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Abstract

Network and system management has always been of concern for telecommuni-
cation and computer system operators. The need for standardization was recognised
already 20 years ago, hence several standards for network management exist today.
However, the ever-increasing number of units connected to networks and the ever-
increasing number of services being provided results in significant increased com-
plexity of average network environments. This challenges current management sys-
tems. In addition to the general increase in complexity the trend among network own-
ers and operators of merging several single service networks into larger, heterogenous
and complex full service networks challenges current management systems even fur-
ther. The full service networks will require management systems more powerful than
what is possible to realize basing systems purely on todays management standards.
This thesis presents a distributed stochastic optimization algorithm which enables im-
plementations of highly robust and efficient management tools. These tools may be
integrated into management systems and potentially make the systems more powerful
and better prepared for management of full service networks.

Emergent behavior is common in nature and easily observable in colonies of social
insects and animals. Even an old oak tree can be viewed as an emergent system with
its collection of interacting cells. Characteristic for any emergent system is how
the overall behavior of the system emerge from many relatively simple, restricted
behaviors interacting, e.g. a thousand ants building a trail, a flock of birds flying south
or millions of cells making a tree grow. No centralized control exist, i.e. no single
unit is in charge making global decisions. Despite distributed control, high work
redundancy and stochastic behavior components, emergent systems tend to be very
efficient problem solvers. In fact emergent systems tend to be both efficient, adaptive
and robust which are three properties indeed desirable for a network management
system. The algorithm presented in this thesis relates to a class of emergent behavior
based systems known asswarm intelligencesystems, i.e. the algorithm is potentially
efficient, adaptive and robust.

On the contrary to other related swarm intelligence algorithms, the algorithm pre-
sented has a thorough formal foundation. This enables a better understanding of the
algorithm’s potentials and limitations, and hence enables better adaptation of the al-
gorithm to new problem areas without loss of efficiency, adaptability or robustness.
The formal foundations are based on work by Reuven Rubinstein on cross entropy
driven optimization. The transition from Ruinstein’s centralized and synchronous al-
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gorithm to a distributed and asynchronous algorithm is described, and the distributed
algorithm’s ability to solve complex problems (NP-complete) efficiently is demon-
strated.

Four examples of how the distributed algorithm may be applied in a network man-
agement context are presented. A system for finding near optimal patterns of pri-
mary/backup paths together with a system for finding cyclic protection paths in mesh
networks demonstrate the algorithm’s ability to act as a tool helping management
system to ensure quality of service. The algorithm’s potential as a management pol-
icy implementation mechanism is also demonstrated. The algorithm’s adaptability is
shown to enable resolution of policy conflicts in a soft manner causing as little loss
as possible. Finally, the algorithm’s ability to find near optimal paths (i.e. sequences)
of resources in networks of large scale is demonstrated.

Keywords Network management, emergent behavior, emergent systems, swarm in-
telligence, mobile agents, multi-criteria optimization, cross entropy, rare events,
routing, protection switching, policy management, policy conflicts, network
resource location, large scale swarm intelligence.



Preface

During the last decade users of electronic equipment has learned to appreciated the
advantages gained by interconnecting electronic equipment and enabling transport of
digitized information between them. The introduction of hyper-link documents with
universal resource links (HTML) enabled the emergence of the World-Wide-Web
and made computer-to-computer communication interesting for the average com-
puter user, which again triggered a demand for connecting personal computers to the
internet. Agreements on second generation mobile phone standards like GSM en-
abled equipment manufactures to produce cheap, powerful and user friendly mobile
handsets which again has lead to mobile communication being an everyday activity
for many people.

As more and more valuable information (as well as huge amounts of less valuable
information) is published using the new electronic channels, the desire for users to
always be “online” is increasing steadily. Even for the more conservative people,
who wish to hold on to the traditional information channels, the overall acceptance
of email and SMS messaging by friends, relatives and colleagues force them to obtain
an email alias and buy a mobile phone, or else vital information exchanges may not
take place.

De-regulation in the telecommunication market place in many countries has in-
creased the total number of telecommunication service providers and network oper-
ators. Similar services are provided by many provides, but service limitations may
exist depending on the networks the communicating parties access and hence which
operators are involved.

So far users themselves have been forced to keep track of similarities and dif-
ferences in functionality, price and quality of the services offered in the “jungle of
telecommunications”. But times are changing. Many operators have realised that
restructuring, integration and optimization of their networks could enable them to
present a far more user friendly and attractive overall service offer. In addition higher
overall utilization of network resources could be achieved and hence a better revenue
experienced.

Automated network management has always been of interest to operators, first
of all to enable cost efficient monitoring and execution of basic management oper-
ations, e.g. adding new subscribers, adding new links, upgrading switch software
etc. Restructuring, integration and optimization of todays networks will increase net-
work complexity significantly, thus automation will become essential for operators to
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keep minimum control over their networks. Traditional network management tech-
nologies and standards developed during the last decade can still handle minimum
management of most installations but will soon have to be supplemented (or even
replace) by more flexible and powerful management technologies.

The Network Management Project
Late professor Tore Riksaasen at the Department of Telematics of the Norwegian

University of Science and Technology was well aware of the trends described above
already 10 years ago. He manage after several years of interaction with industry
partners in Norway and the Norwegian Research Council to initiate a research project
known as the “Network Management Project”. Very unfortunately Tore Riksaasen
was hospitalized due to a lethal illness just after his project started. As one out of three
PhD student given grants from the Network Management project and hence given the
opportunely to learn the art of research, I already here given my sincere thanks to
Tore Riksaasen for his project initiative and for the help and clues he managed to
give me during my first years as a PhD student despite his weak physical condition.

Mobile Agents

Among several other topics, Tore Riksaasen listedagent technologyas one poten-
tially important concept for future network management. The termagenthas many
meanings and interpretations, but the instant mood triggered in me and all other fans
of Ian Fleming and his stories, has an ooze of novelty, stealth, justice and action. And
we all known that if double-O-seven him self would have been given the challenges
of future network management as his next assignment, there is hardly any doubt that
we would all soon be communicating in ways we never even dared imagine could be
possible.

However since 007 still after 40 years is very busy ensuring justice and entertain-
ing those beautiful women, synthetic agents seem to be the only option. But what
kind of synthetic agents? I soon discovered that synthetic agents could be anything
from physical robots to simple information objects in a software system. Probably
inspired by agent 007’s impressive athletic abilities I ended up looking at something
in between, the concept known asmobile software agents.

So, what is really a mobile software agent? Unfortunately no formal definition
exist, but a few capabilities are essential

Autonomity, i.e. a mobile software agent is an encapsulated piece of software con-
taining sufficient code describing its behavior and sufficient data-structures de-
scribing its state to be (relatively) independent of other software components.

Mobility, i.e. an mobile software agent is able to somehow wrap it self up, move it
self to a new location, unwrap and continue execution.

Communication, i.e. a mobile software agent is able to communicate with other
software agents and/or other units in the environment.
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For anyone who have experienced the inconvenience of having your personal com-
puter infected by a computer virus, the above list might sound familiar. A computer
virus is a good example of a mobile software agent, typical with a malicious behav-
ior. A well designed virus operates in a distributed fashion by moving copies of itself
to as many hosts as possible. It adapts to its host environment and is difficult to get
rid of, properties to be recognised from agent 007’s evil minded opponents and in-
deed from 007 him self. So, why not adopt the strategies of Mr Bond, and approach
the problematic areas of future network management with a potentially distributed,
adaptive and robust technology?

Emergent Behavior

Researchers working with mobile agent technology can be divided in two main
groups;architectureandapplicationdevelopers. During the last decade a lot of ef-
fort has been put into developing system architectures, platforms, APIs (application
programming interfaces), development languages and other tools required and/or be-
lieved convenient when developing applications based on mobile software agents, i.e.
the architecture developers have been busy. Unfortunately the other group, the appli-
cation developers, seem to struggle. So far only a limited number of mobile agent
based applications have been developed, and only a few of those again can be said to
depend upon the mobile software agent concept. That is, so far most mobile agent
based applications can be implemented with success using other more traditional de-
velopment concepts. However there seem to be one area of computer science which
may benefit from the use of mobile agents: System development based onemergent
behavior.

When the resulting behavior from a composition of several basic behaviors is more
powerful than the sum of the basic behaviors, the resulting behavior is calledemer-
gent. For instance, a single ant would not be able to build a proper nest. One ant can
find appropriate material for nest building but will not be able to collect and organize
sufficient material to build anything resembling an ant hill. However, a thousand ants
can indeed build and operate a nest, even when environmental conditions are unpre-
dictable, i.e. a predator suddenly eats 100 ants, weather conditions destroy parts of
the nest structures etc. The basic behavior of an ant is the same in both cases. Hence
the behavior required to manage proper nets buildingemergefrom many simple nest-
building-incapable behaviors.

As in ant colonies, emergent behavior is observable in colonies of termites, bees
and many other social insects and animals. In other words, emergent behavior is a
powerful concept implemented frequently in natural systems. And it is agreeable
that social insects and animals indeed have similar capabilities to mobile software
agents (and of course many other capabilities). Thus application development based
on emergent behavior using mobile software agents seems to have at least some po-
tential.

The awareness among researchers of the potential power of applying emergent be-
havior in computer and telecommunication systems has increased significantly over
the last few years, and today research groups and projects (e.g. IRIDIA in Brussels,
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BISON in Bologna) strive to understand what building blocks (basic agent behaviors
and agent interaction patterns) are required to realize specific emergent behaviors.
This thesis presents results from such emergent behavior research. Part of the work
considers development of formal foundations, but a strong application focus is al-
ways kept with network management applications in mind. In more informal terms,
this thesis contributes to the art of developing squads of simple synthetic software
agents in the hope that they to some degree, assisted by emergent behavior, can act
as a substitute for highly intelligent agent 007, or Bond ... James Bond.
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Introduction

The main part, Part II, of the thesis is a collection of papers published at different
scientific conferences and workshops. The first part, this introduction, is intended to
give the reader an overview of the material presented in the papers in Part II.

Section 1 of the introduction presents background information giving the context
for topics presented in the papers. Three main areas are discussed; the growth in
telecommunication network complexity and hence growth in network management
complexity, emergent systems and their properties, and how emergent systems may
contribute to network management of complex networks. Related work to the re-
search presented in the papers is also introduced.

Section 2 presents the overall research focus of the thesis. Essential differences
between work in the papers and other related work in the area of emergent systems
are explained.

Section 4 outlines how the papers relates to each other. A map indicating overlap-
ping sections in the papers is presented. The map is intended as an aid to minimize
redundant reading.

Section 5 presents an abstract of each paper pointing out the main contributions.
Section 6 discusses implementation issues. Section 7 summarizes and concludes, and
finally Section 8 presents future work.

1. Background
Network and system management has always been of concern for telecommuni-

cation and computer system operators. The need for standardization was recognised
already 20 years ago, and the foundations for todays two leading network manage-
ment standards, theSimple Network Management Protocol(SNMP) [CFSD90] and
Telecommunication Management Network(TMN) [ITU00] were developed in the
early 90s. SNMP was intended to be simple and easy to apply which has been the
reason for its success and wide acceptance, but also limits its use. SNMP is most
commonly applied as a tool for monitoring. TMN was designed to manage complex
telecommunication networks, potentially all types of future networks. Even though
TMN’s expressive power is strong due to its OSI Management foundation, installa-
tion and operation is not at all simple. TMN relies on a complex software stack, and
may require significant processing resources.
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Both SNMP and TMN are emerging standards. SNMP version 3 [CMPS90] is now
available and provides solutions to several of the weaknesses of earlier versions. Gen-
eral increase in processing power and storage capabilities in new network equipment
has made the process of TMN-enabling equipment less complicated. New alternative
management standards are also appearing. Two of the most promising ones are the
Java Management Extension(JMX) [McM00] and Web-Based Enterprise Manage-
ment(WBEM) [DMTF03] (see [HAN99][MFZ00] for surveys and appendix D for
details on distributed properties).

Several management protocols accompany SNMP, TMN, JMX and WBEM. For
system management in general, policy driven management [Slo94b] is an option.
Several policy related protocols and languages exist (e.g. COPS, Ponder [DBC+00,
DDLS01]). For routing and resource management in IP networks a range of standard-
ized protocols exist, e.g. RIP, OSPF, BGP, Diffserv, IntServ, RSVP, ICMP [PD00].
For telecommunication networks, routing and resource management are typically
handled by SS7 [ITU93]. Note that routing management and to some degree re-
source management nowadays often are considered to be parts of a network’s control
layer, i.e. separate from the networks management system. In this thesis however,
separating control and management is regarded not to improve readability (rather
lessen it), and hence both control and management functionality are viewed as parts
of a network’s overall management system.

Even though the management standards with their accompanied protocols together
can provide powerful management systems, the general growth of computer system
and telecommunication network complexity as well as the trends among operators of
merging single service networks into full service networks present severe challenges.
The next subsection takes a closer look at this complexity growth. Further enhance-
ment of the management standards and their accompanied protocols will be necessary
for them to efficiently manage the upcoming complex full service networks. The two
last subsections presentemergent behavioras a potential mechanism in this context.

1.1 Network Management and Network Complexity

Since Moore’s law for the increase in computing power [Moo65] is still valid and
can be expected to be valid for several years to come, computer controlled units in
general will soon possess enough computing resources to provide everything from
multimedia services to core router functionality. Most of these units will be con-
nected to a network. Assuming that the majority of these units will provide several
services as well as access several services provided by other similar units, the overall
complexity of a future computer and telecommunication network will become even
more devastating than networks existent today. Awareness of this fact has inspired
computer and telecommunication companies and research institutes to look for new
network and system management approaches able to handle very high system com-
plexity. IBM’s Autonomic Computinginitiative [KZS+01, Res03] and theBISON
project [BCG+03] are examples.

Adding to the above described trend of complexity growth and general need for
new management approaches is another trend:Mergence of networks. Network oper-
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Figure 1. Enterprise viewpoint of a set ofsingle service networks.

ators are restructuring and merging their computer and telecommunication networks
into large integrated systems, and by this expecting to increase utilization of resources
and improve their ability to adapt their networks to upcoming customer needs. Such
network mergences are likely to result in an overall leap up in system complexity,
and potentially a sudden need for new management solutions. The rest of this section
looks into this specific trend in more detail.

Nowadays most telecommunication network operators own, build and managed
what is know assingle service networks. Figure 1 depicts an enterprise viewpoint of
a set of single service networks.

An access network technology together with an appropriate transport network is
managed and operated as an independent network. Only a single basic services is
offered by the network. Variations of the service may be provided, however the basic
underlying service is the same, e.g. PSTN voice communication service with added
faximile functionality, or mobile voice service with an enhanced signalling channel
able to transfere short text messages. If a user requires a wider range of services than
a single service network can provide, the user must register independent subscriptions
with each relevant network operator.

Each single service network has its own network management system. Even
though a very limited number of services are provided, the number of subscribers
may be large and the overall structure of the network may be complex. Hence, the
management system must cope with many complex problems within fault, configura-
tion, accounting, performance and security management, i.e. the FCAPS functional
areas defined in TMN. When the scale of a network increases the overall management
complexifies significantly.

However, modelling the network and predicting overall user behavior with reason-
able accuracy is possible since only one basic service is provided and new service
variations are rarely introduced. A relatively static environment and accurate behav-
ior models open for efficient collection of statistics, off-line system analysis and the
use of powerful centralized optimization tools to assist operators in making network
management decisions. Customer management is also relatively simple, again, due
to the limited number of services provided.

A major disadvantage of single service networks is their lack of ability to support
new innovative services. Introducing a new service very different from the existing
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basic service without degrading overall QoS, typically requires establishing a com-
pletely new single service network including a user access technology and transport
network resources (i.e. a new eliptic section in Figure 1). Hence new services can be
expensive and time consuming to realize.

To simply avoid introducing new innovative services is not a good option for an
operator. If a service is desired by a group of user, the users tend to find a way to real-
ize the service by combining and/or exploiting existing services, (e.g. realize internet
access by connecting a modem to a fixed cost PSTN voice service, dial up an ISP
and keep the connection up permanently). Such exploitation often results in new us-
age patterns of network resources which, again, may invalidate user behavior models
founding the management strategies applied by the operator. Network management
may become difficult, inefficient and expensive.

To enable fast and less expensive introduction of new services, many operators
have initiated the process of merging their single service networks into what is known
as afull service network. Figure 2 presents an enterprise viewpoint of a full service
network where services no longer depend on one specific network technology. A
horizontal merging layer is introduced between the network technologies and the ser-
vice logic. The layer presents a generic communication interface to all services, thus
enables fast deployment and removal of services. Introducing new network technolo-
gies below the layer should also be simpler and potentially more cost efficient since
a large number of services may start utilizing the technology immediately after it
becomes operative. Finally, costumer management can be improved. A user should
no longer need to register a subscription for each new service accessed. A single
subscription can enable access to a range of services.

However, merging many independent single service networks into one full service
network is not riskless. Choosing a suitable merging technology is only the first chal-
lenge. Today there is a common belief among operators that IP (i.e. the internet
protocol and its related protocols) is the best choice. Figure 3 shows the classical
hourglass model of the internet protocol stack and how it may act as a merging tech-
nology.

The second challenge is network management in general. Even if all network
elements in the networks to be merged happen to provide the same management
interfaces, e.g. SNMP or TMN, the overall complexity of the new merged full ser-
vice network is not to be underestimated. Some management routines may be ratio-
nalized due to similar needs from similar network technologies, but optimizing the
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overall network configuration is likely to become an even greater challenge than op-
timizing configurations of todays single service networks. Frequent reconfiguration
of services (deployment and removal) and frequent changes in subscription profiles
and hence changes in user behavior, make overall system modelling and analysis ex-
tremely difficult if not impossible. Old models and statistical material may no longer
be of much value. High traffic rates and complex mixes of traffic classes and flow
patterns will make accurate monitoring difficult.

Improvements and extension of todays network management standards and sys-
tems are essential for operators both to manage the general growth of system com-
plexity and to gain necessary control over their future full service networks. One
such potential extension isemergent behaviorbased management implements.

This thesis contributes to the design process of emergent behavior base manage-
ment implements, or more specificallyswarm intelligencebased management imple-
ments suitable for fault management, configuration management and to some degree
traffic management.Swarm intelligencesystems are typical emergent behavior based
systems (see Section 1.2).

1.2 Emergent Behavior for Complex Problems

There is no precise definition ofemergent behavior, but it is generally understood
to be the resulting overall behavior generated by many simple behaviors interacting
in some way.Simple behaviorshould be interpreted as a behavior with no true aware-
ness of the overall emergent behavior it is part of. Hence emergent behavior is not
easily deductable from descriptions of the simple behaviors generating it.

Taken from [Weg98] a more formal description of emergent behavior is

behavior(O1 | O2) = behavior(O1)+behavior(O2)+interaction(O1, O2) (1)
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whereO1 andO2 are simple behaviors relative to the emergent behaviorbehavior(O1 |
O2). Hencebehavior(O1 | O2) is greater than just the sum of its sub-behaviors.
“New” behavior emerges from interactions between components of simple behaviors.

Emergent behavior may be viewed as a side effect generated by the sum of simple
behaviors. An example is a card game. Each player in a card game implements a
behavior governed by the rules of the specific game. These behaviors and interactions
between the behaviors (players exchanging cards) generate an emergent behavior
which results in a side effect. The cards are sorted in some specific order. This side
effect is usually undesirable, thus the cards are shuffled between every game played.

Many systems observable in nature may be viewed and described as games, e.g.
“game of life” [Con70]. However, the number of participants in such natural games is
typically several orders of magnitude larger than those in games invented and played
by humans. In biological systems every cell in an organism may be viewed as a
participant. Billions of cells play a game of survival which have the side effect of
producing a plant, an animal or a human being, i.e. advanced living organisms in
nature are emergent behaviors resulting from simple behaviors of a range of simple
organisms interacting with each other.

As (1) indicates, emergent behavior is constructed by “gluing” simpler behav-
iors together with interactions as the gluing mechanism. Hence emergence can also
be viewed as a method of construction. In engineering however, emergence has so
far to a very limited extent been applied for construction. Hierarchical procedural
composition has for centuries been the first choice when constructing, and hence
is today widely used and well understood. Hierarchical procedural composition of
complex systems commonly involve a top-down designed process using a hierar-
chy of abstraction levels. Real time software engineering using SDL is an example
[ByH93, ITU02]. The top or upper abstraction level describes the whole system by
a set of components from the second-upper abstraction level. Each component of the
second-upper layer is again described by components from the third-upper layer and
so on.

Emergence has no top-down design process, but rather a bottom-up way of con-
structing what is required to manage complexity. In [Weg98] construction based
on emergence is shown to exceed what is possible to achieve using traditional hi-
erarchical procedural composition. Researches from many communities (chemistry,
physics, biology) has been aware of the construction power emergence exhibits, and
especially biologists since emergence is indeed the most commonly applied construc-
tion method in biology. In [Ste90] hierarchical and emergent construction principles
are compared, and early theoretical work on emergent functionality is presented. Fur-
ther theoretical work on emergence can be found in [Cru94b, Cru94a]. An overall
historical outline of research on emergence is presented in [Dam00] including refer-
ences to more theoretical work. For a less theoretical but still general introduction to
emergent systems, [Joh01] is recommended.

As mentioned in the preface of this thesis, social animals living in swarms are
typical natural systems where emergent behavior is vital and ensures survival. In
[PD87] Pasteels and Deneubourg present several examples of activities observed in
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ant colonies where emergent behavior generates solutions to problems (e.g. finding
food and transporting food to the nest) in a stable and efficient manner. Ant colonies
are good examples of systems in nature which have been in existence for millions of
years much due to the properties most systems of emergent behavior possess. Three
dominating properties are:

Adaptiveness The simple behaviors, from which emergent behavior emerges, all
implement mechanisms to handle unexpected responses from interactions with
the environment. Such mechanisms often include a stochastic component, i.e.
by a random choice a response is handle in one out of a set of possible ways.
An example is when a ant reaches the end of an ant trail without finding any-
thing of interest. Instead of halting completely or just turning back along the
trail, the ant chooses a random direction away from the trail in hope of finding
something of interest.

RobustnessThree properties of emergent systems ensure great system robustness.
Firstly, as already explained in the previous pin,adaptivenessavoids system
breakdown when the environment changes. Secondly,weak inter-component
dependenciesreduces the probability of system breakdown due to individual
component failures. The lack of synchronized hierarchical control implies no
single central control component, thus distributed control weakens dependen-
cies between system components. Use of asynchronous indirect communica-
tion (by changing the environment) is common in emergent systems. This type
of interaction adds to the reduction of inter-component dependencies. And
finally, redundancyreduces the probability of system breakdown due to indi-
vidual component failures even further. Many system components have simi-
lar/overlapping behaviors. Communication by changing the environment gen-
erates distributed and redundant system memory.
Again an ant colony is a good example. No single ant controls the overall be-
havior of the colony (e.g the queen controls only the production of new ants,
[Joh01]), many ants perform similar operations and can replace each other
(even the queen is replaceable), and pheromones (chemical substances) are
placed along ant trails to exchange information between ants passing along the
trail.

Efficiency When encountered with complex problems emergent systems tend to find
near optimal solutions with great efficiency. Complex problems should be in-
terpreted as problems having a large solution space with no obvious structure
that may be exploited to find good solutions, e.g. problems of the classes NP
hard and NP complete. Reasons for this efficiency can be traced to the inter-
play of positive and negative feedback mechanisms and the stochastic (adap-
tive) mechanisms already mentioned. For instance, should the random walking
ant from above happen to discover a fresh banana, it will encourage other ants
to search towards the banana by placement of specific pheromones (positive
feedback), and over time an ant trail will develop. The trail will eventually
follow a near optimal route from the nest to the banana. When the banana
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looses its freshness the specific pheromone will no longer be placed (negative
feedback) and the ant trail will vanish or be rerouted to a better food source.
Overall, the emergent foraging behavior manages to maintain a near optimal
network topology of trails leading to the best food sources in the surrounding
environment.

Adaptiveness, robustness and efficiency are indeed properties any engineer would
like a well designed system to possess. Hence, especially during the last decade,
there have been many attempts to engineer systems based on emergent behavior.
A community of researchers have been designing systems solving specific complex
problems by making them mimic the behavior of social animals. Such systems are
denotedswarm intelligencesystems by Bonabeau et al in [BDT99]. A typical swarm
intelligence system consists of a high number of autonomous agents. Note that an
autonomous agent in a swarm intelligence context have little resemblence to a tradi-
tional agent in a network management system. Autonomous agents are selfcontained
software and/or hardware objects which depend only to a limited extent on other ob-
jects in their environment. Autonomous agents in a swarm intelligence context do
not represent a specific system component (or a set of components) as is typical for a
traditional agent in a network management system.

Autonomous swarm agents have simple behaviors strongly influenced by random-
ness. They search individually for solutions (or subsolutions) to a problem. When
a solution is found by an agent, the agent communicates information about the so-
lution (location, quality etc.) to the other agents using indirect communication by
leaving messages in the environment. This behavior is iterated, i.e. an agent restarts
searching after a solution is found. During search, agents pick up messages left by
other agents. A message picked up and read by an agent, will influence how the
agent continues its search. No or little information found in messages implies ran-
domness in the search behavior (exploration). Messages giving clear indications of
quality solutions within an area of the search space implies search focus in that area
(exploitation). Hence randomness, postive feedback and negative feedback applied
in iterations guide the overall search process in a swarm intelligence system towards
high quality solutions.

Returning to the card game example from above, which illustrates how emergent
behavior appears as a side effect of interactions between simpler restricted behaviors,
a question arises:Can true emergent behavior be designed? A side effect is generally
understood to be something unpredicted. Designing, hence predicting, side effects
would be a contradiction in terms. However, further philosophical elaboration around
this question is left to the reader. Systems designed with emergence in mind are
in this thesis considered to be emergent systems as long as they posses the above
mentioned properties, i.e. the possession of the properties are considered sufficient
gain in overall behavior to argue for the existence of (designed) emergent behavior.
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1.3 Swarm Intelligence in Network Management

As already mentioned, systems based of emergent behavior are capable of finding
near optimal solutions to complex problems. Many of these complex problems may
be formulated as optimization problems, e.g. maintaining an optimal trail topology
around an ant hill. A range of these problems relates strongly to classical combinato-
rial optimization problems, e.g. minimum spanning tree, travelling salesman, sorting
and graph partitioning (see e.g. [GJ79] for a list of classical NP-complete problems).
In [BDT99] a series of biological systems are studied, modelled and eventually used
to developswarm intelligencealgorithms and multi agent systems for solving several
classical optimization problems.

Many challenges within management of computer and telecommunication net-
works can be formulated as optimization problems. Optimizing the utilization of net-
work resources is one area which has kept researchers busy for decades. Another area
is optimal configuration and use of management functions in network management
systems. Presenting a comprehensive list of all optimization problems under investi-
gation within the area of computer and telecommunication networks is difficult and
out of scope for this thesis, however readers may refer to for instance [Sin99, ALB02]
and their citations to get an impression of the variety of such problems.

Most methods developed for solving optimization problems within telecommu-
nications are based on traditional linear, non-linear and integer programming tech-
niques [Wil93]. However, during the last decade the interest for nature inspired op-
timization methods has increased significantly. One such class of methods is known
as evolutionary programs [Mic96] and is founded in Darwin’s theories of evolution
[Dar95]. A summary of work on evolutionary programs for optimization in telecom-
munications is presented in [Sin99].

Another class of nature inspired optimization methods isswarm intelligencebased
systems. The interest for, and hence the number of publications of, swarm intelli-
gence based optimization methods solving problems within telecommunications are
growing. Figure 4 shows a graph of relevant publications and how they relate to each
other. Note that Figure 4 does not show all publications describing swarm intelli-
gence and emergent behavior based systems, but only pioneering publications and
key publications with direct focus on problem solving within telecommunications
and network management. As indicated in Figure 4, four key pioneering publications
have been the source of inspiration for many authors.

Steward and Appleby’s work from 1994 [SA94] proposed the idea of creating man-
agement systems for routing and load balancing in telecommunications network by
mimicking the behavior of insects. Colorni et al [CDM91] already in 1991 presented
a combinatorial optimization algorithm inspired by ants and their foraging behavior.
Steward and Appleby and Colorni et al’s publications have inspired further research
on both distributed and centralized systems for network management all based on
swarm intelligence.

Wolpert et al [WTF99] presented in 1999 theoretical work and simulation results
for systems denoted COllective INtelligences (COINs). Global near optimal behavior
emerges in a COIN when individual agents (denoted neurons) learn their behavior by
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individual reinforcement learning algorithms based on given utility functions, i.e. no
centralized control is involved.

