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Abstract

Security is a topic of ever increasing interest. Today it is widely accepted that, due
to the unavoidable presence of vulnerabilities, design faults and administrative errors,
an ICT system will never be totally secure. Connecting a system to a network will
necessarily introduce a risk of inappropriate access resulting in disclosure, corruption
and/or loss of information. Therefore, the security of a system should ideally be
interpreted in a probabilistic manner. More specifically, there is an urgent need for
modelling methods that provide operational measures of the security.

Dependability, on the other hand, is the ability of a computer system to deliver
service that can justifiably be trusted. In a dependability context one distinguishes
between accidental faults, which are modelled as random processes, and intentional
faults, i.e., attacks, which in most cases are not considered at all. A major drawback
of this approach is that attacks may in many cases be the dominating failure source
for today’s networked systems. The classical way of dependability evaluation can
therefore be very deceptive: highly dependable systems may in reality fail much
more frequently than expected, due to the exploitation from attackers.

To be considered trustworthy, a system must be both dependable and secure. How-
ever, these two aspects have so far tended to be treated separately. A unified mod-
elling framework for security and dependability evaluation would be advantageous
from both points of view. The security community can benefit from the mature de-
pendability modelling techniques, which can provide the operational measures that
are so desirable today. On the other hand, by adding hostile actions to the set of pos-
sible fault sources, the dependability community will be able to make more realistic
models than the ones that are currently in use. This thesis proposes a stochastic mod-
eling approach, which can be used to predict a system’s security and dependability
behavior. As will be seen, the basic model has a number of possible applications. For
example, it can be used as a tool for trade-off analysis of security countermeasures,
or it can be used as a basis for real-time assessment of the system trustworthiness.

Keywords Stochastic modeling and analysis, security quantification, security mea-
sures, security evaluation, integrating security and dependability, attack pre-
diction, game theory, stochastic games, real-time risk assessment, agent-sensor
architectures, distributed intrusion detection, hidden Markov models.
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Introduction

The main part of this thesis, Part II, is a paper collection consisting of six papers
written during 2004-2006. In this part an introduction to the papers is given. Section 1
describes the background and explains the underlying motivation for this thesis. In
Section 2 the main ideas that the research is derived from are presented. Section 3
provides an overview over the state of the art in research areas closely related to this
thesis. Section 4 discusses the methodology that has been applied when working with
the thesis. In Section 5 the underlying assumptions that the research is based on are
pointed out. Section 6 gives a summary of the included papers and explains how the
papers are related to each other. Guidelines for reading this thesis are provided in
Section 7. Section 8 concludes the thesis by summarizing the main results obtained.
Finally, possible future work is discussed in Section 9.

1. Background
The new paradigms of ubiquitous computing and high capacity data transfer have

turned the Internet into today’s main area for information interchange and electronic
commerce. As network systems become more and more complex and interconnected,
their security play an increasingly important role mainly because they are supporting
critical applications. Attacks against computer networks used by modern society and
economics for communication and finance can therefore threaten the economical and
physical well-being of people and organizations. The security of an ICT system is
hence a research area of ever increasing interest.

Lately, there has been an astonishing rapid deployment of new network services
in complex applications. New requirements and the increasing competition in the
industry put high demands on the product “time to market” when developing and re-
leasing new computing systems. Security often plays a secondary role and is then a
trade-off regarding the design and choice of security mechanisms versus the imple-
mentation effort and cost. In many cases developers do not take enough precaution to
avoid that previous mistakes are repeated or that new vulnerabilities are introduced
when releasing new products on the market. Numerous computing systems providing
services to users that are connected to the Internet are therefore vulnerable to attacks,
already from the very first beginning of their operation [LEH+97].
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As if this was not enough, Internet is in itself a vulnerable place. Many of the early
protocols that the network infrastructure of today make use of were designed without
security in mind. The lack of a fundamentally secure infrastructure makes system
and network defense much more difficult. Moreover, large parts of the Internet are
dynamic network environments, built up of ad-hoc networks, wireless access points,
and so on. The explosive growth of such technology during the last few years has
contributed to the constant shift of the network topology. The security mechanisms
available in the Internet of today may therefore be highly variable.

Due to the global interconnection of systems, an adversary do not need to be phys-
ically present to compromise the security of a system. Attacks can easily be carried
out from a distance, and are often easy and quick to perform but hard to detect and
trace. The wide-spread use of exploit tools makes it possible, also for novice crackers,
to search for and find possible targets on-line. System administrators face a dilemma
when striving to maximize the availability of services to authorized users while si-
multaneously minimizing the opportunities for adversaries to exploit the system.

Trustworthy Systems

The present security tools and methodologies are only adequate for securing sys-
tems on a small scale [GGK+03]. For example, cryptography is one of the most
well-studied and rigorously modeled aspect in the security field. Still, cryptography
alone is not sufficient to secure a system. Most security breaches are caused by faulty
software that can be exploited by for example buffer overflows, which unfortunately
cannot be avoided by cryptographic techniques. As a consequence, 100% security is
very difficult, if not impossible, to achieve. To rely on the service that a networked
system provides, the user needs to know to what extent it can be trusted. More specif-
ically, there is an urgent need for modeling methods that can be used to analyze and
evaluate the trustworthiness of the system. Today there exists several methods for as-
sessing the qualitative security level of a system, one of the most well-known being
the Common Criteria [ISO99]. However, even though such methods give an indica-
tion of the quality of the security achieved during design and implementation they
do not say anything about how the system will actually behave when operating in a
particular threat environment. To be able to measure security, a new approach for
quantitative evaluation is needed.

Security is usually defined in terms of the attributes confidentiality, integrity and
availability [ISO05], often referred to as CIA. Sometimes additional aspects are con-
sidered, such as authentication, access control and nonrepudiation [Sta03]. Depend-
ability, on the other hand, is the ability to deliver services than can justifiably be
trusted [ALRL04]. This field has a rich tradition of system evaluation models, which
can be used to assess and predict the current and future system behavior when con-
sidering random failures. Unfortunately, malicious behavior is rarely considered as a
possible fault source in these models. In order to be trustworthy, a system needs to
be both dependable and secure. These two distinguished research fields share many
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similarities but are also fundamentally different in several aspects, which probably is
the main reason why they (so far) have tended to be treated in separate frameworks
and evaluated by models developed by separate research communities.

Based on the above reasoning, the overall motivation for the research presented in
this thesis can be identified by these three questions

1 How can security be quantified and measured?

2 What is the relation between security and dependability?

3 Are there methods that can be used to evaluate a system’s trustworthiness, in
terms of its security and dependability behavior?

As will be seen in the subsequent sections, even though there exist promising research
results related to the first two questions, not much effort has been put in the third one.
The purpose of the research presented in this thesis is therefore to search for, and
hopefully provide, an answer to the third question. This is a long-term goal, which
requires novel thinking and redefinition of the old concepts. Even though there may
not be a straight-forward solution, the development of new modeling and analysis
methods may in itself be an important step towards a future framework where both
security and dependability can be quantified and measured.

A Note on Terminology

In some research communities, the term “reliability” is used rather than “depend-
ability” to describe the overall operational characteristic of a system. To avoid con-
fusion, this thesis advocates the use of the terminology suggested by
Avizienis et.al. [ALRL04], which is illustrated in Fig. 1, where dependability is stated
as a global concept that encompasses the attributes reliability, availability, safety, in-
tegrity and maintainability. Reliability is then defined as “continuity of correct ser-
vice”, which can be viewed as a measure of the achieved system dependability.

Dependability Security

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Figure 1. Dependability and security attributes [ALRL04].
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2. Thesis Idea
The purpose of this section is to explain the main ideas that the research in this

thesis is based on. The text is intended to be readable also for those that are unfamiliar
with mathematical modeling and analysis. All obstructing details have therefore been
omitted from this section. For more details, the reader is referred to introductory
literature on probability models [Ros03], dependability evaluation [Hel] and game
theory [Sta91, Owe01].

Stochastic Modeling

A common approach to dependability evaluation of computing systems is to use
stochastic modeling techniques [Hel]. A stochastic model is a model that involves
probabilities, or randomness, associated with time and events. When using such a
model, a stochastic process will represent the system behavior. The stochastic model
can be depicted as a state transition diagram, which describes all relevant operational
system states and the possible transitions between these states. To describe time as-
pects between events, a rate matrix has to be specified. One usually assumes that
the event that will occur next, as well as the time until the next event, is random.
Hence, the behavior of the system is a stochastic process. The main advantage of this
modeling approach is that it captures the dynamic system behavior, i.e., the sequence
and time aspects of events, such as failures and repairs. The stochastic process can
then be used as a basis for quantitative analysis of the modeled system. By using
mathematical analysis techniques, closed-form solutions may be obtained, which de-
scribe how the failure- and repair rates affects the expected system dependability in
terms of its reliability, availability and so forth. In many cases, the stochastic mod-
eling approach is the most appropriate system evaluation method when quantitative
dependability measures are needed.

As pointed out in Section 1, according to the definition of dependability provided
in [ALRL04], dependability comprises several system properties, amongst them also
the CIA security attributes. One would therefore expect that security can be modeled
and analyzed by the same methodologies as the other dependability properties. How-
ever, it turns out that this is not the case1. The main reason is that malicious behavior
is rarely considered as a possible fault source when evaluating system dependability.
This means that the stochastic modeling approach that is so useful when analyzing
systems to obtain quantitative measures cannot be applied as it is to evaluate security
properties. This thesis aims to overcome this problem by developing a methodology
that makes it possible to incorporate attacker behavior into the transition rates of a
stochastic model, so that a comprehensive system evaluation can be performed.

1The exception is availability, an attribute that is included in both the security and the dependability taxonomy.
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The Failure Process

In a stochastic model, one usually separates between good system states and failed
system states. To model the failure process in a security context, we note that the
“fault-error-failure” pathology used for dependability analysis, share some similari-
ties with the security domain. By definition, the fault-error-failure process is a se-
quence of events. A fault is an atomic phenomenon, that can be either internal or
external, which causes an error in the system. An error is a deviation from the cor-
rect state of the system. An error is always internal and will not be visible from
the outside of the system. Even though a system is erroneous it may still manage
to deliever its intended services. An error may lead to a failure of the system. In a
dependability context, a failure is an event that causes the delivered service to deviate
from the correct service, as described in the system’s functional specification. Using
a similar line of reasoning, a security failure is then an event that causes a system ser-
vice to deviate from its security requirements, as specified in, e.g., a security policy.
Given that also a system’s security behavior can be represented as either good states
or failed states, one can then use the stochastic process to compute measures such as
the system’s expected time to next (security) failure.

There are a number of different ways to prevent failures. The taxonomy in [ALRL04]
divides these into four categories: fault prevention, fault tolerance, fault removal and
fault forecasting. This thesis concentrates on the last aspect, fault forecasting, which
means to evaluate the system behavior with respect to future fault occurrence or acti-
vation2. Modeling and analysis of a system for predictive purposes can be performed
by static or dynamic methods. Examples of static models are fault trees and reliability
block diagrams. The use of stochastic models is a dynamic method, which provides
probabilistic system measures, such as its mean time spent in the good states, or mean
time to failure as previously discussed. To facilitate analytical analysis of the model,
all transition rates are assumed to be exponentially distributed in this thesis. The
validity of this assumption will be further discussed in Section 8.

Modeling Malicious Behavior

Given that a system is represented by a stochastic model, the execution of a transi-
tion caused by malicious behavior will henceforth be referred to as an attack action.
In this thesis it is assumed that a large number of adversaries, i.e., attackers, targeting
the system simultaneously. This is a realistic assumption for most of the networked
ICT systems of today, which are on-line round the clock. By studying log files one
can see that these systems are constantly subject to more or less suspicious activity,
such as probing, worm activity or other kinds of vulnerability exploitation. The rate

2In fact, what this thesis concentrates on is failure forecasting rather than fault forecasting. As pointed out
in [MM99], regarding security, there seems to be more interest in predicting failures rather than faults, most likely
because most security problems either are due to software bugs, which are extremely difficult to predict, or basic
design flaws, which are extremely difficult to repair.
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value of a transition in the stochastic model, which represents an attack action, will
then model the accumulated failure intensity, given that all attackers will always try
to attack the system. Unfortunately, this rate value is in itself not enough to accurately
describe the expected time before the transition actually will occur. One of the main
reasons is that attacks are not truly random processes. Because attackers act with
intent, they are not always well characterized by models of a random nature [Coh99].
For example, assume that the system that is to be evaluated is a small corporate local
area network (LAN) consisting of a private fileserver, a publicly accessible webserver
and a router connecting the LAN to the Internet. Now assume that the expected time
a remote attacker would need to break into and read access restricted files on the
fileserver is about the same as the expected time needed to break into and deface the
webserver. The latter can be characterized as an integrity failure and the former as
a confidentiality failure. However, in practice it may be much more common that
webservers get defaced than that fileservers get compromised. In fact, the network
administrator of this particular LAN assess the frequency of the former to be five
times as high as the latter. When using a stochastic model to evaluate this system, the
rate values of these two security failures must represent the actual occurrence rates
of the events, rather than the success rates of the individual attack actions.

Attacks that are caused by human beings, and that lead to security failures, are
very often highly intentional with the specific aim of causing maximum benefit to
the adversary or damage to the system. The basic idea that has been pursued in this
thesis is that the probability of an attack will depend on not only the expected time
(or effort) required to perform the attack but also on how motivated the particular
attacker is. As will be seen, there are a number of factors that drive humans to attack
computing system, such as financial gain, curiosity, pure entertainment, a rise of ego,
etc. On the other hand, a number of factors may reduce the attacker’s motivation
and make him refrain from certain attack actions. For example, an employee, with a
user account on the corporate LAN discussed above, may put his future career at risk
if he tries to abuse his insider privileges to attack the local computer network. The
gain from a successful break-in into the fileserver may therefore be smaller than the
possible consequences he will experience if the intrusion is detected by the system
administrator. As another example, the illegal aspect of actions (criminal offense)
may prevent even a remote attacker to use available tools to exploit vulnerabilities in
such networks. Even though the expected time or effort to perform an attack action
may be randomly distributed, the decision to perform the attack will therefore be a
trade-off between the gain from a successful attack and the possible consequences of
detection.

In this thesis attacker behavior is represented as a probability distribution over all
the possible attack actions available in a particular system state. These probabilities
are then reflected in the transition rates of the stochastic model by weighting the cor-
responding (accumulated) attack intensities. For example, if an attacker will choose a
particular attack action with probability 0.5, then we can expect 50% of all attackers
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to take this action, given that they all share the same motivation. Hence, by intro-
ducing attack probabilities as parts of the transition rates, the result from a successful
attack can be modeled as one or more intentional state changes of the underlying
stochastic process, which represents the dynamic behavior of the system. This is
illustrated in Fig. 2 where 1 is a good system state, 2 is a (security) failed system
state, a is an attack action, λ12(a) is the accumulated attack intensity (given that all
attackers always take action a) and π1(a) is the probability of action a in state 1.

π1(a)λ12(a)
OK Security 

failed

1 2

Figure 2. A stochastic model with assigned failure rate (from PAPER D).

The stochastic modeling approach proposed in this thesis aims to be high-level in
that it focus on the impact of the intrusions on the system rather than on the specific
attack procedures themselves. This facilitates the modeling of unknown attacks in
terms of generic state transitions. For example, in the stochastic model depicted in
Fig. 2 the attack a can simply be explained as “the action that seeks to transfer the
system from the good state 1 to the failed state 2”.

Predicting the Attack Probabilities

So, how can the attack probabilities be computed? To model an attacker’s mo-
tivation this thesis make use of a reward- and cost concept. “Reward” is a generic
concept, which can be used to quantify the value of an attack action in terms of social
status, money, satisfaction, etc, as previously discussed. To model the possible conse-
quences experienced by risk adverse attackers, a negative reward, a “cost”, is used to
quantify the impact on the attacker whenever an attack action is detected and reacted
to. In order to create a generic and sound framework for computing the expected
attacker behavior in terms of attack probabilities, this thesis applies game theory as
the mathematical tool. Each atomic attack action, which may cause a transition of the
current system state, is regarded as an action in a game where the attacker’s choice
of action is based on a consideration of the possible consequences. The interactions
between the attacker and the system can then be modelled as a game, as illustrated in
Fig. 3. As can be seen, the aspects that can be included in the game are the detection
probabilities of attack actions, the operational activities that may affect the current
system state, random software- and hardware failures that may occur, and of course
the cost- and reward values associated with the available attack actions (not depicted
in the figure). In the second part of this thesis, PAPER A-D and PAPER F will pursue
these ideas in depth and, by using simple case studies, demonstrate how the proposed
approach can be applied for real-world system modeling and evaluation.
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rational
Game

attack 
strategy

Π

detection 
probability

Θ

System 
(IDS mechanisms)

Attackers 

rational/
random

play

Operational activities 
(users, administrators)

random

Software/hardware 
failures

random

Figure 3. The interactions between an attacker and the system modelled as a game (from PAPER C)

Predicting the System Current and Future Behavior

Given that a system’s security behavior can be represented by a stochastic model,
another interesting application arises. It turns out that the same model can be used as
a basis for risk assessment. “Risk” is usually defined and measured in terms of prob-
abilities and consequences. Suppose that cost values are assigned to the different
system states. These are not the same cost parameters as was used in the game theo-
retic approach, but rather quantitative consequence values, which describe the system
administrator’s (or any other stakeholder’s) loss experienced due to system or service
failures. By estimating the current system state probability, the risk of the system
can be computed as a function of the failure probabilities and the cost values associ-
ated with the failed states. PAPER E and F in Part II of this thesis will demonstrate
how the stochastic model can be used as a part of a distributed agent-sensor architec-
ture for real-time risk assessment of the system, and how the proposed agent-sensor
architecture can be used to predict the system’s future security and dependability be-
havior. In PAPER E the system measure that is computed is the total system risk at
time t, denoted Rt, where risk is defined as the sum of the estimated system state
probabilities times the corresponding cost values. This measure reflects the expected
cost due to failures, similarly to the output resulting from traditional quantitative risk
analysis methods. In PAPER F two new types of measures are used: the probability
that the time until next failure is greater than t, denoted PF (t), and the mean time to
next failure (MTNF ), assuming that the system will sooner or later fail. In contrast
to the risk measure used in PAPER E, these measures relate to the expected failure
times rather than the possible consequences of failures.

3. Foundation and Related Work
This section presents the previously published research results, which have served

as the main inspiration when writing this thesis. The areas that have been emphasized
are “stochastic modeling”, “security quantification”, “attack modeling” and “intru-
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sion detection”. Relevant research projects are also presented. Note that parts of this
research have also been cited in the papers included in Part II.

Stochastic Modeling

Stochastic modeling and analysis techniques have long been used for dependabil-
ity evaluation by computing failure times of systems when considering accidental
fault sources [Buz70, RAS96, Hel]. A common modeling approach is the use of
continuous time Markov chains (CTMCs), which are frequently applied due to their
strength in describing dynamic behavior and their advantage of obtaining closed
form solutions from mathematical analysis. An introduction to the topic is given
in [Ros03]. Unfortunately, most of the stochastic modeling approaches tend to ig-
nore security in that malicious behavior is not considered as a possible failure cause.
In [Lap92, ALR00, ALRL04] Avizienis et.al. provide a thorough definition of the
fundamental concepts of dependability. Here, dependability is used as an umbrella
concept and security is treated as an attribute in line with the other attributes relia-
bility, availability and safety. Several other research papers and projects have refined
these concepts by discussing how fault prevention, removal, tolerance and forecast-
ing can be reinterpreted in a security related context [Pe01, Mea95, MM99, NST04],
and suggest frameworks for integrated security and dependability evaluation [JO92,
Jon98, JSL99, MKF03]. Stochastic modeling has also been applied to measure sur-
vivability, see e.g., [LT04, MN03, McD05], where survivability usually is defined as
“the capability of a system to fulfill its mission, in a timely manner, in the presence
of attacks, failures and accidents” [EFL+97].

Stochastic Petri nets (SPN) [Mur89] and Coloured Petri nets (CPN) [Jen97a, Jen97b,
Jen97c] are modeling methods commonly used for stochastic dependability and per-
formance analysis (see e.g., [MT95, KBMP99]). One advantage of these models
over the traditional Markov models is the possibility of showing explicit the condi-
tions for further events to take place. There are several software tools available for
solving Petri net models; the most well-known being UltraSAN [SOQW95] for SPN
and CPN/Tools [BLMJ+01, CPN06] for CPN. In a few cases, also the security as-
pects of system have been modelled by means of Petri net models [SCS03, WMT03,
HS05, GLR+03].

Security Quantification

Quantifiable security is a topic that has gained a lot of interest in the research com-
munity during the last decade. The modeling approach used in this thesis is based on
ideas initially presented in the groundbreaking paper by Littlewoord et.al. [LBF+93],
published in 1993. To our knowledge, the authors of this paper are the first to point
out that the security measures of a system should be operational, which means that
such measures should reflect the system’s ability to remain secure under particular
conditions of operation, including attacks. By relating the security concept to the re-
liability domain, the authors suggest a new approach to security evaluation based on
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an analogy between system failure and security breach. By introducing the random
“effort to breach” variable [BLOJ94], a security function, which corresponds to the
reliability function used in traditional dependability analysis, can be defined. The
proposed approach opens up for new types of quantitative measures for a system,
such as its mean effort to security breach. Based on [LBF+93, BLOJ94], a number
of other research groups have developed models for quantitative measures of secu-
rity. An outstanding example is the work by Ortalo et.al. [ODK99]. Relating the
fault tolerance concept to intrusion tolerance, the same concept has also been applied
by using either probabilistic or stochastic models that captures attacker behavior and
system response mechanisms to perform quantitative security analysis of intrusion
tolerant systems [GPWW+01, SCS03, MVT02, WMT03, BBMGPT04, SCS+04].
Another interesting approach, which is closely related to security quantification, is
the trust metrics for authentication presented in [RS97].

Risk assessment can also be used to compute metrics for security quantification.
As discussed in Section 2, by measuring risk in terms of probabilities and costs
of attacks (or other unwanted incidents), the security of a system can be quanti-
fied. Relevant standards for security metrics and risk assessment are the recently
published NIST 800-55 “Security Metrics Guide for Information Technology Sys-
tems” [NIoST03], as well as the upcoming standards ISO 27004 “Information Secu-
rity Management Metrics and Measurement” [ISOb] and ISO 27005 “Guidelines for
Information Security Risk Management” [ISOa]. A comparable standardized frame-
work is the AZ/NZS 4360 “2004 Risk Management” [Sta04]. Risk-based security
engineering [SDE+04, SJ05], where risk analysis is integrated with classical system
engineering, is another approach to security quantification. Security metrics for risk
assessment are also discussed in e.g., [Sah05]. A model for assessing the risk of using
vulnerable system components is suggested in [BMS05]. Risk has traditionally been
interpreted as a static concept. Lately, real-time risk assessment has gained some in-
terest in the security community. A notable example is presented in [GK04], which
introduces a formal model for the real time characterization of risk faced by a host.

Attack graphs (or attack trees) [Sch99, PS98, JSW02b, JSW02a, SHJ+02, AWK02]
provide a formal and methodical way of describing the security of systems, similarly
to how fault trees are used to describe dependability. An attack graph is a structure
that represents the set of actions that an attacker can take to achieve a predefined
goal. By applying traditional graph based analysis on attack graphs, optimal security
countermeasures can be identified and system measures can be computed [JSW02a].
Another interesting approach to security quantification is the definition and analysis
of a system’s “attack surface” [HPW03, MW04, MW05], which is defined as the set
of ways an attacker can attack the system. By identifying the resources that can be
used to attack the system, the system security can be measured in terms of an attack
surface metric, which indicates the level of damage that may be caused, together with
the effort required to cause this damage.
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Finally, Quality of Service (QoS) architectures that comprise security have been
discussed in a number of research papers, e.g., by Lindskog and Jonsson [LJ02,
Lin05]. To be able to include security as a part of QoS, quantification is necessary. A
promising approach is the tunable encryption services introduced in [LSHJ04, LB05,
LLBFH05].

Attack Modeling

In order to obtain quantitative measures of security, the process of attack mod-
eling and prediction will be a crucial part. To produce measures, all of the models
discussed above first need to be parameterized with attack data, which can be ei-
ther probabilities of different attack actions, failure rates, or other kinds of statistics,
depending on the particular modeling approach. A well-cited paper is the work of
Jonsson and Olovsson [JO97], which presents a quantitative model of the intrusion
process. Based on empirical data collected from experiments performed by students
in a controlled environment, this paper demonstrates that a typical intrusion process
can be viewed as three different phases; a learning phase, a standard attack phase
and an innovative attack phase. The data collected during the standard attack phase
indicates that the time to break into a system is exponentially distributed, which has
been one of the underlying assumptions for the stochastic modeling approach applied
in several of the previously published papers on security quantification (as well as the
papers in this thesis) to be valid. Another interesting paper is the model to forecast
security breach rates presented in [Sch05].

A honeynet [The06, Pro04] is an architecture that has been developed in order
to to learn about security threats and to obtain empirical data from real-life attacks.
The main purpose of a honeynet is to gather information. It provides real systems and
applications for an attacker to interact with, which makes it possible to detect and ter-
minate botnets, capture and analyze malware for anti-virus, and so on. In many cases
the honeynet simply function as a testbed for studying and learning about attacker
behavior. Several ongoing projects aim to collect data from a number of different
sources (for example honeynets) in order to predict attacks, such as [ADD+05, Aro].
There also exist more theoretical studies that aim to classify attackers, which can be
applied in order to facility attack modeling and prediction. For example, a taxonomy
that has turned out to be very useful for the attack modeling used in the papers in-
cluded in this thesis is presented in [Hac05]. In [Ins04, CINU05], a specific type of
threat, the insider attacker, is studied.

Game theory has frequently been used to predict human behavior in areas such
as economics and social science. Recently, game theory has gained interest also
amongst researchers in the security community as a means to model the interactions
between an attacker and a system. It can be used both as a method to predict attacker
behavior and to analyze and facilitate the decision process and intrusion response
strategy during ongoing attacks. Examples are [LZ03, AB03, AB04, LW02, LW05].
Another useful application of game theory is for trade-off analysis of security coun-
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termeasures and to evaluate security investments [But02, CMR04] before system
implementation. Good introductions to the topic of game theory are the books by
Stahl [Sta91] and Gibbons [Gib92]. Gambit [MT04] is a software tool that can be
used to construct and solve finite extensive and strategic games. An interesting up-
to-date discussion of the Nash equilibrium solution of a game, and its applications, is
provided in [HR04]. Some of the papers in this thesis make use of stochastic game
models, based on the theory in [Sha53, Owe01]. Algorithms for solving these games
are provided in [Som04].

