Arne @slebg

A diagrammatic notation
for modeling access
control in tree-based data
structures

Thesis for the degree doktor ingenigr
Trondheim, May 2008

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Telematics

@ NTNU

NTNU
Norwegian University of Science and Technology

Thesis for the degree doktor ingenigr

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Arne @slebg

ISBN 978-82-471-8902-3 (printed version)
ISBN 978-82-471-8916-0 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:142

Printed by NTNU-trykk

Abstract

In modern multi-user computer and network systems, accesscontrol is an important
asped of the overall seaurity of agiven system. The problem isthat as the number of
users and systemsthat are being controll ed increases, it can quickly become difficult
to keep tradk of exadly who has accessto what. Ancther problem isthat with todays
heterogeneous systems, systems of the same type but from different vendars often
have diff erent methods for configuring accesscontrol.

Many systems like SNMP entities, HTTP servers, LDAP, XML based informa-
tion etc. have one thingin common, they al store their information in a tree based
structure. Based onthis fad this thesis describe two graphicd modeling languages
that cen be used for spedfying the accascontrol setup in most systems that store
informationin atreebased structure.

The Treebased Accesscontrol Modeling Language (TACOMA) is the simplest
language that is defined. It iseasy to lean and use as it has only 7 symbals and two
relations. With thislanguage it ispossbleto define the exad accesscontrol rulesfor
users using agraphicd notation. The simplicity of the language do havever come &
a st: it is best suited for small or medium sized tasks where the number of users
and oljeds being controll ed are limited.

To solve the scdability problem a second language is also presented. The Pol-
icy Treebased Access control Modeling Language (PFTACOMA) is a palicy based
version d TACOMA that douldes the number of symbals and relations. Whileitis
harder to lean it scaes better to larger tasks. It also alows for distributed spedfica
tion of accessrules where administrators of diff erent domains can be responsible for
spedfyingtheir own accesscontrol rules. Domains can be organized in ahierarchicd
manner so that administrators on a higher level can crede pdlicies that have higher
priority and therefor limits what administrators at lower levels can do.

The thesis describes the two languages in detail and provides a comparison be-
tween them to show the strong and week poaints of eat language. Thereis aso a
detail ed case study that shows how the two languages can be used for spedfying
accesscontrol in SNMPv3.

Preface

Thisis my thesis for the degreeof doktor ingenigr at the department of Telematics,
Norwegian University of Science and Techndogy (NTNU). Thework started in 1997
and is now finally finished. The first four yeas were dore & a reseach fellow at
NTNU and was suppated by a joint grant from the Norwegian Research Courxil,
Alcasel, Ericson, Siemens and Telenor. Since 2001the work was dore in parall el
with my work at the Research and Development groupin UNINETT.

Whilethework at UNINETT has not been diredly related to the work presented
in this thesis, | have been able to combine some of the work and use results from
UNINETT in alarge case study.

My supervisor for thisreseach has been Prof. Steinar Andresen and | would like
to thank him for his patience aad suppat in finishing this work. | would also like
to thank Olav Kvittem at UNINETT for his suppat and for providing me valuable
fealbadk onealier versions of the thesis.

| would also like to thank my wife and daughters, Noriko, Lisa and Nina, for their
patiencewhil e | worked onwritingthethesis. Withou their suppat | would na have
been able to completeit.

Vi

Contents

1 Introduction 1
1.1 Badkgroundandmotivation., 1
111 Diagrams o e e e 1
1.1.2 MIBViewModdingLanguege 2

1.1.3 A diagrammatic notationfor modeli ngtreebased accesscon
trol . . . 4
1.2 Outlineofthethesis. 4
2 AccessControl 7
21 Introdwction 7
2.2 Mandatory AccessControlo 8
221 LaticeModd 8
2.3 Discretionary AccessControl oL 9
231 AccessMatrixModdo 9
24 RoleBased AccessControl 9
241 CoreRBAC 10
242 Higachicd RBAC 11
24.3 Statics Separation of Duty relations 11
244 Dynamic Separation o Duty relations 11
2.5 Extensible AccessControl MarkupLanguege 11
3 Treestructures 13
3.1 Treestructurefundamentals. 13
311 Graphs e 13
312 Trees e 14
3.2 Accesscontrolintreestructures L 16
4 Tree-based AccessControl M odeling Language 19
41 TACOMA OVEIVIEW ot i e e e e e e e e e e 19
411 Editors 19
412 TACOMAParser v v i i i i e i e e e 22
413 TACOMAACL optimizer 22
414 TreeGeneralor e 22
415 ACL Configurator i 22

viii

6

CONTENTS

4.2 Notation 23
421 Diagrams e 23
422 Rdations 23
423 Symbds 24

43 EOIDfunctions 39
44 Hierarchy 41
45 Useradministration Lo 42
46 RBACsuppat. e e 43
47 XACML suppat e 43
4.8 Formal spedfication. o 43
481 Metamodd 43
482 XML Schema. 45
4.8.3 Shortcomingsof the formal spedficaion 45

49 TACOMAXMLformat. 46
Policy Tree-based Accesscontrol Modeling Language 51
5.1 Introdwctionto damainsand pdicies 51
511 Policybasedmanagement 51

512 Policyattributes. L 52

513 Policysarvers. 53

52 PTACOMAOVEIVIEW o o e e e e e e e e e e 53
521 Policy-based paradigm 54

53 Notation 54
531 Reations 56
532 Symbds 57

54 PTACOMA metamodel 63
541 Mandagram. 64
54.2 Roledefinition 64
54.3 Typedefinition 66
544 Policies 69
545 Separationd duty padicies L. 69
54.6 Policyviewdefinitions, 69

55 Domanhierarchy 71
56 Policyconflicts 71
5.7 Distributedmanagement Lo 73
58 PTACOMAXMLformat 74
TACOMA and PTACOMA comparison 91
6.1 Complexity e 91
6.2 Scdability 91
6.3 Maintainability 92
6.4 Didstributed spedficaion of accesscorntrol L. 92
6.5 Example. 92
6.6 Summary e e 97

CONTENTS

7 Casestudy: Using PTACOMA to Model AccessControl inalLarge Scale
Deployment of Passve Monitoring Probes

7.1

7.2

7.3
7.4
7.5

7.6

1.7

8.1
8.2
8.3

MonitoringAPl
7.1.1 DistributedMAPI
712 MAP searity mechanisms

713 SNMPaccess.
Management information
721 Interface
722 Organizadion e
723 User. . .. e
724 FHow
725 Function
726 Argument L
UsingtheMAPIMIB
Accesscontrol requirements L Lo
SNMPv3 USM andVACM configuration

751 UNINETT administrator

752 GUEStUSErS e e e e
75.3 Customer administrators

754 Ful configuration.
PTACOMA diagrams o i i it
7.6.1 UNINETT administrators

7.62 GUESLUSENS e
7.6.3 Customer administrators L

Summary andconclusions L L L.

Conclusions and further work

ConClUSIONS e
Relatedwork
Further work

Lisof Acronyms

B Simple Network Management Protocol

B.1
B.2

B.3
B.4

History

Framework
B.21 Management InformationBase.

B.2.2 Structure of Management Information

SNMPv3referencemodel
User-based Seaurity Model L.
B4l usmUseTable
B4.2 Addingusers
B43 Deeingusars.
B44 Changingkeys

113
113
114
114

117

X CONTENTS

B.5 View-based AccessControl Moddl 125
B.5.1 vaanSeaurityToGrouplable 126
B.5.2 vaanAccessTable. 126
B.5.3 vaanViewTredmamilyTable 128
B.54 CredingMIBviews, 128

C Prototypeimplementation of TACOMA and PTACOMA for configuring
SNM Pv3 accesscontrol 131
C.1l Introdwction 131
C.11 DOMandSAX 132
C2 TACOMA Parser e e e 132
C21l getAccesRules. 133
C.3 ConfiguingSNMP accesscontrol 134
C4 Limitations 134
C5 PTACOMA implementation 134
C6 Conclusions e 137
D TACOMA XML Schema 139
E PTACOMA XML Schema 145
F MAPI MIB 169

Bibliography 179

List of Figures

21 Accesscontrol 7
22 Rolehierarchy. o 11
23 XACML coreframework 12
3.1 Dirededandundrededgraphs. 13
32 Freetree. e 15
3.3 Forest 15
34 Rootedtree 15
35 Accesscontrol 17
41 TACOMA framework o 20
4.2 TACOMA diagram it i it e 21
43 Treestructure e e 21
44 TACOMA symbdsandrelations 23
45 TACOMA USEr o o e e e e e e e e e e e 24
4.6 lllegal TACOMA user symbol example 25
4.7 Legad TACOMA usersymboexample 26
48 TACOMA entity i i i e e e 28
4.9 ExcludeTACOMA entity v .. 29
410 Global TACOMA entity o e 30
4.11 TACOMA childrensymbd 33
4.12 TACOMA subtreesymbd 34
413 Tabletreestructure 35
4.14 TACOMA tablerowsymbd 36
4.15 TACOMA groupsymba 38
4.16 TACOMA groupcontents. oo oo . 39
417 TACOMA groupexpanded 40
4.18 TACOMA hiegrarchy conflicts. 42
419 TACOMA MetaModd 44
4.20 TACOMA dependency loop oo oo 45
4.21 TACOMA diagram withou entity symbaol 46
422 TACOMA XML structure.o oo oo 49
51 Policyserver 53
5.2 PTACOMA comporents 55

xii

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5

LIST OF HGURES

PTACOMA diagram it 56
PTACOMA symbas 56
PTACOMA subjedrelation. 57
PTACOMA T roleexample, 65
PTACOMA role example- domaincontents 65
PTACOMA domain arithmetic example - groupcontents 66
PTACOMA domain arithmeticexample 67
PTACOMA dlternative domain arithmeticsyntax 67
PTACOMA roledefinitions 68
PTACOMAtypeexample. 70
PTACOMA type example- domaincontents 70
PTACOMA separation of duty policy examples 71
PTACOMA pdlicyviewexample 72
PTACOMA pdlicy view example- domaincontents 72
PTACOMA XML structure oo i e 77
Maindiagrammetamodd L 78
Roledefinitionmetamodel 79
Usersand danainsmetamodel 80
Domainmodelingmetamodel 81
Typedefinitionmetamodel 82
Entitiesand danainsmetamodel L. 83
Policymetamodel 84
Policy subedmetamodel 85
Constraintmetamodel 86
Policy target metamodel L oL 87
PTACOMA separation of duty policiesmetamodel 88
Policy view definitionsmetamodel 89
PolicyView group d entitiesmetamoddl 90
Initial department A TACOMA diagram 93
Initial department B TACOMA diagram 93
Modified department A TACOMA diagram 94
TACOMA diagramof GroupA 94
Modified department B TACOMA diagram 95
Initial department A PTACOMA diagram 95
Initial department B PTACOMA diagram. 96
Modified department APTACOMA diagram 96
Blocking ussersfromdepartmentB 97
PTACOMA diagram for UNINETT administrators 109
PTACOMA diagramforguestusers 110
MAPI accessgroupcontents 110

PTACOMA diagram for locd accessfor customer administrators. . 111
PTACOMA diagram for remote accesfor customer administrators . 112

LIST OF HGURES Xiii

8.1

B.1
B.2
B.3
B.4
B.5

C1
C2
C3
C4

XACML constraintsin PTACOMA 115
SNMPframework 120
SNMPv3referencemodd 121
USMMIBstructure o e 123
VACMMIB structure o e 127
VACM accesscontrol process v v v e e 128
TACOMA Parserdesign i i iii i 133
DomainD1 135
DomainD2 135
ifTablepdicy 136

Xiv LIST OF HGURES

List of Tables

21 ACCESMAriX e e e 9
41 Tableexample. 35
6.1 TACOMA and PTACOMA we& andstrongpants 97
7.1 MAPI MIB accesscontrol for customer administrators 107
7.2 MAPI MIB accesscontrol forguestusers 107
B.1 ObjedidentifiersformibA 129
B.2 vaanViewTredramilyTableentries 129

XV

XVi LIST OF TABLES

Chapter 1

| ntroduction

This chapter describes the badkgroundand motivation behindthe thesisand provides
an overview of how therest of the thesisis organized.

1.1 Background and motivation

“A pictureisworth athousand words’. Thisisamaxim well known to most people,
althoughit is often mistakenly quated as being a Chinese proverb belongngto Con
fucius. Itsoriginisadualy two articles pulished in the trade journa “Printer’s Ink”
in 1921and 1927 byFrederick Barnard[1, 2]. Thefirst article was titled “One Look
Is Worth a Thousand Words’ and talked in general abou the benefits of advertising
with pictures on stred cas. In this article the proverb was attributed to a “famous
Japanese philosopher”. In 1927 le revised the saying to “One picture is worth ten
thousand words” and thistime he daimed it was a “Chinese proverb”. By cdling it
a Chinese proverb Frederick Bernard thougtt his words would be more believable.

Today the proverb is known all over the world and few question its validity. In
computer science and telecmmunication pictures, diagrams and graphicd notations
have been used for alongtime to help programmers and system operators to uncer-
stand the complexities of modern computer and communication systems.

1.1.1 Diagrams

The most common visuali zation method wsed in computer science and telecommu-
nicaionis diagrams. They are used as away to uncerstand the complex architedure
of modern systems. A diagram is a method for conveying a message by means of
drawinglines. The Merriam-Webster dictionary[3] defines adiagram as.

“a graphic design that explains rather than represents; espedally : a drawing
that shows arrangement andrelations (as of parts)”.

The ealiest forms of diagrams are maps. Maps are considered diagrams becaise
they relate physicd distance between locdions in the world and physicd distance

1

2 CHAPTER 1. INTRODUCTION

of these locaions on paper. At the same time they abstrad out detail s, for example
roads are represented by straight lines, coastlines are abbreviated etc.

It is this abstradion o detail s that make diagrams very useful for deding with
complex computer and communicaion systems. In computer science and telecom-
municaionthere ae many examples of highly successul graphica notations.

One well known naation is Entity-Relationship diagrams. These diagrams are
used for high level modeling of complex database systems and help designers credae
acarate and wseful conceptual models. The E-R diagram was creaed by Professor
Peter Chen[4] to serve a atod for communicaion between designers and users.
Chen reagnized that users and developers often have difficulties communicating
and that avisual diagrammatic notation could help bridge this gap. An E-R diagram
presents a visual overview of the data and relationships between data in a database
in away that isrelatively easy to understand even for normal users.

Another example of adiagrammatic languageisthe Spedficaionand Description
Language (SDL)[5]. The development of this language started in 1972and it was
designed as a language for speafying and designing telecommunicaion systems.
Today the language can be used to develop any red time concurrent system. The
purpose of SDL isto help devel opers understand and model the complex behavior of
red time concurrent systems and protocols.

For development of large and complex objed oriented software systems, the Uni-
fied Modeling Language (UML)[6] is commonly used. UML is a mlledion o sev-
eral diagram types that makesit passble for developersto model both the static and
dynamic properties of large and complex software projeds.

These ae just afew examples of the many graphicd natations that successully
have made complex matters easier to handle.

1.1.2 MIB View Modeling Language

Based onthe fad that visual representation using dagrams helps people to better
understand complex systems, the work described in thisthesis darted ou asreseach
into findingan easy methodfor spedafyingaccesscontrol configurationsinthe Simple
Network Management Protocol (SNMP).

SNMP was released as a draft standard in 1988and becane afull standard in
199(7, 8, 9]. Sinceits release, SNMP has been the most commonly used protocol
for monitoring network equipment in TCP/IP networks like the Internet and big in-
tranets. Today, nat only network devices like routers and switches suppat SNMP,
but also most other devices that are conreded to a network like printers and servers
have built i n suppat for it.

One wea&knesswith the first and second version d SNMP is that they bath share
avery week seaurity model where the only authenticationis a passvord sent in clea
text over the network. Thislad of seaurity is one of the reasons why SNMP is most
commonly used for monitoring and orly rarely used for configuring devices.

When thework onthisthesis darted, the draft version o SNMPv3[10, 11, 12, 13,
14,15, 16, 17, 18] had just been released. SNMPv3 suppats proper seaurity med-

1.1. BACKGROUND AND MOTIVATION 3

anisms like strong authenticaion and accesscontrol. Many organizations and com-
panies had complained abou the wegk seaurity in SNMP and at that time many ex-
peded that SNMPv3 would increase the usage of SNMP for configurationasit could
now be dorein aseaure way. In ore of thefirst puli shed books abou SNMPv3[19]
the author wrote in the preface

“1 have this image in my mind d SNMPV3 as a series of dark douds that are
rolling in over the horizon. Likeit or not the stormis coming andyou'd better be
prepared for it”

So far this gorm has not come, one reason being that operators do nd want yet
another system of user authentication to keep tradk of. The IETF has now started
a working goup cdled Integrated Seaurity Model for SNMP (ISMS)[20], which
works on extending SNMPv3 so that it can use external authentication systems like
TACACS! or RADIUS?.

The accss control medianism defined in SNMPv3 is the View-based Access
Control Model (VACM). One of the goals when developing this model was that it
shoud add as little overhead as posgble when processng SNMP padets and an
implementationshoud have asmall foatprint. The reasonfor these design gaals was
that SNMP is often implemented on retwork equipment with limited resources. One
cost of thelow overhead and small i mplementationfoatprint of VACM, isthat it does
not scde well for alarge number of different users and fine grained accesscontrol.

The accsscontrol medhanisms in VACM are oontrolled througha MIB cdled
the VACM MIB. The VACM MIB contains four tables that together deddes if a user
is allowed accessto a managed oljed or not and what type of accesshe is granted.
When these tables grow large, it can quickly beaome difficult to keep tradk of exadly
who have accssto what.

There ae commercia tod s avail able that implements agraphicd interfaceto the
VACM tables. Thisis however not enoughsincethe managers controlli ngthe acces
rights dill have to manipulate the tables diredly withou any abstradions. This was
the motivation behind this thesis. It started ou as a work on defining a graphicd
modeling language that could be used for configuring the accsscontrol and seaurity
parametersin SNMPv3.

This reseach first resulted in the MIB View Modeling Language (MVML)[21].
MVML isasimple graphicd notation with few symbals and relations edally de-
signed for spedfying MIB views for VACM. This language was foundto be very
easy to lean and wse for small and medium sized networks.

To handle large networks with ahigh number of users and managed oljeds, the
Poli cy-based MIB View Modeling Language (PMVML) was creged. PMVML uses
a policy based paradigm for spedfying access control. The st for being able to
scde to large networks is an increase in complexity. PMVML doulded the number
of avail able symbadlsand relations.

1Terminal AccessController AccessControl System
2Remote Authentication Dial-In User Service

4 CHAPTER 1. INTRODUCTION

1.1.3 A diagrammatic notation for modeling tree-based access
control

As the work on implementing a prototype for MVML and PMVML progressed, it
becane gparent that the methods used could easily be made more generic and be
applied to amost any application that store information in a treebased structure.
Some examples are SNMP, LDAP or even web pages on a HTTP server that stores
thefilesin atreebased file system.

Thework presented in thisthesisistherefore two general purpose graphicd mod-
elinglanguages for spedfyingaccesscontrol for appli caions and systems that stores
informationin atreebased structure. The two languages presented are:

Tree-based Accesscontrol Modeling Language (TACOMA) asimplenotationwith
few symbalsandrelations. It was developed with ease of use as the pri-
mary goal. It is however best suited for small and medium sized tasks
with alimited number of users and oljeds.

Policy Tree-based Accesscontrol Modeling Language (PTACOMA)[22] a more
advanced natation which bulds on TACOMA and doulbes the number
of symbadsandrelations. It can be used for large tasks with a high nun-
ber of users and oljeds at the cost of being more difficult to lean and
use. It isbased on pdicies and together with a proper editor it all owsfor
distributed spedfication o accesscontrol that can span multi ple admin-
istrative domains.

Configuring access control in applicaions and systems can often be dalenging.
First of al ead type of applicaion o system usually have very diff erent methodsfor
doing the configuration and eady method must be leaned properly so that accessto
proteded resources are not granted by mistake. Even systems of the same type but
from different vendars can often have different methods for configuring the acces
control.

Instead of having to learn and master all these different methods for configur-
ing accesscontrol, the graphica modeling languages described in this thesis can be
used. Depending onthe number of users and resources being controll ed, administra-
tors only have to lean ore or two graphicd modeling languages for configuring all
applicaions and devices that storesinformationin treebased structures.

1.2 Outlineof thethess

The thesis consists of 8 chapters where the main work is described in chapter 4
through 7

Chapter 2 givesa short introduction to various accesscontrol models.

Chapter 3 introduces the mathematica properties of trees and dscusses access
control in treebased structures.

1.2. OUTLINE OF THE THESIS 5

Chapter 4 presentsthe Tree-based AccessControl ModelingLanguage. The syn-
tax of the modeling language is described in detall and all symbadls defined in the
language ae described. This chapter also describes an XML format that can be used
for storing TACOMA diagrams and which also ad asaformal definition o the struc-
ture of the languege.

Chapter 5 describes the padlicy based version & TACOMA cdled PTACOMA.
It starts by giving a short introduction to damains and pdicies and then foll ows the
same outline a chapter 4 where it provides a detailed description o all available
symbals. An XML format is also described and some simple examples on hav the
language can be used are given.

Chapter 6 compares the two languages defined in the thesis and dscusses the
strengths and wegknesses of ead language. The chapter aso providesarationaefor
why bah languages are useful.

Chapter 7 is a cae study which shows how PTACOMA can be goplied for spec
ifyingaccesscontrol in SNMPv3 for ared world use case.

Chapter 8 summarizes the work presented in the thesis, provides ome anclu-
sions and dscusses further work.

Appendix B is an overview of SNMP with focus on the seaurity medanisms of
SNMPV3.

Appendix C describes a prototype implementation o TACOMA and PTACOMA
for configuring accesscontrol in SNMP entiti es.

CHAPTER 1. INTRODUCTION

Chapter 2

AccessControl

This chapter provides ashort introductionto accesscontrol and gves an overview of
various existing accesscontrol models.

2.1 Introduction

Thetask of accesscontrol in asystemisto limit what authenticated users are dl owed
to accessin the system. Figure 2.1 shows a high level abstradion o how access
control works. A user, usualy cdled subjed, whowantsto accessaresource usualy
cdled objed, in the system isfirst authenticaed by the authentication system. The
task of the authenticaion system is to verify the identity of subjedstryingto access
the system. Subjedsdo nd haveto bered users, but can also be goplicaionsrunnng
on behalf of auser.

If the subjed is properly identified, then the request is pasd onto the accss
control system. The accascontrol system chedks with an authorization detabase to
seeif the user is al owed to accessthe objed. There can be diff erent types of access
likeread, write, crede €c., and eat subjed can have limited or no accessto oljeds
based onthe type of access To control which subjed has accessto which ojeds, a
seaurity administrator can update the authorizaion database.

X

Administrator

Y
Authentication Access O O O
> system control 7 O O

Objects

Authorization
database

A

Subject

Figure 2.1: Accesscontrol

7

8 CHAPTER 2. ACCESSCONTROL

The authorizaion database is rarely implemented as a centralized database, but
insted it is often distributed where for example eat oljed has a list of attributes
dedding who can accessit. It is also important to redize that in many systems,
subjeds can themselves be objeds and be cntrolled by the accescontrol system.

Reseach into access control models has been gang onfor many yeas. The
U.S. Department of Defense (DoD) was among the first to formali ze accescontrol
models. This work was part of the Trusted Computer System Evaluation Criteria
(TCSEC)[23]. In this document two different access control models are defined:
Discretionary AccessControl(DAC) and Mandatory AccessControl (MAC).

It has later been shown that these two models do nd always fulfill the needs of
organizdions outside the DoD and a lot of reseach have gore into defining a new
accesscontrol model caled Role-Based AccessControl (RBAC)[24, 25, 26, 27, 2§].
In 2004 RBAC was dandardized by the InterNational Committee for Information
Tedhndogy Standards (INCITS).

2.2 Mandatory AccessControl

Mandatory AccessControl (MAC) wasfirst speafied by TCSEC andisheavily based
on military requirements. MAC is a model that limits accessto oljeds based on
the sensitivity of the information contained in the objed. The level of sensitivity
is represented by a label. The sensitivity levels are hierarchicd in nature and can
typicdly be top seaet, seaet, confidential or unclasdfied. Subjeds are assgned
a seaurity cleaance and accessto oljeds are granted or denied depending onthe
relation between cleaance of the subjed and the seaurity label of the objed.

2.2.1 LatticeModd

A forma model of the MAC model using lattices was developed by Denning[29].
In this model there is a set of subjeds ., objeds ¢ and seaurity levels .Z. All
subjeds and oljeds are then assgned a spedfic seaurity level. To deddeif asubjea
se . can accessan ohed o € ¢ the mode |ooks at the relationship between the
seaurity level, cleaance, of the subjed and the seaurity level, clasgficaion, of the
objed. Accessis permitted if the deaance dominates the dasgficaion, otherwise it
is denied.

The work by Denning defines a relation > which can be used to compare two
seaurity levels to dedde if accessis granted or denied. Assume that objeds can
have different sengitivity levels like top seaet (TS), seaet (S), confidential (C) or
unclassfied (U) which hasanatural orderingsothat TS> S> C > U. The wlledion
of objed sengitivity isthen # = {TS S C,U}. For any user that neels to access
objedsthere will be a @lledion d necessary objeds cdled compartments. Let this
colledion o compartments be .7. We then have . = % x . and a seaurity level
| € Zisapar (l4,l7) wherely € Z and | > € . The relation > can then be
defined as:

2.3. DISCRETIONARY ACCESSCONTROL 9

| | o [o[os | o4 |
s || read,write | read | read | read, write
S read read
s3 || exeaute | red read, exeaute

Table 2.1: Accessmatrix

(1> e (lg>1,)and(l7 21) forl,I' e 2.
With this relation a subjed s € . with cleaancels € .Z is given accessto an
objea & with clasdficdionl, € .Z if and orly if Is > |,.

2.3 Discretionary AccessControl

Discretionary Access Control (DAC) is the second access control model that was
spedfied in TCSEC. In DAC the owner of an oljed controls the accascontrol per-
misgons of it and it is up to the owner’s discretion to assgn access permisson to
objeds. DAC is a mode often foundin commercial systems, one example being
UNIX file systems.

2.3.1 AccessMatrix Modé€

Most systems that suppats DAC uses an accessmatrix model which was first intro-
duced by Lampson[30]. Thismodel uses a matrix where the rows are indexed by the
subjeds.” andthe awlumns by the objeds &'. All accesspermissonsheld by a user
se€ . over an objed o € 0 is edfied inthe matrix entry (s,0). Table 2.1 showsan
example of an accessmatrix.

In this table we can for example see that the entry (sp,04) gives user s, read
accessto oged 04. In red world systems the acces matrix will contain a lot of
empty entries and can be very large. For thisreason DAC is rarely implemented as
ared matrix. The table is usualy stored either by column or by row. Storing by
columns means that ead ojed has an AccessControl List(ACL) asociated with it
and this list contains the accssrights of ead subjed that are dlowed accessto the
objed. For example objed o, would have an ACL likethis: (s1,read), (s4, read).

Storing byrow means that ead subjed has alist of capabiliti esthat showswhich
objeds the subjed can accessand the type of accessthat is allowed. Subjed s3 has
the foll owing capabiliti es: (01, exeaite), (0z,read), (04, readexeaite).

2.4 RoleBased AccessControl

While many commercial systems have implemented DAC, many systems have dso
implemented some sort of role based accesscontrol for many yea31]. The basic

10 CHAPTER 2. ACCESSCONTROL

principal behind Role-Based AccessControl (RBAC)[32] isthat instead of givingac
cessrights diredly to subjeds, they are given to roles and then subjeds are assgned
one or more roles to allow accessng oljeds.

RBAC isan advanced concept and requirements varies alot among dff erent sys-
tems. Because of this the RBAC standard is divided into four parts where only one
of them is mandatory to suppat. The rest are optional and can be added if needed.
Thefour parts are:

Core RBAC the essntia aspeds of RBAC that all systems must suppat.
Hierarchical RBAC adds suppat for hierarchicd roles.
SPD Static Separation o Duty relations.

DSD Dynamic Separation o Duty relations.

241 Core RBAC

The Core RBAC model spedfies element sets and relations that are mandatory for
al systemsthat suppats RBAC. Thefive basic data dements are:

USERS aset of usersthat are dlowed accessto the system
ROLES aset of rolesthat can be asggned to users

OBS aset of objedsthat can be accesed byroles

OPS aset of operations that can be performed on oheds

PRMS aset of permissonsthat allows gedfic operations to be goplied to spe-
cific objeds

In addition to these five basic data dements, there is also a set cdled SESSONS.
A sessonis a mapping between a user and ore or more roles that are assgned to
the user. This means that a user can have different roles depending onthe aurrent
sesson.

One important asped of RBAC is that permissons to accessobjeds are dways
given to roles and rever diredly to a user. If one single user needs more acces a
new role shoud be aeaed and gven accessand the user shoud be assgned this new
role. A use can have multipleroles.

2.5. EXTENSIBLE ACCESSCONTROL MARKUP LANGUAGE 11

R3

7N\

R1 R2

RO

Figure 2.2: Role hierarchy

2.4.2 Hierarchical RBAC

Hierarchicd RBAC makes it possble to creae ahierarchy of roles where one role
can inherit accessrules from other roles. Figure 2.2 shows an example of this. In this
figure we can seethat role Rjinherits Ry and role R3 inherits both Ry and Ry. The
fad that arole ry inherits role ry means that all privileges of ry is aso privil eges of
ru[33].

While hierarchicd RBAC is optiondl, it is a feaure that is commonly used by
products off ering role based accesscontrol.

2.4.3 Statics Separation of Duty relations

Separation o duty is an important feaure in many systems. The ideais that for
criticd tasks it shoud na be possble for one single person to have accesto do
everything and that the task has to be separated between two or more people.

