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Summary

This thesis investigates whether mass flow meters (MFMs) have any effects on the Sin-

gaporean marine fuel (bunker) industry. Fuel quality testing data and bunker price data

are analyzed for changes caused by potential effects of MFMs. A literature review is

presented to assess the research within the bunker industry. It was discovered that no

former research had been done on the effects of MFMs in Singapore or other ports.

The traditional bunker operations and their shortcomings are described. With knowl-

edge about the weaknesses of traditional bunker procedures, we propose some poten-

tial effects of the MFMs. Hypotheses are formulated to test if there are any changes

captured in the data, and whether these can be related to MFMs. It is presented how

statistical hypothesis testing can be applied to the fuel quality data. Several types of

statistical tests are assessed for feasibility.

The formulated hypotheses can be summarized into five points. The hypotheses state

that mass flow meters have lead to a: (1) bunker price increase in Singapore, (2) de-

crease in price difference between Singapore and Hong Kong, (3) change in distribution

of decimal digits in the stated bunker density parameter, (4) change in mean delta den-

sity, shortlifting benchmark and occurrence of shortlifting; (5) change in variance of the

delta density parameter and shortlifting benchmark.

Price analysis showed that changes in bunker price and price difference between Hong

Kong and Singapore were present. The analysis found little reason to attribute the price

changes to a potential MFM effect, thus hypothesis (1) and (2) were rejected. The dis-

tributions of decimal digits in the stated bunker density parameter before and after the

use of MFMs were found to be relatively unchanged. The hypothesis (3) was therefore

rejected. The fuel quality testing data was divided into groups based on density levels

to test the hypotheses in (4) and (5). This was done to mitigate dependencies from an-

other effect that is not related to MFMs. The data was grouped into 30 bins according to

fuel density, and hypothesis testing was conducted on each bin. It was concluded that

no clear sign of change was evident, based on an assessment of the collective results of

the tests. Thus, the hypotheses included in (4) and (5) were rejected.

The study concludes that the introduction of MFMs have not caused any significant

measurable effect on the price or fuel quality testing data. Finally, other means of iden-

tifying effects of MFMs are proposed. These are: (1) to investigate duration of bunker

operations, (2) to conduct an opinion survey among ship operators to assess Singapore

as a bunkering port, and (3) to study whether there has been a fall in demand for bunker

quantity surveys.
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Sammendrag

Denne oppgaven undersøker om massestrømmålere har en effekt på bunkersindus-

trien i Singapore. Drivstoffkvalitetsdata og prisdata blir analysert for å finne endringer

som følge av eventuelle effekter av massestrømmålere. Et literaturstudie presenteres

for å undersøke relevant forskning innen bunkersindustrien. Det ble oppdaget at in-

gen tidligere forskning har blitt gjort på effekten av massestrømmålere i Singapore eller

andre havner.

Det blir gitt en beskrivelse av tradisjonelle bunkringsoperasjoner og tlhørende ulemper.

Med kunnskap om ulempene ved disse prosedyrene, blir det foreslått noen potensielle

effekter fra massestrømmålere. Hypoteser er formulert for å teste om det finnes en-

dringer i dataen som kan relateres til massestrømmålere. Anvendelse av statistisk hy-

potesetesting på drivstoffkvalitetsdata blir beskrevet. Flere forskjellige statistike tester

er undersøkt for egnethet.

De formulerte hypotesene kan oppsumeres i fem punkter. Hypotesene påstår at masses-

trømmålerne har ført til: (1) økning i bunkerprisnivå i Singapore, (2) minskning av pr-

isforskjell mellom Singapore og Hong Kong, (3) endring i fordeling av desimaltall i rap-

portert drivstoffstetthet, (4) endring i gjennomsnittlig deltadensity, shortlifting bench-

mark og forekomst av shortlifting, (5) endring i varians av deltadensity parameteren og

shorlifting benchmark.

Prisanalyser viste at endringer i bunkringsprisen og prisdifferansen mellom Hong Kong

og Singapore fant sted. Disse analysene fant derimot lite grunn til å tilegne prisedrin-

gene til en massestrømmålereffekt. Derfor ble hypotese (1) og (2) avvist. Fordelingen av

desimaltall i rapportert drivstoffstetthet var uendret, og hypotese (3) ble dermed avvist.

For å teste hypotesene i (4) og (5), ble drivstoffkvalitetsdataen fordelt inn i grupper

basert på tetthetsnivå. Dette ble gjort for å redusere avhengighet av en annen effekt

som ikke var relatert til massestrømmålere. Dataen ble delt inn i 30 grupper basert på

drivstofftetthet, og hypotesetesting ble gjort for hver gruppe. Etter en samlelet evaluer-

ing av de forskjellige resultatene fra testene, ble det konkludert at ingen endringer var

tydelige. Dette førte til at hypotesene i (4) og (5) ble avvist.

Studiet konkluderer med at introduksjonen av massestrømmålere ikke har påført noen

signifikante målbare effekter på pris eller drivstoffkvalitetsdata. Avslutingsvis blir an-

dre måter å måle massestrømmålereffekter foreslått. Disse er som følger: (1) å under-

søke varighet av bunkringsoperasjoner, (2) utføre en menighetsmåling blant skipsoper-

atører for å evaluere Singapore som en bunkringshavn og (3) å studere etterspørselen

for bunkerskvanitetsinspeksjoner.
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Chapter 1

Introduction

1.1 Background

Marine fuel, called bunkers1, are the largest cost element in most commercial ship-

ping voyages. The transfer of bunkers from a bunker barge to a receiving ship can be

regarded as an operation where a commodity of high value exchanges hands during a

short amount of time. Traditionally, largely manual methods are being used for veri-

fying the transfer of fuel from barge to ship, e.g. sounding of the bunker tanks. Such

methods give room for error and potential fraud. Maersk, the world’s largest container

shipping company with a $7 billion annual spend of fuel, reported that there is an aver-

age discrepancy of 1,5 % between the readings taken by Maersk vessels and those pro-

vided by suppliers or barge operators (Henry (2014)). Disputes over delivered/received

fuel quantity are rarely resolved as post-delivery investigation on quantity shortages are

often costly and inconclusive.

To battle malpractices and improve transparency in the world’s biggest bunkering port,

Singapore Maritime and Port Authorities (MPA) introduced mandatory use of mass flow

meters (MFMs) onboard all licensed bunkering barges. The enforcement took effect on

January 1, 2017 and Singapore is the first port in the world to require such a device. The

use of MFMs for bunkering operations has the potential of setting a new benchmark

for bunkering practices worldwide. It can be expected that many other ports are willing

to introduce mass flow meters, if their ability to improve transparency and reduce mal-

practice can be proven. The research objective of this thesis is to investigate whether

1The term "bunkers" originates from the time of coal-powered steamships. The storages of coal were called
"coal bunkers".
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any effect from MFMs can be identified and it should therefore be of interest to various

stakeholders within the maritime industry. To the author’s knowledge, there has not

yet been any studies investigating the potential consequences of mass flow meters in

Singapore.

1.2 Literature Review

The papers reviewed give a impression of of the relevant available literature for the topic

of this thesis. Papers related to bunkers are presented, each paper focuses on different

topics within bunkering as a research topic. Some papers related to statistical meth-

ods were also review in order to get an idea of how methods within statistics could be

applied for our problem.

Anfindsen et al. (2012) constructed a benchmark to assess bunker fuel suppliers and

derived a comparison method of fuel suppliers with the benchmark. The benchmark

method is based on using "best practice" as reference. The authors emphasized that the

process of appointing "best practice" require a degree of subjectivity. The advantages

of the approach is that it is relatively independent of sample size and distribution of the

data, in addition to being computationally efficient.

A literature review on bunkering and bunkering decisions was done by Sevgili and Zorba

(2017). The study examined bunkering decision criteria and research methods about

bunkering in literature. A total of 54 articles were identified by searching for the terms

"bunkering", "refueling" and "marine fuel", 36 articles were deemed relevant. The ex-

amined articles were divided into five sections: illegal bunkering, alternative marine

fuels, environmental, bunker management and bunker services. The study then lists

and counts the criterion for bunkering decisions found through the literature review.

Most stated bunkering criterion in literature were determined as "bunker price and

price competition", "quality of bunker" and "geographical advantage of refueling area".

Chang and Chen (2006) developed a knowledge-based simulation model to evaluate

the overall system performance of the Port of Kaohsiung (POK), where the sole bunker

supplier is the Chinese petroleum company (CPC). The system consist of the allocation

decisions to assign the six CPC owned bunker barges to refuel inbound vessels. The

motivation behind the study was that the barge allocation assignment is a key opera-

tion for the POK in terms of efficiency and to remain competitive against other ports.

Taiwan also launched a vision for the POK to serve as a regional marine transportation

center in the Asian Pacific, thus the number of ships calling to port with bunkering re-

quests were expected to increase. Bunkering delays disrupt the schedules of outbound
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vessels, which inflict demurrage charges against the ship owners or operators, which

in turn lead to lost business for the POK. The current procedure of assigning bunker

barges to requests were manual and relied heavily on experience of the CPC senior en-

gineers. The simulation model presented by the paper uses both expert system and dis-

crete event simulation techniques. The expert system was developed replace the role

of a human expert in the existing system. The results of the expert system, in the form

of a bunkering work schedule, provide input for the simulation model. The model was

verified by comparing computer-generated results with historical working schedules.

The comparison showed that the deviation between the records and the simulation re-

sults were small, which indicated that the simulation model was highly reliable. The

study concludes that the simulation model allow system mangers to easily test revised

programs, or strategic plans to improve overall managerial efficiency of the bunkering

services in the POK.

Lam et al. (2011) developed a framework for assessing the competitiveness of bunkering

ports. Based on industry opinion surveys and interviews, ten significant attributes were

identified and ranked. The results showed that the five most important consideration

attributes were, in order of decreasing importance: (1) bunker quality, (2) market trans-

parency (corruption free), (3) bunker price competitiveness, (4) reliability and punc-

tuality of suppliers, (5) bunkering facilities. Assessment of Singapore and Shanghai as

bunkering ports was done based on the identified attributes. Singapore was found to be

a better performer as a bunkering port than Shanghai. This is mainly due to its strate-

gic location which attracts large cargo volume, and the liberal market structure which

provides attractive pricing and efficient practices. The Singapore Maritime and Port

Authority (MPA) upholds a stringent quality control system, but keeps the regulation

to a subtle level so that the bunker market remains market driven. Weak attributes for

Singapore were the reliability and punctuality of bunker suppliers, in addition to the

availability of low sulphur fuel. The weakest aspect for Shanghai was the uncompeti-

tive bunker price. It is described that foreign ship operators only bunker in Shanghai in

emergency situations, or for newly launched vessels from Chinese shipyards. In emer-

gency situations, operators only fill enough bunkers to sail to the next port where where

full tank will be filled for long hauls.

Aarsnes (2018) investigated the feasibility of assessing bunkering operations with the

use of AIS data. A framework for identifying bunkering operations was constructed,

this was embedded into an algorithm that appoints the most probable bunker customer

(receiving ship) for a given bunker barge. By cross validating a range of bunkerings pro-

posed by the algorithm with with a list of officially approved bunker barges and fuel

quality testing data of bunker operations, a range of high likelihood bunkerings were

established. The time parameters for these bunkerings were analyzed statistically. A
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method for creating a bunkering quality index based on the the time distribution of

waiting time and post bunkering time for a given operation was proposed. It was sug-

gested that further work would be to incorporate other aspects of a bunker operation

into the quality index, such as fuel quality data.

Beber and Scacco (2012) derived and applied a method to detect manipulation of elec-

toral return sheets through a digit-based test. The paper showed that, given a wide

range of distributional assumptions, the last digits of electoral results can be expected

to occur with equal frequency. The paper emphasized that due to psychological bi-

ases, humans have difficulties in reproducing random patterns. The authors focused

on four findings that the experimental literature suggested: "Humans (1) do not select

digits with equal frequency, (2) avoid repetition, (3) prefer serial sequences, and (4) se-

lect pairs of distant numerals relatively infrequently". By searching for patterns caused

by these biases, for these four biases in data from electoral return sheets, the authors

showed that their approach was sensitive to known electoral frauds while it produced a

null result in a nonfraudulent environment.

Vollset (1993) compared thirteen methods for computing binomial confidence inter-

vals, based on each method’s coverage properties, widths and errors relative to exact

limits. The use of the standard textbook method is discouraged.

Nahm (2012) discussed the basic concepts and practical use of nonparametric statisti-

cal tests. The authors try to provide actual cases of nonparametric statistcal techniques

to enhance the reader’s understanding of nonparametric tests. The paper emphasize

that nonparametric tests are a correct choice when parametric tests cannot be used

due to violation of the assumption of normality. However, nonparametric tests have

less statistical power.

Concluding the literature review, it is evident that no other studies have researched the

topic of effects from mass flow meters. Reviewing different papers on statistical meth-

ods showed that the statistical methods can easily be applied to many disciplines. How-

ever, there are many pitfalls, and the user must be conscious on the assumptions of the

methods being used.

1.3 Objectives

The overall objective of this thesis is to investigate whether the introduction of mass

flow meters in Singapore has had any measurable effects on the bunker industry in Sin-

gapore. For this purpose, fuel quality testing data and fuel price data shall be analyzed.
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To address the overall objective, the following main tasks are identified:

1. Provide adequate background information to understand why Singapore port au-

thorities made the use of mass flow meters (MFMs) mandatory.

2. Rationalize what aspects of bunker fuel delivery could be affected by MFMs, and

how that may materialize in the available data sources.

3. Explore the data and formulate testable hypotheses around potential effects of

MFMs.

4. Select and describe the statistical methods used for hypothesis testing.

5. Compile and discuss the results from the analysis to conclude on whether MFMs

have any effect on the Singaporean bunker industry.

1.4 Scope and Limitations

The main limitation of this thesis is related to the availability of relevant data. The fuel

quality testing data used in this study only represent a fraction of all bunkerings. To

which extent this data can be a general representation for all bunkerings in Singapore

is not assessed.

1.5 Outline

The rest of the thesis is organized as such:

Chapter 2 provide background infromation about bunker operations and mass flow

meters. In the end, a rationalization about potential effects of mass flow meters is done.

Chapter 3 introduces and explores the available data sources. Relevant parameters of

the data are plotted, and initial remarks based on visual assessments are made. Testable

hypotheses around potential effects of MFMs are also formulated.

Chapter 4 describes how statistical methods can be applied to the available data. As-

sessment of the assumptions and limitations of the selected methods are also done.

Chapter 5 describes the change analysis on the different hypotheses using the selected

methods.
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Chapter 6 discusses and concludes the work done in this thesis in the light of the ob-

jectives. Recommendations for further work is also given.

Figure 1.1: Overview of project stages



Chapter 2

Bunker Operations and Potential

Effects of Mass Flow Meters

The aim of this chapter is to provide background information about bunker operations

and mass flow meters. In the end we rationalize about what could be potential effects

of mass flow meters.

2.1 Heavy Fuel Oil as a Marine Fuel

Marine fuels are generally divided into two different classes: heavy fuel oil and dis-

tillates. Distillates are commonly known as marine gas oil (MGO). The first group, the

heavy fuel oils, is a generic term describing fuels that possess a particularly high density

and viscosity that are used to generate motion and/or heat (Marquard & Bahls (2015)).

Heavy fuel oil (HFO) is at the time the most common marine fuel. The MARPOL Marine

Convention of 1973 defines HFO either by a density of above 900 kg/m3 at 15 ◦C or a

kinematic viscosity of higher than 180 mm2/s at 50 ◦C.

Heavy fuel oil is incurred as the residual fuel during the distillation of crude oil, and its

qualities is therefore dependent on the qualities of the crude oil being refined and the

refining process. Various specifications and quality levels of HFO can be achieved by

blending with lighter fuels such as marine gasoil or marine diesel oil. These blends are

also referred to as intermediate fuel oil (IFO) or marine diesel oil. Most commonly used

class of such blends are IFO 180 and IFO 380, named after their viscosities of 180 mm2/s

7
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and 380 mm2/s.

Density of heavy fuel oils are dependent on how much lighter fuel the refineries are will-

ing to extract. If prices for distillates are high, additional refining can be justified, and

the residual fuel possess a high density. If prices for distillates are low, less distillation is

done, and the residual fuel possess a lower density. In addition, it also depends on the

properties of crude oil batch that is imported to the refinery.

Since 1987, International Maritime Organization (IMO) has specified requirements for

petroleum-based fuels used in diesel engines and boilers in the shipping industry with

the ISO 8217 standard. The standard defines the different classes of marine fuels with

specifications for quality parameters, e.g. viscosity, ignitability, acid content, sulfur

content and density.

2.2 Bunker Operation

The bunker operation is a process where a vessel is supplied with fuel for operation of

its machinery system. An order of bunker specifying grade and amount will typically be

placed by the operator of a ship or a bunker broker that is engaged by the ship opera-

tor. The quantity of bunkers to be bought is given in mass, in the unit of metric tons.

Buyer and supplier will agree upon operational details such as location and time for

the bunkering. The stages in a bunker operation was roughly summarized by Wu and

Aarsnes (2017):

• Bunker barge moves alongside the ship

• Bunker barge hose connects with fuel tank hose

• Measuring of bunker quantities at both vessels

• Commencement of bunkering

• Completion of bunkering

• Paperwork and related procedures that confirm agreement of transacted bunker

quantity

• Disconnection of barge hose and fuel tank hose

• Bunker barge leaves the ship
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Paperwork and related procedures has the purpose of documenting the bunker quality

received on board and its compliance with the stated requirements. IMO requirements

oblige vessels to document bunkerings through bunker delivery notes (BDN). Wärtsila

(2017) describes bunker delivery notes as follows:

The standard document required by Annex VI of MARPOL which contains information

on fuel oil delivery: name of receiving vessel, port, date, data of a supplier, quantity and

characteristics of fuel oil. Every BDN is to be accompanied by a representative sample of

the fuel oil delivered. Fuel oil suppliers are to provide the bunker delivery note. The note

is to be retained on the vessel, for inspection purposes, for a period of three years after the

fuel has been delivered.

Traditional Bunker Delivery Verification

Traditionally (prior to introduction of mass flow meters), the delivered mass is calcu-

lated by multiplying the bunker density (as stated by the supplier) with the deliveredvol-

ume (Gregory et al. (2008). Delivered volume was estimated by manual measurement

methods, mainly tank sounding. In this procedure, the level of fuel in the bunker barge

tank(s) is recorded, prior to the transfer of fuel to receiving ships. In addition, tempera-

ture information, draught and trim of the ship should be registered (Wankhede (2018)).

The tank sounding procedure is repeated at the end of the bunker transfer. Ship spe-

cific calibration tables are needed to map the recorded dip levels into corresponding

volumes. The difference in volume between the beginning and end of the bunkering

operation yields the transferred volume. The tank calibrations tables are seldom de-

rived through tank calibration of measurement and filling, but rather calculated data

(Gregory et al. (2008)). The delivered mass is obtained through calculations based on

the density of the fuel, as stated by the supplier.

In other words, many factors influence the bunker quantity delivered. It is a complex

procedure to determine the correct quantity, making these manual measuring methods

prone to error and potential fraud.

2.3 Non-transparent Parameters and Malpractices

There are pitfalls for errors and malpractice when marine fuel is transported from refin-

ery to bunker barge and then to a receiving ships. These pitfalls can contribute to a dif-

ference between quantity claimed to have been delivered and the quantity received by



CHAPTER 2. BUNKER OPERATIONS AND POTENTIAL EFFECTS OF MFMS 10

Figure 2.1: Sounding tape used for manual sounding of tanks. Image downloaded from
https://www.alibaba.com/ in January 2019.

the ship. There are documented methods of deliberate short supplying of the amount of

bunker. Examples of malpractices have been mentioned by Aarsnes (2018) and Anfind-

sen et al. (2012). The practices can be grouped based on the parameter that is manip-

ulated. The most relevant parameters for this study are volume and density, but other

parameters can be energy content.

Volume

Marine Insight (2016) states that deliberate methods for inaccurate measurement of

delivered volume can be to use a modified gauging pin, infuse air into the bunker prior

to delivery or to tilt the bunker barge to interfere with tank readings.

Another practice described Marine Insight (2016) is cappuccino bunkers, which is the

result of compressed air blown through the delivery hose. The frothed bunker will nat-

urally have a higher volume when sounded, and give the impression that more fuel is

delivered than in reality.

Inflated and deflated tank volumes can also be achieved by pouring respectively diesel

oil and paint thinner into the sounding pipe prior to gauging. The thinner washes off

the oil level marking on the sounding tape, making it indicate a lower level of oil.

Density

As the bunker is delivered in volume but paid in weight, the fuel density is an essential

property in the bunkering operation. By reporting a higher density, the monetary value
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of the delivered fuel will be less than the monetary amount paid for the delivered fuel.

The reported bunker density is documented in a bunker delivery note.

As petroleum products have a high rate of thermal expansion, temperature must be

taken into account during a bunker transfer. Tampering with temperature can there-

fore create a difference between quantity on paper and quantity delivered. A barge

could under-declare the temperature at time of opening gauge and over-declare dur-

ing closing gauge. This malpractice will result in that during tank dipping before and

after pumping, the fuel density will be lower (with over-declared temperature) prior to

pumping and higher after pumping (with under-declared temperature). Thus, the vol-

ume difference will be made greater on paper then what it in reality was.

DNV Research & Innovation (2012) analysed over 50 000 samples of fuel oil tested by

DNVPS in 2011 indicated with an average over-reporting of 0.6 kg/m3. With a global

average bunkering of 965 Metric Tonnes (MT) per lift, over-reporting can equal an av-

erage loss of about 0,6 MT per 1000 MT lifted according to DNV Research & Innovation

(2012).

2.4 Mass Flow Meters

The Maritime and Port Authority of Singapore (MPA) enforced the use of mass flow

meters (MFMs) for higher viscosity grades (heavy fuel oils) of bunker fuel with effect

from 1st of January 2017:

With effect from 1 January 2017, it is mandatory to use MPA-approved MFM

system for all Marine Fuel Oil (MFO) bunker delivery in the Port of Singa-

pore. The delivered quantity of MFO stated in the Bunker Delivery Note shall

be based on the bunker tanker’s MFM system as witnessed by the cargo offi-

cer, the chief engineer and bunker surveyor (if engaged).

Maritime and Port Authority of Singapore (2016)

As a consequence, malpractices in volume and density reporting should in theory be-

come inefficient. This initiative is an attempt to improve transparency in bunker oper-

ations and the reputation of Singapore as a preferred bunker port. A mass flow meter

enables direct measurement of delivered mass. The need to measure and correct for

pressure, temperature and density fluctuations during bunker transfer are eliminated.

The MPA has recently announced that use of MFMs for marine gas oils will be man-

dated with effect from 1st of July 2019.
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2.4.1 Principle of the Mass Flow Meter

Mass flow meters, also called Coriolis meters, consists of a vibrating flowtube through

which the fuel passes, and a transmitter. The meter operates based on the Coriolis ef-

fect. Henry (2014) describe that along a section of the flowtube, two electromagnetic

drivers forces two parallel pipes to vibrate. The frequency of vibration are monitored

and measured by two sensors. Fuel flow though the vibrating tubes will cause a twist-

ing of the pipework, this can be detected through a phase shift between the two sensor

signals. The transmitter, the other part of the meter, collects the sensor signals, carries

out the mass flow calculations, and feeds the electromagnetic drivers with appropriate

frequency, phase and amplitude characteristics to maintain flowtube vibration.

Baboo (2015) states that the mass flow of a U-shaped coriolis flow meter can be given

as:

Qm = Ku − Iuω
2

2K d 2 ·τ. (2.1)

Where Ku is the temperature dependent stiffness of the flow tube, K a shape dependent

factor, d the diameter of the tube, τ the time lag,ω the vibration frequency and Iu is the

inertia of the tube.

Figure 2.2: The mass flow meter, consisting of a mechanical flow tube and an electronic trans-
mitter (Henry (2014)).

2.4.2 Mass Flow Meter Implementation in Singapore During 2016

Mass flow meters were gradually implemented on the Singaporean bunker barge fleet.

Ship & Bunker (2016) reported that by May 2016, about one third of the Singaporean

bunker barge fleet were equipped with Singapore Maritime Port Authority approved
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mass flow meters. The same figure was reported by Shippingwatch (2016) to be about

45 percent by August 2016.

I am pleased to share that we now have 73 bunker tankers approved for mass

flow meter delivery for marine fuel oil and we are seeing close to 1 million

metric tonnes of bunkers being delivered via MPA-approved mass flow me-

ters every month.

It is therefore important to bear in mind that any potential effect from MFMs, would

gradually take effect throughout 2016.

2.5 Rationalization about Potential Effects caused by MFMs

The previous section has elaborated how mass flow meters can reduce uncertainty about

delivered bunker quantity. To find any potential effects caused by MFM to the bunker-

ing process, we need to rationalize on which aspects (parameters) of the bunkering pro-

cess may be affected.

Price

One of the goals of the MFM implementation was to improve transparency of bunker-

ing operations and hinder malpracticing suppliers. Price can potentially be affected by

flow meters as malpracticing suppliers could lose revenue obtained through shortlift-

ing. Before MFMs were implemented, these suppliers could set an artificially low price

in order to attract customers. Which would result in buyers paying less per tonne on

paper, but ending up with a short delivery. If MFM successfully rule out the possibility

of such practice, it is therefore reasonable to believe that these suppliers will have to

raise their bunker prices to a realistic level in order to cover expenses. Flow meters can

therefore have a potential effect of pushing bunker price levels higher in Singapore.

