

−belongs
1

1

−from

1..*

1

Fig
ure

5.3
0:

PolicyV
iew

gro
u

p
of

entities
m

etam
o

del

Chapter 6

TACOMA and PTACOMA
compar ison

In thischapter thetwo languages, TACOMA andPTACOMA, are compared based on
complexity, scalabilit y, maintainabilit y and distributed specification of accesscon-
trol. A detailed example demonstrating some of the differences between the two
languages is also provided.

6.1 Complexity

TACOMA was designed with ease of use as the primary goal and only has eight
symbols and two relations. The only method for organizing diagrams is the use of
groupswhich allow administrators to collect symbols that have things in common or
to reusepart of diagrams. All thismakesTACOMA quite easy to learn andto use and
even userswhoarenot famili ar with TACOMA can usually understandthediagrams.

PTACOMA more than doubles the number of symbols and relations and there
are two ways of organizing diagrams, domains and groups. PTACOMA also have a
potentially higher risk of creating conflicts in the accesscontrol specification.

Becauseof thisPTACOMA isclearly amore complex languageto both learn and
to use and requires more effort from administrators to beproperly used.

6.2 Scalabili ty

Thescalabilit y of each languageisdifficult to quantify properly sinceit dependsquite
a lot on how diagrams are constructed. With proper use of groups TACOMA should
be able to scale quite well , however no matter how well diagrams are structured,
administrators still have to manually control and configure each entity.

While TACOMA was designed for ease of use, PTACOMA was designed for
scalabilit y. Using policies together with domains, roles and types it is easier to de-
velop high level accessrules that can berefined when needed. PTACOMA also have

91

92 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

support for the use of policy servers which is an important feature for being able to
scale to systemswhere there are hundredsof thousandsentitiesand users.

6.3 Maintainabili ty

Themaintainabilit y of both TACOMA andPTACOMA dependsa lot onthemethod-
ology used for creating diagrams. Diagrams from both languages can be quite hard
to maintain if they arebadly structured. So in thisaspect thelanguagesarequitesim-
ilar althoughPTACOMA makes it easier to distribute the maintenanceof diagrams
between domainsas explained in the next section. This distributionmeans that each
administrator only has to maintain someparts of thePTACOMA diagrams.

6.4 Distr ibuted specification of accesscontrol

PTACOMA is, with its support for policies and domains, well suited for distributed
specification of accesscontrol. It iseasy to delegatethedetailed control of specifying
access control to domains at lower levels and at the same time keep a high level
control on top levels. The security of distributed specification of accesscontrol is
solely dependent on the security built i nto the editor that is used for drawing the
diagrams.

TACOMA has very littl e support for this. It is possible to use groupsymbols to
delegate the responsibiliti es of updating parts of the diagrams. There is however no
support for letting administrators on a higher level deny or grant accessfor users on
lower level unlessthedetailsof diagramson lower levelsareknown.

6.5 Example

The following example shows some of the aspects of TACOMA and PTACOMA
when it comes to scalabilit y, maintainabilit y and distributed specification of access
control. In this example there is a company with two departments, A and B. There
are threeusers, UserA, UserB1 and UserB2 which belong to department A and B.
All users have accessto a group of nodes called G in department A. Initially there
areonly one entity Entit yA. Figure6.1 showstheTACOMA diagram for department
A. This shows a single user, UserA, which is being granted accessto Entit yA. The
accessisbeinglimited to thenodesdefined in thegroupcalled G. The exact contents
of G is not relevant for this discussion but it does not contain any entities, only sub-
tree, children, table-row or node symbols. Figure 6.2 shows the TACOMA diagram
for department B where UserB1 and UserB2 are granted access to the group G in
entity Entit yA.

Now assume that department A adds a new entity, Entit yA2, which all users
should have accessto aswell . In TACOMA there aretwo waysthiscan bedone. The
first method is to simply add the entity as shown in Figure 6.3. This figure shows

6.5. EXAMPLE 93

Figure6.1: Initial department A TACOMA diagram

UserB2UserB1

EntityA

G

Figure6.2: Initial department B TACOMA diagram

94 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

UserA

EntityA EntityA2

G

Figure6.3: Modified department A TACOMA diagram

G

EntityA EntityA2

Figure6.4: TACOMA diagram of GroupA

department A. To give accessto UserB1 and UserB2, the same change would also
have to bedone in thediagram for department B.

Another methodis to addagroupsymbol, GroupA, with content as shown in fig-
ure6.4. Thediagram for both departmentswould also haveto be changed. Figure6.5
showshow thiswill l ook in theTACOMA diagram for department B. The advantage
of this methodis that additional entitiescan be added by only changing the contents
of GroupA.

Both these methods clearly show that when there are multiple users in different
diagrams accessing the same resources, TACOMA quickly become difficult to use.
Method one requires constant changing to the two separate diagrams every time a
new entity isadded or removed, even if it only belongsto oneof thedepartments. The
secondmethodisbetter sincethe changeto both diagramsonly haveto beperformed
once, but in large TACOMA documents with many levels and diagrams, finding all

6.5. EXAMPLE 95

GroupA

UserB2UserB1

Figure6.5: Modified department B TACOMA diagram

P

UserA

EntityA

G

<<s>>

Figure6.6: Initial department A PTACOMA diagram

instances that have to be changed can be a challenge. One could argue that a group
symbol should have been used in the first place. While that would have solved the
problem in thisexample, excessiveuseof thegroupsymbol can make theTACOMA
diagramsvery deep and it iseasy to loose control over who has accessto what.

The solution to these problems is the policy paradigm that PTACOMA intro-
duces. In the previous example it would be natural to create two distinct domains,
one for each department. Figure 6.6 shows the initial PTACOMA diagram for de-
partment A. In thisdiagram there isonepolicy sayingthat UserA should have access
to thenodesdefined in groupG for all entities in domain A. Sincethere isno domain
symbol thepolicy isvalid only for the current domain thepolicy isdrawn in, namely
domain A. Sinceno entity symbol is used in policy P the policy is valid for all en-
tities belonging to domain A. The diagram also shows that domain A has one entity
Entit yA.

Figure6.7 showsthePTACOMA diagram for department B andcontainsasingle
policy giving UserB1 and UserB2 access to the nodes defined in group G for all
entities in domain A.

When Entit yA2 is added to department A, all that is needed is to change the
PTACOMA diagram for department A as shown in figure6.8. Thiswill automatically
allow accessfor UserB1 andUserB2 as well .

96 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

A

P2

UserB1 UserB2

G

<<s>> <<s>>

Figure6.7: Initial department B PTACOMA diagram.

P

UserA

EntityA

G

EntityA2

<<s>>

Figure6.8: Modified department A PTACOMA diagram

6.6. SUMMARY 97

B

P3

UserB1 *

G

<<not>>

<<s>>

<<not>>

Figure6.9: Blocking users from department B

TACOMA PTACOMA

Complexity + -
Scalabilit y - +

Maintainabilit y (+) +
Distributed specification - +

Table6.1: TACOMA and PTACOMA weak andstrong points

Another advantage with PTACOMA is that the administrator of department A
can easily block accessto all entities in department A from users in department B. In
TACOMA this is only possible on a per user basis. Figure 6.9 shows a PTACOMA
diagram with a policy which dictates that access to all entities are blocked for all
users in department B except UserB1. The role symbol named ∗ represents a role
symbol that has theall attributeset and represents all users.

6.6 Summary

This section hasgivenan overview of thestrengthsandweaknessesof TACOMA and
PTACOMA and have shown that the languages have different usages. TACOMA is
an easy to learn languagethat arewell suited for smaller diagramswherethenumber
of users andentitiesare small .

For larger networks with multiple administrators or large number of users and
entities, PTACOMA is better suited because of its scalabilit y. The disadvantage of
PTACOMA is itscomplexity.

Table6.1 givesasummary of theweaknessesandstrong pointsof each language.

98 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

Chapter 7

Case study: Using PTACOMA to
Model AccessControl in a Large
Scale Deployment of Passive
Monitor ing Probes

UNINETT, the Norwegian NREN, is currently in the processof deploying a large
number of passive monitoring probes as part of the GigaCampus project[45, 46].
Theseprobeswill bedeployed both in thebackbonenetwork aswell asaccesslinksto
customersandwill bebased ontechnologyfrom theIST project LOBSTER[47]. The
deployment onaccesslinksof customerswill bebased ona cooperation between the
customer and UNINETT and both parties will be able to use the passivemonitoring
probe for security, QoSmonitoring, general network usagestatisticsand research.

One challenge in deploying passive monitoring probes in a multi -domain envi-
ronment is privacy and confidentiality issues. With the probes it is possible to look
deep into the payload of packets which makes it important to have full control over
who usestheprobesandwhat they areused for. It must bepossibleto monitor active
users of the probes to seewhat they are doing. Customers should be allowed to see
some of this management information, but not necessarily all the information. This
is where PTACOMA comes in as a goodmethodfor configuring the accesscontrol
of themanagement system on themonitoring probes.

This chapter provides a detailed description of how PTACOMA can be used in
this scenario.

7.1 Monitor ing API

TheMonitoringAPI(MAPI)[48] isthekey technology used in thepassivemonitoring
probes. MAPI was originally implemented as part of the IST project SCAMPI[49]
and then improved in LOBSTER.

99

100 CHAPTER 7. CASE STUDY

MAPI wasdesigned for makingthedevelopment of monitoringapplicationsquicker
andeasier. With MAPI, application programmerscan concentrateonwhat they want
to monitor without having to know the details of the hardware they use to capture
the network traffic. Applications based onMAPI can run ontop of various types of
hardwarewithout any changesandadvanced on-board processingcapabiliti eson the
network adapter isautomatically utili zed whenever possible.

MAPI is centered onthe notion of a network flow. A network flow will i nitially
represent all the packets seen onthe network by the network adapter, but functions
can then be applied to the flow to limit the number of packets. These functions can
for example be BPF filter, sampling, string search, packet counter etc. When all
functionshavebeen applied, the applicationcan connect to theflow andstart reading
the results.

The following code shows an example of a simple application implemented on
top of MAPI. This application searches for packets that contain an already known
Internet worm. The worm is easy to detect sinceit always has destination port 1234
and awell known pattern can be found between 100and 300 bytes into thepacket.

1: fd=mapi apply flow(‘‘/dev/dag0’’);

2: mapi apply function(fd,’’BPF FILTER’’,

’’dst port 1234’’);

3: id1=mapi apply function(fd,’’PKT COUNTER’’);

4: mapi apply function(fd,’’STRING SEARCH’’,

‘‘pattern’’,100,300);

5: id2=mapi apply function(fd,’’PKT COUNTER’’);

6: mapi apply function(fd,’’TO FILE’’,

MFF TCPDUMP,

‘‘worm.trace’’);

7: mapi connect(fd);

8: while(1) {
9: mapi read result(fd,id1,&c1);

10: mapi read result(fd,id2,&c2);

11: printf(‘‘BPF match: %llu

String match: %llu\n’’,
c1,c2);

12: sleep(10); }

Thefirst thingthisapplication does is to open anew flow usingthedevice/dev/dag0.
After that several functions are applied to the flow in lines 2-6. First a BPF filter is
added which restricts the packets in the flow to packets that have adestination port
of 1234. A packet counter is then added which is used for counting the number of
packets that pass throughthe BPF filter. The ID of the packet counter function is
stored in thevariable id1 for future referencewhen the resultsarebeing read.

To locate packets that contain the string pattern that identifies the worm, a string
search function isadded andasecond packet counter function isalso added to count
thenumber of packets that contains thestring.

7.1. MONITORING API 101

The last function that is applied stores the packets that has destination port 1234
and contains thestring pattern to afile worm.traceusing tcpdump format.

When all functions have been applied, the application connects to the flow in
line 7. It is only when the application connects to the flow that packets start being
processed.

The lines 8-12 are used for printing out status about the progressof the applica-
tion. It reads the results from the counters and prints out a line saying how many
packets that has matched the BPF filter and the string search. It then sleeps for 10
secondsbefore repeating theprocess.

When implementing an application using MAPI, the processing of packets con-
tinues in the backgroundeven if the application sleeps. The only action needed by
the application is to read and present the results to theuser.

7.1.1 Distr ibuted MAPI

Distributed MAPI (DiMAPI)[50] is an extension to MAPI that allows an applica-
tion to simultaneously connect to multiple monitoring probes running MAPI. It is
designed so that most applications that uses MAPI can very easily be extended
to support DiMAPI. The main change is in the command mapi create flow and in
mapi read results.

When creatinganew MAPI flow it isnow possibleto not only specify thedevice
but also thehost. It isalso possible to specify multiplehostsat one time:

fd=mapi create flow(‘‘host1:/dev/dag0,

host2:eth0’’);

This command will connect to both host1 and host2 to create a new MAPI flow
andall subsequent calls to mapi apply functionandmapi read resultswill besent to
both hosts. When usingmultiplehostsat thesametime, mapi read results returnsan
array of results.

7.1.2 MAPI secur ity mechanisms

MAPI has built i n security functions that makes it possible to set up rules specifying
that users have to first apply some specific functions to the MAPI flow before they
are allowed to connect to it. This feature can for example be used for specifying
that users are allowed to connect to all monitoring probes but that they first have
to apply a BPF filter that filters out all t raffic except traffic belonging to their own
organization. Thismakes it possible to do distributed monitoring in asafe way.

7.1.3 SNMP access

To be able to track who is using MAPI and what they are doing, it i s necessary to
instrument MAPI so that the necessary information can be retrieved. For each flow

102 CHAPTER 7. CASE STUDY

it should be possible to seewho created the flow and which functions were applied
and what arguments were passed to the functions. This way it is possible to keep a
detailed log of what each user is doing.

MAPI already has an SNMPMIB[51] that provides someof this information, so
it is natural to just extend this to provide the missing information. Using an SNMP
MIB is also convenient sinceNREN’s and customer network administrators are fa-
mili ar with thetechnologyandalready havesoftwarethat can beused for monitoring
theMAPI monitoring probes.

SNMPv3 is theonly SNMPversionthat offers strongauthenticationand is there-
for the version most likely to be used in the scenario described here. The secu-
rity mechanisms in SNMPv3 are divided into two parts: User-based Security Model
(USM) and View-based AccessControl Model (VACM).

User-based Secur ity Model (USM)

USM is a security model for SNMP that offers strong security and authentication.
TheUSM specification[14] also defines aMIB that offers astandardized methodfor
adding and removing users that are authorized to accessan SNMP entity. This is
doneby addingand deletingentries in theSNMPMIB tableusmUserTable.

