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Predicting slip during robotic manipulation is of interest for a variety of appli-

cations. Especially applications where weak grasps are applied. In this thesis, a

model for predicting slip for a two fingered grasping scenario is considered. Other

than model parameters, the only measurements or sensor information assumed is

of the manipulator joints. Soft objects that deform substantially under applied

forces are especially interesting in terms of frictional behaviour. A soft ball was

used as a test object and parameters for friction and deformation was experimen-

tally determined. By grasping and moving the ball with an industrial manipulator,

slip and object loss was induced in order to compare these observations against

model predictions.

It was found that the models prediction of slip was reasonable when compared to

the observations. However, the model could not be fully tested and validated be-

cause the simple geometry of the test object did not excite any frictional behaviour

from the soft characteristics.
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Chapter 1

Introduction

Grasping using robotic manipulators is, in general, a wide area of research due to

the possible combinations of different grippers, objects and research goals. This

thesis will focus on two-fingered grasping of soft, deformable, objects. The goal

is to formulate a model that may estimate and predict grasp behaviour during

manipulator motions. More specifically, given joint motions of a manipulator, we

seek to predict whether object slip will occur or not. Also, a measure of how ”safe”

the grasp is, is also sought after.

A grasping model may be used to optimize the grasping tightness while moving

an object, or optimize the motion itself, depending on certain limitations or goals

put forth by the user. For example, some soft objects like fruits and vegetables

can not be gripped too hard during manipulation in pick and place tasks. And by

having a sufficiently accurate model one may find a compromise between gentle

handling and speed. This thesis will not address that of optimization, but rather

only the modelling and testing of the proposed model in order to investigate its

usefulness.

Estimated grasp maintenance will be based on computed contact forces between

gripper fingers and the object, and whether they violate the frictional limitations

at the contact patches. Using available robots and equipment (Section 1.4), some

experimental motions are conducted in order to test the proposed model. During

experimentation, the goal is to induce object slip and compare observations with

simulations. Direct measurement of the contact forces was not possible due to the

lack of sensors.

1
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1.1 Background

Robotic grasping is an area of research that can be traced back to the late 1800s

where restraining objects using fixtures and jigs were studied [Bicchi and Kumar,

2000]. However, the modern era of grasping began in the late ’70s, early ’80s,

when research teams started to build multi-fingered robotic hands [Mason and

Salisbury Jr, 1985]. One of the most simple designs of robotic grippers is the

two-fingered parallel gripper where finger motion is symmetric. This one degree

of freedom gripper is extensively used in both industry and research. This grip-

per design will be used when obtaining data and therefore also in much of the

theoretical work in this thesis.

In grasping, there are multiple elements that affect the total behaviour during

manipulation tasks. One important element being what type of object that is

being handled. Especially soft and easily deformable objects present challenges

for predicting behaviour. Before we discuss that of grasping with soft materials

involved, an introduction to grasping in general is in order.

Grasps are usually described by forces and torques so that one may investigate

force equilibria. The task of a gripper is usually to restrain the object against

external influences, or induce some desired motion of the object. The grasps

ability to reject disturbances can be determined based on its closure properties

[Bicchi and Kumar, 2000, Howard and Kumar, 1996, Suárez et al., 2006]. Two

types of grasp definitions have become popular:

• Form-closure: The positions of the fingers ensure object immobility. Only

the normal components of the contact wrenches(Section 2.1.4) may interact

with the object. Friction is in this case a moot subject because the contacts

does not exert tangential restraint.

• Force-closure: A weaker condition than form-closure where the fingers

may also exert frictional forces in order to restrict the object. In this case,

additional conditions must be placed upon the contact forces due to the

limitations of friction.

Grasps with many contacts may often be proved to be form-closed while grasps

with fewer contacts may satisfy force-closure in stead. The two definitions may be
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used in order to further characterize the grasp. Force-closure will be discussed in

greater detail when mathematical background and models have been established.

When the resultant of forces and torques applied by the fingers and other externals

(gravity etc.) are zero, the grasp is considered to be an equilibrium grasp. Fur-

thermore, a grasp is considered as a stable grasp if any perturbation away from an

equilibrium configuration, caused by some disturbance, disappears in time after

the disturbance is removed. The prevalent definitions of grasp equilibrium and

stability is based on a quasi-static assumption, i.e. that the parts of the grasping

system moves at low velocities so that inertial effects may be neglected. Due to

the dynamics of forces in high acceleration manipulator motions, stability in its

strictest sense will not be addressed in this thesis. We will in stead rely on force-

closure properties alone in order to state a quantitative measure of the quality of

two-fingered grasps during manipulator motions.

The approximation that contact with an object may be described by point con-

tacts leads to the topic of contact modelling where one determines which forces

and torques are transferred between the fingers and the object. The most basic

contact is the frictionless point contact, used in form-closure, where the contact

only transmits a normal force. Frictional contacts may also transmit tangential

forces. The most restricting contact is the so-called soft contact that, in addition

to normal and tangential forces, may also exhibit a pure torsional moment about

the contact normal which is due to the substantial area of contact. Soft contacts

and the frictional behaviour will be discussed in detail later in this thesis. For

more about soft contacts, see Barbagli et al. [2004], Ciocarlie et al. [2007], Li and

Kao [2001].

The rigid-body assumption for bodies in contact leads to the static-indeterminacy

problem [Bicchi, 1994], so that one can not predict the force distribution for the

contacts. By introducing compliance at the contacts, the static indeterminacy

problem may be removed. In this thesis, a quasi-rigid-body approach will be

applied where contact area grows with applied normal force as well as a model for

normal force due to one-dimensional object deformation.
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There are several approaches to how one quantifies the quality of grasps, Suárez

et al. [2006] provides an extensive review on the subject and mentions two groups

of such quality measures:

1: Measures associated with the positions of the contacts.

2: Measures associated with the configuration of the hand, or manipulator.

The quality measure of grasps in this thesis comes directly from how ”secure” the

grasp is in terms of friction. Other considerations such as power consumption or

optimal manipulator configuration is not considered. In more than two fingered

grasping, the area of grasp quality becomes more involved due to the possible ways

of placing the contacts and how to restrict the object.

The prevalent mathematical modelling of grasping relies on the assumption of

point contacts and several textbooks provides the material and procedures in-

volved [Murray et al., 1994, Siciliano and Khatib, 2008]. The idea is to consider

two separate dynamics, the object and the manipulator dynamics, and tie them

together with constraints. The constraints may be evaluated from two different

perspectives, velocities and forces/torques. These relations exist at the points of

contact and guarantees that the object and the gripper fingers are constrained

together. During a manipulator motion, due to gravity and inertial forces, con-

straint forces must occur at the contacts and the mathematical model may be used

in order to find them.

Slip detection and prevention usually relies heavily on force, acceleration and/or

tactile sensors [Song et al., 2012]. Song et al. [2012] developed an efficient predic-

tion method using the LuGre friction model [De Wit et al., 1995]. In the absence of

such sensors, and for both off-line and on-line considerations, determining whether

manipulator motions results in slip is also of interest. This thesis will address this

issue for the case of two-fingered grasps of soft, deformable, objects.
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1.2 Problem Statement

This thesis focuses on three main questions:

1. How can one predict whether a given manipulator motion will result in object

slip and possibly loss of the object entirely?

2. For two-fingered grasping scenarios with soft, deformable, objects, is there

some quantitative measure of grasp maintenance?

1.2.1 Limitations and Assumptions

The two-fingered gripping tool has fingers that may be assumed to be rigid, only

the object itself is deformable. Also, the manipulator links are assumed to be

rigid.

Objects under consideration may deform under applied force. However, object dy-

namics are assumed negligibly fast, i.e. compressed objects regain its initial shape

instantaneously. Without this assumption, a bound must be placed upon gripper

finger acceleration (and possibly higher derivatives). Otherwise, the gripper might

lose contact with the object during finger repositioning.

1.3 Software

MATLABr

Is used for all calculations, simulations and measurement processing. The software

package is a powerful mathematical tool with high-level programming, numerical

computation and visualization capabilities [The MathWorks, Inc., 2012].

RobotStudio

This is the software for supervision, control and programming of the industrial

robots manufactured by ABB. The programming language, also made by ABB, is

RAPID. All experiments were realized with this software. It should be noted that

realizing predefined trajectories, complete with position, velocity and acceleration
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profiles, are not supported by the built-in commands in RAPID. RAPID is how-

ever, together with the IRC5 controller, a powerful tool in creating accurate linear

and point-to-point motions [ABB, 2014b].

LabVIEW

A product by National Instruments that provides the means of sampling and log-

ging sensor measurements. LabVIEW is used in a range of different areas, espe-

cially when it comes to control systems and signal processing [National Instruments

Corp., 2013]. In this thesis, LabVIEW was used for obtaining estimation data for

model parameters, see Chapter 4. Other products by National Instruments were

used in conjunction with LabVIEW, see Section 1.4.

1.4 Lab Equipment

ABB IRB 140 Robot

Figure 1.1: Picture of the ABB IRB 140, taken at the robotic laboratory of
the Department of Engineering Cybernetics.

This fast and powerful industrial robot have six axes and can reach up to 810 [mm]

(without end-effector) [ABB, 2014a].
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Schunk PG 70 Gripper

Figure 1.2: Picture of the Schunk gripper tool.

A parallel two-fingered gripper with symmetric motion of the two fingers [SCHUNK

GmbH and Co. KG, 2014].

Futek LSB200 Miniature Load Cells

Two highly sensitive compression and tension sensors. One is calibrated to com-

pression and can take loads up to 44 [N]. The other is calibrated for tension with a

capacity of 22 [N] [FUTEK Advanced Sensor Technology, Inc., 2014]. The sensors

were used in order to identify model parameters for test objects and frictional

characteristics.

Data Acquisition with NI

A 4-channel NI 9237 Bridge analog input module, capable of sampling all channels

at 50 000 times per second, mounted in a cDAQ-9171 compactDAQ chassis. This

equipment is used to process the raw voltage readings from the force sensors.
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1.5 Thesis Outline

Chapter 2 gives the reader necessary mathematical background that is applied in

Chapter 3 where the grasping model is introduced. Chapter 3 also establishes

frictional theory as well as how the mathematical grasping model is implemented

in MATLABr. The grasping model requires some parameters, these are exper-

imentally found in Chapter 4. In Chapter 5 the results and observations from

some experimental motions are presented. The experiments were set up in or-

der to induce slip and object loss. Chapter 6 presents the simulated motions of

the previous chapter and discusses and compares these simulations against the

observations. The final conclusions can be found in Chapter 7.



Chapter 2

Mathematical Preliminaries

This chapter will give the reader a short and concise overview of the mathematical

concepts used throughout the thesis.

2.1 Rigid Body Motion and Dynamics

As mentioned in Chapter 1, even though we are dealing with deformable bodies,

we will assume that the bodies can, in general, be treated as rigid bodies. The

deformation will be accounted for as variable body inertia, yet the dynamics of this

deformation will not be considered. Other flexible body effects such as internal

motion of the CoM will be assumed negligible due to the relatively small size,

small mass and high stiffness of the test objects under consideration.

