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Sammendrag

Denne masteroppgaven omhandler små-vokabular talegjenkjenning, og mer spesi�kt støyrobusthet
i systemer designet for dette formål. Tradisjonelle og moderne gjenkjenningssystemer har blitt
trent på relativt store mengder norsk taledata og deres ytelse har blitt evaluert ved hjelp av
mindre mengder støyete taledata. De moderne nevronett-baserte systemene viste seg å ikke være
trenbare uten betydelig med beregningsressurser, men det tradisjonelle system ble brukt med
suksess. Evaluering av det tradisjonelle systemet indikerte at dets ytelse er brukbar for veldig ren
taledata, men at den fort minker for støyete taledata hvor signal-støy-forholdet er mindre enn 30
dB.
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Abstract

This thesis deals with the task of small-vocabulary speech recognition, and more speci�cally noise
robustness in systems designed for this task. Traditional and modern speech recognition systems
have been trained on a relatively large amount of Norwegian speech data and had their performance
evaluated on small sets of noisy speech data. The modern, neural network based systems proved
infeasible to train without signi�cant computational resources, while the traditional system was
successfully employed. Evaluation of the traditional system indicated that its performance is
su�cient for recognition of very clean speech data, but quickly deteriorates for data corrupted by
noise with a signal-to-noise ratio below 30 dB.
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Chapter 1

Introduction

Automatic speech recognition has seen signi�cant performance improvements in the recent years.
With the emergence of more powerful computers capable of training deep neural networks, machine
learning in general is moving towards networks trained on vast amounts of training data rather
than carefully engineered systems that work with smaller amounts. Although deep neural networks
seem very promising for general-purpose speech recognition, there might be cases where such
architectures are overkill. One case like this is the �eld of domain speci�c, small-vocabulary speech
recognition, which is the topic of this thesis.

1.1 Motivation

This thesis is written for LuxSave AS1, a company that works with smart control of street lights.
LuxSave runs a web interface that lets technicians control light poles by sending commands to
controllers connected to the light poles. The website currently uses a standard touch interface that
looks like the one seen in �gure 1.1. This is not always optimal, as a common use case for the
system is by technicians who get their hands dirty. In these cases, a voice controlled system could
be preferable, and that is the overall motivation for this thesis. Such a voice controlled system
would ideally have to satisfy several criteria. It should be able to handle multiple languages, accents
and dialects, as LuxSave is not limited to a single country nor region. Light poles are often placed
in areas with much tra�c, which means that noise will be a signi�cant issue that the system has
to deal with. Although the thesis uses the LuxSave case as a basis, it tries to stay general when
possible, writing with startups and early-stage companies in mind. As startup systems are often
rapidly evolving, there is a high probability of new commands emerging after the initial vocabulary
speci�cation, and the company might not have the resources to train a domain-speci�c system. As
such, yet another criteria for the system is that it should be �exible enough to expand the grammar
without resource intensive redesign.

1.2 Objective

To limit the scope of the thesis, the focus here will be on noise robustness in a generalizable system
like this. The o�cial goal of the thesis is the following:

Evaluate the noise robustness of di�erent classi�cation systems and �nd what methods
of speech classi�cation give the most favorable trade-o�s between noise robustness and
computational resource intensity.

To limit the scope further, the thesis will not touch on wake-up-word detection, which is another
speech recognition task [18]. Instead, it is simply assumed that the system uses push-to-talk to
record speech.

1http://luxsave.com

1

http://luxsave.com


2 CHAPTER 1. INTRODUCTION

Figure 1.1: The LuxSave web interface showing the Temporary control menu.

1.3 Thesis Overview

Chapter 2 explains fundamental speech recognition theory that is needed to understand the chap-
ters that follow. This entails a short description of the components normally found in a speech
recognition system, what they are and why they are needed, and a bit more detailed theory about
acoustic models, which is the component of focus in this thesis. Chapter 3 describes the choice of
methodology and tools, which systems to evaluate, and how system evaluations were set up and
executed. Chapter 4 contains the results of evaluations and some notes on how to interpret them,
while Chapter 5 discusses them in more detail.



Chapter 2

Theory

This chapter contains some of the basic speech recognition theory that is needed to understand
the systems that will be experimented on in the thesis. It will start in section 2.1 with a high level
explanation of components that are common between most speech recognition systems. Section 2.3
then tries to explain the theory behind techniques used in traditional speech recognition techniques.
At last, section 2.4 explains a more modern alternative.

2.1 SR System Overview

The common goal of all speech recognition (SR) systems is to interpret the intended meaning, y
of of an input audio signal x. How a system achieves this can vary, but most traditional systems
look similar to the one in �gure 2.1. The components and their purpose are as follows [14].

Feature extraction extracts useful feature data from the raw audio data.

Acoustic model models a statistical relationship between observed data and speech units (sec-
tion 2.1.2) without any knowledge of the syntax or semantics of the language spoken.

Language model describes which combinations of speech units are allowed for the given lan-
guage, i.e. which words are possible, and which words are likely to co-occur.

Pronunciation model is used for connecting the acoustic model and the language model.

Decoder Performs the inference of the most likely transcription based on the information avail-
able.

2.1.1 Feature extraction

A sound wave can be viewed as continuous one-dimensional signal or, when digitized, a single vector
of values. Such a vector is hereby referred to as raw audio. Although some modern techniques are
able to work on a raw speech audio directly [33], traditional speech recognition systems need to
perform some sort of pre-processing of the audio signal. The reason is that raw audio contains too
much data for the acoustic model to learn from. Feature extraction, one of the most important
parts of pre-processing, leads to a more compact representation. The goal of feature extraction
is to reduce the total amount of data while retaining the properties that are most useful for the
recognition task at hand. There are multiple methods of extracting features from speech, some of
which are illustrated in �gure 2.3. These will be discussed here.

Short-time stationarity

Speech can be considered a short-time stationary process, meaning its statistical properties do not
change over a certain time. This assumption is important for speech processing systems that rely
on statistical modeling of the acoustic properties. By assuming that audio is short-time stationary,
a speech signal can be modeled as a sequence of such stationary processes.

3
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Pronunciation
model

Language  
model (LM) 

Acoustic  
Model (AM) 

Feature  
extraction

Decoder

y

x

Figure 2.1: A standard traditional speech recognition system.