View-based AccessControl Model (VACM)

VACM is the only accesscontrol model defined so far for SNMPv3. VACM[15] is
responsible for deciding if an operation is allowed or not based on the identity of
the user. It assumes that the message has already been authenticated by a security
model li ke USM. VACM is based on the concept of MIB views. A MIB view is a
subset of the entireMIB available in an SNMPentity and defineswhich MIB objects
that can be accessed by a certain user. VACM also defines a standardized MIB for
configuring the accesscontrol.

To add accessrights to a user, threeSNMP MIB tablesneeds modification:

vacmSecur ityToGroupTable maps the user name into a group name. A user can
only belong to one group and all users that belong to the same group
have identical accessrights.

vacmAccessTable maps thegroup name and accesstype1 into aMIB view.

vacmViewTreeFamilyTable defines the MIB view and decided whether an OID in
theMIB treeisaccessibleor not. TheMIB view consistsof alist of OIDs
that definesthenodesin theMIB treethat are included or excluded from
the accessrights. To grant accessto only specific rows in a table, the
index that distinguishes the rows are part of the OID. It is also possible
to usewildcardsin theOID. Thismeansthat certain numbersin theOID

1Accesstypes in SNMP can beread, write or notify

7.2. MANAGEMENT INFORMATION 103

ismasked out and not considered when decidingif theOID of an request
matches theOIDs specified in thevacmViewTreeFamilyTable.

A more detailed overview of the security mechanisms in SNMPv3 is provided in
Appendix B.

7.2 Management information

The new MAPI SNMP MIB that provides the necessary informationwill be divided
into into fivedifferent groupswhich in SNMPare all organized into tables.

The full MAPI MIB definitioncan be foundin Appendix F.

7.2.1 Interface

This group provides detailed information about all available interfaces in a probe
that can be used by MAPI. Each entry in the table contains information about one
interface and the index to the table is thevalueof mapiIfI ndex.

mapiIfIndex A uniquevalue, greater that zero, for each device availablefor monitor-
ing throughMAPI.

mapiIfName A textual stringcontainingthenameof the interface. Thenameshould
uniquely identify the interfacein the monitoring probe. An example of
aname is “eth1”

mapiIfDescr A textual string containing information about the device. The string
should include the name of the manufacturer, the product name and the
version of thedevicehardware/software.

mapiIfAlias Thisobject isan “alias” namefor theinterface as specified byanetwork
manager, and providesa non-volatile “handle” for the interface.

mapiIfType Integer value specifying the type of link layer. Works similar to ifType
described in RFC 1213.

mapiIfStatus The current status of the interface. The status can be: active, ready,
unavailable, linkLost or unknown.

mapiIfPkts The total number of packets captured by the interface.

mapiIfOctets The total number of octetscaptured by the interface.

mapiIfDroppedPkts The total number of packetsdropped by the interface.

mapiIfLastBufferSize Thetotal number of bytesthat waslast read fromtheinterface.

mapIfCounterDiscontinuityTime The value of sysUpTimeon the most recent occa-
sion at which any one or more of this interface’s counters suffered a
discontinuity.

104 CHAPTER 7. CASE STUDY

7.2.2 Organization

This group provides information about all organizations that users who are allowed
accessto MAPI belongs to. Each entry in the table contains information about one
organization.

The index to this table isauniqueorganization ID.

mapiOrgID Unique integer value identifying theorganization.

mapiOrgName Nameof theorganization.

mapiOrgContact Nameof contact personat theorganization.

mapiOrgContactPhone Phonenumber for the contact person.

mapiOrgContactEmail Email addressfor the contact person.

7.2.3 User

Groupthat contains informationabout all usersallowed to connect to DiMAPI. Each
entry in the table contains informationabout oneuser.

The index to this table is the ID of the organization that the user belongs to in
addition to auniqueuser ID.

mapiOrgID Integer valueshowingwhich organization theuser belongs to.

mapiUserID Unique integer value identifying theuser.

mapiUserName Nameof theuser.

mapiUserLoginName Login nameof theuser.

mapiUserLastLogin Date and timeof the last time theuser was logged in.

mapiUserTotalFlows Total number of MAPI flows theuser has created.

mapiUserActiveFlows Number of currently activeMAPI flows.

7.2.4 Flow

This groupcontains a list of all active and recently closed flows. Each entry in the
table contains informationabout oneflow.

The index to this table is the organization ID and user ID of the user who owns
theflow as well as auniqueflow ID.

mapiOrgID Integer valueshowingwhich organization theflow belongs to.

mapiUserID Integer value identifying theuser theflow belongs to.

7.2. MANAGEMENT INFORMATION 105

mapiFlowID Unique integer value identifying theflow.

mapiFlowIfI ndex Integer valueshowingwhich interfacethisflow is running on.

mapiFlowNumFunctions Number of functionsapplied to theflow.

mapiFlowPkts Number of packets captured by theflow.

mapFlowOctets Number of octetscaptured by theflow.

mapiFlowDroppedPkts Number of dropped packets that the flow should have cap-
tured.

mapiFlowStart Start timeof theflow.

mapiFlowEnd End timeof theflow. If theflow is still active thisvalue is0.

7.2.5 Function

Thisisalist of thefunctionsapplied to activeflows. It containsinformationabout the
typeof functionandthenumber of packets that havebeen processed by thefunction.
Each entry in the table contains informationabout one function.

The index to this table is the organization ID and user ID of the user who owns
the function, theflow ID the function belongs to and the function ID.

mapiOrgID Integer valueshowingwhich organization the function belongs to.

mapiUserID Integer value identifying theuser the function belongs to

mapiFlowID integer value identifying theflow the function belongs to.

mapiFunctID Unique integer value identifying the function.

mapiFunctPkts Number of packets captured by the function.

mapiFunctOctets Number of octetscaptured by the function.

mapiFunctPassedPkts Number of packets that haspassed throughthe function.

mapiFunctDroppedPkts Number of octets that has been dropped by the function.

7.2.6 Argument

This is a list of the arguments that were passed to each function. This information
includes the type of argument and the value. Each entry in the table contains infor-
mationabout one argument.

The index to this table is the organization ID and user ID of the user who owns
the function, the function ID the argument belongs to and the argument ID.

106 CHAPTER 7. CASE STUDY

mapiOrgID Integer valueshowingwhich organization the argument belongs to.

mapiUserID Integer valueshowingwhich user the argument belongs to.

mapiFlowID Integer valueshowingwhich flow the argument belongs to.

mapiFunctID Integer valueshowingwhich function the argument belongs to.

mapiArgID Integer representing the argument ID. For each function this starts at 1
and incrementswith 1 for each argument.

mapiArgType String that describes the type of argument, eg. integer, float, string
etc.

mapiArgValue String representation of thevalueof the argument.

7.3 Using theMAPI MIB

Administratorscan usethemapiInterfacesTableto lookat theperformanceof MAPI.
If the counter representing dropped packets on an interfacekeeps increasing it will
usually indicate that the monitoring probe is overloaded and can not manage to pro-
cesspackets fast enough.

Administrators can also use the mapiFlows table together with functions and ar-
guments to get a detailed overview of the active MAPI flows. Combining this in-
formation with information from mapiOrganization and mapiUsers tables makes it
possible to tell exactly who isdoingwhat on themonitoring probe.

Guest users can use theMAPI MIB to check thestatus of their own flows and to
check for dropped packets on the interfaces.

7.4 Accesscontrol requirements

UNINETT administrators should have full access to all i nformation in the MAPI
MIB. Customer administrators should have full accessto all i nformation onmoni-
toring probes in their own domain, while on remote domains they should only be
able to seeinformation about guest users from their own domain. This requirement
is summarized in table 7.1 where we can seethat on remote probes the information
available to the customer administrators is limited to entries in the MAPI MIB that
has thesameorganization ID as the administrator.

Guest users should only be allowed access to their own flows and information
about available interfaces should be open for everyone. This is summarized in table
7.2

7.5. SNMPV3 USM AND VACM CONFIGURATION 107

Object Local probes Remoteprobes

mapiIfTable * *
mapiOrgTable * ORGID()
mapiUserTable * ORGID().*
mapiFlowTable * ORGID().*
mapiFunctTable * ORGID().*
mapiArgTable * ORGID().*

Table7.1: MAPI MIB accesscontrol for customer administrators

Object All probes

mapiIfTable *
mapiOrgTable ORG().*
mapiUserTable ORG().UID()
mapiFlowTable ORG().UID().*
mapiFunctTable ORG().UID().*
mapiArgTable ORG().UID().*

Table7.2: MAPI MIB accesscontrol for guest users

7.5 SNMPv3 USM and VACM configuration

Based ontherequirementsfor accesscontrol described in theprevious sectionseveral
entries in theUSM andVACM tableshave to be added.

7.5.1 UNINETT administrator

First of all an entry for the UNINETT administrator has to be added to the us-
mUserTable. This allows the administrator to access the SNMP agent running on
themonitoring probes.

Further entriesareneeded in theVACM tablesbeforethe administrator isallowed
to accessany of theMAPI MIB information. To allow full accessto theMAPI MIB,
three entries are needed. One in vacmSecurityToGroupTable that maps the security
name of the administrator to an administrator group. Multiple administratorscan be
member of thisgroup.

One entry is needed in the vacmAccessTable to specify which view should be
assigned the administrator group and one entry is needed in vacmViewTreeFami-
lyTable to specify that the administrator should have full accessthe the entireMAPI
MIB.

7.5.2 Guest users

All guest usersneed an entry in theusmUserTableto be ableto connect to theSNMP
agent. They also need one entry each in vacmSecurityToGroupTable and vacmAc-

108 CHAPTER 7. CASE STUDY

cessTable. Since each guest user should only have accessto their own flows, it i snot
possible to useone common groupfor all of them.

To specify which informationthat should be availableto aguest user, 6 entries in
vacmViewTreeFamilyTable is needed, one for each table in the MAPI MIB. These
entries should use the organization ID and user ID of each guest user to limit access
to only information belonging to thisuser.

7.5.3 Customer administrators

Just as for guest users, customer administrators will need their own VACM group
so one entry is needed in usmUserTable, vacmSecurityToGroupTable and vacmAc-
cessTable for each of them.

Onremoteprobesthe customer administratorsneeds6entriesin vacmViewTreeFam-
ilyTable to provide accessto all entries in the MAPI MIB that belongs to the same
organizationas the administrator.

On local probesasingle entry in vacmViewTreeFamilyTableisneeded to provide
full accessto the entireMAPI MIB.

7.5.4 Full configuration

Assumingthere are15monitoring probeswith oneUNINETT administrator, 15cus-
tomer administratorsand 30 different guest users, the full configuration of USM and
VACM on one of the monitoring probes will result in a total of 4+30∗9+15∗3+
1+14∗6 = 404entries.

Sincethe configuration has to be different on all 15 monitoring probes, as much
as 6060entries are needed. This clearly shows that hand editing the accessrules is
not very realistic. It is very easy to loose track of who has accessto what and other
methodsmust beused.

7.6 PTACOMA diagrams

Specifying the accesscontrol requirements for this case study using PTACOMA is
relatively simple and straight forward. A minimum of threepoliciesare needed, one
for each user type. It can however be convenient to use two policies for the customer
administrators, one for accesson local probes and one for remoteprobes.

In addition to these policies there would be 15 different domain symbols where
each domain defines the customer administrator as well as an entity representing the
monitoring probe implementingtheMAPI MIB.

7.6.1 UNINETT administrators

The policy providing full accessto the entire MAPI MIB is shown in figure 7.1. In
this policy we can seethat the UNINETT administrator is granted full accessto the

7.6. PTACOMA DIAGRAMS 109

mapiMIB

UNINETT admin
access

All
UNINETT

admin

MAPI

<<s>>

Figure7.1: PTACOMA diagram for UNINETT administrators

MAPI MIB for all entitiesof the typeMAPI in all domains.

7.6.2 Guest users

The PTACOMA diagram for the guest users are shown in figure 7.2. Here we can
seeone policy that grants accessto the group “MAPI access” to all users with the
role “Guest user” . We can also see that the role symbol “Guest user” has an at-
tribute called “mapiIndex” and that this attribute has the value “ORGID().UID()” .
Thepurposeof thisattribute is shown in figure 7.3.

What this figure shows is the contents of the group “MAPI access” and as we
can seethis group grants some accessto all entitiesof the type “MAPI” . Full access
is given to mapiIfTable and accessto mapiOrgTable is limited to the entry with the
same organization ID as the guest user. Accessto the remaining tables in the MAPI
MIB is limited to the entries with index as specified by the attribute “mapiIndex” .
In this case this attribute has been set to “ORGID().UID()” which means that guest
users areonly allowed to seeinformationabout their own flowsand functions.

7.6.3 Customer administrators

Two policies are created for the customer administrators, one for access to local
probesand one for accessto remoteprobes. Accessto local probes isvery similar to
thepolicy for UNINETT administratorsand is shown in figure 7.4. In thisfigure we
seethat all users in all domains with the role of “Customer admin” is assigned full

110 CHAPTER 7. CASE STUDY

Guest users
access

All All

MAPI accessGuest user

mapiIndex=ORGID().UID()

<<s>>

Figure7.2: PTACOMA diagram for guest users

mapiFunctTable.Attr(mapiIndex)

mapiFlowTable.Attr(mapiIndex)

mapiUserTable.Attr(mapiIndex)

mapiArgTable.Attr(mapiIndex)

mapiIfTable.*

mapiOrgTable.ORG()

MAPI

Figure7.3: MAPI accessgroupcontents

7.7. SUMMARY AND CONCLUSIONS 111

mapiMIB

Customer admin
local access

OwnAll

Customer
admin

MAPI

<<s>>

Figure7.4: PTACOMA diagram for local accessfor customer administrators.

accessto the MAPI MIB. The difference compared to the UNINETT administrator
is that in this policy full accessis only granted to entities of the type “MAPI” in the
users own domain.

The policy for remote accessis shown in figure 7.5. This policy is very similar
to the policy for guest users with only two modifications. First of all the attribute
mapiIndex has changed from “ORGID().UID()” to “ORGID()” . This provides ac-
cessto information about all flows and functions belonging to users from the same
organizationand not just the customer administratorsown flows and functions. This
policy is also only valid for entities in all except the customer administrators own
domain.

7.7 Summary and conclusions

The case study presented in this chapter is relatively simple and only uses a few of
the features available in the PTACOMA language. Even so it clearly demonstrates
how thePTACOMA language can beused for specifyingaccesscontrol in an SNMP
framework.

Handeditingseveral hundred or even thousandsof linesof accesscontrol config-
uration is not scalable. One other alternative could have been to create ascript that
automatically added and deleted users from the accesscontrol for the MAPI MIB.