With static separation o duty (SD) there ae rules that dictates which roles a
user might be asggned. As an example arule might dictate that a user that has been
assgned rolerp can na also be assgned roler;.

2.4.4 Dynamic Separation of Duty relations

With dynamic separation d duty (DSD) the rules dictating which roles a user can
have, can be dynamic and change acording to which sesson the user uses. For
exampleif auser isassgned role ro, aDSD rule can say that the user can only take
onroler4if he deadivatesrolerg.

2.5 Extensible AccessControl Markup Language

The Extensible Access Control Markup Language (XACML)[34, 35] is an XML
based languege standardized by Organization for the Advancement of Structured
Information Standards (OASIS) for spedfying accesscontrol requirements. Itisa

12

CHAPTER 2. ACCESSCONTROL

Access

requester
(application) Attributes
1. Access Request 4. Fetch optional
attributes
2. XACML Request
Policy Enforcement Policy
Point & Decision Point

5. XACML Response

6. Access resource 3. Fetch policy

Resource Policies

Figure 2.3: XACML core framework

general purpose language designed for suppating the needs of most authorization

systems.

The standard documents describing XACML defines bath the syntax for the pal-
icy language as well as a request and resporse format for querying pdicy systems.
The core framework for XACML is shownin figure 2.3.

This figure shows the 6 usual stepsin XACML for dedding if an adionis per-
mitted or not:

1.

Accessrequest: the accssrequester, for example an application, sends an
accessrequest to the palicy enforcement point.

. XACML request: the padlicy enforcement point (PEP) sends an XACML re-
quest message to the palicy dedsion pant (PDP). The format of this message
is gedfied by XACML.

. Fetch policy: the PDP will | ook at the XACML Request, identify the targeted
resources of the request and fetch all padliciesthat governs these resources.

Fetch optional attributes. apdlicy speafiedin XACML caninclude &tributes
and condti onsthat these atributes haveto fulfill for thepadlicy to bevalid. This
can for example be used for creaing a padlicy sayingthat auser only hasaccess
aslongastheload onthe system islow.

. XACML response: response bad to the PEP can be: permit, deny, not appli-
cable or indeterminate.

. Accessresource: if PEP recaves badk a permit resporse, accessto the re-
sourceiscaried ou.

Chapter 3

Treestructures

This chapter provides an overview of the mathematicd propertiesof trees. To be ale
to understand these properties better, the chapter starts by giving a general overview
of graphs. The chapter ends by describing accesscontrol medhanisms in tree-based
structures.

3.1 Treestructure fundamentals

Storing information in a treestructure is a method much used in computer science
Trees are aspeda form of graphs 2 to understand the mathematicd properties of
trees, one must first understand the basics of graphs.

3.1.1 Graphs

There ae two main types of graphs, directed and undirected. Figure 3.1 shows an
example of these two types of graphs where graph (a) is direded and (b) is und-
reded. Thisfigureis used to define the various aspeds and terminology for graphs.
The overview of graphsin this dionis not complete and orly enough lasic prop-
erties are given to be ale to understand the description d trees given later in the

chapter.

(@)

O—~3@——=06
(b)

Figure 3.1: Direded and undreded graphs

13

14 CHAPTER 3. TREE STRUCTURES

The drclesinfigure 3.1 are cdl ed vertices and the lines between them are edges.
In a directional graph, the elges are drawn using an arrow while undirectional
graphs use asimple line. The common mathematicd notation d agraph GisG =
(V,E) whereV is afinite set of vertices and E is a binary relation onV spedfying
edges.

With this natation the graph (@) in the figure can be written as.

G= ({17 2, 3}7 {(17 2>7 (27 2>7 (37 2)}

The only difference between a direded and an undreded graph, is that in an
undreded graph the alge set E consists of unardered pairs of vertices. A single
edge of a graph is a set {u,v} where u,v € V. For undreded graphs u # v also
applies. The set {u, v} iscommonly written using the notation (u, v).

A path in agraph G = (V,E) from a vertex u to a vertex U’ is a sequence of
vertices,< Vo, V1,,Vk >, Whereu = vp, U = v and (vi_1 Vi) € E fori =1,2,..k.
The number of edges in the path is considered the length of the path. If al vertices
in apath are distinct, the path is caled smple.

In asimple graph, the path < v, v, ..., > forms a gycle if vo = vk and the path
contains at least one adge. An acyclic graphisagraphthat contains no cycles.

An undreded graphisconneded if every pair of verticesis conneded by a path.

312 Trees

There ae different types of trees. A freetree as hown in figure 3.2 isa conreded,
agyclic, undreded graph. If an undreded graph is agyclic but disconreded, it is
aforest as shown in figure 3.3. If G = (V,E) isan undreded graph, the following
propertiesfor afreetreeistrue[36]:

1. Gisafreetree
2. Anytwo verticesin G are conreded by a unique simple path.

3. Gisconreded, but if any edge is removed from E, the resulting gaphisdis-
conreded.

4. Gisconreded, and |[E| = [V| -1
5. Gisagyclic,and |[E| = |V|—1
6. Gisagyclic, but if any edgeisadded to E, the resulting graph containsa gycle.

Figure 3.4 shows arooted tree. In arooted tree one of the vertices is distin-
guished from the others and is cdled theroct of thetree A vertex in aroated treeis
often referred to asanode. Infigure 3.4 nock 1 istheroct of thetree

In arooted tree T with root r, any noce y on the dired path from r to x is an
ancestor of x. If yisan ancestor of x, then x isadescendant of y. In figure 3.4 nock
9 isadescendant of node 2 and nock 4 is an ancestor of both noce 7 and 8

3.1. TREESTRUCTURE FUNDAMENTALS 15

Figure 3.2: Freetree

-
/<

Figure 3.3: Forest

(1) depth 0

(2) (3) (4) depth 1
& & @D ® sz
(9) depth 3

Figure 3.4: Rooted tree

16 CHAPTER 3. TREE STRUCTURES

By definitionall nodesare both an ancestor and adescendant of itself. If x#yand
y isan ancestor of x, theny isa proper ancestor of x and x isaproper descendant
of y.

A subtreerooted at anode x isthetreerooted at x containing the descendants of
X. Infigure 3.4 the subtreerooted at node 2 will i nclude node 2, 5, 6 and 9.

On the path from root r of atreeT, to anode x, the last edge onthe path is (y, x).
Hereyisthe parent of xandxisa child of y. When two or more nodes have the same
parent, they are siblings. Theonly nocein T that does nat have any parent istheroct
noder. A node with no descendantsis cdled aleaf.

The degree of anode xin arooted treeT isthe number of descendants that node
x have. The length of the path from the roat r to anode x is cdled the depth of xin
T. Infigure 3.4 nock 6 have adepth of 2.

3.2 Accesscontrol in tree structures

Many applicaions that store informationin treebased structures need accesscontrol
to be ale to restrict accessto certain nodes or subtrees in the main tree structure.
This thesis will use anatation for spedfying access control where accesrules are
used to either include or exclude nodes or subtrees from the main tree

The mlledion o accessrules, R, that spedfies which nodes a user has accessto
in atree ca bewritten as R= (T,A) where T = (V,E) isthe tree ad A is a set of
tuples of the type {N,I,S}, where Nisanode N €V, | € {i,e} spedfiesif anode
is included or excluded and S€ {s,c,n} spedfiesif accesis granted to the entire
subtreerooted at N, the dhildren of N or just the node N.

With this notation it is always assumed that all descendants of a node N isin-
cluded when S {s,c}. If only proper descendants are wanted, then two rules will
have to be spedfied. One that includes all descendants and ore that removes the
parent node so that only proper descendants are |eft.

Figure 3.5 showsatreeT where user U hasaccessto noce 2, 4, 5and 6. Thiscan
be written as Ry = (T,A) where

T=({1,2,3,4,5,6,7,8,9},{(1,2),(1,3),(1,4),(2,5),(2,6),(5,9),(4,7),(4,8)})
andA={(2,i,c),(4,i,n)}.

Given a function f(R) that returns al nodes that R provides accessto, R =
(T',A) isequa to R= (T,A) if and oy if f(R) = f(R). For figure 3.5itisalso
possbletowrite R, = (T,A’) where A’ = {(2,i,s),(9,e,n), (4,i,n)}. Inthisexample
R =Rbecaise f(R) = f(R) = {2,4,5,6}

It is often advisable to optimizethe number of entriesin the set A. The set A is
an optimization o Aif f(A) = f(A') and|A'| < |Al. A isfully optimized if there do
not exist an A” where f(A”) = f(A') and |A"] < |A'].

For many uses of the modeling languages described in thisthesis, the set T will
change dynamicdly and na be fully known when spedfying accesscontrol. There-
minder of thethesiswill t herefor mostly concentrate onthe content of Awhen talking
abou accessrules for a spedfic user U. In additionto this, accesscontrol rules will

3.2. ACCESSCONTROL IN TREE STRUCTURES 17

Figure 3.5: Accesscontrol

be tied to spedfic entities. If talking abou the accssrules for a spedfic user U
on a spedfic entity E the notation Ug = A will be used. The complete wlledion
of accessrules for auser, U, isthen the set containing the rules for al the entities,

U= {UELUEZ, ,UEn}.

Extended objed identifiers

In the natation above the various nodes in the treestructures have been addressed by
its number. In red world situations, nodes in treestructures can have similar names
and will haveto be addressed by a name that traverses the treefrom the root node so
that eat nocke can be uniquely identified. To accomplish this, this thesis introduces
the concept of extended oljed identifiers (EOIDs). EOIDs are asuperset of normal
objed identifiers (OIDs). Normal OIDs are an ASN.1 data type that can be used as
reference to data objeds and are ordered lists of non-negative numbers. In Internet
RFCg[37, 38] OIDs are usually written using a dharader string where the numbers
are separated by adat. For examplethe OID “1.2.5.9” pointsto noce 9infigure 3.5.

Extended OlIDsintroduced in thisthesis are asuperset of normal OlDs asthey are
nat limited to ony simple non-negative numbers. An EOID is smply defined as a
stringthat uniquely identifies one or more nodesin atreestructure. The exad syntax
for an EOID will depend onthe goplication a system that is being referenced.

For example in an SNMP environment an EOID that paints to the system name
could be dl of thefollowing:

e 136121150
e .iso.org.dodinternet.mgmt.mib-2.system.sysName.O
e SNMPv2-MIB::sysName.O

e sysName.O

18 CHAPTER 3. TREE STRUCTURES

Thelast entry only definesaunique OID if there existsno aher nodes with the name

SysName.

An EOID can aso contain wild cardsfor pointingto multiple nodes. For example
the EOID “1.4.*” will point to bah node 7 and 8in figure 3.4.

In an XML environment an EOID could follow the XPATH syntax to represent

one or more nodaes.

Chapter 4

Tree-based AccessControl Modeling
L anguage

This chapter provides a detail ed description o the Tree-based Accesscontrol Model-
ingLanguage (TACOMA). It starts by describingthe main comporents needed to use
TACOMA for accesscontrol configuration, describesin detail the symbolsandrela
tionsused in TACOMA and gves oame examples on hav the language can be used.
The dhapter ends by giving an owverview of an XML schema that helps to formaly
define the TACOMA languege.

4.1 TACOMA overview

The Treebased AccessControl Modeling Language is a genera purpose graphica
notation that can be used for spedfying and configuring access control in systems
that store information in a tree based structure. Figure 4.1 shows the TACOMA
framework and the various comporents that are needed for using TACOMA to con
figure the accescontrol in a system. Two gaals when designing TACOMA were to
make it simple to use and easy to implement suppat for new applicdions. So in this
figure only the four boxes with gray badkground tave to be spedficdly designed for
the goplicaionthat TACOMA is being used to speadfy accesscontrol rulesfor.

All other boxes are generic code or formats that are common for all use of
TACOMA. Of the four boxes that have to be implemented spedficdly for an ap-
plicaion, the “Treegenerator” isonly nealed if the number of accesscontrol entries
is being ogimized and the “Applicaion Attribute XML” schema is only needed if
applicaion spedfic atributes are being verified usingan XML schema.

4.1.1 Editors

An editor is used to draw TACOMA diagrams. An example of a TACOMA diagram
is shown in figure 4.2. Thisis arelatively simple diagram where one user, U1, is

19

CHAPTER 4. TACOMA

UML
editor
UML
XMI
TACOMA XMI2TACOMA
editor XSLT
TACOMA
Application XML
Attr. XML schema
TACOMA TACOMA
XML schema parser s;\\\\§£§
EOID
parser
Tree Tree ACL /
generator XML optimizer
TACOMA ACL
configurator

Figure 4.1: TACOMA framework

4.1. TACOMA OVERVIEW 21

given accessto the dhildren of node 1.2 and the node 1.4 in entity E1. Thisgivesthe
following set of accesscontrol rules: Ulg; = {(1.2,c,i),(1.4,n,i)}.

If thisdiagram isapplied to the treeT shown in figure 4.3, the user U1 would be
granted accessto nodes 2,4,5 and 6 a using the notation introduced in the previous
chapter we have f(T,U1g1) = {2,4,5,6}.

Fil'

X

AN

U1
|

El

/ \
/ \
7 N
1.2 1.4

Figure 4.2: TACOMA diagram

Figure 4.3: Treestructure

The elitor used for drawing TACOMA diagrams can be spedally designed for
thistask in which caseit will suppat storing the diagrams diredly in the TACOMA
XML format. It ishowever also possbleto use astandard UML editor which stores
diagrams in the XMI[39] format. An XSLT schema can then be used to trandate
XMI filesto TACOMA XML files.

The alvantage of being able to use astandard UML editor is that there drealy
exist good editors on the market, both commercial and open source Many UML

22 CHAPTER 4. TACOMA

editors a'so have goodsuppat for team work where multi ple people can work onthe
same diagrams. Thisisan advantage for large systemswhere diff erent administrators
can beresporsible for different parts of a TACOMA diagram.

412 TACOMA Parser

The TACOMA parser takes a TACOMA XML file & inpu, verifies the XML file
against the TACOMA XML schema and generates a list of accessrules for eah
user and entity in the diagram. These accascontrol rules are then forwarded to the
TACOMA ACL optimizer.

The parser can aso use an applicaion spedfic XML schema to further validate
the TACOMA diagram. Since TACOMA has been designed as a generic language
usable for spedfying access control for a wide range of applications and systems,
most attributes in the language ae generic. An applicaion spedfic XML schema
can pu further restrictions on the values of attributes.

4.1.3 TACOMA ACL optimizer

Thelist of accessrules generated bythe TACOMA Parser will often nat be optimized
when it comes to having the minimum number of accessrules. The goal of the
TACOMA ACL optimizer is to take the list of access control rules and for eat
user and entity find the fully optimized Ug. To dothis the optimizer needs the full
description o thetreeT that the accascontrol rules are gplied to.

It is not always possble to get full spedficaion o the tree T since T often
changes dynamicdly and therefor the TACOMA ACL optimizer will not always be
able to fully optimize Ug. In many cases it will however be possble to do some
optimizaion even with adynamic treeT.

414 TreeGenerator

The Tree Generator provides the description o the treeT that the TACOMA ACL
optimizer neads. Thisgenerator must be spedficdly implemented for the goplicaion
that TACOMA is used to spedfy accesscontrol rulesfor.

For example if TACOMA is used for SNMP then this treegenerator would be a
small application that can parse SNMP SMI documents and generate the treestruc-
ture based onthem.

4.1.5 ACL Configurator

The ACL Configurator also neads to be implemented spedficdly for the gplicaion
that TACOMA is used to model access control rules for. The ACL Configurator
recavesthe list of accesscontrol rules and uses them to dothe gopropriate configu-
ration needed to implement the accescontrol acording to the TACOMA diagram.

4.2. NOTATION 23

4.2 Notation

The Treebased AccessControl Modeling Languege is arelatively simple graphicd
notation with only two relations and eight symbals.
Figure 4.4 shows all the symbals and relations defined in TACOMA.

User Entity Group TableCol
/AN O AN o4
Children Node Subtree TableRow
N N
N <<notz>
Include& Excludes

Figure 4.4: TACOMA symboalsandrelations

4.2.1 Diagrams

In TACOMA two different types of diagrams are used. Oneisthetoplevel diagrams
that colled all symbals that define the accesrights to users for a spedfic type of
accesslike read-only, read-write dc. A toplevel diagram might contain one or more
group symbals and ead group symbal also have agroup dagram attached to them
where the content of the groupis defined?.

If the accssrulesfor auser are different for diff erent accesstypes, there will be
multiple main diagrams with ore diagram for ead accesstype. If the accesrules
are the same for multi ple accsstypes, only one main diagram is needed.

4.2.2 Relations

There ae only two relations defined in TACOMA, include and exclude. Theinclude
relationisused toinclude nodesin the accssrights whil ethe excluderelationisused
for excluding them.

1Seethe description o the groupsymbal for more detail s.

24 CHAPTER 4. TACOMA

4.2.3 Symbols

The description o ead avail able symbol in TACOMA is divided into two sedions.
The first sedion provides a general introduction to the semantics of the symbal and
gives an example on hav to use it. The secnd sedion describes the dtributes of
the symbal. Some dtributes are common for al symbals and the description o
these atributes are repeaed for ead symbal so that the description o al symbadsis
complete withou having to reference adescription of another symbal.

The description d attributesis also divided into two parts. First thereisagenera
description d what the atributeisused for andthen thereisaformal definition o the
syntax of the value(s) the atribute can be asggned. Thisformal definitioniswritten
using the syntax of XML Schema[40]. Many attributes are optional and the names
of these ae written using an italic font.

User

The user symbadl represents one or more users that are dlowed accessto an entity.
If the user symbad represents multiple users then all the users will have the same
accessrights. A user can na belongto more than ore user symbad in the same main
diagram.

It is possble for a user symbal to include or exclude user rights of other users.
Figure 4.5 shows one example of this. In thisfigure user U1 will have the following
accessrights: ULl =U2+U3—-U4. Asauumethat eat user has accessto some nodes
in the tree structure shown in figure 4.3 so that f(U2) = {5,9}, f(U3) = {6} and
f(U4) = {9}. User U1 would then have accssto f(U1) = {5,6}.

Figure 4.5: TACOMA user

Only a single instance of the same user symbal can have any children. All other
user symbalsthat references the same user symbal i nstance ae not all owed any chil -
dren. Figure 4.6 shows a TACOMA diagram that is not legal becaise user symbol
U1 has two instances that both have diildren. To be alegal TACOMA diagram it

4.2. NOTATION 25

would have to be changed as shown in figure 4.7 where only one single instance has
children and the seandinstancesimply refersto it.

Q
AN
ul

I
\

El
I
\%
O
1.2.6

20—< —2(_Jt - s>os - - s>o

Figure 4.6: Illegal TACOMA user symbal example

Thisrestrictionis enforced so that there will only be one single placewhere the
accessrules of auser is pedfied.
Attributes

id Unique D of symbadl. The scopeof thelD isall diagransinaTACOMA
document.

<element name="id" type="ID"/>
name name of user. No formal meaning.
<element name="name" type="string"/>

seaurityName, passwvord, certificate these dtributes are used to speafy the acces
control spedfic username of a user and passwvord or certificae. This
username is the name auser must use to authenticaie himself to an en-
tity when he want to accessit.

26 CHAPTER 4. TACOMA

Q Q
A A
U1 u2

| |

|

@ %
E1 .
o A

/ \ U1l

v N\
1.2.6 147

Figure 4.7: Legal TACOMA user symbal example

Passvords will normally only be used to set a default passvord when
creding rnew users throughTACOMA. When using a cetificae, the ce-
tificate will , depending onthe implementation, either contain the cetifi-
cae itself or a pointer to where the ACL Configurator can get hold of
it.

<element name="securityName">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="password"
type="string" use="optional"/>
<attribute name="certificate"
type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>

all if this attribute is s, then the user symbal represents al users defined
in the TACOMA diagram.

<element name=’’all’’>
<simpleType>
<restriction base="string">
<enumeration value="yes"/>
<enumeration value='"no"/>

4.2. NOTATION 27

</restriction>
</simpleType>
</element>

attr extra goplication spedfic atribute(s). An attribute has a name and a
value and is a methodfor including appli caion spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Entity

The entity symbal spedfies which entity or entities a user has accessto. An entity
identifieswhere the accascontrol rules shoud be configured. It can be aPC, arouter
or any other type of equipment where the accascontrol nealsto be configured. The
entity symbal can also represent software. For example if a server is runnng two
HTTP servers, the entity symba must uniquely identify which server that shoud be
configured.

If there ae multiple entity symbalsinaTACOMA subtreeg the top entity symbal
will ad as afilter including a excluding ony accesscontrol rights for that speafic
entity. An example of thisis fhowninfigure4.8. Inthisdiagram user U2 isgiven ac
cessto nock 1 for both entity E1 and E2. User U 1 then includesthe accasright from
user U 2 throughan entity symbal E1. This meansthat user U 1 will only include the
accessrightsbelongngto entity E1 from user U 2. Thefoll owingaccesscontrol rules
apply to thisdiagram: U2g1 = {(1,i,n)},U2e2{(1,i,n)}) andU 11 = {(1,i,n)}.

It is also posgble to explicitly remove an entity from the accasrules as shown
in figure 4.9. In this figure we can seethat user U 1 includes the accasrights from
user U 2 and then excludes entity E2. Thismeans that user U 1 inherits all the accss
rules from user U 2 but then removes al rulesrelated to entity E2. Thiswill result in
the exad same accascontrol rules as the previousfigure 4.8.

Figure 4.10 shows ancther important asped of the entity symbad. In thisfigure
user U lincludesthe accssrightsof user U2 andaddsthenode 1.3. Thereisnoentity
symbal before the node 1.3, so this means that the node will be added to all entities
arealy included in the accssrights at deeper levels of the TACOMA diagram. We
then get Ulg; = {(1,i,n),(1.3,i,n)} andU1go = {(1,i,n),(1.3,i,n)}.

28

u2
/ \
/ \
El E2
\ /
\ /
\ ¥

Figure 4.8: TACOMA entity

CHAPTER 4. TACOMA

4.2. NOTATION

Q

AN
Ul

I
<<not>>

u2
/ \
/ \
El E2
\ /
\ /
\ ¥

Figure 4.9: Exclude TACOMA entity

29

30 CHAPTER 4. TACOMA

Figure 4.10: Global TACOMA entity

4.2. NOTATION 31

Attributes

id UniquelD of symbadl. The scopeof thelD isal diagramsinaTACOMA
document..

<element name="id" type="ID"/>
name name of entity. No formal meaning.
<element name="name" type="string"/>

adadr Name or IP address of entity. If the gplicaion reeds more than the
addressto uniquely identify the entity, additional application spedfic
attributes shoud be used.

<element name="addr" type="string"/>

attr extra goplication spedfic atribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Node

The node symbadl is used to include or exclude asingle noce in the accasrights. To
identify the exad node within the treestructure an extended ohjed identifier (EOID)
isused. The use of anode symbal has already been shown in figure 4.8.

Attributes

id Unique D of symbad. The scopeof thelD isall diagramsinaTACOMA
document.

<element name="id" type="ID"/>

name name of node symbal. No formal meaning.

32 CHAPTER 4. TACOMA

<element name="name" type="string"/>

eoid EOID of the node. The exad syntax of en EOID depends on the system
TACOMA isbeing used for configuring accesscontrol for. The EOID is
therefor defined as a string.

<element name="eoid" type="string"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value and is a methodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name"
type="string" use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Children

The children symbal i ncludes or excludes the children of anode in the accssrights.
An EOID isused to identify the parent noce.

Figure 4.11 shows a TACOMA diagram using a children symbal. This figure
simply includesthe dildren of node 1.2 in entity E1 which givesthefoll owingaccess
rule: Ulgs = {1.2)i,c} . Applyingthisaccessrule to the treestructure T shownin
figure 4.3 gives accessto the following nodes: f(T,U1g1) = {2,5,6}.

Attributes

id UniquelD of symbad. The scopeof theID isall diagramsinaTACOMA
document.

<element name="id" type="ID"/>
name name of children symbal. No forma meaning.
<element name="name" type="string"/>

eoid EOID of the parent node of the dhildren. The exad syntax of en EOID
depends on the system TACOMA is being used for configuring access
control for. The EOID istherefor defined as a string.

4.2. NOTATION 33

Q
AN
Ul

-

E1l

|

Vv
2

-

/IN\

1

Figure 4.11: TACOMA children symboal

<element name="name" type="string"/>

attr extra goplication spedfic atribute(s). An attribute has a name and a
value and is amethodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Subtree

The subtreesymbal includes or excludes a subtreein the accasrights. An EOID is
used to identify the root node of the subtree Just as with the chil dren symbadl, if only
proper descendants shoud be included the root node of the subtreeshoud explicitly
be excluded.

Figure 4.12 shows an example on haw to use the subtree symbal. This figure
provides the user U 1 accessto the subtreewith root node 1.2 in entity E1, U1g; =

34 CHAPTER 4. TACOMA

{1.2,i,s}. Applyingthisaccessrule to the treestructure T shown in figure 4.3 gives
accessto the following noces: f(T,U2g1) = {2,5,6,9}.

o}
PN
Ul

.

|
Vv

AN
LY
1.2

Figure 4.12. TACOMA subtreesymbadl

Attributes

id UniquelD of symbal. Thescopeof thelD isall diagramsinthe TACOMA
document.

<element name="id" type="ID"/>
name name of children symbad. No formal meaning.
<element name="name" type="string"/>

eoid EOID of the parent node of the dhildren. The exad syntax of en EOID
depends on the system TACOMA is being used for configuring access
control for. The EOID istherefor defined as a string.

<element name="name" type="string"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

4.2. NOTATION 35

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Table row

The table row symbal represents arow in avirtual table. Using tablesis a common
method for organizing data but the exad method for representing a table in a tree
structure can vary depending onthe system that is being configured.

In SNMP, tables are avery common. The EOID for a cdl in ageneric table is
written as T.C.1 where T isthe EOID for the table, C isthe clumn and| isthe index
of therow. To give accssto aspedficrow inatable, T and| will be constant andC
will be awildcard so that all columns of the table isincluded.

Figure 4.13 shows how table 4.1 can be represented in a treestructure in SNMP.
In this figure node T is the base noce for the table, nodes C1, C2 and C3 are the
columns of the table and nodes 11, 12 and |3 are the index values representing the
rows. All nodes with the same index belongs to the same row. Thisisill ustrated in
the figure by nodes with gray badkgroundwhich all belongto the same row.

|B|Cl1|C2]|C3|
11
12
13

Table 4.1: Table example

Figure 4.13. Table treestructure

36 CHAPTER 4. TACOMA

Figure 4.14 shows an example of how to use the table row symbal. This figure
simply includes one row in table T from entity E1. Asauming that the table row
symbal has an attribute index = 12, the diagram gives the following accessrules:

Ulg:s = {T.%.12,i,n}. Applied to table T in figure 4.13 this rule would provide
accessto f(T,Ulg;) ={T.CL.12,T.C2.12, T.C3.12}.

o}
AN
Ul

Figure 4.14: TACOMA table row symbal

Attributes

id UniquelD of symbal. Thescopeof thelD isall diagramsinthe TACOMA
document.

<element name="id" type="ID"/>
name name of table symbal. No formal meaning.
<element name="name" type="string"/>
eoid EOID of thetable. The exad syntax of en EOID depends on the system
TACOMA isbeing used for configuring accesscontrol for. The EOID is

therefor defined as a string.

<element name="eoid" type="string"/>

4.2. NOTATION 37

index index of the row in the table. Uses the same syntax as an EOID.
<element name="index" type="string"/>

attr extra goplication spedfic atribute(s). An attribute has a name and a
value and is a methodfor including appli caion spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Table column

This ymbal isamost identicd to Table row except that it represents atable column
instead of arow. For some gplicaions like SNMP, this symbadl is reduncant since
table alumns can be addressed using a simple subtreesymbal. Other applicaions
or systems might represent atable in a diff erent manner in the treestructure and this
symbal might be needed to be able to represent atable column.

Attributes

id UniquelD of symbal. Thescopeof thelD isall diagramsinthe TACOMA
document.

<element name="id" type="ID"/>
name name of table symbal. No formal meaning.
<element name="name" type="string"/>
eoid EOID of the table. The exad syntax of en EOID depends on the system
TACOMA isbeing used for configuring accesscontrol for. The EOID is
therefor defined as a string.

<element name="eoid" type="string"/>

Index index of the aolumn in the table. Uses the same syntax as an EOID.

38 CHAPTER 4. TACOMA

<element name="index" type="string"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value and is a methodfor including appli caion spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

Group

The group symbadl is used for groupng together related symbals to make diagrams
easier to read andto be aleto reuse parts of a TACOMA diagram. A groupsymbal
can haveits own diagram attached to it where the content of the groupis drawn.

Figure 4.15 shows an example on hawv the group symbad can be used. In this
figure user U1 is given accessto everything that is defined inside the group G. User
U2isgivenaccessto everythingin groupG except node 1.4. The contents of groupG
is shown in figure 4.16. With this figure we get the following accessrights: Ulg; =
{(1.2,i,¢),(1.4,i,n)},Ulgx={(1,i,n)},U2e1 = {(1.2,i,c) }andU 2> = {(1,i,n)}.

Figure 4.17 shows how the diagram in figure 4.15 would look if the contents of
group G was drawn diredly withou the use of agroupsymbal.

2 =}
FaN PaN

ul u2

\
/
| , <<th>>
' N|
k
. O
1.4
G
G

Figure 4.15. TACOMA groupsymbal

4.3. EOID FUNCTIONS 39

-)

ﬁZ
v
/N o o

Figure 4.16: TACOMA group contents

Attributes

id UniquelD of symbal. Thescopeof theID isall diagramsinthe TACOMA
document.

