
Reasoning-based Capability
Configuration Management in
Adaptable Service Systems

Thesis for the degree philosophiae doctor

Trondheim, January 2008

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Paramai Supadulchai

NTNU
Norwegian University of Science and Technology

Thesis for the degree philosophiae doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

© Paramai Supadulchai

ISBN 978-82-471-6020-6 (printed version)
ISBN 978-82-471-6034-3 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:10

Printed by NTNU-trykk

Abstract

iii

Abstract

Networked Service Systems are considered. Services are realized by service
components, which by their inter-working, provide a service in the role of a ser-
vice provider to service users. During more than two decades, networked ser-
vice systems have been an important research topic. Focus was on efficiency in
the definition, deployment and execution of services. This focus now has been
changed into adaptability.

Adaptable service systems are service systems that are able to adapt dy-
namically to changes in time and position related to users, nodes, capabilities,
system performance, changed service requirements and policies.

This thesis has focus on adaptability aspects related to capabilities. A ca-
pability is defined here as an inherent property of a node, which is used as a ba-
sis for implementing a service.

Goal adaptability properties of an adaptable service system can be classi-
fied as general and core properties. The general properties are requirement to
the architectural framework while the core properties are requirement to the
functionality. The core properties are classified as i) re-arrangement flexibility,
ii) failure robustness and iii) resource load awareness and control properties.

The realization of the goal adaptability properties both needs an appropri-
ate architectural framework as well as management functionality. This thesis
presents a solution framework for reasoning-based capability configuration
management for adaptable service systems. This framework is defined to con-
sist of five contributions. Each contribution consists of sub-contributions; each
of which represents contributed concept, model or mechanism. The contribu-
tions are:

• C1: Capability-based computing architecture

• C2: Policy-based reasoning

• C3: Capability configuration management

iv

• C4: Concept model and data representation

• C5: Scenarios - experimentation and simulation

Capability-based computing architecture is a capability and QoS-based
architectural framework intended to be used for the specification and execution
of any service functionality. Policy-based reasoning is a support functionality
that makes adaptable service systems being able to take decisions based on flex-
ible and expressive behavioral specification. Capability configuration manage-
ment is a functionality related to capability specifications, configuration, alloca-
tion, re-allocation and optimization. Concept model and data representation is
the data model applied for the formalization and representation of the concepts
applied for the capability configuration management based on policy-based rea-
soning. Scenarios – experimentation and simulation shows the experiments and
simulations that have been conducted for validating the other contributions.

My PhD work and thesis is related to TAPAS (Telematics Architecture for
Play-based Adaptable Service Systems). This thesis is structured into two main
parts: Part I – Introduction and Part II – Selected publications. Part I is intended
for the reader to get an overview of the publications included in Part II.

Preface

v

Preface

This thesis is submitted as partial fulfillment of the requirements for ob-
taining the Doctor of Philosophy degree (Ph.D.) at the Department of Telemat-
ics (ITEM), Norwegian University of Science and Technology (NTNU), Trond-
heim, Norway. Funded by NTNU, the work presented in this thesis has been
worked out in the period of January 2003 – November 2007 under the supervi-
sion of Professor Finn Arve Aagesen. The work has been related to the Telemat-
ics Architecture for Play-based Adaptable Service System (TAPAS) project.
TAPAS is a research project intended to study architecture concepts, which
were initially related to dynamic Plug-and-Play (PaP) but now related to adapt-
able service systems. Presently the aim of the project is not only to specify, de-
velop and perform experiment with parts of architecture concepts for adaptable
service systems but also to find out how to increase the efficiency of, and to
simplify installation, deployment, operation, management, maintenance and
evolution of adaptable service systems. The project has been divided into sever-
al tasks. This thesis is associated with the concepts capability, QoS, perfor-
mance and reasoning utilized in adaptable service systems.

The main part of this thesis consists of nine main publications, seven of
which were submitted, published and presented in the proceeding of interna-
tional conferences. One paper is being prepared for submission. One is pub-
lished as a technical report. The papers have been written in collaboration with
other researchers, mainly my supervisor. In the papers that I’m the first author, I
have contributed to all parts of the paper, including the definition of research
hypothesis, defining the architectural concepts, creating the formalisms and de-
veloping/performing the simulation- and/or analytical results, discussing the re-
sults, evaluating the research hypothesis, writing the papers, and presenting the
paper. However, in Paper B and G, where I’m the second author, my contribu-
tions include: the creation of the formalisms, developing/performing the simula-
tion- and/or analytical results, discussing the results, evaluating the research hy-
pothesis and writing the paper.

vi

Acknowledgements

Several persons have contributed to the success of my study and the
smoothness of my stay at Norwegian University of Science and Technology
(NTNU), Trondheim, Norway. First of all, I would like to gratefully acknowl-
edge my supervisor Professor Finn Arve Aagesen at the Department of Tele-
matics (ITEM). Finn Arve has always been a person with full understanding,
care, patience and available to give me helpful supports whenever I needed. I’m
convinced that his advises and comments have significantly enhanced the quali-
ty of my work. I would also love to thank Jittima Charoenpanich who made me
want to pursue the Ph.D. for the first time.

As a perfect stranger to the kingdom of Norway in 2003, I would like to
spread my sincere gratitude to the people who have always helped me neatly
settle down during my stay. These people include, but not limited to, my super-
visor himself, the Thai society in Trondheim, my Norwegian language teacher
and classmates and people that I have been living and spending time with.
Without them I wouldn’t be able to adapt myself easily to the new place, new
climate, new people, new food, new culture and new language.

My thankful gratitude goes to NTNU for funding my financial support, and
to the people in TAPAS projects including Prof. Finn Arve Aagesen, Mazen
Malek Shiaa, Shanshan Jiang, Cyril Carrez and Patcharee Thongtra as well as
the other members of the networked system working research group at ITEM
that have given me constructive comments and suggestions throughout my five-
years research period. Special thanks to Mazen Malek Shiaa for being my sup-
portive roommate and to Randi Schrøder Flønes and Mona Nordaune for help-
ing me with all administrative tasks I’m not and will never be familiar with, Pål
Sturla Sæther, Jarle Kotsbak and Asbjørn Karstensen for being the most talented
and understanding technical team I have ever met.

Thanks to my family and my girl friend for being very supportive through-
put the Ph.D. period. Last, but not least, I would love to express my deep grati-
tude to Venerable Dhammajayo Bhikku for always teaching and reminding me
the important truth of life and that there are more important things to do in my
life than writing the thesis.

Contents

vii

Contents

Abstract ... iii

Preface ... v

Acknowledgements .. vi

Contents.. vii

List of figures .. x

List of tables ... xi

List of publications ... xii

Part I – Introduction .. 1

1. Overview ... 2

1.1 Adaptable Service Systems – Definitions and Goal Properties 2

1.2 Outline of the thesis .. 5

1.3 Guideline for reading .. 7

2. Research method and framework.. 9

2.1 Research objectives .. 9

2.2 Scope .. 9

2.3 Problem statements ... 9

2.4 TAPAS ... 10

2.5 Research cycle .. 15

3. The solution framework .. 19

3.1 The solution framework contributions ... 19

viii

3.2 The realization of the problem statements ... 34

4. Description of the publications in Part II .. 38

4.1 Paper A - An Approach to Capability and Status Modeling 38

4.2 Paper B – Configuration Management for Adaptable Service Systems 40

4.3 Paper C – A Framework for Dynamic Service Composition 42

4.4 Paper D - Autonomic Service Configuration by a Combined State
Machine and Reasoning Engine-based Actor .. 43

4.5 Paper E - Policy-based Adaptable Service Systems Architecture 45

4.6 Paper F - Towards Policy-Supported Adaptable Service Systems 48

4.7 Paper G - A Capability-based Service Framework for Adaptable Service
Systems ... 49

4.8 Paper H – Autonomous Production of Parameters of an Autonomous
Capability Allocation Adaptation Model .. 52

4.9 Report I – NxET Reasoning Machine ... 55

4.10 Relationship and overlap between the publications 57

5. Related works .. 59

5.1 Related paradigms .. 59

5.1.1 Autonomic Systems and Autonomic Communications 59

5.1.2 Pervasive and ubiquitous computing .. 60

5.1.3 Context-aware Systems and Services ... 60

5.2 Related papers .. 61

5.2.1 Contributions C1 and C4 .. 61

5.2.2 Contributions C2 ... 64

5.2.3 Contributions C3 and C2 .. 66

Contents

ix

6. Summary, conclusions and further work .. 69

6.1 Summary ... 69

6.2 Conclusions .. 70

6.3 Further work ... 71

Bibiography ... 73

Part II – Selected publications .. 83

Paper A .. 85

Paper B .. 101

Paper C .. 125

Paper D .. 137

Paper E .. 153

Paper F .. 171

Paper G .. 187

Paper H .. 201

Report I .. 221

Abbreviations .. 237

x

List of figures

Figure 1 – The core properties A1, A2 and A3 .. 4

Figure 2 – Guidelines for reading ... 7

Figure 3 – The theatre metaphor ... 11

Figure 4 – TAPAS Service architecture ... 13

Figure 5 - TAPAS computing archtecture in 2003 and 2007 15

Figure 6 - TAPAS service architecture in 2003 and 2007 15

Figure 7 – Research cycle overview ... 17

Figure 8 - The reasoning-based capability configuration management
framework ... 20

Figure 9 – The capability-based computing architecture 21

Figure 10 – SLA Mapping .. 22

Figure 11 - The generic reasoning model ... 23

Figure 12 - Reasoning cluster types .. 25

Figure 13 – Capability initialization ... 27

Figure 14 - Capability allocation adaptation ... 28

Figure 15 – Dynamic policies for capability allocation adaptation 29

Figure 16 – Parameter production for capability allocation adaptation 30

Figure 17 – The RM-related data entities ... 32

Figure 18 – Problem statements, contributions and publications 37

Figure 19 – The relation between the selected publications 58

List of tables

xi

List of tables

Table 1 – Overview of the papers included in Part II of this thesis xii

Table 2 – Overview of the papers published but not included in this thesis. ... xiii

Table 3 – Capability-based computing architecture related work 63

Table 4 – Policy-based reasoning related work comparison 65

Table 5 – Capability configuration management related work comparison; 67

xii

List of publications

The publications constituting Part II of this thesis are listed in Table 1. Ta-
ble 2 shows additional papers published as a part of my doctoral work, but that
is not included in this thesis.

Table 1 – Overview of the papers included in Part II of this thesis

Paper A

[Sup04]

An Approach to Capability and Status Modeling
P. Supadulchai, F.A. Aagesen, in Proceedings of Norwegian Informatics Conference
(NIK 2003), Stavanger, Norway, 2004.

Paper B

[Aag05]

Configuration Management for Adaptable Service Systems
F.A. Aagesen, P. Supadulchai, C. Anutariya, M.M. Shiaa, in Proceedings of IFIP In-
ternational Conference on Metropolitan Area Network, Architecture, Protocols, Con-
trol and Management (MAN 2005), Ho Chi Minh City, Vietnam, 2005.

Paper C

[Sup05a]

A Framework for Dynamic Service Composition
P. Supadulchai, F.A. Aagesen, in Proceedings of 1st International IEEE Workshop on
Autonomic Communication and Computing (ACC 2005), Taormina, Italy, 2005.

Paper D

[Sup05b]

Autonomic Service Configuration by a Combined State Machine
and Reasoning Engine-based Actor
P. Supadulchai, F.A. Aagesen, in Proceedings of the 2005 IFIP International Confe-
rence on Intelligence in Communication Systems (INTELLCOMM 2005), Delta Cen-
tre-Ville Hotel, Montréal, Canada, 2005.

Paper E

[Sup07a]

Policy-based Adaptable Service Systems Architecture
P. Supadulchai, F.A. Aagesen, in Proceedings of the IEEE 21st International Confe-
rence on Advanced Information Networking and Applications (AINA-07), Niagara
Falls, Canada, 2007.

Paper F

[Sup07b]

Towards Policy-Supported Adaptable Service Systems
P. Supadulchai, F.A. Aagesen, in Proceedings of the 13th Eunice Open European
Summer School and IFIP TC6.6 Workshop on Dependable and Adaptable Networks
and Services, University of Twente, the Netherlands, 2007.

List of publications

xiii

Paper G

[Aag07]

A Capability-based Service Framework for Adaptable Service Sys-
tems
F.A. Aagesen, P. Supadulchai, in Proceedings of The 2nd International Conference
on Advances in Information Technology (IAIT2007), Bangkok, Thailand, 2007.

Paper H

[Sup07c]

Autonomous Production of Parameters of an Autonomous Capabil-
ity Allocation Adaptation Model
P. Supadulchai, F.A. Aagesen, prepared for a submission.

Report I

[Sup07d]

NxET Reasoning Engine
P. Supadulchai, Plug-and-play Technical Report, Department of Telematics, NTNU,
ISSN 1500-3868.

Table 2 – Overview of the papers published but not included in this thesis.

Paper X A Dynamic Configuration Architecture
F. A. Aagesen, C. Anutariya, M. M. Shiaa, B. E. Helvik and P. Supadulchai, in Pro-
ceedings of IEEE/IFIP Network Operations and Management Symposium
(NOMS'2004), Seoul, South Korea, 2004.

Paper Y An XML based Framework for Dynamic Service Management
M.M. Shiaa, S. Jiang, P. Supadulchai and J. J. Vila-Armenegol, in Proceedings of
IFIP International Conference, INTELLCOMM 2004, Bangkok, Thailand, 2004.

Part I – Introduction

2

 1. Overview

1.1 Adaptable Service Systems – Definitions and Goal Proper­
ties

 etworked services are considered. Networked services are offered by
service systems consisting of service components, which by their inter-
working, provide a service in the role of a service provider to a service

user. Service users can be human users as well as software and/or hardware
components. Service components are executed as software components in
nodes, which are physical processing units such as servers, routers, switches,
PCs and mobile phones. A service framework is defined here as the overall
structural and behavior framework for service specification and service execu-
tion. Service specification concerns how to formally define the structure and the
behavior of a service system, which constitutes the service. Service execution is
the execution of the implementation of the defined service specifications.

During more than two decades, networked service systems have been an
important research topic. Example topics include Intelligent Networks [Ino99],
TINA (Tele-communication Information Networking Architecture) [ITU92],
Mobile Agents [Woo02], and Active and Programmable Networks [Ten97] in
the 80-ies and 90-ies. Topics in the late 90-ies include Pervasive and Ubiquitous
Computing [Lew04]. Today’s topics include Web Services [Alo03] and Auto-
nomic Systems and Communication [Dob06]. Focus was on efficiency in the
definition, deployment and execution of services. This focus now has been
shifted into adaptability – how networked service systems can adapt to changes
in their environments. We have entered an era with a higher degree of flexibili-
ty. To utilize the potential of these features, the properties of services, nodes and
node capabilities must be formalized, stored and made available. Also, the poli-
cies and mechanisms that manipulate and exploit these properties must be
worked out.

Adaptability is a concept widely used in Biology to describe the agility of
biological entities that are able to adapt to changes in the environment [Sus05].

N

Overview

3

Adaptability in service systems is defined in a similar way, however, with a dif-
ferent perspective.

Adaptable service systems are in Paper H defined as service systems that
are able to adapt dynamically to changes in time and position related to users,
nodes, capabilities, system performance, changed service requirements and pol-
icies.

A capability is defined here as an inherent property of a node, which is
used as a basis for implementing a service. Capabilities can be classified as re-
sources, functions and data. Examples of general capabilities are CPU, memory,
transmission link, available programs and user profiles. Examples of specific
capabilities are medical equipment related to networked medical services.

Capability performance measures are in Paper H classified as i) Capacity
measures, ii) State measures and iii) QoS measures. Capacity measure examples
are transmission channel capacity, CPU processing speed and disk size. State
measure examples are the number of available streaming connections and the
number of packets discarded in a specific buffer. Quality of Service (QoS) is the
degree of satisfaction of the users of a service. QoS measures can be traffic
measures and dependability measures. Important traffic measure examples are
capability throughput and capability utilization. Important dependability meas-
ure examples are capability availability and capability recovery time.

Service performance measures are measures related to the service. These
can comprise i) state measures and ii) QoS measures. State measure examples
are the number of users waiting to use the service, the number of users that are
using the service and the status of the service; i.e. normal state, performance-
degraded state. Concerning QoS measures, traffic measure examples are service
connection time, service transfer time, service waiting time, service throughput
and service utilization. Important dependability measure examples are service
availability and service recovery time.

The concept system performance is used as a common concept for capa-
bility and service performance. As defined in Paper G, The service provider and
service users can have common agreements related to the provided functionali-
ty, capabilities, system performance as well as payment. Such an agreement can
be expressed in a Service Level Agreement (SLA). SLA is a formal negotiated
agreement between a service provider and service users [Try05].

4

To precisely describe the properties of adaptable service systems, goal
adaptability properties consisting of general and core properties are defined.
The general properties are properties of the architectural framework, while the
core properties are properties of the functionalities.

General properties are in Paper G defined as follows: 1) There must be a
flexible and common way of modeling services, 2) The framework must be
flexible with respect to the adding of adaptability properties and features, 3) The
service concepts must be flexible and powerful, 4) The software mechanisms
must be flexible and powerful, and 5) There must be an easy mapping of service
models to software models.

The core properties defined in Paper B and later in Paper G are illustrated
in Figure 1.The core properties are grouped into three classes:

A1: Rearrangement flexibility

A2: Failure robustness

A3: Resource load awareness and control

Figure 1 – The core properties A1, A2 and A3

Rearrangement flexibility means that the system structure and the functionality
are not fixed. Nodes, users, services, service components, capabilities, can be
added, moved, removed according to needs. Mobility of persons, sessions,

Overview

5

nodes, terminals is further seamlessly handled. New nodes and capabilities are
found automatically when introduced, and needed information about changes is
propagated. There is a continuous adaptation to changed environments and op-
eration strategies/policies.

Failure robustness means that the architecture is dependable and distributed,
and that the system can reconfigure itself in the presence of failures. Resources
and functionality are duplicated, hardware and software component failures
must be detected and reconfiguration and re-initialization must take place dur-
ing system operation.

Resource load awareness and control means that there is functionality for ne-
gotiation about QoS and optimum resource allocation, monitoring of resource
utilization, and actions for reallocation of resources.

The general properties as well as property A1 define the basic flexibility
features of the architecture. Property A2 and property A3 set requirements to
concepts and features that are needed as a foundation for the specification and
implementation of the functionalities defined by these properties. The core
properties will, from now on, be referred as A1, A2 and A3 throughout this the-
sis.

1.2 Outline of the thesis

The thesis is structured into two main parts: Part I – Introduction and Part
II – Selected Publications. Part I is furthered structured as follows:

Section 1 presents definitions and goal properties of adaptable systems, an
outline of the thesis as well as a guideline for reading. Section 2 presents re-
search method and framework. This includes objectives, scope, problem state-
ments, a presentation of TAPAS, and the research cycle of the work presented
in this thesis. The research cycle visualizes the research methodology, the evo-
lution of this research and the relations with the TAPAS architecture. Section 3
presents the solution framework, the contributions and finally the realization of
the problem statements defined in Section 2. Section 4 gives a summary of the
papers of Part II as well as the relationship between them. Section 5 presents
the related work. Section 6 presents summary, conclusions and further work.

6

The publications included in Part II are the followings:

Paper A

An Approach to Capability and Status Modeling
P. Supadulchai, F.A. Aagesen, in Proceedings of Norwegian Informatics Conference
(NIK 2003), Stavanger, Norway, 2004.

Paper B

Configuration Management for Adaptable Service Systems
F.A. Aagesen, P. Supadulchai, C. Anutariya, M.M. Shiaa, in Proceedings of IFIP In-
ternational Conference on Metropolitan Area Network, Architecture, Protocols, Con-
trol and Management (MAN 2005), Ho Chi Minh City, Vietnam, 2005.

Paper C

A Framework for Dynamic Service Composition
P. Supadulchai, F.A. Aagesen, in Proceedings of 1st International IEEE Workshop on
Autonomic Communication and Computing (ACC 2005), Taormina, Italy, 2005.

Paper D

Autonomic Service Configuration by a Combined State Machine
and Reasoning Engine-based Actor
P. Supadulchai, F.A. Aagesen, in Proceedings of the 2005 IFIP International Confe-
rence on Intelligence in Communication Systems (INTELLCOMM 2005), Delta Cen-
tre-Ville Hotel, Montréal, Canada, 2005.

Paper E

Policy-based Adaptable Service Systems Architecture
P. Supadulchai, F.A. Aagesen, in Proceedings of the IEEE 21st International Confe-
rence on Advanced Information Networking and Applications (AINA-07), Niagara
Falls, Canada, 2007.

Paper F

Towards Policy-Supported Adaptable Service Systems
P. Supadulchai, F.A. Aagesen, in Proceedings of the 13th Eunice Open European
Summer School and IFIP TC6.6 Workshop on Dependable and Adaptable Networks
and Services, University of Twente, the Netherlands, 2007.

Paper G

A Capability-based Service Framework for Adaptable Service Sys-
tems
F.A. Aagesen, P. Supadulchai, in Proceedings of The 2nd International Conference
on Advances in Information Technology (IAIT2007), Bangkok, Thailand, 2007.

Paper H Autonomous Production of Parameters of an Autonomous Capabil-
ity Allocation Adaptation Model
P. Supadulchai, F.A. Aagesen, prepared for a submission.

Overview

7

Report I NxET Reasoning Engine
P. Supadulchai, Plug-and-play Technical Report, Department of Telematics, NTNU,
ISSN 1500-3868.

1.3 Guideline for reading

The publications presented in Part II are self-contained. They are refor-
matted to improve readability when published in a smaller-size book. Since the
papers have some overlapped contents and can also be linked, the reader is sug-
gested to follow the depicted sequence illustrated in Figure 2.

Figure 2 – Guidelines for reading

Research method and framework

9

 2. Research method and framework

This section describes the research objectives, problem statements, TAPAS
as well as the research cycle of the work presented in this thesis. Section 2.1
states the overall research objectives. Section 2.2 presents the problem state-
ments. Section 2.3 presents TAPAS, while the research cycle is presented in
Section 2.4.

2.1 Research objectives

The context of this thesis is capabilities in adaptable service systems. The
main research objectives are “to study and analyze concepts, models and me-
chanisms for the realization of the general and the core properties related to
capabilities, and further to specify, construct, evaluate and validate a frame-
work for capability configuration management.”

2.2 Scope

Concerning the design of the capability configuration management frame-
work, the emphasis is not on distribution and dependability aspects. The capa-
bility configuration management functionality is not itself designed to meet the
core property A2 or to support the design of the core property A2 besides
needed concepts. The capability configuration management functionality is de-
fined to support the core properties A1, A2 and A3, but its design is based on a
centralized and non-dependable architecture.

2.3 Problem statements

The following initial problem statements P1, P2, P3, P4, P5 and P6 are
defined.

• P1: How to include capabilities as well as additional needed concepts in
the architectural framework?

• P2: How to include capability management in an architectural frame-
work?

10

• P3: Which concepts, features and mechanism are appropriate for auto-
nomic capability management?

• P4: What is the ontology to be used? How to model and represent the
concepts of the ontology?

• P5: How to model capability management functionality when considering
modularity, reusability, expressive power and flexibility?

• P6: How to evaluate and validate the proposed framework?

2.4 TAPAS

The work in this thesis is related to TAPAS architecture (TAPAS = Tele-
matics Architecture for Play-based Adaptable Service Systems). The original
architecture has focus on the adaptability properties of plug-and-play systems
[Aag99a]. Since then several participants have contributed to the concepts, de-
signs, implementations and demonstrations [Shi05]. The PhD work presented in
this thesis has also contributed with new TAPAS concepts, models and mechan-
isms. TAPAS as it was by the time this PhD study commenced has been im-
proved and extended. This section presents the scope of the thesis considered
from the TAPAS perspective. Necessary features and concepts of the TAPAS
architecture will be presented. Contributions from the work reported in this the-
sis will also be given.

2.4.1.1 TAPAS computing and service architectures

To meet the general properties as defined in Section 1, the TINA architec-
ture principle [ITU92] was followed. TAPAS has a computing architecture and
a service architecture dimensions.

The service architecture has focus on the service functionality independent
of implementation. The computing architecture has focus on the modeling of
functionality with respect to implementation, but independent of the nature of
the service functionality. The properties of the computing architecture, however,
are the fundament for the creation of services with needed goal adaptability
properties.

Research method and framework

11

TAPAS computing architecture

The computing architecture is founded on a theatre metaphor as illustrated
in Figure 3. Actors perform roles according to manuscripts. Actors are software
components in the nodes that can download manuscripts defining the roles to be
played. An actor will constitute a role figure by behaving according to a manu-
script. A play consists of several actors playing different roles, each possibly
having different requirements on capabilities.

Figure 3 – The theatre metaphor

Figure 9 in Section 3.1 illustrates the present version of the TAPAS com-
puting architecture. The computing architecture has three views: the service
view, play view and physical view. In the service view, a service system provid-
ing a service is constituted by conceptual service components, each of which
can also be considered as a service system and can be further constituted by ser-
vice components. A service component that cannot be further de-composed is
denoted as a leaf service component.

12

Leaf service components in the service view are constituted by role fig-
ures. A role figure can have dialogues with other role figures. A play consisting
of role figures and dialogues is a service system instance as seen from the play
view.

Considering the physical view, actors are executed as operating system soft-
ware components in nodes, which are physical processing units such as servers,
routers, switches and user terminals. The core platform is a platform supporting
the execution of service functionality based on the computing architecture func-
tionality. The core platform has a manuscript execution functionality and a basic
communication functionality between nodes. In the original version denoted as
the classical actor model, a manuscript is based on Extended Finite State Ma-
chine (EFSM). The communication functionality can be based on Java RMI
[Aag01a], socket-based [Lüh04] and XML web services [Vil04].

The three view model is not a layered service model. A service system and
its service components have models and model parameters related to the service
view, play view and physical view. The visibility of physical view parameters in
the service view is a design decision rather than a model restriction.

TAPAS service architecture

The service architecture is illustrated in Figure 4. In addition to the pri-
mary service provisioning functionality for application service systems, there
must be functionality for management of the networked service systems. This
management functionality comprises:

• Service management: Service specification, implementation, deploy-
ment, invocation, exhibition, discovery and access.

• Mobility management: The handling of mobility and mobility compo-
nents. Mobility components can be persons, services, dialogues and ses-
sions, terminals, nodes, capabilities, data and programs.

• Capability and service performance administration: Monitoring and
registration of available and allocated capabilities, monitoring and regis-
tration of system performance, and the provisioning of a repository of
available capabilities, capability performance and service performance.

• Capability configuration management: The allocation, re-allocation, de-
allocation and optimization of the use of capabilities.

Research method and framework

13

Figure 4 – TAPAS Service architecture

Regarding the service architecture, this thesis focuses on and has contribu-
tion mainly to capability configuration management. The studies of the other
functionality parts of the adaptable service system can be found in the related
work by the other participants in the TAPAS project. A comprehensive study on
the mobility management aspects can be found in Mazen Malek Shiaa’s thesis
[Shi05]. A study on the service management aspects can be found in Shanshan
Jiang’s work [Jia03, Jia06, Jia07], which is a part of an on-going PhD study.

2.4.1.2 This thesis’s contributions to TAPAS

At the starting point of this PhD study, the architecture had a core plat-
form, which is a generic software component for executing the so-called Ex-
tended Finite State Machine (EFSM)-based specifications. In addition to the
core platform, the major service functionalities that had been contributed to the
architecture were related to the mobility management functionality [Shi05]. The
architecture itself had limited features related to the capability concepts.

The capability concept was defined in [Aag99b] and a configuration man-
agement framework for capability configurations was introduced in [Aag02a]
and [Aag02b]. However, the configuration management functionality was li-
mited.

14

The work in this thesis has contributed concepts, models and mechanisms
to the TAPAS architecture. The computing as well as the service architecture
has been extended and revised. In addition to the revisions and improvement of
the concept model constituting the computing architecture, new concepts such
as capability performance, service performance, SLA, Reasoning Machine
(RM) and RM manuscript have been added. The core platform has also been
improved with the ability to execute policy-based specifications, which is more
flexible and powerful than EFSM-based specifications. The RM applied in the
core platform, which is more thoroughly described in Report I, is one of my
contributions to the core platform. The other main contribution to the core plat-
form is the concept model and data representation as is described in Section 3.

Concerning the service architecture, the capability configuration manage-
ment is extended from the configuration management framework in [Aag02b]
and [Aag03] with respect to capability performance, service performance and
SLA. In addition to extending the functionality area of capability configuration
management, policy-based adaptability models based on feedback loops are in-
troduced. The RMs handling the adaptation is controlled by policies and para-
meters. Policies are rules and actions, while the parameters are constraints as
well as reasoning conditions (See the RM-related data entities in Section 3).
Dynamic policies allows policies used by the capability allocation adaptation to
be changed by another policy-based system based on some goodness criteria.
Parameter production allows parameters of the capability allocation adaptation
to be re-produced based on some goodness criteria.

The complete solution framework and its contributions will be given in
Section 3. However, a brief comparison between TAPAS at the starting point of
this thesis (TAPAS 2003) and the present TAPAS architecture (TAPAS 2007)
is illustrated in Figure 5 and Figure 6. Figure 5 compares the TAPAS computing
architecture in 2003 and 2007 with respects to the capability, capability perfor-
mance, service performance, SLA concepts and the core platform. Figure 6
compares the TAPAS service architecture in 2003 and 2007 with respects to the
capability configuration management and adaptation models.

Research method and framework

15

Figure 5 - TAPAS computing archtecture in 2003 and 2007

Figure 6 - TAPAS service architecture in 2003 and 2007

2.5 Research cycle

The research cycle used for the work in this thesis is based on common
scientific iterative research cycle method [Bri91] and [Aag01b] as follows:

Solution proposition

Concepts, models and mechanisms are proposed for the problem state-
ments as defined in 2.3.

16

Modeling and formalization

A solution framework consisting of the proposed concepts, models and
mechanisms is formulated. The concepts, models, mechanisms are further for-
malized to ensure integrity, soundness, consistency and completeness. Using
formalized concepts, models and mechanisms, it is easier to improve and add
new functionality than using the non-formalized ones.

Evaluation and validation

Demonstration and simulation have been applied for validating and im-
proving the proposed solution framework. Demonstration is a method for illu-
strating how the proposed models and mechanisms perform in a real environ-
ment. Simulation is a method for testing the proposed models and mechanisms.
The demonstration method has been used when the system performance evalua-
tion is not the main focus. Simulations have been used when real-environment
demonstrations have not been satisfactory and when the applications of the sys-
tem models were needed to give more detailed results with respect to system
performance. Simulations can also be easily reproduced as opposite to real-scale
demonstrations.

Concerning the demonstration method, Paper A, Paper B, Paper C and Pa-
per D present several scenarios for adaptable service systems. The formalized
and executable specifications in these scenarios are demonstrated by the solu-
tion framework. Demonstrations illustrate the execution mechanism and vali-
date the obtained results.

Concerning the simulation method, Paper E, Paper F and Paper H presents
the simulation results based on the proposed models and mechanisms. The si-
mulation method is preferred because QoS and performance of the service sys-
tems in the scenarios are the main focus. Model simulation is more feasible and
efficient than large scale real-environment demonstrations.

There is no formal proof of the models and mechanisms. The validation is
done by the demonstration and simulation methods.

Result discussion

Results, which are gathered from the evaluation and validation, are used
for further discussing the models and mechanisms. If the results are not as ex-

Research method and framework

17

pected, the models and mechanisms will be improved or some assumptions will
be changed. This may subsequently lead to a new problem statement or a new
solution and begin a new iterative research sequence.

Figure 7 illustrates an overview of the research cycle used in this thesis,
which consists of solution proposition, modeling and formalization, evaluation
and validation and result discussion.

Figure 7 – Research cycle overview

The solution framework

19

 3. The solution framework

The solution framework is defined to consist of four contributions. Each
contribution consists of sub-contributions; each of which represents contributed
concept, model or mechanism. The contributions are:

C1: Capability-based computing architecture

C2: Policy-based reasoning

C3: Capability configuration management

C4: Concept model and data representation

C5: Scenarios - experimentation and simulation

Section 3.1 presents the contributions. The relationship between contribu-
tions and the problem statements defined in Section 2.3 is discussed in Section
3.2.This section also presents the relationship between the contributions and the
publications in Part II.

3.1 The solution framework contributions

Figure 8 illustrates the sub-contributions of the four contributions C1-C4.
These contributions are not independent. The ontology-based capability selec-
tion mechanism, dynamic policies and parameter production, for examples, are
related to both policy-based reasoning and capability configuration manage-
ment. The content of the contributions defined by their sub-contributions are
presented in more details below. The contribution C5 contains the applications
of the solution framework. Thus C5 is not included in Figure 8.

20

Figure 8 - The reasoning-based capability configuration management framework

C1: Capability-based computing architecture

Capability, capability performance, service performance, SLA and RM-
functionality

The capability-based computing architecture, which is illustrated in Figure
9, extends the previous versions of the TAPAS computing architecture. The im-
portant roles of capabilities are made clearly visible and QoS-related concepts
such as: capability performance, service performance and SLA are also in-
cluded. The core platform has also been improved with the ability to execute
policy-based RM specifications. These concepts are formalized and made visi-
ble in the computing architecture as illustrated Figure 9.

The orange boxes in Figure 9 depict the contributed concepts. Capability
and capability performance measures defined in the physical view are also visi-
ble in the play view as well as the service view. The service performance meas-
ures and SLA defined in the service view are also visible in the play view. This
is not explicitly illustrated in Figure 9.

SLA classifies service users into different classes, each of which represents
the agreed priority, functionality, performance, payment and penalties functions

The solution framework

21

for a group of users with the same degree of satisfaction and costs. The capabili-
ty allocation adaptation is the mechanism used to allocate and re-allocate capa-
bilities with respect to the SLA defined.

SLA Mapping

SLA mapping is a transformation of SLA into the parameters of the capa-
bility allocation adaptation model. In addition to C1, SLA mapping is also re-
lated to the parameter production in C2 and the capability allocation adaptation
in C3. The parameters to be produced include the system constraints as well as
the reasoning conditions of the RM-based role figure handling the capability al-
location adaptation. The mapping is based on the parameter production that is
handled by the parameter producer as illustrated in Figure 10. An example of
the SLA mapping has been dealt in Paper H.

Figure 9 – The capability-based computing architecture

To further create satisfaction for the service provider, income and cost
functions are considered. The income function determines instantaneous profits

22

of the service provider while the cost function determines instantaneous cost of
the service provider. The income and cost functions are also considered parame-
ters of a capability allocation adaptation model. Examples can be found in Paper
E, Paper F, Paper G and Paper H.

Figure 10 – SLA Mapping

C2: Policy-based reasoning

Policy-based reasoning is a support functionality related to the ability of
adaptable service systems to take decision based on flexible and expressive be-
havioral specification. The contribution consists of generic reasoning model,
RM-based role figures, generic policy system definition, ontology-based capa-
bility selection mechanism, dynamic policies and parameter production. Policy-
based reasoning is a contribution to be found in all Papers. The formalization of
the policy-based reasoning including the generic reasoning model and RM-
based role figures can be found in Paper E, Paper F, Paper G and Paper H.

Generic reasoning model

The generic reasoning model has a reasoning procedure for transforming
an initial transformation clause to final transformation clause(s), which are me-
diums for the transformation. The reasoning procedure uses policies, facts and
system constraints. Policies are used to manage the behavior of service systems.
A policy system consists of rules and actions. The rules are used to transform an
initial transformation clause to final transformation clause(s), which can contain

The solution framework

23

suggested actions. These actions will be applied for managing the adaptable
service system behavior. The facts are inherent data gathered from the system.
Examples are inherent capability performance, inherent service performance
and SLA. The system constraints are used to model application-specific service
system requirements with respect to capability, capability performance and ser-
vice performance.

The generic reasoning model can be used to form a feedback loop. An ex-
ample feedback loop is the capability allocation adaptation model, which will be
described later in this section. Reasoning conditions are used by an EFSM-
based role figure to activate and de-activate the feedback loop for the capability
allocation adaptation. The feedback loop parameters are the system constraints
and the reasoning conditions. These parameters can be produced.

 Figure 11 illustrates the generic reasoning model. The system constraints,
rules and actions can have variables. The result of the reasoning can, in addition
to actions, give instantiated variables. The facts contain no variable.

The generic reasoning model has been used in all papers. The implementa-
tion of the reasoning procedure is discussed in Report I.

Figure 11 - The generic reasoning model

RM-based role figures

As introduced in Section 2, manuscripts are the specification of roles to be
played by actors. An actor can have two types of manuscripts: the EFSM-based
specification or the combination of the EFSM-based and RM-based specifica-
tion. Concerning the role figures, there are also two role figure types: i) EFSM-
based role figures and ii) RM-based role figures. The EFSM-based role figure
has its role defined by an EFSM specification. The RM-based role figure has its

24

role defined by the combination of an EFSM-based and the RM-based specifi-
cation.

The functionality domain of RM-based role figures can be separated into
two cases. In the first case, the RMs of a service system have no access to capa-
bility and service performance measures of the service system. In this case, the
RM provides an ordinary procedural reasoning service only; i.e. the reasoning
service does not include the capability configuration management. In the second
case, RMs of the service system have access to capability and service perfor-
mance data of the service system. These RMs take part in the capability confi-
guration management for managing other EFSM-based role figures. For the
second case, RMs can be used as:

A. a procedural reasoning service for capability initialization and re-
initialization based on capability performance measures

B. a feedback loop service for capability allocation adaptation based on ca-
pability and system performance measures

C. a feedback loop service constituting dynamic policies and parameter pro-
duction for the capability allocation adaptation model in B

A reasoning cluster is an independent unit with respect to reasoning. It is a
collection of EFSM-based service components with an associated reasoning
system constituted by one or more RM-based service components. A reasoning
cluster has associated RM-related data entities and considers them as common
data shared among EFSM-based and RM-based role figures. In addition to the
EFSM-based service components in the cluster, a reasoning machine has an as-
sociated cooperating EFSM, which will invoke the reasoning machine. Depend-
ing of the nature of the cluster and the nature of the reasoning, a dedicated
EFSM denoted as EΣ can be needed to inspect the reasoning conditions and to
activate the RMs associated EFSM. Three reasoning cluster types (A, B and C)
corresponding to the functionality domain cases A-C defined above are illu-
strated in Figure 12.

The solution framework

25

Figure 12 - Reasoning cluster types

In all cluster types, an RM-based capability manager RCM, gives suggested
actions to an EFSM-based capability manager ECM for managing capabilities. In
the cluster type A, RCM is a procedural service for capability initialization and
re-initialization. Re-initialization is initiated by EΣ.

Generic policy system definition

Generic policy system definition defines policies that are applicable for any
adaptable service systems. Constraints specific to an individual application ser-
vice system will be separated from policies. The separation makes the policies
generic. However, a condition is required. A policy system to be made generic
must represent behaviors that are independent of the nature of any service sys-
tem. These generic behavior examples can be self-x autonomic functionality
such as self-healing, self-protection and self-optimization.

Example of policy systems that have been made generic is the policy sys-
tem for the capability initialization and the policy system for the parameter pro-
duction. The generic policies system for capability initialization can be found in
Paper C while the generic policy system for parameter production can be found
in Paper H.

26

Concerning the policy systems for capability re-initialization, capability al-
location adaptation and dynamic policies, these policy systems depend on the
adaptability nature of service systems. To make generic policy systems, generic
behaviors representing the adaptability nature of any service system must be de-
fined and formalized.

Ontology-based capability selection mechanism

Ontology-based capability selection mechanism is a mechanism for explor-
ing the relationship of capabilities and determining the equivalence of capabili-
ties based on a defined capability ontology model. The ontology-based capabili-
ty selection mechanism has been dealt with in Paper A.

Dynamic policies

Dynamic policies mean the policies are not fixed while the fixed policies
are denoted as static policies. Dynamic policies can be changed based on the
consequences when the policies are used, which will be calculated from certain
goodness criteria. Feedbacks as well as the income and cost functions of the ap-
plication service systems can be used as the goodness criteria. Income functions
indicate the present income of the service provider. Cost functions indicate the
present expense of the service provider. The formalized model and mechanism
of the dynamic policies can be found in Paper E, Paper F and Paper G.

Parameter production

The parameters system constraints and the reasoning conditions of RM-
based role figures can be reproduced based on changes in the environment, as
defined in the definition of adaptable service systems, and goodness criteria.
The formalized model and mechanism of the parameter production can be found
in Paper H.

C3: Capability configuration management

This contribution is about the capability configuration management in the
TAPAS service functionality architecture. The capability configuration man-
agement comprises i) capability initialization and re-initialization and ii) capa-
bility allocation adaptation.

The solution framework

27

Capability initialization

The capability initialization is the allocation of the capabilities for the
EFSM-based service components to be distributed and instantiated. The confi-
guration of the capability initialization is autonomously generated by an RM-
based role figure. The capability initialization configuration consists of EFSM
service component types and the targeted actors to instantiate these EFSM ser-
vice component types. The instantiated EFSM service component types are de-
noted as EFSM service component instances.

To generate the capability initialization configuration, the required capabil-
ities and capability performances of EFSM service component types are
matched with the offered capabilities and capability performance as illustrated
in Figure 13. The capability initialization has been dealt with in Paper B and
Paper C.

Figure 13 – Capability initialization

Capability re-initialization

The capability re-initialization is the re-distribution and re-instantiation of
service components and capabilities during the situations when the instantiated
service systems are unable to adapt satisfactorily as well as when capabilities
are moved or relocated. In case of failures, capability re-initialization finds
equivalent capabilities to replace the failed ones based on the ontology-based
capability selection mechanism. With the equivalent capabilities, the service
system can still offer services with the same level of performance or slightly

28

degraded performance. The capability re-initialization has been dealt with in
Paper B and Paper D.

Capability allocation adaptation

The capability allocation adaptation is the monitoring of the performance
of the executing service system and the reallocation of capabilities within the
executing service systems. A capability allocation adaptation system is formed
by a feedback loop as illustrated in Figure 14. The system has policies and pa-
rameters. The parameters are system constraints and reasoning conditions. The
RM-based capability manager RCM, gives suggested actions to an invoking
EFSM-based capability manager ECM based on the policies and parameters. A
dedicated EFSM EΣ activates and de-activates the ECM based on the reasoning
procedure.

Figure 14 - Capability allocation adaptation

The policies and parameters of the capability initialization, re-initialization
and allocation adaptation can be changed. The changes of policies and parame-
ters of these policy-based adaptation models are based on the dynamic policies
and the parameter production respectively. An additional feedback loop is used
to evaluate the consequences of the used policies and parameters. In the solution
framework, the dynamic policies and the parameter production have been used
with the capability allocation adaptation. However, it is possible use the para-
meter production with the capability initialization and re-initialization as well.
Note that this PhD study does not intend to obtain the optimized policies and
parameters for the capability allocation adaptation. The dynamic policies and

The solution framework

29

parameter production, nevertheless, serve as a flexible tool for the experimenta-
tion with alternative policies with respect to optimization.

Figure 15 illustrates the dynamic policies for capability allocation adapta-
tion. An additional feedback loop is formed by an EFSM-based and an RM-
based policy composer. The policies of the capability allocation adaptation
model will be composed. Transformation constraints used by the policy com-
poser consist of rules and actions, which will constitute the policies of the capa-
bility allocation adaptation model. The policy composer uses transformation
policies to compose and give the policies of the capability allocation adaptation
model as the output. The facts are the inherent capability and service perfor-
mance measures, which are feedbacks from the service system being controlled
by capability allocation adaptation.

Figure 15 – Dynamic policies for capability allocation adaptation

Figure 16 illustrates the parameter production for capability allocation
adaptation. An additional feedback loop is formed by an EFSM-based and an
RM-based parameter producer. The system constraints and the reasoning con-
ditions will be produced. The parameter producer takes an SLA as the input and
produces a system performance requirement model and a physical performance
requirement model as the output. Then, the parameter producer takes the pro-
duced system performance requirement model and a physical performance re-
quirement model as the inputs and produces the system constraints and the rea-

30

soning conditions as the outputs. The transformation is based on the transforma-
tion policies. The facts are the inherent capability and service performance
measures, which are feedbacks from the service system being controlled by ca-
pability allocation adaptation.

Figure 16 – Parameter production for capability allocation adaptation

The capability allocation adaptation can be found in Paper E, Paper F, Pa-
per G and Paper H. The dynamic policies for the capability allocation adapta-
tion can be found in Paper E, Paper F and Paper G. The parameter production
for the capability allocation adaptation can be found in Paper H.

C4: Concept model and data representation

A concept model and a data representation are applied for modeling and
formalizing necessary concepts. This contribution consists of the concept ontol-
ogy and the unified XML-based data representation sub-contributions.

Concept ontology

The concept ontology describes the ontology model for the concepts,
which are capability, capability performance, service performance, SLA, EFSM
and RM. Concerning the capability, capability performance and service perfor-
mance, there are various representation standards. Examples are Common In-

The solution framework

31

formation Model (CIM) [Dmt07a], Simple Network Management Protocol -
Management Information Base (SNMP-MIBs) and Management Information
Format (MIF). CIM is a conceptual information model for modeling capabilities
regardless of the implementation model. SNMP-MIBs are databases for storing
information related to capabilities of targeted nodes. MIF is a format used by
Desktop Management Interface to store capabilities of desktop or notebook
node types. However, the concept ontology is based on CIM because CIM is in-
dependent of implementation. It is also possible to map CIM models to SNMP-
MIBs as well as MIFs if needed.

The direct use of CIM does not give features that will satisfy all the core
functional adaptability requirements. So to model capability requirements, addi-
tional modeling language such as UML is needed. UML can provide a set of
predefined constructs, such as subClassOf, minCardinality and maxCadinality.
However, UML lacks functionality to representing inherent relationships and
complex constraints. Moreover, the specification based on CIM and UML needs
to be transformed into executable specifications that are recognized by reason-
ing machines, which may introduce complexity and errors caused from the
transformation process. Semantic web languages such as RDF [W3c04a], RDFS
[W3c04b] as well as OWL [W3c04c] can also be applied for additional con-
structs for describing more expressive ontology models of the capability, capa-
bility performance, service performance and SLA. The capability, capability
performance, service performance ontology has been dealt in Paper A and Paper
B.

As defined earlier, SLA is modeled as classes; each of which represents the
agreed priority, functionality, performance, payment and penalties functions for
a group of users with the same degree of satisfaction and costs.

An EFSM-based specification consists of EFSM-related data entities that
are a set of states, an initial state, variables, parameters, input signal with para-
meters, output signal with parameters, state transitions, output functions and the
functions and tasks performed during a specific state.

An RM-based specification consists of RM-related data entities as illu-
strated in Figure 17. These data entities are facts, policies, reasoning conditions,
constraints and transformation clauses, which have been defined in the generic
reasoning model sub-contribution. In this thesis, the use of policies is related to
capability configuration management, which consists of capability initialization

32

policies, capability re-initialization policies and capability allocation adaptation
policies. Reasoning conditions represent the conditions that activate and de-
activate reasoning machines. The capability configuration management condi-
tions are related to the capability allocation adaptation, the capability allocation
with dynamic policies and the capability allocation with parameter production.
Initial requests such as capability initialization request, capability re-
initialization request and capability allocation adaptation request will be formu-
lated as transformation clauses that will be transformed until final transforma-
tion clause(s) are derived.

The EFSM-based and RM-based data entities have been dealt with in Pa-
per E, Paper F, Paper G, Paper H and Report I.

Figure 17 – The RM-related data entities

Data representations

The data representations of capability, capability performance, service per-
formance are based on xmlCIM [Dmt07b]. The data representation of SLA is
RDF, which is chosen because of none of the standards can represent the com-
plete set of ontology attributes that are required to model an SLA class.

The representations of the EFSM- and RM-based specifications are based
on XML-based constructers. There are four types of XML-based constructers:
ordinary XML, XML expressions, XML clauses and XML rules. An ordinary
XML is just ordinary XML elements without variables. XML expressions are
XML documents that consist of variables. The XML expressions are expressive
and used to model implicit knowledge. An XML clause consists of XML ex-

The solution framework

33

pressions and used to represent certain knowledge during a capability configura-
tion. XML rules are used by reasoning machines to transform an XML clause
until the final clause representing the answers is obtained. The facts are mod-
eled by ordinary XML. The reasoning conditions, constraints are modeled by
XML expressions. The transformation clauses are modeled by XML clauses.
The policies are modeled by XML rules.

The RM-based data representation has been dealt with in Paper A, Paper
G, Paper E and Report I.

C5: Scenarios – experimentation and simulation

Five scenarios (S1-S5) have been designed for the evaluation and valida-
tion of the other contributions. The scenarios are adaptable service system ap-
plications that are created based on the concepts, models and mechanisms of the
solution framework. These scenarios are as follows:

S1: Ontology-based capability selection for a Tele-school application

Ontology-based capability reasoning for a Tele-school application is pre-
sented in Paper A. The sound capability of the clients in the Tele-school appli-
cation is considered. By the use of RDFS’s subClassOf, the sound capability
and the loudspeaker capability are defined as substitutable. Based on the dem-
onstration method, the reasoning result shows that the mobile clients having ca-
pabilities that are sub-class of the sound capability must switch off the capabili-
ties when entering the classroom.

S2: Printing system capability initialization and re-initialization

Capability initialization and re-initialization of Intelligent Printing Man-
agement (IPM) service system has been demonstrated in Paper B and Paper C.
The scenario illustrates the autonomous generation of capability configuration
and re-configuration plans of the roles of IPM. Each role has different require-
ments. The proposed capability initialization and re-initialization policies de-
termine the appropriate node to instantiate each role.

S3: Capability re-initialization of RM-based role figures

Capability re-initialization of RM-based role figures is given in Paper D.
The scenario presents the ability of RM-based role figures to re-initialize its ca-

34

pabilities when there are failures in the service system. In the scenario, database
clients connect to the database server to access the data. The database clients
may need to re-initialize its capabilities when security treats are detected and the
database server blocks the connections. The database clients use policies to de-
termine the appropriate action to perform; e.g. moving to a new node. This sce-
nario is based on the demonstration method.

S4: Policy-based capability allocation adaptation for streaming service

Policy-based streaming service capability allocation adaptation simulation
is presented in Paper E and Paper F. The scenario defines a capability allocation
adaptation model for an on-demand music video streaming service system. The
capability model can have static and dynamic policies. The policy system of the
capability allocation adaptation model is composed based on goodness criteria.
The performance of the service system under the capability allocation adapta-
tion is compared by the situations when the capability allocation adaptation uses
static policies, dynamic policies and no policy (no capability allocation adapta-
tion).

S5: Policy-based parameter production for policy-based capability allocation
adaptation

This is an extension the simulation-based scenario: Policy-based capability
allocation adaptation. The scenario is presented in Paper H. The scenario de-
fines a capability allocation adaptation model for an on-demand music video
streaming service system. The parameters of the capability allocation adaptation
are produced based on inherent capability and service performance and the cost
function of the system. The performance of the service system under the capa-
bility allocation adaptation is compared by the situations where the capability
allocation adaptation has static parameters and when it has dynamic parameters.

3.2 The realization of the problem statements

Figure 18 illustrates the relationship between the problem statements P1-
P6, and the contributions of the solution framework as well as the relationship
between the solution framework and the publications in Part II. The sub-
contributions that are orange boxes have been applied in the work reported in all
papers.

The solution framework

35

Considering P1, the capability-based computing architecture (Figure 9) is
applied. The RM-based functionality is intended to meet the general properties.
The capability concept is needed to meet the core properties A1, A2 and A3.
The capability, service performance and SLA concepts, however, are the con-
cepts needed to meet the core properties A2 and A3. The use of the capability,
capability performance, service performance and RM-based specification con-
cepts can be found in all papers. The concept SLA, however, is used in Paper E,
Paper F, Paper G and Paper H for the provisioning of QoS in adaptable service
systems.