Finally, Rubinstein’s work on cross-entropy driven combinatorial optimization
[Rub99] presented in 1999 represents the foundation for the research presented in
this thesis. Rubinstein’s work, and hence research in this thesis, is based on rare
event theory and importance sampling.

On the contrary to Steward and Appleby and Colorni et al who based their work
on models derived empirically from natural systems, Wolpert et al and Rubinstein
founds their work in mathematical theories. Similarities and differences between
these two categories of approaches are further discusses in the next section.

2. Thesis Research Focus
The overall research focus of this thesis is, as already indicated, to contribute to the

development of methods and algorithms which may enhance todays network manage-
ment systems and enable them to manage complex networks of the future. Among
many potential problem solving techniques, emergent behavior based problem solv-
ing has been chosen much due to the valuable properties of emergent systems de-
scribed in Section 1.2.

The recent increase of interest in the problem solving power of emergent sys-
tems attests the significance of the focus chosen in this thesis. Recall the two ex-
amples mentioned in Section 1.1, i.e. theAutonomic Computinginitiative [KZS+01,
Res03] and theBISON project [BCG+03]. IBM announced a major research ini-
tiative denotedAutonomic Computingin March 2001 which aims at providing more
autonomous computer components which again can enable robust and self-managing
systems, i.e. systems where self-management emerge from the interactions between
autonomous components. In January 2003 a project titledBiology-Inspired tech-
niques for Self-Organization in dynamic Networks(BISON) kicked off. BISON is
funded by the Future & Emerging Technologies initiative of the Information Society
Technologies Programme of the European Commission, and strives to increase gen-
eral understanding of emergent systems as well as how specific emergent systems in
the computer and telecommunication domain may be constructed.

As already indicated in the previous section, approaches for designing emergent
behavior based management systems may be divided into two categories

System design based on models empirically derived from natural systems

System design based on models with well understood mathematical founda-
tions

This thesis focuses on an approach from the second category. The next sections
describe the two categories in more detail.
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2.1 Empirical Construction of Behavior Models

One way of constructing the desired simple behaviors of an emergent system is to
mimic existing behaviors found in nature by observation, trail and error. This process
may be described in four steps:

1 Find a similar problem in both environments (network management and na-
ture), e.g. problems of routing or sorting.

2 Observe and accept that the natural systems problem solving abilities are stable
and efficient, i.e. verify that the three valuable emergent behavior properties
from Section 1.2 exist.

3 Create a model, by trail and error, mimicking (as closely as possible) the natu-
ral system, and then formalize the model.

4 Tailor the formal model by empirical means (e.g. introduce heuristics) to han-
dle the exact management problem in question.

Work inheriting ideas from Steward and Appleby’s pioneer publication [SA94] (the
left most branch in Figure 4) and ideas from Colorni et al’s publication [CDM91]
(second left most branch) is in general based on empirical construction of emergent
behavior.

The construction process has one significant advantages. Ethologists have devel-
oped and formalized models for many natural behaviors, i.e. a behavior library exists
which simplifies work in step 1-3 above. However, the heuristics involved in the ap-
proach and the lack of formal foundations may limit the understanding of the core
mechanisms in the model, which again can make further development of the model
difficult. Lack of formal foundations may also exclude some application areas, since
formal proof of operation is difficult. The heuristics in the approach often lead to not
well understood parameters requiring configuration, and a trail and error process is
usually the only option for deciding reasonable parameter settings.

Several researchers work on developing a better understood formal foundation for
emergent behavior systems realized by the empirical process described above. See
for instance [ZBMD00, BCD02].

2.2 Formal Founding of Behavior Models

An alternative approach to empirical construction of behavior models, is to ensure
a formal foundation from the very start of the construction process:

1 Find a similar problem in both environments (network management and na-
ture), e.g. problems of routing or sorting.

2 Find a formally founded method for solving the problem with proofs of opera-
tion (convergence, efficiency and stability).

3 By re-formulations produce a model resembling the natural behavior.
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The same advantage as for empirical construction applies. Models developed by
ethologists may be used as starting points. However, several new challenges in
the construction process are introduced. Finding an appropriate formally founded
method may be difficult. If found, reformulating the method may still be difficult,
and may alter properties of the original method (e.g. reduce efficiency, stability).
Even if difficult, these challenges are manageable. Work presented in this thesis il-
lustrates this.

Among the immediate advantages of ensuring a formal foundation is first of all a
better awareness of core mechanisms and model limitations. Better awareness can
again make loss of efficiency avoidable when tailoring the model to solve specific
problems. Fewer system parameters and a better understanding of the parameters is
also to be expected, and hence better control of configuration.

Work inheriting ideas from Rubinstein’s publication [Rub99] shown in Figure 4
can be claimed to follow the above described process of construction by initial formal
founding. Work in this thesis inherits ideas from Rubinstein, and it follows the above
described process however not in a strict manner. Some approximations are made
and some parameters are set by heuristic means.

Wolpert et al’s work [WTF99, TW99] also presents thorough formal foundations,
but can not be claimed to follow the above process. Wolpert et al choose a more gen-
eral approach with utility functions in focus and do not explicitly aim for mimicking
behaviors of natural systems.

3. Thesis Research Methology
As mentioned in the previous section the overall design approach for the algo-

rithm described in this thesis focuses on ensuring a formal foundation and keeping
algorithm extensions within limits implied by the foundations. To make sure the ap-
proach is followed and sound research results are generated, work presented in each
of the included papers follow a traditional research methology.

Work hypotheses Each paper presents a unique research contribution. The contri-
bution has its source in an initial idea, i.e. a hypotheses. The introduction
and first sections of each included paper presents such ideas and relevant back-
ground information.

Hypotheses testingRelevant test cases are constructed to investigate the value of a
research idea.Monte Carlo simulationshave be chosen as the method of inves-
tigation in all papers. There is a combined reason why simulations have been
chosen and why analysis only have been applied to a limited extent. Firstly,
since the algorithm is constructed for solving complex problems, complex test
scenarios must be constructed to test performance properly, i.e. a typical sce-
nario involves NP-hard complexity. NP-hard complexity in general makes
analysis difficult. Secondly, the stochastic behavior components in the algo-
rithm together with its distributed construction, disqualify all (to the authors
knowledge) relevant modelling techniques for stochastic systems. Hence sim-
ulation is the only relevant option for testing the algorithm and its extensions.
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Paper A and a short paper included in appendix C describe the simulation tool
package “Network Simulator 2” (NS2) used during testing. NS2 is a discrete
event simulator providing functionality for realistic simulations of IP network.

Result validation Results from tests of the algorithm are in all papers generated
from sets of between 10 and 20 repeated simulations. In cases where results
from related research are available and relevant, comparisons are made to vali-
date performance (paper A). Analytic optimal solutions are used for validation
when available (paper B and D) as well as validation by comparing and ranking
several related algorithm variants and/or test scenarios (paper C and E).

Simulations have been the first choice for testing the algorithm of this thesis, but
moving to a real world implementation for further testing does not necessary require
great amounts of effort. Section 6 looks into this topic.

4. Guidelines for Reading
All five papers included in part II of this thesis presents closely related work. As

already indicated in Figure 4, work presented in [HW01] and reproduced as paper A,
describes the foundations for the other four papers, paper B, C, D and E. To make
paper B, C, D and E self contained, creating overlap between them and paper A has
been necessary. Figure 5 presents a map indicating overlap between different sections
of the papers.

Since all papers are self contained they may be read in any sequence. However,
reading them in chronological order relative to publication date is a good option, i.e.
the sequence “A-B-C-D-E”. In any case reading part I first, i.e. this introduction, is
recommended.

Note that the appendix in paper C titled “Additional Results” was not a part of
the original version of the paper (and is left out from Figure 5). Since the results
presented in this appendix have significant value the appendix is considered relevant
to include.

Part III of the thesis, appendices, presents unpublished work related to the papers
in part II. In appendix A “Autoregression Details” the autoregressive expressions in-
troduced by paper A is re-derived in a less compressed manner to ease readability.
Some adjustments to the expressions not mentioned in any of the papers are also pre-
sented. Appendix B “Update of Global Values” presents results from intermediate
work not included in the papers. Active explicit global state propagation is found
not to be significantly more efficient than passive indirect propagation. Appendix
C “Paper F” reproduces a short paper describing the simulator tool package used to
generate simulation results in paper A-E. Finally, appendix D “Implementing Tech-
nologies” presents a short survey on potential technologies for realizing emergent
behavior based network management implements.
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5. Contributions
The following paragraphs present the main contributions of each of the five papers

included in part II of this thesis. Figure 6 illustrates schematically how the major
contributions in the papers relates to the overall algorithm.

Paper A

Using the Cross-Entropy Method to Guide/Govern Mobile Agent’s Path Finding in
Networks

The problem of finding paths in networks is general and many faceted with a wide
range of engineering applications in communication networks. Finding the optimal
path or combination of paths usually leads to NP-hard combinatorial optimization
problems.

The cross-entropy method proposed by Rubinstein, manages to produce optimal
solutions to such problems in polynomial time. However this algorithm is central-
ized and batch oriented. In this paper we show how the cross-entropy method can be
reformulated to govern the behaviour of multiple mobile agents which act indepen-
dently and asynchronously of each other. The algorithm represents the first relation
between cross entropy driven optimization and distribute swarm intelligence systems,
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Figure 6. Schematic overview relating contributions from the included papers to the overall algo-
rithm.

and may be regarded as a proof of concept. Compared to other similar swarm intelli-
gence systems the algorithm is unique in two ways: It has a formal foundation, and
it has a search process of two stages where the second stage adjusts a temperature
parameter (comparable to a “simulated annealing” temperature) which regulates the
search focus of the algorithm in a highly efficient manner.

The algorithm is evaluated on a set of well known Travelling Salesman Problems.
A simulator, based on the Network Simulator package, has been implemented which
provide realistic simulation environments. Results show good performance and stable
convergence towards near optimal solutions for the problems tested.

Paper B

Cross Entropy Guided Ant-like Agents Finding Dependable Primary/Backup Path
Patterns in Networks

Telecommunication network owners and operators have for half a century been well
aware of the potential loss of revenue if a major trunk is damaged, thus dependability
at high cost has been implemented. A simple, effective and common dependability
scheme is 1:1 protection with 100% capacity redundancy in the network.

A growing number of applications in need of dependable connections with spe-
cific requirements to bandwidth and delay have started using the internet (which only
provides best effort transport) as their base communication service. In this paper we
adopt the 1:1 protection scheme and incorporate it as part of a routing system appli-
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cable for internet infrastructures. By load sharing 100% capacity redundancy is no
longer required.

A distributed stochastic path finding (routing) algorithm based on swarms of cross
entropy guided ant-like agents is presented in the paper. By making species of agents
sensible to each others path resource requirements (e.g. bandwidth), the algorithm is
the first to enable a fully distributed swarm intelligence based search system where
species of agents cooperately, by detesting each other, find valuable combinations of
paths. The algorithm enables realization of optimal load sharing as well as differen-
tiation between classes of traffic without need of centralized management.

In this paper the algorithm is applied in a routing system, which finds near optimal
patterns of primary and backup paths for a given set of connections, such that single
link failure protection is realized in a mesh network. Results from Monte Carlo
simulations of a scenario, where far less than 100% bandwidth capacity redundancy
exist, indicate that the algorithm indeed is capable of finding pairs of independent
primary and backup paths satisfying specific bandwidth constraints.

Paper C

Cross-Entropy Guided Ant-like Agents Finding Cyclic Paths in Scarcely Meshed
Networks

In this paper an extended version of the algorithm in paper A capable of finding
cyclic paths in scarcely meshed networks is described. Cyclic paths are especially
interesting in the context of protection switching (Grover et al’P-cycles[GS98]), and
scarce meshing is typical in real world telecommunication networks. Two new next-
node-selection strategies for the ant-like agents, believed to better handle low degrees
of meshing, are introduced and compared to the original strategy applied in paper A.
The original strategy terminates agents when they reach a dead end during forward
search. The first new strategy applies a “backtrack-and-retry” technique whenever an
agent reaches a dead end. The second new strategy allows an agent to revisit nodes
to escape dead ends, i.e. construction of infeasible solutions are allowed.

Performance results from Monte Carlo Simulations of systems implementing the
strategies are presented. Results show that the second new strategy outperforms both
the original and the first new strategy. Hence the paper clearly demonstrates that
allowing infeasible intermediate solutions (in this case cyclic paths with loops) may
enable efficient constructions of near optimal feasible solutions.

Paper D

Robust Implementation of Policies using Ant-like Agents

Policy based management is a powerful means for dealing with complex heteroge-
neous systems. However, the policies are commonly strictly interpreted, and it is
tempting to resort to centralized decisions to resolve conflicts. At the same time,
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swarm intelligence based on “ant like” mobile agents has been shown to be able to
deal with challenging optimization and trade-off problems.

This paper is the first to discuss and demonstrate how policies may be used to
govern the behavior of mobile agents in a swarm intelligence based system, such
that near optimal solutions for the implementation of the (potentially conflicting)
policies are found in a truly distributed manner. By this a more dependable and
robust system is obtained. The enforcement of the policies is soft in the sense that
it is probabilistic and yields a kind of “best effort” implementation. To the authors
knowledge probabilistic “best effort” policy conflict resolution is conceptually new
and first introduced by this paper.

A case study illustrating how ant like mobile agents may implement load distribu-
tion and conflict free back-up policies, is presented.

Paper E

Scalable Distributed Discovery of Resource Paths in Telecommunication Networks
using Cooperative Ant-like Agents

Future user controlled development of telecommunication services combined with
powerful terminal equipment result in many heterogenous services running in a peer-
to-peer execution environment. Locating a desired service in such an environment is
challenging. In this paper a cross entropy driven swarm based optimization algorithm
is presented capable of finding paths of resources in a complex network environment.
On the contrary to existing localization mechanisms for peer-to-peer systems the al-
gorithm considers all accessed resources between (and including) the client side and
server side when a resource path is evaluated.

Scalability is achieved by enabling agents to cooperate during search when they
have overlapping search profiles. On the contrary to cooperation by detestation pre-
sented in paper B, this paper presents an algorithm where agents share and coop-
eratively construct a pheromone “road map” by which relevant near optimal paths
of resources may be found. A solution (a path) is identified by a combination of
pheromones each relating to a QoS parameter in the relevant search profile. By this
in total several orders of magnitude fewer unique pheromone types are required, and
hence the number of state values to be managed by network nodes can be signifi-
cantly reduced. Even so the number of unique search profiles are virtually unlimited.
The new cooperative behavior is realized without invalidating the formal foundations
of the algorithm.

Early results from simulations are very promising. The expected cooperative be-
havior is shown to be present, i.e. a set of near optimal resource paths conforming to
a set of different but overlapping search profiles are found efficiently. Comparisons
of scenarios with none-cooperative and cooperative agents give clear indications that
cooperation lead to improved performance.
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Table 1. Number of operations performed and state variables updated in one iteration of the algorithm
(i.e. one search and backtracking sequence performed by one agent).N is the number of nodes involved
in a solution.d is the connection degree of the network.S is the number of solution types.

Operations
Exp. Multiplications Additions

Forward search 1 2 + 4Nd N(4d− 1)

Backtracking 3 11 + N(6d + 4) 9 + 2N

Total of unique (N = 1, d = 1) 4 27 14

State i node State in agent
Floats Floats Integers

Forward search 0 3 N (tabulist)
Backtracking S(3 + 3d) 4 N (tabulist)

6. Implementation Issues
Paper A together with appendix A “Autoregression Details” present the formal

foundations for the algorithm in this thesis. When studying these parts a reader may
get an initial impression that the overall algorithm is difficult to implement. This is
not at all the case. Even though the process of deriving the autoregressive expressions
has many steps, the actual autoregressive schemas output are uncomplicated. Table 1
indicates the number and type of mathematical operations and state values required
by the algorithm.

To understand the content of Table 1 and short introduction to the basic principles
of the algorithm is required. The algorithm is realized by having one (or several) ant-
like agent search alone (or in parallel) for solutions of a certain type or several types
(S represents the number of types). Each agent needs to visit a set of nodes in a graph
to compose a solution.N is the number of nodes visited. Each agent builds a solution
by completing a forward search phase visiting a set of nodes. A backtracking phase
is then entered where the agent revisits every node in the set visited in the forward
search phase. During backtracking the type and the quality of the solution found
is registered in all nodes visited. Table 1 separates between operations performed
and state information updated during the forward search phase and the backtracking
phase. To find a near optimal solutions for complex problems the above process is
iterated, i.e. the agents search for solutions (and backtrack) again and again until a
solution of satisfactory quality is found. See paper A for a comprehensive description
of the algorithm.

As Table 1 indicates, the number of operations required are in general very lim-
ited. The row titled “Total of unique” presents the total number of unique opera-
tions required to be performed per iteration. From this the simplicity of an agent is
quite visible. Only 4 exponential operations, 27 multiplications and 14 additions are
required to implement an agent, excluding logic required for the agent to navigate
between nodes.
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State information required in an agents memory is also very limited, only in total
7 floating point values and one integer per node visited. However, the amount of state
information required to be store in a node at all times is potentially large and very
much influenced by the number of solution typesS being searched for in parallel.
This is addressed further in a paragraph below.

For problem solving in a network management context nodes and graph will often
map one-to-one with network elements and a communication network respectively.
Hence many nodes are typically placed at physically different locations. To imple-
ment the algorithm in such an environment there are three possible approaches.

All operations are realized by service functionality in nodes, and agents be-
come just messages containing state information.

Some operations are implemented in the nodes and some carried by the agent.
Hence agents carry operations and state while they move around. Such agents
are known asmobile agents[PK98].

All operations are carried by agents, and hence only state information is stored
in nodes.

The first approach is likely to be most efficient and most secure. Operations can be
tailored/compiled to run efficiently at each specific node, and well known security
mechanisms for messaging can be applied. Technically however, every node must
be extended/upgraded with new functionality (operations) whenever a new variant of
the algorithm is to be made operative.

The last approach resembles how many emergent systems in nature are imple-
mented. An ant carries all the operations required in its brain and body, and it makes
changes to the environment when it moves around. This approach enables fast ac-
tivations of new algorithm variants by just releasing a new type of agents into the
network. No upgrade of node functionality should be required. However, the flexi-
bility gained results in a need for untraditional security mechanisms protecting nodes
from malicious agents and opposite.

The second approach is a combination of the first and the last approach. Hence
enabling relevant nodes in a network to handle implementations by the second ap-
proach also enables the other approaches. Appendix D “Implementing Technolo-
gies” presents a short survey on potential technologies which may realize the second
approach (and hence the other approaches too).

Different solution types being searched for in parallel can in a network manage-
ment context for instance be connections and/or services. Hence the number of solu-
tion typesS may potentially be very large, e.g. in the order of hundred million for a
nation wide network in a relative small country like Norway. Paper E looks into and
suggests solutions to this scalability problem.

7. Summary and Conclusion
The continuous increase of overall complexity in computer and telecommunication

systems is becoming a severe challenge for todays management systems. Operators
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and researcher agree that to coupe with this increase, management systems of the
future are required more than ever to beadaptive, robustand highlyefficient. These
properties match properties found in systems base onemergent behavior. Emer-
gent behavior systems are common in nature and consists of many simple (relative
to the overall system behavior) autonomous components interacting with each other.
Component distribution and redundancy result in robustness, moments of stochas-
tic behavior boost the systems adaptability, and clever interaction schemes based on
positive and negative feedback ensures high efficiency.

Enhancing future management systems with emergent behavior based implements
has great potential. Results from research in this area are promising. However, de-
signing emergent behavior based implements with specific behaviors is not at all triv-
ial. In this introduction two design approaches for emergent behavior based systems
have been discussed. The first approach which by empirical means adopts and tailors
emergent behaviors found in natural systems, has so far been applied to construct im-
plements for several management problems,routing being the most treated problem
area. However due to the empirical means applied, limited understanding exist of the
core mechanisms driving the systems designed. In the second approach discussed
empirical means are replaced by formal founding and formally sound tailoring of the
foundations. Hence the second approach enables a designer to better understand core
mechanisms and avoid miss-configuration of the designed system.

Work presented in the five included papers of this thesis strive to follow the second
approach. A formal foundation in rare event theory has been chosen, and a fully
distributed multi-criteria optimization algorithm has been developed. In addition to
having the properties mentioned above, the algorithm is simple to implement. The
behaviors of the ant-like agents in the algorithm are simple, and only a limited amount
of new server functionality must be installed in the network components of the system
to be optimized.

Performance results for the algorithm are very promising. Near optimal solutions
to NP-hard multi-criteria optimization problems are found efficiently. However there
is still work to be done. The the next section presents future research tasks.

8. Future Work
The development of the algorithm presented in this thesis is far from complete.

Many challenges are still ahead. The following list of future work indicate a set of
areas where more research is required. The first seven relates to core development of
the algorithm while the latter three suggests/relates to potential application areas.

Parameter tuning A small set of parameters are required to be configured for the
algorithm to run efficiently. Looking further into how (near) optimal values for
theses parameters can be ensured is important, and can potentially increase the
performance of the algorithm.

Including heuristics Adopting empirical techniques to a greater extent may be of
interest and could boost performance of the algorithm to some degree. How-
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ever, as discussed in Section 2, if care is not taken this may lead to reduced
understanding of the algorithm’s core behavior.

Dynamic networks So far during simulations there has been only a limited level
of dynamics in the network environments. Test scenarios with different levels
of dynamics should be designed. One such class of scenarios include traffic
sources configured to inject a certain amount of traffic in certain patterns into
a network topology.

Large scale environmentsEven if large scale challenges have been address in paper
E, no thorough large scale test has been performed so far. A set of representa-
tive network environments of large scale should be chosen and a set of relevant
simulation scenarios designed.

Cost efficiency The algorithm is show in paper B and D to be suitable as an im-
plement in a system for resource management in a distributed network envi-
ronment. Cost efficiency is an important aspect of any resource management
system. To what degree does the system ensure utilization of resources com-
pared to the amount of resources consumed by the system itself? So far the cost
efficiency of the algorithm has not been address. Relevant scenarios should be
designed where the amount of network resources consumed by the ant-like
agents is measured and compared to overall resource management efficiency.

Real world prototype To verify that the algorithm is as simple to implement as ex-
pected a real world prototype should be developed. By cooperating with other
research centres even a (to some degree) large scale real world experiment may
be realizable.

Relation to COINs Better understanding of the relationships between Wolpert et
al’s COllective INtelligences and the foundation of the algorithm in this thesis
is desirable. Comparing and examining the detestation based cost functions
from paper B and typical utility functions of COINs systems may give valu-
able insight in the general relationship between COINs and swarm intelligence
algorithms.

P-cycle designGrover and Stamatelakis introduce in [GS98] the idea of establishing
protection cycles in meshed networks to realize protection against single link
failures. So far to the authors knowledge no distributed algorithm exists that
find optimal P-cycle designs, i.e. the set of cycles which minimize redundancy
and loss on failures. The algorithm presented in this theses may potentially be
tailored to find such sets of cycles.

Routing in Ad-hoc networks Considering the results in paper B, the algorithm may
be used as a foundations for an ad-hoc routing scheme. If a relevant set of
backup paths can be found fast enough, keeping a connection up while roaming
in a highly dynamic network environment may be possible.
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Formalizing policy-to-ant design processSince policy management are claimed by
many to be the management approach an operator truly needs, putting more ef-
fort into establishing an efficient design process for ant-like agent implementa-
tions of policies may be valuable, i.e. proceed with the work presented in paper
D. Indeed if a clear and unambiguous process description can be established,
it should likely give strong indications to how specific emergent systems in
general may be designed.
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USING THE CROSS-ENTROPY METHOD TO
GUIDE/GOVERN MOBILE AGENT’S PATH
FINDING IN NETWORKS

Bjarne E. Helvik

Otto Wittner

Abstract The problem of finding paths in networks is general and many faceted with a wide range
of engineering applications in communication networks. Finding the optimal path or
combination of paths usually leads to NP-hard combinatorial optimization problems. A
recent and promising method, the cross-entropy method proposed by Rubinstein, man-
ages to produce optimal solutions to such problems in polynomial time. However this
algorithm is centralized and batch oriented. In this paper we show how the cross-entropy
method can be reformulated to govern the behaviour of multiple mobile agents which
act independently and asynchronously of each other. The new algorithm is evaluate on
a set of well known Travelling Salesman Problems. A simulator, based on the Network
Simulator package, has been implemented which provide realistic simulation environ-
ments. Results show good performance and stable convergence towards near optimal
solution of the problems tested.

1. Introduction
The problem of finding paths in networks is general and many faceted with a wide

range of engineering applications in communication networks. Examples: end to end
paths in (virtual) circuit switched networks both for primary paths and backup path in
SDH, ATM and MPLS, routes in connectionless networks, shortest (or longest) tours
visiting all nodes (STST). Path is used as a collective term encompassing a number
of the more specific technical terms path, route, circuit, tour and trajectory.

Finding the optimal path or combination of paths usually leads to NP-hard combi-
natorial optimization problems, see for instance [Bal95a, Bal95b]. A number of well
known methods exist for solving these problems, e.g. simulated annealing, [KGV83],
tabu search [Glo96] genetic algorithms [Gol98] and the Ant Colony System [DG97].
A recent and promising method, the cross-entropy method, is proposed by Rubin-
stein which finds a near optimal solution in polynomial time (O(3)) [Rub99]. How-
ever, when we implement path finding as a management functionality of a network,
we have another additional requirement, which is not easily met by the above algo-
rithms:
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The algorithm should be distributed, i.e. the path should be decided by a co-
operative task among the network elements. This increases the dependability
of the network by avoiding the single point of failure of a centralized network
management system, and by avoiding the management system to rely on the
network being managed.

Multiple mobile agents, exhibiting an insect like swarm intelligence, has been pro-
poses as a means to path finding in communication networks in a distributed and
adaptive manner [SHBR97][CD98][Sch00][WPO98]. Hereto, these mobile agent
systems have concentrated on solving the shortest path routing problem. A more
general approach is desirable to enable implementation of a wider range of manage-
ment applications. Constructing systems capable of finding good solutions to the
travelling salesman problem (TSP) may fulfil this generality since TSPs are among
the hardest routing problems (NP complete).

In this paper we will show how the cross-entropy method of [Rub99], which has
been evaluated successfully on TSPs, can be reformulated to govern the behaviour
of multiple mobile agents towards finding optimal paths in networks. This reformu-
lation is presented in section 4. How this behaviour is implemented in the Network
Simulator [WH00] is presented in section 5. The ability to find (near) optimal paths
are demonstrated through some case studies in section 6, before we conclude. First,
however, an introduction to path finding by multiple agents is given in section 2 and
a brief review to the cross-entropy method in section 3.

2. Path Finding by Multiple Agents
Schoonderwoerd & al.’s paper [SHBR97] introduces the concept of multiple mo-

bile agents cooperatively solving routing problems in telecommunication networks.
A number of simple agents move themselves from node to node in a network search-
ing for paths between a given pair of source and destination nodes. A probability
matrix, represented as probability vectors in each node, controls the navigational
behaviour of the agents. When a path is found the probability matrix is adjusted ac-
cording to the quality of the path such that a better path will generally have a higher
probability of being reused. By iterating this search process high quality paths emerge
as high probabilities in the matrix.

We regard a network withn nodes with an arbitrary topology, where the only
requirement is the it is feasible to establish the required path. A link connecting two
adjacent nodesk, l has a link costLkl. The link cost may be in terms of incurred
delay by using the path, "fee" paid the operator of the link, a penalty for using a scare
resource like free capacity, etc. or a combination of such measures.

Pathi through the network is represented byπi = {r1, r2 . . . , rni} whereni is the
number of nodes traversed. For a TSP tourni = n + 1, ∀i andr1i = rni .

The cost function,L, of a path is additive,

L(πi) =
ni−1∑

j=1

Lrjrj+1 (1)
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The foraging behaviour of ants has so far been the major inspiration for all research
on multi mobile agent systems for routing. When an ant has found a food source it
marks the route between its ant hill and a food sources with a pheromone trail. Other
ants searching for food will with a higher probability follow such a trail than move
about randomly. On their way home from the food source they will reinforce the
pheromone trail and increase the probability of new ants following the trail.

Viewing mobile agents as artificial ants and network nodes as the environment we
can interpret pheromone trails as routing probabilities. We have an unconditioned
probability pt,rs of an agent choosing to go to nodes when it is in noder at time
t. The actual choice of next node may be conditioned on the agents past history
according to the selection strategies of the agents (section 4.2). We denote the set of
unconditional routing probabilities aspt = {pt,rs}∀rs. The probability of choosing
a specific path,π, under the current selection strategies ispt(π) which is uniquely
determined bypt.