Intrusion Detection

Intrusion detection systems (IDS) are systems designed to identify misuse or unau-
thorized use by authorized users or external adversaries [MHL94, NN99]. Compre-
hensive surveys of IDS are found in e.g., [ACF+00, Lun88]. An IDS can be either
signature (pattern) based or statistical anomaly detection based. The former has an
advantage in its low false alarm rates but can only detect already known attacks,
whereas the latter are required to have full knowledge of the normal behavior of
the system in order to detect all attacks. Markov models for statistical anomaly
detection in IDS architectures are presented in e.g., [JTM01]. STAT [SEK02] is a
state-based attack description language for intrusion detection, developed at the Uni-
versity of California in Santa Barbara. Distributed IDS have been demonstrated in
several prototypes and research papers, such as [SCCC+96, SBD+91]. An important
development in distributed intrusion detection is the recent IDMEF (Intrusion Detec-
tion Message Exchange Format) IETF Internet draft [DCF05]. Multiagent systems
for intrusion detection, an approach where several independent entities (autonomous
agents) collaborate to facilitate distributed IDS, are proposed in [CS95, BGFI+98]
and demonstrated in e.g., [HWH+03].

Hidden Markov models (HMMs) have recently been introduced as a part of IDS
architectures to detect multi-stage attacks [OMSH03], and as a tool to detect misuse
based on operating system calls [WFP99]. A very well-written tutorial on HMMs
and their application on speech recognition is provided by Rabiner [Rab90]. A more
comprehensive treatment of the HMM topic is the book by Cappé et. al. [CMR05].

Research Projects

There are several Europeian research projects related to the area of security and
dependability. The Information Society Technologies (IST)3 has sponsored a num-
ber of relevant projects, such as the MAFTIA project from 2003 [MAF], the recently
closed Beyond-the-Horizon project [Bey] and the ongoing EuroNGI Workpack 6.3
on trust creation [Eur]. Another relevant project is the European Workshop on In-
dustrial Computer Systems Reliability, Safety and Security (EWICS) [EWI]. On an
international basis, the IFIP Working Group 10.4 [IFI] concentrates on understand-

3See http://cordis.europa.eu/ist/
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ing and exposition of the fundamental concepts of dependable computing, including
security. This working group organizes and sponsors, amongst others, the IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)4 and cooper-
ates with e.g., EWICS.

At first sight it may seem like the background material discussed in this section is
both divergent and incoherent. However, as will be seen, the results presented in the
papers included in Part II of this thesis span all these areas.

4. Research Methodology
The research presented in this thesis has been performed at the Centre for Quan-

tifiable Quality of Service (Q2S), Centre of Excellence (CoE) at the Norwegian Uni-
versity of Science and Technology in Trondheim. As stated in the Centre vision5

“The Centre will study principles, derive mechanisms, methods and technical solu-
tions and assess their properties and performances by means of experiments
and models.”

and

“The main research goal is to do basic research in the areas specified for the Centre,
with a coordinated cross-disciplinary emphasis on QoS.”

much of the research conducted at the Centre is of a fundamental kind. Also the
methodology used in this thesis is mainly a theoretical study, rather than an empirical
one. The main reason for this approach is the lack of a formal foundation in the par-
ticular area of combined security and dependability evaluation. The major effort has
therefore been put into the development of a novel modeling method, which aims to
bridge this gap. By studying the stochastic models used for traditional dependability
analysis, as well as game theoretic models for predicting human behavior, a method
for evaluating the trustworthiness of a system (in terms of its security and depend-
ability) has been developed. The characteristics of the proposed models in this thesis
have been demonstrated by mathematical analysis.

The CTMC Approach

To be able to find a method that can be used to evaluate both a system’s security and
dependability behavior (see question 3 in Section 1), the concepts and methodologies
for traditional dependability evaluation have been surveyed. The chosen modeling
method applied in this thesis is the use of stochastic processes, or more specifically:
continuous time Markov chains (CTMCs). Such models have been proved suitable
for representing the behavior of computing system, in terms of (accidental) failures
and repairs. As pointed out in [Hel], stochastic models are particularly useful for

4See http://www.dsn.org/
5See http://www.q2s.ntnu.no/
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capturing dynamic system behavior and time intervals between failures. Among the
advantages of the CTMC approach is the possibility of obtaining closed form so-
lutions when performing system analysis. However, it is an idealized model that
requires an heavy abstraction of the true system behavior. The validity of this and
other assumptions will be further discussed in the next section.

The Published Results

The thesis is based on the result presented in six papers, which have been presented
and published at international conferences and workshops during 2004-2006. The
grand part of the work in five of the papers (PAPER A-D and F) has been performed
by the thesis author, under supervision of Professor Svein J. Knapskog and Professor
Bjarne E. Helvik. It should be emphasized that Professor Helvik was the one who
first suggested the use of game theory as a tool to model and compute attacker behav-
ior, an idea for which the thesis author is very grateful. The game theoretic approach
has then been pursued in depth by the thesis author, with helpful and highly valuable
feedback from both Professor Helvik and Professor Knapskog. The remaining paper
(PAPER E) has multiple authors, several of them PhD candidates. The major part
of this work has been compiled by the thesis author, together with Ph.D candidates
André Årnes and Kjetil Haslum. Since this paper is comprised from a joint effort, it is
not straight-forward to identify the contributions of a single author. The cooperation
was initiated by André during spring 2005. André was the one who proposed the ini-
tial idea of using a distributed agent-sensor architecture for monitoring and assessing
network risk. During the summer of 2005, Kjetil and the thesis author wrote down
and formalized the idea of using a HMM as a tool for agents to interpret the data
collected from multiple sensors. André and the thesis author then compiled a case
study and wrote down and submitted the paper, which was accepted for publication
later on this year. Also this work was supervised by Professor Knapskog.

5. Research Assumptions
The models and methods applied in the thesis relies on three main assumptions,

which need to be highlighted. Note that future work aimed at finding methods to deal
with these assumptions will be discussed in Section 9.

The Markov Property

To facilitate mathematical analysis of the stochastic models used in the papers in
Part II of this thesis, Markov processes were used to model the transitions between
the possible states of a system. The Markov assumption implies that the transition
probabilities between system states depend only on the current system state, and
not on any of the previously visited states. All the system state holding times are
assumed to be negatively exponentially distributed in the examples provided in the
papers. Even though these papers use CTMCs, it is not a necessity for the stochastic
modeling approach to be valid. In cases where non-Markovian stochastic processes
are more suitable, simulation can be used to predict system measures.
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The Game Models

In PAPER A-D game theoretic models are applied to compute the expected attack
probabilities. When using a game to predict attacker behavior two important assump-
tions have to be made. First, one assumes that the attackers are rational, which means
that they want to gain as much as possible in accordance to the specified reward- and
cost values. Second, it is assumed that the attackers always have a complete overview
over the parameters of the ongoing game, i.e., the vulnerable system states and all the
possible attack actions and their possible consequences. The optimal solution to the
game is then used as a prediction of how the attackers will behave.

Independent Observations

The HMM approach applied in PAPER E and F of the thesis relies on the assump-
tion that subsequent observations produced by the network sensors monitoring the
system are independent. Or in other words: the probability of an observation at a
particular time instant t is determined of the current system state only, and not on
any previously visited states or any previously received observations. However, in
practice the behavior of some types of IDS (for example Snort [Sno02], which is
based on misuse detection) is deterministic in that the IDS will always provide the
same observation in a particular situation. Consequently, specific types of repeatedly
attack incidents, such as probing or worm attacks, might not be well described by the
HMM approach.

6. Summary of the Papers
This section summarizes the main contributions of the papers and discusses how

the content of each paper relates to the other papers.

PAPER A
Using Game Theory 
in Stochastic Models 

for Quantifying 
Security  

PAPER B
Using Stochastic 
Game Theory to 

Compute the 
Expected Behavior 

of Attackers PAPER F
A Framework for 

Predicting Security 
and Dependability 

Measures in 
Real-time

PAPER D
On Stochastic 
Modeling for 

Integrated Security 
and Dependability 

Evaluation

PAPER C
Incorporating 

Attacker Behavior in 
Stochastic Models of 

Security

PAPER E
Real-time Risk 

Assessment with 
Network Sensors and 
Intrusion Detection 

Systems

Figure 4. The relation of the papers included in Part II of the thesis.

The mutual relation of the six papers included in Part II of this thesis is depicted in
Fig. 4. As indicated in the figure, PAPER A-D are closely related. The basic research
idea, which is introduced and further developed in these papers, is the use of game
theory to determine the transition rates for stochastic models of security and depend-
ability. The initial, very simple, model presented in PAPER A is gradually refined
in the subsequent three papers. PAPER D contains the most recent research results
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in this particular field. The context in these four papers do overlap in more than one
aspect. As the model gradually became more complex, the use of the parameters had
to be carefully reconsidered. The notation has therefore been refined during the work
with the model. As can be seen when reading Part II of this thesis, also the applied
terminology has evolved during the work with these papers.

PAPER E presents a novel approach to real-time risk assessment of network sys-
tems. The method suggested in this paper is, in itself, detached from the research
results in PAPER A-D. However, PAPER F connects the stochastic modeling ap-
proach used in PAPER A-D with the basic monitoring architecture in PAPER E in a
unique way.

PAPER A

Using Game Theory in Stochastic Models for Quantifying Security

In the first paper, game theory is suggested as a method for modelling and computing
the probabilities of expected behavior of attackers in a quantitative stochastic model
of security. The stochastic model presented here is very simple, modeling a penetra-
tion attempt as a series of intentional state changes that lead an ICT system from an
assumed secure state to a state where one or more of the systems security aspects are
compromised. The attack transition rates consists of rate values, which are multiplied
by attack probabilities, as discussed in Section 2. In this paper, the game situation
models the actions of an attacker under the condition that at each intermediate stage
of the attack, the attempt may be detected and measures taken by the system owner
to bring the system back to the originating secure state. Assumptions are made for
the possible rewards for the players of the game, allowing the calculation of the mean
time to first security breach (MTFSB) for the system. An example of the possible use
of the model is provided by calculating the MTFSB for a root privilege attack on a
UNIX system.

PAPER B

Using Stochastic Game Theory to Compute the Expected Behavior of Attackers

This paper refines the initial model in PAPER A by suggesting the use of stochastic
game theory, rather than a simple game model, as the mathematical tool for comput-
ing the expected behavior of attackers. The possible use of the Nash equilibrium as a
part of the transition probabilities in stochastic models is defined and motivated. To
demonstrate the approach, a simple example of an attack against a computer network
is modeled and analyzed.

PAPER C

Incorporating Attacker Behavior in Stochastic Models of Security
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The third paper continues where PAPER B ends, by elaborating the method for com-
puting expected attacker behavior for use in stochastic models of security. The paper
includes the time aspect in the success probabilities of attack actions; an important
aspect that was neglected in both PAPER A and B. Furthermore, it is demonstrated
how the same game model can be used in three different threat environments, mod-
eling different types of attackers. As in its predecessors, in order to illustrate the
approach, the paper provides a small case study.

PAPER D

On Stochastic Modeling for Integrated Security and Dependability Evaluation

In this paper, the relation between dependability and security is discussed and the
need for an integrated evaluation framework is pointed out. The paper suggests the
use of stochastic modeling techniques as a suitable method for assessing the trustwor-
thiness of a system, regardless of if the failure cause is intentional or not. This paper
provides a more thorough background to the results previously presented in PAPER
A-C and gives further motivation on why and how attacker behavior can be incorpo-
rated in the transition rates of a stochastic model. Here, the basic formulation of the
game model used in PAPER A-C is generalized to consist of n × n game elements,
which means that the interactions between an attacker and the system IDS mecha-
nisms can be modelled in a more realistic way. This paper also includes a detailed
evaluation of how the reward- and cost parameter will influence the expected attacker
behavior. To illustrate the results of applying the model in a real-world context, a
fairly detailed example is provided. The paper is an extended journal version of the
results previously published by the thesis author in [SHK06c] and [SHK06a].

PAPER E

Real-time Risk Assessment with Network Sensors and Intrusion Detection Systems

This paper describes how a stochastic modeling approach can be used to perform real-
time risk assessment of large networks. Similarly to PAPER A-D, the basic model
in this paper relies on the assumption that the security of a system can be modelled
as a finite number of states. By associating each state with a monetary cost value,
the paper then proposes that the current risk of the system can be quantified in terms
of state probabilities and costs. The basic model is intended to be implemented in a
distributed agent- and sensor architecture, tailored for monitoring of large networks.
The main task of the sensors is to provide the agents with observations regarding the
security state of one or more systems that are under observation. Based on hidden
Markov model theory, the paper provides a mechanism for handling and interpreting
data from sensors with different trustworthiness, which makes it possible to compute
the most likely state probability distributions for the observed systems, and thereby
compute the current risk value for the network, in real-time.
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PAPER F

A Framework for Predicting Security and Dependability Measures in Real-time

This paper presents a framework for implementing the stochastic modeling approach
in PAPER A-D in the distributed agent-sensor monitoring architecture proposed in
PAPER E. In this paper, two new probabilistic system measures are defined: a sys-
tem’s mean time to next failure (MTNF ), and the probability that the system remains
free from failures until a certain time instant (PF (t)). These measures provide a new
way of dynamically measuring a system’s trustworthiness, in terms of its security and
dependability behavior. The purpose of the framework is to facilitate the computation
of the system measures, in real-time. By using the observations provided by the net-
work sensors, the probabilities of the current system states can be estimated, which
makes it possible to use the stochastic model to predict the current and future behav-
ior of the monitored system. To demonstrate the approach, an illustrative example is
included.

7. Guidelines for Reading
The purpose of this section is to explain the contents of the different parts of this

thesis, how they are related to each other, and to suggest which parts that should be
read in which order by readers with different backgrounds.

Part I - Thesis Introduction

The first part of the thesis explains the background and motivation to the research
topics that have been pursued, discusses related work and gives some indications of
how the obtained research results can be extended into future work. This part of the
thesis is intended to be read as an introduction to the rest of the thesis.

Part II - Included Papers

The second part consists of six published papers, which comprises the main part
of this thesis. All the papers in this part are self-contained and can therefore be read
in any sequence. However, as indicated in Fig. 4, because the papers are related
to each other their contents do overlap in some respect. Especially the contents of
PAPER A-D are closely related, in that the model originally presented in the first
paper is gradually refined in the subsequent three papers. The last paper (PAPER F)
ties together the results developed in the first four papers with the novel approach
presented in the fifth paper (PAPER E). To get a better understanding of the obtained
research results, the reader is therefore encouraged to read the papers in alphabetical
order.

Part III - Thesis Appendix

The last part of the thesis contains an appendix, which purpose is to explain a scal-
ing procedure required to implement the algorithms in PAPER E and F. As pointed
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out in the HMM tutorial by Rabiner [Rab90], scaling is required when dealing with
large observation sequences. This is due to the computation of the forward variable
αt. Since αt consists of a sum of a large number of multiplied terms, which each
are generally significantly less than one, each term of the variables tend to zero ex-
ponentially fast as the number of observations in a sequence grows large. For large
sequences (t > 100) the dynamic range of the computation will exceed the precision
range of most machines. The best way to implement the algorithms is therefore to
incorporate a scaling procedure. Unfortunately, the equations provided by Rabiner
for computing the scaled forward variables [Rab90, Eq. (91)-(92b)] cannot be used
in the modeling framework proposed in PAPER E and F, since the purpose of the
algorithms in these papers is to compute the estimated state probabilities in real-time,
rather than using (historic) observation sequences to re-estimate the model parame-
ters. This appendix explains how the scaling coefficients are used in the framework
presented in PAPER E and F and proves that the resulting state probability estimates
provided by the scaling procedure are correct.

A Note on Notation

The simple model for attack prediction and security quantification that was in-
troduced in PAPER A has gradually been refined to the much more comprising and
complex modeling approach presented in PAPER D. Even though the first four papers
in this thesis are closely related, the reader will notice that the notation has changed
during the work with the model. To facilitate the use of additional variables and pa-
rameters, which had to be added when extending the model, also the notation had
to evolve during the work with the papers. This is the reason why, for example, in
PAPER D Greek symbols have replaced some of the variables used in the game model
in PAPER A.

8. Summary and Conclusions
More than ten years after the need for quantitative measures of security initially

was brought up (see [LBF+93]), there still does not exist any common methodology,
which has been widely adopted for security quantification on a system-level basis.
The efforts put in developing methods for quantitative security evaluation during the
last decade can be viewed as either static or dynamic analysis methods. The static
approach focus on aspects such as how the system was built and what types of vulner-
abilities it may contain whereas the dynamic methods focus more on how the system
is operated and how it is behaves in a certain environment. This thesis strives to fol-
low the latter approach. To describe a system that is yet to be built or to describe an
existing system whose vulnerabilities remain unknown, stochastic assumptions are
needed [NST04]. By using a stochastic modeling approach, a system’s inherent ran-
dom behavior due to the introduction and removal of vulnerabilities, attacker behav-
ior, normal user behavior and administrative activities as well as accidental hardware-
and software failures can be modeled and analyzed. The papers in this thesis present
a method for quantitative security and dependability evaluation, which is based on
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such stochastic modeling techniques. The purpose of the developed method is to fa-
cilitate the process of obtaining measures of a system’s trustworthiness, regardless of
whether the failure cause is intentional or not. The thesis also demonstrates how the
stochastic modeling approach can be used for real-time risk assessment of a system,
and suggests how the system’s security and dependability behavior can be predicted
in real-time.

The Main Contributions

To summarize, the contributions of this thesis are related to three main areas.

Integrating security and dependability

Attack modeling and prediction

Real-time assessment

More specifically, the main contributions of the work are as follows:

C1. It is discussed how the “fault-error-failure” pathology, which traditionally only
has been used for system dependability evaluation, can be applied in a security
related context.

C2. It is demonstrated how a stochastic modeling approach can be used to compute
a system’s expected time to failure. The proposed model includes not only acci-
dental failures but also malicious behavior, i.e., attacks.

C3. Game theory is introduced as a tool to predict attacker behavior. By modeling
the interactions between an attacker and the system IDS mechanisms as a game,
the probabilities of expected attacker behavior can be computed.

C4. The use of attack (decision) probabilities as a part of the transition rates is pro-
posed. By multiplying rate values with attack probabilities, failures due to ma-
licious behavior can be modelled as intentional state changes of a stochastic
model.

C5. A new definition of system risk is proposed, which is based on a state-based
system modeling approach. Moreover, a method to compute this risk in real-
time has been developed.

C6. It is demonstrated how autonomous agents can be used to collect sensor data and
how hidden Markov model theory can be used to interpret these observations.

C7. Two new quantitative (combined) security and dependability measures have been
defined; the systems mean time to next failure (MTNF ) and the probability that
the time until failure is greater than t, denoted PF (t).

An illustration of how these specific contributions are related to the three main areas
is depicted in Fig. 5. These contributions have been published in ten papers so far:
the six papers included in Part II of this thesis, and in four other publications by the
thesis author [SHK06c, SHK06a, ÅSHK06, HSK07].
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Figure 5. An illustration of how the individual contributions are related to the three main areas.

9. Ongoing and Future Work
This section presents ongoing work that is based on the research results presented

in the papers in this thesis. It also point out directions for possible future work.

The Stochastic Modeling Approach

The stochastic modeling approach has been a common theme throughout all of
the six papers in Part II of this thesis. Even though the method has been pursued
in depth, there is still some work remaining before it can be applied in a real-world
context. Here, three main research proposals (P1-P3), which are related to stochastic
modeling, have been outlined.

P1: Assessing the attack intensities. To be able to use the stochastic
modeling approach to obtain security related measures in practice, the attack inten-
sities in the model needs to be parametrized. Forecasting attack rates poses a great
challenge and none of the papers in this thesis enters deeply into this subject. This is
therefore very much an open research question. A possible approach is to collect live
attack data from, for example, honeynets in order to study time aspects and proba-
bilities of attacks towards existing system vulnerabilities. These data might then be
used as input to models for predicting future attack rates. Such models do not exist
today and therefore need to be developed.

P2: Petri net modeling. Using a manually constructed Markov chain to
capture all relevant architectural details of a real-life system is a difficult task. To
avoid state space explosion when dealing with larger or more complex systems, the
possibility of using stochastic Petri nets (SPN) as a modeling and analysis tool should
be considered. When using SPN the system model will be much more concise, which
will facilitate the modeling and analysis process. One additional benefit of this ap-
proach is that also other types of distributions, than just the negatively exponential
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one, can be used to describe the transition rates between system states. Petri net mod-
els can easily be evaluated by means of software tools, such as UltraSAN [SOQW95].
If a numerical solution cannot be found, discrete-event simulations can be performed
to obtain system measures.

P3: Verifying the game solutions. As discussed in the previous section,
a simple game model that assumes perfect knowledge of the ongoing game may not
always be suitable to analyze attacker behavior. It should be investigated whether
other types of game models, such as Bayesian games or games with incomplete in-
formation [Har68], are more appropriate and, in that case, how and when to use these
games. Anyhow, verifying the game model’s ability to predict real-life attacks will
require further research, including validation of the model against empirical data.

The Hidden Markov Modeling Approach

The HMM approach has been applied in PAPER E and F. However, the results
presented in PAPER E have been significantly extended after the publication of this
paper. As pointed out in PAPER E, HMMs are discrete-time models, inherently not
suitable for interpreting sensor data in real-life applications, whose observations tend
to arrive either in burst or sparsely distributed in time. This is discussed in [ÅSHK06],
where the method is adapted to approximate continuous time system behavior. Also
design issues, such as queuing of sensor observations is addressed in this paper. The
paper also presents a discrete-event simulator, which has been used to perform sim-
ulation experiments demonstrating the risk assessment process during longer periods
of time. A multi-sensor architecture is suggested in [HÅ06]. However, there is still
some work remaining before the proposed model can be implemented in a real-world
setting. Here, two main research proposals (P4-P5) have been outlined.

P4: Testing the system with live data. The experimental results pre-
sented in [ÅSHK06] are based on simulated state transitions and observations gener-
ated from a HMM. To obtain more realistic results it is of interest to also simulate the
real-time risk assessment process based on real-life data. In [ÅVVK06] the basic risk
assessment model is implemented in an existing IDS architecture at the University of
California at Santa Barbara (UCSB). By running the proposed algorithms on real-life
sensor data this paper demonstrates that the proposed model do indeed produce valu-
able results. The results indicate that, if the sensors are capable of detecting ongoing
suspicious activity, the assessed risk level will reflect the true risk level with a high
certainty. These experiments were conducted in an off-line mode. It still remains to
test the system on-line with live traffic.

P5: New risk measures. Performability, originally introduced in [Mey89], is
a term that encompasses both a system’s dependability and performance. Performa-
bility modeling, where a performance level is associated with a state of the structural
system model, can be used to quantify a system’s ability to perform, by assigning re-
ward values to the different system states. The definition of real-time risk in PAPER E
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is in fact equivalent to the definition of “point performability” (see e.g., [dSeSG92]),
which describes the system’s performability for a single point in time. Apart from
point measures, also interval-, transient-, and steady-state measures can be obtained
by performability modeling. A possible future direction of the proposed risk model
in PAPER E could therefore be to define similar time-related measures for risk. By
computing not only the real-time risk, but also e.g., the cumulative risk of the system
over a certain period of time, a more complete view of the ongoing security incidents
in the monitored system can be obtained. It could also be of interest to assign cost
values to transitions, rather than to states, so that also the risk incurred in maintaining
and restoring the system can be assessed.

The Long-term Perspective

As can be seen, all these aspects (P1-P5) are very closely related to the research
results obtained in this thesis. In fact, all five proposals can be viewed as technical
improvements of the results presented in PAPER A-F in the subsequent part of the
thesis. In a more long-term perspective, other aspects will be important for future
research. As an example, for the proposed method for combined security and de-
pendability evaluation to be useful in practice, it needs to be implemented in such a
way so that also security analysts without stochastic modeling expertise can use the
methodology.
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Abstract In this paper, game theory is suggested as a method for modeling and computing the
probabilities of expected behavior of attackers in a quantitative stochastic model of secu-
rity. The stochastic model presented her is very simple, modeling a penetration attempt
as a series of intentional state changes that lead an ICT system from an assumed secure
state to a state where one or more of the systems security aspects are compromised.
The game situation models the actions of the attacker under the condition that at each
intermediate stage of the attack, the attempt may be detected and measures taken by the
system owner to bring the system back to the originating secure state. Assumptions are
made for the possible rewards for the players of the game, allowing the calculation of the
mean time to first security breach (MTFSB) for the system. An example of the possible
use of the model is provided by calculating the MTFSB for a root privilege attack on a
UNIX system.

Keywords: Computer security, quantification, stochastic analysis, attack models, game theory

1. Introduction
The security of operating computer systems has traditionally only been expressed

in a qualitative manner. However, to be able to offer a security dimension to QoS
architectures, it is important to find quantitative measures of security. In the depend-
ability community, methods for quantifying reliability, availability and safety, are
well-known and effective. By using state space modeling methods, operational mea-
sures for the system, such as the mean time between failures (MTBF), the mean time
to failure (MTTF) or the mean time to first failure (MTFF), can be computed. During
the past decade, some research on applying the dependability paradigm to security
has been performed, using an analogy between system failure and security breach,
aiming and attempting to quantify security by calculating measures such as the mean
time to security compromise.

However, in contrast to failures, attacks may not always be well characterized by
models of a random nature. Most attackers will act with an intent and consider the
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possible consequences: satisfaction, profit and status versus effort and risk of the
actions before they act. This paper uses a game theoretic approach to model the
expected behavior of attackers for use in stochastic modeling techniques.

The gain of using a game theoretic approach in a security related context is twofold.
First, we believe it can provide a more accurate model of the attackers’ expected
behavior, which can be used to assign more realistic transitions probabilities in the
stochastic models. Second, it may also help administrators to find the optimal defense
strategies of a system and to calculate the expected loss associated with different de-
fense strategies. This work is a demonstration of the former application.

In order to keep the focus on the game theoretic model, issues relating to model
parametrization is ignored. Therefore only guessed values are used to demonstrate
how the model can be used to obtain quantitative measures.

2. Related Work
There are several papers on quantification of security. In [7], a first step towards

operational measures of computer security is discussed. The authors point to the
lack of quantitative measures for determining operational security and relate security
assessment to the dependability domain. Quantitative measures, such as the mean
effort to security breach (MESB), are defined and discussed. [12] presents a quanti-
tative model to measure known Unix security vulnerabilities using a privilege graph,
which is transformed into a Markov chain. The model allows for the characterization
of operational security expressed as the mean effort to security failure, as proposed
by [7]. Further, in [10, 16, 2] traditional stochastic modeling techniques are used
to capture attacker behavior and the system’s response to attacks and intrusions. A
quantitative security analysis is carried out for the steady state behavior of the system.

Game theory in a security related context has also been utilized in previous papers.
In [1], a model for attacker and intrusion detection system (IDS) behavior within a
two-person, nonzero-sum, non cooperative game framework is suggested. The pos-
sible use of game theory for development of decision and control algorithms is in-
vestigated. In [9], a game theoretic method for analyzing the security of computer
networks is presented. The interactions between an attacker and the administrator are
modeled as a two-player stochastic game, for which best-response strategies (Nash
Equilibrium) are computed. In [8] a preliminary framework for modeling attacker
intent, objectives and strategies (AIOS) is presented. To infer AIOS a game theoretic
approach is used and models for different threat environments are suggested.