2.1.1 Rigid Bodies and Position

The position of a particle, ~p, in Euclidean space can be given as a triple (x, y, z) ∈
R3 relative to an inertial Cartesian coordinate frame. The coordinates can be

functions of time which gives rise to a continuous motion of the particle. A system

of several particles are collectively termed as a rigid body if every particle pair

(~p, ~q) satisfies the constraint

‖~p(t)− ~q(t)‖ = ‖~p(0)− ~q(0)‖ = constant

9
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[Murray et al., 1994, p. 20] defines a rigid motion as: ”A rigid motion of an object

is a continuous movement of the particles in the object such that the distance

between any two particles remains fixed at all times.

Another rigid body concept important to note is a rigid displacement. According

to Chasles’ Theorem [Chasles, 1830][Siciliano and Khatib, 2008, p. 14], which

dates back to 1830, the most general rigid displacement can be characterized by

a translation along a line, and a rotation about that line. The line is called the

screw axis of the displacement, screws will be further discussed when twists and

wrenches are introduced later in this chapter.

2.1.2 Orientation

The orientation of rigid bodies and coordinate frames, relative to both an inertial

frame of reference and other non-inertial frames of references, can be described

in several ways. In this thesis we have made use of rotation matrices and unit

quaternions.

Rotation Matrices

A rotation of a Cartesian coordinate frame O1x1y1z1, projected onto another frame

O0x0y0z0, can be represented by a 3 × 3 matrix called a rotation matrix. Our

treatment of homogeneous transformations and rotation matrices is condensed

from Chapter 2 in [Spong et al., 2006]. This thesis will follow the same notation

as in Spong when we are referring to coordinate axes and their associated unit

vectors. However, in all equations the unit vectors will be bold. In text, when we

are referring to coordinate axes, but not specifically the unit vectors along those

axes, we will not use boldface characters.

R0
1 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0

 =
[
x0
1|y0

1|z0
1

]

We say that R0
1 is the rotation from frame O0x0y0z0 to frame O1x1y1z1. The unit

vectors x0
1,y

0
1, z

0
1, are the coordinates in frame 0 of the unit vectors x1,y1, z1.
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The inverse rotation, i.e. the rotation from frame 1 to frame 0, is obtained by

R1
0 =

(
R0

1

)T
Since coordinate axes in Cartesian coordinate frames are mutually orthogonal, the

transpose operation is identical to the inverse operation. Furthermore, rotation

matrices belong to the Special Orthogonal group of order 3. To summarize, for

any R ∈ SO(n) the following holds:

• RT = R−1 ∈ SO(n)

• The columns (and therefore the rows) of R are mutually orthogonal

• Each column (and therefore each row) of R is a unit vector

• det R = 1

A composition of rotations can be obtained by matrix multiplication, where the

order of multiplication varies according to which frame the rotation is performed

with respect to.

R0
2 = R0

1R, If R is performed relative to current frame

R0
2 = RR0

1, If R is performed relative to fixed (or initial) frame

Rotation matrices are a good way to represent orientations of rigid bodies, rel-

ative to an inertial frame. However, there are a number of different ways to

parametrize these rotations. Euler angles for example, parametrize a rotation us-

ing three quantities (as few as possible) where an arbitrary rotation is obtained

by three consecutive rotations. This method, and other similar ones, suffer from

singularities when the first and last rotation occur about the same axis, leaving

some rotation angles as undefined [Siciliano and Khatib, 2008, p. 12]. Since we

are dealing with body orientations that change with time and need to relate an-

gular velocities to orientation parameters, we are motivated to find another way

to represent and parametrize orientations.
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Unit Quaternions

Unit quaternions provide an alternative way to represent orientation and does

not suffer from singularities like the Euler angle representation does [Siciliano and

Khatib, 2008, p. 13], they give a global parametrization of SO(3). Quaternions are

an interesting topic, they are in fact a generalization of complex numbers [Murray

et al., 1994, p. 33]. However, we will only explore their significance regarding

spatial rotations.

A quaternion can be represented as a vector quantity of the form

ε = ε0 + ε1i + ε2j + ε3k

where ε0, ε1, ε2, ε3 ∈ R are scalar quantities and i, j,k are the standard basis vectors

that are mutually orthogonal. We will often refer to a quaternion as having one

scalar quantity ε0 and a vector quantity vε = [ε1, ε2, ε3]
T so that

ε =

[
ε0

vε

]

Two quaternions can be multiplied together, forming a combined rotation, as

a⊗ b =

[
a0

va

]
⊗

[
b0

vb

]
=

[
a0b0 − va · vb

a0vb + b0va + va × vb

]
(2.1)

where the ⊗-symbol denotes quaternion multiplication, [Cline, 2002]. Quaternions

that satisfy ‖ε‖2 = 1 can be used to represent rotations. While using unit quater-

nions numerically, one must therefore apply normalization (divide by magnitude)

to guarantee that the quaternion does indeed represent a valid rotation. Once

a quaternion representation exist, one can get the corresponding rotation matrix

representation by

R =


1− 2(ε22 + ε23) 2(ε1ε2 − ε0ε3) 2(ε1ε3 + ε0ε2)

2(ε1ε2 + ε0ε3) 1− 2(ε21 + ε23) 2(ε2ε3 − ε0ε1)
2(ε1ε3 − ε0ε2) 2(ε2ε3 + ε0ε1) 1− 2(ε21 + ε22)

 (2.2)
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The operation of obtaining the quaternion from a rotation matrix is as follows
ε0

ε1

ε2

ε3

 =


1
2

√
1 + r11 + r22 + r33

r32−r23
4ε0

r13−r31
4ε0

r21−r12
4ε0

 (2.3)

We are particularly interested in the relation between an angular velocity ω and

the quaternion derivative, which is described by

ε̇ =
1

2

[
0

ω

]
⊗ ε (2.4)

[Cline, 2002, p. 12][Siciliano and Khatib, 2008, p. 13].

2.1.3 Homogeneous Transformations

To combine both translation and rotation into one representation for a general

rigid body displacement, we use homogeneous transformations, [Spong et al., 2006,

pp. 61-63]. Let us assume that a rigid body is rotated by R from its initial

orientation and that it is translated by a distance d from its initial position, the

total transformation can be now be represented by a 4× 4 matrix as

H =

[
R d

0 1

]
∈ SE(3),

(
R ∈ SO(3), d ∈ R3

)
Like rotations, homogeneous transformations can be multiplied together to form

compositions of rigid body transformations, they follow the same multiplicative

rules as for rotations.
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2.1.4 Twists and Wrenches

Due to Chasles’, every rigid body motion can be obtained by a rotation about an

axis while translating parallel to that axis. If one imagines the evolution of such a

motion, any particle fixed to the body will trace out a helical path in space, i.e. a

screw motion [Murray et al., 1994, pp. 45-50]. The axis of rotation and translation

is called the screw axis and when we are talking about a continuous motion, the

axis is called the instantaneous screw axis. One can characterize a screw motion

by its axis, pitch and magnitude. However, this will not be strictly necessary for

the scope of this thesis and readers are referred to Murray et al. [1994] for a more

involved treatment of screws. Twists are related to screws in the sense that for

every twist, one can also define the corresponding screw coordinates.

Figure 2.1: Illustration showing helical paths around the ISA of the object
particles.

Twists

To properly define a twist we must first specify the frame in which the twist is

expressed in. For now, let us express the twist in the S-frame, which is a fixed

frame in space with the origin O. A body is moving in space, consider the velocity

of a body-fixed point ps

vsp = vsO + ωs × ps = vsO + [ωs]ps (2.5)

The point can be viewed as translating with a linear velocity and with an additional

velocity due to the angular velocity of the body. One might wonder what vsO
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represents, which is somewhat unintuitive, vsO is the velocity of a body-fixed point

currently at O. The angular velocity vector, ωs, passes through O. See Figure

2.2 for an illustration of this scenario. To clarify, the velocity, vsO, need not be

parallel to ωs and twists should not be confused with screws.

Figure 2.2: The velocity of a point attached to a rigid body, relative to a
spatial frame.

The equation (2.5) is true for any point that is rigidly attached to the body, it

can therefore be considered as a vector field, i.e. the velocity field of the body

[Featherstone, 2008, p. 12]. In the rigid body dynamics literature, [Featherstone,

2008, Murray et al., 1994] and others, one usually refers to the fixed S-frame as

the spatial frame. The spatial twist, νs, can then be defined by the 6× 1 vector

νs ,

[
vsO

ωs

]

νs is an example of a spatial vector and Featherstone [2008] provides an entire

algebra that deals with such vectors.

Another important frame of reference is the body-frame, denote this frame as the

B-frame and note that its origin and axes are now fixed to the body and moving

relative to the spatial frame. Again, consider the velocity of a point attached to

the body, pb, but expressed in B. Which means that pb is the distance from the
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B-origin to the point.

vbp = vb + [ωb]pb (2.6)

The interpretation of vb is fairly straight forward, it is the velocity (relative to

spatial frame) of the origin of the B-frame, expressed in the B-frame. The angular

velocity vector, ωb, passes now through the origin of the B-frame, and all body-

points that lie on this axis experience only the linear velocity component. The

body twist can now be defined as

νb ,

[
vb

ωb

]

We have now discussed the two most popular frames of references. However,

later on we will introduce one more body frame, one that is world aligned at all

times and whose origin is body-fixed and coincident with the origin of the B-frame.

This convention is adopted from both Cline [2002] and [Siciliano and Khatib, 2008,

Ch. 28], and simplifies the equations of motion for the body, as will be explained

in section 2.1.5.

Wrenches

Figure 2.3: A wrench on a spherical object, applied at and about a point on
the surface.
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Like twists, wrenches are 6× 1 spatial vectors and are composed of a linear force

component, f , and an angular torque component τ .

w =

[
f

τ

]

For wrenches it is important to note that the point of application is always at

the origin of the frame in which the wrench is expressed in, and that the line

of application passes through it. This is especially important when transforming

wrenches from one coordinate frame to another, which will be explained shortly.

Adjoint Transformations

When transforming twists and wrenches between coordinate frames, one can not

simply rotate the vectors, some transformation rules apply. Twists and wrenches

also transform differently, first we will consider twist transformations.

Let us say that the homogeneous transformation from frame A to frame B is given

by

Ha
b =

[
Ra
b dab

0 1

]
(2.7)

where Ha
b can also be time dependant. A twist, νb, expressed in frame B can then

be expressed in frame A by using the adjoint transformation [Featherstone, 2008,

pp. 20-23][Murray et al., 1994, p. 55], AdH , in the following manner

νa = AdHν
b =

[
Ra
b [dab ] R

a
b

0 Ra
b

]
νb (2.8)

The mapping, AdH : R6 → R6, will become important later in this thesis. AdH is

invertible and can be used to obtain νb given νa, the inverse is given by

Ad−1H =

[
(Ra

b )
T − (Ra

b )
T [dab ]

0 (Ra
b )
T

]
= AdH−1 (2.9)
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For wrenches, if one considers the same homogeneous transformation, (2.7), one

can obtain the equivalent wrench of wa in frame B as

wb = AdTHwa =

[
(Ra

b )
T 0

− (Ra
b )
T [dab ] (Ra

b )
T

]
wa (2.10)

Conversely, wa becomes

wa = AdTH−1wb =

[
Ra
b 0

[dab ] R
a
b Ra

b

]
wb (2.11)

It is worth taking the time to really understand what this transformation does.