Bunker Density

MFMs’ ability to measure mass directly implies that stated density is not needed1 to de-

termine the mass of delivered fuel. The price of the transferred bunker fuel is therefore

1Even though the stated density is not needed for determining mass, it is still used to tune the fuel separa-
tors on board that filter the fuel for impurities.
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no longer dependent on fuel density as stated by the supplier. As a result, overstating

density is no longer a way for suppliers to obtain financial gain.

Without the mentioned incentive for overstating bunker density, one may speculate

whether the reporting behaviour might change. Several changes may be imaginable:

(1) The suppliers become more accurate when stating the density, that is the stated

density is closer to the real fuel density. This change can imply two effects: (a) the mean

difference between the stated and true density shift towards zero and (b) a decrease in

the variance of density difference.

(2) On the other hand, a supplier may become indifferent to the accuracy of their stated

density, which may result in an increase in variance of density difference. The reasoning

behind that is that the difference between two independent random variables is again

a random variable with a variance equal to the sum of each of the random variables.

(3) If the stated density is derived from measurements, then one should expect a uni-

form distribution of the decimal digit in the stated density. Any deviation from uni-

formity, could be an indication of human manipulation. As MFMs makes the stated

density obsolete one could expect a shift towards uniform distribution among the dec-

imal digits. As human manipulation should not have any purpose in making financial

gain.

Expected Speed of Changes

As MFM are gradually introduced by port authorities during 2016 one could expect that

any effects of MFM should materialize already by the beginning of 2017. Potential ef-

fects related to bunker price should manifest quickly, as suppliers will lose money im-

mediately if not. Effects related to reporting of bunker density may change slower as it

has no immediate consequences and it needs a change in human reporting behaviour.



Chapter 3

Data Sources and Observations

This chapter introduces and explores the available data sources. Relevant parameters of

the data are plotted, and initial remarks based on visual assessments are made. Testable

hypotheses around potential effects of MFMs are also formulated.

Approach

3.1 Bunker Price Data

Upon request, Bunker Index1 has kindly provided daily bunker price indices for this

study. The price indices that were analyzed in this study are Hong Kong IFO 380, Singa-

pore IFO 380 and Worldwide IFO 380. These are plotted in figure 3.1. The data ranges

from 2010 till November 2018 in time, with the unit of USD per metric ton. The in-

dices are based on prices gathered from Bunker Index’s network of sources consist-

ing of bunker suppliers, traders and brokers. The published price index of a given day

represents the median of the prices received through the network on a given day (not

weighted).

1www.bunkerindex.com
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Figure 3.1: IFO 380 grade price indices (upper graph) and index price gaps between HK vs. Singa-
pore and worldwide vs. Singapore (lower graph). MFM implementation period (2016) is marked
by the grey area.

Observations

In the index plot (upper graph) of 3.1 we notice a falling trend from mid 2014 ($ 600)

till end 2015 ($ 200), and a rising trend from 2016 till November 2018 ($ 200). In the

price gap plot, there is a rising trend and falling trend in approximately the same pe-

riods, respectively. A falling price gap between Hong Kong and Singapore from 2016

and forward, supports the argument that MFM has pushed price levels higher in Singa-

pore. However, it may also be argued that decreasing/increasing price levels can cause

to increasing/decreasing trends in price difference.

3.2 Fuel Quality Testing Data

The second data source obtained for this study is fuel quality testing data from Veri-

tas Petroleum Service (VPS). VPS is a bunker testing agency that conducts testing of

fuel quality for their customers. VPS’ customers are mainly ship operators and owners.

Such tests enables the customer to monitor the accuracy of fuel quality specifications

stated by the supplier. A representative fuel sample is collected by the customer during

a bunkering operation and then sent to VPS. VPS then tests the sample for various pa-

rameters. The test results can then be compared against the specifications stated by the

bunker supplier.

The data set contains around 45 000 samples from Singapore and around 6 000 samples

from Hong Kong in the period of 2013 - 2018. There are 20 parameters related to den-
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sity, energy content and various measures of contamination. As emphasized in section

2.5, our rationale is that MFM will affect the reporting of stated density among suppli-

ers. As a result, the study has been focused on density related parameters, while the

parameters related to energy content and contamination are disregarded. The density

related parameters are listed in table 3.1. The report SL benchmark and report max SL

benchmark are functions proposed by Anfindsen et al. (2012).

Table 3.1: Density related parameters in the fuel quality testing data set.

Parameter Description
Density (Tested density) Density of bunker sample as tested by VPS.

Stated Density Density stated by a supplier.

Delta Density Density - Stated Density = Delta Density.

Report SL Benchmark
& Report Max SL Benchmark

Two benchmark scores on how likely a deliverance can be
regarded as a shortlift.

Figure 3.2: Stated density, density and delta density parameters illustrated.

3.2.1 Limitations and Data Preparation

A limitation of the fuel quality data is that the data samples with density value lower

than 979,998 kg/m3 or higher than 993,002 kg/m3 are given as "< 979,998" or "> 993,002".

There are altogether 786 of such samples, which constitute 1,7 % of the total 45 393 sam-

ples. These samples will have to be disregarded when calculating the mean and stan-

dard deviation, but can be included when calculating median. As seen in figure 3.3, ">

993,002" samples are more common than the counterpart.

A second limitation of the data set is also related to the resolution in density value. The

density value for all density parameters has three decimal digits, but every entry has

"86" as the last two decimal digits. This is most likely caused by the storage routines in

the database, so the accuracy of the density parameter is one decimal digit.
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Figure 3.3: Upper graph shows count of data samples with "> 993,002" and "< 979,998" as density
entry by month. Lower graph shows their percentage fraction per month.

3.2.2 Characteristics of Fuel Quality Testing Data

ISO 8217 standard - Maximum Density Limit

As mentioned in section 2.1, the ISO 8217 standard sets specifications that bunker fuel

has to fulfill. The specification most relevant for our investigation is the max density

limit, which for fuel grade IFO 380 is 991 kg/m3.

3.2.3 Tested Fuel Density

Daily, weekly and monthly medians were plotted in figure 3.4 to get an impression of the

tested bunker density variations over time. Median as measure was chosen over mean

as it is believed to give a better representation of the central tendency of the data. Me-

dianas a measure, uses the ranked order of each data point as information, in contrast

to mean which relies more on the value of each data point. By changing the density val-

ues for the border values (below 979,998 kg/m3 and greater than 993,002 kg/m3) to 979

kg/m3 and 993 kg/m3, when calculating the median, the limited resolution does not af-

fect the median. That is, if the true density of these values would have been known, the

median would have been the same. Anfindsen et al. (2012) emphasized that the mean

value of ten bunkerings could easily be offset by one extreme value, while the median is

less sensitive to such outliers.

Weekly median is considered to be the most appropriate resolution, as it provides suf-

ficient detail without loosing clarity due to noise. The weekly median will thus be used

for further plotting.

The weekly median together with the 1st and 3rd quartiles are shown in figure3.5. Two
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Figure 3.4: Daily, weekly and monthly sample median of bunker density in Singapore

Figure 3.5: Weekly median bunker density, with 1st and 3rd weekly quartile. The quartiles pro-
vides a representation of the variations in variance of the data.

remarks were noted. Firstly, it becomes apparent that the process is not stationary2 as

variance and median changes over time. Secondly, the density distribution is signifi-

cantly asymmetric with respect to the median. This is evident from figure 3.5, where

the lower quartiles (blue lines) are further apart from the median than the upper quar-

tiles. This attribute can be regarded as a result of the ISO 8217 standard which sets the

maximum density to 991 kg/m3, which yields a smaller distribution for the data above

the median.

2In mathematics and statistics, a stationary process is a stochastic process whose unconditional joint
probability distribution does not change when shifted in time. Consequently, parameters such as mean and
variance also do not change over time.
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Figure 3.6: Stated vs tested density for 2013-2018. Perfect reporting line in blue and red lines
represent 991 kg/m3 (ISO 8217’s maximum density limit). Noteworthy are a) a tendency that data
samples are above the perfect reporting line (blue dashed line) and b) the grouping of samples at
or below the red horizontal line. Observe that almost no samples are stated as over 991 kg/m3.

The median of tested density gives a picture of the general density level of the fuel sold

in Singapore. This parameter is not likely to be affected by the introduction of mass flow

meters, as it depends on the degree of distillation at the refineries are and the properties

of imported crude oil.

3.2.4 Stated Fuel Density

The stated density is the density written in the bunker delivery note by the supplier

(Gregory et al. (2008)). Anfindsen et al. (2012) visualized fuel quality testing sample data

through scatter plots of tested versus stated bunker density. Figure 3.6 is a correspond-

ing plot, which shows tested density versus stated density for all data (2013-2018).

Each dot in the scatter plot represent at least one bunker sample. A "perfect reporting"

line represent the line where stated density equals the tested density. This line is illus-

trated by the blue dashed line. The red horizontal and vertical dashed lines represent

the upper density limit as given by the ISO 8217 standard.

Regarding reporting behaviour of Singaporean suppliers, two behaviours can be iden-

tified from the scatter plot in figure 3.6. Firstly, it is apparent that the samples are not

symmetrical about the "perfect reporting" line for a given value of tested density. If
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the intention of all suppliers were to state density as accurately as possible, it would be

reasonable to believe that the distribution would center around the "perfect reporting

line". However, the mean is skewed towards higher values in our case.

It is challenging for the supplier to know the exact density of the fuel that is being sup-

plied. Therefore, it can be suspected that the shifted mean is caused suppliers are in-

clined to put on a "safety margin" to ensure that they are not selling at a lower density.

Secondly, there is a clear tendency of samples grouped along the lower side of the red

horizontal line. In other words, these samples represent suppliers that state the density

as right below the ISO 8217 limit of 991 kg/m3. Some of these samples can be consid-

ered as malpracticing suppliers who deliberately overstate the density to achieve finan-

cial gain.

3.2.5 Delta Density - A Measure of Overstated Density

The third relevant parameter in the quality testing data set is delta density. This is

simply the difference between the stated density and tested density, dst ated - dtested =
delta density. This parameter therefore directly represents the amount of overstated

density (or understated density in cases of a negative delta density). A delta density of

0 means that the supplier stated the same density as what was tested in the laboratory.

The maximum delta density for a given sample is achieved when supplier states 991

kg/m3 as density. Recalling the scatter plot in figure 3.6, delta density can be repre-

Figure 3.7: Deviation from ISO limit, weekly Median of Delta Density with 1st and 3rd quartiles.
Observe that delta density increases when the deviation from ISO limit increases (corresponding
to decreasing fuel density).
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Figure 3.8: Delta density versus density. Obvious tendency of delta density being a function of
density. Mean and variance of delta density decreases as density approaches 991 kg/m3 from
below.

sented as the distance between eact point and the "perfect reporting" line.

The weekly median of delta density is plotted in figure 3.7, along with weekly quartiles.

Median deviation from the ISO limit, or the difference between the ISO limit and the

weekly median of delta density, is also plotted (991 - median delta density).

A clear covariance between the two measures is obvious in the plot. Since delta density

raises with deviation from ISO limit, one can say that the suppliers overstate more when

the fuel density (tested density) gets low. The domain of delta density gets higher as

lower density will allow for greater difference between actual density and stated density.

The relationship between delta density and density is also evident in 3.8. The mean and

variance of delta density can be seen as a function of density.

3.2.6 Short Lift Benchmark and Max Short Lift benchmark

Benchmarking scores have been developed by VPS and DNV GL as described in Anfind-

sen et al. (2012). The benchmarking scores that are relevant for density are the shortlift

and max shortlift benchmark. These two benchmark scores uses delta density as func-

tion input. The benchmarking system allocates a score between 0 and 1 as to whether

a sample can be regarded as a shortlift and gives indication of amount of shortlift. The

benchmarking method is based on the concept of membership functions from fuzzy

logic, the theory behind the benchmarking method will not be further described. The

benchmark scores can be useful in that it acts as an indicator on how much a sample

can be regarded to be a shortlift (SL).
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Figure 3.9: Short Lift Benchmark Histogram for 2013-2018, Singapore and Hong Kong. Singa-
pore has a higher fraction of shortlifting samples, i.e. overstating density is more widespread in
Singapore.

Observing the benchmark histogram in figure 3.9, it is noted that Singapore’s bench-

marks are generally higher than its neighbouring port. Meaning that the scoring method

indicates that a larger portion of Singapore’s bunkerings are considered to be shortlift-

ing, relative to Hong Kong.

Weekly mean of the two shortlift benchmarks for Singaproe samples are plotted in fig-

ure 3.10. It can be seen that weekly mean and standard deviation have not been signif-

icantly changed.

Figure 3.10: Weekly mean of shortlift (SL) benchmarks and standard deviation (dashed lines).
Max SL benchmark (top) and SL (bottom).
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3.3 Summary and Formulation of Hypotheses

With the insights gained from data exploration, the expected effects as rationalized in

section 2.5 can be formulated into hypotheses that are appropriate to test based on the

available data. The testable hypotheses can be formulated as follows:

1. MFMs will lead to price increase in Singapore.

2. MFMs will lead to a decrease in price difference between Singapore and Hong

Kong.

3. MFMs will lead to change in distribution of decimal digits in the stated bunker

density parameter.

4. MFMs will lead to a change in mean delta density, shortlifting benchmark and

occurrence of shortlifting benchmark.

5. MFMs will lead to a change in variance of the delta density parameter.

Price

The expected effect of MFMs on bunker prices was rationalized to be a price increase.

Based on this rationalization, a hypothesis could be that MFMs have caused a rise in

Singaporean bunker prices. To test this hypothesis, we would check whether prices af-

ter MFM introduction are higher than prior to MFM introduction. Obviously, the prices

have risen since January 1, 2017 as evident in figure 3.1. However, the drivers behind the

bunker price include macroeconomic factors such as geopolitical issues, crude oil price

(Hellenic Shippipng News (2015)) and so forth. As a consequence, the results of the pro-

posed hypothesis test does not provide a conclusive answer on whether the price rise

can be attributed to mass flow meters.

Focusing on the price gap between Hong Kong and Singapore, a decrease in price dif-

ference is evident from figure 3.1. On the other hand, it is noted that trends in general

price levels have occurred in the same periods as trends in price difference.

Analyzing the bunker price difference between Hong Kong and Singapore can be a way

to identify any potential MFM effect. As the geographical positions of Singapore and

Hong Kong lie close, some price driving factors that affect both ports can be expected

to cancel out when studying the price difference. Thus any development in the price

difference might be attributed to a potential MFM effect. On the other hand, a poten-

tial price effect from MFM can be disturbed by the differences in factors affecting the
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ports. That is differences such as different political situation or different bunker sup-

plier market environment which drive the price differently in the two ports.

With this reasoning as backdrop, the hypothesis is that mass flow meters will cause

Singaporean bunker prices to rise, which will result in a decrease in the price difference

between Hong Kong and Singapore.

Tested Bunker Density

It was decided to inspect density levels with the resolution of weekly medians. It is

noted that the variance and mean are not constant, thus we assume that the density

does not behave as a stationary process. The distribution is not symmetric around the

median. We see this as a result of the ISO 8217 density limit. It is rationalized that mass

flow meters are not likely affect bunker density. Therefore no hypotheses regarding a

potential effect on tested bunker density is formulated.

Stated Density

Figure 3.6 revealed that stating density right below 991 kg/m3 at 15 ◦C, with no regard to

real density, is a widespread practice. This is most likely because, prior to introduction

MFM, a higher stated density would result a higher delivered mass when calculating

density · volume = mass.

As mentioned in the literature review, Beber and Scacco (2012) showed that analysis of

digit distribution can be used to investigate electoral frauds. A similar approach can be

be utilized on the fuel quality testing data by investigating the distribution of last digits

(decimals) in the stated density parameter. The hypothesis becomes "MFM affects the

distribution of decimal digits in the stated bunker density".

Delta Density

In figure 3.8 it was observed that delta density increased with decreasing density, which

imply a negative correlation between delta density and density. This can translate into

that suppliers tend to state a higher density when density decreases.

It was rationalized that suppliers would start to state density more accurately. This is

expected because the transferred mass is directly read off from the MFM, meaning that
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there is no longer any financial gain in overstating density. Thus, two hypotheses re-

garding delta density can be formulated as "mass flow meters cause a decrease in the

delta density levels" and "mass flow meters reduces the variance in delta density".



Chapter 4

Change Detection and

Methodology

The aim of this chapter is to describe and select appropriate statistical methods, based

on insights gained from data exploration in the previous chapter, that can be used for

hypothesis testing around potential effects of mass flow meters. Assessment of the as-

sumptions and limitations of the selected methods are also done.

4.1 Investigate Potential Effects with Statistical

Hypothesis Testing

As mentioned when rationalization and formulating hypotheses, it is expected by the

author that any potential effects of MFM mayl cause various changes in the data. In this

study, the term "change" is considered as a difference in a certain characteristic.

Hopefully, such potential changes can be quantified through statistical hypothesis test-

ing. To identify changes due to the MFM, the data should be grouped into before and

after the introduction of MFM. Recalling section 2.4.2, it was emphasized that MFMs

were implemented gradually throughout 2016. Therefore, we may assume hat any po-

tential change has happened during 2016. We label the period earlier than January 1,

2016 for the pre-MFM period and the period later than December 31, 2016 for the post-

MFM period. Due to the time range of the fuel quality testing data (January 2013 -

March 2018), the pre-MFM period include January 1, 2013 - December 31, 2015, while

27
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Figure 4.1: Relationship between population and sample, in addition to population parameter
and sample statistic (CliffsNotes (2015)).

the post-MFM period include January 1, 2013 - March 31, 2018.

Figure 4.1 illustrates the different statistical terms involved in hypotheses testing. To

illustrate how to formulate a hypothesis test, delta density can be used as an example.

Consider the question of whether delta density levels have changed after the introduc-

tion of mass flow meters. Table 4.1 shows how each term is interpreted in the context of

testing a potential change in delta density.

It is important to be aware of the limitations of statistical tests; they do not explain the

reasons as to why any difference exist. They can only indicate whether the differences

are due to the random fluctuations of sampling or due to other reasons. Therefore such

Table 4.1: Relationship between hypothesis testing terms in general and corresponding
values in the context of testing delta density values.

General context Comparing pre-MFM and post-MFM delta density

Population A & B
Delta density values of all bunkerings in the
pre-MFM and post-MFM period.

Population parameter A & B
Mean of delta density values of all bunkerings
in the pre-MFM and post-MFM period.

Sample A & B
Delta density values of the bunkerings in the fuel
quality data set (pre- and post-MFM).

Sample statistic A & B
Mean of delta density values of the
bunkerings in sample A and sample B.

Null hypothesis, H0 µdelta density, pre-MFM =µdelta density, post-MFM

Alternative hypothesis, H1 µdelta density, pre-MFM 6=µdelta density, post-MFM
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tests do not tell us as to which are the other reasons causing the potential differences.

In our context, it should be acknowledged that the we do not know all the factors affect-

ing the phenomena generating delta density values. Thus, this study is not conducted

in a controlled environment at all. An example of studying a phenomena in a con-

trolled environment would be an experiment conducted in a laboratory, where all the

major factors are known. As a result, we cannot be completely certain that any detected

change can be a result of MFM implementation as it may be caused by other factors

that we do not have knowledge of. Even in the case of not identifying any changes, we

may not be certain that MFMs have not caused any changes. It could be that any effects

from MFMs are blurred by other more dominant effects.

4.2 Comparing results in Singapore with results in Hong

Kong

A way to gain additional information on whether a change can be attributed to MFMs

is to conduct the similar hypothesis test on Hong Kong data, and compare the results.

For a port, there can either be a change or no change. Comparison of two ports with

two outcomes yields four different scenarios. The different scenarios and their impli-

cations can be summarized in a scenario matrix as shown in figure 4.2. For instance,

if a change has been identified as statistically significant for both Singapore and Hong

Kong (scenario A), the scenario would weaken that there is a causality between MFMs

and the identified change. This is due to that Hong Kong have not mandated the use of

mass flow meters. So the scenario suggests that the changes in the two ports are caused

by an effect affecting both ports.

Figure 4.2: Scenario matrix describing proposed causality between MFM and identified change
when comparing to Hong Kong.
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Another interesting outcome is scenario B: no change in Singapore but a change in

Hong Kong. This may support that MFMs have an effect in Singapore. This implication

relies on the assumption that there is an effect that affects both ports, but the change is

countered by MFMs in Singapore while the change is evident in Hong Kong. However,

the implication that scenario B indicate that MFMs are countering another effect can

be regarded as a more doubtful implication than the implication of scenario A.

To further understand the feasibility of using hypothesis testing to make conclusions

regarding potential effects of mass flow meters, we study statistical hypothesis testing

in general and a handful of test methods in the rest of this chapter.

4.3 Statistical Hypothesis Testing

A statistical hypothesis is a proposition, or conjecture, about the population. The aim

of testing statistical hypotheses is to determine whether a conjecture about a feature of

a population is supported by the information obtained from the sample data. Hypoth-

esis testing is a type of statistical interference where the plausibility of the hypothesis

is evaluated based on experimental data (information obtained by sampling from the

population (Bhattacharyya and Johnson (1977))). Typically, The conjecture should in-

volve a statement, or assertion, about the value of a population parameter. As an asser-

tion may be true or false, two complementary hypothesis can be formulated.

The hypotheses are formulated as the null hypothesis and alternative hypothesis. These

are denoted as H0 and H1, respectively. The hypothesis suggesting the negation of the

assertion is labelled the null hypothesis, and the assertion itself is formulated as the

alternative hypothesis, H1. To be able to reject the null hypothesis, the concept of p-

value is used. P-value is the probability of obtaining the sample data result or more

extreme (unlikely) under the circumstances of the null hypothesis. The concept of p-

value and its relationship to the sample data result is illustrated in figure 4.3. The null

hypothesis can be rejected if the sample data result is a unlikely realization of the null

hypothesis. The required level of unlikelihood to reject H0 is called the significance

level, denoted α, of the statistical hypothesis test. The significance level is convention-

ally set to α= 0,05, but depends on the field of study. In the case of hypothesis testing

with α = 0,05, the H0 can be rejected if the p-value ≤ α. Rejecting the null hypothesis

corresponds to accepting that the sample data gives reasonable evidence to support the

alternative hypothesis.

In testing the null against the alternative hypothesis, the attitude is to uphold H0 as true

unless the data strongly speak against it. This attitude implies that the error of falsely
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Figure 4.3: Illustration of a p-value computation. The vertical coordinate is the probability den-
sity of each outcome (x-axis), computed under the null hypothesis. The p-value of the observed
data point (red) is the green area under the curve (Wikipedia contributors (2019b)).

rejecting H0 is considered more serious than failing to reject H0 when H1 is true.

Confidence intervals, an alternative to p-values

Both p-values and confidence intervals can be used to determine whether the observed

results are statistically significant. The p-value and confidence interval will always agree

on whether to reject the null hypothesis. The confidence level of a confidence interval

is related to the significance level in that the confidence level is equivalent to 1−α.

Estimation by confidence intervals is to produce an interval of values that has a certain

probability to contain the true value of the population parameter. The null hypothe-

sis assumes a certain value for the population parameter. If the computed confidence

interval does not include the population parameter, the null hypothesis can be rejected.

Let θ be an unknown population parameter and L and U be functions of the random

sample X1, ..., Xn , such that

P [L < θ <U ] = 1−α. (4.1)

Then (L,U) is called a 100 · (1−α)% confidence interval, and (1-α) is the confidence

level associated with the interval.T In finding the expressions for L and U, mind that the

normal table shows that a random variable will lie within 1,96 standard deviations from

its mean with a 95% probability. For the mean of the sample observations, X , this can

be expressed as
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P

[
µ−1,96

σp
n
< X <µ+1,96

σp
n

]
= 0,95. (4.2)

By rearranging the expression, the probability statement can be alternatively expressed

as:

P

[
X −1,96

σp
n
<µ< X +1,96

σp
n

]
= 0,95. (4.3)

Now the confidence interval can be identified as:

L = X −1,96
σp
n

and U = X +1,96
σp
n

. (4.4)

4.4 Testing the Mean of a Population with T-tests

A t-test, or student’s t-test, is a statistical hypothesis test and is commonly used to de-

termine whether the mean of a population has a value specified in a null hypothesis

(Snedecor and Cochran (1989)). It is also common to use t-tests to determine if the

means of two populations are equal. The t-test assumes that the sample statistic follow

a normal distribution.

One-Sample T-test and Two-Sample T-test

Given a random sample X1, ..., Xn (of size n) from a normal population N (µ,σ) and the

sample mean and sample standard deviation are expressed:

X = 1

n

n∑
i=1

Xi and s =
√∑n

i=1(Xi −X )2

n −1
(4.5)

then the distribution of the t-statistic,

t = X −µ
s/
p

n
, (4.6)

is called the Student’s t distribution with n-1 degrees of freedom. For two-sample T-
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tests, the definition can be given as (Snedecor and Cochran (1989)):

H0 : µ1 =µ2

H1 : µ1 6=µ2

Test Statistic : T = X 1 −X 2√
s2

1/n1 + s2
2/n2

Significance Level : α

Critical Region : Reject the null hypothesis if |T | > t1−α/2,ν,where t1−α/2,ν is the

critical value of the t distribution with ν degrees of freedom.

Degrees of Freedom : ν= (s2
1/n1 + s2

2/n2)2

(s2
1/N1)2/(N1 −1)+ (s2

2/N2)2/(N2 −1)
.

Sample Size and Normality

If we are sampling from a population with unknown distribution, the sampling distri-

bution of the sample mean, X , will still be approximately normal, provided that the

sample size is large enough. This result is an immediate consequence of the Central

Limit Theorem (Walpole et al. (2012)). The normal approximation of X will generally be

good if the sample size n ≥ 30, given that the population is not terribly skewed.

4.5 Wilcoxon Rank-Sum Test - A Nonparametric Statisti-

cal Test

The most common statistical tests are often parametric. Many parametric tests, such

as the t-test, assume that the sample population is normally distributed. Normality im-

plies normally distributed samples and stationary variance (not changing over time).