Concerning P2, The capability configuration management is applied in the
service architecture as illustrated in Figure 4 for capability management func-
tionality modeling. The capability initialization is related to the core property
A1. The capability re-initialization and allocation adaptation are related to the
core properties A2 and A3. The capability initialization is demonstrated in Pa-
per B and Paper C. The capability re-initialization is demonstrated in Paper B
and Paper D. The capability allocation adaptation is dealt with in Paper E, Paper
F, Paper G and Paper H. The formalized models of capability initialization, re-
initialization and capability allocation adaptation models are in Paper G.

Concerning P3, autonomic capability management requires the capability
configuration management to generate capability initialization, re-initialization
and allocation adaptation configurations dynamically. Based on the generic rea-
soning model, the capability configuration management mechanism is activated
and de-activated autonomously. The application service systems are monitored.
Changes in the application service systems as well as the environment will trig-
ger a feedback loop constituting the capability allocation adaptation mechanism
to manage the behavior of the service systems. Important settings for the capa-
bility allocation adaptation are policies and parameters. The policies of the ca-
pability allocation adaptation mechanism can be either static policies or dynam-
ic policies. The parameters of the capability allocation adaptation can also be
produced by the parameter production. The capability initialization can be
found in Paper B and C. The capability re-initialization can be found in Paper B
and D. The capability allocation adaptation and the dynamic policies can be
found in Paper E, Paper F and Paper G. The parameter production for the capa-
bility allocation adaptation can be found in Paper H. The software implementa-
tion of the generic reasoning model can be found in Report I.

36

Concerning P4, the ontology to be used has been defined as the concept
ontology: capability, capability performance, service performance, SLA, EFSM
and RM in the capability-based computing architecture. The capability, capabil-
ity performance, service performance and SLA ontology are needed to be stored
and made available. These ontology instances are included in the EFSM-related
and RM-related data entities. Standard representation models – Common Infor-
mation Model (CIM) and Resource Definition Framework (RDF) are applied to
model the concepts: capability, capability performance, service performance
and SLA as presented in Paper A and Paper B. The RM-based data representa-
tion for modeling the RM-related data entities have been formalized in Paper E,
Paper F, Paper G and Paper H.

Concerning P5, The policy-based reasoning is required to model capability
configuration management functionality with respects to modularity, reusabili-
ty, expressive power and flexibility. The policy-based specification is flexible,
expressive and powerful. RM-based role figures have ability to download and
execute policies that can be stored, managed and easily distributed. The generic
policy system definition allows policies to be composed in a modular and reus-
able away. The ontology-based capability selection mechanism gives expressive
reasoning power to the capability configuration management to reason based on
a defined capability ontology model. The RM-based role figures have been for-
malized and used in Paper E, Paper F, Paper G and Paper H. The generic policy
system definition has been demonstrated in Paper C. The ontology-based capa-
bility selection mechanism has been demonstrated in Paper A.

The dynamic policies and parameter productions are techniques that can be
used to evaluate the usability and goodness of the policies and parameters of a
capability configuration management system. The goodness of the used policies
and parameters are observed based on feedbacks, income functions and cost
functions. The dynamic policies have been formalized, demonstrated, evaluated
and used together with the capability allocation adaptation in Paper E, Paper F
and Paper G. The parameter production has been formalized, demonstrated,
evaluated and used with the capability allocation adaptation in Paper H.

Concerning P6, the solution framework is evaluated and validated by dem-
onstration and simulation. The five scenarios defined by the contribution C5
are: S1: Ontology-based capability selection for a Tele-school application, S2:
Printing system capability initialization and re-initialization, S3: Capability re-

The solution framework

37

initialization of RM-based role figurers, S4: Policy-based capability allocation
adaptation for streaming service, and S5: Policy-based parameter production for
policy-based capability allocation adaptation

Figure 18 – Problem statements, contributions and publications

38

 4. Description of the publications in Part II

4.1 Paper A ­ An Approach to Capability and Status Modeling

Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of Norwegian Informatics Conference (NIK 2003),
Stavanger, Norway, 2004

Abstract

A recent trend in network systems is the advanced technology to dynami-
cally handle changes in the system. An important basis relies on the integration
of capability and status representation and their semantic descriptions, which is
currently not expressive enough. In this paper, we propose a Unified Capability
and Status Representation Framework (UniCS) for handling several aspects re-
lated to capability and status. A scenario is modeled by UniCS to show how a
network system exhibits adaptable behavior.

Contributions

C2{Ontology-based capability selection mechanism}, C4{Concept ontology,
RM-based data representation}, C5 {Ontology-based capability selection for a
Tele-school application}

Summary

In this Paper a Unified Capability and Status Representation Framework
(UniCS)1 is presented. UniCS is a formal representation and a computation
framework for the capability configuration management. The representation is
classified in three aspects as: 1) the syntactic aspect, 2) the semantic aspect and
3) the computation aspect.

In the syntactic aspect, physical capabilities can be represented in any
standard representation. UniCS allows use of multiple physical capability and

1

 UniCS has been extended as the present data model

Description of the publications in Part II

39

service performance measure representations such as CIM, UPnP, RDF or any
other proprietary XML-based representations.

In the semantic aspect, the framework encourages the use of semantic de-
scriptions such as ontology to formally describe the semantic of certain capabili-
ty, capability performance and service performance. In addition, an ontology-
based play view capability dimension is suggested for simplicity, unified repre-
sentation and domain-oriented semantic. The play view capability is aimed for:

• Simplicity – Unnecessary details of the physical capabilities are ab-
stracted away; only focused capability properties are considered.

• Unified representation – The capability configuration specification is
needed to be written only once independent of physical capability re-
presentation used.

• Domain-oriented semantic – Capabilities are given specific semantic in
a certain domain.

In the computation aspect, a reasoning functionality can be used as fol-
lows:

• Transform physical capabilities to play-view capabilities – Capabilities
represented by multiple representations will be transformed into a uni-
fied play-view capability representation.

• Ontology reasoning – the reasoning mechanism can reason about capa-
bility and service performance measure relationships based on used on-
tology’s vocabularies.

The paper’s main contribution is the concept model and data representa-
tion, where the capability, capability performance and system performance con-
cepts are defined, formalized and represented in the proposed XML-based data
representation. The paper also has a contribution to the ontology-based capabili-
ty selection mechanism. Scenario S1 – ontology-based capability selection for a
Tele-school application is presented to illustrate how this ontology-based capa-
bility selection mechanism is possible in UniCS. Two capabilities are defined as
substitutable by the use of RDFS’s subClassOf. The reasoning result shows that
these two capabilities can be seen equivalent by the service system.

40

While the use of UniCS adds more simplicity and semantic to the capabili-
ty configuration management, a drawback is that the capabilities must always be
converted into the unified play view capability format. This requires additional
transformation rules to be written.

4.2 Paper B – Configuration Management for Adaptable Service
Systems

Finn Arve Aagesen, Paramai Supadulchai, Chutiporn Anutariya and
Mazen Malek Shiaa

In Proceedings of IFIP International Conference on Metropolitan Area Net-
work, Architecture, Protocols, Control and Management (MAN 2005),
Ho Chi Minh City, Vietnam, 2005

Abstract

Adaptable service systems are service systems that are capable of handling
dynamic changes in both time and position related to users, capabilities, nodes
and changed service requirements. The paper presents a formal framework for
dynamic configuration and reconfiguration of services in TAPAS (Telematics
Architecture for Play-based Adaptable Systems). The framework presented in
this paper, provides representation and reasoning mechanisms for semantic de-
scription and matching of required and offered capabilities and status which
are required by a particular service system. It employs CIM and RDF based on
XML as well as the XML Declarative Description Language (XDD) to provide
human readable and machine-comprehensible descriptions of status, capabili-
ties, system (re)configuration plans as well as the exchange of messages. A rea-
soning system for Configuration Management has been developed by use of
XET (XML Equivalent Transform).

This system can directly operate and reason about XML elements and XML
clauses described by XDD. The system is demonstrated for a simple Intelligent
Printing Management System.

Contributions

C3{Capability initialization, Capability re-initialization}, C5 {Printing system
capability initialization and re-initialization}

Description of the publications in Part II

41

Summary

The paper presents capability initialization and capability re-initialization
of the capability configuration management for adaptable service systems. The
paper focuses on three aspects:

• TAPAS architecture

• Dynamic configuration framework for capability initialization and
re-initialization

• Data representation

TAPAS architecture is separated into a computing architecture and a sys-
tem management architecture. The computing architecture is a generic architec-
ture for modeling any service systems and their components. The system man-
agement architecture is the structure of the system management components. In
the computing architecture, a service consists of service components that are
realizing by roles and deploy on physical nodes.

The capability configuration and re-configuration determine appropriate
nodes to deploy roles and instantiate role figures. This is accomplished by a dy-
namic configuration framework constituting configuration management func-
tionality in the system management architecture. Dynamic means that the capa-
bility configuration is not fixed and can be determined based upon available ca-
pability and service performance measures of nodes. An XET-based reasoning
machine works as a capability configuration manager that transforms a service
request, a service component request or a trouble report into a configuration
plan for a service manager to deploy the needed roles.

Scenario S2 – printing system capability initialization and re-initialization
describes the composition of dynamic capability configurations for an Intelli-
gent Printing Management (IPM) service system. The required capability and
service performance measures of each role are defined in play (re-
)configuration rules used by the configuration manager. Based upon available
capability and service performance measures of nodes, roles can be instantiated
at the nodes with the sufficient capabilities and service performance measures.

42

4.3 Paper C – A Framework for Dynamic Service Composition

Paramai Supadulchai and Finn Arve Aagesen

in Proceedings of 1st International IEEE Workshop on Autonomic Communica-
tion and Computing (ACC 2005), Taormina, Italy, 2005.

Abstract

To be able to utilize the generative potential of future networks for service
composition, the attributes of services and networks must be appropriately for-
malized, stored and made available. Important attributes are the capability and
the status. A capability is an inherent property of a node or a user, which de-
fines the ability to do something. A capability in a network node is a feature
available to implement services. A capability of a user is a feature that makes
the user capable of using services. Status is a measure for the situation in a sys-
tem. This paper proposes a representation framework for capability and status,
denoted as Unified Capability and Status Representation Framework (UniCS).
This framework is used to decide upon dynamic use of capabilities, and is used
to support the dynamic composition of a service system. UniCS consists of facts
and configuration rules. The facts describe the availability and requirement of
capabilities and status of a service system. The configuration rules verify, ma-
nipulate, transform and discover new facts with defined axioms and constraints.
An instance of UniCS is the input specification for a reasoning engine to dy-
namically generate a composition plan for a service system.

Contributions

C2{Generic policy definition}, C3{Capability initialization}, C5 {Printing sys-
tem capability initialization and re-initialization}

Summary

A dynamic service composition framework is presented in Paper C. This
paper extends the capability initialization in Paper B by making a generic policy
system definition for capability initialization, which is the main achievement of
this paper. The demonstration scenario is this paper is scenario S2 – printing
system capability initialization and re-initialization.

Description of the publications in Part II

43

In this paper, a service system is realized by play sessions that are formal
specifications of the collaboration between roles. A role also has capability re-
quirements denoted as role requirements.

Unlike Paper B, The dynamic capability initialization in this paper is based
on UniCS. The paper demonstrates the use of Web Ontology Language for Se-
mantic Web (OWL-S) to describe the semantics of a play consisting of play ses-
sions.

4.4 Paper D ­ Autonomic Service Configuration by a
Combined State Machine and
Reasoning Engine­based Actor

Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the 2005 IFIP International Conference on Intelligence in
Communication Systems (INTELLCOMM 2005),
Delta Centre-Ville Hotel, Montréal, Canada, 2005

Abstract

Service systems constituted by service components are considered. Service
components are executed as software components in nodes, which are physical
processing units such as servers, routers, switches and user terminals. A capabil-
ity is an inherent property of a node or a user, which defines the ability to do
something. Status is a measure for the situation in a system. A service system
has defined requirements to capabilities and status. Because of continuous
changes in capabilities and status, dynamic service configuration with respect to
capabilities and status is needed. Software components are generic components,
denoted as actors. An actor is able to download, execute and move functionali-
ty, denoted as a role. Configuration is based on the matching between required
capability and status of a role and the present executing capabilities and status
of nodes. We propose an approach for role specification and execution based on
a combination an Extended Finite State Machine and a rule based reasoning en-
gine. Actor execution support consisting of a state machine interpreter and a
reasoning engine has been implemented, and has also been applied for a service
configuration example.

44

Contributions

C2{RM-based role figures}, C3{Capability re-initialization}, C4{RM-based
data representation}, C5{Capability re-initialization of RM-based role figures}

Summary

In this paper, a new actor model used in the TAPAS computing architec-
ture has been proposed. Service systems consisting of service components are
executed as software components, which are denoted as actors. The classical
EFSM-based actor model is supplemented with a Reasoning Machine (RM)-
based functionality that makes rule-based decisions possible. An actor playing a
role as denoted as role figures can execute both EFSM-based specification and
RM-based specification.

The use of the actor’s RM-based functionality for a service configuration
enables actors to take decision by themselves. This eliminates the need to have a
centralized service configuration manager. The service configuration is based
on role requirements and inherent capabilities and service performance. The
role requirement describes required capabilities to execute a certain role. An ac-
tor can determine based upon its assigned role and the capabilities information
of nodes what to do. For example, an actor may choose to move if the present
node it stays does not have enough required capabilities.

The XML-based data representation for the RM-based specification is pre-
sented. However, this paper does not have formalized RM-related data entities.

Scenario S3 – capability re-initialization of RM-based role figures demon-
strates a distributed capability re-initialization. An executing actor, when detects
a security threat, can determine a node that is possibly safe and has enough re-
quired capabilities in order to execute its role.

Description of the publications in Part II

45

4.5 Paper E ­ Policy­based Adaptable Service Systems
Architecture

Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the IEEE 21st International Conference on Advanced Infor-
mation Networking and Applications (AINA-07),
Niagara Falls, Canada, 2007

Abstract

This paper presents a policy-based architecture for adaptable service sys-
tems based on the combination of Reasoning Machines and Extended Finite
State Machines. Policies are introduced to obtain flexibility with respect to spe-
cification and execution of adaptable service systems that give high perfor-
mance over a range of system status values. The presented architecture covers
three aspects: service system framework, adaptation mechanisms and data
model. The adaptation mechanisms can be based on static or dynamic policy
systems. Static policy systems have a non-changeable set of policies, Dynamic
policy systems have a changeable set of policies, which are managed by policies
at a higher level. The data model for the reasoning machine functionality is
based on the rule-based reasoning language “XML Equivalent Transforma-
tion” (XET). The capability configuration management of a service system with
runtime simulation results based on the proposed architecture is presented with
the intention to illustrate the use of the architecture and discuss the potential
advantages of using dynamic policies.

Contributions

C1{SLA}, C2{RM-based role figures, Dynamic policies}, C3{Capability allo-
cation adaptation}, C4{EFSM and RM-related data entities, RM-based data re-
presentation}, C5 {Policy-based capability allocation adaptation for streaming
service}

Summary

The paper presents an architecture for policy-based adaptable service sys-
tem. Aspects covered comprise

A) Service system framework,

46

B) Adaptation mechanisms and

C) Concept model and data representation.

The service system framework aspect is a general component structure, the
integration of a proposed Reasoning Machine (RM) functionality into the com-
ponent structure, application domains of the RM functionality and a reasoning
procedure used by the RM functionality. The adaptation mechanism aspect con-
cerns the use of appropriate policies to control service systems when the rea-
soning functionality is needed. The concept model and data representation as-
pect concerns all the data representation related to the RM functionality.

In the service system framework’s general component structure, a service
system consists of executing service components, each of which belongs to a
certain service component type. A service component type can be a pure EFSM
or a combination between EFSM and RM functionality, which is more flexible
and expressive for a decision making role. EFSM may have requirements with
respect to capabilities, capability performance and service performance. In the
paper, a formalism of the RM functionality is given. The potential applications
of the RM functionality are as follows.

1. The RM functionality can be used as a traditional procedural service
for an EFSM-based service component to take decisions, which are not
involving the management of capabilities and system performance.

2. The RM functionality can be used for the initial configuration and re-
configuration of service components according to EFSM’s capability,
capability performance and service performance requirements.

3. The RM functionality can be used for the allocation adaptation of the
service system behavior based on the system’s capability performance
and service performance.

4. The adaptation of policies used in 1-3.

These applications are based on the reasoning procedure, which is a proce-
dure used by an RM to select rules to be applied.

A policy system consists of a set of rules and actions. The policy-based
adaptation mechanism is based on a feedback loop. An RM receives feedbacks,
which are capability and service performance measures from an application ser-
vice system and uses policies to suggest actions that will be used to manage the

Description of the publications in Part II

47

behavior of the application service system when it is entering a reasoning condi-
tion. The policies used are of two types: static policies and dynamic policies.
The static policies are non-changeable. Dynamic policies mean the policy rules
can be changed. The functionality is based on some goodness criteria, reference
inputs as well as feedback from the application service system, which will used
to evaluate policy rules and subsequently change the rules’ priority, suspense
them for a certain time period or completely remove them from the policy sys-
tem.

The data representation for the RM-based specification is based on XML
Equivalent Transformation (XET), which can represent ordinary XML docu-
ments as well as XML expressions and XML rules. Ordinary XML documents
are used to represent capability, capability performance measures and system
performance measures. XML expressions are ordinary XML documents with
XML variables. They are used to represent system constraints of the RM func-
tionality. XML rules represent the specification of RM-based applications in 1-4
above.

Scenario S4 – policy-based capability allocation adaptation for streaming
is presented. The intention is to illustrate the use of the proposed architecture
and the potential advantage of using dynamic policies. Users belong to classes.
The QoS of each class is described by SLA. The users of the class with higher
priority have more privilege in using the service and allocating capabilities. This
mechanism is based on the capability allocation adaptation.

Regarding the service system, the scenarios include the uses of no policy,
the capability allocation adaptation with static policies and the capability alloca-
tion adaptation with dynamic policies. The presented rules, however, are not the
most optimum case. In fact, it is assumed that when the service system is oper-
ated under dynamic policies, it will be able to learn the consequences of the
rules and remove some rules that are not appropriate in the current situation.

There are situations where the use of no policy can be superior or equal to
the use of policies. This can happen when the service system is operated under
some optimized system parameters. However, the same set of system parame-
ters will likely not be optimal for other system traffic load cases. In the pre-
sented scenarios the use of no policy and one server is a good solution in the
low traffic case, while the use of no policy and two servers is a good solution in
the high traffic case. In the given scenarios, the service system operated under

48

static policies give a relatively high income in both low and high traffic. The
service system operated under dynamic policies, however, has a performance
which is superior or equal to other scenarios in both the low and the high traffic
case. When the service system operated under dynamic policies, the rules that
are not appropriate were suspended for a certain time period as expected.

In addition to having the potential for providing optimal solutions covering
dynamic traffic situations, the proposed architecture also is a flexible tool for
the experimentation with alternative policies with respect to optimization.

4.6 Paper F ­ Towards Policy­Supported Adaptable Service
Systems

Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the 13th Eunice Open European Summer School and IFIP
TC6.6 Workshop on Dependable and Adaptable Networks and Services,
University of Twente, the Netherlands, 2007

Abstract

This paper presents a policy-supported architecture for adaptable ser-vice
systems based on the combination of Reasoning Machines and Extended Finite
State Machines. Policies are introduced to obtain flexibility with respect to spe-
cification and execution of adaptation mechanisms. The presented architecture
covers two aspects: service system framework and adaptation mechanisms. The
service system framework is a general framework for capability management.
Adaptation mechanisms are needed for autonomous adaptation. The adaptation
mechanisms can be based on static or dynamic policy systems. Capability man-
agement for of a simple music video-on demand service system with runtime si-
mulation results based on the proposed architecture is presented.

Contributions

C1{SLA}, C2{RM-based role figures, Dynamic policies}, C3{Capability allo-
cation adaptation}, C4{EFSM and RM-related data entities}, C5 { Policy-based
capability allocation adaptation for streaming service}

Description of the publications in Part II

49

Summary

Paper F has some overlapped content with Paper E. However, it provides
more simulation results. The paper extends the simulations of the scenario S4 –
policy-based capability allocation adaptation for streaming service in Paper E.
The simulation in Paper E concerns only high and low traffic load. The simula-
tion in Paper F includes a medium load case and the case that the traffic load va-
ries as a function of time. In the latter scenario, the time when the traffic load is
at a fixed level is denoted as a ρ period.

The simulation confirms that there are situations where the use of no poli-
cy can be superior or equal to the use of policies, which will when the service
system is operated under some optimized system parameters. However, the
same set of system parameters will likely not be optimal for other system traffic
load cases especially when the traffic load varies as a function of time. In the
case where the traffic load varies as a function of time and the system is operat-
ed with dynamic policies, it produces a better result.

In this paper, further simulations were conducted to compare the results of
the static policies and the dynamic policies for different ρ periods. The result
shows that when the value of the ρ period is small, the static policy case may
give a better result because the dynamic policy case need more time to learn the
consequences of the rules being applied. When the value of the ρ period is in-
creased, the dynamic policy case, however, gives more superior results. The
system operated under dynamic policies needs a certain period of time denoted
as learning time to learn the consequences of policies in order to provide supe-
rior performance.

4.7 Paper G ­ A Capability­based Service Framework for
Adaptable Service Systems

Finn Arve Aagesen and Paramai Supadulchai

 In Proceedings of The 2nd International Conference on Advances in Informa-
tion Technology (IAIT2007),
Bangkok, Thailand, 2007

50

Abstract

This paper presents a capability-based service framework for adaptable
service systems. The paper has focus on: I) Adaptability properties, II) The ar-
chitecture solution needed to meet these properties, and III) Capability configu-
ration management functionality. Adaptability is based on flexibility. Accor-
dingly, basic rearrangement flexibility must be provided. But the framework
must in addition have necessary concepts, features and functionality that make
it possible to adapt to various traffic situations and failure states. The architec-
ture solution has a computing and a service functionality dimension. The com-
puting architecture is based on a theatre metaphor, where actor, manuscript,
role figure and capability are core concepts. Fundamental QoS concepts are
capability, capability performance, service performance and service level
agreements. Actors, which are the basis for the implementation of the service
functionality, can be Extended Finite State Machines or Reasoning Machines.
Actors are able to download and execute EFSM- and RM-based manuscripts.
Models for capability configuration management functionality are presented.
Reasoning machines are used for capability configuration management in gen-
eral as well as for policy adaptation.

Contributions

C1{Capability, Capability performance, Service performance, SLA, RM-based
functionality}, C2{RM-based role figures, Dynamic policies}, C3{Capability
Initialization, Capability re-initialization, Capability allocation adaptation}, C4{
EFSM and RM-related data entities}

Summary

Paper G provides a summary of the work in Paper A, B, C, D, E and F.
The paper focuses on I) adaptability properties II) the architectural solution
needed to meet these properties and III) capability configuration management
functionality.

The adaptability properties include the core properties A1, A2 and A3,
which has been mentioned. The architectural solution defines the necessary fea-
tures and QoS related concepts for the capability configuration management in
adaptable service systems. Such QoS related concepts are capability, capability
performance, service performance and service level agreement.

Description of the publications in Part II

51

In the architectural solution, the architecture for adaptable service systems
is split into two architectures: service architecture and computing architecture.
The service architecture represents the functionality of service systems inde-
pendent of implementation. The computing architecture is related to the speci-
fication and execution of service systems independent of functionality set. The
service architecture will need a rich set of features to fulfill the adaptability
properties A1-A3. However, this paper focuses only the capability configura-
tion management functionality.

The capability-based computing architecture is founded on a theatre meta-
phor where play, actor, role, role figure, manuscript, dialogue concepts are de-
fined. The capability-based computing architecture has three viewpoints: ser-
vice, play and physical view. The service view represents service system, ser-
vice component and service performance concepts. The play view, however, has
the theatre metaphor concepts play, role, role figure and dialogue except the ac-
tor and manuscript concept. The physical view has the actor, node, manuscript,
capability and capability performance concepts.

The capability-based computing architecture concepts and functionality are
intended as a basis for designing functionality that meet the general and core
properties A1-A3. The play view concepts are primarily rearrangement flexibili-
ty oriented A1. The QoS concepts, give a basis for functionality that can meet
the robustness and survivability as well as the QoS awareness and resource con-
trol properties A2-A3.

RM-based role figures are considered. An actor can be the combination of
EFSM and RM and is able to download and execute EFSM and RM-based ma-
nuscripts. The EFSM part has requirement with respect to capabilities and ser-
vice performance to perform their intended functionality. The RM part makes
policy-based specification and operation, which are expressive and powerful,
possible.

The capability configuration management is the allocation, re-allocation
and de-allocation of capabilities and comprises service system capability initia-
lization and re-initialization and capability allocation adaptation. The capability
initialization and re-initialization are the allocation of capabilities for the service
components to be distributed and instantiated. Capability allocation adaptation
is the monitoring of the performance of the executing service system and the
reallocation of capabilities within the executing service systems.

52

The service component models including generic EFSM and RM models
are formally presented. For the cases where capabilities are involved, the func-
tionality domain of reasoning machines can be as A) a reasoning service for
service system capability initialization and re-initialization, B) a feedback loop
for capability allocation adaptation based on capability and system performance,
C) a feedback loop for dynamic policies used in B). Reasoning cluster types are
introduced as the integration of the RM-based models in A), B) and C) in the
service system. Capability configuration models for A)-B) based on the RM
formalism are given.

4.8 Paper H – Autonomous Production of Parameters of an
Autonomous Capability Allocation Adaptation
Model

Paramai Supadulchai and Finn Arve Aagesen

Prepared for a submission

Abstract

Autonomous capability allocation adaptation within a service framework
for adaptable service systems is considered. The basis for autonomous capabili-
ty allocation adaptation is service level agreements as well as service and ca-
pability performance. Capability allocation adaptation is based on capability
allocation adaptation models. These models rely on fine-tuned parameters that
are system constraints and reasoning conditions. This paper presents a frame-
work for autonomous parameter production for capability allocation adaptation
models. A parameter production example for capability allocation adaptation
for an online music video on-demand service based on the proposed framework
is given.

Contributions

C1{ Capability, Capability performance, Service performance, SLA, RM-based
specification and execution }, C2{RM-based role figures, Parameter produc-
tion}, C3{Capability allocation adaptation}, C4{EFSM and RM-related data
entities}, C5 {Policy-based parameter production for policy-based capability
allocation adaptation}

Description of the publications in Part II

53

Summary

This paper presents an autonomous parameter production of an autonom-
ous capability allocation adaptation model. The presented issues are as follows:

I. TAPAS service framework and service component models

II. Autonomous capability allocation adaptation models

III. Autonomous parameter production of the parameters of the capabili-
ty allocation adaptation in II, which is the main contribution of this
paper. These parameters are system constraints and reasoning condi-
tions.

The TAPAS service framework is the overall structural and behavior
framework for the specification and execution of services. The framework is se-
parated into the computing architecture and the service architecture. The service
architecture represents the functionality of service systems independent of im-
plementation. The computing architecture is related to the specification and ex-
ecution of service systems independent of functionality set. The details of the
service and computing architecture have been discussed in the summary of Pa-
per G.

The computing architecture is extended with capability performance, ser-
vice performance and SLA. An SLA is a contract made between the service
provider and service users for describing service offering functionality, agreed
offered functionality of service components, agreed performance, payment in
case of agreed performance, payment in case of reduced performance and penal-
ties when the SLA is broken. The formalism of an SLA of a group of users be-
longing to the same QoS class is defined.

SLAs are transformed into system performance requirement models and a
capability performance requirement model. These two models will be subse-
quently transformed into the system constraints and reasoning conditions for the
capability allocation adaptation. Rules and dimensioning functions for the trans-
formations are formalized by XET. The parameter production is a generic func-
tionality that can produce parameters for any capability allocation adaptation
model. The transformation rules are generic. The dimensioning functions, how-
ever, must be re-specified.

54

 Scenario S5 - policy-based parameter production for policy-based capa-
bility allocation adaptation is presented. The considered service system is a mu-
sic video on-demand service. The considered capability is the access link, which
can be composed from different server types having different capability capaci-
ty and cost. The application service system handles capability allocation adapta-
tion for both service user point of view and service provider point of view. On
the service user point of view, QoS of a user is controlled by SLA, which has
been transformed as the parameters of the capability allocation adaptation. On
the service provider point of view, the system tries to optimize the access link
composition and usage based on system performance, capability performance,
capability cost and the capability capacity required by users.

The system constraints consists of requirements with respect to the waiting
time of users in different classes, the access link capability needed and the serv-
er type configuration are based on SLA, inherent system performance measures,
present income and/or present cost of the system. The reasoning conditions are
related to the present total waiting time of the users. These parameters can be
produced at run-time.

Two scenarios are presented. The first scenario considers the capability al-
location adaptation where the capability allocation adaptation parameters are re-
produced at run-time. This scenario is denoted as dynamic parameters. The
second scenario describes the capability allocation adaptation, which the para-
meters are produced only once. Additional scenarios are considered. In the for-
mer case, the traffic load can vary as a function of time while the server cost is
fixed. In the latter case, the cost of the server nodes can vary as a function of
time while the traffic load is fixed. The server cost depends on the cost asso-
ciated with different node types and the number of server required. When the
traffic load is varied, the time when the traffic load is at a fixed level is denoted
as a ρ period. When the server cost is varied, the time when the server cost is
fixed at a certain level is denoted as a J period.

When the traffic load varies as a function of time, the dynamic parameter
case gives relatively better results. The static parameter case seems to require
some learning time to fine tune the appropriate number of servers parameter at
the beginning of each ρ period while in the dynamic case, this parameter is re-
calculated. When the server cost varies as a function of time, the dynamic pa-

Description of the publications in Part II

55

rameter case has relatively less cost due to the ability to switch to cheaper com-
binations of node types when the cost functions are varied.

The production of capability adaptation model parameters can be a flexible
tool for the experimentation with alternative parameters of capability allocation
models with respect to performance optimization from both service user point
of view as well as service provider point of view.

4.9 Report I – NxET Reasoning Machine

Paramai Supadulchai

Plug-and-play Technical Report, Department of Telematics, NTNU

ISSN 1500-3868.
Abstract

Native XML Equivalent Transformation (NxET) is an XML-based imple-
mentation of the ET paradigm (ET = Equivalent Transformation). NxET is de-
signed for simplicity, modularity, extensibility, mobility and performance and
can be used as a reasoning machine in various application domains. NxET has
been used as supplemented reasoning functionality for the adaptable service
systems based on TAPAS. This article focuses on NxET’s computing paradigm,
actor model, data model, and NxET implementation and usages. NxET’s com-
puting paradigm consists of a conceptual modeling language and a computation
model. The actor model describes the use of NxET with actors in the TAPAS
computing architecture. The data model describes XML-based data representa-
tions of the conceptual modeling language. The NxET implementation and
usages illustrates NxET system components, processing mechanism and usages.

Contributions

C1{RM functionality}, C2{Generic reasoning model, RM-based role figures},
C4{EFSM and RM-related data entities, RM-based specification representa-
tion}

56

Summary

This technical report presents NxET Reasoning Machine that is the imple-
mentation of the generic reasoning model and RM-based role figures. The pre-
sented issues are as follows:

I) NxET’s computing paradigm

II) The actor model

III) The data model

IV) NxET implementation and usages

This technical report does not provide the TAPAS concepts, TAPAS ser-
vice functionality architecture as well as TAPAS computing architecture. The
readers should refer to Section 2 and Section 3 before reading this report.

NxET’s computing paradigm is denoted as XET computing paradigm and
consists of a conceptual modeling language and a computation model. The con-
ceptual modeling language is based on XML Declarative Description (XDD).
However, XDD are just data representation. A computation model is needed.
The XET computation model is based on Equivalent Transformation (ET)
[Aka98], which solves a given problem by transforming it through repetitive
application of (semantically) equivalent ET transformation rules. An XDD
clause is modeled by an ET transformation clause.

The actor model presents the integration of RM functionality in the capa-
bility-based computing architecture. The actor role in the TAPAS computing
architecture is defined as an Extended Finite State Machine (EFSM) extended
with policies. The mechanism interpreting the manuscript is an EFSM interpre-
ter extended with a reasoning machine. The data entities of EFSM and RM are
presented.

The data model presents the XML-based representation of the RM data
entities consisting of the policies, system constraints, reasoning conditions, facts
and transformation clauses. These data entities are represented by XML va-
riables, XML expression, XET clause and XET rule. XML variables are used to
represent implicit information. XML expressions are ordinary XML elements
with the XML variables. XET clauses are XML-based representation of the ET

Description of the publications in Part II

57

transformation clauses. XET rules are XML-based representation of the ET
transformation rule.

The NxET implementation and usages section presents NxET system com-
ponents, NxET processing mechanism and NxET usages. The NxET system
components are the components constituting the NxET reasoning machine. The
NxET processing mechanism shows the implementation details of the NxET
reasoning machine. The usages shows that NxET can be used as either a stan-
dard application, a procedural call service within a Java application and by us-
ing XET Rule Editor.

4.10 Relationship and overlap between the publications

The relationship between Paper A – Paper H as well as Report I is illu-
strated in Figure 19.

Paper A’s main focus is the concept model and data representation, which
is applied in the work in all other papers, and the ontology-based capability se-
lection mechanism. Paper B main focus is the capability initialization and re-
initialization. Paper C is an extension of Paper B and provides a generic policy
system definition for the capability initialization. Paper D describes the RM-
based role figures and demonstrates a potential use for the capability re-
initialization. This paper has also contributed additional concept model and data
representation extension and can be considered as a complement of Paper A.
Paper E defines the formalism of the RM-based role figures given in Paper D.

58

Figure 19 – The relation between the selected publications

Paper E, Paper F and Paper H give a contribution to the capability alloca-
tion adaptation. Paper F is an extension of Paper E and provides more experi-
mental results and discussion related to the capability allocation adaptation. Pa-
per H extends the capability allocation adaptation model in Paper E with the pa-
rameter production and SLA mapping.

Paper G presents a capability-based computing architecture and provides a
summary and improvements of the concepts, models and mechanisms in Paper
A – Paper F.

Report I is about the implementation of the reasoning machine and has re-
lationships with all other papers.

Summary, conclusions and further work

59

 5. Related works

This section presents related researches, technologies and platforms. The
presentation is structured in two main parts: 1) related paradigms and 2) re-
search papers. The paradigms presented are:

• Autonomic systems and autonomic communications

• Pervasive and ubiquitous computing

• Context-aware system

Even if these paradigms have overlapping objectives, concepts, solutions,
features and mechanisms, the focus is considered to be different. Concerning
the research papers, the discussion of these are based on the contributions C1-
C4 defined in the previous sub-section.

5.1 Related paradigms

5.1.1 Autonomic Systems and Autonomic Communications

Autonomic systems and Autonomic communications are emerging tech-
nologies inspired by the autonomic computing paradigm introduced by IBM
[Kep03, Str04]. Autonomic systems are characterized by self-configuration,
self-monitoring, self-adaptation and self-healing properties. The ultimate goal of
Autonomic communications, however, is networks and associated devices and
services that will be able to work in a totally unsupervised manner; able to self-
configure, self-monitor, self-adapt and self-heal [Dob06].

Autonomic elements are building blocks of an autonomic system [Fua06]
where the elements themselves are self-contained and facilitated with the self-x
properties. Feedback loops are usually visible either within an autonomic ele-
ment itself [Fau06] or among them [Dob06]. Techniques such as cognitive rea-
soning [Nar03], [Nb04], [Ser06], policy management, [Nb04], intelligent agents
[Zha04], biological algorithms [Sus05], context-awareness [Ser06] and seman-
tic annotations [Ser06] are applied.

60

Autonomic communication and adaptable service systems share the same
direction towards the handling of complexity introduced by the higher degree of
flexibility required. On the architectural perspective, the autonomic communica-
tion can be seen as a subset of adaptable service systems. This is because the au-
tonomic communication sets strong restrictions to the architecture solutions ap-
plied.

The focus of the work in this thesis can be related to self-configuration,
self-optimization and self-healing with respect to capabilities. The self-
protection, on the other hand, is not considered.

5.1.2 Pervasive and ubiquitous computing

Pervasive computing considers information processing, retrieval and utili-
zation to be integrated into everyday life. The goal of ubiquitous computing
concept is similar to the pervasive computing concept. However, it focuses
more on a person and his or her activities with different kinds of computing de-
vices. The use of computing devices shall be so integrated in the personal activi-
ties that they are almost invisible. Adaptive pervasive computing considers
changes in the environment around a user and the ability of the service system
to handle the changes. Techniques such as policy-based management [Har05],
[Han06] and [Syu07], cognitive reasoning [Lew04] and semantic service com-
position [Lew04] may be applied.

Considering the adaptability properties defined, the pervasive and ubiquit-
ous computing has its main focus on the core property A1 – rearrangement flex-
ibility. The pervasive and ubiquitous computing consider QoS and performance
with respect to the users. A service system in this paradigm is of course required
to have both failure robustness and resource load awareness and control. This is
however not the focus problem to be solved within these paradigms. While
Adaptable service systems consider QoS and performance from both service
provider and service users’ point of view, pervasive and ubiquitous computing,
however, consider QoS and performance with respect to the users.

5.1.3 Context­aware Systems and Services

Context-aware systems are the system that can sense the surrounding envi-
ronment and aggregate the information as “context”. A context can consist of
the information such as user, terminal, terminal capabilities, geographical posi-

Summary, conclusions and further work

61

tion, nature of the position (shop, work, nature, etc.), events, failures and per-
formance. A definition of context given by [Dey01] is “any information that can
be used to characterize the situation of entities”. A context aware service system
provides user services dependent on the context.

The mechanism used by context-aware systems can be based on reasoning
machine [Dan07] and ontology [Pes07], which are similar to the sub-
contributions in this PhD work. However, the context-aware systems focus
more on providing services when the context is changed. Unlike adaptable ser-
vice systems, the restructuring of the service system and service components to
realize the core properties is not the main focus.

5.2 Related papers

The following discussion categorized and discussed with reference to the
contributions C1-C4 defined in the previous section.

5.2.1 Contributions C1 and C4

The capability-based computing architecture (C1) and the concept model
and the data representation contributions (C4) are usually found in the same
architectural framework. Therefore, these two contributions are considered in
this section.

The following sub-contributions of C1 and C4 will be discussed.

• Capability (C1)
• Capability performance (C1)
• Service performance (C1)
• SLA (C1)
• RM-based functionality (C1)
• Concept ontology (C4)
• RM-based data representation (C4)
• SLA mapping (C1, C2, C3)

Five capability-based computing architectures [Jøa01], [Viv03], [Dur05],
[Xia05], [Adl06] are considered. These architectures are intended to support
QoS in networked service systems. A system is considered to have the SLA

62

contribution if the system has the ability to classify users and allocate capabili-
ties based on SLA. SLA mapping illustrates the ability to autonomously trans-
form high-level SLA into lower level operational concepts such as capability
requirements, capability performance requirements and service performance re-
quirements.

Aagedal published a QoS support in development of distributed systems in
his thesis [Jøa01] in 2001. The work appropriately defines QoS concepts that
are necessary to model distributed multimedia applications in both conceptual
level and implementation level. A Common Quality Modeling Language
(CQML) is proposed as a lexical language for QoS ontology modeling. The the-
sis represents how CQML can be used and how the models, based on CQML,
can be compiled by a computational support into QoS templates that will be
used in multimedia application systems. The QoS specification, however, is
made per user instead of classes. The work does not have the RM specification
and execution integrated.

[Viv03] provides a QoS architecture for effective pricing model. The archi-
tecture focuses on three aspects: 1) QoS classification, 2) pricing scheme defini-
tion and 3) algorithm for performance optimization with respect to the service
user and service provider point of views. The architecture does not have a fully
featured capability-based computing architecture. Only the service performance
is considered. The QoS specification is defined directly in the physical level.
The RM concept as well as the concept model and data representation is not
considered.

[Dur05] presents an End-User Specification of Quality of Service Apply-
ing the Model-Driven Approach. The architecture aims to provide flexibility.
UML is used to model capability, capability performance, service performance
and SLA in a conceptual level. The QoS concepts, once defined, can be trans-
lated into an equivalent XMI document, which is available in XML format.
Based on the XMI documents, an XMI parser creates low-level QoS-related re-
quirements for operational applications. The XMI parser does not use policies
for the creation of the task. The architecture is therefore considered without the
RM-based functionality.

[Xia05] presents a QoS-aware service composition and adaptation in auto-
nomic communication. Similar to [Viv03], the architecture does not have a
computing architecture and the QoS-related requirements are specified directly

Summary, conclusions and further work

63

in the physical level. The ontology concept is not applied in the architecture.
The only considered QoS concept is the service performance. The architecture
has a domain graphs that, based upon the service performance measures, can de-
termine the effective route between two domains. The paper’s main focus is the
service performance optimization between two domains, where a domain can be
seen as a service provider and the other domain can be seen as a service user.

The work in [Adl06] presents a programming environment that has QoS
control for grid applications. The architecture uses the notion autonomic ele-
ment following the concept in Autonomic Computing. The architecture has an
abstraction level where capability, capability performance and service perfor-
mance can be defined. These concepts can be recognized by application manag-
ers in order to configure and optimize the system accordingly. The autonomic
elements have RM-based functionality. The RM-based data representation,
however, is not defined. The concept SLA is also not visible in the architecture.

Table 4 illustrates a comparison of the related work with respects to the
capability-based computing architecture related work.

Table 3 – Capability-based computing architecture related work

Sub-contributions [Jøa01] [Viv03] [Dur05] [Xia05] [Ald06]
Capability Yes - Yes - Yes
Capability performance Yes - Yes - Yes
Service performance Yes Yes Yes Yes Yes
SLA Yes2 Yes - Yes3 -
Concept ontology Yes - Yes - Yes
RM-based functionality - - - - Yes
RM-based data represen-
tation - - - - -

SLA mapping Yes - Yes - -

2

 SLA is made per user, not a group of users.

3
 SLA is made between two domains.

64

5.2.2 Contributions C2

The following sub-contributions of the contribution C2: Policy-based rea-
soning will be discussed.

• RM-based role figures
• Generic policy system definition
• Ontology-based capability selection mechanism
• Dynamic policies
• Parameter production

Five papers [Gar04], [Agra05], [Sha05], [Har06] and [Syu07] are consi-
dered. The work in all these papers has a generic reasoning model. Concerning
the RM-based role figures, a work is considered having the contribution related
to the RM-based role figures if the policy-based reasoning functionality can be
distributed to system components; i.e. not a centralized architecture.

[Gar04] presents an architecture-based self-adaptation framework with
reusable infrastructure. The aim of the architecture is to reduce difficulties when
adding a new service component into the system. This is done through annotat-
ing common knowledge for service component, which can be aligned with the
generic policy system definition. The capability ontology, however, is not ap-
plied. The framework neither has the dynamic policies feature nor the parameter
production feature.

[Agra05] presents a middleware for policy management for networked sys-
tems and applications. The middleware provides an infrastructure for creation,
storage, distribution and execution of policies. The architecture has three focus-
es: 1) a general policy system definition, 2) local administration of policies and
3) policy transformation. The local administration of policies feature allows sys-
tem administrators to accept, reject or flag policies. Thus, the dynamic policies
feature of this architecture partially requires human intervention. The policy
transformation allows a new policy to be transformed based on the current situa-
tion.

[Sha05] presents a dynamic policy framework that automatically creates
policies for differentiated communication systems. A hierarchical policy model
is used to capture users and administrators’ higher level goals and transform
them into network level policies, which will be distributed to the service com-

Summary, conclusions and further work

65

ponents. The framework focuses mainly on the policy composition. The generic
policy system definition and the ontology model are not applied.

 [Har06] provides a policy-based context-aware agent framework support-
ing users’ mobility. Policies to deal with users’ rearrangement flexibility and the
capabilities of mobile devices can be composed and distributed. This work has a
focus on the capabilities needed by the users. [Sha05] and [Har05] share similar
policy composition frameworks.

[Syu07] defines an architecture for policy-based control of context aware
pervasive services. The architecture has a policy mechanism to control context-
aware behavior for pervasive service applications. The targeted service applica-
tion is selecting policies to apply for mobile users in a pervasive environment
based on context. The concepts included in the context are system performance,
resources, rearrangement flexibility requirements and dependability require-
ments. A proprietary XML-based policy language and a reasoning engine are
defined and implemented. The architecture has, in addition, ability for policy
conflict resolution. The main difference of this architecture and this thesis is the
focused service system applications. Similar to [Han06], [Syu07]’s application
focuses on mobile users. This thesis, however, focuses on the adaptability prop-
erties of service systems.

Table 4 illustrates a comparison of the related work [Gar04], [Agr05],
[Sha05], [Han06] and [Syu07] with respects to the policy-based reasoning sub-
contributions.

Table 4 – Policy-based reasoning related work comparison

Sub-contributions [Gar04] [Agr05] [Sha05] [Han06] [Syu07]
RM-based role figures Yes - Yes Yes -
Generic policy system defi-
nition

Yes Yes - - -

Ontology-based capability
selection mechanism

- - - - -

Dynamic policy - Yes Yes Yes -
Parameter production - - - - -

66

5.2.3 Contributions C3 and C2

This section has main focus on the contribution C3: Capability configura-
tion management. Some of the sub-contributions of the contribution C2: Policy-
based reasoning, are also included. This is done because the structure of the
content of the research papers considered. The following sub-contributions of
the contribution C3 and C2 are discussed.

• Capability initialization and re-initialization (C3)
• Capability allocation adaptation (C3)
• Capability allocation adaptation with dynamic policies (C3 and C2)
• Capability allocation adaptation with parameter production (C3 and

C2)
• Ontology-based capability selection mechanism (C2)

Five most related papers [Xu00], [Ben01], [Sah04], [Cor06] and [Alm06]
are considered. The service configurations in these architectures are all based on
capability, capability performance and service performance.

 [Xu00] presents a multimedia service configuration and reservation in he-
terogeneous environments. A capability initialization is used to compose a ser-
vice based on chosen service components to clients. Service reservation has a
role of capability allocation adaptation to optimally reserve resources for end-
to-end communication with the end users. The architecture can compose and re-
compose the service based on capability and service performance data. A capa-
bility allocation adaptation model is provided. However, the architecture does
not support the use of ontology, the dynamic policies and the parameter produc-
tion.

 [Ben01] proposes a framework for conceptually defining a service model
and a composition model for composing the service instance. The framework
has a mechanism similar to the dynamic policies. The service model can be
adapted to changes in the environment and the service instance can be re-
deployed. The framework focuses on the service composition between two do-
mains. Capability and capability performance requirements are encapsulated in
negotiation objects, which both domains must agree on. The framework does
not support the use of ontology models for the service composition.

Summary, conclusions and further work

67

The architecture in [Sah04] has automated policy-based capability compo-
sition functionality. A composite capability is composed by one or more based
capability. This paper considers a composite capability as a service. By using
policies and a reasoning technique, a new composite capability can be com-
posed from base capabilities. The policies, however, cannot be adapted. The
framework focuses mainly resource composition but not re-composition and
adaptation. The concept model representing policies, capabilities and capability
ontology is based on Common Information Model (CIM), which is also used to
represent physical capabilities in this thesis.

[Cor06] considers a context-aware architecture that can dynamically com-
pose services based on capability profiles of portable devices, user profiles and
service profiles. The architecture model these profiles and composition policies
dynamically using Web Ontology Language (OWL). The ontology models can
be adapted to changes in the environment. When new mobile devices are intro-
duced, the mobile ontology, for example, will be adapted. The framework fo-
cuses mainly service composition with respect to rearrangement flexibility. The
service adaptation and optimization is out of scope of the architecture.

[Alm06] focuses on capability allocation adaptation issues with respect to
capacity and performance in an autonomic service-oriented architecture. From
the service provider point of view, services provided to service users are consti-
tuted by Web Services, which requires capabilities to execute. A capability
planning and optimizing mechanism is proposed. The mechanism can optimize
the capabilities required by each Web Service class based on cost functions of
Web Service class as well as the usage of Web Service instances. The novelty
of the architecture resides in the ability of the planning and optimizing mechan-
ism to create both short-term and long-term plan for superior capability alloca-
tion adaptation.

Table 5 illustrates a comparison of the related work [Xu00], [Ben01],
[Sah04], [Cor06] and [Alm06] with respect to the capability configuration man-
agement.

Table 5 – Capability configuration management related work comparison;

Sub-contributions [Xu00] [Ben01] [Sah04] [Cor06] [Alm06]
Capability initialization and
re-initialization Yes Yes Yes* Yes -

68

Capability allocation adapta-
tion Yes Yes - - Yes

Ontology-based capability
selection mechanism - - Yes Yes -

Capability allocation
adaptation with dynamic - Yes - Yes -

Capability allocation
adaptation with parameter
production

- - - - -

Summary, conclusions and further work

69

 6. Summary, conclusions and further work

6.1 Summary

The context of this thesis has been capabilities in adaptable service sys-
tems. The main research objectives were “to study and analyze concepts, mod-
els and mechanisms for the realization of the general and the core properties
related to capabilities, and further to specify, construct, evaluate and validate a
framework for capability configuration management.” Based on these research
objectives as well as the general and core properties defined in Section 1.1, and
the scope defined in Section 2.2, six problem statements P1-P6 was defined in
Section 2.2.

A solution framework denoted as a reasoning-based capability configura-
tion management framework for adaptable service systems is intended to meet
the objectives as well as the problem statements defined. The solution frame-
work, which was presented in Section 3, consists of the following contributions:

C1: Capability-based computing architecture,

C2: Policy-based reasoning,

C3: Capability configuration management,

C4: Concept model and data representation and

C5: Scenarios – experimentation and simulation.

These contributions consist of sub-contributions. Each of the sub-
contributions C1-C4 represents contributed concept, model or mechanism for
the realization of the adaptability properties as defined in Section 1.1 The con-
tribution C5 is intended to evaluate and validate the contributions C1-C4. The
contributions C1-C5 was presented in Section 3.1.The relationship between the
contributions and the publications presented in part II was presented in Section
4. A discussion of how the various contributions implement the problem state-
ments was presented in Section 3.2.

70

Concerning contribution C5: Scenarios – experimentation and simulation,
the following five scenarios S1-S5 were designed and used for evaluation and
validation:

S1: Ontology-based capability selection for a Tele-school application

S2: Printing system capability initialization

S3: Capability re-initialization of RM-based role figures

S4: Policy-based capability allocation adaptation for streaming service,

S5: Policy-based parameter production for policy-based capability alloca-
tion adaptation.

6.2 Conclusions

The solution framework presented in this thesis consists of contributions
C1-C5 that aim to meet the problem statements:

P1: How to include capabilities as well as additional needed concepts in the
architectural framework?

P2: How to include capability management in an architectural framework?

P3: Which concepts, features and mechanism are appropriate for autonom-
ic capability management?

P4: What is the ontology to be used? How to model and represent the con-
cepts of the ontology?

P5: How to model capability management functionality when considering
modularity, reusability, expressive power and flexibility?

P6: How to evaluate and validate the proposed framework?

The evaluation and validation of the framework (Contribution C5) by ex-
periments and demonstrations concludes that the framework meets the problem
statements. The contributions have been included in the TAPAS computing and
service architecture.