The linear force vector, f b, is just rotated by Ra
b into frame A. The torque vector

on the other hand, now becomes

τ a = [dab ] R
a
b f
b + Ra

bτ
b

The term, [dab ] R
a
b f
b, compensates for the induced moment from moving the point

and line of application for the wrench, making them equivalent. The wrench, τ a,

has the same effect as τ b on the body.

2.1.5 Newton-Euler Equations of Motion

One can write the Equations of Motion with respect to any convenient frame

placed in space. However, to obtain EoM that are easy and intuitive to work with,

we will introduce an intermediary body frame whose axes are aligned, at all times,

with the world frame [Cline, 2002][Siciliano and Khatib, 2008, Ch. 28]. The origin

of this world-aligned body frame is then fixed to the CoM, and we will keep track

of its position with the position vector, p(t). The combined configuration of the

body, i.e. its position and orientation, are stored in the 7× 1 vector

χ =

[
p

ε

]
(2.12)

From this vector, one can also obtain the homogeneous transformation between

the N -frame and the B-frame by first using equation (2.2) to obtain the corre-

sponding rotation matrix and then, together with the displacement p, form the

transformation.
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From this point on we will refer to the inertial frame as the N -frame, the world-

aligned body frame as the BN -frame and the body-fixed frame as the B-frame.

The twist, expressed in the BN -frame, becomes

ν , νbn =

[
ṗ

ωbn

]
,

[
v

ω

]
(2.13)

The wrench, acting at and about the CoM, will be denoted by

w , wbn ,

[
f

τ

]
(2.14)

For the motion of the CoM, we have by Newton’s second law that the net force f ,

acting on the CoM, is given by

f = mb
d2p

dt2
= mbv̇ = mba (2.15)

where mb is the entire mass of the body.

The net torque τ , acting on the body, is the rate of change of angular momentum,

i.e.

τ =
d

dt
(Iω) (2.16)

where I is the inertia tensor [Spong et al., 2006, pp. 251-253], expressed in the

BN -frame. The inertia tensor can be found by the similarity transformation

I = RIbR
T (2.17)

where Ib is the body inertia, i.e. expressed in the B-frame. R is the rotation

matrix from the BN -frame, and therefore also from the N -frame, to the B-frame.

Applying the product rule of differentiation, we have that

τ =
d

dt
(Iω)

= Iω̇ + İω

= Iω̇ +
d

dt

(
RIbR

T
)
ω

= Iω̇ +
(
ṘIbR

T + RIbṘ
T
)
ω
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From [Spong et al., 2006, p. 125], we know that Ṙ = [ω]R, so

τ = Iω̇ +
(
[ω]RIbR

T + RIb
(
−RT [ω]

))
ω

= Iω̇ + [ω]Iω − I (ω × ω)

(ω × ω = 0)

⇓

τ = Iω̇ + [ω]Iω

These two Equations of Motion can now be expressed in terms of the twist and

wrench (expressed in the BN -frame, but not in the N -frame) by setting up the

matrix equivalent [
mbI 0

0 I

][
v̇

ω̇

]
+

[
0 0

0 [ω]I

][
v

ω

]
=

[
f

τ

]
⇓

Mb(ε)ν̇ + Cb(ε,ω)ν = w (2.18)

By using the relation (2.4), we can form the derivative χ̇ as

χ̇ =

[
ṗ

ε̇

]
=


v

1
2

[
0

ω

]
⊗ ε

 (2.19)

2.2 Manipulator Kinematics

The kinematics of the robotic manipulator is an important part of this thesis

because it allows us to construct the movement of the points of contact and the

grasped object. This thesis uses an approach where velocities and accelerations

are necessary in order to estimate contact forces, as will be explained in Chapter

3.

In Section 2.2.1 the forward kinematics of the ABB IRB 140 manipulator (Figure

2.4) will be derived, which may determine position and orientation of coordinate

frames attached to it based on joint positions [Spong et al., 2006, Ch. 3]. Section

2.2.2 deals with the velocity kinematics and introduces a mapping between joint

velocities and end-effector velocities.
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2.2.1 Forward Kinematics

Figure 2.4: ABB IRB 140 Manipulator in its zero position.

Figure 2.4 shows the manipulator in its zero position, i.e. all joint positions are

measured as zero. To establish the forward kinematics, we start by assigning

coordinate frames to the links of the manipulator. The frame assignment follows

the Denavit-Hartenberg Convention [Spong et al., 2006, Ch. 3], of which means

that consecutive frames must satisfy two conditions

• The xi axis must be perpendicular to the zi−1 axis.

• The xi axis must intersect the zi−1 axis.
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Figure 2.5: Frame assignment for IRB 140, including DoF for finger displace-
ment.

In Figure 2.5, a simplified schematic of the manipulator with the assigned frames

are shown. As the figure shows, a robotic gripper has been fitted as an end-

effector where we have included the sliding freedom. With the DH convention,

four parameters parametrize the homogeneous transformation between coordinate

frames for each link, these are listed in Table 2.1. The four parameters for link i

are named and described as

• Link length ai: Distance along xi from intersection of xi and zi−1 to Oi.

• Link twist αi: Angle from zi−1 to zi, measured about xi.

• Link offset di: Distance along zi−1 from Oi−1 to intersection of xi and zi−1.

Variable if joint i prismatic.

• Joint angle θi: Angle from xi−1 to xi, measured about zi−1. Variable if

joint i revolute.
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Link ai αi di θi

1 a1 −π
2

d1 θ1(t)

2 a2 0 0 θ2(t)− π
2

3 0 −π
2

0 θ3(t)

4 0 π
2

d4 θ4(t)

5 0 −π
2

0 θ5(t)

6 0 −π
2

d6 θ6(t) + θoff

7 0 0 d7 , 1
2
q7(t) 0

Table 2.1: DH-table for the IRB 140 manipulator with an attached gripper.

For the 6’th joint, an offset, θoff was observed. In Chapter 3, Section 3.8, this

table will be revisited and completed with numerical values.

Each row in Table 2.1 can be used to obtain the transformation matrix between

the frames of each link. That is, frame i moves relative to frame i− 1 due to link

i and the transformation is given by

Ai =


cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi

0 sαi
cαi

di

0 0 0 1

 (2.20)

where s∗ , sin(∗) and c∗ , cos(∗) [Spong et al., 2006, p. 77]. The forward kine-

matics to any link frame can now be easily found by multiplying the Ai matrices

consecutively together. For example, if one were to find the forward kinematics

for the gripper frame 6, i.e. its position and orientation given all variables θ1−6, it

would be given by

T0
6 = A1A2 · · ·A6

It is of course possible to attach frames to any part of the manipulator and find

the forward kinematics, in Chapter 3 we will introduce contact frames that are at-

tached to the gripper fingers, hence the necessity for including finger displacement

freedom.
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2.2.2 Manipulator Jacobian

The manipulator Jacobian relates linear and angular velocities, i.e. the twist, of

the end-effector to the joint velocities [Spong et al., 2006, Ch. 4]. In Spong et al.,

body velocity is analogous to the twist of the rigid body attached to the end-effector

frame. For an n-link manipulator, the Jacobian is a mapping such that

ν0
n = J q̇ ∈ R6 (2.21)

where the Jacobian, J ∈ R6×n, can be expanded as[
v0
n

ω0
n

]
=

[
Jv
Jω

]
q̇

Our approach to the Jacobian will differ slightly compared to [Spong et al., 2006]

as we will develop the mapping for any frame attached to the end-effector body,

as opposed to the end-effector frame only. The distance from the world origin to

the origin of any end-effector frame will be denoted by r, this origin point will

be referred to as the point of interest. The reasoning behind this derivation will

become apparent in Chapter 3 when the contact Jacobian is introduced.

Both linear and angular velocities of each link may be summed together to form

the total velocity of the end-effector [Spong et al., 2006, pp. 130-131], therefore

each 3 × 1 column in Jv and Jω is the relations to a single joint velocity. The

determination of each Jvi and Jωi
, depends therefore on the type of link i. In

the following derivation, we apply the principle of superposition at every joint and

simultaneously keep all other joints stationary.
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Prismatic Joints

For prismatic joints, the joint motion only contributes with a linear velocity so the

angular Jacobian will be a zero column. The linear velocity will naturally be the

prismatic joint velocity in the direction of actuation, i.e.

v0
r = z0

i−1q̇i

⇓

Jvi = zi−1 (2.22a)

Jωi
= 03×1 (2.22b)

Revolute Joints

With a revolute joint i, we have for the angular velocity that

ω0
r = ω0

n = z0
i−1q̇i

The linear velocity due to joint i is dependant on the displacement between the

frame attached to the point of interest and the frame i− 1 as follows

v0
r = ω0

r × d = q̇iz
0
i−1 × (r−Oi−1)

Combining these two results for angular and linear velocity gives the Jacobian

relations

Jvi = zi−1 × (r−Oi−1) (2.23a)

Jωi
= zi−1 (2.23b)
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The Jacobian

Combining the results of (2.22) and (2.23), the final Jacobian for an n-link ma-

nipulator becomes

J = [J1, . . . ,Jn] (2.24a)

where Ji =



[
zi−1 × (r−Oi−1)

zi−1

]
Joint i revolute[

zi−1

0

]
Joint i prismatic

(2.24b)

Comparing with [Spong et al., 2006, p. 133], the point of interest r is always the

end-effector origin On, in our case however the Jacobian will be used for other

frames attached to the end-effector as well, see Section 3.4.



Chapter 3

Grasp and Friction Modelling

This Chapter will describe how the contact forces between the gripper fingers and

the object are computed and also how slippage is predicted by use of a friction

model.

The grasp of an object by use a robotic hand will be characterized by relations

of the forces and torques involved. When the gripper fingers are in contact with

an object, they actively restrict the motion of the object in space. The following

sections will introduce the necessary quantities involved for defining this restricted

motion and also a way of finding the constraint forces involved.

3.1 Definitions

The inertial frame of reference is conveniently placed at the base of the ABB IRB

140 manipulator and will also serve as the frame attached to the first link of the

robot, making its z-axis the axis of revolution of the first joint. As in Section

2.1.5 of Chapter 2, the inertial frame will be referred to as the N -frame. Joint

displacements are contained in the vector q = [q1, . . . , q7]
T , where all but the last

joint are revolute while the last represents finger displacement, i.e. a prismatic

joint.

The position of the CoM of the object, or body, is denoted by p ∈ R3. Again, as

was discussed in Section 2.1.5, two frames are placed at p, the body attached frame

rotating with the body and a world aligned frame. These two will be referred to

as the B-frame and the BN -frame, respectively. The orientation of B, relative to

27
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(a) Overview showing inertial frame and the position vector.