112 CHAPTER 7. CASE STUDY

Customer admin
remote access

AllExceptOwnAll

Customer
admin

MAPI access

mapiIndex=ORGID()

<<s>>

Figure7.5: PTACOMA diagram for remote accessfor customer administrators

This however has the disadvantage of only working for this specific application. If
accessto other SNMPMIBs should be configured, anew script would haveto bede-
veloped. All thediagrams shown in thiscasestudy usesgeneric PTACOMA features
that can beused for all SNMPMIBs.

Using a script also locks you to the SNMP technology. In the future it might be
moresuitableto movethemonitoring of MAPI to other technologieslikeWSDM[52]
or NETCONF[53]. Both these technologies are XML based and as longas the data
model remains the same, the PTACOMA diagrams would still be valid. All that
would beneeded isa new ACL Configurator.

In PTACOMA it isalso easy to addexceptionsto thestandard rules. For example
if onesingleuser should have extended access, it i seasy to addwithout loosingtrack
of exactly who hasaccessto what.

SincetheMAPI MIB described in thischapter hasnot yet been fully implemented
and UNINETT is still i n the deployment phase of the monitoring probes, it has not
been possibleto test PTACOMA in this scenario. ThePTACOMA prototypethat has
been implemented do not support all the features of the PTACOMA language, but
it do support enoughto be used in this scenario and this prototype is described in
further details in Appendix C.

Chapter 8

Conclusions and fur ther work

This chapter provides a conclusion of the work presented in this thesis. It also gives
aquick overview of related work and discusses further work that can bedone.

8.1 Conclusions

The work presented in this thesis started out as research into finding an easy to use
and highly scalablemethodfor specifyingaccesscontrol in SNMPv3. Thiswork re-
sulted in the language called MIB View ModelingLanguage(MVML) but it quickly
turned out that the language could bemademoregeneric andwork continued to cre-
ate a language that could be used for specifying and configuring accesscontrol in
most applicationsor systems that store information in a treebased structure.

Twoseparatelanguageswerethencreated, TACOMA andPTACOMA. TACOMA
isadirect generalization of theoriginal MVML language. It isvery easy to learn and
use but is best suited for small to medium sized systems. To be able to cope with
large multi -domain systems, a policy based version of the language, PTACOMA,
was created. While abit harder to learn and moredifficult to fully utili ze all the fea-
ture of the language, PTACOMA is able to scale to a large number of users, entities
and large treebased structures.

Theoriginal goal was to create alanguagethat wasboth easy to use andwasable
to scale to large systems. It proved difficult to fulfill both these goals in one single
language but the solution of defining two related languages works well . Depend-
ing onthe complexity of the task at hand, administrators will be able to chose the
modeling language that best fits their need.

Based on the experience from the implemented prototype1 and detailed studies
of various case studies like the one presented in chapter 7, the two goals of creating
languages that are easy to use and highly scalableseemsto havebeen fully met. The
case study clearly shows that the PTACOMA language is well suited for specifying
accesscontrol in SNMPv3 and the same techniques as presented in this case study

1Thisprototypeisdescribed in Appendix C.

113

114 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

can be used for other emerging network management protocols likeNETCONF and
WSDM.

The languages presented in this thesis are also easy to deploy for new types of
applications and systems and can therefor easily be adapted for new use cases. The
only requirement is that they store information in tree-based structures.

8.2 Related work

There areother modelinglanguagesavailablelikeSecureUML[54] andUMLsec[55].
These are however not modeling languages for specifying and configuring access
control. They are instead UML extensions to model secure applications during de-
velopment.

There are also several generic languages available for specifying policies[42].
Most of these languages like Role Definition Language(RDL)[56], RSL99[57], Au-
thorizationSpecificationLanguage(ASL)[58] andRBAC are all text based languages
and are either aimed at more high level policy specification or like RBAC need spe-
cific support for the language in thesystems that want to use it. With TACOMA and
PTACOMA nomodification to existingsystemsareneeded.

LaSCO[59] isagraphical languagefor specifyingsecurity constraintson objects.
It focuses on more high level policies compared to PTACOMA and because of this
it i s not always trivial to map the policies to the lower level systems unless it is
implemented with aLaSCO policy enforcement framework.

8.3 Fur ther work

So far the prototype implementation of PTACOMA only implements a subset of
the features available in the language. A full i mplementation is needed to get more
practical experiencewith the language to seeif any modificationsare needed.

Morework isalso needed ontheACL Optimizer to optimizethenumber of access
control rules that must be configured in managed entities. Especially with dynamic
treestructurescomplex algorithmsareneeded to findthemost optimized set of rules.

Further research into combiningPTACOMA with XACML should also be done.
XACML is designed as a general purpose language that is very versatile and can be
used for specifying accesscontrol rules in virtually all systems. While PTACOMA
will never be an all purpose language as it is specially designed for systems storing
informationin tree-based structures, it still hasabig potential asagraphical language
for creating XACML policies for these typesof systems.

The main improvement of PTACOMA for better support for XACML is in the
constraints. In the current version of PTACOMA, the constraint symbol iscompletely
generic without any restrictions. All the specification says is that the symbol can
contain various attributes that specify some kind of constraint. The exact syntax
of these constraints depends on the application or system being configured. If the

8.3. FURTHER WORK 115

Constraint

P1

1.5

1.4

R1 E1

<

<<s>>

Figure8.1: XACML constraints in PTACOMA

targeted system is XACML, further restrictions can be put on the constraint symbol
so that it better fits themodel used in XACML.

In XACML a policy can specify resources that should be checked for specific
values while the policy is being evaluated. This can for example be the load of the
system, the number of already logged on users etc. XACML defines a strict syntax
for specifying this. With the current constraint symbol in PTACOMA, the XACML
syntax for specifyingthese constraintscan be added asan argument to thesymbol. It
might bebetter however to usethe current mechanismsin PTACOMA for specifying
nodes in the treestructure to graphically represents theseXACML constraints.

Onepossiblesolutionto this is shown in figure8.1. In thisfigurewesee asimple
policy granting users with the role R1 accessto node 1.4 in entity E1. We can also
see a constraint symbol with an new constraint function symbol as a child. This
constraint functionisa “lessthan” function. We canalsoseethat thisfunctionsymbol
further has a child symbol which is thenode1.5. What this means is that this policy
is only valid if the value of node 1.5 is lessthan a certain value as specified by an
attribute to the “lessthan” function.

Further work isneeded to seehow these technique can beused to fully cover the
possibiliti es in XACML and still be easy to use.

116 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

Oneother featureof XACML that can be added to PTACOMA isdependency be-
tween policies. XACML defines a language for specifying decentralized distributed
rules that can be part of multiple policies. The language specifies how these rules
can be combined to give one single result. In large distributed systems this is an
important feature that should be added to PTACOMA.

Appendix A

Lis of Acronyms

ACL AccessControl List

API ApplicationProgrammingInterface

BER Basic EncodingRules

CMIP CommonManagement InformationProtocol

DAC Discretionary AccessControl

DOM Document Object Model

E-R Entity-Relationship

HTTP HyperText Transfer Protocol

INCITS InterNational Commetteefor InformationTechnologyStandards

LDAP Lightweight Directory AccessProtocol

MAC Mandatory AccessControl

MAPI MonitoringApplicationProgramming Interface

MIB Management InformationBase

MVML MIB View ModelingLanguage

OASIS Organization for theAdvancement of Structured InformationStandards

PHP PHP Hypertext Preprocessor

PMVML Policy-based MIB View ModelingLanguage

PTACOMA Policy-based Tree-based Accesscontrol ModelingLanguage

RADIUS RemoteAuthenticationDial-In User Service

117

118 APPENDIX A. LIS OF ACRONYMS

RBAC Role-Based AccessControl

SAC SNMPACL Configurator

SAX SimpleAPI for XML

SDL Specification and DescriptionLanguage

SMI Structureof Management Information

SMP SimpleManagement Protocol

SNMP SimpleNetwork Management Protocol

TACACS Terminal AccessController AccessControl System

TACOMA Tree-based Accesscontrol ModelingLanguage

TCSEC Trusted Computer System EvaluationCriteria

UML Unified ModelingLanguage

WSDM Web Services Distributed Management

XACML ExtensibleAccessControl MarkupLanguage

XMI XML metadata interchange

XML ExtensibleMarkupLanguage

XSL ExtensibleStylesheet Language

XSLT XSL Transformations

Appendix B

Simple Network Management
Protocol

TheSimpleNetwork Management Protocol(SNMP) isthemost commonly used pro-
tocol for network management in TCP/IP networks. It was developed to be asimple
protocol that should be easy to implement even onentitieswith limited resources.

B.1 History

The first version of SNMP was released as a proposed standard in April 1989and
a full standard in May 1990. The release of SNMP was only meant as a temporary
solutionas it was expected that CMIP1 over TCP/IP would eventually takeover.

It was quickly realized that the first version of SNMP had several shortcomings,
especially with security and management of large networks. In early 1992two pro-
posals for a new SNMP version was given, Secure SNMP and Simple Management
Protocol (SMP).

In May 1993the best from both these proposals were taken and combined into
SNMPv2. Compared to thefirst version, SNMPv2 had several improvements:

• security

• manager-to-manager communication

• support for more transport-services

• more effective collection of large amount of data

Unfortunately if turned out that the security mechanisms were too complex and in
1995thesecurity functionswereremovedandSNMPv2c wasreleased which kept the
sameweak security as in thefirst version. This led to much confusionand SNMPv2
was never widely deployed.

1CommonManagement InformationProtocol, ISO standard for network management

119

120 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

Management
Information

Managed entities
(agents)

Management
Protocol

Manager entities
(managers)

FigureB.1: SNMPframework

In March 1998SNMPv3 was first introduced. SNMPv3 has all the other im-
provements of SNMPv2 and also adds strong security and accesscontrol. In 2002
SNMPv3 became afull IETF standard.

B.2 Framework

Figure B.1 shows the basic framework of SNMP. A management system in SNMP
consists of several nodes which traditionally has been called agents, at least one
management station and a protocol used to exchange information. SNMPv3 uses a
new terminologyandcalls both agentsand managements stations for entities.

Inside managed entities there is a virtual collection of management information
called a Management Information Base (MIB). The description of the structure of a
MIB is written usinganotationcalled Structureof Management Information (SMI).

Informationistransported betweenmanagedandmanager entitiesusingtheSNMP
management protocol.

B.2.1 Management Information Base

The term MIB can have different meaning depending onthe context. It can be the
collection of all management information in an entity, but it can also mean the doc-
ument that describes a specific part of the management information. For example,
people can talk about the entity MIB or theprinter MIB and so on.

B.2.2 Structure of Management Information

The Structure of Management Information (SMI) is a language used for defining
managed objects that can be manipulated using the SNMP protocol. It is based on
a subset of ASN.1 and was design with two main goals in mind: simplicity and
extensibilit y.

Every managed object accessible throughSNMP has a name, a syntax and an
encoding. SMI is used to define the names and syntax of these managed objects.
Encoding of managed objects isdoneusingstandard BER[60] encoding.

B.3. SNMPV3 REFERENCE MODEL 121

Message
Processing
Subsystem

Security
Subsystem

Access
Control

Subsystem
Dispatcher

SNMP engine

Command Generator

Command Responder

Notification Receiver

Notification Originator

Proxy Forwarder

Other

Application(s)

SNMP entity

v1

v2c

v3

Message
Processing

other

Com-
munity

Security
Subsystem

other

USM
VACM

Security
Subsystem

other

FigureB.2: SNMPv3 referencemodel

Names

To be ableto identify managed objects, all objectshaveto have auniquenamewithin
aMIB. SMI uses theOBJECT IDENTIFIER2, asequenceof integerswhich traverse
a global tree. A leaf in this treerepresents a single managed object and a node with
children representsa collection of managed objects.

B.3 SNMPv3 referencemodel

Oneof thegoalsof SNMPv3 was to make it possible to change and improvepartsof
the standard without having to redesign all the components. This was accomplished
by using a modular design. Figure B.2 shows the building blocks of an SNMPv3
entity which is also the referencemodel used by the SNMPv3 standard. An SNMP
entity alwaysconsistsof an SNMPengine and oneor more applications. TheSNMP
engine takes care of all the low level message handling routines needed for sending
and receiving messages, including security functions. The applications are internal
applications within the SNMP entity. They are responsible for generating SNMP
messagesand respondto received messages.

2Often called an OID

122 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

B.4 User-based Secur ity Model

The User-based Security Model (USM) is a security model for SNMP that offers
strongsecurity and authentication. The USM specifications also defines a MIB that
offers a standardized method for adding and removing users that are authorized to
accessan SNMP entity.

USM isorganized into threedistinct modulesthat each isresponsiblefor different
security services:

Timeliness Provides limited protection against message delay and replay. Since
SNMP traffic usually goes over unreliable and connectionlesstransport
serviceslikeUDP, messagestream modificationsisanatural occurrence.
This module gives protection against modifications that are defined as
greater than thenormal occurrences.

Authentication Provides services for data integrity and data origin authentication.
Dataintegrity preventsthird partiesfrom changingany informationinan
SNMP packet and dataorigin authentication preventsa third party from
assuming the identity of a trusted user who is authorized to connect to
an SNMPentity.

Privacy preventsthird partiesfrom eavesdropping onmessages sent between two
SNMPentities.

The USM MIB provides a standardized way of managing the users that are allowed
to access an SNMP entity. The initial user has to be created throughsome other
method than SNMP. Usually this is done using a console. After the initial user has
been created new users can be added and passwords changed throughSNMP SET
requests. FigureB.3 showsthestructureof theUSM MIB.

The usmStats table in the USM MIB contains counters that represents different
errors that has occurred since the last time the SNMP engine was restarted. The
usmUser table is the table that controls who has accessto the SNMP engine and the
usmUserSpinLock entry is used as a semaphore to prevent more than one manager
changing thesecret keysat thesametime.

B.4.1 usmUserTable

This table contains information about all users who are authorized to access the
SNMPentity.

usmUserEngineID In simple entities this is the ID of that SNMP entity’s SNMP
engine.

usmUserName Nameof user in human readable form.

B
.4.