3. The Cross-Entropy Method
A new and fast method, called the cross-entropy method, for finding the opti-

mal solution of combinatorial and continuous nonconvex optimization problems with
convex bounded domains is introduced by Rubinstein [Rub99]. To find the optimal
solution, a sequence of simple auxiliary smooth optimization problems are solved
based on Kullback-Leibler cross- entropy, importance sampling, Markov chains and
the Boltzmann distribution. In the rest of this section we review the method and
state some results in the context of the problem at hand. For details it is referred to
[Rub99].

The basic notions of the method is that in a random search for an optimal path, the
probability of observing it is a rare event. For instance, finding the shortest travelling
salesman tour in a fully meshed network with25 nodes and an uniformly distributed
routing probability from one node to the next is1/25! ≈ 10−25. Hence, the prob-
ability of observing the optimal path is increased by applying importance sampling
techniques [Hei95]. However, doing this in a single step is not feasible. A perfor-
mance function of the current routing probabilities,h(p, γ), is introduced:

h(p, γ) = Ep(H(γ, π)) (2)

which is based on the Boltzmann function:

H(γ, π) = exp(−L(π)
γ

) (3)

In (3) L(π) is denoted the potential function andγ the control parameter or tem-
perature. It is seen that as the temperature decreases an increasing weight is put on
the smaller path costs, see Fig. 1.

A temperature is determined which puts a certain emphasis on the shorter routes,
i.e. the minimum temperature,γt, which yields a sufficiently low performance func-
tion
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γ
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Figure 1. Illustration of the Boltzmann function

min γt s.t. h(p∗t−1, γt) ≥ ρ (4)

where10−6 ≤ ρ ≤ 10−2 andp∗t−1 is the current routing probabilities. The indext
indicates the step in the iteration procedure and the initial routing probabilitiesp∗0 is
chosen to be uniformly distributed.

It is shown, [Rub99], that the set of routing probabilitiesp∗t which is the solution
to

max
pt

Ept−1

( ∏
ri∈π

Hrjrj+1(γ)
∑
ri∈π

ln pt,rjrj+1

)
(5)

will minimize the cross entropy between the previous routing probabilities,p∗t−1

weighted with the performance function andp∗t , and represents an optimal shift in the
routing probabilities towards estimating the performance function with temperature
γ. In the above it is used that the path cost is an additive function which enables the
Boltzmann function to be rewritten as

H(γ, π) = exp(−L(π)
γ

) =
∏
ri∈π

exp(−Lrjrj+1

γ
) =

∏
ri∈π

Hrjrj+1(γ) (6)

It is shown that the solution to (5) is

p∗t,rs =

∑
∀j:({r,s}∈πj)

∏nj−1
i=1 Hriri+1(γ)p∗t−1,riri+1∑

∀j:({r}∈πj)

∏nj−1
i=1 Hriri+1(γ)p∗t−1,riri+1

(7)

An optimal shift of routing probabilities,p∗t , toward the lower cost paths is obtained.
We may now increment the iterator,t ← t + 1, lower the temperature by employing
(4) to shift the emphasis further toward the smaller costs and find an improved set
of routing probabilities. Hence, an iterative procedure is obtained which yields a
sequence of strictly decreasing temperatures,γ1 > γ2 > . . . > γt > . . . and a
series of routing probabilitiesp∗0, . . . ,p

∗
t , . . . which almost surely convergence to the

optimal solution [Rub99], where

p∗t→∞,rs =
{

1, {rs} ∈ π∗, L(π∗) = min∀π L(π)
0, otherwise.
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Note that the above outlined method employs a global random search procedure,
which is different from the local search heuristics of other well known random search
algorithms for global optimization like simulated annealing, tabu search and genetic
algorithms.

The procedure outlined is by Rubinstein applied in a batch oriented manner, i.e. a
sample ofN paths1, is drawn fromp̂∗t . On this basis the temperature is determined
by the stochastic counterpart of (4), i.e.

min γt s.t. N−1




N∑

j=1

∏
ri∈π

Hrjrj+1(γ)


 ≥ ρ

and routing probabilities by the stochastic counterpart of (7), i.e.

p̂∗t,rs =

∑N
j=1 I({r, s} ∈ πj)

∏nj−1
i=1 Hriri+1(γt)

∑N
j=1 I({r} ∈ πj)

∏nj−1
i=1 Hriri+1(γt)

whereI(· · · ) is the indicator function. Rubinstein reports that empirical studies sug-
gest the cross entropy method to have polynomial, in the size of the problem running
time, complexity, e.g. O(3).

The above result is valid both for deterministic link costs and for stochastic link
costs [Rub01]. Hence, the cross-entropy method may be used to find optimal paths
in networks were the link costs are random variables like queuing delays and unused
capacity. The application to such networks (obviously) is at the cost of larger sample
sizes and/or more iterations.

4. Mobile Agent Behaviour
Studying the cross entropy method, it is seen that it forms the basis for a dis-

tributed implementation in a network using multiple simple mobile agents. The des-
tination node of the agents keep track of the temperature. The agents move through
the network according to the routing probabilities and the path selection require-
ments/constraints. For each path followed the cost is accumulated, cf. (1), which
reflects the quality of the path. When a certain number of such paths have been found
the temperature and the routing probabilities are updated.

However, a batch oriented decision of new temperature and new routing proba-
bilities based on the information collected by a large number of agents, e.g. several
thousands, is contrary to the basic ideas of swarm intelligence and is unsuited since it
delays the use of the collected information, incurs storing of a large number of agents
midway in their life cycle and a load peak when a probability update takes place. It
also hampers the cooperation between families of agents. An incremental update of
temperature and path probabilities is required.

1N is typically chosen in the order of10 · n ·m to n ·m, wheren is the number of nodes in the network andm is
the average number of outgoing links per node.
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4.1 Autoregressive Distributed Computations

To meet the requirement of an incremental update of temperature and routing prob-
abilities, we have introduced autoregressive stochastic counterparts of (4) and (7).

When an agent reaches its destination node the autoregressive performance func-
tion, hi is updated as

h0 = β · h−1 + (1− β) ·H(γ0, π0) (8)

where, for the sake of notational simplicity the last arriving agent is indexed0, second
last−1, etc., andβ ∈ [0, 1] is the autoregressive memory factor, typically close to
one.

In (8) the temperature after the agent has arrived is used immediately. If we had
M previously arriving agents, replaceh(p∗t−1) by h0 in (4) and use (3), (4) may be
rewritten as

min γt s.t.
1− β

1− βM+1

0∑

i=−M

β−i exp(−L(πi)
γ0

) ≥ ρ (9)

It is seen that the minimum is at equality. The equation is unsuited for solving
in a network node since it is transcendental and the storage of a potentially infinite
number of path costsL(πi) is required. Assuming that the inverse of the temperature
does not change radically, a first order Taylor expansion of each term in (9) around the
inverse of the temperature which were current when the corresponding agent arrived,
is carried out, i.e.

ρ1−βM+1

1−β ≈ ∑0
i=−M β−i exp(−L(πi)

γi
)
(
1− L(πi)

(
1
γ0
− 1

γi

))

= A− 1
γ0

B + exp(−L(π0)
γ0

)

≈ A− 1
γ0

B + exp(−L(π0)
γ−1

)
(
1− L(π0)

(
1
γ0
− 1

γ−1

)) (10)

It is seen that the implicitly defined constants in (10) maintain the history of Boltz-
mann function values and temperatures. An approximation ofγ0 is obtained from
(10) and we arrive at the following scheme to compute the current temperature for
each arriving agent:

γ0 =
B·exp(

L(π0)
γ−1

)+L(π0)

1+
L(π0)
γ−1

+exp(
L(π0)
γ−1

)
�
A−ρ 1−βM+1

1−β

�
A ← βA +

(
1 + L(π0)

γ0

)
exp(−L(π0)

γ0
)

B ← βB + L(π0) exp(−L(π0)
γ0

)
γ−1 ← γ0

M ← M + 1

(11)

where the initial values areA = B = M = 0 andγ−1 = −L(π0)/ ln(ρ).
Similarly, after having updated the current temperature of its destination node, the

agent backtracks along its pathπ0 and updates the probabilitiesp0,rs according to an



Paper A 39

autoregressive stochastic counterparts of (7),

p̂∗0,rs =
Trs∑
∀s Trs

(12)

Trs =
0∑

i=−M

I({r, s} ∈ π0)β−i exp(−L(πi)
γ0

) (13)

Due to the constant temperature regime of (13) we have the same infeasible storage
and computing requirements as when solving (9). Thus again we assumeγ not to
change radically and apply a second order Taylor expansion to each term, i.e. (13) is
approximated by

∑0
i=−M I({r, s} ∈ πi)β−i exp

(
−L(πi)

γi

) (
1− L(πi)

(
1
γ0
− 1

γi

)
+

L2(πi)
2

(
1
γ0
− 1

γi

)2
)

The second order expansion is used to better approximate the hyperexponential
numerator and denominator ofp̂∗0,rs and hence avoid non-physical (negative) values
of Trs in case of a rapid decay of the temperature. However, this may result in a non-
physical increase of the approximation ofTrs as1/γ0 increases. Hence, when the
derivative of the approximation above becomes positive, it is replaced by its minimum
which yields:

Trs ≈ I({r, s} ∈ π0) exp
(
−L(π0)

γ0

)
+Ars +

{ −Brs
γ0

+ Crs

γ2
0

, 1
γ0

< Brs
2Crs

− B2
rs

4Crs
, otherwise

(14)

where, as for the temperature, we have an autoregressive updating scheme for the
parameters yielding the second order approximation:

Ars ← βArs + I({r, s} ∈ π0) exp
(
−L(π0)

γ0

)(
1 + L(π0)

γ0

(
1 + L(π0)

2γ0

))

Brs ← βBrs + I({r, s} ∈ π0) exp
(
−L(π0)

γ0

)(
L(π0) + L2(π0)

γ0

)

Crs ← βCrs + I({r, s} ∈ π0) exp
(
−L(π0)

γ0

)
L2(π0)

2

(15)

The initial values of (15) areArs = Brs = Crs = 0.
The next agent arriving at noder will according to the unconditional probability

of (12) depart towards nodes, where the "pheromones"Trs are determined according
to (14) and updated according to (15) in its return. This is detailed in section 4.3.

4.2 Initialization and Selection Strategies

An initialization phase is needed to establish a rough estimate of the temperatureγ
under the initial routing probabilities. These probabilities are chosen to be uniformly
distributed,pu, which is similar to [Rub99]. During this phase, the parameters of
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the autoregressive temperature computations in each node, i.e. (11), are obtained as
well as initial values of the pheromone parameters of (15). The number of agents
completing a tour during the initialization isD ∼ n · m wheren is the number of
nodes in the network andm is the average number of outgoing links per node. The
convergence of the algorithm is robust with respect to the initial routing probabilities
and number of agents.

The actual next hop probability,qt, the agents use must take into account the
previously visited nodes. Both during the initialisation phase and the rest of the
search process our agents use the following selection strategy of the next node:

Xt,r(s) =





1, if nodes has not already been visited
1, if all nodes have been visited ands = homenode
0, otherwise

In networks that are not fully connected, an agent may experience that
∑
∀s Xt,r(s) =

0, i.e. it is stuck. In this case the agent is terminated.
After the initialization phase there will be a non-zero probability thatXt,r(s) may

cause the vectorqt,r to be zero, i.e. all feasible routes are found to be inferior. When
such a no-next-hop event occurspt is replaced bypu. By introducing a small noise
componentε as shown in (16),pu is generated both during theγ-initialisation phase
and when a no-next-hop events occur.

qt,rs =
[I(t > D)pt,rs(1− ε) + ε] Xt,r(s)∑
∀k [I(t > D)pt,rk(1− ε) + ε] Xt,r(k)

when
∑

∀s
Xt,r(s) > 0 (16)

whereI(. . .) is the indicator function andε is chosen very small, e.g.10−60.
The parameterρ in (4), (9), etc. governs the emphasis put on the shorter routes.

In [Rub99] it is proposed to introduce an adaptiveρ, i.e. ρ is decreased during the
search process, which resulted in a slightly faster convergence. Our experiments
show that our mobile agent algorithm converges significantly faster ifρ is decreased
by 5% when no improvement in minimum path cost has been observed afterD tours.
Decreasingρ by a higher factor did not improve the convergence significantly but a
lower factor reduced the speed-up notably. Hence, each agent home node performs
the operation

ρ ← 0.95 · ρ, l ← i when(i− l = dD/ke) ∧ (min
j≤l

(L(πj)) = min
j≤i

(L(πj))) (17)

wherek is the number of agent home nodes in the network.

4.3 Agent Behaviour Algorithm

Fig. 2 shows pseudo-code describing the behaviour of a mobile agent implement-
ing our algorithm. Each node in the network is assumed to store the autoregressive
parameters required by (15), its own address (current node.address) and a minimum
cost observed (current node.Lmin). The address is set when the network topology
is created. The minimum cost is updated by agents visiting the node (as described
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:= 0.01;
M = 0; /* No of competed tours */
min_L = ; /* Minimum tour cost known to agent */
no_min_L_change := 0; /* No of tours since min_L changed */
home_node := current_node.address;
do /* Main loop */

visitlist := {}; /* Initalize list of nodes visited */
start_time := current_time;
do /* Forward search */

push(visitlist, current_node.address); /* Added current node to visit list */
min_L := Min(min_L, current_node.min_L); /* Update agent’s min. tour cost */
current_node.min_L := min_L; /* Update node’s min. tour cost */
r := current_node.address;
Q(s): = Accummulate( ) /* Create accum. prob.dist. of (16) */
X := UniformDistribution(0.0, 1.0); /* Generate uni. dist. random number */
foreach  s in neigbor_nodes /* Select next node to visit */

if ( X < Q(s) )
move_to(s)
break ; /* Exit foreach  loop */

end if
end foreach
if (Q(s) = 0 for all s in neigbor_nodes) /* Terminate if a dead end is reached */

terminate;
end if

until (current_node.address = home_node)
if Not_changed?(min_L) /* Count no of tours without observing */

no_new_min_L++ /* change in L_min */
else

no_new_min_L := 0
end if
if no_new_min_L_counter > D /* Decrease  if lack of change in */

 :=  * 0.95; /* min_L exceeds limit (17)  */
new_min_L_counter = 0;

end if
:= current_time − start_time; /* Calculate cost of last tour */

current_node.Update_Temp( , ); /* Equation (11)  */
 := current_node. ; /* Get and carry temp. from home node */

while  (visitlist not empty) /* Backtracking */
s := current_node;
move_to( pop(visitlist)); /* Remove last node in list and move to it */
r := current_node;
current_node.Update_Probabilities(r,s, , , );/* Equation (14)  and (15) */

done
M++; /* Increase counter of completed tours */

until (simulation is terminated)

ρ

∞

qt rs,

ρ
ρ ρ

L π0( )
L π0( ) ρ

γ 0 γ 0

L π0( ) γ 0 ρ

Figure 2. Mobile agnet pseudo code.
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in Fig. 2) and is later used to trigger adjustments of the search focus parameterρ
according to (17).

Each node acting as a home node must in addition to the parameters required by
(15) store autoregressive parameters required by (11).

No synchronisation between agents takes place during a search scenario. Only
indirect communication is performed by accessing path quality marks (pt) and the
propagated minimum cost value.

Each agent starts every search for a path from its home node. Agents with the
same home node cooperate in adjusting the temperature stored in the node. Thus a
range of search scenarios are possible where one extreme is having all agents share
the same home node and another extreme is letting each agent have its private home
node. In section 6 we examine simulation results from both extremes.

5. Implementation in the Network Simulator
Due to the stochastic nature of our mobile agents it is difficult to predict the exact

behaviour demonstrated. The behaviour of a single agent is to some extent trackable
but when a number of agents are executing concurrently and asynchronously the
overall system behaviour becomes too complex for formal analysis which leaves us
with the option of collecting results using Monte Carlo simulations.

Instead of designing and implementing a complete simulator with configurable
environmental parameters we chose to enhance an already well tested open source
simulator package, the Network Simulator (NS) [DAR]. NS is capable of running re-
alistic simulation scenarios of traffic patterns in IP-based networks. Dynamic topolo-
gies both wireline and wireless, miscellaneous protocols and a collections of traffic
generators are supported. The package is implemented as a mix of OTcl and C++
classes.

We have made the NS-package capable of handling mobile code simulations by
adding functionality for Active Networking (AN) [WH00, Pso99]. The extension
is based on work done in the PANAMA project (TASC and the University of Mas-
sachusetts).

Fig. 3 illustrates how some of the environmental objects and a mobile agent in-
teract during a simulation. A Tcl simulation control object creates node and mobile
agent kernel objects (C++). The new kernel objects are controlled through Tcl-mirror
objects but to avoid unnecessary overhead during simulations only infrequent opera-
tions (e.g. initialisation) are executed though this interface. The numbered message
sequence illustrates how a mobile agent is transferred between two active network
enabled nodes. For performance reasons only references (and size info) are passed
between the nodes.

6. Case studies
We selected four different topologies from TSPLIB [Rei01] to demonstrated the

performance of our algorithm. Three of the topologies where selected specifically
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Figure 3. Schematic representation of interactions between objects in the NS simulator.

such that a comparisons between our algorithm, Rubinsteins algorithms and the Ant
Colony System could be performed. Table 1 shows the results.

Topology

N
o of nodes

N
o of agents

No of tours Best tour Converged average

Rubin−
stein
total
no of
samp−

les

Rubin−
stein
best
tour

ACS
best
tour

Best
know

n
(TSP−
LIB)

fri26 26 1 133 267 ( 3015) 960 (1047) 1010 ( 18)

fri26 26 26 358 564 ( 8481) 940 (994) 970 ( 20) − − − 937

fri26* 26 26 149 453 ( 5562) 943 (1077) 1022 ( 34)

ry48p 48 1 308 401 ( 12101) 15 169 (16210) 15 725 ( 340) 172 800 15509 14422 14422

ry48p 48 48 947 063 ( 16058) 14 618 (15369) 15 139 ( 212)

ft53p 53 1 311 555 ( 9436) 7 351 (8069) 7 702 ( 249) 238 765 7111 − 6905

ft53p 53 53 1 270 621 ( 20147) 7 122 (7641) 7 487 ( 209)

kro124p 100 1 579 618 ( 13424) 40 807 (45014) 43 128 ( 1167) 1120000 39712 36230 36230

kro124p 100 100 3 359 288 ( 69817) 38 352 (40322) 40 095 ( 2054)

± ±

± ±

± ±

± ±

± ±

± ±

± ±

± ±

± ±

Table 1. Lists results from nine different simulation scenarios. By default all agents in our algorithm
has different home nodes. Scenarios marked with * in the left column are exceptions where all agents
have the same home node.

Column 2-6 (counting from the left) show parameter settings and performance re-
sults from our distributed algorithm. Column 1 and 2 give the name of the topology
used in the scenario and the number of nodes of the topology. Column 3 shows the
number of agents and autonomous home nodes applied in parallel during simulation.
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Column 4 shows the total number of tours traversed before all agents converged to-
wards a tour with the cost given in column 6. Column 5 shows the best tour found.
Column 4 and 6 are averaged over 12 simulations with standard deviation shown in
brackets while column 5 is the best of the best values found among 12 simulations
with the worst of the best in brackets.

Column 7-9 show results obtained by two centralized algorithms, Rubinsteins orig-
inal algorithm and the Ant Colony System version Opt-3. The last column shows the
best known results listed in TSPLIB.

Empirically we found that the following parameter settings gave good results:β =
0.998, ρ = 0.01 andρ reduction factor= 0.95. Thus they have been applied in all
the simulation scenarios.

In general our algorithm finds good solution to the TSP scenarios tested, close to
(and in a few occasion better than) the results reported by Rubinstein. But speed of
convergence is not equally good. Our algorithm requires up to 5 times more tours to
be traversed before convergence compared to the total number of samples in Rubin-
steins algorithm. (Rubinstein stops his algorithm when the best tour found has not
improved in a certain number of iteration. We report the number of tours required for
all agents to converge towards one path. Results can still be compared since best tours
for our algorithm are in general found only a short while before full convergence.)
Small standard deviation values indicate stable convergence over several simulation
runs.

When comparing results from scenarios run on the same topology but with a dif-
ferent number of agents we observe that our algorithm requires a higher number of
tours for scenarios where multiple agents are searching in parallel than for single
agent scenarios. Still the number of tours per agent is significantly less for the multi
-agent cases, close to 10 time less for fri26, 20 times less for ry48p, 15 times less for
ft53p, and 15 times less for kro124p. In a true concurrent environment this would
result in the respective real time performance gains.

In the scenario named fri26* 26 agents search in parallel and share the same home
node, i.e. they share the same set of autoregressive parameters required by (11).
They use approx. the same total number of tours to converge as in the single agent
version of fri26. Thus real time performance is improved by a factor equal to the
number of agents. However the converged average is higher than for the other fri26
scenarios, i.e. premature convergence is more common. Having only a single home
node also introduces a single point of failure which contradicts with our objective of
a dependable distributed system.

The ACS-opt3 algorithm is implemented as a complex mix of iterations using
heuristics for local optimization and iterations using global optimization by pheromone
trails. Thus it is difficult to compare performance results by other means than best
tour found and CPU time required. Our simulator is not implemented with the ob-
jective of solving TSPs as fast as possible. Thus CPU time is no good performance
measure which leaves best tour as the only comparable result. The ACS-opt3 algo-
rithm finds better best tours than both our algorithm and Rubinstein’s.
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7. Concluding remarks
In this paper we have introduced an algorithm for solving routing problems in

communication networks. The algorithm is fully distributed and well suited for im-
plementation by use of simple autonomous mobile agents encapsulated in for instance
active network packets. Agents act asynchronously and independently and commu-
nicate with each other only indirectly using path quality markings (pheromone trails)
and one shared search control parameters.

In contrast to other "ant-inspired" distributed stochastic routing algorithms, our
algorithm has a mathematical foundation inherited from Reuven Rubinstein’s cross-
entropy method for combinatorial optimization [Rub99]. Rubinstein proposes an
efficient search algorithm using Kullback-Leibler cross-entropy, important sampling,
Markov chains and the Boltzmann distribution. However his algorithm is centralized
and batch oriented. By introducing autoregressive stochastic counterparts to Rubin-
stein’s method of shifting routing probabilities, we have removed the need of central-
ized control. In addition, due to the necessary approximations made, we have reduce
the computational load of handling an agent in a node to a few simple arithmetic
operations.

Performance wise the new algorithm shows good results when tested on a hard
(NP-complete) routing problem, the Travelling Salesman Problem. Compared to Ru-
binstein’s algorithm, up to 5 times more paths need to be tested before convergence
towards a near optimal path takes place. Increasing the number of agents searching
in parallel decrease significantly the number of tours per agent required to find a high
quality path.

No excessive parameter tuning has so far been performed. Further investigation is
required specially on the effect of adjusting the weight put on historical information
(β) during the search process. Pros and cons of making more (or less) global knowl-
edge available (i.e. let more parameter values propagated throughout the network)
should also be looked into.

Currently new versions of our algorithm is under development where heuristic
techniques found in algorithms like the Ant Colony System [DG97] are incorporate
to improve performance. Additionally, by altering the search strategies, we expect our
algorithm to find optimal tours when network topologies are far from fully meshed
(as it is for TSPs) and do not allow all nodes to be visited only once.

Other ongoing work includes having several species of agents compete in finding
quality paths in a network. Early results indicate that a set of disjunct high quality
paths can be found efficiently. We intend to investigate the applicability of such
a system to the routing problems encountered by Grover in his work on restorable
network and protection cycles [GS98].
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CROSS ENTROPY GUIDED ANT-LIKE AGENTS
FINDING DEPENDABLE PRIMARY/BACKUP
PATH PATTERNS IN NETWORKS
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Bjarne E. Helvik

Abstract Telecommunication network owners and operators have for half a century been well
aware of the potential loss of revenue if a major trunk is damaged, thus dependability at
high cost has been implemented. A simple, effective and common dependability scheme
is 1:1 protection with 100% capacity redundancy in the network. A growing number of
applications in need of dependable connections with specific requirements to bandwidth
and delay have started using the internet (which only provides best effort transport) as
their base communication service. In this paper we adopt the 1:1 protection scheme and
incorporate it as part of a routing system applicable for internet infrastructures. 100% ca-
pacity redundancy is no longer required. A distributed stochastic path finding (routing)
algorithm based on Rubinstein’s Cross Entropy method for combinatorial optimisation
is presented. Early results from Monte Carlo simulations indeed indicate that the al-
gorithm is capable of finding pairs of independent primary and backup paths satisfying
specific bandwidth constraints.

Keywords: Dependable Routing, Optimal Paths, Cross Entropy Optimisation, Mobile Agents, Swarm
Intelligence, Network Management

1. Introduction
Telecommunication network owners and operators have for half a century been

well aware of the potential loss of revenue and reputation if a trunk is damaged and a
large number of subscribers are disconnected for a longer period of time. Dependabil-
ity at high cost has been implemented by building physical redundancy in network
topologies. A common, simple and effective but expensive scheme is 1:1 protection
with 100% redundancy where a primary link always has an independent backup link
standing by ready for use if a failure should occur.

The internet has since its days of design three decades ago been in operation pro-
viding a best effort communication service with no guarantees for loss of connectivity
between users [Pos81]. So far many applications have found this level of QoS suf-
ficient, but recently a growing number of applications in need of more dependable
connections with specific requirements to bandwidth and delay have started using the
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internet as their base communication service. This trend calls for new ideas and so-
lutions in the domain of routing, i.e. path fining in networks. In this paper we adopt
the 1:1 protection scheme and incorporate it as part of a routing system such that a
high level of dependability is achieved without the need of 100% redundancy in the
network.

Finding paths in networks is generally considered to be hard problems even NP-
complete [GJ79] in several cases (e.g. Travelling Salesman, Hamiltonian Path, Longest
Path). Finding an optimal pattern of primary and backup paths between a set of source
and destination nodes such that bandwidth, delay and link independence requirements
are satisfied has similarities with proven NP-complete problems like “Path with For-
bidden Pairs”, “Disjoint Connecting Paths” and “Shortest Weight-Constrained Path”
(54, 62 and 63 are the respective problem classification codes in [GJ79]). In this
paper we introduce a distributed stochastic optimisation algorithm capable of finding
near optimal patterns of primary and backup paths. The agents in our algorithm have
a behaviour comparable to the navigational behaviour of ants, but the overall algo-
rithm inherits its mathematical foundation from Rubinstein’s cross entropy method
for combinatorial optimisation [Rub99].

Section 2 describes the problem at hand in more detail. Section 3 introduces
Rubinstein’s cross entropy method. Section 4 describes the foundations for the be-
haviour of the agents in our algorithm, and Section 5 continues with implementation
details. Section 6 presents results from Monte Carlo simulations and finally Section
7 summarieses, concludes and indicates future work.

2. Problem Description

2.1 Motivation

A common strategy to improve dependability in any system is to introduce re-
dundancy among the system components. 100% redundancy implies duplicating all
components such that both a primary set and a backup set exist. While a primary com-
ponent is active and fault free, the peer backup component can be configured to op-
erate in different ways.Modular redundancyimplies having the backup component
running in parallel with the primary, e.g. duplicated links in a network transporting
the same copy of information synchronously (1+1 protection).Standby redundancy
implies activating a backup component only when the primary fails, e.g. a network
dimensioned to have spare capacity enough on backup links to be able to reroute all
traffic if primary links should fail (1:1 protection).

Modular redundancy is commonly implemented at link level in communication
networks where fast fault recovery is important. Redundant links can not be use for
low priority traffic in such a configuration since a backup link is always in use.

Standby redundancy is common at higher levels in communication networks, e.g.
at transport level in state or country back bone networks. In an SDH protection ring
high priority traffic is only transported in one direction while the ring is free of faults,
and rerouted in the opposite direction when a link failure occurs (see e.g. [De95]).
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Low priority traffic can thus utilise the backup/spare capacity in the opposite direction
when all links in the ring are operational.

Virtual paths (VP) in ATM networks can be applied to construct patterns of pri-
mary and backup paths in a meshed network (see e.g. [PD00, FHW96]) . On the
contrary to SDH rings which implement 100% capacity redundancy due to the ring
structure, primary/backup patterns in meshed networks can implement link failure
protection for all primary paths without requiring 100% capacity redundancy simply
by letting selected primary paths share a backup path. The selected primary paths
must be independent, i.e. have low probability of failing simultaneously.