(b) Zoomed in view of the grasped object. Important coordinate frames are highlighted.

Figure 3.1: Some important vectors and frames used throughout the chapter.
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N and BN , are represented in quaternion form by the vector ε = [ε0,vε
T ]T . As

equation (2.12), both position and orientation are combined into χ = [pT , εT ]T .

It will be assumed that the two fingers of the gripper will be in contact with

the object making two points of contact where each will be regarded as a Center

of Pressure (CoP) of a contact area. See Figure 3.1b for the placement of the

two contact frames. The x-axis of a contact frame will always be normal to the

finger surface and point towards the object, this is just a convention adopted from

[Siciliano and Khatib, 2008, Ch. 28] and has no particular purpose other than

being consistent. The z-axis will point in the approach direction of the gripper,

as can be seen in Figure 3.1b. The contact frames are referred to as Ci, where in

our case i = 1, 2. The vector origins of the contact frames, relative to N , will be

denoted by ci.

3.2 Constrained Equations of Motion

An additional term can be added to the EoM (2.18) of Section 2.1.5 in order to

include constraint forces due to interaction with the manipulator [Siciliano and

Khatib, 2008, pp. 676-677].

Mb(ε)ν̇ + Cb(ε,ω)ν −Gλ = wapp (3.1)

Where wapp is the applied wrench to the CoM, the only non-zero component

being gravitational pull. λ is a vector of Lagrange multipliers and its physical

interpretation will become apparent when the grasp matrix G is introduced in

Section 3.3. Before we introduce the constraint equation that governs the motion

of the object in space, an important concept must be discussed.

3.2.1 Transmitted Degrees of Freedom

When two separate objects are in contact, only some degrees of freedom (DoF)

are transmitted depending on the type of contact. Consider, for example, the case

where the contact area is so small that it can be considered as a point contact and

that friction is negligible. In this case, the only transmitted DoF is the normal

component of translational velocity and force, as seen in the respective contact



Chapter 3. Grasp and Friction Modelling 30

frame. This contact model, called the point-contact-without-friction [Siciliano and

Khatib, 2008, p. 654], may not induce motion of an object in the tangential di-

rections. From this it is easily understood that having point contacts without

friction will require many contacts in order to be able to fully manipulate the ob-

ject. In fact, [Siciliano and Khatib, 2008, p. 683] states that seven such contacts

are necessary to fully constrain a three dimensional object.

The objects under consideration in this thesis are soft and deformable objects

where contact introduces an area of contact. Friction will also play an important

role and can not be ignored. Due to the relatively large area of contact, coupled

with substantial friction between the surfaces, we will include torsional friction

[Barbagli et al., 2004, Ciocarlie et al., 2007, Li and Kao, 2001, Xydas and Kao,

1999]. In relation to friction, this section will only concern itself with the transmit-

ted DoFs. The grasping model will compute the necessary contact forces, whether

the contact forces break frictional requirements will be handled separately, see

Section 3.6 for more details on the friction models.

The gripper fingers of the experimental set-up are made of steel and can be re-

garded as rigid, or hard. However, the objects are soft and deformable and we

will therefore apply the soft finger contact model [Siciliano and Khatib, 2008,

Ch. 27-28]. We will however, refer to this model as the soft contact model, since

the fingers are in fact rigid. A soft contact transmits all translational components

of force and velocities, it also transmits an angular component about the contact

normal. The contact model will be mathematically defined in the following subsec-

tion, in short, the idea is to select certain components of twists and/or wrenches

that correspond to the transmitted DoFs.

3.2.2 Constraint Equation

To mathematically constrain the motion of the object, let us observe the fact that

the points on the object, in contact with the gripper fingers, will be rigidly attached

to the fingers during the motion. The origins of the contact frames, introduced in

3.1, represents the contact points both on the object and the fingers. At a velocity

point of view, a contact point pair must have the same velocity at all times, which

will ensure that their positions remain coincident. With this formulation one can

consider the velocities of the contact frames from two perspectives, i.e. from the

perspective of the manipulator and from the perspective of the object.
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The general velocity, or twist, of the finger point at contact frame Ci, due to the

motion of the manipulator joints, are denoted by νi,arm. Similarly, the twist due

to the motion of the object are denoted by νi,obj. Note that both of these are

now expressed in their respective contact frame Ci. A holonomic constraint that

ensures that the object will remain rigidly attached to the gripper can generally,

and without regard to the transmitted DoFs, be stated as

νi,arm = νi,obj

⇓

νi,arm − νi,obj = 0, i = 1, . . . , nc

where nc is the number of contacts between the object and the gripper fingers. In

our case, nc = 2. We must, however, include the contact model by selecting only

the transmitted components of the twists. This can be realized with a selection

matrix Si [Siciliano and Khatib, 2008, p. 675]

Si(νi,arm − νi,obj) = 0, i = 1, . . . , nc

where

Si =

[
SiF 0

0 SiM

]
Soft Contact

=

[
I3×3 0

0 [1 0 0]

]
The sub-matrix, SiF , selects all translational components in a twist while SiM only

selects the angular component around the contact normal, i.e. given any twist, ν,

we have that

Siν =

[
v

ωx

]
If one applies the selection matrix on a wrench w, one obtains

Siw =

[
f

τx

]
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Hence, Si reduces the dimensionality of twists and wrenches. A more convenient

form is to gather all twists from all the contact frames into vectors so that
S1(ν1,arm − ν1,obj)

...

Snc(νnc,arm − νnc,obj)

 = 0

⇓

S(νc,arm − νc,obj) = 0 (3.2)

where S = Blkdiag(S1, . . . ,Snc) ∈ R4nc×6nc is a block diagonal matrix of selection

matrices, assuming soft contact models for all contacts. Equation (3.2) represents

the constraint equation that must be satisfied in order for the object to be rigidly

attached to the gripper fingers. In fact, given the motion of the manipulator, one

can describe the motion of the object by using this equation, this will become clear

when the grasp matrix and contact Jacobian have been defined. The following

sections will describe how νc,arm and νc,obj can be expressed in terms of joint

motions and object motion, respectively.
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3.3 The Grasp Map

Let us consider one of the object contact twists in νc,obj. Recall from Chapter 2,

Section 2.1.4, that twists of a body can be transformed between any body-fixed

frame with the use of adjoint transformations. The twist of the object, expressed

in contact frame Ci, can thus be related to the twist expressed in the BN -frame,

i.e. ν, by

νi,obj = Ad−1Tciν

where

Tci , Tbn
ci =

[
Rn
ci (ci − p)

0 1

]
(3.3)

is the homogeneous transformation from BN to Ci. Note that since BN is aligned

with N , Rbn
ci = Rn

ci, we have that

νi,obj =

[
(Rn

ci)
T −(Rn

ci)
T [ci − p]

0 (Rn
ci)

T

]
ν

, G̃T
i ν

where G̃T
i is a partial grasp matrix, [Siciliano and Khatib, 2008, p. 673]. The

complete grasp matrix, G̃T , is formed by combining all the partial grasp matrices

into

G̃T =


G̃T

1
...

G̃T
nc


so that

νc,obj = G̃Tν (3.4)

Inserting for νc,obj from equation (3.4) into equation (3.2) yields

Sνc,arm − SG̃Tν = 0 (3.5)

Finally, the grasp matrix is defined as

GT , SG̃T ∈ R4nc×6 (3.6)

The constraint term, Gλ, represents the total wrench applied to and about the

CoM of the grasped body, due to the interaction with the manipulator. The term
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can be expanded into a sum of all the applied wrenches from all the contacts, for

our case with two contacts this means that

Gλ = G1λ1 + G2λ2

And by the definition of Gi, which corresponds to a selective wrench transforma-

tion, the Lagrange multipliers may also be interpreted as wrenches, although with

reduced dimensionality, i.e.

λi = Si

[
f ci

τ ci

]
=


f cix

f ciy

f ciz

τ cix

 ∈ R4

From this point on we will refer to the Lagrange multipliers as local constraint

wrenches.

3.4 The Contact Jacobian

The combined twist vector, νc,arm, contains the translational and angular velocities

of the origins of all Ci, expressed in their respective contact frame. As we did for

the grasp matrix, let us take one of the twists in νc,arm as an example. Let us

denote a twist, expressed in N , as νni,arm. To find this velocity vector as a function

of the joint velocities q̇, we can apply the Jacobian (2.24) from Section 2.2.2 with

the point of interest as ci.

νni,arm = Jiq̇

In the general case, where there might be joints that do not affect the contact and

nc contacts, readers are referred to [Siciliano and Khatib, 2008, p. 674] to find the

appropriate Ji matrices. In our case however, all joints affect both contacts and

the points of interest are c1 and c2.

Some special care must be applied at the last joint, the prismatic finger displace-

ment, because of the symmetric motion of the fingers and because of our definition

of q7 as the total distance between the fingers. Recall that the gripper frame is

placed exactly in the middle of the fingers, this makes the prismatic displacement

from gripper frame to c1,2 as ±1
2
q7. At the last joint we will define the linear
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Jacobians as

J1,v7 =
1

2
z6

J2,v7 = −1

2
z6

The linear Jacobian for contact frame two is negative because C2 is moving in the

opposite direction of C1 (and the direction of z6).

Now that νni,arm has been obtained, one can express the vector in Ci in stead by

rotating the two 3D vectors.

νi,arm , νcii,arm =

[
(Rn

ci)
T 0

0 (Rn
ci)

T

]
νni,arm

=

[
(Rn

ci)
T 0

0 (Rn
ci)

T

]
Jiq̇

And the partial contact Jacobian is defined as

J̃i ,

[
(Rn

ci)
T 0

0 (Rn
ci)

T

]
Ji

Like we did for the grasp matrix, let us assemble all partial Jacobians into the

complete contact Jacobian

J̃ ,


J̃1

...

J̃nc


So that one can find νc,arm by the equation

νc,arm = J̃q̇ (3.7)

Inserting (3.7) and (3.4) into (3.2), yields

SJ̃q̇− SG̃Tν = 0 (3.8)

and by defining the Contact Jacobian as

J , SJ̃ (3.9)
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we can rewrite the constraint equation (3.2) by using the definitions of contact

Jacobian, (3.9), and grasp matrix, (3.6), so that

Jq̇−GTν = 0 (3.10)

Equation (3.10) constitutes the final constraint equation that we will work with

from this point on.

3.5 Finding the Local Constraint Wrenches

In order to predict whether a certain manipulator motion will induce a loss of

an object, we must find a way to estimate the contact forces that occur at the

contact points/patches. To begin with, we can consider the total contact wrench

from interacting with the gripper fingers, Gλ. This wrench is applied at the CoM

of the body. Using equation (3.1), an expression for the total contact wrench can

be found

Gλ = Mb(ε)ν̇ + Cb(ε,ω)ν −wapp , w (3.11)

Equation (3.11) requires the acceleration of the object, i.e. the twist derivative.