Summary, conclusions and further work

71

The solution framework is however a generic framework consisting of
concepts, models and mechanisms to be re-used. The framework does not give
any method to specify policy based adaptable functionality. The lessons learnt
from the design, specification and execution of the policies for the policy gener-
ation in scenario S4 and parameter production in scenario S5 is that the design
of policies needs accurate knowledge of the application to be managed. The pol-
icy development process must follow a traditional iterative software life-cycle
process. The goodness of the specific policy system must be validated, eva-
luated and optimized in each case. Using policies introduced flexibility with re-
spect to adding new features fast and easily. The goodness of policy system
must be evaluated and validated based on traditional methods.

6.3 Further work

Adaptable service systems represent a vision – this even if the scope of the
definition is executing adaptable systems. Considering the life cycle of a service
it will include both a human part and an autonomous part. The human part
represents design, specification and maintenance, while the autonomous part
mainly is adaptation during execution. The human part defines and improves the
behavior of service systems. The autonomous part uses the defined behavior to
make the service systems adaptable and generates feedbacks for human to im-
prove the behavior applied. The adaptability of service systems relies on the
knowledge captured from the situations that have happened in the past. Al-
though the system has ability to learn, capturing new knowledge without human
intervention is not trivial. For example, policies controlling the behavior of the
service systems in the presented scenarios have been defined by human. While
the evaluation of the consequences of the policies is possible, more research and
development efforts are required to define new policies autonomously.

Concerning the evaluation and validation of the solution framework pre-
sented the models and mechanisms have not been formally validated by formal
methods, and there has not been any comprehensive analysis of the policies ap-
plied in the scenarios S4 and S5. Only demonstration and simulation have been
applied, and these demonstrations and simulations are handling example cases.
The outcome is then rather an indication of the potential and applicability than a
proof of the applicability. It can neither be ensured that the models and mechan-
isms will always lead the service system to desired states nor that the models

72

and mechanisms are optimal in all situations. A more accurate evaluation and
validation should be conducted.

The solution framework assumes the availability of the other functionality
in the TAPAS service architecture. It is assumed that the capability and service
performance administration, mobility management as well as service manage-
ment are implemented and can be applied with the capability configuration
management. More efforts are needed to design and implement the capability
and service performance administration as well as the service management
functionality. The integration of all functionality must also be evaluated and va-
lidated.

Concerning the aspects of the capability configuration management
framework which was outside the scope of this thesis, these aspects should be
included. The capability management framework should both be based on a dis-
tributed architecture and protocol and it should fulfill the failure robustness core
properties.

Finally, limitations related to the used programming language, tools, pro-
gramming and algorithms must be taken into accounts. For examples, the cur-
rent reasoning machine implementation depends on the full version of JRE.
Thus, the solution framework is limited to nodes with sufficient capabilities to
execute the full version of JRE. Some modifications are needed to execute the
RM-based functionality on the mobile version of Java (J2ME).

Bibliography

73

Bibiography

[Aag01a] F.A. Aagesen, B.E. Helvik, U. Johansen and H. Meling, Plug and Play for

Telecommunication Functionality -- Architecture and Demonstration Issues,

The International Conference on Information Technology for the New Mil-

lennium (IConIT), Thammasat University, Bangkok, Thailand, May 2001.

[Aag01b] F. A. Aagesen, The PaP project - Research method, Plug-and-Play Technical

Report, Department of Telematics, NTNU, 2001-02-01, ISSN 1500-3868.

[Aag02a] F.A. Aagesen, B.E. Helvik, and C. Anutariya, Towards Dynamic Composition

of Adaptive Services, in Proceedings of EuroWeb 2002 Conference -- The

Web and the Grid: From E-science to E-business, Oxford, UK, December

2002.

[Aag02b] F.A. Aagesen, C. Anutariya, M.M. Shiaa and B. E. Helvik, Support

Specification and Selection in TAPAS, Proceedings of the IFIP WG6.7

Workshop and EUNICE Summer School on Adaptable Networks and

Teleservices, Trondheim, Norway, September 2002.

[Aag03] F. A. Aagesen, B. E. Helvik, C. Anutariya and M. M. Shiaa, On Adaptable

Networking, in Proceedings of the First International Conference on Informa-

tion and Communication Technologies, ICT'2003, Assumption University

Thailand, April 2003.

[Aag05] F.A. Aagesen, P. Supadulchai, C. Anutariya and M.M. Shiaa, Configuration

Management for Adaptable Service Systems, in Proceedings of IFIP Interna-

tional Conference on Metropolitan Area Network, Architecture, Protocols,

Control and Management (MAN 2005), Ho Chi Minh City, Vietnam, 2005.

74

[Aag07] F.A. Aagesen and P. Supadulchai, A Capability-based Service Framework for

Adaptable Service Systems, submitted to The 2nd International Conference on

Advances in Information Technology (IAIT2007), Bangkok, Thailand, 2007.

[Aag99a] F. A. Aagesen, B. E. Helvik, H. Meling and U. Johansen. Plug and Play for

Telecommunications -- Architecture and Demonstration Issues, Norsk Infor-

matikkonferanse, Trondheim, November 1999, Tapir, ISBN 82-519-1556-2.

[Aag99b] F. A. Aagesen, B. E. Helvik, V. Wuwongse, H. Meling, R. Bræk and U.

Johansen, Towards a Plug and Play Architecture for Telecommunications, in

Proceedings of the IFIP TC6 WG6.7 Fifth International Conference on Intel-

ligence in Networks, Asian Institute of Technology, Thailand, November

1999.

[Adl06] M. Aldinucci, M. Danelutto, M. Vanneschi, Autonomic QoS in ASSIST Grid-

aware components, in Proceedings of 14th Euromicro International Confe-

rence on Parallel, Distributed, and Network-Based Computing (PDP’06),

Montbéliard-Sochaux, France, February 15-17, 2006.

[Aka98] K. Akama, T. Shimitsu, and E. Miyamoto, Solving Problems by Equivalent

Transformation of Declarative Programs, Journal of the Japanese Society of

Artificial Intelligence, vol. 13, pp. 944-952, 1998.

[Alm06] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, M. Trubian, Resource

Management in the Autonomic Service-Oriented Architecture, in Proceedings

of ICAC '06. IEEE International Conference on Autonomic Computing, Dub-

lin, Ireland, 13-16 June 2006.

[Alo03] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Serices, Springer, ISBN

978-3540440086, 2003.

[Agr05] D. Agrawal, S. Calo, J. Giles, K. Lee and D. Verma, Policy Management for

Networked Systems and Applications, in Proceedings of the 2005 9th

IFIP/IEEE International Symposium on Integrated Network Management (IM

2005), pp. 455 – 468, Nice, France, 15-19 May 2005.

Bibliography

75

[Ben01] I. Ben-Shaul, O. Holder, B. Lavva, Dynamic adaptation and deployment of

distributed components in Hadas, IEEE Transactions on Software Engineer-

ing, Vol. 27, No. 9, Pp. 769 – 787, Sept. 2001.

[Bad06] B. Tebbani and I. Aib, GXLA a Language for the Specification of Service Lev-

el Agreements, in Proceedings of the First International IFIP TC6 Conference

on Autonomic Networking (AN 2006), Paris, France, September 27-29, 2006.

[Bri91] E. Brinksma, What is the method of formal methods? IFIP Forte 91, Sidney,

November 1991.

[Cha06] H. Chan and T. Kwok, A Policy-based Management System with Automatic

Policy Selection and Creation Capabilities by using a Singular Value

Decomposition Technique, in Proceedings of the Seventh IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY’06),

The University of Western Ontario, London, Ontario, CANADA, 2007.

[Cho05] P. Cholda, A. Jajszczyk, B.E. Helvik, A. Mykkeltveit, Service Differentiation

Based on Recovery Methods, in Proceedings of the 2nd EuroNGI Workshop

on Traffic engineering, protection and restoration for NGI, Rome, 21–22

April 2005.

[Cor06] A. Corradi; R. Montanari, A. Toninelli A, Dynamic configuration of semantic-

based service provisioning to portable devices, in Proceeings of International

Symposium on Applications and the Internet 2006 (SAINT 2006), Phoenix,

Arizona, USA, 23-27 Jan. 2006.

[Dan07] L. Daniele, P. D. Costa and L. F. Pires, Towards a Rule-Based Approach for

Context-Aware Applications, in Proceedings of the 13th EUNICE Open

European Summer School and IFIP TC6.6 Workshop on Dependable and

Adaptable Networks and Services, University of Twente, the Netherlands,

l 200
[Day01] A.K. Dey, Understanding and Using Context, Personal Ubiquitous Compu-

ting, Vol. 5, No. 1, pp. 4-7, February 2001.

76

[Dia05] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. E. Kaiser and D. Phung, A

Control Theory Foundation for Self-Managing Computing Systems. IEEE

Journal on Selected Areas in Communications, Vol. 23, No. 12, December

2005.

[Dob06] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P.

Nixon, F. Saffre, N. Schmidt and F. Zambonelli, A survey of autonomic com-

munications, ACM Transactions on Autonomous and Adaptive Systems

(TAAS), Vol. 1, No. 2, December 2006.

[Dit06] M. Ditze and T. Bresser, Resource adaptation for audio-visual devices in the

UPnP QoS architecture, in The 20th International Conference on Advanced

Information Net-working and Applications (AINA 2006), 2006.

[Dmt07a] DMTF, Common Information Model (CIM) Standards, available on-line at

http://www.dmtf.org/standards/cim/, November 2007.

[Dmt07b] DMTF, xmlCIM, CIM Tutorial, available on-line at

http://www.wbemsolutions.com/tutorials/CIM/wbem-xmlcim.html, Novem-

ber 2007.

[Dur05] D. Durand and Christophe Logé, End-User Specification of Quality of Service

Applying the Model-Driven Approach, in Proceedings of the Joint Internation-

al Conference on Autonomic and Autonomous Systems and International

Conference on Networking and Services (ICAS/ICNS 2005), Papeete, Tahiti,

23-28 October 2005.

[Fua06] M.M. Fuad and M.J. Oudshoorn, System Architecture of an Autonomic

Element, in Proceedings of the Fourth IEEE International Workshop on Engi-

neering of Autonomic and Autonomous Systems (EASe’07), Baltimore, MD,

USA, March 2007.

[Gar04] D. Garlan, S. Cheng, A. Huang, B. Schmerl and P. Steenkiste, Rainbow: Arc-

hiecture-Based Self-Adaptation with Reusable Infrastructure, Computer, pp.

46-54, October 2004.

Bibliography

77

[Han06] S. Han, S. Zhang, Y. Zhang, Self-Adaptive Pervasive Computing Application

Based on Code Mobility, in Proceedings of the 2nd IEEE International

Symposium on Dependable, Autonomic and Secure Computing, Indianapolis,

Indiana, USA, September 29-October 1, 2006.

[Har05] H. Harroud and Ahmed Karmouch, A Policy Based Context-aware Agent

Framework to Support Users Mobility, in Proceedings of the Ninth IFIP/IEEE

International Symposium on Integrated Network Management (IM 2005),

Nice, France, 15-19 May 2005.

[Ino99] Y. Inoue, et al., The TINA Book: A Co-operative Solution for a Competitive

World: Prentice Hall, 1999.

[ITU02] ITU-T, ITU-T Recommendation E.860, Framework of Service Level Agree-

ment, 2002.

[ITU92] ITU-T, Principles of intelligence network architecture, October 1992.

[Jia03] S. Jiang and F. A. Aagesen, XML-based Dynamic Service Behaviour Repre-

sentation, Proceedings of NIK'2003, Oslo, Norway, 2003.

[Jia06] S. Jiang and F. A. Aagesen, An Approach to Integrated Semantic Service Dis-

covery, Proceedings of Autonomic Networking 2006, Paris, 2006, pp. 159-

171.

[Jia07] S. Jiang and F. A. Aagesen, Efficient Service Discovery System Based on

Semantic Overlay Networks, Proceedings of 2007 SIWN International Confe-

rence on Complex Open Distributed Systems (CODS’2007) Chengdu, China,

2007.

[Jøa01] Jan Øyvind Aagedal, Quality of Service Support in Development of Distri-

buted Systems, PhD thesis, Faculty of Mathematics and Natural Sciences,

University of Oslo, 2001.

78

[Kep03] J. O. Kephart and D. M. Chess, The Vision of Autonomic Computing, Com-

puter, Vol. 36, No. 1, pp. 41-50, Jan 2003.

[Lew04] D. Lewis, O. Conlan, D. O'Sullivan and R. Wade, Managing adaptive

pervasive computing using knowledge-based service integration and rule-

based behavior, in Proceedings of IEEE/IFIP Network Operations and

Management Symposium 2004 (NOMS 2004), Vol. 1, Pp. 901 – 902, Seoul,

South Korea, April 2004.

[Liu06] H. Liu and M. Parashar, Accord: A Programming Framework for Autonomic

Applications, IEEE Transactions on Systems, Man and Cybernatics – Part C:

Applications and Reviews, Vol. 36, No. 3, May 2006.

[Lüh04] E. Lühr, Mobility support for wireless devices - within the TAPAS platform,

MSc thesis, Department of Telematics, NTNU, 2004.

[Mel06] H. Meling, Adaptive Middleware Support and Autonomous Fault Treatment:

Architectural Design, Prototyping and Experimental Evaluation, Doctoral

Thesis, Department of Telematics, Norwegian University of Science and

Technology (NTNU). Trondheim, 2006.

[Nar03] S. Narain, T. Cheng, B. Coan, V. Kaul, K. Parmeswaran, W. Stephens,

Building autonomic systems via configuration, in Proceedings of Autonomic

Computing Workshop 2003, Pp. 77 – 84, 25 June 2003.

[Nb04] N. Badr, A. Taleb-Bendiab, D. Reilly, Policy-based autonomic control service

Policies for Distributed Systems and Networks, 2004.in Proceedings of the

Fifth IEEE International Workshop on POLICY 2004, IBM Thomas J Watson

Research Center, New York, pp. 99 – 102, 7-9 June 2004.

[Pes07] R. Pessoa, C. Calvi, J. P. Filho, C. Farias, R. Neisse, Semantic Context

Reasoning Using Ontology Based Models, in Proceedings of the 13th

EUNICE Open European Summer School and IFIP TC6.6 Workshop on

Dependable and Adaptable Networks and Services, University of Twente, the

Netherlands, July 2007.

Bibliography

79

[Sah04] A. Sahai, S. Singhal, R. Joshi and V. Machiraju, Automated Policy-Based Re-

source Construction in Utility, Computing Environments. IEEE/IFIP Network

Operations and Management Symposium (NOMS'2004), Seoul, South Korea,

2004.

[Sam05] N. Samaan and A. Karmouch, An Automated Policy-Based Management

Framework for Differentiated Communication Systems, IEEE Journal on Se-

lected Areas in Communications, Vol. 23, No. 12, December 2005.

[Ser06] J. Martín Serrano, Joan Serrat, John Strassner and Ray Carroll, Policy-based

Management and Context Modelling Contributions for Supporting Services in

Autonomic Systems, in Proceedings of the First International IFIP TC6 Confe-

rence on Autonomic Networking (AN 2006), Paris, France, September 27-29,

2006.

[Sha05] N. Samaan and A. Karmouch, An Automated Policy-based Management

Framework for Differentiated Communication Systems, IEEE Journal on Se-

lected Areas in Communications, Vol. 23, pp. 2236-2247, 2005.

[Shi05] M. M. Shiaa, Mobility Management in Adaptable Service Systems, Doctoral

Thesis, Department of Telematics, Norwegian University of Science and

Technology (NTNU). Trondheim, 2005.

[Str04] J. Strassner, 2004 IEEE/IFIP Network Operations and Management
Symposium (NOMS 2004) Tutorial 7 - Autonomic Networking - Theory and
Practice," 2004.

[Sup04] P. Supadulchai and F.A. Aagesen, An Approach to Capability and Status
Modeling, in Proceedings of Norwegian Informatics Conference (NIK 2004),
Stavanger, Norway, 2004.

[Sup05a] P. Supadulchai and F.A. Aagesen, A Framework for Dynamic Service Compo-

sition, in Proceedings of 1st International IEEE Workshop on Autonomic

Communication and Computing (ACC 2005), Taormina, Italy, 2005.

80

[Sup05b] P. Supadulchai and F.A. Aagesen, Autonomic Service Configuration by a

Combined State Machine and Reasoning Engine-based Actor, in Proceedings

of the 2005 IFIP International Conference on Intelligence in Communication

Systems (INTELLCOMM 2005), Delta Centre-Ville Hotel, Montréal, Cana-

da, 2005.

[Sup07a] P. Supadulchai and F.A. Aagesen, Policy-based Adaptable Service Systems

Architecture, in Proceedings of the IEEE 21st International Conference on

Advanced Information Networking and Applications (AINA-07), Niagara

Falls, Canada, 2007.

[Sup07b] P. Supadulchai and F.A. Aagesen, Towards Policy-Supported Adaptable Ser-

vice Systems, in Proceedings of the 13th Eunice Open European Summer

School and IFIP TC6.6 Workshop on Dependable and Adaptable Networks

and Services, University of Twente, the Netherlands, 2007.

[Sup07c] P. Supadulchai and F.A. Aagesen, Autonomous Production of Parameters of

an Autonomous Capability Allocation Adaptation Model, Prepared for a sub-

mission, 2007.

[Sup07d] P. Supadulchai, NxET Reasoning Engine, Plug-and-play Technical Report,

Department of Telematics, NTNU, ISSN 1500-3868.

[Sus05] J. Suzuki, T. Suda, A middleware platform for a biologically inspired network

architecture supporting autonomous and adaptive applications, IEEE Journal

on Selected Areas in Communications, Vol. 23, No. 2, pp. 249-260, Feb

2005.

[Syu07] E. Syukur and S. W. Loke, Policy-based Control of Context Aware Pervasive

Services, Journal of Ubiquitous Computing Intelligence, Vol. 1, No. 1, pp.

110-131, 2007.

[Ten97] D. L. Tennenhouse, et al., A Survey of Active Network Research, IEEE Com-

munications Magazine, vol. 35, 1997.

Bibliography

81

[Try05] T. Trygar and G. Bain, A framework for service level agreement management,

Proceedings of IEEE Military Communications Conference, 2005. MILCOM

2005., 2005.

[Vil04] J. J. Vila-Armengol, Implementation of Web services architecture in TAPAS,

Msc Thesis, Department of Telematics, NTNU, June 2004.

[Viv03] D. A. Vivanco, R. Q. Kemp, and A. P. Jayasumana, Effectiveness of Internet

Pricing Models over a QoS Architecture, in Proceedings. 28th Annual IEEE

International Conference on Local Computer Networks (LCN '03), pp. 301-

302, 2003.

[W3c04a] W3C, Resource Definition Framework (RDF) Primer, available on-line at

http://www.w3.org/RDF/, February 2004.

[W3c04b] W3C, RDF Vocabulary Description Language 1.0: RDF Schema, W3C Rec-

ommendation, http://www.w3.org/TR/rdf-schema/, February 2004.

[W3c04c] W3C, OWL Web Ontology Language, W3C Recommendation,

http://www.w3.org/TR/owl-features/, February 2004.

[Woo02] M. Wooldridge, An Introduction to MultiAgent Systems: John Wiley & Sons,

Ltd., 2002.

[Xia05] J. Xiao and R. Boutaba, QoS-Aware Service Composition and Adaptation in

Autonomic Communication, IEEE Journal on Selected Areas in Communica-

tions, Vol. 23, No. 12, pp. 2344-2360, December 2005.

[Xu00] D. Xu, D. Wichadakul; K. Nahrstedt, Multimedia Service Configuration and

Reservation in Heterogeneous Environments, in Proceedings of the 20th In-

ternational Conference on Distributed Computing Systems, Taipei, Taiwan,

Pp. 512 – 519, 10-13 April 2000.

82

[Zha04] Y. Zhang, J. Sun and H. Ma, Self-management model based on multiagent

and worm techniques, in Proceedings of Canadian Conference on Electrical

and Computer Engineering, Sheraton Fallsview, Niagara Falls, Ontario, Can-

ada, 2004

83

Part II – Selected publications

85

Paper A

An Approach to Capability and Status
Modeling
Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of Norwegian Informatics Conference 2003 (NIK 2004)

Stavanger, Norway, 2004

Paper A

87

An Approach to Capability and Status Modeling

Paramai Supadulchai and Finn Arve Aagesen

Department of Telematics, Norwegian University of Science and Technology (NTNU)

N7491, Trondheim, Norway
{Paramai.Supadulchai, Finn.Arve.Aagesen}@item.ntnu.no

Abstract

A recent trend in network systems is the advanced technology to dynamically handle

changes in the system. An important basis relies on the integration of capability and status
representation and their semantic descriptions, which is currently not expressive enough. In
this paper, we propose a Unified Capability and Status Representation Framework (UniCS)
for handling several aspects related to capability and status. A scenario is modeled by UniCS
to show how a network system exhibits adaptable behavior.

1 Introduction

Telematics Architecture for Play-based Adaptable System (TAPAS) uses a Theater Me-

taphor to model a network system in the same way a play is played in the theater. Anyone,
who has acting skills, can become an Actor playing a Role in a Play. An Actor playing a Role
is described as a Role Figure. The Role of an Actor is defined in a Manuscript containing the
behavior of the Role Figure. An Actor is likely to become any Role Figure. However, factors
such as sex, age, appearance or acting skill are the obvious barriers that allow some Role Fig-
ure to some Actors. These factors are the Capabilities of an Actor. It is the job of the Director
of a Play to determine a fitting Actor to play a Role. In this task, the Director requests help
from a Service Management System.

In a network system, Nodes are typically network processing units such as mobile
phone, stationary computer, laptop, printer and router that possess particular Capabilities. At
a specific time point, a Status is a system state with respect to the number of active entities,
traffic situation and Quality of Service (QoS) etc. This applies to overall system as well as
Nodes. The Capability and Status concepts will be discussed in Section 3.

Nodes have generic Actors, which normally inherit Capabilities and Status from the
Nodes. The ability of an Actor to play a Role, which is modeled as an Extended Finite State
Machine in a Manuscript [5], depends on the Required Capability and Status of the Role and
the Offered Capability and Status in a Node where an Actor is going to play [1]. Employing
an appropriate Capability and Status Representation Framework will help the Director and
the Service Management System select the best Actor for a certain Role Figure. However,
current Capability and Status representations lack well integration of the Syntactic Represen-
tation and the Semantic Description. This will lead to the difficulty when the Director does
not understand clearly the meaning of a Capability or a Status. Though two Actors with

88

slightly different Capabilities can play a specific Role interchangeably, the Director unfortu-
nately does not have such knowledge and thus cannot assign the Role to a working Actor in
case that the other one fails.

This paper presents an approach to capture and represent such knowledge in a formal
way. Capability and Status are integrated with Semantic Description and Configuration Rules
to enhance the reasoning process. Section 2 gives basic definitions of the TAPAS Architec-
ture. An overview of Capability and Status is provided in Section 3. Next, Section 4 describes
the definition of the Play View Capability and Status. The Unified Capability and Status Re-
presentation Framework (UniCS) is proposed in Section 5. In Section 6, a scenario demon-
strates how to use UniCS to model a Play containing dynamic behavior of an adaptable net-
work system.

2. TAPAS Architecture

The Telematics Architecture for Play-based Adaptable System (TAPAS) intends to be

an architecture for adaptable network systems that gives rearrangement flexibility, failure ro-
bustness, QoS awareness and resource control properties [3]. In analogy with the TINA ar-
chitecture principles, the architecture is separated in a Service Architecture and a Computing
Architecture. The Service Architecture is an architecture showing the structure of Services
and Service Components. The Service Architecture consists of Primary Service Providing
Functionalities and additional Service Systems. These Service Systems are:

• Service Management System: definition of new Services, deployment and invocation

of Services and Service Components
• Capability Management System: register, de-register, update, transform, provide

access to Capabilities and manage Capability ontology.
• Status Monitoring System: provision of a view of the offered Status.
• Configuration Management System: optimization of Service Systems initial
• configuration and re-configuration with respect to Capabilities and QoS.
• Mobility Management System: The handling of various Mobility types.

The Computing Architecture is a generic architecture for the modeling of any Service

Component. The Computing Architecture has three layers: Service View, Play View and Net-
work View. The Service View works seamlessly with the Service Architecture to provide the
modeling of an adaptable service. The Play View is the TAPAS specific concepts given in the
introduction. The Network View concepts are the basis for implementing the Play View con-
cepts, which again are the basic for implementing the Service View Concepts. In the other
way around, the Service View concepts are mapped into the Play View concepts, which again
are mapped into the Network View concepts. The Play View concepts are seemingly rear-
rangement flexibility oriented. The Capability and Status concepts, however, give a basis for
the further design of the failure robustness, the survivability, the QoS awareness and the re-
source control properties.

Paper A

89

In the Network View, Nodes are installed with the Core Platform, which has the execu-
tion support for the Play View concepts. Nodes publish their Capabilities and Status through
a Capability Management System. However, the Capability Management System is beyond
the scope of this paper. This paper covers mainly the representation of Capability and Status,
which are managed by the Capability Management System and used by any Service System.

3. Capability and Status

We will provide an introduction to Capability and Status by showing the learning facili-
ties of a school illustrated in Figure 1. A classroom is employed with TAPAS to enhance the
adaptability of the classroom facilities. As illustrated in Figure 1, Node A is the smartphone
of a student with a Bluetooth Capability. Laptop E has a Bluetooth Capability and a Wireless
802.11b Capability. These Nodes can connect to the network through Computer B using the
Bluetooth Capability. In addition, the Laptop E can connect to the network via Wireless
Access Point C.

Computer B has an Ethernet and a Bluetooth Capability. Computer B is installed with a
TAPAS Director, a Service Management System and a Capability Management System.
Computer D controls the printing jobs of Printer F and Plotter G. All Nodes are installed with
the Core Platform and publish their Capabilities and Status through the Capability Manage-
ment System. Students are assumed to use their own Nodes that have theWireless Capabili-
ties such as Smartphone A and Laptop E. With these Capabilities, the students can remotely
watch lectures live outside the classroom.

Figure 1: Teleschool environment in TAPAS

3.1 Capability

The general definition of Capability in TAPAS is an inherent property of a Node or a User,
which defines the ability to do something. Capabilities can be classified as Resource, Func-
tion and Data:

• Resources: physical processing or storage components or transmission channels with
finite capacity

• Functions: pure software or combined software/hardware functions, which perform
particular tasks

90

• Data: just data, which interpretation, validity and life span depend on the context of
the usage.

Table 1 shows an example of the Capability list of Computer B. Obviously, physical
hardware components are categorized as Resources, which can be independent Nodes or de-
pendent Hardware Components. The Hardware Components, such as CPU and memory, are
devices that cannot offer functionalities independently and must be hosted by a Node. Func-
tions are softwares that either work internally or provide external interfaces to other Nodes.
The examples of the internal function and the external function are Operating Systems and
Web Services respectively. Data are just logical information that is utilized or processed by
functions before other Nodes can use. The Data shown in the Table 1 are a username and a
password that are accessible from a specific user.

Capability Primitives Variety Arrangement
CPU = Pentium(R) 2GHz resource replaceable shared
Memory = 1 GB resource absolute shared
Disk Storage = 100 GB resource absolute shared
Network Card = 100 Mbit/s resource replaceable shared
Bluetooth = USB 2.0 resource absolute shared
Capabilities = Speaker resource replaceable exclusive
Operating System = Windows XP function absolute exclusive
Web Server = Apache 2.0.46 function replaceable shared
Username/Password = john/***** data absolute exclusive

Table 1: The list of capabilities of the device Computer B in the three primitive dimensions

A Capability can also be classified in a Variety Dimension whether it is replaceable or
not. If a Capability is replaceable, it can be adjusted or replaced by another Capability with
the similar properties. From Table 1, the CPU can be stepped down to save energy when bat-
tery is low. In addition, the Web Server can also be equally replaced with a new version when
there is a functionality that has been fixed from security threats. In an Arrangement Dimen-
sion, a Capability can be shared or exclusive depending on the visibility and the availability
to other Nodes. For example, the Nodes’ CPU information must be visible. This allows the
fastest Node to be selected. On the other hand, a password must be hidden. In addition, the
Web Server provides a service exclusively to the local computers within the domain when it
works in the exclusive mode. Otherwise, it provides the service to all computers in the shared
mode.

3.2 Status

In addition to the Status definition given in the Introduction, Status and Capability are

related in the way that a Capability always has Status but not the other way around. The Sta-
tus of a Capability is considered the Capability state. A Status can be derived; for example,
we can define that a computer is working off-line when either its network adapter is not func-
tioning or the network is not working. This definition is denoted as a Configuration Rule say-
ing that the off-line state of a computer is derived from the states of network and network
adapter Capabilities. Another important aspect about Status is the value range, which is basi-

Paper A

91

cally of two types: symbolic or numeric. The challenge is to provide unambiguous semantic
to the value range: for instance, the Connectivity Status of a Node can be defined in only 2
distinct symbolic values: on-line and off-line. The semantic of the off-line state explains that
a Node becomes offline when it has lost the connectivity for at least 5 minutes. Quantifiable
Status, i.e. numerical status, can be defined from three definitions: the semantic of the up-
per/lower bound, the unit/precision and the impact when the value is changed. An example of
the upper/lower bound semantic can be “the more harddisk space a Node has, the more possi-
bility to install a new software”. An example of the unit/precision semantic can be “a 100 GB
disk is larger than a 100 MB one”. An example of the value impact semantic can be “a pro-
gram uninstallations are needed when harddisk space is used more than 80%”.

3.3 The Ontological Capability and Status Framework

Capability and Status give extra knowledge to improve the reasoning power of the Di-

rector and the Service Management System. However, considering just the solid information
about Capability and Status may limit the power of the reasoning mechanism. For example, if
a printing system chooses a target printer based on printing-related capabilities, the system-
may not be able to understand how plotter and printer are different. As a consequence, it
would redirect a billing report to a costly plotter. Thus, it is not sufficient to define that two
printers can be used interchangeably when they supply the same printing-related capabilities.
Some constraints and taxonomy hierarchy are needed; for examples: “The cost-per-page dif-
ference of both printers must not exceed 10%.” or “The plotter is categorized as high-
resolution printer and the high-resolution printer is available exclusively to a large docu-
ment.”. These requirements constitute Configuration Rules, which can be used to make a
common understanding of a specific Capability and Status. Configuration Rules also provide
the relationship between well-defined Capabilities and Status. In this way, an Ontological
Capability and Status Framework can be created.

Figure 2: General Capability Model in TAPAS

92

4. The Play View Capability and Status

To properly perform the reasoning mechanism in adaptable networks, the proper under-

standing of Capability and Status is needed. A system designer can compose a Play to fulfill
this requirement by combining several Configuration Rules that consist of Capabilities, Sta-
tus, Axioms and Constraints. However, the system designer would have to design the Play
that covers all possible Capabilities and Status of any Node. Alternatively, we propose the
use of an abstraction layer of Capability and Status for the Play composition. Capability and
Status are considered in the Network View and the Play View as illustrated in Figure 2. What
up to now that has been considered as Capabilities and Status of a Node are denoted as Net-
work View Capabilities and Status, abbreviated as NV-Capabilities and -Status respectively.
A Play View Capability, abbreviated as PV-Capability, is the function that an NVCapability
offers in the Play View. It is an abstraction of an NV-Capability that

1. provides a unified representation with well-defined semantic to describe a Capability
in the Play View,

2. maps two or more NV-Capabilities that potentially give the same functionality,
3. simplifies the Play creation process from the direct use of NV-Capabilities,
4. has specific meaning in a Domain.

Let’s consider the Teleschool environment given in the Figure 1. Here we encounter

two mobile Nodes with dissimilar Wireless NV-Capabilities. The Smartphone A uses Blu-
etooth to connect to other Nodes, while the Laptop E connects to the network with its
802.11b Wi-Fi. If the Director wants to execute a Play to detect all Nodes with Bluetooth or
802.11b NV-Capability, the Director will have to find out these Capabilities iteratively from
all Nodes. If a student owns a laptop with a newer version of Wi-Fi 802.11g, the new NV-
Capability Wi-Fi 802.11g must be included in the Play. Otherwise, the Play is not applicable
to all possible Nodes.

Wouldn’t it be nice if we can define shortly a Configuration Rule in the play “all Actors
possessing wireless PV-Capability must turn off their Sound PV-Capability before entering a
Domain that is offering classroom PV-Capability.”? With the assumption that all NV-
Capabilities can be mapped to PV-Capabilities, the play can be designed in a simpler manner
from the PV-Capability requirement instead of using the NV-Capability directly. PV-
Capabilities can be categorized into an ontology hierarchy; for example: wireless PV-
Capability can be further separated to the long-range, mid-range and short-range transmission
functions. The PV- and NV-concept are also applicable to Status the same way it is used for
Capability. However, examples will not be given.

Paper A

93

5. Unified Capability and Status Representation Framework
(UniCS)

From earlier examples, we have given the examples of the Configuration Rule, which
are used to formulate a Play. However, these rules are not meant to be performed by us. They
shall be enforced by the network system. Therefore, a formal way to capture and make use of
the Configuration Rules is required. In this section, a proposal for the formal representation
of the NV-Capability and -Status and the PV-Capability and -Status is given in a unified
framework denoted as the Unified Capability and Status Representation (UniCS).

5.1 Network View Capability and Status Representation

The Network View Capability and Status, abbreviated as NV-Capability and -Status,
are used to describe Capability and Status extracted from Nodes. Their representation should
provide a well-defined structure with precise semantic understandable by the network sys-
tems. Though any representation can be used with the NV-Capability and NV-Status because
they will be eventually transformed into the PV-Capability and -Status, using a single stan-
dard accepted by all Domains is recommended. With a single standard representation, the
system does not have to worry about how to read and understand the semantic of the repre-
sentation since it is what everybody has agreed on. There are and will be a lot of ready-to-use
tools and supports for the standard representation. In addition, only one set of Configuration
Rules is required to map standardized NV-Capabilities and -Status into PV-Capabilities and -
Status. Using a single representation therefore simplifies the integration of the instances of
Capabilities and Status from many Domains.

Figure 3: The transformation of NV-Capabilities and -Status of Computer B to PV-Capabilities and Status

One of the emerging standards in networking data model is Common Information Mod-
el (CIM) from Distributed Management Task Force (DMTF). The standard is based on the
attempt to integrate all management information. On the basis of UML used in the model,
CIM is an easy-to-use model with a lot of graphical modeling tools and Application Pro-
gramming Interfaces (APIs) on many computing platforms. The model comes with sufficient
pre-defined physical, logical and service entities with the possibility for extensions. The CIM

94

serialization in the Extensible Markup Language (XML-CIM) inherits an important property
of XML, the machine comprehensible. The example of modeling the NV-Capability and -
Status in CIM is illustrated in Figure 3.

CIM provides only the basic semantic to each entity in the model. To cope with this li-
mitation, we develop a framework that improves the expressiveness of CIM models by con-
structing XML Declarative Description (XDD)-based Configuration Rules with axioms, con-
straints and a reasoning mechanism to facilitate additional semantic to the model entities.
XDD [11] is an expressive XML-based knowledge representation that works seamlessly with
all models, syntax and ontologies by extending ordinary wellformed XML ground element
with variables. Aagesen et al. gave an example of a dynamic configurable system in the Net-
work View with CIM and XDD [2].

5.2 Play View Capability and Status Representation

In the Play View, an Actor inherits Capabilities and Status from a Node. These are Play
View Capabilities and Status, abbreviated as PV-Capability and -Status. Unlike the NV-
Capability and Status, the PV-Capability and Status are represented in a unified and platform
independent representation: Resource Description Framework (RDF). Each PVCapability is
an RDF resource with a Uniformed Resource Identifier (URI) that belongs specifically to a
domain. An RDF statement is composed by a triple consisting Subject, Verb, Object that re-
sembles an English sentence. Even though the RDF structure is simple, it provides sufficient
constructs to describe PV-Capabilities and -Status. In addition, the standard ontology lan-
guages on the web such as the RDF Schema (RDFS) and the Web Ontology Language
(OWL) are also based on RDF. This enhances the reasoning mechanism by the creation, ma-
nipulation and exchange of the ontology of the PV-Capability and -Status across Domains.
Anutariya et al. proposed an RDF Declarative Description (RDD) framework, which shows
the effectiveness of using the ontological language such as RDF, DAML+OIL and DAML-S
with the Configuration Rules described in XDD. [4]. The RDD framework is the basic idea of
employing PV-Capability and PVStatus in TAPAS.

Figure 3 shows the transformation from the Computer B’s NV-Capability represented
in CIM instance to the equivalent PV-Capability in RDF. Due to the space limitation, the
complete RDF diagram is not given.

5.3 Domain Oriented Representation

In TAPAS, a Domain, taken care by a single Director, is a part of a big system contain-
ing Nodes that are related in terms of location, functionality or service. The Internet is a good
example of a Domain System. Computers on the Internet are divided into groups with unique
domain names. UniCS is a domain-oriented representation, i.e. the semantic of Capability and
the Status may vary from place to place, from time to time or from a specific situation to oth-
ers. Since it is not possible to force a single semantic framework to all systems, a Common
Semantic is used to resolve semantic conflicts in different Domains.

In Figure 4, each Domain is supplied with its own semantic with the relationship to the
Common Semantic. The Common Semantic provides the relationship between identical Ca-
pabilities and Status from various Domains. It is used to resolve possible conflicts from Ca-
pabilities and Status with different semantic and thus make it possible to combine them. For

Paper A

95

example, the Smartphone concept is defined in a Domain as a mobile phone that requires Mi-
crosoft Windows Mobile Edition for Smartphone. This is because the Domain can only
supply support software for this platform only. However, the case might not be the case in
some Domains where the Smartphone Operating System can vary from Symbian, Microsoft
Windows Mobile Edition or Linux. The concept of Domain applies to both NV-Capability
and -Status and PV-Capability and -Status. Nonetheless, UniCS handles the NV-Capability
and -Status differently.

Figure 4: UniCS’s ontological capability and status handling

The semantic of the NV-Capability or an NV-Status is mapped equivalently to one or
more PV-Capabilities or -Status defined in the Domain. This reduces the complexity of han-
dling the semantic differences of NV-Capabilities and -Status across domains, and thus pro-
vides a unified framework to the Capability and Status Management by using the PV-
Capability and -Status. In addition, UniCS allows the flexible interoperability with other ar-
chitectures that encode Capability and Status in different syntax and semantic. With Configu-
ration Rules supplied, the Capability and Status representations in those architectures can be
transformed equivalently into the UniCS’s PV-Capability and -Status.

6. Using Play View Capability and Status

We have briefly shown how Capability and Status in TAPAS are represented in UniCS.
Basically, UniCS separates NV-Capability and -Status from PV-Capability and -Status. Con-
figuration Rules, which constitutes the Play in TAPAS, are created from PVCapabilities and -
Status. The representation layer showing the representation used in UniCS is illustrated in
Figure 5. We are now ready to use the PV-Capability and –Status to create Configuration
Rules for a scenario in the teleschool environment.

96

Figure 5: UniCS’s Capability and Status Representation Layer (extended from [1])

Figure 6 reveals the facilities of a network classroom. Since it has been recently re-
ported that many students don’t turn off their mobile phones when they are in the classroom,
the teleschool administrator is asked to construct a play in the TAPAS environment to auto-
matically detect and request the smartphone Nodes to turn off the Sound PV-Capability. For-
tunately, the students’ smartphones are installed with the TAPAS Core Platform that provides
support for the Play-based concepts.

Figure 6: The example of an adaptable network system in a network classroom

It is assumed that all PV-Capabilities that produce sound must be turned off separately.
Therefore, the system administrator must create a Play to verify all PV-Capabilities of the
Actors hosted in the students’ Nodes, i.e. the smartphones. If Nodes have PV-Capabilities
that are the subclasses of the Sound PV-Capability, the Director will send a “Disable Manu-
script” to turn them off. Based on UniCS, three Configuration Rules are created as illustrated
in Figure 7.

When the smartphone A, with an MP3player, a Loudspeaker and a Bluetooth PV-
Capabilities, enters the classroom, two PV-Capabilities, the Loudspeaker and the MP3player,
will be turned off. This is because they are the subclasses of the sound PVCapability. With

Paper A

97

the provided subclass-superclass ontology, the Director create a Play Configuration instruct-
ing an Actor in the smartphone A, smartphoneA-Agent, to turn off these PV-Capabilities with
a Manuscript. The execution result is shown in Figure 8.

Figure 7: The Play to turn-off all kinds of PV-Capabilities that produce sound.

98

Figure 8: The execution result of the Play in Figure 7 and the PV-Capabilities with supplied ontologies.

7 Conclusion

By using UniCS’s PV-Capability and -Status, the semantic of the Capability and Status
models of network systems can be enriched. As a result, a play-based network system, led by
a Director, can orchestrate itself to behave properly when there are changes occurring. This
reasoning mechanism serves as a principle of the rearrangement flexibility that is one of the
three basic required properties for the adaptable system. Nevertheless, there are still more
works to do regarding the rearrangement flexibility since the simple subclass-superclass rela-
tion is not expressive enough in all situations. We are working on the next version of UniCS
to provide more ontological ingredients. The future integration with the RDD framework will
enlarge the scope of the ontological framework in UniCS, and thus will make the ontological
model suitable in most situations. In addition, the model must be combined with other works
regarding failure Robustness and resource load awareness and Control in TAPAS. The final
model will then serve as the true grounding for the Adaptable System.

8. Related Work

CIM is used in many projects to resolve the interoperability problems between systems.
Examples are the Web-Based Enterprise Management (WBEM) and the Directory Enabled
Networks (DEN) from DMTF [10]. However, the frameworks lack a mechanism to enable
the dynamic behavior. The Automated Policy-based Resource Construction by Sahai et al.
employs CIM as the underlying Capability model [8]. Nevertheless, the policies are con-
structed mainly by the defined constraints. The lack of expressive axioms limits the system
from deriving new knowledge, which is unfortunately needed in adaptable environments.

There are several attempts trying to provide a unified framework to model syntax and
semantics using XML and RDF. This is again emphasized by Tim Burners-Lee when he en-

Paper A

99

couraged developers to start building RDF triples that contain ad-hoc ontologies in the
WWW2004 conference. Patel-Schneider and Sim´eon employ an RDF mediator to allow
XML dialects in the applications [7]. Although this is quite relevant to our work, their re-
search focuses on providing the semantic reasoning to static models. Thus, it is not well-
suited in the world of network application. The RDF-based system can also be found in the
world of network management. Shen and Yang use the RDF to describe models created by
the next generation structure of management information (SMIng) [9]. However, the work
tends to focus mainly on the resource level, not Capability. Another attempt by Motik and
Glavini´c to create model for querying RDF knowledge in the Agent Architecture is limited
to the RDF and not applicable to other ontological languages [6].

References

[1] Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa, and Bjarne E. Helvik. Support specification
and selection in tapas. in Proceedings of IFIP WG6.7 Workshop and Eunice Summer School on Adaptable
Networks and Teleservices, September 2002.

[2] Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa, Bjarne E. Helvik, and Paramai Supadul-
chai. A dynamic configuration architecture. in IEEE/IFIP Network Operations and Management Sympo-
sium NOMS’2004, Seoul, South Korea, April 2004.

[3] Finn Arve Aagesen, Bjarne E. Helvik, Chutiporn Anutariya, and Mazen Malek Shiaa. On adaptable net-
working. in Proceedings of the First International Conference on Information and Communication Tech-
nologies, ICT’2003, Assumption University, Thailand, April 2003.

[4] Chutiporn Anutariya, Vilas Wuwongse, Kiyoshi Akama, and Ekawit Nantajeewarawat. Rdf declarative
description (rdd): A language for metadata. Journal of Digital Information, 2(2), 2001.

[5] Shanshan Jiang and Finn Arve Aagesen. Xml-based dynamic service behaviour representation. in
NIK’2003, Oslo, Norway, November 2003.

[6] Boris Motik and Vlado Glavini´c. Enabling agent architecture through an rdf query and inference engine.
in Proceedings of the 10th Mediterranean Electrotechnical Conference, MEleCon 2000,volume 2, pages
762–765, Cyprus, 2000.

[7] Peter F. Patel-Schneider and J´erˆome Sim´eon. The yin/yang web: A unified model for xml syntax and rdf
semantics. IEEE Transactions on Knowledge and Data Engineering, 15(4):797–811, July/August 2003.

[8] Akhil Sahai, Sharad Singhal, Rajeev Joshi, and Vijay Machiraju. Automated policy-based resource con-
struction in utility computing environments. in IEEE/IFIP Network Operations and Management Sympo-
sium NOMS’2004, Seoul, South Korea, April 2004.

[9] Jun Shen and Yun Yang. Rdf-based knowledge model for network management. in Proceedings of the 8th
IFIP/IEEE International Symposium on Integrated NetworkManagement (IM2003), Colorado Springs, CO,
USA, March 2003. Kluwer Academic Publishers.

[10] Andrea Westerinen and Winston Bumpus. The continuing evolution of distributed systems management.
IEICE TRANS. INF & SYST., E86-D(11):2256–2261, November 2003.

[11] Vilas Wuwongse, Chutiporn Anutariya, Kiyoshi Akama, and Ekawit Nantajeewarawat. Xml declarative
description (xdd): A language for the semantic web. IEEE Intelligent Systems, 16(3):54–65, May/June
2001.

101

Paper B

Configuration Management for Adaptable
Service Systems
Finn Arve Aagesen, Paramai Supadulchai, Chutiporn Anutariya and
Malek Mazen Shiaa

In Proceedings of IFIP International Conference on Metropolitan Area Net-
work, Architecture, Protocols, Control and Management (MAN 2005),

Ho Chi Minh City, Vietnam, 2005.

Paper B

103

Configuration Management for an
Adaptable Service System

Finn Arve Aagesen* — Paramai Supadulchai* —
Chutiporn Anutariya** — Malek Mazen Shiaa*

* Department of Telematics
Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway
aagesen@item.ntnu.no
paramai@item.ntnu.no
malek@item.ntnu.no

** Computer Science Program, Shinawatra University
Pathumthani 12160, Thailand
chutiporn@shinawatra.ac.th

ABSTRACT: Adaptable service systems are service systems that are capable of handling dy-
namic changes in both time and position related to users, capabilities, nodes and changed
service requirements. The paper presents a formal framework for dynamic configuration and
reconfiguration of services in TAPAS (Telematics Architecture for Play-based Adaptable Sys-
tems). The framework presented in this paper, provides representation and reasoning me-
chanisms for semantic description and matching of required and offered capabilities and sta-
tus which are required by a particular service system. It employs CIM schema and recently
developed languages for the Semantic Web⎯RDF, RDF Schema and DAML languages⎯in
order to provide human-readable and machine-comprehensible descriptions of status, capa-
bilities, system (re)configuration plans as well as the exchange of messages. It exploits XDD
theory⎯an expressive XML rule-based, knowledge representation⎯to seamlessly unify such
various languages into a single uniform formalism, hence allowing the integration, extrac-
tion, and reasoning with instances/objects of those different languages.

KEYWORDS: Autonomic Communication, Adaptable Systems, Dynamic configuration, Con-
figuration management.

104

1. Introduction

A network based service system consisting of services, service components and nodes
is considered. A service is realised by the structural and behaviour arrangement of service
components, which by their inter working provide a service in the role of a service provider
to a service user. Service components are executed as software components in nodes, which
are physical processing units such as servers, routers, switches and user terminals. User ter-
minals can be phones, laptops, PCs and PDAs etc.

Network-based services have during more than one decade been is an important re-
search topic. Example topics include TINA (Tele-communication Information Networking
Architecture) (Inoue at al. 1999), Mobile Agents and Active and Programmable Networks

(Bieszczad et al. 1998) (Raza et al. 2004) (Tennenhouse et al. 1997). Focus has been on ser-
vice architecture solutions that give flexibility and efficiency in the definition, deployment
and execution of the services. This focus is now slightly changing into focus on adaptability
and evolution of such services. Traditionally, the nodes as well as the service components
have a predefined functionality. Concerning nodes as well as software engineering principles,
changes are taking place. Nodes are getting more generic. A modern node may offer IP tele-
phony and can have an MP3 player, video camera, storage etc. In the same way, the software
components are getting more generic. From being static components, the software compo-
nents can be generic software components, which are able to download and execute different
functionality depending on the need. Such generic programs are from now on denoted as ac-
tors. The name actor is chosen because of the analogy with the actor in the theatre, which is
able to play different roles in different plays.

We are entering a generative era, which gives a high degree of flexibility. To utilise the
generative potential, the attributes of services, service components, software components and
nodes must be appropriately formalised, stored and made available. There must also be ge-
nerative platform functionality that utilises this generative data. Generative data and functio-
nality apply to the ordinary service functionality, but also to the service management functio-
nality. As a first step towards this formalisation, the concepts capability and status are intro-
duced.

A capability is an inherent property of a node or a user, which defines the ability to do
something. A capability in a node is a feature available to implement services. An actor ex-
ecutes a program. However, this program may need capabilities in the node. A capability of a
user is the feature that makes the user capable of using services. Capabilities can be classified
into:

- Resources: physical hardware components with finite capacity,
- Functions: pure software or combined software/hardware components, which per-

form particular tasks,
- Data: just data, which interpretation, validity and life span of which depend on the

context of the usage.

Resource capability examples are processing, storage and communication resources
e.g., CPU, hard disk and transmission channels, standard equipment e.g., printers and media

Paper B

105

handling devices and special equipment e.g., encryption devices. Function capabilities are
functions related to the use of hardware resources, such as encryption, and special programs
or library functions available for general use. Data capability examples are user login and
access rights

Status is a measure for the situation in a system with respect to the number of active
entities, the traffic situation and the Quality of Services (QoS) etc. Status reflects an instanta-
neous state of the system. It can comprise observable counting measures, or calculated QoS
measures.

The work presented in this paper has been related to the Telematics Architecture for
Play-based Adaptable System (TAPAS) (Aagesen et al. 1999, 2001, 2002, 2003). The TAPAS
computing architecture, to be more detailed explained in Section 3, defines a service system
by a play. A play consists of several actors, constituting role figures by playing roles. A role
figure is realised in an executing environment in a node, and is utilising capabilities, which
are inherent properties of the node. A role can have specific requirements to capabilities and
status. Due to the dynamic availability of nodes in the network as well as changes in their ca-
pabilities and status, it is desirable that configuration of services is done dynamically. Con-
figuration management is the optimisation of service systems initial configuration and recon-
figurations with respect to capabilities and status. This is the focus of this paper.

Section 2 discusses related works. Section 3 gives a brief outline of TAPAS architec-
ture. Section 4 proposes a dynamic configuration framework. Its data model and reasoning
mechanism are presented in Section 5. Section 6 demonstrates a practical application of the
framework together with the reasoning mechanism. Section 7 concludes and outlines further
research direction.

2. Related work

Several configuration management and adaptable architectures have been proposed so
far (Bakour et al. 2004) (Cohen et al. 2004) (D’Antonio et al. 2004) (Keller et al. 2004) (Sa-
hai et al. 2004) (Solarski et al. 2004). Nevertheless, they are most likely the architectures to
handle a specific task, which either can be the service creation and deployment functionality
(Bakour et al. 2004) (Cohen et al. 2004) (Keller et al. 2004) (Solarski et al. 2004) or the net-
work and resource management functionality (D’Antonio et al. 2004) (Sahai et al. 2004). Our
architecture is intended to provide a configuration management for any adaptable system that
provides the functionality for both service creation and deployment network and resource
management. This diversity comes from the use of XML Declarative Description (XDD), a
generic knowledge representation. XDD provides a single uniform formalism to create know-
ledge that incorporates various capability and status representations as well as service beha-
vior representations. Moreover, the ability to effectively handle different kinds of event mes-
sages, which are well categorised in an ontology instance, and the underlying reasoning me-
chanism guarantee that an event happening in the system will be handled by rule-based pro-
cedures that can apply to them. The reasoning mechanism transforms an event message
equivalently with the supplied configuration rules until a proper procedure to handle the event
is obtained. The transformation preserves all the semantic in a service system (Wuwongse et
al. 2001).