U
SE

R
-B

A
SE

D
SE

C
U

R
IT

Y
M

O
D

E
L

1
2

3

snmpUsmMIB
(snmpModules 15)

usmMIBObjects
(snmpUsmMIB 1)

usmMIBConformance
(snmpUsmMIB 2)

usmStatsUnsupportedSecLevels
(usmStats 1)
usmStatsNotInTimeWindows
(usmStats 2)
usmStatsUnknownUserName
(usmStats 3)
usmStatsUnknownEngineIDs
(usmStats 4)
usmStatsWrongDigests
(usmStats 5)
usmStatsDecryptionErrors
(usmStats 1)

usmStats
(usmMIBObjects 1)

usmUserSpinLock
(usmUser 1)
usmUserTable
(usmUser 2)

usmUserEntry
(usmUserTable 1)

usmUserEngineID
(usmUserEntry 1)
usmUserName
(usmUserEntry 2)
usmUserSecurityName
(usmUserEntry 3)
usmUserCloneFrom
(usmUserEntry 4)
usmUserAuthProtocol
(usmUserEntry 5)
usmUserAuthKeyChange
(usmUserEntry 6)
usmUserOwnAuthKeyChange
(usmUserEntry 7)
usmUserPrivProtocol
(usmUserEntry 8)
usmUserPrivKeyChange
(usmUserEntry 9)
usmUserOwnPrivKeyChange
(usmUserEntry 10)
usmUserPublic
(usmUserEntry 11)
usmUserStorageType
(usmUserEntry 12)
usmUserStatus
(usmUserEntry 13)

usmUser
(usmMIBObjects 2)

usmMIBCompliance
(usmMIBConformance 1)

usmMIBGroups
(usmMIBConformance 2)

usmMIBBasicGroup
(usmMIBGroups 1)

Fig
ure

B
.3:

U
SM

M
IB

structure

124 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

usmUserSecurityName Name of user in Security Model independent format. Usu-
ally thesame as usmUserName.

usmUserCloneFrom All new usersmust be cloned from an existing user andthis isa
pointer to another row in the usmUserTablewhich contains the original
user.

usmUserAuthProtocol Indicates which authentication protocol that may beused.

usmUserAuthKeyChange Used for changing thesecret authentication key of auser.

usmUserOwnAuthKeyChange Samefunctionasabovebut can only beused tochange
the authentication key of theuser whowas authenticated.

usmUserPrivProtocol Indicates which privacy protocol that may beused.

usmUserPrivKeyChange Used for changing thesecret privacy key of auser.

usmUserOwnPrivKeyChange Samefunctionasabovebut can only beused tochange
theprivacy key of theuser whowas authenticated.

usmUserPublic Used for verifying that a key changewas successful.

usmUserStorageType Storage typeof the row.

usmUserStatus Statusof the row.

B.4.2 Adding users

When the initial user has been created, additional user can be added by cloning an
existing user. Theprocedure for adding anew user isas follows:

• Create anew row in usmUserTable by cloning it from the value specified in
usmUserCloneFrom and setting usmUserStatus to createAndWait. Check for
errors.

• Check usmUserSpinLock. If set, wait till it becomes available.

• Set usmUserSpinLock.

• Configure authenticationand privacy.

• Clear usmUserSpinLock.

• Set usmUserStatus to active.

B.5. VIEW-BASED ACCESSCONTROL MODEL 125

B.4.3 Deleting users

To delete auser thevaluedestroy isinserted into theusmUserStatusfield belongingto
the conceptual row in usmUserTableof theuser that isbeing deleted. Thisprocedure
follows the recommendationsof RFC 2579[61].

B.4.4 Changing keys

Changing keys are done by using SNMP SET commands to write to the usmAu-
thKeyChange, usmOwnAuthKeyChange, usmPrivKeyChange or usmOwnPrivKey-
Change. Thereasonwhy there aretwo different attributesthat can beused for chang-
ingauthenticationand privacy keyshas to dowith how theView-based AccessCon-
trol Model works. Administratorswho havewrite accessto the entireusmUserTable
can use usmAuthKeyChange and usmPrivKeyChange to change the secret keys of
all users. The problem is how to allow all users to change their own passwords. If
usmAuthKeyChange and usmPrivKeyChange were used, the accesscontrol system
would have to be updated for each new user so that he could only modify his own
keys. To avoid this usmOwnAuthKeyChange and usmOwnPrivKeyChangewere in-
troduced. These two attributes can be made writable by everyone sinceit by defini-
tioncan only beused to change theusers own keys.

When changing keys the usmUserSpinLock should be used to avoid conflicts
between multiplemanagers accessing usmUserTable at thesametime.

B.5 View-based AccessControl Model

The View-based AccessControl Model (VACM) is the only access control model
defined so far for SNMPv3. It is responsible for deciding if an operation is allowed
or not based onthe identity of theuser. It assumesthat themessagehasalready been
authenticated by asecurity model li keUSM.

VACM is based on the concept of MIB views. A MIB view is a subset of the
entire MIB available in an SNMP entity and defines which MIB objects that can be
accessed bya certain user. MIB viewsare assigned to groupswhich in turn usersare
assign to. There are also different views for GET, SET and NOTIFY operations.

It is possible to configure the access control mechanisms through the VACM
MIB. Its structure is shown in figure B.4. In this MIB there are four tables that are
used to decide the accesscontrol rights:

• vacmContextTable. A read only table that defines the locally available con-
texts.

• vacmSecurityToGroupTable. Maps the combination of a securityName and
securityModel into a groupName.

• vacmAccessTable. The combination of groupName, context and security in-
formation ismapped into a MIB view.

126 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

• vacmViewTreeFamilyTable. Defines the MIB view and decides if an OID is
accessibleor not.

Figure B.5 shows the processof deciding if accessis allowed. The processis as
follows:

1. securityName and securityModel defines who wants access. This information
isused to accessthevacmSecurityToGroupTable to get thegroupthat theuser
belongs to.

2. contextNamerepresentswhere accessiswanted, securityModel andsecurityLevel
specifies how accessis being done and viewType says why accessis wanted.
This information is used to access vacmAccessTable to get the name of the
SNMPview.

3. object-type, what, and object-instance, which, taken together forms the OID
that isbeingaccessed. This isused as index to thevacmViewTreeFamilyTable
and adecision is reached whether accessisallowed or not.

B.5.1 vacmSecur ityToGroupTable

vacmSecurityModel security model used

vacmSecurityName security name that is security model independent

vacmGroupName nameof groupthisentry belongs to

vacmSecurityToGroupStorageType storage typeof the row

vacmSecurityToGroupStatus statusof the row

B.5.2 vacmAccessTable

vacmAccessContextPrefix nameof collection of management information

vacmAccessSecurityModel security model used

vacmAccessSecurityLevel security level used

vacmAccessContextMatch specifieshow vacmAccessContextPrefix should bematched,
exact or prefix.

vacmAccessReadViewName nameof read view

vacmAccessWriteViewName nameof writeview

vacmAccessNotidyViewName nameof notify view

vacmAccessStorageType storage typeof the row

vacmAccessStatus statusof the row

B
.5.

V
IE

W
-B

A
SE

D
A

C
C

E
S

S
C

O
N

T
R

O
L

M
O

D
E

L
1

2
7

snmpVacmMIB
(snmpModules 16)

vacmMIBObjects
(snmpVacmMIB 1)

vacmMIBConformance
(snmpVacmMIB 2)

vacmContextTable
(vacmMIBObjects 1)

vacmContextEntry
(vacmContextTable 1)

vacmContextName
(vacmContextEntry 1)

vacmSecurityToGroupTable
(vacmMIBObjects 2)

vacmSecurityToGroupEntry
(vacmSecurityToGroupTable 1)

vacmSecurityModel
(vacmSecurityToGroupEntry 1)
vacmSecurityName
(vacmSecurityToGroupEntry 2)
vacmGroupName
(vacmSecurityToGroupEntry 3)
vacmSecurityToGroupStorageType
(vacmSecurityToGroupEntry 4)
vacmSecurityToGroupStatus
(vacmSecurityToGroupEntry 5)

vacmAccessTable
(vacmMIBObjects 4)

vacmAccessEntry
(vacmAccessTable 1)

vacmAccessContextPrefix
(vacmAccessEntry 1)
vacmAccessSecurityModel
(vacmAccessEntry 2)
vacmAccessSecurityLevel
(vacmAccessEntry 3)
vacmAccessContextMatch
(vacmAccessEntry 4)
vacmAccessReadViewName
(vacmAccessEntry 5)
vacmAccessWriteViewName
(vacmAccessEntry 6)
vacmAccessNotifyViewName
(vacmAccessEntry 7)
vacmAccessStorageType
(vacmAccessEntry 8)
vacmAccessStatus
(vacmAccessEntry 9)

vacmMIBViews
(vacmMIBObjects 5)

vacmViewSpinLock
(vacmMIBViews 1)
vacmViewTreeFamilyTable
(vacmMIBViews 2)

vacmViewTreeFamilyEntry
(vacmViewTreeFamilyTable 1)

vacmViewTreeFamilyViewName
(vacmViewTreeFamilyEntry 1)
vacmViewTreeFamilySubtree
(vacmViewTreeFamilyEntry 2)
vacmViewTreeFamilyMask
(vacmViewTreeFamilyEntry 3)
vacmViewTreeFamilyType
(vacmViewTreeFamilyEntry 4)
vacmViewTreeFamilyStorageType
(vacmViewTreeFamilyEntry 5)
vacmViewTreeFamilyStatus
(vacmViewTreeFamilyEntry 6)

vacmMIBCompliances
(vacmMIBConfromance 1)
vacmMIBGroups
(vacmMIBConfromance 2)

vacmMIBCompliance
(vacmMIBCompliances 1)
vacmBasicGroup
(vacmMIBGroups 1)

Fig
ure

B
.4:

VA
C

M
M

IB
structure

128 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

vacmSecurity-
ToGroupTable

vacmAccessTable

vacmViewTreeFamilyTable

securityName

securityModel

securityLevel

contextName

viewType

object-type

object-instance

groupName

viewName

yes/no

1. who

2. where

3. how

4. why

5. what

6. which

securityModel

FigureB.5: VACM accesscontrol process

B.5.3 vacmViewTreeFamilyTable

vacmViewTreeFamilyViewName namefor a family of subtrees that form aview.

vacmViewTreeFamilySubtree an OID that points to aportion of theMIB tree.

vacmViewTreeFamilyMask used tocontrol whichelementsof thevacmViewTreeFam-
ilySubtreeshould beregarded asrelevant when determiningwhich view
an OID is in. Each bit in themask correspondsto an element in theOID.
A 1 indicatesexact match and a0 indicatesawild card.

vacmViewTreeFamilyType typeof view. Can be includeor exclude.

vacmViewTreeFamilyStorageType storage typeof the row

vacmViewTreeFamilyStatus statusof the row

B.5.4 Creating MIB views

MIB views are created by populating the vacmViewTreeFamilyTable. This table
containsa list of object identifiers that are either included or excluded from theview.
Object identifiersin thistablespecifies subtreesin theMIB. Thismeansthat all object
identifiers that belongto this subtree are included or excluded.

vacmViewTreeFamilyMask isused to introducewildcards in thespecified object
identifier. This is mostly used to includeonespecific row in a table.

Imagine aMIB, mibA, that has a table, tableA, with three columns, tableAcol1,
tableAcol2 and tableAcol3. The column tableAcol1 is used as index. Table B.1
shows theObject identifiersused in mibA.

Now assume that a user, User1, is given accessto the row where tableAcol1 =
2. This means that User1 should be given access to the following Object Identi-
fiers: 1.2.3.4.5.1.y.2y∈ {2,3}. Table B.2 shows how this entry would look in the
vacmViewTreeFamilyTable if thenameof theview was view1.

B.5. VIEW-BASED ACCESSCONTROL MODEL 129

Name Object identifier
mibA 1.2.3.4
tableA 1.2.3.4.5

tableAentry 1.2.3.4.5.1
tableAcol1 1.2.3.4.5.1.1
tableAcol2 1.2.3.4.5.1.2
tableAcol3 1.2.3.4.5.1.3

TableB.1: Object identifiers for mibA

Object Value
vacmViewTreeFamilyViewName view1

vacmViewTreeFamilySubtree 1.2.3.4.5.1.0.2
vacmViewTreeFamilyMask 11111101
vacmViewTreeFamilyType 1

TableB.2: vacmViewTreeFamilyTable entries

130 APPENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

Appendix C

Prototype implementation of
TACOMA and PTACOMA for
configur ing SNMPv3 accesscontrol

This chapter describes a prototype implementation of both TACOMA and PTA-
COMA that was used for configuring SNMPv3 entities. It starts by describingsome
key technologies used by the implementation, gives an overview of the design and
detailsabout how it was implemented.

C.1 Introduction

The main purpose of implementing a prototype of the TACOMA and PTACOMA
languageswasto verify that thespecificationsof thelanguagesare correct and do not
have any weaknesses. The implementation should therefore be considered as proof
of concept and not a fully developed application that can be used for configuring
accesscontrol in devices.

The prototype for TACOMA has support for most of thespecification of the lan-
guage but it do attempt to doany optimizationat all of the number of accesscontrol
rules that must be configured. The PTACOMA prototype only implements a subset
of the language. Even if not everything is implemented, there is enoughsupport for
features of the language to achieve ahigh confidencein that the language specifica-
tion iscorrect.

It wasdesirableto implement aprototype asquickly aspossible andsinceperfor-
mancewas not an issue, PHP was chosen as the implementation language as it has
goodsupport for XML.

131

132 APPENDIX C. PROTOTYPE IMPLEMENTATION

C.1.1 DOM and SAX

The Document Object Model (DOM) and Simple API for XML (SAX) are two dif-
ferent APIs both designed to provide programmers easy access to the information
stored in XML documents. While they both have the same goal, they use two very
different approaches to achieving thisgoal.

DOM is the most advanced API and gives the programmer accessto the whole
XML document througha hierarchical object model. What this means is that DOM
readsan entireXML document andcreatesatreeof objects that followsthestructure
of thedocument. Theprogrammer can then interact with theseobjects to get hold of
the information.

The advantage of DOM is that it takes care of creating an object model of the
XML document. As longas it is natural to use an object model li ke this in an ap-
plication, DOM is easy to use. The problem is that for many applications, the tree
based object model of DOM is not the most useful one. When an application wants
to use itsown object model, it i susually better to useSAX.

As the name applies, SAX is a simple API for accessing information stored in
XML documents. It does not create any object model automatically so the program
must do that manually. The advantagesof SAX is that it i s faster sinceit do not have
to read all of the XML document before processing elements, and the programmer
has complete freedom to create hisown object model.

What SAX provides is an interfacethat creates a series of events based on the
XML document being parsed. Events are for example created when the beginning
and end of a new XML tag is encountered or for the text between the two tags. The
programmer has to implement a handler for these events and this handler can then
create theobject model as it sees fit.

For the TACOMA and PTACOMA parsers implemented here, DOM was used
together with an XPath library for searching theDOM tree.