The twist derivative can be obtained by differentiating the constraint equation

(3.10)

d

dt

(
Jq̇−GTν

)
= Jq̈ + J̇q̇−GT ν̇ − ĠTν = 0

⇓

GT ν̇ = Jq̈ + J̇q̇− ĠTν

And by applying the generalized left inverse of GT , we have that

ν̇ = G+L
(
Jq̈ + J̇q̇− ĠTν

)
(3.12)

where G+L =
(
GGT

)−1
G [Murray et al., 1994, p. 287]. This means that for a

given motion of the manipulator joints, i.e. q̈, q̇ and q known, equation (3.12)

can be simulated by use of a numerical integration scheme. The implementation

of this can be found in the attached files B and is discussed in Section 3.8.
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By simulation of equation (3.12), the total contact wrench can be found by use of

equation (3.11). However, we need to find the local constraint wrenches in λ in

order to check them up against the friction models of Section 3.6. The solutions

to the system of linear equations

Gλ = w (3.13)

can not be trivially found by inverting G because it is not, generally speaking, a

square matrix. Furthermore, utilizing the generalized right inverse of G to obtain

the ”best solution” in a least squares sense is also not applicable because there

exist more constraints on the solutions of λ. Specifically, the normal components

of the local constraint wrenches λi may only exhibit non-negative values, i.e.

λi,fx = f cix ≥ 0 (3.14)

Physically, this means that contacts can not exhibit a sticking effect normal to the

surface plane. In the tangential directions, stiction may occur [Wang et al., 2001].

Even for a grasping scenario with only two contacts, as in our case, there may

exist an infinite solution set to equation (3.13). If we take our example, where

it is assumed that the xc1,2-axes of their coordinate frames intersect each others

origins, any positive value of a linear normal component may be counteracted by

the other. And this will produce no net wrench, i.e. these solutions lie in the null

space of G.

Gauss’s principle of least forcing, or principle of least constraint [Lanczos, 1970,

pp. 107-110], must be taken into consideration to produce physically plausible

solutions for λ. The principle is equivalent to D’Alembert’s principle, but is in

stead a minimum formulation. Gauss defined the quantity to be minimized as

Z =
N∑
k=1

1

2mk

(Fk −mkak)
2

where mk, Fk and ak is the mass, applied force and acceleration of the k’th particle

of a system of N particles. Apart from the constant gravitational acceleration that

all particles experience, the accelerations, ak, are dependant on the history of the

applied forces Fk. Therefore, this quantity is minimized by minimizing the forces

of constraint, i.e. minimizing Fk for all k. For us, this translates into finding

the minimal least squares solution for the forces and torques in λ, subject to the
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constraints (3.13) and (3.14). Torques are of course no exception to this principle

because any torque can be described as a pure force couple.

3.5.1 Quadratic Optimization Problem

Minimizing the local constraint wrenches, subject to both equality constraints

(3.13) and inequality constraints (3.14), can be formulated as a quadratic pro-

gramming problem. The following quadratic program (QP) is proposed

min
λ
λTλ (3.15a)

subject to : Gλ = w (3.15b)

λi,fx ≥ 0, i = 1, . . . , nc (3.15c)

The objective function, (3.15), is strictly convex since the Hessian [Wright and

Nocedal, 1999] is positive definite, i.e.

∇2(λTλ) = 2I > 0

Furthermore, equality constraints are linear while the inequality constraints are

concave (and convex), and the feasible set is therefore a convex hull. This type of

QP is called a convex problem and any local solution will also be a global solution,

for more about optimization, see [Wright and Nocedal, 1999]. Implementation is

discussed in Section 3.8.



Chapter 3. Grasp and Friction Modelling 39

3.6 Soft Materials and Friction

Figure 3.2: Soft round object pushed down on a hard surface, creating a
circular contact patch.

In non-enveloping grasps, friction plays an important role in restraining an object.

With soft and deformable objects, characterizing frictional contacts becomes chal-

lenging. As in many other areas of robotics, one ambition is to create human-like

robotic hands that is able to function as highly as its human counterpart. And in

the process of achieving this goal the grasping properties involving deformable ma-

terials with substantial frictional properties has been developed and is continuing

to be developed [Barbagli et al., 2004, Bicchi and Kumar, 2000].

The treatment of friction in this thesis is strictly static, i.e. no relative movement

between the contacting bodies. The goal is to develop a model for two-fingered

grasping of soft objects where forces of constraint are estimated and checked

against frictional limits. The models prediction of slip and loss of object will

be compared to actual experiments where the occurrence of slip is recorded. The

approach to friction chosen here is point-based, although with contact area con-

siderations.
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Figure 3.3: Torsional stiction.

For objects in contact where relatively large areas are in contact and where the

surfaces show considerable friction, use of only the standard Coulomb model is ren-

dered inappropriate. When the area of contact becomes large enough, a frictional

moment will become substantial. This is basically due to the fact that an area

introduces a mean moment arm. In Figure 3.3, a circular contact profile is shown

with, for simplicity sake, a linear pressure distribution. For some mean moment

arm from the CoP, a pure force couple can be applied without sliding occurring.

For the force couple, one can apply Coulomb’s friction model with an appropriate

friction coefficient. However, the torsional friction coefficient is highly dependant

on the radius of contact as well as the pressure distribution of the contact. This

will be explored further in Section 3.6.2.

For the combined frictional limit, a model including a coupling between tangential

and torsional friction will be used, see Section 3.6.1.
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3.6.1 The Friction Ellipse

For object interactions where the contacts experience both shear and torsion,

experiments have shown that the two are coupled [Howe et al., 1988]. It has been

shown that an elliptical approximation to this coupling is sufficiently accurate

for most applications [Xydas and Kao, 1999], this thesis will make use of the

elliptical model. In the tangential directions, if one does not consider the frictional

moment, Coulomb’s model may be used without regard for the area of contact.

The maximum tangential force, in all tangential directions, that may be applied

before sliding occurs can therefore be modelled as

ft,max = µN (3.16)

while the maximum moment, when no tangential force is applied, is denoted by

mn,max. The elliptical model can thus be stated as

(
ft

ft,max

)2

+

(
mn

mn,max

)2

= 1 (3.17)

where

ft = ‖[ft,y ft,z]‖ = ‖[f ciy f ciz ]‖ =

√(
f ciy
)2

+ (f ciz )2

mn = τ cix

are the tangential contact force and normal contact moment, respectively [Li and

Kao, 2001, Xydas and Kao, 1999]. In Figure 3.4, the geometric interpretation of

equation (3.17) is illustrated.
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Figure 3.4: Ellipsoidal friction limit surface.

If, during simulation, a local constraint wrench fall outside this friction ellipsoid,

the model predicts a slip event. In the next section, an expression for the maximum

frictional moment will be discussed. The ellipsoid in Figure 3.4 is an example of a

friction limit surface, comparable to the more known friction cone [Siciliano and

Khatib, 2008, Ch. 27].

3.6.2 Contact Area and Torsional Friction

The maximum amount of frictional moment, mn,max, is dependant on the size of

the contact area. A lot of research has been done for circular contact profiles,

[Howe and Cutkosky, 1996, Howe et al., 1988, Xydas and Kao, 1999] and others.

The test objects under consideration are spheres and will produce circular contacts

and we will therefore apply this to our modelling. [Xydas and Kao, 1999] built

upon the work by [Hertz, 1882] and generalized his linear elastic model to also

include non-linear elastic materials. The general model was coined as the Power

Law

a = cNγ (3.18)
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where

a : Radius of contact area

c : Proportionality constant

N : Applied normal force

γ =
n

2n+ 1
: Normal force exponent where n is the strain hardening factor

Estimates of the two parameters, c and γ, will be experimentally found in Section

4.

A general pressure distribution for circular contact area with radius a is given by

p(r) = Ck
N

πa2

[
1−

(r
a

)k] 1
k

(3.19)

where

k : Number, usually an integer, that determines shape of pressure profile

r : Radius, 0 ≤ r ≤ a

Ck : Coefficient adjusted to satisfy equilibrium condition :

∫
A

p(r)dA = N

[Siciliano and Khatib, 2008, Ch. 27][Xydas and Kao, 1999]. Higher values of k

leads to more uniform pressure distributions. A linear distribution corresponds to

k = 1, also called a triangular distribution. Linear elastic materials have parabolic

distributions (k = 2), while hyper elastic materials, as our test objects are assumed

to be made of, have more uniform distributions with higher values of k [Xydas and

Kao, 1999]. It can be shown that the maximum amount of frictional moment can

be found as

mn,max =

∫
A

µ|r|p(r)dA =

∫
A

µ|r|Ck
N

πa2

[
1−

(r
a

)k] 1
k

dA (3.20)

The pressure profile for our test objects remains unknown and its determination

could not be realized with the lab equipment at hand. A quadruple distribution

(k = 4) was therefore assumed due to the hyper elastic nature of the objects.

Carrying out the definite integral in equation (3.20) over the entire contact region
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yields

∫
A

µ|r|C4
N

πa2

[
1−

(r
a

)4] 1
4

dA

= µC4
N

πa2

∫ 2π

0

∫ a

0

r2
[
1−

(r
a

)4] 1
4

drdφ

= µC4
N

πa2

∫ 2π

0

πa3

8
√

2
dφ

= µC4a
N

8
√

2
· 2π

= µC4πa
N

4
√

2

The equilibrium constant, with k = 4, becomes C4 = 1.1441 [Xydas and Kao,

1999], so the maximum frictional moment may be evaluated by the following equa-

tion

mn,max ≈ 0.635µaN (3.21)

Equation (3.21) and (3.16) may then be used to generate the friction ellipsoid.

The friction ellipsoids may be used to obtain a measure of how secure the grasp

is, i.e. how far a contact wrench is from breaking its limitation.

Qi(N) ,

(
fi,t

fit,max(N)

)2

+

(
mi,n

min,max(N)

)2

, i = 1, . . . , nc (3.22)

The amount every Qi is less than 1 indicate more secure grasps.
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3.7 Force-Closure and Object Slip

Adopting the definition of force-closure from Bicchi and Kumar [2000], Howard

and Kumar [1996] and others, we define the following:

Definition 3.1. Force-Closure

Consider a grasp of nc contacts with the grasp matrix G and the combined con-

straint wrench λ. Furthermore, normal force components in all local constraint

wrenches, λi,n, are lower bounded by

λi,n ≥ 0, i = 1, . . . , nc (3.23)

While all other components in λ are both upper and lower bounded by given fric-

tional limitations. The grasp is defined as a force-closed grasp if and only if

Gλ = w (3.24)

where w is any arbitrary wrench and λ satisfies the aforementioned constraints.

During the motion of the manipulator, solutions to λ are numerically calculated.

A slip event will be recorded whenever force-closure can not be guaranteed with the

frictional limitations put forth in Section 3.6. That is, computed contact wrenches

must be within their respective frictional ellipsoids(
fi,t

fit,max

)2

+

(
mi,n

min,max

)2

< 1, i = 1, . . . , nc
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3.8 MATLAB Implementation

MATLABr is used in order to simulate and compare model against observations

(Section 6). This section will explain how the model is implemented. The model

needs to be supplied certain parameters in order to calculate contact forces, ob-

ject forces and frictional ellipsoids. These are listed and described in the following

table.