Based on the game theoretic work of [8, 1, 9], a method to model and compute
the probabilities of malicious user actions for use in stochastic models is suggested.
To demonstrate how to use the method, a real-world example of an attack against a
system is modeled, the optimal strategy of the attack is calculated and, following the
approach of [10, 2, 12], the quantitative measure mean time to first security breach
(MTFSB) is obtained for the system.
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3. The Stochastic Model
Analogously to dependability analysis where system failure is a concept denoting

the system’s inability to deliver its services, in the security community one often talks
of security breach; a state where the system deviates from its security requirements.
A security breach might accidentally be caused by normal usage operation, but more
likely by intentional attacks upon the system. Such attacks on an operating computer
system can often be modeled as a series of state changes of the system that lead
from an initial secure state to one or more target compromised states, i.e., security
breach states. A successful attack against the system may therefore consist of many
subsequent elementary attack actions. At each intermediate stage of the attack, the
attacker will therefore have the choice of either

Attack by performing the next elementary step in the attack.

– If the attacker succeeds the system will be transferred from state i to state
i + 1.

– If the attacker fails the system will remain (temporary) in state i.

or

Resign and interrupt the ongoing attack.

– The system will be remain (temporary) in state i.

On the other hand, at each intermediate stage, the system administrator may

Detect the attack and bring the system back to a secure state.

– The system will be transferred from state i to state 0, hence, the attacker
will not have the possibility of continuing the attack.

This is illustrated in Fig. 1. In the model it is assumed that once an attack is initiated,
the attacker will never voluntarily try to revert the system to any of the previous states.
The model also assumes there is only one single path to the security breach state; a
somewhat simplified view of reality.

3.1 Sojourn Time

Since the state transition model presented in Fig. 1 is stochastic by nature, the
calender time spent in each state of the system model will be a random variable. The
time or effort taken for an attacker to cause a transition will depend on several factors,
such as the attacker’s knowledge and background, robustness of the system etc. See
e.g., [3] for a thorough discussion on this topic and [6] for empirical data collected
from intrusion experiments. As mentioned in the introduction, to keep the focus on
how to apply game theory in stochastic models, the differences between time and
effort and the problems regarding finding suitable distributions and parameters for
the model will be ignored in this paper.
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attack action fails or 
attacker resigns in state i

attack action
succeeds

system detection and interruption 
of attack in state i

iattack 
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state

System 
security 
breach

Figure 1. Penetration of a computer system modeled as a series of state changes

For simplification, we therefore model the time between two subsequent attacks
are initiated against the system as an negatively exponentially distributed (n.e.d.)
variable with parameter λattack, i.e.,

P (t) = 1− exp(−λattackt). (1)

Once an attack is initiated, the initial secure system will be transferred into the subse-
quent state i = 1. As an attack has been initiated, the time needed for the attacker to
perform the next elementary step of the attack when the system is in state i, and the
corresponding time needed for the system to detect and interrupt the ongoing attack
during state i, are also modelled by the n.e.d, i.e.,

Pattack(i)(t) = 1− exp(−λit), (2)

and
Pdetect(i)(t) = 1− exp(−µit), (3)

respectively. Thus, 1
λi

and 1
µi

will be the respective mean time an attacker and the
system spend in state i of the model before causing a transition. The two ”competing”
processes with rates λi and µi representing the attacker and system actions in state i
can be merged into one Poisson process, hence, due to the memoryless property of
the exponential distribution, the state transition model then will be transformed into
a continuous time Markov chain (CTMC) [14] with discrete state space, formally
described as

{X(t) : t ≥ 0}, Xs = {0, 1, 2, .., n}, (4)

for which analytic analysis is possible. This model during the given assumptions is
displayed in Fig. 2.

In reality, there may be other types of distributions than the negative exponential
one, which are more suitable to model the transitions of the stochastic model. How-
ever, to facilitate analytic analysis the n.e.d. was chosen for all transitions in the
stochastic model.
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pi-1(a)pi-1(s)λi-1 pn-1(a)pn-1(s)λn-1pi(a)pi(s)λip1(a)p1(s)λ1

µnµiµ1

λattack

i0 1 n

Figure 2. A general stochastic model for penetration of a system.

3.2 Transition Probabilities

As previously mentioned, in each intermediate state i an attacker has two possible
choices of action: with probability pi(a) he will decide to continue the attack and with
probability 1−pi(a) he will resign and interrupt the attack. This decision probability
represents an important difference between dependability and security analysis when
using stochastic modeling techniques. In traditional dependability analysis only ac-
cidental failures are modeled; there is no human decision involved in the occurrence
of a failure, hence pi(a) = 1, for all i. However, when modeling attacks rather than
failures one must keep in mind that an attacker will consider the consequences of his
actions and compare the possible payoff versus the risk of each elementary attack
action. An attacker may therefore choose to interrupt an ongoing attack at a certain
stage or to not start the attack at all. Therefore, for each transition representing an
elementary step in the attack pi(a) should be explicitly calculated.

To be able to bring the system closer to the security breach state, an attacker not
only has to decide upon an action, but he must also succeed with the particular action.
This probability of success is denoted by pi(s) and is also included in the stochastic
model presented in Fig. 2.

Using the attacker’s and system’s action rates together with the transition probabil-
ities, the instantaneous transition rates between the state i and i + 1 in the stochastic
model can be calculated as

qi,i+1 = pi(a)pi(s) · λi, (5)

and between state i and 0 as

vi,0 = µi. (6)

As will be demonstrated in Section 5, the instantaneous transition rates can be used
for quantitative security analysis of the operating system.
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4. The Game Model
To determine the decision probabilities pi(a) game theory can be used. (A formal

definition is given in Appendix). If one views each elementary attack action causing a
transition in the stochastic model as an action in a game, where the attacker’s choices
of action is based on intelligent considerations of the possible consequences, then
the interactions between the attacker and the system can be modeled as a two-player
static game. This is displayed in Fig. 3.

strategy 

space

Game

attack 

strategy

defense 

strategy

System 

(security mechanisms)Attacker

strategy

space
play

Figure 3. The interactions between an attacker and the system modeled as a two-player static game

The complete action set for the game then includes the attacker’s two choices of
action together with the possible consequences, i.e., for each state i:

ai is the elementary attack action bringing the system from state i to i + 1,

ri is the resignation of the attack in state i,

di represents that the elementary attack action ai will be detected by the system,

φi represents that the elementary attack ai action will be undetected.

Hence, for each state i there is a game model G(i) defined by

N = {1, 2} = {attacker, system},
Ai = {ai, ri, di, φi},

ui =
di φi

ai ui1 ui2

ri ui3 ui4

,

(7)

where ui = {ui1, ui2, ui3, ui4} is the payoff received by the attacker, for each possi-
ble combination of action and response from the system

For the game defined in (7) it is possible to use (A.2) in Appendix to calculate the
attacker’s expected payoff for a choice of action as

ui(ai) = p(di) · ui1 + p(φi) · ui2,

ui(ri) = p(di) · ui3 + p(φi) · ui4.
(8)
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Since in most cases an attacker do not know the exact probability that his action
will remain undetected, game theory says he should assume that his opponent (the
system) is a conscious player of the game which seeks to minimize the attacker’s
expected payoff [15], hence, the minimax solution of the particular game G(i) can
be calculated as

α∗i = min
αi(di)

max
αi(ai)

{ui

(
αi(ai)

)
, ui

(
αi(ri)

)
}, (9)

as defined in Appendix. In reality, since the reward experienced by the attacker from
an outcome rarely coincide with the system’s loss, the game is usually not truly zero-
sum. However, defining payoff values for the system is irrelevant in game models
like these where the attacker is the only player who is capable of making intelligent
decisions.

The minimax solutions α∗i (ai) of the games G(i) for all the elementary attack
actions i = 1, .., (n− 1) represent a complete attack strategy, which has the property
that, by following it, an attacker will know that he has maximized his expected payoff
of the attack. This gives him a guarantee of the result from the attack regardless of
if one of his elementary attack actions will be detected by the system or not; the
“no regrets property” of game theory. Several experiments indicate that this search
for guarantees is a very strong motivator of human behavior and assuming that the
attacker population targeting the system will make rational choices relative to their
objectives, the situation will in the long run naturally gravitate towards the minimax
solution (i.e., the Nash equilibrium) [4, 15]. The minimax strategy will therefore
indicate how rational attackers will behave.

The attacker decision probability in state i of the stochastic model can therefore
be directly derived from the minimax solution of the corresponding game as

pi(a) = α∗i (ai). (10)

Note that, when α∗i is the solution of a static game, it is only correct to use (10) for
the stochastic model as long as the decision probability pi(a) depends on the current
state i in the stochastic model only (i.e., the Markov property holds).

5. Quantitative Analysis
Returning to the stochastic model presented in Section 3 and illustrated in Fig. 2,

since the stochastic model is a homogeneous continuous time Markov chain [14], it
is straight-forward to determine the limiting probabilities of each state in the model.
By solving the equation system

PS0 · λattack = PS1 · (q12 + v10)
PS1 · q12 = PS2 · (q23 + v20)
...
PSn−1 · qn−1,n = PSn · vn0∑

i=0..n PSi = 1

(11)
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one can obtain an expression for PSn: the stationary probability of being in the secu-
rity breach state. Now, one can use traditional dependability techniques (see e.g., [13]
or [5]) to compute quantitative measures of the system’s operational security. Using
the approach outlined in [5], the mean time to first security breach (MTFSB) for our
model can be computed as

MTFSB =
1− PSn

PSn · vn0
. (12)

Hence, by parameterizing the model, solving (11) and using (12), MTFSB can easily
be obtained for the system. The MTFSB measure provides the mean time it takes
before the system reaches its defined security breach state for the first time. For a
system, which starts in a initially secure state, MTFSB will be a quantitative measure
of the system’s operational security when considering a certain kind of attack posed
upon the system.

As previously mentioned, using other types of distributions than the n.e.d. will
exclude many of the well-known methods for analytic analysis of the model, however,
simulation can then be used to obtain the MTFSB for the system.

6. Application

6.1 Example of an Attacker-System Game Model

A typical example of how an attacker may experience the outcome of his two
choices in state i is

ui =
di φi

ai ui1 ui2

ri ui3 ui4

=
detected undetected

attack −1 2

give up 0 −1

. (13)

If the attacker chooses to perform the elementary attack action, without being de-
tected, he receives a positive payoff (ui2 = 2). But if he performs the action and the
system will detect this kind of violation, he receives a negative payoff (ui1 = −1).
On the other hand, if the attacker chooses to resign the attack, even though he would
not been detected if he had tried, he also receives a negative payoff (ui4 = −1).
However, if he chooses to resign when he would have been detected if he tried, no
payoff is received (ui3 = 0).

The attacker’s expected payoff ui(ai) as a function of the probability αi(ai) of
trying the attack action for this game is illustrated in Fig. 4. The dashed line displays
the expected payoff when the system always detects the attack action (i.e., αi(di) =
1) whereas the dotted line displays the expected payoff if the system never detects
the attack action (i.e., αi(di) = 0). Hence, the strategy which provides the attacker
with the highest expected payoff is the minimax solution of this game

pi(a) = α∗i (ai) = 0.25 (14)

as indicated the Fig. 4 and verified by the Gambit software tool [11].
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Figure 4. The expected payoff for the game in (13).

6.2 Example of Quantification of an Attack

In a root privileges attack, an attacker tries to obtain root access to a Unix or
Linux system connected to a network. Assuming that the attacker is not an insider (a
registered user), one common way to gain root access is to

1 crack or sniff passwords to get access to local user account, and

2 trigger a local exploit, e.g., the mremap() exploit on Linux, to get root privi-
leges.

µ3µ2

p2(a)p2(s)λ2p1(a)p1(s)λ1λattack local 
user0 no 

privil. root

Figure 5. A stochastic model for obtaining root access of a Linux/Unix system.

The stochastic model for this attack scenario is displayed in Fig. 5. For security
quantification the model has been parametrized with the values indicated in Table 1.
To shorten the example, the attacker’s payoffs for attack step 1 and 2 are both assigned
values as in the example (13) with the minimax solution α∗i (ai) = 0.25 (14), which
gives p1(a) = p2(a) = α∗i (ai) = 0.25.
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Parameter Value (s)

1/λattack 9.0 · 105

1/λ1 1.8 · 104

1/λ2 2.2 · 104

p1(s) 0.9

p2(s) 0.7

1/µ2 8.5 · 104

1/µ3 3.6 · 103

Table 1. Numerical values for the parameters of the model in Fig. 5

By inserting the values from Table 1 and solving the equation system
PS0 · λattack = PS1 · p1(a)p1(s)λ1

PS1 · p1(a)p1(s)λ1 = PS2 ·
(
p2(a)p2(s)λ2 + µ2

)
PS2 · p2(a)p2(s)λ2 = PS3 · µ3

PS0 + PS1 + PS2 + PS3 = 1

(15)

we obtain an expression for PS3, hence, by using (12), MTFSB for this type of attack
is calculated as

MTFSB =
1− PS3

PS3 · µ3
= ... = 2.555 · 106 (sec) ≈ 30 (days). (16)

The MTFSB measure of 30 days reflects how long one can expect that the system will
remain secure from illegal root access when attacked by non-registered users under
the given assumptions.

7. Conclusions and Further Work
In this paper, game theory is suggested as a method for modeling and computing

probabilities of the expected behavior of attackers in quantitative stochastic models
of security. One example of an attack against a system is modeled and the operational
measure “mean time to first security breach” (MTFSB) is computed for the attack.

The model presented here is very simple. Further work will therefore include ex-
tending the game theoretic model with different attacker profiles; not all attackers
will experience equal payoffs and some attackers tend to take more risks than oth-
ers. Models including more than one type of attack and where there are more than
one possible way to reach the security breach state, resulting in more complex at-
tack graphs, will be developed. To avoid state space explosion in larger models, the
possibilities of using stochastic Petri nets as a modeling and analyzing tool will be
considered.

Regarding the game theoretic model, it is interesting to note that if the attacker
knows the probability of getting caught at a certain stage of the attack, then there will



PAPER A: Using Game Theory in Stochastic Models for Quantifying Security 41

always be a pure strategy (either to always attack or to always resign) that maximizes
his expected received payoff. Also, in cases where the attacker does not know the
exact probability of getting caught there might be other strategies than the minimax
solution which gives him a larger payoff. However, as discussed in [15] when leaving
the minimax strategy the attacker looses his guarantee of expected payoff and taking
such risks seems contrary to human nature!

Furthermore, it can be argued that the players in this game (the attackers) may be
unaware of, or ignore, the fact that they are playing a repeated game, hence, statistics
of attacker behavior may not always converge to equilibrium in practice. A “one-shot
game” with a pure minimax solution may therefore in many cases be more appropri-
ate for modeling expected behavior of attackers. Whether the game model presented
in this paper gives a realistic model of real world security related attacks will require
further research, including validation of the model against empirical data.
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Appendix: Game Theory
Formally, a static n-player game in strategic form with complete information is a 3-tuple

(N, {Ak}k∈N , {uk}k∈N ). The game consists of
A set of players: N = 1, ...., n.
The action (strategy) spaces of players: Ak,k = 1, .., n where Ak is the set of all available
actions to player k. The outcome space is then defined as A = ×k∈NAk = {(a1, .., an) : ak ∈
Ak, k = 1, .., n} and is thus nothing but an action profile.
The payoff function of players: uk : A → R, k = 1, .., n}.

If N and Ak are finite, the game is called finite. In particular, if the game is played by only two
players (N = {1, 2}) exactly four pieces of information are needed to uniquely define the game:
(A1, A2, u1, u2).

A (pure) strategy for a player is a choice of action from his set of available actions, whereas

Definition 1 A mixed strategy αk for player k, is a probability distribution over his set of available
actions, Ak, i.e., if player k has m actions available, a mixed strategy is an m dimensional vector

(α1
k, α2

k, .., αm
k ), such that αβ

k ≥ 0 for all β = 1, 2, .., m, and
mX

β=1

αβ
k = 1. (A.1)

Hence, αk(aβ
k) is the probability that player k will take action aβ

k .
The payoff function maps the action profile of a player to the corresponding consequence (reward or

loss) experienced by the player. If each outcome a ∈ A occurs with probability p(a), then the expected
payoff of player k is

uk(p) =
X
a∈A

p(a)uk(a). (A.2)

In a nonzero-sum game, a rational player will always try to maximize her own expected payoff from
the game. The choice of ak that maximize player k’s expected payoff over her action space Ak is called
the player’s best response action. The decision making of player k in a game then becomes

max
ak∈Ak

uk(ak, a−k), (A.3)

where a−k is the action choice of the other players, unknown by player k.

Definition 2 The best response correspondence of player k is the set of mixed strategies that are
optimal, given the other player’s mixed strategies. In other words

Bk(α−k) = arg max
αk∈∆(Ak)

uk(αk, α−k). (A.4)

Definition 3 A mixed strategy equilibrium (Nash equilibrium) of a game G in strategic form is a
mixed strategy profile (α∗1, .., α

∗
n) such that, for all k = 1, .., n

α∗k ∈ arg max
αk∈∆(Ak)

uk(αk, α∗−k), (A.5)

or

α∗k ∈ Bk(α∗−k). (A.6)

In a zero-sum two-player game where one player’s gain is the other player’s loss the Nash equilib-
rium of the game is also called the minimax solution of the game.
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Abstract This paper presents ongoing work on using stochastic game theory as a mathematical
tool for computing the expected behavior of attackers. The possible use of the Nash
equilibrium as a part of the transition probabilities in state transition models is defined
and motivated. To demonstrate the approach, a simple example of an attack against a
computer network is modeled and analyzed.

1. Introduction
Recently there has been an increased interest in probabilistic methods for quanti-

fying the operational security of networked computer systems. Much of the recent
research efforts [10, 1, 3, 6] have focused on using state transition diagrams to model
attacks and system restoration, thereby obtaining quantitative measures such as the
mean time to security compromise or the mean effort to security failure.

Following the approach of [1], the security of an operating computer system can
be modeled as a continuous time Markov chain (CTMC)

{X(t) : t ≥ 0}, Xs = {0, 1, 2, . . . , z}. (1)

If X(t) = k then the system is said to be in state k at time t. The interactions
between the states in (1) can be displayed in a state transition diagram. Attacks on the
system can then be modeled as a series of intentional state changes of the underlying
stochastic process. The state XS = 0 is considered a dormant state, and is hence not
included in the analysis in Section 2.

To correctly assess the security of a real world system, any probabilistic model
has to incorporate the attacker behavior. Previous work is mainly based on using
Markov decision processes [3] or shortest path algorithms [6] to include this aspect.
However, none of these methods take into account that the attacker may consider not
only the reward of a successful attack but also the potential cost he may experience if
the attack is detected and reacted to by the system administrator (“cost” in this paper
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should be interpreted as a negative reward). This aspect has previously been ignored
in models of attacker behavior. In this paper stochastic game theory is therefore
introduced as a tool to model and analyze the expected attacker behavior.

Game theory is not a new concept in security related contexts. In [5], a game
theoretic method for analyzing the security of computer networks is presented. The
interactions between an attacker and the administrator are modeled as a two-player
stochastic game for which best-response strategies (the Nash equilibrium) are com-
puted. In [4] a preliminary framework for modeling attacker intent, objectives and
strategies (AIOS) is presented. To infer AIOS a game theoretic approach is used and
models for different threat environments are suggested.

This work extends the work of [5, 4] by motivating and defining how to com-
pute and use the Nash equilibrium (NE) of a stochastic game to model the expected
attacker behavior for use in state transition models, under the assumption that an at-
tacker will consider the reward versus the possible cost of his actions before he acts.

2. Modeling Attacks
The networked systems of today are very complex and once an attack has been

initiated, the attacker often has many atomic attack actions to choose between. He
may also choose to interrupt an ongoing attack at a certain stage, or not to start the
attack at all. To include these aspects in the transition probabilities between the states
of (1), it is necessary to analyze all the options an attacker has in every state of the
system. Assuming that for each state k: k = 1, . . . , z, an attacker can take mk actions

Attack by choosing one of the possible atomic attack actions ak
i , where i =

1, . . . ,mk − 1.

– If the action succeeds the attacker will receive the reward associated with
the particular attack.

– If the action fails no reward will be achieved.
– If the action is detected, the attacker will receive the cost associated with

the attack.

Resign and interrupt the ongoing attack. This is denoted action ak
mk

.

– The attacker will most likely experience this option as a defeat, hence,
by resigning he will receive a cost, which magnitude depends on both
how far the attack has proceeded as well as the probability that the attack
would have remained undetected if he had chosen to continue.

The probability that the attacker will choose action i in state k will be denoted
pattack(ak

i ). Hence, for each state k in the state transition model, the attacker’s ex-
pected choice of action can be represented by a probability vector

p
attack

(ak) = (pattack(ak
1), . . . , pattack(ak

mk
)),

where
∑

i=1,...,mk

pattack(ak
i ) = 1. (2)
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Hence,
pattack = {p

attack
(ak)|k = 1, . . . , z}, (3)

will be the complete set of decision probability vectors for the state transition model.
To continue an attack from state k, the attacker not only has to decide upon an

atomic attack action but he also must succeed with the action. Assuming that the
reward and cost result from the transitions (entering a new state), we may without
loss of generality consider the embedded discrete time Markov chain (DTMC) of (1).
The probability that an attacker may cause a transition of the system from state k to
state ki can therefore be computed as

P (Xs+1 = ki|Xs = k) = pattack(ak
i ) · psuccess(ak

i ). (4)

If the attacker chooses action ak
mk

, or fails, no state change occurs. Hence, to incor-
porate attacker behavior in the transition probabilities when parameterizing a state
transition model, one should

1 Identify all atomic attack actions, i.e., those transitions that can be caused by
attackers;

2 Assign success probabilities to the atomic attack actions; and

3 Compute and assign decision probabilities to the atomic attack actions.

The rest of this paper will concentrate on how to perform the third step; i.e., explain
how to use stochastic game theory to compute the expected behavior of attackers.

3. Computing Decision Probabilities
Regard each atomic attack action, which may cause a transition of the current sys-

tem state, as an action in a game where the attacker’s choices of action is based on an
intelligent consideration of the possible consequences. Then the interactions between
the attacker and the system can be modelled as a two-player game, as illustrated in
Fig. 1.

strategy

space

Game

attack

strategy

defense

strategy

System

(security mechanisms)Attacker

play
strategy

space

Figure 1. The interactions between an attacker and the system modeled as a two-player game

To obtain the attack matrix (3) of an intelligent and rational attacker stochastic
game theory can be used. A formal definition of a stochastic game is given in Ap-
pendix. In a stochastic game there is a finite number of positions, or states. After each



48

play in the game, the game either ends or it is transferred to the next state. For the
transitions between states there is a randomization involved, which can be related to
the success probabilities of atomic attack actions. A general stochastic game model
for analyzing atomic attack actions can therefore be defined by

• The two players: N = {1, 2} = {attacker, system},
• The game elements: Γk, k = 1, . . . , z, and ∀k,

• The attacker actions: Ak = {ak
1, . . . , a

k
mk
}, and the

consequences Ck = {dk, φk} = {detected, undetected}.

For each possible combination of attack and consequence, there is an entry, as defined
in (A.1). In this model, the entry

µk
ai,φ

= psuccess(ak
i )

(
u(ak

i , φ
k) + Γki

)
, (5)

means that if the attacker undetected succeeds with the atomic attack action i in
state k, he receives the payoff u(ak

i , φ
k). Note that the probability of having to play

the subsequent game element Γki, i.e., to continue the attack, is included in (5). In
contrast

µk
ai,d

= u(ak
i , d

k), (6)

is the entry corresponding to the case where the attacker chooses action i but the
action is detected and reacted to by the system administrator. Entries similar to (6)
can be defined for the cases where the attacker resigns and interrupts the attack. As
can be seen, the game is assumed to end if the attacker chooses to resign the ongoing
attack, or if the ongoing attack is detected.

Assuming that an attacker does not know the exact probability that his possible
actions will remain undetected, game theory says he should assume that his opponent
(the system) is a conscious player of the game, who seeks to minimize the attacker’s
expected payoff [9]. Hence, by using the inductive equations (A.3)-(A.5) the min-
imax solution, i.e., the NE of the complete stochastic game can be calculated. The
set of minimax solution vectors in (A.6) for the game elements Γk in the stochastic
game model represents a complete attack strategy, which has the property that, by
following it, an attacker will know that he has maximized his expected payoff of the
attack. This gives him a guarantee of the result from the attack regardless of whether
his atomic attack actions are detected by the system or not; the “no regrets property”
of game theory. Several experiments indicate that this search for guarantees is a very
strong motivator of human behavior and assuming that the attacker population tar-
geting the system will make rational choices relative to their objectives, the situation
will in the long run naturally gravitate towards the NE [2, 9]. The minimax strategy
will therefore indicate how one can expect rational attackers to behave.

In cases where there is a single NE solution of the game (as for zero-sum games),
the set of attacker decision probability vectors for all states in the stochastic model
can be directly derived from the minimax solution of the underlying stochastic game
as

pattack = α∗ = {αk|k = 1, . . . , z}∗. (7)



PAPER B: Using Stoch. Game Theory to Compute the Exp. Beh. of Attackers 49

(1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 0,6 0,4 0,1 - - - -

(1,0,0) - - - 0,5 0,2 - -

(0,1,0) - - - - - 0,3 -

(1,1,0) - - - - - - 0,4

Table 1. Success probabilities for the example network state set.

In cases of multiple NE’s, the strategy probabilities can be combined (added) and
normalized according to (2).

4. Example
This is a simple example (very similar to the one used in [8]) to illustrate the

possible use of the theory previously presented. The network illustrated in Fig. 2
consists of a workstation, a public webserver and a private fileserver.

Webserver

Fileserver

Workstation

Router

Internet

Attacker

Figure 2. The example network.

For the example network we use the following notation

Xs = {(x, y, z)|x, y, z ∈ {0, 1}},

where e.g., (1, 0, 1) means that the workstation (x) and fileserver (z) are compro-
mised, but the webserver (y) is not. To simplify the example we assume that the
attacker priorities are: 1) the fileserver (reward 30); 2) the webserver (reward 20); 3)
the workstation (reward 10); and once he has compromised one of them, he will only
focus on targets with higher priorities. Also assuming that once an attacker has taken
control over any of the possible targets, the probability of successful attacks against
the remaining targets will increase, the partial transition matrix with success proba-
bilities in Table 1 can be set up. (The numerical values for the success probabilities
are chosen for exemplification.)
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By defining the action set

A(0,0,0) = {a1, a2, a3, a4},
A(1,0,0) = {a2, a3, a4},
A(0,1,0) = A(1,1,0) = {a3, a4},
C(0,0,0) = C(1,0,0) = C(0,1,0) = C(1,1,0) = {c1, c2},

(8)

where a1 = ”attack workstation”, a2 = ”attack webserver” ,a3 = ”attack fileserver”,
a4 = ”do nothing”, c1 = ”detected” and c2 = ”undetected”, and solving the corre-
sponding game elements

Γ(0,0,0) =


−10 0.6 · (10 + Γ(1,0,0))
−20 0.4 · (20 + Γ(0,1,0))
−30 0.1 · 30
0 −5

 ,

Γ(1,0,0) =

−20 0.5 · (20 + Γ(1,1,0))
−30 0.2 · 30
0 −10

 ,

Γ(0,1,0) =
(
−30 0.3 · 30
0 −15,

)
,

Γ(1,1,0) =
(
−30 0.4 · 30
0 −15,

)
,

(9)

the decision vector for rational attackers can be computed from the optimal solution
for the underlying stochastic game as

p
attack

(a(0,0,0)) = (0.29, 0, 0, 0.71),

p
attack

(a(1,0,0)) = (0.28, 0, 0.72),

p
attack

(a(0,1,0)) = (0.28, 0.72),

p
attack

(a(1,1,0)) = (0.26, 0.74).