Short-Time Fourier Transform

The simplest form of pre-processing is a simple transformation from the time domain to the fre-
quency domain, i.e. a Fourier transform. Short-time Fourier Transform, or STFT is, the applica-
tion of the discrete Fourier transform (DFT) to short, often overlapping segments of audio. This
produces a frequency spectrum for each segment, here called on. Concatenation of all resulting
frequency spectra is what makes up a spectrogram. Figure 2.2 illustrates the STFT with the use
of a window. This is often done in order to avoid unwanted artifacts resulting from the Fourier
transform of a �nite signal. It is common to use a window length of of 20-30 ms with an overlap
of about 10 ms, as this has been found to work well. A more thorough explanation of windowing
can be found in [16].

o1 o2 o3 o4 o5

Figure 2.2: The STFT process, using a window function on overlapping audio segments to produce
a sequence of frequency spectra.

Mel-Frequency Cepstral Coe�cients

While frequency domain representations are often more useful than raw audio for recognition tasks,
many systems have trouble using these too. Speech spectra still contain a lot of information that
the system might not be able to take advantage of. This is especially true for traditional methods of



2.1. SR SYSTEM OVERVIEW 5

speech recognition, which are generally not that good with high dimensions of data. For systems
like that, an even more compact feature representation is desired. One such representation is
Mel-frequency cepstral coe�cients, or MFCC.

MFCC is based on the human auditory system, and is probably the most commonly used
feature type. In addition to DFT, the process of calculating the MFCCs from an audio segment
involves �ltering the segment with a bank of triangular �lters based on the Mel scale [29], and
performing a discrete cosine transform (DCT) on the resulting �lterbank energies. DCT helps
decorrelate the feature values, which in turn makes the feature representation more compact. It
has been empirically found that the 13 �rst cepstral coe�cients are often su�cient for speech
recognition. To further improve accuracy, �rst- and second-order delta coe�cients are sometimes
used in addition to plain cepstral coe�cients. Delta coe�cients are useful because they capture
temporal changes in the spectra, something that is important in speech recognition [14].

|•|

0 1 2 3 4 M

Spectrogram

Sequence of filter energies

FB Energieslog(•)

DFT

DCT

Bank of triangular filters

MFCC

Figure 2.3: Overview over some common speech feature representations [15, modi�ed]

2.1.2 Speech Units

There are multiple ways of modeling speech. A choice that must be made when designing a SR
system is what should be the smallest unit of speech. The most common units are whole words
and phonemes. Di�erent units have di�erent properties, and the best choice of units depends on
what properties are desired most in the task the system will be used for. The three most important
are accuracy, trainability and generalizability. Trainability is mostly decided by how many classes
there are to train compared to how much data is available for each class. Generalizability means
whether the system can be used for cases it has not been trained for, e.g. words that were not
included in the training database.
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Whole words

Traditionally, whole-word models have been the go-to choice for small-vocabulary recognition.
Systems that are trained to recognize a small set of utterances do not need generalizable models,
because they will be specialized to recognize only those utterances. By training a system on
whole words, it will learn the phonetic co-articulation within each word, something that improves
recognition performance. Whole-word models are therefore accurate if enough samples are available
for each word to be trained [14]. A consequence of this is that a lot of task-speci�c data must be
acquired in order to train an accurate model. If the vocabulary is to be changed or extended, even
more new data must be collected. In other words, whole-word models are not generalizable.

Phonemes

A phoneme is thought of as the minimal acoustic unit that can be used as a building block for
realizing the pronunciation of bigger units, like words. For general-purpose speech recognition,
phoneme models are the most common choice because of their generalizability. When training a
model for the task of general dictation, it is infeasible to gather samples of all possible words and
utterances. Gathering data samples of smaller units, like phonemes, is much easier, because all
languages have fewer phonemes than words. With a phoneme model, the SR system can be trained
on utterances that may not match the ones it will be used for. The acoustic model will then learn
the characteristics of each phoneme, and with help from the language model (section 2.1.3) be able
to decode words that were not in the training dataset.

A weakness of this kind of model is that it assumes independency between consecutive phonemes.
This is not the case in realistic speech. Smooth transitions between phonemes cause their real-
ization to depend on their context, which leads to many phoneme models having poor accuracy.
A compromise between whole-word models and such context-independent phoneme models are
context-dependent phoneme models. These use allophones - di�erent context-dependent realiza-
tions of the same phoneme, and therefore o�ers a trade-o� between trainability and accuracy.
Trainability will be worse because there are more allophones to train, but accuracy will be higher
because of more accurate speech unit models [14, 17].

2.1.3 Language model

Language models (LMs) assign probabilities to sequences of words, i.e. they contain information
about which words are likely to co-occur. One of the simplest forms of LMs is the n-gram. N-grams
give the probability of a word occurring as a function of the n − 1 previous words, for instance
for n = 3 (a tri -gram), the probability of the word there given the previous words are and you
is P (”there” | ”are”, ”you”). Using a large database of text in the language desired, the n-gram
probabilities can be calculated simply by observing frequencies of di�erent word sequences. More
about this can be found in [17].

Pronunciation Model

A pronunciation model, also referred to as a phonetic dictionary or lexicon, is needed because the
graphemes that build a word, i.e. the letters and characters, seldom describe the exact pronuncia-
tion of that word. By describing every valid word in terms of phonemes instead, the model to be
trained will �nd and learn patterns much more easily. One example is the word recipe. While the
correct phonetic transcription is /’rEs@pi/, a system that has never seen the word and does not
have a pronunciation model might expect it to be pronounced /,ri"saIp/, sounding more similar to
the word recite [17].

2.1.4 Acoustic model and Decoder

The remaining components are arguably the most important parts of the SR system. The acoustic
model, as mentioned, builds a statistical relationship between acoustic features and speech units.
The decoder uses the information available from all the other components to infer the most likely
transcription of the input signal [14]. While the other components discussed above will not change
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much during the following experiments, di�erent acoustic models and decoders will be evaluated.
The next chapters will therefore be dedicated to some of the techniques that can be used for such
modeling. The theory will be discussed in the context of the three basic problems of interest usually
addressed when talking about hidden Markov models (chapter 2.3). The problems are roughly as
follows [14].

Evaluation - What is the probability P (X | Φ) that the model Φ generates the observed output
sequence X?

Decoding - What character sequence S is most likely to produce the observed output X?