C.2 TACOMA Parser

The implementation described here is an implementation of a generic TACOMA
Parser that parses a TACOMA XML document and outputs a list of accesscontrol
rules. These rules can then be used by a TACOMA SNMP ACL Configurator to
configure SNMP entities. The overall design of the TACOMA Parser is shown in
figureC.1.

The main classis tacoma which is called from the command line and takes the
TACOMA XML file asan argument. Thefirst thingthe tacoma classdoes is to parse
the TACOMA XML file using the built i n DOM parser in PHP and then uses an
XPath library to gofind all symbols defined in the allSymbols tag in the TACOMA
XML file.

For each of the symbols a new classlike User, Entity, Children, Node, Subtree,
TableRow or Groupiscreated. These classesthen representsall the availablesymbols

C.2. TACOMA PARSER 133

MainDiagram AccessRule

TableRowChildren

Relation

Subtree

Symbol

tacoma

GroupEntity Node

<<use>>

<<use>>

<<use>>

FigureC.1: TACOMA Parser design

in the TACOMA diagram. The next step is to find a list of all main diagrams in the
XML document and for each diagram a new MainDiagram class is created. This
class takes as an argument the list of all classes representing the symbols in the
document. When the classiscreated it will findall relationsbelongingto this specific
diagram.

For each MainDiagramclass, themethod getAccessRules iscalled which returns
all the accessrules for thisdiagram.

C.2.1 getAccessRules

The getAccessRules is where all the work of finding the access control rules is
done. This method is implemented by most classes and works recursively. The
main tacoma class simply calls getAccessRules on each MainDiagram class. The
MainDiagramclasswill i n turn look for all users belonging to this diagram and call
getAccessRules for each user.

ThegetAccessRulesmethod onsymbol classes takesasan argument all relations
belonging to the diagram. So when this methodis called ona User class, this class
will find all relations that goes from this symbol to other symbols to find all the
children symbols. It will t hen call getAccessRules on each of thesesymbols.

Thiswill continue in a recursivemanner until oneof thesymbolsnode, children,
subtreeor tableRow is reached. These symbols can not have any children so what
they do when getAccessRules is called is to create anew AccessRule classto repre-

134 APPENDIX C. PROTOTYPE IMPLEMENTATION

sent the accessruleof this symbol. An Entity classwill l oopthroughall AccessRules
classescreated bychildren symbolsandadditself as the entity the accessrulesapply
for.

C.3 Configur ing SNMP accesscontrol

For each main diagram in the TACOMA XML document, the accesscontrol rules
will be printed to standard output. This is then read by the SNMP ACL Config-
urator (SAC) which configures the SNMP accesscontrol in all entities. SAC first
loops throughall users and creates a series of SNMP set commands that creates the
necessary entries in theUSM MIB.

For each user theSNMPset commandsarethen generated to create thenecessary
entries in the VACM MIB tables. This is a simple prototype implemented as proof
of concept and contains no optimization. So even if two users have the same access
control rights, two different groupsare created in theVACM MIB.

C.4 Limitations

The implementation of theTACOMA Parser supportsmost features of the language.
The main feature missing is support for EOID functions. It is EOID functions that
makes it possible to create moregeneric accesscontrol rules.

The SNMP ACL Configurator also has some limitations. Wildcards are not im-
plementedwhich meansthat thetablerow symbol isnot supported. The childsymbol
is also not supported as this requires SAC to be able to read SNMP MIB definitions
to find the children of a specific OID.

C.5 PTACOMA implementation

The PTACOMA Parser implementation follows the same design principals as the
TACOMA Parser implementation and is therefor not described in detail here. The
PTACOMA implementation only implements a subset of the PTACOMA language.
The only functions it supports inside an EOID is the attr() function which allows
attributes set to roles or users to be inserted in the EOID at configuration time. In
addition to this there isno support for domain modeling or policy views.

Enoughfeatures are however implemented so that it i s possible to use the proto-
type in a scenario as described in Chapter 7. This can be demonstrated by a trivial
exampleusing thestandard ifTable from the InterfaceMIB[62].

In this example we have two domains, D1 and D2, which both has one user, U1
andU2, and onedomain, E1 andE2. Both usersare assigned roleR1 andthe entities
are of typeT1. This is shown in figureC.2 and C.3.

We then create two policies, one that defines local accessfor entities in theusers
own domain and onefor remote accessfor entities in other domains. For local access

C.5. PTACOMA IMPLEMENTATION 135

U1

R1

E1

T1

ifIndex=1

FigureC.2: Domain D1

U2

R1

E2

T1

ifIndex=2

FigureC.3: Domain D2

136 APPENDIX C. PROTOTYPE IMPLEMENTATION

ifTable.attr(ifIndex)

Remote accessLocal access

AllExceptOwn

D2D1

Own

ifTable

T1
T1

R1 R1

<<s>><<s>>

FigureC.4: ifTablepolicy

we grant full access to the ifTable while on remote entities only access to entries
with ifIndex defined by the user attribute i f Index is granted. These two policies are
shown in figureC.4.

To verify that thisworksasexpected weuse thePTACOMA prototypeto config-
ure the accesscontrol in the two entities. We start off with an empty accesscontrol
configuration in the two entities:

$ snmpwalk -v3 -uu1 -l authNoPriv -a MD5 -A 12341234 e1 ifTable

IF-MIB::ifTable = No more variables left in this MIB View

(It is past the end of the MIB tree)

$ snmpwalk -v3 -uu1 -l authNoPriv -a MD5 -A 12341234 e2 ifTable

IF-MIB::ifTable = No more variables left in this MIB View

(It is past the end of the MIB tree)

What these two commands do, is to use snmpwalk to list all entries in ifTable first
for entity E1 andthen E2 for user U1. Aswe can seefrom theoutput, user U1 isnot
allowed to see any entries in the tableso the returned list of values isempty.

We can now run thePTACOMA PHP script for configuring the accesscontrol in
the two entitiesbased onthe two policies that weshowed in figureC.4.

This script parses the PTACOMA diagrams, calculates the accesscontrol rules
for each entity and then connect to the entities and configures the access control
throughaseries of SNMPset messages to configure theVACM MIB:

$ ptacoma.php iftable.xml

C.6. CONCLUSIONS 137

Paring XML document:

New symbol: Local access

New symbol: R1

New symbol: Own

New symbol: T1

New symbol: ifTable

New symbol: Remote access

New symbol: AllExceptOwn

New symbol: ifTable.attr(ifIndex)

New symbol: D1

New symbol: D2

New symbol: U1

New symbol: R1

New symbol: E1

New symbol: T1

New symbol: U2

New symbol: E2

Configuring entity: E1

User U1

User U2

Configuring entity: E2

User U1

User U2

After thescript hasfinished we can check that user U1 now seestwo interfaces in the
ifTableon the local entity:

$ snmpwalk -v3 -uu1 -l authNoPriv -a MD5 -A 12341234 e1 ifDescr

IF-MIB::ifDescr.1 = STRING: lo

IF-MIB::ifDescr.2 = STRING: eth0

On theremote entity, only informationabout the interfacewith ifIndex 1 is shown:

$ snmpwalk -v3 -uu1 -l authNoPriv -a MD5 -A 12341234 e2 ifDescr

IF-MIB::ifDescr.1 = STRING: lo

User U2 has full accessto the local entity E2 while on E1 only information about
interfacewith ifIndex 2 is shown:

$ snmpwalk -v3 -uu2 -l authNoPriv -a MD5 -A 12341234 e1 ifDescr

IF-MIB::ifDescr.2 = STRING: eth0

$ snmpwalk -v3 -uu2 -l authNoPriv -a MD5 -A 12341234 e2 ifDescr

IF-MIB::ifDescr.1 = STRING: lo

IF-MIB::ifDescr.2 = STRING: eth0

C.6 Conclusions

The implementation of these prototypes, while not complete and with some short-
comings, still proves that the TACOMA and PTACOMA languages can be used for
configuring accesscontrol. The prototypes also clearly demonstrates the usefulness

138 APPENDIX C. PROTOTYPE IMPLEMENTATION

of having a generic TACOMA and PTACOMA parser that can both generate stan-
dard accesscontrol rules that are passed to the SNMP ACL Configurator. This de-
sign made it possible to use the SNMP ACL Configurator for both TACOMA and
PTACOMA without any changes.

While the prototype only supports SNMP, it should be easy and straightforward
to addsupport for other applications likeLDAPor XML based applications.

Appendix D

TACOMA XML Schema

<?xml version="1.0"?>

<schema targetNamespace="http://www.oslebo.com/thesis/tacoma"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tacoma="http://www.oslebo.com/thesis/tacoma">

<annotation>

<documentation xml:lang="en"> Tree-based Access Control Modeling Language

schema. 2006 Arne Oslebo </documentation>

</annotation>

<element name="tacoma">

<complexType>

<sequence>

<element ref="tacoma:allSymbols" minOccurs=’1’ maxOccurs=’

1’/>

<element ref="tacoma:mainDiagram" minOccurs=’1’

maxOccurs=’unbounded’/>

<element ref="tacoma:groupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

</sequence>

<attribute name="version" type="string" fixed="1.0" use="required"

/>

</complexType>

<unique name="securityname">

<selector xpath=".//tacoma:user/tacoma:securityName"/>

<field xpath="."/>

</unique>

<key name="symbolKey">

<selector

xpath=".//tacoma:user|.//tacoma:entity|.//tacoma:groupWith

outDiagram|.//tacoma:groupWithDiagram|.//tacoma:children|.//tacoma:node|.//tacoma:subtree|

.//tacoma:tableRow"/>

<field xpath="@id"/>

</key>

<keyref name="symbolKeyRef" refer="tacoma:symbolKey">

<selector xpath=".//tacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="includeFromKey">

<selector

xpath=".//tacoma:groupWithoutDiagram|.//tacoma:user|.//tac

oma:entity"/>

<field xpath="./@id"/>

</key>

139

140 APPENDIX D. TACOMA XML SCHEMA

<keyref name="includeFromKeyRef" refer="tacoma:includeFromKey">

<selector xpath=".//tacoma:include/tacoma:from"/>

<field xpath="."/>

</keyref>

<key name="excludeFromKey">

<selector

xpath=".//tacoma:groupWithoutDiagram|.//tacoma:user"/>

<field xpath="./@id"/>

</key>

<keyref name="excludeFromKeyRef" refer="tacoma:excludeFromKey">

<selector xpath=".//tacoma:exclude/tacoma:from"/>

<field xpath="."/>

</keyref>

<keyref name="toKeyRef" refer="tacoma:symbolKey">

<selector xpath=".//tacoma:to"/>

<field xpath="."/>

</keyref>

<key name="groupDiagramKey">

<selector xpath=".//tacoma:groupDiagram"/>

<field xpath="./@id"/>

</key>

<keyref name="groupDiagramKeyRef" refer="tacoma:groupDiagramKey">

<selector xpath=".//tacoma:group"/>

<field xpath="./tacoma:diagram"/>

</keyref>

</element>

<element name="groupDiagram">

<complexType>

<sequence>

<element ref="tacoma:symbols" minOccurs="1" maxOccurs="1"/

>

<element ref="tacoma:relations" minOccurs="0" maxOccurs="1

"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="mainDiagram">

<complexType>

<sequence>

<element ref="tacoma:accessType" minOccurs="1" maxOccurs="

1"/>

<element ref="tacoma:name" minOccurs="1" maxOccurs="1"/>

<element ref="tacoma:symbols" minOccurs="1" maxOccurs="1"/

>

<element ref="tacoma:relations" minOccurs="1" maxOccurs="1

"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="relations">

<complexType>

<sequence>

<group ref="tacoma:relationGroup" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

141

<group name="relationGroup">

<choice>

<element ref="tacoma:include"/>

<element ref="tacoma:exclude"/>

</choice>

</group>

<element name="include">

<complexType>

<sequence>

<element ref="tacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="tacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="exclude">

<complexType>

<sequence>

<element ref="tacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="tacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="symbols">

<complexType>

<sequence>

<element ref="tacoma:symbol" minOccurs="1" maxOccurs="unbo

unded"/>

</sequence>

</complexType>

</element>

<element name="symbol">

<complexType>

<attribute name="ref" type="IDREF"/>

</complexType>

</element>

<element name="allSymbols">

<complexType>

<sequence>

<group ref="tacoma:symbolGroup" minOccurs=’1’

maxOccurs=’unbounded’/>

</sequence>

</complexType>

</element>

<group name="symbolGroup">

<choice>

<element ref="tacoma:children"/>

<element ref="tacoma:entity"/>

<element ref="tacoma:groupWithoutDiagram"/>

<element ref="tacoma:groupWithDiagram"/>

<element ref="tacoma:node"/>

<element ref="tacoma:subtree"/>

<element ref="tacoma:tableRow"/>

<element ref="tacoma:user"/>

</choice>

</group>

<element name="children">

<complexType>

<sequence>

142 APPENDIX D. TACOMA XML SCHEMA

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="entity">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:address"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="groupWithoutDiagram">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="groupWithDiagram">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

</sequence>

<attribute name="diagram" type="IDREF" use="required"/>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="node">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="subtree">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="tableRow">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

<element ref="tacoma:index"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

143

<element name="user">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:securityName" minOccurs="1"

maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<group name="commonAttributes">

<sequence>

<element ref="tacoma:name" minOccurs="1" maxOccurs="1"/>

<element ref="tacoma:description" minOccurs="0" maxOccurs="1"/>

<element ref="tacoma:attr" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</group>

<element name="eoid" type="string"/>

<element name="index" type="string"/>

<element name="address" type="string"/>

<element name="diagram" type="IDREF"/>

<element name="id" type="ID"/>

<element name="name" type="string"/>

<element name="description" type="string"/>

<element name="accessType" type="string"/>

<element name="delimiter" type="tacoma:char"/>

<element name="wildcard" type="tacoma:char"/>

<element name="escape" type="tacoma:char"/>

<element name="from" type="IDREF"/>

<element name="to" type="IDREF"/>

<simpleType name="char">

<restriction base="string">

<length value="1"/>

</restriction>

</simpleType>

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string" use="required

"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name="securityName">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="password" type="string" use="opti

onal"/>

<attribute name="certificate" type="string" use="o

ptional"/>

</extension>

</simpleContent>

</complexType>

</element>

</schema>

144 APPENDIX D. TACOMA XML SCHEMA

Appendix E

PTACOMA XML Schema

<?xml version="1.0"?>

<schema targetNamespace="http://www.oslebo.com/thesis/ptacoma"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:ptacoma="http://www.oslebo.com/thesis/ptacoma">