<element name="id" type="ID"/>
name name of group. No formal meaning.
<element name="name" type="string"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="required"/>
</extension>
</simpleContent>
</complexType>
</element>

4.3 EOID functions

To be &leto creae more generic accascontrol rulesitisposshbleto usevarioustype
of functionsinside an EOID. The table row symbd is a very goodexample on hav

40

CHAPTER 4. TACOMA

7
v
N2
3
v
Ve \"
N
N
N
N <
N Ol
N 7
A P
Dl
L
‘/
N
Y
(q\V]
—
-~
~
-~
7~

1.2

Figure 4.17. TACOMA group expanded

4.4. HIERARCHY 41

this can useful. In this symbdl it i s posgble to use some predefined functions when
spedfyingthe index attribute of the table row symbadl. The predefined functions will
then return all or part of the EOID used as index for the row. The exad functions
avail able will depend am the implementation o TACOMA and which type of appli-
caionaccesscontrol is being configured for. Threefunctions that can commonly be
used are:

userlD() many systems have auniqueinteger, user 1D, that identifies usersfor the
system. Thisfunction returnsthe user ID of users.

userSeaurityName() returns the seaurity name of a user.

attr(attrName) returns the user attributes with the name attrName.

Asan exampleon haw the aowve functions can be used, assumethat user U Linfigure
4.14 hesauser id of 1000 Thetablerow symba hasthe foll owing EOID as an index
value: 1.2.userlD().3. Thefull EOID that will be used for user U 1inthe accssrights
will t hen be 1.2.100Q3.

If the function used in the index returns multi ple values, one row for eat value
will beincluded. Thiscan for example be when a user has more than ore instance of
an attribute used by the atr(attrName) function.

The userSeaurityName() and attr() functions are examples of functions that can
be processed by the TACOMA parser whil e the userlD() function must be processed
by the gopli cation spedfic ACL Configurator.

4.4 Hierarchy

The example diagramsthat have drealy been shown clealy demonstratesthe hierar-
chicd nature of TACOMA. TACOMA itself foll ows atreebased structure to speafy
accesscontrol. In thishierarchy it is easy to encourter situations where accescon
trol rules at different layersin the hierarchy are in corflicts. Rules at one level may
provide accesto some resources whil e rules at ancther level can deny accessto the
same resources. The general rule in TACOMA isthat accesscontrol rules shoud be
cdculated using a bottom-up approadh where the accasrules for ead user symbol
is cdculated by reaursively going deeoer in the treeto find the end nodes and then
cdculate the accasrulesin abottom-up fashion.

Rules at higher levels supersedes rules at lower levels and if there ae any dis-
crepancies at the same level, rules excluding accessrights have priority over include
rules.

Figure 4.18 shows an example of some conflicts. To dedde the accssrules for
user Ul andU 2 in this diagram we start at the end nodes and onead level include
rules are goplied first and then exclude sincethey have higher priority. User U2 first
includesthe entity symbal E1 which again includesthe subtreesymbal 1.2. Thispro-
videsthe accssruleU2g1 = {1.2,i,s}. User U 2 then excludesthe subtreel1.2.5from

42 CHAPTER 4. TACOMA

o]
A
Ul
’ \
y; | <<qot>>
/ \'% |
X /N
A O
uz2 1.2.5 1.2
// <<qpot>>
@D
E1l /<\ rf hY
[1.2.5
/F/\
1.2

Figure 4.18: TACOMA hierarchy conflicts

al entities already included in the accssrights, U2g1 = ({1.2,i,s},{1.2.5,e s}). If
these two rules are gplied to the tree structure T in figure 4.3, then user U2 has
accessto the following noces: f(T,U2) ={2,5,6,9} — {5,9} = {2,6}.

User U1 starts by including al the accssrights from U2, then includes node
1.2.5 and excludes the children of node 1.2:

Ulg = ({1.2)i,s},{1.2.5e5},{1.2.5/i,n},{1.2,ec}).

Since &clude have higher priority than include, user U1 do nad have accssto
any nodes snce f(T,Ul)={2,6}+ {5} —{2,5,6} ={}.

4.5 User administration

Itispossbleto asolet TACOMA crede and delete usersin asystem. If thisisdore,
then all credingand deleting o user acounts shoud be donethroughTACOMA and
nat through dher mecdhanisms.

To creae auser it is enoughto just add a new user symbal where ather a pass
word or cetificae is added. The ACL Configurator will deted that the new user
does nat exist in the system being configured, and will t hen automaticdly crede a
new user. System spedfic atributes for the user, like full name, email addressetc.
can be added to the user symbal using ore or more &tr attributes.

If TACOMA is aso set up to delete users, then it is enoughto just delete dl
references of auser inthe TACOMA diagram. The ACL Configurator shoud retrieve

4.6. RBAC SUPRORT 43

afull li st of users from the system and delete the ones that are not references in the
TACOMA diagram.

46 RBAC support

TACOMA was designed to be as smple as posgbleto lean and use and the number
of symbad was therefor kept to a minimum. Because of this there is no inherent
suppat for role based accesscontrol.

It is however fully possble to use the concept of roles by taking full advantage
of the group symbal in TACOMA. By following a design paradigm for TACOMA
diagrams where users are never given dired accessto any resources except through
group symbals, then the group symbals will ad as roles and by assgning the group
to ause symba throughan include relation, the user is asggned thisrole.

4.7 XACML support

It isfully possbleto creae ssmple XACML pdlicies based on TACOMA diagrams.
Instead of letting the “TACOMA ACL Configurator” modue configure accescon-
trol diredly in an entity, it can creae aset of simple XACML pdlicies. It is however
not possbleto take advantage of the more advanced feaures of XACML like dhedk-
ingthe values of attributeswhen pdiciesare evaluated or forming pdicy hierarchies.

4.8 Formal spedfication

The description so far of TACOMA has been an informal spedficaion o the lan-
guage to help understand how the language works and haw it can be used. A more
formal speaficaion that defines how the various symbals can be cmnneded to eath
other are provided as a metamodel and as an XML schema. These two formal spea-
fications are &le to model most aspeds of the TACOMA language.

4.8.1 Metamode

Figure 4.19 shows the metamodel for the TACOMA language. What this metamodel
showsisthat youcan have two types of diagrams, MainDiagram and GroupDiagram,
and bah diagrams can contain bah symbads and relations. At least one symbadl in
ead diagram isrequired.

Further more the metamodel shows that only group symbals withou a diagram
and user symbalscan have bath include and exclude relations originating from them.
The entity symbad can only have include relation from it and all symbals can have
bath include and exclude relations to them.

The model aso showsthat auser symbal that references anather user symbal can
not have any children.

PPONEBBIN VINODVL BT v7ainbi4

Exclude Include [F7 =

— =

—from

- -to
Relation
0“*
1.* 0..1
1.* |Symbol
—from T
contains 0.. 0.1
SymbolWithRelation SymbolWithoutRelation Entity
1.*
Diagram User ([GroupWithoutDiagram GroupWithDiagram Node [|Subtree| |TableRow | |UserRef | [Children
T 1 0.1
reference
MainDiagram GroupDiagram
—-belong

4%

YWOOV.L v 431dVHO

4.8. FORMAL SFECIFICATION 45

48.2 XML Schema

As a help to the meta model, there is aso an XML schema that formally describes
the TACOMA language. This schema puts some further restrictions on the language
that the meta model i s not cgpable of modeling.

The most important asped of the XML schema is that it sets requirements for
unique IDs of al symbadsand requires that reference symbals are adually referenc-
ing an existing instance of the symbal.

Reaingthe schema can also help usersfurther understandthe structure of TACOMA
diagrams. The XML Schemafor TACOMA can be foundin Appendix D.

4.8.3 Shortcomings of the formal speafication

Whil e the meta model in combination with the XML schema manages to formally
speadfy most aspeds of the TACOMA language, there ae some isues that are nat
posshbleto formally speafy using these methods.

Oneissueisdependency loops. Infigure4.20we can seethat user U 1includesthe
accessrights of user U2 at the sametime as user U 2 includestherightsof U 1. It can
be agued that in asituation like this, bath users shoud simply be assgned the same
accessrights o that weget Ulg; = U2 = ({1.2.6,i,n},{1.4,i,n}). Doingthiscan
however quickly leal to inconsistency, espedally when the dependency loops occurs
in different diagrams, so it is considered illegal in TACOMA to have dependency
loops.

o] o]
u2 Ul
/ \ / \
qw \ f_:lw \
e ol N T N
O IO
Ul E1l u2 E1
| .
V% V%
1.2.6 1.4

Figure 4.20: TACOMA dependency loop

Ancther less gver problem with the formal spedficaion of TACOMA, is that
both the meta model and the XML schema permits diagrams that do nd make any

46 CHAPTER 4. TACOMA

sense as demonstrated in figure 4.21. In this diagram we can seeuser U 1 assgned
accessto noce 1.2 bu sincethere is no entity symbal the diagram does not adually
provide accesto any resources.

o}
AN
Ul

I
\%

Figure 4.21: TACOMA diagram without entity symbal

49 TACOMA XML format

The following XML document shows how figure 4.15 and 4.16 would be written
when adhering to the TACOMA XML Schemadefined in appendix D.

<?xml version="1.0" encoding="iso-8859-1" 7>

<tacoma xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oslebo.com/thesis/tacoma"
xmlns:tacoma="http://www.oslebo.com/thesis/tacoma"
xsi:schemalocation="http://www.oslebo.com/thesis/tacoma tacoma.xsd"
version="1.0">
<delimiter>.</delimiter>
<wildcard>*</wildcard>
<escape>\</escape>

<allSymbols>
<user id="U1">
<name>U1</name>
<securityName password="passl">ul</securityName>
</user>
<user id="U2">
<name>U2</name>
<securityName password="pass2">u2</securityName>
</user>
<groupWithDiagram id="G" diagram="GD">
<name>G</name>
</groupWithDiagram>

4.9. TACOMA XML FORMAT

<entity id="E1">
<name>E</name>
<address>10.0.0.1</address>
</entity>
<entity id="E2">
<name>E</name>
<address>10.0.0.2</address>
</entity>
<children id="C1.2">
<name>C1.2</name>
<eoid>1.2</eo0id>
</children>
<node id="N1.4">
<name>N1.4</name>
<eoid>1.4</eoid>
</node>
<node id="N1">
<name>N1</name>
<eoid>1</eoid>
</node>
</allSymbols>
<mainDiagram id="m">
<accessType>read</accessType>
<name>Read Access</name>
<symbols>
<symbol ref="U1"/>
<symbol ref="U2"/>
<symbol ref="G"/>
<symbol ref="N1.4"/>
</symbols>
<relations>
<include>
<from>Ui1</from>
<to>G</to>
</include>
<include>
<from>U2</from>
<to>G</to>
</include>
<exclude>
<from>U2</from>
<to>N1.4</to>
</exclude>
</relations>
</mainDiagram>

a7

48 CHAPTER 4. TACOMA

<groupDiagram id="GD">
<symbols>
<symbol ref="E1"/>
<symbol ref="E2"/>
<symbol ref="N1"/>
<symbol ref="N1.4"/>
<symbol ref="C1.2"/>
</symbols>
<relations>
<include>
<from>E1</from>
<to>C1.2</to>
</include>
<include>
<from>E1</from>
<to>N1.4</to>
</include>
<include>
<from>E2</from>
<to>Ni1</to>
</include>
</relations>
</groupDiagram>
</tacoma>

Figure 4.22 shows the overall structure of the XML document. The roat element
of the document is“TACOMA” which contains some dtributes that define the XML
Schema that shoud be used for vali dating the document.

Thefirst tag is cdled all Symbadls and contains the definition o al symbalsfound
in al diagrams in the TACOMA XML file. So uncer this tag we can find the users
UlandU2, thegroupsymbad G, the entitiesE1 and E2, the children symbal 1.2 and
thetwo noces1.4and 1

Next foll ows the two diagrams, the main diagram and the group dagram. Both
diagram has the same structure with first one tag cdled symbols which contains one
referencefor ead symbal in the diagram to symbals defined uncer all Symbals. Next
foll ows the tag relations which contain ore entry for ead include and exclude rela-
tionthat are part of the diagram.

If there had been other accesstypeswith diff erent accessrights, therewould have
been multiple “mainDiagram” elements.

4.9. TACOMA XML FORMAT

tacoma
LaIISymboIs
—user(Ul)
‘ —user(U2)
—groupWithDiagram(G)
—entity(E1)
—entity(E2)
—children(1.2)
—node(1.4)
—node(1)
——mainDiagram
-—symbols
—symbol(U1l)
— symbol(U2)
— symbol(G)
—symbol(1.4)
—relations
—include(Ul->QG)
— include(U2->G)
—include(U2->1.4)
-—groupDiagram (G)
-—symbols
— symbol(E1)
— symbol(E2)
—symbol(1)
—symbol(1.4)
—symbol(1.2)
—relations
include(E1->1.2)
include(E1->1.4)
include(E2->1)

I

Figure 4.22: TACOMA XML structure

50

CHAPTER 4. TACOMA

Chapter 5

Policy Tree-based Accesscontrol
Modeling L anguage

This chapter provides a detail ed description o the Policy Treebased Accesscontrol
Modeling Language (PFTACOMA). It starts by providing a genera introduction to
the aoncepts of domains and pdicies. It then describes the main comporents that
are nealed to use PTACOMA and how they differ from the ones used in TACOMA.
All symbds and relations used in PTACOMA are described in detail and severa
examples on hav the language can be used are provided together with a detail ed
description o the PTACOMA metamodel .

5.1 Introduction to domainsand policies

Thisis just a general introduction that describes the fundamental principals behind
domainsand pdicies. For moredetail ed informationabou this subjed seereferences
[41, 42,43, 44).

5.1.1 Policy based management

Inlarge networksthere can bethousands of entitiesand usersthat haveto be managed
in various ways. Manually configuring these large numbers of entities and usersis
nat feasible. One cmmon methodto handlethisisto use palicy based management.

In [41] a pdlicy is defined as a rule that governs the choice in behavior of a
system. Policiesare usualy divided into two main caegories, obligation pdiciesand
authorization pdicies. Obligation pdicies are used to define management adions
that must or must nat be performed, such as when to do kadckup, what to dowhen
creding new users or installing new equipment etc.

Authorization pdicies defines which operations users are dlowed or not all owed
to perform on managed entities and they can control which information shoud be

51

52 CHAPTER 5. PTACOMA

avail able to users. This means that authorizaion pdicies are used for speafyingthe
accesscontrol setup in entities.

A third category of paliciesisaso sometimesused[42], namely seaurity palicies.
Seaurity palicies are spedal types of obligation pdicies used for definingwhat to do
when certain seaurity incidents occurs, for example what shoud be dorewhen auser
tries more than threetimes to type in corred passwvord, what happens when a DOS
attad is discovered, etc.

Policies can be astrad high level pdlicies defined by businessgoals or various
agreaments like servicelevel agreements or they can below level palicies describing
cetain low level entities. Usually padlicies dart out as high level and then they are
refined into low level that can be mapped to spedfic techndogies. Thisrefinement is
nat easy sinceone main gaal of palicy based management is automatic configuration
of entities based onthe pdlicies. To help with this alot of work have been dore to
define languages that can be used for spedfying pdiciesin aformal way. A good
overview of some of these languagesisgivenin [42].

5.1.2 Policy attributes

Regardlessof which level a pdicy ison, high o low level, it is commonly agreed
that they all have some basic atributesin common:

Modadlity spedfies the type of pdicy. In [41] the following modes are defined:
paositive authorization, negative authorizaion, paositive obligation and
negative obligation. Positive and regative authorizaion pdicies will
permit or deny accessto resources while positive and negative obliga-
tion pdicieswill require or deter somekind o adion.

Subjeds edfies which users or subjeds that this pdlicy appliesto. This means
the usersthat are authorized or obligated to dowhat the policy spedfies.

Targets gedfies the managed resources at which the pdlicy is direded. For
authorization pdicies the targets edfies which resources that shoud
be granted or denied accessto.

Action thisis also sometimes cdl ed the pdlicy gaal. It speafies which type of
aaion that is controlled by the pdicy. The adion can for example be
read afile, write to afile dc. It can often be difficult to map high level
palicies to spedfic adions.

Constraints this attribute places additional restriction onthe gopli cability of the pal-
icy. Some typicd constraints can be to limit the validity of policies to
spedfic times of the day, to allow accessonly aslongas the resourceis
nat too heavily loaded etc.

To avoid havingto spedfy pdliciesfor ead managed entity or ead user, subjedsand
targets are usually expressed using damains, rolesandtypes. A domainisagroupgng

5.2. PTACOMA OVERVIEW 53

Policies E
—_— =
| \.\ I

Policy

Administrator server

-

—
Managed Entities
Using

Figure 5.1: Policy server

LXK

Users

of resources for management purposes. This groupng can be based on function-
ality, physicd location etc. Roles are used for users or subjeds and represents the
resporsibiliti esthat a user have. Typeis used for managed entities and describes the
capabiliti es of an entity. Both users and entiti es can have severa roles or types.

5.1.3 Poalicy servers

As drealy stated, one of the ideas behind pdicy based management is to avoid hav-
ing to configure dl managed entities manually. To manage this, various types of
policy servers are often used. A palicy server is configured by the manager with the
corred padlicies, andthen it is the pdlicy server that configures the managed entities
on behalf of the manager. Figure 5.1 shows an example of how this works.

When a new managed entity or user is added, the padlicy server shoud idedly be
ableto deted this automaticdly and then configure the entities as necessary to fulfill
the aurrent palicies. How thisis dorein red world networks depends heavily onthe
applicaions and services that are being managed.

Managed entiti es can also have built i n suppat for padlicy serversand query them
in red time for accesscontrol dedsions. One example of thisis the combination o
the Policy Enforcement Point and the Policy Dedsion Point in XACML.

Policy servers are dso well suited for suppating pdicies with dynamic con-
straints. For exampleit is possbleto creae apalicy that says users are only all owed
accessaslongastheload of the systemisunder a catain level.

52 PTACOMA overview

The Policy Treebased AccessControl Modeling Languageisaversion o TACOMA
that scdes better to higher numbers of managed entiti es, users and nods in the tree

54 CHAPTER 5. PTACOMA

structures. Figure 5.2 shows the necessary componrentsfor using PTACOMA to con
figure accsscontrol. Severa of the comporents are the same & for TACOMA and
only the boxes with gray badground are different. An editor is used to to draw
PTACOMA diagrams and just as for TACOMA it is paossble to use standard UML
editors to draw the diagrams. The XML format used to store diagrams is diff erent
compared to TACOMA so that it i s able to store the extra symbals and relations that
are availablein the PTACOMA language.

The PTACOMA parser takes a PTACOMA XML file and generates alist of ac
cesscontrol rulesthat are sent to the same ACL Optimizer that isused with TACOMA.
The ACL Configurator is also the samein bah languages. Thismeansthat if suppat
for a spedfic goplicaion o system has been implemented for TACOMA, the same
implementation can also be used with PTACOMA.

PTACOMA aso has one new optional modue cdled Policy Configurator. Since
PTACOMA is a pdlicy based language it can be used for configuring pdicy based
systems diredly. If it isused for this, PTACOMA diagrams shoud na be converted
to accesscontrol li sts for the ACL Configurator but instead pdicies shoud be sent
diredly to the Policy Configurator.

5.2.1 Policy-based paradigm

The main advantage of PTACOMA compared to TACOMA is scdability. To achieve
better scdability PTACOMA uses a palicy-based paradigm and all pdlicies are low
level positive or negative authorization pdicies. Figure 5.3 shows an example of a
PTACOMA diagram. In thisfigure there is one single pdlicy, P1, that grants access
to the dhildren of node 1.2 and nock 1.4 in entity E1 for users with therole R1. We
can also seethat one single user, U1, is assgned thisrole. The accesrules for this
pdicyis: Ulgs = {(1.2,i,¢),(1.4,i,n)}

If this pdlicy is applied to the treestructure that was shown in figure 4.3, pdicy
P1 would provide the following accessrights: f(T,U1lg;) = {2,4,5,6}

This is the same accasrights as the introduction example of TACOMA shown
infigure 4.2 and demonstrates the fad that for ssmple accesrules, TACOMA can be
more intuitive and easier to use. The red advantage of PTACOMA comes when the
number of users, entities and complexity of rulesincreases.

Attributes of the padlicy P1 spedfies what type of accessthat shoud be dl owed,
for example if it is real only, read-write dc. In TACOMA it is necessary to have
distinct diagrams for ead type of accesswhilein PTACOMA the type of accessis
spedfied onaper padlicy basis.

5.3 Notation

The Policy Treebased AccessControl Model Language usesal of the same symbals
asinthe simpler Treestructure AccessControl Modeling Language and extendsthis

5.3. NOTATION 55

RO

FTACCMA HXMIZFTACOMA
editor X5LT

DPTRCOMA
XML

App. Attr.

¥ML Schema

'“"._.-/-_h\

FTACOMA DTRCOMA
XML Schema

parser

PEL L LT TP O TP PP T E TP T
H T o

HEH HE Tree I ~

- Tree H HEH ACL
HEH H ';)* HML % H s
] generator S optimizer
HE I

[T R, S \-/.-\

peespesssssssnnnne gy passssssssssss i, o
§ : ACL E § Policy :
§ configurator i E configurator

i LI .

Figure 5.2: PTACOMA comporents

famsssssnnnd

56 CHAPTER 5. PTACOMA

/")PH
° <>
{J} P1
[/ N
| <<S/>é N\ N
.] (@D
R1 El
R1 N
! \
/I< N
12 1.4

Figure 5.3: PTACOMA diagram

/N O) b <>

Children Domain Entity Group Node Policy Constraint
s prmmmm——a =3
W i 3 . ; 'S
<> g /<> / .
S N I I T AN
Pol cy view Role Subtree Tabie row Type User Table col
AN AN AN
N N N <
>
N <<nqt>> <<sR> <<nand>>
AN AN AN
<<and>>
A\ A} A\ q
include exclude subject logical

Figure 5.4: PTACOMA symbals

with several morerelations and 6 symbals. Figure 5.4 shows all the symbals defined
in PTACOMA.

5.3.1 Redations

PTACOMA uses the include and exclude relation in the same way asin TACOMA.
In addition to these to relations, PTACOMA aso have asubjed relation that is used
for spedfying the subjeds of a pdlicy. Theinclude relation can na be used for this
asit can lea to confusion abou what the subjeds and targets are. As an example,
consider the palicy shown in figure 5.5. In this figure we see apdlicy that uses two
groups, G1 and G2, for its subjeds and targets. Assumingthat these two groups bath
contains ymbals like roles and entities there has to be away to tell which group

5.3. NOTATION 57

]]

G1 G2

Figure 5.5: PTACOMA subjed relation

shoud be used for subjeds and which shoud be used for targets. Soitisnot possble
to use asimpleincluderelationfor both groups and to resolve this, a separate subjed
relation has been introduced.

There ae dso severa relations like or, and, xor etc. that is used for domain
modeling. The exad number of these relations depends on the implementation o
PTACOMA.

5.3.2 Symbols

The symbadls user, entity, children, node, subtreg table row and table column have
the same dtributes as in TACOMA and the usage of the symbdls are very similar.
The description o these symbals are therefore not repeaed here and can instead be
foundin chapter 4. The exad usage of al symbads are described in detall in the
description o the PTACOMA metamoded in sedion 54.

Policy

The palicy symbad spedfies a pdicy and is the main symbal used in PTACOMA to
spedfy accessrights. All pdicy symbalswill have other symbals related to them to
spedfy subjeds, targets and constraints. The basic usage of the palicy symba was
showninfigure 5.3.

A pdlicy can spedfy the maximum, minimum or exad accessrights. When a
palicy spedfies the maximum accessall owed for arole, then pdicies at lower level
domainsor groups are dl owed to remove some of the accasrights. With aminimum
palicy, other pdliciesat lower levels can addto the accesrights. With exad rulesno
policies at lower levels are ale to make any changes to the accssrights.

Attributes

id Unique ID of symbal. The scope of the ID is al diagrams in a PTA-
COMA document.

58 CHAPTER 5. PTACOMA
<element name="id" type="ID"/>

name name of entity. No formal meaning.
<element name='"name" type="string"/>

accesslype Type of access e.g. read-only, read-write €c.
<element name="name" type="string"/>

policyType Type of pdlicy. Can be maximum access minimum accessor exad ac
cess

<element name="policyType">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="min"/>
<xsd:enumeration value="max"/>
<xsd:enumeration value="exact"/>
</xsd:restriction>
</xsd:simpleType>
</element>

priority sets the priority of apadlicy. Thiscan be used for speafyingthe order of
which pdiciesonthe samelevel is processd.

<element name="priority" type="integer"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

5.3. NOTATION 59

Domain

The domain symbal represents a oll edion o other symbolsthat are part of the same
administrative control. This symbal can be cnsidered a more formal colledion o
other symbals compared to the groupsymbal.

A domain symbad has its own diagram attached to it where the content of the
domainisdrawn. Thedomain symbal also adsas afilter where the chil dren symbals
of thedomain isthen limited in scopeto only the domain or domains edfied by the
domain symbal.

When using the scope dtribute of the domain symbdl, it is posgble to represent
multi ple domains by ore single domain symbal. This makesit is possbleto creae
more generic high level pdlicies. If users from multiple domains are assgned the
samerole, it ispossbleto creae padliciesthat provides accessto entitiesonly in their
own damain, in all domains except their own etc.

Attributes

id Unique ID of symbal. The scope of the ID is all diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>
name name of entity. No formal meaning.
<element name="name" type="string"/>
scope spedfies the scope of the domain symbadl.

<element name="scope">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="this"/>
<xsd:enumeration value="all"/>
<xsd:enumeration value="allExceptThis"/>
<xsd:enumeration value="allExceptQOwn"/>
<xsd:enumeration value="siblings"/>

<xsd:enumeration value="children"/>

</xsd:restriction>

</xsd:simpleType>

</element>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

60 CHAPTER 5. PTACOMA

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

Group

The groupsymbal has two diff erent semanticsin PTACOMA. First of all it can rep-
resent a wlledion o one or more other elements. This is used to group together
symbals that have something in common a that will be referenced multiple times.
Thisisidenticd to the use of the groupsymba in TACOMA.

It can also be used for advanced arithmetic domain modelingwhereit ispossble
to express satements like: all users part of domain A but not domain B.

Attributes

id Unique ID of symbal. The scope of the ID is al diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>
name name of group. No formal meaning.
<element name="name" type="string"/>

attr extra goplication spedfic dtribute(s). An attribute has a name and a
value and is a methodfor including appli cation spedfic atributes to the
symbadl.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

5.3. NOTATION 61

Role

Therole symbal isused to crede generic paliciesfor al usersthat havethisrole. The
advantage of using the role symbal i s that administrators can crede general policies
based onthe resporsibiliti es of users instead of having to spedfy pdlicies for eah
user separately.

Attributes

id Unique ID of symbal. The scope of the ID is al diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>
name name of role. No formal meaning.
<element name="name" type="string"/>

all if set, thisrole symbal representsall roles. Can be used to crede palicies
that are valid for all users.

<element name="all">
<simpleType>
<restriction base="string">
<enumeration value="yes"/>
<enumeration value="no"/>
</restriction>
</simpleType>
</element>

attr extra goplication spedfic datribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbadl.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

62 CHAPTER 5. PTACOMA

Type

The type symbad is used for creaing generic palicies for al entities of the same
type. This makes it posgble for administrators to creae generic palicies based on
cgpabiliti es of entities instead of having to do cetail spedficaion for eat entity

separately.

Attributes

id Unique ID of symbal. The scope of the ID is al diagrams in a PTA-
COMA document.

<element name="id" type="ID"/>
name name of type. No forma meaning.
<element name="name" type="string"/>

all if set, thistype symbadl represents all types. Can be used to crede pali-
ciesthat are valid for all types of entiti es.

<element name="all">
<simpleType>
<restriction base="string">
<enumeration value="yes"/>
<enumeration value='"no"/>
</restriction>
</simpleType>
</element>

attr extra goplication spedfic datribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbadl.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

54. PTACOMA METAMODEL 63

Policy view

The pdlicy view symbadl is used for creaing generic palicies when the implementa-
tion o entities varies and it is not known in advance the exad accesscontrol rules
that are needed to fulfill the pdlicy.

For example one administrator can creae ahighlevel pdicy sayingthat al users
shoud be dlowed accessto real the system load of all entities. Other administra-
tors can then define the detail s of which nodes in the tree structure that neals to
be accesd to retrieve this information. This way we divide the resporsibiliti es of
defining the accaspadlicy from the implementation detail s of which nodes needs to
be acce=d.

Attribute

id Unique ID of symbal. The scope of the ID is all diagramsin a PTA-
COMA document.

<element name="id" type="ID"/>
name name of role. No formal meaning.
<element name="name" type="string"/>

attr extra goplication spedfic datribute(s). An attribute has a name and a
value andis amethodfor including appli cation spedfic atributes to the
symbal.

<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string"
use="mandatory"/>
</extension>
</simpleContent>
</complexType>
</element>

54 PTACOMA metamodel

The metamodel for TACOMA was relatively ssmple and all the semantics of the
language was cgptured by ore single metamodel diagram. PTACOMA is alot more
advanced and the metamodel now consists of 13 dfferent diagrams that together
cgptures the semantics of the language. All these metamodels can be foundat the
end d this chapter.

64 CHAPTER 5. PTACOMA

54.1 Maindiagram

Figure 5.18 shows the metamodel that spedfies the contents of the main diagram and
domain diagrams. What this metamodel saysisthat a main diagram consists of one
or more symbals. These symbals can be agroup a domain symba with diagrams
that contains the same symbals as the main diagram. It can also be aset of symbals
that:

e Spedfies sparation o duty palicies (SDPolicy)

e Spedfies accesscontrol palicies (Policy)

e Assgnsusersto roles (Role Definition)

e Assgns entities to types (Type Definition)

e Spedfiesthe detail s of padlicy views (Policy Views)

All of these sets of symbalsare explained in detall i n the foll owing sedions.