Learning - How can the model parameters be adjusted to maximize the joint probability
∏

X P (X | Φ)
?

2.2 Noise

To represent and measure the level of noise, it is common to use a signal to noise ratio, or SNR.
This is usually given in decibel format:

SNRdB = 10 log
Psig

Pnoise
, (2.1)

where Psig and Pnoise are signal power and noise power respectively. These powers can be estimated
by calculating the empirical variance of the signals, which for an arbitrary signal x is given by.

Px = σ2
x =

1

N

N−1∑
n=0

x2[n]. (2.2)

This assumes that the signal, x[n], has an expectation value of µx = 0, which usually holds for
audio signals.
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2.3 Traditional Speech Recognition

This chapter tries to explain the theory behind traditional SR systems brie�y. As traditional is
an ambiguous term, it is de�ned here as a system that uses hidden Markov models and Gaussian
mixture models for acoustic modeling and decoding.

2.3.1 Hidden Markov Models

Hidden Markov Models (HMMs) have for a long time been the go-to technique for modeling
sequences in speech recognition. This subsection tries to give a short overview of how they are
used. To explain HMMs, a short explanation of Markov chains is necessary �rst. Markov chains
model sequences of observable states. A �rst-order Markov chain, which is the most commonly
used, is a chain where the probability of a given state only depends on the previous state. This
is the Markov assumption, and it allows a simple form of temporal modeling. First-order Markov
chains are described by a set of state transition probabilities, represented by a matrix A = {aij}
where element aij is the probability of transitioning to state j from state i. In addition to A, a
vector π of initial probabilities is needed to represent the probability of the �rst state in the chain.
A Markov chain is completely de�ned by the parameters Φ = (A,π).

While Markov chains are useful when the states of interest are directly observable, this is not
the case in speech recognition. The chain of states in SR is usually a sequence of speech units, but
the observable data is a sequence of speech feature vectors, like those explained in subsection 2.1.1.
This is where hidden Markov models (HMMs) become necessary. HMMs are Markov models with
hidden states, where each state is said to emit an observable output from a certain probabilistic
function. In addition to the Markov assumption, HMMs also assume output independence, i.e. the
probability (distribution) of an observable output depends only on the state that emits it, not on
previous states [14].

HMMs can be used to model phonemes or words directly, and the number of models and hidden
states per model is highly dependent on the kind of model used. Figure 2.4 attempts to illustrate
the use of HMMs for phoneme-level modeling. In models like this, one HMM is used to model each
phoneme that is available, for instance using three states for each phoneme. Three-states lets the
HMM model the start, middle and end of the phoneme. Full words can then be constructed by
concatenating phoneme-level HMMs [14], as demonstrated in the �gure.

In speech recognition, the observed data is, as mentioned, a sequence of speech feature vectors,
i.e. a matrix O. Decoding, as mentioned in chapter 2, is in this case to process of inferring the
state sequence S that is most likely to produce O given the model. In other words, the goal is to
�nd

Ŝ = arg max
S

P (X | S)

/b/

s m e

/e/

s m e

HMMs

Hidden states

Feature vectors o1 o2 o3 o4 o5 o6 o7

Figure 2.4: HMM emitting the word be

2.3.2 Gaussian Mixture Models

As mentioned, each state in an HMM emits an observable output from a certain probabilistic
function. For this function it is common to use a multivariate Gaussian mixture. A Gaussian
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mixture distribution can make any one-dimensional probability distribution as a weighted sum of
individual Gaussians, like illustrated in �gure 2.5. Multivariate distributions generalize this to
multiple dimensions. This ability to model any multi-dimensional distribution is the reason why
multivariate Gaussian mixture models (GMMs) are used to model speech features statistically [14].

Figure 2.5: A distribution made by a mixture of two Gaussian distributions.

2.3.3 Environmental Robustness

There are multiple ways of improving the robustness of HMMs using data from the noisy environ-
ments. One of them is to simply retrain the model using speech from the relevant environment.
There are several ways to do this too. The method that is probably best �t for training speaker-
independent systems is multistyle training, which means training HMMs on data from di�erent
acoustic environments. This has been shown to reduce error rate by more than a factor of two [19].

To avoid retraining the entire model, post-training adaptation methods can be used, like MAP
or MLLR, which will be explained brie�y below. Both of these methods can be used for adapting
to both speaker and environment. While MAP (Maximum A Posteriori) generally can improve the
performance more than MLLR, it requires a signi�cant amount of adaptation data. When data is
limited, MLLR (Maximum Likelihood Linear Regression) is a better option [14, 5]. More details
about the mathematics and algorithms used for adaptation can be found in [36] and [14].

MLLR Adaptation

MLLR works by computing a set of transformations that can be used to reduce the mismatch
between the initial model and the adaptation data. More speci�cally, the expectation maximization
technique, a commonly used technique for unsupervised machine learning, can be used to calculate
transformation matrices. These transform the GMM means and variances so that they are better
adapted to the speech data of interest, or in this case, the environment.

With a limited amount of data, a global adaptation transform can be generated. This transform
will then be applied to every Gaussian component in the model set. With more adaptation data
available, more transformations can be produced, and applied to di�erent groups of Gaussian
components, for a �ner adaptation [36].

MAP Adaptation

The Maximum A Posteriori adaptation method, in contrast to MLLR, creates a completely new
model based on the original model and the adaptation data. In MAP, every mean component in
the system is updated, and not just classes of Gaussians like in MLLR. This is the reason why
more data is required [36].
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2.4 Neural Networks

Neural networks have in recent years shown promising results in several machine learning problems,
including speech recognition. They are therefore naturally interesting for the problem of noise
robust small-vocabulary systems too. This section will explain the basics of neural networks (NNs)
and their advantages over traditional methods.

2.4.1 Basic Theory

The basic building block of a neural network is the (arti�cial) neuron, which is illustrated in �gure
2.6(a). This can be viewed as a non-linear function that generates one output value from one or
more input values. Generally, the output depends on a weighted sum of the inputs, a single bias
value, and an activation function. The purpose of the activation function is to keep the output
from "blowing up" by restricting its value to a certain range, like y ∈ [0.0, 1.0].

While the functionality of a single neuron is relatively simple, the power of arti�cial neurons
become apparent when they are connected in a network, hence the name neural network. A neural
network consists of multiple layers of neurons, including one input layer, one output layer and at
least one hidden layer between them, as illustrated in 2.6(b).