As with SDH, ATM typically runs in back bone networks (city, state, country)
where necessary primary/backup path patterns are configured by the network op-
erator. Several optimisation algorithms for network planning have been developed
(e.g. [MGR97]) which produce near optimal configurations as long as all network
parameters (from all nodes and links) are available for analysis, i.e. the algorithms
are centralised. A network operator may have enough overview and control to apply
such algorithms.

The Internet Protocol (IP) has become a common protocol both in backbone and
end user networks. By enabling MPLS [RVC01] in IP-networks labelled switched
paths (LSPs) can be established (similar to VPs in ATM), which again enables config-
uration of primary/backup path patterns for paths between end user. Optimal pattern
configuration can provide end users with a better tailored QoS than the best effort
service provided in a standard IP-network today. Finding such an optimal pattern
configuration on the other hand, is hard when the number of primary paths vary con-
stantly (end users establish and release connections frequently) and since no central
control unit with total overview exits in an IP-network, i.e. centralised optimisa-
tion algorithms cannot be applied. In the next section we introduce an algorithm for
finding primary/backup path patterns. The algorithm is distributed, produces near op-
timal patterns and is potentially able to handle a dynamic environment, i.e. produce
re-optimised patterns when new primary paths are establish and old released.

2.2 Primary/Backup Path Patterns

A meshed communication network can be represented as a directed graphG with
a set of linksLG as edges and a set of nodesNG as vertices . Let the pair{i, j} ∈
LG, abbreviatedij, represent a link from nodei to nodej. (Pairs in general are
abbreviated in the same manner in the rest of the paper). Letcij be the available
capacity of linkij.

Let π
m(sd)
r = {si, ij, . . . , kd} be a path of rankr ∈ R providing connection

m ∈ M from source nodes to a destination noded via a specific set of links (s and
d are implicit inm and will be omitted).M is the set of all connections andR the
set of all ranks. A primary path has by definition a higher rank than its backup path,
i.e. rprimary < rbackup. In this paperR = {0, 1}, thus only two rank levels for paths
are considered, i.e.rprimary = 0 andrbackup = 1.
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Let Π = {πm
r }∀mr i.e. the set of all paths, and let

Π† = {Πx : Πx ∈ P(Π) ∧ ({πm
0 , πm

1 } 6⊆ Πx)∀m}

i.e. a set containing subsets of every possible combination (P(. . .) is the power set)
of primary/backup path patterns except subsets where both the primary and backup
paths for the same connectionm is present.Π† describes all the possible ways the
set of connectionsM can be established such that only one of the paths in a pri-
mary/backup path pair are operational at a time.

Finally let am be the required capacity of connectionm. An object function for
our primary/backup path pattern optimisation problem can now be formulated as

min
Π




∑

Πl∈Π†

∑

ij∈LG




∑

mr∈X l
ij

am − cij




+
 (1)

where
X l

ij = {∀mr : πm
r ∈ Πl, ij ∈ πm

r }
i.e. we want to find a primary/backup path patternΠ which minimises the sum of
link overload for all valid combinations of operational primary and backup paths.
[x]+ returnsx whenx > 0 otherwise0. The optimisation is subject to the following
constraints:

∑

ij∈LG


cij −

∑

∀m: ij∈πm
0

am


 ≥ 0 (2)

∑

∀m
|πm

0 ∩ πm
1 | = 0 (3)

i.e. all primary paths must be assigned the capacity they require (2) and all links
in primary and backup paths of the same connection must be disjoint (3).

3. The Cross Entropy Method
Our algorithm in this paper is based on a previously publish algorithm [HW01]

which again is founded in Rubinstein’s Cross Entropy method for combinatorial
optimisation [Rub99]. Both [HW01] and [Rub99] focus on the search for optimal
Hamiltonian cycles, known as the Travelling Salesmen Problem, however the algo-
rithm may be used to find any optimal path with an additive cost function. The
algorithms use a transition probability matrix to generate sample paths. The matrix
provides probabilities for transitions (movement) from a specific node to its neigh-
bour nodes. The event of finding an optimal path by doing a random walk (without
revisiting nodes) based on the matrix is rare, and rare event theory may be applied to
find such paths.

In [Rub99] Rubinstein designs an algorithm which by importance sampling in
multiple iterations alters the transition matrix and amplifies probabilities in Markov
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chains producing near optimal Hamiltonian paths. Cross Entropy is applied to ensure
optimal alteration of the matrix. To speed up the process, a performance function
weights the path qualities such that high quality paths have greater influence on the
alteration of the matrix. The algorithm has 4 steps

1 At iteration t = 0 choose an initial transition matrixPt=0 (e.g. uniformly
distributed).

2 GenerateN paths fromP t. Calculate the minimum Boltzmann temperatureγt

min γt s.t. h(Pt, γt) =
1
N

N∑

k=1

H(πk, γt) > ρ (4)

whereH(πk, γt) = e
−L(πk)

γt is the performance function returning the quality
of pathπk. L(πk) is the raw cost of pathπk (e.g. delay in telecommunication
network).10−6 ≤ ρ ≤ 10−2 is a search focus parameter. The minimum solu-
tion for γt will result in a certain amplification (controlled byρ) of high quality
paths and a minimum averageh(Pt, γt) > ρ of all path qualities in the current
batch ofN paths.

3 Usingγt from step 2, andH(πk, γt) for k = 1, 2..., N generate a new transition
matrixPt+1 by solving

max
Pt+1

1
N

N∑

k=1

H(πk, γt)
∑

ij∈πk

ln Pt,ij (5)

wherePt,ij is the transition probability from nodei to j at iterationt. The
solution to (5) is shown in [Rub99] to be

Pt+1,rs =
∑N

k=1 I({r, s} ∈ πk)H(πk, γt)∑N
l=1 I({r} ∈ πl)H(πl, γt)

(6)

which will minimise the cross entropy betweenPt and Pt+1 and ensure an
optimal shift in probabilities with respect toγt and the performance function.

4 Repeat steps 2-3 untilH(π̂, γt) ≈ H(π̂, γt+1) whereπ̂ is the best path found.

4. Agent Behaviour

4.1 Distributed Implementation of the Cross Entropy
Method

In [HW01] (6) and (4) are replaced by the autoregressive counterparts

Pt+1,rs =
∑N

k=1 I({r, s} ∈ πk)βN−kH(πk, γt)∑N
l=1 I({r} ∈ πl)βN−kH(πl, γt)

(7)
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and
min γt s.t. h

′
t(γt) > ρ (8)

respectively where

h
′
t(γt) = h

′
t−1(γt)β + (1− β)H(πN , γt)

≈ 1− β

1− βN

N∑

k=1

βN−kH(πk, γt)

andβ < 1. Hence whenever a single new pathπN is found step 2 and 3 can immedi-
ately be performed and a new probability matrix generated.

The overall algorithm can now be viewed as a distributed search system where
search agents can evaluate a path found (and calculateγt by (8)) when they reach
their destination node, and immediately start backtracking the path towards the source
while updating relevant probabilities in the transition matrix by applyingH(πN , γt)
through (7). Such a search system has great similarities to how ant colonies explore
their surrounding environment searching for food. Markov chains in the transition
matrix can be compared to pheromone trails built by ants searching for food. Step 2 is
comparable to an ant’s forward search for a path to a food source and the ant realising
the quality of the path found (findingγt). Step 3 represents an ant’s adjustment of the
pheromone level of the trail when returning to its nest. In the remaining of this paper
we interchangeably call the components which execute the steps of the distribute
algorithm for mobile agents, ant-like agents or just agents .

Several other algorithms directly inspired by the ant foraging analogy exist ([CD98]
[WPO98][VS99a][DC99][Sch00]) with Schroonderwoerd et al as one of the pio-
neers [SHBR97]. However they lack the mathematical foundation of the algorithm
in [HW01]. Problem solving inspired by ants and other swarming creatures is known
generally as “Swarm Intelligence” [BDT99].

4.2 Agents Detesting each other

Our algorithm in this paper adopts all the fundamentals from [HW01] but im-
plements a different cost function. The approach is to let each primary path and
each back-up path be dealt with by a separate species of ant-like agents. Our fun-
damental idea is to let the different species detest each other in accordance to the
primary/backup optimisation criteria in Section 2.2.

Backup agents search for paths which are disjoint with their corresponding
primary paths.

Backup agents having overlapping corresponding primary paths search for dis-
joint paths.

All agents detest other agents which represent a load which in addition to their
own may incur an overload

Hence, the following additive cost function for a path is established



Paper B 55

L(πm
r ) =

∑

ij∈πm
r

Dmr
ij

where the link costD represents how desirable the link is considering the primary/backup
path optimisation criteria in Section 2.2.

Dmr
ij = S


am +

∑

∀ns: ij∈πn
s

Pns
ij V ns

i Qns
mr an − cij


 (9)

where

Qns
mr =





Q̂n,s−1
m,r−1, n 6= m, s = r = 1

1, n = m, s < r
0.75, n 6= m, s < r
0, otherwise

(10)

S[c] =
{

η · e c
e·η , c < η · e

c, otherwise
(11)

We consider agents involved in building a pathπm
r as agents of speciesm with rank

r (species is synonymous with connection). The components of (9)-(11) can be ex-
plained as follows:

am is the capacity required by connectionm which the path in question (πm
r )

is intended to carry.

an is the capacity required by a competing path (πn
s ).

The summation includes paths of all species (connections) and all ranks which
have previously followed linkij (and placed pheromones).

Pns
ij is the probability that agentns will choose link ij as its departure link

from nodei given that the agent visits nodei.

V ns
i is the probability that agentns visits nodei during forward search. Thus

Pns
ij ·V ns

i weights the required capacityan of competing paths such that agent
mr is discouraged to follow links where overload in general is likely.

Qns
mr weights the capacityan even further:

– Whenπn
s is a backup path of a different connection,Q̂n,s−1

m,r−1 is returned.

Q̂n,s
m,r is the approximate probability of a common link failure in both

πn
s andπm

r , henceQ̂n,s−1
m,r−1 is the probability of a common link failure in

bothπn
s ’s andπm

r ’s primary paths. The return value weights the required
capacityan of competing paths such that agentmr is discouraged to
follow links where overload is likely if a link-failure should occur.

– Whenπn
s is πm

r ’s primary path, a constant of1 is returned such that agent
mr is discouraged to follow links used by its primary path. This enforces
the constraint in (3).
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– Whenπn
s is a primary path of a different connection, a constant of0.75

is returned such that agentmr to some degree is discouraged to follow
links used by alien primary paths. The two constants1 and 0.75 are
empirically chosen, and meant to increase the probability of backup paths
being routed on links together with alien primary paths rather than being
routed on links together with their own primary path, i.e. avoid violating
the constraint in (3).

– Whenπm
r = πn

s , a constant0 is returned. The required capacity of con-
nectionm is represented outside the summation.

S[. . .] is applied to smoothen the output of the cost expression and to ensure
none-zero link costs. Parameterη regulates the smoothness of the transition
area between no overload and overload. See fig. 1.
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a

Figure 1. Cost shaping as a result of (11). The plot showsS[a− c] wherec = 107 andη = 5 · 105.

Dmr
ij returns a high cost (the expected overload) when linkij has too many candidate

paths running through it which together could overload the link. A cost close to zero
is returned when linkij has some or a lot of unrequested spare capacity.

In summary , the costL(πm
r ) of a path is increasing if an ant-like agent “smells”

high levels of pheromone (observes high probabilities in the transition matrix) from
agents potentially competing for the same resources along the links of the path.

5. Implementation
To verify the performance of our primary/backup path algorithm a simulator was

implemented based on an Active Network (AN) [Pso99] enabled version of “Net-
work Simulator 2”, an open source simulator package capable of simulating realistic
IP-based scenarios [DAR]. The AN extension makes it convenient to implement sim-
ulation scenarios where multiple mobile ant-like agents solve problems by exploring
a network topology.
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The implementation of an agent’s behaviour is fairly straight forward. An agent in
our algorithm roughly performs the following steps after being “born” at its source
node:

1 Clear tabulist containing nodes already visited. Fetch a vector form node’s
database (DB) of (approximate) probabilities for common link failures between

the agent species’ primary path and alien primary paths, i.e.
{

Q̂n,0
m,0

}
∀n

.

2 Record visit to current nodei in tabulist. If current node is the destination
node:

(a) Fetch agent species/rank’s temperature(γk) from destination node DB.
Calculate new temperature based on accumulated path costL(πm

r ). Store
new temperature.

(b) Update total no of visited nodes by agent’s species/rank stored in node
DB. Fetch new total.

(c) Clear vector with probabilities of common failures.

(d) Backtrack every hop towards sources node. At each hop:

i Update the transition matrix (leave pheromones) by use of (7)
ii Accumulate approximate common link failure probabilities between

agent species/rank’s and other species of same rank by fetching rel-
evantV nr

i andPnr
ij from node DB and calculatinĝQn,r

m,r. StoreQ̂n,r
m,r

in vector.
iii UpdateV mr

i for agent’s species/rank by dividing total no of visits to
current node (available from node DB) by total no of nodes visited
by agent’s species/rank (carried from destination node). Store new
V mr

i in node DB.

(e) When source node has been reached, store vector of common link failure
probabilities in node DB.

(f) Goto step 1.

3 Build a next-hop probability table based on the transition matrix (pheromones)
for the agent’s species and the agent’s rank as well as the tabulist (to avoid
revisiting nodes).

4 Select next nodej to visit using the next-hop probability table.

5 Calculate costDmr
ij of link ij towards next node.V ns

i andPns
ij for relevantns

are fetched from node DB.̂Qn,s−1
m,r−1 is available from vector carried by agent.

Accumulate path costL(πm
r ).

6 Move to next node and goto step 2.

Minimum one agent of a specific species/rank is required for every path to be searched
for. When the search converges, the path found by a species/rank of agents will ap-
pear as a chain of high values in the transition matrix (an intense track of pheromone).
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6. Simulation Results
Figure 2 shows the topology of the example network we chose for our test scenario.

All links in the topology are duplex with a capacity of 10 Mb/s.

3

7

2

6

1
5

0

4

Figure 2. Network topology with 8 nodes and 21 links. All links are duplex with a capacity of 10
Mb/s.

All algorithm parameter values (see [HW01] for details) applied during the simu-
lations were empirically selected:ρ = 0.01, β = 0.998, noise = 10−60, D = 100,
ρ reduction = 1 (i.e. no reduction) andη = 5 · 105.

In our test scenario eight 5Mb/s connections between node 0 and 1 in the test net-
work were requested, and a pattern of 8 independent primary paths and 8 backup
paths was expected to be established. Such a pattern is realisable since the network
provides resources for 10 5Mb/s paths from node 0 to node 1, i.e. 8 5Mb/s primary
paths can be operational simultaneously and share the last 2 paths for backup pur-
poses.

Table 1. Summarised results from 15 simulations.

Primary path causes overload 0 links out of21 for all sim.

Primary/Backup path not disjoint 0 links out of21 for all sim.

Single link failure handled by
backup paths without overload

6 out of15 sim.

Average (stdev) no of links which
may cause overload due to subopti-
mal backup paths

9 out of15 sim.,6.0(±2.06)

links out of21

Loss given link failure when
backup paths are suboptimal

Maximum5 Mb/s

Table 1 shows summarised results from 15 simulation of our test scenario. None
of the patterns of primary paths established caused any link to be overloaded, i.e. the
constraint in (2) from Section 2.2. was satisfied in every simulation. None of the
patterns established primary/backup path pairs with common links, i.e. the constraint
in (3) was also satisfied in every simulation. In 6 out of the 15 simulations the backup
path patterns established where able to handle a single link failure in any link of the
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network without overloading links, i.e. a good candidateΠ for the object function
(1) was found. For the remaining 9 simulations an average of6.0 (with standard
deviation2.06) specific single link failures would cause an overload situation due to
suboptimal patterns of backup paths. But even if such an overload situation should
occur, no greater loss of traffic than 5 Mb/s (one connection) would be experienced.
Hence even the primary/backup path patterns where the backup paths are suboptimal
can be considered relatively good candidateΠs for the object function.

7. Conclusion
A common way of improving dependability in communication networks is by con-

figuring pairs of independent primary and backup paths. A backup path is meant to
carry primary traffic if the primary path should fail. In the internet today no such
level of dependability is provided to end users. MPLS may be a tool to enable
backup/primary path configurations in IP-networks.

In this paper we present a distribute algorithm capable of finding good primary/-
backup path patterns in meshed networks subject to given link capacity constraints.
The algorithm is suitable for IP-networks where no centralised control is desired. The
algorithm is based on a previously publish algorithm [HW01] which again inherits
its foundation from Rubinstein’s work on cross entropy optimisation.

An advanced link cost function is introduced in the algorithm described. The cost
function takes into consideration path conflicts and tries to minimise link overload
and traffic loss both when all primary paths are free of faults and when link failures
occur.

Simulation results indicate that the algorithm manages to establish close to opti-
mal primary/backup path patterns. However parameter tuning and further testing are
required.

Future work includes testing the algorithm in larger and more realistic network
environments with dynamic traffic conditions, and investigating its performance as a
routing system in ad hoc networks.

References

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.Swarm Intelligence: From Natural
to Artifical Systems. Oxford University Press, 1999.

[CD98] Gianni Di Caro and Marco Dorigo. AntNet: Distributed Stigmergetic Control for Com-
munications Networks.Journal of Artificial Intelligence Research, 9:317–365, Dec 1998.

[DAR] DARPA: VINT project. UCB/LBNL/VINT Network Simulator - ns (version 2).
http://www.isi.edu/nsnam/ns/.

[DC99] Marco Dorigo and Gianni Di Caro. Ant Algorithms for Discrete Optimization.Artificial
Life, 5(3):137–172, 1999.

[De95] M. Decina and T. Plevyak (editors). Special Issue: Self-Healing Networks for SDH and
ATM. IEEE Communications Magazine, 33(9), September 1995.

[FHW96] V. J. Friesen, J. J. Harms, and J. W. Wong. Resource Management with VPs in ATM
Networks.IEEE Network, 10(5), Sep/Oct 1996.



60 EMERGENT BEHAVIOR IMPLEMENTS FOR NETWORK MANAGEMENT

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[HW01] Bjarne E. Helvik and Otto Wittner. Using the Cross Entropy Method to Guide/Govern
Mobile Agent’s Path Finding in Networks. InProceedings of 3rd International Workshop
on Mobile Agents for Telecommunication Applications. Springer Verlag, August 14-16
2001.

[MGR97] M. H. MacGregor, W. D. Gover, and K. Ryhorchuk. Optimal spare capacity preconfigu-
ration for faster restoration of mesh networks.Journal of Network and System Manage-
ment, 5(2):159–170, Jun 1997.

[PD00] Larry L. Peterson and Bruce S. Davie.Computer Networks - A Systems Approach. Mor-
gan Kaufmann, 2000.

[Pos81] Jon Postel. RFC 791: Internet Protocol. IETF, September 1981.

[Pso99] Konstantinos Psounis. Active Networks: Applications, Security, Safety, and Architec-
tures.IEEE Communications Surveys, First Quarter, 1999.

[Rub99] Reuven Y. Rubinstein. The Cross-Entropy Method for Combinatorial and Continuous
Optimization. Methodology and Computing in Applied Probability, pages 127–190,
1999.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. RFC3031: Multiprotocol Label Switching
Architecture. IEFT, January 2001.

[Sch00] J. Schuringa. Packet Routing with Genetically Programmed Mobile Agents. InProceed-
ings of SmartNet 2000, Wienna, September 2000.

[SHBR97] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-based Load Balanc-
ing in Telecommunications Networks.Adaptive Behavior, 5(2):169–207, 1997.

[VS99] Griselda Navarro Varela and Mark C. Sinclair. Ant Colony Optimisation for Virtual-
Wavelength-Path Routing and Wavelength Allocation. InProceedings of the Congress
on Evolutionary Computation (CEC’99), Washington DC, USA, July 1999.

[WPO98] T. White, B. Pagurek, and Franz Oppacher. Connection Management using Adaptive
Mobile Agents. InProceedings of 1998 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDAPTA’98), 1998.



PAPER C

Cross-Entropy Guided Ant-like Agents Finding Cyclic Paths in Scarcely
Meshed Networks

Otto Wittner and Bjarne E. Helvik

The Third International Workshop on Ant Algorithms, ANTS’2002

September 12-14th, Brussels, Belgium.





CROSS-ENTROPY GUIDED ANT-LIKE AGENTS
FINDING CYCLIC PATHS IN SCARCELY
MESHED NETWORKS
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Bjarne E. Helvik

Abstract Finding paths in networks is a well exercised activity both in theory and practice but still
remains a challenge when the search domain is a dynamic communication network envi-
ronment with changing traffic patterns and network topology. To enforce dependability
in such network environments new routing techniques are called upon. In this paper
we describe a distributed algorithm capable of finding cyclic paths in scarcely meshed
networks using ant-like agents. Cyclic paths are especially interesting in the context
of protection switching, and scarce meshing is typical in real world telecommunication
networks. Two new next-node-selection strategies for the ant-like agents are introduced
to better handle low degrees of meshing. Performance results from Monte Carlo Sim-
ulations of systems implementing the strategies are presented indicating a promising
behavior of the second strategy.

1. Introduction
Finding paths in networks is a well exercised activity both in theory and practice.

Still it remains a challenge especially when the search domain is a dynamic commu-
nication network environment with changing traffic patterns and network topology.
The internet is such an environment, and as an increasing number of applications
demanding QoS guarantees is beginning to use internet as their major communica-
tion service, efficient and dependable routing in the network becomes more important
than ever.

Protection switching [AP94] is a well known technique for improving depend-
ability in communication networks and commonly used in larger SDH- and ATM-
networks. To enable fast recovery from link or network element failures two (or
more) disjunct independent paths from source to destination are defined, one primary
and one (or more) backup path. Loss of connectivity in the primary path triggers
switching of traffic to the backup path. Good dependability is achieved by allocat-
ing required resources for the backup path prior to the occurrence of failures in the
primary path. However maintaining the necessary mesh of backup paths in a dy-
namic network with a large number of active sources and destinations is a complex
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task [WH02b]. Grover & al. [GS98, SG99] propose to use simple cyclic paths (“p-
cycles”) as a means for dependable routing in meshed networks. Protection rings are
common in SDH based transport networks and guarantee protection against single
link failures in the ring (assuming the ring has duplex links)[De95]. All network
elements on the ring can continue to communicate with each other after a single
link failure by routing all traffic over the “healthy” curve-section of the ring (Figure
1). Thus a cyclic path can provide a dependable communication service for a set of

Figure 1. Protection switching in a ring network.

sources and destinations. Assuming p-cycles can be found, the number of necessary
cycles to be maintained in a network providing a dependable communication service
to a set of network elements, is likely to be far less than the number of traditional
backup paths required to provide the same service.

In this paper we describe an algorithm, founded in rare event theory and cross
entropy, that is able to find cyclic paths in networks. The fundamentals of the al-
gorithm has previously be published in [HW01]. This paper enhances the original
algorithm by enabling it to find cyclic paths in networks with low degrees of mesh-
ing, a common property of real world telecommunication networks. The algorithm is
fully distributed with no centralized control, two desirable properties when depend-
ability is concerned. The algorithm can conveniently be implemented using simple
(ant-like) mobile agents [PK98]. Section 2 introduces the foundations of the original
algorithm and motivates the use of it. Section 3 describes the original next-node-
selection strategy for the mobile agents as well as two new strategies. Emphasis
is put upon search performance when searching for cycles in scarcely meshed net-
works. Section 4 presents results from Monte Carlo simulations of systems based on
the strategies described in section 3. Finally section 5 summarizes, concludes and
indicates future work.

2. Agent Behavior Foundations
The concept of using multiple mobile agents with a behavior inspired by forag-

ing ants to solve routing problems in telecommunication networks was introduced
by Schoonderwoerd & al. in [SHBR97] and further developed in [CD98][WPO98]
[Sch00]. Schoonderwoerd & al.’s work again builds on Dorigo & al.’s work on Ant
Colony Optimization (ACO) [DC99]. The overall idea is to have a number of simple
ant-like mobile agents search for paths between a given source and destination node.
While moving from node to node in a network an agent leaves markings imitating
the pheromone left by real ants during ant trail development. This results in nodes
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holding a distribution of pheromone markings pointing to their different neighbor
nodes. An agent visiting a node uses the distribution of pheromone markings to se-
lect which node to visit next. A high number of markings pointing towards a node
(high pheromone level) implies a high probability for an agent to continue its itinerary
towards that node. Using trail marking agents together with a constant evaporation
of all pheromone markings, Schoonderwoerd and Dorigo show that after a relatively
short period of time the overall process converges towards having the majority of the
agents following a single trail. The trail tends to be a near optimal path from the
source to the destination.

2.1 The Cross Entropy Method

In [Rub99] Rubinstein develops a search algorithm with similarities to Ant Colony
Optimization [DC99, ZBMD00]. The collection of pheromone markings is repre-
sented by a probability matrix and the agents’ search for paths is a Markov Chain
selection process generating sample paths in the network. (“Path” and “trail” are
equivalent in this paper and will be used interchangeably.)

In a large network with a high number of feasible paths with different qualities,
the event of finding an optimal path by doing a random walk (using a uniformly
distributed probability matrix) is rare, i.e. the probability of finding the shortest
Hamiltonian cyclic path (the Traveling Salesman Problem) in a 26 node network
is 1

25! ≈ 10−26. Thus Rubinstein develops his algorithm by founding it in rare event
theory.

By importance sampling in multiple iterations Rubinstein alters the transition ma-
trix and amplifies probabilities in Markov chains producing near optimal paths. Cross
entropy (CE) is applied to ensure efficient alteration of the matrix. To speed up the
process, a performance function weights the path qualities (two stage CE algorithm
[Rubar]) such that high quality paths have greater influence on the alteration of the
matrix. Rubinstein’s CE algorithm has 4 steps:

1 At the first iterationt = 0, select a start transition matrixPt=0 (e.g. uniformly
distributed).

2 GenerateN paths fromP t using some selection strategy (i.e. avoid revisiting
nodes, see section 3). Calculate the minimum Boltzmann temperatureγt to
fulfill average path performance constraints, i.e.

min γt s.t. h(Pt, γt) =
1
N

N∑

k=1

H(πk, γt) > ρ (1)

whereH(πk, γt) = e
−L(πk)

γt is the performance function returning the quality
of pathπk. L(πk) is the raw cost of pathπk (e.g. delay in a telecommunica-
tion network). 10−6 ≤ ρ ≤ 10−2 is a search focus parameter. The minimum
solution forγt will result in a certain amplification (controlled byρ) of high
quality paths and a minimum averageh(Pt, γt) > ρ of all path qualities in the
current batch ofN paths.
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3 Usingγt from step 2 andH(πk, γt) for k = 1, 2..., N , generate a new transition
matrixPt+1 which maximizes the “closeness” to the optimal matrix, by solving

max
Pt+1

1
N

N∑

k=1

H(πk, γt)
∑

ij∈πk

lnPt,ij (2)

wherePt,ij is the transition probability from nodei to j at iterationt. The
solution to (2) is shown in [Rub99] to be

Pt+1,rs =
∑N

k=1 I({r, s} ∈ πk)H(πk, γt)∑N
l=1 I({r} ∈ πl)H(πl, γt)

(3)

which will minimize the cross entropy betweenPt andPt+1 and ensure an
optimal shift in probabilities with respect toγt and the performance function.

4 Repeat steps 2-3 untilH(π̂, γt) ≈ H(π̂, γt+1) whereπ̂ is the best path found.

2.2 Distributed Implementation of the Cross Entropy
Method

Rubinstein’s CE algorithm is centralized, synchronous and batch oriented. All
results output from each step of the algorithm must be collected before the next step
can be executed. In [HW01] a distributed and asynchronous version of Rubinstein’s
CE algorithm is developed. A few approximations let (3) and (1) be replaced by the
autoregressive counterparts

Pt+1,rs =
∑t

k=1 I({r, s} ∈ πk)βt−kH(πk, γt)∑t
l=1 I({r} ∈ πl)βt−kH(πl, γt)

(4)

and
min γt s.t. h

′
t(γt) > ρ (5)

respectively where

h
′
t(γt) = h

′
t−1(γt)β + (1− β)H(πt, γt)

≈ 1− β

1− βt

t∑

k=1

βt−kH(πk, γt)

andβ < 1, step 2 and 3 can immediately be performed when a single new pathπt is
found and a new probability matrixPt+1 can be generated.

The distributed CE algorithm may be viewed as an algorithm where search agents
evaluate a path found (and calculateγt by (5)) right after they reach their destination
node and then immediately return to their source node backtracking along the path.
During backtracking relevant probabilities in the transition matrix are updated by
applyingH(πt, γt) through (4).