The groupsymba in PTACOMA can either have anew diagram associated with
it or it can use include and exclude relations diredly to ather symbadls, similar to the
groupsymba in the TACOMA language.

5.4.2 Roledefinition

A role definition dagram is used for assgning roles to users and the metamodel for
thiskind o diagram is shown in Figure 5.19. A role definition starts with a set of
users or domains and then asociates these with one or moreroles. Itisaso posshle
to colled role symbalsin agroupandthen associate the user symbaswith the group.

Figure 5.20 shows the metamodel for spedfying usersand damains. Userscan be
spedfied by user symbals and groupsymbals containing users or other groups. Itis
also passble to speafy adomain symba which means that all users of that domain
Is asdgned the role. Instead of a single domain, domain modeling where logicd
expresson are used for domain arithmetic can also be used..

Figure 5.6 shows an example of a pdlicy that uses the role symbadl. In thisfigure
thereis apadlicy P1 that provides accessto the node 1.4 in entity E1 for al usersin
domain D1 that have the role R1. The contents of the domain D1 is hownin figure
5.7. Inthisfigure there ae threeusers, U1, U2 and U 3, that are dl assgned some
roles. Aswe can seefrom this diagram, both user U1 andU 2 are assgned role R1.
Policy P1 would therefor provide the following accessrights: Ulgs = {(1.4,i,n)}
andU2g1 = {(1.4,i,n)}

The metamodel for domain modelingis showninfigure5.21. Inadiagram of this
typeit is possble to have group a domain symbals conred with the usual include
and exclude relations as well as logicd relations like and, or, xor etc. Figure 5.8
shows an example of this. This diagram is a valid domain modeling dagram that
spedfiestherule: (D1andD2)nat (D3or D4)

54. PTACOMA METAMODEL

P1
7 \
<<S>>/ \
%
\
bk
TN .
| |
(_ D
D1 E1
|)
| |
v \
R1 14

Figure 5.6: PTACOMA role example

¢ L 2
AN AN AN
Ul U2 U3

| / \ |
e oo Ny
R1 R2

Figure 5.7: PTACOMA role example - domain contents

65

66 CHAPTER 5. PTACOMA

T T<<not>> T >

D1&D2 D3|D4

| I

\% v
Ve PN Pt o,
() () () ()
__<<ands> TN/ L =eons A/

D1 D2 D3 D4

Figure 5.8: PTACOMA domain arithmetic example - group contents

Figure 5.9 shows how this domain arithmetic can be used in a pdlicy. In this
figure apdicy is shown that gives users with the role R1 accessto noce 1.4 in all
entities belongng to the domains defined in group G1. Asauming that the contents
of group G1 is the domain arithmetic that was shown in figure 5.9, then the role R1
will be given accessto noce 1.4 in all entitiesthat are part of the domains that fulfill
therule: (D1andD2)nat (D3or D4).

When modeling smpler rules like and or and nat, it is possble to just use the
include end exclude relations as shown in figure 5.10. This figure models the same
expresson as before: (D1andD2) nat (D3or D4).

The simplest form of a role definition was shown in figure 5.3 where user U1
was asdgned the role R1. Figure 5.11 shows ome more examples of role definition
diagramsthat al adheresto the metamodels showninthis ®dion. Inthisdiagram we
can seethat user U2 is assgned the role R1 aswell as all roles defined in the group
G1. The groupsymbad related to the user U 2 is agroupreferenceto the definition of
the groupthat can be found onthe right side of the diagram. This definition simply
includes the relation R2 which means that user U 2 is assgned the roles R1 and R2.

There is also ore graph where domain D1 is assgned role R1. This means that
all usersthat belongsto damain D1 are assgned therole R1.

The last example shows that user U3 is also assgned role R1 bu thisis dore by
first drawing a domain symbol D2 which then includes user U3. What this meansis
that user U3 isasdgned role R1 only aslongas heis part of domain D2.

54.3 Typedeéefinition

Type definitions are spedfied in the same way as roles except that instead of user
symbals, entities are used, and instead of roles, types are used. The metamodel for
type definitions are shown in figure 5.22.

Simil ar to role definiti ons, atype definitions dartswith entity or domain symbals.
The metamodel for thisis shown in figure 5.23.

The metamodel for domain modelingis the same as for role definitions.

54. PTACOMA METAMODEL

P1
/ \
<<SHF> N\
/ \
e A

R1 G1

I

I
v
1.4

Figure 5.9: PTACOMA domain arithmetic example

Y
| |
N
D1
|
v
P
| |
S
D2
’ \
<<not;>> <<not?>
2 \\ .
N P
I | I |
N S
D3 D4

Figure 5.10: PTACOMA dlternative domain arithmetic syntax

67

68 CHAPTER 5. PTACOMA

......

Gl

......

Figure 5.11: PTACOMA role definitions

54. PTACOMA METAMODEL 69

54.4 Policies

The metamodel for apdlicy is shown in figure 5.24. Aswe can seefrom this meta-
model, a pdlicy consists of the palicy symba with ore or more subjed relations to
a set of subjed symbals and ore or more include or exclude relations to constraints
and targets.

A pdicy subjed consists of role, group and damain symbals as hown in the
metamodel in figure 5.25. If just adomain symbadl is used, it means that all users
of that domain will be the subjed. It is aso possble to use domain modeling as
described uncer the role definition metamodel.

Constraints are a olledion d constraint symbals and goups. The metamodel
for thisis shown in figure 5.26.

The objeds of a padlicy can be spedfied using symbals like node, children, sub-
tree éc. in asimilar way as accesscontrol is Pedfied in the TACOMA language.
The metamodel for thisis shown in figure 5.27. In addition to the symbals used in
TACOMA, itisalso posshbleto use domain, type and pdicy view symbals.

When atype symbal is used instead of an entity, it means that the palicy shoud
include dl entities of thistype as objeds. Thisis demonstrated in figure 5.12 where
accessis granted to userswith therole R1to noce 1.4 in al entitiesof thetypeT1in
domain D1.

The contentsof domainD1is showninfigure5.13. Inthisfigurethere aetwo en-
tities and we can seethat only entity E2 is of thetype T1. The accssrules pedfied
by the pdlicy will then beU 1g; = {(1.4,i,n)}

545 Separation of duty policies

Separation o duty paliciesin PTACOMA can be used for creaing pdiciesthat states
things like auser that is assgned role A can na be assgned role B. Thefirst pdlicy
in figure 5.14 shows an example of the previously mention pdicy and the second
policy states that all users assgned to role A must aso be assgned to role C. The
metamodel for thistype of pdliciesis shownin figure 5.28.

A separation o duty padlicy is gedfied using the same palicy symbad as normal
palicies, but only domain and role symbals are used with it to spedfy the subjeds
and oljeds of the pdlicy. Constraints can also be included to speafy constraints like
time of day the pdlicy shoud be adive dc.

5.4.6 Policy view definitions

The metamodel for defining the cntents of a palicy view is shown in figure 5.29.
A definition like this garts with ore or more entity or type symbals that can aso
be grouped together in groupsymbals. It isalso passbleto do danain modeling as
described ealier. The metamodel for thisis shown in figure 5.30.

These antity or type symbals are then conneded to a pdlicy view symbad using
the include relation. This means that the spedfied entities or types all i mplement

70 CHAPTER 5. PTACOMA

Figure 5.12. PTACOMA type example

E1 E2
I\ I
Y NoL V...
T3 2 1

Figure 5.13: PTACOMA type example - domain contents

5.5. DOMAIN HIERARCHY 71

P i

- e - e

/\ ~ \ e
P1 P2
/ N / N
\ \
<<s>% <<notz> <<s>/>
/ / \
A B A c

Figure 5.14: PTACOMA separation o duty palicy examples

this pdicy view. The pdlicy view symba has one or more relations that spedfies the
exad nodes in the tree structure neels to be given accessto for fulfilling the padlicy
view. Spedfyingthisisdonein the same way as gedfyingtargets for palicies.

Figure 5.15 shows a simple pdlicy that uses this ymbad. In this figure the role
R1isgiven accessto al entitiesin damain D2 that implementsthe padlicy view PV1.

Figure 5.16 shows the contents of the domain D2. There ae two entities which
bath define the palicy view PV 1. The resulting accessrules from these two diagrams
would then be: Ulgq = {(1.4,i,n)} andU1go = {(1.3.4,i,n)}.

Aswe can seefrom this 9mple example, the palicy view symbal iswell suited to
crede highlevel padlicieswhere the alministrator who creaes the palicy do nd neel
to know all the minute detail s of how the accescontrol has to be configured in the
adual entities.

5.5 Domain hierarchy

In PTACOMA there aetwo passble hierarchies of palicies, those that are formed by
using goupsymboalsandthose formed by damains. To resolve possble coriflicts, the
accessrulesare cdculated using atop-down approac based onthe hierarchy formed
by domains. For ead damain the hierarchy formed by goups are then cdculated.
Policiesonahigher level hashigher priority than the onesonlower levelsandif there
are conflicts on the same level, padlicies with the most restrictive accgscontrol rules
shoud take preceadence

5.6 Policy conflicts

Oneissuewith apadlicy based paradigm that can cause problemsis conflicts between
multiple pdicies. Corflicts can happen when multiple palicies have overlapping
subjeds and/or targets. It isfor example posshble to have one pdlicy that authorizes
user A accessto resource B while another palicy denies this. It is aso passble to

72 CHAPTER 5. PTACOMA

PV1

Figure 5.15. PTACOMA pdlicy view example

& &

PV1 PV1
| |
| |
\% \'%
O O
1.4 1.3.4

Figure 5.16: PTACOMA padlicy view example - domain contents

5.7. DISTRIBUTED MANAGEMENT 73

have conflicts between oligation and authorizaion pdicies. An oligation pdicy
may dictate user A to perform a cetain task, while & the same time an authorizaion
policy deniesthe necessary accessneeded to perform the task.

Sincemany pdiciesarefirst spedfied asahighlevel abstrad pdliciesit can often
be difficult to detea conflicts. Most of the formal |anguages for spedfying pdicies
suppats ome sort of automatic conflict detedion[42], but manual i nterventionfrom
managers is often needled.

Since PTACOMA is limited to low level authorizaion pdicies direded at only
treebased structures, it i srelatively easy to deted padlicy conflicts. When two pdicies
with diff erent modality or conflicting constraintsthat also have some simil ar subjeds
or targets there might be a onflict.

Each pdicy defined using PTACOMA is conwerted into ssmple accss control
rules of the format {N, |, S} as described in chapter 3. Each pdicy P will t hen have a
set Ap that contains all the accascontrol rules. Thereis a cnflict between pdicies
if for a pdicy P there exist another pdicy P’ so that f(T,Ap) U f(T,Ap) # 6 and
I 1,

When a oonflict is deteded, palicies that are defined in a higher level of the di-
agram hierarchy will t ake precalence over pdiciesin lower levels. In PTACOMA
it is posgble to spedafy maximum, minimum and exad accesspalicies. Maximum
palicies Pedfies the maximum resources a user shoud have accesto andif a pal-
icy at lower levels grants more acces this accessis limited to what the maximum
palicy at the higher level spedfies. A minimum accesspalicy spedfies the minimum
resources a user shoud have accssto. If apdlicy at lower levelstriesto restrict the
accessrights of auser further, then the padlicy at the higher level will t ake precedence
and increase the accssrights. Exad accesspadlicies, spedfies the exad resources a
user shoud be aleto accessand pdicies at lower levels can na changes this.

When conflictsarises, only the accescontrol rulesthat arein conflict are changed.
If there exist other accesscontrol rulesthat are nat in conflict, these will be gpplied as
normal. With some gplicaions this can cause unexpeded results, so an implemen-
tation o PTACOMA shoud provide awarning to the user when conflicting pdicies
are deteded.

Corflicts at the same level is not resolved automaticdly and a PTACOMA im-
plementation shoud give awarning when this happens. One way administrators can
manually solve conflictsisto usethe priority attribute of the PTACOMA palicy sym-
bal. If an administrator knowsthere might be conflicts between multiple pdlicies, the
priority attribute can speafy which pdicy shoud have the highest priority when cd-
culating the accescontrol rights. As this can cause unwanted effedsit is afedure
that shoud be used cautioudly.

5.7 Distributed management

One avantage with having multiple domainsis that it is passble to distribute the
task of spedfying pdicies. Administrators on higher levels can make broad pdicies

74 CHAPTER 5. PTACOMA

while aministrators on lower levels can do cetailed configuration o further dele-
gate authorizaion to other sub-domains. To be ale to dothis requires suppat for
distributed editing o PTACOMA diagrams by the alitor where accaesto diagrams
can be restricted. Administrators of domains shoud only have permissonto change
diagrams for their own damain.

Many commercial UML editors arealy suppats this today and will be well
suited for doing dstributed configuration o PTACOMA access control rules. The
seaurity of doing dstributed management is lely dependent on the seaurity of the
editor being used andisnat a part of the PTACOMA spedficaion.

58 PTACOMA XML format

Just as for the TACOMA language, PTACOMA aso has an XML Schema that ads
as a formal definition o the structure of the language. This hemais available in
Appendix E. The following XML document shows how the PTACOMA diagram in
figure 5.3 would be written when adhering to the PTACOMA XML Schema.

<7xml version="1.0" encoding="iso0-8859-1"7>

<ptacoma xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oslebo.com/thesis/ptacoma"
xmlns:tacoma="http://www.oslebo.com/thesis/ptacoma"
xsi:schemalocation="http://www.oslebo.com/thesis/ptacoma ptacoma.xsd"
version="1.0">

<allSymbols>

<children id="C1.2">
<name>C1.2</name>
<eo0id>1.2</eo0id>

</children>

<entity id="E1">
<name>E1</name>
<address>10.0.0.1</address>

</entity>

<node id="N1.4">
<name>N1.4</name>
<eoid>1.4</eo0id>

</node>

<policy id="P1">
<name>P1</name>
<accessType>read-only</accessType>
<policyType>exact</policyType>

</policy>

<role id="R1">
<name>R1</name>

</role>

<user id="U1">
<name>U1</name>
<securityName password="passl">ul</securityName>

</user>

5.8. PTACOMA XML FORMAT

</allSymbols>

<mainDiagram id="m">
<roleDef>
<symbols>
<symbol ref="R1"/>
</symbols>
<usersAndDomains>
<symbols>
<symbol ref="U1"/>
</symbols>
</usersAndDomains>
<relations>
<include>
<from>U1</from>
<to>R1</to>
</include>
</relations>
</roleDef>
<policyDef>
<symbols>
<symbol ref="P1"/>
</symbols>
<subjects>
<symbols>
<symbol ref="R1"/>
</symbols>
</subjects>
<targets>
<symbols>
<symbol ref="E1"/>
<symbol ref="C1.2"/>
<symbol ref="N1.4"/>
</symbols>
<relations>
<include>
<from>E1</from>
<to>C1.2</to>
</include>
<include>
<from>E1</from>
<to>N1.4</to>
</include>
</relations>
</targets>
<subject>
<from>P1</from>
<to>R1</to>
</subject>
<relations>
<include>
<from>P1</from>
<to>E1</to>

75

76 CHAPTER 5. PTACOMA

</include>
</relations>
</policyDef>
</mainDiagram>
</ptacoma>

Figure 5.17 shows the overal structure of the XML document. It follows the
same basic structure e TACOMA. Theroat element is ptacoma and then the all Sym-
balstag foll owsthat includesali st of all symbalsfoundinthe PTACOMA document.
In this case we can seethe definition o the user symbal U 1, the role symbal R1, the
paicy symbad P1, the entity symbadl E1, the children symbad C1.2 and the node
symbol N1.4.

Next follows the main diagram where the role and pdicy is defined. In this
diagram thereisfirst aroleDef tag which isused for assgning user U 1totherole R1.
Thisisdore by first speafyingthat role R1 is part of theroleDef tag and then define
user U1 under the tag usersAndDomains. This dructure foll ows the metamodels for
PTACOMA. Thelast sedion undr roleDef isrelations which simply hasone single
include relation that ties user U1 with therole R1.

The pdlicy definition spedfied inside the pdlicyDef tag definesthe acua palicy.
Thistag first uses a symbalstag to speafy that the palicy P1 is part of thisdefinition.
Then comes the tags subjeds and targets to spedfy the subjeds and targets of the
palicy. Thereisaso asubed relationfor assgningrole R1 as the padlicy subjed and
arelations ®dionthat ties the paicy P1 with the entity E1. Entity E1 istied to the
child symbal C1.2 andthe node N1.4 inside the targets tag.

The PTACOMA XML Schema dso defines sveral keys and key references to
make sure that the structure of the PTACOMA language is properly cgptured by the
Schema. There ae for example keysthat verifies that roles are only assgned to user
symbal and nd for example type symbals.

5.8. PTACOMA XML FORMAT

allSymbols
—user(Ul)
—role(R1)
—policy(P1)
—entity(E1)
—children(C1.2)
—node(N1.4)
L-mainDiagram
—roleDef

-[fymbols
symbol(R1)

usersAndDomains
Ti;symbols
symbol(U1)
relations
include(U1->R1)
-policyDef
-l-_symbols
symbol (P1)

subjects
.It_symbols
symbol(R1)

- targets

— symbols

— symbol(E1)

— symbol(C1l.2)

— symbol(N1.4)

— relations

— include(E1->C1.2)

— include(E1->N1.4)

— subject (P1->R1)

-[relations
include(P1l->E1l)

ITptacoma

]

Figure 5.17: PTACOMA XML structure

ppowelsWw Wwelbep ur 8T'ganbiH

1

1

—

1

- Policy Role Type - -
" Seireliey ,___l Definition Definition FRlIBAIEDS
Domain
1
Symbol |1
_ |
—belongs 1. o
contains
1%
Diagram —from
! | |

| | [.
|DomainDiagram | |MainDiagram | |GroupDiagram Hhﬂﬂﬂgﬁ—ﬂeroupwnhmagram | |GroupWithoutDiagram |

8.

YWOOV.1d G 431dVHO

poWwelBW Uo NuYep 3joy 6T°G 364

Include

Exclude —|

—from

: —from : Role
Relation - Users&Domains D> Definition
1. 1. 1
1“*
—to
1
Symbol [1..* contains 0.* |GroupDiagram
T 1
Role Group
| N —belongs
GroupWithoutDiagram GroupWithDiagram 1

1VYINHOA TN X VINOOVId 8'S

6.

PPOWRIBLL SUeUDP pUe Sk8sN 0Z'G 3B 14

Include Exclude

\T/

i —-to
1* REkon 0.* Users&Domains [1- - 0..* Diagram
- — contains
—from
~from -belongs
1 1
GroupWithoutDiagram 1 User | | GroupWithDiagram
DomainMod

08

YWOOV.1d ‘G 431dWVHD

ppoweRw bu Ippow urwoq Tz'§anbiH

1.*

Include | [Exclude ||Logical
[g7 T
Relation
1> 0..* —-to
..* l
DomainMod | L. contains
—from
—from
1 Domain Group
AN

1 GroupWithoutDiagram

GroupWithDiagram

GroupDiagram

~belongs

1VYINHOA TN X VINOOVId 8'S

18

pPowepw uo nuyep adAL zz'ganbiH

Include

Exclude

I

—from

1

1.* JRelation —from Enteties&Domains > Type
1.* 1 Definition
to
*
1 &
Symbol |1 contains 0. | GroupDiagram
T 1
[|
Group

Type

GroupWithoutDiagram

GroupWithDiagram

—belongs

Z8

YWOOV.1d ‘G 431dWVHD

[POLLRIBW SUUDP pUe S ug £2'Gainbi4

Include Exclude

\T/

Types&Enteties&dDomains

Diagram
1

—belongs
1

Relation
*
L. Tl..* —from
—from _|
1§
1
GroupWithoutDiagram DomainMod

Entity

GroupWithDiagram

1VYINHOA TN X VINOOVId 8'S

€8

ppoweprw Adljod vz'Gainbi4

Exclude

Include

I

—from

1..*

Subject
P

—to

Subjects

-

Policy

—from

=9

Relation

|

Constraints

Targets

¥8

YWOOV.1d ‘G 431dWVHD

pPowesw palgns Aoljod ‘Gz'Ganbi4

Include

GroupDiagram |0-* contains 1.* lSubjects —to
[Sroveoisgran 5 o7
! 0.*
—belongs | —from
Group Role DomainMod

GroupWithDiagram |

GroupWithoutDiagram

le
[T

—from

1VYINHOA TN X VINOOVId 8'S

G8

pPOWeRW JURIISU0D 9Z'G ainbiH

GroupDiagram

1

—belongs

Exclude Include

\T/

0.* 1.* |cConstraints 0."_fRelation
contains -to
1“*
Constraint Group Hfrom
1

GroupWithDiagram

GroupWithoutDiagram

98

YWOOV.1d ‘G 431dWVHD

ppowelw Bbe1 Ajod :2z'ganbiH

—from

—from

1
Targets | L..* contain:

SymbolWithRelation

1

DomainMod

1
SymbolWithoutRelation Entity—|

0.%

GroupDiagram

1

| 1

—belongs

|Type "GroupWithoutDiagram |

|POIicyVieW ||Chi|dren | | Node ||Subtree| |TabIeRow | |Gr0upWithDiagram |

1VYINHOA TN X VINOOVId 8'S

.8

pPowewW ss1jod ANp P uoirledss VNODV.Ld 82'GainbiH

SDPolicy Exclude Include
[\ [%7]
Policy |e——from Relation
I 1 L5
—from -to
1.*
Subject L
ubjec Symbol
1.* [r
-to
1 L) Subjects Constraints

88

YWOOV.1d ‘G 431dWVHD

5.8. PTACOMA XML FORMAT

—from

PolicyViews

[]

|Types&Enteties&dDomains |

from
Include
1.* Jlnclude| |Exc|ude| 1>
7 —to
1
Relation |1-* 1 _|PolicyView
—from
1.*
-to
1
Targets 1.*

89

contains

I

SymbolWithoutRelation

I
T T]

1
GroupWithoutDiagram |

GroupWithDiagram |

Children Node ||Subtree| |TableRow

1

0.*

—-belongs

Figure 5.29: Policy view definitions metamodel

J GroupDiagram

PPoweRW s3 pnue p dnoib mIALIjod 0g'G 9INbH

Include Exclude

\T/

Relation —to Types&Enteties&dDomains to Diagram
WX 1.% 0.*

* T~ AN
L. 1.7 —from 1 —pelonds
—from | 9

T 1

1

GroupWithoutDiagram DomainMod Entity Type GroupWithDiagram

06

YWOOV.1d ‘G 431dWVHD

Chapter 6

TACOMA and PTACOMA
comparison

In this chapter the two languages, TACOMA and PTACOMA, are compared based on
complexity, scdability, maintainability and dstributed spedficaion o accesscon-
trol. A detailed example demonstrating some of the differences between the two
languagesis also provided.

6.1 Complexity

TACOMA was designed with ease of use & the primary goal and ory has eight
symbals and two relations. The only method for organizing dagrams is the use of
groups which al ow administratorsto coll ed symbalsthat have thingsin common o
to reuse part of diagrams. All thismakes TACOMA quite eay tolean andto use and
even userswho are not famili ar with TACOMA can usually understand the diagrams.

PTACOMA more than doubles the number of symbals and relations and there
are two ways of organizing dagrams, domains and goups. PTACOMA also have a
potentially higher risk of creaing conflictsin the accescontrol spedficaion.

Because of thisPTACOMA isclealy amore complex language to bath lean and
to use and requires more df ort from administrators to be properly used.

6.2 Scalability

Thescdability of eat languageisdifficult to quantify properly sinceit dependsquite
alot on hawv diagrams are constructed. With proper use of groups TACOMA shoud
be &le to scde quite well, however no matter how well diagrams are structured,
administrators gill have to manually control and configure ead entity.

While TACOMA was designed for ease of use, PTACOMA was designed for
scdability. Using pdicies together with damains, roles and typesit is easier to de-
velop highlevel accessrulesthat can be refined when needed. PTACOMA also have

91

92 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

suppat for the use of palicy servers which is an important feaure for being able to
scdeto systems where there ae hundeds of thousands entities and users.

6.3 Maintainability

The maintainability of both TACOMA and PTACOMA depends alot onthe method
ology used for creaing dagrams. Diagrams from both languages can be quite hard
to maintainif they are badly structured. So in thisasped thelangueges are quite ssim-
ilar athoughPTACOMA makes it easier to distribute the maintenance of diagrams
between damains as explained in the next sedion. This distribution means that ead
administrator only has to maintain some parts of the PTACOMA diagrams.

6.4 Distributed spedfication of accesscontrol

PTACOMA is, with its suppat for padlicies and damains, well suited for distributed
spedficaion o accesscontrol. It iseasy to delegate the detail ed control of speafying
access control to damains at lower levels and at the same time ke a high level
control on top levels. The seaurity of distributed spedficaion o accesscontrol is
solely dependent on the seaurity built i nto the elitor that is used for drawing the
diagrams.

TACOMA has very littl e suppat for this. It is posgble to use group symbalsto
delegate the resporsibiliti es of updeting parts of the diagrams. There is however no
suppat for letting administrators on a higher level deny or grant accessfor users on
lower level unlessthe detail s of diagrams onlower levels are known.

6.5 Example

The following example shows ome of the aspeds of TACOMA and PTACOMA
when it comes to scdability, maintainability and distributed spedficaion o access
control. In this example there is a company with two departments, A and B. There
are threeusers, UserA, UserB1 and UserB2 which belong to department A and B.
All users have accssto a group d nodes cdled G in department A. Initialy there
are only one entity EntityA. Figure 6.1 showsthe TACOMA diagram for department
A. This hows a single user, UserA, which is being granted accessto EntityA. The
accessisbeinglimited to the nodes defined in the groupcdled G. The exad contents
of Gisnat relevant for this discusson but it does nat contain any entities, only sub-
treg children, table-row or node symbads. Figure 6.2 shows the TACOMA diagram
for department B where UserB1 and U serB2 are granted accessto the group G in
entity EntityA.

Now assume that department A adds a new entity, EntityA2, which all users
shoud have accssto aswell. In TACOMA there aetwo waysthiscan bedore. The
first methodis to ssmply add the entity as shown in Figure 6.3. This figure shows

6.5. EXAMPLE

X

Userd

Entity A
|
W

Figure 6.1: Initial department A TACOMA diagram

EntityA

I
4

Figure 6.2: Initial department B TACOMA diagram

G

93

94 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

()
AN
UserA
/ \

/ \

O O

EntityA EntityA2

Figure 6.3: Modified department A TACOMA diagram

C) C)

EntityA EntityA2

\ /
NV

Figure 6.4: TACOMA diagram of GroupA

G

department A. To give accesto UserBl and U serB2, the same change would also
have to be dore in the diagram for department B.

Ancther methodisto addagroupsymba, GroupA, with content as showninfig-
ure6.4. Thediagram for both departmentswould also haveto be dhanged. Figure 6.5
shows how thiswill | ookin the TACOMA diagram for department B. The alvantage
of this methodis that additional entities can be added by orly changing the contents
of GroupA.

Both these methods clealy show that when there ae multiple usersin diff erent
diagrams accessng the same resources, TACOMA quickly become difficult to use.
Method ore requires constant changing to the two separate diagrams every time a
new entity isadded or removed, evenif it only belongsto ore of the departments. The
seondmethodis better sincethe dhangeto bah diagrams only have to be performed
once, but in large TACOMA documents with many levels and dagrams, finding all

6.5. EXAMPLE 95

.GroupA

Figure 6.5: Modified department B TACOMA diagram

P

< O
, -IS EntityA
<</S>/> | \
2 N
|
User-A ' G

Figure 6.6: Initial department A PTACOMA diagram

instances that have to be dhanged can be a dalenge. One could argue that a group
symbal shoud have been used in the first place While that would have solved the
problem in this example, excessve use of the groupsymbal can make the TACOMA
diagrams very dee andit is easy to loase ntrol over who has accessto what.

The solution to these problems is the pdicy paradigm that PTACOMA intro-
duces. In the previous example it would be natural to creae two distinct domains,
one for ead department. Figure 6.6 shows the initial PTACOMA diagram for de-
partment A. In thisdiagram there is one padli cy sayingthat U ser A shoud have acces
to the nodes defined in group G for al entitiesin domain A. Sincethereisno damain
symbal the pdlicy isvalid only for the aurrent domain the palicy isdrawn in, namely
domain A. Since no entity symbal is used in pdicy P the pdlicy is valid for al en-
tities belongng to damain A. The diagram aso shows that domain A has one entity
EntityA.

Figure 6.7 showsthe PTACOMA diagram for department B and containsasingle
policy giving UserB1 and UserB2 accessto the nodes defined in group G for all
entitiesin damain A.

When EntityA2 is added to department A, all that is neeled is to change the
PTACOMA diagram for department A as showninfigure 6.8. Thiswill automaticdly
allow accessfor UserB1 and U serB2 as well.

96 CHAPTER 6. TACOMA AND PTACOMA COMPARISON

P2
7 ' \
/ / \
<<s>> <¢s>> \
/

s v N
L N
............ |
S

UserB1 UserB2 A

Figure 6.7: Initia department B PTACOMA diagram.

N O O
P EntityA EntityA2
y \
<<s>> \
UserA G

Figure 6.8: Modified department A PTACOMA diagram

6.6. SUMMARY 97

/ <<not>>
\

N :
* UserB1

Figure 6.9: Blocking users from department B

| [TACOMA [PTACOMA |

Complexity + -
Scdability - +
Maintainabilit y) +
Distributed spedficaion - +

Table 6.1: TACOMA and PTACOMA we& and strong pants

Ancther advantage with PTACOMA is that the administrator of department A
can easily block accessto all entitiesin department A from usersin department B. In
TACOMA thisis only possble on a per user basis. Figure 6.9 shows a PTACOMA
diagram with a padlicy which dictates that accessto all entities are blocked for all
users in department B except UserB1. The role symbal named * represents a role
symboal that hasthe all attribute set and represents all users.