In practice, the output of neural networks is calculated as matrix multiplications, using the
forward computation algorithm [37].

2.4.1.1 Hybrid models

DNNs can be used for ASR in multiple ways. One of the most successful uses so far is in combination
with HMMs. In these so-called DNN-HMM hybrid systems, DNNs are used in place of GMMs
for frame-wise acoustic classi�cation. In other words, HMMs are still used to model sequences,
but the posterior probability of HMM states given acoustic observations are estimated by DNNs
instead of GMMs [37].
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Figure 2.6: (a) The structure of an arti�cial neuron. (b) A "vanilla" neural network [15].
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2.4.2 Recurrent Neural Networks

The "vanilla" deep neural network illustrated in �gure 2.6 is a feed-forward network, in other words
a network with no recurring connections. Although such a network can work well for classi�cation
of stationary data, it is not the best choice for sequential data. For that, recurrent neural networks
(RNNs) is a better option.

RNNs are neural networks with recurrent connections, illustrated as cycles in the graph in
�gure 2.7. What this means is that the output of the neuron with a cycle depends on its previous
output values in addition to an external input, like stated mathematically in equation 2.3. Here, ct
is the output value of the given neuron at time t, xt is the external input, and θ is the parameters,
like weights and biases.

ct = f (ct−1, xt;θ) (2.3)

As feed-forward NNs, RNN outputs are also computed by a form of forward propagation. Training
of RNNs consists of such a forward-propagation followed by a special form of back-propagation
called back-propagation through time (BPTT). The details of forward computation and BPTT are
not explained here, but can be found in Goodfellow et al. 2016 [9].

s

X

C

= s0

x0

c0

s1

x1

c1

s2

x2

c2

s3

x3

c3

Figure 2.7: Recurrent neuron. The black square on the left represents a delay of one time unit.
The right side of the �gure shows the neuron unfolded in time.

Long-Term Dependencies

While RNNs work well at modeling sequences with short-term dependencies, they have more
problems with long-term dependencies. This is because gradients propagated through time will
tend to either explode or, more often, vanish. The reason is that weights given to long-term
interactions are exponentially smaller compared to short-term interactions. The vanishing gradient
problem has multiple possible solutions, including leaky units, and gated RNNs like long short-term
memory (LSTMs) and gated recurrent units (GRUs). [9].

2.4.3 Connectionist Temporal Classi�cation

Vanilla NNs generally have to work with �xed length inputs and outputs. RNNs are a bit more
�exible. They can work with sequences of any length, as long as each element in the sequence has
the same dimensions. A challenge that still remains with the use of RNNs in speech recognition,
however, is that the length of the output sequence is equal to the length of the input sequence.
In speech recognition, the output sequence (transcription) is in the majority of cases shorter than
the input sequence (feature matrix).

Connectionist Temporal Classi�cation, or CTC, is an algorithm used to train deep neural net-
works for labeling of unsegmented data [13, 12], using a loss function with some useful properties
that will be explained below. One of the advantages of this type of training is its ability to work
with sentence-level transcriptions without depending on HMMs like hybrid models do. Another
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Figure 2.8: The output of an RNN made for training with CTC is a softmax probability distribution
cl,t over the characters in the alphabet L.

advantage is the ability to work with graphemes directly, without a pronunciation lexicon. This
requires large amounts of data, however, so for smaller databases it is still a good idea to use a
lexicon and train on phonemes instead.

To explain CTC, the output of a basic RNN as the one illustrated in �gure 2.8 is used as basis.
A fully connected layer and a softmax function both follow the RNN in order to create a probability
distribution over the valid output labels, i.e. the alphabet L. Such a probability distribution is then
produced for each time slice input to the network, as the t-dimension illustrates. In the context of
speech recognition, this input will be a single feature vector, like MFCC, or the Fourier transform
of a single audio frame.

A resulting sequence of softmax distributions is illustrated in �gure 2.9. In this example,
the alphabet L of graphemes recognized by the network is de�ned as the lower-case Norwegian
alphabet, in addition to space and the blank token. The blank token is explained in the context of
CTC below. The probability of a certain character sequence, or path, s = [s0, s1, ..., sT−1] is then
given by the product of probabilities,

P (s | X) =

T∏
t=0

cst,t. (2.4)

For example, the probability of the correct path being s = ”a− b− bbb− aa” is then given by
equation 2.4 for the sequence s = {2, 0, 3, 0, 3, 3, 3, 0, 2, 2}, i.e. the product of the circled elements
in �gure 2.9.

2.4.3.1 Mapping

To solve the problem of the output sequence being of equal length to the input sequence, CTC
de�nes a mapping β(s) → y. The mapping simply removes repeat tokens and blank tokens. The
blank token is a token introduced by CTC in order to deal with silence within words and the need
to "force" repeated characters, like double consonants, which would otherwise be impossible to
model. Using the same example sequence as above:

β(”a− b− bbb− a”) = ”abba”.
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Figure 2.9: Softmax matrix output of an RNN. The �rst character, c0,t, marks the blank character
introduced by CTC. The circled elements constitute a sequence s with β(s) = ”abba”.

Since β(s) is a many-to-one mapping, the actual probability of a transcription y being the right
transcription is given by the sum of probabilities for all sequences s mapping to it:

P (y | X) =
∑

s:β(s)=y

P (s | X), (2.5)

for instance

P (”abba” | X) =P (”a− b− bbb− aa” | X)

+P (”aa−−b− baa− ” | X)

+P (”−−a−−bba−−” | X)

+ · · ·

2.4.3.2 Training

As seen in equation 2.5, the CTC objective is not de�ned for an individual time slice, which is the
case for standard NNs, but rather for the entire input-output pair (X,y). During training, the
model parameters are adjusted to minimize the negative log-likelihood for all input-output pairs
in the training set D: ∑

(X,y)∈D

− logP (y | X). (2.6)

Calculation of the conditional probabilities P (y | X) can be done with a dynamic programming
algorithm similar to the forward-backward algorithm used for HMMs [12]. An explanation of this
algorithm will not be included here, but can be found in the 2017 online article by Hannun [13].