106

3. TAPAS architecture

TAPAS intends to be an architecture that gives 1) rearrangement flexibility, 2) failure
robustness and survivability, and 3) resource load awareness and control (Aagesen et al.
2003). The TAPAS architecture is separated into a computing architecture and a system man-
agement architecture as follows:

- The computing architecture is a generic architecture for the modeling of any ser-
vice software components

- The system management architecture is the structure of services and service man-
agement components.

These architectures are not independent and can, to some extent, also be seen as archi-
tectures at different abstraction layers. The system management architecture, however, has
focus on the functionality independent of implementation, and the computing Architecture
has focus on the modeling of functionality with respect to implementation, but independent of
the nature of the functionality. The nature of the computing as well as system architecture is
described briefly in the following.

3.1. Computing architecture

TAPAS computing architecture has three layers: the service view, the play view and the
network view as shown in Figure 1. The service view concepts are rather generic and should
be consistent with any service management architecture. Likewise, the network view con-
cepts are generic and should be consistent with any corresponding network architecture, with
exception of the core platform, which is a specific platform supporting the play view con-
cepts. The network view concepts are the basis for implementing the play view concepts,
which again are the basis for implementing the service view concepts. In the other way
around, the service view concepts are mapped into the play view concepts, which again are
mapped into the network view concepts.

The play view intends to be a basis for designing functionality that can meet the rear-
rangement, the robustness, the survivability, the QoS awareness and resource control proper-
ties. The play view concepts are seemingly rearrangement flexibility oriented. The capability
and status concepts, however, also give a basis for the further design of the robustness, the
survivability, the QoS awareness and resource control properties.

In the network view, nodes are typically network processing units such as mobile
phone, desktop computer, laptop, printer and router that possess particular capabilities. Nodes
are installed with core platform. Core platform supports basic communication infrastructure
between nodes. At a specific time point, status is the state of a system with respect to the
number of active entities, traffic situation and QoS etc.

The play view architecture is founded on a theater metaphor. The TAPAS actor is a
generic software component consistent with the actor definition given in Section 1. However,
the TAPAS actor is specialised as follows. Actors perform roles according to predefined ma-
nuscripts, and a director manages their performance. Actors are software components in the
nodes that can download manuscripts. An actor will constitute a role figure by behaving ac-
cording to a manuscript that defines the functional behavior of that particular role in a play. A
role Session is a projection of the behavior of a role figure with respect to one of its interact-

Paper B

107

ing role figures. Actors in TAPAS can be moved transparently between nodes and the role
sessions between them can be re-instantiated automatically (Shiaa 2004).

Role

Actor

Manuscript

Role FigurePlay Domain

Director C apability

Status

R ole Session

has
projects

is defined by

p lays

implements
manages

resides

manages

requires

offers

CorePlatform N ode

N et work View
D omain

resides
Communicat ion

is requ ires by

has gives

has

implements interpre ts

resides in

supports

Play View

Network View

Service View
Service C omponent Service Syst em

constitu tes

Play
is rea lized by

is de fined in

executes

consists of

can be

required

has

Figure 1. The Simplified TAPAS Computing Architecture

A director is an actor with supervisory status regarding other actors. A director also
represents a play view domain, which is a set of nodes, which actors are supervised by a sin-
gle director. The director chooses a fitting actor for a certain role figure. For this task the di-
rector requests help from the service management functionality defined in Section 3.2.

A service system is defined by a play. A play consists of several actors playing different
roles, each possibly having different requirements on capabilities and Status. An actor will
constitute a role figure, based on the role defined by a manuscript. The ability of an actor to
play a role depends on the matching of the required Capabilities and Status of the role and the
offered capabilities and status in the Node where of the actor is executing (Aagesen et al.
2003).

3.2. System management architecture

The main functionality components of the system management architecture are illu-
strated in Figure 2. To fulfill the failure robustness and survivability requirements, the archi-
tecture must be dependable and distributed, this means replication of resources and functio-
nality. The dependability aspect is beyond the scope of this paper, and the various functionali-
ty components will be defined as being part of a centralised architecture. The Primary Ser-
vice Providing Functionality comprises the ordinary services offered to Users. In addition,
the following functionality components are defined:

- Service Management: Definition of new services, deployment and invocation of

services and Service Components

108

- Capability and Status Management: Registration, de-registration, update, trans-
form and provide access to capabilities and status repository.

- Configuration Management: Optimisation of service systems initial configuration
and re-configuration with respect to the capabilities and QoS.

- Mobility Management: The handling of various mobility types.

Figure 2. System management architecture functionality components

The functionality of these functionality components is constituted by the cooperation of
role figures. Each of these functionality components has one dedicated role figure, which
constitutes the main role figure within the functionality component, acting as the visible inter-
face to the other functionality components. This main role figure is denoted as the manager.
In this paper, a functionality component is considered to consist of the manager only. The
functionality components defined above are accordingly replaced by the Service Manager,
the Capability and Status Manager, the Configuration Manager and the Mobility Manager,
respectively. This paper has focus on Configuration Management and the Configuration
Manager. Aspects of the other functionality components without relevance to Configuration
Management are beyond the scope of this paper.

Paper B

109

Figure 3. Architectural framework for dynamic configuration

4. Dynamic configuration framework

Figure 3 describes an architectural framework for dynamic configuration and reconfi-
guration of services. The main entities are the Configuration Manager, the Capability & Sta-
tus Repository, the Play Repository, the Capability and Status Manager, and the Service
Manager.

The Configuration Manager (CM) is responsible for:

- Generation of appropriate configurations for composing new services to be in-
stalled in a system: When there arises a request for installing a new service (i.e., a
service request), the CM fetches a corresponding play definition and retrieves the
system capabilities and status from the Play Repository and the Capability and
Status Repository, respectively. Valid con-figurations for such a service are gen-
erated and analysed, and an appropriate configuration will be selected based on
the specified selection criteria such as system performance and QoS, user prefe-
rences and cost. The selected configuration, defining which nodes in the system
should execute actors constituting certain roles, will be forwarded to and executed
by the Service Installer.

- Determination of a location for executing a particular role: In the running system,
a request for instantiation of a particular service component (i.e., a service com-
ponent request) may arise. In response to such a request, the CM dynamically de-
termines the best location (node) for its installation based on the current system
configuration, available capabilities and status as well as the component’s re-

110

quirements. It then notifies the Service Installer to load a corresponding manu-
script from the Play Repository and instantiate it on the suggested node.

- Determination of reconfiguration schemes for dynamic reconfiguration of existing
service systems: Upon the receipt of a trouble report indicating a problem in a
running system, the CM analyses the problem, fetches related information from
the Capability and Status Repository and the Play Repository, and computes a
service reconfiguration plan to be executed by the Service Manager. Possible
plans include actor relocation, re-initialisation, load balance and distribution. Se-
lection of an appropriate plan depends on the defined reconfiguration rules as well
as the nature of a problem (e.g., whether it is hardware or software failure, signif-
icant or ignorable).

Capability & Status Repository (CSRep) stores specifications of capabilities offered by
components in a system and maintains information reflecting the situation and status of the
system at a particular time. Such status information can be certain environment conditions,
observable values of the current QoS characteristics as well as their calculated measures,
which will be analysed by the Configuration Manager when computing (re)configuration
plans for the system.

Play Repository is a collection of play configuration definitions and play execution

definitions, which respectively define requirements and functional behaviour of a correspond-
ing service system. A play configuration definition is an aggregation of the three specifica-
tions:

- Role requirements identify, for each role, its requirements on available capabili-

ties/status.

- Play configuration rules describe system configuration rules and constraints
which must always be maintained, such as the maximum number of roles allowed
to install at a specific node in order to avoid an overload situation, the desired or
acceptable QoS levels of the system, optional and mandatory constraints as well
as conflict handling and priority information.

- Play reconfiguration rules define application-specific reconfiguration policies for
handling significant reconfiguration-related events, such as a service component
failure, a decrease in system QoS and resource unavailability. With application-
specific reconfiguration rules, the system can perform appropriate actions to han-
dle a problem in a running system.

A play execution definition consists of manuscripts which define the entire functional

behaviour of each role in a play and include not only its internal behaviour, but also the inte-
ractions and cooperation with other roles. Note that role specifications and manuscripts de-
fine two different aspects of roles in a play. The former describes the metadata of each role
and the latter models its functional behaviour in terms of EFSM (Extended Finite State Ma-

Paper B

111

chine). Hence, they provide information of “what the role is” and “how it is realised”, respec-
tively.

Capability and Status Manager monitors system capabilities/status and maintains the

Capability and Status Repository. It also listens to certain events indicating changes to the
system and its environment, which would prevent the system from getting the desired level of
services. In response to such events, it notifies the Configuration Manager for further proper
reactions in order to keep the system functioning with an acceptable QoS level. Capability
and Status Manager is also responsible for installation and de-installation of capability com-
ponents. When a new node with not-yet-installed capability components is plugged into the
system, these components will be installed according to certain well-defined procedures, and
their capabilities will be registered as part of the system. Similarly, de-installation of a com-
ponent requires an execution of certain procedures and deregistration of the component’s ca-
pabilities.

Service Manager installs a service into the system by creating corresponding actors for

execution of certain roles according to an obtained play configuration generated by the CM.
Allocation of capabilities as well as instantiation of a manuscript for each role are also per-
formed by this entity. The Service Manager also initiates and performs reconfiguration of a
service system based on an obtained plan.

5. Data model

This section presents an XML declarative approach to the representation of dynamic
configuration data model. It elaborates a machine-comprehensible description of each da-
ta/message element of the configuration framework proposed in Section 2 by employment of
recently developed standard languages for the Semantic Web (Berners-Lee et al. 1999) and
network management. Firstly, a mechanism for semantic description of system status and ca-
pabilities is discussed, followed by the formalisation of exchanging messages and play con-
figuration definitions.

5.1. Capability and status specification

The developed framework proposes the use of standard XML-based metadata and on-
tology languages for modelling and providing semantic description of system capabilities and
status. RDF (Brickley et al. 2004) (Lassila et al. 1999), which is a W3C recommended meta-
data language and its extensions (e.g., DAML (Hendler et al. 2000) and OWL (McGuinness
et al. 2004)) appear to meet this language need. However, so far a standard, common ontolog-
ical schema for describing network management resources in such languages does not yet
exist. Therefore, the framework employs and extends CIM schema (Westerinen et al. 2000),
developed by DMTF (Distributed Management Task Force) for representing capabilities and
status. CIM is a fundamental, yet comprehensive object-oriented schema, both with respect to
classifications and associations of objects, for describing network management information in
a standard MOF (Managed Object Format) and XML format. In CIM model, the notions of
capabilities and status are represented together as parts of an object’s properties. Figure 4
gives an example of a CIM instance, represented in both UML graphical notation and its

112

XML serialisation; it describes capabilities, status and certain operational attributes of a prin-
ter.

Based on these modelling concepts, the Capability and Status Repository is then
represented as a collection of CIM instances which describe the available capabilities and sta-
tus of the plug-and-play system. Note that to conform to W3C standards, CIM schemas and
instances encoded in RDF can also be used in the proposed framework. However, in the
open, heterogeneous environment, it is impossible to assume that every component/system
will solely employ CIM model for semantic description of its capabilities and status. Thus,
with this concern, research on integration of different capability/status ontologies is also part
of the TAPAS project.

Note: The instance being described is an object of the
class CIM_Printer. Its DeviceID property, used for
uniquely identifying a device, states that the instance is
identified by http://PrinterX.tapas.org. Its availability
status is Running/Full Power with a low toner error
state. Its printing capabilities include duplex, black &
white, and colour printing. The horizontal and vertical
resolutions are 1200 pixels per inch (this unit of meas-
urement is predefined by CIM schema). Available char-
acter sets for the output are utf-8, us-ascii and iso-8859-
1. Its marking technology is laser.

 <INSTANCE ClassName="CIM_Printer">
 <PROPERTY NAME="DeviceID">
 <VALUE>http://PrinterX.tapas.org</VALUE>
 </PROPERTY>
 <PROPERTY NAME="Availability">
 <VALUE>Running/Full Power</VALUE>
 </PROPERTY>
 <PROPERTY NAME="DetectedErrorState">
 <VALUE>Low Toner</VALUE>
 </PROPERTY>
 <PROPERTY.ARRAY NAME="Capabilities">
 <VALUE.ARRAY>
 <VALUE>Duplex Printing</VALUE>
 <VALUE>Black and White Printing</VALUE>
 <VALUE>Color Printing</VALUE>
 </VALUE.ARRAY>
 </PROPERTY.ARRAY>
 <PROPERTY NAME="HorizontalResolution">
 <VALUE>1200</VALUE>
 </PROPERTY>
 <PROPERTY NAME="VerticalResolution">
 <VALUE>1200</VALUE>
 </PROPERTY>
 <PROPERTY NAME="MarkingTechnology">
 <VALUE> Laser</VALUE>
 </PROPERTY>
</INSTANCE>

(a) UML graphical representation. (b) XML serialisation.

Figure 4. A CIM instance describing a printer device

5.2. Message specification

Because CIM does not provide means for representing various types of messages re-
quired by the developed architecture, RDF and DAML languages are exploited. Figure 5 illu-
strates various types of messages and gives their primitive attributes. Basically, each message
carries its URI (Universal Resource Identifier), information of the actor who sends the mes-
sage (i.e., the sender) and the date/time of composing it. A sender’s information includes its
URI, the installing location and the playing role. Other message attributes can also be en-
coded depending on the purpose of the message.

In the architecture, messages (cf. Figure 5) are classified into two main types: requests and trouble reports.
Requests are further divided into: service request and service component request. The former is a request for
installation and execution of a particular service system which has not yet been installed while the latter is a

http://PrinterX.tapas.org : CIM_Printer
DeviceID = http://PrinterX.tapas.org
Availability = "Running/Full Power"
DetectedErrorState = "Low Toner"
Capabilities = ["Duplex printing", "Black and White

Printing", "Color Printing"]
HorizontalResolution = 1200
VerticalResolution = 1200
MarkingTechnology = "Laser"

Paper B

113

request for instantiation of a particular service component in a running service system. Figure 6 gives examples
of both types of requests.

 Figure 5. Message specification modeling

According to Figure 5, trouble reports are classified into: QoS degradation report and

actor error report, which are used for notifying the CM when a QoS-sensitive service system
encounters a decrease in its QoS to an unsatisfactory level and when an actor-involving prob-
lem occurs, respectively. Two types of actor error reports are: (i) actor unreachable: when an
actor in a running system wants to communicate and cooperate with another existing actor
which constitutes a particular role but is somehow unreachable or not responding, the former
generates a trouble report indicating such a problem to CM; (ii) insufficient capability: an ac-
tor sends this type of trouble reports to the Configuration Manager if the node where it is in-
stalling and running has insufficient capabilities (such as insufficient disk space, memory or
CPU speed) to satisfy its capability requirements.

5.3. Play configuration definition

This section elaborates the formalisation of the play configuration definitions by means
of XML Declarative Description (XDD) language (Wuwongse et al. 2001, 2003). Recall that
a play configuration definition comprises the following three parts: role requirements, play
configuration rules and reconfiguration rules.

5.3.1. Role requirement

Capability and status requirement specification of a certain role in a play is expressed
by an XML clause. Its head specifies the role to be played, and its body describes the de-
manded capabilities and status of a node for fulfilling such a role. Recall that the head of an
XML clause intuitively models the consequence part, while the body describes the antece-
dence or the conditional part. Thus, each XML clause can be easily interpreted as: deriving
the information represented by its head if all the conditions specified in its body hold. Given
a clause representing a role requirement specification, one can derive a list of available nodes
in the network, which are capable of performing such a role. By means of CIM hierarchical
schema, matching of the required capabilities and status with the offered capability and status
will not only be based on exact match, but will also include a notion of reasoning through this
generalisation-specialisation hierarchy. For example, if a certain role demands a computer
system with a modem, knowing that PC is a subclass of computer system, and unimodem,

Node

Actor

Message DateTime

ServiceRequest ServiceComponentRequest TroubleReport

Play Role ActorError QoSDegradationReport

ActorUnreachableReport InsufficientCapabilityReport

rolePlaying

unreachableActor
insufficientCapabilityActor

nodeInstalling
playRequesting roleRequesting

sender dateTime

114

ISDN, ADSL and cable modems are subclasses of modem, then one can derive that any PC
having one of these variety types of modems has sufficient capabilities to fulfil such a re-
quirement. Ranking of available nodes according to how closely their capabilities match with
the requirements is also expressed as XML clauses. Moreover, in case there are multiple
nodes satisfying the defined requirements, specification of selection preferences is also per-
missible by appropriate formulation of conditions in the clause’s body.

<ServiceRequest rdf:about="http://tapas.org/msg01">
 <sender>
 <Actor rdf:about="http://tapas.org/actorA">
 <rolePlaying rdf:resource="http://tapas.org/roleR"/>
 <nodeInstalling
rdf:resource="http://comp1.tapas.org"/>
 </Actor>
 </sender>
 <dateTime>14/10/2002 GMT 14:10:00</dateTime>
 <playRequesting
rdf:resource="http://tapas.org/IPM_1.0"/>
</ServiceRequest>

<ServiceComponentRequest
rdf:about="http://tapas.org/msg02">
 <sender>
 <Actor rdf:about="http://tapas.org/actorB">
 <rolePlaying
rdf:resource="http://tapas.org/printClient"/>
 <nodeInstalling rdf:resource="http://comp1.tapas.org" />
 </Actor>
 </sender>
 <dateTime>14/10/2002 GMT 15:10:00</dateTime>
 <roleRequesting
rdf:resource="http://tapas.org/GraphicMaster"/>
</ServiceComponenetRequest>

(a) ServiceRequest. (b) ServiceComponentRequest.

Figure 6. A service request and a service component request example.

5.3.2. Play configuration rules

Play configuration rules are represented as a set of XML clauses. Their heads identify
components of the play, while their bodies describe the configuration, composition and de-
pendency conditions. For example, consider a play of a distance-learning application consist-
ing of the three roles: lecture-server, teacher and student together with a restriction that the
actors playing the teacher and student roles must not be initialised at the same node. This
condition is formalised as a clause with its head specifying these three roles of the play and
its body constraining that the nodes for executing actors playing the teacher and client roles
must not coincide.

Figure 7. Reconfiguration types

5.3.3. Play reconfiguration rules

Instead of providing merely a general reconfiguration mechanism, which is applicable
to any trouble encountered in an application, the developed framework additionally facilitates
means for definition of application-specific play reconfiguration rules. Such rules let differ-

Reconfiguration TroubleReport

NoAction ActorReconfiguration PlayConfiguration

responseTo

Actor

ActorInitialization ActorTermination ActorReinitialisation ActorRelocation

Node

reconfiguringActor

relocationTo

Paper B

115

ent applications encode their individual, customised reconfiguration policies, and hence al-
lowing them to handle the same trouble in different but application-specific manners.

Each time when CM receives a trouble report, it will find if there is a reconfiguration
rule specifically defined for handling the given trouble or not. In case that such a rule exists,
CM will generate an appropriate system reconfiguration plan according to that rule. Other-
wise, the default reconfiguration, i.e., to relocate actors that are involving in the problem, will
be taken place. Figure 7 defines the possible types of reconfigurations: No Action, Play Re-
configuration and Actor Reconfiguration

No Action: System developers may decide to disregard and perform no action for cer-
tain types of troubles. For instance, one may define that all actor-error reports, which involve
some particular low-priority roles and are submitted during 1AM-6AM, will be ignored.

Play Reconfiguration: The whole running service system, defined by the specified play
and consisting of multiple cooperating actors, will be reconfigured. The best node for execut-
ing each actor will be re-determined and the actor will be relocated to that new location.

Actor Reconfiguration: This requires reconfiguration of some particular service compo-
nents constituted by corresponding actors in a system, and can be further classified into Actor
Initialisation, Actor Termination, Actor Re-initialisation, Actor Relocation.

- Actor Initialisation: The action is decomposed into (i) the instantiation of a new

actor at a specified node, (ii) the installation of the manuscript defining the actor
behaviour which corresponds to the role to be played, (iii) the execution of the ac-
tor’s operation according to the installed manuscript.

- Actor Termination: The specified actor will be terminated and the resources allo-
cated to and consumed by that actor will be freed.

- Actor Re-initialisation: The specified actor will be terminated and re-initialised at
the same node.

- Actor Relocation: It involves moving of an actor currently executing at one node
to another. In general, this reconfiguration is carried out when an actor has insuf-
ficient capabilities to execute its functions; thus, to proceed with its operation, the
actor must be relocated to a node with sufficient capabilities. The references
(Shiaa et al. 2002, 2004) have already discussed how actor mobility is realised in
TAPAS.

A reconfiguration rule is formalised as an XML clause. Its head describes the reconfi-
guration action to be implemented, and its body represents the types, conditions and details of
troubles upon which the described reconfiguration will be performed. For a given trouble re-
port, there may exist more than one reconfiguration rule applicable to handle it. In such a
case, rule prioritisation information is needed.

Table 1 summarises the developed model for the TAPAS dynamic configuration
framework. It uniformly formalises the descriptions, classifications and constraints within a
single representation scheme, i.e., XDD.

116

 Table 1: Dynamic configuration data model

Modelling Components Expressed as
Capability & Status Repository

• Capability and Status Ontologies CIM/XML schemas
• Capability and Status Specifications (Instances) CIM/XML instances

Message Specifications
• Service Requests RDF/XML instances
• Service Component Requests RDF/XML instances
• Trouble Reports RDF/XML instances

Play Repository
• Role Requirements XML clauses
• Play Configuration Rules XML clauses
• Play Reconfiguration Rules XML clauses

A dynamic configuration system
(capabilities and status + message spec. + play defini-

tions)

Modelled as
⇒

An XDD description comprising
XML instances + XML clauses

** The semantics of the description yields appropriate system (re)configurations according to the current system
capabilities and status, the defined play configuration and reconfiguration rules as well as the given requests
and trouble reports.

6. Demonstration: Intelligent Printing Management System

It is seen from the presented dynamic configuration architecture that CM is the primary
entity which dynamically computes appropriate service (re)configuration plans by reasoning
about the current system’s capabilities and status, the defined role requirements, play confi-
guration constraints and reconfiguration rules as well as the given requests and trouble re-
ports. The prototype reasoning system for CM has already been developed by means of XET
(XML Equivalent Transformation) (Anutariya et al. 2002)⎯a declarative style XML rule-
based programming language and inference engine which can directly operate and reason
about XML elements and XML clauses. Here, employment of the developed architecture and
the reasoning engine to, respectively, model and implement an Intelligent Printing Manage-
ment (IPM) system is demonstrated along with a simple application scenario assuming the
four different roles:

- DocMaster: a print server role for printing black & white documents.

- GraphicMaster: a print server role for handling colour and graphic documents.

- IPMManager: a role responsible for controlling and distributing print jobs to ap-
propriate printer roles, depending on the job attributes, the current queues of each
printer and the job owner privilege information. It queries and finds an appropri-
ate print server role for executing a given job. When there exists more than one
print server role capable of handling the job, a preferred one will be selected.

Paper B

117

- PrintClient: an application program to which users use for sending print jobs to
IPM Manager.

Note that one printer can constitute more than one print server role, and a print server

role can be realised by one or more physical printers. For instance, a high-speed, laser, colour
printer may be configured to play both DocMaster and GraphicMaster roles, while the DocMaster
role can be additionally realised by another black-and-white, laser printer. Moreover, in a real
application scenario, there could be more varieties and more complicated types of print server
roles for which different groups of users have different access controls.

Upon the system starts up, IPMManager and print server objects will be installed and
configured. These objects receive their actual behaviour in manuscripts included in a general
play definition which consists also of capability and status requirement definition. Clients can
be plugged in later on at any possible node running the required TAPAS support. What is im-
portant from the point of view of dynamic configuration is the reasoning about these play and
role requirements when installing specific roles at specific nodes.

<Actor>
 <rolePlaying rdf:resource="http://tapas.org/DocMaster"/>
 <nodeInstalling rdf:resource=$S:nodeX />
</Actor>
 ← <INSTANCE ClassName="CIM_Printer">
 <PROPERTY NAME="DeviceID">
 <VALUE>$S:deviceID</VALUE>
 </PROPERTY>
 <PROPERTY NAME="DetectedErrorState">
 <VALUE>$S:errorState</VALUE>
 </PROPERTY>
 <PROPERTY.ARRAY NAME="Capabilities">
 <VALUE.ARRAY>
 <VALUE>Duplex Printing</VALUE>
 <VALUE>Black and White Printing</VALUE>
 $E:otherCapabilities
 </VALUE.ARRAY>
 </PROPERTY.ARRAY>
 <PROPERTY NAME="HorizontalResolution">
 <VALUE>$S:horizontal</VALUE>
 </PROPERTY>
 <PROPERTY NAME="VerticalResolution">
 <VALUE>$S:vertical</VALUE>
 </PROPERTY>
 <PROPERTY NAME="MarkingTechnology">
 <VALUE>Laser</VALUE>
 </PROPERTY>
 <PROPERTY NAME="PrintingSpeed">
 <VALUE>$S:speed</VALUE>
 </PROPERTY>
 $E:printerProperties
 </INSTANCE>,
 [$S:horizontal >= 1200], [$S:vertical >= 1200],
 [$S:speed >= 25],
 notMember($S:errorState, {"No Paper", "No Toner",
"Door Open", "Jammed", "Service Requested" })

(a) Graphical notation. (b) XML serialisation.

Figure 8. XML clause C1: capability and status requirements of the role DocMaster.

$S:nodeX : CIM_Printer

DeviceID = $S:deviceID
DetectedErrorState = $S:errorState
Capabilities = ["Duplex printing", "Black
and White Printing",
$E:otherCapabilities]
HorizontalResolution = $S:horizontal
VerticalResolution = $S:vertical
MarkingTechnology = "Laser"
PrintingSpeed = $S:speed
$E:printerProperties

Bo
dy

 o
f t

he
 c

la
us

e

[$S:horizontal >= 1200],
[$S:vertical >= 1200],
[$S:speed >= 25],
notMember($S:errorState, {"No
Paper", "No Toner", "Door Open",
"Jammed", "Service Requested"})

(B)

(C)

(A) Head of the clause

rolePlaying

nodeInstalling
: Actor $S:nodeX : CIM_Printer

http://tapas.org/DocMaster : Role

118

6.1. Role requirement

Figure 8 gives an XML clause C1, formalising capability and status requirements of
DocMaster role. Both graphical and textual presentation of the clause is shown. However, for
ease of understanding, only graphical presentation of XML clauses will be used in the sequel.
Recall that a variable in an XML clause is preceded with ‘$’, followed by its type and name.
For example, $S:nodeX denotes a String-variable named nodeX and is instantiable into only a
string, while $E:printerProperties is an Expression-variable instantiable into a list of XML ex-
pressions representing a sequence of objects or attributes. The given clause C1 can be read as
follows:

a) An actor playing DocMaster role can be installed into $S:nodeX, which is an in-

stance of CIM_Printer,

if

b) $S:nodeX is currently available and offers duplex printing and black-and-white
printing capabilities, and laser marking technology,

c) the following additional conditions on $S:nodeX’s capabilities and status are satis-
fied:

- [$S:horizontal >= 1200] and [$S:vertical >= 1200]: the horizontal and vertical
resolutions of the print function are at least 1200 pixels per inch,

- [$S:speed >= 25]: the printing speed is greater than 25 pages per minute, and

- notMember($S:errorState, {"No Paper", "No Toner", "Door Open", "Jammed", "Ser-
vice Requested"}): its current detected error state is not one of the given list.

The clauses C2 of Figure 9 gives another simple example of modelling the capability

and status requirement of the role IPMManager.

Paper B

119

The clause specifies that:

(A) Any instance of the class
CIM_ComputerSystem, represented
by $S:nodeX, can install an actor for
playing the role IPMManager, if the
requirements (B) and (C) defined by
the clause’s body are met. That is:

• The central processor of that
$S:nodeX is either Pentium III or
AMD Athlon families with 800-MHz
minimum clock speed and the load
percentage less than 50.

• The installed operating system is
WINNT with the minimum virtual
memory of 262144 KB (256 MB).

• The computer’s hosted file system
must be NTFS with available space at
least 1073741824 bytes (1 GB).

Figure 9. XML clause C2: capability and status requirements of the role IPMManager

Note that due to space limitation and for the sake of simplicity, the paper illustrates on-
ly certain simple examples. For a more complete demonstrating example of configuration de-
finitions, trouble reports as well as the computed (re)configuration plans, the reader is re-
ferred to the online prototype CM system available at http://tapas.item.ntnu.no/ipm.

6.2. Play configuration and reconfiguration rule

Figure 10 and Figure 11 present the play configuration and reconfiguration rules of the
demonstrating IPM system, respectively.

6.3. Computing play configuration and reconfiguration plans

Let a play configuration definition for the IPM system be modeled as an XDD descrip-
tion which comprises the requirement specification of each role in a play as well as the play
configuration constraints and the reconfiguration rule. Then, let the CSRep comprise CIM
instances maintaining the capabilities/status of current, available nodes in a system. As an
example of computing a configuration plan, assume that the CM receives the ServiceRequest
of Figure 6 for installing and configuring the IPM system. A configuration plan computed by
the CM by means of the prototype reasoning system is illustrated by Figure 12. It specifies
that: (i) an actor playing the role IPMManager is to be installed at comp1, (ii) the role DocMaster
at printerX and printerY, and (iii) the role GraphicMaster at printerX.

$S:nodeX : CIM_ComputerSystem

$E:nodeXProperties

$S:filesystem: CIM_FileSystem

FileSystemType = "NTFS"
AvailableSpace = $S:space
ReadOnly = FALSE
$E:filesystemProperties

member($S:pFamily, {"Pentium(R) III", "AMD Athlon(TM)
Processor Family"}),
[$S:clockspeed >= 800],
[$S:cpuLoad <= 50],
[$S:space >= 1073741824],
[$S:mem >= 262144].

(B)

rolePlaying nodeInstalling

$S:os : CIM_OS
OSType = "WINNT"
TotalVirtualMemorySize =
$S:mem
$E:osProperties $S:processor: CIM_Processor

Role = "Central Processor"
Family = $S:pFamily
CurrentClockSpeed =
$S:clockspeed
LoadPercentage = $S:cpuLoad
$E:processorProperties

: Actor

(C)

http://tapas.org/IPMManager: Role $S:nodeX : CIM_ComputerSystem

(A)

120

An XML clause defining a configuration rule
of the play http://tapas.org/IPM_1.0.

The head (A) expresses that a valid configu-
ration comprises the realisation of certain
roles in the play, specified by three roleReali-
sation associations. The first association indi-
cates that there must exist exactly one actor
constituting the role IPMManager at a node
$S:IPM_node. The other two associations,
relating to the objects $E:DocMasterSet and
$E:GraphicMaster, specify that the configura-
tion also contains installation of actors realis-
ing some particular roles. The conditions on
the number of actors to install and the roles to
play are defined by the clause’s body. The
clause’s body, comprising (B)–(E), specifies
conditions for derivation of the defined con-
figuration as well as its composition struc-
ture.

(B) indicates that the configuration will be
computed upon the receipt of a ServiceRe-
quest for installing such a version of the play.

(C) ensures that the node represented by
$S:IPM_node has sufficient capabilities and
status to install an actor for executing the role
IPMManager. Obviously, this expression will
be matched with the head of the clause C2 of
Figure 9, which models the IPMManager’s
requirement.

(D) specifies that $E:DocMasterSet represents
a set of actors to be installed at nodes that are
capable of playing the role DocMaster. That
is, these nodes' capabilities and status must
meet the requirement of the role represented
by the clause C1 of Figure 8. In this example,
there can be more than one actor realising the
role DocMaster.

Similarly, (E) specifies that
$E:GraphicMasterSet represents a set of nodes
capable of playing the role GraphicMaster.
Note that a restriction on the number of roles
that an instance can play is not defined. A
particular printer may realise both DocMaster
and GraphicMaster roles at the same time.

Figure 10. XML clause C3: a play configuration rule of the IPM service system.

: Actor

http://tapas.org/IPMManager : Role

nodeInstalling

rolePlaying

(C)

playVersion

nodeInstalling

$E:DocMasterSet

roleRealisation

$S:IPM_node

$E:DocMasterSet : XDD_SetOf

http://tapas.org/DocMaster : Role

rolePlaying

$S:DM_node

nodeInstalling

$E:GraphicMasterSet : XDD_SetOf

http://tapas.org/GraphicMaster : Role

rolePlaying

$S:GM_node

setMember

(A)

(D)

(E)

: Actor

http://tapas.org/IPMManager : Role

 $E:requestAttributes

: ServiceRequest
playRequesting

http://tapas.org/IPM_1.0 : Play

(B)

 http://tapas.org/IPM_1.0 : Play : PlayConfiguration

$E:GraphicMasterSet

: Actor

: Actor

setMember

rolePlaying

nodeInstalling

$S:IPM_node

roleRealisationroleRealisation

Paper B

121

7. Conclusions

A uniform representational and reasoning framework for dynamic configuration of ser-
vice systems in TAPAS architecture has been developed, and its employment to model an
Intelligent Printing Management system has been demonstrated. The framework enables ser-
vices to be composed on the fly and the location for executing service components to be de-
termined dynamically based on the offered capabilities as well as the current situation in the
network. Moreover, during the service execution, it also permits adaptation of the service
composition structure if certain significant events, such as a service component failure or
QoS degradation, occur. In the framework, the Configuration Manager is the primary entity
which reasons about the current system’s capabilities & status, services’ requirements and
reconfiguration policies in order to dynamically generate appropriate service
(re)configuration, hence enabling the system to cope with variations in the environment,
achieve mandated performance levels and meet user satisfaction. To verify the framework’s
feasibility and potential in real applications, it has been implemented using the XET reason-
ing engine. Integration of the implemented framework into the TAPAS platform in order to
provide a basis for experiments with dynamic configuration management is in progress.

The clause models a specific reconfiguration
rule for handling InsufficientCapabilityReport of
an actor playing the role IPMManager.It defines
that:

(A) an ActorRelocation plan, specifying that the
actor $S:actorA is to be relocated to
$S:newNode, will be derive,

if

(B) there arises an InsufficientCapabilityReport,
identified by $S:reportID and describing that
the actor $S:actorA, currently playing the
role IPMManager at the node $S:node, has
insufficient capabilities to execute its func-
tionality, and

(C) there exists a node in the system which is
currently available and capable of playing the
role IPMManager, and denote such a node by
$S:newNode.

Figure 11. XML clause C4: a dynamic reconfiguration rule of the IPM service system.

 $E:reportAttributes

 $S:reportID : InsufficientCapabilityReport

insufficientCapabilityActor

rolePlaying

$S:newNode
nodeInstalling

(B)

(C)

$S:actorA: Actor

$S:actorA : Actor

reconfiguringActor

responseTo

relocationTo

 $S:node

(A)

$S:reportID

: ActorRelocation

http://tapas.org/IPMManager : Role

http://tapas.org/IPMManager: Role

: Actor

$S:node

nodeInstalling

http://tapas.org/IPMManager: Role

rolePlaying

rolePlaying nodeInstalling

$S:newNode

122

(a) The generated XML document representing the computed plan.

<PlayConfiguration>
 <playVersion rdf:resource="http://tapas.org/IPM_1.0"/>
 <roleRealisation>
 <Actor>
 <rolePlaying rdf:resource="http://tapas.org/IPMManager"/>
 <nodeInstalling rdf:resource="http://comp1.tapas.org"/>
 </Actor>
 </roleRealisation>
 <roleRealisation>
 <Actor>
 <rolePlaying rdf:resource="http://tapas.org/DocMaster"/>
 <nodeInstalling rdf:resource="http://PrinterY.tapas.org"/>
 <nodeInstalling rdf:resource="http://PrinterX.tapas.org"/>
 </Actor>
 </roleRealisation>
 <roleRealisation>
 <Actor>
 <rolePlaying
 rdf:resource="http://tapas.org/GraphicMaster"/>
 <nodeInstalling
 rdf:resource="http://PrinterX.tapas.org"/>
 </Actor>
 </roleRealisation>
</PlayConfiguration>

(b) Corresponding RDF graph.

Figure 12. XML clause C4: a dynamic reconfiguration rule of the IPM service system.

http://tapas.org/IPM_1.0 : Play

playVersion

: PlayConfiguration

roleRealisation

http://tapas.org/IPMManager: Role

rolePlaying

http://comp1.tapas.org

nodeInstalling
: Actor

roleRealisation

roleRealisation

roleRealisation

: Actor
http://printerX.tapas.org

nodeInstalling

http://tapas.org/DocMaster: Role

rolePlaying

rolePlaying

http://tapas.org/GraphicMaster: Role

: Actor

http://printerY.tapas.org

nodeInstalling

: Actor

rolePlaying

nodeInstalling

http://printerX.tapas.org
http://tapas.org/DocMaster: Role

Paper B

123

References

Aagesen, F. A., C. Anutariya, et al. (2002). Support Specification and Selection in TAPAS. IFIP WG6.7 Work-
shop and Eunice Summer School on Adaptable Networks and Teleservices, Trondheim, Norway, Tapir.

Aagesen, F. A., B. E. Helvik, et al. (2003). On Adaptable Networking. Int'l Conf. on Information and Commu-
nication Technologies (ICT 2003), Assumption University, Thailand.

Aagesen, F. A., B. E. Helvik, et al. (2001). Plug and Play for Telecommunication Functionality: Architecture
and Demonstration Issues. Int'l Conf. Information Technology for the New Millennium (IConIT), Tham-
masat University, Bangkok, Thailand.

Aagesen, F. A., B. E. Helvik, et al. (1999). Towards a Plug and Play Architecture for Telecommunications. 5th
IFIP Conf. Intelligence in Networks (SmartNet 99), Bangkok, Thailand, Kluwer Academic Publisher.

Anutariya, C., V. Wuwongse, et al. (2002). An Equivalent-Transformation-Based XML Rule Language. Int’l
Workshop Rule Markup Languages for Business Rules in the Semantic Web, Sardinia, Italy.

Bakour, H. and N. Boukhatem (2004). ASMA: An Active Architecture for Dynamic Service Deployment. IFIP
Int’l Conf. Intelligence in Communication Systems (INTELLCOMM 2004), Bangkok, Thailand.

Berners-Lee, T., M. Fischetti, et al. (1999). Weaving the Web: The original design and ultimate destiny of the
World Wide Web by its inventor, Harper, CA.

Bieszczad, A., B. Pagurek, et al. (1998). "Mobile Agents for Network Management." IEEE Communications
Surveys 1(1).

Brickley, D. and R. V. Guha (2004). RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recom-
mendation 10 February 2004. B. McBride.

Cohen, R. and D. Raz (2004). An Open and Modular Approach for a Context Distribution System. Proc.
IEEE/IFIP Network Operations and Management Symposium (NOMS 2004), Seoul, Korea.

D’Antonio, S., M. D’Arienzo, et al. (2004). An Architecture for Automatic Configuration of Integrated Net-
works. Proc. IEEE/IFIP Network Operations and Management Symposium (NOMS 2004), Seoul, Korea.

Hendler, J. and D. McGuinness (2000). "The DARPA Agent Markup Language." IEEE Intelligent Systems
15(2): 72-73.

Inoue, Y., M. Lapierre, et al. (1999). The TINA Book: A Co-operative Solution for a Competitive World, Pren-
tice Hall.

Keller, A., J. L. Hellerstein, et al. (2004). The CHAMPS System: Change Management in Planning and Sche-
duling. Proc. IEEE/IFIP Network Operations and Management Symposium (NOMS 2004), Seoul, Korea.

Lassila, O. and R. R. Swick (1999). Resource Description Framework (RDF) Model and Syntax Specification,
W3C Recommendation 22 February 1999.

McGuinness, D. L. and F. Harmelen (2004). OWL Web Ontology Language Overview, W3C Recommendation
10 February 2004.

Raza, S. K. and A. Bieszczad (2004). Network Configuration with Plug and Play Components. Proc. 6th
IFIP/IEEE Network Operations and Management Symposium (NOMS 2004), Seoul, Korea.

Sahai, A., S. Singhal, et al. (2004). Automated Policy-Based Resource Construction in Utility Computing Envi-
ronments. IEEE/IFIP Network Operations and Management Symposium NOMS'2004, Seoul, South Korea.

Shiaa, M. M. (2004). Mobility Support Framework in Adaptable Service Architecture. IEEE/IFIP Net-Con'
2003, Muscat, Oman.

124

Shiaa, M. M. and F. A. Aagesen (2002). Mobility Management in Plug and Play Network Architecture. Proc.
IFIP 7th Int'l Conf. Intelligence in Networks (SmartNet 2002), Saariselka, Finland, Kluwer Academic Pub-
lishers.

Shiaa, M. M., S. Jiang, et al. (2004). An XML-based Framework for Dynamic Service Management. The 2004
IFIP International Conference on Intelligence in Communication Systems (INTELLCOMM 04), Bangkok,
Thailand.

Solarski, M., L. Strick, et al. (2004). Flexible Middleware Support for Future Mobile Services and Their Con-
text-Aware Adaptation. IFIP Int'l Conf. Intelligence in Communication Systems (INTELLCOMM 2004),
Bangkok, Thailand.

Tennenhouse, D. L., J. M. Smith, et al. (1997). "A Survey of Active Network Research." IEEE Communications
35(1).

Westerinen, A. and J. Strassner (2000). "Common Information Model (CIM) Core Model Distributed Manage-
ment Task Force White Paper Version 2.4."

Wuwongse, V., K. Akama, et al. (2003). "A Data Model for XML Databases." Intelligent Information Systems
20(1): 63-80.

Wuwongse, V., C. Anutariya, et al. (2001). "XML Declarative Description (XDD): A Language for the
Semantic Web." IEEE Intelligent Systems 16(3): 54-65.

125

Paper C

A Framework for
Dynamic Service Composition
Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the first international IEEE WoWMoM Workshop on Auto-
nomic Communications and Computing (ACC 2005) in conjunction with IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Net-
works WoWMoM 2005

Taormina, Italy, June 13 2005

Paper C

127

A Framework for Dynamic Service Composition

Paramai Supadulchai and Finn Arve Aagesen
Department of Telematics, Norwegian University of Science and Technology (NTNU)

{paramai, finnarve}@item.ntnu.no

Abstract

To be able to utilize the generative
potential of future networks for service
composition, the attributes of services and
networks must be appropriately forma-
lized, stored and made available. Impor-
tant attributes are the capability and the
status. A capability is an inherent property
of a node or a user, which defines the abil-
ity to do something. A capability in a net-
work node is a feature available to imple-
ment services. A capability of a user is a
feature that makes the user capable of us-
ing services. Status is a measure for the
situation in a system. This paper proposes
a representation framework for capability
and status, denoted as Unified Capability
and Status Representation Framework
(UniCS). This framework is used to decide
upon dynamic use of capabilities, and is
used to support the dynamic composition
of a service system. UniCS consists of facts
and configuration rules. The facts describe
the availability and requirement of capa-
bilities and status of a service system. The
configuration rules verify, manipulate,
transform and discover new facts with de-
fined axioms and constraints. An instance
of UniCS is the input specification for a
reasoning engine to dynamically generate
a composition plan for a service system.

1. Introduction

A network-based service system
consisting of services, service components
and nodes is considered. A service is rea-
lized by the structural and behavioral ar-
rangement of service components, which
by their inter working provide a service in
the role of a service provider to a service
user. Service components are executed as
software components in nodes, which are
physical processing units such as servers,
routers, switches and user terminals. User
terminals can be phones, laptops, PCs and
PDAs etc.

Traditionally, the nodes as well as
the service components have a predefined
functionality. However, changes are taking
place. Nodes are getting more generic and
can have any kind of capabilities such as
MP3, camera and storage. The software
components have been also changed from
being static components to become more
dynamic and be able to download and ex-
ecute different functionality depending on
the need. Such generic programs are from
now on denoted as actors. The name actor
is chosen because of the analogy with the
actor in the theatre, which is able to play
different roles in different plays.

We are entering a generative era,
which gives a high degree of flexibility. To
utilize the generative potential, the
attributes of services, service components,
software components and nodes must be

128

appropriately formalized, stored and made
available. As a first further step towards
this formalization, the concepts capability
and status are introduced.

A capability is an inherent property
of a node or a user, which defines the abili-
ty to do something. A capability in a node
is a feature available to implement servic-
es. An actor executes a program, which
may need capabilities in the node. A capa-
bility of a user is the feature that makes the
user capable of using services. Capabilities
can be classified into:

• Resources: physical hardware compo-
nents with finite capacity,

• Functions: pure software or combined
software/ hardware component per-
forming particular tasks,

• Data: just data, the interpretation, va-
lidity and life span of which depend
on the context of the usage.

Status is a measure for the situation
in a system with respect to the number of
active entities, the traffic situation and the
Quality of Services (QoS) etc. Status re-
flects an instantaneous state of the system.

Rather than using the traditional ap-
proach that nodes and service components
have a pre-defined functionality, the func-
tionality can be composed from several
cooperating actors hosted in nodes. We
propose a representation framework for
capability and status, denoted as Unified
Capability and Status Representation
Framework (UniCS). This framework is
used to decide upon dynamic use of capa-
bilities, and is used to support the dynamic
composition of a service system. UniCS
consists of facts and configuration rules.
The facts describe the availability and re-

quirement of capabilities and status of a
service system. The configuration rules
verify, manipulate, transform and discover
new facts with defined axioms and con-
straints. An instance of UniCS is the speci-
fication given as an input to a reasoning
engine to generate a composition plan for a
service system.

The work presented in this paper has
been related to the Telematics Architecture
for Play-based Adaptable System (TA-
PAS) [1]. Section 2 discusses related
work. Section 3 gives some TAPAS con-
cepts, which are extensions to the generic
concepts already defined. Section 4 gives
an overview of UniCS. Section 5 describes
the methodology of the dynamic composi-
tion of a service system. Section 6 gives a
summary and presents our conclusions.

2. Related work

Several research activities are related
to capability representations [5,8,9,11]. A
similar work to UniCS presented in this
paper in term of objectives, functionalities
and architecture, is a Resource Definition
Framework (RDF)-based knowledge mod-
el for network management [5], which
provides an analogous framework to de-
scribe capability facts in RDF. However, it
requires additional framework(s) to de-
scribe configuration rules. Directory
Enabled Network NGOSS (DEN-ng) [9]
describes the configuration rule partially in
term of constraints in a specific language,
i.e. Object Constraint Language (OCL).
However, OCL limits the power of DEN-
ng to only verifying facts, while not per-
mitting it to manipulate, transform or dis-
cover them.

Paper C

129

3. Necessary TAPAS concepts

The Telematics Architecture for
Play-based Adaptable System (TAPAS)
intends to be an architecture for autonomic
network-based systems that gives rear-
rangement flexibility, failure robustness
and resource load awareness and control
[1]. In analogy with the TINA architecture
[3], the TAPAS architecture is separated
into a service architecture and a computing
architecture as follows.

• The service architecture is an archi-
tecture showing the structure of ser-
vices and services components.

• The computing architecture is a ge-
neric architecture for the modeling of
any service software components.
These architectures are not indepen-

dent and can be seen as architectures at
different abstraction layers. The service
architecture, however, has focus on the
functionality independent of implementa-
tion, and the computing architecture has
focus on the modeling of functionality

with respect to implementation, but inde-
pendent of the nature of the functionality.

The relationship of services and ser-
vice components in the service architecture
are realized by the computing architecture,
which will be the focus of this paper.

3.1. TAPAS computing architecture

TAPAS computing architecture has
three layers: the service view, the play view
and the network view as shown in Figure 1.
The service view concepts are rather ge-
neric and should be consistent with any
service architecture. The network view
concepts are consistent with any corres-
ponding network architecture, with excep-
tion of the core platform, which is a spe-
cific platform supporting the play view
concepts. The network view consists of
nodes, which are typically network
processing units such as mobile phone,
desktop computer, laptop, printer and rou-
ter that possess particular Network View
Capabilities, from now on abbreviated as
NV-Capabilities. Nodes are installed in the
core platform. At a specific time point, a

Figure 1 the TAPAS computing architecture

130

Network View Status denoted as NV-Status
is the state of a system with respect to the
number of active entities, traffic situation
and QoS etc.

The play view is a basis for design-
ing functionality that can meet the rear-
rangement, the robustness, the survivabili-
ty, the QoS awareness and resource con-
trol properties. The play view concepts are
seemingly rearrangement flexibility
oriented. The capability and status con-
cepts, however, also give a basis for the
further design of the robustness, the survi-
vability, the QoS awareness and resource
control properties.

3.2. TAPAS theater metaphor

The play view is founded on a thea-
ter metaphor. The TAPAS actor is a gener-
ic software component consistent with the
actor definition given in Section 1. How-
ever, the TAPAS actor is specialized as
follows. Actors perform roles according to
predefined manuscripts, and a director
manages their performance. Actors are
software components in the nodes that can
download manuscripts. They have Play
View Capabilities and Status abbreviated
as PV-Capabilities and -Status, which are
transformed from NV-Capability and -

Status of the nodes. The transformation is
also based on UniCS and is referred to
[10]. An actor will constitute a role figure
by behaving according to a manuscript that
defines the functional behavior of that par-
ticular role in a play. A role session is a
projection of the behavior of a role figure
with respect to one of its interacting role
figures. Actors can be moved between
nodes and their role sessions can be re-
instantiated automatically [6].

A director is an actor with supervi-
sory status regarding other actors. When
the director needs to choose a fitting actor
for a certain role figure, he requests help
from a service manager, which is a dedi-
cated role figure to generate a composition
plan for the dynamic service composition.
The director reads the generated composi-
tion plan and assigns role-based manu-
scripts to the recommended actors. The
actor interprets the manuscript and be-
haves accordingly. The utilization of ma-
nuscripts is beyond the scope of this paper
and is referred to [7].

A service system is defined by a
play. A play consists of several actors
playing different roles, each possibly hav-
ing different PV-Capabilities and –Status
requirements. An actor will constitute a
role figure, which will constitute a service
component based on a role defined by a

Figure 2 the UniCS framework

Paper C

131

manuscript. The ability of an actor to play
a role depends on the matching of the re-
quired PV-Capabilities and -Status of the
role and the offered PV-Capabilities and -
Status of the actor [1].

4. Unified Capability and Status
Representation Framework
(UniCS)

As already defined in Section 3.2,
the behaviors of service components are
based on roles. To allocate an actor to a
specific role, the information of available
actors and their PV-Capabilities and -
Status is needed. This capability and status
information must be described in a formal
and machine-understandable way. Unified
Capability and Status Representation
Framework (UniCS) as shown in Figure 2
is a unified representation and an executa-
ble framework for capability and status
information.

UniCS is used to represent the re-
quirement on how to dynamically compose
a service system. This requirement is given
to the reasoning engine in a service man-
ager to generate a composition plan, which
suggests appropriate actors to play roles
and become the service components of the
service system.

4.1 Syntactic representation

Figure 3 the PV-Capability and -Status
representation

UniCS consists of facts and configu-
ration rules providing a way to separate
syntactic and semantic representation re-
spectively. Facts indicate relationships in a
system. An example of a fact is “printer
A” “has capability” “duplex printing”.

Concerning only capability and status,
facts can be represented in various XML
syntaxes. In the network view, any syntax
chosen by the manufacturers or the net-
work management program can be used.
The examples are Common Information
Model encoded in XML (CIM-XML) [11]
and Universal Plug-and-Play (UPnP) [8].

