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Abstract

It has been suggested by Sorkin that a three-slit Young experiment could reveal the validity a
fundamental ingredient in the foundations of one of the cornerstones in modern physics namely
quantum mechanics. In terms of a certain parameter g, it was argued that a non-zero value could
imply a breakdown of the fundamental Born’s rule as well as the superposition principle. Here we
argue thata physical realization of such arguments could lead to an erroneous conclusion and
contradict the basic rules of quantum mechanics. In fact, we argue that a straightforward
interpretation of the procedures involved in a physical determination of xg does not necessarily lead to
ks = 0.In order to show this we consider a mono-chromatic source of photons prepared in an
arbitrary quantum state and a simple version of the well-established photon detection theory of
Glauber which, by construction, obeys all the rules of quantum mechanics. It is, however, also argued
that after a proper identification of the relevant quantum-mechanical probability amplitudes one can
be reach kg = 0. Aslong as one only consider a single photon detector, it is verified that, in this
context, there is no fundamental difference between quantum-mechanical interference and
interference as expressed in terms of classical electro-magnetic waves.

1. Introduction

Some time ago Sorkin [1] introduced a parameter kg defined for arbitrary complex numbers «, 3, and 7,
1
ks = F(Paﬂﬁ/ - Paﬂ - Pom, - Pfﬁ + Pa + Pﬁ + R,)) (1)

with B3, = |ae + 8 + 7% Pyg = |a + G4 and P, = ||* and similarly for other combinations. Pis a suitably
chosen normalization in order to factor out possible unimportant constants. Here we put P = 1 butinclude it
when convenient. Sorkin observed that x, = 0 as a mathematical identity for the arbitrary complex numbers «,
B, and . Since the complex numbers in the definition of kg can be interpreted as quantum-mechanical
probability amplitudes for physical events, it was, nevertheless, argued that a non-zero value of g could be used
as test of some of the fundamental ingredients of quantum mechanics, namely the superposition principle and
Born’s rule for obtaining measurable probabilities from quantum mechanical probability amplitudes. A physical
realization corresponding to the symbol B, 3, could, e.g., correspond to the detection probability in a three-slit
Young interferometer as illustrated in figure 1. With one of the slits (y) closed, P, 3 should then be identified with
the corresponding detection probability, and P, should correspond to two slits (G and ) closed and similarly for
other combinations of the probability amplitudes «, 3, and 7. Various theoretical and experimental oriented
considerations of these ideas of Sorkin have recently been under investigation [2—12].

Itis now of crucial importance to specify the identification above in a clear physical manner when making
use of one and the same experimental setup with a given source and detector system. It is, e.g., then not obvious
that closing one slitin a three-slit Young interferometer is physically equivalent to a two-slit situation to be used
in the experimental determination of xs. By imposing proper boundary conditions for the various Young
interferometer configurations, it has actually been argued that a non-zero value of x5 quite naturally emerges
[4,7,8,12]. In very elementary terms, and focusing on a purely quantum field theoretical treatment, we will
confirm that this is the case. Furthermore, one may raise questions on the quantum-mechanical nature of the
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Figure 1. A three-slit Young interference setup. The normal mode annihilation operators a, b, and calso denote the various thin-slits.
The source-mode annihilation operator is s. The inter-slit distance is /and d denotes the position of the detectors. The distance D
between the Young interferometer and the detection plane is supposed to be large compared to any other length-scale.

prepared source state. We will verify, what has been known for along period of time, that the interference
pattern in all the cases we consider does not depend on the quantum nature of state of the source, at least if we
consider mono-chromatic sources and a single photon detector. Apart from an overall factor, the interference
pattern will therefore be the same for a source prepared in, e.g., a quantum-mechanical Fock-state of photons or
for a conventional coherent state. As is well-known, the use of coherent states naturally leads to the interference
of classical electro-magnetic fields (see, e.g., [13] and references cited therein). The observation of a non-zero
value of x5 is therefore not exclusively related to quantum-mechanical interference effects.

2. The photon detector

We first recall a simple quantum field theoretical treatment of quantum interference effects in a two-slit Young
interferometer (see, e.g., [14, 15]), illustrated in figure 1, for a mono-chromatic source with wave-number k and
angular frequency w = ck. The Glauber theory of quantum coherence [16] is then used in order to find the
corresponding probability for single photon-detection. Below this analysis will be extended to a three-slit Young
interferometer configuration. For a prepared quantum state 1)) of the source S, and for a properly designed
detector, the detection probability of one photon, with the port ¢ closed, is related to the absorption of a photon
in the detector described by the process

) — E®(x, D). (@)