SortaGrad
Amodei et. al. 2016 found that CTC training was occasionally unstable, especially in the early
stages. To counter this, they experimented with a curriculum learning method they call SortaGrad.
A curriculum learning method simply means introducing gradually more di�cult training examples
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instead of choosing data randomly [3]. In the case of SortaGrad this means that training data is
sorted by duration for the �rst training epoch, then chosen randomly for the remaining epochs.
The results of the experiments were successful, showing that SortaGrad helped improve training
stability [1].

2.4.3.3 Inference / Decoding

The most likely transcription, y∗ given input X is

y∗ = arg max
y

P (y | X),

In practice, this is of course way too computationally expensive, as the number of possible transcrip-
tions increases exponentially with the length of the input. Inference of the most likely transcription
can therefore only be approximated. This can be done in two ways,

1. Best path decoding, and

2. Pre�x (beam) search decoding [12].

Best path decoding simply takes the most probable path and applies the β-mapping to it:

y∗ = β

(
arg max

s
P (s | X)

)
This is computationally easy, but has a signi�cant drawback. It does not take into account that
multiple output sequences s from the RNN can map to the same transcription y. Sometimes se-
quences that map to the same y each have smaller individual probabilities than a s mapping to a
di�erent y, but their sum is greater.

Pre�x beam search decoding is a modi�ed version of the beam search algorithm that takes
the many-to-one mapping into account. Pre�x beam decoding, like normal beam search, o�ers a
choice between better accuracy and lower computational demand. This is determined by the beam
width, which in turn determines the number of possible alignments checked [13].
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Chapter 3

Experiments

This chapter deals with the methodology used, the choice of software tools, and describes how the
experiments were set up and executed. Section 3.1 describes the general approach, what kind of
systems to implement, and the choice of tools and databases used to do so. The remaining sections
are dedicated to model implementation and evaluation descriptions.

3.1 Method

3.1.1 Tools

There already exists a vast selection of toolkits for making speech recognition systems based on
di�erent techniques, including those discussed in chapters 2.3 and 2.4. Although the goal of
this thesis is to �nd which classi�er is best suited for a speech command system that should be
used in noisy environments, the focus is also on the eventual implementation of such a system
in a production environment. Many of the open source toolkits are available for both Linux and
Darwin operating systems. This is preferable because some of the systems will potentially be used
both on Darwin and Linux servers.

3.1.2 Choice of Techniques

Some properties should be common for all the systems to be evaluated here. These properties are
based on the criteria mentioned in the introduction, one of the most important being expandability.
In practice this means that the system has to be trained for general-purpose speech recognition,
although the task is really small-vocabulary recognition. With this in mind, whole-word models,
as discussed in section 2.1.2, become infeasible to train. All the systems experimented on here will
therefore be trained on sub-word units. Another commonality between the systems is that they
will all be trained and tested on Norwegian data, as this is the most probable use of the potential
�nal implementation of the system.

As there exists an uncountable number of di�erent speech recognition systems and system
con�gurations, it is impossible to perform experiments on all of them. The number of systems
discussed in this thesis has been limited by multiple factors, including computational complexity,
database size, and most importantly time constraints.

3.1.3 Training databases

When training a general-purpose system, a large amount of speech data is required. The National
Library of Norway o�ers multiple speech databases through their service Språkbanken [24], some
of which are already available on servers on NTNU. The chosen databases are presented below.

NAFTA

NB Tale, also called NAFTA, is a Norwegian acoustic phonetic speech database [21]. In other words,
it contains speech audio that has been manually annotated on a sub-word (phoneme) level, and

17
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is therefore relatively small. Although the phoneme-level annotations can be used for supervised
learning, all the trainings performed here only use sentence-level transcriptions. NAFTA consists
of recordings from 260 native speakers of Norwegian and 120 speakers with Norwegian as a foreign
language. Two out of three parts are manuscript-read speech, while the third is spontaneous speech.

NST Acoustic database

NST acoustic speech database for Norwegian [22], or just NST for short, is one of the largest
databases available. The database has multiple parts, including 16 kHz, 22 kHz and 44 kHz audio.
Only the 16 kHz part has been used for experiments here. According to the documents published
with the database, this should consist of a training part with 900 speakers reading 312 lines and a
testing part consisting of 80 speakers reading 987 lines. The publicly available database, however,
seems unstructured and uncontrolled, and the �rst experiments using this database revealed that
some audio samples are erroneous and others completely missing. The NST database used for the
successful experiments here is therefore a restructured and controlled version that is available on
the NTNU servers.

NST lexical database

Section 2.1.3 explained the need for a pronunciation model, also referred to as a phonetic dictionary
or lexicon. One such lexicon, and probably the most relevant, is the NST Lexical database for
Norwegian Bokmål [23]. Also this database was used in a modi�ed version (made for HTK) that
is available on NTNU servers.

3.1.4 Testing database

Grammar speci�cation

In order to evaluate the noise robustness of the systems on a small vocabulary, a provisional
grammar was speci�ed based on a limited subset of the temporal control commands seen in �gure
1.1. The speci�ed grammar, hereby referred to as luxgrammar, is illustrated as a grammar
network in �gure 3.1. This yields a total of 10 valid sentences, which should be feasible to collect
enough testing data for.

slå

på av

armatur lysetrelé

én to tre

Figure 3.1: Grammar network for a small vocabulary.
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Data collection

In order to collect a decent amount of data for testing, a simple website was set up with functionality
for recording and uploading to the host server, based on open source code.1

On the website, detailed instructions were given for how to perform the recordings. Several
design decisions were made for lowering the threshold for people to participate, some of which have
drawbacks. One worth mentioning is the choice of recording all the 10 sentences in a single take. A
potential consequence of this is that participants might emphasize words di�erently from what they
would do if read individually. Another consequence is the need for post-processing in the form of
splitting each recording into 10 sentences, although this has a positive e�ect too, as it forces manual
control of all the samples. Yet another choice that was made in order to lower the participation
threshold was to avoid the need to �ll in any forms, making the process completely anonymous.
Because of this, no personal information was gathered on the speakers. From listening to the
recordings, it sounds like 24 speakers participated in total. As speakers were simply encouraged to
do as many recordings as possible, the number of recordings per speaker varies between one and
eight.

The collected database will be referred to as luxdb for the rest of the thesis.