The distributed CE algorithm resembles Schoonderwoerd & al.’s original system.
However Schoonderwoerd’s ants update probabilities during their forward search.
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Dorigo & al. realized early in their work on ACO that compared to other updating
schemes, updating while backtracking results in significantly quicker convergence
towards high quality paths. Dorigo & al.’s AntNet system [CD98] implements up-
dating while backtracking, thus is more similar to the distributed CE algorithm than
Schoonderwoerd & al.’s system. However none of the earlier systems implements a
search focus stage (the adjustment ofγt) as in the CE algorithms.

2.3 P-cycles, Hamiltonian Cyclic Paths and CE
algorithms

Grover’s “p-cycles” [GS98] provide protection against a single link failure on any
link connecting the nodes which are on the path defined by the p-cycle. This includes
both on-cycle links (links traversed by the path) as well as straddling links (links not
traversed but having their end nodes on the path). Intuitively a Hamiltonian cyclic
path, which by definition visits all nodes once in a network, would provide a cy-
cle potentially able to protect against any single link failure. This is also argued in
[SG00].

The CE algorithms from both [Rub99] and [HW01] show good performance when
tested on optimal Hamiltonian cyclic path search problems as long as the network
environment is fully meshed (all nodes have direct duplex connections). Real world
telecommunication networks are seldom fully meshed. An average node degree much
lager than 5 is uncommon. Finding a single Hamiltonian cyclic path in a large net-
work with such scarce meshing can itself be considered a rare event.

In the section 3.1 we describe the selection strategy (used in CE algorithm step
2) implemented in the original CE algorithms (both [Rub99] and [HW01]). They
strategy struggles to find Hamiltonian cyclic paths in our 26 node test network shown
in Figure 2. In section 3.2 and 3.3 we suggest two new selection strategies intended
to better cope with a network topology with scarce meshing.

3. Selection Strategies

3.1 Markov Chain Without Replacement

The CE algorithms in [Rub99] and [HW01] implement a strict next-hop selection
strategy termedMarkov Chain Without Replacement(MCWR) in [Rub99]. No nodes
are allowed to be revisited, except for the home node when completing a Hamiltonian
cyclic path.

Let

Xi
t,r(s) = I(s /∈ Vi

t ∨ ((Gt,r ⊆ Vi
t) ∧ s = hni))

whereI(. . .) is the indicator function,Vi
t is agenti’s list of already visited nodes,

Gt,r is the set of neighbor nodes to noder andhni is agenti’s home node. Thus
Xi

t,r(s) is 1 if nodes has not already been visited by agenti, or if all neighbor nodes
of r have been visited by agenti ands is agenti’s home node.
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When MCWR is appliedPt,rs from (4) is weighted byXi
t,r(s) and renormalized

giving a new next-hop probability distribution

Qi
t,rs =

[I(t > D)Pt,rs(1− ε) + ε] Xi
t,r(s)∑

∀k [I(t > D)Pt,rs(1− ε) + ε] Xi
t,r(k)

whereD is the number of path samples required to be found to complete the initial-
ization phase of the system (step 1). The random noise factorε is set to a small value,
e.g. 10−60. During the initialization phase agents are forced to explore since the
next-hop probability vectorQi

t,r will have a uniform distribution over the qualified
(Xi

t,r(s) = 1) neighbor nodes. See [HW01] for more details about the initialization
phase.

If
∑

s∈Gt,r
Xi

t,r(s) = 0, agenti has reach a dead end and in the MCWR strategy
it is terminated. When the event of finding a Hamiltonian cyclic path is rare due to
scarce meshing in a network, most agents will reach such dead ends. Thus only a few
“lucky” agent will be able to contribute with a path in step 2 of the CE algorithm.
This will slow down the search process significantly since CE algorithms require a
“smooth” search space, i.e. many suboptimal solutions should exist in addition to the
optimal solutions.

3.2 Markov Chain Depth First

Instead of immediately terminating agents when dead ends are reached a “retry
mechanism” can be implemented. We have tested what we call theMarkov Chain
Depth First(MCDF) strategy which allows agents to backtrack and retry searching.
An MCDF-agent performs a depth first search [RW88] from its home node, i.e. it tries
to visit nodes in such an order that when a dead end is met (a leaf node is found) all
nodes have been visited only once and the home node is a neighbor of the leaf node.
If a dead end is reached and either all nodes has not been visited or the home node is
not a neighbor node, the agent backtracks along its path one step before continuing
the search.

Let
Xi∗

t,r(s) = I(s /∈ (Vi
t ∪Di

t,r) ∨ ((Gt,r ⊆ Vi
t) ∧ s = hni))

whereDi
t,r is the set of neighbor nodes ofr leading to dead ends for agenti. Thus

Xi∗
t,r(s) is 1 if nodes has not already been visited by agenti ands does not lead to a

dead end, or (as forXi
t,r(s)) if all neighbor nodes ofr have been visited by agenti

ands is agenti’s home node.
All Di

t,r (for ∀r) are stored in a stack managed by agenti. When a fresh next node
r+1 is chosenDi

t,r+1
≡ ∅ is pushed onto the stack. If a dead end is reached at node

r+1 agenti backtracks to the previously visited noder, removes (pops)Di
t,r+1

from
the stack and addsr+1 to Di

t,r (which is now on the top of the stack).
When MCDF is appliedPt,rs is weighted byXi∗

t,r(s) in the same wayXi
t,r(s) is for

MCWR. Results in section 4 show simulation scenarios for MCDF-agents both with
unlimited and limited backtracking. Unlimited backtracking implies never terminat-
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ing agents but letting them search (in depth first fashion) until they find Hamiltonian
cyclic paths. Limited backtracking implements a quota of backtracking steps in each
agent, i.e. a certain no of “second chances” or “retries” are allow for an agent before
termination.

3.3 Markov Chain with Restricted Replacement

By relaxing the agent termination condition even more, we arrive at what we call
theMarkov Chain with Restricted Replacement(MCRR) strategy. The fundamental
difference between this strategy and both MCWR and MCDF is a less strict condition
concerning revisits to nodes. Revisits are simply allowed, but only when dead ends
are reached. To ensure completion of cycles the home node is given priority when a
dead end is reached and the home node is a neighbor node.

Let
Xi∗∗

t,r (s) = I(((Gt,r 6⊆ Vi
t) ∧ s ∈ Vi

t) ∨
((Gt,r ⊆ Vi

t) ∧ hni ∈ Gt,r ∧ s 6= hni))

whereI(. . .) is the inverse indicator function. ThusXi∗
t,r(s) is zero if an unvisited

neighbor node tor exists ands has already been visited, or if all neighbor nodes have
been visited and the home node is a neighbor node buts is not the home node. As for
MCWR and MCDFXi∗∗

t,r (s) weightsPt,rs.
In our simulations we consider only paths found by MCRR-agents which have vis-

ited all nodes when they return to their home node. Several of these agents will find
closed acyclic paths (with loops), i.e. none Hamiltonian cyclic paths. The search
space is now “smoother” and a range of suboptimal solutions exists (most none
Hamiltonian). This enables step 2 in the CE algorithm to be executed with close
to the same efficiently as for a fully meshed network.

However when using MCRR-agents there is no longer guaranteed that the best
path found when the system converges is a Hamiltonian cyclic path. Since the agents
visit all nodes, the length of acyclic closed paths where nodes have been revisited, are
likely to be longer than Hamiltonian cyclic paths. Thus finding the shortest Hamilto-
nian cyclic path (minimization) may still be achievable.

We realize that the above statement does not hold in general since a network topol-
ogy may be constructed having its shortest Hamiltonian cyclic path longer than one
or more closed acyclic paths visiting all nodes. However in the context of p-cycle
design closed acyclic paths may still provide protection against single link failures.

Results in section 4 are promising. MCRR outperforms both MCWR and MCDF
when it comes to speed of convergence, and do in all simulation scenarios converge
to a Hamiltonian cyclic path.

4. Strategy Performance
As for the simulation scenarios in [HW01] we have used an active network en-

abled version of theNetwork Simulatorversion 2 [DAR] to test the three selection
strategies. Our test network topology is show in Figure 2, a 26 node network with
an average number of outgoing links (degree) per node equal to5. The low av-
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Figure 2. Network topology used in simulation scenarios. The topology is generated by theTiers
1.1 topology generator [CDZ97].

erage degree implies existence of far less Hamiltonian cyclic paths compared to a
fully meshed 26 node network with the number of Hamiltonian cyclic paths equal to
25! ≈ 1026. The network topology was generated by theTier 1.1topology generator
[CDZ97] with the parameter vector “1 0 0 26 0 0 9 1 1 1 1 9”.

All scenarios had equal parameter settings (except for different selection strate-
gies):D = 19, µ = 26, β = 0.998, ρ = 0.01, ρ∗ = 0.95, whereµ is the number of
agents operating concurrently andρ∗ theρ reduction factor. See [HW01] for further
descriptions of the parameters.

Table 1 and 2 compare results form simulation scenarios for the different selection
strategies. Results shown are values recorded after 100, 1500 and 10 000 seconds of
simulation time. Time has been chosen as the scale of progress rather than number
of iterations since the time spent per iteration (per search) vary significantly between
the different strategies. Simulation time is expected to be approximately proportional
to real time in a network.

Table 1. Number of paths found in simulation scenarios using the three different selection strate-
gies. Values are averaged over 10 simulations and reported with standard deviations (prefixed by±).
Numbers in bracket are the number of agents which have finished their initialization phase.

Test No of Hamiltonian cyclic paths found No of none Hamiltonian cyclic paths

scenarios 100s 1500s 10 000s 100s 1500s 10 000s

MCWR 1.0±0 (0) 16.0±2.3 (0) 109±8.7 (0) 16.0e3±52.1 246e3±213 1.6e6±533

MCDF unlimited 0.0±0 (0) 1.0±0.0 (0) 2.57±1.3 (0) 201±30.6 1.5e3±79.1 9.3e3±190

MCDF quota=10 1.0±0 (0) 14.0±4.5 (0) 85.0±12.4 (0) 8.8e3±24.3 134e3±156 901e3±345

MCDF quota=5 2.0±0.9 (0) 16.0±4.4 (0) 95.0±10.8 (0) 10.1e3±34.1 155e3±151 1.0e6±402

MCDF quota=2 1.0±0 (0) 14.0±3.7 (0) 99.0±12.1 (0) 11.5e3±40.9 176e3±126 1.2e6±316

MCDF quota=1 2.0±1.0 (0) 16.0±5.5 (0) 105±12.9 (0) 12.3±35.5 188e3±101 1.3e6±367

MCRR 7.0±2.8 (26) 52 800±4620 (26) (converged) 4.9e3±56.0 15.7e3±1580 (converged)
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Table 2. Quality of paths found in simulation scenarios using the three different selection strategies.
Values are based on 10 simulation. Standard deviations are prefixed by± and the worst of the best
values are given in brackets.

Test Best path found (Worst of best paths found) Average path cost

scenarios 100s 1500s 10 000s 100s 1500s 10 000s

MCWR 0.199 (0.251) 0.197 (0.214) 0.193 (0.207) 0.231±0.015 0.232±0.004 0.231±0.004

MCDF unlimited (no paths found) 0.250 (3.273) 0.215 (0.750) (no paths found) 0.923±1.023 254.5±670.5

MCDF quota=10 0.202 (0.371) 0.202 (0.222) 0.194 (0.207) 0.260±0.058 0.254±0.008 0.254±0.008

MCDF quota=5 0.201 (0.240) 0.201 (0.221) 0.196 (0.209) 0.228±0.014 0.240±0.011 0.243±0.008

MCDF quota=2 0.198 (0.293) 0.194 (0.224) 0.194 (0.206) 0.244±0.028 0.241±0.006 0.241±0.005

MCDF quota=1 0.204 (0.258) 0.201 (0.210) 0.193 (0.204) 0.231±0.016 0.235±0.003 0.238±0.003

MCRR 0.203 (0.230) 0.194 (0.202) (converged) 0.514±0.037 0.206±0.015 (converged)

Columns 2, 3 and 4 in Table 1 show the total number of Hamiltonian cyclic paths
found including re-discoveries. Values are averaged over 10 simulations and reported
with standard deviations (prefixed by±). Numbers in bracket are the number of
agents which have finished their initialization phase, i.e. changed search behavior
from doing random walk guided only by a selection strategy to being guided both by
a selection strategy and cross entropy adjusted probabilities (pheromones). Column
5, 6 and 7 show the total number of none Hamiltonian cyclic paths found, including
dead ends and paths not visiting all nodes.

Column 2, 3 and 4 in Table 2 show the best of the best paths found (lowest cost)
in 10 simulations with the worst of the best in brackets. And finally columns 5, 6 and
7 show path cost averaged over 10 simulations and reported with standard deviations
(prefixed by±).

4.1 Markov Chain without Replacement

As expected in the MCWR scenario few Hamiltonian cyclic paths are found even
after 1500 simulation seconds. The scarce meshing in the test network results in
many agent reaching dead ends. The fraction of feasible to infeasible paths found
is as low as6.5 · 10−5 after 1500 seconds. The paths found are of relatively good
quality, but still after 10 000 seconds none of the agents have managed to collect
enough paths samples to finish their initialization phases.

These results indicate the need for a different selection strategy when searching
for Hamiltonian cyclic paths in networks with scarcely meshed topologies.

4.2 Markov Chain Depth First

The results for the MCDF scenarios are not promising. When unlimited back-
tracking is enabled even fewer path are found than for the MCWR scenario. The path
quality is low because the total search time (including backtracking) is registered as
path cost. This is not surprising since unlimited backtracking implies that every agent
is doing an exhaustive search for Hamiltonian cyclic paths. The very reason for in-
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troducing stochastic search techniques in the first place is to avoid the need for such
exhaustive searches.

When the MCDF strategy is limited by quotas of 10, 5, 2 or 1 retry the perfor-
mance improves compared to unlimited backtracking but is not better than the origi-
nal MCWR strategy. Also with this strategy not enough valid paths have been found
after 10 000 seconds to enable any agents to complete their initialization phase. Best
and average path costs are similar to the values for MCWR and no convergence is
observed due to the overall low number of valid paths found.

4.3 Markov Chain with Restricted Replacement

The last row in Table 1 and 2 which presents results from MCRR scenarios, stand
out from the other results. Already after 100 simulation seconds all 26 agents have
completed their initialization phases, and after 1500 seconds the average path cost
has converged to a value close to the best path found (see bold values). Since full
convergence is experienced already around 1500 seconds, no values are given for 10
000 seconds. For all 10 simulations the best path found is a true Hamiltonian cyclic
path. Figure 3 show how the ratio of Hamiltonian to none Hamiltonian cyclic paths
found increases during the search process. Not long after 800 seconds most agents
start finding Hamiltonian cyclic paths.

We believe these results indicates the value of using infeasible paths (none Hamil-
tonian cyclic paths) as intermediate solutions during the iterative search process of
the CE algorithm. The question of accepting or rejecting infeasible solutions is well
known to designers of evolutionary systems [Gol98, Mic96]. When feasible solu-
tions are located far from each other in the search domain, a significant speedup in
the search process can be achieved by letting infeasible solutions act as “stepping
stones” between suboptimal and optimal feasible solutions.

5. Concluding Remarks
As an increasing number of applications demanding QoS guarantees are access-

ing internet, dependable routing is becoming more important than ever. This paper
examines and enhances a distributed cross entropy founded algorithm designed to
find cyclic paths (Hamiltonian cyclic paths) in networks. Such paths are argued to be
good candidate paths when protection switching is to be implemented in meshed net-
works using p-cycles [SG00]. The algorithm presented is well suited for distributed
implementation, for instance using mobile agents or active networks technology.

Previous versions of the algorithm [Rub99, HW01] struggle to find Hamiltonian
cyclic paths in scarcely meshed networks, very much because of the strict selection
strategy (Markov Chain without Replacement ) in operations during the search pro-
cess. In this paper we compare the original selection strategy with two new strategies.
The first new strategy,Markov Chain Depth First, proves to be as inefficient as the
original, while the second,Markov Chain with Restricted Replacement, outperforms
both the other strategies. However, using the second strategy convergence towards
feasible solutions (i.e. Hamiltonian cyclic paths) is not guaranteed. Even so results
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selection strategy.
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from simulation scenarios indicate a high probability of converging towards near op-
timal Hamiltonian cyclic paths.

More excessive parameter tuning of the algorithm is required. Also the possibility
of including heuristics to speed up the convergence process even more should be
investigated.

Currently a new version of the algorithm is under development which allows sev-
eral species of agents compete in finding quality paths in a network. By this a set
of cyclic paths providing an overall high quality p-cycle design may potentially be
found.
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Appendix: Additional Results
This appendix is not part of the original paper, however the results described here were included in

the presentation of the paper at the ANTS 2002 workshop in Brussels. The results have some signifi-
cance and are considered important for the comprehensiveness of the paper.

As mention in Section 4 of this paper, the numbers given in Table 1 for Hamiltonian cyclic paths
include re-discoveries. The number of re-discoveries of paths will increase significantly when the search
process begins to converge. Hence comparing the numbers for the MCRR scenario with the other
numbers in Table 1 has limited value since MCRR is the only scenario which enters a convergence
phase before simulation is terminated. In this appendix we compare the number ofuniqueHamiltonian
cyclic paths found by the scenarios. The number of unique paths found indicate how efficiently the
different strategies explore the search space to find feasible solutions. Table A.1 is similar to the first
four columns of Table 1 except that only unique Hamiltonian cyclic paths are counted.

Table A.1. Number of unique paths found in simulation scenarios using the three different selection
strategies. Values are averaged over 10 simulations and reported with standard deviations (prefixed by
±). Numbers in bracket are the number of agents which have finished their initialization phase.

Test No of unique Hamiltonian cyclic paths found

scenarios 100s 1500s 10 000s

MCWR 0.7±0.8 (0) 15.8±2.6 (0) 108±8.8 (0)

MCDF unlimited 0.0±0 (0) 0.3±0.7(0) 1.6±1.2 (0)

MCDF quota=10 1.0±0.9 (0) 13.9±5.2 (0) 84.3±12.6 (0)

MCDF quota=5 1.3±0.9 (0) 15.3±4.7 (0) 95.0±11.3 (0)

MCDF quota=2 0.9±1.0 (0) 13.8±3.7 (0) 98.3±12.1 (0)

MCDF quota=1 1.3±0.8 (0) 16.0±6.3 (0) 105±13.0 (0)

MCRR 0.3±0.5 (26) 115±40.5 (26) (converged)

The number of unique paths for the first six strategies, MCWR and all variants of MCDF, do not
differ significantly from the total number of paths given in Table 1. Hence the first six strategies seldom
re-discover a path. However the last strategy, MCRR, start re-discovering paths early. Already after
100 seconds of simulation time only on average 0.3 out of 7.0 paths found are unique. Even so, MCRR
manages to find on average 115 unique paths already after 1500 seconds. 115 paths is a greater average
number of unique paths than any of the other strategies ever find before simulation is terminated. Hence
the results in Table A.1 presents further evidence in favor of allowing infeasible solutions during the
search process.
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ROBUST IMPLEMENTATION OF POLICIES
USING ANT-LIKE AGENTS

Otto Wittner

Bjarne E. Helvik

Abstract Policy based management is a powerful means for dealing with complex heterogeneous
systems. However, the policies are commonly strictly interpreted, and it is tempting to
resort to centralized decisions to resolve conflicts. At the same time, swarm intelligence
based on “ant like” mobile agents has been shown to be able to deal with challenging op-
timization and trade-off problems. This paper discusses and demonstrates how policies
may be used to govern the behavior of mobile agents to find near optimal solutions for
the implementation of a set of potentially conflicting policies in a truly distributed man-
ner. A more dependable/robust system is obtained. The enforcement of the policies is
soft in the sense that it is probabilistic and yields a kind of “best effort” implementation.
A case study illustrating how ant like mobile agents may implement load distribution
and conflict free back-up policies, is presented.

Keywords: Policy enforcement, dependability, swarm intelligence, ant-like agents, mobile agents

1. Introduction
Today’s computer and telecommunication network environments consists of a het-

erogeneous mix of network technologies, computing devices and applications. Policy
based management [Slo94b] is a recognized concept for organizing management op-
erations in such complex network environments. Results form research activities the
last decade include standardization on policy management architectures, information
models and protocols [MESW01, BCD+00] as well as a range of policy specification
languages, cf. for instance Chapter 2.2 of [Dam02] for a survey.

The traditional approach to policy enforcement yields basically an implementation
of deterministic rules. Furthermore, in order to resolve potential conflicts between
the different policies, there is a tendency to resort to methods requiring centralized
decision making [LS99d]. Avoiding centralization is one reason (among others) for
not always eliminating policy conflicts. Strategies for resolving policy conflicts have
been studied by several researchers [LS99d, CLN00].

In this paper we present a technology, known asswarm intelligence[BDT99],
applicable for enforcement of process policies in a distributed and robust manner.
The fundamental components of swarm intelligence systems are simple, autonomous
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agents with a stochastic behavior similar to “agents” found in biological systems in
nature, e.g. ant colonies. A high number of such agents are in action simultane-
ously communicating indirectly by changing the environment. The overall concept
of swarm intelligence has several desirable properties from a dependability point of
view: High redundancy, true distribution and adaptability. Section 2 of this paper
introduces the fundamentals of swarm intelligence and agents with ant-like behavior.
Such agents are proposed to implement policy management systems. The stochastic
behavior of the agents is interpreted assoft policy enforcement,i.e. the policies spec-
ifying an agent’s behavior will be enforced with some probability which yields a kind
of “best effort” enforcement of conflicting policies and policies not fully enforceable
due to resource limitations in the network. Section 3 describes how a swarm based
system may implement a set of policies, where subsection 3.3 describes how swarm
based systems can resolve policy conflicts.

To demonstrate the potential of swarm intelligence implementations of policies,
section 4 presents a case study where policies for connection management in a net-
work are considered. Finally in section 5 we summarize, conclude and indicate future
work.

2. Fundamental Agent Behavior
Swarm intelligence may be defined as “... any attempt to design algorithms or

distributed problem-solving devices inspired by collective behavior of social insect
colonies and other animal societies” [BDT99]. Pioneering work in this field of re-
search was performed decades ago, however the first attempts of applying swarm
intelligence in a telecommunication management context was done by Steward and
Appleby [SA94] and has later been developed by several other researchers [SHBR97]
[CD98][HW01].

2.1 Informal Behavior Outline

In this paper we concentrate on the Cross Entropy founded algorithm (CE algo-
rithm) from [HW01] which is inspired by the foraging behavior of ants. The al-
gorithm has some fundamental elements in common with most swarm intelligence
systems, with the extension that the search is successively focused by lowering a
temperature parameter as better solutions are found. In addition, fundamental to our
approach is the interaction between different types of ant-like agents as introduced in
[WH02b].

Many asynchronous, autonomous agents.A large number of autonomous simple
agents move around in a given environment represented as a graphG with set
V (G) of vertices andE(G) of edges. A unique type of agent represents a
policy combined with the target for enforcement of this policy. Enforcement
is implemented by having agents utilize resources connected to vertices and
edges, see section 4.2 for exemplification.
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Stochastic search for solutions.Each agent search in a stochastic manner for a so-
lution to a given problem, i.e. a policy enforcement, similar to ants’ behav-
ior when searching for a food source. A solution is represented as a path
πt = {si, ij, . . . , kl, ld} wheres, i, j, k, l, d ∈ V (G). An agent finds a path
by doing a random walk combined with a search strategy (e.g. avoid revisiting
vertices). Each step in the random walk is controlled by a probability vector
Pt,i wherei is the currently visited vertex1 .

Indirect, asynchronous communication. Agents communicate indirectly and affect
each others behaviors by changing the environment. When a solution pathπt

is found, an agent backtracks along the path and leaves virtualpheromoneon
every edge traversed. Real pheromones are chemical substances released by an
ant to signal some message to other ants. Virtual pheromones are weights
which influence the probability distributionsPt,i which again influence the
search behavior of the agents (cf. previous item).

Iterative with positive feedback. The search process is iterative and accelerated by
positive feedback. When a solution is found and backtracking completed,
an agent restarts forward search. Edges in high quality paths receive high
pheromone weights. A high weight on an edge increase the probability for
an agent to traverse the edge in successive searches. Pheromones placed as a
result of successive searches reinforce the high weights even more. Over time
high quality solutions emerge as sequences of highly weighted edges, resem-
bling the emergence of ant trails. The CE algorithm speeds up this process
further by making the agents more selective with respect to what a high quality
solution is as better solutions are found [HW01, Rub99].

Together these components have been shown to enable design of systems capable of
finding optimal or near optimal solutions to complex optimization problems classified
as NP-hard without any need of centralized control. Network management of large
heterogeneous telecommunication networks involve solving different optimization
problems with NP-hard complexity, e.g. routing and network planning. Decentral-
ized techniques for performing such optimization are indeed of interest and may be
worth incorporating into policy based network management systems.

2.2 Agent Algorithm

The actual steps in the CE algorithm that will be used in the case study of section 4,
may be described as follows. Keep in mind that the algorithm describes the behavior
of one type of agent. In multi-type agent systems, each type will have its separate set
of parametersN , variablesPt,i, γt, functionsLij and hence,H(πt, γt).

1 At iterationt = 0 initialize all probability vectors (Pt=0,i |∀i∈V (G)) to uniform
distributions.

1Each type of agent have their individual probabilities. For the sake of simplifying the introduction, the sub and
superscripts necessary to identify the types are not shown.
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2 CreateN agents. For each agent perform the step 3-5.

3 Generate a pathπt by performing a random walk based on the probability
vectorsPt,i |∀i∈V (G) and some search strategy ([WH02a]).

4 At the destination vertex calculate the optimal Boltzmann temperatureγt which

controlsH(πt, γt) = e
−L(πt)

γt , the performance function returning the quality
of pathπt. L(πt) =

∑
ij∈πt

Lij is the raw cost of pathπk which again is
the sum of edge costs for all edges in the path. The edge cost is related to the
success of the policy enforcement on the edges as will be discussed in section 4.
The optimal solution forγt will result in a certain amplification of high quality
paths and a minimum weighted average of all path qualities for paths found
so far, i.e. search focus is directed towards good candidate solution paths.
The enforcement of potentially conflicting policies are “signaled” throughLij

which may include calculations based on pheromones from alien species of
ant-like agents, see section 3.3.

5 Usingγt andH(πt, γt) from step 4, generate new probability vectorsPt+δ,i

by minimizing the cross entropy betweenPt,i |∀i andPt+δ,i |∀i, whereδ is
the incremental time to the next agent starts its search. Minimizing the cross
entropy ensures an optimal shift in the probabilities with respect toγt and the
performance function. The generation ofPt+δ,i |∀i is achieved by adjusting
relevant probabilities ofPt,i |∀i during re-traversal of pathπt.

6 Repeat steps 3-5 untilH(π̂, γt) ≈ H(π̂, γt+∆) whereπ̂ is the best path found
and∆ is an appropriately chosen time.

For details on the CE algorithm and the formal foundations the reader is referred to
[Rub99, HW01]

3. From Policies to Agent Behavior
The agent behavior, described in the previous section, has hereto been adapted and

used to handle specific optimization problems, either as stand alone “optimization
engines”, e.g. [Rub99][KGV83][DG97], or as an integrated part of network O&M,
[HW01][WH02b][WH02a]. However we suggest to take a policy view point of the
problem at hand and base the agent behavior on a set of policies. Soft enforcement
of policies may be regarded as minimizing the deviation from the policies under con-
straints set by resource limitations in the network, network topology and operation.
In the following subsections we describe the steps from policy specification to policy
implementation by ant-like agents. We create policies at two levels, and in accor-
dance with [MC93] we apply the termfunctional policiesfor upper level policies and
process policiesfor lower level policies.

3.1 Problem Fundamentals: Functional Policies

Elements connecting the agent behavior to a specific problem are thegraph (G)
and theedge costs(Lij).
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Figure 1. Policies and target organization. Each policy target instance is allocated one unique type
of ant-like agent.

The graph requires a mapping onto the solution space for the problem at hand.
A one-to-one mapping is desirable such that all possible solutions from the solution
space are represented in the graph and no solutions being none-existing in the solution
space can be found in the graph. In section 4.2 nodes and link resources in an IP
backbone network are mapped to graph vertices and edges respectively.

Given a graph representation, the edge costs and the path performance function
control the core behavior of an agent. As the first step in the design process for
defining these elements, we suggest toestablish a set of policies,{Fr}r=0,...,R, which
identify requirements for relevant targets fundamental in the management problem.
It is assumed that these policies are ordered according to their importance, hence,r
is referred to as the rank of the policy.