<annotation>

<documentation xml:lang="en"> Policy Tree-based Access Control Modeling

Language schema. 2006 Arne Oslebo </documentation>

</annotation>

<element name="ptacoma">

<complexType>

<sequence>

<element ref="ptacoma:allSymbols" minOccurs=’1’ maxOccurs=’1’/>

<element ref="ptacoma:mainDiagram" minOccurs=’1’ maxOccurs=’1’/>

<element ref="ptacoma:mainGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:roleDefGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:subjectsGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:policyViewDefGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:targetsGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:constraintsGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:typeDefGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:usersAndDomainsGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:entitiesAndDomainsGroupDiagram"

minOccurs=’0’ maxOccurs=’unbounded’/>

<element ref="ptacoma:domainModDefGroupDiagram" minOccurs=’0’

maxOccurs=’unbounded’/>

<element ref="ptacoma:typesEntitiesDomainsGroupDiagram"

minOccurs=’0’ maxOccurs=’unbounded’/>

</sequence>

<attribute name="version" type="string" fixed="1.0" use="required"/>

</complexType>

<unique name="securityname">

<selector xpath=".//ptacoma:user/ptacoma:securityName"/>

<field xpath="."/>

</unique>

<key name="mainDiagramSymbolKey">

145

146 APPENDIX E. PTACOMA XML SCHEMA

<selector

xpath=".//ptacoma:domain|.//ptacoma:mainGroupDiagram|.//ptacoma:groupWODia

gram"/>

<field xpath="@id"/>

</key>

<keyref name="mainDiagramSymbolKeyRef"

refer="ptacoma:mainDiagramSymbolKey">

<selector

xpath=".//ptacoma:mainDiagram/ptacoma:symbols/ptacoma:symbol|.//ptacoma:ma

inGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="mainDiagramFromSymbolKey">

<selector xpath=".//ptacoma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="mainDiagramFromSymbolKeyRef"

refer="ptacoma:mainDiagramFromSymbolKey">

<selector

xpath=".//ptacoma:mainDiagram/ptacoma:relations/ptacoma:include/ptacoma:fr

om|.//ptacoma:mainDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:mainGr

oupDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:mainGroupDiagram/ptac

oma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="roleDefSymbolKey">

<selector

xpath=".//ptacoma:role|.//ptacoma:roleDefGroupDiagram|.//ptacoma:groupWODi

agram"/>

<field xpath="@id"/>

</key>

<keyref name="roleDefSymbolKeyRef" refer="ptacoma:roleDefSymbolKey">

<selector

xpath=".//ptacoma:roleDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:roleDe

fGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="roleDefFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:user|.//ptacoma:usersAndDomain

sGroupDiagram"/>

<field xpath="@id"/>

</key>

<keyref name="roleDefFromSymbolKeyRef"

refer="ptacoma:roleDefFromSymbolKey">

<selector

xpath=".//ptacoma:roleDef/ptacoma:relations/ptacoma:include/ptacoma:from|.

//ptacoma:roleDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:roleDefDiagram

/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:roleDefDiagram/ptacoma:relation

s/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="policyDefSymbolKey">

<selector

xpath=".//ptacoma:policy|.//ptacoma:policyDefGroupDiagram|.//ptacoma:group

WODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="policyDefSymbolKeyRef" refer="ptacoma:policyDefSymbolKey">

<selector

xpath=".//ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:poli

cyDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

147

<key name="SDPolicyDefSymbolKey">

<selector

xpath=".//ptacoma:policy|.//ptacoma:SDPolicyDefGroupDiagram|.//ptacoma:gro

upWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="SDPolicyDefSymbolKeyRef"

refer="ptacoma:SDPolicyDefSymbolKey">

<selector

xpath=".//ptacoma:SDPolicyDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:SD

PolicyDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="subjectsSymbolKey">

<selector

xpath=".//ptacoma:role|.//ptacoma:subjectsGroupDiagram|.//ptacoma:groupWOD

iagram"/>

<field xpath="@id"/>

</key>

<keyref name="subjectsSymbolKeyRef" refer="ptacoma:subjectsSymbolKey">

<selector

xpath=".//ptacoma:subjects/ptacoma:symbols/ptacoma:symbol|.//ptacoma:subje

ctsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="subjectsFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:role|.//ptacoma:domainModDefDi

agram|.//ptacoma:domain"/>

<field xpath="@id"/>

</key>

<keyref name="subjectsFromSymbolKeyRef"

refer="ptacoma:subjectsFromSymbolKey">

<selector

xpath=".//ptacoma:subjects/ptacoma:relations/ptacoma:include/ptacoma:from|

.//ptacoma:subjects/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:subjectsDiag

ram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:subjectsDiagram/ptacoma:rela

tions/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="policyViewDefSymbolKey">

<selector

xpath=".//ptacoma:children|.//ptacoma:node|.//ptacoma:subtree|.//ptacoma:t

ableRow|.//ptacoma:policyViewDefGroupDiagram|.//ptacoma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="policyViewDefSymbolKeyRef"

refer="ptacoma:policyViewDefSymbolKey">

<selector

xpath=".//ptacoma:policyViewDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:

policyViewDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="policyViewDefFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:type|.//ptacoma:typesEntitiesD

omainsDiagram|.//ptacoma:domain|.//ptacoma:entity"/>

<field xpath="@id"/>

</key>

<keyref name="policyViewDefFromSymbolKeyRef"

refer="ptacoma:policyViewDefFromSymbolKey">

<selector

xpath=".//ptacoma:policyViewDef/ptacoma:relations/ptacoma:include/ptacoma:

148 APPENDIX E. PTACOMA XML SCHEMA

from|.//ptacoma:policyViewDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:po

licyViewDefDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:policyViewDef

Diagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="targetsSymbolKey">

<selector

xpath=".//ptacoma:children|.//ptacoma:type|.//ptacoma:policyView|.//ptacom

a:entity|.//ptacoma:node|.//ptacoma:subtree|.//ptacoma:tableRow|.//ptacoma:targetsGroupDia

gram|.//ptacoma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="targetsSymbolKeyRef" refer="ptacoma:targetsSymbolKey">

<selector

xpath=".//ptacoma:targets/ptacoma:symbols/ptacoma:symbol|.//ptacoma:target

sGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="targetsFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:type|.//ptacoma:domainModDiagr

am|.//ptacoma:domain|.//ptacoma:entity"/>

<field xpath="@id"/>

</key>

<keyref name="targetsFromSymbolKeyRef"

refer="ptacoma:targetsFromSymbolKey">

<selector

xpath=".//ptacoma:targets/ptacoma:relations/ptacoma:include/ptacoma:from|.

//ptacoma:targets/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:targetsDiagram

/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:targets/ptacoma:relations/ptaco

ma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="constraintsSymbolKey">

<selector

xpath=".//ptacoma:constraint|.//ptacoma:constraintsGroupDiagram|.//ptacoma

:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="constraintsSymbolKeyRef"

refer="ptacoma:constraintsSymbolKey">

<selector

xpath=".//ptacoma:constraints/ptacoma:symbols/ptacoma:symbol|.//ptacoma:co

nstraintsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="constraintsFromSymbolKey">

<selector xpath=".//ptacoma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="constraintsFromSymbolKeyRef"

refer="ptacoma:constraintsFromSymbolKey">

<selector

xpath=".//ptacoma:constraints/ptacoma:relations/ptacoma:include/ptacoma:fr

om|.//ptacoma:constraints/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:constr

aintsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:constraintsDiagram/

ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typeDefSymbolKey">

<selector

xpath=".//ptacoma:type|.//ptacoma:typeDefGroupDiagram|.//ptacoma:groupWODi

agram"/>

149

<field xpath="@id"/>

</key>

<keyref name="typeDefSymbolKeyRef" refer="ptacoma:typeDefSymbolKey">

<selector

xpath=".//ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:typeDe

fGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="typeDefFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:entity|.//ptacoma:entitiesAndD

omainsGroupDiagram"/>

<field xpath="@id"/>

</key>

<keyref name="typeDefFromSymbolKeyRef"

refer="ptacoma:typeDefFromSymbolKey">

<selector

xpath=".//ptacoma:typeDef/ptacoma:relations/ptacoma:include/ptacoma:from|.

//ptacoma:typeDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:typeDefDiagram

/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:typeDefDiagram/ptacoma:relation

s/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="usersAndDomainsSymbolKey">

<selector

xpath=".//ptacoma:user|.//ptacoma:usersAndDomainsGroupDiagram|.//ptacoma:g

roupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="usersAndDomainsSymbolKeyRef"

refer="ptacoma:usersAndDomainsSymbolKey">

<selector

xpath=".//ptacoma:usersAndDomains/ptacoma:symbols/ptacoma:symbol|.//ptacom

a:usersAndDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="usersAndDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:user|.//ptacoma:domain|.//ptac

oma:domainModDefGroupDiagram"/>

<field xpath="@id"/>

</key>

<keyref name="usersAndDomainsFromSymbolKeyRef"

refer="ptacoma:usersAndDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:usersAndDomains/ptacoma:relations/ptacoma:include/ptacom

a:from|.//ptacoma:usersAndDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacom

a:usersAndDomainsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:usersAn

dDomainsDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="entitiesAndDomainsSymbolKey">

<selector

xpath=".//ptacoma:entity|.//ptacoma:entitiesAndDomainsGroupDiagram|.//ptac

oma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="entitiesAndDomainsSymbolKeyRef"

refer="ptacoma:entitiesAndDomainsSymbolKey">

<selector

xpath=".//ptacoma:entitiesAndDomains/ptacoma:symbols/ptacoma:symbol|.//pta

coma:entitiesAndDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

150 APPENDIX E. PTACOMA XML SCHEMA

<key name="entetiesAndDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:entity|.//ptacoma:domain|.//pt

acoma:domainModDefGroupDiagram"/>

<field xpath="@id"/>

</key>

<keyref name="entetiesAndDomainsFromSymbolKeyRef"

refer="ptacoma:entetiesAndDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:entitiesAndDomains/ptacoma:relations/ptacoma:include/pta

coma:from|.//ptacoma:entitiesAndDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//

ptacoma:entitiesAndDomainsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacom

a:entitiesAndDomainsDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="domainModDefSymbolKey">

<selector

xpath=".//ptacoma:domain|.//ptacoma:domainModDefGroupDiagram|.//ptacoma:gr

oupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="domainModDefSymbolKeyRef"

refer="ptacoma:domainModDefSymbolKey">

<selector

xpath=".//ptacoma:domainModDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:d

omainModDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="domainModDefFromSymbolKey">

<selector xpath=".//ptacoma:groupWODiagram|.//ptacoma:domain"/>

<field xpath="@id"/>

</key>

<keyref name="domainModDefFromSymbolKeyRef"

refer="ptacoma:domainModDefFromSymbolKey">

<selector

xpath=".//ptacoma:domainModDef/ptacoma:relations/ptacoma:include/ptacoma:f

rom|.//ptacoma:domainModDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:doma

inModDefDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:domainModDefDiag

ram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typesEntitiesDomainsSymbolKey">

<selector

xpath=".//ptacoma:type|.//ptacoma:entity|.//ptacoma:typesEntitiesDomainsGr

oupDiagram|.//ptacoma:groupWODiagram"/>

<field xpath="@id"/>

</key>

<keyref name="typesEntitiesDomainsSymbolKeyRef"

refer="ptacoma:typesEntitiesDomainsSymbolKey">

<selector

xpath=".//ptacoma:typesEntitiesDomains/ptacoma:symbols/ptacoma:symbol|.//p

tacoma:typesEntitiesDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="typesEntitiesDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:groupWODiagram|.//ptacoma:domain|.//ptacoma:entity|.//pt

acoma:type"/>

<field xpath="@id"/>

</key>

<keyref name="typesEntitiesDomainsFromSymbolKeyRef"

refer="ptacoma:typesEntitiesDomainsFromSymbolKey">

<selector

xpath=".//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:include/p

151

tacoma:from|.//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from

|.//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma

:typesEntitiesDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

</element>

<element name="allSymbols">

<complexType>

<sequence>

<element ref="ptacoma:children" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:constraint" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:domain" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:entity" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:groupWODiagram" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:node" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:policy" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:policyView" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:role" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:subtree" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:tableRow" minOccurs="0"

maxOccurs="unbounded"/>

<element ref="ptacoma:type" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:user" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="children">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="constraint">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="domain">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:scope" minOccurs=’0’ maxOccurs=’1’/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="entity">

<complexType>

<sequence>

152 APPENDIX E. PTACOMA XML SCHEMA

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:address"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="groupWODiagram">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="node">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="policy">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:accessType"/>

<element ref="ptacoma:policyType"/>

<element ref="ptacoma:priority" minOccurs=’0’ maxOccurs=’1’/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="policyView">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="role">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:all" minOccurs=’0’ maxOccurs=’1’/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="subtree">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

153

<element name="tableRow">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:eoid"/>

<element ref="ptacoma:index"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="type">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:all" minOccurs=’0’ maxOccurs=’1’/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="user">

<complexType>

<sequence>

<group ref="ptacoma:commonAttributes"/>

<element ref="ptacoma:securityName" minOccurs="1"

maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

</element>

<element name="mainGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:mainDiagramContents" minOccurs="1"

maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

<key name="mainDiagramGroupFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="mainDiagramGroupFromKeyRef"

refer="ptacoma:mainDiagramGroupFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="mainDiagramGroupToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:SDPolicyDef/ptacoma:symbols/

ptacoma:symbol|ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|ptacoma:roleDef/ptacoma:sy

mbols/ptacoma:symbol|ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|ptacoma:policyViewDef/

ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="mainDiagramGroupToKeyRef"

refer="ptacoma:mainDiagramGroupToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

154 APPENDIX E. PTACOMA XML SCHEMA

<field xpath="."/>

</keyref>

</element>

<element name="mainDiagram">

<complexType>

<sequence>

<group ref="ptacoma:mainDiagramContents" minOccurs="1"

maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

</complexType>

<key name="mainDiagramFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="mainDiagramFromKeyRef" refer="ptacoma:mainDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="mainDiagramToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:SDPolicyDef/ptacoma:symbols/

ptacoma:symbol|ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|ptacoma:roleDef/ptacoma:sy

mbols/ptacoma:symbol|ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|ptacoma:policyViewDef/

ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="mainDiagramToKeyRef" refer="ptacoma:mainDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="mainDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:policyDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:SDPolicyDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:policyViewDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:roleDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:typeDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="policyDef">

<complexType>

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:subjects" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:targets" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:constraints" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:subject" minOccurs="1"

maxOccurs="unbounded"/>

<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

155

<key name="policyFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="policyFromKeyRef" refer="ptacoma:policyFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from|ptacoma:subject/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="policyToKey">

<selector

xpath="ptacoma:constraints/ptacoma:symbols/ptacoma:symbol|ptacoma:targets/

ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="policyToKeyRef" refer="ptacoma:policyToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