(10)

The interpretation of the numerical result displayed in (10) is that a rational attacker
will, with probability 0.71, consider it too risky to attack the network at all, however
with probability 0.29 he will start to attack the workstation. Once he has gained
control of the workstation he might, with probability 0.28, continue the attack by
trying to compromise the webserver; etc.

5. Conclusions and Further Work
This model is quite simple. The decision probability vector as defined in (7) should

therefore not be taken as an absolute truth of how the attackers will behave, but rather
as an indication of their expected behavior. This is especially important in cases
where the solution of the game is a pure NE, or when some options have zero prob-
ability (as in the example). Further work will therefore try to combine the optimal
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strategy vector (A.6) with uncertainty, to derive a more realistic decision vector. The
model should also be extended to include different attacker profiles; not all attackers
will experience equal rewards or losses, and some attackers tend to take more risks
than others.

Regarding the game theoretic model, it is interesting to note that if the attacker
knows the probability of getting caught at a certain stage of the attack, there will al-
ways be a pure strategy that maximizes his expected received payoff. Also, in cases
where the attacker does not know the exact probability of getting caught there might
be other strategies than the minimax solution which provide a larger payoff. How-
ever, as discussed in [9], when leaving the minimax strategy the attacker looses his
guarantee of expected payoff and taking such risks seems contrary to human nature!
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Appendix: Stochastic Games
A two-player zero-sum stochastic game [7] is a set of z “game elements”, or states, Γk: k =

1, . . . , z. Each game element is represented by an mk × nk matrix, whose entries are of the form

µk
ij = uk

ij +
X

l=1,...,z

qkl
ij Γl, (A.1)

with qkl
ij ≥ 0, and

P
l=1,...,p qkl

ij < 1. Hence, if in state k, player I chooses his ith pure strategy and
player II chooses his jth pure strategy, player I will receive a payoff of uk

ij plus a probability of qkl
ij

for l = 1, . . . , z of having to play the lth game element next. In contrast to other game models, it is
possible for a stochastic game to revert to previous positions.
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Definition. A strategy for player I is a set αkt, k = 1, . . . , z of mk vectors satisfyingX
i=1,...,mk

αkt
i = 1, αkt

i ≥ 0. (A.2)

Hence, αkt
i is the probability that player I will choose action i, assuming that he plays the game element

Γk at the tth stage of the game. The strategy is stationary if, for all k, the vectors αkt are independent
of t. A strategy for player II is a similar set of nk vectors βkt.

Given a pair of strategies, an expected payoff can be calculated for any k = 1, . . . , z when the first
stage of the game is the game element Γk. Thus, the expected payoff for a pair of strategies can be
thought of as a z-vector. As with ordinary matrix games, this will lead to the definition of optimal
strategies and a value, the value being a z-vector v = (v1, v2, . . . , vz).

If the value vector is to exist, one must be able to replace the game element Γl in (A.1) by the value
component vl, i.e., by defining, inductively,

v0 = (0, 0, . . . , 0), (A.3)

xkr
ij = uij +

X
qkl

ij vr
i , r = 1, 2, . . . , (A.4)

vr+1
k = val(xkr

ij ), (A.5)

the sequence of value vectors will eventually converge (for a proof of convergence, see [7]). The optimal
strategy αkr for the converged value vector will then converge, in the limit, to the optimal stationary
strategy

α∗ = {αk|k = 1, . . . , z}∗, (A.6)

for the stochastic game.
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Abstract We describe a game-theoretic method to compute the probabilities of expected attacker
behavior, and we demonstrate how these probabilities can be incorporated in the tran-
sition rate matrix of a stochastic model for operational security assessment. The game-
theoretic method is based on a reward concept, which considers the effect of success-
ful attacks, as well as the possible cost of detection when computing the expected at-
tacker strategy. Our method aims to fill an important gap in the application of reliability
methodology to security evaluation. To demonstrate the usability of the method in dif-
ferent threat environments, an illustrative example is provided.

Keywords: Quantitative security, stochastic modeling, attacker behavior, game theory

1. Introduction
The new paradigms of ubiquitous computing and high capacity data transfer open

up the Internet as the main area for information interchange and electronic com-
merce. Attacks against computer networks used by modern society and economics
for communication and finance can therefore threaten the economical and physical
well-being of people and organizations. Due to interconnection of systems, such
attacks can be carried out not only locally, but also anonymously and from a safe dis-
tance. Assessment of the operational security of an ICT system is hence a research
area of ever increasing interest.

There are several standards targeting both security assessment and security man-
agement available. The ISO 15408 ”Common Criteria” standard [4] provides criteria
for qualitative evaluations of the security level of a system, while ISO 13355 ”Guide-
lines for the management of IT Security” [3] provides guidelines on risk management
of IT security. However, these standards focus on qualitative evaluation of the secu-
rity level of a system rather than providing quantitative assessment of operational
security. Recently, the need for techniques for quantification of security attributes
of ICT systems has been raised. This relates both to security requirements in QoS
architectures, as well as input to trade-off analysis regarding the design and choice
of security mechanisms to comply with an established security policy. One way to
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achieve this, is to use probabilistic models for assessing the operational security of
an ICT system or service. Specifically, stochastic modeling and analysis techniques,
traditionally used in reliability analysis, have been identified as a promising approach
for obtaining quantitative measures of the security attributes of systems.

In the groundbreaking paper by Littlewood et. al. [6] a first step towards oper-
ational measures of computer security is discussed. The authors point out the lack
of quantitative measures for determining operational security and relate security as-
sessment to the reliability domain. Quantitative measures, such as the mean effort
to security breach, are defined and discussed. Ortalo et.al. [11] present a quantita-
tive model to measure known Unix security vulnerabilities using a privilege graph,
which is transformed into a Markov chain. The model allows for the characterization
of operational security expressed as the mean effort to security failure as proposed
by [6]. Furthermore, Madan et. al. [9, 16, 2] use traditional stochastic modeling
techniques to capture attacker behavior and the system’s response to attacks and in-
trusions. A quantitative security analysis is carried out for the steady state behavior
of the system. In [15] Singh et. al. describe an approach for probabilistic valida-
tion of an intrusion-tolerant replication system. They provide a hierarchical model
using stochastic activity nets (SAN), which can be used to validate intrusion toler-
ant systems, and to evaluate merits of various design choices. Finally, the paper by
Nicol et. al [10] provides a survey over the existing model-based system dependabil-
ity evaluation techniques, and summarizes how they are being extended to evaluate
security.

The stochastic model used in this paper is similar to the ones presented in [9, 16,
2, 11, 15]. However, to correctly model intentional attacks posed upon a system, any
probabilistic model has to incorporate attacker behavior. We believe this aspect to be
one of the remaining main challenges when using stochastic modeling techniques to
quantify security. We argue that the attacker behavior should ideally be represented as
a probability distribution over the possible attack actions in each state of the system.
We therefore define and make use of attacker strategies as a part of the transition
probabilities between states. To compute the expected attacker strategies, we use
stochastic game theory.

Game theory in a security related context has been utilized in previous papers.
In [1] a model for attacker and intrusion detection system (IDS) behavior within a
two-person, nonzero-sum, non cooperative game framework is suggested. The pos-
sible use of game theory for development of decision and control algorithms is in-
vestigated. In [8] a game-theoretic method for analyzing the security of computer
networks is presented. The interactions between an attacker and the administrator are
modeled as a two-player stochastic game for which best-response strategies (Nash
equilibrium) are computed. In [7] a preliminary framework for modeling attacker in-
tent, objectives, and strategies (AIOS) is presented. To infer AIOS a game-theoretic
approach is used and models for different threat environments are suggested. In the
predecessor of this paper [14] stochastic game theory is used to compute the expected
attacker behavior. The use of the Nash equilibrium as a part of the transition prob-
abilities in state transition models is introduced. This paper continues where [14]
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ends, by elaborating the method for computing expected attacker behavior for use in
stochastic models of security. In contrast to the game model in [8], we model the
outcome of the game elements as the possible consequences of the attackers’ actions
being detected or not, and in contrast to [7] we can use the same game model for
different threat environments. Furthermore, we include the time aspect in the success
probabilities of attack actions; an important aspect that was neglected in both [14]
and [8].

The paper is organized as follows. Section 2 presents the stochastic model, and
motivates the use of attacker strategies as a part of its transitions between states. In
Section 3, two crucial factors, which motivate the attacker’s choice of strategy, are
discussed. The reward model is defined. Section 4 presents the game-theoretic model
used in this paper and explains how the model can be used to compute the expected
attacker strategy. In Section 5, the theory is demonstrated by a simple example.
Finally, Section 6 concludes the paper by summing up its main contributions and
outlining future work.

2. State-based Stochastic Modeling
In the security community one often talks of a security breach; a state where the

system deviates from its security requirements. A security breach might accidentally
be caused by random failures during normal usage operation, by intentional attacks
upon the system, or a combination of these. Such attacks on an operating computer
system often consist of many successive atomic attack actions, and can hence be
modeled as a series of state changes of the system leading from an initially secure
state to one of several possible compromised states.

Following our initial approach in [14], we model the security of a system as a
continuous-time Markov chain (CTMC) with a finite number of states i = 1, . . . N .
Let

X(t) = {X1(t), X2(t), . . . , XN (t)}, (1)

where Xi(t) denotes the probability that the system is in state i at time t. The state
equation describing the system security behavior is then

d

dt
X(t) = X(t)Q, (2)

where Q is the N×N state transition rate matrix of the system. The element ij(i 6= j)
of Q, is

qij = lim
dt→0

{
Pr(transition from i to j in (t, t + dt))

dt

}
, (3)

and
qii = −

∑
j 6=i

qij . (4)

The effect of attacks and the system’s response to intrusions can now be described by
the transitions between the states i = 1, . . . N . The state equation can be solved if
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the initial state of the system, i.e. the vector Q(0), is known. To find the steady state
probabilities

Xi = lim
t→∞

Xi(t), i = 1, . . . N, (5)

of the system, one can solve the set of N equations given by N−1 of the N equations

XQ = 0, (6)

and with the N th equation
N∑

l=1

Xl = 1. (7)

As is common practice in reliability analysis of ICT systems, the CTMC can be used
as a basis for obtaining various measures of the operational security of the system.
For an example of how to compute confidentiality, integrity or availability measures
from the steady-state probabilities in (5), see [2].

It is not straight-forward to apply the “fault-error-failure” reliability pathology to
determine the transition rate matrix Q for security assessment. In quantitative reli-
ability evaluation the stochastic variables are sampled from distributions, which are
well-known to correctly represent time to different kind of failures. The faults and
their sources can be very diverse. Usually, traditional reliability evaluation does not
include deliberately induced faults. Defining similar rates for the transitions describ-
ing the expected time to perform a certain atomic attack action may therefore lead to
very unrealistic results. One of the main reasons is that faults leading to failures are
usually considered to be unintentional and independent of each other. On the other
hand, attack attempts causing security compromises are caused by human beings and
very often highly intentional with the specific aim of causing maximum benefit to the
intruder or damage to the system. Thus, to correctly model intentional attacks posed
upon a system, the model has to incorporate attacker behavior. Herein lies the main
challenge when using stochastic modeling techniques to quantify security.

2.1 Incorporating Intentional Attacks

To incorporate intentional attacks into stochastic models, the attacker behavior
should be represented as a probability distribution over the possible attack actions in
each state of the system. These probabilities should then be reflected in the transition
rates of the CTMC. As an example, consider a stochastic model for a system, where
in state i the system is vulnerable to two certain types of attack actions, denoted a1

and a2. We may identify four possible transitions out of this state. With rate ϕil the
system administrator will detect the vulnerability, patch the system and transfer it into
the (secure) state l. Moreover, while in state i the system will experience (accidental)
random software failures with rate γim, which will cause a transition to the (failed)
state m. Finally, in state i attackers will be able to exploit the vulnerability, by using
any of the two different methods a1 and a2. The success rates of these two exploits,
given that they are pursued, are assumed to be λij and λik. The attack action rates
must be multiplied with the probability that the attackers will decide on the respective
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actions, when constructing the transition rate matrix Q. This is illustrated in Fig. 1,
where πi(a1) and πi(a2) denote the probability that an attacker will choose action a1

and a2, respectively, when the system is in state i.

γim

φil

πi (a2)λik

πi (a1)λij

i

j

k

l

m

Figure 1. Transitions rates out of state i.

Hence, in this example, the ith row in the transition rate matrix Q will be

Qi· ⊇ {qii, qij , qik, qil, qim}
= {−

(
πi(a1)λij + πi(a2)λik + ϕil + γim

)
, πi(a1)λij , πi(a2)λik, ϕil, γim}.

(8)

Note that there will always be a possibility that an attacker does not choose any of
the possible atomic attack actions a1 and a2, i.e.,

πi(a1) + πi(a2) + πi(φ) = 1, (9)

where πi(φ) represents the probability that an attacker takes no action, i.e., the at-
tack is resigned in state i. To formalize the idea of attacker decision probabilities,
we define and make use of strategies to model and compute the expected attacker
behavior.

2.2 Attacker Strategies

Denote by A the complete set of all possible atomic attack actions on the system (φ
included). By a strategy is meant a rule for choosing actions. An complete attacker
strategy is denoted

Π = {πi, i = 1 . . . , z}, (10)

where
πi = {πi(a), a ∈ A}, (11)

is the strategy vector for state i. Hence, πi(a) is the probability that the attacker will
choose action a in state i. Of course we must have

0 ≤ πi(a) ≤ 1,∀i, a, (12)

and ∑
∀a∈A

πi(a) = 1,∀i. (13)
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The strategy is stationary if, for all states i, the strategy vector πi is independent of
time. As an initial approach only stationary strategies will be considered in this paper,
avoiding the mathematical obstacles of dynamic strategies.

To compute the attacker strategy Π, in a way that realistically models the attackers’
expected behavior, one must take into account the driving forces behind the attackers’
actions: who are they, what are their purposes, and why are they making the decisions
they actually make?

3. Modeling Attacker Behavior
One of the most crucial factors in the analysis of the attacker’s choices of action

is motivation. In [13] six major factors, which motivate the attacker behavior, are
identified. Money is the main source of motivation for actions, such as credit card
theft, blackmailing or extraction of confidential information. Entertainment can be
the cause of e.g., hacking websites or rerouting Internet browser requests. The motive
of ego is the satisfaction and rise in self-esteem, that comes from overcoming techni-
cal difficulties, or finding innovative solutions. Cause, or ideology, can be based on
culture, religion or social issues, and in [13] it is pointed out that it is likely to increase
as a motivation factor in the future. For some attackers, entrance to a social group of
hackers can be the driving force behind writing a particular exploit, or breaking into a
particularly strong computer security defense. However, status is probably the most
powerful motivation factor, and is currently motivating many of today’s computer or
network system intrusions.

On the other hand, a number of factors may reduce the attackers’ motivation and
make them refrain from certain attack actions. In our modeling framework, we there-
fore include the aspect that some attackers may be more risk adverse than others.
For example, students with a user account at a university will put their enrollment
status at risk if they try to abuse their insider privileges to attack their local com-
puter network. The gain from a successful break-in into, for example, the university
fileserver may therefore be smaller than the possible consequences if the intrusion
is detected by the system administrators. As another example, the illegal aspect of
actions (criminal offense) may prevent even a remote attacker to use available tools
to exploit vulnerabilities in corporate networks.

3.1 The Reward Model

To model the attackers’ motivation in a situation with a realistic risk awareness, we
make use of a reward concept. In our model, an attacker accumulates reward during
the events of the attack. Whenever an attacker performs an atomic attack action a in
state i, he receives an instantaneous reward, denoted ri(a). Furthermore, if the action
succeeds, an additional reward may be gained. This is modeled in terms of expected
future rewards, which is due to the ability to continue the attack.

An attack action can be considered successful, if the action causes an undesirable
transformation of the current system state. The transition probabilities between states
will therefore be an important aspect of the expected reward when an attacker decides



PAPER C: Incorporating Attacker Behavior in Stochastic Models of Security 61

upon an action. If the system is in state i, the next state of the system is determined
by the embedded transition probabilities pij of (1)

pij =
qij∑

j 6=i

qij
, j = 1, . . . N, j 6= i. (14)

In states where there is one or more actions available to the attacker, an alternative
transition probability can be computed by conditioning on the chosen action. The
conditioned transition probabilities, denoted pij(a), model the probability that an
attacker succeeds with a particular attack action a, assuming that he does not perform
two actions simultaneously.

For the example illustrated in Fig 1, we compute pij(a1) by inserting πi(a1) = 1
in the embedded transition probabilities in (14)

pij(a1) =
λij

λij + ϕil + γim
. (15)

Also pij(a2) can be computed in a similar manner.
Reward is a generic concept, which can be used to quantify the value of the action

in terms of social status, money, satisfaction, etc, as previously discussed. To model
the possible consequences experienced by risk adverse attackers, a negative reward,
a cost, is used to quantify the impact on the attacker, as an attack action is detected
and reacted to.

Henceforth, attackers are assumed to be rational: they seek to maximize their own
reward from the attack. In the next section, a mathematical framework for computing
the expected attacker behavior expressed in terms of the strategy Π, is presented.

4. The Game Model
In order to create a generic and sound framework for computing the expected

attacker behavior, we advocate the use of stochastic game theory [12] as the mathe-
matical tool. Regard each atomic attack action, which may cause a transition of the
current system state, as an action in a game where the attacker’s choices of action are
based on considerations of the possible consequences. The interactions between the
attacker and the system can then be modeled as a game, as illustrated in Fig. 2.

4.1 Mathematical Framework

The stochastic game, in the context of the operational security of an ICT system,
is a two-player, zero-sum, multi-stage game where, at each stage, the parameters of
the game depend on the current state of the CTMC introduced in Section 2. Hence,
the stochastic game used to compute the attacker strategy Π can be defined as

Γ = {Γi, i = 1, . . . , z}, (16)

where Γi is the game element modeling the game element of state i. It is important
to notice that even though the state space of the CTMC may be very large, Γ will in
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Figure 2. The interactions between an attacker and the system modelled as a game.

general span only a subset of its states, namely those states where an attacker has the
possibility of performing atomic attack actions.

Each game element Γi can now be represented by the two-column matrix

Γi =

undetected detected
...

...
µi1(am) µi2(am)

...
...

, (17)

where the rows models the possible outcome (in terms of rewards, as previously
discussed) of the atomic attack actions available to the attacker in state i. The entries
in (17) are of the form

µi1(am) = ri(am|undetected) +
∑

j=1,...,z

pij(am)Γj ,

µi2(am) = ri(am|detected),
(18)

for which pij(am) ≥ 0 and
∑

j=1,...,z pij(am) < 1. The conditional transition prob-
abilities pij(am) can now be computed from the embedded discrete process of (1),
as explained in Section 3.1. Hence, if the attacker chooses his m’th possible action
in state i, and the action remains undetected, the attacker will receive the reward
given by ri(am|undetected) and if the action succeeds, he will have to play the jth
game element next. However, if the attack action is detected, the attacker receives
the non-positive reward ri(am|detected). As can be seen, the game is assumed to end
if the ongoing attack is detected and reacted to, or if the system does not transfer into
another game element state.
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4.2 Computing the Expected Attacker Strategy

Recall that in Section 2.2 we defined the attacker strategy Π in (10) and (11) as a
rule for choosing actions. Let

Θ = {θi, i = 1, . . . , z}, (19)

where
θi = {θi(a), a ∈ A}, (20)

be the counter-strategy in the stochastic game, so that θi(a), 0 ≤ θi(a) ≤ 1, is
the probability that action a will be detected in state i. The expected reward for an
attacker in state i when using the strategy vector πi can then be computed as

E(πi, θi) =
∑
∀a∈A

πi(a)
(

(1− θi(a))µi1(a) + θi(a)µi2(a)
)

. (21)

A rational attacker attempting to maximize attack rewards, will choose the strategy
vector π∗i . This is the most an attacker can gain in state i, given the detection proba-
bility θi for the maximal expected reward

max
πi

E(πi, θi). (22)

The strategy π∗i maximizing (21) is called the optimal attack strategy of the game
element Γi. Hence the set of optimal strategies for the the complete stochastic game
is given by

Π∗ = {π∗i , i = 1, . . . , z}. (23)

To compute (23), replace the game element Γj in (18) by the attacker’s expected
reward in state j and then solve the game iteratively. Further details, as well as a
proof of the existence of a solution, can be found in [12].

The optimal strategy Π∗ of the stochastic game has some interesting properties,
which makes it a suitable candidate for modeling the attacker decision probabilities.
First of all, the maximization problem in (22) is a generic expression, which can be
applied in a variety of threat environments. As will be demonstrated in Section 5, it
can be used to compute the expected behavior for different types of attackers: insid-
ers as well as outsiders, risk averse as well as risk ignorant. Second, Π∗ represents
a complete attack strategy. It has the property that by following it, an attacker will
know that he has maximized his expected attack reward. This gives him a guarantee
of the result from the attack regardless of whether any of his atomic attack actions fail,
or are detected by the system’s intrusion detection mechanisms. This phenomenon is
designated the “no regrets property” of game theory. It has been frequently applied
in the field of economics within the subjects of international trade, and macroeco-
nomics, amongst others. Several experiments indicate that this search for guarantees
is a very strong motivator of human behavior. Assuming that the attacker population
targeting the system makes rational choices relative to their objectives, the situation
will in the long run gravitate towards the optimal strategy.
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5. Example
To demonstrate the use of the method presented in this paper, a simple example

(similar to the ones in [5, 14]) is provided. Due to space limitation, the state space
of the example system is highly abstracted. All numerical values are chosen for
exemplification. In contrast to [14], this example is solved for three different cases,
hence demonstrating that the same game-theoretic method can be used in different
threat environments.

The small network illustrated in Fig. 3 consists of a workstation, a public web-
server and a private fileserver. To describe the security of the network, we define the

Webserver

Fileserver

Workstation

Router

Internet

Attacker

Figure 3. Network topology.

set of steady state probabilities as

Xi = {i = {x, y, z}|x, y, z ∈ {0, 1}}, (24)

where e.g., i = (1, 0, 1) represents the state where the workstation (x) and fileserver
(z) are compromised, but the webserver (y) is not, etc. The action set can be defined
as

A = {a1, a2, a3, φ}, (25)

where a1 = “attack workstation”, a2 = “attack webserver”, a3 = “attack fileserver”
and φ = “do nothing”.

Assume that the attacker priorities, rewards and costs of actions are as shown in
Table 1, and once he has compromised one of the targets, he will only focus on targets
with higher priorities. Furthermore, assume there is one system administrator respon-
sible for each workstation and server in the network, hence restoration of two or more
compromised network components can take place in parallel. This is illustrated in the
state transition diagram in Fig. 4, where the attack action rates and restoration rates
are labeled λ and ϕ, respectively. For clarity, the states have also been numbered
1-8 in this figure. When using the rate values in Table 2 to compute the conditional
transition probabilities, the corresponding game elements for the example network



PAPER C: Incorporating Attacker Behavior in Stochastic Models of Security 65

φ64

φ86

φ74

φ87

φ53

φ62

φ41 φ73

φ85

φ52
φ21

φ31

π(a3)λ58

π(a2)λ25

π(a2)λ13

π(a3)λ37

π(a3)λ26

π(a3)λ14

π(a1)λ12

(0,0,0)

(1,0,0)

(0,1,0) (1,1,0)
1

2

3 5

(0,0,1)
4

(0,1,1)
7

(1,0,1)
6

(1,1,1)
8

Figure 4. The network security state diagram.

will be

Γ(0,0,0) =


10 + 1.0 · Γ(1,0,0) −10
20 + 1.0 · Γ(0,1,0) −20
30 + 1.0 · Γ(0,0,1) −30

−5 0

 ,

Γ(1,0,0) =

20 + 0.22 · Γ(1,1,0) −20
30 + 0.30 · Γ(1,0,1) −30

−10 0

 ,

Γ(0,1,0) =
(

30 + 0.39 · Γ(0,1,1) −30
−15 0,

)
,

Γ(1,1,0) =
(

30 + 0.22 · Γ(1,1,1) −30
−15 0,

)
,

Γ(0,0,1) = Γ(0,1,1) = Γ(1,0,1) = Γ(1,1,1) = 30.

(26)

Priority Action ri(a|undetected) ri(a|detected) θi(a)

1 a3 +30 -30 0.6
2 a2 +20 -20 0.8
3 a1 +10 -10 0.2
4 φ r(0,0,0)(φ)=−5

r(1,0,0)(φ)=−10
r(0,1,0)(φ)=−15
r(1,1,0)(φ)=−15

0 0

Table 1. Priorities, rewards, costs and detection probabilities.
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i,j (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
(0,0,0) - 3.6 2.2 1.8 - - - -
(1,0,0) 8.5 - - - 3.7 2.4 - -
(0,1,0) 6.2 - - - - - 4.1 -
(0,0,1) 4.1 - - - - - - -
(1,1,0) - 6.2 8.5 - - - - 4.0

(1,0,1) - 4.1 - 8.5 - - - -
(0,1,1) - - 4.1 6.2 - - - -
(1,1,1) - - - - 4.1 6.2 8.5 -

Table 2. Attack and restoration rates (104s−1).

Solving the stochastic game in accordance to (22) will provide an optimal strategy
vector

Π∗ = {π∗000, π
∗
100, π

∗
010, π

∗
001}, (27)

with

π∗000 = (π000(a1), π000(a2), π000(a3), π000(φ)),
π∗100 = (π100(a2), π100(a3), π100(φ)),
π∗010 = (π010(a3), π010(φ)),
π∗110 = (π110(a3), π110(φ)).

(28)

The stochastic game can now be viewed as three different cases, representing three
different threat environments:

Case 1. The attacker knows the detection probabilities of actions and cares about
its consequences; he is what we may call a risk averse insider. He will try to max-
imize his expected reward (21) from the attack, i.e., the maximization problem (22)
can be directly applied.

Case 2. The attacker does not know the detection probabilities, however he cares
about the consequences; he is a risk averse outsider. In cases like this, it is common
practice in game theory to assume that the opponent (the system) is a conscious player
of the game, which seeks to minimize the attacker’s expected reward. The optimal
attack strategy in this case is equivalent to the Nash equilibrium (NE) solution of
the stochastic game (the NE strategy pair (π∗i , θ

∗
i ) solves the optimization problem

max
πi

min
θi

E(πi, θi), i = 1, . . . , z).