3.1.5 Noise Simulation

As with all of the experiments, there are multiple ways of making noisy recordings. The ideal way
would be to perform relevant data collection in noisy environments directly, but this would require
signi�cant time and resources compared to simply simulating noise digitally. The choice, therefore,
fell on the latter alternative. Noise was recorded along the road using a smart phone with and
without an external (headset) microphone.

Using equations 2.1 and 2.2, the noise scaling factor can be calculated as

a =

√
Psig

10SNRdB/10Pnoise
, (3.1)

where

Psig =
1

N

N−1∑
n=0

x2sig[n], and Pnoise =
1

N

N−1∑
n=0

x2noise[n].

This was used to make a Python script that automatically adds noise with a given level relative to
each audio clip. All the audio �les in a given noise directory are read, along with all speech audio
�les to be corrupted by noise. The script iterates through the list of speech �les, and for each �le
picks a new segment of noise (with length equal to that of the speech signal) from one of the noise
�les. When reaching the end of a noise sample, the scripts jumps to the next noise sample and
starts using segments from that. Because of the limited amount of noise samples, they are used
in a cyclic fashion, i.e. after reaching the end of the last noise sample, the script jumps back to
the �rst and starts over. The chosen noise segment is scaled by a factor found using equation 3.1
before being added to the speech sample. To be consistent with the limitations of toolkits used,
audio is restricted to a 16 bit resolution and 16 kHz sample rate. In cases where the sum of the
noise signal value and speech signal value exceeds the maximum value for 16 bit integers, the signal
is simply clipped, as it will most probably do in a real-word scenario. The entire noise simulation
script can be found in appendix B.1.

3.2 GMM/HMM Implementation

The technique given the most focus here, because of the limited amount of data and computational
resources, is the traditional GMM/HMM. Implementation of such a model from scratch is a hard
task, so the choice naturally fell on using open source speech recognition tools, as there are plenty
to choose from. Perhaps the most recognized toolkit is the Hidden Markov Model Toolkit (HTK)

1source available at https://github.com/addpipe/simple-recorderjs-demo

https://github.com/addpipe/simple-recorderjs-demo
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[31]. This is however primarily intended for speech recognition research, and has a restrictive
commercial license [30].

As the system in question should not be hard to port to a commercial production system, the
choice therefore fell on another set of tools called CMUSphinx, or just Sphinx. In addition to
a license that allows for commercial distribution [7, About ], CMUSphinx has multiple recognizer
implementations. One of these, Sphinx4, is written in Java, which is ideal for a company like
Luxsave, which currently has a Java dominated code base. Yet another bene�t of the Sphinx
toolkit, is that it includes tools for acoustic model adaptation using the techniques described in
chapter 2.3. Lastly, Sphinx has been found to give good results out of the box in large-scale
evaluations [8].

While the implementation of a recognizer using Sphinx4 was straight-forward, signi�cant prob-
lems arose when attempting to train an acoustical model for use with it. As mentioned earlier,
the intention of the experiments is to evaluate the performance of a system trained on Norwegian
speech data. There are multiple pre-trained Sphinx models available, but none for the Norwegian
language. In order to train acoustic models for use with Sphinx recognizers, another tool called
Sphinxtrain had to be used, and using this proved more di�cult than �rst expected.

Sphinxtrain depends on several other software distributions, including two other CMUSphinx
tools: Sphinxbase and Pocketsphinx. These dependencies eventually led to multiple issues, as some
of the released versions contains bugs and incompatibilities with other dependencies. Debugging
was challenging because it is hard to tell software errors and database errors apart without a
thorough understanding of the system. The details of the debugging will be left out, as they are
not directly relevant to the experiments. In the end, it turned out that installing all the packages
from their newest source code solved most of the problems, despite the tutorials recommending the
use of the (binary) released versions. After the setup of Sphinxtrain was successful, it was replicated
in a Docker container to ensure reproducibility [4]. A Docker container with the successful setup
can be made using the Docker�le and scripts supplied in section D.1.

3.2.1 Data preparation

With a working Sphinxtrain setup, all that is needed for training is to get the training resources
on the right format. Sphinx takes training data on a speci�c format that di�ers from the formats
found in available databases. The formats also di�er between the di�erent Norwegian databases.
For this reason, unique data preparation scripts had to be made for each database to be used. The
scripts are not included in this thesis, because the potential for reuse is small.

With the right resources on the right format, a single script included in Sphinxtrain can be
run to automatically do everything needed to make and train an acoustic model. This includes
(MFCC) feature extraction, model initialization and training, and in the end decoding to give an
impression of the model performance.

3.2.2 Cross-validation on luxdb

Just to con�rm the hypothesis that luxdb is too small for training a good acoustic model, the
database was used for a quick cross-validation. As seen in section 4.2, the hypothesis seems to
hold, and so more general models are needed. The following subsections deal with these models.

3.2.3 Benchmark models

To begin with, models were trained on clean data from the Norwegian databases. Sphinxtrain
seems to have carefully chosen default model parameter values, so these were left untouched for all
the trainings performed. The parameters are as follows.

- Number of �lters: 25
- Lowest �lter frequency : 130 kHz
- Highest �lter frequency : 6800 kHz
- Transform type: DCT
- Feature type: MFCC including ∆ and ∆∆ (1s_c_d_dd)
- Vector length: 13
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- Liftering sin-curve length: 22
- Cepstral Mean Normalization type: batch
- BW min iterations: 1
- BW max iterations: 10
- Tied states (senones): 200

Because of time constraints, the only factor changed between the di�erent models is the database
used for training. This was done to see if more data improves model performance as much as one
would expect. The three benchmark models trained have been named nafta_12, nst_small,
and nst_full. The model trained on the least amount of data, nafta_12, was trained on a
limited number of samples from parts one and two of NAFTA. This was done because NAFTA was
the only database available without errors at the time of the �rst experiments. As mentioned, the
publicly available NST database is unorganized and erroneous, and it was therefore problematic to
use, which is why a nst_full was trained on the newly restructured version. nst_small was
trained on a subset that was copied from the NTNU speech database server while the restructuring
was taking place. The given subset consisted of about 6.6 GB of data, while the full NST on the
server has 55 GB, so going by the size alone, the subset consists of 11-12% of the full set.