When this assumption is not satisfied, parametric tests can be misleading (Nahm (2012)).

In such circumstances, nonparametric tests are available alternatives. A nonparametric

statistic does not require modeling a population in terms of a specific parametric form

of density curves, such as normal distributions. The great disadvantage of nonparamet-

ric tests are that they have less statistical power than parametric tests.

The Wilcoxon Rank-Sum test is a nonparametric (also called distribution-free) test, which

tests the null hypothesis that it is equally likely that a randomly selected value from one

population should be less than or greater than a randomly selected value from a second



CHAPTER 4. CHANGE DETECTION AND METHODOLOGY 34

Figure 4.4: Representation of H0 and H1 in the Wilcoxon Rank-Sum Test (Bhattacharyya and
Johnson (1977)).

population (Bhattacharyya and Johnson (1977)). That is to say, the distributions of the

two populations are equal while the alternative hypothesis states that the populations’

distributions are not equal. An example of Wilcoxon Rank-Sum hypotheses is shown

in figure 4.4, here the alternative hypothesis is that the distribution of population A is

shifted to the right of population B’s distribution. Note that the hypotheses does not

make any assumptions regarding the distribution shapes of the populations.

The basic concept underlying the rank-sum test can be explained as such: Suppose two

sets of observations, A and B, are plotted on a line diagram as in 4.5. The observations

are plotted in ascending value from left to right. In the case of the null hypotheses, that

the two samples are picked from the same population, the two sets of points should

be well mixed. This is illustrated by example a in figure 4.5. An alternative outcome

is that the larger observations are mostly associated with observations from set B. As

illustrated in example b in figure 4.5. Given the latter outcome, it is reasonably to infer

that one of the populations is possibly shifted to the right of the other. It is clear that the

test is based on the rank of the observations of the two samples, and it does not account

for how big the differences are between the values. The disregard of this information

weakens its statistical power.

Figure 4.5: Two examples (a and b) of combined plot of the two samples and the combined sam-
ple ranks (Bhattacharyya and Johnson (1977)).
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The rank sum for one of the sets are taken as the test statistic. For figure 4.5b, the rank

sums are:

WA = 4+6+7+8+9 = 37

WB = 1+2+3+5 = 11

To establish a rejection region with a specified level of significance, the distribution of

the rank-sum statistic under the null hypothesis must be considered. The following

example is adapter from Bhattacharyya and Johnson (1977) and is given to give an in-

troduction to the concept behind the Wilcoxon Rank-Sum Test. Say we would like to

compare two geological formations with respect to richness of mineral content. The

mineral contents of 4 specimens of ore collected from formation A and 5 specimens of

ore collected from formation B are measured by chemical analysis. The observations

are ranked with respect to mineral content according to 4.5b. We wish to determine

if the data provide strong evidence that formation A has higher values than formation

B. We decide to conduct the test with a significance level, α, close to 0,05. The sum of

ranks of the smaller sample (which is the test statistic) is WB = 11. Depending on the

alternative hypothesis, there are three alternatives in using the Wilcoxon table. As of

this example, the H1 is that the population corresponding to the smaller sample (A) is

shifted to the left of the other population (B). Then the rejection region is set on the

form WB ≤ c, and take c as the largest x∗ value for which P ≤ α. The Wilcoxon table

Figure 4.6: Wilcoxon Table for Distribution under the Null Hypothesis (Bhattacharyya and John-
son (1977)).
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is given in figure 4.6. Given a smaller sample is of size 4, and a larger sample size of

5 the correct table can be found. As the P [WB ≤ 13] = 0,056, the rejection region with

α = 0,056 is established as WB ≤ 13. Since the observed value of WB falls within this

region, the null hypothesis is rejected with a significance of α= 0,056. In fact, the null

hypothesis can be rejected with a significance of α= 0,016 given the result of WB = 11.

4.6 Normality Testing with the Shapiro-Wilk Test

Many statistical procedures are parametric tests which depend on normally distributed

data for being valid. Normality and other assumptions of statistical tests should be se-

riously considered. Conclusions of such tests may be far from reality if assumptions are

not held. Among normality tests, the Shapiro-Wilk test was highly recommended by

Ghasemi and Zahediasl (2012).

The Shapiro-Wilk test tests the null hypothesis that a random sample X1, ..., Xn is drawn

from a normally distributed population. Thus, the null hypothesis is rejected if the p-

value is less than the chosen alpha level. Which means that the test indicate that there

is evidence that the data tested are not sampled from a normal distribution. The test-

statistic is given as

W =
(∑n

i=1 ai x(i )
)2∑n

i=1

(
xi −x

)2 , (4.7)

where x(i ) is the ith order statistic, i.e. the ith-smallest number in the sample; and ai

are constants generated from the covariances, variances and means of the sample from

a normally distributed sample.

4.7 Two Proportions Z-test

In statistics, a proportion refers to the fraction of the total population that possess a

certain attribute. A two sample proportion test will test the equality of two proportions

against the alternative that they are not equal. The null and alternative hypotheses are

given as: H0 : p1 = p2 and H1 : p1 6= p2. The test statistic for testing the null hypothesis

(which is equivalent to the difference in two population proportions) is:
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Z = p̂1 − p̂2√
p̂(1− p̂)

(
1

n1
+ 1

n2

) . (4.8)

Where p̂ = X1+X2
n1+n2

, that is the proportion of the two samples combined that possess the

certain attribute. p̂1 and p̂2 are the sample proportions for population 1 and 2. This test

statistic follows the Z-distribution (Bhattacharyya and Johnson (1977)).

4.8 Testing for Homogeneity of Variance

Many statistical procedures, such as the Student’s t-test assume that the variance of the

two tested populations are equal and unchanged. In statistics it is conventional to use

the F-test to check whether two populations have equal variance (Conover et al. (1981)).

But F-test has normality as an assumption. In cases where the data is not normal, the

nonparameteric Fligner-Killeen test should be used to check homogeneity of variance.

The null hypothesis is that the variances of the two populations are not equal.

4.9 Distribution of Decimal Digits

Beber and Scacco (2012) derived implications and ran simulations that supported their

claim that the last digits of fair electoral results are likely to be distributed uniformly.

Lab experiments also indicated that human individuals tend to favor small numbers,

even when subjects have incentives to properly randomize.

Analogously for bunker density, the decimal digit of the true density of the fuel is as-

sumed by us to follow a random process. This assumption lies on the belief that sup-

pliers or refineries are not deliberately trying to achieve a certain decimal digit for the

density value.

We see the supplier’s decision on which decimal digit he or she is going to use in the

stated density as a process. This process of of generating decimal digits can be seen a

function of the density decimal digit as perceived by the supplier and different biases

(both conscious and unconscious) that the supplier may possess. This can be illustrated

by

stated decimal digit = f
(
x, y1, ..., yn

)
, (4.9)

where x is the density decimal digit as perceived by the supplier, and y1, ..., yn are all the
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biases that the supplier possess when deciding on which decimal digit to state on the

bunker delivery note.

As the aim of this study is to investigate potential changes caused by MFM, whether the

distribution of decimal digits is uniform will not be the main focus. The main area of

interest is to see whether there are any significant changes in the distribution of decimal

digits.



Chapter 5

Change Detection Analysis

This chapter applies the methods described in chapter 4 to test the hypotheses that

were formulated in chapter 3. The hypotheses were:

1. MFMs will lead to price increase in Singapore.

2. MFMs will lead to a decrease in price difference between Singapore and Hong

Kong.

3. MFMs will lead to change in distribution of decimal digits in the stated bunker

density parameter.

4. MFMs will lead to a change in mean delta density, shortlifting benchmark and

occurrence of shortlifting benchmark.

5. MFMs will lead to a change in variance of the delta density parameter.

5.1 Bunker Price

ShippingWatch (The Shipping Watch (2017)), an online media delivering news about

the maritime industry, reported that sentiment among bunker companies were that

mass flow meters has driven up the price for bunker oil in Singapore:

The prices for bunker oil in Singapore, the world’s largest port for sales of

marine fuel, have risen by an average USD 5-10 per ton in 2017.

39
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The explanation for the price increase is directly related to the new require-

ments from authorities concerning the use of mass flow meters, which aim to

ensure, along with control systems and other measures, that the vessels take

delivery of the correct fuel volumes paid for by the carriers.

This is the sentiment among bunker companies in Singapore speaking to

ShippingWatch.

Lower graph of figure 5.1 shows the price gap, or price difference, between Hong Kong

and Singapore (Hong Kong - Singapore = price gap) for IFO 380 fuel grade in the period

after MFM implementation. The difference in price can be seen as a proxy for whether

Singapore prices are rising faster (decreasing price gap) or slower (increasing price gap)

than Hong Kong. By simply fitting a linear regression to the price gap data, a long term

trend towards 0 is seen. The news article from Shippipngwatch states that the senti-

ment is that MFM has lead to a price increase in Singapore. Given that the sentiment is

correct, prices in Singapore should rise more than prices in Hong Kong, as MFM is not

mandated in Hong Kong. As a result, there should be a decrease in price gap. The fit-

ted linear model shows that there has been a decrease in price gap since January 2017,

which supports the sentiment in the article above.

On the other hand, it is apparent from figure 5.1 that prices in both ports have risen

from $300 in 2017 to over $500 in the end of 2018. Recalling figure 3.1, the world index

has also risen in the same period. As prices in both ports have risen, MFM might not be

the mechanism behind the rise as they are not implemented in Hong Kong.

As commented in section 3.1, changes in price gap could be related to price movements.

Figure 5.1: Top: Price of IFO 380 after MFM implementation 1st of Januar 2017 (post-MFM).
Bottom: Price gap between Hong Kong and Singapore (PriceHK - PriceS = price gap) and a fitted
linear regression model of the price data.
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Figure 5.2: Price (left) and corresponding price gap (right) for HK - Singapore in three periods of
different price trends. Linear regression for price gap in red. Graphs suggest negative correlation
between price and price gap.

To investigate this further, we analyzed three periods where the fuel price had a flat,

significant downward and significant upward trend. The selected periods were: April

2013 - August 2014 (flat), August 2014 - February 2016 (decreasing) and February 2016

- November 2018 (increasing). Figure 5.2 gives reason to believe that another mecha-

nism than MFM introduction may cause the trends in the price gap. The first row shows

a time period of flat trend in price, the second row shows a time period of downward

trend in price and the third row shows a time period of uptrend in price. In the right

column the price gap is plotted with a fitted linear model. The first row shows a in-

significant slope linear model, the second row shows a significant slope upward slope

and the last rows shows a significant downward slope. Thus, it is clear that during a

time period of price downtrend, the price gap showed a uptrend and in a time period

of price uptrend, the price gap showed a downtrend. At the same time, a period of flat

trend in price, there was a flat trend price as well. These findings suggest a negative

correlation between the price and price gap.
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These findings may indicate that the rise in Singaporean bunker price should not be

solely attributed to MFM, as it may be an effect of a uptrend in price. In addition, prices

are rising in Hong Kong and the world index have also risen in the period after MFM

introduction. Which can suggest that there are some macroeconomic factors that are

causing the prices to rise. Thus, by analyzing the price data, the statement that MFM

has lead to a rise in bunker prices can not be clearly supported by the price data. The

reducing price gap may be entirely attributed to the rising fuel prices.

5.2 Distribution of Decimal Digits in Stated Bunker Den-

sity

The distribution of first decimal digits (only one decimal given in the data) in the stated

bunker density parameter before and after MFM introduction is shown in figure 5.4.

Eight is clearly the most frequently stated decimal digit. As rationalized in 4.9, the dec-

imal digit of the true density can be expected to be a random process. This assumption

is clearly supported by the distribution of decimal digits of tested density, as shown in

in lower graph of figure 5.4. Therefore, the expectation was that the distribution would

have been uniform if the suppliers were attempting to state the true bunker density un-

biased. Figure 5.4 exhibits a strong indication that the decimal digits of tested bunker

density have a uniform distribution.

It is hard to point out why the eight-digit is over represented (45 % - 47 %), but perhaps

it is related to that eight is a lucky number in Asian cultures1. The similar procedure

was done with fuel quality testing data in Rotterdam, and results showed that the most

stated digit was the digit "9", with the fraction of about 25 %. Suggesting that suppli-

ers in Singapore interfere with the true bunker density to a higher degree. In terms of

equation 4.9, when comparing Singapore and Rotterdam, the biases, y1, ..., yn , are more

dominant than the true bunker density, x, when the Singaporean suppliers determine

decimal digit of the stated density.

But the most important insight for the investigation is that there are no significant

change in the distribution when comparing the distribution before and after MFM im-

plementation. Excluding the 8-digit from the inspection, it is noteworthy that the digits

5-9 are generally more frequent than 1-4. It could be affiliated with that suppliers are

inclined to state higher digits which yields a higher energy content.

1The opening ceremony of the 2008 Olympics in Bejing began on 8/8/08 at 8 minutes and 8 seconds past
8 pm local time (Wikipedia contributors (2019a)).
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Figure 5.3: Distribution of decimal digits in stated density (upper) and tested density (lower),
before and after MFM introduction.

It was mentioned in section 4.9 that the decimal digit of the stated density is related

to human behaviour. The post-MFM digit distribution can be further investigated to

see whether a potential MFM effect is gradually materialising. This was investigated

by comparing the digit distribution of January 2017, August 2017 and March 2018. The

distributions are shown in figure 5.3. No significant difference can be observed. It was

rationalized in section 2.5 that reporting of density might be a parameter where a po-

tential MFM effect would gradually take effect, rather than seeing an instant effect or

change. However, the results from the digit distribution analysis strongly indicate that

the process that generates decimal digits of the stated density parameter has remained

unchanged, as (1) there have been no change between the pre-MFM and post-MFM

Figure 5.4: Distribution of decimal digits in stated density in three months of post-MFM period.
Show no signs of a gradual effect in the post-MFM period.
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digit distribution and (2) that no gradual change is observable in the post-MFM period

either.

5.3 Delta Density

5.3.1 Comparing Mean Delta Density, pre-MFM vs. post-MFM

Recalling figure 3.7, which shows development of delta density (weekly median), no sig-

nificant change after 2016 is observable at first glance. One could expect that the delta

density would decrease from 1st of January 2017. To investigate a potential change the

data was divided in two periods, a pre-MFM period (1st of January 2016 and earlier) and

a post-MFM period (1st of Janaury 2017 and later). The delta density distribution and

the mean delta density of the two periods are shown in figure 5.5. It is evident that the

red distribution, which represents the pre-MFM samples, are skewed to the left of the

post-MFM samples. This indicates that the delta density has increased after MFM was

implemented, in contrast of what could be expected. To further investigate whether

this change in delta density is statistically significant, the difference between mean

delta density of the pre-MFM samples and post-MFM samples, mean(ddpr e−MF M ) <
mean(ddpost MF M ), are tested according to the t-test procedure as described in section

4.4.

To test whether the difference is significant, a two-sample t-test with confidence level

of 95 %, as described in section 4.4, is conducted. The results are that the p-value for the

difference in mean is below 5 %, in fact below 0,1 %, which indicates that the delta den-

sity values of post-MFM samples are significantly higher than the pre-MFM samples.

Thus, this result contradicts the expectation of MFM lowering delta density. However,

it may be caused by other effects than MFM. To examine this thought, the same test is

performed for delta density data in Hong Kong. The test yielded the same results. That

Figure 5.5: Delta density distribution of pre-MFM (red) vs. post-MFM (blue) samples with their
respective means (vertical dashed lines).
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Figure 5.6: Density distribution of pre-MFM (red) vs. post-MFM (blue) samples with their respec-
tive means (vertical dashed lines).

is, mean delta density values ofthe pre-MFM period are significantly higher than corre-

sponding values from the pre-MFM period, mean(ddpr e−MF M ) < mean(ddpost MF M ).

As MFMs are not mandated in Hong Kong, a potential relationship between the signifi-

cant increase in delta density and introduction of MFMs is less plausible. As mentioned

in section 4.1, any potential MFM effect may be masked by a greater effect. As Hong

Kong and Singapore had the same test result, it is plausible that another greater effect

is present.

Recalling figure 3.8, it is apparent that density affects the distribution of delta density.

Based on the distribution of the scatter plot, one see that variance and mean of delta

density increases with decreasing density. As discussed in section 3.2.5 and evident in

figure 3.7, lower density yields higher delta density.

Figure 5.6 shows the density distribution of the two periods. It can be observed that

density was generally lower in the post-MFM period than the pre-MFM period. With

the rationale of lower density lead to higher delta density, the increase in delta density

can be explained by a decrease in density from pre-MFM to post-MFM. As density lev-

els is most likely unaffected by MFM (reasoned for in section 3.2.3), this approach to

compare delta density should be considered too blunt as density is affecting the levels

of delta density which blur out any potential MFM effect. In order to do a more accu-

rate comparison where the samples from the two periods are compared on more equal

terms, the density dependency should be accounted for.

5.3.2 Mitigating the Effect of Density Dependency

A better comparison would be to compare bunker samples of similar tested density.

This can be achieved by grouping the bunker samples into bins based on their density.

Then, the post-MFM and pre-MFM samples in each bin are separately tested for any

significant difference in mean. In order to have a sufficient sample size in each bin, a
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Figure 5.7: Means of delta density in density bins of width 0,1 kg/m3, post-MFM (red) and pre-
MFM (teal) MFM implementation. It is observed that the post-MFM samples possessed lower
delta density than the pre-MFM samples for lighter fuel densities.

density range of 988 kg/m3 to 991 kg/m3 was selected. With a bin width of 0,1 kg/m3,

the density range gives 30 bins. In figure 5.7 the mean delta density values for each bin is

plotted. The difference in mean delta density between the pre-MFM and the post-MFM

periods for each bin can now be tested for statistical significance.

5.3.3 Property Assessment of Binned Samples

Before proceeding with conducting tests in each bin, the properties of the samples

should be assessed. This is done to assure that the data complies with the assumptions

of each test. A flowchart in appendix A.1 illustrates the procedure of property assess-

ment to select a appropriate test for difference in mean. As we are going to compare

the Singapore results with Hong Kong, the sample properties of the Hong Kong data are

also assessed.

Sample Size

The sample sizes of each bin are plotted in figure 5.8. We see that the pre-MFM samples

are generally much more than the post-MFM samples. The sample size of each bin in

Singapore exceed 100, with exception of some bins close to 991 kg/m3. Anyhow, it was

controlled that these bins contain over 30 observations. For Hong Kong, the observa-

tions are much fewer. We see that many bins have below 30 observations, but the bins

in the range of 988,7-990,4 kg/m3 exceed 30 observations.

As stressed in section 4.4, the guiding rule is that if the sample size n ≥ 30, the sampling

distribution of the sample mean will be approximately normal as a result of the central
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Figure 5.8: Count of samples in each density bin in Singapore (top) and Hong Kong (bottom).
Colored by period, pre-MFM (red) and post-MFM (blue). Dashed horizontal lines represent 100
samples (top) and 30 samples (bottom).

limit theorem. Now we know that the t-test can be conducted on the Singapore data and

the Hong Kong bins in the range of 989-990,4 kg/m3. If the samples in the remaining

Hong Kong bins are normally distributed, t-tests can be conducted. If this is not the

case, the non-parameteric Wilcoxon rank sum test should be used.

Normality

To test the normality of the Hong Kong data, the Shapiro-Wilk as described in section

4.6 will be applied. The null hypothesis of the test is that the data is not normally dis-

tributed. The test is done with significance level of α = 0,005 the results are plotted in

in figure 5.9. Only one bin can be regarded as normally distributed. We should there-

fore use the Wilcoxon Rank Sum test for the bins which do not comply with sample size

n ≤ 30, that is the bins <988,8 kg/m3 and >990,4 kg/m3.

5.3.4 Binwise Testing for Difference in Mean Delta Density

T-tests (section 4.4) were performed on each of the 30 bins, comparing post-MFM and

pre-MFM mean density difference, i.e. Mean(ddpost−MF M )− Mean(ddpr e−MF M ) =

mean differenec. The results of the 30 t-tests are plotted in figure 5.10 (top). The null

and alternative hypotheses for these tests can be given as:
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Figure 5.9: Normality test conducted on post-MFM data in Hong Kong. H0 is that the data is not
normally distributed. When p-value < 0,05, the H0 is rejected. H0 is rejected for every bin, with
exception of 991.

H0: µdd, pre-MFM =µdd, post-MFM(i) H1: µdd, pre-MFM 6=µdd, post-MFM(ii)

The blue whiskers represent the 95 % confidence intervals (section 4.3) of the differ-

ences in mean delta density in each bin. The color of each bar indicates the statisti-

cal significance of the difference. Red/green (negative/positive) represent a statistical

difference, non-significant results are colored grey. Note that negative values corre-

spond to situations where delta density has decreased after the introduction of MFM,

i.e. ddpr e−MF M > ddpost−MF M .

According to the test, only two bins show significant differences. Three remarks regard-

ing the results are made. (1) The uncertainties of these two bins are considered high as

the whiskers are close to zero. Especially for the green bin. (2) Considering the results

for all bins, the majority of differences are close to zero. (3) In addition, the differences

seem to fluctuate randomly around zero. Based on these three remarks, no obvious pat-

tern is evident in the Singapore data. That is, a significant change in density shortlifting

behaviour cannot be observed.

For comparison, the same t-test procedure was conducted on data for Hong Kong.

The results are plotted in figure 5.10 (bottom). The majority of the results show that

ddpr e−MF M < ddpost−MF M . Indicating that delta density is greater for the post-MFM

samples than pre-MFM samples. There are nine bins where the difference is statis-

tically significant. However, as emphasized earlier some bins have few observations,

making the results less reliable. Compared to the results of Singapore, the results are

generally positive (in the same direction).
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Figure 5.10: Significance difference of mean delta density between pre-MFM and post-MFM pe-
riods. Blue whiskers represent 95 % confidence interval for true difference in mean delta density
(DD). Grey area is where the observations in the bins < 30, and thus less reliable results.

Wilcoxon Rank Sum Test

Due to the lack of normality and low number of observations in Hong Kong data, Wilcoxon

rank sum tests are conducted. The results are shown in figure 5.11. For majority of

the bins, the results show that ddpr e−MF M < ddpost−MF M , which is consistent with

the t-test results (figure 5.10). It is evident that all the 95 % confidence intervals (blue

whiskers in the figure), are close to zero. The two remarks makes the results unclear.

However, as both the t-test and Wilcoxon rank sum test indicate a decrease in mean
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Figure 5.11: Significance of mean delta density differences between pre-MFM and post-MFM
periods. Confidence intervals are represented by blue bars. All differnes have positive values, but
the confidence intervals close to zero.

delta density, there is a slightly stronger indication of a significant increase in delta den-

sity in Hong Kong than Singapore.

Figure 5.12: Normality tests for Singapore Delta Density Data (top and mid). Homogeneity of
variance test between pre-MFM and post-MFM for Singapore data (bottom).
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5.3.5 Testing for Change in Variance

As mentioned in section 4.8, the F-test and the Fligner-Killeen test can be used to check

the homogeneity of variance, that is whether the two samples have equal variance. The

F-test assumes that the samples to be tested are normally distributed. To check for

normality on the Singapore data, the Shapiro-Wilk Test is done on the pre-MFM and

post-MFM data. It is seen in figure 5.12 that the null hypotheses is rejected for both

pre-MFM and post-MFM Singapore data. Therefore the Fligner-Killeen is used to check

for homogeneity of variance between delta density in the two periods. The null and

alternative hypotheses can then be formulated as:

H0: σ2
dd, pre-MFM =σ2

dd, post-MFM(i) H1: σ2
dd, pre-MFM 6=σ2

dd, post-MFM(ii)

From the results in figure 5.12, we see that the H0 is rejected in 9 bins out of 30. We do

not see this as a clear change in variance for the delta density paramter in Singapore.

5.4 Shortlift Benchmark Scores and Max Shortlift Bench-

mark Scores

To investigate changes in occurrence of shortlift samples are assessed. A threshold of

0,1 for the benchmark score is selected, so if a sample scores above the threshold it is

considered as a shortlift occurrence. By calculating the proportion of the samples that

scores above 0,1, the two-proportions z-test can be applied on the data. As described

in section 4.7, the question becomes whether the observed proportion of shortlift sam-

ples in each density bin are equal in the pre-MFM and post-MFM period. The null and

alternative hypotheses can be given as:

H0: pSL, pre-MFM = pSL, post-MFM(i) H1: pSL, pre-MFM 6= pSL, post-MFM(ii)

The results are shown in figure 5.13. As previously, a positive value represent that the

post-MFM proportion is greater than the pre-MFM proportion, ppost−MF M > ppr e−MF M .

Three bins are significantly different, where two of the red bins have a confidence inter-

val quite close to zero. Thus, no clear change is observable.

The SL occurrence test investigates whether there has been a change in the amount

or number of samples have been tested. This test would however not unveil a change

in the amount of mean of shorlfting, i.e. has the overall score change. Timelines of
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Figure 5.13: Significance of difference in fraction of occurence of SL score > 0,1 in Singapore.
Green/Red represent a significant difference. Blue whiskers represent 95 % confidence interval.

mean shortlifting (SL) benchmark scores were commented in section 3.2.6. There were

no significant changes based on the timeline plot in figure 3.9. A such change can be

detected by testing whether the mean benchmark scores between the two periods are

significantly different. This test is again done with the t-test, so the null and alternative

hypotheses is given as:

H0: µSL, pre-MFM =µSL, post-MFM(i) H1: µSL, pre-MFM 6=µSL, post-MFM(ii)

The results of this tests is shown in figure 5.14. Differences in seven bins are statistically

significant, however, the confindence interval for the greeen bins are very close to zero.