In the play view, PV-Capability and
-Status are the projection of NV-Capability
and -Status. Facts concerning actors and
PV-Capabilities and -Status are from now
on classified as proposal facts. The PV-
Capability syntax is carried on RDF. The
main reason is because representing facts
transformed from various NV-Capabilities
and –Status syntax is rather easy with the
RDF construct triple [10]. Facts in RDF
can also be seamlessly facilitated with ad-
ditional domain ontology from any XML-
based ontology language.

The facts concerning roles in a ser-
vice system are defined as play session
specification and role requirement. A play
session specification is a set of all role ses-
sions in a play constituting a service com-
ponent. A play session is specified by an
atomic process in the Web Ontology Lan-
guage for Semantic Web (OWL-S) [4] and
has two associative roles: invoker and
server. The invoker role generally has no
PV-Capability and -Status requirement.
The server role requires specific PV-
Capabilities and -Status. Figure 4 shows a
play session specification example.

At the time of writing, OWL-S is in-
capable of describing the server roles’ re-
quired PV-Capabilities and -Status, which
are essential criteria in the composition of
a service system. We propose the using
role requirement, modeled in RDF, as an
extension to each play session to describe
the roles’ required PV-Capabilities and –
Status. Role requirement representation is
similar to Figure 3 except that an actor is

132

replaced by a role as the subject of the fact.
Facts concerning the play session specifi-
cation and the role requirement of a ser-
vice system are classified as requirement
facts. The requirement facts and the pro-
posal facts will be matched by configura-
tion rules.

Figure 4 play session specification

4.2. Semantic representation
 Table 1 Types of XML variables

Type Instantiation and examples
N XML element or attribute names Ex:

<$N:var1>…</$N:var1> can be instan-
tiated to <actor>...</actor> or
<node>...</node>

S XML string Ex:
<prop name=”$S:var1”/>
can be instantiated into
<prop name=”prop1”/> or
<prop name=”prop2”/>

P Sequence of zero or more attribute-value
pairs Ex: <element $P:var1/> can be
instantiated into <element/> or
<element name=”1”/>

E Sequence of zero or more XML expressions
Ex: <element>$E:var1</element>
can be instantiated into
<element/> or
<element><value>1</value>
</element>

I Part of XML expressions Ex:
<$I:var1><attr/></$I:var1> can
be instantiated into
<element><prop><attr/></prop>
</element> or

Configuration rules are defined in a

semantic web language, XML Declarative
Description (XDD) [12]. XDD is an XML-
based knowledge representation, which
extends ordinary, well-formed XML ele-

ments by incorporation of variables for an
enhancement of expressive power and re-
presentation of implicit information into
so-called XML expressions. Ordinary
XML elements – XML expression without
variables – are called ground XML expres-
sions. Every component of an XML ex-
pression can contain variables as in Table
1. Every variable is prefixed with ‘$T:’
where T denotes its type.

A configuration rule is an XML
clause of the form:

H, {C1, … Cm} B1, … Bn

where m, n ≥ 0, H and Bi are XML
expressions. And each of the Ci is a prede-
fined XML condition used to limit the rule
for a certain circumstances. This allows
the modeling of constraints for a rule.
Axioms are defined from one or more
rule(s) [11]. The XML expression H is
called the head of the clause. The set of Bi
is the body of the clause. When the body is
empty, such a clause is referred to an XML
unit clause, and the symbol ‘ ’ will be
omitted. Hence any facts in form of XML
elements or documents can be mapped di-
rectly onto a ground XML unit clause.

4.3 UniCS reasoning mechanism

Intuitively, the UniCS reasoning
process begins with an XML expression
based query. The reasoning engine formu-
lates an XML clause from the query of the
form:

Q Q

The XML expression Q represents
the constructer of the expected answer
which can be derived if all the bodies of
the clause hold. However, if one or more
XML expression bodies still contain XML
variables. These variables must be
matched and resolved from other rules.

Paper C

133

A body from the query clause will be
matched with the head of each rule. At the
beginning, there is only one body Q. Con-
sider a rule R1 in the form:

R1: H, C1 B1, B2

If the XML structure of the body Q
of the clause and the head H of the rule R1
match without violating condition C1, the
body Q will be transformed into B1 and B2.
All XML variables in the head Q and the
new bodies B1 and B2 of the query clause
will be instantiated. The query clause will
be in the form:

Q* B1*, B2*

Where X* means the one or more va-
riables in the XML expression X has been
instantiated and removed.

The transformation process ends
when either 1) the query clause has been
transformed into a unit clause or 2) there is
no rule that can transform the current bo-
dies Bi of the query clause. If the construc-
tor Q is transformed successfully into Qf
that contain no XML variable, the reason-
ing process ends and a desired answer is
obtained. Due to the space limitation, the
details how the reasoning engine performs
the rule matching and the variable instan-
tiation will not be presented in this paper.
The reader should be referred to [12].

5. Service composition

Three generic configuration rules for
composing any service system are formu-
lated. For each rule, a graphical representa-
tion of RDF triples together with the vari-
ous types of XML variables is used instead
of the equivalent XML clause due to the
space limitation. These rules and the query
clause are as follows:

5.1. The query clause (Figure 5):

Figure 5 the graphical representation of the query clause

The query clause contains the name
of the service system to be composed,
which can be changed. The meaning of
both head and body of the clause is that
“Service System 1” can have a role
“$S:Role”, which can be played by an ac-
tor “$S:Actor”.

5.2. Rule 1 (Figure 6):

Figure 6 the graphical representation of rule 1

The head H of Rule 1 is similar to
the body B1 of the query clause except the
variable $S:SS that makes this rule appli-
cable to any service system. After the vari-
able $:SS has been instantiated with the
name of a service system from the query
clause, the body B1 will query the re-
quirement facts and find the play session
specification and the role requirement of
that service system. Each role in $S:SS re-
quires PV-Capabilities and -Status,
represented by $E:PV-Capabilities and
$E:PV-Status. The body B2 looks for the
proposal facts with the capabilities and
status represented by the same E-variables.
Rule 1 matches the proposal and require-
ment facts that refer to the same variables.

134

5.2. Rule 2 (Figure 7):

Rule 2 is for querying the actor that
has a set of PV-Capability and -Status,
represented by $E:PV-Capability and
$E:PV-Status. The body B1 will query all
the proposal facts and find actors that have
such a qualification. Additional E-
variables in B1 allows an actor to have PV-
Capabilities and -Status in addition to
those in $E:PV-Capabilities and $E:PV-
Status.

Figure 7 the graphical representation of rule 2

5.4 The result (Figure 8)

After the execution, the composition
plan of “Service System 1” is produced as
illustrated in Figure 8. Note that Role 2
can be played by both Actor B and C be-
cause they both have the required PV-
Capabilities and -Status.

We used XML Equivalent Trans-
formation (XET) [2, 12], a Java-based rea-
soning engine that transforms the query
clause by the XDD-based rules to compose
a plan for Capability Management System,
a service system that manages capabilities
in TAPAS.

Figure 8 the graphical representation of the
composition plan

6. Conclusion

This paper has presented a frame-
work for capability and status representa-
tion, denoted as Unified Capability and

Status Representation Framework (Un-
iCS). This framework has been further
used to support the modeling of the dy-
namic composition of service systems. Un-
iCS consists of facts and configuration
rules. Facts are categorized as proposal
facts, which are actors, PV-Capabilities
and -Status, and requirement facts, which
are play session specification and role re-
quirement. Configuration rules map the
proposal facts and the requirement facts
and discover a composition plan. As a re-
sult, a service system can be dynamically
composed.

References

[1] Aagesen, F.A., et al., On Adaptable Network-
ing. ICT’2003, Assumption University, Thail-
and, 4/2003.

[2] Anutariya, C., et al., An Equivalent-
Transformation-Based XML Rule Language.
Int’l Workshop Rule Markup Languages for
Business Rules in the Semantic Web, Sardi-
nia, Italy, 6/2002.

[3] Inoue, Y., et al., The TINA Book. A Co-
operative Solution for a Competitive World.
Prentice Hall, 1999.

[4] OWL Service Coalition, Semantic Markup for
Web Services, 11/2003.

[5] Shen, J. and Y. Yang, RDF-Based Knowledge
Model for Network Management. IFIP/IEEE
IM 2003. Colorado, Springs, 3/2003.

[6] Shiaa, M.M., Mobility Support Framework in
Adaptable Service Architecture. IEEE/IFIP
Net-Con’2003, Muscat, Oman, 10/2003.

[7] Shiaa, M.M., et al., An XML-based Frame-
work for Dynamic Service Management. IFIP
INTELLCOMM 2004, Bangkok, Thailand,
11/2004.

[8] Steinfeld, E.F., Devices that play together,
work together, EDN Magazine, 9/2001.

Paper C

135

[9] Strassner, J., DEN-ng: Achieving Business-
Driven Network Management. IEEE/IFIP
NOMS 2002, Florence, Italy, 4/2002.

[10] Supadulchai, P., Aagesen, F.A., An Approach
to Capability and Status Modeling, NIK 2004,
Stavanger, Norway, 11/2004.

[11] Westerinen, A. and W. Bumpus, The Continu-
ing Evolution of Distributed Systems Man-
agement. IEICE TRANS. INF & SYST., Vol.
E86-D Nr. 11: 11/2003.

[12] Wuwongse, V., et al.: XML Declarative De-
scription (XDD), A Language for the Seman-
tic Web. IEEE Intelligent Systems, Vol. 16
Nr.3, 5-6/2001.

137

Paper D

Autonomic Service Configuration by a
Combined State Machine and Reasoning
Engine-based Actor
Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the 2005 IFIP International Conference on Intelligence in
Communication Systems (INTELLCOMM 2005)

Delta Centre-Ville Hotel Montréal, Canada, October 17-19, 2005

Paper D

139

Autonomic Service Configuration by a Com-
bined State Machine and Reasoning Engine
Based Actor

Paramai Supadulchai and Finn Arve Aagesen

NTNU, Department of Telematics, N-7491 Trondheim, Norway

Abstract: Service systems constituted by service components are considered. Service

components are executed as software components in nodes, which are physical
processing units such as servers, routers, switches and user terminals. A capa-
bility is an inherent property of a node or a user, which defines the ability to do
something. Status is a measure for the situation in a system. A service system
has defined requirements to capabilities and status. Because of continuous
changes in capabilities and status, dynamic service configuration with respect
to capabilities and status is needed. Software components are generic compo-
nents, denoted as actors. An actor is able to download, execute and move func-
tionality, denoted as a role. Configuration is based on the matching between
required capability and status of a role and the present executing capabilities
and status of nodes. We propose an approach for role specification and execu-
tion based on a combination an Extended Finite State Machine and a rule
based reasoning engine. Actor execution support consisting of a state machine
interpreter and a reasoning engine has been implemented, and has also been
applied for a service configuration example.

1. Introduction

Service systems constituted by service components are considered. Service components
are executed as software components in nodes, which are physical processing units such as
servers, routers, switches and user terminals such as phones, laptops, PCs, and PDAs. Tradi-
tionally, the nodes as well as the service components have a predefined functionality. How-
ever, changes are taking place. Nodes are getting more generic and can have any kind of ca-
pabilities such as MP3, camera and storage. The software components have been also

140

changed from being static components to become more dynamic and be able to download and
execute different functionality depending on the need. Such generic programs are from now
on denoted as actors. The name actor is chosen because of the analogy with the actor in the
theatre, which is able to play different roles play defined in different plays.

To utilize the flexibility potential, the attributes of services, service components, soft-
ware components and nodes must be appropriately formalized, stored and made available. As
a first further step towards this formalization, the concepts status and capability are intro-
duced.

Status is a measure for the situation in a system with respect to the number of active
entities, the traffic situation and the Quality of Service. A capability is an inherent property of
a node or a user, which defines the ability to do something. A capability in a node is a feature
available to implement services. A capability of a user is a property that makes the user capa-
ble of using services. An actor executes a program, which may need capabilities in the node.
Capabilities can be classified into:

• Resources: physical hardware components with finite capacity,
• Functions: pure software or combined software/hardware component performing par-

ticular tasks,
• Data: just data, the interpretation, validity and life span of which depend on the con-

text of the usage.
The functionality to be played by an actor participating in the constitution of a service

is denoted as its role. We use the role-figure as a generic concept for the actor which is play-
ing a role. So services and service components are realized by role-figures. Service configu-
ration is here the configuration of services with respect to the required capability and status
of the roles.

The Role of an actor is defined in a manuscript, which consists of an EFSM (Extended
Finite State Machine) extended with rule-based policies. Using a local rule-based reasoning
engine adds the ability to cope with various situations more flexible than is possible by the
pure EFSM. Actors can locally take place in the configuration and reconfiguration of the ser-
vices, in which they are a part of. The reasoning engine is based an XET (XML Equivalent
Transformation) rule-based language.

The work presented in this paper has been related to the Telematics architecture for
Play-based Adaptable System (TAPAS) [2]. Section 2 discusses related work. Section 3
presents the model used for the combined EFSM and reasoning engine based actor. Section 4
gives a short presentation of the TAPAS architecture with focus on the elements relevant for
the autonomic service configuration. Section 5 presents the data model. Section 6 presents a
simple scenario where an actor actively participates in service reconfiguration. Section 7
gives a summary and presents our conclusions.

2. Related work

The mobility of service components have been dealt within a number of approaches.
An example is the Intelligent Agent, which is the most related to our work. DOSE [4] is an
agent-based autonomic platform that uses Semantic Web to come up with response to fail-
ures. However, the behavior of each service component must be fixed along with the moving
codes that cannot be downloaded or changed. A technique to overcome this shortcoming has

Paper D

141

been proposed using Java Reflection [5]. The behavior of server components can be down-
loaded or changed based up on a reasoning mechanism. However, the reasoning mechanism
itself cannot be downloaded or altered. In our approach, the behavior of service components
and the rules used in the reasoning mechanism are downloadable and can be changed upon
needs.

3. The actor model

The actor role is defined as an Extended Finite State Machine (EFSM) extended with
policies. The mechanism interpreting the manuscript is an EFSM interpreter extended with a
reasoning mechanism. The data structure applied for the representation of an EFSM is shown
in Figure 1. An EFSM contains the EFSM name, initial state, data and variables and a set of
states. The state structure defines the name of the state and a set of transition rules for this
state. Each transition rule specifies that for each input, the actor will perform a number of ac-
tions, and/or send a number of outputs, and then go to the next state. Actions are functions
and tasks performed during a specific state: computation on local data, role session initializa-
tion, message passing, etc. The structure of the <ACTIONS> list specifies the name, the pa-
rameters and the classification of an action.

Figure 1. Data structure of EFSM-based manuscript

Rule-based reasoning is considered as a special type of EFSM action that executes poli-
cies. Policies are expresses in the XML Equivalent Transformation language (XET) [3]. The
reasoning engine can directly operate and reason about XET descriptions.

The XET language is an XML-based knowledge representation, which extends ordi-
nary, well-formed XML elements by incorporation of variables for an enhancement of ex-
pressive power and representation of implicit information into so-called XML expressions.
Ordinary XML elements, XML expression without variables, are denoted as ground XML
expressions. Every component of an XML expression can contain variables as shown in Ta-
ble 1. Every variable is prefixed with ‘Τvar_’ where Τ denotes its type.

Table 1. Types of XML variables

Type Instantiation and examples

N XML element or attribute names Ex: <Nvar_X>…</Nvar_X> can be instan-

 EFSM

Manuscript

 EFSM_NAME

 INIT_STATE

 DATA

 STATE

 STATE_NAME

 TRAN_RULES ACTIONS

 OUTPUT

 ACTION_NAME

 ACTION_CLASS

 INPUT

 NEXT_STATE *

* + *

+ = One or more = Zero or more *
M

*
 PARAMETERS

*

142

Type Instantiation and examples

tiated to <div>…</div> or …

S XML string Ex: can be instantiated into

 or

P Sequence of zero or more attribute-value pairs
Ex: <p Pvar_Z='NULL'/> can be instantiated into <p/> or <p
style='…'/>

E Sequence of zero or more XML expressions Ex: <p>Evar_P</p> can be instan-
tiated into <p/> or <p><div>…</div>

</p>

I Part of XML expressions Ex: <Ivar_X><hr/></IvarX> can be instantiated
into <body><hr/></body> or <hr/>

A rule is an XML clause of the form:

H, {C1, … Cm} B1, … Bn

where m, n ≥ 0, H and Bi are XML expressions. And each of the Ci is a predefined
XML condition used to limit the rule for a certain circumstances. This allows constraints
modeling for a rule. Axioms are defined from one or more rule(s). The XML expression H is
called the head of the clause. The Bi is a body atom of the clause. When the list of body atom
is empty, such a clause is referred to an XML unit clause, and the symbol ‘ ’ will be omit-
ted. Hence ordinary XML elements or documents can be mapped directly onto a ground
XML unit clause.

The reasoning process begins with an XML expression-based query. An XML clause
will be formulated from the query in form:

Q Q

XML expression Q represents the constructer of the expected answer which can be de-
rived if all the body atoms of the clause hold. However, if one or more XML expression body
atoms still contain XML variables. These variables must be matched and resolved from other
rules.

A body from the query clause will be matched with the head of each rule. At the begin-
ning, there is only one body Q. Consider a rule R1 in the form:

R1: H, {C1} B1, B2

If the XML structure of the body Q of the clause and the head H of the rule R1 match
without violating condition C1, the body Q will be transformed into B1 and B2. All XML va-
riables in the head Q and the new bodies B1 and B2 of the query clause will be instantiated.
The query clause will be in the form:

Paper D

143

Q* B1*, B2*

Where X* means the one or more variables in the XML expression X has been instantiated
and removed.

The transformation process ends when either 1) the query clause has been transformed
into a unit clause or 2) there is no rule that can transform the current bodies Bi of the query
clause. If the constructor Q is transformed successfully into Qf that contain no XML variable,
the reasoning process ends and a desired answer is obtained.

4. TAPAS architecture

“Adaptable service systems” are service systems that adapts dynamic to changes in
both time and position related to Users, Nodes, Capabilities, Status and Changed Service Re-
quirements. Adaptability can be modeled as a property consisting of 3 property classes: 1)
rearrangement flexibility, 2) failure robustness and survivability, and 3) QoS awareness and
resource control. The Telematics Architecture for Play-based Adaptable System (TAPAS)
intends to meet these properties [2]. In analogy with the TINA architecture [6], the TAPAS
architecture is separated into a system management architecture and a computing architecture
as follows:

• The system management architecture is an architecture showing the structure of ser-
vices and services components.

• The computing architecture is a generic architecture for the modeling of any service
software components.

These architectures are not independent and can be seen as architectures at different ab-
straction layers. The system management architecture, however, has focus on the functionali-
ty independent of implementation, and the computing architecture has focus on the modeling
of functionality with respect to implementation, but independent of the nature of the functio-
nality.

4.1 Computing architecture

TAPAS computing architecture has three layers: the service view, the play view and the
network view as illustrated in Figure 2. For details see [1].

A service system consists of service components and the network system consists of
nodes. The play view is the intended basis for designing functionality that can meet the adap-
tability properties as defined above. The play view is founded on the theater metaphor intro-
duced in Sec.1. TAPAS actors are software components in nodes that can download manu-
scripts. An actor that does not have a role assigned is denoted as a free actor. An actor play-
ing a role in a manuscript is denoted as a role figure. A service system is constituted by a
play, and leaf service component are constituted by role figures. A role session is the dialog
between two executing role figures. A role figure can move between nodes and its role ses-
sions can be re-instantiated automatically. This mechanism, however, is not the focus of this
paper. It is referred to [7].

144

Figure 2. The TAPAS computing architecture

4.2 System management architecture

The main functionality components of the system management architecture are illu-
strated in the Figure 3. The primary service providing functionality comprises the ordinary
services offered to human users.

Figure 3. The TAPAS system management architecture

In addition, the architecture has two repositories: the Play repository and the capability
and status repository and fours management components: Configuration, Service, Capability
and status, and Mobility management.

 The play repository stores manuscripts and policies, which are the required status and
capability of a role as well as local configuration rules. Local configuration rules describe
configuration and constraints of a role which must always be maintained. In addition, these
rules define policies for handling of reconfiguration related events such as the decision of an
actor to move a role when a failure happens. The capability and status repository stores ex-
ecuting capability and status information.

 Configuration management makes the initial configuration and re-configures the ser-
vice systems when needed. The Service management is responsible for deployment and invo-
cation of services. Capability and status management registers, de-registers, updates and pro-

Service System

Network System

Executing Service View
Capabilities and Status

Required Service
View Capabilities

and Status

Required Play View
Capabilities and Sta-

Executing Network View
Capabilities and Status

Service View

Play View

Network View

has

constitutes constitutes

gives

has

Users

requires

requires

Play System Executing Play View
Capabilities and Status

has

Capability and Status
Management

Mobility Management

Configuration
Management Role

Requirements
Configuration

Rules

Capability and status repository

Primary Ser-
vice Providing
Functionality

Service
Management

User

Manuscript

Policies:

Play
repository

Paper D

145

vide access to capability and status repository and the Mobility management handles the var-
ious mobility types.

To fulfill the failure robustness and survivability requirements, the architecture must be
dependable and distributed. The proposed actor model creates a distributed configuration
management by adding reasoning functionality to actors.

5. Data model

This section presents XML based approaches to the representation of the elements of
the Play repository as well as the Capability and status repository.

5.1 Manuscript

A manuscript consists of EFSM-based behavior of individual roles. An XML-based
EFSM given to an actor is executed by a state machine interpreter. A sample fragment of the
XML-base manuscript is shown in Figure. 4.

<state name=’ConnectionTimeout’>…</state>
<state name='ConnectionLost'>
 <Transition name='RoleFigureMove'>
 <input msg='RoleFigureMoveReq' source='*'/>
 <action class='Reasoning' name='SearchFreeActor'>
 <param name='role_name' value='role1'/>
 </action>
 <output><variable name='Dest_Variable'/></output>
 <action class='Communication' name='PluginActor'>
 <param name='actorList' value='Dest_Variable'/>
 <param name='role_name' value='role1'/>
 </action>
 <next_state name='PlugoutPending'/>
 </Transition>
 …
</state>

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

After the state ConnectionTimeout is
visited infinitely often, the actor playing
this manuscript will move to
ConnectionLost state. If there is an
incoming message RoleFigureMoveReq,
the actor will execute the RoleFigureMove
transition and perform two subsequent
actions. The first action uses the built-in
reasoning machine to find out a free actor
where the role should be moved to. The
second action installs the role to a free
actor suggested by the first action. At the
end of the transition, the actor moves to
PlugoutPending state and wait for a
plugout message from the newly
instantiated role figure.

Figure 4. Fragment of an example XML manuscript showing a transition of state ConnectionLost

SMI interprets the downloaded manuscript. SMI uses action libraries. Policy related
actions are platform independent constraints expressed in XET (see Section 2). For non-
policy actions, the actions are platform-specific (such as C++) or platform-independent (such
as Java) executable codes from the local action library cache to execute the actions in the
transition. If the required action libraries cannot be found, SMI will download the actions
from an action library database.

5.2 Executing Capability and Status

Nodes possess particular Network View Capabilities and Status, from now on abbre-
viated as NV-capabilities and -status. They are represented in a network information model

146

such as Common Information Model (CIM) or Universal Plug-and-Play. We have chosen the
XML representation of CIM (CIM-XML) to implement our test systems.

Actors have Play View capabilities and status abbreviated as PV-capabilities and -
status. The idea is to hide the complexity of the network view. PV-capabilities and -status of
an actor are derived from one or more NV-capabilities and -status. PV-capabilities and -status
are represented in Resource Definition Framework (RDF) [9], which can be used to either
define pointers to NV-capabilities and -status or define derived PV-capabilities and -status
from NV-capabilities and -status [8].

5.3 Policies

The policies comprises: role requirements, local configuration rules. These are modeled
by the XET language (See Section 3).
5.3.1 Role requirements

Role requirements consist of PV-capabilities and -status required by a role. These PV-
capabilities and -status are represented in RDF and XML variables.

5.3.2 Local configuration rules

The heads of the XET clauses identify components of the outcome of the configuration
or reconfiguration, while the body describes the configuration, composition and dependency
conditions. A sample local configuration rule is illustrated in Fig. 5.

<xet:Rule name='SearchFreeActor' priority='3'>
 <xet:Head>
 <tapas:Actor rdf:resource='Svar_ActorID'/>
 </xet:Head>
 <xet:Body>
 <xfn:FactQuery xfn:uri='ds://PV-Repository'
xfn:mode='Set'>
 <tapas:Actor rdf:about='Svar_ActorID'>
 <tapas:connectivity rdf:resource='dbServer'>
 <tapas:connStatus rdf:resource='Status_Active'/>
 <tapas:connType rdf:resource='Svar_connType'/>
 Evar_otherConnProps
 </tapas:connectivity>
 <tapas:actorStatus rdf:resource='Status_FreeActor'/>
 Evar_otherActorProps
 </tapas:Actor>
 </xfn:FactQuery>
 <xfn:StringIsMember xfn:string='Svar_connType'
 xfn:list='Secured SecuredWireless'>
 </xet:Body>
</xet:Rule>

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Intuitively, this rule looks for free actors
that have a secured connection with
dbServer, which is a database server pro-
viding sensitive information. The head of
the rule will be derived as answer(s) if both
body atoms can be successfully executed.
Namespace xfn refers to built-in atoms
providing mathematic operations and
database query, etc. These atoms will not be
further matched with other rules.
FactQuery queries actors from the
capability and status repository. The query
expression simply ignores the order of
XML elements when it is working in mode
“set”. Some irrelevant PV-capabilities and
-status of actors are ignored by using two
E-variables. Evar_otherConnProperties and
Evar_otherActorProps.
The actors must have Status_FreeActor as
specified in the query expression. They
must have only active secured or secured
wireless connectivity with dbServer1, which

Query Expression

Paper D

147

%
%
%

will be checked by the builtin atom, Strin-
gIsMember.

Figure 5. An example XET clause to search for free actors

6. Demonstration

A scenario of a secured database system is considered as an example. A database server
contains sensitive information and will automatically blocks incoming requests from nodes
that could possibly have malicious software such as viruses or trojans.

Figure 6. A sample scenario showing the survivability of a role figure.

The goal of this demonstration is to show how a role figure in a blocked node can sur-
vive, move to other one other node, identified as harmless by the database server, and contin-
ue working with the database server. How the role figure proves itself as non-malicious soft-
ware is not the focus and will not be further explained.

Fig. 6 illustrates a role figure RF1 in Node 1, which is presently blocked by a database
server role figure (DB RF). After RF1 visits a state ConnectionTimeout infinitely often, it will
move to ConnectionLost state. At ConnectionLost, RoleFigureMove transition will initiated
by a RoleFigureMoveReq message. The manuscript describing this transition has been pre-
sented in Figure 4.

6.1 R1 role requirement (required PV-capabilities and -status)

The PV-capabilities and -status required by the role R1 are illustrated in Fig. 7. R1 ex-
plicitly needs status Status_FreeActor. The connectivity between R1 and dbServer must be a
member of set {“Secured”, “SecuredWireless”}. Actors trying to play R1 may have other PV-
capabilities and -status (as represented by Evar_otherActorProps and
Evar_otherConnProps). These PV-capabilities and -status will be ignored by the reasoning
engine.

 Database
Server RF
(DB RF)

Node3Node2

Wireless
non-secured connectivity

Node1
F1

Blocked Secured connection
Secured Connection

= free actor

 = role figure

= malicious

M

=role database server (manuscript)

 = role 1 (manuscript)
dbServer

RF1

F

RF

M

R1 F2 F3 F4 F5 F6

Rd

R1

Sensitive
Information

Rdb

148

Figure 7. The required PV-capabilities and -status of the role R1

6.2 Offered PV-capabilities and -status

Fig. 8 shows the offered PV-capabilities and -status of actor F1, F2 and F4. The PV-
capabilities and -status of F3 are identical to F2 while the capabilities and status of F5 and F6
are identical to F4. For lack of space, they will not be presented.

Figure 8. The offered PV-capabilities and -status of actor F1, F2 and F4

6.3 Query clause

The query clause in Fig. 9 is constructed from a query expression. As already explained
in Section 3, the body of the clause will be initially matched with a configuration rule, which
will be defined in the Section 5.4.

R1

dbServer connectivity

Status_FreeActor

actorStatus

Svar_connType
connType

Svar_connType ∈ {“Secured”, “SecuredWireless”}

<tapas:Role rdf:about='R1'>
 <tapas:connectivity rdf:resource='dbServer'>
 <tapas:connStatus rdf:resource='Status_Active'/>
 <tapas:connType rdf:resource='Svar_connType'/>
 Evar_otherConnProps
 </tapas:connectivity>
 <tapas:actorStatus rdf:resource='Status_FreeActor'/>
 Evar_otherActorProps
</tapas:Actor>

<xfn:StringIsMember xfn:string='Svar_connType'
 xfn:list='Secured SecuredWireless'/>

Evar_otherConnProps

Evar_otherActorProps

Status_Active connStatus

Paper D

149

Figure 9. Graphical notation of the query to search for available actors

6.4 Local configuration rules

Local configuration rules as illustrated in Fig. 10 indicate that the connection status and
the connection type of the link between R1 and DB RF must be maintained in a secured man-
ner. The only QoS parameter defined here is Svar_connType.

6.5 The configuration result

The configuration result is shown in Fig 11. Based on the offered PV-capability and -
status provided in Fig. 8 and the role requirement defined in Fig. 7, actors F2 and F3 are the
most appropriate actors to play R1.

The reasoning process is conducted by Native XML Equivalent Transformation reason-
ing engine (NxET) implemented as a Java-based action for the state machine interpreter
(SMI). NxET is used by SMI to execute SearchFreeActor action defined in Fig. 5. The para-
meter actorList of the PluginActor action will be substituted with the available actors in Fig.
11. PluginActor will try to move R1 to F2 first. If the moving is not successful, PluginActor
will try again with F3. Subsequently, RF1 will move to PlugoutPending state after R1 has
been successfully moved to either R2 or R3. At this state, R1 will be plugged out from RF1,
which will become a new free actor.

<xet:Rule name='SearchFreeActor' priority='3'>
 <xet:Head>
 <tapas:AvailableActors>
 <tapas:consistsOf rdf:parseType='Collection'>
 Evar_actors
 </tapas:consistsOf>
 </tapas:AvailableActors>
 </xet:Head>
 <xet:Body>
 <xfn:SetOf xfn:mode='Set'>
 <xfn:Set>Evar_actors</xfn:Set>
 <xfn:Constructor>
 <tapas:Actor rdf:resource='Svar_ActorID'/>
 </xfn:Constructor>

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Rule SearchFreeActor will be matched with the
body of the query clause defined in Section 5.3.
After the matching, the body of the query clause
will be re-written with xfn:SetOf, which is the only
body atom of the rule. xfn:SetOf will to try to
construct the list of available actors and add them
into Evar_actors variable. Each members of
Evar_actors will have the structure similar to the
expression in xfn:Constructor. To actually instan-
tiate the possible values for the constructor, the
condition expression in xfn:Condition will be
matched with other rules (clearly R1Requirement).

<xet:Query>
 <xet:QueryClause>
 <xet:Head>
 <tapas:AvailableActors>
 <tapas:consistsOf rdf:parseType='Collection'>
 Evar_actors
 </tapas:consistsOf>
 </tapas:AvailableActors>
 </xet:Head>
 <xet:Body>
 <tapas:AvailableActors>
 <tapas:consistsOf rdf:parseType='Collection'>
 Evar_actors
 </tapas:consistsOf>
 </tapas:AvailableActors>
 </xet:Body>
 </xet:QueryClause>
</xet:Query>

Available
Actors

consistsOfEvar_actors

Evar_actors

if

The query clause explains that AvailableActors
consisting an unknown set of actors will be derived
if the reasoning engine can find a rule that matches
the body of the clause.

%
%
%
%
%

Head
of the
clause

Body of the clause

Available
Actors

150

 <xfn:Condition>
 <tapas:Actor rdf:resource='Svar_ActorID'/>
 </xfn:Condition>
 </xfn:SetOf>
 </xet:Body>
</xet:Rule>
<xet:Rule name='R1Requirement' priority='4'>
 <xet:Head>
 <tapas:Actor rdf:resource='Svar_ActorID'/>
 </xet:Head>
 <xet:Body>
 <xfn:FactQuery xfn:uri='ds://Play-Repository'
xfn:mode='Set'>
 <tapas:Role rdf:about='Svar_RoleID'>
 Evar_properties
 </tapas:Role>
 </xfn:FactQuery>
 <xfn:FactQuery xfn:uri='ds://PV-Repository'
xfn:mode='Set'>
 <tapas:Actor rdf:about='Svar_ActorID'>
 Evar_properties
 </tapas:Actor>
 </xfn:FactQuery>
 <xfn:MatchD xfn:mode='Set'>
 <Expression>
 <tapas:connectivity rdf:resource='Svar_resource'>
 <tapas:connType rdf:resource='Svar_connType'/>
 Evar_otherConnProps
 </tapas:connectivity>
 Evar_otherActorProps
 </Expression>
 <Expression>Evar_properties</Expression>
 </xfn:MatchD>
 <xfn:StringIsMember xfn:string='Svar_connType'
 xfn:list='Secured SecuredWireless'/>
 </xet:Body>
</xet:Rule>

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

R1Requirement queries the R1 role requirement
(required PV-capabilities and -status), which have
been defined in Section 5.1. The rule again queries
actors offering the same PV-capabilities and -
status, which R1 requires. The matching between
required and offers PV-capabilities and -status are
accomplished though the instantiation of variable
Evar_properties. The actors queried from the ca-
pability and status repository needs Status_Active
and Status_FreeActor. The actors can also have
other PV-capabilities and -status because they are
allowed by the role requirement.

The structure of PV-capabilities and -status of
each actor will be matched with xfn:MatchD
function so that PV-capability connType with a
value Svar_connType can be inspected. Function
StringIsMember verifies the instantiated value of
Svar_connType to make sure that it is a member of
the list “Secured SecuredWireless”. Actors that do
not offer secured or secured wireless connection
will be filtered out. Only qualified one will be se-
lected. R1Requirement can return many answers.

The answers returned by R1Requirement will
be aggregated and added to Evar_actors list in the
rule SearchFreeActor. The value of Evar_actors
will be instantiated to the head of the query clause,
which will be the answer of the reasoning process.

Figure 10. Local configuration rules in XET

Figure 11. RDF-based graphical notation and XML-serialization of the configuration result

7. Conclusion

This paper presents an approach to model the behavior of service systems by actors
playing roles defined in manuscripts. The actor is a combination of an Extended Finite State
Machine (EFSM) and a rule based reasoning engine.

A service system has defined requirements to capabilities and status. Because of conti-
nuous changes in capabilities and status, dynamic service configuration with respect to capa-
bilities and status is needed. Configuration is based on the matching between required capa-
bility and status of a role and the present executing capabilities and status. Roles are allowed
to be moved to increase failure robustness and survivability of a service system. This role
mobility can be achieved through EFSM behavior. However, using a rule-based reasoning

F2
consistsOf <tapas:AvailableActors>

 <tapas:consistsOf rdf:parseType='Collection'>
 <tapas:Actor rdf:resource='F2'/>
 <tapas:Actor rdf:resource='F3'/>
 </tapas:consistsOf>
</tapas:AvailableActors>

F3

Available
Actors

Paper D

151

mechanism allows actors to use local configuration rules to take decisions based on the cur-
rent executing capabilities and status. The actor model improves actor functionality, increases
survivability and makes the configuration management distributed.

Generic actor execution support consisting of a state machine interpreter and a reason-
ing engine has been implemented and applied for the presented example. All capability and
status related data as well as actor behavior is based on XML representations, with exceptions
of the EFSM actions. Normal EFSM actions are platform-specific (such as C++) or platform-
independent (such as Java) executable codes while reasoning-based EFSM actions are XML-
based. The reasoning engine is based on Native XML Equivalent Transformation.

References

[1] Aagesen, F.A., et al., Configuration Management for an Adaptable Service System, IFIP Open Conference
on Metropolitan Area Networks Architecture, protocols, control, and management, Viet Nam, 4/2005

[2] Aagesen, F.A., et al., On Adaptable Networking. ICT’2003, Assumption University, Thailand, 4/2003.

[3] Anutariya, C., et al., An Equivalent-Transformation-Based XML Rule Language. Int’l Workshop Rule
Markup Languages for Business Rules in the Semantic Web, Italy, 6/2002.

[4] Bonino, D., et al., An agent based autonomic semantic platform, Proc. Int’l Conf. on Autonomic Compu-
ting 2004, 5/2004.

[5] Huang, G., et al., Towards autonomic computing middleware via reflection, Proc. of the 28th Annual In-
ternational COMPSAC 2004. 9/2004.

[6] Inoue, Y., et al., The TINA Book. A Co-operative Solution for a Competitive World. Prentice Hall, 1999.

[7] Shiaa, M.M., Mobility Support Framework in Adaptable Service Architecture. IEEE/IFIP Net-Con’2003,
Oman, 10/2003.

[8] Supadulchai, P., Aagesen, F.A., An Approach to Capability and Status Modeling, NIK 2004, Norway,
11/2004.

[9] World Wide Web Consortium, Resource Description Framework (RDF): Concepts and Abstract Syntax,
Available online at http://www.w3.org/TR/rdf-concepts/.

153

Paper E

Policy-based Adaptable Service Systems
Architecture
Paramai Supadulchai and Finn Arve Aagesen

In Proceedings of the IEEE 21st International Conference on Advanced Infor-
mation Networking and Applications (AINA-07)

Niagara Falls, Canada, May 21-23, 2007

Paper E

155

Policy-based Adaptable Service Systems Architecture

Paramai Supadulchai and Finn Arve Aagesen

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N7491 Trondheim, Norway
paramai@item.ntnu.no, finnarve@item.ntnu.no

Abstract

This paper presents a policy-based ar-
chitecture for adaptable service systems
based on the combination of Reasoning
Machines and Extended Finite State Ma-
chines. Policies are introduced to obtain
flexibility with respect to specification and
execution of adaptable service systems that
give high performance over a range of sys-
tem status values. The presented architec-
ture covers three aspects: service system
framework, adaptation mechanisms and
data model. The adaptation mechanisms
can be based on static or dynamic policy
systems. Static policy systems have a non-
changeable set of policies, Dynamic policy
systems have a changeable set of policies,
which are managed by policies at a higher
level. The data model for the reasoning
machine functionality is based on the rule-
based reasoning language “XML Equiva-
lent Transformation” (XET). The capabili-
ty configuration management of a service
system with runtime simulation results
based on the proposed architecture is pre-
sented with the intention to illustrate the
use of the architecture and discuss the po-
tential advantages of using dynamic poli-
cies.

1. Introduction

Networked service systems are consi-
dered. Services are realized by the struc-
tural and behavioral arrangement of ser-
vice components, which by their inter-
working provide a service in the role of a
service provider to a service user. Service
components are executed as software
components in nodes, which are physical
processing units such as servers, routers,
switches and user terminals.

An adaptable service system is a service
system which is able to adapt dynamically
to changes in time and position related to
users, nodes, status of capability and ser-
vice performance measures, changed ser-
vice requirements and policies.

A capability is an inherent property of a
node or a user, which defines the ability to
do something. Capabilities can be classi-
fied into resources, functions and data. A
capability in a node is a feature available
to implement services. Examples are CPU,
memory, transmission capacity of con-
nected transmission links, available special
hardware, and available programs and da-
ta. A capability of a user is the feature that
makes the user capable of using services.
Capability performance measures are the
set of variables used for the performance
monitoring and management of capabili-
ties. Capability performance measures re-

156

flect the capabilities with respect to being
idle or allocated, available capacity, load
etc.

Service performance measures are the
set of variables used for the performance
monitoring and management of the opera-
tion of the service system. These can be
measures reflecting the state of a service
system with respect to the number of ac-
tive service components as well as Quality
of Service (QoS) measures. Capability and
service performance measures represent
performance measures in two different
viewpoints: the network view, which con-
siders the concrete physical elements and
capabilities and the service view, which
consider the abstract service elements con-
stituting the service.

Status is the present value of a capabili-
ty (capability status) or a service perfor-
mance measure (service status). The total
set of status measures is denoted as system
status, which then is the sum of capability
status and service status. Service compo-
nents will have requirement with respect to
system status.

The software mechanisms used for im-
plementing the functionality of the service
components of adaptable service systems
must be flexible and powerful. Service
components based on the classical EFSM
(Extended Finite State Machine) approach
can be flexibly executed by using generic
EFSM executing software components that
are able to download and execute different
EFSM based specifications. The TAPAS
architecture [1] has, in addition to a service
and network view defined above, a play
view that realizes this feature. In TAPAS
the generic software components are de-
noted as Actors, inspired by the actors in
the theatre. Actors are able to play various
roles specified in EFSM-based manu-
scripts that are dynamically downloaded.

In addition to this type of flexibility
constituted by Actors that are able to play
various EFSM-based specifications, the
EFSM-based functionality can be supple-
mented by Reasoning Machine (RM)-
based functionality, which makes policy-
based specification and operation possible.
“Policies represent externalized logic that
can determine the behavior of the managed
systems” [2]. In this paper a policy is tech-
nically defined as a set of rules with re-
lated actions. A policy system is a set of
policies, and an RM-based functionality is
using a policy system to manage the beha-
vior of a target system. A static policy sys-
tem has a non-changeable set of rules and
actions, while a dynamic policy system has
a changeable set of rules and actions. The
target system for a policy system can be
another policy system, so that one policy
system can be controlled by another policy
system. The dynamic policy system is ma-
naged by control rules and actions consti-
tuting a policy system at a higher level.

 The EFSM approach needs careful
specification of all possible events. Policy-
based software is based on rules, and has a
specification style, which is expressive and
flexible. Human defined procedures at
both business and customer service levels
are often more easily expressed as policies
rather than expressed as EFSMs. This is
because the expressiveness and the flex-
ibility of rules are often more directly ap-
plicable than EFSMs. In addition to being
used at business management and custom-
er service provision levels, rules can also
be at the service system and service com-
ponent level as a supplement to the use of
EFSMs. Software functionality based on
policy-based specifications, however, also
needs to be appropriately specified and
validated. We are not claiming that valida-
tion is easier for policy-based specification
than for EFSM-based specifications. The

Paper E

157

validation aspect, however, is outside the
scope of this paper.

In general, adaptation needs appropriate
mechanisms to guarantee the wanted re-
sults. Stable feedback loops [3], which
control the performance, are needed. As
the capabilities are limited, an adaptable
system needs to limit the access to the sys-
tem, and there must also be priority me-
chanisms that give priority to users which
are willing to pay more and/or are in a
higher need in situations with lack of ca-
pabilities. Policy-based adaptable systems
can be based on static or dynamic policies.
In the static case, the feedback loop is re-
lated to the appropriate rules and actions.
In the dynamic case, the system also must
have some feedback mechanism related to
policy selection. As a basis for the policy
selection, the system must have goals,
goodness criteria and also the ability to
estimate or evaluate the consequences of
the use of a policy.

The issues of policy-based adaptable
service system architecture are in this pa-
per classified into 3 main aspects: A) ser-
vice system framework, B) adaptation me-
chanism, C) data model.

The service system framework issues
can be classified further as: 1) general
component structure, 2) application do-
main for the RM functionality, 3) the inte-
gration of the RM functionality in the
component structure, and 4) reasoning
procedure. The reasoning procedure is the
procedure applied by RM to select actions
to be applied. In the context of this paper
the application domain for the RM func-
tionality is classified as follows:

i) A traditional procedural service for an
EFSM-based service components to take
decisions not involving the management of
system status,

ii) The initial capability configuration of the
service system according to the capability

status requirements of the EFSM compo-
nents of a service system,

iii) The adaptation of the behavior of service
systems and/or EFSM-based service com-
ponents involving the management of sys-
tem status. This also includes capability
reconfiguration based on capability and
service status requirements,

iv) The dynamic change of the policies of the
policies used for the items i)-iii) above

The adaptation mechanism aspect (B)

concerns the use of the appropriate policies
to control the service systems when it is
entering a state where RM functionality is
needed. The data model aspect (C) con-
cerns all representation of data and func-
tionality related to the RM functionality.

The papers [1] and [4], have focus on
the aspect C) applied on the issues i) and
ii) of the application domain for reasoning
only. This paper comprises all issues of the
aspects A)-C) as defined above.

Section 2 discusses related work. Sec-
tion 3 presents a model for a service sys-
tem framework, Section 4 discusses poli-
cy-based adaptation mechanism and Sec-
tion 5 presents the data model used for the
RM-based functionality. Section 6 presents
four scenarios related to capability confi-
guration management of a music video on-
demand service to illustrate the use of the
proposed policy-based service system ar-
chitecture, and the potential advantages of
using dynamic policies. Section 7 gives
summary and conclusions.

2. Related work

Most of recent works related to poli-
cy-based adaptable service systems focus-
es on the aspects A) and B) as defined in
Section 1. Examples are [5], [6], [7],
which are Garlan et al.’s Rainbow archi-
tecture for self-adaptation, Samaan and
Karmouch’s autonomous policy-based
management framework and Narsi et al.’s

158

learning techniques. A work that support
the aspect C), PMAC by Agrawal et al.
[2], uses Autonomic Computing Policy
Language (ACPL) as a generic data model,
which is analogous to our XML Equiva-
lent Transformation (XET). However, this
work has a weak focus on the aspects A)
and B).

Considering the application domain for the
use of policies, the application domain of [5] is
preliminary aimed at static policies. The appli-
cation domains of [6] and [7] are both static
and dynamic policies.

The architecture presented in this paper
has the focus on all aspects A)-C). The
service system framework permits the
combination of both EFSM and the RM
functionality. Considering the dynamic
policy, i.e. the rule-based modification of
the policy managing the service system
(See Sections 0), the system’s policy can
be composed at run-time based on evalua-
tion criteria, reference inputs and feed-
backs. Unlike [6] and [7], the presented
architecture evaluates and composes the
best policy based on broad set of evalua-
tion criteria, which can be history-based,
prediction-based, or logic-based. Income
functions are used as reference inputs,
while the feedbacks are system perfor-
mance measures.

3. Service System Framework

3. 1 General component structure

An executing service system consists
of executing service components. An ex-
ecuting service component is an instance
of a service component type, which in the
context of this paper is modeled by some
combination of EFSM type and RM type. A
service component can be a pure EFSM or
some combination of EFSM and RM
based functionality. The main role of the
EFSM functionality is to maintain the state

of the service system represented as EFSM
states and variables (see below), while the
main role of the RM functionality is to
take decisions. The interaction between the
RM functionality and the EFSMs will be
discussed in Section 3.2.

The service components will have
requirements with respect to capabilities
and capability status to be able to perform
their intended functionality (Figure). As a
basis for the optimal adaptation, service
level agreements are needed between the
service users and the service provider. The
service provider view of this service level
agreement can in this context be consi-
dered as a part of an executing service
component. A number of QoS priority le-
vels can exist. The agreement can contain
elements such as: 1) agreed QoS level, re-
quired capabilities, 2) required service sta-
tus 3) payment for the service in case of
normal service and 4) payment for the ser-
vice in case of reduced service.

The following concepts are defined:

E Functionality set of an EFSM type
Ê Functionality set of an EFSM in-

stance
R Functionality set of a RM type
R̂ Functionality set of a RM instance
C Capability performance measures set

Figure 1 - Service System – General Component

Is the state of Capability
Performance

Measure

 Capability

requires

is of

 Service
Component

Type
 Service

Component
Instance

 Service
Performance

Measure
 Service Status

Is the state of

requires

has

has

Paper E

159

RĈ Required capability status set for an
EFSM based service component type

IĈ Inherent capability status set of an
executing EFSM based service com-
ponents

AĈ Status set of available capabilities in
nodes

S Service performance measures set

RŜ Required service status set for an
EFSM based service component type

IŜ Inherent service status set of an ex-
ecuting EFSM based service compo-
nent

 I Income functions set for the service
components constituting a service.
The set of requirements related to

capability and service performance meas-
ures are denoted as required capability and
service status, respectively. The status of
capabilities and service performance
measures of the executing system are simi-
larly denoted as inherent capability and
service status. The income functions will
depend on the system status.

An EFSM type E is defined as:

E ≡ { SM, SI, V, P, M(P), O(P), FS, FO, FV }, (1)

where SM is the set of states, SI is
the initial state, V is a set of variables, P
is a set of parameters, M(P) is a set of
input signal with parameters, O(P) is a
set of output signal with parameters, FS is
the state transition function (FS = S x
M(P) x V), FO is output function, (FO =
S x M(P) x V) and FV are the functions
and tasks performed during a specific state
transition such as computation on local
data, communication initialization, data-
base access, etc.

A RM type R is defined as:

R ≡ { Q, F, P, T, E, Σ } (2a)
P ≡ { X, A }, (2b)

where Q is the set of messages, F is
a generic reasoning procedure, P is a poli-

cy system which consists of a set of rules
X and a set of actions A, T is a set of sys-
tem constraints and E is a set of status da-
ta. The status data represents the status of
the variables of the targeted system. The
system constraints represent the variables
of the system and the defined constraints
and relationships between variables. The
policy rules are based on the variables of
the constraints. Σ is a set of reasoning
conditions, which define the conditions for
the use of RM functionality. The reasoning
condition set consists of: trigger condi-
tions ΣT, and goal conditions ΣG. RM
functionality is activated when a ΣT is de-
tected until a ΣG is reached. Assuming that
a trigger condition is true, the reasoning
procedure transforms Qi to Qj by using P
to match the system constraints T against
the status data E and a set of suggest ac-
tions {Ai, Aj, Ak… } ⊆ A. These actions
may also set the next state and values of
the variables of EFSM-based service com-
ponent instances.

The equations (1), (2a) and (2b) de-
scribe a generic model. The concrete mod-
eling of RM-based functionality will be
based on this model.

3.2 Reasoning machine based
functionality – application
domain and integration

The application domain of the RM
functionality can be defined by the four
cases: i) – iv) as classified in Section 1. In
Case i), an RM is a supplement to the tasks
(FV) of an EFSM. In the second case an
RM determines the capability configura-
tion of the EFSMs constituting the service
system. In the third case an RM influences
the behavior of the service system, but
with static policies. In the fourth case an
RM is used as a policy- based adaptation
mechanism for the policies to be selected.

160

In addition to having RM functional-
ity as a supplement to the EFSM-based
service system, the RM functionality will
also need EFSM support for the conti-
nuous updating of the system constraints,
status data and reasoning conditions: T , E
and Σ, as well as the activation and deac-
tivation of the reasoning machine based on
the present value of Σ. The continuous
updating of T , E and Σ is done by EFSMs
and in this case the T , E and Σ is consi-
dered as common data for the EFSMs and
the associated RM based functionality. A
dedicated EFSM associated with the RM-
based functionality denoted as EΣ has the
duty to inspect the reasoning condition and
to activate and to deactivate the reasoning
machine.

3.3 Reasoning procedure

The Reasoning Procedure is the pro-
cedure applied by the reasoning machine
to select the rule to be applied. The Rea-
soning procedure is based on Equivalent
Transformation (ET) [8], which solves a
given problem by transforming it through
repetitive application of (semantically)
equivalent transformation rules.

ET consists of sets of ET rules and
ET clauses. A problem must be formulated
as a clause for transformation. An ET
clause has the form:

Head of a clause consists of an atom,
or the head atom, which is a message con-
taining a problem with unknown an-
swer(s)/action(s). The problem in the head
atom will be derived by rules until it even-
tually contains a list of suggested action(s).