6.6 Summary

This sdion hasgiven an overview of the strengths and weaknesses of TACOMA and
PTACOMA and have shown that the languages have diff erent usages. TACOMA is
an easy to lean languege that are well suited for small er diagrams where the number
of users and entities are small .

For larger networks with multiple administrators or large number of users and
entities, PTACOMA is better suited because of its scdability. The disadvantage of
PTACOMA isits complexity.

Table 6.1 givesasummary of the wedknesses and strong pants of ead language.

98

CHAPTER 6. TACOMA AND PTACOMA COMPARISON

Chapter 7

Case study: Using PTACOMA to
Model AccessControl inalLarge
Scale Deployment of Passve
Monitoring Probes

UNINETT, the Norwegian NREN, is currently in the processof deploying a large
number of pasgve monitoring probes as part of the GigaCampus projed[45, 46].
These probeswill be deployed bath in the badkbore network aswell asaccesslinksto
customersandwill be based ontechndogyfromthe IST projea LOBSTER[47]. The
deployment on accesslinks of customerswill be based ona coperation between the
customer and UNINETT and bah parties will be &leto use the passve monitoring
probe for seaurity, QoS monitoring, genera network usage statistics and reseach.

One dhalenge in deploying passve monitoring probes in a multi-domain envi-
ronment is privacy and confidentiality issues. With the probes it is posgble to look
deep into the payload of padets which makes it important to have full control over
who uses the probes and what they are used for. It must be passble to monitor adive
users of the probes to seewhat they are doing. Customers shoud be dlowed to see
some of this management information, but not necessarily al the information. This
Is where PTACOMA comes in as a goodmethodfor configuring the accescontrol
of the management system on the monitoring probes.

This chapter provides a detail ed description d how PTACOMA can be used in
this enario.

7.1 Monitoring API

TheMonitoring API(MAPI)[48] isthe key techndogy used in the passve monitoring
probes. MAPI was originally implemented as part of the IST projed SCAMPI[49]
and then improved in LOBSTER.

99

100 CHAPTER 7. CASE STUDY

MAPI was designed for makingthe devel opment of monitoringappli cations quicker
and easier. With MAPI, appli cation programmers can concentrate on what they want
to monitor withou having to know the detail s of the hardware they use to capture
the network traffic. Applications based onMAPI can run ontop o various types of
hardware withou any changes and advanced on-board processng cgpabiliti eson the
network adapter is automaticdly utili zed whenever passble.

MAPI is centered onthe nation o a network flow. A network flow will i nitially
represent al the packets en onthe network by the network adapter, but functions
can then be goplied to the flow to limit the number of padets. These functions can
for example be BPF fiter, sampling, string seach, padket courter etc. When all
functions have been appli ed, the gopli cation can conred to the flow and start reading
the results.

The following code shows an example of a simple gplicaion implemented on
top o MAPI. This applicaion seaches for padets that contain an already known
Internet worm. The worm is easy to deted sinceit aways has destination pat 1234
and awell known pattern can be found ketween 100and 300 byes into the padket.

1: fd=mapi_apply_flow(‘‘/dev/dag0’’);
2: mapi_apply_function(fd,’’BPF FILTER’’,
’’dst port 1234°7);
3: idl=mapi_apply_function(fd,’’PKT_COUNTER’’);
4: mapi_apply function(fd,’’STRING_SEARCH’’,
¢ ‘pattern’’,100,300);
5: id2=mapi_apply_function(fd,’’PKT_COUNTER’’);
6: mapi_apply_function(fd,’’TOFILE’’,
MFF_TCPDUMP,
‘‘worm.trace’’);
7: mapi_connect(fd);
8: while(1) {
9: mapi.read result(fd,idl,&cl);
10: mapi._read result(fd,id2,&c2);
11: printf (¢ ‘BPF match: %1llu
String match: %1llu\n’’,
cl,c2);
12: sleep(10); }

Thefirst thing thisapplication daesisto open anew flow using the device/devdagQ
After that severa functions are gpplied to the flow in lines 2-6. First a BPF filter is
added which restricts the padets in the flow to padkets that have adestination pat
of 1234 A padket counter is then added which is used for counting the number of
padkets that passthroughthe BPF fiter. The ID of the padket courter function is
stored in the variable id1 for future reference when the results are being read.

To locate padkets that contain the string pettern that identifies the worm, a string
seach functionis added and a second padket courter functionis also added to court
the number of padkets that contains the string.

7.1. MONITORING API 101

The last function that is applied stores the padets that has destination pat 1234
and contains the string pattern to afile worm.trace using tcpdump format.

When all functions have been applied, the goplicaion conreds to the flow in
line 7. It is only when the gplicaion conneds to the flow that padets dart being
processed.

The lines 8-12 are used for printing ou status abou the progressof the gplica
tion. It reads the results from the courters and prints out a line saying hov many
padkets that has matched the BPF filter and the string seach. It then slegps for 10
semnds before repeaing the process

When implementing an application using MAPI, the processng d padets con
tinues in the badkgroundeven if the goplicaion slegs. The only adion needed by
the goplicaionisto read and present the results to the user.

7.1.1 Distributed MAPI

Distributed MAPI (DIMAPI)[50] is an extension to MAPI that allows an applica
tion to simultaneously conred to multi ple monitoring probes running MAPI. It is
designed so that most applications that uses MAPI can very easily be extended
to suppat DiMAPI. The main change is in the command mapi_creae_flow and in
mapi_real_results.

When creaing anew MAPI flow it isnow posshbleto na only spedfy the device
but also the host. It isaso passbleto speafy multiple hosts at one time:

fd=mapi_create_flow(‘‘hostl:/dev/dag0,
host2:eth0’’);

This command will conred to bah hostl and hast2 to creade anew MAPI flow
and all subsequent cdlsto mapi_apply_functionand mapi_read_results will be sent to
both hosts. When using multi ple hosts at the same time, mapi _read_results returns an
array of results.

7.1.2 MAPI searity medanisms

MAPI has built i n seaurity functions that makesit possbleto set up rules gedfying
that users have to first apply some spedfic functions to the MAPI flow before they
are dlowed to conred to it. This fedure can for example be used for spedfying
that users are dlowed to conred to all monitoring probes but that they first have
to apply a BPF fiter that filters out al traffic except traffic belongng to their own
organizaion. Thismakesit passbleto do dstributed monitoringin a safe way.

7.1.3 SNMP access

To be ale to tradk who is using MAPI and what they are doing, it is necessary to
instrument MAPI so that the necessary information can be retrieved. For ead flow

102 CHAPTER 7. CASE STUDY

it shoud be passble to seewho creaed the flow and which functions were gpplied
and what arguments were passed to the functions. Thisway it is possbleto ke a
detail ed log o what ead user isdoing.

MAPI aready hasan SNMP MIB[51] that provides ome of thisinformation, so
it is natural to just extend this to provide the misgng information. Usingan SNMP
MIB is aso convenient since NREN’s and customer network administrators are fa-
mili ar with thetechndogy and alrealy have software that can be used for monitoring
the MAPI monitoring probes.

SNMPv3isthe only SNMP versionthat off ers grongauthenticationandisthere-
for the version most likely to be used in the scenario described here. The seau-
rity mechanismsin SNMPv3 are divided into two parts: User-based Seaurity Model
(USM) and View-based AccessControl Model (VACM).

User-based Seaurity Model (USM)

USM is a seaurity model for SNMP that offers drong seaurity and authentication.
The USM spedficaion[14] also definesa MIB that off ers a standardized methodfor
adding and removing wsers that are authorized to accessan SNMP entity. Thisis
dore by adding and deleting entries in the SNMP MIB table usmUserTable.

View-based AccessControl Model (VACM)

VACM isthe only accesscontrol model defined so far for SNMPv3. VACM[15] is
resporsible for deading if an operation is alowed or not based on the identity of
the user. It asumes that the message has alrealy been authenticated by a seaurity
model like USM. VACM is based onthe concept of MIB views. A MIB view isa
subset of the entire MIB avail ablein an SNMP entity and defineswhich MIB objeds
that can be accesd by a cetain user. VACM also defines a standardized MIB for
configuring the accescontrol.
To add accessrights to a user, threeSNMP MIB tables needs modification:

vacmSeaurityToGroupTable maps the user name into a group reme. A user can
only belongto ore group and all users that belong to the same group
have identicd accessrights.

vacmAccessTable maps the group rame and accesstype! into aMIB view.

vacmViewTreeFamilyTable defines the MIB view and deaded whether an OID in
theMIB treeisaccessbleor nat. The MIB view consistsof alist of OIDs
that definesthe nodesinthe MIB treethat are included or excluded from
the accaesrights. To grant accessto only spedfic rows in a table, the
index that distingushes the rows are part of the OID. It isaso posshle
to usewildcardsin the OID. Thismeansthat certain numbersin the OID

1Accesstypesin SNMP can be read, write or notify

7.2. MANAGEMENT INFORMATION 103

ismasked ou and nd considered when deddingif the OID of an request
matches the OIDs gedfied in the vaanViewTredFamil yTable.

A more detailed overview of the seaurity medhanisms in SNMPv3 is provided in
Appendix B.

7.2 Management information

The new MAPI SNMP MIB that provides the necessary information will be divided
into into five different groups which in SNMP are dl organized into tables.
The full MAPI MIB definition can be foundin Appendix F.

7.2.1 Interface

This group provides detailed information about all available interfaces in a probe
that can be used by MAPI. Each entry in the table contains information abou one
interface ad the index to the table is the value of mapilfl ndex.

mapilfindex A unique value, greder that zero, for ead device avail able for monitor-
ingthroughMAPI.

mapilfName A textual string containing the name of the interface The name shoud
uniquely identify the interfacein the monitoring probe. An example of
anameis“ethl”

mapilfDescr A textual string containing information abou the device The string
shoud include the name of the manufadurer, the product name and the
version o the device hardware/software.

mapilfAlias Thisobjed isan “alias’ namefor theinterface & edfied by anetwork
manager, and provides a nonvolatile “hande” for the interface

mapilf Type Integer value spedfying the type of link layer. Works smilar to if Type
described in RFC 1213

mapilf Status The aurrent status of the interface The status can be: adive, realy,
unavail able, linkLost or unknavn.

mapi lf Pkts The total number of padets captured by the interface

mapilf Octets The total number of octets cgptured by the interface

mapi If DroppedPkts The total number of padets dropped by the interface

mapilf LastBufferSize Thetotal number of bytesthat waslast read fromtheinterface

maplf CourterDiscontinuityTime The value of sysUpTime on the most recent occa
sion at which any ore or more of this interfacés courters auffered a
discontinuity.

104 CHAPTER 7. CASE STUDY

7.2.2 Organization

This group provides information abou al organizaions that users who are dl owed
accessto MAPI belongs to. Each entry in the table contains information abou one
organization.

The index to thistableisaunique organizaionD.

mapiOrglD Unique integer value identifying the organizaion.
mapiOrgName Name of the organization.

mapiOrgContad Name of contad person at the organizaion.
mapi OrgContadPhore Phone number for the contad person.

mapi OrgContadEmail Email addressfor the contad person.

7.2.3 User

Groupthat containsinformationabou all users all owed to conred to DIMAPI. Each
entry in the table contains information abou one user.

The index to this table is the ID of the organization that the user belongs to in
additionto aunique user ID.

mapiOrglD Integer value showingwhich organization the user belongs to.
mapiUserID Unique integer value identifying the user.

mapiUserName Name of the user.

mapiUserLoginName Login name of the user.

mapiUserLastLogin Date and time of the last time the user was logged in.
mapiUserTotalFlows Total number of MAPI flows the user has creded.

mapiUserActiveFlows Number of currently adive MAPI flows.

7.2.4 Flow

This group contains alist of al adive and recently closed flows. Each entry in the
table contains information abou one flow.

The index to this table is the organizaion ID and user 1D of the user who ovns
the flow aswell asauniqueflow ID.

mapiOrglD Integer value showingwhich organization the flow belongs to.

mapiUserID Integer value identifying the user the flow belongs to.

7.2. MANAGEMENT INFORMATION 105

mapiFlowlD Unique integer value identifying the flow.

mapi Flowlfl ndex Integer value showing which interfacethisflow isrunnng on
mapi FlowNumFunctions Number of functions appli ed to the flow.

mapi FlowPkts Number of padets cgptured by the flow.

mapFlowOctets Number of octets cgptured by the flow.

mapi FlowDroppedPkts Number of dropped padkets that the flow shoud have cg-
tured.

mapiFlowStart Start time of the flow.

mapiFlowEnd Endtime of the flow. If the flow is dill adivethisvalueisO.

7.2.5 Function

Thisisalist of thefunctionsapplied to adiveflows. It containsinformationabou the
type of functionand the number of padetsthat have been processed by the function.
Ead entry in the table containsinformation abou one function.

The index to this table is the organizaion ID and user ID of the user who ovns
the function, the flow 1D the function belongs to and the function ID.

mapiOrglD Integer value showingwhich organization the function belongsto.
mapiUserID Integer value identifying the user the function belongsto
mapiFlowlD integer value identifying the flow the function belongs to.
mapiFunctiD Unique integer value identifying the function.

mapi FunctPkts Number of padkets captured by the function.

mapi FunctOctets Number of octets captured by the function.

mapi FunctPassedPkts Number of padkets that has passed throughthe function.

mapi FunctDroppedPkts Number of octets that has been dropped by the function.

7.2.6 Argument

Thisis alist of the aguments that were passd to ead function. This information
includes the type of argument and the value. Each entry in the table contains infor-
mation abou one agument.

The index to this table is the organizaion ID and user ID of the user who ovns
the function, the function ID the agument belongs to and the agument ID.

106 CHAPTER 7. CASE STUDY

mapiOrglD Integer value showingwhich organization the agument belongs to.
mapiUserID Integer value showing which user the agument belongs to.
mapiFlowlD Integer value showing which flow the agument belongs to.
mapiFunctiD Integer value showing which function the agument belongs to.

mapiArglD Integer representing the agument ID. For ead function this darts at 1
andincrementswith 1for eat argument.

mapiArgType String that describes the type of argument, eg. integer, float, string
etc.

mapiArgValue String representation o the value of the agument.

7.3 Usingthe MAPI MIB

Administrators can use the mapilnterfacesTable to look at the performanceof MAPI.
If the counter representing dropped padkets on an interfacekeeps increasing it will
usually indicae that the monitoring probe is overloaded and can ha manage to pro-
cesspadkets fast enough

Administrators can also use the mapiFlows table together with functions and ar-
guments to get a detailed overview of the adive MAPI flows. Combining this in-
formation with information from mapiOrganization and mapiUsers tables makes it
possbleto tell exadly whois doing what onthe monitoring probe.

Guest users can use the MAPI MIB to chedk the status of their own flows and to
ched for dropped padkets onthe interfaces.

7.4 Accesscontrol requirements

UNINETT administrators shoud have full accessto al i nformation in the MAPI
MIB. Customer administrators shoud have full accessto all i nfformation onmoni-
toring probes in their own damain, while on remote domains they shoud ony be
able to seeinformation abou guest users from their own damain. This requirement
is summarized in table 7.1 where we can seethat on remote probes the information
avail able to the austomer administrators is limited to entries in the MAPI MIB that
has the same organizaion ID as the administrator.

Guest users shoud only be dlowed accessto their own flows and information
abou avail able interfaces shoud be open for everyone. Thisis suammarized in table
7.2

7.5. SNMPV3 USM AND VA CM CONFIGURATION 107

| Objed | Locd probes | Remote probes |
mapilf Table * *
mapiOrgTable * ORGID()
mapiUserTable * ORGID().*
mapiFlowTable * ORGID().*
mapi FunctTable * ORGID().*
mapiArgTable * ORGID().*
Table 7.1: MAPI MIB accesscontrol for customer administrators
| Objed | All probes |
mapilf Table *

mapiOrgTable ORG().*
mapiUserTable | ORG().UID()
mapiFlowTable | ORG().UID().*
mapiFunctTable | ORG().UID().*
mapiArgTable | ORG().UID().*

Table 7.2: MAPI MIB accesscontrol for guest users

7.5 SNMPv3USM and VACM configuration

Based ontherequirementsfor accesscontrol described inthe previous sdionseveral
entriesin the USM and VACM tables have to be added.

7.5.1 UNINETT administrator

First of al an entry for the UNINETT administrator has to be alded to the us-
mUserTable. This alows the alministrator to accessthe SNMP agent runnng on
the monitoring probes.

Further entries are needed in the VACM tables before the administrator isal owed
to accessany of the MAPI MIB information. To alow full accessto the MAPI MIB,
three entries are needed. One in vaanSeaurity ToGroupTable that maps the seaurity
name of the administrator to an administrator group. Multiple administrators can be
member of this group.

One entry is nealed in the vaanAccessTable to spedfy which view shoud be
assgned the aministrator group and ore entry is needed in vaanViewTreeFami-
lyTable to speafy that the alministrator shoud have full accessthe the entire MAPI
MIB.

7.5.2 Guest users

All guest users need an entry in the usmUserTable to be aleto conred to the SNMP
agent. They also neal ore entry ead in vaanSeaurityToGroupTable and vaanAc-

108 CHAPTER 7. CASE STUDY

cessTable. Since eab guest user shoud only have accssto their own flows, it isnot
posshbleto use one common goupfor all of them.

To spedfy which informationthat shoud be avail able to a guest user, 6 entriesin
vaanViewTred=amilyTable is neaded, one for ead table in the MAPI MIB. These
entries houd use the organization ID and user ID of ead guest user to limit access
to only information belongngto this user.

7.5.3 Customer administrators

Just as for guest users, customer administrators will need their own VACM group
so ore entry is needed in usmUserTable, vaamSeaurity ToGroupTable and vaanAc-
cessTable for eath of them.

On remote probesthe austomer administratorsneals 6 entriesin vaanView Treg~am-
ilyTable to provide accssto al entriesin the MAPI MIB that belongs to the same
organizaion as the alministrator.

Onlocd probesasinge entry in vaamViewTreeFamil yTableis needed to provide
full accessto the entire MAPI MIB.

7.5.4 Full configuration

Asaimingthere ae 15 monitoring probes with one UNINETT administrator, 15 cus-
tomer administrators and 30 dff erent guest users, the full configuration o USM and
VACM on ore of the monitoring probes will result in atotal of 4+ 30«9+ 153+
1+ 14«6 =404entries.

Since the configuration hes to be different on all 15 monitoring probes, as much
as 6060entries are nealed. This clealy shows that hand editing the accssrulesis
not very redistic. It isvery easy to loose trackk of who has accessto what and aher
methods must be used.

7.6 PTACOMA diagrams

Spedfying the accas control requirements for this case study uising PTACOMA is
relatively simple and straight forward. A minimum of threepadlicies are needed, one
for ead user type. It can hovever be convenient to use two pdiciesfor the austomer
administrators, one for accesson locd probes and ore for remote probes.

In addition to these pdlicies there would be 15 dfferent domain symbad's where
ead damain defines the austomer administrator as well as an entity representing the
monitoring probe implementing the MAPI MIB.

7.6.1 UNINETT administrators

The pdlicy providing full accessto the entire MAPI MIB is shown in figure 7.1. In
this palicy we can seethat the UNINETT administrator is granted full accessto the

7.6. PTACOMA DIAGRAMS 109

S
e
UNINETT admin
access

<<s>>
/ &I,f" It
|
....... K N/
S All
UNINETT |
admin v/
MAPI
|
N
A,
A
rfj\. P‘\
mapiMIB

Figure 7.1: PTACOMA diagram for UNINETT administrators

MAPI MIB for al entities of the type MAPI in all domains.

7.6.2 Guest users

The PTACOMA diagram for the guest users are shown in figure 7.2. Here we can
seeone palicy that grants accessto the group “MAPI access’ to al users with the
role “Guest user” . We can also seethat the role symbal “Guest user” has an at-
tribute cdled “mapilndex” and that this attribute has the value “ORGID().UID()".
The purpose of this attributeis shownin figure 7.3.

What this figure shows is the antents of the group “MAPI access and as we
can seethis group gants ome accasto all entities of the type “MAPI”. Full access
is given to mapilf Table and accessto mapiOrgTable is limited to the entry with the
same organizaion ID as the guest user. Accessto the remaining tablesin the MAPI
MIB is limited to the entries with index as gedfied by the atribute “mapilndex”.
In this case this attribute has been set to “ORGID().UID()” which means that guest
users are only allowed to seeinformation abou their own flows and functions.

7.6.3 Customer administrators

Two pdicies are aeaed for the austomer administrators, one for accessto locd
probes and ore for accessto remote probes. Accessto locd probesisvery similar to
the palicy for UNINETT administratorsandis shownin figure 7.4. In thisfigure we
seethat all usersin al domains with the role of “Customer admin” is assgned full

110 CHAPTER 7. CASE STUDY

<>

Guest users

access
! \
<<s>Y N
4 \

bk N
Oy TN
| | | |
N N

All All

|
v |
Vv
Guest user MAPI access

|

|

mapilndex:ORGID().UID(ﬁ

Figure 7.2: PTACOMA diagram for guest users

- MAPI -
- - N ~
_ s/ \ N N
- 7 / \ N
- - 7 N ~
> VZ / \ « ~ -
- - 7 / \ N ~
- 7/ ~
ANE . - \] >
v A 7 \ ~
. ~N
mapilfTable.* . 7 mapiUserTable.Attr(mapilndex) \ mapiFunctTable.Attr(mapilndex) ~
~N
L N N
mapiOrgTable.ORG() mapiFlowTable.Attr(mapilndex) mapiArgTable. Attr(mapilndex)

Figure 7.3: MAPI accessgroup contents

7.7. SUMMARY AND CONCLUSIONS 111

.-'""\-u.,__
{'f >
~—
Customer admin
local access

/ \
<<S>7 \
2 A
P "\\ lrf B "\\
| | | |
I\' _f/ l\'-\._ _f/
All Own
| |
V. Ve
Cu éto mer MAPI
admin |
AN
mapiMIB

Figure 7.4: PTACOMA diagram for locd accessfor customer administrators.

accessto the MAPI MIB. The difference mmpared to the UNINETT administrator
isthat in this pdicy full accessisonly granted to entities of the type “MAPI” in the
users own damain.

The pdicy for remote accasis shown in figure 7.5. This pdlicy is very similar
to the pdlicy for guest users with only two modificaions. First of al the atribute
mapilndex has changed from “ORGID().UID()” to “ORGID()”. This provides ac
cessto information abou al flows and functions belongng to users from the same
organizaionand nd just the austomer administrators own flows and functions. This
palicy is aso orly valid for entities in al except the austomer administrators own
domain.

7.7 Summary and conclusions

The case study presented in this chapter is relatively simple and oy uses a few of
the feaures avail able in the PTACOMA language. Even so it clealy demonstrates
how the PTACOMA language can be used for spedfying accesscontrol in an SNMP
framework.

Hand editing several hunded or even thousands of lines of accesscontrol config-
urationis not scdable. One other aternative auld have been to crede ascript that
automaticdly added and deleted users from the accescontrol for the MAPI MIB.

112 CHAPTER 7. CASE STUDY

Customer admin
remote access

Vs AN
<<S>/> \

ll_.r"'_ "m\. L Nlrf" '“x.\
[| [|
I‘"‘-\._ --I_)' I""-\.__ --J_)'

All AllExceptOwn

I I
v v
S MAPI access
Customer

admin
|

mapilndex:ORGID()Iﬁ

Figure 7.5: PTACOMA diagram for remote accssfor customer administrators

This however has the disadvantage of only working for this edfic goplicaion. If
accessto other SNMP MIBs shoud be configured, anew script would have to be de-
veloped. All the diagrams shown in this case study uses generic PTACOMA fedures
that can be used for all SNMP MIBs.

Using a script aso locks you to the SNMP techndogy. In the future it might be
more suitableto movethe monitoring d MAPI to other techndogieslike WSDM[52]
or NETCONF[53]. Both these techndogies are XML based and as long as the data
model remains the same, the PTACOMA diagrams would still be valid. All that
would be neaded isanew ACL Configurator.

In PTACOMA itisalso easy to add exceptionsto the standard rules. For example
if onesingle user shoud have extended access it iseasy to addwithou loosingtrack
of exadly who hes accessto what.

SincetheMAPI MIB described in thischapter hasnot yet been full y implemented
and UNINETT is dill i n the deployment phase of the monitoring probes, it has not
been possbleto test PTACOMA inthis <enario. The PTACOMA prototype that has
been implemented do nd suppat al the feaures of the PTACOMA language, but
it do suppat enoughto be used in this enario and this prototype is described in
further detailsin Appendix C.

Chapter 8

Conclusions and further work

This chapter provides a conclusion o the work presented in this thesis. It also gives
aquick overview of related work and discusses further work that can be dore.

8.1 Conclusions

The work presented in this thesis darted out as research into finding an easy to use
and highly scdable methodfor spedfying accesscontrol in SNMPv3. Thiswork re-
sulted in the language cdled MIB View Modeling Language (MVML) but it quickly
turned ou that the language could be made more generic and work continued to cre-
ate alanguege that could be used for spedfying and configuring access control in
most appli cations or systems that store informationin atreebased structure.

Two separate languages were then creaed, TACOMA and PTACOMA. TACOMA
isadired generalization d theoriginal MVML languege. Itisvery easy to lean and
use but is best suited for small to medium sized systems. To be &le to cope with
large multi-domain systems, a policy based version o the language, PTACOMA,
was creaed. While abit harder to lean and more difficult to fully utili ze dl the fea
ture of the language, PTACOMA is able to scde to alarge number of users, entities
and large treebased structures.

Theoriginal goal wasto creae alanguage that was both easy to use and was able
to scde to large systems. It proved difficult to fulfill both these goalsin one singe
language but the solution o defining two related languages works well. Depend-
ing onthe complexity of the task at hand, administrators will be &le to chose the
modeling language that best fits their need.

Based onthe experience from the implemented prototype® and detail ed studies
of various case studies li ke the one presented in chapter 7, the two goals of creding
languages that are eay to use and highly scdable seansto have been fully met. The
case study clealy shows that the PTACOMA language is well suited for speafying
accesscontrol in SNMPv3 and the same techniques as presented in this case study

1This prototype s described in Appendix C.

113

114 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

can be used for other emerging network management protocols like NETCONF and
WSDM.

The languages presented in this thesis are dso easy to deploy for new types of
appli cations and systems and can therefor easily be adapted for new use cases. The
only requirement is that they store informationin treebased structures.

8.2 Related work

There ae other modelinglanguages avail ablelike SeaureUML[54] andUMLsed55].
These ae however not modeling languages for spedfying and configuring access
control. They are instead UML extensions to model seaure goplications during de-
velopment.

There ae dso severa generic languages avail able for spedfying pdicieq42).
Most of these languages like Role Definition Language(RDL)[56], RSL9957], Au-
thorization SpedficaionLanguage(ASL)[58] and RBAC are dl text based languages
and are a@ther aimed at more high level pdlicy spedficaion o like RBAC need spe-
cific suppat for the language in the systems that want to useit. With TACOMA and
PTACOMA nomodificaionto existing systems are nealed.

LaSCO[59] isagraphicd language for spedfying seaurity constraintson ojeds.
It focuses on more high level palicies compared to PTACOMA and because of this
it is not always trivial to map the pdlicies to the lower level systems unlessit is
implemented with aLaSCO palicy enforcement framework.

8.3 Further work

So far the prototype implementation o PTACOMA only implements a subset of
the fedures avail able in the language. A full i mplementationis needed to get more
pradicd experiencewith the language to seeif any modificaions are needed.

Morework isaso needed onthe ACL Optimizer to optimizethe number of access
control rules that must be configured in managed entities. Espedally with dyramic
treestructures complex algorithms are neeled to find the most optimized set of rules.

Further research into combining PTACOMA with XACML shoud also be dore.
XACML isdesigned as agenera purpose language that is very versatile and can be
used for spedfying accesscontrol rulesin virtualy al systems. While PTACOMA
will never be an all purpose language asit is pedally designed for systems doring
informationin treebased structures, it still hasabig paentia asagraphica language
for creaing XACML padliciesfor these types of systems.

The main improvement of PTACOMA for better suppat for XACML isin the
constraints. Inthe aurrent version o PTACOMA, the constraint symbal i scompletely
generic withou any restrictions. All the spedfication says is that the symbadl can
contain various attributes that spedfy some kind o constraint. The exad syntax
of these constraints depends on the gplicaion a system being configured. If the

8.3. FURTHER WORK 115

- e
K 2
P1
/ | N
<<s>>" N
P I \
/ % N\
2 T A
R1 Constraint El
I
| v
\/
) O
| 1.4
V
1.5

Figure 8.1: XACML constraintsin PTACOMA

targeted system is XACML, further restrictions can be put on the constraint symbal
so that it better fits the model used in XACML.

In XACML a pdicy can spedfy resources that shoud be dhedked for spedfic
values whil e the padlicy is being evaluated. This can for example be the load of the
system, the number of already logged on wsers etc. XACML defines a strict syntax
for spedfying this. With the aurrent constraint symba in PTACOMA, the XACML
syntax for speafyingthese constraints can be alded as an argument to the symbal. It
might be better however to use the aurrent mechanismsin PTACOMA for spedfying
nodes in the treestructure to graphicaly represents these XACML constraints.

One posshle solutionto thisis shownin figure 8.1. In thisfigure we see asimple
palicy granting users with the role R1 accessto noce 1.4 in entity E1. We can aso
see a onstraint symba with an new constraint function symbad as a diild. This
constraint functionisa “lessthan” function. We can also seethat thisfunctionsymbal
further has a child symbad which isthe node 1.5. What this meansis that this padlicy
isonly vaid if the value of node 1.5 is lessthan a cetain value s Pedfied by an
attribute to the “lessthan” function.