Here

it it
ED(r, 1) = 5( a +b ) 3)
Ta Ty
is the positive frequency part of one of the components of the second-quantized electric field observable
E)(x, t) atthe position r and time tat the detector far from the interferometer. The field EP(r, t) is expressed
in terms of outgoing normal-mode annihilation operators a and b. In a more rigorous setting one should make
use of appropriate Greens functions for system which, however, would make the points we are addressing less
transparent. Furthermore, ¢, = w(t — 7,) and ¢, = w(t — 7,) are suitable phases expressed in terms of time-
delays 7, and 7. £ isa common amplitude for the a and b modes and r,, r;, are the in-plane distances from the
various openings of the interferometer to the detector D. According to the fundamental Born’s rule, the
probability for single photon detection at the detector D is then, apart from unimportant constants, proportional
to P, given by

By = Y _{fIED@, DY) P = (WIEC @, DED(x, DY), “4)
f

where we sum over all possible photon states | ). The probability P, may therefore be written in a well-known
general form using equation (3), i.e.,
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By = |EP (Y| (a¥a + a*be =% 4 ab¥e!@=% 4+ b¥b ) |y)). (5)

We now consider a prepared Fock state |1)) for the source, i.e.,

B S*n B (a* + b*)n _ 1 n ! 1/2 B
) = S = ) L () - ©

where |k), and |n — k), represent the Fock states of photons emerging from the slits a and b. Here we expressed
the initial state |4)) in the a and b modes using a boundary condition at the two identical thin-slits, i.e.,

1

s Nl (a + b). (7)
This relation does not represent the result of a unitary transformation. However, by including an additional local
source, with a mode operator sy = (a — b)/~/2, we have a unitary U(2) transformation connecting the pair of
independent mode operators (s, sy) and the independent mode operators (a, b) [17]. The number operator of
photons will then be conserved. Expressed in a somewhat different manner, fundamental commutation
relations for mode operators applied to a completely symmetric Young interferometer naturally leads to the
condition equation (7). In the discussion below on the three-slit Young interferometer two easily constructed
local source operators have to be included in a similar manner and a corresponding unitary U(3) transformation
can easily be found preserving the number of photons. If quantum states of such local modes are present with,
e.g., random phases, the visibility of interference patterns will in general be diminished. In all of the
considerations below we, however, assume that the quantum states of such local modes are the vacuum state. We
can therefore suppress their presence in the considerations below.

The state vectors in equation (6) describe the superposition of all possible combinations that can occur with
appropriate weights, for photons passing through the various slits at the same time. We stress again that we only
need the asymptotic form of the field E®(r, t) at the detector and a relation like equation (7) for the mode
operators in order to complete the analysis for all relevant detection probabilities. It now follows that

(Yla*aly) = (YIb*bly) = (Ylb*aly) = (Pla*bly) = g ®

and therefore

Pab:|g|2§(%+%+ M} (9)
a b

Talb

Similar expressions can be obtained for the probilities P,. and Py,. For the one-slit case the approximations used
aboveleadto P, = |£]*n/r? and similarly for P, and P..

With all slits open in figure 1, we extend the discussion above with the asymptotic field E(r, t) in
equation (3) replaced by

EM)(r, t) = E(a AR R ) (10)

Ta Ty T

Correspondingly, the initial state |1)) is expressed in terms of the g, b, and ¢ mode operators, i.e.,

1/2
(a@* + b* + c*)” n!
—_— kg @ )y @ |n — k — 1), 11
|¢> \/3n— 3H I;)Z k' l' (I’Z l)' I >a | >b | >C ( )
where we have made use of the multi-nomial theorem. As in the two-slit case, equation (11) describes the
superposition of the possible combinations that can occur with appropriate weights, for photons passing
through different slits at the same time. It is straightforward to verify that the extension of equation (8) is given
by

(Pla*alyy) = (YIB*blY) = (Wlckel) = (Yla*bly) = (Plb*ale)
:mﬁm:mmm:wmmzwﬁng (12)

The three-slit probability P, is therefore given by
1 2cos(p, — @ 2cos(py, — @ 2cos(p, — &
: cos(¢, b) cos(¢, ) cos(¢, C)'

re Talp Tpte Tale

1 1
Bac = |6 2|5+ = + (1
3 1,

rﬂ
The various detection probabilities discussed above are all proportional to the number of photons 7 of the
initial state |1)). In general all the results above will actually remain the same for any mono-chromatic initial
quantum state, pure or mixed, by replacing n with the corresponding mean value (). In order to verify this fact
we make use of Glauber-Sudarshan representation [16, 18] for a general single-mode quantum state in terms of
conventional coherent states |v) [19] namely
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Figure 2. The Sorkin parameter xk; — k(d), as defined in equation (18) normalized by P = P, (d = 0), asa function of d/D. The
parameter used are as in [12] with A = 0.05 m,/ = 0.13 mand D = 1.25 m. For reasons of simplicity we neglect the width of the
slots. The figures illustrates the sensitivity in reaching the degeneracy value x(d) = 0 for a small range of the normalization constants
ny and 1, in equation (18). Here we make use of n, = 2/3 + 1.3%. The upper curve corresponds ton; = 1/3 + 1.3% and the lower
curveton; = 1/3 + 1.2%.