Case 3. The attacker neither knows nor cares about the consequences of being
detected; he is a risk ignorant outsider. In a mathematical context this is equivalent
of setting θi(a) = 0, for all a in (21), which means that the second column of the
game matrices in (26) is ignored in the analysis.

Solving the game, once for each case, provides the expected attacker strategy vec-
tors in Table 3. As can be seen, an attacker in Case 2 will act more carefully than an
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Π∗ Case 1 Case 2 Case 3
π∗(000) (0, 0, 1, 0) (0, 0, 0.05, 0.95) (0, 0, 1, 0)
π∗(100) (0, 1, 0) (0, 0.13, 0.87) (0, 1, 0)
π∗(010) (1, 0) (0.17, 0.83) (1, 0)
π∗(110) (1, 0) (0.18, 0.82) (1, 0)

Table 3. Optimal strategies for attackers (three cases).

attacker in Case 3. This is intuitive, since the possible cost of detected actions are in-
cluded in the computation of the optimal overall strategy Π∗ for the attackers in Case
2. An attacker in Case 3 ignores the possible cost of being detected and will therefore
always choose to attack the target with highest reward, given that the probability of
succeeding is high enough. However, even though the cost is considered in Case 1,
the reward of attacks on the fileserver is high enough to make the attacker strategy
in this case as aggressive as in Case 3, even though there may be a noticeable cost
involved.

6. Conclusions and Further Work
In this paper we demonstrate how the expected attacker behavior can be used as

a part of the transitions between states in stochastic models for security assessment.
The motivation is to provide more realistic measures of the operational security of
ICT systems. Moreover, this paper suggest a method to compute the expected be-
havior for rational attackers. The method considers the attacker rewards, resulting
from successful actions, the possible costs, if the actions are detected, as well as the
probabilities of succeeding with particular attack actions.

A natural extension of the model is to include time-dependent success probabili-
ties. This may be important in cases where one can assume that the attackers learn
over time or, equivalently, in cases of natural “wear-out” of security countermeasures.
In theory, it is possible to solve the stochastic game model to obtain dynamic opti-
mal strategies. Another limitation to address, is the underlying assumptions of game
theory; that an attacker has a complete view of all states in the game, which may
sometimes be unrealistic.
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Abstract This paper presents a new approach to integrated security and dependability evaluation,
which is based on stochastic modeling techniques. Our proposal aims to provide oper-
ational measures of the trustworthiness of a system, regardless if the underlying failure
cause is intentional or not. By viewing system states as elements in a stochastic game,
we can compute the probabilities of expected attacker behavior, and thereby be able to
model attacks as transitions between system states. The proposed game model is based
on a reward- and cost concept. A section of the paper is devoted to the demonstration
of how the expected attacker behavior is affected by the parameters of the game. Our
model opens up for use of traditional Markov analysis to make new types of probabilistic
predictions for a system, such as its expected time to security failure.

1. Introduction
Security is a concept addressing the attributes confidentiality, integrity and avail-

ability [1]. Today it is widely accepted that, due to the unavoidable presence of
vulnerabilities, design faults and administrative errors, an ICT system will never be
totally secure. Connecting a system to a network will necessarily introduce a risk
of inappropriate access resulting in disclosure, corruption and/or loss of information.
Therefore, the security of a system should ideally be interpreted in a probabilistic
manner. More specifically, there is an urgent need for modeling methods that provide
operational measures of the security. Dependability, on the other hand, is the ability
of a computer system to deliver service that can justifiably be trusted. It is a generic
concept, which includes the attributes reliability, availability, safety, integrity and
maintainability [2]. In a dependability context one distinguishes between accidental
faults, which are modeled as random processes, and intentional faults, i.e. attacks,
which in most cases are not considered at all. A major drawback of this approach
is that attacks may in many cases be the dominating failure cause for today’s net-
worked systems. The classical way of dependability evaluation can therefore be very
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deceptive; highly dependable systems may in reality fail much more frequently than
expected, due to the exploitation from attackers.

To be considered trustworthy, a system must be both dependable and secure. How-
ever, these two aspects have so far tended to be treated separately. A unified modeling
framework for security and dependability evaluation would be advantageous from
both points of view. The security community can benefit from the mature depend-
ability modeling techniques, which can provide the operational measures that are so
desirable today. On the other hand, by adding hostile actions to the set of possible
fault sources, the dependability community will be able to make more realistic mod-
els than the ones that are currently in use. In this paper we review a methodology
that traditionally has been used for system dependability analysis only, and motivate
the application of a similar approach in the security domain. By modeling intrusions
alongside with accidental failures, both the security and dependability properties of a
system can be considered during the evaluation process.

Modeling and analysis of a system for predictive purposes can be performed by
static or dynamic methods. This paper focuses on the dynamic method of using
stochastic models (Markov chains), which is commonly used to obtain availability
(the fraction of time the system is operational during an observation period) or relia-
bility (the probability that the system remains operational over an observation period)
predictions by the dependability community. The paper is organized as follows. Sec-
tion 2 presents the stochastic model and explains how intrusions can be modeled as
transition between states in the model. Section 3 explains how the model can be
used to predict measures for the system. In Section 4, we show that the states can be
viewed as elements in a stochastic game, and explain how game theory can be used to
compute the expected attacker behavior. Then, in Section 5, we demonstrate how the
expected attacker behavior is affected by the parameters of the game. To illustrate
the approach, Section 6 includes a small case study. In Section 7 we compare our
work with related research. Section 8 includes some concluding remarks and points
to future work.

2. Stochastic Modeling
At the highest level of a system description is the specification of the system’s

functionality. The security policy is normally a part of this specification. This high
level description can be used to perform qualitative assessment of system properties,
such as the security levels obtained by Common Criteria evaluation [3]. Even though
a qualitative evaluation can be used to rank a particular security design, its main
focus is on the safeguards introduced during the development and design of the sys-
tem. Moreover, such methods only evaluate static behavior of the system and do not
consider dependencies of events or time aspects of failures. As a consequence, the
achieved security level cannot be used to predict the system’s actual behavior, i.e. its
ability to withstand attacks when running in a certain threat environment. To create
a model suitable for quantitative analysis and assessment of operational security and
dependability, one needs to use a fine-granular system description, which is capable
of incorporating the dynamic behavior of the system. This is the main strength of
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state transition models where, at a low level, the system is modeled as a finite state
machine. By a state in this context is meant an operational mode of the system char-
acterized by which units of the system that are operational or failed, whether there
are ongoing attacks, active countermeasures, operational and maintenance activities,
whether parts of the system compromised or not, etc. Most systems consist of a set
of interacting components and the system state is therefore the set of its component
states. In a state transition model, one usually discriminates between good states and
failed states, depending on whether the required service is delivered or not. Normally,
a system will be subject to multiple failure cases, so that the model will have multi-
ple failure modes. During its operational lifetime, a system will alternate between its
different states. This may be due to normal usage as well as misuse, administrative
measures and maintenance, as well as software- and hardware failures and repairs.
The behavior of the system is therefore characterized by the transitions between the
states, each transition triggered by an event. The event that will occur next, as well as
the time until next event, is random. Hence, the behavior of the system is a stochastic
process.

2.1 The Failure Process

It has been shown in [2, 4, 5] that the “fault-error-failure” pathology, which is
commonly used for modeling the failure process in a dependability context, can be
applied in the security domain as well. Based on the results from this research we
demonstrate how a stochastic process can be used to model security failures in a sim-
ilar way as the dependability community usually treats accidental and unintentional
failures.

By definition, the fault-error-failure process is a sequence of events. A fault is an
atomic phenomenon, that can be either internal or external, which causes an error
in the system. An error is a deviation from the correct operation of the system. An
error is always internal and will not be visible from outside the system. Even though
a system is erroneous it still manages to deliver its intended services. An error may
lead to a failure of the system. In a dependability context, a failure is an event that
causes the delivered service to deviate from the correct service, as described in the
system’s functional specification. Similarly, a security failure causes a system ser-
vice to deviate from its security requirements, as specified in the security policy. For
each failure state, which conflicts with the system’s intended functionality, we can
therefore assign a corresponding property that is violated, e.g. confidentiality-failed
or availability-failed. Both security- and dependability failures can be caused by a
number of accidental fault sources, such as erroneous user input, administrative mis-
configuration, software bugs, hardware deterioration, etc. The failures originating
from most of these faults can be modeled as randomly distributed in time, as is com-
mon practice in dependability modeling and analysis. However, the ones hardest to
predict are the external malicious human-made faults, which are introduced with the
objective of altering the functioning of the system during use [2]. In a security con-
text, the result of such a fault is generally referred to as an intrusion. Because they are
intentional in nature, intrusions cannot be modeled as truly random processes. Even
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though the time, or effort, to perform an intrusion may be randomly distributed, the
decision to perform the action is not. As pointed out in [6], security analysis must as-
sume that an attacker’s choice of action will depend on the system state, may change
over time, and will result in security failures that are highly correlated.

2.2 Modeling Intrusion as Transitions

To be able to model the effect of an intrusion as a transition between a good system
state and a failed system state, one needs to take a closer look at the intrusion process
itself. According to [4], there are two underlying causes of any intrusion:

At least one vulnerability, i.e. weakness, in the system. The vulnerability is
possible to exploit, however, it will require a certain amount of time from an
attacker.

A malicious action that tries to exploit the vulnerability. Since the action is
intentional, a decision is implicitly made by the attacker. All attackers will not
choose the same course of action. Hence, there will be a probability that an
attacker decides to perform a particular action.

An intrusion will therefore result from an action which has been successful in ex-
ploiting a vulnerability. Assume that i is a good (but vulnerable) system state and
that j is a failed system state. To formalize the idea of an attacker’s decision, we
define πi(a) as the probability that an attacker will choose action a when the system
is in state i. In a low level system abstraction model, the successful intrusion will
cause a transition of the system state, from the good state i to the failed state j. In
this paper we model all the expected failure times as negatively exponentially dis-
tributed. This is primarily to simplify mathematical analysis of the system. In reality,
other types of distributions may be more suitable. Define λij(a) as the accumulated
failure intensity if all potential attackers always take action a. Hence, the failure rate
between state i and j may be computed as qij = πi(a)λij(a). This is illustrated in
Fig. 1 where the good state i = 1 is depicted as a circle and the failed state j = 2 as
a square.

π1(a)λ12(a)
OK Security 

failed

1 2

Figure 1. A two-state Markov model with assigned failure rate.

By introducing the attack probability πi(a), the result from a successful intrusion
can be modeled as one or more intentional state changes of the underlying stochastic
process, which represents the dynamic behavior of the system. The adopted method
for computing the attack probabilities will be explained in Section 4.

In contrast to attack graphs, as used in e.g. [7], where each state transition corre-
sponds to a single atomic step of a penetration, our model aims to be more high-level
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and focus on the impact of the intrusions on the system rather than on the specific
attack procedures themselves. This facilitates the modeling of unknown attacks in
terms of generic state transitions. For example, in the stochastic model depicted in
Fig. 1 the attack a can simply be explained as “the action that seeks to transfer the
system from the good state 1 to the failed state 2”.

During the modeling process, the granulation of the state space needs to be care-
fully considered. Too simple models (as the one in Fig. 1) will not provide any
valuable insight into the system behavior, whereas too complex models may quickly
lead to state space explosion. The choice of what to include in the states definition
will therefore be a trade-off between model representativeness and complexity. An
example, primary for illustration purposes, will be provided in Section 6.

3. Obtaining System Measures
This section formalizes the ideas discussed in the precious section, and explains

how the stochastic model can be used to predict system security and dependability
measures.

3.1 System Equations

In mathematical terms, the stochastic process describing the dynamic system be-
havior is a continuous time Markov chain (CTMC) with discrete state space S =
{S1, . . . , SN}. Let

X(t) = {X1(t), . . . , XN (t)}, (1)

where Xi(t) denotes the probability that the system is in state i at time t. Formally,
the interactions between the states i = 1, . . . , N are described in the N × N state-
transition rate matrix Q, whose elements are

qij =


limdt→0

{
Pr(transition from i to j in(t,t+dt))

dt

}
, i 6= j

−
∑
j 6=i

qij , i = j
. (2)

The element qij ∈ Q, (i 6= j), represents the transition rate between state i and j
in the model and is, if the transition is caused by an intrusion, constructed from an
attack probability and intensity, as explained in Section 2.2. If the initial state of the
system, i.e. X(0), is known, the state equation can be solved. Then

X(t) = X(0)exp(Qt). (3)

The solution to this equation provides the transient state probabilities for a system.
However, it is common to assume that the system is in steady state when analyzed.
The probability that a CTMC will be in state i at time t often converges to a limiting
value, which is independent of the initial state. The steady state probabilities

X = {X1, . . . , XN}, (4)
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where Xi = lim
t→∞

Xi(t), i = 1, . . . , N , can then be obtained by solving the set of N

equations given by N − 1 of the N equations

XQ = 0, (5)

and with the N ’th equation
N∑

l=1

Xl = 1. (6)

The steady state probabilities provide us with the possibility of obtaining operational
measures of the system, such as the mean between failures (MTBF ) or the mean
time spent in the good states (MUT ). See e.g. [8] for details. To compute the mean
time to failure (MTTF ) and the mean time to first failure (MTFF ) for a system we
adopt the approach described in [9]. Assume that the state set can be partitioned as
S = {SG, SF }, where SG = {S1, . . . , SK} and SF = {SK+1, . . . , SN}, so that the
states 1, . . . ,K are good states and the states K + 1, . . . , N are failed states. Since
the state set S is ordered, the Q matrix can be written i partitioned form as

Q =
[

Q1 Q2

Q3 Q4

]
, (7)

where the size of Q1 is K × K, the size of Q2 is K × (N − K) and so forth. To
compute the MTFF one assumes that the system is new at t = 0, i.e. the initial
state is known by certainty, and it is known to be good. Define T = {T1, . . . TK}. By
solving

−TQ1 = {1, 0, . . . , 0} (8)

the mean time to first failure for the system can be computed as

MTFF =
K∑

i=1

Ti. (9)

To compute the MTTF the steady state probabilities in (4) must be known. Since S
is partitioned, also X can be partitioned as X = {XG, XF }, where XG = {X1, . . . , XK}
and XF = {XK+1, . . . , XN}. Now the system can be in any of the good states at
t = 0, i.e. XG(0) = XG

XGhK
. Hence,

MTTF = XG(0)(−Q1)
−1hK =

XG(−Q1)−1hK

XGhK
, (10)

where hK is a column vector of K ones.

3.2 Model Parametrization

In order to obtain measures the stochastic model has to be parametrized, i.e. the
elements qij ∈ Q need to be evaluated. The procedure of obtaining accidental failure-
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and repair rates has been practiced for many years in traditional dependability analy-
sis, and will therefore not be discussed in this paper. However, choosing the accumu-
lated attack intensities λij(a)’s remains a challenge. One solution is to let security
experts assess the intensities based on subjective expert opinion, empirical data or a
combination of both. An example of empirical data is historical attack data collected
from honeypots. The data can also be based on intrusion experiments performed by,
for example, students in a controlled environment. Empirical data from such an ex-
periment conducted at Chalmers University of Technology in Sweden [10] indicates
that the time between successful intrusions during the standard attack phase is expo-
nentially distributed. Another ongoing project at the Carnegie Mellon CyLab [11]
aims to collect information from a number of different sources in order to predict
attacks. Even though the process of assessing the attack intensities is crucial, and an
important research topic in itself, it is not the primary focus of this paper.

Obtaining realistic πi(a)’s, i.e. the probabilities that an attacker chooses particular
attack actions in certain system states, may be more difficult. In this paper we use
game theory as a means for computing the expected attacker behavior. The procedure
is summarized in the next section.

4. Predicting Attacker Behavior
Game theory is an approach frequently used for human behavior prediction in e.g.

economics, political science and sociology. This section demonstrates how a two-
player zero-sum stochastic game [12] can be used to compute the expected attacker
behavior, in terms of a set of attack probability vectors π = {πi}. The procedure
contains five main steps:

1 Identify the game elements.

2 Construct the action sets.

3 Assign the outcome values.

4 Compute the transition probabilities.

5 Solve the game.

Formally, the game we use is a tuple (Γ, A, D, γ, p), where Γ = {Γi} is a state set,
A = {a} and D = {d} are action sets, γ : Γ× A×D → R is an outcome function
and p : Γ×A×D × Γ→ [0, 1] is a state transition probability function.

In the context of attack prediction for security and dependability assessment, the
game is played by an attacker versus the system. (In fact, the attacker’s real counter-
player in the game is the system’s IDS mechanisms, for simplicity referred to as “the
system” hereafter.) Even though in real-life there may be numerous attackers attack-
ing the system, simultaneously and independent of each other, a two-player game
model is sufficient to predict their individual behavior, provided that they possess
similar motives and skills. In contrast to previous research in the field of network se-
curity and game theory (see Section 7) we view the game entirely from an attacker’s



78

perspective. The purpose of our game model is to predict the behavior of attackers
and not to perform any cost-benefit optimization of system defense strategies. We
therefore assume that the set of system IDS mechanisms are fixed and do not change
over time. Since the game is zero-sum, one player’s gain will be the other player’s
loss. Hence, we do not need to specify separate outcome values for the system itself,
as was done in [13] and [14], it is sufficient to assign the attackers’ outcome values.
The main benefit of our approach is that it does not assume that the attackers know
the system outcome values. Moreover, it reduces the number of parameters in the
system evaluation model that has to be assessed.

To compute the expected attacker behavior by means of a stochastic game, the
five-step procedure is as follows.

4.1 Step 1: Identify the Game Elements.

The first step is to identify the game elements. From the stochastic model, pick
all states in S where the system is vulnerable to intrusions. Each of these states
can be viewed as a game element Γi in a two-player zero-sum stochastic game with
state set Γ. For example, in Fig. 2 the shaded states V , L and IS represent states
where the system is vulnerable. Hence, the set of game elements for this model is
Γ = {ΓV ,ΓL,ΓIS}.

(IS)

μH μH

μH

φAH,G

μH

μH
πL(a3)λL,AS

+μS

φG,V

πIS(a3)λIS,AS+μS

πL(a2)λL,IS

πV(a1)λV,L

μSμS φAS,G

φL,G

φV,G

φIS,G

(G)

(AS)

(V) (L)

(AH)

Figure 2. State transition model of DNS server (cf. Section 6) with game elements identified.

Note that even though the system state space S may be very large, the correspond-
ing set with game elements Γ will (in most cases) contain only a subset of all the
states in S, as the example indicates.

4.2 Step 2: Construct the Action Sets.

The next step is to construct the action sets A and D. The set A consists of all
possible attack actions. For all transitions out of the game element states, which
represent intrusions, identify the corresponding attack actions. Note that A must also
contain an “inaction”, which we will denote by φ, to represent that an attacker may
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not take any action at all. We use Ai = {a1, . . . , am} to refer to the set of actions
available in game state i. All actions will not necessarily be available in all states,
i.e. Ai ⊆ A, however Ai ∩ φ = φ. For instance, in Fig. 2 the complete action set is
A = {a1, a2, a3, φ}, whereof AV = {a1, φ}, AL = {a2, a3, φ} and AIS = {a3, φ}.

Let πi be the probability distribution over the action set Ai. In a game theo-
retic context πi = (πi(a1), . . . , πi(am)) is called the attack strategy of Γi. Hence,
πi(ak) ∈ πi will be the probability that an attacker chooses action ak when the sys-
tem is in state i, as previously discussed. One must have

∑
ak

πi(ak) = 1, ∀Γi ∈ Γ.
The attack probability vectors πi will represent the degree of hostility in the network
environment, or equivalently, the aggressiveness of the attackers targeting the system.
The smaller πi(ak), the less the probability of the particular attack ak in system state
i and, hence, the smaller the corresponding failure rate will be.

The set D consists of all possible defense actions, whereof Di = {d1, . . . , dm}
is the set of actions available in state i. The system defense strategy of Γi is θi =
(θi(d1), . . . , θi(dm)). Hence, θi(dk) ∈ θi is the probability that an IDS alarm indi-
cating action ak will be triggered in system state i. As for Ai, also Di must contain
an φ element, since there may not be any reaction at all from the system. Also∑

dk
θi(dk) = 1, ∀Γi ∈ Γ.

4.3 Step 3: Assign the Outcome Values.

To model the attackers’ motivation we make use of a reward- and cost concept.
The term cost is used to refer to a negative reward. By an outcome of a game element
is meant a possible consequence of a play of the game, as experienced by an attacker.
For each game element Γi, we assign an outcome value to each attack action and
response pair (ak, dl). These values will be denoted rkl, or ckl, depending on whether
the outcome represents a reward or cost.

Φ

d1

Φ

d1

Φ

 a1

Attacker

System

(a1,d1)

(a1,Φ)

(Φ,d1)

(Φ,Φ)

Figure 3. The possible outcomes from game element ΓV .

The possible outcomes from game element ΓV in Fig. 2 is depicted in Fig. 3.
Since an attacker has two actions to choose between, AV = {a1, φ}, and there are
two possible response actions, DV = {d1, φ}, there are four possible outcomes from
that particular play. It could be argued that since nothing happens if the attacker does
not take any action, the outcomes from the action pairs (φ, d1) and (φ, φ) do not make
any sense from an attacker’s point of view. We counter this by pointing out that what
we aim to compute from ΓV is the expected attacker behavior in terms of strategy
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πV = (πV (a1), πV (φ)), which an attacker decides to adopt before the attack. So, if
we assign a reward to the action pair (φ, d1) it implies that if the attacker decides not
to attack the system, no matter what, and that all the attacks will always be detected,
then the attacker will experience this outcome as a gain: “It’s good that I didn’t try
to attack the system, since I would have been detected if I did”. This will be the case
even though the system never gets a chance to actually detect any attack. The same
line of reasoning is valid for the (φ, φ) outcome.

Reward and cost are generic concepts, which can be used to quantify the payoff
of the actions both in terms of abstract values, such as social status and satisfaction
versus disrespect and disappointment, as well as real values such as financial gain
and loss. For instance, in [13] the reward of a successful attack action is the expected
amount of recovery effort required from the system administrator and in [15] the re-
ward is the degree of bandwidth occupied by a DDoS attack. In contrast to [13, 15],
we use the cost values in the game model to represent the fact that risk averse at-
tackers may sometimes refrain from certain attack actions due to the possible con-
sequences of detection. Note that the outcome values themselves are not important,
it is their size relatively to each other that will affect the expected attacker behavior.
This topic will be further discussed in Section 5.

4.4 Step 4: Compute the Transition Probabilities.

Given that an attack action is chosen in state i, and that the intrusion is successful
and remains undetected, the system may transfer to another state j where the game
can continue. The transition probability between game element Γi and Γj , denoted
pij(ak, dl), can be computed by conditioning on the chosen action ak and the system
response dl. For example, if the system in Fig. 2 is in state V and an attacker decides
to attack the system, and the action remains undetected, then πV

(
a1|(a1, φ)

)
= 1.

It is obtained from the Markov properties of the system that the probability of going
from state V to L becomes

pV L(a1, φ) =
λV L

λV L + ϕV G + µS + µH
. (11)

Here, ϕV G, µS and µH are the rates of the competing events, which may disturb the
attack. Hence, (11) is the probability that the game will continue in state L. Note that
one must have pij(ak, dl) ≥ 0 and

∑
j pij(ak, dl) < 1, ∀Γi ∈ Γ.

Recall that Ai and Di are the action sets associated with state i. The possible out-
comes of each game element Γi can now be represented by a |Ai| × |Di| matrix,
which has the form

Γi =

d1 . . . dm

a1 γ11 . . . γ1m

...
...

...
am γm1 . . . γmm

, (12)
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where γkl is the total outcome associated with the action pair (ak, dl). The entries in
(12), representing state i, are of the form

γkl =

rkl +
∑
j

pij(ak, dl)Γj for successful attacks,

ckl otherwise,
(13)

for which rkl ≥ 0 and ckl ≤ 0. When solving the game, the Γj element in (13) will be
replaced by a value, as explained in the next subsection. The first case in (13) applies
if the outcome represents a successful and undetected attack action. The attacker
receives an immediate reward rkl and there is also a possibility of future rewards,
since the system may move to another game state. The second case normally applies
if an attack action is detected, but can also apply if an attacker resigns even though
any of the possible attacks would have been undetected. The attacker receives a cost
ckl. Implicitly, the formulation in (13) means that the game will end if an attack is
detected and reacted to, if the attacker resigns, or if the system does not transfer to
another game state, which will happen with probability 1−

∑
j pij(ak, dl).

4.5 Step 5: Solve the Game.

The last step is to solve the game. By solving is meant to compute the best strate-
gies for the players who participate in the game. Our model relies on the basic as-
sumption of game theory, which states that a rational player will always try to maxi-
mize his own reward. For each system state i, which is modeled as a game element
Γi, we can therefore expect an attacker to behave in accordance with the probability
distribution πi = (πi(a1), . . . , πi(am)) that maximizes E(πi, θi), where

E(πi, θi) =
∑

∀ak∈Ai

∑
∀dl∈Di

πi(ak)θi(dl)γkl. (14)

Recall that we use zero-sum game elements to model the interactions between an
attacker and the system. An attacker who does not know the defense strategy θi will
therefore think of the system as a counter-player in the game who tries to minimize
the attacker’s reward. Hence, the optimal attack strategy of Γi, and its corresponding
defense strategy, are obtained by solving

max
πi

min
θi

E(πi, θi). (15)

These strategies will be denoted π∗i and θ∗i , respectively. The value of game element
Γi, denoted V (i), is defined as the expected outcome when π∗i and θ∗i are used, i.e.

V (i) = E(π∗i , θ
∗
i ). (16)

The purpose of the stochastic game model is to predict the complete set of attack
probability vectors π∗ = {π∗i } to be used in the system rate matrix Q. To find the π∗i
strategies for all game elements in the stochastic game, one can use Alg. 1, which is
based on the Shapley algorithm [16]. The functions Value[Γi] and Solve[Γi] refer to
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standard algorithms for solving zero-sum matrix games by linear programming. The
former returns the expected value in (16) when the attacker and the system use their
optimal strategies, whereas the latter returns the attacker’s optimal strategy itself as
resulting from (15). Note that Alg. 1 replaces the game element Γj in (13) with its
value component V (j) iteratively when solving the stochastic game.