Further work is needed to seehow these technique can be used to fully cover the
posshilitiesin XACML and still be eay to use.

116 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

One other fedure of XACML that can be added to PTACOMA is dependency be-
tween pdicies. XACML defines alanguage for speafying decentralized distributed
rules that can be part of multiple palicies. The language spedfies how these rules
can be combined to give one single result. In large distributed systems this is an
important feaure that shoud be added to PTACOMA.

Appendix A

Lisof Acronyms

ACL
AP
BER
CMIP
DAC
DOM
E-R
HTTP
INCITS
LDAP
MAC
MAPI
MIB
MVML
OASIS
PHP
PMVML

AccessControl List

Application Programming Interface

Basic Encoding Rules

Common Management Information Protocol

Discretionary AccessControl

Document Objed Model

Entity-Relationship

HyperText Transfer Protocol

InterNational Commetteefor Information Techndogy Standards
Lightweight Diredory AccessProtocol

Mandatory AccessControl

Monitoring Applicaion Programming Interface

Management Information Base

MIB View Modeling Language

Organizationfor the Advancement of Structured Information Standards
PHP Hypertext Preprocessor

Policy-based MIB View Modeling Language

PTACOMA Policy-based Tree-based Accesscontrol Modeling Language

RADIUS Remote AuthenticationDial-In User Service

117

118 APHENDIX A. LISOFACRONYMS

RBAC Role-Based AccessControl

SAC SNMP ACL Configurator

SAX Simple APl for XML

SDL Spedficaion and Description Language
SMI Structure of Management Information
SMP Smple Management Protocol

SNMP Smple Network Management Protocol

TACACS Termina AccessController AccessControl System
TACOMA Treebased Accesscontrol Modeling Language
TCSEC Trusted Computer System Evaluation Criteria
UML Unified Modeling Language

WSDM Web Services Distributed Management

XACML Extensible AccessControl Markup Language

XMl XML metadata interchange
XML Extensible Markup Language
XSL Extensible Styleshed Language

XSLT XSL Transformations

Appendix B

Simple Network Management
Protocol

The Simple Network Management Protocol (SNMP) isthe most commonly used pro-
tocol for network management in TCP/IP networks. It was developed to be asimple
protocol that shoud be eay to implement even onentities with limited resources.

B.1 History

The first version o SNMP was released as a propaosed standard in April 1989and
afull standard in May 199Q The release of SNMP was only meant as a temporary
solution as it was expeded that CMIP! over TCP/IP would eventually take over.

It was quickly redized that the first version o SNMP had several shortcomings,
espedally with seaurity and management of large networks. In ealy 1992two pro-
posals for anew SNMP version was given, Seaure SNMP and Simple Management
Protocol (SMP).

In May 1993the best from both these propasals were taken and combined into
SNMPv2. Compared to the first version, SNMPv2 had several i mprovements:

e seaurity
e Manager-to-manager communicaion
e suppat for more transport-services

e more dfedive olledion o large anourt of data

Unfortunately if turned ou that the seaurity medhanisms were too complex and in
1995the seaurity functionswere removed and SNM Pv2c was rel eased which kept the
same wedk seaurity asin thefirst version. Thisled to much confusionand SNMPv2
was never widely deployed.

1Common Management I nformation Protocol, 1 SO standard for network management

119

120 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

Management
ﬁ Protocol
— <_>
Management
Information
Managedentities Managerentities
(agents) (managers)

Figure B.1: SNMP framework

In March 1998 SNMPv3 was first introduced. SNMPv3 has all the other im-
provements of SNMPv2 and also adds drong seaurity and access control. In 2002
SNMPv3 becane afull IETF standard.

B.2 Framework

Figure B.1 shows the basic framework of SNMP. A management system in SNMP
consists of several nodes which traditionaly has been cdled agents, at least one
management station and a protocol used to exchange information. SNMPv3 uses a
new terminology and cdl s bath agents and managements dations for entiti es.

Inside managed entities there is a virtual colledion d management information
cdled aManagement Information Base (MIB). The description o the structure of a
MIB iswritten using a notation cdl ed Structure of Management Information (SM1).

Informationistransported between managed and manager entiti esusingthe SNMP
management protocol.

B.2.1 Management Information Base

The term MIB can have different meaning depending onthe context. It can be the
colledion o al management informationin an entity, but it can a'so mean the doc-
ument that describes a spedfic part of the management information. For example,
people can talk abou the entity MIB or the printer MIB and so on

B.2.2 Structure of Management | nformation

The Structure of Management Information (SMI) is a language used for defining
managed oljeds that can be manipulated using the SNMP protocol. It is based on
a subset of ASN.1 and was design with two main gaals in mind: simplicity and
extensibility.

Every managed objed accessble through SNMP has a name, a syntax and an
encoding. SMI is used to define the names and syntax of these managed olbjeds.
Encoding o managed ojeds isdore using standard BER[60] encoding.

B.3. SNMPV3 REFERENCE MODEL 121

N N

essage Security Security
Processing Subsystem Subsystem

D

1

'

USM
VACM

v2C¢

Com-
munity

3

other
other

LR
!

SNMP entity \ \
SNMP engine
Message " Access
Dispatcher Processing ssuebcsl;g%m Control
Subsystem Subsystem
Application(s)
| Command Generator | Notification Receiver | | Proxy Forwarder |
Command Responder Notification Originator | | Other |

Figure B.2: SNMPv3 reference model

Names

To be aletoidentify managed oljeds, al objedshaveto have aunique namewithin
aMIB. SMI usesthe OBJECT IDENTIFIER?, asequenceof integerswhich traverse
aglobal tree A led in thistreerepresents a single managed ojed and a node with
chil dren represents a alledion o managed oljeds.

B.3 SNMPv3referencemode

One of the goals of SNMPv3 was to make it possgble to change andimprove parts of
the standard withou having to redesign al the comporents. This was acemplished
by using a moduar design. Figure B.2 shows the building Hocks of an SNMPv3
entity which is also the reference model used by the SNMPv3 standard. An SNMP
entity always consists of an SNMP engine and ore or more gplicaions. The SNMP
engine takes care of all the low level message handling routines needed for sending
and recaving messages, including seaurity functions. The gplicaions are internal
applicaions within the SNMP entity. They are resporsible for generating SNMP
messages and respondto receved messages.

20ften cdled an OID

122 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

B.4 User-based Seaurity Model

The User-based Seaurity Model (USM) is a seaurity model for SNMP that offers
strong seaurity and authentication. The USM spedficaions also defines a MIB that
offers a standardized method for adding and removing users that are authorized to
accessan SNMP entity.

USM isorganized into threedistinct moduesthat ead isresporsiblefor diff erent
seaurity services:

Timeliness Provides limited protedion against message delay and replay. Since
SNMP traffic usually goes over unreliable and connedionlesstransport
serviceslike UDP, message strean modificaionsisanatural occurrence
This modue gives protedion against modificaions that are defined as
greder than the normal occurrences.

Authentication Provides srvices for data integrity and data origin authentication.
Dataintegrity preventsthird parties from changingany informationin an
SNMP padket and data origin authentication prevents athird party from
asuming the identity of a trusted user who is authorized to conred to
an SNMP entity.

Privacy preventsthird parties from eavesdroppng onmessages snt between two
SNMP entities.

The USM MIB provides a standardized way of managing the users that are dlowed
to accessan SNMP entity. The initial user has to be aeaed through some other
method than SNMP. Usually thisis dore using a console. After the initial user has
been creded new users can be added and passwvords changed throughSNMP SET
requests. Figure B.3 shows the structure of the USM MIB.

The usmStats table in the USM MIB contains courters that represents diff erent
errors that has occurred since the last time the SNMP engine was restarted. The
usmUser table is the table that controls who has accessto the SNMP engine and the
usmUserSpinLock entry is used as a semaphare to prevent more than one manager
changing the seaet keys at the sametime.

B.4.1 usmUserTable

This table contains information abou al users who are authorized to access the
SNMP entity.

usmUserEnginelD In simple antities this is the ID of that SNMP entity’s SNMP
engine.

usmUserName Name of user in human readable form.

ainpns g1IN INSN :£'ganbiH

snmpUsmMIB < (Sn"pUS"M
(snnphbdul es 15)

usnt at sUnsuppor t edSecLevel s

Ujsﬁgt 4 sNot I nTi meW ndows
busﬁrgt afsbnknownUser Narme
({SHaeh sbnknownEng| nel Ds

(usn'M BChJ ects
h“slq%t a? s4?N ongDi gests
husrr{gt at sbecr yptionErrors
(usnBtats
usnmser Spi nLock
S B ect S [Jusr'ﬁ'?serlr"abl e

(usmVI BQ)] ects usniJser Ent r
(usnlser Tabl e 1

usnv BOonforrmnce usnM BCo Ilance
(snnpUsnvi B KusnM BConf or france 1)

(Hssnm&nfornae\ce 2) (lJuSsnnMB%%aljgls (?L)G’ oup

(S
e

(STHREFY brid

Eng| neI D
e
rée’t':ur)i t yNare

neFrom

bussﬁﬁser Ao riIBr ot ocol
[Jussrr{ﬁser ALY h?(eyChange

(Shsermh Al

t hKeyChange

(SATSERPrY Vb
(SRserBri vi

USHDEE oA P
STLEEFBUbITCE

fiEmt
EJUS s HE?SE r

e
(usnser

ri1vProtocol
r v?(eyChange
i vKeyChange

m—m “,—‘,” m |||—‘||| ||| ||| ||| ||| |l

e %{BriégeType

(At
Entry 13)

T3dONW ALIHNO3S dISVE-43SN t'd

ect

124 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

usmUserSeaurityName Name of user in Seaurity Model i ndependent format. Usu-
aly the same a usmUserName.

usmUserCloneFrom All new users must be doned from an existing user andthisisa
pointer to ancther row in the usmUserTable which contains the original
user.

usmUserAuthProtocol Indicates which authentication protocol that may be used.

usmUserAuthKeyChange Used for changing the seaet authentication key of a user.

usmUserOwnAuthKeyChange Same functionasabovebut can only be used to change
the authentication key of the user who was authenticated.

usmUserPrivProtocol Indicaes which privacy protocol that may be used.
usmUserPrivKeyChange Used for changing the searet privacy key of a user.

usmUserOwnPrivKeyChange Same functionasabowve but can only be used to change
the privacy key of the user who was authenticaed.

usmUserPublic Used for verifying that a key change was succes<ul.
usmUserStorageType Storage type of the row.

usmUserStatus Status of the row.

B.4.2 Adding users

When the initial user has been creaed, additiona user can be alded by cloning an
existing user. The procedure for adding anew user is asfoll ows:

e Crede anew row in usmUserTable by cloning it from the value spedfied in
usmUserCloneFrom and setting usmUserStatus to creaeAndwait. Ched for
errors.

e Ched usmUserSpinLock. If set, wait till it becomes avail able.

e Set usmUserSpinLock.

e Configure authentication and privacy.

e Clea usmUserSpinLock.

e Seat usmUserStatusto adive.

B.5. VIEW-BASED ACCESSCONTROL MODEL 125

B.4.3 Deleting users

To delete auser the value destroy isinserted into the usmUserStatusfield belongngto
the conceptual row in usmUserTable of the user that is being deleted. This procedure
foll ows the recommendations of RFC 257961].

B.4.4 Changing keys

Changing keys are dore by using SNMP ET commands to write to the usmAu-
thKeyChange, usmOwnAuthKeyChange, usmPrivKeyChange or usmOwnPrivKey-
Change. Thereasonwhy there aetwo diff erent attributes that can be used for chang-
ing authentication and privacy keys has to dowith how the View-based AccessCon-
trol Model works. Administratorswho have write accasto the entire usmUserTable
can use usmAuthKeyChange and uismPrivKeyChange to change the seaet keys of
al users. The problem is how to allow al users to change their own passwords. If
usmAuthKeyChange and usmPrivKeyChange were used, the accascontrol system
would have to be updated for ead new user so that he could oy modify his own
keys. To avoid this usmOwnAuthKeyChange and uismOwnPrivKeyChange were in-
troduced. These two attributes can be made writable by everyone sinceit by defini-
tion can only be used to change the users own keys.

When changing keys the usmUserSpinLock shoud be used to avoid conflicts
between multi ple managers accessng uismUserTable & the sametime.

B.5 View-based AccessControl Model

The View-based Access Control Model (VACM) is the only access control model
defined so far for SNMPV3. It isresporsible for deadingif an operationis all owed
or not based ontheidentity of the user. It assumesthat the message has arealy been
authenticated by a seaurity model li ke USM.

VACM is based onthe concept of MIB views. A MIB view is a subset of the
entire MIB available in an SNMP entity and defines which MIB objeds that can be
accesxd bya cetain user. MIB views are asggned to groupswhich in turn users are
assgnto. There ae dso different viewsfor GET, SET and NOTIFY operations.

It is possble to configure the acceas control medhanisms through the VACM
MIB. Its dructure is shown in figure B.4. In this MIB there ae four tables that are
used to deade the accsscontrol rights:

e vaanContextTable. A real only table that defines the locdly avail able con-
texts.

e vaanSeaurityToGroupTlable. Maps the combination o a seaurityName and
seaurityModel into a groupName.

e vaanAccessTable. The combination o groupName, context and seaurity in-
formationis mapped into aMIB view.

126 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL
e vaanViewTredFamilyTable. Defines the MIB view and deddes if an OID is

accesble or not.

Figure B.5 shows the processof deddingif accessis alowed. The processis as
follows:

1. seaurityName and seaurityModel defines who wants access This information
is used to accessthe vaamSeaurity ToGroupTable to get the groupthat the user
belongsto.

2. contextName representswhere accasiswanted, seaurityModel and seaurityL evel
spedfies how accessis being dore and viewType says why accessis wanted.
This information is used to access vaanAccesslable to get the name of the
SNMP view.

3. objed-type, what, and oljed-instance, which, taken together forms the OID
that isbeingaccessed. Thisisused asindex to the vaanViewTred~amilyTable
and adedsionisreaded whether accessis all owed or not.

B.5.1 vacmSeaurityToGroupTable

vaanSeaurityModel seaurity model used

vaanSeaurityName seaurity name that is saurity model i ndependent
vaanGroupName name of groupthisentry belongsto

vaanSeaurity ToGroupStorageType storage type of the row
vaanSeaurity ToGroupStatus datus of the row

B.5.2 vacmAccessTable

vaanAccesLontextPrefix name of colledion d management information
vaanAccessSeaurityModel seaurity model used
vaanAccessSeaurityLevel seaurity level used

vaanAccesLontextMatch speafieshow vaanAccesLContextPrefix shoud be matched,
exad or prefix.

vaanAccesRealViewName name of read view
vaanAccesdNriteViewName name of write view
vaanAccesdNotidyViewName name of naotify view
vaanAccessStorageType storage type of the row

vaanAccessStatus datus of the row

'gainbH

ainonais g1 N IND VA

rrOont extTable_ vacnContextEntry vacnCont ext Name
(M BCbj ect's 1) (vacnCont exf Tabl'e 1) (vacnoamex(E try 1)
vacnﬁecurlt Mod
(vac YT Emry 1)
i A
vacnBecurityToG oupTable vacnSecurl thoG' oupEntry acf@ pName P v
vacnM BCbj ect's” 2) (vacmBecur it yToGroupTabl e 1) vacngecuri anl_nu o §E
fensecur { Ups! or ageType
vacl urll 1; ntr ég
acnsecur f NALY ué atus
(vacnsecur i t yToGr oupEnt r
ect s vacnmAccessCont ext Pr Efl X
(smrpvacrrM /26 Eﬁsessséécﬁrltywbdel
&¢ c?:sessaé‘ééczﬁrl tyLevel
yagmagcesstnioy 9
AT Gt ext e ch
vacmAccessTabl e vachmAccessEntry ac EeSiRadvi ewname
(vacni BGbj ect s 4) (vacmaccessTabl e 1) vacmiecessEn .fp
acmﬁ cesswi eVi ewNane
vacmccess
acmpccess t9f yVi ewName
SEESEIG D og
aCICCEsS o)ageType
AR
ShmpvacmMIB v >
ules 16) vacnvi e¥vTrFeeFamI Vi ewNane
vacnyi.ewTr eeFant |l yEn
%/acmlleew ree t| Slljbl ree
vacm/ e i nLock %lvacmewTrfeFanH r
vacmM BV ews ————(vac é iR
(vacmM BObj ects 5) ac ew eeFani | yTabl e vacnVi ewTr eeFam IlyEntry Vasmy ewTrockam n ryT’i
(vacmM BVi e (Vacnvi ewTr eeFani | yTabre 1) G e_\rN rFee E i y
yacm(enlrcefa 1
ac WA EF, ora eType
etV IR T 9etyp
acnyi ewlr eel at us
(vacnVi ewTr eeFam | yEmr
v vacnM BConpl i ances vacnM B liance

(acn\t/l E&%n; or mnce < vacmi BeoRlr dmence 1) vag Bg? &ances 1)
acn)
i (ke BCont ronance 2) (vacnM BGr oups 1)

q'd

T3AdON TTOHLNOOSSFOIV a3sva-MAIN

LCT

128 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

ecurityName

vacmSecurity-
securityModel ToGroupTable groupName

ontextName

ecurityModel vacmAccessTable
ecurityLeveI viewName,
@_whyp—viewType
@._wha>———sobject-type vacmViewTreeFamilyTable | yesino
object-instance N

Figure B.5: VACM accesscontrol process

B.5.3 vacmViewTreeFamilyTable

vaanViewTred=amilyViewName name for afamily of subtrees that form aview.
vaanViewTred=amilySubtree an OID that pointsto aportion o the MIB tree

vaanViewTredramilyMask used to control which elementsof thevaanViewTred~am-
ilySubtreeshoud be regarded as relevant when determiningwhich view
an OID isin. Ead bitinthe mask correspondsto an element inthe OID.
A lindicaes exad match andaO indicaesawild cad.

vaanViewTred=amilyType type of view. Can beinclude or exclude.
vaanViewTred=amil yStorageType storage type of the row

vaanViewTred=amil yStatus datus of the row

B.5.4 CreatingMIB views

MIB views are aeded by popuating the vaanViewTred=amilyTable. This table
containsalist of objed identifiersthat are ather included or excluded from the view.
Objed identifiersinthistable spedfies aubtreesinthe MIB. Thismeansthat all objed
identifiers that belongto this subtree ae included or excluded.

vaanViewTred=amilyMask is used to introducewil dcards in the spedfied objea
identifier. Thisis mostly used to include one spedfic row in atable.

Imagine aMIB, mibA, that has atable, tableA, with three olumns, tableAcol 1,
tableAcol2 and tableAcol3. The mlumn tableAcoll is used as index. Table B.1
shows the Objed identifiers used in mibA.

Now assume that a user, Userl, is given accessto the row where tableAcol1 =
2. This means that Userl shoud be given accessto the following Objed Identi-
fiers: 1.2.3.4.5.1.y.2ye {2,3}. Table B.2 shows how this entry would look in the
vaanViewTred=amilyTableif the name of the view was view1.

B.5. VIEW-BASED ACCESSCONTROL MODEL 129

| Name | Objed identifier |
mibA 1.2.34
tableA 1.2.345
tableAentry 123451
tableAcoll 1234511
tableAcol2 1.2.345.1.2
tableAcol3 1.2.3.45.1.3

Table B.1: Objed identifiers for mibA

Objed Value
vaanViewTred=amilyViewName viewl
vaanViewTred=amilySubtree | 1.2.3.4.5.1.0.2
vaanViewTred~amil yMask 11111101
vaanViewTredramilyType 1

Table B.2: vaanViewTred=amilyTable entries

130 APFENDIX B. SIMPLE NETWORK MANAGEMENT PROTOCOL

Appendix C

Prototype implementation of
TACOMA and PTACOMA for
configuring SNM Pv3 accesscontrol

This chapter describes a prototype implementation o both TACOMA and PTA-
COMA that was used for configuring SNMPv3 entities. It starts by describing some
key tecdhndogies used by the implementation, gives an overview of the design and
detail sabou how it was implemented.

C.1 Introduction

The main pupaose of implementing a prototype of the TACOMA and PTACOMA
languages was to verify that the spedficaions of thelanguages are corred and do na
have any we&knesses. The implementation shoud therefore be considered as proof
of concept and nd a fully developed applicaion that can be used for configuring
accesscontrol in devices.

The prototype for TACOMA has suppat for most of the spedficaion o the lan-
guage but it do attempt to doany optimizationat all of the number of accesscontrol
rules that must be configured. The PTACOMA prototype only implements a subset
of the language. Even if not everything is implemented, there is enoughsuppat for
fedures of the language to achieve ahigh confidencein that the language spedfica
tioniscorred.

It was desirable to implement a prototype as quickly as possble and since perfor-
mance was not an isuue, PHP was chasen as the implementation language as it has
goodsuppat for XML.

131

132 APHENDIX C. PROTOTYPE IMPLEMENTATION

C.1.1 DOM and SAX

The Document Objed Model (DOM) and Simple API for XML (SAX) are two dif-
ferent APIs both designed to provide programmers easy accessto the information
stored in XML documents. While they both have the same goal, they use two very
diff erent approaches to achievingthisgoal.

DOM is the most advanced APl and gves the programmer accessto the whole
XML document througha hierarchicd objed model. What this meansis that DOM
reads an entire XML document and creaes atreeof objeds that foll ows the structure
of the document. The programmer can then interad with these objedsto get hold of
the information.

The avantage of DOM s that it takes care of creaing an ojed model of the
XML document. Aslongas it isnatura to use an ojed model li ke thisin an ap-
plication, DOM is easy to use. The problem is that for many applicaions, the tree
based ohjed model of DOM is not the most useful one. When an appli cation wants
to useitsown oljed mode, it isusualy better to use SAX.

As the name gplies, SAX is asimple API for accessng information stored in
XML documents. It does not crede any oljed model automaticdly so the program
must do that manually. The advantages of SAX isthat it isfaster sinceit do nd have
to read all of the XML document before processng elements, and the programmer
has complete freedom to creae his own objed model.

What SAX provides is an interfacethat creaes a series of events based onthe
XML document being parsed. Events are for example aeaed when the beginning
andend o anew XML tag is encourtered or for the text between the two tags. The
programmer has to implement a handler for these events and this handler can then
crede the objed model asit seesfit.

For the TACOMA and PTACOMA parsers implemented here, DOM was used
together with an XPath library for seachingthe DOM tree

C.2 TACOMA Parser

The implementation described here is an implementation d a generic TACOMA
Parser that parses a TACOMA XML document and ouputs a list of accesscontrol
rules. These rules can then be used by a TACOMA SNMP ACL Configurator to
configure SNMP entities. The overal design d the TACOMA Parser is hown in
figure C.1.

The main classis tacoma which is cdled from the command line and takes the
TACOMA XML file as an argument. The first thing the tacoma classdoesisto parse
the TACOMA XML file using the built in DOM parser in PHP and then uses an
XPath library to gofind all symbals defined in the dl Symbadls tag in the TACOMA
XML file.

For eat of the symbadls a new classlike User, Entity, Children, Node, Suliree
TableRow or Groupiscreaed. These dassesthen representsall the avail ablesymbals

C.2. TACOMA PARSER 133

<<use>>
MainDiagram [— — — — — — — — — >AccessRule
A~ <<use>> N
v |
L = Relation < — — Symbol|

<<use>> lr

Children Entity Group Node Subtree| |TableRow

N N 7 7
AN
\\ \\ / , _

L e - - - = = tacoma

Figure C.1: TACOMA Parser design

in the TACOMA diagram. The next step isto find alist of all main diagramsin the
XML document and for eat diagram a new MainDiagram classis creaed. This
class takes as an argument the list of all classes representing the symbadls in the
document. When the dassiscreaed it will findall relationsbelongngto this edfic
diagram.

For eath MainDiagramclass the method getAccessRulesis cdled which returns
all the accssrulesfor this diagram.

C.21 getAccesRules

The getAccesRules is where dl the work of finding the acces control rules is
dore. This method is implemented by most classes and works reaursively. The
main tacoma class smply cdls getAccesRules on ead MainDiagram class The
MainDiagram classwill i n turn look for al users belongngto this diagram and cdl
getAccesRules for eath user.

The getAccessRules method onsymbal classestakes as an argument all relations
belongng to the diagram. So when this methodis cdled ona User class this class
will find all relations that goes from this symbal to other symbadls to find all the
children symbadls. It will t hen cdl getAccessRules on ead of these symbals.

Thiswill continue in areaursive manner urtil one of the symbals node, children,
subtree or tableRow is readied. These symbals can na have any children so what
they dowhen getAccesRulesis cdled isto creae anew AccessRule classto repre-

134 APHENDIX C. PROTOTYPE IMPLEMENTATION

sent the accasrule of this symbal. An Entity classwill | oopthroughall AccessRules
classes creded by chil dren symbolsand add itself as the entity the accasrules apply
for.

C.3 Configuring SNMP accesscontrol

For eath main diagram in the TACOMA XML document, the accescontrol rules
will be printed to standard ouput. This is then read by the SNMP ACL Config-
urator (SAC) which configures the SNMP access control in all entities. SAC first
loops throughall users and credes a series of SNMP set commands that creaes the
necessary entriesin the USM M IB.

For eath user the SNMP set commands are then generated to crede the necessary
entriesin the VACM MIB tables. Thisis a simple prototype implemented as proof
of concept and contains no ogimizaion. So even if two users have the same acces
control rights, two different groups are aeded in the VACM MIB.

C.4 Limitations

The implementation o the TACOMA Parser suppats most feaures of the language.
The main feaure missngis suppat for EOID functions. It is EOID functions that
makes it passble to creae more generic accascontrol rules.

The SNMP ACL Configurator also has some limitations. Wildcards are not im-
plemented which meansthat the table row symbal i snot suppated. The child symbadl
isalso na suppated as this requires SAC to be ale to read SNMP MIB definitions
to find the dhildren of a spedfic OID.

C.5 PTACOMA implementation

The PTACOMA Parser implementation foll ows the same design principals as the
TACOMA Parser implementation and is therefor not described in detail here. The
PTACOMA implementation oy implements a subset of the PTACOMA language.
The only functions it suppats inside an EOID is the &tr() function which allows
attributes st to roles or users to be inserted in the EOID at configuration time. In
additionto thisthereisno suppat for domain modeling o policy views.

Enoughfedures are however implemented so that it is posgble to use the proto-
type in a scenario as described in Chapter 7. This can be demonstrated by a trivial
example using the standard ifTable from the InterfaceMIB[62].

In this example we have two damains, D1 and D2, which bah has one user, U1
andU 2, and oredomain, E1 and E2. Both users are asggned role R1 and the entities
are of type T1. Thisis showninfigure C.2 and C.3.

We then creae two pdicies, one that defines locd accessfor entitiesin the users
own damain and orefor remote accasfor entitiesin other domains. For locd access

C.5. PTACOMA IMPLEMENTATION 135

ifindex=1
y D
Ul El
|
| |
v |
':::_': .._\J./._.
R1 T1

Figure C.2: Domain D1

ifindex=2

u2 E2
| |
v |
: _..N/._.__‘
R1 T

Figure C.3: Domain D2

136 APHENDIX C. PROTOTYPE IMPLEMENTATION

f"f.m‘“m. f"’z.H“‘“- rf._ ﬂ“‘ |ff'_ ﬂ“*.
| |
\ x,j‘ & x,,ﬁ A,
Local access Remote access D1 D2
/
\ / \
<<s>£ \ <<s¥> \
/
- l& N — - / N ———
et Oy e N
an. I | ssaduan I |
N S N
R1 Own R1 AllExceptOwn
|
v |
e Ve
T1

. ifTable.attr(iflndex)
ifTable

Figure C.4: ifTable pdlicy

we grant full accessto the ifTable while on remote entities only accessto entries
with iflndex defined by the user attribute i f Indexis granted. These two pdicies are
shownin figure C.4.

To verify that this works as expeded we use the PTACOMA prototype to config-
ure the accascontrol in the two entities. We start off with an empty accesscontrol
configurationin the two entities:

$ snmpwalk -v3 -uul -1 authNoPriv -a MD5 -A 12341234 el ifTable
IF-MIB::ifTable = No more variables left in this MIB View

(It is past the end of the MIB tree)
$ snmpwalk -v3 -uul -1 authNoPriv -a MD5 -A 12341234 e2 ifTable
IF-MIB::ifTable = No more variables left in this MIB View

(It is past the end of the MIB tree)

What these two commands do, isto use snmpwalk to list al entriesin ifTable first
for entity E1 andthen E2 for user U 1. Aswe can seefrom the output, user Ulisnot
all owed to see any entriesin the table so the returned list of valuesis empty.

We can nov runthe PTACOMA PHP script for configuring the accescontrol in
the two entiti es based onthe two pdicies that we showed in figure C.4.