Again, the difference in mean SL score should be tested for Hong Kong samples for

comparison. The results are shown in figure 5.15. The results for Hong Kong are more

consistent than for Singapore as all the bins have positive value. However, all the confi-

dence intervals are quite close to zero.

The same procedure is done for Max SL benchmarks in both ports. The results are illus-

trated in appendix A.2 and appendix A.3. The results were similar to the SL benchmark

and therefore we conclude that they do not indicate any significant change.
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Figure 5.14: Significance of difference of mean SL score in Singapore. Green/Red represent a
statistical significant difference at 5 % significance. Blue whiskers represent 95 % confidence
interval.

5.5 Summary of Results

Price

The analysis could not support the claim of the sentiment reported by Shippingwatch

(2016), that MFMs were responsible for the price increase, as the Hong Kong price and

the world index have risen in the same period. In terms of price difference between

Hong Kong and Singapore, it was acknowledged that the difference had signifantly de-

creased in the post-MFM period. However, it was remarked that trends in price differ-

ence might as well entirely be caused by trends in prices. Based on this finding, it was

deemed that the decreasing price difference cannot be attributed to the introduction of

Table 5.1: Conclusions of all tests summarized.

Parameter Conclusion
Price increase Evident change, but not considered a MFM effect
Price difference decrease Evident change, but not considered a MFM effect
Distribution of decimal digits No significant change

SL Benchmarks
Diff. in fraction of occurrence No clear indication of change
Difference in mean No clear indication of change

Delta density
Difference in mean No clear indication of change
Variance No clear indication of change
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Figure 5.15: Significance of difference of proportion of occurrence of SL score > 0,1 (upper) and
mean SL score in Hong Kong (lower). Green/Red represent a statistical significant difference at 5
% significance. Blue whiskers represent 95 % confidence interval.

mass flow meters.

Distribution of Decimal Digit

Distribution of the first decimal digit (only one decimal available in the data), as stated

in the bunker delivery note compared between the pre-MFM and post-MFM period.

The distributions of decimal digits seemed to be unchanged. A potential gradual change

during the post-MFM period was also analyzed. The decimal digit distributions of Jan-

uary 2017, August 2017 and March 2018 showed that there was no significant change

throughout the post-MFM period. These results indicate that mass flow meters have

not changed the process of how suppliers’ state decimal digits for bunker density.
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Delta density and Shortlift Benchmark

The binned t-tests gave no clear indication that delta density levels in Singapore have

decreased after the introduction of MFMs. In the case of delta density variance, the

overall trend seem to be that variance of delta density have not changed, although a

significant difference in variance in some bins were identified. Therefore, we conclude

that there are no clear change for delta density levels in Singapore.

The results for Singapore were compared to Hong Kong data. Wilcoxon rank sum test

for mean delta density slightly indicate a change. For delta density variance the pattern

was similar to Singapore’s pattern.

Recalling the scenario matrix in figure 4.2 for comparison of results between Singapore

and Hong Kong, the case for change in mean delta density can be regarded as scenario

B. This scenario support that absence of change in Singapore can be related to mass

flow meters as there has been a change in Hong Kong. However, since the change in

Hong Kong is not so distinct, we do not take this as a clear sign of an effect that can be

attributed to mass flow meters.



Chapter 6

Discussion, Conclusion and

Recommendations for Further

Work

6.1 Discussion

6.1.1 Results of Change Analysis

The interpretation of results of the statistical tests of delta density and benchmarks lev-

els will naturally contain some degree of subjectivity. However, to acknowledge the oc-

currence of a change, strong evidence should be present. Strong evidence could be in

the form of clear and evident statistically significant differences across multiple bins, in

the same direction. As seen in figure 5.10 and figure 5.14, the differences are fluctuating

around zero. It cannot be imagined by the author how a potential MFM effect would

cause a decrease in some bins while increase in other. Therefore, even with the pres-

ence of statistically significant differences in several, it is considered that a change has

not occurred.

For Hong Kong, the test results show a stronger indication of change. Since all changes

are in positive direction (see figure 5.11 and 5.15), which suggest that post-MFM delta

density values are higher than the pre-MFM values. This indicates that delta density

values in Hong Kong are higher in the post-MFM period, than pre-MFM. On the other

56
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hand, the lower limit of the confidence intervals are generally quite close to zero. This

is related to that the Wilcoxon rank sum test had to be used due to the small sample

sizes in each bin. Since they have less statistical power than the t-test, the confidence

intervals are vaguer (interval is larger). Nevertheless, even if we had acknowledged the

occurrence of a clear change in Hong Kong, one can not clearly conclude in accordance

with the suggestion of scenario B (see figure 4.2). The scenario comments on the out-

come where a change in a parameter has occurred in Hong Kong, but not in Singapore.

But the proposition is disregarded as the result in Hong Kong are not considered strong

enough.

6.1.2 Data

The tests done on decimal digit distributions, delta density and fuel shortlifting bench-

marks have been based on fuel quality testing data provided by Veritas Petroleum Ser-

vice. In terms of figure 4.1, which illustrated the relationship between population and

sample, this study try to gain insight on all bunkerings in Singapore based on the fuel

quality testing data. For the conclusions from our analysis to be representative for all

bunkerings, the fuel quality testing data should representative for the all bunkerings in

Singapore. In other words, the sample (fuel quality data) has to be randomly selected

from the population (all bunkerings in Singapore for the same period). If the sample is

not randomly selected, it is likely to be biased in some way (Bhattacharyya and Johnson

(1977)).

It is challenging to assess the randomness in the selection. It can be argued that the

majority of fuel samples sent to VPS for quality testing might be due to suspicion of the

supplier. Then, the VPS data would be biased in that it mostly represent the suppliers

that are "suspicious", and less the law-abiding suppliers. However, in the case of an

occurred MFM effect, a change is expected to be more evident among the "suspicious"

suppliers than other more righteous suppliers. In this way, a potential MFM effect can

be detected even though if the selection was not random. A worse case would be if

the selection was biased with representing the righteous suppliers, then a MFM change

might not have been identified. A random selection process would also be more im-

portant if the goal was to quantify the degree of change. While our study has been more

focused on whether a change has occurred or not.
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6.1.3 Scope

The scope of the study has been limited by the data utilized. This implies that we cannot

detect any change that is not captured in the data. When studying fuel quantity testing

data, it became clear in the process of this project that the data set mainly reflect the

stating behaviour of the suppliers. As the stated density is no longer used to calculate

amount payable for a transaction. In the time before introduction of mass flow meters,

the delta density value of a bunkering would be proportional to the amount of bunkers

that would have been shortlifted. The shortlifted amount is in turn proportional to the

money that is being paid excessively. But after the introduction of MFM, mass of trans-

ferred bunker is directly read off the display of the meter. Therefore, the fuel quality

testing data does not give a indication of shortlifted amount in the same way as prior to

MFM introduction.

6.2 Concluding Remarks

The objective of this study has been to investigate whether the introduction of mass

flow meters in Singapore has had any measurable effects on the bunker industry in

Singapore. Fuel quality testing data and fuel price data were analyzed. After exploration

of the data, hypotheses to test potential effects were formulated as:

1. MFMs will lead to price increase in Singapore.

2. MFMs will lead to a decrease in price difference between Singapore and Hong

Kong.

3. MFMs will lead to change in distribution of decimal digits in the stated bunker

density parameter.

4. MFMs will lead to a change in mean delta density, shortlifting benchmark and

occurrence of shortlifting benchmarks.

5. MFMs will lead to a change in variance of the delta density parameter and short-

lifting benchmark.

Both hypotheses regarding price (1 and 2) were rejected. It was acknowledged that both

a price increase in Singapore and decrease in price difference between Singapore and

Hong Kong had occurred, but we did not find firm reason to attribute the price changes
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as results of mass flow meter introduction. The hypothesis regarding change in the dis-

tribution of decimal digit (3) was rejected. Plotting the distribution of decimal digits be-

fore and after introduction of MFMs showed that the two distributions were nearly the

same. Hypotheses regarding change in mean of delta density and shortlifting bench-

mark (4) were also rejected, due to the absence of clear signs of change. Hypotheses

regarding the variance of the same parameters (5) were also rejected, as no clear signs

of change were present.

The study may therefore conclude that the introduction of mass flow meters has caused

no measurable significant effect in the price and fuel quality testing data.

6.3 Recommendations for Further Work

As the findings of this study has been conclusive in not finding significant effects in the

provided data, a natural continuance would be to investigate other aspects of bunker-

ing operations using other data sets.

If mass flow meters are successful in reducing bunker operation disputes and the need

for manual gauging methods, it might be expected that the average time for a bunker

operation should decrease. With methods described by Aarsnes (2018), bunkering op-

erations can be identified among AIS data, and the time of an operation can be ob-

tained. Data for bunkering operation time can be gathered with this procedure, and

then the data can be analyzed for any decrease in operation time.

Mass flow meters were introduced to improve Singapore’s reputation as a leading bunker

port. To assess whether the devices have indeed been successful in improving Singa-

pore’s reputation as a preferred bunker port, an opinion survey could be done among

ship operators. This can be done in collaboration with Singapore Maritime and Port

Authority (MPA) or academia in Singapore, such as National University of Singapore

or Nanyang Technological University. The framework to assess the reputation can be

inspired by the framework proposed by Lam et al. (2011) for assessment of the compet-

itiveness of bunkering ports.

An expected effect of mass flow meters could be a reduction in the demand of bunker

quantity surveys. A bunker quantity survey involves a surveyor taking measurements

on board the bunker barge and on the receiving ship before and after a bunker transfer.

Veritas Petroleum Services (VPS) had a bond issue listing on the Oslo Stock Exchange in

2015 (Veritas Petroleum Services B.V. (2015)), where MFMs are mentioned as a risk fac-

tor for their bunker survey businnes. Therefore, asking VPS or other fuel testing com-
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panies for change in demand of their bunker quantity survey services could give some

insights on whether mass flow meters have improved transparency of bunker opera-

tions.
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Appendix A

Test Results

A.1 Flowchart for Statistical Testing

Figure A.1: Flow chart for procedure in testing difference in mean. This is applied in section 5.3.3

64
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A.2 Singapore Max SL

Figure A.2: Z-test on the difference in fraction of occurence of Max SL benchmark (Upper). T-test
on the difference in mean SL benchmark (lower). Both graphs compares pre-MFM vs post-MFM
data.
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A.3 Hong Kong Max SL

Figure A.3: Z-test on the difference in fraction of occurence of Max SL benchmark (Upper). T-
test on the difference in mean SL benchmark(Mid). W-test on the difference in mean SL bench-
mark(Lower). Both graphs compares pre-MFM vs post-MFM data.
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R-Script

B.1 Plotting

1

2 l i b r a r y ( " scales " )

3 l i b r a r y ( " ggplot2 " )

4 l i b r a r y ( " dplyr " )

5 l i b r a r y ( " lubridate " )

6 l i b r a r y ( " t i d y r " )

7 l i b r a r y ( " plyr " )

8 l i b r a r y ( "zoo" )

9 show_ col (hue_ pal ( ) ( 2 ) )

10 # l i b r a r y ( easyGgplot2 )

11 l i b r a r y ( reshape2 )

12 l i b r a r y ( p l o t l y )

13 l i b r a r y ( "reshape2" , l i b . loc="~/R/win−l i b r a r y / 3.4 " )

14 # i n s t a l l . packages ( " t idyverse " )

15

16 #Mac

17 #setwd ( " ~/Google Drive / Skole /Master/VPS data " )

18 #PC

19 setwd ( "C: /Users/ Daniel /Google Drive / Skole /Master/ data " )

20

21 # ================================================== VPS Fuel Data

==================================================

22

23 Sing <− read . csv ( f i l e ="HFO380_SGSIN . csv " , header=TRUE, sep=" , " , str ingsAsFactors = F

)

24 HK <− read . csv ( f i l e ="HFO380_HKHKG. csv " , header=TRUE, sep=" , " , str ingsAsFactors =

F)

67
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25

26 Sing$Date <− as . Date ( Sing$Date , format = "%Y−%m−%d" )

27 HK$Date <− as . Date (HK$Date , format = "%Y−%m−%d" )

28

29 #time ordering

30 Sing <− Sing [ order ( Sing$Date ) , ]

31 HK <− HK[ order (HK$Date ) , ]

32

33 #removal of na l i n e s

34 index <− which ( i s . na ( Sing$BK_SAMPLENO) ) ; i f ( length ( index ) >0) Sing <− Sing[−index , ]

35 index <− which ( i s . na (HK$BK_SAMPLENO) ) ; i f ( length ( index ) >0) HK <− HK[ −index , ]

36

37 #Remove > and <

38 index <− which ( substr ( Sing$density , 1 , 1 ) == "<" | substr ( Sing$density , 1 , 1 ) == ">" )

39 Sing <− Sing[−index , ]

40 Sing$density <− as . numeric ( Sing$density )

41

42

43 index <− which ( substr (HK$density , 1 , 1 ) == "<" | substr (HK$density , 1 , 1 ) == ">" )

44 HK <− HK[−index , ]

45 HK$density <− as . numeric (HK$density )

46

47

48 # ================================================== VPS data prep

==================================================

49 #Sing$density _ t x t <− as . character ( Sing$density _ t x t )

50 #index_ bigger <−grep ( ’ > ’ , Sing$density _ t x t )

51 # print ( paste ( ’ f r a c t i o n of > samples : ( ’ , length ( index_ bigger ) , ’ ) : ’ , length ( index_

bigger ) /nrow( Sing ) ) )

52 #index_ smaller <−grep ( ’ < ’ , Sing$density _ t x t )

53 # print ( paste ( ’ f r a c t i o n of < samples : ( ’ , length ( index_ smaller ) , ’ ) : ’ , length ( index_

smaller ) /nrow( Sing ) ) )

54 #index_blank <− which ( i s . na ( Sing$REPORT_SHORT_LIFT_BENCHMARK) )

55 #index_blank <− which ( i s . na ( Sing$REPORT_MAX_SHORT_BENCHMARK) )

56 # ================================================== Price data

==================================================

57 i fo380 _ price<−read . csv ( " price _ ifo380 . csv " , sep = " ; " )

58 i fo380 _ price $Date_hk <− as . Date ( ifo380 _ price $Date_hk , format = "%d.%m.%Y" )

59 i fo380 _ price $Date_ sing <− as . Date ( ifo380 _ price $Date_sing , format = "%d.%m.%Y" )

60 i fo380 _ price $Date_w <− as . Date ( ifo380 _ price $Date_w , format = "%d.%m.%Y" )

61 i fo380 _ price $Date_mgosing <− as . Date ( ifo380 _ price $Date_mgosing , format = "%d.%

m.%Y" )

62

63

64 # ================================================== End of data formatting and

cleaning ===========================================================

65

66 # =================================================== PROPORTION OF lowres DATa

===================================================

67 index <− which ( substr ( Sing$density , 1 , 1 ) == "<" )
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68 densi ty l imit <− data . frame ( density = Sing$density [ index ] , Date = Sing$Date [ index ] ,

Type = "Lower" )

69 index <− which ( substr ( Sing$density , 1 , 1 ) == ">" )

70 y <− data . frame ( density = Sing$density [ index ] , Date = Sing$Date [ index ] , Type = "

Upper" )

71 densi ty l imit <− rbind ( densityl imit , y )

72 densi ty l imit $Month <− as . Date ( cut ( densi ty l imit $Date , breaks = "month" ) )

73

74 #pre14<−c (31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31)

75 #mid <− rep ( c (31 ,30 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31) , 4 )

76 #post17<−c (31 ,32)

77

78 index <− which ( substr ( Sing$density , 1 , 1 ) ! = "<" )

79 d e n s l i s t <− data . frame ( density = Sing$density [ index ] , Date = Sing$Date [ index ] , Type

= "Mid" )

80 index <− which ( substr ( d e n s l i s t $density , 1 , 1 ) == ">" ) ; i f ( length ( index ) >0) d e n s l i s t <−
d e n s l i s t [−index , ]

81

82 month_range <− unique ( substr ( d e n s l i s t $Date , 1 , 7 ) ) # monthly

83 Dens_monthly <− data . frame (month = month_range )

84 Dens_monthly <− na . omit (Dens_monthly )

85

86 for ( i in 1 :nrow(Dens_monthly ) ) {

87 index = which ( substr ( d e n s l i s t $Date , 1 , 7 ) == Dens_monthly$month[ i ] )

88 index2 = which ( substr ( densi ty l imit $Date , 1 , 7 ) == Dens_monthly$month[ i ] )

89 Dens_monthly$Fraction [ i ] = length ( index2 ) / length ( index )

90 }

91

92 Dens_monthly$month <− as . Date ( paste0 (Dens_monthly$month, "−01" , collapse = NULL) )

93

94

95 p2 <− ggplot (Dens_monthly , aes ( x=month, y=Fraction ) ) +

96 geom_ l i n e ( ) + scale _y_continuous ( l a b e l s = scales : : percent_format ( accuracy = 1) ) +

labs ( x= element_blank ( ) , y="% of t o t a l monthly samples" )

97

98

99 p <− ggplot ( densityl imit , aes ( x=Month, color = Type , f i l l = Type ) ) +

100 geom_histogram ( breaks = seq ( as . Date ( "2013/1/1" ) , as . Date ( "2018/3/1" ) , by = "month"

) ,

101 alpha = 0 . 5 , position = " i d e n t i t y " ) + labs ( x= element_blank ( ) , y="

Count" ) + theme( legend . position = c ( 0 . 9 5 , 0 . 7 9 ) )

102

103 multiplot (p , p2 )

104

105 #

=================================================================================================================

106

107 # ================================================== S t a r t of Price plots

===========================================================
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108 plot _ price <− function ( ifo380 _ price ) {

109

110 hk_ price <− data . frame ( date=ifo380 _ price $Date_hk , price _hk=ifo380 _ price

$ Price _hk )

111 sing _ price <− data . frame ( date=ifo380 _ price $Date_sing , price _s=ifo380 _ price $

Price _ sing )

112 w_ price <− data . frame ( date=ifo380 _ price $Date_w, price _w=ifo380 _ price $

Price _w)

113 mgo_ price <− data . frame ( date=ifo380 _ price $Date_mgosing , price _mgo=ifo380 _

price $ Price _mgosing )

114 #removal of na l i n e s

115 index <− which ( i s . na ( sing _ price $ price _s ) ) ; i f ( length ( index ) >0) sing _ price <− sing _

price [−index , ]

116 index <− which ( i s . na ( hk_ price $ price _hk ) ) ; i f ( length ( index ) >0) hk_ price <− hk

_ price [−index , ]

117 index <− which ( i s . na (w_ price $ price _w) ) ; i f ( length ( index ) >0) w_ price <− w_

price [−index , ]

118

119 #time ordering

120 hk_ price <− hk_ price [ order ( hk_ price $date ) , ]

121 sing _ price <− sing _ price [ order ( sing _ price $date ) , ]

122 w_ price <− w_ price [ order (w_ price $date ) , ]

123 mgo_ price <− mgo_ price [ order (mgo_ price $date ) , ]

124

125 price <− merge ( hk_ price , sing _ price , by=" date " , a l l =F)

126 price <− merge ( price , w_ price , by = " date " , a l l = F)

127 #price2 <− merge ( hk_ price , sing _ price , by="date " , a l l =T)

128 price $hk_ delta <− price $ price _hk − price $ price _s

129 price $w_ delta <− price $ price _w − price $ price _s

130

131

132

133 index <− which ( price $date>= ’2013−01−01 ’ & price $date <= ’2014−12−31 ’ )

134 preMFM <− mean( price $ deltaprice [ index ] )

135

136

137 index <− which ( price $date>= ’2017−01−01 ’ ) # & Sing . deltadens$date <=’2014−12−31’)

138 postMFM <− mean( price $ deltaprice [ index ] )

139

140

141

142

143

144 # ============================================================= Definit ion of

Multiplot

145 multiplot <− function ( . . . , p l o t l i s t =NULL, f i l e , cols =1 , layout=NULL) {

146 require ( grid )

147

148 # Make a l i s t from the . . . arguments and p l o t l i s t

149 plots <− c ( l i s t ( . . . ) , p l o t l i s t )
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150

151 numPlots = length ( plots )

152

153 # I f layout i s NULL, then use ’ cols ’ to determine layout

154 i f ( i s . null ( layout ) ) {

155 # Make the panel

156 # ncol : Number of columns of plots

157 # nrow : Number of rows needed , calculated from # of cols

158 layout <− matrix ( seq ( 1 , cols * c e i l i n g ( numPlots/ cols ) ) ,

159 ncol = cols , nrow = c e i l i n g ( numPlots/ cols ) )

160 }

161

162 i f ( numPlots==1) {

163 print ( plots [ [ 1 ] ] )

164

165 } e lse {

166 # Set up the page

167 grid . newpage ( )

168 pushViewport ( viewport ( layout = grid . layout (nrow( layout ) , ncol ( layout ) ) ) )

169

170 # Make each plot , in the correct location

171 for ( i in 1 : numPlots ) {

172 # Get the i , j matrix positions of the regions that contain t h i s subplot

173 matchidx <− as . data . frame ( which ( layout == i , arr . ind = TRUE) )

174

175 print ( plots [ [ i ] ] , vp = viewport ( layout . pos . row = matchidx$row ,

176 layout . pos . col = matchidx$ col ) )

177 }

178 }

179 } #=========================== DEF OF MULTIPLOT END ===================

180

181 p2 <− ggplot ( price , aes ( x=date , y = hk_ delta ) ) +

182 geom_ rect ( aes (xmin = as . Date ( "2016−01−01" , format = "%Y−%m−%d" ) , xmax = as . Date (

"2017−01−01" , format = "%Y−%m−%d" ) , ymin = −Inf , ymax = Inf ) , f i l l = " grey " ,

alpha = 0.02) +

183 geom_ l i n e ( aes ( col = "HK − Sing " ) ) + labs ( x= " Year " , y=" Price dif ference [USD/mt

] " ) +

184 geom_ l i n e ( aes ( y=w_ delta , col = "World − Sing " ) ) +

185 #geom_ l i n e ( data=Rolling , aes ( y=RMean , x=Date , col = " Roll ing Mean" ) ) +

186 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2)

187

188 p2 <− p2 + scale _colour_manual( values = c ( "#f8766d " , "#00ba38" ) ) + theme( legend .

position = c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

189 p2

190

191

192

193 # ================================================== P l o t t i n g price regime

==================================================

194
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195 trendplot <− function ( price ) {

196

197 i _const <− which ( price $date>= ’2013−04−15 ’ & price $date<= ’2014−08−01 ’ )

198 i _decrease <− which ( price $date>= ’2014−08−15 ’ & price $date<= ’2016−02−01 ’ )

199 i _ increase <− which ( price $date>= ’2016−02−01 ’ )

200

201 z<−lm( price $hk_ delta [ i _decrease ] ~ price $date [ i _decrease ] ) ; summary( z )

202 z<−lm( price $hk_ delta [ i _const ] ~ price $date [ i _const ] ) ; summary( z )

203 z<−lm( price $hk_ delta [ i _ increase ] ~ price $date [ i _ increase ] ) ; summary( z )

204

205 z<−lm( price $w_ delta [ i _decrease ] ~ price $date [ i _decrease ] ) ; summary( z )

206 z<−lm( price $w_ delta [ i _const ] ~ price $date [ i _const ] ) ; summary( z )

207 z<−lm( price $w_ delta [ i _ increase ] ~ price $date [ i _ increase ] ) ; summary( z )

208

209

210 p1 <− ggplot ( price [ i _const , ] , aes ( x=date , y = price _s ) ) +

211 geom_ l i n e ( col = " blue " ) + labs ( x= " Year " , y=" Price [USD/mt] " ) + g g t i t l e ( " F l a t

Trend in Singapore Price " ) +

212 theme( plot . t i t l e = element_ t e x t ( s i z e =10 , face="bold" ) )

213

214

215 p2 <− ggplot ( price [ i _const , ] , aes ( x=date , y = hk_ delta ) ) +

216 geom_ l i n e ( col = " black " ) + labs ( x= " Year " , y=" Price d i f f . [USD/mt] " ) +

217 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2) +

218 geom_smooth(method="lm" , se = F , l inetype = 2 , col = " red " )

219 # scale _colour_manual( values = c ( " black " ) )

220 #+ theme( legend . position = c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

221

222 p3 <− ggplot ( price [ i _decrease , ] , aes ( x=date , y = price _s ) ) +

223 geom_ l i n e ( col = " blue " ) + labs ( x= " Year " , y=" Price [USD/mt] " ) + g g t i t l e ( "

Downtrend in Singapore Price " ) +

224 theme( plot . t i t l e = element_ t e x t ( s i z e =10 , face="bold" ) )

225

226 p4 <− ggplot ( price [ i _decrease , ] , aes ( x=date , y = hk_ delta ) ) +

227 geom_ l i n e ( col = " black " ) + labs ( x= " Year " , y=" Price d i f f . [USD/mt] " ) +

228 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2) +

229 geom_smooth(method="lm" , se = F , l inetype = 2 , col = " red " )

230 # scale _colour_manual( values = c ( " black " ) )

231 #+ theme( legend . position = c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

232

233 p5 <− ggplot ( price [ i _ increase , ] , aes ( x=date , y = price _s ) ) +

234 geom_ l i n e ( col = " blue " ) + labs ( x= " Year " , y=" Price [USD/mt] " ) + g g t i t l e ( "Uptrend

in Singapore Price " ) +

235 theme( plot . t i t l e = element_ t e x t ( s i z e =10 , face = "bold" ) )

236

237 p6 <− ggplot ( price [ i _ increase , ] , aes ( x=date , y = hk_ delta ) ) +

238 geom_ l i n e ( col = " black " ) + labs ( x= " Year " , y=" Price d i f f . [USD/mt] " ) +

239 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2) +

240 geom_smooth(method="lm" , se = F , l inetype = 2 , col = " red " )