Algorithm 1 Compute expected attacker strategy
IN: (Γ, A, D, γ, p) {a stochastic game}
OUT: π∗ {the optimal attack strategy}

Initialize the value vector V = {V (i)} arbitrarily
repeat

for each game element Γi ∈ Γ do
for all γkl do

replace all Γj in (13) with V (j)
end for
compute the matrix Γi(V ) = [γkl],

end for
for each game element Γi ∈ Γ do

update the value vector V (i)← Value[Γi(V )]
end for

until V (i) = Value[Γi(V )],∀Γi ∈ Γ
for each game element Γi ∈ Γ do

π∗i ← Solve[Γi(V )]
end for
return the set of equilibrium vectors π∗ = {π∗i }

We believe that the optimal attack strategy set π∗ = {π∗i }will be a good indication
of the expected attack probabilities for the vulnerable system states. This is because
π∗ gives a lower-bound on the attacker outcome, regardless of the system defense
strategy. When following π∗ the attacker has no reason to change strategy; the no-
regrets property of game theory. This property means that the attacker has maximized
his expected outcome from the attack, regardless if his actions are successful or not.
Several experienced indicates that this search for guarantees is a very strong motiva-
tion of human behavior. Assuming that the attacker population targeting the system
will make rational choices relative to their objectives, their collected behavior will,
in the long run, gravitate towards the optimal attack strategy [17]. For further details
on the underlying assumptions and solution of the stochastic game model, the reader
is referred to [12, pp. 96–101].

5. Attacker Profiling
To distinguish between different types of attackers, it is common practice to make

use of attacker profiles. A number of fine-granular classifications of attackers exist in
the literature. In [18] Rogers summarizes earlier research on attacker categorization
and provides a new taxonomy based on a two-dimensional circumflex classification
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model. Skill and motivation are identified as the primary classification criteria, which
fit well into our mathematical framework where the attacker skill is represented by
attack intensities and the motivation by the reward- and cost concept. The advantage
of Roger’s circumflex approach is that it does not rely on any hard categorization
model, but can rather serve as a basis when defining attacker profiles that share similar
characteristics. Hence, to comply with the model in [18] we suggest tuning, of both
the reward- and cost values of the game elements as well as the attack intensities
in the stochastic model, to model the motivation and skill of the particular kind of
attackers that are considered in the system’s threat environment. The effect of tuning
the attack intensities is straight-forward to explain; by raising the attack intensity
values, the corresponding failure rates will increase. However, the influence of the
outcome values in the game model is not as obvious. This section will therefore
demonstrate the tuning of the game parameters.

5.1 Tuning the Game Parameters

The stochastic game model presented in the previous section is based on a reward-
and cost concept. These values will represent the attackers’ motivation when deciding
on attack actions. Whenever an attacker performs an attack action, he immediately
receives a reward. Furthermore, if the action succeeds, additional rewards may be
gained. We use negative rewards, i.e. costs, to make room for the possibility that
some attackers may be more risk averse than others. The cost of a detected action will
be an important demotivating factor when modeling, for example, insiders; legitimate
users who override their current privileges. Similarly, commercial adversaries would
lose reputation and market share if it is exposed that illegal means are used.

Since we have chosen to model the interactions between an attacker and the system
as a zero-sum game rather than a general-sum one, an increasing cost value will play a
deterrent role for an attacker. However, due to the inherent properties of the minimax
solution in (15), also an increasing reward value will indirectly play a deterrent role
for an attacker. One must therefore vary the cost parameters rather than the reward
parameters in order to get an intuitive corresponding attack strategy. This process
will be further illustrated in the upcoming examples.

In (13) we set rkl = 1 and pij(ak, dl) = 0, ∀j, k, l, and then let the cost value
vary between −10 ≤ ckl ≤ 0. This provides us with the possibility of analyzing how
the cost of a detected attack versus the reward of an undetected one will affect the
expected attacker behavior for a particular system state i.

5.2 One Possible Attack Action

As a first example, assume that a system is vulnerable to a single attack action in
state i. An attacker can choose either to perform the attack (action a), or to resign
(action φ). The system’s response actions are to either set an alarm (action d) or no
reaction (action φ). Hence, Ai = {a, φ} and Di = {φ, d}. To model this scenario
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we use the 2× 2 game element

Γi =
φ d

a γaφ γad

φ γφφ γφd

=
φ d

a 1 b

φ c 0

, (17)

where the cost value b represents an attacker’s cost of a detected action and c the
cost of resigning, even though an attempted attack would have been undetected. By
varying b and c we can now demonstrate how the relation γad/γaφ (i.e. the cost of a
detected attack versus the reward of an undetected attack) and γφφ/γaφ (i.e. the cost
associated with resigning versus the reward of an undetected attack) will affect the
attackers’ expected behavior, in terms of the attack probability π∗i (a). To compute
π∗i = (π∗i (a), π∗i (φ)) we solve (15), as previously discussed.

Reducing b

If b = −2 and c = −3 in (17), then the expected probability of attacking will be
π∗i (a) = 0.50. However, if the cost of a detected action is increased to b = −10,
then π∗i (a) = 0.21. Hence, an increasing cost of a detected action will decrease the
attackers’ motivation.

Reducing c

Again, if b = −2 and c = −3 in (17), then π∗i (a) = 0.50. However, if c = −10,
then π∗i (a) = 0.77. As the cost of resigning increases, the attackers’ motivation will
increase.

Figure 4. The expected attacker behavior π∗i (a) w.r.t. b and c.

Fig. 4 depicts a more complete graph of risk averse attackers’ expected behavior.
In the graph we let −9 ≤ b, c ≤ 1. One can see that the expected probability of
attacking is highest, π∗i (a) = 1.0, when b = 1. This is intuitive since an attacker who
receives the same reward whether he is detected or not will always choose to attack.
On the other hand, the expected probability of attacking is lowest, π∗i (a) = 0.0, when
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c > 0 and b < 0. This can be interpreted as if the reward of an attack is small enough,
so that it is not significantly greater than the cost of resigning, an attacker may not
even bother to try (of course this is an ideal situation unlikely to occur in real life). In
general, as the examples indicate and the graph illustrates, as the cost values increase
we can expect attackers to act more carefully.

It is interesting to note that even though measures are taken to increase the cost of
detected actions, legal proceedings for instance, a rapidly decreasing b will only have
marginal effect on the behavior of an attacker who has a strong reluctance of resign-
ing. This is shown in the graph as a slowly decreasing π∗i (a) along the “c = −9”-axis.
In fact, the parameter that has the strongest influence on the expected attacker behav-
ior w.r.t. (17) is c. Unfortunately, since c represents a mental factor in this game (the
attackers’ reluctance to resign) it will be difficult for a system administrator to take
preventive measures influencing c in a way that will reduce π∗i (a).

5.3 More Attack Actions

The same methodology can also be used to compute the expected attacker behavior
for states where a system is vulnerable to a large number of attack actions. An (n +
1)× (n + 1) game element (n possible attack actions) might look like

Γi =

φ d1 . . . dn

a1 1 b1 . . . 1
...

...
...

an 1 1 . . . bn

φ c 0 . . . 0

, (18)

For example, if n = 4 and we choose the cost values as b1=−3, b2=−4, b3=−8,
b4=−6 and c=−1, then

π∗i = (π∗i (a1), π∗i (a2), π∗i (a3), π∗i (a4), π∗i (φ)) = (0.14, 0.12, 0.07, 0.08, 0.54).
(19)

However, if b1 and b2 is increased to −4 and −8 respectively, then

π∗i = (0.13, 0.07, 0.07, 0.09, 0.64). (20)

One can see that also for larger games, an increasing cost of a detected action will
lead to a smaller probability of an attacker choosing that particular action.

A more detailed look of how the expected attack probabilities depend on the cost
values is depicted in Fig. 5-6. In Fig. 5 one can see how a particular attack probability
is affected when varying the different cost values. For example, the upper left graph
indicates that π∗i (a1) is at its highest when b1 → 0. Fig. 6 depicts how the elements
in the attack probability vector π∗i depend on a particular cost value. For example,
the lower right graph shows that π∗i (φ) is high when b4 < −2 and that π∗i (a4) rises
as b4→ 0. Note that

∑
ak∈Ai

π∗i (ak) = 1.
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Figure 5. A particular attack probability as a function of the cost values.

Figure 6. Attack probability vectors as a function of a particular cost value.

6. Case Study: The DNS Service
To further illustrate the approach, we model and analyze the security and depend-

ability of a DNS service. The Domain Name System (DNS) provides a critical service
to the Internet - the mapping between names and addresses. The most important at-
tributes of this service are availability and integrity; the service should be there when
the clients need it, and it must provide correct replies to DNS request. We distinguish
between two different types of accidental failure modes; hardware availability fail-
ures (AH), which require a manual repair, and software availability failures (AS),
which only require a system reconfiguration and/or reboot. Unfortunately, buffer
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overflow vulnerabilities are common in multiple implementations of DNS resolver
libraries. During its operational lifetime, the server will be subject to manual main-
tenance, upgrades and reconfigurations. Humans frequently make mistakes. It is
therefore realistic to assume that the system will naturally alternate between a good
state (G) where it is secure against these types of attacks and another good, but vul-
nerable, state (V ) where buffer overflow attacks are possible. When the system is in
the vulnerable state, an attacker who can send malicious DNS requests might exploit
such a vulnerability to gain access to the server. This may transfer the system into
a third state (L), from where it is possible to insert false entries in the server cache;
software integrity failure (IS), or to shut the server down; software availability fail-
ure (AS). In this case, all the three states G, V and L are considered to be good states.
Even though the system is erroneous in states V and L, it still manages to deliver the
intended service, i.e. to provide clients with correct replies to DNS requests. Hence,
the system state set is S = {G, V, L, IS, AS, AH}, whereof SG = {G, V, L} and
SF = {IS, AS,AH}.

The state transition model in Fig. 2 in Section 4 depicts the security and depend-
ability behavior of a single DNS server under the given assumptions. The transitions
labeled with the µS and µH rates represent the accidental software- and hardware
failures, the ϕ rates represent the system administrator’s possible actions and the λ
rates represent the intensities of the possible attack actions. The game elements are
the shaded states in the figure: Γ = {ΓV ,ΓL,ΓIS}. The attack action set in the
stochastic game is A = {a1, a2, a3, φ} = {“illegal login”, “cache poisoning”,
“server shut down”, “do nothing”} and the defense action set is the corresponding
D = {d1, d2, d3, φ}. Using the rate values λV,L = 1/3, λL,IS = λL,AS = λIS,AS =
3, ϕG,V = 1/480, ϕV,G = 1/120, ϕL,G = ϕIS,G = 1, ϕAS,G = 3, ϕAH,G = 1/24,
µH = 1/3600 and µS = 1/120 (per hour) the game elements become

ΓV =
φ d1

a1 ra1,φ + 0.952Γ3 ca1,d1

φ cφ,φ 0

,

ΓL =

φ d2 d3

a2 ra2,φ + 0.748Γ4 ca2,d2 0

a3 ra3,φ 0 ca3,d3s

φ cφ,φ 0 0

,

ΓIS =
φ d3

a3 ra3,φ ca3,d3

φ cφ,φ 0

.

(21)

By using Alg. 1, the stochastic game can be solved. The optimal attack strategy
vectors π∗ = {π∗V , π∗L, π∗IS} will then be used in the state transition rate matrix for
the DNS server when predicting system measures. The rate matrix Q is displayed
in Table 1. To illustrate the effect of the reward and cost values on the predicted
system measures, we perform the computations for four different scenarios. Note
that all numerical values (reward- and costs as well as failure rates) are chosen for
illustration purposes only.
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Q =

0BBBBB@
−(ϕG,V + µS + µH) ϕG,V 0 0 µS µH

ϕV,G qV,V πV (a1)λV,L 0 µS µH

ϕL,G 0 qL,L πL(a2)λL,IS µS + πL(a3)λL,AS µH

ϕIS,G 0 0 qIS,IS µS + πIS(a3)λIS,AS µH

ϕAS,G 0 0 0 −(ϕAS,G + µH) µH

ϕAH,G 0 0 0 0 −ϕAH,G

1CCCCCA

=

0BBBBBB@

−1.07 · 10−2 2.08 · 10−3 0 0 8.33 · 10−3 2.78 · 10−4

8.33 · 10−3 qV,V 0.33 · πV (a1) 0 8.33 · 10−3 2.78 · 10−4

1 0 qL,L 3 · πL(a2) 8.33 · 10−3 + 3 · πL(a3) 2.78 · 10−4

1 0 0 qIS,IS 8.33 · 10−3 + 3 · πIS(a3) 2.78 · 10−4

3 0 0 0 −3.89 2.78 · 10−4

4.17 · 10−2 0 0 0 0 −4.17 · 10−2

1CCCCCCA

Table 1. The state transition rate matrix for the DNS server (rate values in matrix reduced to three
significant numbers). To increase readability, qV,V = −(ϕV,G + πV (a1)λV,L + µS + µH) = −1.69 ·
10−2−0.33 ·πV (a1), qL,L = −(ϕL,G +πL(a2)λL,IS +µS +πL(a3)λL,AS +µH) = −1.0086−3 ·
πL(a2)−3 ·πL(a3) and qIS,IS = −(ϕIS,G +µS +πIS(a3)λIS,AS +µH) = −1.0086−3 ·πIS(a3)
have been suppressed in the matrix.

6.1 Case 1: The Worst-case Scenario

First we look at the “worst-case” scenario when all attackers always try all possible
attacks, i.e. πi(ak) = 1,∀i, k in Q. In this case we do not use the game model to com-
pute the expected attacker behavior. Using (5) and (6) in Section 3 we compute the
steady state probabilities for the DNS server as X = {XG, XV , XL, XIS , XAS , XAH} =
{0.984, 5.85 · 10−3, 2, 78 · 10−3, 2.08 · 10−4, 3.24 · 10−3, 6.62 · 10−3}. Hence, by
using (9) and (10) we obtain the mean time to first failure MTFF = 97.11 (h) and
the mean time to failure MTTF = 96.62 (h) for the DNS server.

6.2 Case 2: Risk Averse Attackers

Now assume that the attackers will take into account the possible consequences
of their actions. We use the set of reward- and cost values ra1,φ=ra2,φ=ra3,φ=1,
ca1,d1=−4, ca2,d2=−3, ca3,d3=−2, cφ,φ=−5. Solving the stochastic game in accor-
dance to Alg. 1 provides the optimal attack strategy vectors π∗V = (0.568, 0.432),
π∗L = (0, 0.625, 0.375) and π∗IS = (0.625, 0.375). The corresponding steady state
probabilities for this case become X = {0.980, 9.89 · 10−3, 6.50 · 10−4, 0, 3.16 ·
10−3, 6.62 · 10−3}, hence MTFF = 101.61 (h) and MTTF = 100.97 (h). Since
this scenario assumes risk averse attackers, both the MTFF and MTTF will be
slightly higher than in the worst-case scenario.

6.3 Case 3: Implementing Countermeasures

Assume that we want to evaluate the benefit of setting up a new logging and trac-
ing mechanism for the DNS server, with the purpose of reducing the probability of
illegal login attempts (action a1). As in the previous scenario we consider risk averse
attackers. All detected illegal login attempts will be recorded and prosecuted, which
are modeled as an increasing cost value ca1,d1 = −7 in game element ΓV . Hence,
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the new expected attack strategy for state V will be π∗V = (0.394, 0.606). The cor-
responding measures are X = {0.976, 1.37 · 10−2, 6.25 · 10−4, 0, 3.14 · 10−3, 6.62 ·
10−3}, MTFF = 102.11 (h) and MTTF = 101.26 (h). The results show that even
though π∗V (a1) is decreased with 23%, the MTFF and MTTF are only marginally
increased. As a conclusion, the DNS service will not benefit much from the new
logging and tracing mechanism.

6.4 Case 4: Accidental Failures Only

Finally assume that we do not consider attacks at all, but rather model acciden-
tal failure only, i.e. πi(ak) = 0,∀i, k in Q. The corresponding measures are X =
{0.882, 0.108, 0, 0, 2.75 · 10−3, 6.62 · 10−3} and MTFF = MTTF = 116.13 (h).
As can be seen, the system’s expected time to failure will increase noticeably when
attacks are not included as possible fault sources. Hence, for the actual parameteri-
zation the random failures will dominate the trustworthiness of the service.

A comparison of the MTTF for the four cases are provided in Fig. 7. It should

Figure 7. MTTF for the four cases.

be noted that since the rate values in this example are chosen for illustration purposes
only, the predicted system measures may not conform with failure times for a real-life
server implementation.

7. Related Work
Security and dependability. In [2], Laprie et.al. provide a taxonomy for
dependability and security, and a thorough definition of its concepts. A deliverable
produced by the MAFTIA project [4] refines these concepts in the context of mali-
cious faults and discusses how fault prevention, removal, tolerance and forecasting
can be re-interpreted in a security context. Jonson et.al. [19] suggest a unified frame-
work for integrated security and dependability assessment. The objective is to create
a basis for system failure analysis, regardless if the failure is caused by an intrusion or
a hardware fault. Nicol et.al. [6] provide a survey over existing dependability analysis
techniques and summarizes how these are being extended to evaluate security. The
terminology and concepts in this paper are built on these papers.
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Stochastic models of security. Ortalo et.al. [20] present a quantitative
model to measure known Unix security vulnerabilities using a privilege graph, which
is transformed into a Markov chain. The model allows for the characterization of
operational security expressed as the mean effort to security failure, as originally
proposed by Littlewood et.al. in [21]. Further, Madan et. al. [22] use traditional
stochastic modeling techniques to capture attacker behavior and the system’s re-
sponse to attacks and intrusions. A quantitative security analysis is carried out for
the steady state behavior of the system. In [23] Stevens et. al. describe an approach
for probabilistic validation of an intrusion-tolerant replication system. They provide
a hierarchical model using stochastic activity nets (SAN), which can be used to vali-
date intrusion tolerant systems and to evaluate merits of various design choices. Our
modeling approach is inspired by all these paper, especially [22]. The main differ-
ence is the use of attack probabilities to integrate attacker behavior in the transition
rates of our model. Moreover, we model accidental hardware and software failures,
alongside with intrusions.

Game Theory. Game theory in a security related context has also been uti-
lized in previous papers. Lye and Wing [13] use a game theoretic method to analyze
the security of computer networks. The interactions between an attacker and the ad-
ministrator are modeled as a two-player general-sum stochastic game for which op-
timal strategies (Nash Equilibrium) are computed. In [15] a preliminary framework
for modeling attacker intent, objectives and strategies (AIOS) is presented. To infer
AIOS a game theoretic approach is used and models for different threat environments
are suggested. The game theoretic method used in this paper is heavily influenced by
these models. However, in contrast to [13], we model the outcome of the game ele-
ments as the possible consequences of the attackers’ actions being detected or not by
the system’s IDS mechanisms, and in contrast to [15] we use the same game model
for different threat environments.

This paper is based on the results previously published in [24]. This extended
version contains expansions of key ideas, discussions, examples, elaborations and
applications.

8. Concluding Remarks
This paper presents a stochastic model for integrated security and dependability

evaluation. Our modeling approach aim to consider most aspects that will affect the
trustworthiness of a system, such as normal user behavior, administrative activities,
random software- and hardware failures, and intentional attacks. By using stochastic
game theory we can compute the expected attacker behavior for different types of
attackers. The reward- and cost concept makes it possible to use the stochastic model
to predict security- and dependability measures for a particular threat environment.
Having solved the game, the expected attacker behavior is reflected in the transitions
between states in the system model, by weighting the transition rates according to
probability distributions. In the final step, the corresponding stochastic process is
used to compute operational measures of the system.
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The game theoretic approach deserves a few more comments. The optimal strate-
gies have frequently been used to derive predictions of what players in a game will
do [25]. As pointed out in Section 4, π∗ will be an indication of the best strategy for
attackers who do not know the probabilities that their actions will be detected. If the
detection probabilities are known, maximizing (14) will be straightforward, hence,
(15) is not applicable. Moreover, the approach is based on the underlying assumption
that the attackers have a complete overview of the system states, the possible transi-
tions between states and the existing vulnerabilities. This may not always be the case
in real life. Other types of models, e.g. games with incomplete information, may
therefore be more appropriate in some cases. Finally we would like to point out that
modeling the attackers’ interactions with the system as a zero-sum stochastic game
will always provide us with a single unique solution to the game.

As indicated in the case study, there are additional features of our model than just
probabilistic predictions of a system. For instance, system administrators can use our
approach to answer questions such as “What is the effect of hardening security?” and
“Should we perform additional monitoring?”. The effect of these two countermea-
sures can be evaluated in our modeling and analysis framework before implementa-
tion, by changing the corresponding transition rates in the model and then comparing
the results.

Currently, our model is being integrated into a framework for dynamic security
and dependability assessment. The framework is based on a method for real-time
risk assessment using a distributed networked agent-sensor architecture, published
in [26]. By using live data from network sensors, the current state and the future
behavior of the system can be predicted, which makes it possible to compute system
security and dependability measures, in real time.

In the future we plan to verify the model’s ability to predict real-life attacks. This
will require further research, including validation of the model against empirical data.
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Abstract This paper considers a real-time risk assessment method for information systems and
networks based on observations from networks sensors, such as intrusion detection sys-
tems. The system risk is dynamically evaluated using hidden Markov models, providing
a mechanism for handling data from sensors with different trustworthiness in terms of
false positives and negatives. The method provides a higher level of abstraction for
monitoring network security, suitable for risk management and intrusion response appli-
cations.

1. Introduction
Risk assessment is a central issue in management of large-scale networks. How-

ever, current risk assessment methodologies focus on manual risk analysis of net-
works during system design or through periodic reviews. Techniques for real-time
risk assessment are scarce, and network monitoring systems and intrusion detection
systems (IDS) are the typical approaches. In this paper, we present a real-time risk
assessment method for large scale networks that build upon existing network mon-
itoring and intrusion detection systems. An additional level of abstraction is added
to the network monitoring process, focusing on risk rather than individual warnings
and alerts. The method enables the assessment of risk both on a system-wide level,
as well as for individual objects.

The main benefit of our approach is the ability to aggregate data from different
sensors with different weighting according to the trustworthiness of the sensors. This
focus on an aggregate risk level is deemed more suitable for network management
and automated response than individual intrusion detection alerts. By using hidden
Markov models (HMM), we can find the most likely state probability distribution
of monitored objects, considering the trustworthiness of the IDS. We do not make
any assumptions on the types of sensors used in our monitoring architecture, other
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than that they are capable of providing standardized output as required by the model
parameters presented in this paper.

1.1 Target Network Architecture

The target of the risk assessment described in this paper is a generic network con-
sisting of computers, network components, services, users, etc. The network can be
arbitrarily complex, with wireless ad-hoc devices as well as ubiquitous services. The
network consists of entities that are either subjects or objects. Subjects are capable
of performing actions on the objects. A subject can be either users or programs,
whereas objects are the targets of the risk assessment. An asset may be considered an
object. The unknown factors in such a network may represent vulnerabilities that can
be exploited by a malicious attacker or computer program and result in unwanted in-
cidents. The potential exploitation of a vulnerability is described as threats to assets.
The risk of a system can be identified through the evaluation of the probability and
consequence of unwanted incidents.

1.2 Monitoring and Assessment Architecture

We assume a multiagent system architecture consisting of agents that observe ob-
jects in a network using sensors. The architecture of a multiagent risk assessment
system per se is not the focus of this paper, but a description is included as a context.

An agent is a computer program capable of a certain degree of autonomous ac-
tions. In a multiagent system, agents are capable of communicating and cooperating
with other agents. In this paper, an agent is responsible for collecting and aggregat-
ing sensor data from a set of sensors that monitor a set of objects. The main task of
the agent is to perform real-time risk assessment based on these data. A multiagent
architecture has been chosen for its flexibility and scalability, and in order to support
distributed automated response.

A sensor can be any information-gathering program or device, including network
sniffers (using sampling or filtering), different types of intrusion detection systems
(IDS), logging systems, virus detectors, honeypots, etc. The main task of the sensors
is to gather information regarding the security state of objects. The assumed moni-
toring architecture is hybrid in the sense that it supports any type of sensor. However,
it is assumed that the sensors are able to classify and send standardized observations
according to the risk assessment model described in this paper.

1.3 Related Work

Risk assessment has traditionally been a manual analysis process based on a stan-
dardized framework, such as [1]. A notable example of real-time risk assessment is
presented in [2], which introduces a formal model for the real time characterization of
risk faced by a host. Distributed intrusion detection systems have been demonstrated
in several prototypes and research papers, such as [3, 4]. Multiagent systems for in-
trusion detection, as proposed in [5] and demonstrated in e.g. [6] (an IDS prototype
based on lightweight mobile agents) are of particular relevance for this paper. An im-
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portant development in distributed intrusion detection is the recent IDMEF (Intrusion
Detection Message Exchange Format) IETF Internet draft [7]. Hidden Markov mod-
els have recently been used in IDS architectures to detect multi-stage attacks [8], and
as a tool to detect misuse based on operating system calls [9]. Intrusion tolerance is
a recent research field in information security related to the field of fault tolerance in
networks. The research project SITAR [10] presents a generic state transition model,
similar to the model used in this paper, to describe the dynamics of intrusion tolerant
systems. Probabilistic validation of intrusion tolerant systems is presented in [11].

2. Risk Assessment Model
In order to be able to perform dynamic risk assessment of a system, we formalize

the distributed network sensor architecture described in the previous section. Let
O = {o1, o2, . . .} be the set of objects that are monitored by an agent. This set of
objects represents the part of the network that the agent is responsible for. To describe
the security state of each object, we use discrete-time Markov chains. Assume that
each object consisting of N states, denoted S = {s1, s2, . . . , sN}.

As the security state of an object changes over time, it will move between the states
in S. The sequence of states that an object visits is denoted X = x1, x2, . . . , xT ,
where xt ∈ S is the state visited at time t. For the purpose of this paper, we assume
that the state space can be represented by a general model consisting of three states:
Good (G), Attacked (A) and Compromised (C), i.e., S = {G, A,C}. State G means
that the object is up and running securely and that it is not subject to any kind of
attack actions. In contrast to [10], we assume that objects always are vulnerable to
attacks, even in state G. As an attack against an object is initiated, it will move
to security state A. An object in state A is subject to an ongoing attack, possibly
affecting its behavior with regard to security. Finally, an object enters state C if it has
been successfully compromised by an attacker. An object in state C is assumed to
be completely at the mercy of an attacker and subject to any kind of confidentiality,
integrity and/or availability breaches.

The security observations are provided by the sensors that monitor the objects.
These observation messages are processed by agents, and it is assumed that the mes-
sages are received or collected at discrete time intervals. An observation message can
consist of any of the symbols V = {v1, v2, . . . , vM}. These symbols may be used to
represent different types of alarms, suspect traffic patterns, entries in log data files,
input from network administrators, and so on. The sequence of observed messages
that an agent receives is denoted Y = y1, y2, . . . , yT , where yt ∈ V is the observa-
tion message received at time t. Based on the sequence of observation messages, the
agent performs dynamic risk assessment. The agent will often receive observation
messages from more than one sensor, and these sensors may provide different types
of data, or even inconsistent data. All sensors will not be able to register all kinds of
attacks, so we cannot assume that an agent is able to resolve the correct state of the
monitored objects at all times. The observation symbols are therefore probabilistic
functions of the object’s Markov chain, the object’s true security state will be hidden
from the agent. This is consistent with the basic idea of HMM [12].
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2.1 Modeling Objects as Hidden Markov Models

Each monitored object can be represented by a HMM, defined by λ = {P, Q, π}.
P = {pij} is the state transition probability distribution matrix for object o, where

pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij represents the probability
that object o will transfer into state sj next, given that its current state is si. To be
able to estimate P for real-life objects, one may use either statistical attack data from
production or experimental systems or the subjective opinion of experts. Learning
algorithms may be employed in order to provide a better estimate of P over time.