Targets of the management problem are the managed entities in the network which
shall comply with one or more of the policies. The sub- or superscriptm refers to
a target. Examples of targets are virtual paths, cf. the case study, and databases.
In general, targets are associated with vertices, edges as well as patterns of vertices
and/or edges in the graph. Figure 1 illustrates how policies and targets may be orga-
nized. Some targets may be treated by several policies while others only by one or a
few. In section 4.1 two functional policies, F1 and F2, are established each treating
12 different target paths which again are sequences of link resources.

As a step in the enforcement implementation of the policies we allocate one unique
type of ant-like agent to each policy-target instance,mr, as illustrated in Figure 1.
Thus a type of ant-like agent is intended to be designed specifically to enforce a
certain policy for a certain target.

3.2 Behavior Details: Process Policies

To better understand what behavior details will be required for our agents, we
refine the functional policies from the previous section and establish a set of process
policies, i.e., each functional policy is mapped to a set of process policies,Fr →
{Pr1, . . . , P rnr}.

The next step is to establish a measure of fulfillment of the requirements stated
by the process polices. The measure will indicate how desirable the execution of a
specific action is and will typically be related to vertices and/or edges in the graph.



84 EMERGENT BEHAVIOR IMPLEMENTS FOR NETWORK MANAGEMENT

For the sake of simplicity, we regard edges only. The fulfillment with respect to
policy-target instancemr on edgeij is a function given by the process policies,
i.e., Lmr

ij = fP1,...,Pn({aij}, {cij}) where{aij} is the set of requirements/demands
associated with the edge and{cij} is the set of resources available on the edge to
meet these requirements.

3.3 Resolving Policy Conflicts by Detestation

During enforcement of several policy-target instances (Figure 1) conflicts may
arise. If limitations in the resources required by several policy target instances exists,
one or more policy target instances may not be enforced. Hence some sort of conflict
resolution mechanism is required.

An ant-like agent allocated to a policy target instance uses a unique pheromone
type, i.e. the agent maintains a reserved set of variables on each vertex and/or edge
in the graph which indicate if the specific part of the graph is likely to be part of the
final solution enabling enforcement of the policy-target instance. Agents update only
their own pheromones but may still read alien agents’ pheromones.

As a mechanism for conflict resolution we include pheromone levels of alien
agents as weights in the cost function. If alien pheromones indicate that a required re-
source is likely to be allocated by one or more alien agents, the weights will increase
the cost of accessing the resource and eventually result in a reduced probability for the
agent in question to revisit the resource in the next search for a policy enforcement so-
lution. This effect can be seen as havingagents with conflicting interests detest each
other [VS99b, WH02b]. In section 4.2 agents detest each other with different de-
grees depending on what policy-target instance they are allocated to. Semi-formally,
we extend our edge cost function toLmr

ij = gP1,...,Pn({aij}, {cij}, {Pns
t,i }) where

{Pns
t,i } is the pheromone trail left by all other types of agents, and it is implicit that

the policies may cause conflicts.

3.4 Soft Policy Enforcement

Two aspects of the agent behavior result in a less than 100% guaranty of finding
enforcement solution for all policy target instances.

Firstly, the fundamental stochastic behavior of the agents combined with the size
of the problem solution space renders it impossible to guaranty all potential solutions
evaluated. However in [Rub99] clear indications are given that CE algorithms with
high probability converge towards a near optimal solution.

Secondly, in complex networks with multiple conflicting policies, a solution com-
plying with all policies may not exist. The detestation weights introduced to handle
policy conflicts will, however, force agents to search in parts of the solution space
where the policies are partially enforced. This is likely to result in solutions enforc-
ing most policies to such a degree that the overall system behavior is satisfactory, i.e.,
a best effort policy enforcement.

The stochastic behavior of the agents as well as the detestation properties adds a
potential ability of adaptation to the environment [Rub01]. Should the target network
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Figure 2. Left: The Norwegian university IP backbone network consisting of 10 nodes and14
duplex links (i.e.28 simplex links). Right: A pattern of paths for an optimal policy enforcement.

environment change and require changes in the policy specification, the agents may
still be able to find satisfactory sets of policy enforcement solutions. We look at this
effect assoft policy enforcementwhich we believe may provide better control over
complex network environments than traditional static policy enforcement implemen-
tations.

4. Case Study: Primary and Backup Path
Reservation

In this section we perform a policy-to-agent-behavior case study of a primary and
backup path reservation scenario. The scenario presented is constructed but still re-
alistic and may in the near future become highly relevant.

Figure 2 shows a graph illustrating the Norwegian university IP backbone infras-
tructure. All links have 155 Mb/s capacity. Node 6, 1, 8 and 9 are the university
cities Oslo, Bergen, Trondheim and Tromsø respectively. A team of physicians from
the faculties of medicine at the four different universities have decided to establish
a virtual research environment based on high quality multimedia conferencing over
the IP network. Such multimedia streams requires up to 70 Mb/s capacity thus 70
Mb/s connections from each university to all others are required, i.e. 12 simplex
connections with both primary and backup paths. A backup path is used only if the
corresponding primary path has a failure.

4.1 Establishing Policies

The following functional policies are specified with the intention of enabling the
desired transport service. Policy targets are emphasized:

Policy F1 Reserve required bandwidth capacity in the network forprimary paths for
all specified connectionssuch that no links are overloaded (zero traffic loss).
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Policy F2 Reserve required bandwidth capacity in the network forbackup paths for
all specified connectionssuch that when a single link failure occurs, traffic loss
due to link overload is minimized .

The functional policies are further refined resulting in a set of process policies with
the mappingsF1 → {Pr1} andF2 → {Pr2, P r3, P r4}. In the policy descriptions
below contend for capacityshould be interpreted as causing a link overload if all
parties sharing a link transmit simultaneously. However, sharing a link does not
necessary imply contention for capacity given the link in question has enough total
capacity. Further,πm

r represent a path of rankr for connectionm. Rank is either
primary (0) or backup (1), i.e. r ∈ {0, 1}.

Policy Pr1 Reserve link capacity for connectionm’s primary pathπm
0 such thatπm

0

do not contend for capacity against other primary pathsπn
0 |∀n on any of the

links inπm
0 (i.e. each link inπm

0 must have enough capacity to carry connection
m in addition to all other primary paths carried).

Policy Pr2 Reserve link capacity for connectionm’s backup pathπm
1 such thatπm

1

do not contend for capacity against primary pathsπn
0 |∀n on any of the links in

πm
1 (i.e. each link inπm

1 must have enough capacity to carry connectionm in
addition to all other primary paths carried).

Policy Pr3 Reserve link capacity for connectionm’s backup pathπm
1 such that all

links in πm
1 aredisjoint fromlinks in connectionm’s primary pathπm

0 (i.e. no
single link failure causes both a primary and backup path to fail).

Policy Pr4 Reserve link capacity for connectionm’s backup pathπm
1 such thatπm

1

do not contend for capacity against connectionn’s backup pathπn
1 when con-

nectionm andn’s primary pathsπm
0 andπn

0 are not disjoint (i.e. each link
shared byπm

1 andπn
1 must have enough capacity to carry both connectionm

andn should a link shared byπm
0 andπn

0 fail).

Policy Pr1 ensures no overload (zero traffic loss) when primary paths are in use.
Policy Pr2, Pr3 and Pr4 ensures minimum traffic loss due to overload when a single
link failure occurs. In Figure 2 a pattern of paths is given which enforces all policies,
i.e. an optimal policy implementation.

4.2 Implementing Policies

To implement soft policy enforcement the network environment is mapped onto a
graph structure such that vertices represent network nodes and edges represent link
resources. Unique types of ant-like agents are allocated to the policy-target instances.
Two classes of ant-like agents are created, one class to search for primary paths, and
one for backup paths. Primary agents/paths are of rank0, and backup agents/paths
of rank1. Each of the 12 connections are allocated one species. Every species has
both primary and backup agents, thus a total of 24 different types of ant-like agents
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are implemented each with a unique pheromone type and a specific policy target for
which to find an enforcement solution.

Taken from policy F1 and F2, link overload is chosen as the cost measure for a
link. Policies Pr1-Pr4 require link capacity to be reserved. Due to limited resources,
reservations initiated by two policies may result in an overloaded link, i.e. a policy
conflict is experienced. As an attempt to resolve such conflicts agents are made to de-
test pheromones related to alien paths. Combining the cost measure and pheromone
detestation the following link cost expression is derived:

Lmr
ij = S


am +

∑

∀ns: ij∈πn
s

Pns
ij V ns

i Qns
mr an − cij




whereLmr
ij is the expected potential link overload on linkij if the link is included in

connectionm’s path of rankr. The function, terms and factors of the expression can
be explained and related to policies as follows:

To avoid negative cost values and smoothen the transmission between no loss
and loss, a shaping function

S[c] =
{

η · e c
e·η , c < η · e

c, otherwise

is applied to the link cost expression.η is a parameter (S[0] = η).

am, an andcij represent capacities required by connectionm andn, and ca-
pacity available on linkij respectively. The sum of all required capacities less
available capacity[am +

∑
n an− cij ]+ equals link overload, thus implements

the quality measure specified in policies F1 and F2.

Pns
ij andV ns

i are approximate probabilities.Pns
ij indicates the probability that

agent of ranks for connectionn (agentns) will include link ij in its solution
(i.e. follow ij during search) given that it visits nodei. V ns

i indicates the prob-
ability that agentns will include nodei in its solution, i.e. visiti during search.
HencePns

ij andV ns
i represent pheromones for agentns and weight the alien

capacity requestan according to how likely it is to be used when the search
process converges.Pns

ij andV ns
i implement detestation and enforcement of

policies Pr1-Pr3.
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Qns
mr is a weight function controlling the level of detestation

Qns
mr =





Q̂n,s−1
m,r−1, n 6= m, s = r = 1 − the likelihood that path

ns andmr do not have
disjont primary paths, i.e.
enforcement of Pr4

1, n 6= m, s = r = 0 − i.e. no influence byQns
mr

20, n = m, s < r = 1 − strong detestation and
enforcement of Pr3

5, n 6= m, s < r = 1 − medium detestation and
enforcement of Pr2

0, otherwise

Finally the costL(πm
r ) of a pathπm

r is made the sum of the costs of all links in the
path

L(πm
r ) =

∑

ij∈πm
r

Lmr
ij

The sum of all link cost is an approximation of the desirable path cost measure indi-
cated by policies F1 and F2. Optimally only the cost of the link in the path responsible
for the largest loss should represent the path cost. However such maximization vi-
olates the requirement of additivity in the cost function for CE algorithms (chap. 5
[Rub99]). The sum of link cost is a conservative approximation thus no infeasible
solutions are included in the search space by this.

4.3 Simulation results

Table 1 shows simulation results for the scenario. All values are averaged over
12 simulations and standard deviations are given in brackets. The first column indi-
cates which policy the results in the last three columns are related to. The second
column gives a short description of the policy. The third column shows the average
number of incidents causing policy enforcement failures. The fourth column shows
expected relative permanent loss (in percent of total traffic load) due to failed policy
enforcements, and the last column shows expected relative loss due to failed policy
enforcements given a single link failure. The last row of Table 1 shows totals, both
overall expected relative loss including and excluding permanent loss.

In total 12 primary and 12 backup paths are established in each simulation. Solu-
tions for enforcement of policy Pr1 are found in11 out of12 simulations, i.e. only one
incident over all simulations is observed where3 primary paths share a link and traffic
loss of55 Mb/s is experienced. In the case of policy Pr2,3 incidents of enforcement
failures are on average observed, and given a single link failure the expected relative
loss due to such incidents is on average1.179% . For the two last process policies,
Pr3 and Pr4,0.9 incidents of failed enforcement is observed on average, and a relative
loss of around0.2 % is expected given a single link failure.

Summarized, the results from Table 1 give encouraging indications that ant-like
agents can produce policy enforcement implementations of high quality. In our exam-
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Table 1. Results averaged over 12 simulations.

Policy Description No of incidents of Expected relative loss (%)
failed enforcement Permanent On single link failure

Pr1 Primary v.s. primary
path

0.08 (±0.29) 0.504 (±1.816) 0.504 (±1.816)

Pr2 Primary v.s. alien
backup path

3.0 (±1.15) 0 1.179 (±0.773)

Pr3 Primary v.s. own
backup path

0.9 (±1.25) 0 0.229 (±0.347)

Pr4 Backup v.s. none-
disjoint primary paths

0.9 (±1.14) 0 0.162 (±0.241)

Totals, given a single link failure: Incl. permanent loss Excl. permanent loss

Expected relative loss (%) 2.074 (±1.560) 1.570 (±0.770)

ple, implementations are produced enabling close to full enforcement of all policies.
Given a single link failure an overall loss of2% of total traffic is expected. However
there is still room for improvement especially considering that at least one optimal
enforcement implementation exist (no loss given a single link failure) as given in
Figure 2.

The poorest results are experienced for policy Pr2. We suspect one reason could
be the lack of an additional policy which specifies what strategy the allocation pro-
cess for primary paths should have when encountering well established alien backup
paths, i.e. a policy similar to Pr2 but with opposite roles for primary and backup path.
Introducing such a policy would imply having primary agents detest backup agents
as well as opposite, which again should result in overall less contention for capacity.

5. Conclusion
In this paper we have presented a distributed management approach which is based

on cooperating (and competing) simple mobile agents forming a swarm intelligent
policy management system. We have described a design process where a policy
specification is transformed into an ant-like agent optimization system, capable of
finding enforcement solutions for the policies. The agent system’s ability to resolve
policy conflicts is termedsoft policy enforcement. Results from a simulation scenario
indicate that near optimal enforcement solutions can by found by the agent system.
However no guaranty for finding optimal solutions can be given.

Ongoing work include large scale pheromone management. When embedding
swarm based policy enforcement in a large network environment, care must be taken
to avoid overloading nodes with pheromone data. Future work should include for-
malizing the design process as well as further testing of the soft policy enforcement
scheme in dynamic network environments.
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SCALABLE DISTRIBUTED DISCOVERY OF
RESOURCE PATHS IN TELECOMMUNICATION
NETWORKS USING COOPERATIVE ANT-LIKE
AGENTS

Otto Wittner

Poul E. Heegaard

Bjarne E. Helvik

Abstract Future user controlled development of telecommunication services combined with pow-
erful terminal equipment results in many heterogenous services running in a peer-to-peer
execution environment. Locating a desired service in such an environment is challeng-
ing. In this paper a swarm based optimization algorithm is presented which is capable of
finding paths of resources in a complex network environment. The algorithm is fully dis-
tributed and may be implemented using simple ant-like mobile agents. On the contrary
to existing localization mechanisms for peer-to-peer systems the algorithm considers
all accessed resources between (and including) the client side and server side when a
resource path is evaluated. Scalability is achieved by making agents cooperate during
search when they have overlapping search profiles. Results from simulations are promis-
ing. The expected cooperative behavior is shown to be present, i.e. a set of near optimal
resource paths conforming to a set of different but overlapping search profiles may be
found with improved performance.

Keywords: Telecommunications, distributed multi-criteria optimization, resource paths, swarm in-
telligence, ant-like agents, peer-to-peer.

1. Introduction
Recent development in terminal and core network technologies have opened for

realization of a range of new telecommunication services.1 One new service category

1To enable rapid realization of new heterogenous services, Telenor, Ericsson and NTNU have chosen to move from
the traditional call centric approaches to a more service centric approach as well as involve users and user innovation
in the service development process [San02]. Peer-to-peer is adopted as a potential environment for distributed service
execution. The overall initiative has resulted in the AVANTEL project [San03]. This paper presents results form
research sponsored by the AVANTEL project. This work was also partially supported by the Future & Emerging
Technologies unit of the European Commission through Project BISON (IST-2001-38923).
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is peer-to-peer systems where users develop and provide services to other users with
little or no centralized management. Locating specific services in such systems is
challenging.

Many directory systems for peer-to-peer environments have been developed during
the last decade [MKL+02]. Common for these systems are limited functionality for
specifying quality of service (QoS) parameters in service lookup requests, which
often result in uninteresting service offers. For instance access to a high quality
multi-media stream may be offered but due to lack of network bandwidth the stream
becomes uninteresting.

A class of bio-inspired algorithms known asswarm intelligencesystems [BDT99]
are potentially robust and may scale well due to their use of distributed autonomous
components known as agents. Swarm intelligence has successfully been applied to a
range of optimization problems [DC99], some in the domain of telecommunications
[SHBR97, CD98, WBP98, VS99b]. In this paper we present aswarm intelligence
based algorithm which enables implementation of improved QoS controlled service
lookup and access. The algorithm seeks to find apath of resourcesfrom a client
terminal to a service providing server such that all resources in the path conforms (as
well as possible) with constraints and preferences of a request profile specified by the
user.

Our algorithm is based on work previously published in [HW01, WH02a, WH02b].
Scalability in terms of number of parallel tasks handled by agents has so far only been
addressed to a limited extent. In this paper we introduce mechanisms to manage large
scale use of the algorithm. On the assumption that service request profiles in many
cases will be overlapping, we let agents share information about the overlapping parts
of the profiles. Assuming a limited total number of possible constraints and prefer-
ences the new sharing strategy reduces the total amount of storage space required for
pheromones to a manageable level, and increases the search efficiency.

The remainder of this paper has four sections. Section 2 presents background
information, terminology and formalisms. Section 3 introduces the behavior founda-
tions for the agents, describes cost functions, presents reformulations and additions
required to realize extended pheromone sharing between agents, and describes the
new agent algorithm. Section 4 describes our experimental setup and reports and dis-
cusses simulation results. Finally, Section 5 summarizes and indicates future work.

2. Resource Paths and Profiles
In this paper we view all components in a network environment as resources with

individualprofiles, i.e. service components (created by users or operators) as well as
links and network nodes for network transport are viewed as resources with a related
profile. An ordered sequence of resources are denoted aresource path.

2.1 AMIGOS

The motivation for adopting a resource view is the heterogeneity of the expected
network environment where one of the AVANTEL project’s root services, Advanced
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Figure 1. A example network environment whereAMIGOSis expected to run.

Multimedia In Group Organized Services (AMIGOS) [San02], is running. AMIGOS
provides the basic functionality required for users to manage and visit aMeeting
Place(MP). An MP is a user (or operator) composed and configured telecommunica-
tion service providing a connection point between a specific set of users. A meeting
place may also act as a repository for multimedia objects to be shared between the
users visiting the meeting place.

Figure 1 illustrates the expected heterogeneity of the environment where the AMI-
GOS service will be running. Software processes provide MP service resources
which again provide access to multimedia objects. A variety of terminals controlled
by different users and a mix of servers own by different operators provide processing
power. And finally, a range of transmission technologies provide transmission links
interconnecting terminals and servers.

2.2 Resource Paths

In the AMIGOS environment a resource is denotedω. When users are active they
will access a set of resources. We denote such an ordered set of resources aresource
path

π = {ω0, ω1, · · · , ωNπ−2, ωNπ−1} (1)

whereNπ is the number of resources in the path.
We classify resources into two categories:Transportand Peripheral resources.

A peripheral resourceis the last resourceωNπ−1 ∈ Rp in a path and provides
some value added service. Users will normally desire to access a specific type of
peripheral resource, e.g. an MP, multimedia libraries etc.Rp is the set of all pe-
ripheral resources. Atransport resourceis an intermediate resourceωi ∈ Rt, where
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i = 0 . . . Nπ − 2. Such a resource, e.g. a link, provides transport which contributes
in enabling access to a peripheral resource.Rt is the set of all transport resources.

In general a resource pathπ will contain a sequence of transport resources and a
single peripheral resource. Thusπ ∈ Ω

Ω = {{ω0, ω1, · · · , ωNπ−2, ωNπ−1} : ω0...Nπ−2 ∈ Rt,

ωNπ−1 ∈ Rp}
is the set of all resource paths, which we denote thesearch spacefor user request
profiles (see next section).

A common limitation of today’s lookup services for peer-to-peer systems is that
transport resource limitations are not taken into account during search, i.e.
{ω0, ω1, · · · , ωNπ−2} is ignored. Our algorithm takes into account the complete path
of resources.

2.3 Profiles and QoS Objectives

In the AMIGOS environment, users, terminals and services are expected to have
individualprofilescontaining QoS parameters. There are two classes of profiles.

2.3.1 User Request Profile

A user request profilēζr(k) refer to a set of QoS parameters specifying constraints
and preferences, i.e.QoS objectives,for a requestr from userk. In general, a user
request profile may refer to a large set of QoS parameters. To maintain scalability,
we have defined a finite and ordered setΞ of QoS parameters from which a specific
request profile may be constructed. Each parameterξi in Ξ, wherei = 1, ..., |Ξ|, is a
specific QoS requirement. A user request profile may now be expressed asζ̄r(k) =
{α1, . . . , α|Ξ|}. In this investigation, a binary user request profile is used, i.e.,

αi =
{

1 : when requirementi should be met
0 : otherwise

however in general (Section 3.3) arbitrary valuesαi ≥ 0 may be used to balance the
importance of the various requirements.

In the cases where we have a range of QoS parameters of the same kind to choose
from, e.g. delays and bandwidths, only oneα-value in the range should be set.

2.3.2 Resource Profile

When used, a resourceωx may introduce QoS impairments with respect to the QoS
requirements of a user requestrk. These impairments may for instance be excessive
delays, limited bandwidth, processing or storage capacity, or lack of required periph-
eral equipment, services or information. Impairments are denoted theloss `i(ωx)
introduced by resourceωx with respect to a QoS requirementi. Hence, the resource
profile ζ̄(ωx) associated with resourcex is represented as a loss vector

ζ̄(ωx) ≡ ¯̀(ωx) = {`1(ωx), `2(ωx), . . . , `|Ξ|(ωx)}



Paper E 99

where `i(ωx) ∈ R+. Resource profileand loss vectorare used interchangeably
throughout the rest of this paper. Examples of how the various loss elements`i(ωx)
may be determined are presented in Section 4.

3. Agent Behavior
Our search algorithm is based onswarm intelligence[BDT99] and mimics the

foraging behavior of ants. It uses a high number of agents with simple behaviors, and
generates onespeciesof agents (i.e. one type of agent) for every user request. Agents
of the same species have the only mission of searching for resource paths conforming
with the criteria given by the profile of a specific user request. Multiple species of
agents may search in parallel.

Our algorithm provides a general method for generating solutions tocombinato-
rial multi-criteria optimization problems(CMCO problems). A few CMCO systems
based on swam intelligence [MM99, GGP02, IMM01] exist. Most of these build on
Dorigo & al.’s Ant Colony Optimizationsystem [DC99] which requires centraliza-
tion and batch oriented operations to generate solutions efficiently. Our algorithm
however, is fully distributed with no central control component.

3.1 Foundations

The concept of using multiple agents with a behavior inspired by foraging ants to
solve problems in telecommunication networks was introduced by Schoonderwoerd
& al. in [SHBR97] and further developed in [CD98, WPO98, Sch00]. Schoonder-
woerd & al.’s relates to Dorigo & al.’s work on Ant Colony Optimization (ACO)
[DG97]. The overall idea is to have a number of simple ant-like mobile agents search
for paths between source and destination nodes. While moving from node to node in
a network, an agent leaves markings resembling the pheromones left by real ants dur-
ing ant trail development. This results in nodes holding a distribution of pheromone
markings pointing to their different neighbor nodes. An agent visiting a node uses the
distribution of pheromone markings to select which node to visit next. A high number
of markings pointing towards a node (high pheromone level) implies a high proba-
bility for an agent to continue its itinerary towards that node. Using trail marking
agents together with a constant evaporation of all pheromone markings, Schoonder-
woerd and Dorigo show that after a relatively short period of time the overall process
converges towards having the majority of the agents follow a single trail. The trail
tends to be a near optimal path from the source to the destination.

3.1.1 The Cross Entropy Method

In [Rub99] Rubinstein develops a centralized search algorithm with similarities
to Ant Colony Optimization [DC99, ZBMD00]. The total collection of pheromone
markings in a network at timet is represented by a probability matrixPt where an
elementPt,rs (at rowr and columns of the matrix) reflects the normalized intensity
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of pheromones pointing from noder towards nodes. An agent’s stochastic search
for a sample path resembles a Markov Chain selection process based onPt.

In a large network with a high number of feasible paths with different qualities,
the event of finding an optimal path by doing a random walk (using a uniformly
distributed probability matrix) is rare, e.g. the probability of finding the shortest
Hamiltonian cyclic path (the Traveling Salesman Problem) in a 26 node network is
1

25! ≈ 10−26. Thus Rubinstein develops his algorithm by founding it in rare event
theory.

By importance sampling in multiple iterations Rubinstein alters the transition ma-
trix (Pt → Pt+1) and amplifies certain probabilities such that agents eventually find
near optimal paths with high probabilities. Cross entropy (CE) is applied to ensure
efficient alteration of the matrix. To speed up the process further, a performance
function weights the path qualities (two stage CE algorithm [Rubar]) such that high
quality paths have greater influence on the alteration of the matrix. Rubinstein’s CE
algorithm has 4 steps:

1 At the first iterationt = 0, select a start transition matrixPt=0 (e.g. uniformly
distributed).

2 GenerateN paths fromP t. Calculate the minimum Boltzmann temperatureγt

to fulfill average path performance constraints, i.e.

min γt s.t. h(Pt, γt) =
1
N

N∑

k=1

H(πk, γt) > ρ (2)

where

H(πk, γt) = e
−L(πk)

γt

is the performance function returning the quality of pathπk. L(πk) is the cost
of using pathπk (see Section 3.2 and 3.3).10−6 ≤ ρ ≤ 10−2 is a search focus
parameter. The minimum solution forγt will result in a certain amplification
(controlled byρ) of high quality paths and a minimum averageh(Pt, γt) > ρ
of all path qualities in the current batch ofN paths.

3 Usingγt from step 2 andH(πk, γt) for k = 1, 2..., N , generate a new transition
matrixPt+1 which maximizes the “closeness” (i.e. minimizes distance) to the
optimal matrix, by solving

max
Pt+1

1
N

N∑

k=1

H(πk, γt)
∑

ij∈πk

lnPt,ij (3)

wherePt,ij is the transition probability from nodei to j at iterationt. The
solution of (3) is shown in [Rub99] to be

Pt+1,rs =
∑N

k=1 I({r, s} ∈ πk)H(πk, γt)∑N
l=1 I({r} ∈ πl)H(πl, γt)

(4)
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which will minimize the cross entropy betweenPt andPt+1 and ensure an
optimal shift in probabilities with respect toγt and the performance function.

4 Repeat steps 2-3 untilH(π̂, γt) ≈ H(π̂, γt+1) whereπ̂ is the best path found.

3.1.2 Distributed Cross Entropy Method

In [HW01] a distributed and asynchronous version of Rubinstein’s CE algorithm is
developed. By a few approximations, (4) and (2) may be replaced by autoregressive
counterparts based on

Pt+1,rs =
∑t

k=1 I({r, s} ∈ πk)βt−kH(πk, γt)∑t
l=1 I({r} ∈ πl)βt−lH(πl, γt)

(5)

and
min γt s.t. h

′
t(γt) > ρ (6)

where

h
′
t(γt) = h

′
t−1(γt)β + (1− β)H(πt, γt)

≈ 1− β

1− βt

t∑

k=1

βt−kH(πk, γt)

and whereβ ∈ 〈0, 1〉 controls the history of paths remembered by the system (i.e.
replacesN in step 2). Step 2 and 3 in the algorithm can now be performed immedi-
ately after a single new pathπt is found, and a new probability matrixPt+1 can be
generated.

The distributed CE algorithm may be viewed as an algorithm where search agents
evaluate a path found (and calculateγt by (6)) right after they reach their destination
node, and then immediately return to their source node backtracking along the path.
During backtracking pheromones are placed by updating the relevant probabilities in
the transition matrix, i.e applyingH(πt, γt) through (5).

The distributed CE algorithm resembles Schoonderwoerd & al.’s original system
as well as Dorigo & al.’s AntNet system [CD98]. However, none of the earlier sys-
tems implements a search focus stage (the adjustment ofγt) as in the CE algorithms
[Rubar]. The search focus stage ensures fast and accurate convergence without hav-
ing to introduce search focus heuristics as is typically required in ACO systems.

3.2 Cost Functions

Cost functions applied in this paper output a measure for the level of QoS loss
introduced by non-conformance between a specific QoS parameter in a user request
and service capabilities of a sequence of resources in a resource path.