241 # scale _colour_manual( values = c ( " black " ) )
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242 #+ theme( legend . position = c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

243

244 multiplot ( p1 , p3 , p5 , p2 , p4 , p6 , cols =2)

245 }

246

247 # ======================= P l o t t i n g post mfm

248

249 i _postmfm <− which ( price $date>= ’2017−01−01 ’ )

250

251

252 p1 <− ggplot ( price [ i _postmfm , ] , aes ( x=date , y = price _s ) ) + geom_ l i n e ( aes ( y=price _

hk , col = "Hong Kong" ) ) +

253 geom_ l i n e ( aes ( col = " Singapore " ) ) + labs ( x= " Year " , y=" Price [USD/mt] " ) + g g t i t l e

( " Post 2016 Price Levels " ) +

254 theme( plot . t i t l e = element_ t e x t ( s i z e =10 , face="bold" ) ) +

255 scale _colour_manual( values = c ( "#00ba38" , " blue " ) ) + theme( legend . position = c

( 0 . 8 7 , 0 . 1 ) , legend . t i t l e = element_blank ( ) )

256

257

258 p2 <− ggplot ( price [ i _postmfm , ] , aes ( x=date , y = hk_ delta ) ) +

259 geom_ l i n e ( col = " black " ) + labs ( x= " Year " , y=" Price gap [USD/mt] " ) +

260 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2) +

261 geom_smooth(method="lm" , se = F , l inetype = 2 , col = " red " )

262

263 multiplot ( p1 , p2 , 1 )

264

265

266 p3 <− ggplot ( price [ i _postmfm , ] , aes ( x=date , y = price _s ) ) + geom_ l i n e ( aes ( y=price _w

, col = "World" ) ) +

267 geom_ l i n e ( aes ( col = " Singapore " ) ) + labs ( x= " Year " , y=" Price [USD/mt] " ) + g g t i t l e

( " Post 2016 Price Levels " ) +

268 theme( plot . t i t l e = element_ t e x t ( s i z e =10 , face="bold" ) ) +

269 scale _colour_manual( values = c ( "#00ba38" , " blue " ) ) + theme( legend . position = c

( 0 . 8 7 , 0 . 1 ) , legend . t i t l e = element_blank ( ) )

270

271

272 p4 <− ggplot ( price [ i _postmfm , ] , aes ( x=date , y = w_ delta ) ) +

273 geom_ l i n e ( col = " black " ) + labs ( x= " Year " , y=" Price gap [USD/mt] " ) +

274 geom_ abline ( intercept = 0 , slope = 0 , col = " black " , l inetype = 2) +

275 geom_smooth(method="lm" , se = F , l inetype = 2 , col = " red " )

276

277 multiplot ( p3 , p4 , 1 )

278

279

280 # ======================= end of P l o tt i ng post mfm

281

282

283 #====== pl ott ing trend

284

285
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286 p1 <− ggplot ( price , aes ( x=price $date , y=price $ price _s ) ) +

287 geom_ rect ( aes (xmin = as . Date ( "2016−01−01" , format = "%Y−%m−%d" ) , xmax = as . Date (

"2017−01−01" , format = "%Y−%m−%d" ) , ymin = −Inf , ymax = Inf ) , f i l l = " grey " ,

alpha = 0.02) +

288

289 geom_ l i n e ( aes ( col = " Singapore " ) ) +

290 geom_ l i n e ( aes ( y=price _hk , col = "Hong Kong" ) ) +

291 geom_ l i n e ( aes ( y=price _w, col = "World" ) ) +

292 theme( axi s . t i t l e . x=element_blank ( ) ) +

293 g g t i t l e ( "Bunker Price Indices " )

294 # labs ( t i t l e = "Bunker price in Hong Kong and Singapore and Price Difference " )

295 p1 <− p1 + scale _colour_manual( values = c ( "#f8766d " , "#619 c f f " , "#00ba38" ) ) +

theme( legend . position = c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) + labs ( y="

Price [USD/mt] " )

296 p1

297

298 multiplot ( p1 , p2 , cols =1) #

299

300

301

302 } # Price per metric ton of IFO380 singa blue and hk

303 # ================================================== End of Price plots

=============================================================

304

305 # ================================================== S t a r t of Density plots

===========================================================

306

307 #Density Data Formatting

308

309 index <− which ( substr ( Sing$density , 1 , 1 ) == "<" )

310 Sing$density [ index ] <− " 979.998 "

311 index <− which ( substr ( Sing$density , 1 , 1 ) == ">" )

312 Sing$density [ index ] <− " 993.002 "

313

314 Sing$density <− as . numeric ( Sing$density )

315

316

317 # Plot Singapore Density

318 plot _ density <− function ( Sing , HK) {

319

320 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Monthly median density Singapore

and HK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
321 month_range <− unique ( substr ( Sing$Date , 1 , 7 ) ) # monthly

322 Fuel_monthly <− data . frame (month = month_range )

323 Fuel_monthly <− na . omit ( Fuel_monthly )

324

325 for ( i in 1 :nrow( Fuel_monthly ) ) {

326 index = which ( substr ( Sing$Date , 1 , 7 ) == Fuel_monthly$month[ i ] )

327 Fuel_monthly$median [ i ] <− median( Sing$density [ index ] , na .rm=T)

328 Fuel_monthly$mean[ i ] <− mean( Sing$density [ index ] , na .rm=T)
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329 Fuel_monthly$sd [ i ] <− sd ( Sing$density [ index ] , na .rm=T)

330 Fuel_monthly$mad[ i ] <− mad( Sing$density [ index ] , na .rm=T)

331

332 Fuel_monthly$nrsamples [ i ] <− length ( index )

333 error <− qnorm( 0 . 9 7 5 ) * Fuel_monthly$sd [ i ] / sqrt ( Fuel_

monthly$nrsamples [ i ] )

334 Fuel_monthly$upper_conf [ i ] <− Fuel_monthly$mean[ i ] + error

335 Fuel_monthly$lower_conf [ i ] <− Fuel_monthly$mean[ i ] − error

336 Fuel_monthly$ densdiff [ i ] <− 991 − Fuel_monthly$median [ i ]

337

338 #deltadens

339 Fuel_monthly$mediandd [ i ] <− median( Sing$deltaDensity [ index ] , na .rm=T)

340 # D i f f between densitydeviation and dif ference between 991 and median density

341 Fuel_monthly$cheating [ i ] <− Fuel_monthly$ densdiff [ i ] − Fuel_monthly$

mediandd [ i ]

342 }

343

344 Fuel_monthly$month <− paste ( Fuel_monthly$month, "−15" , sep=" " )

345 Fuel_monthly$month <− as . Date ( Fuel_monthly$month, format = "%Y−%m−%d" )

346 # ================ HK ==============

347

348 HK. month_range <− unique ( substr (HK$Date , 1 , 7 ) ) # monthly

349 HK. Fuel_monthly <− data . frame (month = HK. month_range )

350 HK. Fuel_monthly <− na . omit (HK. Fuel_monthly )

351

352 for ( i in 1 :nrow(HK. Fuel_monthly ) ) {

353 index = which ( substr (HK$Date , 1 , 7 ) == HK. Fuel_monthly$month[ i ] )

354 HK. Fuel_monthly$median [ i ] <− median(HK$density [ index ] , na .rm=T)

355 }

356

357 HK. Fuel_monthly$month <− paste (HK. Fuel_monthly$month, "−15" , sep=" " )

358 HK. Fuel_monthly$month <− as . Date (HK. Fuel_monthly$month, format = "%Y−%m−%d" )

359

360

361 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Daily Median Density , Singapore

and HK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
362

363 date_range <− unique ( Sing$Date ) # dai l y

364 Fuel_ dai l y <− data . frame ( date=date_range )

365

366 for ( i in 1 :nrow( Fuel_ dai ly ) ) {

367 index = which ( Sing$Date==Fuel_ dai ly $date [ i ] )

368 Fuel_ dai l y $median [ i ] <− median( Sing$density [ index ] , na .rm=T)

369 }

370

371 # ================ HK ==============

372

373 HK. date_range <− unique (HK$Date )

374 HK. Fuel_ dai ly <− data . frame ( date=HK. date_range )

375
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376 # Hong Kong median dai ly density

377 for ( i in 1 :nrow(HK. Fuel_ dai l y ) ) {

378 index = which (HK$Date==HK. Fuel_ dai ly $date [ i ] )

379 HK. Fuel_ dai ly $median [ i ] <− median(HK$density [ index ] , na .rm=T)

380 }

381

382 # ================================================== Weekly Median Density ,

Singapore and HK ==================================================

383

384 Sing$week <− paste ( year ( Sing$Date ) ,week( Sing$Date ) , sep="−" )

385

386 week_range <− na . omit ( unique ( Sing$week) )

387 Sing . Fuel_weekly <− data . frame (week=week_range , date=rep (NA, length (week_range ) ) ,

str ingsAsFactors = F)

388

389 Sing . Fuel_weekly$p <− NA

390 Sing . Fuel_weekly$n <− NA

391 for ( i in 1 :nrow( Sing . Fuel_weekly ) ) {

392 index <− which ( Sing$week==Sing . Fuel_weekly$week [ i ] )

393 Sing . Fuel_weekly$median [ i ] <− median( Sing$density [ index ] , na .rm=T)

394 Sing . Fuel_weekly$mean[ i ] <− mean( Sing$density [ index ] , na .rm=T)

395 Sing . Fuel_weekly$sd [ i ] <− sd ( Sing$density [ index ] , na .rm=T)

396 Sing . Fuel_weekly$date [ i ] <− Sing$Date [ index [ 1 ] ] # skal v r e 1− t a l l

397 Sing . Fuel_weekly$mad[ i ] <− mad( Sing$density [ index ] , na .rm=T)

398

399

400 #Finne ensiding median deviation

401

402 #m<−median( Sing$density [ index ] , na .rm=T)

403 m <− Sing . Fuel_weekly$median [ i ]

404 p <− Sing$density [ index]−m

405 p <− p[p>0]

406 Sing . Fuel_weekly$p[ i ] <− m + median(p , na .rm=T)

407 n <− Sing$density [ index ] − m

408 n <− n[n<0]

409 Sing . Fuel_weekly$n[ i ] <− m + median(n , na .rm=T)

410

411 #Differnece from ISO l i m i t

412 Sing . Fuel_weekly$ densdiff [ i ] <− 991 − Sing . Fuel_weekly$median [ i ]

413

414 #deltadens

415 Sing . Fuel_weekly$mediandd [ i ] <− median( Sing$deltaDensity [ index ] , na .rm=T)

416 m_dd <− Sing . Fuel_weekly$mediandd [ i ]

417 p_dd <− Sing$deltaDensity [ index]−m_dd

418 p_dd <− p_dd[p_dd>0]

419 Sing . Fuel_weekly$p_dd[ i ] <− m_dd + median(p_dd , na .rm=T)

420 n_dd <− Sing$deltaDensity [ index ] − m_dd

421 n_dd <− n_dd[n_dd<0]

422 Sing . Fuel_weekly$n_dd[ i ] <− m_dd + median(n_dd , na .rm=T)

423
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424

425

426

427

428

429 # D i f f between densitydeviation and dif ference between 991 and median density

430 Sing . Fuel_weekly$cheating [ i ] <− Sing . Fuel_weekly$ densdiff [ i ] − Sing . Fuel_

weekly$mediandd [ i ]

431 Sing . Fuel_weekly$ overstrate [ i ] <− Sing . Fuel_weekly$mediandd [ i ] / Sing . Fuel_

weekly$ densdiff [ i ] * 100

432

433 # 95 % Confidence

434 #Sing . Fuel_weekly$nrsamples [ i ] <− length ( index )

435 # error <− qnorm( 0 . 9 7 5 ) * Sing . Fuel_weekly$sd [ i ] / sqrt (

Sing . Fuel_weekly$nrsamples [ i ] )

436 #Sing . Fuel_weekly$upper_conf [ i ]<− Sing . Fuel_weekly$mean[ i ] + error

437 #Sing . Fuel_weekly$lower_conf [ i ]<− Sing . Fuel_weekly$mean[ i ] − error # evt median

438 }

439

440 Sing . Fuel_weekly$dd_spread <− Sing . Fuel_weekly$p_dd − Sing . Fuel_weekly$n_dd

441 Sing . Fuel_weekly$date <− as . Date ( Sing . Fuel_weekly$date , origin = "1970−01−01" , tz="

UTC" )

442

443

444

445

446

447 # =================================================== FACET PLOT FOR RESOLUTION

================

448 merge_ density <− function ( Fuel_ daily , Sing . Fuel_weekly , Fuel_monthly ) {

449 dai ly <− data . frame ( date=Fuel_ dai l y $date , Daily = Fuel_ dai ly $median)

450 weekly <− data . frame ( date=Sing . Fuel_weekly$date , Weekly = Sing . Fuel_weekly$median

)

451 monthly <− data . frame ( date=Fuel_monthly$month, Monthly = Fuel_monthly$median)

452

453 dens <− merge ( daily , weekly , by = " date " , a l l = T)

454 dens <− merge ( dens , monthly , by = " date " , a l l = T)

455

456 #convert to long datatable

457 long_dens <− dens %>% gather ( Resolution , Density , 2 : 4 )

458 #removing empty rows

459 index <− which ( i s . na ( long_dens$Density ) ) ; i f ( length ( index ) >0) long_dens <−
long_dens [ −index , ]

460 long_dens$Res_ f <− f a c t o r ( long_dens$Resolution , l e v e l s = c ( " Daily " , "Weekly" , "

Monthly" ) )

461

462

463 # P l o t t i n g faceted plot

464 dens_ plot <− ggplot ( long_dens , aes ( x=date , y = Density ) ) + geom_ l i n e ( )

465 dens_ plot + face t _ grid ( rows = vars ( Res_ f ) ) + labs ( x= " Year " , y = " Density [ kg/m3]
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" )

466

467 }

468

469

470 }

471 #============================================================ DENSITY PLOTS

==========================================================================================

472 sing _ price <− data . frame ( date=ifo380 _ price $Date_sing , price=ifo380 _ price $ Price _ sing

)

473

474 # Plot Daily Density

475 ggplot ( data=Fuel_ daily , aes ( x=date , y=median , group=1 , colour = " red " ) ) +

476 geom_ l i n e ( ) + geom_ l i n e ( data=HK. Fuel_ daily , aes ( y=median , colour = " blue " ) ) +

477 ylab ( l ab el =" Daily median density " ) + xlab ( "Date" )

478

479 # Plot weekly density

480 week_dens <− ggplot ( data=Sing . Fuel_weekly , aes ( x= date , y = median) ) + geom_ l i n e ( )

+ ylab ( l a be l =" Density [ kg/m3] " ) + xlab ( " Year " )

481 week_dens + geom_ hline ( yintercept =991 , col = "red " ) + geom_ l i n e ( aes ( y=n) , colour="

blue " , l inetype =2) + geom_ l i n e ( aes ( y=p) , colour=" blue " , l inetype =2) + labs ( t i t l e

= "Median Bunker Density , 1 s t and 3rd Quarti les in blue " )

482

483 # Plot Monthly Density

484 ggplot ( data=Fuel_monthly , aes ( x=month, y=median) ) + geom_ l i n e ( ) +

485 ylab ( l ab el =" Density " ) + xlab ( "Date" ) + labs ( t i t l e = "Monthly sample median in

Singapore " )

486 # + geom_ l i n e ( data=HK. Fuel_monthly , aes ( y=median) , colour = " blue " )

487 # + geom_ribbon ( data=Fuel_monthly , aes (ymin=lower_conf , ymax=upper_conf ) , alpha

=0.3)

488

489 # Plot density d i f f − dens and max dens

490 ggplot ( data=Fuel_monthly , aes ( x=month, y=densdiff ) ) + geom_ l i n e ( ) +

491 ylab ( l ab el =" Density [ kg/m3] " ) + xlab ( " Year " ) + geom_ l i n e ( data=Fuel_monthly , aes ( y=

mediandd) , col = " blue " ) + geom_ l i n e ( data=Fuel_monthly , aes ( y=cheating ) , col = "

red " )

492

493

494 # SCATTER PLOT, stated vs tested

495 ggplot ( data = Sing , aes ( x=density , y=BDRdensity ) ) + geom_ abline ( intercept = 0 ,

slope = 1 , col = " blue " , s i z e = 1 , l inetype = 2) +

496 geom_point ( s i z e = 1 , alpha = 0 . 5 ) + xlim ( c (980 ,992) ) + ylim ( c (980 ,992) ) +

497 geom_ hline ( yintercept =991 , col = " red " , l inetype = 2) + geom_ vl ine ( xintercept =991 ,

col =" red " , l inetype = 2) +

498 labs ( x = " Tested Density [ kg/m3] " , y = " Stated Density [ kg/m3] " )

499

500

501

502 # =================================================== Plot delta density and
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d i s t r i b u t i o n for delta density data presentation ===================

503 p <− ggplot ( data=Sing . Fuel_weekly , aes ( x=date ) ) + geom_ l i n e ( aes ( y=mediandd , color ="

Weekly Median of Delta Density " ) )

504 p <− p + geom_ l i n e ( aes ( y = p_dd , color = "3rd Quarti le " ) , l inetype = 2)

505 p <− p + geom_ l i n e ( aes ( y = n_dd , color = "1 s t Quarti le " ) , l inetype = 2)

506 p <− p + geom_ l i n e ( aes ( y = densdiff , color = " Deviation from ISO l i m i t " ) )

507 # Modyfing colors and themes options

508 p <− p + scale _colour_manual( values = c ( " grey60 " , " grey60 " , "red " , " black " ) ) + scale _

l inetype _manual( values = c ( rep ( "dashed" , 4 ) ) )

509 p <− p + labs ( y = " Delta density [ kg/m3] " ,

510 x = " Year " )

511 p <− p + theme( legend . position = c ( 0 . 8 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

512 p

513

514 p + geom_ l i n e ( aes ( y = dd_spread ) ) + geom_ l i n e ( aes ( y=densdiff , col =" blue " ) )

515

516 scale _ color _manual( values = c ( " red " , "dodgerblue3" , " red " , "dodgerblue3" ) ) +

517 scale _ l inetype _manual( values = c ( 1 , 1 , 2 , 2) )

518

519

520

521

522 # plot cheating / u t i l i s a t i o n

523 p <− ggplot ( data=Sing . Fuel_weekly , aes ( x=date ) ) + geom_ l i n e ( aes ( y=densdiff , color ="

Difference from ISO l i m i t " ) )

524

525

526 # adding the r e l a t i v e humidity data , transformed to match roughly the range of the

temperature

527 p <− p + geom_ l i n e ( aes ( y= overstrate * ( 3 . 5 / 100) , color = " Overstating Rate" ) ,

l inetype =2)

528 p <− p + geom_ l i n e ( aes ( y= mediandd , color = "Median Delta Density " ) )

529

530 # now adding the secondary axis

531 p <− p + scale _y_continuous ( sec . axis = sec_ axi s ( ~ . / 3.5 * 100 , name = " Overstating Rate

[%] " ) )

532

533 # Modifying colours and themes options

534 p <− p + scale _colour_manual( values = c ( " blue " , " black " , " red " ) )

535 p <− p + labs ( y = " Density [ kg/m3] " ,

536 x = " Year " ,

537 colour = "Graphs"

538 )

539 p <− p + theme( legend . position = c ( 0 . 8 , 0 . 9 ) )

540 p

541

542 ylab ( l ab el =" Density [ kg/m3] " ) + xlab ( " Year " ) + geom_ l i n e ( data=Sing . Fuel_weekly ,

aes ( y=mediandd) , col = " blue " ) +

543 #geom_ l i n e ( data=Sing . Fuel_weekly , aes ( y=cheating ) , col = " red " ) +

544 geom_ l i n e ( data=Sing . Fuel_weekly , aes ( y=overstrate ) , col = " red " )
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545

546

547

548

549

550

551 # ================================================== End of density plots

===========================================================

552

553 #geom_ribbon ( data=predframe , aes (ymin=lwr , ymax=upr ) , alpha =0.3) ) Standardvarians ?

554

555 # ================================================== Histogram plots

===========================================================

556 plot _ h i s t <− function ( Sing ) {

557

558 Sing . deltadens <− data . frame ( date = Sing$Date , dd = Sing$deltaDensity )

559

560 #removal of na l i n e s

561 index <− which ( i s . na ( Sing . deltadens$dd) ) ; i f ( length ( index ) >0) Sing . deltadens <−
Sing . deltadens[−index , ]

562

563 #Time window 2013−2015

564 index <− which ( Sing . deltadens$date>= ’2013−01−01 ’ & Sing . deltadens$date<= ’

2014−12−31 ’ )

565 h1 <− data . frame ( date=Sing . deltadens$date [ index ] , Period1 = Sing . deltadens$dd[

index ] )

566

567 #Time window 2015−2016

568 index <− which ( Sing . deltadens$date>= ’2015−01−01 ’ & Sing . deltadens$date<= ’

2015−12−31 ’ )

569 h2 <− data . frame ( date=Sing . deltadens$date [ index ] , Period2 = Sing . deltadens$dd[

index ] )

570

571 #Time window 2016−2017

572 index <− which ( Sing . deltadens$date>= ’2016−01−01 ’ & Sing . deltadens$date<= ’

2016−12−31 ’ )

573 h3 <− data . frame ( date=Sing . deltadens$date [ index ] , Period3 = Sing . deltadens$dd[

index ] )

574

575 #Time window 2017−2019

576 index <− which ( Sing . deltadens$date>= ’2017−01−01 ’ & Sing . deltadens$date<= ’

2018−12−31 ’ )

577 h4 <− data . frame ( date=Sing . deltadens$date [ index ] , Period4 = Sing . deltadens$dd[

index ] )

578

579

580 #13−15

581 ggplot ( data=h1 , aes ( x=h1$dd) ) +

582 geom_histogram ( breaks = seq ( −3.5 ,4 , by = 0 . 5 ) ,

583 col = " red " ,
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584 f i l l = " blue " ,

585 alpha = . 2 ,

586 aes ( y = . . count . . /sum ( . . count . . ) ) ) +

587 labs ( t i t l e ="Histogram for Delta Density " , x=" Delta Density " , y=" Fraction " ) +

588 xlim ( c (−4 ,4) )

589

590 #15−16

591 ggplot ( data=h2 , aes ( x=h2$dd) ) +

592 geom_histogram ( breaks = seq (−3 ,10 , by = 0 . 5 ) ,

593 col = " red " ,

594 f i l l = " blue " ,

595 alpha = . 2 ,

596 aes ( y = . . count . . /sum ( . . count . . ) ) ) +

597 labs ( t i t l e ="Histogram for Delta Density " , x=" Delta Density " , y=" Fraction " ) +

598 xlim ( c (−3 ,11) )

599

600

601 #16−17

602 ggplot ( data=h3 , aes ( x=h3$dd) ) +

603 geom_histogram ( breaks = seq ( −3.5 ,8 , by = 0 . 5 ) ,

604 col = " red " ,

605 f i l l = " blue " ,

606 alpha = . 2 ,

607 aes ( y = . . count . . /sum ( . . count . . ) ) ) +

608 labs ( t i t l e ="Histogram for Delta Density " , x=" Delta Density " , y=" Fraction " ) +

609 xlim ( c (−4 ,8) )

610

611

612

613 #17−18

614 ggplot ( data=h4 , aes ( x=h4$dd) ) +

615 geom_histogram ( breaks = seq ( −3.5 ,8 , by = 0 . 5 ) ,

616 col = " red " ,

617 f i l l = " blue " ,

618 alpha = . 2 ,

619 aes ( y = . . count . . /sum ( . . count . . ) ) ) +

620 labs ( t i t l e ="Histogram for Delta Density " , x=" Delta Density " , y=" Fraction " ) +

621 xlim ( c (−4 ,8) )

622

623 # ======= Faceted Histogram =======

624

625

626 dd <− merge ( h1 , h2 , by = " date " , a l l = T)

627 dd <− merge (dd , h3 , by = " date " , a l l = T )

628 dd <− merge (dd , h4 , by = " date " , a l l = T )

629

630 #Converting to long format

631 long_dd <− dd %>% gather ( Period , deltadens , 2 : 5 )

632

633 #removing empty rows
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634 index <− which ( i s . na ( long_dd$deltadens ) ) ; i f ( length ( index >0) ) long_dd <− long_dd[−
index , ]

635

636 # P l o t t i n g faceted plot

637 dd_ plot <− ggplot ( data = long_dd , aes ( x=long_dd$deltadens ) ) + geom_histogram (

breaks = seq (−2 ,4 , by = 0.25) ,

638 col

= " red " ,

639 f i l l

= " blue " ,

640

alpha = . 2 ,

641 #aes

( y = . . count . . /sum ( . . count . . ) )

642 )

643 dd_ plot + face t _ grid ( rows = vars ( Period ) ) + labs ( x=" Delta Density [ kg/m3] " , y = "

Count" )

644

645

646

647 dens_ plot <− ggplot ( long_dens , aes ( x=date , y = Density ) ) + geom_ l i n e ( )

648 dens_ plot + face t _ grid ( rows = vars ( Res_ f ) ) + labs ( x= " Year " , y = " Density [ kg/m3]

" )

649

650 #Thomas plot

651 h i s t ( ddens . h1$dd , breaks=seq (min( ddens . h1$dd , na .rm=T) ,max( ddens . h1$dd , na .rm=T) +1 ,1

) , xlim=c (−5 ,5) , freq=F)

652 }

653 # ================================ S h o r t l i f t benchmark

=================================================================================

654 plot _benchhist <− function ( Sing , HK) {

655

656 sing _ short <− data . frame ( Date = as . Date ( Sing$Date ) , SL = Sing$REPORT_SHORT_LIFT_

BENCHMARK, maxSL=Sing$REPORT_MAX_SHORT_BENCHMARK)