Q = {qj(l)} is the observation symbol probability distribution matrix for object o
in state sj , whose elements are qj(l) = P (yt = vl|xt = sj), 1 ≤ j ≤ N, 1 ≤ l ≤M .
In our model, the element qj(l) in Q represents the probability that a sensor will send
the observation symbol vl at time t, given that the object is in state sj at time t. Q
therefore indicates the sensor’s false-positive and false-negative effect on the agents
risk assessments.

π = {πi} is the initial state distribution for the object. Hence, πi = P (x1 = si) is
the probability that si was the initial state of the object.

2.2 Quantitative Risk Assessment

Following the terminology in [1], risk is measured in terms of consequences and
likelihood. A consequence is the (qualitative or quantitative) outcome of an event and
the likelihood is a description of the probability of the event. To perform dynamic
risk assessment, we need a mapping: C : S → R, describing the expected cost (due
to loss of confidentiality, integrity and availability) for each object. The total riskRt

for an object at time t is

Rt =
N∑

i=1

Rt(i) =
N∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the object is in security state si at time t, and C(i)
is the cost value associated with state si.

In order to perform real-time risk assessment for an object, an agent has to dy-
namically update the object’s state probability γt = {γt(i)}. Given an observation
yt, and the HMM λ, the agent can update the state probability γt of an object using
Algorithm 1. The complexity of the algorithm is O(N2). For further details, see the
Appendix.

3. Case – Real-time Risk Assessment for a Home
Office

To illustrate the theory, we perform real-time risk assessment of a typical home of-
fice network, consisting of an Internet router/WLAN access point, a stationary com-
puter with disk and printer sharing, a laptop using WLAN, and a cell phone connected
to the laptop using Bluetooth. Each of the objects (hosts) in the home office network
has a sensor that processes log files and checks system integrity (a host IDS). In addi-
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Algorithm 2 Update state probability distribution
IN: yt, λ {the observation at time t, the hidden Markov model}
OUT: γt {the security state probability at time t}

if t = 1 then
for i = 1 to N do

α1(i)← qi(y1)πi

γ1(i)← qi(y1)πiPN
j=1 qj(y1)πj

end for
else

for i = 1 to N do
αt(i)← qi(yt)

∑N
j=1 αt−1(j)pji

γt(i)← αt(i)PN
j=1 αt(j)

end for
end if
return γt

tion, the access point has a network monitoring sensor that is capable of monitoring
traffic between the outside network and the internal hosts (a network IDS).

For all objects, we use the state set S = {G, A,C}. The sensors provide obser-
vations in a standardized message format, such as IDMEF, and they are capable of
classifying observations as indications of the object state. Each sensor is equipped
with a database of signatures of potential attacks. For the purpose of this example,
each signature is associated with a particular state in S. We define the observation
symbols set as V = {g, a, c}, where the symbol g is an indication of state G and
so forth. Note that we have to preserve the discrete-time property of the HMM by
sampling sensor data periodically. If there are multiple observations during a period,
we sample one at random. If there are no observations, we assume the observation
symbol to be g. In order to use multiple sensors for a single object, a round-robin
sampling is used to process only one observation for each period. This is demon-
strated in example 3.

The home network is monitored by an agent that regularly receives observation
symbols from the sensors. For each new symbol, the agent uses Algorithm 1 to
update the objects’ security state probability, and (1) to compute its corresponding
risk value. Estimating the matrices P and Q, as well as the cost C associated with the
different states, for the objects in this network is a non-trivial task that is out of scope
for this paper.

The parameter values in these examples are therefore chosen for illustration pur-
poses only. Also, we only demonstrate how to perform dynamic risk assessment of
the laptop.
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Figure 1. Laptop risk assessment

3.1 Example 1: Laptop Risk Assessment by HIDS
Observations

First, we assess the risk of the laptop, based on an observation sequence YHIDS−L,
containing 20 samples collected from the laptop HIDS. We use the HMM λL =
{PL, QHIDS−L, πL}, where

PL =

pGG pGA pGC

pAG pAA pAC

pCG pCA pCC

 =

0.995 0.004 0.001
0.060 0.900 0.040
0.008 0.002 0.990

 , (2)

QHIDS−L =

qG(g) qG(a) qG(c)
qA(g) qA(a) qA(c)
qC(g) qC(a) qC(c)

 =

0.70 0.15 0.15
0.15 0.70 0.15
0.20 0.20 0.60

 , (3)

πL = (πG, πA, πC) = (0.8, 0.1, 0.1). (4)

Since the HIDS is assumed to have low false-positive and false-negative rates, both
qG(a), qG(c), qA(c) � 1 and qA(g), qC(g), qC(a) � 1 in QHIDS−L. The dynamic
risk in Figure 1(a) is computed based on the observation sequence Y (as shown on the
x-axis of the figure) and a security state cost estimate measured as CL = (0, 5, 10).

3.2 Example 2: Laptop Risk Assessment by NIDS
Observations

Now, we let the risk assessment process of the laptop be based on another ob-
servation sequence, YNIDS−L, collected from the NIDS. A new observation symbol
probability distribution is created for the NIDS

QNIDS−L =

0.5 0.3 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 . (5)
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One can see that the NIDS has higher false-positive and false-negative rates, com-
pared to the HIDS. Figure 1(b) shows the laptop risk when using the HMM λL =
{PL, QNIDS−L, πL}. Note that the observation sequence is not identical to the one
in example 1, as the two sensors are not necessarily consistent.

3.3 Example 3: Aggregating HIDS and NIDS
Observations

The agent now aggregates the observations from the HIDS and NIDS sensors by
sampling from the observation sequences YHIDS−L and YNIDS−L in a round-robin
fashion. To update the current state probability γt, the agent therefore chooses the
observation symbol probability distribution corresponding to the sampled sensor, i.e.,
the HMM will be

λL = {PL, Q∗, πL}, where Q∗ =

{
QHIDS−L if yt ∈ YHIDS

QNIDS−L if yt ∈ YNIDS
. (6)

The calculated risk is illustrated in Figure 2. The graph shows that some properties
of the individual observation sequences are retained.
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Figure 2. Laptop risk assessment based on two sensors (HIDS and NIDS)

4. Managing Risk with Automated Response
In order to achieve effective incident response, it must be possible to effectively

initiate defensive measures, for example by reconfiguring the security services and
mechanisms in order to mitigate risk. Such measures may be manual or automatic.
An information system or network can be automatically reconfigured in order to re-
duce an identified risk, or the system can act as a support system for system and
network administrators by providing relevant information and recommending spe-
cific actions. To facilitate such an approach, it is necessary to provide a mechanism
that relates a detected security incidence to an appropriate response, based on the
underlying risk model. Such a mechanism should include a policy for what reactions
should be taken in the case of a particular incident, as well as information on who has
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the authority to initiate or authorize the response. Examples of distributed intrusion
detection and response systems have been published in [13, 14].

The dynamic risk-assessment method described in this paper can provide a basis
for automated response. If the risk reaches a certain level, an agent may initiate
an automated response in order to control the risk level. Such a response may be
performed both for individual objects (e.g. a compromised host) or on a network-
wide level (if the network risk level is too high). Examples of a local response may be
firewall reconfigurations for a host, changing logging granularity, or shutting down a
system. Examples of a global response may be the revocation of a user certificate, the
reconfiguration of central access control configurations, or firewall reconfigurations.
Other examples include traffic rerouting or manipulation, and honeypot technologies.
Note that such adaptive measures has to be supervised by human intelligence, as they
necessarily introduce a risk in their own right. A firewall reconfiguration mechanism
can, for example, be exploited as part of a denial-of-service attack.

5. Conclusion
We present a real-time risk-assessment method using HMM. The method provides

a mechanism for aggregating data from multiple sensors, with different weightings
according to sensor trustworthiness. The proposed discrete-time model relies on peri-
odic messages from sensors, which implies the use of sampling of alert data. For the
purpose of real-life applications, we propose further development using continuous-
time models in order to be able to handle highly variable alert rates from multiple
sensors. We also give an indication as to how this work can be extended into a multi-
agent system with automated response, where agents are responsible for assessing
and responding to the risk for a number of objects.
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Appendix: On Algorithm 1
Given the first observation y1 and the hidden Markov model λ, the initial state distribution γ1(i) can

be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)
=

P (y1|x1 = si, λ)P (x1 = si|λ)

P (y1|λ)
. (A.1)

To find the denominator, one can condition on the first visited state and sum over all possible states

P (y1|λ) =

NX
j=1

P (y1|x1 = sj , λ)P (x1 = sj |λ) =

NX
j=1

qj(y1)πj . (A.2)

Hence, by combining (A.1) and (A.2)

γ1(i) =
qi(y1)πiPN

j=1 qj(y1)πj

, (A.3)

where qj(y1) is the probability of observing symbol y1 in state sj , and π is the initial state probability.
To simplify the calculation of the state distribution after t observations we use the forward-variable
αt(i) = P (y1y2 · · · yt, xt = si|λ), as defined in [12]. By using recursion, this variable can be calcu-
lated in an efficient way as

αt(i) = qi(yt)

NX
j=1

αt−1(j)pji, t > 1. (A.4)

From (A.1) and (A.3) we find the initial forward variable

α1(i) = qi(y1)πi, t = 1. (A.5)
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In the derivation of αt(i) we assumed that yt only depend on xt and that the Markov property holds.
Now we can use the forward variable αt(i) to update the state probability distribution by new ob-

servations. This is done by

γt(i) = P (xt = si|y1y2 · · · yt, λ) =
P (y1y2 · · · yt, xt = si|λ)

P (y1y2 · · · yt|λ)

=
P (y1y2 · · · yt, xt = si|λ)PN

j=1 P (y1y2 · · · yt, xt = sj |λ)
=

αt(i)PN
j=1 αt(j)

.
(A.6)

Note that (A.6) is similar to Eq. 27 in [12], with the exception that we do not account for observations
that occur after t, as our main interest is to calculate the object’s state distribution after a number of
observations.
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Abstract The complex networked system of today that our technological and social society rely
on are vulnerable to a large number of failures, accidental as well as intentional. Ideally,
the service delivered by such a system should be both dependable and secure. This
paper presents a framework for integrated security and dependability assessment. The
proposed model is based on traditional stochastic analysis techniques, supported by live
data from network sensors, which is used to estimate the current state and predict the
future behavior of a system in real-time. The method is demonstrated by a small case
study.

1. Introduction
The new paradigms of ubiquitous computing and high capacity data transfer has

led to an explosive growth in the number and complexity of computing systems used
for critical applications, such as electronic commerce, health-care and urgent infor-
mation interchange. Since the modern society of today is highly dependent on these
services, the computing systems need to function properly despite not only acciden-
tal failures but also malicious attacks. To increase the trustworthiness of the imple-
mented services, it should be possible to monitor the systems’ current robustness
towards these impairments, as well as assess and predict their current and near future
behavior. This paper deals with a method for such monitoring and prediction.

A system’s ability to provide a correct and timely service can be described in
terms of its dependability and security. Dependability is the ability to deliver ser-
vice that can justifiably be trusted, and can be stated as an integrative concept that
encompasses the attributes availability, reliability, safety, integrity and maintainabil-
ity [2]. Security, on the other hand, is defined as a concept addressing the attributes
confidentiality, integrity and availability [8]. To function properly, the critical appli-
cations and systems our society relies upon need to be both dependable and secure.
However, despite the fact that a system cannot be considered trustworthy without a
rigorous analysis comprising a joint consideration of these two concepts, dependabil-
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ity and security have tended to be treated separately. To allow continuous estimation
of the trustworthiness of the services provided by today’s computing systems, there is
an urgent need of new modeling methods that treats both security and dependability.

To model, analyze and evaluate systems that are yet to be built or systems whose
specific vulnerabilities remain unknown, stochastic assumptions are needed [11].
During the last decade, probabilistic modeling of security has gained a lot of in-
terest [10, 12, 9, 3, 17, 11]. Such models, which are inspired by the traditional
dependability analysis techniques, can be used to provide quantitative measures of
a system’s operational security. However, most of the recent research efforts have
focus on either security or dependability analysis, rather than aiming for a unified
evaluation framework. In [15] we described a method for integrated security and de-
pendability evaluation, which uses stochastic analysis techniques to model and com-
pute expected failure times for a computing system, regardless of whether the failure
cause is intentional or not. To incorporate malicious behavior in the stochastic model,
a game theoretic approach is applied. The model can be used for both predicting a
system’s future security and dependability behavior, as well as for a trade-off analy-
sis of possible countermeasures. This paper extends our previously published results
by integrating the proposed model in a distributed network monitoring environment.
By using observations provided by network sensors, the probability of the current
system state can be estimated, which makes it possible to use the stochastic model
to predict the future behavior of the monitored computer system in real-time. The
overall concepts used in our framework is depicted in Fig. 1. The system that is to

”real-time” 

system

stochastic
model

monitor
”prediction”

environ
ment

Figure 1. The overall concepts.

be assessed, together with its operational environment, is described by a stochastic
model. There is a monitor that continuously surveys the system and gives warnings
of possible disturbances. By using the stochastic model together with real-time data
from the monitor our model can estimate the current state of the system, and predict
its future behavior.

This paper is organized as follows. Section 2 starts by reviewing the basis of stoch-
astic modeling, and introduces the proposed security and dependability measures.
Section 3 discusses how security analysis differs from traditional dependability eval-
uation, and explains how our integrated framework treat these issues. In Section 4
the proposed security and dependability assessment architecture is presented. In Sec-
tion 5 we explain how the monitoring architecture is used to collect sensor data and
how this information is interpreted to estimate the current system state. Section 6
provides the methodology for computing real-time measures of the system. In Sec-
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tion 7 the approach is demonstrated by an illustrative example. Finally, Section 8
concludes the paper and points to future work.

2. Predicting Security and Dependability
When operating a system with security and dependability requirements it is of in-

terest to be able answer questions like: ”Is the system already compromised?”, ”What
is the probability that the system is currently under attack?”, ”What is the probabil-
ity that the system will operate without security breaches or failures for the next 24
hours?”, or ”What is the expected time until such an event occurs?”. The objective
of this paper is to provide a methodology that can be used to provide answers to such
questions. For the simplicity of the presentation we denote any undesired event in or
state of the system as a failure, in accordance with [2], without discrimination with
respect to kind of failure. A refinement is straight forward. Hence, we denote the
time from now and until the next failure by TF , and seek to obtain:

PF (t) = P (TF > t) the probability that the time until the next failure is greater than
t.1

MTNF = 1
PF (0)

∫∞
0 PF (t) dt the mean time to next failure2, assuming that the sys-

tem will sooner or later fail (i.e., limt→∞ PF (t) = 0).

Dealing with security issues, it is not necessarily evident when the system is failed
(compromised), so we will in general have PF (0) ≤ 1, where 1 − PF (0) represents
the probability that the system is already failed (compromised).

To obtain the above measures, two important elements are needed:

the ability to predict the current state of the system, and

for a given state, the ability to predict the future behavior of the system.

We will return to these elements later on in this paper. First, we introduce the overall
modeling approach applying Markov models and discuss how security issues may be
included in these.

2.1 The Stochastic Modeling Approach

Above we have informally introduced the concept of state. By a state in this
context is meant an operational mode of the system characterized by which units
of the system that are operational or failed, whether there are ongoing attacks, active
countermeasures, operational and maintenance activities, whether parts of the system
compromised or not, etc. The decision of what to include or not in the state definition

1This expression corresponds to the reliability function in traditional dependability analysis (where only random
failures are regarded), but this term is not used to avoid misinterpretation.
2The MTNF measure differs from the MTTF (mean time to failure) and MTFF (mean time to first failure)
traditionally used in dependability analysis. In contrast to MTTF and MTFF , the MTNF measure is conditioned
on PF (0). The measure will be further explained in Section 6.
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is a trade-off between model representativeness and complexity, and is a salient part
of every modeling and analysis effort. The more system states that are taken into
consideration, the more fine-granular the model becomes. Since the model needs
to be parametrized, the granulation of the state space must be carefully considered.
Too simple models will not provide any valuable insight into the system behavior,
whereas too complex models will quickly lead to state space explosion. An example
primarily for illustration will be presented in Section 7.

Let say the system has N disjoint states and that at any time it is in one of these.
The behavior of the system is characterized by the transitions between the states,
each transition triggered by an event. The event that will occur next, as well as the
time until next event, is random. Hence, the behavior of the system is a stochastic
process. For the sake of simplicity, assume that the occurrence rates of events depend
only on the state the system is in, i.e. the system is modeled by a continuous time
Markov chain (CTMC) (for an introduction to Markov modeling for dependability
analysis, see for instance [6]). A CTMC is characterized by its rate matrix, whose
elements represents the transition rates between the system states.

2.2 System Equations

Assume that the system has a finite number of states, denoted S = {S1, . . . , SN}.
This state set can be split into two subsets: SG, which contains the good system states,
and SF , which contains the failed system states. Let

X(t) = {X1(t), . . . , XN (t)}, (1)

where Xi(t) denotes the probability that the system is in state i at time t. The state
equation describing the system behavior is then

d

dt
X(t) = X(t)Q, (2)

where Q = {qij} is the N×N state transition rate matrix of the system. The element
qij represents the transition rate from state i to state j. Note that qii = −

∑
i6=j qij .

The state equation can be solved if the initial state of the system X(0) is known. Then

X(t) = X(0)exp(Qt). (3)

The solution to (3) provides the transient state probabilities for a system. See for
instance [14]. However, the probability that a CTMC will be in state i at time t often
converges to a limiting value, which is independent of the initial state. The steady
state probabilities

X = {X1, . . . , XN}, (4)

whose elements Xi = lim
t→∞

Xi(t), i = 1, . . . , N , can then be obtained by solving the
set of N equations given by N − 1 of the N equations

XQ = 0, (5)
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and with the N ’th equation
N∑

l=1

Xl = 1. (6)

As is common practice in dependability analysis, the CTMC can be used as a
basis for obtaining various measures of the system, such as the MTNF or PF (t)
previously discussed. For computation of measures relating to TF , the failure states
may be made absorbing, i.e. q∗ij = 0 when i ∈ SF , j ∈ SG, otherwise q∗ij = qij . Let
Q∗ = {q∗ij} be the modified state transition rate matrix with absorbing failure states
and denote by X∗(t) the corresponding state probabilities. Hence,

PF (t) =
∑
i∈SG

X∗
i (t), (7)

from which the MTNF can be computed. Rather than integrating
∫∞
0 PF (t) dt to

obtain MTNF we adopt a computationally more efficient approach, based on [4].
The details together with computational issues will be further explained in Section 6.

3. The Challenges with Security Modeling
In dependability analysis it is very common to use the stochastic modeling ap-

proach described in Section 2 to quantify the reliability or availability of systems.
In that case, the states are classified as either ”up” states (the good states in SG)
or ”down” states (the failed states in SF ), depending on whether the required ser-
vice is delivered or not. In theory, by associating down states with failures of con-
fidentiality or integrity one can use these methods also for evaluating the security
properties of a software system. A simple example is depicted in Fig. 2, where
S = {G, C, F} = {”good”, ”compromised”, ”failed”}. Here, it is assumed that a

repair (φ2)

fail (µ)

restore (φ1)

attack (λ)

fail (µ)G FC

Figure 2. A simple Markov model, including a compromised system state.

large number of attackers are targeting the system in state G, with accumulated at-
tack intensity λ. In contrast to attack graphs (as used in e.g. [9]) where each state
transition corresponds to a single atomic step of a penetration, our model aim to be
more high-level and focus on the impact of the attacks on the system rather than on
the specific attack procedures themselves. This facilitates the modeling of unknown
attacks in terms of generic state transitions. For example, in Fig. 2 the attack is
merely defined as “the action that seeks to transfer the system from a good state to
a compromised state” and nothing more. For real-world cases, where more complex
models are needed, two problems quickly arise:
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1 The attacks are intentional, rather than purely random.

2 Regarding security, the current system state may be unobservable.

The remainder of this section will discuss these two problems and explain our pro-
posed solutions.

3.1 Incorporating Attacker Behavior.

When using the traditional Markov approach it is (in most cases) straightforward to
model accidental failures as state transitions. However, since attacks are intentional
they may not always be well characterized by models of random nature. Hence, a
more sophisticated approach than the simple model depicted in Fig. 2 is needed.
To be able to model the effect of a successful attack as a transition between system
states one needs to consider the two underlying causes of any attack. As pointed out
in [15], there must be (at least) one vulnerability in the system, and a malicious action
that tries to exploit that vulnerability, for an attack to be successful. Even though the
time an attacker needs to perform an attack action may be modeled as randomly
distributed, the decision to perform the action will also influence the system failure
rate. Therefore, attacker behavior must be represented in the state transitions. In
this paper we follow the approach in [15] and define πi(a) as the probability that
an attacker will choose action a when the system is in (the vulnerable) state i. The
failure rate between state i and j when incorporating malicious behavior can therefore
be computed as

qij = πi(a)λij(a), (8)

where λij(a) is the accumulated intensity if all potential attackers always take action
a. By introducing the attack probability πi(a) as an element in the rate value qij ,
the result from a successful attack can be modeled as one or more intentional state
changes of the underlying stochastic process, which represents the dynamic behavior
of the system. To compute the attack probabilities we use the game model published
in [15]. The game model is based on a reward- and cost concept, which makes it
possible to predict the expected attacker behavior, in terms of attack probabilities,
for a number of different attacker profiles. The game theoretic approach will not be
further explained in this paper; the reader is referred to [15] for the exact details.

3.2 Observing the System Security State.

In dependability analysis, the system state set S is usually considered known.
Moreover, all states are assumed to be deterministically observable, in that the cur-
rent system state is well defined and perceptible, at all times. However, in a security
context the degree of unobservability may be quite high. A system might very well
seem to be in a good state even though it is compromised, e.g. due to a stealthy at-
tack. How can one compute measures such as PF (t) or MTNF if one does not know
the initial state of the system with certainty? Our solution is to use information from
network sensors monitoring the system to estimate its current state probability. We
then replace X(0) in (3) with the most likely state probability at that particular time
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instant, which provides us with the possibility of re-computing the system measures
in real-time. This procedure will be further explained in the subsequent sections of
this paper.

4. The Prediction Framework
The proposed real-time security and dependability prediction framework is illus-

trated in Fig. 3. As depicted in the figure, the system is described by a three-part
stochastic model, which consists of the state space S, the game model Γ and the cor-
responding state transition rate matrix Q. Naturally, the system behavior will depend
on its operating environment, such as user behavior, administrative activities, the pos-
sible intrusions and exploits, and random software and hardware failures. Note that
we include attacker profile data as a separate part of the system environment. As
mentioned in the previous section, by using cost- and reward values from the attacker
profile, the game model is used to compute the attack probabilities that are to be
incorporated in the rate matrix. As Fig. 3 indicates, the purpose of the stochastic
model is to provide the system rate values needed to predict the PF (t) and MTNF
measures.

rates

Alg. 1

Alg. 3

Alg. 2

state 
prob.

rates

observationsMonitor Estimator

Predictor
PF(t)

MTNF

Environment
  *adm. activities
  *user behavior
  *random failures
  *attack intensities

Attack 
profile

  *cost/reward

System
State 
space
S

Rate 
matrix
Q

Game 
model
Γ

Figure 3. The security and dependability assessment architecture

From Fig. 3 it is clear that to perform real-time security and dependability assess-
ment for the system, there are three main tasks that has to be performed; monitoring,
estimation and predicting. The main task of the monitor is to provide the estima-
tor with observations regarding the system security and dependability behavior. The
monitor is implemented as a distributed architecture consisting of agents that observe
the system by means of network sensors. The estimator then uses the observations
provided by the monitor to estimate the current state probability of the system. To
be able to obtain the goal of real-time security and dependability measurements, the
current state probability is updated and forwarded to the predictor as soon as a new
observation has been received and interpreted. Finally, the predictor computes mea-



114

sures for the observed system, based on the transition rates from the stochastic model
together with the estimated state probability. As previously discussed, the predictor
uses well-known Markov analysis techniques to compute the PF (t) and MTNF for
the system. The implementation details of the monitoring and estimation architecture
(Alg. 3) will be further described in Section 5 and the exact procedure for computing
the predicted measures (Alg. 4-5) will be explained in Section 6.

5. The Monitoring and Estimation Architecture
The proposed monitor and estimator in Fig. 3 are both based on the results pub-

lished in [1]. In this paper we restrict ourselves to an overall description of the archi-
tecture. The reader is referred to [1] for more details.

5.1 The Monitor

In [1], the monitor is implemented as a distributed monitoring architecture consist-
ing of agents that observe one or more systems using network sensors. A sensor can
be any information-gathering program or device, including network sniffers using
sampling or filtering, different types of intrusion detection systems (IDS), logging
systems, virus detectors, etc. The main task of a sensor is to gather information re-
garding the current state of one or more systems. The assumed monitoring architec-
ture is hybrid in the sense that it supports any type of sensor. However, it is assumed
that the sensors are able to classify and send standardized observations according to
the state estimation model described in this paper. An agent is a computer program
capable of a certain degree of autonomous action. An agent is responsible for col-
lecting and aggregating sensor data from a set of sensors that monitor one or more
systems and to forward these data to the estimator. In a multi-agent system, agents
are capable of communicating and cooperating with other agents. A multi-agent ar-
chitecture is preferable over a single agent implementation, due to its flexibility and
scalability. The case study presented later on in this paper make use of a single agent
only.

In real-life distributed agent-sensor implementations, observations often arrive in
bursts, and there will also be silent periods without any activity at all. In this paper we
let the agent adopt a sampling process of the sensor(s) monitoring a particular system,
similarly to the approach in [18]. By providing the estimator with observations at
regular time intervals, the predicted system security and dependability measures can
be updated at a pre-defined frequency. The sampling process will be further explained
in the next subsection.

5.2 The Discrete Sampling Process

Recall that we use a CTMC to model the security and dependability behavior of
a system. Due to its stochastic behavior, the system may be in any of the states in S
when sampled. As Fig. 3 indicates, the purpose of the estimator is to use the sampled
observations to estimate the current system state. To formalize, let zτ be the (possibly
unobservable) system state at sampling instant τ . The sequence of states that a system
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is in during the sampling instants will then be denoted Z = (z1, z2, . . .). Let

Xτ = {Xτ
1 , . . . , Xτ

N}, (9)

where Xτ
i denotes the probability that the system is in state i at the τ ’th sample. Since

one cannot assume that Z is known (recall the unobservability problem discussed in
Section 3.2), it is this state probability that will be estimated and used to predict new
system measures, at each sampling instant τ .