For all of the experiments, the modi�ed version the phonetic dictionary from NST was used as
a pronunciation lexicon. For the experiments using the NST database, this worked well. Most of
the data in NST 16 kHz database consists of words found in the lexicon, although there are still
some samples that had to be excluded because they contained out-of-dictionary words. The missing
words could of course have been added to the dictionary, but this was considered unnecessary. After
running a script that automatically removed all samples containing out-of-dictionary words, there
were still 352010 samples left in the nst_full case, and 39495 in nst_small. These numbers
were deemed su�cient. For the NAFTA setup, the NST lexicon did not work that well. Out of
7539 original samples, only 2662 were left after the removal of samples containing non-dictionary
words. A model was trained on these samples nonetheless, just to see if it would be comparable
to the NST based models.

3.2.4 Improving Robustness

In order to improve recognition accuracy, the techniques explained in section 2.3.3 can be employed
on the models trained on large databases to adapt them for the noisy environments. Sphinxtrain
makes this process easy, as it implements programs for performing both MLLR and MAP adapta-
tions. This can be done in several ways, two of which were attempted. The chosen methods are
explained in more detail in the following subsections.

MLLR Adaptation on luxdb

As MLLR is most often the best choice when adaptation data is limited, this was naturally the
method of choice for adapting models to the collected testing data directly. For this adaptation,
20% of the luxdb database (130 audio samples) was randomly picked for use as adaptation data.
A random SNRdB ∈ {3, 6, 12, 15, 20, 30, 40} was chosen for each of the 130 audio clips in order
to simulate di�erent environments. The noisy audio clips were not generated speci�cally for the
adaptation. Instead, the already "noisi�ed" clips from section 3.1.5 were used, and the randomly
chosen SNRdB value was simply used to tell the Sphinx tools which directory to �nd the samples
in.

MAP Adaptation on NST

For MAP adaptation, the amount of data in luxdb is probably not su�cient. Instead, the data
from NST itself was used to adapt to the environmental noise. This was done by running a
modi�ed version of the noise simulation script (section 3.1.5) on the nst_small subset of NST.
The modi�ed noise script was made to pick SNR value randomly (from the usual set of SNRs) for
each speech sample and scale the noise accordingly. That way a new database of speech samples
with SNRs from 3 dB to 40 dB was produced, with the same amount of data as nst_small. This
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data was used for the MAP adaptation, which means that the new model should learn to handle
noises better.

Multistyle Training

After evaluating the performance of the adapted models, a new model was trained from scratch
using noisy data. Multistyle training, explained in section 2.3.3, ideally consists of a training
database that contains data recorded in multiple environments. As mentioned earlier, the collection
of such a database requires more resources than most small companies have available. To make
things simple, partly because of restricted time, the "multistyle" training here consists of the exact
same data as was used for the MAP adaptation explained above, in addition to the remaining
(clean) parts of NST. More speci�cally, the training data consisted of 352010 speech samples,
39696 of which were corrupted by various levels of noise.

3.3 GMM/HMM Evaluation

To evaluate the performance of models trained by Sphinxtrain, a Java application using Sphinx4
was used. Sphinxtrain itself could be used for evaluation, as it does include a decoding script that
uses the Pocketsphinx decoder and calculates a word error rate from the results. Sphinx4 was
chosen, however, to achieve a setup as close to the potential production system as possible. The
evaluation program was made to take two arguments, the �rst being the name of the model to
evaluate, and the second being the path to speech audio �les. A third, optional, --nogrammar
argument was later implemented for running evaluations using a language model instead of a
grammar, as explained in more detail below.

Although Sphinx4 supports the use of both a language model and a grammar, documentation
on the use of grammars seems scarce. Fortunately the con�guration proved relatively straight-
forward to �gure out with the help of an auto-completing Java IDE. To set up the system for use
with a grammar, the following lines were needed:

configuration.setUseGrammar(true);
configuration.setGrammarName("luxgrammar");
configuration.setGrammarPath("/path/to/grammar_directory/");

With this con�guration, Sphinx4 will then search for a �le named luxsave.gram in the grammar
directory. The .gram �le is on the JSpeech Grammar Format (JSGF), a format designed specif-
ically for use in speech recognition systems [34]. As evident by the documentation, this format is
quite sophisticated, and should be able to support advanced grammars. The luxgrammar from
�gure 3.1 however, is simple enough to be implemented in its entirety using the .gram �le listed
in listing 3.1, at least for evaluation purposes.

Listing 3.1: luxgrammar.gram

#JSGF V1.0;

grammar luxgrammar;
public <command> = slå (på | av) (relé (én | to | tre) | armatur | lyset);

When using a grammar, the Sphinx decoder returns either one of the utterances allowed by the
grammar, or unknown (<unk>) if it was unable to align the audio with any of the valid utterances.
In case of valid utterances there might also be silence (<sil>) in between the words, or before
or after them. To use the grammar for classi�cation, these are simply removed using a regular
expression before the string is compared to the valid classes. Again, this might not be the "right"
way to do it in a production system, but it is su�cient for the model evaluation to be performed
here.

3.3.1 Language Model

Although language model evaluations are more relevant for general-purpose speech recognition
than they are here, they are included for comparison. Recognition performance should be better
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both for the grammar case and language model case when a better acoustic model is used, but
nevertheless it is interesting to see if the system behaves as expected.

For the creation of a language model, another Sphinx-related toolkit called CMUCLMTK was
used. The procedure of building a language model with this toolkit is documented in the Sphinx
tutorial [6]. To create a language model that is usable for evaluations on the luxdb, the text
used for gathering statistics consisted of all the transcriptions from NST (351042 utterances), in
addition to all the transcriptions of the luxdb. As the LM is based on trigrams made from the
text supplied, the 650 sentences from the testing database should make the LM su�ciently able to
recognize the testing samples.
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3.4 CTC-trained RNN

This subsection presents a modern alternative to the GMM/HMM recognition system. The ex-
periments discussed in this subsection uses an RNN with gated recurrent units, as explained in
subsection 2.4.2. This RNN is trained using CTC (subsection 2.4.3) loss function. Because of the
limited results from the experiments, this will be discussed more brie�y than the GMM/HMM
experiments, even though signi�cant time was spent on it.