657 hk_ short <− data . frame ( Date = HK$Date , SL = HK$REPORT_SHORT_LIFT_BENCHMARK,

maxSL=HK$REPORT_MAX_SHORT_BENCHMARK)

658

659 index <− which ( i s . na ( sing _ short$SL ) ) ; i f ( length ( index ) >0) sing _ short <− sing _ short

[−index , ]

660 index <− which ( i s . na ( hk_ short$SL ) ) ; i f ( length ( index ) >0) hk_ short <− hk_ short[−
index , ]

661

662

663 sing _ short$week <− paste ( year ( sing _ short$Date ) ,week( sing _ short$Date ) , sep="−" )

664

665 week_range <− na . omit ( unique ( sing _ short$week) )

666 sing . SL <− data . frame (week=week_range , date=as . Date ( rep (NA, length (week_range ) ) ) ,

str ingsAsFactors = F)

667
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668 sing . SL$p <− NA

669 sing . SL$n <− NA

670 for ( i in 1 :nrow( sing . SL ) ) {

671 index <− which ( sing _ short$week==sing . SL$week [ i ] )

672 sing . SL$median [ i ] <− median( sing _ short$SL [ index ] , na .rm=T)

673 sing . SL$mean[ i ] <− mean( sing _ short$SL [ index ] , na .rm=T)

674 sing . SL$sd [ i ] <− sd ( sing _ short$SL [ index ] , na .rm=T)

675 sing . SL$date [ i ] <− sing _ short$Date [ index [ 1 ] ] # skal v r e 1− t a l l

676 sing . SL$p[ i ] <− sing . SL$mean[ i ] + sing . SL$sd [ i ]

677 sing . SL$n[ i ] <− sing . SL$mean[ i ] − sing . SL$sd [ i ]

678

679 #Finne ensiding median deviation

680

681 #m<−median( Sing$density [ index ] , na .rm=T)

682 # <− sing . SL$mean[ i ]

683 #p <− sing _ short$SL [ index]−m

684 #p <− p[p>0]

685 #sing . SL$p[ i ] <− m + mean(p , na .rm=T)

686 #n <− sing _ short$SL [ index ] − m

687 #n <− n[n<0]

688 #sing . SL$n[ i ] <− m + mean(n , na .rm=T)

689 }

690 sing . SL$BM <− "SL"

691 y <− data . frame (week=week_range , date=as . Date ( rep (NA, length (week_range ) ) ) ,

str ingsAsFactors = F)

692

693 for ( i in 1 :nrow( y ) ) {

694 index <− which ( sing _ short$week==y$week [ i ] )

695 y$median [ i ] <− median( sing _ short$maxSL[ index ] , na .rm=T)

696 y$mean[ i ] <− mean( sing _ short$maxSL[ index ] , na .rm=T)

697 y$sd [ i ] <− sd ( sing _ short$maxSL[ index ] , na .rm=T)

698 y$date [ i ] <− sing _ short$Date [ index [ 1 ] ] # skal v r e 1− t a l l

699 y$p[ i ] <− y$mean[ i ] + y$sd [ i ]

700 y$n[ i ] <− y$mean[ i ] − y$sd [ i ]

701 }

702 y$BM <− "Max SL"

703

704 sing . SL<−rbind ( sing . SL , y )

705

706

707 ggplot ( data=sing . SL , aes ( x=date , y = mean) ) + geom_ l i n e ( ) + ylab ( l a be l ="Benchmark

Scores " ) + xlab ( " Year " ) +

708 geom_ l i n e ( aes ( y=n) , colour=" blue " , l inetype =2) + geom_ l i n e ( aes ( y=p) , colour=" blue "

, l inetype =2) + fa ce t _ grid ( rows = vars (BM) )

709

710

711

712

713

714
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715

716 #========================== HISTOGRAM ============================

717

718 sing _ short <− data . frame ( Date = Sing$Date , sing = Sing$REPORT_SHORT_LIFT_

BENCHMARK)

719 hk_ short <− data . frame ( Date = HK$Date , hk = HK$REPORT_SHORT_LIFT_BENCHMARK)

720

721 sing _ short$ f r a c <− sing _ short$sing /sum( sing _ short$sing )

722 hk_ short$ f r a c <− hk_ short$hk/sum( hk_ short$hk )

723

724

725

726 s h o r t l i f t <− sing _ short

727

728

729 s h o r t l i f t $Port <− ’ Singapore ’

730 names( s h o r t l i f t ) [ 2 ]<− ’ SLScore ’

731 x <− hk_ short

732 x$Port <− ’Hong Kong ’

733 names( x ) [ 2 ]<− ’ SLScore ’

734 z <−rbind ( s h o r t l i f t , x )

735 s h o r t l i f t<−z

736

737 # A l t 1

738

739 ggplot ( s h o r t l i f t , aes ( x=SLScore , s t a t ( density ) ) ) +

740 geom_histogram ( data=subset ( s h o r t l i f t , port == ’ Singapore ’ ) , breaks = seq ( 0 , 1 , by

= 0 . 1 ) , f i l l = "green" , alpha = 0 . 2 , aes ( col = " Singapore " ) ) +

741 geom_histogram ( data=subset ( s h o r t l i f t , port == ’Hong Kong ’ ) , breaks = seq ( 0 , 1 , by

= 0 . 1 ) , f i l l = " blue " , alpha = 0 . 2 , aes ( col = "Hong Kong" ) ) + theme_bw( ) +

742 scale _colour_manual( values = c ( " blue " , "green" ) ) +

743 theme( legend . position = c ( 0 . 8 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

744

745 #ALT 2

746

747 ggplot ( s h o r t l i f t , aes ( x=SLScore , f i l l =Port , color = Port ) ) +

748 geom_histogram ( aes ( y = . . density . . * . 1 ) ,

749 alpha =0.35 , position=" i d e n t i t y " , breaks = seq ( 0 , 1 , by = 0 . 1 ) ) +

750 theme( legend . position = c ( 0 . 9 , 0 . 9 5 ) , legend . t i t l e = element_blank ( ) ) +

751 labs ( x=" S h o r t l i f t Score " , y=" Fraction " )

752 }

753 # ============================================================== SCATTER PLOTS

=================================================================================

754

755 ggplot ( data = Sing , aes ( x=density , y=BDRdensity ) ) +

756 geom_point ( s i z e =1 , alpha = 0 . 5 ) + xlim ( c (980 ,992) ) + ylim ( c (980 ,992) )

757

758 l i n e <− data . frame ( x= c (978 , 991.5) , y = c (13 , −0.5) )

759
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760 ggplot ( data = Sing , aes ( x=density , y=deltaDensity ) ) + xlim ( c (978 ,991.5) ) + ylim ( c

(−5 ,13) ) +

761 geom_ l i n e ( data = line , aes ( x=x , y=y ) , col = " red " , s i z e = 1 , l inetype = 2) + geom_

point ( s i z e =1 , alpha = 0 . 5 ) +

762 geom_ hline ( yintercept =0 , col = " blue " , l inetype = 1) + geom_ vl ine ( xintercept =991 ,

l inetype =1 , col = " blue " ) + labs ( x= " Density [ kg/m3] " , y=" Delta density [ kg/

m3] " )

763

764 Sing$reldens <− (991−Sing$BDRdensity ) /(991−Sing$density )

765

766 ggplot ( data=Sing , aes ( x=density , y= reldens ) ) + ylim ( c (−4 ,4) ) +

767 geom_point ( s i z e =1 , alpha = 0 . 5 )

768

769 ggplot ( data = Sing , aes ( x=Date , y=BDRdensity ) ) +

770 geom_point ( s i z e =1 , alpha = 0 . 5 )

771

772

773 plot ( Sing$density ,(991−Sing$BDRdensity ) /(992−Sing$density ) )

774

775 # ============================================================== Results /Data

Analysis Chapter

=================================================================================

776

777 # ============================================================== DIGIT COUNT − https

: / /en . wikipedia . org / wiki /Benford%27s_law

778

779 index <− which ( Sing$Date <= ’2015−12−31 ’ )

780 x<− Sing$BDRdensity [ index ]

781 Date <− Sing$Date [ index ]

782 x<− as . character ( x )

783 x<− substr ( x , 5 , 5 )

784 i <− which ( x== ’ ’ )

785 x [ i ]<− ’ 0 ’

786

787 #data<−data . frame ( d i g i t =as . numeric ( x ) , date = Date , Period = rep ( " Before " , length ( x

) ) )

788 # d i g i td a t a<−data . frame ( d i g i t =seq ( 0 , 9 ) , freq = rep (0 ,10) , Period = rep ( " Before " ,10)

)

789

790 d i g i t d a t a <− data . frame ( d i g i t =c ( seq ( 0 , 9 ) , seq ( 0 , 9 ) ) , freq = rep (0 ,20) , Period = c ( rep

( " Before MFM" ,10) , rep ( " After MFM" ,10) ) )

791

792 for ( i in 0 : 9 ) {

793 d i g i t d a t a $ freq [ i +1] <− length ( which ( x == as . character ( i ) ) ) / length ( x )

794 }

795

796 index <− which ( Sing$Date >= ’2017−01−01 ’ )

797 x<− Sing$BDRdensity [ index ]

798 Date <− Sing$Date [ index ]
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799 x<− as . character ( x )

800 x<− substr ( x , 5 , 5 )

801 i <− which ( x== ’ ’ )

802 x [ i ]<− ’ 0 ’

803

804 length ( which ( x == as . character ( 0 ) ) )

805 length ( which ( x == as . character ( 7 ) ) )

806 length ( which ( x == as . character ( 8 ) ) )

807

808 for ( i in 0 : 9 ) {

809 d i g i t d a t a $ freq [ i +11] <− length ( which ( x == as . character ( i ) ) ) / length ( x )

810 }

811

812 d i g i t d a t a $Period_ f <− f a c t o r ( d i g i t d a t a $Period , l e v e l s = c ( " Before MFM" , " After MFM" )

)

813 d i g i t d a t a $pct <− as . numeric ( format ( round ( d i g i t d a t a $freq , 3) , nsmall = 2) )

814

815 p1 <− ggplot ( digitdata , aes ( d i g i t , freq , f i l l = Period_ f ) ) +

816 geom_bar ( s t a t = " i d e n t i t y " , alpha = 0 . 8 ) +

817 scale _x_continuous ( breaks=seq ( 0 , 9 , 1 ) ) +

818 # scale _y_continuous ( l a b e l s = percent_format ( ) ) +

819 scale _y_continuous ( l a b e l s = scales : : percent_format ( accuracy = 1) ) +

820 face t _ grid ( ~Period_ f ) +

821 labs ( x="Decimal d i g i t of stated density " , y=" Fraction " ) +

822 geom_ t e x t ( aes ( y=freq , l ab el = paste0 ( pct * 100 , " %" ) ) , nudge_y = .019) +

823 theme( legend . position = "none" ) + g g t i t l e ( " Stated bunker density " ) +

824 theme( plot . t i t l e = element_ t e x t ( s i z e =11 , face="bold" ) )

825

826

827 #======================================== TESTED BUNKER DENSITY

============================

828

829 index <− which ( Sing$Date <= ’2015−12−31 ’ )

830 x<− Sing$density [ index ]

831 Date <− Sing$Date [ index ]

832 x<− as . character ( x )

833 x<− substr ( x , 5 , 5 )

834 i <− which ( x== ’ ’ )

835 x [ i ]<− ’ 0 ’

836

837 #data<−data . frame ( d i g i t =as . numeric ( x ) , date = Date , Period = rep ( " Before " , length ( x

) ) )

838 # d i g i td a t a<−data . frame ( d i g i t =seq ( 0 , 9 ) , freq = rep (0 ,10) , Period = rep ( " Before " ,10)

)

839

840 d i g i t d a t a <− data . frame ( d i g i t =c ( seq ( 0 , 9 ) , seq ( 0 , 9 ) ) , freq = rep (0 ,20) , Period = c ( rep

( " Before MFM" ,10) , rep ( " After MFM" ,10) ) )

841

842 for ( i in 0 : 9 ) {

843 d i g i t d a t a $ freq [ i +1] <− length ( which ( x == as . character ( i ) ) ) / length ( x )
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844 }

845

846 index <− which ( Sing$Date >= ’2017−01−01 ’ )

847 x<− Sing$density [ index ]

848 Date <− Sing$Date [ index ]

849 x<− as . character ( x )

850 x<− substr ( x , 5 , 5 )

851 i <− which ( x== ’ ’ )

852 x [ i ]<− ’ 0 ’

853

854 length ( which ( x == as . character ( 0 ) ) )

855 length ( which ( x == as . character ( 7 ) ) )

856 length ( which ( x == as . character ( 8 ) ) )

857

858 for ( i in 0 : 9 ) {

859 d i g i t d a t a $ freq [ i +11] <− length ( which ( x == as . character ( i ) ) ) / length ( x )

860 }

861

862 d i g i t d a t a $Period_ f <− f a c t o r ( d i g i t d a t a $Period , l e v e l s = c ( " Before MFM" , " After MFM" )

)

863 d i g i t d a t a $pct <− as . numeric ( format ( round ( d i g i t d a t a $freq , 3) , nsmall = 2) )

864

865 p2 <− ggplot ( digitdata , aes ( d i g i t , freq , f i l l = Period_ f ) ) +

866 geom_bar ( s t a t = " i d e n t i t y " , alpha = 0 . 8 ) +

867 scale _x_continuous ( breaks=seq ( 0 , 9 , 1 ) ) +

868 # scale _y_continuous ( l a b e l s = percent_format ( ) ) +

869 scale _y_continuous ( l a b e l s = scales : : percent_format ( accuracy = 1) ) +

870 face t _ grid ( ~Period_ f ) +

871 labs ( x="Decimal d i g i t of stated density " , y=" Fraction " ) +

872 geom_ t e x t ( aes ( y=freq , l ab el = paste0 ( pct * 100 , " %" ) ) , nudge_y = .019) +

873 theme( legend . position = "none" ) + g g t i t l e ( " Tested bunker density " ) +

874 theme( plot . t i t l e = element_ t e x t ( face="bold" , s i z e =11) )

875

876

877

878 # =========== LAST AND FIRST MONTH POST MFM

879

880 postmfmdigit <− data . frame ( d i g i t =c ( seq ( 0 , 9 ) , seq ( 0 , 9 ) , seq ( 0 , 9 ) ) , freq = rep (0 ,30) ,

Period = c ( rep ( " January 2017" ,10) , rep ( "August 2017" ,10) , rep ( "March 2018" ,10) ) )

881

882 index <− which ( Sing$Date >= ’2017−01−01 ’& Sing$Date <= ’2017−01−31 ’ )

883 x<− Sing$BDRdensity [ index ]

884 Date <− Sing$Date [ index ]

885 x<− as . character ( x )

886 x<− substr ( x , 5 , 5 )

887 i <− which ( x== ’ ’ )

888 x [ i ]<− ’ 0 ’

889

890 for ( i in 0 : 9 ) {

891 postmfmdigit$ freq [ i +1] <− length ( which ( x == as . character ( i ) ) ) / length ( x )



APPENDIX B. R-SCRIPT 88

892 }

893

894 #================================ 2017 Aug

895 index <− which ( Sing$Date >= ’2017−08−01 ’& Sing$Date <= ’2017−08−31 ’ )

896 x<− Sing$BDRdensity [ index ]

897 Date <− Sing$Date [ index ]

898 x<− as . character ( x )

899 x<− substr ( x , 5 , 5 )

900 i <− which ( x== ’ ’ )

901 x [ i ]<− ’ 0 ’

902

903 for ( i in 0 : 9 ) {

904 postmfmdigit$ freq [ i +11] <− length ( which ( x == as . character ( i ) ) ) / length ( x )

905 }

906 #================= 2017 Aug end

907

908 #================================

909 index <− which ( Sing$Date >= ’2018−03−01 ’ )

910 x<− Sing$BDRdensity [ index ]

911 Date <− Sing$Date [ index ]

912 x<− as . character ( x )

913 x<− substr ( x , 5 , 5 )

914 i <− which ( x== ’ ’ )

915 x [ i ]<− ’ 0 ’

916

917 for ( i in 0 : 9 ) {

918 postmfmdigit$ freq [ i +21] <− length ( which ( x == as . character ( i ) ) ) / length ( x )

919 }

920 #==========

921

922 postmfmdigit$Period_ f <− f a c t o r ( postmfmdigit$Period , l e v e l s = c ( " January 2017" , "

August 2017" , "March 2018" ) )

923 postmfmdigit$pct <− as . numeric ( format ( round ( postmfmdigit$freq , 3) , nsmall = 3) )

924

925

926 p2 <− ggplot ( postmfmdigit , aes ( d i g i t , freq ) ) +

927 geom_bar ( s t a t = " i d e n t i t y " , f i l l ="#00bfc4 " , alpha = 0 . 8 ) +

928 scale _x_continuous ( breaks=seq ( 0 , 9 , 1 ) ) +

929 # scale _y_continuous ( l a b e l s = percent_format ( ) ) +

930 scale _y_continuous ( l a b e l s = scales : : percent_format ( accuracy = 1) ) +

931 face t _ grid ( ~Period_ f ) +

932 labs ( x="Decimal d i g i t of stated density " , y=" Fraction " ) +

933 geom_ t e x t ( aes ( y=freq , l ab el = paste0 ( pct * 100 , " %" ) ) , nudge_y = .019)

934

935 # =========== =========== =========== =========== DIGIT END

936

937

938 # FRACTION OF POSITIVE DELTA DENSITY

939 index <− which ( i s . na ( Sing$deltaDensity ) ) ; i f ( length ( index ) >0) Sing <− Sing[−index , ]

940
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941 index <− which ( Sing$Date< ’2016−01−01 ’ )

942 pre_ sing <− Sing [ index , ]

943

944 index <− which ( Sing$Date>= ’2017−01−01 ’ )

945 post_ sing <− Sing [ index , ]

946

947

948 #Set z−value

949 z <− 1.96

950

951 #PRE MFM

952 n <− nrow( pre_ sing )

953 p_pre <− length ( which ( pre_ sing$deltaDensity >0) ) / n

954 sd <− z * sqrt ( p_pre *(1−p_pre ) / n )

955 c i _pre <− c (p_pre−sd , p_pre+sd )

956

957

958 #POST MFM

959 n <− nrow( post_ sing )

960 p_post <− length ( which ( post_ sing$deltaDensity >0) ) / n

961 sd <− z * sqrt ( p_post *(1−p_post ) / n )

962 c i _post <− c (p_pre−sd , p_pre+sd )

963

964

965 #========================= PRICE COMPARE

=====================================================

966

967

968 hk_ price <− data . frame ( date=ifo380 _ price $Date_hk , price=ifo380 _ price $ Price _hk )

969 sing _ price <− data . frame ( date=ifo380 _ price $Date_sing , price=ifo380 _ price $ Price _ sing

)

970

971 #removal of na l i n e s

972 index <− which ( i s . na ( sing _ price $ price ) ) ; i f ( length ( index ) >0) sing _ price <− sing _

price [−index , ]

973 index <− which ( i s . na ( hk_ price $ price ) ) ; i f ( length ( index ) >0) hk_ price <− hk_

price [−index , ]

974

975 #time ordering

976 hk_ price <− hk_ price [ order ( hk_ price $date ) , ]

977 sing _ price <− sing _ price [ order ( sing _ price $date ) , ]

978

979 price <− merge ( hk_ price , sing _ price , by=" date " , a l l =F)

980 #price2 <− merge ( hk_ price , sing _ price , by="date " , a l l =T)

981 price $ deltaprice <− price $ price . x − price $ price . y

982

983 index <− which ( price $date >= "2014−06−15" & price $date < "2016−01−01" )

984 index2 <− which ( price $date >= "2016−01−01" )

985

986 price1 <− price [ index , ]



APPENDIX B. R-SCRIPT 90

987 price2 <− price [ index2 , ]

988

989 #MULTIPLE LIN REG https : / / stackoverflow .com/ questions /15633714/adding−a−regression−
l ine−on−a−ggplot

990

991 p1 <− ggplot ( price1 , aes ( x=date , y = deltaprice ) ) +

992 geom_ l i n e ( aes ( col = " Price dif ference " ) ) + labs ( x= " Year " , y=" Price dif ference [

USD/mt] " ) +

993 geom_ abline ( intercept = 0 , slope = 0 , col = " red " ) +

994 scale _colour_manual( values = c ( " Black " , "Red" , "Blue" ) ) + theme( legend . position =

c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

995

996 ggplot ( price1 , aes ( date , deltaprice ) ) + s t a t _summary( fun . data=mean_ c l _normal ) +

997 geom_smooth(method= ’lm ’ ) +

998 geom_ l i n e ( )

999

1000 p2 <− ggplot ( price2 , aes ( x=date , y = deltaprice ) ) +

1001 geom_ l i n e ( aes ( col = " Price dif ference " ) ) + labs ( x= " Year " , y=" Price dif ference [

USD/mt] " ) +

1002 geom_ abline ( intercept = 0 , slope = 0 , col = " red " ) +

1003 scale _colour_manual( values = c ( " Black " , "Red" , "Blue" ) ) + theme( legend . position =

c ( 0 . 8 7 , 0 . 9 ) , legend . t i t l e = element_blank ( ) )

1004

1005 ggplot ( price2 [ ind , ] , aes ( date , deltaprice ) ) + s t a t _summary( fun . data=mean_ c l _normal ) +

1006 geom_smooth(method= ’lm ’ ) +

1007 geom_ l i n e ( ) + labs ( x="Time" , y = " Price dif ference [USD/mt] " )

1008

1009 #=========== Scatter Plot

1010

1011 pa <− ggplot ( data = price1 , aes ( x=price . y , y=price . x ) ) + geom_ abline ( intercept = 0 ,

slope = 1 , col = " blue " , s i z e = 1 , l inetype = 2) +

1012 geom_point ( s i z e = 1 , alpha = 0 . 5 ) +

1013 labs ( x = " Singapore [USD] " , y = "Hong Kong [USD] " )

1014

1015 pb <− ggplot ( data = pricelag1 , aes ( x=price . y , y=price . x ) ) + geom_ abline ( intercept =

0 , slope = 1 , col = " blue " , s i z e = 1 , l inetype = 2) +

1016 geom_point ( s i z e = 1 , alpha = 0 . 5 ) +

1017 labs ( x = " Singapore [USD] " , y = "Hong Kong [USD] " )

1018

1019 pc <− ggplot ( data = price2 , aes ( x=price . y , y=price . x ) ) + geom_ abline ( intercept = 0 ,

slope = 1 , col = " blue " , s i z e = 1 , l inetype = 2) +

1020 geom_point ( s i z e = 1 , alpha = 0 . 5 ) +

1021 labs ( x = " Singapore [USD] " , y = "Hong Kong [USD] " )

1022

1023 pd <− ggplot ( data = pricelag2 , aes ( x=price . y , y=price . x ) ) + geom_ abline ( intercept =

0 , slope = 1 , col = " blue " , s i z e = 1 , l inetype = 2) +

1024 geom_point ( s i z e = 1 , alpha = 0 . 5 ) +

1025 labs ( x = " Singapore [USD] " , y = "Hong Kong [USD] " )

1026

1027 multiplot ( pa , pc , pb , pd , cols = 2)
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1028 #=========== Scatter Plot

1029

1030

1031 # ============================================================ DELTA DENSITY

Analysis ============================================================

1032

1033

1034 n_pre <− length ( which ( ! i s . na ( Sing$deltaDensity [ Sing$Date < "2016−01−01" ] ) ) )

1035 n_post <− length ( which ( ! i s . na ( Sing$deltaDensity [ Sing$Date >= "2017−01−01" ] ) ) )

1036 m_post <− mean( Sing$deltaDensity [ Sing$Date >= "2017−01−01" ] , na .rm = T)

1037 m_pre <− mean( Sing$deltaDensity [ Sing$Date < "2016−01−01" ] , na .rm = T)

1038 sd_pre <− sd ( Sing$deltaDensity [ Sing$Date >= "2017−01−01" ] , na .rm = T)

1039 sd_post <− sd ( Sing$deltaDensity [ Sing$Date < "2016−01−01" ] , na .rm = T)

1040

1041 # m_pre−m_post

1042

1043 # 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post )

1044

1045 CI_pre <− c ( round (m_pre − 1.96 * sqrt ( sd_pre^2/n_pre ) , 3 ) , round (m_pre + 1.96 *
sqrt ( sd_pre^2/n_pre ) , 3 ) )

1046 CI_post <− c ( round (m_post − 1.96 * sqrt ( sd_post^2/n_post ) , 3 ) , round (m_post +

1.96 * sqrt ( sd_post^2/n_post ) , 3 ) )

1047

1048

1049 conf_ i n t e r v a l <− c ( round (m_pre − 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) , round

(m_pre + 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) )

1050 conf_ i n t e r v a l <− c (m, sort ( conf_ i n t e r v a l ) )

1051

1052 densdistr <− Sing [ which ( Sing$Date >= "2017−01−01" ) , ]

1053 densdistr $Period <− "Pre−MFM"

1054 y <− Sing [ which ( Sing$Date < "2016−01−01" ) , ]

1055 y$Period <− " Post−MFM"

1056 densdistr <− rbind ( densdistr , y )

1057 densdistr <− densdistr [ which ( ! i s . na ( densdistr $density ) ) , ]

1058

1059

1060 # q u a r t i l e function

1061 quart <− function ( x ) {

1062 x <− sort ( x )

1063 n <− length ( x )

1064 m <− (n+1) /2

1065 i f ( f l o o r (m) ! = m) {

1066 l <− m−1/ 2 ; u <− m+1/2

1067 } e lse {

1068 l <− m−1; u <− m+1

1069 }

1070 c (Q1=median( x [ 1 : l ] ) , Q3=median( x [u : n ] ) )

1071 }

1072 median( Sing$density [ which ( Sing$Date >= "2017−01−01" ) ] )