Recall the system rate matrix Q. Assume that the interval between two different
adjacent samples is fixed to ∆. Now, let P(∆) denote the one-step transition prob-
ability matrix with elements pij(∆), such that pij(∆) = P (zτ+1 = j|zτ = i), 1 ≤
i, j ≤ N . Hence, pij(∆) represents the probability that the system will, given that its
current state at sampling instant τ is i, be in state j after an additional time ∆, i.e. at
the next sample τ + 1. By using (3), P(∆) can be derived from Q as

P(∆) = I · exp(Q∆), (10)

where I is the identity matrix. For simplicity, we let P represents P(∆) in the rest
of this paper. It is important to notice that even though we used a fixed sampling
interval ∆ in this paper, this is not a requirement for the model to work. One can
easily imagine scenarios where it is desirable to sample the sensors and predict new
system measures at irregular time intervals. In that case P(∆) needs to be recomputed
at each sampling instant τ .

5.3 Interpreting Observations

Due to the inhomogeneity of sensor types, the observations can consist of a variety
of information; different types of alarms, suspect traffic patterns, entries in log data
files, input from network administrators, indications of system elements up and down,
ongoing operational and maintenance activities, and so on. To formalize, we assume
that any observation can be classified as one of the symbols in the finite symbol set
V = {v1, . . . , vM}. The sequence of observations that the monitor forwards to the
estimator is denoted Y = (y1, y2, . . .), where yτ ∈ V is the observation received at
sampling instant τ . Based on Y , the estimator will estimate the system’s current state,
in terms of the state probability Xτ in (9). The estimator will receive observations
originating from more than one sensor, and these sensors may provide different types
of data or even inconsistent data. All sensors will not be able to register all kinds
of activities, so one cannot assume that the estimator is able to resolve the correct
state of the monitored system at all times. The observation symbols are therefore
probabilistic functions of the system’s Markov chain, i.e. the system’s true state will
be hidden from the estimator. This is consistent with the basic idea of hidden Markov
models (HMM), as described in [13].

5.4 State Probability Estimation

Each monitored system can be represented by a HMM, defined by the three tu-
ple Λ = (P, X1, O). As previously discussed, P = {pij} is the one-step transition



116

probability matrix for the system. X1 = {X1
1 , · · · , X1

N} is the state probability dis-
tribution of the system when the sampling starts, i.e. at sample instant τ = 1. If
one does not know the initial state probability of the system, the elements in X1 have
to be estimated, for instance by using the system steady state probabilities in (4).
O = {oj(l)} is the observation symbol probability matrix for a system during sam-
pling. Its elements are oj(l) = P (yτ = vl|zτ = j), 1 ≤ j ≤ N, 1 ≤ l ≤ M ,
i.e. oj(l) represents the probability that a sensor will provide the observation sym-
bol vl when sampled, given that the system is in state j. The elements of O will
therefore give an indication of the sensor’s false-positive and false-negative effect on
the security and dependability prediction process. Note that if there are more than
one sensor monitoring a particular system, one should define a separate observation
symbol probability vector Ok for each sensor k.

By using an observation yτ and the HMM Λ, the estimator will compute and re-
place Xτ in (9) with X̂τ

, where X̂τ
is the system’s most likely state probability at

sampling instant τ . This is done by means of Alg. 3. The complexity of the algo-
rithm is O(N2), where N is the number of system states.

Algorithm 3 Estimate the current state probability
IN: yτ ,Λ {an observation at sampling instant τ , the HMM}
OUT: X̂τ {the estimated state probability at sampling instant τ}

if τ = 1 then
for i = 1 to N do

ατ
i ← oi(y1)X1

i

X̂τ
i ←

ατ
iPN

j=1 ατ
j

end for
else

for i = 1 to N do
ατ

i ← oi(yτ )
∑N

j=1 ατ−1
j pji

X̂τ
i ←

ατ
iPN

j=1 ατ
j

end for
end if
return X̂τ

= {X̂τ
1 , . . . , X̂τ

N}

To see why Alg. 3 works, note that, given the first observation y1 at τ = 1, and
the HMM Λ = (P, X1, O), the elements in a new initial state probability X̂1

can be
estimated as

X̂1
i = P (z1 = i|y1,Λ) =

P (y1, z1 = i|Λ)
P (y1|Λ)

=
P (y1|z1 = i,Λ)P (z1 = i|Λ)

P (y1|Λ)
. (11)
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To find the denominator, one can condition on the first visited state and sum over all
possible states

P (y1|Λ) =
N∑

j=1

P (y1|z1 = j, Λ)P (z1 = j|Λ) =
N∑

j=1

oj(y1)X1
j . (12)

Hence, by combining (11) and (12)

X̂1
i =

oi(y1)X1
i∑N

j=1 oj(y1)X1
j

. (13)

To simplify the computation of the estimated state probability at the τ ’t observation
we use the forward-variable ατ

i = P (y1 · · · yτ , zτ = i|Λ), as defined in [13]. By
using recursion, this variable can be calculated in an efficient way as

ατ
i = oi(yτ )

N∑
j=1

ατ−1
j pji, τ > 1. (14)

In the derivation of ατ
i we assumed that yτ depends on zτ only, and that the Markov

property holds. From (11) and (13) we find the initial forward variable

α1
i = oi(y1)X1

i , τ = 1. (15)

Now we can use the forward variable ατ
i to update the estimated state probability

distribution by new observations. This is done by

X̂τ
i = P (zτ = i|y1 · · · yτ ,Λ) =

P (y1 · · · yτ , zτ = i|Λ)
P (y1 · · · yτ |Λ)

=
P (y1 · · · yτ , zτ = i|Λ)∑N

j=1 P (y1 · · · yτ , zτ = j|Λ)
=

ατ
i∑N

j=1 ατ
j

.
(16)

6. Making the System Predictions
The final step in the security and dependability assessment process illustrated in

Fig 3 is that the predictor uses the estimated state probability distribution together
with the state transition rate matrix to compute system measures. This section pro-
vides the algorithms (Alg. 4-5) together with as a detailed explanation of the mathe-
matical equations that are used to compute the PF (t) and MTNF measures.

6.1 Computing P τ
F (t)

Recall the definition of PF (t) provided in (7). To use the estimated state probabil-
ities to compute the function at sample instant τ , Alg. 4 can be used.

As can be seen from the algorithm, at each sampling instant τ there are three main
steps to perform. First, the algorithm sets the initial state probability equal to the
estimated, i.e. X∗(0)← X̂τ

. The X∗(0) vector is then used when solving the system
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Algorithm 4 Predict the P τ
F (t) measures

IN: Q∗, X̂τ {the modified rate matrix, the estimated state prob. at τ}
OUT: P τ

F (t) {the predicted PF (t) at sample τ}
for i = 1 to N do

X∗
i (0)← X̂τ

i
X∗

i (t)← X∗
i (0)exp(Q∗t)

if i ≤ K then
P τ

F (t)+ = X∗
i (t)

end if
end for
return P τ

F (t)

state equation defined in (2), i.e. X∗(t) = X∗(0)exp(Q∗t). To solve the system
state equation, the algorithm uses the Mathematica package ”StateDiagrams.m” [7],
which implements the theory in [4]. Then, in accordance to (7), the P τ

F (t) function
is computed as

P τ
F (t) =

∑
i∈SG

X∗
i (t). (17)

Even though this definition of P τ
F (t) is very similar to the traditional definition of

the system reliability function (see e.g. [6]), there is a crucial difference. As a con-
sequence of the estimation process, we cannot make the usual assumption that the
system state is good when computing (17). Because X̂τ

is used to determine X∗(0)
in step 1 it might be that

∑
i∈SG

X∗
i (0) 6= 1. Hence, to validate the predicted sys-

tem measures, one should also use (17) to compute P τ
F (0) =

∑
i∈SG

X∗
i (0), i.e. the

probability that the system actually is in a good state at sampling instant τ .

6.2 Computing MTNF τ

To compute the mean time to next failure (MTNF ) measure at sampling instant τ ,
Alg. 5 is used.

Algorithm 5 Predict the MTNF τ measures

IN: Q1, X̂τ {(a part of) the rate matrix, the estimated state prob. at τ}
OUT: MTNF τ {the predicted MTNF at sample τ}

for j = 1 to K do
ˆ̂
Xτ

j ←
X̂τ

jPK
j=1 X̂τ

j

define −
∑K

i=1 Tiqij = ˆ̂
Xτ

j
end for
solve for all Ti

return MTNF τ =
∑K

i=1 Ti
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The algorithm has been implemented in accordance to methodology in [4], slightly
modified to fit into the context of the proposed security and dependability assessment
architecture. Suppose the states are ordered, such that SG = {S1, . . . , SK} and
SF = {SK+1, . . . , SN}. Then Q can be written in partitioned form as

Q =
(

Q1 Q2

Q3 Q4

)
, (18)

where the size of Q1 is K×K, the size of Q2 is K×(N−K) and so forth. Now also
the estimated state probability vector can be partitioned as X̂τ

= {X̂τ
G, X̂τ

F }, where
X̂τ

G = {X̂τ
1 , . . . , X̂τ

K} and X̂τ
F = {X̂τ

K+1, . . . , X̂
τ
N}.

To compute the system’s expected time to next failure, one has to assume that the
system is in one of the good states in SG at sampling instant τ (otherwise MTNF =
0, since the system already has failed). Therefore, the estimated state probabilities in
X̂τ

G must be renormalized such that

ˆ̂Xτ
G =

X̂τ
G

X̂τ
GhK

(19)

where hK is a column vector of K ones. Define T = {T1, . . . TK}. By solving

−TQ1 = ˆ̂Xτ
G (20)

the mean time to next failure for the system at the particular instant τ can be computed
as

MTNF τ =
K∑

i=1

Ti, (21)

provided that the system is in any of the good states in SG when sampled. The main
difference between the MTNF τ measure used in this paper and the MTFF (mean
time to first failure) measure used in traditional dependability analysis, is that when
computing MTFF the system is considered new when it starts to deliver its intended
service, i.e. X(0) = {1, 0, . . . , 0}. In contrast, MTNF τ is computed from the esti-
mated state probability rather than the initial system state probability. The advantage
with our approach is that by computing MTNF τ as proposed in (21) one can use the
real-time observations provided by the monitoring architecture to make a better pre-
diction of the system’s expected time to next failure, and update this prediction when-
ever new information arrives. Hence, in contrast to the static MTFF , the MTNF τ

will be a dynamic system measure, more suitable for a real-time system assessment
architecture. However, as previously discussed, since the MTNF τ is conditioned on
a good system state at sampling instant τ (i.e. that zτ ∈ SG) the measure should
always be evaluated together with the corresponding P τ

F (0) to make sense. This will
be illustrated in the case study in the next section.

7. Case Study: A Database Server
To illustrate the proposed approach, we model and simulate the security and de-

pendability assessment process for a typical network service configuration consisting
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of a database service for a local area network (LAN). In this paper we consider a
single server implementation only, however, the example model can easily be ex-
tended to the more commonly used distributed server implementation (see [16] for
an example). Fig. 4 illustrates the database server that is to be assessed in this study.

Workstation

Router

Agent

Database server

HSS

NIDS

Workstation Workstation

Internet

LAN

Figure 4. The database server in its network environment.

In this example, the database server is assumed to be subject to accidental software-
and hardware failures, as well as packet flooding Denial of Service (DoS) attacks
originating from outside the LAN. As can be seen, the database server is monitored
by a distributed agent-sensor system consisting of one agent that samples and inter-
prets information from two different kind of sensors; a network intrusion detection
system (NIDS) and a host-based sensor system (HSS). The NIDS monitors traffic
between the outside network and the internal LAN, and the HSS processes log files
and checks system status locally at the database server.

7.1 The Stochastic Model

The database server can be modeled by a four-state CTMC. State G means that the
server is fully operational, i.e. it is a system ”up” state. In state A the server is subject
to an ongoing DoS attack, which means that its performance is degraded so that the
service is only partially available. Still, the A state is considered a system ”up” state.
If the DoS attack is detected and reacted to before the server crashes, the system will
return to state G. In the ”down” states SF and HF the server is subject to software
and hardware failures, respectively. A hardware failure requires a manual repair. To
recover from a software failure, only a server reboot is needed. Note that since also
the effect of a successful DoS attack is a software failure requiring a reboot, we do
not need to distinguish between accidental and malicious software failure modes in
the stochastic model. Hence, the complete state set is S = {G, A,SF ,HF} whereof
SG = {G, A} and SF = {SF ,HF}, as illustrated in Fig. 5.

The time to failure, attack and repair are assumed to follow the exponential distri-
butions λe−λt, ϕe−ϕt and µe−µt, respectively. The specific rates used in this example
are λS = 0.005, λH = 0.0003, ϕ1 = 0.002, ϕ2 = 60, µA = 15, µS = 0.25 and
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λH
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Figure 5. The state transition diagram for the database server.

µH = 0.04 (h−1). The rate transition matrix for the server is

Qserver =


−(ϕ1 + λS + λH) ϕ1 λS λH

µA −(µA + ϕ2 + λS + λH) ϕ2 + λS λH

µS 0 −(µS + λH) λH

µH 0 0 −µH



=


−0.0073 0.002 0.005 0.0003

15 −75.0053 60.005 0.0003
0.25 0 −0.2503 0.0003
0.04 0 0 −0.04

 .

In this example we chose not to demonstrate how to incorporate attacker behavior
in Qserver, but assume that a game model, Γserver, has already been applied to obtain
the attack probability parts of ϕ1 and ϕ2. The result from the game model affects
the numerical values of the predicted system measures in the final step of the system
assessment model but is otherwise not substantially important for understanding the
functionality of the prediction architecture. The reader is therefore referred to the
previously published paper [15] for a more illustrative case-study on this particular
topic.

7.2 The Monitoring System

As illustrated in Fig. 4, the agent collects and interprets data from both the NIDS
and the HSS. The observations are then forwarded to the estimator (not illustrated in
the figure). In this example the observation symbol set is V = {g, a, sf , hf } where
symbol g is an indication of system state G, symbol a an indication of state A, and
so forth. In this paper we do not focus on how the NIDS and HSS data is interpreted;
we simple assume that the agent is able to map sensor data into symbols representing
states.

The HMM representing this monitoring system is defined by the three-tuple Λ =
(Pserver, X1

server, Oserver). The sampling interval is fixed to ∆ = 15 min. By using (10)
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we compute the one-step transition probability matrix as

Pserver =


pG,G pG,A pG,SF pG,HF

pA,G pA,A pA,SF pA,HF

pSF ,G pSF ,A pSF ,SF pSF ,HF

pHF ,G pHF ,A pHF ,SF pHF ,HF



=


0.998 2.66 · 10−5 1.58 · 10−3 7.46 · 10−5

0.246 6.49 · 10−6 0.754 7.46 · 10−5

0.061 1.53 · 10−6 0.939 7.46 · 10−5

9.94 · 10−3 2.51 · 10−7 7.85 · 10−6 0.990

 .

As the initial sampling state distribution we use the steady state probabilities of the
system

X1
server = {X1

G, X1
A, X1

SF , X1
HF} = {0.967, 2.58 · 10−5, 2.55 · 10−2, 7.44 · 10−3},

found by solving (5)-(6). One can see that the database is very likely to be in state G
when the sampling process starts. The observation symbol probability matrix for the
database server is

Oserver =


oG(g) oG(a) oG(sf ) oG(hf )
oA(g) oA(a) oA(sf ) oA(hf )
oSF (g) oSF (a) oSF (sf ) oSF (hf )
oHF (g) oHF (a) oHF (sf ) oHF (hf )

 =


0.80 0.10 0.06 0.04
0.30 0.55 0.10 0.05
0.08 0.02 0.70 0.20
0.01 0.01 0.10 0.88

 .

Since both oG(sf ), oG(hf ), oA(sf ), oA(hf ) 6= 0 and
oSF (g), oSF (a), oHF (g), oHF (a) 6= 0 in Oserver, one can see that even though the
sensors in this case study have relatively low false-positive and false-negative rates
there is still room for the possibility of misleading observations. Note that we use a
single observation symbol probability matrix to represent the trustworthiness of the
(merged) data from both the NIDS and the HSS sensor. See e.g. [1] for an example
of round robin sampling of sensors, or [5] for an algorithm for optimal selection of
data from multiple sensors.

7.3 Simulation Results

To evaluate the effectiveness of the proposed prediction method, we simulate the
following three different observation sequences

Y1 = (g, g, g, a, g, g, g, g, g, g),
Y2 = (g, g, a, sf , a, sf , sf , g, g, g),
Y3 = (g, g, sf , g, sf , g, hf , hf , hf , hf ).

The purpose of the first simulated sequence (Y1) is to demonstrate how the predic-
tion process reacts to a single ”attack” warning observation (a) that are preceded
and followed by a number of ”good” observations (g). The second simulation (Y2)
demonstrates how the prediction algorithm reacts to alternate a and sf observations.
The third sequence (Y3) simulates a number of software failure observations that are
indicated to be repaired, and finally followed by a protracted hardware failure.
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The P τ
F (t) functions First, we discuss the predicted P τ

F (t) functions. The re-
sults from the three simulations are depicted in Fig. 6.
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(a) Simulating Y1.
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(b) Simulating Y2.
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(c) Simulating Y3.

Figure 6. An overview of the P τ
F (t) graphs from the three simulations. Each subfigure depicts the

predicted PF (t) graphs at the sampling instants τ = 1, . . . , 10.

From Fig. 6(a) it appears that P τ
F (0) is very close to 1 for most samples τ =

1, . . . , 10. Fig. 7 shows a more detailed view of the simulation results from Y1. One
can see that the P τ

F (t) graph is lower for the first sample, i.e. when τ = 1. This is
because, in accordance to X1

server, the server is assumed to be in state G with only
96.7% certainty when the sampling process starts. As the estimator receives more g
symbols, the estimated probability of state G will rise, and hence, the corresponding
P τ

F (t) graph will rise. Note that since the fourth observation y4 = a in the first sim-
ulation, the P 4

F (t) graph will be slightly lower than the subsequent predicted graphs.
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Figure 7. A closer look at the P τ
F (t) graphs when simulating Y1 = (g, g, g, a, g, g, g, g, g, g).

As can be seen from Fig. 6(b) and Fig. 8, P τ
F (t) for the second simulation will be

quite high until the estimator receives the first sf symbol at sampling instant τ = 4.
Even though the next observation (y5 = a) will rise the predicted graph, the next
observation after that (y6 = sf ) will lower it even more. The lowest graph of them
all will appear at sampling instant τ = 7, which is due to the two successive sf
observations. Note that for the same reason P 7

F (0) ≈ 0.55, since the system with a
high probability already has failed.
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Figure 8. A closer look at the P τ
F (t) graphs when simulating Y2 = (g, g, a, sf , a, sf , sf , g, g, g).

The result from the third simulation (Fig. 6(c) and Fig. 9) shows that the alter-
nating g and sf observations will give rise to corresponding P τ

F (t) graphs. As the
agent starts to receive hf (hardware failure) symbols, the predicted P τ

F (t) graphs will
decrease even more. Also P τ

F (0)→ 0 as τ → 10.
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(a) An overview of the predicted graphs.
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(b) A closer look a at the top seven graphs.

Figure 9. A closer look at the P τ
F (t) graphs when simulating

Y3 = (g, g, sf , g, sf , g, hf , hf , hf , hf ).

As indicated in Fig. 6, P τ
F (t) → 0 as t → ∞ for all simulated graphs, i.e. even

though the estimated state during sampling is likely to be good, the system will sooner
of later fail.

The MTNF measures. The predicted MTNF τ measures, together with the
corresponding P τ

F (0)’s, are depicted in Fig. 10. During the first simulation (Y1), the
predicted MTNF measure drops as the a symbol is received (at sampling instant τ =
4), but returns to the same level as more g symbols are received. The corresponding
P τ

F (0) graph indicates that the predicted MTNF measures are reliable (P τ
F (0) ≈ 1),

with an exception for the first sample (P 1
F (0) = 0.998).
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Simulating Y3
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Figure 10. The MTNF measures together with the corresponding P τ
F (0)’s.
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From the second simulation we observe that since y3 = y5 = a, the predicted
MTNF measure will be slightly lower at τ = 3 and τ = 5. Interestingly, MTNF
will rise at τ = 4, τ = 6 and τ = 7, even though y4 = y6 = y7 = sf . The
corresponding P τ

F (0) graph explains this phenomenon; since the graph is lower at
τ = 4, 6, 7 the system may already be in a failed state at these particular sampling
instants.

The results from the third simulation indicates that sf and hf symbols will lower
the predicted MTNF measures. Since the simulated trace ends with four subsequent
hf symbols (at τ = 7, 8, 9, 10), P τ

F (0)→ 0 as τ → 10.

8. Concluding Remarks
This paper presents a framework for integrated security and dependability assess-

ment of computing systems. By using data provided by a monitoring architecture,
the current system state and its future behavior can be predicted in real-time. The
proposed model for computing system measures is based on Markov analysis, where
model parameters are determined by a game theoretic analysis of attacker behavior.
To demonstrate the feasibility of the proposed prediction architecture, we performed
three simulation experiments for a small case study.

The stochastic modeling approach used in this paper relies on a few assumptions.
First, we assume that the security and dependability behavior of the system can be
modeled as a Markov process, which means that the conditional probability distribu-
tion of future states of the process depends only upon the current state. Even though
it is very common to assume these properties when modeling and analyzing systems
in a traditional dependability context (considering accidental failures only), it is not
(yet) a well established practice in the security community. Second, the HMM ap-
proach relies on independent observations, which means that the observations that
a sensor produces depend on the current system state only, and not on any previous
observations. The main drawback of this approach is that, because security indica-
tions and alerts can be highly correlated, the sampling interval must be large enough
so that the observations received by the estimator can be considered independent, for
the model to be valid. Of course the exact lower limit for the sampling interval will
depend on the particular system that are to be assessed, and on the types of sensors
that monitors the system. As an example, for the database server in the case study 15
minutes was suggested as a reasonable sampling interval.

The case study used to demonstrate the approach in Section 7 is kept simple for
illustration. In the future we plan to model and simulate the security and dependabil-
ity assessment process for a more extensive example. A validation by a prototype
system also remains.
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THESIS APPENDIX





Appendix: Scaling the Forward Variables
Recall the definition of the forward variable in PAPER E and F

αt(i) = P (y1 . . . yt, xt = si|λ) =

(
qi(y1)πi, t = 1,

qi(yt)
PN

j=1 αt−1(j)pji, t > 1.
(A.1)

For large observation sequences (t > 100) these probabilities get really small. To keep the computations
within the precision range of the computer, the forward variables need to be scaled. The basic scaling
procedure that has been adopted is to multiply αt(i) by a scaling coefficient that is independent of i

α̂t(i) = Ctαt(i), (A.2)

where Ct =
` PN

i=1 αt(i)
´−1, ∀i. By applying (A.2) one makes sure that the forward variables are

scaled so that they sum to one at any given time t. Even though it is shown in [Rab90] that these scaling
coefficients cancel out during the parameter reestimation procedure, it has not been shown for the state
estimation procedure used in PAPER E and F. Moreover, Rabiner makes use of a backward variable,
which is not defined in the state estimation algorithms at all. The purpose of this appendix is therefore
to clarify the scaling procedure that has to be used when implementing the algorithms in PAPER E and
F.

The Scaling Procedure
To explain how the forward variables are scaled, one can distinguish between the following three

variables

αt(i) the unscaled forward variable,

α̂t(i) the scaled forward variable,
ˆ̂αt(i) the local version of the forward variable before scaling.

The purpose of defining the local (unscaled) ˆ̂αt(i) variable is to facilitate the implementation of the
scaling procedure, while avoiding messing up the notation. The scaling procedure that has been imple-
mented is then

α̂t(i) = ct
ˆ̂αt(i) = (

NX
i=1

ˆ̂αt(i))
−1 ˆ̂αt(i), (A.3)

such that
PN

i=1 α̂t(i) = 1, ∀t. To compute the local forward variable ˆ̂αt(i) one can apply (A.1)
recursively, and then use the local variables to compute the scaled ones.

Initialization at t = 1

ˆ̂α1(i) = qi(y1)πi, (A.4)

α̂1(i) = c1
ˆ̂α1(i) =

ˆ̂α1(i)PN
i=1

ˆ̂α1(i)
. (A.5)

Iteration for t > 1

ˆ̂αt(i) = qi(yt)

NX
j=1

α̂t−1(j)pji, (A.6)

α̂t(i) = ct
ˆ̂αt(i) =

ˆ̂αt(i)PN
i=1

ˆ̂αt(i)
. (A.7)
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Proof of Correctness
It is easy to see that because ˆ̂α1(i) = qi(y1)πi = α1(i), then α̂1(i) will be correctly scaled,

according to (A.2). For t > 1, note that the implemented scaling procedure multiplies each local
variable ˆ̂αt(i) with ct, where ct = (

PN
i=1

ˆ̂αt(i))
−1. Hence, by using (A.6)-(A.7) and re-arranging

terms

α̂t(i) =
ˆ̂αt(i)PN

i=1
ˆ̂αt(i)

=
qi(yt)

PN
j=1 α̂t−1(j)pjiPN

i=1 qi(yt)
PN

j=1 α̂t−1(j)pji

=

PN
j=1 α̂t−1(j)pjiqi(yt)PN

i=1

PN
j=1 α̂t−1(j)pjiqi(yt)

. (A.8)

But since ˆ̂α1(i) = α1(i) one can write

α̂t−i(j) = c1c2 . . . ct−1αt−1(j) =
` t−1Y

τ=1

cτ

´
αt−1(j), (A.9)

which is true by induction. Hence, the scaled forward variable in (A.8) becomes

α̂t(i) =

PN
j=1 α̂t−1(j)pjiqi(yt)PN

i=1

PN
j=1 α̂t−1(j)pjiqi(yt)

=

PN
j=1

` Qt−1
τ=1 cτ

´
αt−1(j)pjiqi(yt)PN

i=1

PN
j=1

` Qt−1
τ=1 cτ

´
αt−1(j)pjiqi(yt)

=

PN
j=1 αt−1(j)pjiqi(yt)PN

i=1

PN
j=1 αt−1(j)pjiqi(yt)

.

(A.10)

Using the original definition of the forward variable in (A.1), the scaled variable in (A.10) can be written
as

α̂t(i) =

PN
j=1 αt−1(j)pjiqi(yt)PN

i=1

PN
j=1 αt−1(j)pjiqi(yt)

=
αt(i)PN

i=1 αt(i)
, (A.11)

and one can see that the scaled parameter α̂t(i) satisfies the desired property (A.2)
with Ct =

` PN
i=1 αt(i)

´−1.

Implementation Issues
Recall how the estimated state probability distribution is computed in PAPER E and F

γt(i) =
αt(i)PN

j=1 αt(j)
. (A.12)

By looking closer at (A.11) and (A.12), it turns out that

γt(i) = α̂t(i), (A.13)

i.e., the scaled forward variable at time t is in fact equal the estimated state probability at time t, in the
proposed model in PAPER E and F.
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[ÅSHK06] André Årnes, Karin Sallhammar, Kjetil Haslum, and Svein Johan Knapskog. Real-time
Risk Assessment with Network Sensors and Hidden Markov Models. In Proceedings
of the 11th Nordic Workshop on Secure IT-Systems (Nordsec2006), Oct 2006.
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