Parameter Description Units

mu Static friction coefficient Unitless

Cpwr Proportional constant in Power Law model
[
m
N

]
gamma Normal force exponent in Power Law model Unitless

mb Object mass [kg]

De Equilibrium diameter of object [m]

P Coefficients for object model Vector of
[

N
mp

]
Table 3.1: Model parameters.

In addition to the model parameters, there are some simulation parameters like

gravity, simulation step length etc. that must be set.

The user may specify whether the simulation is to rely on either user-defined

functions or actual measurements for the joint variables (position, speed and ac-

celeration) through the bool parameter UseJfuns. If measurements are to be used,

the data must be interpolated in order to be used with the simulation and its user

specified step length, h, see Section 3.8.1.

The simulation of the objects movement in space is realized, numerically, by an

explicit Runge-Kutta method of order 4 [Egeland and Gravdahl, 2002, Sec. 14.4].

It is possible to use a different order by changing the Butcher array [Egeland and

Gravdahl, 2002, p. 527] in the main script RUN. Due to numerical errors during

simulation, the velocity constraint (3.10) will not be upheld by using Equation

(3.12) as it is. This requires a stabilizing modification, see Section 3.8.3. Par-

ticulars regarding grasp quantities and their derivatives, as well as the forward

kinematics, can be found in Section 3.8.2.
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For each time step, the local contact wrenches for both contacts are computed, see

Section 3.8.4. Based on finger displacement, the added normal force due to object

compression is added on top of the normal components of both local contact

wrenches and then checked against frictional ellipsoids. Object slip is detected

in the subroutine CheckFriction. Finally, one can view an animation of the

movement by running the Animate script after RUN has been executed, see Section

3.8.5.

3.8.1 Data Interpolation

There was technical difficulties in obtaining good and accurate measurements of

joint speeds and accelerations, only joint positions could be measured. This lim-

itation led the author to seek alternative methods of obtaining necessary ”mea-

surements” of speed and acceleration. Numerical differentiation of position data is

highly noisy and would lead to unrealistic high peaks of accelerations and forces.

As an alternative, fitting a B-spline to the position data makes it possible to obtain

continuous approximations of the trajectories.

B-spline functions are representations of piecewise polynomials [Robertson, 2013].

There are several applications of B-splines, our usage is restricted to that of gen-

erating continuous approximations to sampled data. The MATLABr function

spaps returns the B-form of a cubic smoothing spline to the supplied data points.

The tolerance input, TOL, determines how much the function should adhere to

the data points. By relaxing the tolerance input to spaps, one can get a high

degree of smoothness on the resulting function. spaps does this by penalizing the

magnitude of the second derivative of the function. Of course, one should exercise

restraint when setting this tolerance so that the result does not deviate too much

from the measured data.
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Figure 3.5: B-spline approximation to given data points.

Figure 3.5 illustrate how the B-spline approximation results in a continuous func-

tion given data points. For data with little noise, a low tolerance can be set.

Therefore, the smaller the tolerance, the more confidence is given to the data

points.
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3.8.2 Forward Kinematics and Grasp Quantities

The forward kinematics requires the dimensions for the robot, specifically the

distances between the axes, these are found in [ABB, 2014a]. Moreover, the gripper

dimensions as well as the force/torque sensor dimensions affect the d6 distance,

which was measured to

d6 = 65 [mm] + 169.9 [mm] = 234.9 · 10−3 [m]

It was observed that joint 6 measured an angle offset of −26◦ away from its defined

zero position, this is accounted for in Table 3.2. Inserting for all distances and

measurements yields the final DH-table

Link ai αi di θi

1 70 · 10−3 −π
2

352 · 10−3 q1(t)

2 360 · 10−3 0 0 q2(t)− π
2

3 0 −π
2

0 q3(t)

4 0 π
2

380 · 10−3 q4(t)

5 0 −π
2

0 q5(t)

6 0 −π
2

234.9 · 10−3 q6(t) + 26◦π
180◦

7 0 0 1
2
q7(t) 0

Table 3.2: DH-table for the IRB 140 manipulator with an attached gripper.
Numerical values inserted.

This table can now be used to find forward kinematics to any frame attached to

any part of the robot. The grasp quantities relies on the forward kinematics of

the contact frames that are attached to the gripper fingers.



Chapter 3. Grasp and Friction Modelling 50

Grasp Quantities

Every partial grasp matrix is completely defined by the forward kinematics for

the respective contact frame together with the position of the object. All the Ai

matrices are given by the information in Table 3.2 along with the respective joint

variable qi. The forward kinematics for a contact frame i can then be found by

Tn
ci = A1A2A3A4A5A6A7H

7
ci

=

[
Rn
ci ci

0 1

]

where H7
ci is the transformation from gripper finger frame to contact frame i, i.e.

H7
c1 =


0 1 0 0

0 0 −1 −dc
−1 0 0 0

0 0 0 1



H7
c2 =


0 −1 0 0

0 0 −1 −dc
1 0 0 −q7
0 0 0 1


dc is the position offset from O7 along y7, see Figure 3.1b. The transformation

from BN , in stead of N , can now be found by Equation (3.3) and by using the

remaining steps in Section 3.3, the grasp matrix may be formed.

Applying the rotation matrix Rn
ci in Section 3.4 and by following the procedures,

the contact Jacobian may easily be found. The forward kinematics and both

grasp quantities along with their derivatives were derived symbolically in the script

FK IRB140, which may be found in the attached files B.
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3.8.3 Constraint Stabilization and Simulation

The constraint equation (3.10) is at a velocity/twist level, and by use of numerical

integration of its derivative one can not guarantee that the original constraint is

maintained. This manifests itself as an accumulating error for twist and conse-

quently the configuration of the body itself and one will therefore observe drift.

To counteract this one may apply a constraint stabilization technique. One pop-

ular and simple method is Baumgarte stabilization [Featherstone, 2008, pp. 145-

148][Cline, 2002, p. 44]. The idea is to slightly modify the constraint equation

under numerical integration so that it reacts and generate correctional terms. In

fact, it behaves very much like a feedback loop. Consider the constraint (3.10)

Jq̇−GTν , k = 0

and let us now consider the constraint at acceleration level and add to it a term

that reacts to error at twist level, i.e.

k̇ + αk = 0, α > 0

Whenever the twist constraint isn’t satisfied, the added stabilization term, αk,

will correct the acceleration constraint. One can think of the scalar parameter as

α = 1
Tstab

where Tstab is the time constant for desired decay of twist error. Choosing

this time constant is not always that easy, choosing too large value results in bad

stabilization while too small makes the differential equation unnecessary stiff. It

depends on the frequency of which the system operates at, for example in our case,

if a motion is fast with large variations in accelerations, a small time constant is

needed. In any case, the stabilization will affect the acceleration and choosing a

very small time constant will most likely lead to incorrect estimates of contact

wrenches.
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Variable Body Inertia

During compression of the object, the moment of inertia is varied as a function

of finger displacement. Approximately, the ball has a spherical volume at equilib-

rium. It was observed that the ball did not maintain its volume when compressed.

Therefore, we assume that the moment of inertia may be approximated to the

moment of inertia of an ellipsoid where only one of the semi-principal axes change

during compression. Furthermore, we assume that the material is homogeneous.

Let us place the center of the ellipsoid at p and align it with the body B-frame.

The semi-axes a, b and c are now along the x, y and z-axes, respectively. Compres-

sion is defined to be along the y-axis, i.e. variable semi-axis b. The body moment

of inertia tensor becomes

Ib(q7) =


1
5
mb

(
1
4
q27 + x2e

)
0 0

0 2
5
mbx

2
e 0

0 0 1
5
mb

(
1
4
q27 + x2e

)
 (3.25)

where xe = de
2

is the equilibrium radius of the object.

Simulation

As mentioned, the object movement in space is simulated by use of the RK-4

numerical integration scheme which has the Butcher array

c A

bT

Table 3.3: Butcher array for numerical integration.

where

c =


0
1
2
1
2

1

 , A =


0 0 0 0
1
2

0 0 0

0 1
2

0 0

0 0 1 0

 , b =


1
6
2
6
2
6
1
6


One may change this array if desired in the RUN script. The initial velocity, or twist,

is assumed to be zero while the initial configuration of the object is supplied by the
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user. Given initial conditions, the integration procedure can thus be summarized

as

ẏ , f(y, t)

is numerically integrated by

yn+1 = yn + hKb

where

K = [k1, . . . , k4]

k1 = f(yn, tn)

ks = f
(
yn + h(K1:s−1A

T
s,1:s−1), tn + hcs

)
, s = 2, . . . , 4

See the attached files B for actual implementation in MATLABr. The entire

derivative vector contains both χ̇ and modified ν̇ with constraint stabilization so

that

ẏ =


ṗ

ε̇

ν̇

 =


v

1
2

[
0

ω

]
⊗ ε

G+L
(
Jq̈ + J̇q̇− ĠTν + α(Jq̇−GTν)

)


Note that the integration is for a time step ahead. At the current time step the

rotation matrix for the body is obtained by use of the Quat2Rot(ε) function, which

corresponds to Equation (2.2), this is then used in conjunction with the current

position p to form the complete transformation matrix for the object.
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3.8.4 Computing Local Contact Wrenches

The quadratic program, (3.15), is solved by use of the built-in MATLABr com-

mand quadprog where upper and lower bounds on the solutions of λ were set

to

Lower bounds : lb =



0

−∞
−∞
−∞

0

−∞
−∞
−∞


, Upper bounds : ub =



∞
∞
∞
∞
∞
∞
∞
∞


Note that we do not wish to impose the frictional limitations here where it could

render the QP as infeasible. In case the slip prediction is a false positive we wish

that the simulation continues so that another instance of slip might be picked up

later on. The actual test of whether or not friction is maintained is checked for

separately.

Due to the simplicity of the QP as well as the known efficiency of Active-set

methods for these types of problems [Wright and Nocedal, 1999, Ch. 16], the

Active-set algorithm were specified as solver for quadprog. During simulation,

(3.15) is solved for each time step and to further help the algorithm we store the

solution and supply it as an initial guess of the solution for the next time step.
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3.8.5 Visualization

In the visualization script one can choose the playing speed of the animation

by changing the capture and fps parameters. Slowest possible capturing is the

simulation step length, h, while ”real-time” is 1
fps

. The renderer tries to play the

animation with the assigned fps value. However, this is not guaranteed since the

hardware may restrict rendering speed. As a consequence, ”real-time” play speed

is affected if renderer isn’t actually playing at the assigned fps.

Figure 3.6: Snapshot during an animation of a simulated motion.

Figure 3.6 shows a snapshot during an animation. The small black ellipsoids

represent frictional ellipsoids at the contacts, which are scaled by the normal forces

at the contacts.





Chapter 4

Estimating Model Parameters

The model derived in Chapter 3 relies on some physical parameters regarding

object mass, equilibrium size and frictional characteristics of finger-object interac-

tion. This chapter describes the approach of finding estimates for these parameters

using equipment available to the author. The parameters were found by a fairly

limited amount of measurements. More measurements are necessary for stating

them with statistical confidence. They should be regarded as rough estimates and

treated as such. All MATLABr scripts and raw data of all kinds, pertaining to

this and other chapters, can be found in the attached files B.