Recall thatΩ is denoted thesearch spaceof user requests. In this section we
usesolutionandresource pathinterchangeably. Both indicate elements in a relevant
search space.
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3.2.1 Constraints and Ordering

The set of valid QoS parametersΞ is divided into two subsets denotedConstraint
andbest-valueparameters. Constraint parameters, of the set denotedΞC , require a
service to have a level of quality within a specific range, i.e. a minimum and/or a
maximum acceptable QoS level is specified. Best-value parameters, of the set de-
notedΞB, indicate only that better QoS levels are preferred (no upper or lower limits
are given).

To be able to compose an overall cost function which measure impairments to
constraint and best-value QoS parameters, we require two classes of terms in the
function: Implicit constraint checksandsolution orderingterms. Implicit constraint
checks handle constraint QoS parameters and provide a rough sorting of the search
solutions in feasible and infeasible solutions. Solution ordering terms handle best-
value QoS parameters and enable a detailed ordering of the candidate solutions found.

To realize the two classes of terms, we define two support functions. Both func-
tions perform rough normalization by mapping values onto the[0.5, 1]. Thus values
of very different original scale may be compared and/or summarized. To enableso-
lution orderingon a common scale we define

h(y) =
1

1 + e−η·y , y ≥ 0 (7)

which normalize any positive real valuey to the range〈0.5, 1] whereη is a general
scaling parameter. Further we define

u(z) =
{

1 if z > 0
0.5 otherwise

(8)

which maps any real valuez into 1 or 0.5, i.e. the upper and lower limits of the
range ofh(y). Henceu(z) may work as animplicit constraint checkby introducing
a normalized penalty when undesirable QoS loss is experienced.

3.2.2 Search Space Smoothness and Overall Cost

Since our algorithm is of a stochastic nature and is based on cross entropy, good
performance is ensured by making the search spaceΩ “smooth”, i.e. ensure thatΩ
contains a wide range of resource paths of different qualities. To realize smoothness
we enforce additivity (as shown efficient in Section 5.1 of [Rub99]) when deriving
an overall quality measure for a resource path.

Hence, during a search for a resource pathπ, we accumulated anoverall loss
vectorL̄(π) with one cost value for each QoS parameter specified.

L̄(π) = {L1(π), L2(π), . . . , L|Ξ|(π)} (9)

where additivity is preserved by having

Li(π) =
∑
ωx∈π

`i(ωx)
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wherei = 1, . . . , |Ξ|, and hence

L̄(π) =
∑
ωx∈π

¯̀(ωx) (10)

Further to create an overall cost measure for the QoS loss with respect to the re-
quirements, we summarize all elements inL̄(π) and produce a scalar costL(π).
Since the different elements in̄L(π) may relate to very different QoS parameters, we
apply our support functions (7) and (8) appropriately to normalize and give correct
focus to the different elements. Let

L∗i (π) =
{

u(Li(π)), ξi ∈ ΞC

h(Li(π)), ξi ∈ ΞB
(11)

wherei = 1, . . . , |Ξ| and

L̄∗(π) = {L∗1(π), L∗2(π), . . . , L∗|Ξ|(π)}

The overall scalar cost of a resource path becomes

L(π) = L̄∗(π) · ζ̄r(k) =
∑|Ξ|

i=1 αiL
∗
i (π)

=
∑

i∈ΞC
αiu(Li(π)) +

∑
j∈ΞB

αjh(Lj(π))
(12)

where, as presented in Section 2.3, the variousαi specify the QoS parameters of the
user request profilēζr(k).

The rationale for accumulating all loss values in the vectorL̄(π) during a search
and not use (12) directly, is to enable efficient collection and dissemination of QoS
information through pheromone values in the nodes.

3.3 Path Quality Vectors

As mention in Section 2.3.1, our algorithm ensures scalability by taking advantage
of the assumption that only a limited set of unique QoS parameters are available for
building request profiles. In earlier published work [HW01, WH02a, WH02b] the
distribute CE algorithm allocated one unique pheromone type to every agent species
in operation. Reapplying this allocation strategy would mean one unique pheromone
type for every user request. In the AMIGOS environment the number of unique user
requests to be managed may be very large. Allocating unique pheromones will result
in a large amount of pheromone data to be managed by each resource in the network
and a need for a large number of agents per species to ensure convergence towards
good solutions in reasonable time.

To manage scalability we make different agent species cooperate (on the contrary
to work in [WH02b]) in updating a shared set of pheromone values. Instead of a
unique identity for each user request (and a corresponding agent species), we con-
struct a vector containing an element for each QoS parameter in the user request
profile.
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By controlling the total number of unique QoS parameters|Ξ| available, we can
limit the number of unique pheromones required. Note that the total number of pos-
sible unique profilesNζ̄ will still be large,

Nζ̄ = 2|Ξ| − 1

e.g. to enable a total ofNζ̄ = 10100 different profiles only|Ξ| ≈ 333 unique
pheromones are required2. In reality less thanNζ̄ profiles will be valid since (as
mentioned in Section 2.3.1) several QoS parameters will be mutually exclusive, e.g.
“max. delay = 70 ms” excludes “max. delay = 80 ms”.

The basis for generating pheromones is cost values output from the cost functions
described in the previous section. Now recall the algorithmic step calculating the
temperature from (6). The existence of a unique pheromone for each QoS parameter
implies that a separate temperature parameterγt must be calculated for each cost
value. Thus two vectors, one with temperatures and one with performance values,
are generated by applying (6) for each cost valueL∗i (πk) found in (11) :

γ̄t =
{
γt,1, γt,2, . . . , γt,|Ξ|

}

H̄(πk, γ̄t) = {H1(πk, γt,1), H2(πk, γt,2),
. . . , H|Ξ|(πk, γt,|Ξ|)

} (13)

where

Hi(πk, γt,i) = e
−L∗i (πk)

γt,i

We also calculateγt by (6) where

H(πk, γt) = e
−L(πk)

γt (14)

for reasons described below.
Path backtracking and pheromone placing activities performed by agents, i.e. step

3 of the algorithm from Section 3.1.1, now generate an updated vector of probability
distributions, i.e. (5) becomes

P̄t+1,rs =
∑t

k=1 I({r, s} ∈ πk)βt−kH̄(πk, γ̄t)∑t
l=1 I({r} ∈ πl)βt−lH̄(πl, γ̄t)

(15)

During forward search however the agents requirePt+1 to select which node to
visit next (step 2 from Section 3.1.1).Pt+1 is the probability matrix built from the
over all scalar cost measureL(πk) applied in (14). By (14) and (12) we have

H(πk, γt) =
|Ξ|∏

i=1

e
−αiL∗i (πk)

γt =
|Ξ|∏

i=1

Hi(πk, γt,i)
αi

γt,i
γt (16)

2By introducing non-deterministic requirements, i.e. weighting of alternatives by havingαi ∈ 〈0, 1〉, the profile
space becomes even richer/larger.
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By carryingγ̄t, γt and the request profilēζr(k) = {α1, . . . , α|Ξ|} agents can generate
Pt+1 during forward search. For each noder visited, an agent requests (13) from the
node, calculates (16) and producesPt+1,r for all neighbor nodess by (15).

3.4 Discovery of a Destination Node

Recall that an agent builds a path by a stochastic process. After adding one re-
sourcer to the path, the next resource to be included is selected (using the probability
vectorPt,r) from the set of neighbor resources ofr. Since a user request profilēζr(k)
do not specify a specific destination resource, we have introduced loopback links as
an aid to identify potential destination nodes. All peripheral resources are connected
to themselves by a link resourceωLB whereζ̄(ωLB) ≡ 0̄. If an agent traverses such
a loopback link resource, and visits the same peripheral resource twice in a row, the
peripheral resource is selected as the agents destination resource, and the path found
is considered complete.

Introducing loopback link resources is equivalent to adding one unique destination
resourceωD to the environment and connecting all peripheral resources toωD by zero
cost link resources (similar toωLB).

3.5 Agent Algorithm

The most intuitive implementation of our algorithm requires two types of com-
ponents:mobile agentsandnetwork nodes running mobile agent platforms[PK98].
The nodes are only required to provide storage for pheromone valuesH̄(πt, γ̄t) with
their related autoregressive history variables (see [HW01] for details on autoregres-
sion), and basic arrival, departure and execution functionality for the mobile agents.
The rest of the algorithm is implemented in agents. An agent roughly performs the
following steps after being created at its home resourceω0 with user request profile
ζ̄r(k) describing its search mission:

Forward search

1 Clear tabu list containing resources already visited. ClearL̄(πt). Fetchγ̄t, γt,
andζ̄r(k) = {αi : ∀i} from the database in resourceω0.

2 Record visits to current resourceωx in tabu list. If current resource has been
visited twice in a row, proceed with step 1 ofpath evaluation and backtracking
(see below).

3 Reconstruct relevant row ofPt+1 by (16) usinḡγt, γt, andζ̄r(k). Build a next-
hop probability table and use the tabu list to avoid revisiting non-peripheral
resources.

4 Select next resourceωx+1 to visit using the next-hop probability table.

5 UpdateL̄(πt) by addingζ̄(ωx+1), i.e. implement (10).

6 Move to resourceωx+1 and loop back to step 2 offorward search.
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Path evaluation and backtracking

1 Calculate finale path cost valuesL̄∗(πt) by (11).

2 Increase search focus if required (see [WHH03b] for details on search focus
adjustment).

3 Calculate new temperaturesγ̄t+1 andγt+1 using (6), cost values in̄L∗(πt+1)
and (12).

4 Backtrack every hop towards resourceω0. At each hop update the transition
matrix (leave pheromones) by use of (13) and (15)

5 When backtracking has completed, fetch and recalculate the temperaturesγ̄t+1

andγt+1 (in case other agents have updated the database in resourceω0 while
this agent was doing forward search). Store the new values ofγ̄t+1 andγt+1.

6 Goto step 1 offorward searchand start a new search.

Minimum one agent is required to complete a search mission specified by a certain
user request profile. However, the algorithm allows for many agents to search in
parallel.

When the search mission converges, paths found by the agents driven by the same
user request profile will appear as paths of high probability values in the transition
matrix (i.e. an intense track of pheromones).

4. Experiments
To investigate the performance of our algorithm a simulator has been implemented

based on “Network Simulator 2” (NS2)[WH00]. NS2 is an open source simulator
package capable of simulating realistic IP-based scenarios [DAR].

4.1 The Test Environment

All our test scenarios described below where run in a test environment based on
the illustration in Figure 1. In Figure 2 the same environment is shown as a graph
where link bandwidths, link delays and node RPI/RPQs (see next section) of links
and nodes are indicated. All nodes with connection degree greater than one were
enabled as routing nodes, i.e. they forward traffic destined for other nodes. We have
also enabled all nodes to act as peripheral resources, i.e. all nodes have loopback link
resources (not shown in Figure 2) as described in Section 3.4.

4.2 QoS Parameters in the Test Environment

In our simulations the user request profiles includes six sets of QoS parameters:

ΞRPI ⊆ ΞC is the set of all resource profile index (RPI) parameters. An RPI
acts as a summary index for some set of resource capabilities. RPIs are relevant
only for peripheral resources.
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Figure 2. The test environment which is a graph representation of the environment illustrated in
Figure 1. An RPV (resource profile value) holds both a node’s RPI (resource profile index) and RPQ
(resource profile quality). See [WHH03b] for details.

Ξδ ⊆ ΞC is the set of all maximum delay parameters. Only link resources
induce delay.

Ξβ ⊆ ΞC is the set of all minimum accepted bandwidth parameters. Only link
resources have limited bandwidth.

ΞRPQ ⊆ ΞB is the set of all resource profile quality (RPQ) parameters. RPQ
is the quality index of an RPI.

Ξδ∗ ⊆ ΞB is the set of all expected delay parameters.

Ξβ∗ ⊆ ΞB is the set of all bandwidth utilization parameters.

Three QoS parameters in each of the above parameter sets were used in our simu-
lation scenarios, i.e.|Ξ| = 18. See [WHH03b] for a comprehensive description of
Ξ.

4.3 Cost functions

By (10) and (11) we may derive the general cost vector applied on a pathπ in
our test scenarios. For all best value QoS parameters we setη = 1 in (7). The18
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elements of the cost vector̄L∗(π) are the following,

L∗i (π) =





u(`i(ωNπ−1)) i ∈ {1, 2, 3}, ξi ∈ ΞRPI

u(
∑Nπ−2

x=0 `i(ωx)) i ∈ {4, ..., 9}, ξi ∈ (Ξβ ∩ Ξδ)
h(`i(ωNπ−1)) i ∈ {10, 11, 12}, ξi ∈ ΞRPQ

h(
∑Nπ−2

x=0 `i(ωx)) i ∈ {13, ..., 18},
ξi ∈ (Ξβ∗ ∩ Ξδ∗)

The calculations required to derive a loss value`i(ωx) for the resource profile of
a resourceωx implement an interpretation of QoS parameterξi. In our test scenarios
we interpret and implement the different QoS parameters described above (ξi ∈ Ξ)
as follows:

ξi ∈ ΞRPI , resource correctness: Absolute distance betweenξi and the RPI
for a peripheral resourceωx (RPIωx) is returned as the loss value.

`i(ωx) = |ξi −RPIωx | (17)

ξi ∈ ΞRPQ, resource quality: The ratio of the distance between requested RPQ
valueξi andRPQωxof resourceωx, and the decimal part ofξi is returned.

`i(ωx) =
|ξi −RPQωx |

ξi − bξic (18)

ξi ∈ Ξβ, bandwidth constraints: If the capacityBx of a router-link resourceωx

is belowξi, a non-zero contribution equal to the exceeded capacity is returned
as loss. Otherwise, zero loss is returned.

`i(ωx) = [ξi −Bx]+ (19)

ξi ∈ Ξβ∗ , bandwidth utilization: The ratio between the minimum bandwidth
requirementξi and the router-link capacityBx is returned.

`i(ωx) = ξi/Bx (20)

ξi ∈ Ξδ, delay constraints: The delay induced by resourceωx is denoted∆x.
We want the cost elementLi(π) to represent the difference between the sum
of all induced delays and the maximum delay requirement given byξi, thus

Li(π) =

[ ∑
ωx∈π

∆x − ξi

]+

(21)

The support function (8) normalizesLi(π) (whenξi ∈ Ξδ), thus the truncation
operator[. . .]+is redundant. The loss returned may now be expressed by

`i(ωx) = ∆x − ξi

Nπ
(22)
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Table 1. Simulation scenario parameters

Scenarios No of
species

No of
ants /
species

Client
resource
(node #)

User request profileξr(k)

A 1 12 4 {1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0}
B 1 12 1 ———-“———
C 1 12 5 ———-“———

D4 4 4 ———-“———
D 3 4 1 ———-“———

4 5 ———-“———
E4 6 4 { 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0}

6 1∗ {0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0}
E 6 6 5∗ {0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,1,0,0}

6 21∗ {0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0}
6 16∗ { 1,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,1}
6 15∗ {0,0,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1}

whereNπ is the number of resources in pathπ. Note that knowledge of the
complete pathπ is required to calculate (22), hence in practice`i(ωx) will
return only∆x and further calculations, i.e. (21), are postponed until the agent
reaches the peripheral resource of pathπ.

ξi ∈ Ξδ, expected delay: The ratio between the sum of induced delays by all
resources in the path andξi is returned.

`i(ωx) =
∆x

ξi
(23)

4.4 Scenarios

To verify that pheromone sharing results in cooperative behavior (and not inter-
ference or disturbance) between agent species, we created five simulation scenario
denoted A,B,C,D and E. The following sections describe two test cases using the five
scenarios.

4.4.1 Full Overlap in Profiles

The first four scenarios (A-D) test cooperation between three agent species. Table
1 shows the parameters in use for the scenarios. Scenario A, B and C are similar.
One agent species search for resource paths by applying a specific user request pro-
file. The same request profile is applied by A, B and C, i.e. full overlap in profiles,
however search is initiated from three different client resources. In scenario D three
species search simultaneously. They all still apply the same user request profile as in
A, B and C. For all scenarios the total of agents reading and updating a relevant QoS
parameter is 12.
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Table 2. Simulation results

Scenario
Client
resource

Average con-
vergence time

Average final
path cost

Best final
path cost

Final equals prefer-
able path

(node #) Mean Stdev Mean Stdev Cost # sim # sim |final − preferable|
A 4 205.3 (166.7) 3.5237 (0.0017) 3.5229 15 17 0.0006

B 1 249.9 (346.7) 3.5571 (0.1047) 3.5228 2 2 0.0155

C 5 133.0 (138.8) 3.5477 (0.1066) 3.5221 10 14 0.0241

D4 4 309.9 (221.1) 3.5252 (0.0040) 3.5229 12 13 0.0021
D 1 452.4 (258.6) 3.5264 (0.0048) 3.5228 9 9 0.0032

5 291.1 (235.7) 3.5238 (0.0021) 3.5221 12 13 0.0015

E4 4 389.4 (386.5) 3.6196 (0.1962) 3.5229 9 11 0.0732

If full cooperation between the agent species exists, results from scenario A, B,
and C should be comparable with results from D.

4.4.2 Partial Overlap in Profiles

The last scenario, scenario E, tests how the algorithm performs when only a partial
overlap in user request profiles exist. The last row of Table 1 shows the parameters
used in the scenario. Six agent species search in parallel applying a mix of user re-
quest profiles. The first species of scenarios E, which we denote E4, has the same
client resource (node 4) and request profile as the species in scenario A and the first
species in scenario D, which we denote D4. The other five species of scenario E
differ from E4, as well as among themselves, in both client resources and request
profiles. However for every QoS parameter relevant for species E4, one of the five
other species has a profile containing that same parameter (see bold face profile bits
in Table 1), i.e. for all QoS parameters relevant for E4 there are in total two agent
species reading and updating pheromones related to the parameter. To ensure that the
comparison of the species of scenario A, D4 and species E4 is as correct as possible,
6 agents per species are created, i.e. again 12 agents will be reading and updating rel-
evant QoS parameters. Further, an effort was made to ensure that the results obtained
for E4 are at least to some degree independent of which client resources the five last
species of scenario E use. The “order” of the client resources (marked with a * in
column 4 of Table 1) were shuffled for every simulation initiated while the related
request profiles (column 5 in Table 1) are kept in the same order. The results were
averaged over 20 simulations based on 20 different orders of the client resources.

If cooperation between the species takes place even when only a partial overlap in
request profiles exists, performance results for species E4 should be comparable with
results for the species in scenario A and D4.

4.5 Results

Table 2 summarizes results from the simulation scenarios described above. Results
are based on 20 simulation runs for each scenario. We denote the last path found by
a species thefinal path. The path with lowest cost in a simulation is denoted the
preferable path.
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Figure 3. Convergence progress for scenario A (node 4), B (node 1) and C (node 5) .

The two first columns of Table 2 identify the scenario and the relevant client re-
source. Columns 3 - 6 presents average convergence time in seconds (simulated real
time) with standard deviation and average path cost of final path found with standard
deviation. Column 7 presents the cost of the overall best final path found during all
simulations, and column 8 the number of simulations that converged to this path.
Column 9 presents the number of simulations having final path equal to the prefer-
able path found during the simulation. The average difference in cost between final
paths reported and the preferable path is given in column 10.

4.5.1 Full Overlap in Profiles

Results for scenarios A, B and C are comparable with results for scenario D. Av-
erage path costs differ only to a little extent and they are all close to the best values
found. Low standard deviations indicate limited spread among the solutions. For
most simulations the final path found after convergence is also the preferable path
found during simulation (second last column). For all simulations the average differ-
ence between final and preferable paths are very small, i.e. final paths in general tend
to be good solutions.

Average values for convergence times differ more than the cost values, and large
standard deviations indicate significant spread. Figures 3 and 4 show the convergence
progress of scenarios A, B and C, and scenario D respectively.

Both diagrams show average values as straight vertical lines, and the accumulative
convergence as lines increasing by steps. In both diagrams it can be observed that 60-
65% of the simulations have converged before the average convergence times. The
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Figure 4. Convergence progress for scenario D.

last 10-20% of the simulations produce a long tail in the distribution of convergence
times. This is more significant for the scenarios A, B and C than for scenario D.
The long tails are much due to the simple convergence criterion we have chosen.
Convergence is considered complete when the probability of re-traversing the last
path found is greater than0.9. Thus when two very similar near optimal solutions
exists in the search space, agents can oscillate between finding the one or the other
solution for many iteration before one solution is chosen.

Average convergence times increase by less than 100% when we compare A, B
and C with D, i.e. they double. However considering that there are in totalthree
timesas many agents in operation in scenario A, B and C together compared to D,
our simulations indicate that efficiency is preserved, and even improved, when unique
pheromones per species are replaces by a pheromone per QoS parameter. We observe
a 33% reduction in “agent seconds” (number of agents in operation multiplied by
convergence time).

4.5.2 Partial Overlap in Profiles

Only results for species E4, the species using node 4 as client resource, from sce-
nario E are show in Table 2. Again results are comparable. Average path cost is
only slightly higher for E4 than for scenario A and D4, and as many as 45% of the
simulations for E4 converges to the same best solution as found in A and D4.

Figure 5 shows a comparison of the convergence progress for scenario A, D4 and
E4. Similar to what we observed in the previous section, 60% of the simulations
have converged before average convergences times, and the slowest 10-30% of the
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Figure 5. Convergence progress for scenario A, D4, and E4 .

simulations create a long tail in the distribution of convergence times. As in the
previous section, long tails results from the simple convergence criterion.

Examining the ratios between the averages convergence times, again it can be
observed that a less than 100% increase exist when scenario A is compared with D4

and E4. Again this can be interpreted as preservation of performance considering that
in A all twelveagents contribute in finding solutions toonerequest while in Dtwelve
agents contribute tothreeprofiles and in Eeighteenagents contribute tosix profiles.
While performance is less than halved, the number of profiles covered is increased
by a factor of 3 and 4, implying a reduction in “agents seconds” by 33% and 50%
respectively.

Hence we can with reasonable confidence conclude that cooperation between species
take place both when there is full overlap and partial overlap in user request profiles.
For firm conclusions more tests are required. However, our simulation scenarios
indicate that pheromone sharing may contribute in realizing a fully distributed and
scalable resource location system.

5. Summary
In this paper we propose a swarm based distributed multi-criteria optimization

algorithm which is capable of searching, in an efficient manner, for paths of resources
in a complex network environment. The algorithm is QoS aware and ensures to
identify resource paths where all resources conform (as much as possible) to a given
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set of QoS criteria, i.e. the algorithm can implement a QoS aware resource location
service.

The algorithm inherits its formal foundations from Rubinstein’s work on cross-
entropy and combinatorial optimization, and from extensions of Rubinstein’s work
introduced by Helvik and Wittner. In this paper a new pheromone sharing scheme is
introduced to improve scalability. On the contrary to earlier version of the algorithm,
the proposed version lets agents share the knowledge stored in pheromones across
the network to a greater extent. Care is take not to invalidate the formal foundations,
and to construct cost functions providing an efficient search space.

Results from a set of test scenarios show that pheromone sharing enables cooper-
ation between agents. Compared to a non-pheromone-sharing system, a lower total
number of unique pheromones can be used without loss of performance, i.e. scala-
bility is improved. Indications exists that cooperation even lead to increased perfor-
mance.

The test scenarios in the paper only evaluate the algorithm to a limited extend, thus
further testing is required. Firstly, larger network environments must be constructed
to enable a better evaluation of scalability. Secondly, scenarios testing search in
dynamic networks where resources come and go should be implemented. Injecting
simulated user traffic into the network is also relevant when examining the algorithms
adaptability.

Finally, taking the step from simulations to a real world implementation of the
algorithm is also future work.
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APPENDIX A: AUTOREGRESSION DETAILS

In this appendix the transition from Reuven Rubinstein’s cross entropy method
for continuous and combinatorial optimization [Rub99] to Helvik and Wittner’s dis-
tribute cross entropy algorithm [HW01] is presented in some more detail than in paper
A. A few unpublished adjustments in the autoregressive expressions, performed after
the publishing date of paper A, are also presented.

1. Fundamentals
As described in paper A the following set of expressions represents the “engine”

of Rubinstein’s stochastic cross entropy driven optimization algorithm.πk, denoteda
path,represents a solution in the relevant solution space. To estimate the temperature
γt for iterationt of the algorithm

min γt s.t. h(Pt, γt) ≥ ρ (1)

is applied where

h(Pt, γt) =
1
N

N∑

k=1

H(πk, γt) (2)

i.e. the lowest temperatureγt is found which brings the average quality of all paths
{πk : ∀k} in a batch ofN paths (generated using matrixPt) above or equal to a
certain level of quality given byρ. Path quality is given by

H(πk, γt) = e
−L(πk)

γt (3)

whereL(πk) is the cost of a path. The probability matrixPt+1 to be used in the next
iteration of the algorithm is generated by

Pt+1,rs =
∑N

k=1 I({r, s} ∈ πk)H(πk, γt)∑N
l=1 I({r} ∈ πl)H(πl, γt)

(4)

which will minimize the cross entropy betweenPt andPt+1 and ensure an optimal
shift in probabilities with respect toγt and the path quality functionH(πk, γt).

For further information on the origin of (1), (3) and (4) the reader is referred to
[Rub99] and Paper A [HW01].
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2. Transition to a Distributed Algorithm
In this section information about paths stored by an algorithm is denoted the al-

gorithm’smemory of paths, e.g. the batch onN path described above represents the
memory of paths in Rubinstein’s centralized algorithm.

2.1 Autoregressive Temperature Calculation

For a new temperature to be calculated in (1) and a new probability matrix gen-
erated by (4), all cost values for allN paths, i.e. {L(πk) : k = 1, ..., N}, must
be collected and available. This requirement introduces a synchronization point in
Rubinstein’s algorithm and hence makes it centralized. To remove the need for syn-
chronization, one assumption is required:

The optimal temperatureγt do not change radically when one path is added to
the algorithm’s memory of paths.

This assumption opens for estimating a new temperatureγt+1 by auto-regression.
Auto-regression is introduced by replacingh(Pt, γt) in (2) with

h∗t (γt) = h∗t−1(γt)β + (1− β)H(πt, γt) (5)

≈ 1− β

1− βt

t∑

k=1

βt−kH(πk, γt) (6)

whereh∗t (γt) represents a geometrically weighted average of the quality of all paths
visited so fare.β ∈ [0, 1] controls the level of weighting, i.e. how “clear” paths of
different ages are in the algorithm’s memory. For instanceβ = 0.995 weights the
last240 paths collected with0.3 or greater (0.995240 = 0.3003).

The introduction of(1 − βt) as denominator in (6) ensures thath∗t (γt) becomes
an unbiased estimator for the expected path qualityµ(γt) of all paths (solutions) in
the solution space given a specific temperatureγt. By viewing allH(πk, γt) (for all
paths) as independent random variables, we haveE[h∗t (γt)] = µ(γt) by

E

[
1− β

1− βt

t∑

k=1

βt−kH(πk, γt)

]
=

1− β

1− βt

t∑

k=1

βt−kE [H(πk, γt)]

= µ(γt) · 1− β

1− βt

t∑

k=1

βt−k

= µ(γt)

The introduction of(1−βt) also ensures proper initialization of the path memory.
The down scaling effect of the numerator factor(1−β) is reduced due to the denom-
inator (1 − βt) especially for the first 10-20 paths found (t = 1...20). Hence “pio-
neering” paths are remembered “clearly” for some extra iterations creating a better
memory-basis for generating probability distributions. Leavingh∗t (γt) biased tends
to increase the likelihood of too early and premature convergence.
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Note that, on the contrary to Rubinstein’s algorithm, one iteration (t → t+1) now
means adding only a single path to the algorithm’s memory ( instead of replacing all
N paths in memory withN new paths). Hence a new temperature is to be calculated
for every new path found.