p= fdza P(a, ) ) {a. (14)
A detection probability Pp, is then evaluated according to

Pp = Te[ p EOr, DED(x, 1) ] = f d2a P(a, o) (alEC(r, HED(r, )]a). (15)

We illustrate the procedure in terms of the two-slit slit configuration with P, = P,,;,. Expressing the coherent
state |o) = D(c)|0) in terms of the displacement operator D (a)) = exp(as™® — os), and by making use of the
mode operator relationship equation (7), itis clear that

2 16
ﬁ>b (1o

Since |) is an eigenstate of the observable E®)(r, t), one easily finds the same expression for P, as in
equation (9) with n replaced by (n) = (s*s) using
1

1 1 . . . .
E(n) = ETr[s*s] = Efdzoz Pla, d|al? = (a*a) = (b*b) = (a*b) = (ab*). (17)

) = ‘ %»@

Apart from the replacement of n with (1), the interference pattern exhibited by P, then stays the same and does
not depend on the details of the initially prepared quantum states of the source. The same reasoning applies to all
detection probabilities considered above.

We now introduce the combination & (d), motivated by equation (1), as defined by

k(d) = Pype — m(Bp + Bic + Pye) + m(By + Py + P), (18)

where we have introduced two normalization parameters #n; and n,. With n; = n, = 1, the Sorkin parameter xg
and x(d) are, at least symbolically, identical. But then

s = jep 2 (i ¥

Ly
-

1 cos(¢, — @) cos(¢, — @)  cos(d, — @) )) (19)

r? TaTh Tyt TaTe
is in general non-zero as a function of the position d of the photon detector. Due to the two-slit conditions
equation (8) and three-slit conditions equation (12) it is, however, clear that the parameters n, and n, have to be
adjusted in order to have the same average number of photons passing through the various slit combinations
under consideration. Without loss of generality, we should therefore use n; = 1/3 andn, = 2/3. The physical
conditions are then the same for the various slit configurations and one then finds that x (d) = 0. Asan example,
we illustrate in figure 2 the sensitivity in the approach to the degeneracy point, defined by  (d) = 0, for various
choices of the normalization parameters 1, and n,. Other parameters used correspond to a recent experiment by
Rengaraj et al [12]. We find it remarkable that we can reproduce some features of [ 12] in view of the simplicity of
the arguments put forward in these comments.

4
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3. Final remarks

In accordance with other considerations, as in [4, 7, 8, 12], we have argued that one cannot make a
straightforward physical identification of the quantum-mechanical probability amplitudes to be used in the
definition of the Sorkin parameter ks. As we have seen in the case of the one-, two-, and three-slit Young
interferometer configurations, the intensity of the source considered has to be adjusted in order to describe the
same physical conditions. It then follows that the corresponding identification of the Sorkin parameter gis
naturally zero. If not properly adjusted a non-zero value emerges without any contradiction with the basic rules
of quantum mechanics. This is our main conclusion.

For a mono-chromatic source, the interference patterns as discussed above do not depend on the nature of
the quantum state of the source and only the mean number of photons is of importance. This has the
consequence that there is no fundamental difference between classical and quantum-mechanical interference
when making use of a single photon detector, a fact that is well established [20]. Even though the concept of a
photon has been disputed [21], the interference pattern as builded up by single-photon events can, with current
technology, rather easily be demonstrated (see, e.g., [22]) and agrees with the interference pattern as obtained in
terms of classical optics.

The Feynman-path integral approach [23] to quantum interference and the notion of non-classical paths for
photons appears to play an important role in many of the current discussions on the Sorkin parameter « (see,
e.g., the Supplementary Material in [7] and references cited therein). In the Feynman-path integral approach to
the quantum mechanics of a non-relativistic particle the notion of a, not necessarily classical, path expressed in
terms of co-ordinates makes much sense even though this has to be used with care (see, e.g., [ 19, 24]). For highly
relativistic particles the notion of a co-ordinate and a corresponding path needs clarification. This is so since one
can argue that the components of a position observable for a massless particle with non-zero helicity, like a
photon, are, due to topological reasons, non-commuting [25]. It therefore appears that, in general, the physical
meaning of non-classical paths for photons is not clear. In the quantum field theoretical approach to
interference phenomena as discussed in this work, such considerations do, however, not play any role.
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