4.1 Object Parameters

The following parameters are strictly related to the object.

4.1.1 Equilibrium Size

Equilibrium diameter is denoted by de. Diameter measured with a vernier caliper

to

de ≈ 52.7 · 10−3 [m]

57
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4.1.2 Object Mass

The compression force sensor (Section 1.4) was used where the sensor was loaded

with only the ball itself. The sample mean of this sensor reading was used so that

F̄ = 0.7870 [N], sample mean

⇒ mb ≈
F̄

g
=

0.7870 [N]

9.81 [m/s2]
= 80.2 · 10−3 [kg]

4.1.3 Force and Displacement

With help from the Department of Structural Engineering at NTNU, a measure-

ment series for the relationship between applied force and object displacement was

obtained.
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Figure 4.1: Measurements of applied force as a function of extension from
initial position.

Based on first impressions of the raw data, seen in Figure 4.1, it was clear that

some higher order polynomial is appropriate to model this relationship. Let us
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denote the force from the object as Fob and take this to be a function of object

displacement, ∆d = de − d, away from its equilibrium diameter. The measure-

ments of force, Fs, are taken to be equal the force from the object. Furthermore,

measurements of extension, es, are taken as ∆d. It assumed that the object is

symmetric and of homogeneous composition.

Fob(∆d) , Fs(es) ≈ pn∆dn + pn−1∆d
n−1 + · · ·+ p1∆d

=


pn

pn−1
...

p1


T 

∆dn

∆dn−1

...

∆d


, y = pTobφ

φ is the regression vector, while pob is the parameter vector [Lennart, 1999]. Given

polynomial degree n, these may be used in the Least-Squares Algorithm in order

to find the best fit for the measurements of Fs and es. Lennart [1999] gives the

following least-squares algorithm for N measurements

p̂LSob,N =

[
N∑
i=1

φiφ
T
i

]−1 [ N∑
i=1

φiyi

]

where i is the measurement number. Let us combine all measurements of y and φ

into vectors so that

N∑
i=1

φiφ
T
i = [φ1, . . . ,φN ]


φT1

φT2
...

φTN

 = ΦTΦ

, A ∈ Rn×n
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and

N∑
i=1

φiyi = [φ1, . . . ,φN ]


y1

y2
...

yN

 = ΦTy

, b ∈ Rn×1

The least-squares estimate may now be rewritten in a more compact form

p̂LSob,N = p̂ob = A−1b (4.1)

By trial-and-error it was found that a polynomial degree of n = 4 gave the most

reasonable result in terms of error and polynomial degree. The parameter vector

found is given by

pob ≈


8.8273544 · 107 [ N

m4 ]

−2.8474703 · 106 [ N
m3 ]

6.6616791 · 104 [ N
m2 ]

1.5130557 · 102 [N
m

]

 (4.2)

Figure 4.2 shows the function evaluations as well the error between the estimates

and measured values. The MATLABr script for this estimation procedure is

named FD estimation.
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Figure 4.2: Least-squares polynomial fit of the force-displacement relationship
of the object.

The object normal force due to object compression may now be approximated by

the model

Fob(∆d) ≈ p̂Tob


∆d4

∆d3

∆d2

∆d

 (4.3)

where p̂ob is given by Equation (4.2).
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4.2 Frictional Parameters

4.2.1 Static Friction Coefficient

The static friction coefficient from Equation (3.16) must be determined. Figure 4.3

shows the concept of an experiment where the purpose is to obtain measurements

necessary for estimation of this coefficient.

Figure 4.3: Experiment schematic for determining static friction coefficient.
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Figure 4.4: Actual set-up for determining static friction coefficient.

The actual set-up is shown in Figure 4.4. A string is tied around the object and

fastened to the force sensor. On the underside, another piece of string is fastened

to some load that may be varied. The idea is to slowly increase the load until the

object starts to slide between the fingers. The object displacement is calculated

from d and then supplied to the model (4.3) to get the object normal force Fob.

In addition, a force sensor is also placed behind one of the fingers so that a direct

measurement may be obtained as well.
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At the two contacts, it is assumed that equal frictional forces equilibrate the

downwards force due to the weight of the object plus any additional load fastened

to the sensor.

Ff = Gob + Fs

Ff,1 = Ff,2 =
Ff
2

= µFob(∆d), ∆d = de − d

⇓

Fs = 2µFob(∆d)−Gob

The friction coefficient is the slope of the assumed linear function for friction force.

The constant weight term, Gob, can therefore be ignored.

The measurements of Fs, d and normal force were obtained for a total of 12 mea-

surements. Raw sensor readings from the tension sensor needed to be interpreted

to get a value to work with. Sample mean of a short time interval of data right be-

fore slip was used. Figure 4.5 shows the friction-normal force relationship for both

datasets, i.e. normal force from compression sensor and from diameter readings

through object model (4.3).
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Figure 4.5: Measurement data and approximated functions. Normal force
readings from the sensor (red) and those obtained by object model (4.3) (green)

are displaced.
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In Figure 4.5, a displacement can be observed between normal force readings.

The cause for this displacement is thought to be from uncertainties regarding

measurements of object diameters, d, obtained during the experiment. Also, the

equilibrium diameter de also affects this outcome.

By halving the friction coefficients from those obtained directly from Figure 4.5,

we find that

µs ≈ 0.373 From compression sensor

µd ≈ 0.382 From diameter readings

The similar values indicate that the object model for Fob is a good approximation,

at least for the domain in question. However, the constant displacement is some

cause for worry because the normal force is directly responsible for scaling the

friction ellipsoids. It was chosen to use the friction coefficient obtained from the

sensor readings. However, readers are made aware that it was discovered that the

sensor was sensitive for incorrect loading where, in addition to linear loading, it

experience moments. This is the case in the experiment in Figure 4.4.
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4.2.2 Contact Area and Normal Force

Thin layer of paint

Load

Figure 4.6: Experiment schematic for determining coefficients in the power-
law model.

The power law model (3.18)

a = cNγ

requires the two parameters c and γ. By measuring contact radius, a, and normal

force, N , at different levels of loading, the parameters can be estimated using

non-linear regression.

The sensor reading gives us the load while N must also account for the weight of

the object, i.e.

N = Gob + Fs = mbg + Fs
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Figure 4.7: Actual set-up for determining parameters in power law model
(3.18).

Pictures in Figure 4.7 show the actual set-up of the experiment. The picture

on the left shows the compression phase, while the one on the right show how

the paint imprint gives us the contact area. The paper sheets with contact area

were scanned so that the digital copies could be treated with CAD software. For

each measurement, the approximate center of the contact area were found and the

distance to the uppermost edge of the ”circle” was treated as the radius. Note

that we did not find a mean radius, just radius measured in the same manner for

all measurements.

It is suspected that the experimental set-up was not entirely rigid since it took

some time before the reading settled to steady state. Indicating that there were

slowly decaying dynamics in the set-up. After a load was applied and the sensor

had reached steady state, sample mean of a short time interval was obtained and

used further.
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Figure 4.8: Plot of the relationship between contact radius and applied normal
force. Dashed line represents power law model fit to the data-points (red).

Figure 4.8 shows the final results from the experiment, along with the model

fitted to the data. The parameters were found by use of the MATLABr function

fitnlm. fitnlm fits models with parameters that appear non-linearly to given

data. Estimates of c and γ were found to be

c ≈ 8.8458815
[mm

N

]
γ ≈ 0.3013398
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4.3 Summary

To summarize, the parameters found by experiments described in this chapter are

given as

de = 52.7 · 10−3 [m] (4.4)

mb = 80.2 · 10−3 [kg] (4.5)

pob =


8.8273544 · 107 [ N

m4 ]

−2.8474703 · 106 [ N
m3 ]

6.6616791 · 104 [ N
m2 ]

1.5130557 · 102 [N
m

]

 (4.6)

µ = 0.373 (4.7)

c = 8.8458815 · 10−3
[m

N

]
(4.8)

γ = 0.3013398 (4.9)





Chapter 5

Results

This chapter presents observations from two experimental motions executed by the

IRB 140 robot. Both motions are repeated for a number of times, with different

grip forces. The observations are purely visual, based off on videos taken during

the experiments. By analyzing the videos at crucial moments and noting both

elapsed time and video-frame, it is possible to observe segments in which object

slip has occurred. And of course, noting also when the object is lost by the

gripper. For every experiment, the joint positions are measured. These will be

applied in Chapter 6 to replicate the motions in simulations and predict contact

forces. Sadly, due to technical difficulties, it was not possible to measure joint

speeds, accelerations or forces. In all experiments, a synchronization movement

was programmed so that the timing of the videos and the measurement data could

be matched. All videos and data are supplied in the attached files B.

The first motion, presented in Section 5.1, is a simple repetitive linear motion in

the world-frame. The second motion of Section 5.2 is a throwing motion, actuating

only one joint. In both cases, the only forces most likely to occur at the contacts

are tangential and normal forces, i.e. not torques and rotation about the contact

normals. This is because the Center of Mass is located in the middle of the contact

points. Therefore, none of the experiments will test the modelling of torsional

friction. A suitable test-object with different geometry and CoM was not found

and used in our case.
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5.1 Linear Motion with Increasing Frequency

In world 

z-direction

Figure 5.1: Illustration of the linear motion in world z-direction.

The first motion moves the gripper along the world z-axis only. Tangential contact

forces in world z-direction is therefore expected. The gripper is kept level at all

times during the motion and it is moved up and down repeatedly with an increase

in frequency as time goes on. After about ten repetitions, the robot moves back

into its zero-position.

Every time the gripper is at its lowest point, the video is investigated frame-by-

frame to see if the ball has slipped since the previous time. If that is the case,

then slip must have occurred in between these sightings. See the picture in Figure

5.2 for an illustration of this. For every experiment, the first and last (lost ball)

slip occurrences are noted, these may be viewed in Table 5.1. The ”Start” column

gives the video time for when the actual motion starts. All the other times are

relative to its respective start-time. The start-time is also used to synchronize the

experiments with the simulations in Chapter 6. The last column gives the finger

displacement, which is used to determine normal force due to object compression.
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Figure 5.2: Illustrating the visual detection of object slip from video data.

# Start First Slide Segment Object Lost q7 [mm]

1 47.91 5.60→ 7.00 9.45 48.75

2 24.62 - - 45.70

3 15.28 10.72→ 11.35 11.91 45.70

4 16.92 11.58→ 12.35 - 45.70

5 14.21 10.85→ 11.41 11.98 45.70

6 18.49 8.98→ 9.80 10.95 47.65

7 16.39 10.80→ 11.41 11.89 47.65

8 12.88 10.25→ 12.08 - 47.65

9 15.22 9.03→ 9.85 10.44 47.65

10 17.45 - - 43.65

11 12.55 - - 43.65

12 13.25 - - 43.65

Table 5.1: Table of slip detections based on videos from experiments. Linear
motion with increasing frequency. Times are in seconds.
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5.2 Throwing Motion

Figure 5.3: Illustration of the throwing motion by actuating only the third
joint.