<key name="policySubjectToKey">

<selector xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="policySubjectToKeyRef" refer="ptacoma:policySubjectToKey">

<selector xpath="ptacoma:subject/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="SDPolicyDef">

<complexType>

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:subjects" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:constraints" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:subject" minOccurs="1"

maxOccurs="unbounded"/>

<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

<key name="SDpolicyFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="SDpolicyFromKeyRef" refer="ptacoma:SDpolicyFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from|ptacoma:subject/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="SDpolicyToKey">

<selector

xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol|ptacoma:constraints

/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="SDpolicyToKeyRef" refer="ptacoma:SDpolicyToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

156 APPENDIX E. PTACOMA XML SCHEMA

</keyref>

<key name="SDpolicySubjectToKey">

<selector xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="SDpolicySubjectToKeyRef"

refer="ptacoma:SDpolicySubjectToKey">

<selector xpath="ptacoma:subject/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="subjectsDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="subjects">

<complexType>

<sequence>

<group ref="ptacoma:subjectsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="subjectsFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="subjectsFromKeyRef" refer="ptacoma:subjectsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="subjectsToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="subjectsToKeyRef" refer="ptacoma:subjectsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="subjectsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:subjectsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="subjectsDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

157

<field xpath="@ref"/>

</key>

<keyref name="subjectsDiagramFromKeyRef"

refer="ptacoma:subjectsDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="subjectsDiagramToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="subjectsDiagramToKeyRef"

refer="ptacoma:subjectsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="policyViewDefDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:typesEntitiesDomains" minOccurs="0"

maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="policyViewDef">

<complexType>

<sequence>

<group ref="ptacoma:policyViewDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="policyViewDefGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:policyViewDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

</element>

<group name="targetsDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="targets">

<complexType>

<sequence>

<group ref="ptacoma:targetsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="targetsFromKey">

158 APPENDIX E. PTACOMA XML SCHEMA

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="targetsFromKeyRef" refer="ptacoma:targetsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="targetsToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="targetsToKeyRef" refer="ptacoma:targetsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="targetsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:targetsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="targetsDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="targetsDiagramFromKeyRef"

refer="ptacoma:targetsDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="targetsDiagramToKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModeDef/ptacoma:symbol

s/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="targetsDiagramToKeyRef" refer="ptacoma:targetsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="constraintsDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

159

</sequence>

</group>

<element name="constraints">

<complexType>

<sequence>

<group ref="ptacoma:constraintsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="constraintsFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="constraintsFromKeyRef" refer="ptacoma:constraintsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="constraintsToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="constraintsToKeyRef" refer="ptacoma:constraintsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="constraintsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:constraintsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="constraintsDiagramFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="constraintsDiagramFromKeyRef"

refer="ptacoma:constraintsDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="constraintsDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="constraintsDiagramToKeyRef"

refer="ptacoma:constraintsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="roleDefDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="1" maxOccurs="1"/>

160 APPENDIX E. PTACOMA XML SCHEMA

<element ref="ptacoma:usersAndDomains" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>

</sequence>

</group>

<element name="roleDef">

<complexType>

<sequence>

<group ref="ptacoma:roleDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="roleDefFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:usersAndDomains/ptacoma:symb

ols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="roleDefFromKeyRef" refer="ptacoma:roleDefFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="roleDefToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="roleDefToKeyRef" refer="ptacoma:roleDefToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="roleDefGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:roleDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="roleDefDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:usersAndDomains/ptacoma:symb

ols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="roleDefDiagramFromKeyRef"

refer="ptacoma:roleDefDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="roleDefDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="roleDefDiagramToKeyRef" refer="ptacoma:roleDefDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

161

</keyref>

</element>

<group name="typeDefDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:entitiesAndDomains" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="typeDef">

<complexType>

<sequence>

<group ref="ptacoma:typeDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="typeDefFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:entitiesAndDomains/ptacoma:s

ymbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typeDefFromKeyRef" refer="ptacoma:typeDefFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typeDefToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typeDefToKeyRef" refer="ptacoma:typeDefToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="typeDefGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:typeDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="typeDefDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:entitiesAndDomains/ptacoma:s

ymbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typeDefDiagramFromKeyRef"

refer="ptacoma:typeDefDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typeDefDiagramToKey">

162 APPENDIX E. PTACOMA XML SCHEMA

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typeDefDiagramToKeyRef" refer="ptacoma:typeDefDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="usersAndDomainsDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="usersAndDomains">

<complexType>

<sequence>

<group ref="ptacoma:usersAndDomainsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="usersAndDomainsFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="usersAndDomainsFromKeyRef"

refer="ptacoma:usersAndDomainsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="usersAndDomainsToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="usersAndDomainsToKeyRef"

refer="ptacoma:usersAndDomainsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="usersAndDomainsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:usersAndDomainsDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="usersAndDomainsDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="usersAndDomainsDiagramFromKeyRef"

refer="ptacoma:usersAndDomainsDiagramFromKey">

163

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="usersAndDomainsDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="usersAndDomainsDiagramToKeyRef"

refer="ptacoma:usersAndDomainsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="entitiesAndDomainDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="entitiesAndDomains">

<complexType>

<sequence>

<group ref="ptacoma:entitiesAndDomainDiagramContents"

minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

<key name="entitiesAndDomainsFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="entitiesAndDomainsFromKeyRef"

refer="ptacoma:entitiesAndDomainsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="entitiesAndDomainsToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="entitiesAndDomainsToKeyRef"

refer="ptacoma:entitiesAndDomainsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="entitiesAndDomainsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:entitiesAndDomainDiagramContents"

minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

164 APPENDIX E. PTACOMA XML SCHEMA

<key name="entitiesAndDomainsDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="entitiesAndDomainsDiagramFromKeyRef"

refer="ptacoma:entitiesAndDomainsDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="entitiesAndDomainsDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="entitiesAndDomainsDiagramToKeyRef"

refer="ptacoma:entitiesAndDomainsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="domainModDefDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:logicrelations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="domainModDef">

<complexType>

<sequence>

<group ref="ptacoma:domainModDefDiagramContents" minOccurs="1"

maxOccurs="1"/>

</sequence>

</complexType>

<key name="domainModDefFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="domainModDefFromKeyRef" refer="ptacoma:domainModDefFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="domainModDefToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="domainModDefToKeyRef" refer="ptacoma:domainModDefToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="domainModDefGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:domainModDefDiagramContents" minOccurs="1"

165

maxOccurs="1"/>

</sequence>

</complexType>

<key name="domainModDefDiagramFromKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="domainModDefDiagramFromKeyRef"

refer="ptacoma:domainModDefDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="domainModDefDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="domainModDefDiagramToKeyRef"

refer="ptacoma:domainModDefDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="typesEntitiesDomainsDiagramContents">

<sequence>

<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="typesEntitiesDomains">

<complexType>

<sequence>

<group ref="ptacoma:typesEntitiesDomainsDiagramContents"

minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

<key name="typesEntitiesDomainsFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typesEntitiesDomainsFromKeyRef"

refer="ptacoma:typesEntitiesDomainsFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typesEntitiesDomainsToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typesEntitiesDomainsToKeyRef"

refer="ptacoma:typesEntitiesDomainsToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

166 APPENDIX E. PTACOMA XML SCHEMA

</keyref>

</element>

<element name="typesEntitiesDomainsGroupDiagram">

<complexType>

<sequence>

<group ref="ptacoma:typesEntitiesDomainsDiagramContents"

minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

<key name="typesEntitiesDomainsDiagramFromKey">

<selector

xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols

/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typesEntitiesDomainsDiagramFromKeyRef"

refer="ptacoma:typesEntitiesDomainsDiagramFromKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt

acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="typesEntitiesDomainsDiagramToKey">

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>

<field xpath="@ref"/>

</key>

<keyref name="typesEntitiesDomainsDiagramToKeyRef"

refer="ptacoma:typesEntitiesDomainsDiagramToKey">

<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac

oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="relations">

<complexType>

<sequence>

<group ref="ptacoma:relationGroup" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<group name="relationGroup">

<choice>

<element ref="ptacoma:include"/>

<element ref="ptacoma:exclude"/>

</choice>

</group>

<element name="logicrelations">

<complexType>

<sequence>

<group ref="ptacoma:relationGroup" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<group name="logicrelationGroup">

<choice>

<element ref="ptacoma:include"/>

<element ref="ptacoma:exclude"/>

<element ref="ptacoma:logical"/>

167

</choice>

</group>

<element name="logical">

<complexType>

<sequence>

<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

<attribute name="type" type="string" use="required"/>

</complexType>

</element>

<element name="include">

<complexType>

<sequence>

<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="subject">

<complexType>

<sequence>

<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="exclude">

<complexType>

<sequence>

<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

</element>

<element name="symbols">

<complexType>

<sequence>

<element ref="ptacoma:symbol" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="symbol">

<complexType>

<attribute name="ref" type="IDREF"/>

</complexType>

</element>

<group name="commonAttributes">

<sequence>

<element ref="ptacoma:name" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:description" minOccurs="0" maxOccurs="1"/>

<element ref="ptacoma:attr" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</group>

<element name="accessType" type="string"/>

<element name="id" type="ID"/>

<element name="name" type="string"/>

<element name="description" type="string"/>

168 APPENDIX E. PTACOMA XML SCHEMA

<element name="priority" type="integer"/>

<element name="address" type="string"/>

<element name="eoid" type="string"/>

<element name="index" type="string"/>

<element name="from" type="IDREF"/>

<element name="to" type="IDREF"/>

<element name="all">

<simpleType>

<restriction base="string">

<enumeration value="yes"/>

<enumeration value="no"/>

</restriction>

</simpleType>

</element>

<element name="policyType">

<simpleType>

<restriction base="string">

<enumeration value="min"/>

<enumeration value="max"/>

<enumeration value="exact"/>

</restriction>

</simpleType>

</element>

<element name="scope">

<simpleType>

<restriction base="string">

<enumeration value="all"/>

<enumeration value="siblings"/>

<enumeration value="children"/>

</restriction>

</simpleType>

</element>

<element name="attr">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="name" type="string" use="required"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name="securityName">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="password" type="string" use="optional"/>

<attribute name="certificate" type="string" use="optional"/>

</extension>

</simpleContent>

</complexType>

</element>

</schema>

Appendix F

MAPI MIB

MAPI-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32, Counter64,

Gauge32, enterprises FROM SNMPv2-SMI

DisplayString, TimeStamp

FROM SNMPv2-TC

IANAifType FROM IANAifType-MIB;

uninett OBJECT IDENTIFIER ::= { enterprises 2428 }

uninettExperiment OBJECT IDENTIFIER ::= { uninett 2428 }

mapiMIB MODULE-IDENTITY

LAST-UPDATED "0307070000Z"

ORGANIZATION "LOBSTER Consortium"

CONTACT-INFO

"URL: http://www.ist-lobster.org

Email: info@ist-lobster.org

Editor: Arne Oslebo

UNINETT

Postal: N-7465 Trondheim

Norway

Email: Arne.Oslebo@uninett.no"

DESCRIPTION

"The MIB module to describe Monitoring API related objects."

::= { uninettExperiment 124 }

mapiMIBObjects OBJECT IDENTIFIER ::= { mapiMIB 1 }

-- mibTraps OBJECT IDENTIFIER ::= { mapiMIB 2 }

-- mibMIBConformance OBJECT IDENTIFIER ::= { mapiMIB 3 }

-- Interfaces group **

-- The interface group provides information about interfaces that are

-- available in MAPI for monitoring

mapiIfTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiIfEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about each avaiable interface"

::= { mapiMIBObjects 1 }

169

170 APPENDIX F. MAPI MIB

mapiIfEntry OBJECT-TYPE

SYNTAX MapiIfEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific interface."

INDEX { mapiIfIndex }

::= { mapiIfTable 1 }

MapiIfEntry ::= SEQUENCE

{

mapiIfIndex

mapiIfName

mapiIfDescr

mapiIfAlias

mapiIfType

mapiIfStatus

mapiIfPkts

mapiIfOctets

mapiIfDroppedPkts

mapiIfLastBufferSize

mapiIfCounterDiscontinuityTime

}

mapiIfIndex OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each device available

for monitoring through MAPI. It is recommended that the values are

assigned contiguously starting from one and remain constant from

one re-initialization of the system to the next re-initialization"

::={ mapiIfEntry 1 }

mapiIfName OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the name of the interface. The name should

uniquely identify the interface in the host system. An example of a device

name is ’/dev/eth1’"

::={ mapiIfEntry 2 }

mapiIfDescr OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing information about the interface. The

string should include the name of the manufacturer, the product

name and the version of the device hardware/software."

::={ mapiIfEntry 3 }

mapiIfAlias OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"This object is an ’alias’ name for the interface as

specified by a network manager, and provides a non-volatile

’handle’ for the device.

On the first instantiation of an interface, the value of

171

mapiIfAlias associated with that device is the zero-length

string. As and when a value is written into an instance of

mapiIfAlias through a network management set operation, then the

agent must retain the supplied value in the mapiIfAlias instance

associated with the same interface for as long as that device remains

instantiated, including across all re-initializations/reboots of the

network management system, including those which result in a change of

the device’s mapiIfIndex value."

::= { mapiIfEntry 4 }

mapiIfType OBJECT-TYPE

SYNTAX IANAifType

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The type of interface. Additional values for ifType are

assigned by the Internet Assigned Numbers Authority (IANA),

through updating the syntax of the IANAifType textual

convention."

::= { mapiIfEntry 5 }

mapiIfStatus OBJECT-TYPE

SYNTAX INTEGER32 {

active(1), -- currently being used for measurements

ready(2), -- ready to be used for measurements

unavailable(3), -- unavailable for measurements

linkLost(4), -- network link is down

unknown(5) -- status of interface can not be determined

}

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The current status of the interface."

::={ mapiIfEntry 6 }

mapiIfPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of packets captured by the interface.

Discontinuities in the value of this counter can occur at

re-initialization of the management system, and at other times as

indicated by the value of mapiIfCounterDiscontinuityTime."

::={ mapiIfEntry 7 }

mapiIfOctets OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of octets captured by the interface.

Discontinuities in the value of this counter can occur at

re-initialization of the management system, and at other times as

indicated by the value of mapiIfCounterDiscontinuityTime."

::={ mapiIfEntry 8 }

mapiIfDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of dropped packets during packet capture by the

interface.

172 APPENDIX F. MAPI MIB

Discontinuities in the value of this counter can occur at

re-initialization of the management system, and at other times as

indicated by the value of mapiIfCounterDiscontinuityTime."

::={ mapiIfEntry 9 }

mapiIfLastBufferSize OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of octets that was last read from the interface."