1073 qrt <− quart ( Sing$density [ which ( Sing$Date >= "2017−01−01" ) ] )
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1074

1075 ggplot ( densdistr , aes ( x=density , f i l l = Period ) ) +

1076 geom_histogram ( breaks = seq (98 6 ,99 1 , .1) , alpha =0.75)

1077

1078

1079 ggplot ( plotframe , aes ( densto , f i l l = Period ) ) +

1080 geom_bar ( s t a t =" i d e n t i t y " , aes ( y=mean) , position = posn_d , alpha = . 6 ) +

1081 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1082 labs ( x=" Density [ kg/m3] " , y="Mean of delta density [ kg/m3] " ) +

1083 scale _x_continuous ( breaks = seq (988 , 991 , by = . 2 ) )

1084 # a l t 2

1085 ggplot ( plotframe , aes ( densto , f i l l = Period ) ) +

1086 geom_bar ( s t a t =" i d e n t i t y " , aes ( y=mean) , alpha = . 5 ) +

1087 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1088 labs ( x=" Density [ kg/m3] " , y="Mean of delta density [ kg/m3] " )

1089

1090

1091

1092 #======================================= Mean delta density , post mfm vs pre mfm

=======================================

1093

1094 Fuel <− Sing

1095

1096 deltaDens <− function ( Fuel , densityRange =c ( 9 8 9 . 5 , 9 8 9 . 6 ) ) {

1097 i _post <− which ( Fuel$Date >= ’2017−01−01 ’ )

1098 i _pre <− which ( Fuel$Date < ’2016−01−01 ’ )

1099 d_post <− Fuel$density [ i _post ]

1100 d_pre <− Fuel$density [ i _pre ]

1101 dd_post <− Fuel$deltaDensity [ i _post ]

1102 dd_pre <− Fuel$deltaDensity [ i _pre ]

1103 x <− data . frame (d=c (d_pre , d_post ) ,dd=c (dd_pre , dd_post ) , ind=c ( rep ( ’ pre ’ , length (dd_

pre ) ) , rep ( ’ post ’ , length (dd_post ) ) ) )

1104 x <− x [ order ( x$d) , ]

1105 x <− x [ which ( ! i s . na ( x$d) ) , ]

1106 x <− x [ which ( ! i s . na ( x$dd) ) , ]

1107 y <− x [ which ( x$d> densityRange [ 1 ] & x$d<=densityRange [ 2 ] ) , ]

1108 n_pre <− length ( y$dd[ y$ind== ’ pre ’ ] )

1109 n_post <− length ( y$dd[ y$ind== ’ post ’ ] )

1110 m_pre <− mean( y$dd[ y$ind== ’ pre ’ ] )

1111 m_post <− mean( y$dd[ y$ind== ’ post ’ ] )

1112 sd_pre <− sd ( y$dd[ y$ind== ’ pre ’ ] )

1113 sd_post <− sd ( y$dd[ y$ind== ’ post ’ ] )

1114

1115 # m_pre−m_post

1116 # 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post )

1117 m <− m_post−m_pre

1118 #conf_ i n t e r v a l <− c ( round (m + 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) , round (m

− 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) )

1119 conf_ i n t e r v a l <− c (m_pre ,m_post , sd_pre , sd_post , n_pre , n_post )

1120 return ( conf_ i n t e r v a l )
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1121 }

1122

1123 dRange =c (988 ,991)

1124

1125 Fuel <− Fuel [ Fuel$density > dRange [ 1 ] & Fuel$density <= dRange [ 2 ] , ]

1126 Fuel$density <− as . numeric ( Fuel$density )

1127 Fuel$deltaDensity <− as . numeric ( Fuel$deltaDensity )

1128 r e s u l t <− NULL

1129 bin <− seq ( dRange [ 1 ] , dRange [ 2 ] , 0 . 1 )

1130 for ( i in 1 : ( length ( bin )−1) ) r e s u l t <− rbind ( result , c ( bin [ i ] , bin [ i +1] , deltaDens (

Fuel , densityRange = c ( bin [ i ] , bin [ i +1]) ) ) )

1131 r e s u l t <− data . frame ( r e s u l t )

1132 names( r e s u l t ) <− c ( ’densFrom ’ , ’densTo ’ , ’m_pre ’ , ’m_post ’ , ’ sd_pre ’ , ’ sd_post ’ , ’n_pre ’ , ’

n_post ’ )

1133

1134 plotframe <− data . frame ( densto = r e s u l t $densTo−.05 , mean = r e s u l t $m_post , Period = "

Post−MFM delta density " )

1135 x <− data . frame ( densto = r e s u l t $densTo−.05 , mean = r e s u l t $m_pre , Period =

"Pre−MFM delta density " )

1136 plotframe <− rbind ( plotframe , x )

1137

1138 posn_d <− position _dodge ( 0 . 0 3 )

1139

1140 ggplot ( plotframe , aes ( densto , f i l l = Period ) ) +

1141 geom_bar ( s t a t =" i d e n t i t y " , aes ( y=mean) , position = posn_d , alpha = . 6 ) +

1142 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1143 labs ( x=" Density [ kg/m3] " , y="Mean of delta density [ kg/m3] " ) +

1144 scale _x_continuous ( breaks = seq (988 , 991 , by = . 2 ) )

1145

1146 ggplot ( plotframe , aes ( densto , f i l l = Period ) ) +

1147 geom_bar ( s t a t =" i d e n t i t y " , aes ( y=mean) , position = posn_d , alpha = . 6 ) +

1148 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1149 labs ( x=" Density [ kg/m3] " , y="Mean of delta density [ kg/m3] " ) +

1150 scale _x_continuous ( breaks = seq (988 , 991 , by = . 2 ) )

1151

1152 # a l t 2 ( brukes ikke )

1153 ggplot ( plotframe , aes ( densto , f i l l = Period ) ) +

1154 geom_bar ( s t a t =" i d e n t i t y " , aes ( y=mean) , alpha = . 5 ) +

1155 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1156 labs ( x=" Density [ kg/m3] " , y="Mean of delta density [ kg/m3] " )

1157

1158

1159 # ========================================== Density histogram , pre−MFM vs post−MFM

============================================================

1160

1161 #Sing

1162 densdistr <− Sing [ which ( Sing$Date >= "2017−01−01" ) , ]

1163 densdistr $Period <− " Post−MFM"

1164 y <− Sing [ which ( Sing$Date < "2016−01−01" ) , ]

1165 y$Period <− "Pre−MFM"
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1166

1167 #HK

1168 densdistr <− HK[ which (HK$Date >= "2017−01−01" ) , ]

1169 densdistr $Period <− " Post−MFM"

1170 y <− HK[ which (HK$Date < "2016−01−01" ) , ]

1171 y$Period <− "Pre−MFM"

1172

1173

1174

1175

1176

1177 densdistr <− rbind ( densdistr , y )

1178 densdistr <− densdistr [ which ( ! i s . na ( densdistr $density ) ) , ]

1179 densdistr <− densdistr [ which ( ! i s . na ( densdistr $deltaDensity ) ) , ]

1180 index <− which ( i s . na ( densdistr $density ) ) ; i f ( length ( index ) >0) densdistr <− densdistr

[−index , ]

1181 index <− which ( i s . na ( densdistr $deltaDensity ) ) ; i f ( length ( index ) >0) densdistr <−
densdistr [−index , ]

1182

1183 i _pre <− which ( densdistr $Date < ’2016−01−01 ’ )

1184 i _post <− which ( densdistr $Date >= ’2017−01−01 ’ )

1185

1186 # t _ t e s t data

1187 dd_pre <− densdistr $deltaDensity [ i _pre ]

1188 dd_post <− densdistr $deltaDensity [ i _post ]

1189

1190

1191 m_pre <− mean( densdistr $deltaDensity [ i _pre ] )

1192 m_post <− mean( densdistr $deltaDensity [ i _post ] )

1193

1194 md_pre <− mean( densdistr $density [ i _pre ] )

1195 md_post <− mean( densdistr $density [ i _post ] )

1196

1197

1198 mean( densdistr $deltaDensity )

1199

1200 # delta density distr ibution , post−MFM vs pre−MFM

1201

1202 ggplot ( densdistr ) +

1203 geom_histogram ( data = densdistr [ i _pre , ] , breaks = seq ( −4 ,6 ,0.5) , aes ( x=deltaDensity

, y = . . density . . ) , alpha = . 1 , f i l l = " red " ) +

1204 geom_histogram ( data = densdistr [ i _post , ] , breaks = seq ( −4 ,6 ,0.5) , aes ( x=

deltaDensity , y = . . density . . ) , alpha = . 1 , f i l l = " blue " ) +

1205 geom_ density ( data = densdistr [ i _pre , ] , col = " red " , aes ( x=deltaDensity , y = . .

density . . ) ) +

1206 geom_ density ( data = densdistr [ i _post , ] , col = " blue " , aes ( x=deltaDensity , y = . .

density . . ) ) +

1207 labs ( x=" Delta Density [ kg/m3] " , y=" Fraction " ) +

1208 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1209 xlim ( c (−4 ,6) ) +geom_ vl ine ( xintercept=m_pre , col =" red " , l inetype =2 , alpha= 0 . 5 ) +
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geom_ vl ine ( xintercept=m_post , col =" blue " , l inetype =2 , alpha= 0 . 5 )

1210

1211

1212 #Density Distribution , post−MFM vs pre−MFM

1213

1214 ggplot ( densdistr ) +

1215 geom_histogram ( data = densdistr [ i _pre , ] , breaks = seq (980 ,992 ,0.5) , aes ( x=density ,

y = . . density . . ) , alpha = . 1 , f i l l = " red " ) +

1216 geom_histogram ( data = densdistr [ i _post , ] , breaks = seq (980 ,992 ,0.5) , aes ( x=density ,

y = . . density . . ) , alpha = . 1 , f i l l = " blue " ) +

1217 geom_ density ( data = densdistr [ i _pre , ] , col = " red " , aes ( x=density , y = . . density

. . ) ) +

1218 geom_ density ( data = densdistr [ i _post , ] , col = " blue " , aes ( x=density , y = . .

density . . ) ) +

1219 labs ( x=" Density [ kg/m3] " , y=" Fraction " ) +

1220 xlim ( c (980 ,993) ) +geom_ vl ine ( xintercept=md_pre , col =" red " , l inetype =2 , alpha=

0 . 5 ) + geom_ vl ine ( xintercept=md_post , col =" blue " , l inetype =2 , alpha= 0 . 5 )

1221

1222

1223

1224 ggplot ( densdistr , aes ( x=density , f i l l = Period ) ) +

1225 geom_histogram ( breaks = seq (98 8 ,99 1 , .1) , alpha =0.75) +

1226 theme( legend . position = c ( 0 . 9 , 0 . 9 ) , legend . t i t l e = element_blank ( ) ) +

1227 labs ( x=" Density [ kg/m3] " , y="Count" ) + geom_ abline ( intercept = 100 , l inetype = 2 ,

slope = 0 , col = " black " ) # +

1228 #geom_ vl ine ( xintercept = m_pre , col = "#F8766D" , l inetype =2) + geom_ vl ine (

xintercept = m_post , col = "#00 bfc4 " , l inetype =2)

1229

1230

1231

1232 #==================Histogram binwise

1233 ggplot ( densdistr ) +

1234 geom_histogram ( data = densdistr [ i _pre , ] , breaks = seq (988 ,991 ,0.1) , aes ( x=density ,

y = . . density . . ) , alpha = . 1 , f i l l = " red " , col = " red " ) +

1235 geom_histogram ( data = densdistr [ i _post , ] , breaks = seq (988 ,991 ,0.1) , aes ( x=density ,

y = . . density . . ) , alpha = . 1 , f i l l = " blue " ) +

1236 #geom_ density ( data = densdistr [ i _pre , ] , col = "red " , aes ( x=density , y = . . density

. . ) ) +

1237 #geom_ density ( data = densdistr [ i _post , ] , col = " blue " , aes ( x=density , y = . .

density . . ) ) +

1238 labs ( x=" Density [ kg/m3] " , y=" Fraction " ) +

1239 xlim ( c (988 ,991) ) # +geom_ vl ine ( xintercept=md_pre , col ="red " , l inetype =2 , alpha=

0 . 5 ) + geom_ vl ine ( xintercept=md_post , col ="blue " , l inetype =2 , alpha= 0 . 5 )

1240

1241 HKhistogram<−ggplot ( densdistr ) +

1242 geom_histogram ( data = densdistr [ i _pre , ] , breaks = seq (988 ,991 ,0.1) , aes ( x=density ) ,

alpha = . 2 , f i l l = " red " ) +

1243 geom_histogram ( data = densdistr [ i _post , ] , breaks = seq (988 ,991 ,0.1) , aes ( x=density )

, alpha = . 4 , f i l l = " blue " , col=" blue " ) +

1244 #geom_ density ( data = densdistr [ i _pre , ] , col = "red " , aes ( x=density , y = . . density
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. . ) ) +

1245 #geom_ density ( data = densdistr [ i _post , ] , col = " blue " , aes ( x=density , y = . .

density . . ) ) +

1246 labs ( x=" Density [ kg/m3] " , y="Count (Hong Kong) " ) +

1247 xlim ( c (988 ,991) ) +geom_ hline ( yintercept =30 , l inetype =2 , alpha= 0 . 5 ) #+ geom_ vl ine (

xintercept=md_post , col ="blue " , l inetype =2 , alpha= 0 . 5 )

1248

1249 multiplot ( Singhistogram , HKhistogram , cols =1)

1250

1251

1252

B.2 Running Tests

1

2 setwd ( "~/R/VPS_Fuel_ Analysis " )

3 pdf ( paste0 ( ’HFOSGSIN_HK. pdf ’ ) )

4

5 plotFulePricesWW <− function ( ) {

6 # load ( ’ ~/R/ csv /VPS/FuelPriceHFO380WW . RData ’ ) #http : / /www. bunkerindex .com/ prices /

b i x f r e e _ 1712.php? priceindex _ id=2

7 FuelPriceHFO380 <− read . csv2 ( " daniel _wu_ bix _wwfuelprice_2018−12−20.csv " , sep

=" ; " , header = T)

8 FuelPriceHFO380$Date <− as . Date ( FuelPriceHFO380$Date , format= ’%d.%m.%Y ’ , tz= ’UTC’ )

9 names( FuelPriceHFO380 ) [ 2 ] <− ’ IFH380_ Price ’

10

11 load ( ’~/R/ csv /VPS/rawOilBrentEurope . RData ’ ) #https : / / fred . s t l o u i s f e d . org / s e r i e s /

DCOILBRENTEU

12 names( o i l P r i c e ) [ 2 ] <− ’Crude_ Price ’

13 z <− merge ( o i l P r i c e , FuelPriceHFO380 , by= ’ Date ’ , a l l =T)

14 #z <− z [ which ( ! i s . na ( z$ Price _Bunker_USD) ) , ]

15 names( z ) [ c ( 2 , 3 ) ] <−c ( ’ Price _Crude_USD’ , ’ Price _Bunker_USD’ )

16 t x t <− paste ( ’ Normalized prices : HFO380−Bunker ( blue ) and Crude o i l ( Brent Europe ,

red ) ’ )

17

18 #normized prices

19 plot ( FuelPriceHFO380$Date , ( FuelPriceHFO380$IFH380_ Price−min( FuelPriceHFO380$IFH380

_ Price , na .rm=T) ) /max( ( FuelPriceHFO380$IFH380_ Price−min( FuelPriceHFO380$IFH380_

Price , na .rm=T) ) ,na .rm=T) ,pch=19 , cex =0.4 , t = ’b ’ , col= ’ blue ’ ,main=txt , xlab= ’ ’ , ylab= ’

r e l ’ )

20 points ( o i l P r i c e $Date , ( o i l P r i c e $Crude_ Price−min( o i l P r i c e $Crude_ Price , na .rm=T) ) /max

( ( o i l P r i c e $Crude_ Price−min( o i l P r i c e $Crude_ Price , na .rm=T) ) ,na .rm=T) ,pch=19 , cex

=0.4 , t = ’b ’ , col= ’ red ’ )

21 grid (NULL,NULL)

22 maxHFO <− max( FuelPriceHFO380$IFH380_ Price , na .rm=T)

23 minHFO <− min( FuelPriceHFO380$IFH380_ Price , na .rm=T)

24

25 maxCrude <− max( o i l P r i c e $Crude_ Price , na .rm=T)
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26 minCrude <− min( o i l P r i c e $Crude_ Price , na .rm=T)

27 mintxt <− paste ( ’Min : HFO= ’ ,minHFO, ’ $ ’ , ’ \nCrude= ’ ,minCrude , ’ $ ’ , sep= ’ ’ )

28 maxtxt <− paste ( ’Max: HFO= ’ ,maxHFO, ’ $ ’ , ’ \nCrude= ’ ,maxCrude , ’ $ ’ , sep= ’ ’ )

29 t e x t (max( FuelPriceHFO380$Date ) , 0 . 9 , maxtxt , adj =1)

30 t e x t (min( FuelPriceHFO380$Date ) , 0 . 1 , mintxt , adj =0)

31 l i n e s ( c (min( FuelPriceHFO380$Date ) ,max( FuelPriceHFO380$Date ) ) , c ( 1 , 1 ) , col= ’ grey ’ , l t y

=2)

32 l i n e s ( c (min( FuelPriceHFO380$Date ) ,max( FuelPriceHFO380$Date ) ) , c ( 0 , 0 ) , col= ’ grey ’ , l t y

=2)

33

34

35 # Bunk vs crude

36 t x t <− ’Crude vs Bunker prices ’

37 plot ( z$ Price _Crude_USD, z$ Price _Bunker_USD, pch=19 , cex =0.4 , t = ’b ’ , col= ’ orange ’ ,main=

txt , xlab= ’Crude [ $ ] ’ , ylab= ’HFO30 [ $ ] ’ )

38 grid (NULL,NULL)

39

40 # f r a c t i o n

41 z$ f r a c t <− z$ Price _Bunker_USD/z$ Price _Crude_USD

42 t x t <− paste ( ’ Relationship between Bunker and Crude prices ( Bunker$ = f a c t o r *
Crude$ ) ’ )

43 plot ( z$Date , z$ f r a c t , pch=19 , cex =0.4 , t = ’b ’ , col= ’ skyblue ’ , ylab= ’ Bunker/Crude ’ , xlab= ’ ’

,main= t x t )

44 grid (NULL,NULL)

45

46 return ( z )

47 }

48 wwprice <− plotFulePricesWW ( )

49 bunkerPrice <− function ( wwprice ) {

50 price _ ifo380 <− read . csv ( "~/R/VPS_Fuel_ Analysis / price _ ifo380 . csv " , sep= ’ ; ’ )

51 price _ ifo380 $Date_hk <− as . POSIXct ( price _ ifo380 $Date_hk , format= ’%d.%m.%Y ’ , tz= ’

UTC’ )

52 price _ ifo380 $Date_ sing <− as . POSIXct ( price _ ifo380 $Date_sing , format= ’%d.%m.%Y ’ , tz= ’

UTC’ )

53

54 sing <− price _ ifo380 [ , c ( 1 , 2 ) ] ; names( sing )<−c ( ’ Date ’ , ’ Sing ’ )

55 hk <− price _ ifo380 [ , c ( 3 , 4 ) ] ; names( hk ) <−c ( ’ Date ’ , ’HK’ )

56

57 index <− which ( ! i s . na ( sing$Date ) ) ; sing <− sing [ index , ]

58 index <− which ( ! i s . na ( sing$Sing ) ) ; sing <− sing [ index , ]

59

60 index <− which ( ! i s . na ( hk$Date ) ) ; hk <− hk [ index , ]

61 index <− which ( ! i s . na ( hk$HK) ) ; hk <− hk [ index , ]

62

63 price <− merge ( sing , hk , by= ’ Date ’ )

64 price $Date <− as . Date ( price $Date )

65 price <− merge ( price , wwprice , by= ’ Date ’ , a l l =T)

66 price $ delta <− price $HK−price $Sing

67

68 plot ( price $Date , price $HK, main= ’HK ( black ) , Sing ( blue ) , WW ( orange ) IFO price ’ , ylab=
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’ $ ’ , xlab= ’ ’ , t = ’b ’ ,pch=19 , cex =0.3) ; grid (NULL,NULL)

69 points ( price $Date , price $Sing , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ )

70 points ( price $Date , price $ Price _Bunker_USD, t = ’b ’ ,pch=19 , cex =0.3 , col= ’ orange ’ )

71

72 price $WWSG <− price $ Price _Bunker_USD−price $Sing

73 price $WWHK <− price $ Price _Bunker_USD−price $HK

74 plot ( price $Date , price $WWSG, t = ’b ’ ,pch=19 , cex =.4 , col= ’ blue ’ , ylab= ’ d i f f in $ ’ ,

75 ylim=range ( price $WWSG, price $WWHK, na .rm=T) ,main= ’ Price dif ference WW−SG ( blue )

and WW−HK ( orange ) ’ )

76 points ( price $Date , price $WWHK, t = ’b ’ ,pch=19 , cex =.4 , col= ’ orange ’ )

77 grid (NULL,NULL)

78

79 plot ( price $Date [ price $Date> ’2017−01−01 ’ ] , price $WWSG[ price $Date> ’2017−01−01 ’ ] , t = ’b ’ ,

pch=19 , cex =.4 , ylab= ’ d i f f in $ ’ , col= ’ blue ’ , ylim=range ( price $WWSG[ price $Date> ’

2017−01−01 ’ ] , price $WWHK[ price $Date> ’2017−01−01 ’ ] , na .rm=T) ,main= ’ Price dif ference

WW−SG ( blue ) and WW−HK ( orange ) ’ )

80 points ( price $Date [ price $Date> ’2017−01−01 ’ ] , price $WWHK[ price $Date> ’2017−01−01 ’ ] , t = ’b ’

,pch=19 , cex =.4 , col= ’ orange ’ )

81 grid (NULL,NULL)

82

83 price $diffHKSG <− price $WWHK−price $WWSG

84 plot ( price $Date [ price $Date> ’2017−01−01 ’ ] , price $diffHKSG [ price $Date> ’2017−01−01 ’ ] , t = ’

b ’ ,pch=19 , cex =.4 , ylab= ’ d i f f in $ ’ , col= ’ blue ’ ,main= ’ (WW−HK) − (WW−SG) ’ )

85 abline ( 0 , 0 , col= ’ red ’ , l t y =2)

86 grid (NULL,NULL)

87

88

89 plot ( price $Date , price $delta , main= ’HK−Sing price dif ference ’ , ylab= ’ $ ’ , xlab= ’ ’ , t = ’b ’ ,

pch=19 , cex =0.3 , col= ’ blue ’ ) ; grid (NULL,NULL)

90 abline ( 0 , 0 , col= ’ red ’ )

91

92 par (mfrow=c ( 1 , 2 ) )

93 i _const <− which ( price $Date>= ’2013−04−15 ’ & price $Date< ’2014−08−01 ’ & ! i s . na ( price $

delta ) )

94 plot ( price $Date [ i _const ] , price $Sing [ i _const ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ , ylab= ’

price in SGSIN [ $ ] ’ ,main= ’ Near constant price regime ’ ) ; grid (NULL,NULL) ; abline

( 0 , 0 )

95

96 plot ( price $Date [ i _const ] , price $ delta [ i _const ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ , ylab= ’

price d i f f [ $ ] ’ ,main= ’ Near constant price regime ’ ) ; grid (NULL,NULL) ; abline ( 0 , 0 )

97 z <− lm( price $ delta [ i _const ] ~ price $Date [ i _const ] )

98 l i n e s ( price $Date [ i _const ] , f i t t e d ( z ) , col= ’ red ’ , l t y =2)

99 summary( z )

100 par (mfrow=c ( 1 , 1 ) )

101

102

103 par (mfrow=c ( 1 , 2 ) )

104 i _decrease <− which ( price $Date>= ’2014−09−01 ’ & price $Date< ’2016−01−01 ’ & ! i s . na (

price $ delta ) )

105 plot ( price $Date [ i _decrease ] , price $Sing [ i _decrease ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ ,
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ylab= ’ price in SGSIN [ $ ] ’ ,main= ’ Decreasing price regime ’ ) ; grid (NULL,NULL) ; abline

( 0 , 0 )

106 plot ( price $Date [ i _decrease ] , price $ delta [ i _decrease ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ ,

ylab= ’ price d i f f [ $ ] ’ ,main= ’ Decreasing price regime ’ ) ; grid (NULL,NULL) ; abline

( 0 , 0 )

107 z <− lm( price $ delta [ i _decrease ] ~ price $Date [ i _decrease ] )

108 l i n e s ( price $Date [ i _decrease ] , f i t t e d ( z ) , col= ’ darkgreen ’ , l t y =2)

109 summary( z )

110 par (mfrow=c ( 1 , 1 ) )

111 d <−price $ delta [ i _decrease ] − f i t t e d (lm( price $ delta [ i _decrease ] ~ price $Date [ i _

decrease ] ) )

112 p <− price $Sing [ i _decrease ] − f i t t e d (lm( price $Sing [ i _decrease ] ~ price $Date [ i _

decrease ] ) )

113

114

115 par (mfrow=c ( 1 , 2 ) )

116 i _ increase <− which ( price $Date>= ’2016−01−01 ’ & ! i s . na ( price $Sing ) )

117 plot ( price $Date [ i _ increase ] , price $Sing [ i _ increase ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ ,

ylab= ’ price [ $ ] ’ ,main= ’ Increasing price regime ’ ) ; grid (NULL,NULL) ; abline ( 0 , 0 )

118 plot ( price $Date [ i _ increase ] , price $ delta [ i _ increase ] , t = ’b ’ ,pch=19 , cex =0.3 , col= ’ blue ’ ,

ylab= ’ price [ $ ] ’ ,main= ’ Increasing price regime ’ ) ; grid (NULL,NULL) ; abline ( 0 , 0 )