An ET rule has the form:

It consists of a rule head and a rule
body. A body atom of a clause matching
the head atom of a rule can be transformed
into the rule’s bodies. A rule of a policy as
defined in Section 3.1 is modeled by an ET
rule

Intuitively, the reasoning procedure
begins with a clause formulated by a mes-
sage as follows:

 msg(…) ←⎯⎯ msg(…) (3)

The meaning of (3) is that the head
msg(…) is true when the body msg(…) is
true, which we don’t need to prove. The
goal of the reasoning procedure is to trans-
form (3) until no body atom is left. Con-
sider the following rule (4):

 msg(…), C ⎯⎯→E T B1, B2, … Bn. (4)

The rule (4) can transform the body
atom msg(…) of (3) into B1, B2, … Bn;
provided that the atom msg(…) match the
head of (4) and the set of conditions C is
not violated. Clause (3) will be trans-
formed to (5) as follow:

 msg(…) ←⎯⎯ B1, B2, … Bn. (5)

During the transformation, variables
in msg(…) including the unknown list of
suggested actions, which are a subset of
the actions A as defined in (2.b), will be
instantiated. The transformation of a
clause ends when either 1) there is no body
atom left or 2) there is no rule that can
transform the remaining body atoms.

Body

Body atom
1
, … Body atom

n

Head

Condition atom
1
, …

Condition

Head atom

Body

Body atom1, … Body atomn

Head

Head atom

Paper E

161

4. Policy-based adaptation me-
chanism

4.1 System constraints, status data
and reasoning conditions

The elements T and E of an RM as
defined in Section 0, depend on the struc-
turing and the nature of the reasoning
functionality. They depend on which
EFSMs that are related to the RM functio-
nality and also the nature of the reasoning.
A reasoning cluster, which is an indepen-
dent unit with respect to reasoning, is a
collection of EFSM-based service compo-
nents with an associated reasoning system
constituted by one or more reasoning ma-
chines. A reasoning cluster has a set of as-
sociated income functions I. The elements
T and E of a reasoning cluster with availa-
ble capabilities from NNode nodes, consist-
ing of K EFSM-based service component
types and Lk instances of an EFSM-based
service type k are defined as follows:

T ≡ Expr {S, C, I, (R , R ,
ˆ ˆ

k k kE ,S ,C ; k =

[1,K])} (6)

E ≡ {((I , I ,
ˆ ˆ ˆ

l l l k k kE ,S ,C ; l = [1, Lk]), k = [

1, K]) , (A , nĈ ; n = [1, NNode]) } (7)

The function Expr{Xi; i = [1, I]} in (6)
symbolizes the set {Xi; i = [1, I]} and also
some set of logical functions based on the
elements of the set. The system constraints

T related to a reasoning cluster comprise
the EFSM functionality sets of the EFSM-
based service component types, required
capability and service status, as well as the
income functions for the reasoning cluster.
The status data E defined in (7) is a set of
the inherent capability and service status
for all instances of EFSM- based service
components in the reasoning cluster, as
well as available capabilities of the nodes
that potentially can contribute their capa-
bilities for the EFSM based functionality
of the reasoning cluster.

As stated in Section 1 service system
adaptation also includes capability recon-
figuration based on capability and service
status requirements. Capability configura-
tion management is the service systems
initial capability configuration and recon-
figuration. Capability configuration man-
agement goes beyond the boundaries of an
individual reasoning clusters as well as an
individual service system. This means that
capability configuration management must
be handled by a common distributed algo-
rithm or by a centralized reasoning cluster.

The components constituting the
reasoning condition Σ are the states and
variables of Ê , and the capability and ser-
vice performance measures C and S as
given in (8).

Σ ≡ Expr {S,C,(R , k R , k
ˆ ˆ

kE ,S ,C ; k = [1, K])}
 (8)

Figure 2 – Policy-based adaptation using static policies

162

4.2 Policy-based adaptation using
static policies

The policy-based adaptation using static
policies, as illustrated in Figure 2, manag-
es the behavior of service systems based
on system constraints T. The managed ser-
vice system give its status data E to the
Service System Adaptation Manager R1,
which is a reasoning machine. R1 gives a
set of control inputs A1…Ai ⊂ A (as al-
ready defined in Section 3.1) back to the
managed service system. A policy system
consists of static rules, which is unchange-
able. Upon service systems enter a ΣT, R1
is activated and try to lead the system back
to a goal state ΣG. R1 is de-activated when
service systems enter ΣG.

4.3 Policy-based adaptation using
dynamic policies

The use of static policies has some dis-
advantages. Firstly, it has only the priority
mechanism to select a rule when two or
more rules are applicable and it is hard to
assign appropriate priorities to rules, espe-
cially when the rule space is large. Second-
ly, a set of static rules will not likely solve
the problem under all set of different con-
ditions that an adaptable service system
must handle.

A possible approach is to use dynamic
policies as illustrated in Figure 3, and us-
ing two reasoning machines. In addition to
the Service System Adaptation Manager
(R1) a Policy Composer (R2) is used. A ge-
neric rule-based reasoning system with
dynamic policy can be defined by (9a, 9b,
9c and 9d) as follows:
R1 ≡ { Q, F, P , T, E, Σ } (9a)
P ≡ { X , A } (9b)
R2 ≡ { Q´, F, P´, T ´, E´, Σ´ } (9c)
P´ ≡ {X´, ′A } (9d)

where T ´= {I, X, A} and E´ = { I I
ˆ ˆC , S }. Q´

is a set of messages between 1R̂ and 2R̂ .

X´ is a set of control rules that can re-order
the priority of the rules, activate and de-
activate the rules and change rules’ con-
straints. The policy composer composes
the system policy at runtime based on
evaluation criteria, reference inputs and
feedbacks. Evaluation criteria can be histo-
ry-based, prediction-based and logic-
based. Income functions are used as refer-
ence input, while the feedbacks are system
performance measures.

The history-based evaluation method
determines the consequences of the rules
in the past. The prediction-based evalua-
tion determines the consequences of rules
in the future based on mathematical equa-
tions represented by X´. The logic-based

Figure 3 - Policy based adaptation based on dynamic policies

Paper E

163

evaluation determines the consequences of
rules based on logics such as fuzzy, busi-
ness-level or user-defined logics
represented by X´.

5. Data Model

Data Model for the reasoning func-
tionality is based on XML Equivalent
Transformation language (XET), which is
the XML representation of the ET as given
in 0. XET represents status data, system
constraints, and rules by using Extensible
Markup Language (XML), Resource Defi-
nition Framework (RDF), XML expres-
sions and XML rules.

XML and RDF: ˆ ˆ

I IC ,S and ˆ
AC are ex-

pressed in the XML version of Common
Information Model (CIM) denoted as
xmlCIM [1]. RDF is used because CIM
does not provide means for representing Q
required by the developed framework [1].
ˆ

IE is modeled by the XML-based EFSM
proposed by [9].

XML Expressions: XML expressions are
used for the data representation of the sys-
tem constraints T. XML expressions [3]
are ordinary XML elements with possible
six disjoint variable types . XML expres-
sions can represent implicit information by
expressive XML variables. These variables
can be specialized (or instantiated) into
attributes names, element names, strings,
zero or more attribute-value pair(s), one or
more XML expression(s) and parts of
XML expressions depending on their types
(see [10]). An ordinary XML element (or a
ground XML expression) is an XML ex-
pression without variables.

XET rule: An XET rule is the representa-
tion of an ET rule in XML. The structure
for an XET rule is illustrated as follows.

<xet:Rule xet:name="…"
xet:priority="…" xet:class="…">
 <xet:Meta>…</xet:Meta>
 <xet:Head>…</xet:Head>
 <xet:Condition>…</xet:Condition>
 <xet:Body>
 Body atom1, Body atom 2, …
 </xet:Body>
</xet:Rule>

A head, condition or body atom is
represented by a fragment of XML. For
example, the body <xet:Body><a1/><a2/></xet:Body>
contains two body atoms, which are <a1/>
and <a2/> respectively. The xet:Meta contains
additional metadata for rules that will be
used by control rules.

6. Application examples

6.1 The scenarios

Four scenarios handling the capabili-
ty configuration management of a music
video on-demand service are presented
with the intention to illustrate the use of
the proposed policy-based service system
architecture, and the potential advantages
of using dynamic policies. Scenario I and
II use no policy. Scenario III uses static
policies, while Scenario IV uses dynamic
policies. The service system is constituted
by one or more media servers (MS)
streaming media files to media players
(MP) (Figure 4). The numbers of MS used
in Scenario I and II are fixed (one and two
respectively), while the number in Scena-
rio III and IV can vary from one to two.
An MP belongs to a QoS_Class. In the ex-
ample two classes are applied: premium
(MPP) and ordinary (MPO).

Three different streaming throughput
bit-rates (X) are offered, 500Kbps, 800
Kbps and 1Mbps. MPO connections are
500Kbps (XO) while MPP connections can
be either 800Kbps or 1Mps (XP).

The capability performance meas-
ures used are MS access link capacity

164

(CAL). The required and inherent MS ca-
pability status sets are defined as follows:

ˆ
RC ≡ { CR,AL } (10)

ˆ
IC ≡ { CI,AL } (11)

where CR,AL is the MS’s required
access link capacity, which is set to 100
Mbit/s.

The number of MPs that can use the
service, in this example, is limited by the
MS access link capacity. The service level
agreements comprise maximum waiting
time, required streaming throughput, pay-
ment for the service and penalties for not
satisfying the service. The maximum wait-
ing time for MPP and MPO are 60 seconds
and infinite respectively. The required
streaming throughput of MPO and MPP are
XP and XO respectively. The payment for
the service and the penalties for not satis-
fying the service are calculated by income
and penalty functions that will be defined.

The resource management mechanisms
used by the service provider is to discon-
nect ordinary clients, to decrease the
throughput of the premium clients and to
change the number of media servers.

When the required streaming through-
put cannot be provided, an MP may have
to wait until some connected MPs have

finished using the service. This will result
in money payback to the waiting MPs. An
MPO can be disconnected, while an MPP
may have to reduce the throughput. If a
client is disconnected, the service provider
pays a penalty. If the throughput is lo-
wered, the price is lowered.

The service performance measures ˆ
IS

consists of the number of connected and
waiting premium and ordinary clients
(NCon,P, NCon,O, NWait,P, NWait,O), the number
of disconnected MPO (NDis,O), the number
of MS (NMS), inherent streaming through-
put (XI), the number of available nodes
(NNode) and the accumulated service time
and waiting time of premium and ordinary
clients (TServ,P, TServ,O, TWait,P, TWait,O).
These values are observed per a monitor-
ing interval Δ.

A cost unit is the price paid by an ordi-
nary customer for one second streaming of
the rate 500 KBit/s. The income function
for the service provider is m(QoS_Class,
XI) (cost units/second). The penalty func-
tion for waiting is pWait(QoS_Class) (cost
units/second). The penalty function for
disconnections is pDis(QoS_Class) (cost
units/disconnection). The cost function for
adding a new server is pSer (cost units per
Node per sec). The total income function

Figure 4 – A music video on-demand service system

Paper E

165

(mT) during the monitoring interval Δ is
defined as follows:

mT = m(MPO, XI,O)×TServ,O + m(MPP, XI,P)× TServ,P

− pWait(MPO)×TWait,O − pWait(MPP) ×TWait,P

− pDis(MPO)×NDis,O − pSer ×(NMS-)×Δ (12)

Policy-based adaptation is intro-
duced to maximize the total income. The
service system is realized as one reasoning
cluster. As illustrated in Figure 4, EMS, EΣ,
R1 and R2 are in the same node. EMS is the
media server type, EMP is the media player
type, R1 is the service system adaptation
manager type and R2 is the policy com-
poser type according to the definitions in
Section 4.2 and 4.3. EΣ, as defined in 3.2,
is a delicate EFSM type for activate and
de-activate R1 and R2. It is assumed that
the initial capability configuration, as de-
fined in Section 1, has taken place.

The nature of the service system
adaptation manager as well as the need
and nature of a policy composer depends
on the difference in income and penalty for
the different QoS classes, as well as the
cost for introducing a new server. If the
income and penalty for premium service
class is relatively higher than for an ordi-
nary class, it can be profitable to discon-
nect some MPO and let some MPP get the
service instead.

The set of actions A applied for the
service system adaptation manger applied
in Scenarios III and IV consists of Discon-
nect-Client (AD), Decrease-Bit-Rate (AB),
Initialize-Server (AI) and Remove-Server
(AR). A can be defined by (13) as follows:

A ≡ { AD, AB, AI, AR } (13)

 AD tells MS to disconnect a list of
suggested MPO. AB tells MS to reduce
throughput of a list of suggested MPP for a
certain time period. AI tells MS to initiate
a new MS, while AR will remove an MS.

6.2 RM specification

6.1.1 Service system adaptation manag-
er
The reasoning condition set for the

service system adaptation manager is de-
fined as follows:

 Σ ≡ { ΣT1, ΣG1 } (14)

where the reasoning activation con-
dition (ΣT1) is NWait,P+NWait,O > 0 and the
reasoning goal condition (ΣG1) is
NWait,P+NWait,O = 0. The messages sent and
received between MS and the service sys-
tem adaptation manager is defined by
msg(ΣT, Ai).

The rule set X for the service system
adaptation manger in Scenario III and IV
is defined as follows:

X ≡ { X1, X2, X3, X4 } (15)

X1 suggests AD for disconnecting a
list of suggested MPO. X2 suggests AB for
reducing throughput of a list of suggested
MPP. X3 suggests AI for initiating a new
MS, while X4 suggests AR for removing
an MS. X1, X2, X3, X4 can be further de-
fined by as follows:

X1 ≡ msg(ΣT1, Ai) { pWait(MPO) <
pWait(MPP) }
⎯⎯→ Ai AD. (16)

When pWait(MPO) < pWait(MPP), X1
will be executed. The suggested action Ai
will be instantiated () as AD, The num-
ber of chosen MPO will be calculated as:

(W a i t,P P ,1 M b p s

O

N X
X
×)

X2 ≡ msg(ΣT1, Ai)
{ pWait(MPO) > m(MPP, XP,1Mbps) - m(MPP,
XP,800Kbps)}

 ⎯⎯→ Ai AB. (17)

166

When pWait(MPO) > m(MPP,
XP,1Mbps) - m(MPP, XP,800Kbps), X2 will be
executed. The suggested action Ai will be
instantiated () as AB. The number of
MPP to decrease bandwidth is calculated
from the bandwidth that the waiting MPO
is needed divided by the difference be-
tween the possible bit-rate required by
MPP as:

(W a i t,O O

P ,1 M b p s P ,8 0 0 K b p s

N X
X X

×
−

)

X3 ≡ msg(ΣT1, Ai)
{ P W a i t P O W a i t O

R ,A L

X N X N 0 . 1
C

× + ×
> }

 ⎯⎯→ Ai AI. (18)

As given in (18), when the ratio of
throughput required by all waiting MP (as
shown in the rule’s condition) and the ca-
pacity of an MS access link is more than
0.1, X3 will be executed and AI will be
suggested. A new MS can be initialized in
a node having sufficient capabilities,
which are CR,AL as defined in (10).

X4 ≡ msg(ΣT1, Ai) {

P W a i t P O W a i t O

R,A L

X N X N 0 . 1
C

× + ×
< }

 ⎯⎯→ Ai AR. (19)

X4 suggests AR when additional MS
are not needed based on the ratio of the
throughput required by all waiting MP and
the access link capacity. If ratio is less than
0.1, AR will be suggested.
6.1.2 Policy composer

In Scenario IV, reasoning conditions
of the policy composer are defined as fol-
low:

Σ´ ≡ { ΣT2 ΣT1, ΣG2 ΣG1 } (20)

The policy composer will always be
activated whenever the service system
adaptation manager is activated and will be

de-activated whenever the service system
adaptation manager is de-activated.

Upon entering ΣT2, the service sys-
tem adaptation manager sends a message
msg(ΣT2, Ai) to the policy composer. The
set of messages Q´ sent and received be-
tween them is defined as follow:

Q´ ≡ { msg(ΣT2, Ai) } (21)

The set of actions A applied for the
policy composer in the Scenario IV can be
defined as follows:

A´ ≡ {AG(Xi), AT(Xi) } (22)

AG(Xi) is an action for the calculation of
the accumulated goodness score of a rule
Xi. AT(Xi) is an action to suspend XI for a
certain time period. The goodness score of
a rule (QoXi) during the monitoring time
interval T is calculated by the percentage
of the increased or decreased total income
(mT). The algorithm to calculate QoXi is as
follows:

QoXi = QoXi + T ,t T ,t 1

T ,t

m m
1 0 0

m
−−
× (23)

where mT,t and mT,t-1 are the total in-
come during the current and previous mon-
itoring interval respectively.

The rule set X´of the policy composer
applied in Scenario IV is defined as fol-
low:

X´ ≡ { X´1, X´2 } (24)

where X´1, X´2 (See Sec. 6.2.3) can be de-

fined by (25) and (26) as follows:

X´1 ≡ msg(ΣT2, Ai) {X t-1 = Xi }

⎯⎯→ Ai AG(Xi).
 (25)

When the policy composer finds that a
rule Xi has been executed during the last
interval t-1 (X t-1 = Xi), the policy compos-

Paper E

167

er executes X´1. The suggested action Ai
will be instantiated as AG(Xi).

X´2 ≡ msg(ΣT2, Ai) { QoXi < 0 }
⎯⎯→ Ai AT(Xi).
 (26)

When the goodness score of a rule is
less than zero, the policy composer ex-
ecutes X´2. The suggested action Ai will be
instantiated as AT(Xi).

7. Results

The MP arrivals are modeled as a
Poisson process with parameter λQoS_Class. The
duration of streaming connections (dQoS_Class) is
constant. The quantity ρ =
((λO×dO×XO))+(λP×dP×XP)))/CI,AL is the
sum of traffic offered to MS access links.
Note that ρ can be larger than the number
of MS access links. The duration of
streaming connections are set to 4 minutes,
while the monitoring interval Δ is set to 1
minute.

Table 1– Income and penalty functions in cost units

 MPO MPP
XI = 800Kbps

MPP

XI = 1Mbps
m(QoS_Class, XI)
(per second)

1
6 0

 2
6 0

 1 . 7 5
6 0

pWait(QoS_Class)
(per second)

1
3

 5
3

 5
3

pDis(QoS_Class)
(per disconnection)

5
3

- -

All Scenarios were tested for 500

minutes with two ρ values: 0.42 and 0.84.
The MPP arrival intensity is 15% of the
total arrival intensity. The income and pe-
nalty functions in cost units are given in
Table 1. The cost for using an extra MS is
417 cost units per Node per second.

 Figure 5 – the accumulated total income of all
scenarios (ρ = 0.42)

Figure 5 illustrates the accumulated
total income for all scenarios when ρ =
0.42. The values of accumulated total in-
come of Scenario I (No Policy, NMS = 1),
Scenario III (static policies) and Scenario
IV (dynamic polices) are identical, while
the accumulated total income in the Scena-
rio II (No Policy, NMS = 2) is lower.

The low traffic implies that no rule is
applied in Scenario III and IV. This made
the outcome of Scenario I, III and IV iden-
tical. On the other hand, the cost of an ex-
tra server, which is not necessary for such
arrival intensity, decreased the total in-
come of the system.

 Figure 6 – the accumulated total income of all sce-
narios (ρ = 0.84)

Figure 6 Illustrates the accumulated
total income of all scenarios when ρ = 0.84.
As a result, the accumulated total income
of Scenario I was much lower than the
others as MP must wait to get the service.

168

Scenario II using two MS and no policy
gives a very good result. There was no MP
waiting during the test and no penalty was
paid.

Scenario III and IV were started out
with one MS. The number of MS were be-
ing increased or decreased by X3 and X4.
In addition, X1 and X2 also manage the
link capacity of MS by disconnecting MPO
or decrease the MPP throughput. The ac-
cumulated income in Scenario IV was
higher than for Scenario III.

It is observable on both Scenario III
and IV that the use of X4, which will re-
move an MS, apparently reduced the sys-
tem’s accumulated total income. Having
two servers all the time seems to be better
for the high traffic, provided that the extra
server cost is not too high. The dynamic
policies suspend X4 for 50 minutes and
thus lengthen the time where two MSs are
in operation. In Scenario IV, X4 was ex-
ecuted 26 times comparing to 35 times in
Scenario III.

For the present scenarios none of the
non-policy scenarios (I and II) gave good
results for both the low and high traffic
case. The policy-based scenarios seem to
be more suitable with respect to good re-
sults over a variety of system load condi-
tions. The accumulated total income in
Scenario III and IV also have the potential
to be improved by changing the XML-
based policies.

8. Conclusion

An architecture for policy-based
adaptable service systems based on the
combination of Reasoning Machines (RM)
and Extended Finite State Machines
(EFSMs) has been presented. The architec-
ture comprises service system framework,
adaptation mechanisms and data model.
Policies have been introduced with the in-
tension to increase flexibility in the adapt-

able service system specification and ex-
ecution.

The service components constituting
the service system are modeled by some
combination of EFSM type and RM type.
The RM, which is controlled by a specific
purpose EFSM denoted as EFSMΣ, is an
independent component. The reasoning
procedure applied by the RM is based on
Equivalent Transform (ET).

The Adaptation mechanism uses pol-
icies to control service systems when it is
entering a reasoning condition. The use of
policy can be of two types: static or dy-
namic. In the static case the reasoning sys-
tem constituted by a service system adap-
tation manager determines a list of sug-
gested actions that will control the beha-
vior of the service system. In the dynamic
case an additional RM, denoted as the pol-
icy composer, is added. The policy com-
poser is able to compose policy on-the-fly,
and has the ability to estimate or evaluate
the consequences of the rules of a policy
based on their goodness scores.

The Data Model based on XML
Equivalent Transformation (XET) is used
to express system constraint, system status,
reasoning conditions, rules and control
rules. The XML-based specifications are
readily executable by XET-based RM.
This also represents a flexibility feature of
the proposed architecture.

Four scenarios handling the capabili-
ty configuration management of a music
video on-demand service are presented
with the intention to illustrate the use of
the proposed architecture and the potential
advantage of using dynamic policies. Sce-
nario I and II use no policies. Scenario III
uses static policies, while Scenario IV uses
dynamic policies. There are situations
where the use of no policy can be superior
or equal to the use of policies. The selected
system parameters can represent an optim-

Paper E

169

al dimensioning. However, the same set of
system parameters will likely not be op-
timal for other system traffic load cases.
For the presented scenarios the use of no
policy and one server is a good solution in
the low traffic case, while the use of no
policy and two servers is a good solution
in the high traffic case.

In the given scenarios, the service sys-
tem operated under static policies give a
relatively high income in both low and
high traffic. The service system operated
under dynamic policies, however, has a
performance which is superior or equal to
other scenarios in both the low and the
high traffic case. In addition to having the
potential for providing optimal solutions
covering dynamic traffic situations, the
proposed architecture also is a flexible tool
for the experimentation with alternative
policies with respect to optimization.

References

[1] F. A. Aagesen, P. Supadulchai, C. Anutariya,
and M. M. Shiaa, "Configuration Management
for an Adaptable Service System," in IFIP In-
ternational Conference on Metropolitan Area
Networks, Architecture, Protocols, Control,
and Management, Ho Chi Minh City, Viet
Nam, 2005.

[2] D. Agrawal, K.-W. Lee, and J. Lobo, "Policy-
Based Management of Networked Computing
Systems," IEEE Communications Magazine,
vol. 43, pp. 69-75, 2005.

[3] Y. Diao, J. L. Hellerstein, S. Parekh, R. Grif-
fith, G. Kaiser, and D. Phung, "A Control
Theory Foundation for Self-Managing Com-
puting Systems," IEEE Journal on Selected
Areas in Communications, vol. 23, pp. 2213-
2222, 2005.

[4] P. Supadulchai and F. A. Aagesen, "A
Framework for Dynamic Service Composi-
tion," in First International IEEE Workshop
on Autonomic Communications and Compu-
ting (ACC 2005), Taormina, Italy, 2005.

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B.
Schmerl, and P. Steenkiste, "Rainbow: Archi-
tecture-Based Self-Adaptation with Reusable
Instrastructure," Computer, vol. 37, pp. 46-54,
Oct 2004 2004.

[6] N. Samaan and A. Karmouch, "An Automated
Policy-Based Management Framework for
Differentiated Communication Systems,"
IEEE Journal on Selected Areas in Communi-
cations, vol. 23, pp. 2236-2247, 2005.

[7] R. Nasri, Z. Altman, and H. Dubreil, "Auto-
nomic Mobile Network Management Tech-
niques for Self-Parameterisation and Auto-
regulation," in Smartnet 2006, Paris, 2006.

[8] K. Akama, T. Shimitsu, and E. Miyamoto,
"Solving Problems by Equivalent Transforma-
tion of Declarative Programs," Journal of the
Japanese Society of Artificial Intelligence,
vol. 13, pp. 944-952, 1998.

[9] S. Jiang and F. A. Aagesen, "XML-based Dy-
namic Service Behaviour Representation," in
NIK'2003, Oslo, Norway, 2003.

[10] P. Supadulchai, "List of XML Variables,
http://tapas.item.ntnu.no/wiki/index.php/XML
_Variables," 2007.

171

Paper F

Towards Policy-Supported
Adaptable Service Systems
Paramai Supadulchai, Finn Arve Aagesen and Patcharee Thongtra

In Proceedings of the 13th Eunice Open European Summer School and IFIP
TC6.6 Workshop on Dependable and Adaptable Networks
and Services

University of Twente, the Netherlands, 2007.

Paper F

173

Towards Policy-Supported Adaptable Service Systems

Paramai Supadulchai, Finn Arve Aagesen and Patcharee Thongtra

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N7491 Trondheim, Norway
paramai@item.ntnu.no, finnarve@item.ntnu.no, patt@item.ntnu.no

Abstract. This paper presents a policy-supported architecture for adaptable service sys-
tems based on the combination of Reasoning Machines and Extended Finite State Ma-
chines. Policies are introduced to obtain flexibility with respect to specification and ex-
ecution of adaptation mechanisms. The presented architecture covers two aspects: service
system framework and adaptation mechanisms. The service system framework is a gen-
eral framework for capability management. Adaptation mechanisms are needed for auto-
nomous adaptation. The adaptation mechanisms can be based on static or dynamic policy
systems. Capability management for of a simple music video-on demand service system
with runtime simulation results based on the proposed architecture is presented.

1 Introduction

Networked service systems are considered. Services are realized by service compo-
nents, which by their inter-working provide a service in the role of a service provider to a
service user. Service components are executed as software components in nodes, which are
physical processing units such as servers, routers, switches and user terminals.

An adaptable service system is here defined as a service system which is able to adapt
dynamically to changes in time and position related to users, nodes, capabilities, system per-
formance, changed service requirements and policies. In this context, capability is defined as
an inherent physical property of a node, which is used as a basis to implement services. Ca-
pabilities can be classified into resources, functions and data. Examples are CPU, memory,
transmission capacity of connected transmission links, available special hardware, and avail-
able programs and data.

The software mechanisms used for implementing the functionality of the service com-
ponents of adaptable service systems must be flexible and powerful. Service components
based on the classical EFSM (Extended Finite State Machine) approach can be flexibly ex-
ecuted by using generic EFSM executing software components that are able to download and
execute different EFSM-based specifications [1].

In addition to this type of flexibility the EFSM-based functionality can be supple-
mented by reasoning-machine (RM) based functionality, which makes policy-based specifi-
cation and operation possible. “Policies represent externalized logic that can determine the
behavior of the managed systems” [2]. In this paper a policy is technically defined as a set of
rules with related actions. A policy system is a set of policies, and an RM-based functionality
is using a policy system to manage the behavior of a target system, which can be another pol-

174

icy system. A static policy system has a non changeable set of rules and actions, while a dy-
namic policy system has a changeable set of rules and actions.

Policy-based software has a specification style, which is expressive and flexible. Soft-
ware functionality based on policy-based specifications, however, also needs to be appro-
priately specified and validated. The validation aspect is outside the scope of this paper.

The main contribution of this paper is the presentation of a generic service framework
for adaptable service systems that combines the use of EFSM-based and RM-based service
components. In this context the reasoning machines can be used

a) as ordinary procedural services for EFSM-based service components
b) for instantiation and re-instantiation (i.e. after movement) of EFSM-based service

components according to the availability and need of capabilities
c) to adapt the behavior of and capabilities allocated to instantiated EFSM-based service

components in the nodes where they are instantiated
This paper has focus on issue c), but the framework presented can be used for a) and b)

also. In general, adaptation needs appropriate mechanisms to guarantee the wanted results.
For autonomous adaptation stable feedback loops [3], which control the performance, are
needed. As the capabilities are limited, the access to the system must be controlled, and there
must also be priority mechanisms that give priority to users which are willing to pay more
and/or are in a higher need in situations with lack of capabilities.

The issues of policy-supported adaptable service system architecture are in this paper
classified into 3 main aspects: A) Service system framework, B) Adaptation mechanism and
C) Data model. Service system framework comprises abstraction, concepts and models. Adap-
tation mechanism concerns the use of the appropriate policies to control the service system
when it is entering a state where RM functionality is needed. Data model concerns the data
representation of the service system framework and adaptation mechanisms.

This paper comprises the aspects A) and B) only. For details about the data model,
which is based on XML Equivalent Transformation language (XET), Common Information
Model (CIM) and Resource Definition Framework (RDF), the reader is referred to [1] and
[4]. The remaining part of this paper is structured as follows. Section 2 discusses related
work. Section 3 presents the service system framework. Section 4 presents policy-based
adaptation mechanism. Section 5 presents the models and results for example application
cases related to capability management of a music video on-demand service. Section 6 gives
summary and conclusions.

2 Related Work

Most of recent works related to policy-based adaptable service systems focus on the as-
pects A) and B) as defined in Section 1. Examples are [2, 5-10]. The aspect C) is supported
by XML-based language in [2, 10], which is analogous to our used XML Equivalent Trans-
formation (XET). However, [2] has a weak focus on the aspects A) and B), while [10] has a
weak focus on A).

Considering the nature of the policies, [5] is preliminary aimed at static policies, while
[6-10] are both using static and dynamic policies. Excluding [8], systems capable of dynamic
policies [6-7, 9, 10] are based on proper feedbacks. The feedback loops in [5, 7, 9, 10] are
used to evaluate the service system rather than policies. The loop in [6] evaluates policies.

Paper F

175

However, the evaluation is based on complex mathematical equations and not by additional
policy sets.

The adaptation mechanisms presented in this paper can use static as well as dynamic
policies. Considering the dynamic policy, the rule-based modification of the policy managing
the service system can be composed at run-time.

The use of dynamic policies in [9, 10] as well as in this paper also aims at being a flex-
ible tool for the experimentation with alternative policies with respect to optimization.

3 Service System Framework

The concept capability was defined in Section 1. Capability performance measures are
the concepts used for the performance modeling, dimensioning, analyzing, monitoring and
management of capabilities. Capability performance measures comprise capability capacity,
capability state and capability Quality of Service (QoS) measures (e.g. traffic and availability
measures). Service performance measures are performance measures related to the service
provided to the service user (e.g. QoS measures) as well as service system state measures.

An executing service system consists of executing service components which are in-
stances of service component types. The functionality types are EFSM types and RM types.
The basic functionality of the service components, however, are based on EFSMs supported
and/or controlled by RMs. EFSM components will have requirements with respect to capa-
bility and service performance to be able to perform their intended functionality (Fig. 1).
These requirements are denoted as required capability and service performance. The capabili-
ty and service performance of an executing service system are denoted as inherent capability
and service performance.

Fig. 1. EFSM part of Service System – Concept Structure

Capability management (CM) is an important function within an adaptable service sys-
tem and comprises: 1) service system capability initialization, 2) capability allocation adapta-
tion and 3) capability re-initialization. Service system capability initialization is the allocation
of the capabilities for the service components to be distributed and instantiated. Capabilities
are allocated according to the system performance requirements of the EFSM components of
a service system. Capability allocation adaptation is the monitoring of the performance of
the executing service system and the reallocation of capabilities within the executing service
systems. In situations when the instantiated service systems are unable to adapt satisfactory,

requires

is of

 Service
Performance

requires has

 EFSM Service
Component Type

 Capability
Performance

 EFSM Service
Component

Instance

has

176

capability management can initiate a service system capability re-initialization for a re-
distribution and re-instantiation of the service system.

As a basis for the optimal adaptation, service level agreements (SLA) are needed be-
tween the service users and the service provider. The service provider view of this service
level agreement can in this context be considered as a part of executing service components.
A number of QoS levels can exist. The agreement can contain elements such as: agreed QoS
levels, required capabilities, required system performance, payment for the service in case of
agreed QoS level and payments for the service in case of reduced QoS level. A service level
agreement class (SLA class) defines provided service user functionalities as well as agreed
QoS parameter and cost values for a group of service users with different degree of satisfac-
tions and cost.

In the following a formalized service framework model is presented. The following
concepts are defined:

 Functionality set of an EFSM type
 Functionality set of an EFSM instance
 Functionality set of a RM type
 Functionality set of a RM instance

C Capability performance measures set
ĈR Required capability performance set for an EFSM-based service component type
ĈI Inherent capability performance set of an executing EFSM-based service component
ĈA Set of available capabilities in nodes
S Service performance measures set
ŜR Required service performance set for an EFSM-based service component type
ŜI Inherent service performance set of an executing EFSM-based service component
I Income functions set for the service components constituting a service. These func-

tions will depend on the system performance.

The EFSM type E and the RM type R are defined (≡) as follows:

E ≡ { SM, SI, V, P, M(P), O(P), FS, FO, FV } (1)
R ≡ { Q, F, P, T, E, Σ } (2a)

P ≡ { X, A } (2b)

Concerning E, SM is the set of states, SI is the initial state, V is a set of variables, P is a
set of parameters, M(P) is a set of input signal with parameters, O(P) is a set of output sig-
nal with parameters, FS is the state transition function (FS = S x M(P) x V), FO is the output
function, (FO = S x M(P) x V) and FV are the functions and tasks performed during a spe-
cific state transition such as computation on local data, communication initialization, data-
base access, etc.

Concerning R and P, Q is the set of messages, F is a generic reasoning procedure, P
is a policy system which consists of a set of rules X and a set of actions A, T is a set of system

Paper F

177

constraints and E is a set of performance data. The reasoning procedure is the procedure ap-
plied by RM to select the appropriate actions. The performance data represents the inherent
performance of the targeted system. The system constraints represent the variables of the sys-
tem and the defined constraints and relationships between variables. The policy rules are
based on the variables of the constraints. Σ is a set of reasoning conditions defined by trigger
conditions ΣT, and goal conditions ΣG. RM functionality is activated when a ΣT is detected
until a ΣG is reached. When a trigger condition is true, the reasoning procedure transforms Qi
to Qj by using P to match the system constraints T against the performance data E and a set
of suggest actions {Ai, Aj, Ak…} ⊆ A. These actions may also set the next state and values
of the variables of EFSM-based service component instances. The reasoning procedure is
based on Equivalent Transformation (ET) [11], which solves a given problem by transform-
ing it through repetitive application of (semantically) equivalent transformation rules.

The RM functionality will need EFSM support for the continuous updating of T, E and
Σ, and for the activation and deactivation of the reasoning machines. This is done by EFSMs,
and in this case T, E and Σ are considered as common data for the EFSMs and the associated
RM-based functionality. A dedicated EFSM EΣ has the duty to inspect the reasoning condi-
tion and to activate and to deactivate the reasoning machine.

4 Policy-Based Adaptation Mechanism

4.1 System constraints, performance data and reasoning conditions

The elements T and E of an RM as defined in Section 3 depend on the structuring and
the nature of the reasoning functionality. A reasoning cluster, which is an independent unit
with respect to reasoning, is a collection of EFSM-based service components with an asso-
ciated reasoning system constituted by one or more reasoning machines. A reasoning cluster
has a set of associated income functions I. The elements T and E of a reasoning cluster with
available capabilities from NNode nodes, consisting of K EFSM-based service component
types and Lk instances of an EFSM-based service type k are defined as follows:

T ≡ Expr {S, C, I, (R , R ,
ˆ ˆ

k k kE ,S ,C ; k = [1, K])} (3)

E ≡ {((I , I ,
ˆ ˆ ˆ

l l l k k kE ,S ,C ; l = [1, Lk]), k = [1, K]), (A , nĈ ; n = [1, NNode])} (4)

The function Expr{Xi; i = [1, I]} in (3) symbolizes the set {Xi; i = [1, I]} and also
some set of logical functions based on the elements of the set. The system constraints T re-
lated to a reasoning cluster comprise the EFSM functionality sets of the EFSM-based service
component types, required capability and service performance, as well as the income func-
tions for the reasoning cluster. The performance data E defined in (4) is a set of the inherent
capability and service performance for all instances of EFSM-based service components in
the reasoning cluster, as well as available capabilities of the nodes that potentially can contri-
bute their capabilities for the EFSM-based functionality of the reasoning cluster.

The components constituting the reasoning condition Σ are the states and variables of
the EFSM-based service component types, and the capability and service performance meas-
ures C and S as given in (5).

Σ ≡ Expr {S, C, (R , k R , k
ˆ ˆ

kE ,S ,C ; k = [1, K])} (5)

178

Capability Management (CM) as defined in Section 3 goes beyond the boundaries of an
individual reasoning cluster as well as an individual service system. This means that CM in
general must be handled by a common distributed algorithm or by a centralized reasoning
cluster.

4.2 Policy-based adaptation using static policies

The adaptation mechanism using static policies is illustrated in Fig. 2. The rules X are

unchangeable. When the service systems enter a ΣT, Service System Adaptation Manager (R1) is
activated and tries to lead the system back to a goal state ΣG. R1 is de-activated when service
systems enter ΣG.

Fig. 2. Policy-based adaptation using static policies

4.3 Policy-based adaptation using dynamic policies

Fig. 3. Policy based adaptation based on dynamic policies

The adaptation mechanism using dynamic policies is illustrated in Fig. 3. In addition to
the Service System Adaptation Manager (R1) a Policy Evaluator (R2) is used.

A generic rule-based reasoning system with dynamic policy can be defined by (6a, 6b,
6c and 6d) as follows:

 R1 ≡ { Q, F, P , T, E, Σ } (6a)

P ≡ { X , A } (6b)

Paper F

179

 R2 ≡ { Q´, F, P´, T ´, E´, Σ´ } (6c)

 P´ ≡ { X´, A´ } (6d)

where T ´= {I, X, A} and E´ = { I I
ˆ ˆC , S }. Q´ is a set of messages between 1R̂ and 2R̂ .

X´ is a set of control rules that can re-order the priority of the rules, activate and de-activate
the rules and change rules’ constraints. The policy evaluator evaluates the system policy at
runtime based on evaluation criteria, reference inputs and feedbacks. Income functions are
used as reference inputs, while the feedbacks are system performance measures. Evaluation
criteria can in general be history-based and prediction-based. This paper is only using history-
based evaluation, which determines the consequences of the rules in the past using service
performance measures. The prediction-based evaluation determines the consequences of rules
in the future based on mathematical equations represented by X´.

Dynamic policies need a certain period to evaluate the consequences of the rules used.
A measure for the learning ability is the learning time (TL), which is the time needed by the
system to properly evaluate the rules. The learning time TL depends on the service perfor-
mance measures used by the evaluation algorithm. However, there is no unique and easy way
to define TL.

5 Application Examples

5.1 The application cases

MPO

MPO

MPP

MPO

MPP

EMP

EMP

EMP

EMP

EMP

EMS , ECM, E∑ ,R1 , R2

Waiting clients

Connected clients

Access link

Internet

Fig. 4. A music video on-demand service system; EMS: Media server type, EMP: Media player type, ECM:

Capability manager type, EΣ: Dedicated EFSM type for controlling the reasoning mechanism, R1: Service

system adaptation manager type, R2: Policy evaluator type.

Five application cases (Case I-V) for a simple service system handling the capability
management for a music video on-demand service is presented. The intention is to illustrate
the use of the proposed policy-based service system architecture, and the potential advantages
of using dynamic policies. The Cases I - III use no policy, Case IV uses static policies, while
Case V uses dynamic policies. The service system is constituted by one or more media serv-
ers (MS) streaming media files to media players (MP) (Fig. 4). The numbers of MS used in
Case I, II and III are fixed (one, two and three respectively), while the number in Case IV and
V can vary from one to three.

The basic EFSM types constituting the capability management system are media server
handler (EMS), media player handler (EMP) and capability manager (ECM)

180

The capability manager, which operation is based on policy based adaptation, is used in
Case IV and V. According to the definition of capability management in Section 3, service
system capability initialization and re-initialization is not included in the example. This
means that only capability allocation adaptation is considered. With reference to the concepts
service system adaptation manger and policy evaluator as defined in Section 4, the capability
manager now has the role of a service system adaptation manager, and the policy evaluator is
the system determining the policies to be used of the capability manager.

In the fixed policy case (Case IV) ECM is supported by a rule-based reasoning system
R1, and in the dynamic policy case (Case V) ECM is supported by R1 and R2. The EFSM type
EΣ is the dedicated EFSM that inspects the reasoning conditions Σ and activates/deactivates
the reasoning mechanisms.

The MS’s required access link capacity CR,AL is set to 100 Mbps. The number of MPs
that can use the service is limited by the MS access link capacity. An MP belongs to a
SLA_Class. In the example two classes are applied: premium (MPP) and ordinary (MPO).
Three different streaming throughput bit-rates (X) are offered, 500Kbps, 600 Kbps and
1Mbps. MPO connections are 500Kbps (XO) while MPP connections can be either 600Kbps
or 1Mbps (XP).

The service level agreements comprise required streaming throughput, maximum wait-
ing time, payment for the service and penalties for not satisfying the service. The required
streaming throughput of MPO and MPP are XO and XP, respectively.

The mechanisms used by the capability manager are to let client wait, to disconnect or-
dinary clients, to decrease the throughput of the premium clients and to change the number of
media servers.

When the required streaming throughput cannot be provided, an MP may have to wait
until some connected MPs have finished using the service. This will result in money payback
to the waiting MPs. An MPO can be disconnected, while an MPP may have to reduce the
throughput. If a client is disconnected, the service provider pays a penalty. The maximum
waiting time for MPP and MPO are 60 seconds and infinite respectively.

The service performance measures ˆ
IS are the number of connected and waiting pre-

mium and ordinary clients (NCon,P, NCon,O, NWait,P, NWait,O), the number of disconnected MPO
(NDis,O), the number of MS (NMS), inherent streaming throughput (XI), the number of availa-
ble nodes (NNode) and the accumulated service time and waiting time of premium and ordi-
nary clients (TServ,P, TServ,O, TWait,P, TWait,O). These values are observed per monitoring interval
Δ.

A unit is the price paid by an ordinary customer for one second streaming of the rate
500 Kbps. The income function for the service provider is m(SLA_Class, XI) (units/s). The
penalty function for waiting is pWait(SLA_Class) (units/s). The penalty function for discon-
nections is pDis(SLA_Class) (units/disconnection). The cost function for adding a new server
is pSer (units/s per Node). The total income function (mT) during the monitoring interval Δ is:

mT = m(MPO, XI,O)×TServ,O + m(MPP, XI,P)× TServ,P − pWait(MPO)×TWait,O
− pWait(MPP) ×TWait,P − pDis(MPO)×NDis,O − pSer ×(NMS-)×Δ (7)

Paper F

181

The reasoning machine supported capability manager will try to maximize the total in-
come. The service system is realized as one reasoning cluster as illustrated in Fig. 4. The na-
ture of the service system adaptation manager as well as the need and nature of a policy eva-
luator depends on the difference in income and penalty for the different SLA classes, as well
as the cost for introducing a new server. If the income and penalty for premium service class
is relatively higher than for an ordinary class, it can be profitable to disconnect some MPO
and let some MPP get the service instead.

The specification of the behavior of the service system adaptation manager used for the
Cases IV and V, and the policy evaluator applied for the Case V is given in Appendix.

5.2 Results

Table 1. Income and penalty functions

 MPO MPP (XI = 600Kbps) MPP (XI = 1Mbps)

m(SLA_Class, XI) / s 1 1.875 2

pWait(SLA_Class) / s 5 10 10

pDis(SLA_Class) / disconnection 10 - -

The MP arrivals are modeled as a Poisson process with parameter λSLA_Class. The dura-

tion of streaming connections dSLA_Class is constant. The quantity ρ = ((λO×dO×XO))+
(λP×dP×XP)))/CI,AL is the traffic per an MS access link. Intuitively, the system with ρ ≤ 1
needs at least one server while the system with 1 ≤ ρ ≤ 2 needs at least two servers and so on.
The MPP arrival intensity is 15% of the total arrival intensity. The duration of streaming con-
nections are set to 10 minutes, while the monitoring interval Δ is set to 1 minute. MPs stop
waiting after 10 minutes. The income and penalty functions in units are given in Table 1.The
cost for using an extra MS is 833 units/s per Node.

0

100

200

300

400

500

600

700

800

900

1,000

1 101 201 301 401

Time

Total Income
(Millions)

No Policy (= 1)
No Policy (= 2)
No Policy (= 3)
Static Policies
Dynamic Policies

NMS
NMS
NMS

0

100

200

300

400

500

600

700

800

900

1,000

0 0.5 1 1.5 2 2.5 3 3.5 4

Total Income
(Millions)

No Policy (= 1)
No Policy (= 2)
No Policy (= 3)
Static Policies
Dynamic Policies

NMS

NMS

NMS

ρ

 Fig. 5. Accumulated total income for ρ = 3.45 Fig. 6. Accumulated income at 500th ms

Fig. 5 illustrates the accumulated total income when ρ = 3.45. The value 3.45 is chosen
to compare the no-policy scenarios with NMS = 1, 2, or 3 and as well as the static and dynam-
ic policy scenarios. The accumulated total incomes of cases with no policy are relatively low-
er than those with policies.

182

Fig. 6 illustrates the values of accumulated total income at the 500th minute for the ρ
values: 0.56, 1,2, 2.3 and 3.5. The systems with no policy produce good results with a certain
load region. The systems operated under policies produced higher accumulated total income
independent of load region. Dynamic policies give relatively better result. These cases also
have the potential improvement by changing the policies.

Fig. 7 shows the system behavior for Case IV and V when the traffic is being increased
or decreased (the value of ρ varies as a function of time). The time with ρ at a fixed level is
denoted as the ρ period. The dotted line shows the variation of ρ, which can take the values
0.5, 1, 1.5 and 2 times of ρ = 1.44. The ρ period, which is 10×dSLA_Class, provides much time
for the system for learning the consequences of the rules being applied. Case V gives a better
result.

0

200

400

600

800

1,000

1,200

1,400

0 100 200 300 400 500 600 700 800 900 1000 1100

Time

Total Income
(Millions)

Static Policies
Dynamic Policies
Intensity

-12

-8

-4

0

4

8

12

2 5 10

period

Total Income
(% Difference)

ρ

Fig. 7. Accumulated total income Fig. 8. Comparison of Case IV&V

Fig. 8 shows a comparison between Case IV and V for different ρ periods. The figure
shows the difference between the values of accumulated total income after 500 minutes.
When the ρ period is small, Case IV may give better result because the system need more
learning time (TL). The TL value falls between 2× and 5×dSLA_Class.

The use of X3, X4 (see Appendix), which will add or remove an MS, affects the sys-
tem’s accumulated total income. Having more MS all the time is better for high traffic while
having few MS all the time is better for low traffic. The policy evaluator learned this by ob-
serving the consequences of X3 and X4. The ability to learn can also be improved by appro-
priately selecting service performance measures and algorithms.

6 Conclusion

An architecture for policy-based adaptable service systems, based on the combination
of Reasoning Machines (RMs) and Extended Finite State Machines (EFSMs) has been pre-
sented. Policies have been introduced with the intension to increase flexibility in the system
specification and execution.

The adaptation mechanism uses policies to control service systems when it is entering a
reasoning condition. The use of policy can be of two types: static or dynamic. In the static
case the reasoning system constituted by a service system adaptation manager determines a
list of suggested actions that will control the behavior of the service system. In the dynamic
case an additional RM, denoted as the policy evaluator, is added. The policy evaluator is able
to compose policy on-the-fly, and has the ability to estimate or evaluate the consequences of
the rules of a policy based on their accumulated goodness scores.

Paper F

183

Five application cases handling the capability management of a music video on-demand
service are presented. The intention is to illustrate the use of the proposed architecture and
demonstrate the potential advantage of using dynamic policies. Case I, II and III use no poli-
cies. Case IV uses static policies, while Case V uses dynamic policies. Only capability alloca-
tion adaptation is considered. There are situations where the use of no policy can be superior
or equal to the use of policies. The selected system parameters can represent an optimal di-
mensioning. However, the same set of system parameters will likely not be optimal for other
system traffic load cases. The service system operated under static policies give a relatively
high income in both low and high traffic. The service system operated under dynamic poli-
cies, however, has a performance which is superior or equal to other application cases. Nev-
ertheless, the service system operated under dynamic policies needs a certain period of time
denoted as learning time to learn the consequences of policies in order to provide superior
performance.

The proposed architecture is also a flexible tool for the experimentation with alternative
policies with respect to optimization.

References

1. F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M. Shiaa, "Configuration Management for an
Adaptable Service System," in IFIP International Conference on Metropolitan Area Networks, Archi-
tecture, Protocols, Control, and Management, Ho Chi Minh City, Viet Nam, 2005.

2. D. Agrawal, K.-W. Lee, and J. Lobo, "Policy-Based Management of Networked Computing Systems,"
IEEE Communications Magazine, vol. 43, pp. 69-75, 2005.

3. Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, "A Control Theory Founda-
tion for Self-Managing Computing Systems," IEEE Journal on Selected Areas in Communications, vol.
23, pp. 2213-2222, 2005.

4. P. Supadulchai and F. A. Aagesen, "A Framework for Dynamic Service Composition," in First Inter-
national IEEE Workshop on Autonomic Communications and Computing (ACC 2005), Taormina, Italy,
2005.

5. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, "Rainbow: Architecture-Based
Self-Adaptation with Reusable Instrastructure," Computer, vol. 37, pp. 46-54, Oct 2004 2004.

6. N. Samaan and A. Karmouch, "An Automated Policy-Based Management Framework for Differen-
tiated Communication Systems," IEEE Journal on Selected Areas in Communications, vol. 23, pp.
2236-2247, 2005.

7. R. Nasri, Z. Altman, and H. Dubreil, "Autonomic Mobile Network Management Techniques for Self-
Parameterisation and Auto-regulation," in Smartnet 2006, Paris, 2006.

8. Y. Kanada, "Dynamically Extensible Policy Server and Agent," in Proceedings of the 3rd Int'l Work-
shop on Policies for Distributed Systems and Networks (POLICY'02), 2002.

9. H. Chan and T. Kwok, "A Policy-based Management System with Automatic Policy Selection and
Creation Capabilities using a Singular Value Decomposition Technique," in Proceedings of the 7th
IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06), 2006.

10. R. J. Anthony, "A Policy-Definition Language and Prototype Implementation Library for Policy-based
Autonomic Systems," in Autonomic Computing, 2006. ICAC '06. IEEE International Conference on,
2006.

184

11. K. Akama, T. Shimitsu, and E. Miyamoto, "Solving Problems by Equivalent Transformation of Dec-
larative Programs," Journal of the Japanese Society of Artificial Intelligence, vol. 13, pp. 944-952,
1998.