::={ mapiIfEntry 10 }

mapiIfCounterDiscontinuityTime OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The value of sysUpTime on the most recent occasion at which

any one or more of this interface’s counters suffered a

discontinuity."

::= { mapiIfEntry 11 }

-- mapiOrganizationTable **

mapiOrgTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiOrgEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about organizations that are allowed access to MAPI"

::= { mapiMIBObjects 2 }

mapiOrgEntry OBJECT-TYPE

SYNTAX MapiOrgEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific interface."

INDEX { mapiOrgID }

::= { mapiOrgTable 1 }

MapiOrgEntry ::= SEQUENCE

{

mapiOrgID

mapiOrgName

mapiOrgContact

mapiOrgContactPhone

mapiOrgContactEmail

}

mapiOrgID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each organization that has

access to MAPI. It is recommended that the values are

assigned contiguously starting from one and remain constant from

one re-initialization of the system to the next re-initialization"

::={ mapiOrgEntry 1 }

mapiOrgName OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

173

DESCRIPTION

"A textual string containing the name of the organization"

::={ mapiOrgEntry 2 }

mapiOrgContact OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the name of the contact person for this

organization"

::={ mapiOrgEntry 3 }

mapiOrgContactPhone OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the phone number for the contact person for this

organization"

::={ mapiOrgEntry 4 }

mapiOrgEmail OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the email address for the contact person for this

organization"

::={ mapiOrgEntry 5 }

-- mapiUserTable **

mapiUserTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiUserEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about organizations that are allowed access to MAPI"

::= { mapiMIBObjects 3 }

mapiUserEntry OBJECT-TYPE

SYNTAX MapiUserEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific interface."

INDEX { mapiOrgID mapiUserID }

::= { mapiUserTable 1 }

MapiUserEntry ::= SEQUENCE

{

mapiUserID

mapiUserName

mapiUserLoginName

mapiUserLastLogin

mapiUserTotalFlows

mapiUserActiveFlows

}

mapiUserID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each user that has

access to MAPI. It is recommended that the values are

174 APPENDIX F. MAPI MIB

assigned contiguously starting from one and remain constant from

one re-initialization of the system to the next re-initialization"

::={ mapiUserEntry 1 }

mapiUserName OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the full name of the user"

::={ mapiUserEntry 2 }

mapiUserLoginName OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..16))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the login name of the user"

::={ mapiUserEntry 3 }

mapiUserLastLogin OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"Date and time for when the last time the user connected to MAPI"

::={ mapiUserEntry 4 }

mapiUserTotalFlows OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of flows created by the user"

::={ mapiUserEntry 5 }

mapiUserActiveFlows OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The number of currently active flows owned by the user"

::={ mapiUserEntry 6 }

-- mapiFlowTable **

mapiFlowTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiFlowEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about active or resently closed MAPI flows"

::= { mapiMIBObjects 4 }

mapiFlowEntry OBJECT-TYPE

SYNTAX MapiFlowEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific flow."

INDEX { mapiOrgID mapiUserID mapiFlowID }

::= { mapiFlowTable 1 }

MapiFlowEntry ::= SEQUENCE

{

mapiFlowID

mapiFlowIfIndex

175

mapiFlowNumFunctions

mapiFlowPkts

mapiFlowOctets

mapiFlowDroppedPkts

mapiFlowStart

mapiFlowEnd

}

mapiFlowID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each MAPI flow."

::={ mapiFlowEntry 1 }

mapiFlowIfIndex OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The ifIndex number identifying the interface this flow

is running on."

::={ mapiFlowEntry 2 }

mapiFlowIfIndex OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The number of functions that are applied to this flow"

::={ mapiFlowEntry 3 }

mapiFlowPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of packets captured by the flow."

::={ mapiFlowEntry 4 }

mapiFlowOctets OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of octets captured by the flow."

::={ mapiFlowEntry 5 }

mapiFlowDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of dropped packets during packet capture by the

flow."

::={ mapiFlowEntry 6 }

mapiFlowStart OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The value of sysUpTime at the start of the flow"

::={ mapiFlowEntry 7 }

176 APPENDIX F. MAPI MIB

mapiFlowEnd OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The value of sysUpTime at the end of the flow. If the flow is

still active the value should be 0"

::={ mapiFlowEntry 8 }

-- mapiFunctionTable **

mapiFunctionTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiFunctionEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about functions applied to MAPI flows"

::= { mapiMIBObjects 5 }

mapiFunctionEntry OBJECT-TYPE

SYNTAX MapiFunctionEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific function."

INDEX { mapiOrgID mapiUserID mapiFlowID mapiFunctionID}

::= { mapiFunctionTable 1 }

MapiFunctionEntry ::= SEQUENCE

{

mapiFunctionID

mapiFunctionPkts

mapiFunctionOctets

mapiFunctionPassedPkts

mapiFunctionDroppedPkts

}

mapiFunctionID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each function."

::={ mapiFunctionEntry 1 }

mapiFunctionPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of packets captured by the function."

::={ mapiFunctionEntry 2 }

mapiFunctionOctets OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of octets captured by the function."

::={ mapiFunctionEntry 3 }

mapiFunctionPassedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

177

"The total number of packets that has passed through the function."

::={ mapiFunctionEntry 4 }

mapiFlowDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The total number of dropped packets during packet capture by the

function."

::={ mapiFlowEntry 5 }

-- mapiArgumentTable **

mapiArgumentTable OBJECT-TYPE

SYNTAX SEQUENCE OF mapiArgumentEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Information about arguments to MAPI functions"

::= { mapiMIBObjects 6 }

mapiArgumentEntry OBJECT-TYPE

SYNTAX MapiArgumentEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "An entry in this table provides information about a

specific argument."

INDEX { mapiOrgID mapiUserID mapiFlowID mapiFunctionID mapiArgumentID }

::= { mapiArgumentTable 1 }

MapiArgumentEntry ::= SEQUENCE

{

mapiArgumentID

mapiArgumentType

mapiArgumentValue

}

mapiArgumentID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each argument."

::={ mapiArgumentEntry 1 }

mapiArgumentType OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A string showing the type of argument, eg. integer, float, string etc."

::={ mapiArgumentEntry 1 }

mapiArgumentValue OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..256))

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"String representation of the value of the argument"

::={ mapiArgumentEntry 1 }

END

178 APPENDIX F. MAPI MIB

Bibliography

[1] “The history of a picture’s worth.” http://www2.cs.uregina.ca/ hept-
ing/proverbial/history.html.

[2] “Ask a librarian.” http://www.ask-a-librarian.org.uk/phrases.html.

[3] “Meriam-webster onlinedictionary.” http://www.m-w.com.

[4] P. P.-S. S. Chen, “The entity-relationshipmodel: Towardaunified view of data,”
ACM Transactionson DatabaseSystems, vol. 1, no. 1, pp. 9–36, 1976.

[5] ITU, “ Itu-t recommendationz.100: Ccitt specificationand descriptionlanguage
(sdl).” June1994.

[6] OMG, “Unified modeling language, version 1.4.” March 2001.

[7] M. Rose and K. McCloghrie, “Structure and identification of management in-
formation for TCP/IP-based internets, RFC1155,” May 1990.

[8] J. Case, M. Fedor, M. Schoffstall , andJ. Davin, “SimpleNetwork Management
Protocol (SNMP), RFC1157,” May 1990.

[9] K. McCloghrie and M. Rose, “Management Information Base for Network
Management of TCP/IP-based internets:MIB-II , RFC1213,” March 1991.

[10] J. Case, R. Mundy, D. Partain, and B. Stewart, “ Introduction and Applicabilit y
Statementsfor Internet-Standard Management Framework, RFC3410,” Decem-
ber 2002.

[11] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for Describing
Simple Network Management Protocol (SNMP) Management Frameworks,
RFC3411,” December 2002.

[12] J. Case, D. Harrington, R. Presuhn, and B. Wijnen, “Message Processing
and Dispatching for the Simple Network Management Protocol (SNMP),
RFC3412,” December 2002.

[13] D. Levi, P. Meyer, and B. Stewart, “Simple Network Management Protocol
(SNMP) Applications, RFC3413,” December 2002.

179

180 BIBLIOGRAPHY

[14] U. Blumenthal and B. Wijnen, “User-based Security Model (USM) for version
3 of the Simple Network Management Protocol (SNMPv3), RFC3414,” De-
cember 2002.

[15] B. Wijnen, R. Presuhn, and K. McCloghrie, “View-based Access Control
Model (VACM) for the Simple Network Management Protocol (SNMP),
RFC3415,” December 2002.

[16] R. Presuhnand Ed., “Version 2 of the Protocol Operations for the Simple Net-
work Management Protocol (SNMP), RFC3416,” December 2002.

[17] R. PresuhnandEd., “Transport Mappingsfor theSimpleNetwork Management
Protocol (SNMP), RFC3417,” December 2002.

[18] R. PresuhnandEd., “Management InformationBase(MIB) for theSimpleNet-
work Management Protocol (SNMP), RFC3418,” December 2002.

[19] D. Zeltserman, A Practical Guideto SNMPv3 andNetwork Management. 1999.

[20] “ Integrated security modulefor snmp.” http://www.ietf.org/html.charters/isms-
charter.html.

[21] MIB View ModelingLanguage, 2000. Globecom2000.

[22] A Scalable Modeling Language for Specifying Access Control in TreeBased
Structures, 2007. IM2007.

[23] “Trusted computer system evaluationcriteria (orangebook).”

[24] D. Ferraiolo and R. Kuhn, “Role-based accesscontrols,” in 15th NIST-NCSC
National Computer Security Conference, pp. 554–563, 1992.

[25] M. Nyanchama and S. L. Osborn, “Accessrights administration in role-based
security systems,” in IFIP Workshop onDatabaseSecurity, pp. 37–56, 1994.

[26] J. F. Barkley, K. Beznosov, and J. Uppal, “Supporting relationships in access
control using rolebased accesscontrol,” in ACM Workshop onRole-Based Ac-
cessControl, pp. 55–65, 1999.

[27] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access control
model and referenceimplementation within a corporate intranet,” ACM Trans-
actionson Information and System Security, vol. 2, no. 1, pp. 34–64, 1999.

[28] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based
accesscontrol models,” IEEEComputer, vol. 29, no. 2, pp. 38–47, 1996.

[29] D. Denning, “A latticemodel of secure information flow,” Communications of
theACM, no. 5, pp. 236–243, 1976.

BIBLIOGRAPHY 181

[30] B. Lampson, “Protection,” in Proceedings of the 5th Annual Princeton Con-
ferenceon Information Sciences and Systems, (Princeton University), pp. 437–
443, 1971.

[31] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chandramouli ,
“Proposed NIST standard for role-based accesscontrol,” Information and Sys-
tem Security, vol. 4, no. 3, pp. 224–274, 2001.

[32] ANSI, “American national standard 359-2004,” 2004.

[33] M. Nyanchama andS. Osborn, “The rolegraphmodel and conflict of interest,”
ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 3–33, 1999.

[34] OASIS, “extensible access control markup language (xacml) version 2.0,”
2005.

[35] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First experiences
using xacml for accesscontrol in distributed systems,” 2003.

[36] J. K. Truss, DiscreteMathematics for Computer Scientists. 1991.

[37] T. Howes, S. Kill e, W. Yeong, and C. Robbins, “The String Representation of
Standard AttributeSyntaxes, RFC1778,” March 1995.

[38] M. Wahl, A. Coulbeck, T. Howes, andS. Kill e, “Lightweight Directory Access
Protocol (v3): AttributeSyntax Definitions, RFC2252,” December 1997.

[39] OMG, “Xml metadatainterchange.” http://www.omg.org/technology/documents/formal/xmi.htm.

[40] C. E. Campbell , A. Eisenberg, and J. Melton, “Xml schema,” SIGMOD Rec.,
vol. 32, no. 2, pp. 96–101, 2003.

[41] M. Sloman, “Policy driven management for distributed systems,” Journal of
Network and SystemsManagement, vol. 2, p. 333, 1994.

[42] N. Damianou, A. Bandara, M. Sloman, and E. Lupu, “A survey of policy spec-
ificationapproaches,” 2002.

[43] J. D. Moffett andM. S. Sloman, “Policy hierarchiesfor distributedsystem man-
agement,” IEEEJSAC Special IssueonNetwork Management, vol. 11, 11 1993.

[44] E. Lupu, M. Sloman, andN. Yialelis, “Policy based rolesfor distributedsystems
security,” 1997.

[45] O. Scheldrup, “Gigacampus - a new generation of university and college cam-
pusnetworks,” in NORDUnet2005, 2005.

[46] “Gigacampusproject.” http://www.gigacampus.no.

182 BIBLIOGRAPHY

[47] “Lobster ist project.” http://www.ist-lobster.org.

[48] K. M. Polychronakis, E.P. Markatos and A. Oslebo, “Design of an application
programming interfacefor ip networkingmonitoring,” in NOMS2004.

[49] “Scampi ist project.” http://www.ist-scampi.org.

[50] A. P. M. F. E. M. P. Trimintzios, M. Polychronakis and A. Oslebo, “Dimapi:
An application programming interfacefor distributed network monitoring.”

[51] “Scampi project: D1.2 scampi architecture and component design,” 2003.

[52] OASIS, “An introduction to wsdm,” 2006. wsdm-1.0-intro-primer-cd-01.

[53] IETF, “Network configuration (netconf) working group.”
http://www.ietf.org/html.charters/netconf-charter.html.

[54] T. Lodderstedt, D. Basin, and J. Doser, “Secureuml: A uml-based modeling
language for model-driven security,” 2002.

[55] J. Jurjens, “Towardsdevelopment of secure systemsusing umlsec,” 2001.

[56] R. J. Hayton, J. M. Bacon, andK. Moody, “Accesscontrol inan open distributed
environment,” pp. 3–14.

[57] G.-J. Ahn and R. S. Sandhu, “The rsl99 language for role-based separation of
duty constraints,” in ACM Workshop onRole-Based AccessControl, pp. 43–54,
1999.

[58] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible sup-
port for multiple access control policies,” Database Systems, vol. 26, no. 2,
pp. 214–260, 2001.

[59] H. James, R. Pandey, and K. Levitt, “Security policy specification using a
graphical approach,” 1998.

[60] I . T. International Telecommunication Union, “Specification of basic encoding
rules (ber), canonical encoding rules (cer), and distinguished encoding rules
(der),” ITU-T RecommendationX.690, 2002.

[61] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Textual Conventions for
SMIv2, RFC2579,” April 1999.

[62] K. McCloghrie and F. Kastenholz, “The Interfaces Group MIB using SMIv2,
RFC2233,” November 1997.