This motion moves the gripper in an arc, starting from its zero-position and stop-

ping at q3 = −90◦, as Figure 5.3 shows. This allows us to get more distinct data,

as opposed to the previous motion. The experiments have three possible outcomes:

The ball might fly, slip, or stay firmly attached to the gripper. The observations

for the total of 8 throwing experiments are listed in Table 5.2.

# Start Observation q7 [mm]

1 44.81 Loss 48.70

2 7.44 Loss 48.70

3 10.01 Loss 46.65

4 7.60 Small slip 46.65

5 6.44 Loss 46.65

6 6.68 Small slip 44.65

7 5.47 Medium slip 44.65

8 6.31 Large slip 44.65

Table 5.2: Table of slip detections based on videos from experiments. Throw-
ing motion. Times are in seconds.



Chapter 6

Simulations and Discussion

This chapter aims to reproduce the motions of the previous chapter (5). This

is realized by using B-splines to approximate joint position data obtained. The

continuous spline functions, and their derivatives, for each joint and for each exper-

iment are then used as inputs to the MATLABr script RUN. The data interpolation

method of B-splines is discussed in Section 3.8.1.

The angle measurements were pre-filtered with some unknown method by the ABB

IRC5 controller. It was therefore practically no noise on the angle measurements.

However, the sampling time varied throughout the logged data, ranging from 0.01

to 0.16 seconds. This caused some difficulties in terms of approximating B-splines

to the data.

6.1 Linear Motion with Increasing Frequency

For these experiments, a tolerance of 0.002% of the respective joint angle range was

chosen for the B-spline approximation. Such a strict tolerance was needed in order

to capture the high acceleration peaks of the movement. Due to the horizontal

orientation of the gripper, the only tangential contact forces generated was in the

positive world z-direction. Furthermore, these contact forces were identical, as

one would expect. We have therefore plotted the combined contact force in the

z-direction and placed a horizontal blue line to represent the predicted friction

limit. The red regions represent observational data of region of first slip and loss
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of object while green represent simulated regions of slip. Figure 6.1 shows the

simulation of experiment 5.
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Figure 6.1: Plot showing simulated slip events (green) compared to observed
first and last slip regions (red). Zoomed in view. Data from experiment 5.

In Figure 6.1 it is clearly seen where the slip events occur. If the motions were

clean sinusoidal waves, one would expect that slip would most likely occur at

the positions of maximum curvature, i.e. at the bottom of the position waves.

However, this is not the case. The motion planner in the IRC5 controller always

tries to minimize the movement time, unless told otherwise by use of AccSet.

This is done by ramping up the acceleration as fast as possible to reach assigned

speed, producing jerks. This change of acceleration occurs at the beginning of a

movement command as well as right before it reaches the position when it needs to

decelerate. It might actually be the case that this is captured by the simulation.

The fact that observed and simulated object loss occurs at such an instant supports

this. The phenomenon is a recurring theme among all the experiments.

Experiment 5 was a particularly nice example where first simulated slip occurred

within observed region. This is not to be taken as representative for all the ex-

periments. Plots for all the other experiments can be found in Appendix A.1. In
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the experiments where slip and/or object loss took place, simulated slip occurred

earlier than observed. However, it should be noted that small instances of slip

might not have been observed due to the visual nature of the observations. Table

6.1 gives an overview of the key aspects about the simulations.

# First Slip Slip Within Observed Slip at Object Loss Comment

1 4.23 Yes Yes Many predictions

before observed

2 10.91 - - Predicted, but

not observed

3 10.58 Yes Yes -

4 - No - Observed, but

not predicted

5 11.23 Yes Yes Predicted within

observed

6 4.42 Yes Yes Many predictions

before observed

7 10.24 Yes Yes -

8 10.06 Yes - -

9 7.74 Yes Yes -

10 - - - No prediction, no

observation

11 - - - No prediction, no

observation

12 - - - No prediction, no

observation

Table 6.1: Summary of simulation results and their comparison against ob-
servations.
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6.2 Throwing Motion

For the single joint motion, it was found that even tighter tolerance was needed for

the B-spline approximation. Mainly because the spline approximation tended to

easily smooth at the crucial stop moment. Tolerance was set to 5 · 10−4% of joint

data range. It was important to capture the high acceleration region. However,

the success of this is debatable. One could treat every experiment individually

and find a suitable tolerance for each, but that would be highly speculative and

throw off any possible conclusions. In any case, using B-splines to obtain velocity

and acceleration was a decision made in order to be able to compare simulations

with at least some form of data.

Before we discuss the simulations, some remarks about the robot programming

are needed. The throwing motion was realized by dividing the arc between 0◦ and

90◦ into three motion commands. The first being 30◦, then 60◦ and the final stop

at 90◦. As can be seen in Figure 6.2, sharp bends are present at these degrees.

This is due to the motion planner in the IRC5 controller. Note that angles are

actually negative measured from the robot, this was changed for aesthetic reasons.
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Figure 6.2: Plot of calculated combined tangential force with slip prediction
regions in green. Joint data from experiment 5.
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Again, as is expected for such a motion, the only substantial contact forces calcu-

lated were tangential contact forces. Some small amount of torque was generated

at the contacts, this to change the angular orientation of the object. Both the

tangential friction limits and the tangential forces were identical. The combined

tangential force, i.e. the sum of the two, was plotted along with the combined

friction limit.

In the experiments where grip force was low, especially 1 and 2, the slip prediction

was sensitive. Several predictions were made at times when the robot was given

a new motion command. Again, as was pointed out in the previous section, every

time the robot executes a motion command, it ramps up the acceleration until

target speed is obtained. These areas of jerking motion clearly affect the predic-

tion of slip. All plots are found in Appendix A.2, but a summary may be found

in the following table.

# Slip Predicted Observed Comment

1 Yes Loss Predicted too early

2 Yes Loss Many predictions

3 Yes Loss Single prediction

4 No Slip Not close to limit

5 Yes Loss Single prediction

6 No Small slip Not close to limit

7 No Medium slip Close to limit

8 No Large slip Very close to limit

Table 6.2: Comparison of simulated throws versus observed behaviour.

The behaviour of the last three experiments was interesting. Jerk was limited by

AccSet in the programming of experiments 6 and 7 to 20% and 50%, respectively.

This is reflected in the contact force computations. In experiment 8 where jerk

was 100%, the tangential force was extremely close to the friction limit.

The fact that slip was predicted every time the object was lost is truly an inter-

esting result and worth noticing.





Chapter 7

Conclusions and Future Work

As previously noted, measurements from the experiments of Chapter 5 were scarce.

However, by use of the B-spline approximation method, we were able to compare

the simulations against the observations. Based on the simulations and discussions

of Chapter 6, correlation between model predictions and observations are evident,

at least to some degree. There were several false positive predictions, especially at

low grasping forces where the model is sensitive for acceleration spikes. But most

of the predictions lay within the expected and observed regions.

Parameters for the object and tangential friction directly affected the predictions.

These predictions seems reasonable. However, the experimental motions did not

yield any interesting results regarding the torsional friction modelling. We can

therefore not conclude anything regarding that aspect of the grasping model. Al-

though, in Chapter 4 the parameters for torsional friction were indeed identified

from measurement data. In fact, it was found that measurements of growing con-

tact area due to applied normal force followed that of the Power Law model [Xydas

and Kao, 1999].
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7.1 Main Conclusions

1. Slip Prediction from Manipulator Motions

The results of Chapters 5 and 6 show that the model introduced in Chapter 3,

with the parameters of Chapter 4, produced reasonable predictions. A source

of uncertainty are the B-spline approximation method used in order to obtain

joint velocities and accelerations. The model parameters also carry with them

uncertainty that influence the predictions. A statistical analysis was not conducted

on estimation data and experimental data from the manipulator motions, as the

limited amount of experimental time was concentrated at the end of the project

period.

2. Grasp Quality Measure

It is believed that the quantity

Q , (1−Q1)(1−Q2)f(im|∆d|Fob), 0 ≤ Q1,2 < 1 (7.1)

where Q1 and Q2 are found by (3.22), may be used as a quality measure for the two

fingered grasping scenario of this thesis. f(im|∆d|Fob) is some function of either

gripper current,object compression or object force that determines the tightness

of the grasp. Larger values of Q indicate better grasps in terms of grasp tightness.

The experiments conducted in Chapter 5 could not shed light on the frictional

modelling regarding soft object properties which are part of the quality measure.

However, based on the works of Xydas and Kao [1999], it is assumed that given

correct parameters, the elliptical model may be utilized.
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7.2 Future Work

First and foremost, the torsional friction modelling should be investigated more

closely. Test objects that may be grasped so that the CoM does not lie between

the contact points should be used. During motion, this will ensure that frictional

torque are induced at the contacts. It was assumed that the gripper fingers and

the object produced circular contacts, the model should be modified in order to

support non-circular contacts as well. The assumption that the locations of the

Centers of Pressure are fixed on the finger surfaces is a weakness of the model.

Sometimes, this might not be the case and the CoP’s may vary locally from their

initial position.

The grasping model was only tested as an off-line application, on-line implemen-

tation should be explored. For on-line application, the grasp quality measure (7.1)

from frictional ellipsoids could be used in order to vary the grasping force applied.

This could lead to a more gentle handling of objects during motion.

Instead of using joint measurements to reproduce the motion of the gripper and

the grasped object, using acceleration sensors attached to the gripper could result

in more reliable measurements. This could be used to further test the grasping

model of Chapter 3 and its prediction of slip.
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Additional Figures

A.1 Simulation: Linear Motion
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Figure A.1: Simulation plot of experiment UD-1.
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Figure A.2: Simulation plot of experiment UD-2.
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Figure A.3: Simulation plot of experiment UD-3.
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Figure A.4: Simulation plot of experiment UD-4.
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Figure A.5: Simulation plot of experiment UD-6.
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Figure A.6: Simulation plot of experiment UD-7.
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Figure A.7: Simulation plot of experiment UD-8.
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Figure A.8: Simulation plot of experiment UD-9.
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Figure A.9: Simulation plot of experiment UD-10.
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Figure A.10: Simulation plot of experiment UD-11.
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Figure A.11: Simulation plot of experiment UD-12.
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A.2 Simulation: Throw Motion
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Figure A.12: Simulation plot of experiment T-1.
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Figure A.13: Simulation plot of experiment T-2.
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Figure A.14: Simulation plot of experiment T-3.
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Figure A.15: Simulation plot of experiment T-4.
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Figure A.16: Simulation plot of experiment T-5.
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Figure A.17: Simulation plot of experiment T-6.
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Figure A.18: Simulation plot of experiment T-7.
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Figure A.19: Simulation plot of experiment T-8.



Appendix B

Attached Files

In addition to the thesis in PDF version in the root directory, there are three

additional folders:

MATLAB:

All MATLAB files necessary for running simulations and animations. Also the

measurement processing was done using MATLAB, so the scripts and raw data

can be found within that folder.

Literature:

Relevant literature, most of which appear in the bibliography.

Experimental:

Videos from the experimental motions, RAPID code and pictures.
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