Appendix. Reasoning Machine Specifications

1. Service system adaptation manager (Case IV and V)

The set of actions A applied by the service system adaptation manger is:

A ≡ { AD, AB, AI, AR } (A.1)

AD (Disconnect-Client) tells MS to disconnect suggested MPO. AB (Decrease-Bit-Rate)
tells MS to reduce throughput of suggested MPP for a certain time period. AI (Initialize-
Server) tells MS to initiate a new MS, while AR (Remove-Server) will remove a MS. Con-
cerning the reasoning condition set Σ ≡ { ΣT1, ΣG1 }, the reasoning activation condition ΣT1
is NWait,P+NWait,O > 0 and the reasoning goal condition ΣG1 is NWait,P+NWait,O = 0. The rule
set X for the service system adaptation manger is:

X ≡ { X1, X2, X3, X4 } (A.2)

X1 suggests AD for disconnecting a list of suggested MPO when pWait(MPO) <
pWait(MPP). The number of MPO is calculated from NWait,P×XP,1Mbps / XO. X2 suggests AB for
reducing throughput of a list of suggested MPP when pWait(MPO) > m(MPP, XP,1Mbps) -
m(MPP, XP,600Kbps). The number of MPP to decrease bandwidth is calculated from NWait,O×XO
/ (XP,1Mbps-XP,600Kbps). X3 suggests AI for initiating a new MS when XP×NWait,P + XO×NWait,O
/ CR,AL > 0.1. X4 suggests AR for removing an MS when XP×NWait,P + XO×NWait,O / CR,AL <
0.1.

2. Policy evaluator (Case V)

The policy evaluator will be activated and de-activated whenever the service system
adaptation manager is activated and de-activated. So we have activation condition ΣT2 ΣT1

(means ‘is instantiated as’), and goal condition ΣG2 ΣG1. The set of actions A ap-
plied by the the policy evaluator is:

A´ ≡ {AG(Xi), AT(Xi) } (A.3)
AG(Xi) is an action for the calculate of the accumulated goodness score of a rule Xi.

AT(Xi) is an action to suspend XI for a certain time period. The goodness score of a rule
(QoXi) during the monitoring time interval T is calculated by the percentage of the increased
or decreased total income (mT). The algorithm to calculate QoXi is as follows:

QoXI = QoXi + T,t T,t 1

T,t

m m
1 0 0

m
−−
× (A.4)

where mT,t and mT,t-1 are the total income during the current and previous monitoring
interval respectively. The rule set X´of the policy evaluator is:

X´ ≡ { X´1, X´2 } (A.5)

Paper F

185

X´1 calculate the goodness score of the rule used during the last interval using the ac-
tion AG(Xi), and X´2 suspends rules using the action AT(Xi) when their goodness scores are
below zero.

187

Paper G

A Capability-based Service Framework for
Adaptable Service Systems
Finn Arve Aagesen and Paramai Supadulchai

In Proceedings of The 2nd International Conference on Advances in Informa-
tion Technology (IAIT2007)

Bangkok, Thailand, November 1-2, 2007

Paper G

189

A Capability-based Service Framework for Adaptable Service Systems

Finn Arve Aagesen and Paramai Supadulchai
Institute of Telematics, NTNU

N7491 Trondheim, Norway
finnarve@item.ntnu.no, paramai@item.ntnu.no

Abstract

This paper presents a capability-based
service framework for adaptable service
systems. The paper has focus on: I) Adap-
tability properties, II) The architecture so-
lution needed to meet these properties, and
III) Capability configuration management
functionality.

Adaptability is based on flexibility. Ac-
cordingly, basic rearrangement flexibility
must be provided. But the framework must
in addition have necessary concepts, fea-
tures and functionality that make it possi-
ble to adapt to various traffic situations
and failure states.

The architecture solution has a compu-
ting and a service functionality dimension.
The computing architecture is based on a
theatre metaphor, where actor, manuscript,
role figure and capability are core con-
cepts. Fundamental QoS concepts are ca-
pability, capability performance, service
performance and service level agreements.
Actors, which are the basis for the imple-
mentation of the service functionality, can
be Extended Finite State Machines or Rea-
soning Machines. Actors are able to down-
load and execute EFSM- and RM-based
manuscripts.

Models for capability configuration
management functionality are presented.
Reasoning machines are used for capabili-
ty configuration management in general as
well as for policy adaptation.

1. Introduction

Networked service systems are consi-
dered. Services are realized by service
components, which by their inter-working
provide a service in the role of a service
provider to a service user. Service compo-
nents are executed as software components
in nodes, which are physical processing
units such as servers, routers, switches,
PCs and mobile phones. A service frame-
work is here defined as the overall struc-
tural and behavior framework for the spe-
cification and execution of services. Net-
worked services have during more than
two decade been is an important research
topic. Topics include Intelligent Networks
and TINA (Tele-communication Informa-
tion Networking Architecture) [1], Mobile
Agents and Active and Programmable
Networks [2] in the 80-ies and 90-ies. Fo-
cus was on flexibility and efficiency in the
definition, deployment and execution. This
focus has now been changed into adapta-
bility and evolution. We have entered an
era with a high degree of flexibility. To
utilize the flexibility potential as a founda-
tion for adaptability, the attributes of ser-
vices and nodes must be appropriately
formalized, stored and made available.

An adaptable service system is here de-
fined as a service system which is able to
adapt dynamically to changes in time and
position related to users, nodes, capabili-
ties, system performance, changed service
requirements and policies. In this context,
capability is defined as an inherent physi-

190

cal property of a node, which is used as a
basis for implementing services (See Sec-
tion 2). This definition of adaptability cov-
ers a wide spectrum of functionality, and
does also include autonomic communica-
tion [3, 4].

This paper presents some issues related
to service frameworks for adaptability. The
issues presented are part of TAPAS
(TAPAS = Telematics Architecture for
Play-based Adaptable Systems. See [5]
and the URL: http://tapas.item.ntnu.no.
The paper has focus on three issues: I)
Adaptability properties, II) Architecture
solution and III) Capability configuration
management functionality

The adaptability properties presented in
Section 2 are the basis for the architecture
solution which is presented in Section 3-4.
The architecture has a computing dimen-
sion and a service functionality dimension.
The computing architecture, which is
based on a theatre metaphor, is presented
in Section 5. An actor playing a role is ei-
ther an Extended Finite State Machines
(EFSM) or a Reasoning Machines (RM).

Issue III is presented in Section 5-6.
Section 5 presents generic EFSM and RM
models. Section 6 defines RM models for
capability configuration management func-
tionality. Related works are presented in
Section 7, while Section 8 gives Summary
and Conclusions.

2. Adaptability Properties

General and core functional adaptabili-
ty properties are defined. Four general
properties are defined. The framework
must provide a flexible and common way
of modeling services independent of the
type of the service system, the service
models must be based on mechanisms ap-
propriate for the type of functionality, the
software implementation mechanisms
must be flexible and powerful, and there

must be easy mapping of the conceptual
service system models to the physical
computing and communication platform.
The core functional adaptability proper-
ties are grouped in three classes:

A): Rearrangement flexibility B):
Failure robustness, and C): Resource load
awareness and control

Rearrangement flexibility means that
the system structure and the functionality
are not fixed. Nodes, users, services, ser-
vice components, capabilities, can be add-
ed, moved, removed according to needs.
Mobility of persons, sessions, nodes, ter-
minals is further seamlessly handled. New
nodes and capabilities are found automati-
cally when introduced, and needed infor-
mation about changes is propagated. There
is a continuous adaptation to changed envi-
ronments and operation strategies/policies.

Robustness and survivability means that
the architecture is dependable and distri-
buted, and that the system can reconfigure
itself in the presence of failures. Resources
and functionality are duplicated, hardware
and software component failures must be
detected and reconfiguration and re-
initialization must take place during sys-
tem operation.

QoS awareness and resource control
means that there is functionality for nego-
tiation about QoS and optimum resource
allocation, monitoring of resource utiliza-
tion, and actions for reallocation of re-
sources.

Property A defines the basic flexibility
features of the architecture. Property B and
C set requirements to concepts and fea-
tures that are needed as a foundation for
the specification and implementation of
functionality that can provide these proper-
ties.

Paper G

191

3. Architecture Solution –
Features and Concepts

3.1 Service and computing
architecture dimensions

To meet the general properties defined
in Section 2, the TINA architecture prin-
ciple [2] is followed. The TAPAS service
framework has a computing architecture
dimension and a functionality architecture
dimension. The service architecture shows
the structure of services and service com-
ponents. The computing architecture is a
generic architecture for the specification
and execution of any service. While the
service architecture has focus on the ser-
vice functionality independent of imple-
mentation, the computing architecture has
focus on the modeling of functionality
with respect to implementation, but inde-
pendent of the nature of the service func-
tionality. The properties of the computing
architecture, however, are the fundament
for the creation of services with needed
adaptable networking services properties.
So the core functional properties are rea-
lized by a mixture of the features and con-
cepts of the computing architecture and
the functionality of the service architec-
ture.

3.2 QoS related concepts

3.2.1 Capability and capability perfor-
mance

Capability was introduced in Section 1.
Capability is needed to meet all the three
core properties. Performance concepts,
however, are needed to meet the failure
robustness as well as resource load aware-
ness and control core property. Capabili-
ties can be classified into resources, func-
tions and data. Examples are CPU, memo-
ry, transmission links, special hardware,
and special programs and data.

Capability performance measures com-
prise: i) capability capacity measures, ii)
capability state measures and iii) capability
QoS measures, i.e. traffic and dependabili-
ty measures. Capability capacity measure
examples are transmission channel capaci-
ty, CPU processing speed and disc size.
Capability state measure examples are
number of connections, and the number
that is waiting. Important traffic perfor-
mance measures are transfer time, waiting
time, throughput and utilization. Important
dependability performance measures are
availability and recovery time.
3.2.2 Service performance

Service performance measures are
performance concepts related to the ser-
vice provided to the service user. These
measures comprise i) service system state
measures and ii) service system QoS
measures, i.e. traffic and dependability
measures
3.3.3 Service level agreements

Service level agreements (SLA) are
agreements between the service users and
the service provider. The agreement can
contain elements such as: required capabil-
ities, required service performance, pay-
ment for the service when the agreed QoS
is offered and payment for the service in
case of reduced QoS.

3.3 Computing Architecture

3.3.1 The theatre metaphor
The computing architecture is founded

on a theatre metaphor (Figure 1). Actors
perform roles according to manuscripts.
Actors are software components in the
nodes that can download manuscripts de-
fining the roles to be played. An actor will
constitute a role figure by behaving ac-
cording to a manuscript. A play consists of
several actors playing different roles, each

192

possibly having different requirements on
capabilities.

Figure 1 - The theatre metaphor

3.3.2 Computing architecture view-
points

The computing architecture is illu-
strated in Figure 2. For simplicity, the
service user and service level agreements
(SLA) are not included in the figure. The
architecture has three views: the service
view, play view and physical view. The
service view considers the service as con-
stituted by conceptual service components.
The leaf conceptual service components
are constituted by role figures which are
implemented by actors. The actors are ex-
ecuted as operating system software com-
ponents in nodes, which are physical
processing units such as servers, routers,
switches and user terminals.

The three view model is not a layered
service model. A service system and its
service components have models and
model parameters related to the service
view, play view and physical view. Capa-
bility and capability performance measures
defined in the physical view, however, are
visible in the play view as well as the ser-
vice view. The service performance meas-
ures and SLA defined in the service view
are also visible in the play view. This is
not explicitly illustrated in Figure 2.

The core platform is a platform sup-
porting the execution of service functional-
ity based on the computing architecture
functionality.

Figure 2 - TAPAS computing architecture

The computing architecture concepts
and functionality are intended to be a basis
for designing functionality that can meet
the general as well as the core properties.
The three views meet the general architec-
ture requirements. Concerning the core
properties, the play view concepts are pri-
marily rearrangement flexibility oriented.
The QoS concepts, gives a basis for func-
tionality that can meet the robustness and
survivability as well as the QoS awareness
and resource control properties.
3.3.3 Actor and role figure types

An actor can be an EFSM or RM (See
Section 1). Actors are able to download
and execute EFSM- and RM-based manu-
scripts. Networked services are traditional-
ly based on EFSM-based specification and
execution. RM makes policy-based speci-
fication and operation possible. Policy-
based software has a specification style,
which is expressive and flexible.

A policy is a set of rules with related
actions. A policy system is a set of poli-
cies. An RM is using a policy system to
manage the behavior of a target system. A
static policy system has a non-changeable

Role figure An instantiated
roles constituted by an actor

Play A set of logically related
roles to be played by actors

Manuscript The defined role

Dialogue The communication
between two role figures.

.

M
M

M

M

Capability A unique set of
properties of an actor.

roles play in a
Actors The performer of the

Paper G

193

set of policies, while a dynamic policy sys-
tem has a changeable set of policies.

There are two types of role figures: i)
EFSM-based role figures and ii) RM-based
role figures. The EFSM-based role figure
is constituted by an EFSM actor. The RM-
based role figure is constituted by an RM
actor.

4. Capability Configuration Man-
agement

Executing service components are in-
stances of service component types. Ser-
vice components constituted by EFSM-
based and RM-based role figurers are de-
noted as EFSM-based and RM-based ser-
vice components, respectively. EFSM-
based service components will have re-
quirements with respect to capability and
service performance to perform their in-
tended functionality (Figure 3).

Figure 3 – EFSM-based part of service system

These requirements are denoted as re-
quired capability and service performance.
The capabilities and service performance
of an executing service system are denoted
as inherent capabilities and service per-
formance. System performance is now de-
fined as the sum of capability performance
and service performance.

Capability configuration management is
defined as the allocation, re-allocation and
de-allocation of capabilities and compris-
es: i) service system capability initializa-
tion and re-initialization and ii) capability
allocation adaptation. Service system ca-
pability initialization and re-initialization

is the allocation of the capabilities for the
service components to be distributed and
instantiated. Capability allocation adapta-
tion is the monitoring of the performance
of the executing service system and the
reallocation of capabilities within the ex-
ecuting service systems. In situations when
the instantiated service systems are unable
to adapt satisfactorily, capability configu-
ration management can initiate a service
system capability re-initialization for a re-
distribution and re-instantiation of the ser-
vice system(s).

The service functionality architecture
will need a rich set of functionality com-
ponents to fulfill the core properties A)-C).
On one hand, this paper has focus on the
computing architecture features and con-
cepts needed as basis for the general and
core adaptability properties. On the other
hand the paper has focus on the capability
configuration management, which is an
important adaptability function needed to
utilize the adaptation potential of the capa-
bility-based computing architecture.

Figure 4 – Some components of the service
functionality architecture

The main components of the service
functionality architecture related to capa-
bility configuration management are illu-
strated in Figure 4. In addition to the pri-
mary service provisioning functionality,
there must be functionality for manage-
ment of the networked service systems.
This management functionality comprises:
i) service management. i.e.: service speci-
fication, implementation, deployment, in-

194

vocation, exhibition, discovery and access,
ii) capability and performance administra-
tion, i.e.: monitoring and registration of
available and allocated capabilities, moni-
toring and registration of system perfor-
mance, and the provisioning of a view of
available capabilities, capability perfor-
mance and system performance, and iii)
capability configuration management,
with functionality as defined above.

5. Service Component Models

5.1 General

This section presents service compo-
nent models. Section 0 presents generic
EFSM and RM models. Section 0 presents
the reasoning procedure applied by reason-
ing-based service components. The appli-
cation domain for reasoning based service
components and the integration of EFSMs
and RMs in reasoning clusters are pre-
sented in Section 5.4.

5.2 EFSM and RM models

The following concepts are defined:
E Functionality set of an EFSM type
Ê Functionality set of an EFSM instance
R Functionality set of a RM type
R̂ Functionality set of a RM instance
M Manuscript type (EFSM or RM type)
M̂ Manuscript instance (EFSM or RM

instance)
C Capability performance measures set
ĈR Required capability performance set

of an EFSM-based service component
type

ĈI Inherent capability performance set of
an executing EFSM-based service
component type

ĈA Set of available capabilities in nodes
S Service performance measures set

ŜR Required service performance set for a
EFSM-based service component type

ŜI Inherent service performance set of an
executing EFSM-based service com-
ponent

 I Income functions set for the service
components constituting a service.
These functions will depend on the
system performance.

An EFSM type E is defined (≡) as:
E ≡ { SM, SI, V, P, M(P), O(P), FS,

FO, FV }, (1)
where SM is the set of states, SI is the

initial state, V is a set of variables, P is a
set of parameters, M(P) is a set of input
signal with parameters, O(P) is a set of
output signal with parameters, FS is the
state transition function (FS = S x M(P) x
V), FO is the output function, (FO = S x
M(P) x V) and FV are the functions and
tasks performed during a specific state
transition such as computation on local
data, communication initialization, data-
base access, etc. A RM type R is defined
as:
R ≡ { Q, F, P, T, E, Σ } (2a)
P ≡ { X, A }, (2b)
where Q is the set of messages, F is a

generic reasoning procedure, P is a policy
system which consists of a set of rules X
and a set of actions A, T is a set of system
constraints and E is a set of facts. The rea-
soning procedure is the procedure applied
by RM to select the appropriate actions. Σ
is a set of reasoning conditions defined by
trigger conditions ΣT, and goal conditions
ΣG. RM functionality is activated when a
ΣT is detected. When a trigger condition is
true, the reasoning procedure transforms
Q1 to Qn by using P to match the system
constraints T against the facts E and a set
of suggest actions {Ai, Aj, Ak… } ⊆ A..
The constraints rules and actions can have
variables. The result of the reasoning can

Paper G

195

in addition to actions give instantiated va-
riables.

The elements: T, E, Σ and P of an
RM, depend on the nature of the reasoning
service provided as well as the structural
organization of EFSM, RM and capabili-
ties. Section 5.4 will present reasoning
models for cases that represents the func-
tionality domain of the reasoning-based
service components. These cases will be
elaborated in Section 6.

5.3 Reasoning procedure

The reasoning procedure is based on
Equivalent Transformation (ET) [6], which
solves a given problem by transforming it
through repetitive application of (semanti-
cally) equivalent transformation rules. Let
P be a program which models an applica-
tion for a knowledge base and Q1 is an ini-
tial message containing problems.

The semantics of P ∪ Q1 is denoted as
M(P ∪ Q1). ET paradigm applies ET
rules (procedural rewriting rules) in order
to successively transform P ∪ Q1 into P
∪ Q2, P ∪ Q3, etc., while maintaining the
condition M (P ∪ Q1) = M (P ∪ Q2) =
M (P ∪ Q3) = …. Precisely, P ∪ Q1 is
successively transformed until it becomes
P ∪ Qn, where the message Qn contains
the list of suggested actions for the prob-
lem described by Q1. ET consists of sets of
ET rules and ET clauses defined as fol-
lows:

ET clause: Head ←⎯⎯ Body

ET rule: Head, Conditions ⎯⎯→ Body

Head consists of one head atom, Body
consists of body atoms and Conditions
consists of condition atoms. A problem
must be formulated as an ET clause. A
rule of a policy as defined in Section 4.3 is
modeled by an ET rule. The head atom is
initially Q1. The Head will eventually con-
tain Qn if all the body atoms in the Body

can be derived by rules. A body atom of a
clause matching the head atom of a rule
can be transformed into the rule’s body
atoms.

The reasoning procedure begins with a
clause formulated by a message as follows:

 Q1 ←⎯⎯ Q1 (3)

The meaning of (3) is that the Head Q1
is true when the Body Q1 is true. The goal
of the reasoning procedure is to transform
(3) until no body atom is left. Consider the
following rule (4):

Head , Conditions ⎯⎯→E T B1, B2, … Bn.
 (4)

The rule (4) can transform the body
atom Q1 of (3) into B1, B2, … Bn, provided
that the body atom Q1 in (3) can match the
Head in (4) and Conditions are not vi-
olated. Then, clause (3) will be trans-
formed by (4) to (5) as follow:

Q2 ←⎯⎯ B1′, B2′, … Bn′. (5)

During the transformation, variables in
Q1… Qn and the list of suggested actions,
which are a subset of the actions A as de-
fined in (2b), will be instantiated. The
transformation of a clause ends when ei-
ther 1) no body atom of the clause is left or
2) no rule can transform the remaining
body atoms of the clause.

5.4 Functionality domain of reason-
ing machines

The functionality domain of RM-based
service components can be separated into
two cases. In Case I, the RMs of a service
system has no access to system perfor-
mance data of the service system. In this
case, the RM provides an ordinary proce-
dural service only. In Case II, RMs of the
service system has access to system per-
formance data of the service system and
takes part in the configuration manage-

196

ment functionality and in close coopera-
tion with one or more EFSMs. For this
case RM can be used as:

A. a procedural reasoning service for an
EFSM-based role figure involving
the access to system performance da-
ta for service system capability in-
itialization and re-initialization

B. a feed-back loop service involving
one or more EFSM-based role fig-
ures with access to system perfor-
mance data for capability allocation
adaptation

C. a feed-back loop service involving
one or more EFSM-based and RM-
based role figures with access to sys-
tem performance data for dynamic
changes of the policies for capability
allocation adaptation as defined in
B) above.

A reasoning cluster is an independent
unit with respect to reasoning. It is a col-
lection of EFSM-based service compo-
nents with an associated reasoning system
constituted by one or more RM-based ser-
vice components. A reasoning cluster has
associated:Q, P, T, E and Σ and consider
them as common data among EFSM-based
and RM-based role figures. An RM must
be activated by an EFSM. Depending of
the nature of the cluster and the nature of
the reasoning, a dedicated EFSM denoted
as EΣ will be needed to inspect the reason-
ing conditions and activate or deactivate
the RM-based role figures within a reason-
ing cluster. Three reasoning cluster types
(A, B and C) corresponding to the cases A-
C defined above are illustrated in Figure 5.

In the cluster type A, the RM is a pro-
cedure invoked by an EFSM-based role
figure. The EFSM-based role figure can
set the reasoning condition observed by EΣ
The cluster type B represents a close inte-
raction between RM-based role figures
(R) and EFSM-based role figures (E). An

EΣ manages the activation and deactivation
of EFSM-based role figures. In the cluster
type C, an RM-based role figure manages
another RM-based role figure’s policies.

Figure 5 - Reasoning cluster types

6. Capability Configuration Man-
agement Functionality Models

In the following sections, reasoning
models for the Cases A-C as defined in
Section 6.4 will be elaborated from the ge-
neric RM type defined by (2a) and (2b) in
Section 6.2.

6.1 Capability (re-)initialization

For this case, the indexes “init” and “re-
init” indicates initialization and re-
initialization. The constraints, facts and
initialization condition can be expressed as
follows:

T ≡ Expr{ I, (ŜR,k, ĈR,k; k = [1, K])} (6)

Einit ≡ { ĈA,n; n = [1, NNode] } (7)
Ere-init ≡ {((ŜI,lk, ĈI, lk; l = [1, Lk]), k = [1, K]),

 (ĈA,n; n = [1, NNode])} (8)

Σre-init ≡ Expr{ ŜR,k, ĈR,k; k = [1, K] } (9)

T is some expression containing the in-
come functions, and the required capability
and service performance measures ĈR,k
and ŜR,k. The element Einit, which contains
the facts for the capability initialization

Paper G

197

case, contains the set of unallocated capa-
bilities ĈA,n of NNode that can potentially
contribute their capabilities for the EFSM-
based role figures. The element Ere-init con-
tains the facts for the capability re-
initialization case that consists of the set of
inherent capabilities performance meas-
ures ĈI,lk, the set of inherent service per-
formance measures ŜI,lk as well as the set
of available unallocated capability ĈA,n.

The reasoning condition for the capabil-
ity initialization as well as the EΣ is under
the supervision of an EFSM-based role
figure. The content of P depends on the
needed behavior of the adaptable service
system. The components constituting Σre-

init are expressions of the states and the va-
riables of the required capability and ser-
vice performance measures ŜR,k and ĈR,k as
given in (8d). A total specification of ini-
tial configuration and reconfiguration for a
network printer example is given in [7].

6.2 Capability allocation adaptation

The constraints, facts and initialization
condition can for this case be expressed
similar to the equations for re-initialization
(6), (8) and (9). The content of P depends
on the needed behavior of the adaptable
service system.

 The feedback loop constituting a capa-
bility allocation adaptation is illustrated in
Figure 6. An RM-based role figure called
Service System Adaptation Manager R1
uses E as feedbacks from an EFSM-based
role figure E. The rules X here are un-
changeable. Uses of the expressions (6),
(8) and (9) on a concrete capability alloca-
tion adaptation example using static poli-
cies are presented in [8].

Figure 6 - Policy-based reasoning based on static
policies

6.3 The adaptation of policies

The capability allocation adaptation
using dynamic policies is illustrated in
Figure 7. In addition to R1, a Policy Eva-
luator (R2) is added.

Figure 7 - Policy-based reasoning based on
dynamic policies

A generic rule-based reasoning system
with dynamic policies can be extended
from (2a) and (2b) as follows:

R1 ≡ { Q, F, P , T, E, Σ } (10)
P ≡ { X , A } (11)
R2 ≡ { Q′, F, P′, T′, E′, Σ′ } (12)
P′ ≡ { X′, A′ } (13)
T′ ≡ { I, X, A } (14)
Q′ is a set of internal messages between

1R̂ and 2R̂ . The element T′ consists of the
set of income functions I and the set of to-
tal rules and actions (X and A) of R1. The
element E′ is the same as E in 0. The ele-
ment Σ′ depends on the conditions for
triggering the dynamic policies.

198

P´ is a set of control policies consist-
ing of the set of control rules X′ and the set
of control actions A′. X′ can use A′ to re-
order the priority, activate, de-activate and
change the constraints of X. As a result,
the set of rules and actions used by R1 is
now X and A , which are derived from of
X and A.

The policy evaluator evaluates X at
runtime based on evaluation criteria, ref-
erence inputs and feedbacks. Income func-
tions are used as reference inputs, while
the feedbacks are the system performance.
Evaluation criteria can in general be histo-
ry-based and prediction-based. The histo-
ry-based evaluation determines the conse-
quences of rules in the past based on sys-
tem performance. The prediction-based
evaluation determines the consequences of
rules in the future based on mathematical
equations represented by X′. Dynamic pol-
icies need a certain period to evaluate the
consequences of the rules used. Uses of the
equations (10)-(14) on a concrete capabili-
ty adaptation example using dynamic poli-
cies are presented in [8].

7. Related Work

Concerning service frameworks for
adaptable service systems, focus is mostly
on isolated features rather than on totality.
Below we discuss related works that con-
sider totality and that have rich feature
sets.

The framework [9] has general archi-
tectural features and concepts and feed-
back loop for adaptability properties.
However, it lacks a set of comprehensive
features for capability configuration man-
agement. The work [10] has focus the ca-
pability allocation adaptation, but without
considering general architectural features
and concepts.

The architectures in [11] and [12]
have a focus on agent-based computing

architectures with feedback loops for auto-
nomic service execution. However, it as-
sumes that agents will have built-in service
management functionality and all rely on
some distributed algorithm. Likewise, [13]
also share the same view while also de-
scribing a inclusive set of distributed pro-
tocols for adaptability properties.

Accord [14] is a framework with a
comprehensive set of features including
policies, and a computing architecture for
service executions and configuration man-
agement. Physical capabilities, however,
are not considered.

8. Summary and Conclusion

A capability-based service framework
for adaptable service systems has been
presented. The issues focused are I) Adap-
tability properties, II) Architecture solution
and III) Capability configuration manage-
ment functionality.

The adaptability properties defined are
the basis for architecture solution. The ar-
chitecture has a computing and a service
architecture. The computing architecture
has three views: the service view, the play
view and the physical view. Further com-
puting architecture features and concepts
presented are:

• the theatre metaphor concepts (ac-
tor, role figure, capability, manu-
script, role, play and dialogue)

• the ability of the Actor to download
and interpret both EFSM-based and
RM-based manuscripts

• QoS concepts (capability, service
level agreement, capability and
service performance)

Capability configuration management
comprises service system capability initia-
lization and re-initialization, and capability
allocation adaptation. Generic models for
EFSM-based and RM-based service com-

Paper G

199

ponents are presented. The application
domain for reasoning machines within the
context of capability configuration man-
agement are: a) capability initialization
and re-initialization, b) capability alloca-
tion adaptation, and c) policy adaptation.
RM-based service models for the cases a)-
c) have been presented.

This paper, however, does neither con-
tain data representation models nor con-
crete usage examples. The data representa-
tion of the QoS concepts, EFSMs and RMs
are based on XML [8]. The aspects of ca-
pability configuration management that
have been presented in this paper have
been applied on concrete executable cases.
A service system capability initialization
and re-initialization example is presented
in [7]. A capability allocation adaptation
example is presented in [8].

References

[1] Y. Inoue, et al., The TINA Book: A Co-
operative Solution for a Competitive World:
Prentice Hall, 1999.

[2] D. L. Tennenhouse, et al., "A Survey of Ac-
tive Network Research," IEEE Communica-
tions Magazine, vol. 35, 1997.

[3] J. O. Kephart and D. M. Chess, "The Vision
of Autunomic Computing," Computer, vol.
36, pp. 41-50, 2003.

[4] P. Horn, "Autonomic Computing: IBMs Pers-
pective on the State of Information Technolo-
gy", http://www.research.ibm.com/autonomic/.

[5] F. A. Aagesen, et al., "Towards a Plug and
Play Architecture for Telecommunications,"
Proceedings of IFIP TC6 Smartnet, Bankok,
1999.

[6] K. Akama, et al., "Solving Problems by
Equivalent Transformation of Declarative
Programs," Journal of the Japanese Society of

Artificial Intelligence, vol. 13, pp. 944-952,
1998.

[7] F. A. Aagesen, et al., "Configuration Man-
agement for an Adaptable Service System,"
Proceedings of IFIP MAN, Ho Chi Minh City,
Viet Nam, 2005.

[8] P. Supadulchai and F. A. Aagesen, "Policy-
based Adaptable Service Systems Architec-
ture," Proceedings of AINA-07, Niagara Falls,
Canada, 2007.

[9] D. Garlan, et al., "Rainbow: Architecture-
Based Self-Adaptation with Reusable Instra-
structure," Computer, vol. 37, pp. 46-54,
2004.

[10] N. Samaan and A. Karmouch, "An Automated
Policy-Based Management Framework for
Differentiated Communication Systems,"
IEEE Journal on Selected Areas in Communi-
cations, vol. 23, pp. 2236-2247, 2005.

[11] D. Gracanin, et al., "Towards a model-driven
architecture for autonomic systems," Proceed-
ings of 11th IEEE ECBS, 2004.

[12] H. Tianfield, "Multi-agent based autonomic
architecture for network management," Pro-
ceedings of IEEE INDIN, 2003, pp. 462 - 469.

[13] E. Vassev and J. Paquet, "Towards an Auto-
nomic Element Architecture for ASSL," Pro-
ceedings of SEAMS '07, 2007.

[14] H. Liu and M. Parashar, "Accord: A Pro-
gramming Framework for Autonomic Appli-
cations," IEEE Transactions on Systems, Man,
and Cybernetics, vol. 36, pp. 341-351, 2006.

201

Paper H

Autonomous Production of Parameters of
an Autonomous Capability Allocation
Adaptation Model
Paramai Supadulchai and Finn Arve Aagesen

Prepared for a submission

Paper H

203

Autonomous Production of Parameters of

An Autonomous Capability Allocation Adaptation Model

Paramai Supadulchai and Finn Arve Aagesen

Department of Telematics
Norwegian University of Science and Technology (NTNU)

N7491 Trondheim, Norway
 paramai@item.ntnu.no, finnarve@item.ntnu.no

Abstract— Autonomous capability al-
location adaptation within a service
framework for adaptable service systems is
considered. The basis for autonomous ca-
pability allocation adaptation is service
level agreements as well as service and
capability performance. Capability alloca-
tion adaptation is based on capability allo-
cation adaptation models. These models
rely on fine-tuned parameters. This paper
presents a framework for autonomous pa-
rameter production for capability alloca-
tion adaptation models. A parameter pro-
duction example for capability allocation
adaptation for an online music video on-
demand service based on the proposed
framework is given.

1. Introduction

Networked service systems are consi-
dered. Services are realized by service
components, which by their inter-working
provide a service in the role of a service
provider to a service user. Service compo-
nents are executed as software components
in physical processing nodes, which are
physical processing units such as servers,
routers, switches, PCs and mobile phones.

A service framework is here defined as the
overall structural and behavior framework
for the specification and execution of ser-
vices.

An adaptable service system is defined
as a service system which is able to adapt
dynamically to changes in time and posi-
tion related to users, nodes, capabilities,
system performance, changed service re-
quirements and policies.

This definition of adaptability covers a
wide spectrum of functionality, and does
also include autonomic communication [1,
2]. This paper has focus on adaptability
with respect to capabilities. Capabilities
are inherent properties of nodes used as a
basis for the execution of services. Capa-
bilities can be classified into resources,
functions and data. Resource examples are
CPU, memory, transmission links and spe-
cial hardware.

Capability performance measures com-
prise: i) capability capacity measures, ii)
capability state measures and iii) capability
QoS measures, i.e. traffic and dependabili-
ty measures. Capacity measure examples
are transmission channel capacity and
CPU processing speed. State measure ex-
amples are the number of connections and

204

the number that is waiting. Traffic measure
examples are waiting time, throughput and
utilization. Dependability measure exam-
ples are availability and recovery time.

Capability configuration management
is the allocation, re-allocation and de-
allocation of capabilities. This functionali-
ty is arranged as 1) capability initializa-
tion, 2) capability allocation adaptation
and capability re-initialization. Service
system capability initialization and re-
initialization are the allocation of the capa-
bilities for the service components to be
physically distributed and instantiated.
Capability allocation adaptation is the
monitoring of the performance of the ex-
ecuting service system and the reallocation
of capabilities within the executing service
systems. In situations when the instan-
tiated service systems are unable to adapt
satisfactorily, capability allocation adapta-
tion can initiate a service system capability
re-initialization for a re-distribution and
re-instantiation of the service system(s).

The basis for capability initialization is
predefined capability performance re-
quirements. The basis for capability allo-
cation adaptation and capability re-
initialization are service level agreements
(SLA) as well as capability and service
performance. For definition of SLA and
service performance, please see Section
2.2.

Capability allocation adaptation is
based on capability adaptation models.
These models need parameters derived
from the service level agreements. These
capability allocation adaptation model
parameters can be produced. This paper
presents some issues related to capability
allocation adaptation. The work presented
is related to TAPAS (TAPAS = Telematics
Architecture for Play-based Adaptable
Systems). See [3] and the URL:

http://tapas.item.ntnu.no. The issues pre-
sented are:
I. Service framework and service com-

ponent models
II. Autonomous capability allocation

adaptation models
III. Autonomous parameter production for

autonomous capability allocation
adaptation models

The main contribution of this paper,
however, is Issue III. Issue I is presented in
Section 2 -3. TAPAS service framework
has a computing and a service functionality
dimension. The motivation for this separa-
tion as well as core QoS-related concepts
are presented. The computing architecture
is based on a theatre metaphor. An actor
playing a role is either an Extended Finite
State Machines (EFSM) or a Reasoning
Machines (RM). Generic EFSM and RM
models are presented in Section 3

Capability allocation adaptation models
are presented in Section 4. Issue III is pre-
sented in Section 5 and 6. Related works
are presented in Section 7, while Section 8
gives Summary and Conclusions.

2. Service Framework

2. 1 General

The motivation for and objectives of
the TAPAS service framework are pre-
sented in [4]. The service framework in-
tends to meet general and core functional
adaptability properties. The core functional
adaptability properties are i) rearrangement
flexibility, ii) failure robustness, and iii)
resource load awareness and control

The TAPAS service framework has
a computing architecture dimension and a
functionality architecture dimension. The
service architecture shows the structure of
services, i.e. application and management
services. The service architecture, howev-

Paper H

205

er, has focus on functionality independent
of implementation,

The computing architecture is a ge-
neric architecture for the specification and
execution of any service. The computing
architecture has focus on the modeling of
functionality with respect to implementa-
tion, but independent of the nature of the
service functionality. The properties of the
computing architecture are the fundament
for the creation of services with needed
core functional adaptability properties as
defined above.

2.2 QoS-related concepts

Capability and capability performance
was defined in section 1. Additional QoS-
related concepts are:
• Service Performance
• Service Level Agreements
Service performance measures are per-

formance concepts related to the service
provided to the service user. The service
performance measures comprise i) service
system state measures and ii) service sys-
tem QoS measures, i.e. traffic and depen-
dability measures.

Service level agreements (SLA) are
agreements between the service users and
the service provider. The agreement can
contain elements such as: required capabil-
ities, required capability performance, re-
quired service performance, payment for
the service when the agreed QoS is offered
and payment for the service in case of re-
duced QoS. SLAs can further be catego-
rized in classes, which represent distinc-
tive service functionalities and perfor-
mance requirements for a group of users
with the same degree of satisfaction and
cost.

2.3 The computing architecture

2.3.1 The theatre metaphor

The computing architecture is
founded on a theatre metaphor. Actors per-
form roles according to manuscripts. Ac-
tors are software components in the nodes
that can download manuscripts defining
the roles to be played. An actor will consti-
tute a role figure by behaving according to
a manuscript. A play consists of several
actors playing different roles, each possi-
bly having different requirements on capa-
bilities.

2.3.2 Computing architecture viewpoints

The computing architecture is illu-
strated in Figure 1. For simplicity, the
service user and service level agreements
(SLA) are not included in the figure.

Figure 1 - TAPAS Computing Architecture

The architecture has three views: the
service view, play view and physical view.
The service view considers the service as
constituted by conceptual service compo-
nents. The leaf conceptual service compo-
nents are constituted by role figures which
are implemented by actors. The actors are
executed as operating system software
components in nodes, which are physical
processing units such as servers, routers,
switches and user terminals.

The three view model is not to be
confused with a layered service model. A

206

service system and its service components
have models and model parameters related
to the service view, play view and physical
view. Capability and capability perfor-
mance measures defined in the physical
view, however, can be visible in the play
view as well as the service view. The ser-
vice performance measures and SLA de-
fined in the service view are also visible in
the play view. This is not explicitly illu-
strated in Figure 1.

The core platform is a platform support-
ing the execution of service functionality
based on the computing architecture func-
tionality.

2.3.3 Actor, role figure and service com-
ponent types

An actor can be an extended finites
state machine (EFSM) or reasoning ma-
chine (RM). Actors are able to download
and execute EFSM- and RM-based manu-
scripts. Networked services are traditional-
ly based on EFSM-based specification and
execution. RM makes policy-based speci-
fication and operation possible. Policy-
based software has a specification style,
which is expressive and flexible.

In accordance with actor types there are
also two types of role figures: i) EFSM-
based role figures and ii) RM-based role
figures. The EFSM-based role figure is
constituted by an EFSM actor. The RM-
based role figure is constituted by the
combination of an EFSM actor and an RM
actor.

Likewise, service components consti-
tuted by EFSM-based and RM-based role
figurers are denoted as EFSM-based and
RM-based service components, respective-
ly. EFSM-based service components will
have requirements with respect to capabili-
ty and service performance to be able to
perform their intended functionality (Fig-
ure 2). These requirements are denoted as
required capability and service perfor-

mance. The capability and service per-
formance of an executing service system
are denoted as inherent capability and ser-
vice performance. System performance is
defined as the sum of capability perfor-
mance and service performance.

Figure 2 - EFSM-based part of service system

3. Service Component Models

3.1 General

This section presents service compo-
nent models. Section 3.1 presents generic
EFSM and RM models. Section 3.2
presents the reasoning procedure applied
by reasoning-based service components.
The following concepts are defined:

Θ Service level agreement
Ψ Service offering priority
Φ Agreed offered functionality of ser-

vice component
Γ Agreed performance
Λ Payment in case of agreed perfor-

mance,
Λ′ Payment in case of reduced perfor-

mance
Λ′′ Penalties when the SLA is broken;

e.g. forced disconnection and ex-
ceeded waiting time

IΔ(t) Income function during a time inter-
val (t, t+Δ) as seen from the service
provider; this function will depend
on the system performance and
SLAs

JΔ(t) Cost functions set of physical nodes
and capabilities during a time inter-
val (t, t+Δ).

Paper H

207

E Functionality set of an EFSM-based
type

Ê Functionality set of an EFSM based
instance

R Functionality set of an RM-based
type

R̂ Functionality set of a RM-based in-
stance

S Service performance measure set
ŜR Required service performance set
ŜI Inherent service performance set
C Capability performance measure set
ĈR Required capability performance set
ĈI Inherent capability performance set

of all nodes
ĈA Set of available unallocated capabili-

ties in nodes
An SLA for a QoS class q “Θq” is

defined as:
Θq ≡ { Ψq, Φq, Γq, Λq, Λq′ } (3a)

The element I is the total income of
the service system during a time interval
between t and t + Δ, which can be calcu-
lated from the following equation:

 IΔ(t) ≡

(() () - ()) J ()
Q

q q q q q q
q

n t n t n tt Δ′ ′′ ′ ′′′ ′′Λ + Λ Λ −∑ (3b)

where Q is the number of QoS classes,
nq is the number of service users in the
QoS class q, nq′ is the number of service
users in the QoS class q having the agreed
performance, nq′′ is the number of service
users in the QoS class q having the re-
duced performance, nq′′′ is the number of
service users in the QoS class q experienc-
ing broken SLA (nq = nq′ + nq′′ + nq′′′).

The formalism for the specification of
the agreed functionality Φ is not consi-
dered in this paper. The agreed offered
functionality is within the service system

specified and implemented by EFSMs and
RMs to be defined in following subsection.

3.2 EFSM and RM models

A generic EFSM-based actor type E is
defined (≡) as:

E ≡ { SM, SI, V, P, M(P), O(P), FS,

FO, FV }, (3c)

where SM is the set of states, SI is the
initial state, V is a set of variables, P is a
set of parameters, M(P) is a set of input
signal with parameters, O(P) is a set of
output signal with parameters, FS is the
state transition function (FS = SM x M(P)
x V), FO is the output function, (FO = SM
x M(P) x V) and FV are the functions and
tasks performed during a specific state
transition such as computation on local
data, communication initialization, data-
base access, etc.

A generic RM-based actor type R is de-
fined (≡) as:
R ≡ { Q, F, P, T, Σ, E, } (3d)
P ≡ { X, A }, (3e)

where Q is the set of transformation
clauses, F is a generic reasoning proce-
dure, P is a policy system which consists
of a set of rules X and a set of actions A.
The quantities T, Σ and E are system con-
straints, reasoning conditions and facts
respectively. Σ consists of trigger condi-
tions ΣT and goal conditions ΣG. The set
{T, Σ} of constraints and reasoning condi-
tions are defined as the parameters of the
reasoning machine.

The reasoning procedure is the proce-
dure applied by RM to select the appropri-
ate rules and actions. RM functionality is
activated when a ΣT is detected until a ΣG
is reached. When a trigger condition is
true, the reasoning procedure transforms
Qi to Qj by using P to match the system
constraints T against the facts E and a set

208

of suggest actions {Ai, Aj, Ak… } ⊆ A.
The constraints, rules and actions can have
variables. The result of the reasoning can,
in addition to actions, give instantiated va-
riables. The reasoning procedure is ex-
plained more thoroughly in the following
section 3.3.

An RM will need support for the conti-
nuous updating of T , E and Σ, and for its
activation and deactivation. T, E and Σ are
considered as common data for the sup-
porting functionality and the RM.

3.3 Reasoning procedure

The reasoning procedure as defined
above is based on Equivalent Transforma-
tion (ET) [5], which solves a given prob-
lem by transforming it through repetitive
application of (semantically) equivalent
transformation rules. Let P be a program
which models an application for a know-
ledge base and Q1 is an initial transforma-
tion clause containing problems.

The semantics of P ∪ Q1 is denoted as
M(P ∪ Q1). ET paradigm applies ET
rules (procedural rewriting rules) in order
to successively transform P ∪ Q1 into P
∪ Q2, P ∪ Q3, etc., while maintaining the
condition M (P ∪ Q1) = M (P ∪ Q2) =
M (P ∪ Q3) = …. Precisely, P ∪ Q1 is
successively transformed until it becomes
P ∪ Qn, where the final transformation
clause Qn contains the list of suggested
actions for the problem described by Q1.

ET consists of sets of ET rules and ET
clauses defined as follows:

ET clause: Head ←⎯⎯ Body

ET rule: Head, Conditions ⎯⎯→ Body

Head consists of one head atom, Body
consists of body atoms and Conditions
consists of condition atoms. A problem
must be formulated as an ET clause. A
rule of a policy as defined in Section 4.3 is

modeled by an ET rule. The head atom is
initially HQ1. The Head will eventually
contain HQn if all the body atoms in the
Body can be derived by rules. A body
atom of a clause matching the head atom
of a rule can be transformed into the rule’s
body atoms.

The reasoning procedure begins with a
transformation clause formulated as fol-
lows:

Q1: HQ1 ←⎯⎯ HQ1 (3f)

The meaning of (3f) is that the Head
HQ1 is true when the Body HQ1 is true. The
goal of the reasoning procedure is to trans-
form (3f) until no body atom is left. Con-
sider the following rule (3g):

Head , Conditions ⎯⎯→E T B1, B2, … Bn. (3g)

The rule (3g) can transform the body
atom HQ1 of (3f) into B1, B2, … Bn, pro-
vided that the body atom HQ1 in (3f) can
match the Head in (3g) and Conditions are
not violated. Then, clause (3f) will be
transformed by (3g) to (3h) as follow:

Q2: HQ2 ←⎯⎯ B1′, B2′, … Bn′. (3h)

During the transformation, variables in
HQ1… HQn and the list of suggested ac-
tions, which are a subset of the actions A
as defined in (3e), will be instantiated. The
transformation of a transformation clause
ends when either 1) no body atom of the
clause is left or 2) no rule can transform
the remaining body atoms of the clause.

3.4 Functionality domain of reason-
ing machines

The functionality domain of RM-based
service components can be separated into
two cases. In Case I, the RMs of a service
system has no access to system perfor-
mance data of the service system. In this
case, the RM provides an ordinary proce-
dural service only. In Case II, RMs of the

Paper H

209

service system has access to system per-
formance data of the service system and
takes part in the configuration manage-
ment functionality and in close coopera-
tion with one or more EFSMs. For this
case RM can be used as:

A. a procedural reasoning service for ca-
pability initialization and re-
initialization based on capability per-
formance measures

B. a feed-back loop service for capability
allocation adaptation based on capa-
bility and system performance meas-
ures

C. a feed-back loop service for dynamic
change of policies and the parameters
as defined in Sec. 3.2 for the reasoning
machines in case B

A reasoning cluster is an independent
unit with respect to reasoning. It is a col-
lection of EFSM-based service compo-
nents with an associated reasoning system
constituted by one or more RM-based ser-
vice components. A reasoning cluster has
associated:Q, P, T, E and Σ and consider
them as common data among EFSM-based
and RM-based role figures. In addition to
the EFSM-based service components in
the cluster, a reasoning machine has an
associated cooperating EFSM, which will
invoke the reasoning machine. Depending
of the nature of the cluster and the nature
of the reasoning, a dedicated EFSM de-
noted as EΣ can be needed to inspect the
reasoning conditions and to activate the
RMs associated EFSM. Three reasoning
cluster types (A, B and C) corresponding
to the functionality domain cases A-C de-
fined above are illustrated in Figure 5.

In all cluster types, an RM-based capa-
bility manager RCM, gives suggested ac-
tions to an EFSM-based capability manag-
er ECM for managing capabilities.

In the cluster type A, RCM is a proce-
dural service for capability initialization

and re-initialization. Re-initialization is
initiated by EΣ.

The cluster type B, RCM is a part of a
feed-back loop between the application
service system and ECM. An EΣ observes
capability as well as service performance
measures and manages the activation and
deactivation of the capability management
functionality, which is cooperation be-
tween ECM and RCM.

 In the cluster type C, another RM-
based role figure RR manages the policies
and parameters of RCM.

Figure 3 - Reasoning cluster types

4. Capability allocation adaptation

A feedback loop constituting capability
allocation adaptation mechanism generally
defined by (3d) and (3e) is illustrated in
Figure . RCM discussed in the previous
section will now take the role of a capabil-
ity allocation adaptor. When the service
systems enter a triggering reasoning condi-
tion ΣT, RCM will be activated. The rea-
soning procedure is used to suggest a set
of actions A that will lead the system back
to a goal state ΣG. RCM is de-activated
when service systems enter ΣG.

210

The system constraints T and the rea-
soning conditions ΣT, ΣG are defined as
the parameters of the capability allocation
adaptation mechanism. The elements P, T,
ΣT, ΣG, E, X and A for the capability allo-
cation adaptation model will now be ab-
breviated as PCM, TCM, ΣCM,T, ΣCM,G, ECM,
XCM and ACM.

Figure 4 - Capability Allocation Adaptation System

The system constrains, facts and rea-
soning conditions can generally be ex-
pressed as follows:

TCM ≡ ExprT { IΔ(t), JΔ(t),
(ŜR,k, ĈR,k, Lk; k = [1, K]) } (4a)

ΣCM,T, ΣCM,G

≡ ExprΣ{ ŜR,k, ĈR,k; k = [1, K] } (4b)

ECM ≡ {((ŜI,lk, ĈI, lk; l = [1, Lk]), k = [1,

K]), (ĈA,n; n = [1, NNode])} (4c)

TCM is some expression containing the
income and cost functions, and the re-
quired capability and service performance
measures ĈR,k and ŜR,k for K service com-
ponent types. The element ECM contains
the facts for the capability allocation adap-
tation that consists of the set of inherent
capabilities performance measures ĈI,lk,
the set of inherent service performance
measures ŜI,lk for all Lk instances of a ser-
vice component type k as well as the set of
available unallocated capability ĈA,n. The
components constituting ΣCM,G and ΣCM,T
are expressions of the triggering or goal
states consisting of the required capability
and service performance measures ŜR,k and

ĈR,k as given in (4b). The policies PCM,
constituted by XCM and ACM (see (3e), de-
pend on the needed behavior of the adapt-
able service system.

The policies PCM and parameters TCM
and ΣCM of the capability adaptation mod-
el can be produced. This paper has focus
on the parameters TCM and ΣCM. For the
evaluation and production of PCM, it is re-
ferred to [6].

The parameters TCM and ΣCM are
produced by a parameter producer. The
capability allocation adaptation mechan-
ism illustrated in Figure 4 will be extended
with an RM-based RR applied in the rea-
soning cluster type C in the previous sec-
tion. From now on RR has a role of a pa-
rameter producer.

5. Capability Allocation Model
Parameter Production

5.1 Parameter Production Frame-
work

The framework producing the parame-
ters, i.e. the constraints and reasoning con-
ditions is illustrated in Figure 5. The con-
cepts in Figure 1 within the same level are
grouped as the service system, play system
and actor system respectively.

Figure 5 – Capability allocation adaptation model
parameter production framework

Paper H

211

In Figure 5, the transformations of
SLAs for the various QoS classes to the
system and capability performance re-
quirement models and to the capability al-
location adaptation model parameters as
illustrated by “is transformed by RR to”
arrows are done by the parameter producer
RR. How the parameter producer works is
illustrated in Figure 6. The system and ca-
pability performance requirement models
α and β are the basis for the creation of the
reasoning conditions ΣCM and the system
constraints TCM for capability allocation
adaptation.

System performance requirement model
α specifies the service view requirements
of the various QoS classes consisting of
service performance measures and the pro-
jection of capability performance measures
in the service view. Capability perfor-
mance requirement model β specifies the
physical capability performance measure
requirements resulting from the capability
performance requirements of all QoS
classes. Generic expressions for α and β
can be given as:

αq = Exprα { nq, ŜRq, ĈRq } (5a)

β =
Q

q
∑ Expr β { nq, ĈRq } (5b)

where ŜRq and ĈRq are the total set of
required capability and service perfor-
mance of nq instances of a QoS class q.
The elements $αx ∈ αq and $βx ∈ β are de-
noted as system performance requirement
model elements and capability perfor-
mance requirement model elements re-
spectively. The system performance re-
quirement model elements from different
SLA may belong to a certain type. The
elements with the same type will affect the
same capability performance requirements.
This mechanism allows capabilities to be
shared among different QoS classes.