This <ript parses the PTACOMA diagrams, cdculates the accsscontrol rules
for ead entity and then conred to the entities and configures the accss control
througha series of SNMP set messages to configure the VACM MIB:

$ ptacoma.php iftable.xml

C.6. CONCLUSIONS 137

Paring XML document:
New symbol: Local access
New symbol: R1
New symbol: Own
New symbol: T1
New symbol: ifTable
New symbol: Remote access
New symbol: AllExceptOwn
New symbol: ifTable.attr(ifIndex)
New symbol: D1
New symbol: D2
New symbol: Ul
New symbol: R1
New symbol: E1
New symbol: T1
New symbol: U2
New symbol: E2
Configuring entity: E1
User Ul
User U2
Configuring entity: E2
User Ul
User U2

After the script has finished we can ched that user U 1 now seestwo interfacesin the
ifTable onthe locd entity:

$ snmpwalk -v3 -uul -1 authNoPriv -a MD5 -A 12341234 el ifDescr
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB: :ifDescr.2 = STRING: ethO

On the remote entity, only information abou the interfacewith ifindex 1 is shown:

$ snmpwalk -v3 -uul -1 authNoPriv -a MD5 -A 12341234 e2 ifDescr
IF-MIB::ifDescr.1 = STRING: lo

User U2 has full accessto the locd entity E2 while on E1 only information abou
interfacewith iflndex 2 is shown:

$ snmpwalk -v3 -uu2 -1 authNoPriv -a MD5 -A 12341234 el ifDescr
IF-MIB::ifDescr.2 = STRING: ethO

$ snmpwalk -v3 -uu2 -1 authNoPriv -a MD5 -A 12341234 e2 ifDescr
IF-MIB::ifDescr.1 = STRING: lo

IF-MIB::ifDescr.2 = STRING: ethO

C.6 Conclusions

The implementation o these prototypes, while not complete and with some short-
comings, still proves that the TACOMA and PTACOMA languages can be used for
configuring accesscontrol. The prototypes also clealy demonstrates the usefulness

138 APHENDIX C. PROTOTYPE IMPLEMENTATION

of having a generic TACOMA and PTACOMA parser that can bah generate stan-
dard accesscontrol rules that are passed to the SNMP ACL Configurator. This de-
sign made it possgble to use the SNMP ACL Configurator for both TACOMA and
PTACOMA withou any changes.

Whil e the prototype only suppats SNMP, it shoud be eay and straightforward
to add suppat for other applicaionslike LDAP or XML based applicaions.

Appendix D

TACOMA XML Schema

<?xml version="1.0"7>

<schema targetNamespace="http://wuw.oslebo.com/thesis/tacoma"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tacoma="http://www.oslebo.com/thesis/tacoma">

<annotation>

<documentation xml:lang="en"> Tree-based Access Control Modeling Language
schema. 2006 Arne Oslebo </documentation>

</annotation>

<element name="tacoma">

<complexType>

<sequence>

<element ref="tacoma:allSymbols" minOccurs=’1’ maxOccurs=’
1°/>

<element ref="tacoma:mainDiagram" minOccurs=’1’
maxOccurs=’unbounded’ />

<element ref="tacoma:groupDiagram" minOccurs=’0’
maxOccurs=’unbounded’ />

</sequence>

<attribute name="version" type="string" fixed="1.0" use="required"
/>

</complexType>

<unique name="securityname">

<selector xpath=".//tacoma:user/tacoma:securityName"/>
<field xpath="."/>

</unique>

<key name="symbolKey">

<selector
xpath=".//tacoma:user|.//tacoma:entity|.//tacoma:groupWith
outDiagram|.//tacoma:groupWithDiagram|.//tacoma:children|.//tacoma:nodel|.//tacoma:subtree|
.//tacoma:tableRow" />

<field xpath="@id"/>

</key>

<keyref name="symbolKeyRef" refer="tacoma:symbolKey">
<selector xpath=".//tacoma:symbol"/>

<field xpath="@ref"/>

</keyref>

<key name="includeFromKey">

<selector
xpath=".//tacoma:groupWithoutDiagram|.//tacoma:user|.//tac
oma:entity"/>

<field xpath="./@id"/>

</key>

139

140 APFENDIX D. TACOMA XML SCHEMA

<keyref name="includeFromKeyRef" refer="tacoma:includeFromKey">
<selector xpath=".//tacoma:include/tacoma:from"/>

<field xpath="."/>

</keyref>

<key name="excludeFromKey">

<selector

xpath=".//tacoma:groupWithoutDiagram| .//tacoma:user"/>

<field xpath="./@id"/>

</key>

<keyref name="excludeFromKeyRef" refer="tacoma:excludeFromKey">
<selector xpath=".//tacoma:exclude/tacoma:from"/>

<field xpath="."/>

</keyref>

<keyref name="toKeyRef" refer="tacoma:symbolKey">
<selector xpath=".//tacoma:to"/>

<field xpath="."/>

</keyref>

<key name="groupDiagramKey">

<selector xpath=".//tacoma:groupDiagram"/>

<field xpath="./@id"/>

</key>

<keyref name="groupDiagramKeyRef" refer="tacoma:groupDiagramKey">
<selector xpath=".//tacoma:group"/>

<field xpath="./tacoma:diagram"/>

</keyref>

</element>

<element name="groupDiagram">

<complexType>

<sequence>

<element ref="tacoma:symbols" minOccurs="1" maxOccurs="1"/
>

<element ref="tacoma:relations" minOccurs="0" maxOccurs="1
Il/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="mainDiagram">

<complexType>

<sequence>

<element ref="tacoma:accessType" minOccurs="1" maxOccurs="
1||/>

<element ref="tacoma:name" minOccurs="1" maxOccurs="1"/>
<element ref="tacoma:symbols" minOccurs="1" maxOccurs="1"/
>

<element ref="tacoma:relations" minOccurs="1" maxOccurs="1
u/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="relations">

<complexType>

<sequence>

<group ref="tacoma:relationGroup" minOccurs="0"
maxOccurs="unbounded" />

</sequence>

</complexType>

</element>

141

<group name="relationGroup">

<choice>

<element ref="tacoma:include"/>

<element ref="tacoma:exclude"/>
</choice>

</group>

<element name="include">

<complexType>

<sequence>

<element ref="tacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="tacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>

</element>

<element name="exclude">

<complexType>

<sequence>

<element ref="tacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="tacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>

</element>

<element name="symbols">

<complexType>

<sequence>

<element ref="tacoma:symbol" minOccurs="1" maxOccurs="unbo
unded" />

</sequence>

</complexType>

</element>

<element name="symbol">
<complexType>

<attribute name="ref" type="IDREF"/>
</complexType>

</element>

<element name="allSymbols">

<complexType>

<sequence>

<group ref="tacoma:symbolGroup" minOccurs=’1’
maxOccurs=’unbounded’ />

</sequence>

</complexType>

</element>

<group name="symbolGroup">
<choice>
<element ref="tacoma:children"/>
<element ref="tacoma:entity"/>
<element ref="tacoma:groupWithoutDiagram"/>
<element ref="tacoma:groupWithDiagram"/>
<element ref="tacoma:node"/>
<element ref="tacoma:subtree"/>
<element ref="tacoma:tableRow"/>
<element ref="tacoma:user"/>
</choice>
</group>

<element name="children">
<complexType>
<sequence>

142 APFENDIX D

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="entity">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:address"/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="groupWithoutDiagram">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>
</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="groupWithDiagram">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

</sequence>

<attribute name="diagram" type="IDREF" use="required"/>
<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="node">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="subtree">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:eoid"/>

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<element name="tableRow">
<complexType>
<sequence>
<group ref="tacoma:commonAttributes"/>
<element ref="tacoma:eoid"/>
<element ref="tacoma:index"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

. TACOMA XML SCHEMA

<element name="user">

<complexType>

<sequence>

<group ref="tacoma:commonAttributes"/>

<element ref="tacoma:securityName" minOccurs="1"
maxOccurs="unbounded" />

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

</element>

<group name="commonAttributes">
<sequence>

<element ref="tacoma:name" minOccurs="1" maxOccurs="1"/>
<element ref="tacoma:description" minOccurs="0" maxOccurs="1"/>
<element ref="tacoma:attr" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</group>

<element name="eoid" type="string"/>
<element name="index" type="string"/>
<element name="address" type="string"/>
<element name="diagram" type="IDREF"/>
<element name="id" type="ID"/>
<element name="name" type="string"/>
<element name="description" type="string"/>
<element name="accessType" type="string"/>
<element name="delimiter" type="tacoma:char"/>
<element name="wildcard" type="tacoma:char"/>
<element name="escape" type="tacoma:char"/>
<element name="from" type="IDREF"/>
<element name="to" type="IDREF"/>
<simpleType name="char">
<restriction base="string">
<length value="1"/>
</restriction>
</simpleType>
<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required
||/>
</extension>
</simpleContent>
</complexType>
</element>
<element name="securityName">
<complexType>
<simpleContent>
<extension base="string">

<attribute name="password" type="string" use="opti
onal"/>

<attribute name="certificate" type="string" use="o
ptional"/>

</extension>

</simpleContent>

</complexType>

</element>

</schema>

143

144 APFENDIX D. TACOMA XML SCHEMA

Appendix E

PTACOMA XML Schema

<?xml version="1.0"7>

<schema targetNamespace="http://www.oslebo.com/thesis/ptacoma"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ptacoma="http://www.oslebo.com/thesis/ptacoma">

<annotation>
<documentation xml:lang="en"> Policy Tree-based Access Control Modeling
Language schema. 2006 Arne Oslebo </documentation>
</annotation>

<element name="ptacoma'">
<complexType>
<sequence>
<element ref="ptacoma:allSymbols" minOccurs=’1’ maxOccurs=’1’/>
<element ref="ptacoma:mainDiagram" minOccurs=’1’ maxOccurs=’1’/>
<element ref="ptacoma:mainGroupDiagram" minOccurs=’0’
max0Occurs=’unbounded’ />
<element ref="ptacoma:roleDefGroupDiagram" minOccurs=’0’
max0Occurs=’unbounded’ />
<element ref="ptacoma:subjectsGroupDiagram" minOccurs=’0’
max0Occurs=’unbounded’ />
<element ref="ptacoma:policyViewDefGroupDiagram" minOccurs=’0’
max0Occurs=’unbounded’ />
<element ref="ptacoma:targetsGroupDiagram" minOccurs=’0’
maxOccurs=’unbounded’ />
<element ref="ptacoma:constraintsGroupDiagram" minOccurs=’0’
maxOccurs=’unbounded’ />
<element ref="ptacoma:typeDefGroupDiagram" minOccurs=’0’
maxOccurs=’unbounded’ />
<element ref="ptacoma:usersAndDomainsGroupDiagram" minOccurs=’0’
maxOccurs=’unbounded’ />
<element ref="ptacoma:entitiesAndDomainsGroupDiagram"
minOccurs=’0’ maxOccurs=’unbounded’/>
<element ref="ptacoma:domainModDefGroupDiagram" minOccurs=’0’
max0Occurs=’unbounded’ />
<element ref="ptacoma:typesEntitiesDomainsGroupDiagram"
minOccurs=’0’ maxOccurs=’unbounded’/>
</sequence>
<attribute name="version" type="string" fixed="1.0" use="required"/>
</complexType>

<unique name="securityname">
<selector xpath=".//ptacoma:user/ptacoma:securityName"/>
<field xpath="."/>

</unique>

<key name="mainDiagramSymbolKey">

145

146 APHENDIX E. PTACOMA XML SCHEMA

<selector
xpath=".//ptacoma:domain|.//ptacoma:mainGroupDiagram|.//ptacoma:groupW0Dia
gram"/>
<field xpath="@id"/>
</key>
<keyref name="mainDiagramSymbolKeyRef"
refer="ptacoma:mainDiagramSymbolKey">
<selector
xpath=".//ptacoma:mainDiagram/ptacoma:symbols/ptacoma:symbol|.//ptacoma:ma
inGroupDiagram/ptacoma: symbols/ptacoma:symbol"/>
<field xpath="Qref"/>
</keyref>
<key name="mainDiagramFromSymbolKey">
<selector xpath=".//ptacoma:groupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="mainDiagramFromSymbolKeyRef"
refer="ptacoma:mainDiagramFromSymbolKey">
<selector
xpath=".//ptacoma:mainDiagram/ptacoma:relations/ptacoma:include/ptacoma:fr
om|.//ptacoma:mainDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:mainGr
oupDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:mainGroupDiagram/ptac
oma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="roleDefSymbolKey">
<selector
xpath=".//ptacoma:rolel|.//ptacoma:roleDefGroupDiagram|.//ptacoma:groupW0Di

agram"/>
<field xpath="@id"/>
</key>
<keyref name="roleDefSymbolKeyRef" refer="ptacoma:roleDefSymbolKey">

<selector
xpath=".//ptacoma:roleDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:roleDe
fGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</keyref>
<key name="roleDefFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:user|.//ptacoma:usersAndDomain
sGroupDiagram"/>
<field xpath="@id"/>
</key>
<keyref name="roleDefFromSymbolKeyRef"
refer="ptacoma:roleDefFromSymbolKey">
<selector
xpath=".//ptacoma:roleDef/ptacoma:relations/ptacoma:include/ptacoma:from| .
//ptacoma:roleDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:roleDefDiagram
/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:roleDefDiagram/ptacoma:relation
s/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="policyDefSymbolKey">
<selector
xpath=".//ptacoma:policy|.//ptacoma:policyDefGroupDiagram|.//ptacoma:group
WODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="policyDefSymbolKeyRef" refer="ptacoma:policyDefSymbolKey">
<selector
xpath=".//ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:poli
cyDefGroupDiagram/ptacoma: symbols/ptacoma:symbol" />
<field xpath="Q@ref"/>
</keyref>

<key name="SDPolicyDefSymbolKey">
<selector
xpath=".//ptacoma:policy|.//ptacoma:SDPolicyDefGroupDiagram|.//ptacoma:gro
upWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="SDPolicyDefSymbolKeyRef"
refer="ptacoma:SDPolicyDefSymbolKey">
<selector
xpath=".//ptacoma:SDPolicyDef/ptacoma:symbols/ptacoma:symbol]|.//ptacoma:SD
PolicyDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</keyref>

<key name="subjectsSymbolKey">
<selector
xpath=".//ptacoma:rolel|.//ptacoma:subjectsGroupDiagram|.//ptacoma:groupW0D

iagram"/>
<field xpath="@id"/>
</key>
<keyref name="subjectsSymbolKeyRef" refer="ptacoma:subjectsSymbolKey">

<selector
xpath=".//ptacoma:subjects/ptacoma:symbols/ptacoma:symbol]|.//ptacoma:subje
ctsGroupDiagram/ptacoma:symbols/ptacoma:symbol" />
<field xpath="Q@ref"/>

</keyref>
<key name="subjectsFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:role|.//ptacoma:domainModDefDi
agram|.//ptacoma:domain"/>
<field xpath="@id"/>
</key>
<keyref name="subjectsFromSymbolKeyRef"
refer="ptacoma:subjectsFromSymbolKey">
<selector
xpath=".//ptacoma:subjects/ptacoma:relations/ptacoma:include/ptacoma:from|
.//ptacoma:subjects/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:subjectsDiag
ram/ptacoma:relations/ptacoma:include/ptacoma:from| .//ptacoma:subjectsDiagram/ptacoma:rela
tions/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="policyViewDefSymbolKey">
<selector
xpath=".//ptacoma:children|.//ptacoma:node|.//ptacoma:subtree|.//ptacoma:t
ableRow| .//ptacoma:policyViewDefGroupDiagram|.//ptacoma:groupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="policyViewDefSymbolKeyRef"
refer="ptacoma:policyViewDefSymbolKey">
<selector
xpath=".//ptacoma:policyViewDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:
policyViewDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</keyref>
<key name="policyViewDefFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:typel.//ptacoma:typesEntitiesD
omainsDiagram|.//ptacoma:domain|.//ptacoma:entity"/>
<field xpath="@id"/>
</key>
<keyref name="policyViewDefFromSymbolKeyRef"
refer="ptacoma:policyViewDefFromSymbolKey">
<selector
xpath=".//ptacoma:policyViewDef/ptacoma:relations/ptacoma:include/ptacoma:

147

148 APHENDIX E. PTACOMA XML SCHEMA

from|.//ptacoma:policyViewDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:po
licyViewDefDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:policyViewDef
Diagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="targetsSymbolKey">
<selector
xpath=".//ptacoma:children|.//ptacoma:typel.//ptacoma:policyViewl|.//ptacom
a:entity|.//ptacoma:nodel|.//ptacoma:subtreel|.//ptacoma:tableRow|.//ptacoma:targetsGroupDia
gram| .//ptacoma:groupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="targetsSymbolKeyRef" refer="ptacoma:targetsSymbolKey">
<selector
xpath=".//ptacoma:targets/ptacoma:symbols/ptacoma:symbol|.//ptacoma:target
sGroupDiagram/ptacoma: symbols/ptacoma:symbol" />
<field xpath="@ref"/>

</keyref>
<key name="targetsFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:typel.//ptacoma:domainModDiagr
am|.//ptacoma:domain|.//ptacoma:entity"/>
<field xpath="@id"/>
</key>
<keyref name="targetsFromSymbolKeyRef"
refer="ptacoma:targetsFromSymbolKey">
<selector
xpath=".//ptacoma:targets/ptacoma:relations/ptacoma:include/ptacoma:from| .
//ptacoma:targets/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:targetsDiagram
/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:targets/ptacoma:relations/ptaco
ma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="constraintsSymbolKey">
<selector
xpath=".//ptacoma:constraint|.//ptacoma:constraintsGroupDiagram|.//ptacoma
:groupWODiagram" />
<field xpath="@id"/>
</key>
<keyref name="constraintsSymbolKeyRef"
refer="ptacoma:constraintsSymbolKey">
<selector
xpath=".//ptacoma:constraints/ptacoma:symbols/ptacoma:symbol]|.//ptacoma:co
nstraintsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</keyref>
<key name="constraintsFromSymbolKey">
<selector xpath=".//ptacoma:groupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="constraintsFromSymbolKeyRef"
refer="ptacoma:constraintsFromSymbolKey">
<selector
xpath=".//ptacoma:constraints/ptacoma:relations/ptacoma:include/ptacoma:fr
om|.//ptacoma:constraints/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:constr
aintsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:constraintsDiagram/
ptacoma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="typeDefSymbolKey">
<selector
xpath=".//ptacoma:typel.//ptacoma:typeDefGroupDiagram|.//ptacoma:groupW0Di
agram"/>

149

<field xpath="@id"/>
</key>
<keyref name="typeDefSymbolKeyRef" refer="ptacoma:typeDefSymbolKey">
<selector
xpath=".//ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:typeDe
fGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</keyref>
<key name="typeDefFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:entity|.//ptacoma:entitiesAndD
omainsGroupDiagram"/>
<field xpath="@id"/>
</key>
<keyref name="typeDefFromSymbolKeyRef"
refer="ptacoma:typeDefFromSymbolKey">
<selector
xpath=".//ptacoma:typeDef/ptacoma:relations/ptacoma:include/ptacoma:from| .
//ptacoma:typeDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:typeDefDiagram
/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:typeDefDiagram/ptacoma:relation
s/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="usersAndDomainsSymbolKey">
<selector
xpath=".//ptacoma:user|.//ptacoma:usersAndDomainsGroupDiagram|.//ptacoma:g
roupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="usersAndDomainsSymbolKeyRef"
refer="ptacoma:usersAndDomainsSymbolKey">
<selector
xpath=".//ptacoma:usersAndDomains/ptacoma:symbols/ptacoma:symbol]|.//ptacom
a:usersAndDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>

</keyref>
<key name="usersAndDomainsFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:user|.//ptacoma:domain|.//ptac
oma:domainModDefGroupDiagram"/>
<field xpath="@id"/>
</key>
<keyref name="usersAndDomainsFromSymbolKeyRef"
refer="ptacoma:usersAndDomainsFromSymbolKey">
<selector
xpath=".//ptacoma:usersAndDomains/ptacoma:relations/ptacoma:include/ptacom
a:from|.//ptacoma:usersAndDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacom
a:usersAndDomainsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:usersAn
dDomainsDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="entitiesAndDomainsSymbolKey">
<selector
xpath=".//ptacoma:entity|.//ptacoma:entitiesAndDomainsGroupDiagram|.//ptac
oma:groupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="entitiesAndDomainsSymbolKeyRef"
refer="ptacoma:entitiesAndDomainsSymbolKey">
<selector
xpath=".//ptacoma:entitiesAndDomains/ptacoma:symbols/ptacoma:symbol]|.//pta
coma:entitiesAndDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</keyref>

150 APHENDIX E. PTACOMA XML SCHEMA

<key name="entetiesAndDomainsFromSymbolKey">
<selector
xpath=".//ptacoma:groupW0Diagram|.//ptacoma:entity|.//ptacoma:domain|.//pt
acoma:domainModDefGroupDiagram"/>
<field xpath="@id"/>
</key>
<keyref name="entetiesAndDomainsFromSymbolKeyRef"
refer="ptacoma:entetiesAndDomainsFromSymbolKey">
<selector
xpath=".//ptacoma:entitiesAndDomains/ptacoma:relations/ptacoma:include/pta
coma:from|.//ptacoma:entitiesAndDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//
ptacoma:entitiesAndDomainsDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacom
a:entitiesAndDomainsDiagram/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="domainModDefSymbolKey">
<selector
xpath=".//ptacoma:domain|.//ptacoma:domainModDefGroupDiagram|.//ptacoma:gr
oupWODiagram"/>
<field xpath="@id"/>
</key>
<keyref name="domainModDefSymbolKeyRef"
refer="ptacoma:domainModDefSymbolKey">
<selector
xpath=".//ptacoma:domainModDef/ptacoma:symbols/ptacoma:symbol|.//ptacoma:d
omainModDefGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</keyref>
<key name="domainModDefFromSymbolKey">
<selector xpath=".//ptacoma:groupWODiagram|.//ptacoma:domain"/>
<field xpath="@id"/>
</key>
<keyref name="domainModDefFromSymbolKeyRef"
refer="ptacoma:domainModDefFromSymbolKey">
<selector
xpath=".//ptacoma:domainModDef/ptacoma:relations/ptacoma:include/ptacoma:f
rom|.//ptacoma:domainModDef/ptacoma:relations/ptacoma:exclude/ptacoma:from|.//ptacoma:doma
inModDefDiagram/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma:domainModDefDiag
ram/ptacoma:relations/ptacoma:exclude/ptacoma:from" />
<field xpath="."/>
</keyref>

<key name="typesEntitiesDomainsSymbolKey">
<selector
xpath=".//ptacoma:typel.//ptacoma:entity|.//ptacoma:typesEntitiesDomainsGr
oupDiagram|.//ptacoma:groupW0Diagram"/>
<field xpath="@id"/>
</key>
<keyref name="typesEntitiesDomainsSymbolKeyRef"
refer="ptacoma:typesEntitiesDomainsSymbolKey">
<selector
xpath=".//ptacoma:typesEntitiesDomains/ptacoma:symbols/ptacoma:symboll|.//p
tacoma:typesEntitiesDomainsGroupDiagram/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</keyref>
<key name="typesEntitiesDomainsFromSymbolKey">
<selector

xpath=".//ptacoma:groupW0Diagram|.//ptacoma:domain|.//ptacoma:entity|.//pt
acoma:type"/>
<field xpath="@id"/>
</key>
<keyref name="typesEntitiesDomainsFromSymbolKeyRef"
refer="ptacoma:typesEntitiesDomainsFromSymbolKey">
<selector
xpath=".//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:include/p

tacoma:from|.//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from
| .//ptacoma:typesEntitiesDomains/ptacoma:relations/ptacoma:include/ptacoma:from|.//ptacoma
:typesEntitiesDomains/ptacoma:relations/ptacoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

</element>

<element name="allSymbols">
<complexType>
<sequence>

<element ref="ptacoma:children" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:constraint" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:domain" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:entity" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:groupWODiagram" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:node" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:policy" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:policyView" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:role" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:subtree" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:tableRow" minOccurs="0"
maxOccurs="unbounded" />

<element ref="ptacoma:type" minOccurs="0" maxOccurs="unbounded"/>

<element ref="ptacoma:user" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>
</element>

<element name="children">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:eoid"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="constraint">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="domain">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:scope" minOccurs=’0’ maxOccurs=’1’/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="entity">
<complexType>
<sequence>

151

152 APHENDIX E. PTACOMA XML SCHEMA

<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:address"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="groupWODiagram">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name='"node">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:eoid"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="policy">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:accessType"/>
<element ref="ptacoma:policyType"/>
<element ref="ptacoma:priority" minOccurs=’0’ maxOccurs=’1’/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="policyView">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="role">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:all" minOccurs=’0’ maxOccurs=’1’/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="subtree">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:eoid"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="tableRow">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:eoid"/>
<element ref="ptacoma:index"/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="type">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:all" minOccurs=’0’ maxOccurs=’1’/>
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="user">
<complexType>
<sequence>
<group ref="ptacoma:commonAttributes"/>
<element ref="ptacoma:securityName" minOccurs="1"
max0Occurs="unbounded" />
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
</element>

<element name="mainGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:mainDiagramContents" minOccurs="1"
maxOccurs="unbounded" />
</sequence>
<attribute name="id" type="ID" use="required"/>
</complexType>
<key name="mainDiagramGroupFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="mainDiagramGroupFromKeyRef"
refer="ptacoma:mainDiagramGroupFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="mainDiagramGroupToKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:SDPolicyDef/ptacoma:symbols/
ptacoma:symbol |ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|ptacoma:roleDef/ptacoma:sy
mbols/ptacoma:symbol|ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|ptacoma:policyViewDef/
ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="mainDiagramGroupToKeyRef"
refer="ptacoma:mainDiagramGroupToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

153

154

<field xpath="."/>
</keyref>

</element>

<element name="mainDiagram">

<complexType>

<sequence>

<group ref="ptacoma:mainDiagramContents" minOccurs="1"
maxOccurs="unbounded" />

</sequence>

<attribute name="id" type="ID" use="required"/>
</complexType>

<key name="mainDiagramFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="mainDiagramFromKeyRef" refer="ptacoma:mainDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="mainDiagramToKey">
<selector
xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:SDPolicyDef/ptacoma: symbols/
ptacoma:symbol |ptacoma:policyDef/ptacoma:symbols/ptacoma:symbol|ptacoma:roleDef/ptacoma:sy
mbols/ptacoma:symbol|ptacoma:typeDef/ptacoma:symbols/ptacoma:symbol|ptacoma:policyViewDef/
ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="mainDiagramToKeyRef" refer="ptacoma:mainDiagramToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

</element>

<group name="mainDiagramContents">

APHENDIX E. PTACOMA XML SCHEMA

<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:policyDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:SDPolicyDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:policyViewDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:roleDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:typeDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

</sequence>

</group>

<element name="policyDef">

<complexType>
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:subjects" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:targets" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:constraints" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:subject" minOccurs="1"

maxOccurs="unbounded" />
<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>

</sequence>

</complexType>

155

<key name="policyFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="policyFromKeyRef" refer="ptacoma:policyFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from|ptacoma:subject/ptacoma: from"/>
<field xpath="."/>
</keyref>

<key name="policyToKey">
<selector
xpath="ptacoma:constraints/ptacoma:symbols/ptacoma:symbol|ptacoma:targets/
ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="policyToKeyRef" refer="ptacoma:policyToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

<key name="policySubjectToKey">
<selector xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="policySubjectToKeyRef" refer="ptacoma:policySubjectToKey">
<selector xpath="ptacoma:subject/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="SDPolicyDef">
<complexType>
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:subjects" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:constraints" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:subject" minOccurs="1"
maxOccurs="unbounded" />
<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
<key name="SDpolicyFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="SDpolicyFromKeyRef" refer="ptacoma:SDpolicyFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from|ptacoma:subject/ptacoma: from"/>
<field xpath="."/>
</keyref>

<key name="SDpolicyToKey">
<selector
xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol|ptacoma:constraints
/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="SDpolicyToKeyRef" refer="ptacoma:SDpolicyToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>

156 APHENDIX E. PTACOMA XML SCHEMA

</keyref>

<key name="SDpolicySubjectToKey">
<selector xpath="ptacoma:subjects/ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</key>

<keyref name="SDpolicySubjectToKeyRef"
refer="ptacoma:SDpolicySubjectToKey">
<selector xpath="ptacoma:subject/ptacoma:to"/>
<field xpath="."/>

</keyref>

</element>

<group name="subjectsDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="subjects">
<complexType>
<sequence>
<group ref="ptacoma:subjectsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="subjectsFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModeDef /ptacoma:symbol
s/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="subjectsFromKeyRef" refer="ptacoma:subjectsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="subjectsToKey">
<selector
xpath="ptacoma:symbols/ptacoma:symbol |ptacoma:domainModeDef/ptacoma:symbol
s/ptacoma:symbol" />
<field xpath="@ref"/>
</key>
<keyref name="subjectsToKeyRef" refer="ptacoma:subjectsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

</element>
<element name="subjectsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:subjectsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="subjectsDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModeDef/ptacoma:symbol
s/ptacoma:symbol" />

157

<field xpath="Q@ref"/>
</key>
<keyref name="subjectsDiagramFromKeyRef"
refer="ptacoma:subjectsDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="subjectsDiagramToKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModeDef /ptacoma:symbol
s/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="subjectsDiagramToKeyRef"
refer="ptacoma:subjectsDiagramToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

</element>

<group name="policyViewDefDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:typesEntitiesDomains" minOccurs="0"
maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="policyViewDef">
<complexType>
<sequence>
<group ref="ptacoma:policyViewDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
</element>
<element name="policyViewDefGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:policyViewDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
</element>

<group name="targetsDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="targets">
<complexType>
<sequence>
<group ref="ptacoma:targetsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="targetsFromKey">

158 APHENDIX E. PTACOMA XML SCHEMA

<selector
xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="targetsFromKeyRef" refer="ptacoma:targetsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="targetsToKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModeDef /ptacoma:symbol
s/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="targetsToKeyRef" refer="ptacoma:targetsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

</element>
<element name="targetsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:targetsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="targetsDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="targetsDiagramFromKeyRef"
refer="ptacoma:targetsDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="targetsDiagramToKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol |ptacoma:domainModeDef /ptacoma:symbol
s/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="targetsDiagramToKeyRef" refer="ptacoma:targetsDiagramToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>