119 z <− lm( price $ delta [ i _ increase ] ~ price $Date [ i _ increase ] )

120 l i n e s ( price $Date [ i _ increase ] , f i t t e d ( z ) , col= ’ red ’ , l t y =2)

121 summary( z )

122 par (mfrow=c ( 1 , 1 ) )

123

124

125

126 return ( price )

127 }

128 price <− bunkerPrice ( wwprice )

129

130

131 HFO380_SGSIN <− read . csv ( "HFO380_SGSIN . csv " , str ingsAsFactors = F)

132 HFO380_HKHKG <− read . csv ( "HFO380_HKHKG. csv " , str ingsAsFactors = F)

133

134 # delta − density

135 Fuel_comparison <− function ( Fuel , dRange =c (988 ,991) , t x t = ’XXX ’ , txtparameter= ’

deltaDensity ’ , H1= ’dd_ i s _ l e s s ’ ) {

136 deltaDens_com <− function ( Fuel , densityRange =c ( 9 8 9 . 5 , 9 8 9 . 6 ) , para =txtparameter ) {

137 i _post <− which ( Fuel$Date >= ’2017−01−01 ’ )

138 i _pre <− which ( Fuel$Date < ’2016−01−01 ’ )

139 d_post <− Fuel$density [ i _post ]

140 d_pre <− Fuel$density [ i _pre ]

141 dd_post <− Fuel [ i _post , which (names( Fuel ) == para ) ]

142 dd_pre <− Fuel [ i _pre , which (names( Fuel ) == para ) ]

143 x <− data . frame (d=c (d_pre , d_post ) ,dd=c (dd_pre , dd_post ) , ind=c ( rep ( ’ pre ’ , length (

dd_pre ) ) , rep ( ’ post ’ , length (dd_post ) ) ) )

144 x <− x [ order ( x$d) , ]

145 x <− x [ which ( ! i s . na ( x$d) ) , ]
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146 x <− x [ which ( ! i s . na ( x$dd) ) , ]

147

148 y <− x [ which ( x$d> densityRange [ 1 ] & x$d<=densityRange [ 2 ] ) , ]

149 dd_pre <− y$dd[ y$ind== ’ pre ’ ]

150 dd_post <− y$dd[ y$ind== ’ post ’ ]

151 n_pre <− length (dd_pre )

152 n_post <− length (dd_post )

153

154 m_pre <− mean(dd_pre )

155 m_post <− mean(dd_post )

156

157 sd_pre <− sd (dd_pre )

158 sd_post <− sd (dd_post )

159 # m <− m_post−m_pre

160 # conf_ i n t e r v a l <− c ( round (m + 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) , round

(m − 1.96 * sqrt ( sd_pre^2/n_pre+sd_pre^2/n_post ) , 3 ) )

161 # conf_ i n t e r v a l <− sort ( conf_ i n t e r v a l )

162 tTest <− t . t e s t (dd_post , dd_pre )

163 conf_ i n t e r v a l <− tTest $conf . i n t

164 m <− d i f f ( rev ( tTest $estimate ) )

165

166 # wilcoxson t e s t of dif ference in mean

167 i f (H1== ’dd_ i s _ l e s s ’ ) H1= ’ l e s s ’ e lse i f (H1== ’dd_ i s _ greater ’ ) H1= ’ greater ’ e lse H1

="two . sided "

168 dat <− data . frame ( allData = c (dd_post , dd_pre ) , dataClasses = c ( rep ( " post " ,

length (dd_post ) ) , rep ( "pre" , length (dd_pre ) ) ) )

169 i f ( sd_pre==0 & sd_post ==0) {

170 W_diffInDD <− round (m_post−m_pre , 3 )

171 W_ confInt <− rep (W_diffInDD , 2 )

172 } e lse {

173 W <− s t a t s : : wilcox . t e s t ( allData ~ dataClasses , data = dat , conf . i n t = T ,

correct = T , exact = F , conf . l e v e l = . 9 5 ) # , a l t e r n a t i v e =H1)

174 W_diffInDD <− round (W$estimate , 3 )

175 W_ confInt <− round (W$conf . int , 3 )

176 }

177

178 #variance t e s t

179 p_homogenVarianceTest <− f l i g n e r . t e s t ( x=y$dd , g=y$ind ) $p . value #http : / /www.

sthda .com/ english / wiki /compare−multiple−sample−variances−in−r

180 var _post__ var _pre <− sd_post−sd_pre

181

182 #Normality t e s t

183 i f ( sd_pre==0 & sd_post ==0) {

184 p_shapiroNorm_pre <− 1

185 p_shapiroNorm_post <−1

186 } e lse {

187 p_shapiroNorm_pre <− shapiro . t e s t ( y$dd[ y$ind== ’ pre ’ ] ) $p . value #http : / /www

. sthda .com/ english / wiki / normality−test−in−r

188 p_shapiroNorm_post <− shapiro . t e s t (dd_post ) $p . value

189 }
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190

191 i f ( length ( grep ( ’REPORT ’ , para ) ==1) ) {

192 p_pre <− length ( which (dd_pre >0.1) ) /n_pre

193 p_post <− length ( which (dd_post >0.1) ) /n_post

194 p_ diffConf <− 1.96 * sqrt (p_pre *(1−p_pre ) /n_pre + p_post *(1−p_post ) /n_post )

195

196 p_ d i f f <− p_post−p_pre

197 p_pooled <− ( length ( which (dd_pre >0.1) ) + length ( which (dd_post >0.1) ) ) / (n_

pre+n_post )

198 Z <− (p_ d i f f ) / ( sqrt (p_pooled *(1−p_pooled ) ) * sqrt (1 /n_pre +1/n_post ) )

199 i f ( i s . nan(Z) ) Z <− 0

200 #http : / /www. sthda .com/ english / wiki /two−proportions−z−test−in−r

201 f r a c t _ d i f f <− p_ d i f f

202

203 } e lse {

204 f r a c t _ d i f f <− NULL

205 p_ diffConf <− NULL

206 }

207

208 conf_ i n t e r v a l <− c (m, conf_ i nt e r v al , f r a c t _ d i f f , p_ diffConf ,W_diffInDD ,W_ confInt , p

_homogenVarianceTest , var _post__ var _pre , p_shapiroNorm_pre , p_shapiroNorm_post )

209

210 return ( conf_ i n t e r v a l )

211 }

212

213 Fuel$density <− as . numeric ( Fuel$density )

214 Fuel$deltaDensity <− as . numeric ( Fuel$deltaDensity )

215

216

217

218 #NAive approach in dd

219 preDD <− na . omit ( Fuel$deltaDensity [ Fuel$Date< ’2016−01−01 ’& Fuel$deltaDensity >−2 &

Fuel$deltaDensity <6] )

220 postDD <− na . omit ( Fuel$deltaDensity [ Fuel$Date>= ’2017−01−01 ’& Fuel$deltaDensity >−10

& Fuel$deltaDensity <6])

221 pred <− density (preDD)

222 postd <− density (postDD)

223 plot ( pred , col= ’ blue ’ , lwd=2 , ylab= ’ ’ ,main=paste0 ( txt , ’ : Density dif ference \npost

( >=2017 , red ) and pre ( <2016 , blue ) ’ ) , xlab= ’ density dif ference [ kg/m^3] ’ )

224 #polygon ( pred , col ="red " , border="blue " )

225 l i n e s ( postd , col= ’ red ’ , lwd=2)

226 #polygon ( postd , col ="green " , border="blue " )

227 l i n e s ( c ( 0 , 0 ) , c ( 0 , 1 ) , l t y =2 , col= ’ black ’ )

228 grid (NULL,NULL)

229

230 print ( ’ Naive approach : Using ALL data ’ )

231 tTest <− t . t e s t (preDD, postDD , var . equal = F)

232 names( tTest $estimate ) <− c ( ’meanDD_pre ’ , ’meanDD_post ’ )

233 print ( tTest )

234 i f ( tTest $p . value < 0.05) {



APPENDIX B. R-SCRIPT 102

235 print ( ’ Naive approach ( a l l data ) : H0: rejected , i . e . there IS a dif ference in

deltaDensity ’ )

236 #estimate _x = preDD estimate _y =postDD

237 i f ( ( tTest $estimate [1]− tTest $estimate [ 2 ] ) > 0) H1<−" greater " else H1<−" l e s s " #

post−pre

238 tTest <− t . t e s t (preDD, postDD , var . equal = F , a l t e r n a t i v e = H1)

239 i f ( tTest $p . value < 0.05) {

240 names( tTest $estimate ) <− c ( ’meanDD_pre ’ , ’meanDD_post ’ )

241 print ( tTest )

242 print ( paste0 ( ’Mean−density−dif ference for <2016 i s s i g n i f i c a n t l y ( at 95% conf )

’ ,H1, ’ than a f t e r 2017. ’ ) )

243 }

244

245 } e lse print ( ’ Naive approach ( a l l data ) : H0: NOT rejected , i . e . there i s NO

difference in deltaDensity ’ )

246

247

248

249 #Naive approach change in nr of SL samples

250 i f ( length ( grep ( ’REPORT ’ , txtparameter ) ) ==1) {

251 print ( ’ ’ )

252 print ( ’ Naive approach : Using ALL data ’ )

253

254 preSL <− Fuel [ which ( ! i s . na ( Fuel$REPORT_SHORT_LIFT_BENCHMARK) & Fuel$Date< ’

2016−01−01 ’ ) , ]

255 postSL <− Fuel [ which ( ! i s . na ( Fuel$REPORT_SHORT_LIFT_BENCHMARK) & Fuel$Date>= ’

2017−01−01 ’ ) , ]

256

257 p_pre <− length ( which ( preSL$REPORT_SHORT_LIFT_BENCHMARK >0.1) ) /nrow( preSL )

258 p_post <− length ( which ( postSL$REPORT_SHORT_LIFT_BENCHMARK >0.1) ) /nrow( postSL )

259 p_ d i f f <− p_post−p_pre

260 p_ diffConf <− 1.96 * sqrt (p_pre *(1−p_pre ) /nrow( preSL ) + p_post *(1−p_post ) /nrow(

postSL ) )

261 print ( paste ( ’ Difference in f r a c t . of SL samples ( post−pre ) : ’ , round (p_ d i f f , 3 ) , ’

, [ ’ , round (p_ d i f f − p_ diffConf , 3 ) , ’ , ’ , round (p_ d i f f + p_ diffConf , 3 ) , ’ ] = 95%

conf . i n t e r v a l ’ ) )

262 print ( ’ I f conf . i n t e r v a l s contains 0 => no s i g n i f . di f ference in f r a c t i o n of SL (

at 95% l e v e l ) ’ )

263 c i <− c (p_ d i f f − p_ diffConf , p_ d i f f + p_ diffConf )

264 s i gn D i f f <− sum( sign ( c i ) ) *prod ( c i )

265

266 i f ( s i g nD i f f ! =0) {

267 p_pooled <− ( length ( which ( preSL$REPORT_SHORT_LIFT_BENCHMARK >0.1) ) + length (

which ( postSL$REPORT_SHORT_LIFT_BENCHMARK>0.1) ) ) / (nrow( preSL ) +nrow( postSL ) )

268 Z <− p_ d i f f / ( sqrt (p_pooled *(1−p_pooled ) ) * sqrt (1 /nrow( preSL ) +1/nrow(

postSL ) ) )

269 i f ( abs (Z) < 1.64) {

270 print ( paste ( ’ Naive approach ( a l l data ) : No s i g n i f i c a n t dif ference ( ’ ,

round (p_ d i f f , 3 ) , ’ ) in fraction , of SL−BM between post and pre at 95% confidence ’ )

)
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271 } e lse print ( paste ( ’ Naive approach ( a l l data ) : S i g n i f i c a n t dif ference ( ’ ,

round (p_ d i f f , 3 ) , ’ ) in f r a c t i o n of SL−BM between post and pre at 95% confidence ’

) )

272 }

273

274

275

276 #http : / /www. sthda .com/ english / wiki /two−proportions−z−test−in−r

277 }

278

279

280 #Density d i s t r i b u t i o n a l l data

281 preDD <− na . omit ( Fuel$density [ Fuel$Date< ’2016−01−01 ’ ] )

282 postDD <− na . omit ( Fuel$density [ Fuel$Date>= ’2017−01−01 ’ ] )

283 pred <− density (preDD)

284 postd <− density (postDD)

285 plot ( pred , col= ’ blue ’ , lwd=2 ,main=paste0 ( txt , ’ : HFO380 Fuel Density \npre( <2016 ,

blue ) and post ( >=2017 , red ) ’ ) , xlab= ’ Fuel density [ kg/m^3] ’ , ylab= ’ ’ )

286 #polygon ( pred , col ="red " , border="blue " )

287 l i n e s ( postd , col= ’ red ’ , lwd=2)

288 #polygon ( postd , col ="green " , border="blue " )

289 l i n e s ( c ( 0 , 0 ) , c ( 0 , 1 ) , l t y =2 , col= ’ black ’ )

290 grid (NULL,NULL)

291

292

293

294

295 # r e s t r i c t to bins with highnumber of samples

296 Fuel <− Fuel [ Fuel$density > dRange [ 1 ] & Fuel$density <= dRange [ 2 ] , ]

297 #Fuel density plot

298 bin <− seq ( dRange [ 1 ] , dRange [ 2 ] , 0 . 1 )

299 h_pre <− h i s t ( Fuel$density [ Fuel$Date< ’2016−01−01 ’ ] , breaks = bin ,

300 main=paste ( txt , ’ : Density in kg/m̂ 3 ’ ) , xlab= ’ density [ kg/m^3] ’ , xlim=

range ( bin ) , col= ’ skyblue ’ , freq = F , plot=F)

301 h_post <− h i s t ( Fuel$density [ Fuel$Date>= ’2017−01−01 ’ ] , breaks = bin , xlim=range ( bin ) ,

add=T , freq = F , plot=F)

302 z_pre <− data . frame ( binEnd=h_pre$breaks [−1] , Density = h_pre$density , farge=rep (

’ skyblue ’ ) , str ingsAsFactors = F)

303 z_post <− data . frame ( binEnd=h_pre$breaks [−1] , Density = h_post$density , farge=rep (

’ orange ’ ) , str ingsAsFactors = F)

304 z <− rbind ( z_pre , z_post )

305 z <− z [ order ( z$Density , decreasing = T) , ]

306 z <− z [ order ( z$binEnd , decreasing = F) , ]

307 bp <− barplot ( z$Density [ seq ( 1 ,nrow( z ) , 2 ) ] * 0 . 1 , col=z$ farge [ seq ( 1 ,nrow( z ) , 2 ) ] , main=

paste ( txt , ’ : Density in kg/m̂ 3 (non−stacked ) \n blue : <=2015, orange : >= 2017 ’ ) ,

308 xlab= ’ ’ ,names . arg = z$binEnd [ seq ( 1 ,nrow( z ) , 2 ) ] , l a s =3)

309 bp <− barplot ( z$Density [ seq ( 2 ,nrow( z ) , 2 ) ] * 0 . 1 , col=z$ farge [ seq ( 2 ,nrow( z ) , 2 ) ] , add=T)

310 grid (NULL,NULL)

311 t e x t (bp [ 1 ] , 0 . 0 5 , ’ i n f l u x of l i g h t e r f u e l \ nafter 2017−01−01 ’ , adj =0)

312
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313

314

315

316 #* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
317 r e s u l t <− NULL

318 for ( i in 1 : ( length ( bin )−1) ) r e s u l t <− rbind ( result , c ( bin [ i ] , bin [ i +1] , deltaDens_

com( Fuel , densityRange =c ( bin [ i ] , bin [ i +1]) , para =txtparameter ) ) )

319 r e s u l t <− data . frame ( r e s u l t )

320 i f ( length ( grep ( ’REPORT ’ , txtparameter ) ) ==1) {

321 names( r e s u l t ) <− c ( ’densFrom ’ , ’densTo ’ , ’ meanDiff ’ , ’ lowConfInt ’ , ’ highConfInt ’

, ’ f r a c t _ d i f f ’ , ’p_ diffConf ’ , ’W_diffInDD ’ , ’W_lowconfInt ’ , ’W_ highconfInt ’ , ’homoVar_

p ’ , ’ var _post__ var _pre ’ , ’p_shapiroNorm_pre ’ , ’p_shapiroNorm_post ’ )

322 } e lse names( r e s u l t ) <− c ( ’densFrom ’ , ’densTo ’ , ’ meanDiff ’ , ’ lowConfInt ’ , ’ highConfInt ’

, ’W_diffInDD ’ , ’W_lowconfInt ’ , ’W_ highconfInt ’ , ’homoVar_p ’ , ’ var _post__ var _pre ’ , ’p_

shapiroNorm_pre ’ , ’p_shapiroNorm_post ’ )

323 for ( i in 1 :nrow( r e s u l t ) ) for ( j in 1 : ncol ( r e s u l t ) ) i f ( i s . nan( r e s u l t [ i , j ] ) ) r e s u l t [ i , j ]

<− NA

324 #* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
325

326

327 # dif ference in number of samples

328 i f ( length ( grep ( ’REPORT ’ , txtparameter ) ) ==1) {

329 signMeanDiff <− ( sign ( r e s u l t $ f r a c t _ d i f f − r e s u l t $p_ diffConf ) +sign ( r e s u l t $ f r a c t _

d i f f + r e s u l t $p_ diffConf ) ) /2

330 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

331 i <− which ( signMeanDiff >0) ; i f ( length ( i ) >0) farge [ i ]<− ’ forestgreen ’

332 i <− which ( signMeanDiff <0) ; i f ( length ( i ) >0) farge [ i ]<− ’ red ’

333 bp<− barplot ( r e s u l t $ f r a c t _ d i f f , col=farge , ylab= ’ dif ference in f r a c t i o n ’ ,main=

paste0 ( txt , ’ : Difference in f r a c t i o n of ocurrence of \n ’ , txtparameter , ’ >0.1

between post ( >=2017) and pre ( <2016) ’ ) )

334 grid (NULL,NULL)

335 arrows ( x0 = bp ,

336 y0 = r e s u l t $ f r a c t _ d i f f − r e s u l t $p_ diffConf ,

337 x1 = bp ,

338 y1 = r e s u l t $ f r a c t _ d i f f + r e s u l t $p_ diffConf ,

339 lwd= 1 . 5 , angle =90 ,code=3 , length =0.05 , col= ’ blue ’ )

340 }

341

342 #Normal based conf i n t e r v a l

343 r e s u l t $signMeanDiff <− ( sign ( r e s u l t $lowConfInt ) +sign ( r e s u l t $highConfInt ) ) /2

344 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

345 i <− which ( r e s u l t $signMeanDiff >0) ; i f ( length ( i ) >0) farge [ i ]<− ’ forestgreen ’

346 i <− which ( r e s u l t $signMeanDiff <0) ; i f ( length ( i ) >0) farge [ i ]<− ’ red ’

347

348 bp <− barplot ( r e s u l t $meanDiff , col=farge , names . arg =bin [−1] , l a s =3 , ylab= ’ d i f f f e r e n c e

in mean ’ , xlab= ’ ’ , ylim=range ( r e s u l t $lowConfInt , r e s u l t $highConfInt , na .rm=T) ,

349 main=paste0 ( ’ Difference in mean ’ , txtparameter , ’ for ’ , txt , ’ based

on t−t e s t \nbetween post ( >2017) and pre ( <2016) , grey= non−s i g n i f . (@ 5%l e v e l ) ’

) )

350 points (bp , r e s u l t $meanDiff , pch=19 , cex =0.4 , col=farge )
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351 grid (NULL,NULL)

352 arrows ( x0 = bp ,

353 y0 = r e s u l t $lowConfInt ,

354 x1 = bp ,

355 y1 = r e s u l t $highConfInt ,

356 lwd= 1 . 5 , angle =90 ,code=3 , length =0.05 , col= ’ blue ’ )

357

358 #wilcoxson based densdiff estimate

359 signMeanDiff <− ( sign ( r e s u l t $W_lowconfInt ) +sign ( r e s u l t $W_ highconfInt ) ) /2

360 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

361 i <− which ( signMeanDiff >0) ; i f ( length ( i ) >0) farge [ i ]<− ’ forestgreen ’

362 i <− which ( signMeanDiff <0) ; i f ( length ( i ) >0) farge [ i ]<− ’ red ’

363 bp <− barplot ( r e s u l t $W_diffInDD , col=farge , names . arg =bin [−1] , l a s =3 , ylab= ’

dif ference in mean ’ , xlab= ’ ’ , ylim=range ( r e s u l t $W_lowconfInt , r e s u l t $W_ highconfInt )

,

364 main=paste0 ( ’ Difference in mean ’ , txtparameter , ’ for ’ , txt , ’ based

on Wilcinson t e s t \nbetween post ( >2017) and pre ( <2016) , grey= non−s i g n i f . (@

5%l e v e l ) ’ ) )

365 points (bp , r e s u l t $W_diffInDD , pch=19 , cex =0.4 , col=farge )

366 grid (NULL,NULL)

367 arrows ( x0 = bp ,

368 y0 = r e s u l t $W_lowconfInt ,

369 x1 = bp ,

370 y1 = r e s u l t $W_highconfInt ,

371 lwd= 1 . 5 , angle =90 ,code=3 , length =0.05 , col= ’ blue ’ )

372

373

374

375 par (mfrow=c ( 3 , 1 ) )

376 #Normality t e s t of data per bin based on Shapiro testen

377 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

378 i <− which ( r e s u l t $p_shapiroNorm_pre < 0.05) ; i f ( length ( i ) >0) farge [ i ]<− ’ red ’

379 bp <− barplot ( r e s u l t $p_shapiroNorm_pre , col=farge , main=paste0 ( txt , ’ : Shapiro t e s t

for H0: normality in ’ , txtparameter , ’ < 2016 \n i f p< 0.05 ( red ) => not normal

distr ibuted ’ ) ,

380 names . arg =bin [−1] , l a s =3 , ylab= ’p−value ’ , xlab= ’ ’ )

381 points (bp , r e s u l t $p_shapiroNorm_pre , pch=19 , cex =0.4 , col=farge )

382 i f ( length ( i ) >0) t e x t (bp[ i ] , 0 . 0 5 , round ( r e s u l t $p_shapiroNorm_pre [ i ] , 3 ) , col= ’ red ’ ,

s r t =90 , adj =0)

383 abline ( 0 . 0 5 , 0 , col= ’ red ’ , l t y =2)

384

385 #Normality t e s t of data per bin based on Shapiro testen

386 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

387 i <− which ( r e s u l t $p_shapiroNorm_post < 0.05)

388 i f ( length ( i ) >0) farge [ i ]<− ’ red ’

389 barplot ( r e s u l t $p_shapiroNorm_post , col=farge , main="Shapiro−Wilk Test ( Normality ) :

Hong Kong" ,

390 names . arg =bin [−1] , l a s =3 , ylab= ’p−value ’ , xlab= ’ ’ )

391 points (bp , r e s u l t $p_shapiroNorm_post , pch=19 , cex =0.4 , col=farge )

392 i f ( length ( i ) >0) t e x t (bp[ i ] , 0 . 0 5 , round ( r e s u l t $p_shapiroNorm_post [ i ] , 3 ) , col= ’ red ’ ,
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s r t =90 , adj =0)

393 abline ( 0 . 0 5 , 0 , col= ’ red ’ , l t y =2)

394

395 #Test of same variance data per bin based on f l i g n e r testen

396 farge <− rep ( ’ grey ’ ,nrow( r e s u l t ) )

397 i <− which ( r e s u l t $homoVar_p < 0.05)

398 i f ( length ( i ) >0) farge [ i ]<− ’ red ’

399 bp <− barplot ( sign ( r e s u l t $var _post__ var _pre ) , col=farge , main=paste0 ( txt , ’ : Fl igner

t e s t for H0: same variance ( var _post − var _pre = 0) in ’ , txtparameter , ’ \n i f p<

0.05 ( red ) => not same variance ’ ) ,

400 names . arg =bin [−1] , l a s =3 , ylab= ’ var _post − var _pre ’ , xlab= ’ density bin

’ )

401 points (bp , r e s u l t $var _post__ var _pre , pch=19 , cex =0.4 , col=farge )

402 i f ( length ( i ) >0) t e x t (bp[ i ] , 0 . 0 5 , round ( r e s u l t $homoVar_p[ i ] , 3 ) , col= ’ black ’ , s r t =90 ,

adj =0)

403 abline ( 0 . 0 5 , 0 , col= ’ red ’ , l t y =2)

404

405 par (mfrow=c ( 1 , 1 ) )

406

407 return ( r e s u l t )

408 }

409

410 rSGSIN <− Fuel_comparison (HFO380_SGSIN , t x t = ’SGSIN ’ , txtparameter= ’ deltaDensity ’ )

411 rHKHKG <− Fuel_comparison (HFO380_HKHKG, t x t = ’HKHKG’ , txtparameter= ’ deltaDensity ’ )

412

413

414 # shortl ift ingBM

415 rSGSIN <− Fuel_comparison (HFO380_SGSIN , t x t = ’SGSIN ’ , txtparameter= ’REPORT_SHORT_LIFT_

BENCHMARK’ )

416 rHKHKG <− Fuel_comparison (HFO380_HKHKG, t x t = ’HKHKG’ , txtparameter= ’REPORT_SHORT_LIFT_

BENCHMARK’ )

417

418 rSGSIN <− Fuel_comparison (HFO380_SGSIN , t x t = ’SGSIN ’ , txtparameter= ’REPORT_MAX_SHORT_

BENCHMARK’ )

419 rHKHKG <− Fuel_comparison (HFO380_HKHKG, t x t = ’HKHKG’ , txtparameter= ’REPORT_MAX_SHORT_

BENCHMARK’ )

420 dev . o f f ( )

421
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