Figure 6 illustrates the mechanism for
the creation of α, β, TCM and ΣCM from a
given QoS class. The formalism in (3d)
and (3e) are further supplemented with fol-
low:
RR ≡ { QRR, F, PRR , TRR , ERR , ΣRR } (5c)
PRR ≡ { XRR, ARR } (5d)

A parameter producer is an RM-based
role figure that produces α, β, TCM and
ΣCM. The parameters TCM and ΣCM will be
used for the capability allocation adapta-
tion. The element QRR is the set of trans-
formation clauses and variables that will 1)
take an SLA as the input and produce α
and β as the outputs and 2) take α and β as
the inputs and produce TCM and ΣCM as the
outputs. PRR is the transformation policies
consisting of the set of rules XRR and ac-
tions ARR. The reasoning condition ΣRR
for the parameter producer itself is con-
trolled by timer.

Figure 6 – Capability Allocation Adaptation
Parameter Model Production

The facts ERR are the inherent capability
and service performance measures, which
are feedbacks from the service system be-
ing controlled by capability allocation
adaptation. The formalism of ERR is the
same as ECM given in (4c). During the ini-
tial configuration, the set ERR will contain

212

only available capability performance
measures of nodes (ĈA,n, n = [1, NNode]).

The system constraints TRR containing
the expression of SLAs, income functions,
system and capability performance re-
quirement models is defined as

TRR ≡ Expr{ Θ, IΔ(t), JΔ(t), α, β } (5e)

The rules XRR for the production of α,
β, TCM and ΣCM are presented in the fol-
lowing Section.

5.2 Rules for parameter production

XRR consists of six rules. Rules X1 and
X2 are for the production of α. Rules X3
and X4 are for the production of β. Rules
X5 and X6 are for the production of TCM
and ΣCM respectively.

The structure of X1 and X6 follows the
ET structure defined in 3.3. Variables in
the rules prefixed with the $ sign presents
the inputs, outputs as well as intermediate
transformation variables.

5.2.1 Production of α

The generic rules X1, X2 ∈ XRR for
transforming an SLA $Θq to a system per-
formance requirement model $αq can be
given as follow.
X1 ($Θq,$Φq ~ $αq)→

B1.1: subset($E, $Φq),
B1.2: X2($Θq, $E ~ $αqi),
B1.3: $αq = $αqi ∪ $αqj,
B1.4: X1($Θq, $Φ - $E ~ $αqj). (5f)

X2 ($Θq, $E~ $αqi)→
B2.1: $ĈRq =dim1($Γq ,$E, IΔ(t), ERR, nq),
B2.2: $ŜR q = dim2($Γq ,$E, IΔ(t), ERR, nq),
B2.3: $αi = { $αx | $αx ∈ $ŜRq, $ĈRq }. (5g)

Rule X1

• X1 ($Θq, $Φq ~ $αq) means that an SLA $Θq
with the functionality Φq can be trans-
formed to $αq based on the calculation
in the body atom B1.1, B1.2, B1.3 and B1.4.

• B1.1: subset($E, Φq) looks for a service
component $E, which has offering
functionalities as a subset of SLA’s
agreed functionality ($Φq).

• B1.2: X2($Θq, $E ~ $αqi) calls rule X2 to
determine a partial system perfor-
mance requirement model $αqi of an
$E, which is the result of subset($E, Φq).

• B1.3: X1 ($Θq, $Φq - $E ~ $αj) call X1 again to
find another partial system perfor-
mance requirement model $αqj for the
rest of the agreed functionality ($Φq - $E).

• B1.4: $αq = $αqi ∪ $αqj gives the system per-
formance requirement model $αq which
is the union of the partial sets $αqi and
$αqj.

Rule X2

• X2 ($Θq, $Φq ~ $αqi) means that an SLA $Θq
with the functionality Φ can be trans-
formed to a partial system perfor-
mance requirement set $αqi based on
the calculation in the body atoms B1.1,
B1.2, B1.3 and B1.4.

• B2.1: dim1($Γq, $E, IΔ(t), ERR, nq) ∈ ARR is a
dimensioning function that determines
the capacity of the required capability
performance measures of a service
component $E based the agreed per-
formance $Γq of an SLA class $Θq, the
income function IΔ(t), the fact ERR and
the expected number of users nq.

• Likewise, B2.2: dim2($Γq, $E, IΔ(t), ERR, nq)
∈ ARR is a dimensioning function that
determines the capacity of the re-
quired service performance measures
of a service component $E.

• B2.3: $αqi = { $αx | $αx ∈ $ŜRq, $ĈRq } com-
bines service and capability perfor-
mance measure elements $αx (from $ŜRq
and $ĈRq) as a partial system perfor-
mance requirement model set $αiq.

5.2.2 Production of β

The generic rules X3, X4 ∈ XRR for
transforming system performance re-
quirement models $αq; q = [1, Q], into a ca-
pability performance requirement model $β
can be given as follow.
X3 ($α ~ $β) → B3.1: $αx1 ∈ $α1, $αx2 ∈ $α2,

$αx3 ∈ $α3 ...

Paper H

213

where type($αx1) = type($αx2) =
type($αx2) …,
B3.2: $αx = $αx1 + $αx2 + $αx3,
B3.3: X4($αx, $βi),
B3.4: $β = $βi ∪ $βj,
B3.5: X3($α - {$αx}, $βj). (5h)

X4 ($αx ~ $βi)→ B4.1: $βi = dim3($αx, IΔ(t), JΔ(t),
ERR). (5i)

Rule X3

• The meaning of X3($α ~ $β) is that the
system performance requirement
model $α consisting of $αq; q = [1, Q], can
be transformed to $β based on the cal-
culation in the body atoms B3.1, B3.2,
B3.3 and B3.4.

• Let $αx1, $αx2, $αx3,… be a system per-
formance requirement model element
from different SLA. B3.1: $αx1 ∈ $α1, $αx2
∈ $α2, $αx3 ∈ $α3 ... gets $αx1, $αx2, $αx3,…
elements from the system performance
requirement models belonging to the
same type (type($αx1) = type($αx2) = type($αx2)…).

• B3.2: $αx = $αx1 + $αx2 + $αx3 combines the
system performance requirement
model elements with the same type in-
to $αx, which is an intermediate system
performance requirement model ele-
ment of type x.

• B3.3: X4($αx, $βi) calls rule X4 to find a
partial capability performance re-
quirement set $βi.

• B3.4: X3($α - {$αx}, $βj) calls X3 again to
find another partial $βj for the rest of
the capability and service performance
measures ($α - {$αx}).

• B3.5: $β = $βi ∪ $βj combines the partial
$βi and $βj as the capability perfor-
mance requirement model $β.

Rule X4.
• X4($αx ~ $βi) means that $αx, which is an

intermediate system performance re-
quirement model element of type x,
can be transformed to a partial capa-
bility performance requirement model
$βi based on the calculation in the body
atom B4.1.

• B4.1: The atoms dim3($αx, IΔ(t), JΔ(t), ERR) ∈
ARR is a dimensioning function that

determines the capacity of the re-
quired physical performance measures
constituting $βi based on the given
service performance requirement ele-
ment $αx, the income function IΔ(t), the
cost of physical capabilities JΔ(t) as
well as the available physical capabili-
ties facts in ERR.

5.2.3 Production of TCM

The generic rules X5 ∈ XRR for produc-
ing TCM from α and β can be given as
X5 ({$Θq; q = [1,Q] } ~ $T)→

B5.1: $Θi ∈ {$Θq; q = [1,Q] }
B5.2: $Ti = $αi ,
B5.3: $T = $Ti ∪ $Tj ∪ $β,
B5.4: X5 ($Θ2, $Tj). (5j)

where $αi is the system performance re-
quirement models of an SLA $Θi and $Θ2 =
{$Θq; q = [1,Q] } –{$Θi}.
Rule X5
• X5 ({$Θq; q = [1,Q] } ~ $T) means that the list

of SLA {$Θi, $Θj… } can be transformed
to $T based the calculation in the body
atoms B5.1, B5.2, B5.3 and B5.4.

• B5.1: $Θi ∈ {$Θq; q = [1,Q] } gets an SLA $Θi
from the list of SLA classes.

• B5.2: $Ti = $αi creates a partial system
constraint set $Ti as the SLA’s asso-
ciated system performance requirement
models $αi.

• B5.3: $T = $Ti ∪ $Tj ∪ $β combines the

partial system constraint sets $Ti and $Tj

and the capability performance re-
quirement measure $β as the system
constraints set $T.

• B5.4: X5 ({$Θj… }, $Tj) calls X5 again to get
the parameter T of the rest of SLAs.

5.2.4 Production of ΣCM

Two types of reasoning conditions are
considered: initial reasoning conditions
and adapted reasoning conditions. The ini-
tial reasoning conditions are an ordered
list of both system performance require-

214

ment model elements αx ∈ α and capability
performance requirement model elements
βx ∈ β of all SLA. Similar to TCM produc-
tion, the rules for producing the initial
triggering reasoning conditions from α and
β is given as follow:
X6 («$Θi, $Θj… » ~ $ΣCM,T)→
B6.1: $Θi ∈ «$Θ1, $Θ2… »
B6.2: $ΣCM,Ti = {!$αx | $αx ∈ $αi * },
B6.3: $ΣCM,T = $ΣCM,Ti ⊕ $ΣCM,Tj ⊕ {!$βx | $βx ∈
$β* },
B6.4: X5 («$Θ2… », $ΣCM,Tj). (5k)

The set {…} and the set operation ∪ in
X5 are replaced with an ordered list « … »
and a list concatenation operation ⊕. This
means that the capability allocation adap-
tation takes conditions with more priority
(specified by SLA) before the conditions
with less priority.

The system and capability performance
measures $αi* and $β* are the subset of $αi

and $β and contain only elements marked
for reasoning conditions. {!$αx | $αx ∈ $αi* }
and {!$βx | $βx ∈ $β* } mean each element
of $αi* and $β* will be negated.

This algorithm gives more priority to
$αx than $βx. The reason is because α gene-
rates β and it is likely that when a $βx is
triggered, some $αx will be also triggered.

An initial triggering goal condition is a
negated pair of an initial triggering reason-
ing condition; e.g. an initial triggering rea-
soning condition X > 0 will be transformed
into an initial triggering goal condition X ≤
0.

The examples in the next section con-
sider only the initial triggering and goal
reasoning conditions. However, the initial
triggering and goal reasoning conditions
can also be adapted. The adapted reason-
ing conditions will be observed from the
consequences happening during a capabili-
ty allocation adaptation period; i.e. when
a triggering reasoning condition is fired
until its paired goal condition is found.

During this period, some service perfor-
mance or capability performance will be
observed and will be used as goodness cri-
teria every observation period. Additional
rules can be used to evaluate the goodness
criteria and
• change the order of triggering reason-

ing conditions
• change the paired goal conditions.

6. Application Example

6.1 Scenario overview

A simple service system handling the
capability management for a music video
on-demand service is presented. The capa-
bility allocation adaptation and the capa-
bility allocation adaptation model parame-
ter production will be presented. The in-
tention is to illustrate the use of the para-
meter production framework

The service system is constituted by
one or more media servers (MS) streaming
media files to media players (MP) (Figure
7). There are two SLA classes, premium
and ordinary, and ΘP and ΘO are the ser-
vice level agreements between the service
provider and two groups of users respec-
tively. The SLA quantities for these two
classes are given in Table 1.

The basic EFSM types constituting the
music video application service system are
a media server handler (EMS) and a media

Internet EMP (ΘO)

EMP (ΘP)

 ECM, EΣ, ER,RCM, RR

 EMS

Figure 7 - A music video on-demand service system
Type A Type B Type A Type A

EMP (ΘO)

Paper H

215

player handler (EMP). The EFSM types
constituting a capability configuration
management system are a capability man-
ager (ECM) and an EΣ. According to the
definition of capability configuration man-
agement in Section 0, capability initializa-
tion and re-initialization are not included
in the example. This means that only the
capability allocation adaptation is consi-
dered. ECM is supported by two reasoning
machines RCM and RR. RCM has a role of
the capability allocation adaptor and RR
has a role of the parameter producer. ER is
the RR’s associated EFSM.

Three different streaming throughput
bit-rates (X) are offered: 500Kbps,
800Kbps and 1Mbps. The ordinary client
connection throughput is 500 Kbps (XO).
The premium client connection throughput
can be either 1Mbps (XP) or 800 Kbps
(XP′).

The unit applied for pricing is the price
paid by an ordinary customer for one
second streaming of the rate 500 Kbps.
The payment when under normal operation
for premium and ordinary users is ΛP and
ΛO, respectively. The payment when the
system performance is reduced is ΛP′ and
ΛO′, the penalty when waiting is ΛWP′′ and
ΛWO′′. The penalty function for the discon-
nection of ordinary users is ΛD′′. The total
income function during a monitoring time
interval Δ of the system is IΔ(t).

Table 1 – SLAs for the music video on-demand
service

 Premium
(ΘP)

Ordinary
(ΘO)

Ψ Priority 0 10
Φ Functionality Streaming Streaming

Γ

Streaming throughput 1 Mbps or
800 Kbps

500 Kbps

Maximum waiting
time

0 sec Best effort

Λ Payment when the
system is under nor-
mal operation

2 units 1 units

Λ′ Payment when the
performance is re-

1 units 0.5 units

 Premium
(ΘP)

Ordinary
(ΘO)

duced
ΛW′′ Penalty for waiting 10 units 5 units
ΛD′′ Penalty for discon-

nection
- 10 units

6.2 Capability allocation adaptation

The considered required capability for
the EMS role figure is Internet access link.
Two type Nodes are applied for the execu-
tion of EMS. Node type A has maximum
access link capacity CA = 100 Mbps, while
Node type B has maximum access link ca-
pacity CB = 1 Gbps.

The total access link capacity required
(CR,L) will be determined from the number
of users and the set of agreed performance
Γ. CR,L is the summation of the access link
required by the premium users (CR,LP) and
the access link required by the ordinary
users (CR,LO).

When the required access link cannot
be provided, a client may have to wait un-
til some connected MPs have finished us-
ing the service. This will result in money
payback to the waiting clients as illustrated
in Table 1. An ordinary client can be dis-
connected, while a premium client may
have to reduce the throughput. If a client is
disconnected, the service provider pays a
penalty.

The capability allocation rules are 1) to
let the ordinary clients wait and let the
premium clients use the service, 2) to re-
duce the premium clients’ throughput and
3) to increase the number of servers and 4)
to decrease the number of servers.

The mechanism to increase and de-
crease the number of servers, however, is
controlled by two parameters CR,LMin and
CR,LMax. The capability manager cannot re-
duce the number of servers below the
CR,LMin value and cannot increase the num-
ber of servers above the CR,LMax value.

216

The considered inherent capability per-
formance measures ĈI are the MS’s inhe-
rent access link capacity (CI,L).

The considered service performance
measures ŜI are the numbers of currently
connected and waiting premium and ordi-
nary clients (nCon,O, nCon,P, nWait,O, nWait,P),
the number of currently disconnected ordi-
nary clients (nDis,O), the number of MS
(nMS), the current total service time and
waiting time of premium and ordinary
clients (TServ,P, TServ,O, TWait,P, TWait,O).
These values are observed per monitoring
time interval Δ.

The system constraint parameters
{T1…T6 } for the capability allocation
adaptation are the expression of the fol-
lowing service and capability performance
measures:

T1: TWait, P ≤ twp
T2: TWait, O ≤ two
T3: CI, L > CR,LMin
T4: CI, L < CR,LMax
T5: nA = nA-min
T6: nB = nB-min

The value of twp, two, cmin, cmax, nA-min and
nB-min will be calculated from the parameter
production.

The set of actions A applied by the ca-
pability allocation adaptor is:
A ≡ { AD, AB, AI, AR } (6a)

AD (Disconnect-Client) tells MS to dis-
connect suggested MPO. AB (Decrease-
Bit-Rate) tells MS to reduce throughput of
suggested MPP for a certain time period.
AI (Initialize-Server) tells MS to initiate a
new MS of a certain node type, while AR
(Remove-Server) will remove an MS of a
certain node type. The rule set XCM for the
capability manger is:

XCM ≡ { XD, XB, XI, XR } (6b)

XD suggests AD for disconnecting a list
of suggested MPO when !T1 AND ΛWO <
ΛWP.
XB suggests AB for reducing throughput

of a list of suggested MPP when !T2 AND
ΛWO > ΛP - ΛP′.
XI suggests AI for initiating a new MS

when (!T1 AND !T2 AND T4 AND
XP×NWait,P + XO×NWait,O > 0.1 × CI,L) OR
(!T1 AND !T2 AND T4 AND (!T5 OR !T6)).
XR suggests AR for removing an MS

when T1 AND T2 AND T3
AND XP×NCon,P + XO×NCon,O < 0.8 ×
CI,L.

The symbols !, AND and OR are the
logical operators not, and and or respec-
tively.

Note that the number of MPO to be dis-
connected by XD is calculated by
NWait,P×XP,1Mbps / XO. In XB, the number of
MPP to decrease the bandwidth is calcu-
lated by NWait,O×XO / (XP - XP′).

6.3 Parameter production

6.3.1 System performance requirement
model

The dimensioning functions dim1 will be
further specified as
function dim1($Θ.Γ,$E, IΔ(t), ERR, nq) {
 if ($Θ == ΘP) { // Premium case

 $TWait,P = ΨP×1000;
 return(TWait,P ≤ $TWait,P*);
 } else { // Ordinary case
 $TWait,O = ΨO×1000;
 return(TWait,O ≤ $TWait,O*);
 }
} (6c)

The outputs of dim1 are the total waiting
time of the premium and ordinary clients
(TWait,P and TWait,O). According to Table 1,
TWait,P will always be less than zero while
TWait,O will be much larger value. These

Paper H

217

expressions are both marked for
representing reasoning conditions.

The expected number of concurrent
streaming premium and ordinary users are
respectively nqP and nqO calculated from
the mean number of users within the last
20 monitoring time interval (t-20Δ, t). The
dimensioning functions dim2 will be further
specified as
function dim2($Γ,$E, IΔ(t), E, nq) {

 if ($Θ == ΘP) { // Premium case
 if (JΔ(t) ≥ i1) { // Cost is normal
 $CR,LP = XP × nqP; // Normal performance
 } else { // Cost is too high

 $CR,LP = XP′ × nqP; // Reduced performance

 }

 return (CR,LO > $CR,LO);// Return T

 } else { // Ordinary case

 $CR,LO = XO × nqO; // Normal performance

 return (CR,LP > $CR,LP); // Return T

 }

} (6d)

The outputs of dim2 are the total capacity
required for the premium and ordinary
clients (CR,LP and CR,LO). IΔ(t) ≥ i1 means
the system has the total income equal or
more than i1, IΔ(t) < i1 means the system
has the total income less than i1. Suppose
IΔ(t) ≥ i1, the system performance require-
ment model αP and αO of the QoS classes
ΘP and ΘO can be transformed by X1 and
X2 as

α P = { TWait,P ≤ 0*, CR,LP > XP × nqP } (6e)
α O = { TWait,O ≤ 10,000* , CR,LO > XO× nqO }
 (6f)

6.3.2 Capability performance requirement
model

The required access link capacity CR,L
are considered. nA and nB are the number
of instances of node type A and B for the
execution of EMS according to CR,L.

The dimensioning function dim3($α, IΔ(t),

JΔ(t), ERR) will be further specified for the
scenarios as

function dim3($α, IΔ(t), JΔ(t), ERR) {
if (J < i2) {

 $nB = ⎡L(CR,LP + CR,LO) / CB⎤;

 $nA = ⎡⎨L(CR,LP + CR,LO) – (nB× CB)⎬ / CA⎤;
} else {

 $nA= ⎡L(CR,LP + CR,LO) / CA ⎤;

 $nB= ⎡⎨L(CR,LP + CR,LO) – (nA× CA)⎬/ CB⎤;
}
$CR, LMax = L(CR,LP + CR,LO) × 1.2;
$CR, LMin = L(CR,LP + CR,LO) × 0.8;
return(nA = $nA, nB = $nB, CI,L < $CR, LMax,

CI,L > $CR, LMin);
} (6g)

where L() function determines the low-
er bound of the required link capacity LR
(e.g., L(CR,LP + CR,LO > 5) = 5), ⎡ ⎤ is the
always round up function (e.g., ⎡0.1⎤ = 1),
⎨⎬ function gives zero when the argument
is less than zero (e.g., ⎨-5⎬ = 0) and the
unit is in Gbps.

The dim3 function gives more priority to
the node type B whenever the cost of node
type B (JB) is less than i2. On the other
hand, it gives more priority to Node Type
A when JA ≥ i2. The minimum and maxi-
mum values of CR,L (CR, LMin and CR,LMax)
are 20% less and more than the estimated
capacity L(CR,LP + CR,LO).

Assume that CR,LP + CR,LO > 1,000
Mbps and the cost of server type B is less
than < i2, the capability performance re-
quirement model β can be transformed by
X3 and X4 as { nA = 1, nB = 1, CI,L < 800
Mbps, CI,L > 1200 Mbps}. Note that nA
and nB are only the suggested numbers of
node type A and B. It is allowed to have
the number of nA and nB increased if
needed. This will be determined by CR, LMin
and CR, LMax.

218

6.3.3 The system constraints T

The performance requirements αO, αP
and β will be transformed to the system
constraints set T by (5j) as

{
 T1: TWait,P ≤ 0,
 T2: TWait,O ≤ 10,000,
 T3: LI > 800,
 T4: LI < 1200,
 T5: NA = 1,
 T6: NB = 1
}.

The reasoning conditions

The initial triggering reasoning condi-
tions ΣT will be transformed by (5k) as

«
 ΣT1: TWait,P > 0,
 ΣT2: TWait,O > 10,000,
».

And the paired initial reasoning goal
condition ΣG will be set as

«
 ΣG1: TWait,P ≤ 0,
 ΣG2: TWait,O ≤ 10,000,
».

As mentioned earlier, ΣT and ΣG will
not be re-composed during the experimen-
tal simulation in the next section.

6.4 Results

The following results are aimed to
compare the performance of the capability
allocation adaptation with two parameter
production cases. The first case is denoted
as dynamic parameters where the parame-
ters will always re-produced at run-time
and the second case is denoted as static
parameters where the parameters will be
produced only once and will not be
changed during run-time. The static para-

meter case has pre-defined initial parame-
ters as given in 0 and 0.

The MP arrivals are modeled as a Pois-
son process with parameter λQoS_Class. The
duration of streaming connections
dQoS_Class is constant. The quantity ρ =
((λO×dO×XO) + (λP×dP×XP))/CI,AL is the
traffic offered to the MS access links. The
MPP arrival intensity is 15% of the total
arrival intensity. The duration of streaming
connections are set to 10 minutes, while
the monitoring interval Δ is set to 1
minute. MPs stop waiting after 10 minutes.
The income and penalty functions in units
are given in Table 1.The cost for using an
extra MS (JA and JB) can be either static
(JA-static = 800 units/s per Node and and JB-

static = 1600 units/s per Node) or variable as
a function of time. The time with both val-
ues of JA and JB are at the same level is
denoted as a J period.

Two additional scenarios are consi-
dered. The first scenario is the comparison
of the total income when the system is op-
erated by either static parameters or dy-
namic parameters when the value of ρ va-
ries as a function of time while JA and JB
are constant. In the second scenario, the
value of ρ is constant while the values of
JA and JB vary.

Figure 9 illustrates the accumulated to-
tal income of the first scenario. The time
with ρ at a static level is denoted as the ρ
period. The dashed line shows the varia-
tion of ρ, which can take the values 1, 0.5,
2 and 1.5 times of ρ = 1.44. The ρ period is
10×dQoS_Class. The dynamic parameter case
gives relatively better results. The static
parameter case seems to need some learn-
ing time to fine tune the appropriate num-
ber of servers parameter at the beginning
of each ρ period while in the dynamic case,
this parameter is re-calculated.

Paper H

219

Figure 9 - the accumulated total income for
dynamic traffic (ρ is varied)

Figure 10 illustrates the accumulated to-
tal income of the second scenario. The dot-
ted line shows the variations of cost of the
node type A and B (JA and JB), which are
independent of each other. The dynamic
parameter case has relatively less cost due
to the ability to switch to cheaper combi-
nations of node types when the cost func-
tions are varied.

Figure 10 - the accumulated total income for
variable cost (J is varied)

7. Related Work

The management of SLA and service
performance in adaptable service systems
has recently been addressed. Not only the
adaptable service system can adapt to
changes, the adaptable service system
should also be able to satisfy the users as
agreed on the SLA as well as maximize its
performance. However, the work so far
usually deals with either algorithms in the

physical layer [7, 8] or the management of
SLA and service performance measures
between OSI layers [9]. The transforma-
tion of SLA and service performance
measures between conceptual levels has
not really been the main focus.

However, the architecture in [10] shares
the same vision of transforming high-level
policy-based SLA into required capability
performance in the physical level as well
as the reasoning conditions to trigger the
QoS manager for the resource adaptation.
Unlike our architecture, the service confi-
guration in [10], does not facilitate feed-
back loops that can dynamically changes
allocation adaptation model parameters
upon changing capability, service perfor-
mance and income functions.

The work in [11] proposes a dynamic
Internet pricing model based on a QoS ar-
chitecture that is aimed to minimize net-
work congestion as well as maximum the
total income of the system. However, the
methods used are slightly different from
ours. The model in [11] charges users dy-
namically based on real usage as well as
their willingness to pay while our architec-
ture has penalty functions for the calcula-
tion of compensation when the SLA can-
not be satisfied.

8. Conclusion

A capability allocation adaptation mod-
el parameter production framework for
service configuration and QoS manage-
ment of adaptable service systems has
been presented. The framework handles
QoS at three abstraction levels: the service,
the play and the physical level. A service
level agreement (SLA) class defines
agreed service functionality, performance
and payment for a group of service users
with the same degree of satisfactions and
cost. Service performances and capability
performance requirement models describe

220

the projection of the agreed service func-
tionality and performance in the service
and physical level. Policies have been in-
troduced to increase flexibility and to pro-
vide a basis for optimality in the system
specification and execution. Policies are
used to control the service system accord-
ing to the capability performance require-
ment models. As the main focus of this
paper, the proposed architecture can trans-
form SLA into the service and capability
performance requirement models by using
policies.

Two application cases handling the ca-
pability management of a music video on-
demand service are presented. The inten-
tion is to illustrate the use of the proposed
architecture. Case I uses static parameter
while Case II uses dynamic parameters in
the capability allocation adaptation. The
use of dynamic parameters can be superior
or equal to the use of static parameters. In
the static parameters case, a set of capabili-
ty adaptation model parameters may not
likely be optimal for other system traffic
load cases or cost functions. The produc-
tion of capability adaptation model para-
meters can result optimal dimensioning.

The proposed architecture can also be a
flexible tool for the experimentation with
the parameters of capability allocation
models with respect to optimization.

References

[1] P. Horn, "Autonomic Computing: IBMs Pers-
pective on the State of Information Technolo-
gy."

[2] FET, "Autonomic Communication Forums,"
2007.

[3] F. A. Aagesen, P. Supadulchai, C. Anutariya,
and M. M. Shiaa, "Configuration Management
for an Adaptable Service System," in IFIP
MAN, Ho Chi Minh City, Viet Nam, 2005.

[4] F. A. Aagesen, B. E. Helvik, U. Johansen, and
H. Meling, "Plug and Play for Telecommuni-
cation Functionality -- Architecture and Dem-
onstration Issues," in The International Confe-
rence on Information Technology for the New
Millennium (IConIT), Thammasat University,
Bangkok, Thailand, 2001.

[5] K. Akama, T. Shimitsu, and E. Miyamoto,
"Solving Problems by Equivalent Transforma-
tion of Declarative Programs," Journal of the
Japanese Society of Artificial Intelligence,
vol. 13, pp. 944-952, 1998.

[6] P. Supadulchai and F. A. Aagesen, "Policy-
based Adaptable Service Systems Architec-
ture," in AINA-07, Niagara Falls, Canada,
2007.

[7] L. Chen and W. Heinzelman, "Network archi-
tecture to support QoS in mobile ad hoc net-
works," in The 2004 IEEE International Con-
ference on Multimedia and Expo, 2004
(ICME '04), 2004, pp. 1715 - 1718.

[8] E. Bouillet and D. Mitra, "The Structure and
Management of Service Level Agreements in
Networks," IEEE Journal on Selected Areas in
Communications, vol. 20, pp. 691-699, 2002.

[9] A. Iwata and N. Fujita, "A hierarchical multi-
layer QoS routing system with dynamic SLA
management," IEEE Journal on Selected
Areas in Communications, vol. 8, pp. 2603 -
2616, 2000.

[10] M. Ditze and T. Bresser, "Resource adaptation
for audio-visual devices in the UPnP QoS ar-
chitecture," in The 20th International Confe-
rence on Advanced Information Networking
and Applications (AINA 2006), 2006.

[11] D. A. Vivanco, R. Q. Kemp, and A. P. Jaya-
sumana, "Effectiveness of Internet Pricing
Models over a QoS Architecture," in Proceed-
ings. 28th Annual IEEE International Confe-
rence on Local Computer Networks (LCN
'03), 2003, pp. 301-302.

221

Report I

NxET Reasoning Engine
Paramai Supadulchai

Plug-and-play Technical Report, Department of Telematics, NTNU

ISSN 1500-3868

 Report I

223

NxET Reasoning Engine

Paramai Supadulchai

paramai@item.ntnu.no

Abstract

Native XML Equivalent Transformation (NxET) is an XML-based imple-
mentation of the ET paradigm (ET = Equivalent Transformation). NxET is de-
signed for simplicity, modularity, extensibility, mobility and performance and
can be used as a reasoning machine in various application domains. NxET has
been used as supplemented reasoning functionality for the adaptable service
systems based on TAPAS. This article focuses on NxET’s computing paradigm,
actor model, data model, and NxET implementation and usages. NxET’s com-
puting paradigm consists of a conceptual modeling language and a computation
model. The actor model describes the use of NxET with actors in the TAPAS
computing architecture. The data model describes XML-based data representa-
tions of the conceptual modeling language. The NxET implementation and
usages illustrates NxET system components, processing mechanism and usages.

1. Background and motivation

Native XML Equivalent Transformation is an XML-based implementa-
tion of an ET paradigm (ET = Equivalent Transformation) written totally in Ja-
va. The work started in 2004 and the development of the main reasoning engine
entered the maintenance state the mid of 2005. During this period, the author
was the main developer. At the time the project was started, an implementation
of XML-based ET (henceforward the classic XET) developed at Asian Institute
of Technology [Anu02] had several short-comings.

• It was not designed for distributed or multi-agents systems. As a result, a
configuration management system based on the classic XET must be cen-
tralized.

• Language features of the classic XET were limited and cannot be easily
extended.

• The classic XET was an XML parser/converter that converts XET speci-
fication into ET specification that will be executed by an ET reasoning
engine. The execution result is given back in an ET specification, which

224

will be converted back to XML. The conversion by the classic XET was
not perfect and sometimes led to undesirable results.

NxET is designed based on the following principles.

• Simplicity – The reasoning functionality represented in XML-based re-
presentations can be directly executable by NxET. No further conversion
is needed.

• Modularity – NxET can be used as supplemented reasoning functionality
for an EFSM-based actor. Changing the behavior of an adaptable service
system requires only modification of policies and parameters.

• Extensibility – NxET can be easily extended with new built-in functions
and matching algorithms. NxET’s built-in functions can be created by us-
ing Java Reflection.

• Mobility – NxET can be easily moved and deployed. The executable file
are about 262 kilo-bytes in size and requires no special library besides the
standard Java Runtime Environment (JRE).

• Performance –The NxET ability to process policies, constraints and facts
using its native data structure increases performance of the reasoning,
which also contributes to the overall service configuration performance.

NxET have been used in various application domains for solving problems
that need an expressive data representation and a powerful computation me-
chanism. The application domains include, but are not limited to, adaptable ser-
vice systems [Aag05], [Sup05a], [Sup05b], [Sup07a] and [Sup07b], database
modeling [Bhr07], distributed application modeling [Nac07] and knowledge
and ontology modeling [Rat07]. In present, NxET has been used and under fur-
ther development at Asian Institute of Technology.

NxET has been related to Telematics Architecture for Adaptable Service
Systems (TAPAS) and has been used as a supplemented reasoning functionality
for the adaptable service systems based on TAPAS. This article focuses on
NxET’s computing paradigm, actor model, data model, and NxET implementa-
tion and usages.

NxET’s computing paradigm is denoted as XET computing paradigm and
consists of a conceptual modeling language and a computation model. The actor
model describes the use of NxET with actors in the TAPAS computing architec-
ture. The data model describes XML-based data representations of the concep-
tual modeling language. The NxET implementation and usages illustrates NxET

 Report I

225

system components, processing mechanism and usages. This article does not
provide the TAPAS concepts, TAPAS service functionality architecture as well
as TAPAS computing architecture. The readers should refer the first part of this
thesis.

The rest of this article is structured as follows: Section 2 represents XET
computational paradigm consisting of the conceptual language model and the
computation model. Section 3 presents the actor model. Section 4 dicusses the
data model supported by NxET. Section 5 describes NxET implementation and
usages. Section 6 presents summary and conclusion.

2. XET Computational Paradigm

2.1 Conceptual language model

The conceptual modeling language is based on XML Declarative Descrip-
tion (XDD), which extends ordinary well-form XML elements into XML ex-
pressions by incorporation of variables for an enhancement of expressive power
and representation of implicit information. An XDD description is a set of XDD
clauses, each of which is a formula of the form

XDD clause: H ← B1, …, Bm (1)
where m, n ≥ 0, H and the Bi are head and body atoms. H atom is called the head,
and { B1, …, Bm } the body of the clause. XDD clauses are just data representa-
tion. A computation model is needed. The XET computation model is based on
Equivalent Transformation (ET) [Aka98], which solves a given problem by
transforming it through repetitive application of (semantically) equivalent ET
transformation rules. An XDD clause is modeled by an ET transformation
clause.

The structures of an ET transformation rule and an ET transformation
clause are defined as follows:

ET transformation clause: Head ←⎯⎯ Body (2)

ET transformation rule: Head, Conditions ⎯⎯→ Body (3)

Head consists of one head atom, Body consists of body atoms and Condi-
tions consists of condition atoms. A problem must be formulated as an ET trans-
formation clause. The head atom is initially Qh1. The Head will eventually con-

226

tain Qhn if all the body atoms in the Body can be derived by ET transformation
rules. A body atom of a clause matching the head atom of a rule can be trans-
formed into the transformation rule’s body atoms.

2.2 Computation model

This section briefly describes the ET computation model. It is the proce-
dure for selecting rules to be applied. Let P be a program which models an ap-
plication for a knowledge base and Q1 is an initial ET transformation clause
containing problems.

The semantics of P ∪ Q1 is denoted as M(P ∪ Q1). The ET paradigm
applies ET transformation rules (procedural rewriting rules) in order to succes-
sively transform P ∪ Q1 into P ∪ Q2, P ∪ Q3, etc., while maintaining the
condition M (P ∪ Q1) = M (P ∪ Q2) = M (P ∪ Q3) = …. Precisely, P ∪
Q1 is successively transformed until it becomes P ∪ Qn, where the message Qn

contains the list of suggested actions for the problem, which was described by
Q1.

 The reasoning procedure begins with an ET transformation clause formu-
lated by as follows:

 Qh1 ←⎯⎯ Qh1 (4)

The meaning of (4) is that the Head Qh1 is true when the Body Qh1 is true. The
goal of the reasoning procedure is to transform (4) until no body atom is left.
Consider the following ET transformation rule:

 Head , Conditions ⎯⎯→ B1, B2, … Bn. (5)

The rule (8) can transform the body atom Qh1 of (4) into B1, B2, … Bn, pro-
vided that the body atom Qh1 in (4) can match the Head in (5) and Conditions
are not violated. Then, clause (4) will be transformed by (5) to (6) as follow:

 Qh2 ←⎯⎯ B1′, B2′, … Bn′. (6)

During the transformation, variables in Q1… Qn and the list of suggested
actions, which are a subset of the actions A as defined in (6), will be instan-
tiated. The transformation of an ET transformation clause ends when either 1)
no body atom of the clause is left or 2) no ET transformation rule can transform
the remaining body atoms of the clause.

 Report I

227

The NxET’s implementation of the computation model is denoted as the
reasoning procedure.

3. The Actor Model

The actor role in the TAPAS computing architecture [Aag07] is defined as
an Extended Finite State Machine (EFSM) extended with policies. The mechan-
ism interpreting the manuscript is an EFSM interpreter extended with a reason-
ing functionality. A generic EFSM-based actor type E is defined (≡) as:

E ≡ { SM, SI, V, P, M(P), O(P), FS, FO, FV }, (1)

where SM is the set of states, SI is the initial state, V is a set of variables, P is
a set of parameters, M(P) is a set of input signal with parameters, O(P) is a
set of output signal with parameters, FS is the state transition function (FS = SM
x M(P) x V), FO is the output function, (FO = SM x M(P) x V) and FV are the
functions and tasks performed during a specific state transition such as compu-
tation on local data, communication initialization, database access, etc.

A generic RM-based actor type R is defined (≡) as:

R ≡ { Q, F, P, T, E, Σ } (2)
P ≡ { X, A }, (3)

where Q is a set of transformation clauses, F is a generic reasoning procedure
given in 2.2, P is a policy system which consists of a set of rules X and a set of
actions A. The quantities T, Σ and E are system constraints, reasoning condi-
tions and facts respectively. Σ consists of trigger conditions ΣT and goal con-
ditions ΣG.

RM functionality is activated when a ΣT is detected until a ΣG is reached.
When a trigger condition is true, the reasoning procedure transforms Qi to Qj by
using P to match the system constraints T against the facts E and a set of sug-
gest actions {Ai, Aj, Ak… } ⊆ A. The constraints, rules and actions can have
variables. The result of the reasoning can, in addition to actions, give instan-
tiated variables.

A policy rule is modeled by an ET transformation rule in (3). A transfor-
mation clause is modeled by an ET transformation clause in (2).

228

4. Data model

The XML-based modeling of constraints, reasoning conditions and facts as
well as the XML representation of the ET transformation rule and the ET trans-
formation clauses are given in the this section, which is structured by the types
of supporting data representation in the NxET data model. The data representa-
tion types of NxET can be XML variable, XML expression, XET clause and
XET rule.

4.1 XML Variables

There are possible six disjoint XML variable types listed in Table 1. These
variables can be specialized (or instantiated) into attributes names, element
names, strings, zero or more attribute-value pair(s), one or more XML expres-
sion(s) and parts of XML expressions depending on their types. XML variables
are begin with prefix (Nvar_, Svar_, Pvar_, Evar_, E1var_ and Ivar_) as given
given in Table 1.

Table 1 – XML Variables

Type Meaning and example specializations

N-variable (Nvar_) An element or attribute name; e.g.,

<Nvar_element1>100</Nvar_element1> can be specialized into

<Bandwidth unit=”Mbps”>100</Bandwidth>

S-variable (Svar_) A string; e.g., <Bandwidth unit=”Mbps”>Svar_price</Bandwidth>

can be specialized into <Bandwidth unit=”Mbps”>200</Bandwidth>

P-variable (Pvar_) A set of zero or more attribute-value pairs; e.g., <Bandwidth

Pvar_attrList=”NULL”>100</Bandwidth> can be specialized into

<Bandwidth unit=”Mbps”>100</Bandwidth>

E-variable (Evar_) A sequence or a set of zero or more XML expressions; e.g., <Band-

width>Evar_priceDetails</Bandwidth> can be specialized into

<Bandwidth><Min>20</Min><Max>200</Max>…</Bandwidth>

 Report I

229

Type Meaning and example specializations

E1-variable (E1var_) An XML expression; e.g., <Network>E1var_priceDetails</Network>

can be specialized into <Net-

work><Bandwidth>…</Bandwidth></Network>

I-variable (Ivar_) Parts of XML expressions; e.g.,

<Ivar_X><Bandwidth>100<Bandwidth></Ivar_X> can be specia-

lized into <Node

ID=”1234”>…<Bandwidth>100</Bandwidth>…</Node>

4.1 XML Expression

XML expressions are ordinary XML elements with variables in Table 1.
However, an XML expression is not limited by one type of variable as given in
the examples in Table 1. In fact, an XML expression can contain different types
of variables; e.g. an XML expression <Element Pvar_attrList = ”NULL”> E1var_X
</Network> has both P- and E1-variables.

4.2 XET Clause

An XET clause is the XML-based representation of an ET transformation
clause. The structure of an XET clause is illustrated as follows.

<xet:Clause>

 <xet:Head>…</xet:Head>

 <xet:Body>

 Body atom1, Body atom 2, …

 </xet:Body>

</xet:Rule>

An XET clause has a head and a body. The semantic of the head and body
of the XET clause is the same as the semantic of the ET clause. The head con-
sists of an XML expression. The body consists of several XML expressions,
each of represents a body atom.

4.3 XET Rule

An XET rule is the XML-based representation of an ET transformation
rule. The structure of an XET rule is illustrated as follows.

230

<xet:Rule xet:name="…" xet:priority="…" xet:class="…">

 <xet:Meta>…</xet:Meta>

 <xet:Head>…</xet:Head>

 <xet:Condition>…</xet:Condition>

 <xet:Body>

 Body atom1, Body atom 2, …

 </xet:Body>

</xet:Rule>

An XET rule has a head, a condition and a body. The semantic of the head,
condition and body of an XET rule is the same as the semantic of an ET rule.
The head consists of an XML expression. The condition and body consists of
XML expressions, each represents a condition atom or a body atom. The
xet:Meta contains additional metadata for rules that will be used as additional
processing instructions of the reasoning procedure.

xet:priority attribute specifies the priority of a rule. The priority
represents the order of the rules to process. During the reasoning procedure
NxET engine processes the rule having the most priority first. If the rule’s head
cannot be matched with the targeted body atom of the clause, the rule having
the second most priority will be tried.

5. Implementation and usages

5.1 NxET system components

NxET system components are as follows.

• NxET Parser has a functionality to parse XML documents into XET Java
objects.

• NxET Executor provides the main reasoning procedure and can invoke an
XET Matcher and an XET Built-in manager for supplemented functional-
ity.

• NxET Matcher provides a functionality for matching rules and transfor-
mation clauses. The matching tries all possibility to instantiate XML va-
riables as listed in Table 1.

• NxET Built-in Manager provides the ability to invoke built-in functions.

 Report I

231

• NxET Configuration Manager controls the behavior of NxET Executor,
NxET Parser, NxET Matcher and NxET Built-in Manager based on the
NxET configuration.

• NxET Data Entities consists of facts, constraints, policies and transforma-
tion clauses repository. Each repository stores relevant Java objects.

• NxET Built-in Database provides a database for storing NxET built-in
functions.

5.2 NxET processing mechanism

The NxET system components and the processing mechanism are illu-
strated in Figure 1. Facts, policies, constraints, NxET configuration and an ini-
tial transformation clause in form of XML will be parsed and transformed into
NxET Java objects by an NxET Parser. The Java objects will be kept separately
in their own repository. An NxET executor fetches an initial transformation
clause from the transformation clause repository and uses the reasoning proce-
dure to select a transformation rule to apply. The matching of a transformation
clause’s body atom and rules’ head atom is done by an NxET Matcher. The se-
lected rule may refer to some constraints as well as some built-in functions. The
NxET Executor will ask an NxET Built-in Manager to process the built-in func-
tions and retrieve the constraints. An NxET Built-in Manager’s built-in function
is specified by a Java class, which extends the Builtin abstract class and instan-
tiated by the Java reflection mechanism. [Kan06c] describes how to add an
NxET Built-in function.

232

Figure 1 – NxET system components and processing mechanism

New clauses can be obtained as the result of a built-in function execution.
The NxET executor will store the obtained clauses on the transformation clause
repository. A new transformation clause will be processed by the NxET Execu-
tor when the present transformation clause processing has been finished.

When all clauses are processed, the NxET Executor sends the final clauses
to the NxET Parser, which will transform the final Java object-based transfor-
mation clauses back into XML documents. The number of final transformation
clauses indicates the number of answers derived by NxET.

NxET Configuration is used by an NxET configuration manager to control the
behavior of the NxET Executor, NxET Matcher and NxET Built-in Manager.

5.3 NxET Usages

Generally, there are three ways to use NxET: 1) use NxET as a standalone
Java application, 2) invoke NxET as a procedural call service within a Java ap-
plication and 3) uses a GUI-based XET Rule Editor, which is a plug-in of the
Protégé editor [Rat07]. The TAPAS actor model is based on method 2) where

 Report I

233

the TAPAS core platform uses NxET for a policy specification execution func-
tionality. NxET can be invoked directly from an EFSM-based role figure. An
NxET installation documentation is provided by [Kan06b] and an NxET devel-
oper’s guide can be found in [Kan06a]. A list of NxET Built-in functions can be
found in [Sup05c].

5.3.1 NxET as a stand-alone application

Figure 1 illustrates the use of NxET as a stand-alone application. Facts,
constraints, policies, NxET configuration and an initial transformation clause
must be expressed in XML documents. The NxET Parser is needed to process
the XML documents.

5.3.2 NxET as a procedural call service within a Java application

When NxET is used within a Java application, e.g. as a supplemented rea-
soning functionality of the actor model of TAPAS, facts, constraints, policies,
NxET configuration and the initial transformation clause can be supplied direct-
ly in Java objects. The NxET Parser is not needed.

5.3.3 Using XET Rule Editor

An XET Rule Editor is implemented by [Rat07]. When using the XET
Rule Editor, facts, constraints, policies, NxET configuration and the initial
transformation clause must be expressed in XML documents, which is similar to
using NxET as a stand-alone application.

6. Summary and conclusion

This article presents NxET, which is an XML-based implementation of ET
paradigm written in Java. NxET was aimed as a replacement of the classic XET
that had several short-coming. The design principles were simplicity, modulari-
ty, extensibility, mobility and performance. NxET have been used in various
application domains for solving problems that need an expressive data represen-
tation and a powerful computation mechanism. The application domains in-
clude, but are not limited to, adaptable service systems database modeling, dis-
tributed application modeling and knowledge and ontology modeling. In
present, NxET has been used and under further development at Asian Institute
of Technology.

234

NxET has been integrated as a supplemented reasoning functionality of the
TAPAS core platform. The actor model describes the formalism of RM-based
role figures, which have a supplemented reasoning functionality for EFSM-
based role figures.

The NxET conceptual modeling language is based on XML Declarative
Description, which extends ordinary well-form XML elements into XML ex-
pressions by incorporation of variables for an enhancement of expressive power
and representation of implicit information. However, XDD clauses are just data
representation. A computation model is needed. NxET’s computation model is
based on Equivalent Transformation (ET). Using ET, an XDD clause is mod-
eled by an ET transformation clause. ET transformation rules are used to trans-
form these clauses. The transformation mechanism is described by the NxET
reasoning procedure.

NxET data model is based on XML. The data representation of NxET can
be XML variables, XML expression, XET clause and XET rule. XET clause is
the XML-based representation of ET transformation clauses. An XET rule is the
XML-based representation of an ET transformation rule.

NxET system components, processing mechanism and usages are given.
The system components describe software components constituting NxET. The
processing mechanism describes the implementation details of the reasoning
procedure. The usages shows that NxET can be used as either a standard appli-
cation, a procedural call service within a Java application and by using XET
Rule Editor.

References

[Aag05] F.A. Aagesen, P. Supadulchai, C. Anutariya and M.M. Shiaa, Configuration

Management for Adaptable Service Systems, in Proceedings of IFIP Interna-

tional Conference on Metropolitan Area Network, Architecture, Protocols,

Control and Management (MAN 2005), Ho Chi Minh City, Vietnam, 2005.

[Aag07] F.A. Aagesen and P. Supadulchai, A Capability-based Service Framework

for Adaptable Service Systems, submitted to The 2nd International

Conference on Advances in Information Technology (IAIT2007), Bangkok,

Thailand, 2007.

[Aka98] K. Akama, T. Shimitsu, and E. Miyamoto, Solving Problems by Equivalent

 Report I

235

Transformation of Declarative Programs, Journal of the Japanese Society of

Artificial Intelligence, vol. 13, pp. 944-952, 1998.

[Anu02] Chutiporn Anutariya, Vilas Wuwongse, Vichit Wattanapailin, An Equiva-

lent-Tranformation-Based XML Rule Language, RuleML 2002.

[Bhr07] T. Bhrammanee, V. Wuwongse, Towards a Unified Representation Frame-

work for Modelbases and Databases, in Proceedings of the 9th International

Conference on Decision Support Systems, Springer, 2007.

[Kan06a] Nattiya Kanhabua, NxET Developer’s Guide, Technical Report, Asian Insti-

tute of Technology, 2006.

[Kan06b] Nattiya Kanhabua, NxET Installation and User Manual, Technical Report,

Asian Institute of Technology, 2006.

[Kan06c] Nattiya Kanhabua, NxET – how to add a new built-in function, Technical

Report, Asian Institute of Technology, 2006.

[Nac07] A. Naco, V. Wuwongse and C. Anutariya, A transformation-based approach

to application model development: class diagram generation, Journal of In-

ternational Journal of Software Engineering and Knowledge Engineering.

[Rat07] P. Ratanajaipan1, V. Wuwongse, E. Nantajeewarawat and C. Anutariya,

XET Protégé Plug-in Environment, in Proceedings of the 10th International

Protégé Conference, Budapest, Hungary, July 15-18, 2007.

[Sup05a] P. Supadulchai and F.A. Aagesen, A Framework for Dynamic Service Com-

position, in Proceedings of 1st International IEEE Workshop on Autonomic

Communication and Computing (ACC 2005), Taormina, Italy, 2005.

[Sup05b] P. Supadulchai and F.A. Aagesen, Autonomic Service Configuration by a

Combined State Machine and Reasoning Engine-based Actor, in

Proceedings of the 2005 IFIP International Conference on Intelligence in

Communication Systems (INTELLCOMM 2005), Delta Centre-Ville Hotel,

Montréal, Canada, 2005.

[Sup05c] Paramai Supadulchai and Nattiya Kanhabua, NxET built-in functions, Tech-

nical Report, Department of Telematics, NTNU, original 2005, modified

version 2006.

[Sup07a] P. Supadulchai and F.A. Aagesen, Policy-based Adaptable Service Systems

Architecture, in Proceedings of the IEEE 21st International Conference on

236

Advanced Information Networking and Applications (AINA-07), Niagara

Falls, Canada, 2007.

[Sup07b] P. Supadulchai and F.A. Aagesen, Towards Policy-Supported Adaptable

Service Systems, in Proceedings of the 13th Eunice Open European Summer

School and IFIP TC6.6 Workshop on Dependable and Adaptable Networks

and Services, University of Twente, the Netherlands, 2007.

Abbreviations

237

Abbreviations

A1 Core functional adaptability property #1: rearrangement flexibility

A2 Core functional adaptability property #2: failure robustness

A3 Core functional adaptability property #3: Resource load awareness
and control

C1 Thesis’s contribution #1: Data model

C2 Thesis’s contribution #2: Capability configuration management

C3 Thesis’s contribution #3: Policy-based reasoning

C4 Thesis’s contribution #4: Capability-based computing architecture

CCM Capability Configuration Management

CIM Common Information Model

CM Capability Manager

CPU Central Processing Unit

EFSM Extended Finite State Machine

IN Intelligent Network

ITEM Department of Telematics, NTNU

NTNU Norwegian University of Science and Technology

OWL Web Ontology Language

PDA Personal Digital Assistant

QoS Quality of Service

RM Reasoning Machine

RDF Resource Definition Framework

RDFS Resource Definition Framework Schema

SLA Service Level Agreement

TAPAS Telematics Architecture for Play-based Adaptable Service Systems

TINA Tele-communication Information Networking Architecture

238

UniCS Unified Capability and Status representation framework