</element>

<group name="constraintsDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>

159

</sequence>
</group>
<element name="constraints">
<complexType>
<sequence>
<group ref="ptacoma:constraintsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="constraintsFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="constraintsFromKeyRef" refer="ptacoma:constraintsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="constraintsToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="constraintsToKeyRef" refer="ptacoma:constraintsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="constraintsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:constraintsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="constraintsDiagramFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="constraintsDiagramFromKeyRef"
refer="ptacoma:constraintsDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="constraintsDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</key>

<keyref name="constraintsDiagramToKeyRef"
refer="ptacoma:constraintsDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="roleDefDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="1" maxOccurs="1"/>

160 APHENDIX E. PTACOMA XML SCHEMA

<element ref="ptacoma:usersAndDomains" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="1" maxOccurs="1"/>
</sequence>
</group>
<element name="roleDef">
<complexType>
<sequence>
<group ref="ptacoma:roleDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>

<key name="roleDefFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:usersAndDomains/ptacoma:symb
ols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="roleDefFromKeyRef" refer="ptacoma:roleDefFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="roleDefToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="roleDefToKeyRef" refer="ptacoma:roleDefToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="roleDefGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:roleDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="roleDefDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol |ptacoma:usersAndDomains/ptacoma:symb
ols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="roleDefDiagramFromKeyRef"
refer="ptacoma:roleDefDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="roleDefDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="roleDefDiagramToKeyRef" refer="ptacoma:roleDefDiagramToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>

161

</keyref>
</element>

<group name="typeDefDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:entitiesAndDomains" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="typeDef">
<complexType>
<sequence>
<group ref="ptacoma:typeDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>

<key name="typeDefFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:entitiesAndDomains/ptacoma:s
ymbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="typeDefFromKeyRef" refer="ptacoma:typeDefFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="typeDefToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="typeDefToKeyRef" refer="ptacoma:typeDefToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="typeDefGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:typeDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>

<key name="typeDefDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:entitiesAndDomains/ptacoma:s
ymbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="typeDefDiagramFromKeyRef"
refer="ptacoma:typeDefDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="typeDefDiagramToKey">

162 APHENDIX E. PTACOMA XML SCHEMA

<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</key>

<keyref name="typeDefDiagramToKeyRef" refer="ptacoma:typeDefDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="usersAndDomainsDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="usersAndDomains">
<complexType>
<sequence>
<group ref="ptacoma:usersAndDomainsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="usersAndDomainsFromKey">
<selector
xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="usersAndDomainsFromKeyRef"
refer="ptacoma:usersAndDomainsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="usersAndDomainsToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="usersAndDomainsToKeyRef"
refer="ptacoma:usersAndDomainsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="usersAndDomainsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:usersAndDomainsDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="usersAndDomainsDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="usersAndDomainsDiagramFromKeyRef"
refer="ptacoma:usersAndDomainsDiagramFromKey">

163

<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="usersAndDomainsDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</key>

<keyref name="usersAndDomainsDiagramToKeyRef"
refer="ptacoma:usersAndDomainsDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="entitiesAndDomainDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="entitiesAndDomains">
<complexType>
<sequence>
<group ref="ptacoma:entitiesAndDomainDiagramContents"
minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
<key name="entitiesAndDomainsFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="entitiesAndDomainsFromKeyRef"
refer="ptacoma:entitiesAndDomainsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="entitiesAndDomainsToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="entitiesAndDomainsToKeyRef"
refer="ptacoma:entitiesAndDomainsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="entitiesAndDomainsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:entitiesAndDomainDiagramContents"
minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>

164 APHENDIX E. PTACOMA XML SCHEMA

<key name="entitiesAndDomainsDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="entitiesAndDomainsDiagramFromKeyRef"
refer="ptacoma:entitiesAndDomainsDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="entitiesAndDomainsDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>

</key>

<keyref name="entitiesAndDomainsDiagramToKeyRef"
refer="ptacoma:entitiesAndDomainsDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="domainModDefDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:logicrelations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="domainModDef">
<complexType>
<sequence>
<group ref="ptacoma:domainModDefDiagramContents" minOccurs="1"
maxOccurs="1"/>
</sequence>
</complexType>
<key name="domainModDefFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="domainModDefFromKeyRef" refer="ptacoma:domainModDefFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="domainModDefToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Qref"/>
</key>
<keyref name="domainModDefToKeyRef" refer="ptacoma:domainModDefToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>
</keyref>
</element>
<element name="domainModDefGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:domainModDefDiagramContents" minOccurs="1"

165

maxOccurs="1"/>

</sequence>

</complexType>

<key name="domainModDefDiagramFromKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>

</key>

<keyref name="domainModDefDiagramFromKeyRef"
refer="ptacoma:domainModDefDiagramFromKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>

<field xpath="."/>

</keyref>

<key name="domainModDefDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="@ref"/>

</key>

<keyref name="domainModDefDiagramToKeyRef"
refer="ptacoma:domainModDefDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<group name="typesEntitiesDomainsDiagramContents">
<sequence>
<element ref="ptacoma:symbols" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:domainModDef" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:relations" minOccurs="0" maxOccurs="1"/>
</sequence>
</group>
<element name="typesEntitiesDomains">
<complexType>
<sequence>
<group ref="ptacoma:typesEntitiesDomainsDiagramContents"
minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
<key name="typesEntitiesDomainsFromKey">
<selector
xpath="ptacoma:symbols/ptacoma: symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="typesEntitiesDomainsFromKeyRef"
refer="ptacoma:typesEntitiesDomainsFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="typesEntitiesDomainsToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>
</key>
<keyref name="typesEntitiesDomainsToKeyRef"
refer="ptacoma:typesEntitiesDomainsToKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>
<field xpath="."/>

166 APHENDIX E. PTACOMA XML SCHEMA

</keyref>
</element>
<element name="typesEntitiesDomainsGroupDiagram">
<complexType>
<sequence>
<group ref="ptacoma:typesEntitiesDomainsDiagramContents"
minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
<key name="typesEntitiesDomainsDiagramFromKey">
<selector
xpath="ptacoma:symbols/ptacoma:symbol|ptacoma:domainModDef/ptacoma:symbols
/ptacoma:symbol"/>
<field xpath="@ref"/>
</key>
<keyref name="typesEntitiesDomainsDiagramFromKeyRef"
refer="ptacoma:typesEntitiesDomainsDiagramFromKey">
<selector
xpath="ptacoma:relations/ptacoma:include/ptacoma:from|ptacoma:relations/pt
acoma:exclude/ptacoma:from"/>
<field xpath="."/>
</keyref>

<key name="typesEntitiesDomainsDiagramToKey">
<selector xpath="ptacoma:symbols/ptacoma:symbol"/>
<field xpath="Q@ref"/>

</key>

<keyref name="typesEntitiesDomainsDiagramToKeyRef"
refer="ptacoma:typesEntitiesDomainsDiagramToKey">
<selector

xpath="ptacoma:relations/ptacoma:include/ptacoma:to|ptacoma:relations/ptac
oma:exclude/ptacoma:to"/>

<field xpath="."/>

</keyref>

</element>

<element name="relations">
<complexType>
<sequence>
<group ref="ptacoma:relationGroup" minOccurs="0"
max0Occurs="unbounded" />
</sequence>
</complexType>
</element>

<group name="relationGroup">
<choice>
<element ref="ptacoma:include"/>
<element ref="ptacoma:exclude"/>
</choice>
</group>

<element name="logicrelations">
<complexType>
<sequence>
<group ref="ptacoma:relationGroup" minOccurs="0"
max0Occurs="unbounded" />
</sequence>
</complexType>
</element>

<group name="logicrelationGroup">
<choice>
<element ref="ptacoma:include"/>
<element ref="ptacoma:exclude"/>
<element ref="ptacoma:logical"/>

</choice>
</group>

<element name="logical">
<complexType>
<sequence>
<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>
<attribute name="type" type="string" use="required"/>
</complexType>
</element>

<element name="include">
<complexType>
<sequence>
<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
</element>

<element name="subject">
<complexType>
<sequence>
<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
</element>

<element name="exclude">
<complexType>
<sequence>
<element ref="ptacoma:from" minOccurs="1" maxOccurs="1"/>
<element ref="ptacoma:to" minOccurs="1" maxOccurs="1"/>
</sequence>
</complexType>
</element>

<element name="symbols">
<complexType>
<sequence>

<element ref="ptacoma:symbol" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>
</element>

<element name="symbol">
<complexType>
<attribute name="ref" type="IDREF"/>
</complexType>
</element>

<group name="commonAttributes">
<sequence>
<element ref="ptacoma:name" minOccurs="1" maxOccurs="1"/>

<element ref="ptacoma:description" minOccurs="0" maxOccurs="1"/>
<element ref="ptacoma:attr" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</group>

<element name="accessType" type="string"/>
<element name="id" type="ID"/>

<element name="name" type="string"/>
<element name="description" type="string"/>

167

168 APHENDIX E. PTACOMA XML SCHEMA

<element name="priority" type="integer"/>
<element name="address" type="string"/>
<element name="eoid" type="string"/>
<element name="index" type="string"/>
<element name="from" type="IDREF"/>
<element name="to" type="IDREF"/>
<element name="all">
<simpleType>
<restriction base="string">
<enumeration value="yes"/>
<enumeration value="no"/>
</restriction>
</simpleType>
</element>
<element name="policyType">
<simpleType>
<restriction base="string">
<enumeration value="min"/>
<enumeration value="max"/>
<enumeration value="exact"/>
</restriction>
</simpleType>
</element>
<element name="scope">
<simpleType>
<restriction base="string">
<enumeration value="all"/>
<enumeration value="siblings"/>
<enumeration value="children"/>
</restriction>
</simpleType>
</element>
<element name="attr">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name="securityName">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="password" type="string" use="optional"/>
<attribute name="certificate" type="string" use="optional"/>
</extension>
</simpleContent>
</complexType>
</element>

</schema>

Appendix F

MAPI MIB

MAPI-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32, Counter64,
Gauge32, enterprises FROM SNMPv2-SMI

DisplayString, TimeStamp
FROM SNMPv2-TC

IANAifType FROM IANAifType-MIB;

uninett OBJECT IDENTIFIER ::= { enterprises 2428 }
uninettExperiment OBJECT IDENTIFIER ::= { uninett 2428 }

mapiMIB MODULE-IDENTITY
LAST-UPDATED "0307070000Z"
ORGANIZATION "LOBSTER Consortium"
CONTACT-INFO
"URL: http://www.ist-lobster.org
Email: infoQ@ist-lobster.org

Editor: Arne Oslebo

UNINETT

Postal: N-7465 Trondheim
Norway

Email: Arne.Oslebo@uninett.no"

DESCRIPTION
"The MIB module to describe Monitoring API related objects."

::= { uninettExperiment 124 }

mapiMIBObjects OBJECT IDENTIFIER ::= { mapiMIB 1 }
-- mibTraps OBJECT IDENTIFIER ::= { mapiMIB 2 }
-- mibMIBConformance OBJECT IDENTIFIER ::= { mapiMIB 3 }

—— Interfaces group ¥kkkkkkkkkkkkkkkkkkkkkrkkkohrkkkkkkkkkohkkkokkokkkkokokkkkkok
-- The interface group provides information about interfaces that are
-- available in MAPI for monitoring

mapilfTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiIlfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about each avaiable interface"
::= { mapiMIBObjects 1 }

169

170 APHENDIX F. MAPI MIB

mapilfEntry OBJECT-TYPE
SYNTAX MapiIfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table provides information about a
specific interface."
INDEX { mapiIfIndex }
::= { mapilfTable 1 }

MapiIfEntry ::= SEQUENCE
{

mapiIfIndex

mapilfName

mapiIfDescr

mapilfAlias

mapiIfType

mapilfStatus

mapiIlfPkts

mapiIfOctets

mapilfDroppedPkts

mapilfLastBufferSize

mapilfCounterDiscontinuityTime

}

mapiIfIndex OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each device available

for monitoring through MAPI. It is recommended that the values are
assigned contiguously starting from one and remain constant from
one re-initialization of the system to the next re-initialization"

::={ mapilfEntry 1 }

mapiIfName OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the name of the interface. The name should

uniquely identify the interface in the host system. An example of a device
name is ’/dev/eth1’"

::={ mapiIfEntry 2 }

mapiIfDescr OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"A textual string containing information about the interface. The
string should include the name of the manufacturer, the product
name and the version of the device hardware/software."

::={ mapilfEntry 3 }

mapiIfAlias OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is an ’alias’ name for the interface as
specified by a network manager, and provides a non-volatile
’handle’ for the device.

On the first instantiation of an interface, the value of

mapiIfAlias associated with that device is the zero-length
string. As and when a value is written into an instance of
mapiIfAlias through a network management set operation, then the
agent must retain the supplied value in the mapilfAlias instance

associated with the same interface for as long as that device remains

instantiated, including across all re-initializations/reboots of the
network management system, including those which result in a change of
the device’s mapiIfIndex value."

::= { mapilfEntry 4 }

mapiIfType OBJECT-TYPE

SYNTAX IANAifType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The type of interface. Additional values for ifType are
assigned by the Internet Assigned Numbers Authority (IANA),
through updating the syntax of the IANAifType textual
convention."

::= { mapiIfEntry 5 }

mapiIfStatus OBJECT-TYPE
SYNTAX INTEGER32 {

active(1), -- currently being used for measurements
ready(2), -- ready to be used for measurements
unavailable(3), -- unavailable for measurements
linkLost(4), -- network link is down

unknown(5) -- status of interface can not be determined
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current status of the interface."
::={ mapilfEntry 6 }

mapiIfPkts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of packets captured by the interface.

Discontinuities in the value of this counter can occur at
re-initialization of the management system, and at other times as
indicated by the value of mapilfCounterDiscontinuityTime."

::={ mapilfEntry 7 }

mapilfOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets captured by the interface.

Discontinuities in the value of this counter can occur at
re-initialization of the management system, and at other times as
indicated by the value of mapilfCounterDiscontinuityTime."

::={ mapilfEntry 8 }

mapilfDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The total number of dropped packets during packet capture by the
interface.

171

172 APHENDIX F. MAPI MIB

Discontinuities in the value of this counter can occur at
re-initialization of the management system, and at other times as
indicated by the value of mapilfCounterDiscontinuityTime."

::={ mapilfEntry 9 }

mapilfLastBufferSize OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets that was last read from the interface."
::={ mapiIfEntry 10 }

mapiIfCounterDiscontinuityTime OBJECT-TYPE

SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime on the most recent occasion at which
any one or more of this interface’s counters suffered a
discontinuity."

::= { mapilfEntry 11 }

-- mapiOrganizationTable #kkkkskskkkkskkkkskkkokskokkokkkkokkokkohokokokdokkkokkkokokkodokkkodokk ook

mapiOrgTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiOrgEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about organizations that are allowed access to MAPI"
::= { mapiMIBObjects 2 }

mapiOrgEntry OBJECT-TYPE
SYNTAX MapiOrgEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table provides information about a
specific interface."
INDEX { mapiOrgID }
::= { mapiOrgTable 1 }

MapiOrgEntry ::= SEQUENCE
{

mapiOrgID

mapiOrgName

mapiOrgContact

mapiOrgContactPhone

mapiOrgContactEmail
}

mapiOrgID OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION

"A unique value, greater than zero, for each organization that has

access to MAPI. It is recommended that the values are
assigned contiguously starting from one and remain constant from
one re-initialization of the system to the next re-initialization"

::={ mapiOrgEntry 1 }

mapiOrgName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
MAX-ACCESS read-only
STATUS current

173

DESCRIPTION
"A textual string containing the name of the organization"
::={ mapiOrgEntry 2 }

mapiOrgContact OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the name of the contact person for this

organization"

::={ mapiOrgEntry 3 }

mapiOrgContactPhone OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the phone number for the contact person for this

organization"

::={ mapiOrgEntry 4 }

mapiOrgEmail OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..64))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"A textual string containing the email address for the contact person for this

organization"

::={ mapiOrgEntry 5 }

- mapiUserTab]_e 3k >k 3k ok 3k ok ok ok 3k ok 3k ok ok ok ok ok ok ok ok Sk ok sk ok ok 3k ok 3k ok sk ok sk ok sk ok ok 3k 3k ok sk ok sk ok ok ok >k 3k >k 3k ok sk >k Xk

mapiUserTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about organizations that are allowed access to MAPI"
::= { mapiMIBObjects 3 }

mapiUserEntry OBJECT-TYPE
SYNTAX MapiUserEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table provides information about a
specific interface."
INDEX { mapiOrgID mapiUserID }
::= { mapiUserTable 1 }

MapiUserEntry ::= SEQUENCE
{

mapiUserID

mapiUserName

mapiUserLoginName

mapiUserLastLogin

mapiUserTotalFlows

mapiUserActiveFlows

}

mapiUserID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value, greater than zero, for each user that has
access to MAPI. It is recommended that the values are

174 APHENDIX F. MAPI MIB

assigned contiguously starting from one and remain constant from
one re-initialization of the system to the next re-initialization"
::={ mapiUserEntry 1 }

mapiUserName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual string containing the full name of the user"
::={ mapiUserEntry 2 }

mapiUserLoginName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual string containing the login name of the user"
::={ mapiUserEntry 3 }

mapiUserLastLogin OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Date and time for when the last time the user connected to MAPI"
::={ mapiUserEntry 4 }

mapiUserTotalFlows OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of flows created by the user"
::={ mapiUserEntry 5 }

mapiUserActiveFlows OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of currently active flows owned by the user"
::={ mapiUserEntry 6 }

—— mapiFlowTable kkkskkkskkkskkokkskskkokkokokkokkokokkokkokokkokokokkok dokkokok ok ok ok ko ok Hok ko

mapiFlowTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiFlowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about active or resently closed MAPI flows"
::= { mapiMIBObjects 4 }

mapiFlowEntry OBJECT-TYPE
SYNTAX MapiFlowEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table provides information about a
specific flow."
INDEX { mapiOrgID mapiUserID mapiFlowID }
::= { mapiFlowTable 1 }

MapiFlowEntry ::= SEQUENCE
{

mapiFlowID

mapiFlowIfIndex

175

mapiFlowNumFunctions
mapiFlowPkts
mapiFlowOctets
mapiFlowDroppedPkts
mapiFlowStart
mapiFlowEnd

}

mapiFlowID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value, greater than zero, for each MAPI flow."
::={ mapiFlowEntry 1 }

mapiFlowIfIndex OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The ifIndex number identifying the interface this flow
is running on."

::={ mapiFlowEntry 2 }

mapiFlowIfIndex OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of functions that are applied to this flow"
::={ mapiFlowEntry 3 }

mapiFlowPkts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of packets captured by the flow."
::={ mapiFlowEntry 4 }

mapiFlowOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets captured by the flow."
::={ mapiFlowEntry 5 }

mapiFlowDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The total number of dropped packets during packet capture by the
flow."

::={ mapiFlowEntry 6 }

mapiFlowStart OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the start of the flow"
::={ mapiFlowEntry 7 }

176 APHENDIX F. MAPI MIB

mapiFlowEnd OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The value of sysUpTime at the end of the flow. If the flow is
still active the value should be 0"

::={ mapiFlowEntry 8 }

—— mapiFunctionTable #xkkskkkskkokkkskkokskkokkkokkokkokkokkokokkokkokokokkokkokokkokkokokokkokokk ok

mapiFunctionTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiFunctionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about functions applied to MAPI flows"
::= { mapiMIBObjects 5 }

mapiFunctionEntry OBJECT-TYPE
SYNTAX MapiFunctionEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table provides information about a
specific function."
INDEX { mapiOrgID mapiUserID mapiFlowID mapiFunctionID}
::= { mapiFunctionTable 1 }

MapiFunctionEntry ::= SEQUENCE
{
mapiFunctionID
mapiFunctionPkts
mapiFunctionOctets
mapiFunctionPassedPkts
mapiFunctionDroppedPkts
}

mapiFunctionID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value, greater than zero, for each function."
::={ mapiFunctionEntry 1 }

mapiFunctionPkts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of packets captured by the function."
::={ mapiFunctionEntry 2 }

mapiFunctionOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets captured by the function."
::={ mapiFunctionEntry 3 }

mapiFunctionPassedPkts 0BJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of packets that has passed through the function."
::={ mapiFunctionEntry 4 }

mapiFlowDroppedPkts OBJECT-TYPE

SYNTAX Counter64

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The total number of dropped packets during packet capture by the
function."

::={ mapiFlowEntry 5 }

—— mapiArgumentTable #kixksksikkskskrkskskrkkskhkkokkhkkdokFokhok hokkdok ook Kok F kK

mapiArgumentTable OBJECT-TYPE
SYNTAX SEQUENCE OF mapiArgumentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Information about arguments to MAPI functions"
::= { mapiMIBObjects 6 }

mapiArgumentEntry OBJECT-TYPE
SYNTAX MapiArgumentEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION "An entry in this table provides information about a

specific argument."

INDEX { mapiOrgID mapiUserID mapiFlowID mapiFunctionID mapiArgumentID }

::= { mapiArgumentTable 1 }

MapiArgumentEntry ::= SEQUENCE
{

mapiArgumentID

mapiArgumentType

mapiArgumentValue

}

mapiArgumentID OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value, greater than zero, for each argument."
::={ mapiArgumentEntry 1 }

mapiArgumentType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A string showing the type of argument, eg. integer, float, string etc."

::={ mapiArgumentEntry 1 }

mapiArgumentValue OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..256))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"String representation of the value of the argument"
::={ mapiArgumentEntry 1 }

END

177

178 APHENDIX F. MAPI MIB

Bibliography

[1]

[2]
[3]
[4]

[3]

[6]
[7]

[8]

[9]

[10

[11]

[12]

[13]

“The history of a picture’'s worth” http://www2.cs.uregina.ca hept-
ing/proverbial/history.html.

“Ask alibrarian.” http://www.ask-a-li brarian.org.uk/phrases.html.
“Meriam-webster online dictionary.” http://www.m-w.com.

P.P-S. S. Chen, “The entity-relationship model: Toward aunified view of data,”
ACM Transactions on Database Systems, val. 1, no. 1, pp. 9-36 1976

I TU, “Itu-t recommendation z.100: Ccitt spedficaionand descriptionlanguage
(sdl).” June 1994

OMG, “Unified modeling language, version 1.4.” March 2001

M. Rose and K. McCloglrie, “Structure and identification d management in-
formation for TCP/IP-based internets, RFC1155” May 199Q

J. Case, M. Fedor, M. Schoffstall, and J. Davin, “ Simple Network Management
Protocol (SNMP), RFC1157” May 199Q

K. McCloghrie and M. Rose, “Management Information Base for Network
Management of TCP/IP-based internets:MIB-II, RFC1213" March 1991

J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and Appli cability
Statementsfor Internet-Standard Management Framework, RFC341Q" Decen-
ber 2002

D. Harrington, R. Presuhn, and B. Wijnen, “An Architedure for Describing
Simple Network Management Protocol (SNMP) Management Frameworks,
RFC3411" December 2002

J. Case, D. Harrington, R. Presuhn and B. Wijnen, “Message Processng
and Dispatching for the Simple Network Management Protocol (SNMP),
RFC3412" December 2002

D. Levi, P Meyer, and B. Stewart, “Simple Network Management Protocol
(SNMP) Applications, RFC3413" Decanber 2002

179

180

[14]

[19]

[16]

[17]

[18]

[19]
[20]

[21]
[22]

[23]
[24]

[29]

[26]

[27]

[28]

[29]

BIBLIOGRAPHY

U. Blumenthal and B. Wijnen, “User-based Seaurity Model (USM) for version
3 of the Simple Network Management Protocol (SNMPv3), RFC3414” De-
cember 2002

B. Wijnen, R. Presuhn, and K. McCloglrie, “View-based Access Control
Modd (VACM) for the Simple Network Management Protocol (SNMP),
RFC3415" Decenber 2002

R. Presuhnand Ed., “Version 2 d the Protocol Operations for the Simple Net-
work Management Protocol (SNMP), RFC3416” Decanber 2002

R. Presuhnand Ed., “ Transport Mappingsfor the Simple Network Management
Protocol (SNMP), RFC3417" Decanber 2002

R. Presuhnand Ed., “Management Information Base (M1B) for the Simple Net-
work Management Protocol (SNMP), RFC3418” Decamber 2002

D. Zeltserman, A Practical Guideto SNMPv3 andNetwork Management. 1999

“Integrated seaurity moduefor snmp.” http://www.ietf.org/html.charters/isms-
charter.html.

MIB Miew Modeling Languagg, 200Q Globeaom200Q

A Scalable Modeling Language for Speafying Access Control in Tree Based
Structures, 2007. IM2007.

“Trusted computer system evaluation criteria (orange bookK).”

D. Ferraiolo and R. Kuhn, “Role-based access controls,” in 15th NIST-NCSC
Nationad Computer Seaurity Conference, pp. 554-5631992

M. Nyanchama and S. L. Osborn, “Accessrights administration in role-based
seaurity systems,” in IFIP Workshop onDatabase Seaurity, pp. 37-56 1994

J. F. Barkley, K. Bezmaosov, and J. Uppal, “Suppating relationships in access
control using role based accesscontrol,” in ACM Workshop onRole-Based Ac-
cessControl, pp. 55—-65 1999

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access control
model and reference implementation within a corporate intranet,” ACM Trans-
actions on Information and §stem Seaurity, vol. 2, no. 1, pp. 34—64 1999

R. S. Sandhuy E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based
accesscontrol models,” IEEE Computer, vol. 29, no. 2, pp. 38—47 1996

D. Denning, “A lattice moddl of seaure information flow,” Communications of
the ACM, no. 5, pp. 236—-2431976

BIBLIOGRAPHY 181

[30] B. Lampson, “Protedion,” in Procealings of the 5th Annud Princeton Con-
ferenceonInformation Siences and §ystems, (Princeton University), pp. 437—
443 1971

[31] D.F Ferraiolo, R. S. Sandhu S. I. Gavrila, D. R. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based accesscontrol,” Information and §s-
tem Seaurity, vol. 4, no. 3, pp. 224-2742001

[32] ANSI, “American national standard 3592004 2004

[33] M. Nyanchama and S. Osborn, “The role graph model and coriflict of interest,”
ACM Trans. Inf. Syst. Seaur., vol. 2, no. 1, pp. 3—33 1999

[34] OASIS, “extensible accas control markup language (xaanl) version 20,
2005

[35] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First experiences
using xaaml for accesscontrol in distributed systems,” 2003

[36] J. K. Truss Discrete Mathematics for Computer Scientists. 1991

[37] T.Howes, S. Kille, W. Yeong, and C. Robhins, “The String Representation o
Standard Attribute Syntaxes, RFC1778" March 1995

[38] M. Wahl, A. Coulbed, T. Howes, and S. Kill g, “Lightweight Diredory Access
Protocol (v3): Attribute Syntax Definitions, RFC2252" Decanber 1997

[39] OMG, “Xml metadatainterchange.” http://www.omg.org/tedhnd ogy/documents/formal/xmi.htm.

[40] C. E. Campbell, A. Eisenberg, and J. Melton, “Xml schema” SGMOD Rec,
vol. 32, no. 2, pp. 96-101 2003

[41] M. Sloman, “Policy driven management for distributed systems,” Journal of
Network and $ystems Management, vol. 2, p. 333 1994

[42] N.Damianou, A. Bandara, M. Sloman, and E. Lupu, “A survey of pdlicy spec
ificaion approaches,” 2002

[43] J.D. MoffettandM. S. Sloman, “Policy hierarchiesfor distributed system man-
agement,” IEEEJSAC Spedal Issue on Network Management, vol. 11, 11 1993

[44] E.Lupu M. Soman,andN. Yial€lis, “Policy based rolesfor distributed systems
seaurity,” 1997

[45] O. Scheldrup, “Gigacanpus - a new generation d university and coll ege can-
pus networks,” in NORDUNet2005 2005

[46] “Gigacanpusprojed.” http://www.gigacanpus.no.

182 BIBLIOGRAPHY

[47] “Lobsterist projed.” http://www.ist-lobster.org.

[48] K. M. Polychronakis, E.P. Markatos and A. Oslebo, “Design o an applicaion
programming interfacefor ip networking monitoring,” in NOMS2004

[49] “Scampiist projed.” http://www.ist-scampi.org.

[50] A. P M. F E. M. P. Trimintzios, M. Polychronakis and A. Oslebo, “Dimapi:
An application programming interfacefor distributed network monitoring.”

[51] “Scampi projed: D1.2 scampi architedure and comporent design,” 2003
[52] OASIS, “Anintroductionto wsdm,” 2006 wsdm-1.0-intro-primer-cd-01.

[53] IETF, “Network configuration (netconf) working goup”
http://www.ietf.org/html.charters/netconf- charter.html.

[54] T. Lodderstedt, D. Basin, and J. Doser, “Seaureuml: A uml-based modeling
language for model-driven seaurity,” 2002

[59] J. Jurjens, “Towards devel opment of seaure systemsusing umiseq” 2001

[56] R.J. Hayton, J. M. Ban, andK. Moody, “Accesscontrol i nan open distributed
environment,” pp. 3—14

[57] G.-J. AhnandR. S. Sandhy “The rgl99 language for role-based separation o
duty constraints,” in ACM Wbrkshop onRole-Based AccessControl, pp. 43-54
1999

[58] S. Jgjodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible sup-
port for multiple access control padlicies,” Database Systems, vol. 26, no. 2,
pp. 214-2602001

[59] H. James, R. Pandey, and K. Levitt, “Seaurity palicy spedficaion using a
graphicd approad,” 1998

[6Q] I. T. International Telecommunicaion Union, “ Spedficaion o basic encoding
rules (ber), canoncd encoding rules (cer), and dstingushed encoding rules
(der),” ITU-T Recommendation X.690, 2002

[61] K. McCloglrie, D. Perkins, and J. Schoenwadder, “ Textual Conventions for
SMIv2, RFC2579" April 1999

[62] K. McCloghrie and F. Kastenhdz, “The Interfaces Group MIB using SM1v2,
RFC2233" November 1997