Replacingh(Pt, γt) by h∗t (γt) in (1) produces

min γt s.t.
1− β

1− βt

t∑

k=1

βt−kH(πk, γt) ≥ ρ

and sinceH(πk, γt) is monotone nondecreasing inγt, minimum forγt is at equality.
Solving

1− β

1− βt

t∑

k=1

βt−kH(πk, γt) = ρ (7)

for γt implies keeping a storage of cost values (L(πk)) for all t paths found. To avoid
this, based on the assumption stated above (i.e. the temperature does not change
radically when a single path is added to the path memory) an autoregressive scheme
can be developed for calculating a new temperature.H(πk, γt) can be estimated by
a first order Taylor series expansion, i.e. byf(x) ≈ f(a) + f ′(a)(x− a), around the
inverse of the temperatureωt = 1

γt
. Let

H(πk,
1
ωt

) ≈ H(πk,
1
ωk

) + H ′(πk,
1
ωk

)(ωt − ωk)

= e−L(πk)ωk − e−L(πk)ωkL(πk)(ωt − ωk)

= e−L(πk)ωk(1 + L(πk)ωk − L(πk)ωt)

which inserted in (7) gives

ρ
1− βt

1− β
=

t∑

k=1

βt−ke−L(πk)ωk(1 + L(πk)ωk − L(πk)ωt)

=

H(πt,
1

ωt
)

︷ ︸︸ ︷
e−L(πt)ωt +

At−1︷ ︸︸ ︷
t−1∑

k=1

βt−ke−L(πk)ωk(1 + L(πk)ωk)

−ωt

Bt−1︷ ︸︸ ︷
t−1∑

k=1

L(πk)βt−ke−L(πk)ωk

Applying Taylor series expansion again, let

H(πt,
1
ωt

) ≈ H(πt,
1

ωt−1
) + H ′(πt,

1
ωt−1

)(ωt − ωt−1)

= e−L(πt)ωt−1(1 + L(πt)ωt−1 − L(πt)ωt)
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and hence

ρ
1− βt

1− β
= e−L(πt)ωt−1(1 + L(πt)(ωt−1 − ωt)) + At−1 − ωtBt−1

ωt =
At−1 + e−L(πt)ωt−1(1 + L(πt)ωt−1)− ρ1−βt

1−β

Bt−1 + L(πt)e−L(πt)ωt−1

Returning fromωt to γt results in

γt =
Bt−1 + L(πt)e

−L(πt)
γt−1

At−1 + e
−L(πt)

γt−1 (1 + L(πt)
γt−1

)− ρ1−βt

1−β

(8)

At andBt may be expressed as autoregressive functions

At ← βAt−1 + e
−L(πt)

γt (1 +
L(πt)

γt
) (9)

Bt ← βBt−1 + L(πt)e
−L(πt)

γt (10)

where initial values areA0 = B0 = 0 andγ0 = −L(π0)/ ln(ρ). Hence (8), (9) and
(10) now provide the basis for autoregressive calculation of temperatures where only
the values forγt−1, At−1 andBt−1 together with the cost of the latest path found
L(πt) are necessary to calculate the new temperatureγt.

Note that sinceγt is recalculated and updated for every new path found, it is not
obvious thath∗t (γt) remains to be an unbiased estimator for the expected path quality
during the first phase of the search process. However, during the final phase of the
search process, i.e. convergence,γt stabilizes andh∗t (γt) again represents the desired
unbiased estimation of the expected path quality.

2.2 Autoregressive Generation of Probabilities

The geometrical weighted memory of paths introduced above must be taken into
consideration when the transition probability matrixPt+1 is to be generated. Hence
(4) becomes

P ∗
t+1,rs =

∑t
k=1 I({r, s} ∈ πk)βt−kH(πk, γt)∑t

l=1 I({r} ∈ πl)βt−lH(πl, γt)
=

Tt,rs∑
∀s Tt,rs

(11)

where

Tt,rs =
t∑

k=1

I({r, s} ∈ πk)βt−kH(πk, γt)

and I(. . .) is the indicator function. Again to avoid the need to store cost values
of all paths, Taylor series expansion ofH(πk, γt) is performed. To ensure better
approximation of the hyper exponential denominator ofP ∗

t+1,rs and to guarantee that
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no non-physical negative values forH(πk, γt) are produced, a second order Taylor
expansion is performed, i.e.

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

is applied. Again expansion is around the inverse of the temperatureωt = 1
γt

. Hence
let

H(πk,
1
ωt

) ≈ H(πk,
1
ωk

) + H ′(πk,
1
ωk

)(ωt − ωk) +
H ′′(πk,

1
ωk

)

2
(ωt − ωk)2

= e−L(πk)ωk − e−L(πk)ωkL(πk)(ωt − ωk)

+
e−L(πk)ωkL(πk)2

2
(ωt − ωk)2

= e−L(πk)ωk

(
1 + L(πk)ωk

(
1 +

L(πk)ωk

2

)
−

−ωt

(
L(πk) + L(πk)2ωk

)
+ ω2

t

L(πk)2

2

)

An approximation of the numerator of (11),Tt,rs may now be expressed by

T̂t,rs =
t−1∑

k=1

I({r, s} ∈ πk)βt−k

H(πk, 1
ωt

)

︷ ︸︸ ︷
e−L(πk)ωt +I({r, s} ∈ πt)

H(πk, 1
ωt

)

︷ ︸︸ ︷
e−L(πt)ωt

=

At−1,rs︷ ︸︸ ︷
t−1∑

k=1

I({r, s} ∈ πk)βt−ke−L(πk)ωk

(
1 + L(πk)ωk

(
1 +

L(πk)ωk

2

))

−ωt

Bt−1,rs︷ ︸︸ ︷
t−1∑

k=1

I({r, s} ∈ πk)βt−ke−L(πk)ωk
(
L(πk) + L(πk)2ωk

)

+ω2
t

Ct−1,rs︷ ︸︸ ︷
t−1∑

k=1

I({r, s} ∈ πk)βt−ke−L(πk)ωk
L(πk)2

2

+I({r, s} ∈ πt)e−L(πt)ωt

= At−1,rs − ωtBt−1,rs + ω2
t Ct−1,rs + I({r, s} ∈ πt)e−L(πt)ωt

=

bTt−1,rs︷ ︸︸ ︷
At−1,rs − Bt−1,rs

γt
+

Ct−1,rs

γ2
t

+I({r, s} ∈ πt)e
−L(πt)

γt
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whereAt,rs, Bt,rs andCt,rs can be expressed as autoregressive functions

At,rs ← βAt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γt

(
1 +

L(πt)
γt

(
1 +

L(πt)
2γt

))

Bt,rs ← βBt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γt

(
L(πt) +

L(πt)2

γt

)

Ct,rs ← βCt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γt
L(πt)2

2

The initial values areA0,rs = B0,rs = C0,rs = 0. As mentioned above, the second
order expansion ensures that the approximation ofH(πk, γt) never produces negative
values, however none-physical positive values may occur whenγt is small andL(πt)
is large (due to the parabolic shape of the second order approximation). Two variants
of compensation has been applied. In paper A when the history partT̂t−1,rs (the path
memory) in the approximated numerator produces a none-physical positive value, i.e.

when dbTt−1,rs

dγt
< 0 , T̂t−1,rs is replaced by its minimum, which yields

T̂ ∗t,rs = I({r, s} ∈ πt)e
−L(πt)

γt + At−1,rs +




−Bt−1,rs

γt
+ Ct−1,rs

γ2
t

, γt >
2Ct−1,rs

Bt−1,rs

− B2
t−1,rs

4Ct−1,rs
, otherwise

However this compensation is not absorbed by the autoregressive memory functions
At,rs, Bt,rs andCt,rs which may provoke the need of another compensation in future
iteration. To improve upon this a different compensation method has been applied
in the papers B, C, D and E. Instead of only replacingT̂t−1,rs by its minimum the

temperatureγt is replaced by the root ofd
bTt−1,rs

dγt
= 0, i.e.

γ∗∗t =

{
2Ct−1,rs

Bt−1,rs
,

Bt−1,rs

γ2
t

− Ct−1,rs

γ3
t

< 0
γt, otherwise

Now replacing the temperature withγ∗∗t in the approximation of the numerator and
the autoregressive memory functions yields

T̂ ∗∗t,rs = At−1,rs − Bt−1,rs

γ∗∗t

+
Ct−1,rs

γ∗∗2t

+ I({r, s} ∈ πt)e
−L(πt)

γ∗∗t (12)

and

At,rs ← βAt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γ∗∗t

(
1 +

L(πt)
γ∗∗t

(
1 +

L(πt)
2γ∗∗t

))
(13)

Bt,rs ← βBt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γ∗∗t

(
L(πt) +

L(πt)2

γ∗∗t

)
(14)

Ct,rs ← βCt−1,rs + I({r, s} ∈ πt)e
−L(πt)

γ∗∗t
L(πt)2

2
(15)
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Finally (11) is replaced by

P̂ ∗∗
t+1,rs =

T̂ ∗∗t,rs∑
∀s T̂ ∗∗t,rs

=
At−1,rs − Bt−1,rs

γ∗∗t
+ Ct−1,rs

γ∗∗2t
+ I({r, s} ∈ πt)e

−L(πt)

γ∗∗t

∑
∀s At−1,rs − Bt−1,rs

γ∗∗t
+ Ct−1,rs

γ∗∗2t
+ I({r} ∈ πt)e

−L(πt)

γ∗∗t

(16)
Results from simulation scenarios comparing the compensation methods do not give
clear indications that the latter is better than the former (or opposite). However,
compensation is better than no compensation at all.

To summaries, only three autoregressive variables per outgoing link (rs) are now
required to be stored in a node (r). Whenever a new path is found and a new tem-
perature has been calculated, numerator values (which may be claimed to mimic
pheromones in natural system) for all links in the new path are updated using (12)
followed by an update of the autoregressive memory variables using (13-15). During
the next (forward) search for a path (i.e. beginning of iterationt + 1), an ant-like
agent will generate a next-node-probability-distribution using (16) before selecting
which node to visit next.





APPENDIX B: UPDATE OF GLOBAL VALUES

As mentioned in paper A under future work, an investigation of different updating
schemes for global values is appropriate. Two global values are of special interest, the
search focus parameterρ and thebest cost(lowest) found so far. In paper A, C and
E these values are updated during the search process to speed up convergence. When
no new best cost value has been found (and hence no update of best cost values has
been perfomed) for a specific number of iterations,ρ is updated to tighten the search
focus and by that “push” the search process out of a potentially oscillating state.

This appendix compares four different update schemes forρ andbest cost. Table
1 lists the schemes. In the first scheme, denotedsimple,no probagation of updates of
neitherρ nor best costare performed. When an agent realizes an update is required,
e.g. when a new best path with best cost is found, only a copy of the relevant value
in the agents homenode is updated. Hence only agents sharing a specific homenode
cooperate in updatingρ andbest cost.

The second and third schemes, denotedasymetric Aand asymetric B, perform
probagation of updates for one out of the two values. Probagation is realized by
making all agents check values stored in all nodes they visit. If a node contains
an older value than the value a visiting agent carries, the agent updates the node.
Otherwise the agent replaces/updates the value it carries with the value read from the
node.

The fourth scheme, denotedfull, performs probagation of bothρ and best cost
found. Probagation is realized as described above for asymetric A and asymetric B.

As indicated by the name, thesimplescheme is simple and do not introduce new
dependencies between agents with different homenodes. Probagation of a new value
happens in a passive and indirect manner. After an agent has found a new path with
new best cost value, the probability that other agents will find and follow the new path
will increase (due to increased pheromone levels, see Paper A). Hence other agents

Table 1. Four update schemes forρ andbest cost.

ρ best cost

Simple No probagation No probagation
Asymetric A No probagation Probagation
Asymetric B Probagation No probagation

Full Probagation Probagation
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Table 2. Results from comparasions of updating schemes

Topology Schemes compared Wilcoxon Rank-Sum N(0,1)
Conv. time Conv. value α = 2.5%

Simple v.s. Asymetric A -0.659 -0.306 1.96
B26 Simple v.s. Asymetric B -1.136 -0.419 1.96

Simple v.s. Full 0.324 -2.354 1.96
Simple v.s. Asymetric A 2.380 -0.203 1.96

fri26 Simple v.s. Asymetric B 1.298 1.388 1.96
Simple v.s. Full -0.243 -1.317 1.96

with different homenodes will soon discover the new best path and eventually their
homenodes will be updated with the same new best cost value.

The other schemes probagate values actively and potentially faster than the sim-
ple scheme. However new dependencies are introduced which degrade the overall
robustness of the system. The following example illustrates this. If one agent of a
species sharing a homenode should “go bananas” due to an internal failure and start
updatingρ andbest costwith crazy values, these faulty values would probagate to
other homenodes and soon influence the behavior of other species of agents. This
would not happen if the simple schemes was applied.

Maintaining a robust system is desirable, hence the simple scheme is preferrable
given that the system does not perform significantly worse with the simple scheme
than with the other schemes.

To investigate differences in perfomance, a statistical interference procedure for
comparing pairs of treatments has been applied. Perfomance results from simula-
tions using the simple scheme have been compared to performance results from sim-
ulations using each of the other schemes. Table 2 presents the results. In total 12
inteference test have been perfomed, six on convergence times and six on conver-
gence values. Half of the tests were performed using a 26 node fully mesh network
topology, denotedfri26 in Table 2. The other half of the tests used a 26 node scarcely
meshed network, denotedB26 in Table 2, with average connection degree≈ 5. B26
is identical to the topology presented in paper C (Figure 2). In all the tests, the sys-
tems search for optimal Hamiltonian cycles, i.e. travelling salesman tours (see paper
A and C). Results for each interference test in Table 2 are based on 20 simulations.

Since there is little knowledge available about the distributions for the convergence
times and convergence values, assuming they follow a normal distribution is not with-
out risk. Hence a distribution-free alternative to a standard ANOVA test was chosen.
Results in Table 2 present the output of Wilcoxon Rank-Sum tests for comparing
pairs of treatments [BJ77]. The hypotheses relevant for the version of the Wilcoxon
tests applied are

H0 The two distributions are identical

H1 The distribution of population A is shifted to the right of (i.e. has worse perfo-
mance than) the distribution of population B.
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Since the simple scheme (population A in H1) is preferable, a tight rejection region
for H0 has been chosen. A probability of a type II error greater than2.5% is viewed
as inacceptable. An inacceptable error level implies that the simple scheme will be
considere to give a system performance not sigificantly worse than the scheme it is
compare with, i.e. H0 is not rejected. The last column in Table 2 presents the relevant
value of the statistic for a rejection region atα = 2.5%, i.e. for H0 to be rejected the
output from a Wilcoxon test must be larger than 1.96.

As column three and four in Table 2 show, all except one test output value are less
than 1.96, i.e. H0 is rejected in only 1 out of 12 test cases. Hence, it is reasonable
to claim that overall there is not enough evidence indicating that the simple scheme
degrades performance significantly compared to the other schemes.

Based on this conclusion theasymetric Ascheme applied in paper A has been
replaced by thesimplescheme in papers C and E.





APPENDIX C: PAPER F

This appendix reproduces an extended abstract describing early work on simulat-
ing ant-like agents doing network managment using theNetwork Simulatorsoftware
package. The abstract was publised as a poster presentation at

The second international symposium on agent system and applications and the
fourth international symposium on mobile agents(ASA/MA 2000 ), Zurich,
Switzerland, September 2000.





SIMULATING MOBILE AGENT BASED
NETWORK MANAGEMENT USING NETWORK
SIMULATOR

Otto Wittner

Bjarne E. Helvik
Abstract

Large, heterogeneous computer and telecommunication networks with ever chang-
ing topology and size are typical environments todays network management (NM)
systems struggle to control. Unexpected events occur frequently in these complex
networks, and many of the events result in failure situations where the NM system
is required to intervene and restabilize the network. By distributing the NM system
throughout the network efficiency and dependability can be improved. This is in-
deed what todays NM system providers and operators are focusing on. Efforts are
currently being made to increase the level of distribution of the most popular man-
agement architectures in use today (SNMP, OSI, TMN).

Swarm intelligence (i.e. simple mobile software agents with collective behavior) is
an alternative concept for implementing distributed applications. Several promising
examples of NM applications based on swarm intelligence are under development
[CD98, WBP98, VS99a]. For most of these examples a simulator has been used as
the major tool to configure system parameters and verify system performance.

This paper describes howNetwork Simulator (NS)has been extended to support
simulation of mobile code, and how a network node surveillance system based on
swarm intelligence is being developed usingNS.

NSis an open source simulator package. Development efforts are currently funded
by DARPA through the VINT project [DAR].NSis capable of running realistic simu-
lation scenarios of traffic patterns in IP-based networks. The package is implemented
as a neat mix of OTcl and C++ classes.

Simulations involving mobile code can not easily be run using the standardNS
package. An extension is required to include the necessary features.

DARPAs Active Network (AN) architecture enables mobile code in network en-
vironments. AN packets and AN enabled network nodes are very similar to mobile
agents and mobile agent systems respectively. AN packets can only contains small
units of software. This fits nicely with the concept of swarm intelligence (a large
number of small and simple agents).
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The PANAMA project (TASC and the University of Massachusetts) has developed
an AN extension toNS. In the original extension AN packets do not contain any exe-
cutable code. A reduction in packet size is used to simulate execution of a packet. To
enable simulation of swarm based applications we have enhanced the AN extension
to handle mobile code by allowing a reference to an OTcl object be inserted as packet
data in an AN packet. AN enabled nodes has been extended to initiate a “bring back
to life” method (calledrun()) in such referenced objects.

Using the AN enabledNSwe have started developing and testing a network surveil-
lance system . The system is inspired by how ants performed foraging and is based on
work done by Dorigo et al on ant colony optimization (ACO) [DC99]. The goal of an
ant in our system is to visit all nodes in the network and return to its home node, the
quicker the better, i.e. the traveling salesman problem (TSP). Dorigo has developed
an efficient ACO-algorithm, Ant Colony System, for solving TSPs but the algorithm
requires global access to all nodes which is impossible in a real network. Our system
relies only on local information. Figure 1 shows some preliminary results. Our ants
do indeed learn more efficient traversal itineraries over time but they struggle to find
the optimal itinerary.

More work is required to tune the surveillance system. A genetic algorithm is
currently being applied for parameter tuning.

Work is also in progress on testing the performance of the surveillance system in a
more realistic environment where several other traffic sources generate traffic in the
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Figure 1. (a) Surveillance ants traversing a network in active network packets. The illustration
is a screen dump fromNetwork Animator, an animation tool included in theNetwork Simulatorsuit.
(b) Preliminary results showing how the ants learn to traverse the network by “smelling” each others
pheromone tracks. Standard ants move stochastically while test ants always choose the most desirable
next hop. The lower line is the optimal traversal time for visiting all nodes and returning home.
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network . NSprovides a collection of traffic sources which can easily be added to a
simulation setup.

Work has just been initiate on a backup-path reservation system based on swarm
intelligence. Ants allocate resources to form backup paths for end-to-end connec-
tions. Multiprotocol Labeled Switching (MPLS) is chosen as the underlying routing
mechanism.NSprovides support for MPLS simulation.

Our first experiences withNetworks Simulatoras a simulation tool for swarm in-
telligence based application are promising. Speed of simulation is reasonable if care
is taken when deciding which objects to implement in OTcl and C++.NSprovides
functionality for convenient creation of realistic simulation environments.
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APPENDIX D:
IMPLEMENTING TECHNOLOGIES

In this appendix a short survey is presented describing potential technologies for
implementing emergent behavior based management tools in network management
systems. Since a management system may utilize several independent or interact-
ing emergent behavior based tools ([WP98]), the different potential technologies’
capabilities for providingfine grained dynamic distributionis in focus. Fine grained
dynamic distribution should be understood as the concept of having a high number of
autonomous components (fine grained) which are distributed logically and/or phys-
ically (distribution), and may be redistributed/relocated frequently logically and/or
physically (dynamic).

Dynamic distribution can enable efficient introduction of new management tools
in general ([Gol96]). Fine grained dynamic distribution can enable efficient introduc-
tion of management tools based on emergent behavior. The simple behaviors, from
which emergent behavior emerge, are typical distributed autonomous components. A
high and varying number of simple behaviors are in general required to realize emer-
gent behavior, hence support for fine grained dynamic distribution in a management
system is desirable.

1. Standard Network Management
During the 1980s two of the more significant standards for network and system

management were developed, the Telecommunication Management Network (TMN)
based on OSI management [ITU00, CCI92] and the Simple Network Management
Protocol (SNMP) [CFSD90]. Recently web- and component based technologies have
entered the arena challenging the well established standards. See [Slo94a][HAN99]
[Udu99][Sta99] for details and tutorial descriptions of TMN, SNMP and their new
rivals.

Standard network management systems have default configurations where man-
agement functionality (i.e. components form the FCAPS functional areas) is dis-
tributed with varying granularity among a set of management units. Fine grained
distribution is possible but seldom implemented. Even more seldom are implemen-
tations where components are redistributed while the management system is online,
i.e. dynamic distribution. The following sections look at each of the management
technologies mentioned above and the extent of support they provide for dynamic
distribution.
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1.1 SNMPv3

The Simple Network Management Protocol (SNMP) standard, defined by the In-
ternet community, was designed with simple networked systems in mind (especially
networked computer systems). A traditional hierarchical information model (Man-
agement Information Base, MIB) and a simple communication protocol (SNMP)
were specified, the MIB with a limited set of data types, and the protocol with a
limited set of packet types and possible message interactions. The intended simplic-
ity of the standard has been the sources of SNMPs success and wide acceptance but
it is also a weakness when it comes to managing larger complex networked systems.

SNMP version 1 have no support for adding or removing functionality while a
system is online. Management centres and network element agents are loaded to
specific locations during system initialization and never later redistributed. Two ad-
ditions to the SNMP standard suite have later been made which can enable dynamic
distribution:

The distributed protocol interface(DPI) [WCC+94] was introduced to im-
prove SNMP based systems ability to handle large MIBs and customised MIBs
(agentXis a further development of DPI [DWEF00]). Using DPI a hierarchy of
agents can share the responsibility of managing a MIB. Sub agents can dynam-
ically be added and removed while the system is running, i.e. some degree of
dynamic distribution can be said to exist. Still no new functionality is normally
initiated in a network element when a sub agent is added. A new part of the
MIB may become accessible or the performance of the management software
in the element may improved due to better concurrency in request handling.

The DISMAN (distributed management) charter of IETF has specified MIB
subtrees enabling scheduling of management operations [LS99a] and delega-
tion of management scripts [LS99b]. The latter MIB extension provides what
is required for online redistribution of management functionality.

1.2 TMN and OSI Management

The Telecommunication Management Network (TMN) standard on the contrary
to SNMP is design for large scale management. Based on the object oriented OSI
Management standard a large number of different network elements can be managed
using advanced hierarchies of management units.

OSI management incorporates two roles for a system: amanager roleand an
agent role. A system component can assume any of the roles whenever appropriate.
In other word roles can be considered to be dynamically distributable. Theoretically,
by installing all functionality, e.i. complete class libraries for manager objects and
managed objects and their interfaces, in all network elements (NE) a fine grained
dynamic distribution of functionality can be achieved. Whenever a new task is to
be handled by an certain NE a manager object in some other NE can delegate the
responsibility to the target NE by creating relevant objects. The target NE will then
assume whatever role is appropriate to handle the new task.
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On the other hand predicting what kind of functionality that may be required to
solve problems of the future and installing the appropriate class libraries is difficult.
Since aCommon Management Information Service Element(CMISE), the service
element specified by the OSI management standard [ITU97], does not provide any
service for uploading new management classes to a network element, efficient dy-
namic distribution is difficult to realized.

TMN, which by default employ OSI Management, has a static hierarchical con-
stellation of functional blocks and functional components. All the functional compo-
nents are not specified to be available in all NEs. A functional block, which map one-
to-one to a physical NE, is intended to hold a limited set of functional components.
Extensions to CMISE enabling explicit reconfiguration and reallocation of functional
components during operation has not been specified, thus efficient dynamic distribu-
tion is difficult.

Within ITU’s overall Open Distributed Management Architecture,CORBA has
been recognised as an alternative to CMISE [ITU98]. Implicit dynamic distribution
may be achieved through CORBAs life-cycle services (see section 1.5).

1.3 JMX

After the introduction of web technology to Internet, web based solution for net-
work and system management have emerged. Some approaches aim for open ar-
chitectures, where one is the Java Management Extension (JMX, former JMAPI)
[McM00]. JMX apply the Java language for specification of management informa-
tion and can use the hyper text transfer protocol (HTTP) for information transferral.
Easy access to information through standard web browser client software is enabled.

JMX adopts a management architecture with similarities to OSI Management, that
is a three level hierarchical architecture. At the lowest level, the instrumentation
level , basic management objects (MBeans) are installed to give network elements
standardized interfaces. At the middle level, the agent level, MBean servers manage
MBean life cycles and provide/forward services to the upper level, the distributed
services level, where management applications aggregate, interpret and present man-
agement information to an operator.

Since JMX’s foundation is the Java programming language and virtual machine it
inherits the portability and distribution properties of Java. Classes may be created and
uploaded dynamically and objects may be serialized and transmitted between hosts.
Hence JMX does indeed provide functionality for fine grained dynamic distribution.
As will become clear from Section 2 Java forms the foundations for many systems
designed to provide fine grained dynamic distribution.

1.4 WBEM

An other web based open architecture is Web-Based Enterprise Management (WBEM)
[DMTF03]. WBEM uses the extensible mark-up language (XML) for specification
of management information, and (similar to JMX) the hyper text transfer protocol
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(HTTP) for information transferral. As for JMX, easy access to management infor-
mation through standard web browser client software is enabled.

In WBEM a network elements may in a management context play the role of a
client, serveror alistener(a listener is a server managing a specific type of messages).
As for OSI Management, an network element may assume any of the roles whenever
appropriate, hence roles may be claim to be dynamically distributable. However, as
for OSI Management, just having network elements assuming different roles does
not provide true fine grained dynamic distribution. New functionality must still be
uploadable. On the contrary to CMISE in OSI Management, the WBEM standard
specifies operations for creating new information model classes. Theoretically this
enables the creation of a management information class which provides the necessary
services for uploading, installation and execution of new management functionality,
which again may enable fine grained dynamic distribution.

1.5 CORBA

Component based platforms have been recognised as good candidates for imple-
menting the core of a network management systems. CORBA (Common Object
Request Broker Architecture) is one such platform [OMG02a, ITU98].

CORBA provides mechanisms which enable interactions between software objects
in a distributed system through well defined interfaces. Among a range of services
for object management specified for CORBA, theLife Cycle Services[OMG02b]
provide what is required to create, remove, move and copy an object. Any (already
existent) object can access the life cycle services and create/ remove/ move/ copy
another object using an appropriate available factory object.

Hence, assuming necessary factory objects have been created in a network envi-
ronment to be managed, the life cycle services of CORBA should provide what is
necessary to implement fine grained dynamic distribution of management software.

2. Mobile Agents
Mobile agents, mentioned already in the preface of this thesis, are autonomous

software objects which by definition must by able to move themselves (migrate) phys-
ically and/or logically from node to node in a network environment, and be able to
execute a set of operations while visiting a node [PK98]. Hence mobile agent tech-
nology have the fundamental properties required to provide fine grained dynamic
distribution in a management system.

Two aspects are important to make mobile agents “come alive”. Firstly, a suitable
implementation language is required which ensures necessary encapsulation of the
code and state information that implements an agents behavior. See e.g. [Tho97] for a
survey on mobile agent languages. Secondly, a platform must be installed in all nodes
to be visited by mobile agents. Such mobile agent platforms must provide a basic set
of services, i.e. creation, execution, migration and termination of mobile agents. A
range of mobile agent platforms have been developed during the last decade, and new
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platforms ares still being introduced. A list, known as the theMobile Agent List,of
currently available platforms is available at [Dis01].

The general popularity of the Java language as well as its support for portability
and encapsulation has made many mobile agent platform developers choose Java as
their development language. At the time of writing of this thesis 18 out of 33 mobile
agent platforms in the Mobile Agent List are base on Java.

The popularity of Java as a foundation for mobile agent based systems together
with such systems ability to provide fine grained dynamic distribution indicate the
potential of applying JMX (Section 1.3) as a basis for a network management sys-
tem. That is, merging JMX and a Java based mobile agent platform may produce a
management system foundation able to provide both traditional management services
as well as support for management tools of the future.

3. Active Networks
Active Networksis a DARPA funded program, and may be described by the fol-

lowing quotation form the program’s home page [DAR97]

Active networks allow individual user, or groups of users, to inject customized pro-
grams into the nodes of the network. "Active" architectures enable a massive increase
in the complexity and customization of the computation that is performed within the
network, e.g., that is interposed between the communicating end points.

As described in [TSS+97] there are several approaches for realizing active networks,
two extremes are theprogrammable switchapproach and thecapsuleapproach. The
latter, thecapsule approach, is essentially to enable mobile agent technology (Sec-
tion 2) at the network and transport layers in a network. A packet may contain an
autonomous executable object (code and state) which is executed by active network
enabled nodes the packet visits on its way through the network. In theprogrammable
switch approach an active packet only contains a reference to the code to be ex-
ecuted. Hence the relevant executable code must be injected into active network
enabled nodes before an active packet may be executed. Such preloading of code,
known as class loading, is common in distributed systems base on Java.

Since active network technology enables every packet sent to carry executable
code, support for fine grained dynamic distribution is indeed provided. The fact
that functionality can be dynamically uploaded into the lower layers of the protocol
stack of a network element, opens for efficient implementation of many network
management operations [RS00].
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