3.4.1 Implementation

As stated by Hannun 2017 [13], the implementation of CTC is di�cult. Luckily there are multiple
open-source implementations of it already. One of these is warp-ctc [28] by Baidu Research,
which is licensed under the Apache License 2.0. This was chosen for the following experiments, as
it seems like one of the most e�cient implementations judging by their self-reported benchmarks. It
was also easy to set up for training, following Baidu's own example in their ba-dls-deepspeech
repository [27]. This implements a "CTC-compatible" model in Python 2, using Keras with Theano
as back end, and an external Python package simply called ctc that implements Theano bindings
for warpctc. Although warp-ctc implements both a CPU and a GPU version, bindings are
only implemented for the CPU in the package used by ba-dls-deepspeech. An attempt was
made at simply modifying the source to use the GPU version instead, but this didn't work as
intended, as it made warpctc return a loss of zero for each call to it, for reasons unknown. No
further attempts at making it work were done, because that would require more advanced and
time consuming CUDA [20] programming. It was also later found that this is an unresolved issue
(at the time of writing) with warpctc.

Network Architecture

The network used is based on the DeepSpeech architecture discussed by Amodei et al. 2016 [1],
and consists of the following layers.

1 Convolutional layer is used for handling temporal dependencies in the input spectrogram.

3 GRU layers are included for handling long-term dependencies. This has been chosen over
LSTM because Amodei et al. found through experiments on smaller datasets that GRUs were
faster to train and less likely to diverge.

1 Fully connected layer follows the GRU layers to produce a single output activation for each
valid label.

Softmax completes the network by making a probability distribution over the de�ned alphabet,
as explained in section 2.4.3. Softmax is included in the CTC algorithm implementation, and is
therefore not needed in the Python/Keras model de�nition.

Training Procedure

Data preparation for CTC training consisted of writing yet another transcription conversion scripts,
in order to get the transcriptions on the right format. A test run of the setup was done on a laptop
with an Intel Core i7-740QM processor. The example worked out of the box for the LibriSpeech [25],
but the hardware setup unsurprisingly proved too ine�cient for training any model of a reasonable
size. After making sure the training scripts worked, they were therefore copied to a more powerful
computation server run by the signal processing department of NTNU, hereby referred to by its
name, sirkus. On sirkus, the experiments were set up in an Anaconda environment [2] using
the following software packages.

� Python 2.7.15
� Keras 1.1.2
� Theano 0.8.2
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� numpy 1.15.4
� cmake 3.12.2
� make 4.2.1

The last two were only needed for building warpctc from its source code. A shell script for the
entire setup can be found in Appendix D.2. The �rst attempt at training a network on NAFTA
resulted in a NaN loss after two epochs, despite the use of SortaGrad and batch normalization.
Decreasing the network learning rate from 2 · 10−4 to 2 · 10−8 made the training last longer, but it
still did not converge, and the loss stayed high.

3.4.2 Evaluation

Although the CTC based training of RNN did not seem to work out well, some attempts were
made at recognition using the network. The ba-dls-deepspeech code base implements best-
path decoding only. Fortunately, Hannun [13] has published a code snippet2 that implements pre�x
beam decoding.

Both best-path and pre�x beam decoding were tested, but as expected they were unsuccess-
ful at producing any meaningful interpretations of the output from the poorly trained network.
Eventually, the experiments on CTC had to be considered a lost cause.

2 https://gist.github.com/awni/56369a90d03953e370f3964c826ed4b0

https://gist.github.com/awni/56369a90d03953e370f3964c826ed4b0
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3.5 Google Cloud Speech Evaluation

As a commercial alternative to the self-trained, self-hosted systems, the choice fell on Google's
Cloud Speech-to-Text system. This is one of the most recognized cloud speech system, and it has
a straightforward API that makes evaluation on it easy to perform.

The Cloud Speech-to-Text API is called by a Google Cloud Client Library, a software library
used to construct requests to Google Cloud services. These libraries are available for multiple
programming languages, including Python and Java. Requests are constructed as JSON3 objects
and sent to a Google server. The server then decodes the given speech audio �le and returns
a JSON object containing a list of possible transcriptions along with a value between 0 and 1
indicating the system's con�dence in the associated transcription [10].

3.5.1 Models

Cloud Speech-to-Text o�ers four di�erent speech recognition models at the time of writing. For
these experiments, the command_and_search model was used, as that is made for short queries
such as voice commands or voice search [10]. Details about the models used could not be found
beyond the fact that they use neural networks. It seems, not surprisingly, like the models are meant
to be treated as a black box by its users. The evaluations and discussion about this will therefore
be quite super�cial, and more interesting from a business perspective than a scienti�c perspective.
It is included nonetheless, as the motivation for this thesis is in part commercial use. It is therefore
interesting to compare the results of an open-source solution to one that is commercially available.

3.5.2 Phrase hints

In addition to o�ering general-purpose speech recognition, the speech API lets the user supply
speechContext information in the form of a list of phrase hints. Phrase hints are given to the
recognizer to tell it that said phrases have a higher probability of occurring [10]. This is naturally
useful in the small-vocabulary, domain speci�c speech recognition case.

While phrase hints can improve recognition, it is not synonymous with a grammar, like the one
used in Sphinx. Google still uses its general recognition system, seemingly a system that includes
a language model, only with an increased probability of recognizing the given phrases. After some
trial and error to see what the system seemed to make use of, the �nal phrases supplied as hints,
were the ones listed in listing 3.2. As seen, the API can sometimes respond with di�erent versions
of the sentences, like "2" instead of "to". To evaluate whether a transcription is correct, these
variations are simply corrected for using string replacements in the evaluation script.

3http://json.org/

http://json.org/
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Listing 3.2: Phrase hints given to the Google SR system

slå av
slå på
armatur
relé én
rele en
relé to
rele to
relé tre
rele tre
relé
rele
1
2
3
lyset

Evaluations of the Google system, hereby referred to as the gspeech model, were carried out
on all the 650 samples in luxdb, as none of them were used for adaptation. Otherwise, the
data was equal to the one used for Sphinx, i.e. consisting of speech corrupted by noise with
SNRdB ∈ {3, 6, 10, 15, 20, 30, 40, 60}.
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Chapter 4

Results

This chapter starts by discussing speech recognition performance metrics in section 4.1. The
sections that follow present the results from the evaluations explained in chapter 3.

4.1 Measurements of Performance

Word error rate (WER) is a commonly used measure of recognition performance in general-purpose
ASR systems. It is de�ned by equation 4.1, and depends on the following three types of word
recognition errors. Substitution means that an incorrect word was substituted for the correct word.
Deletion error means a correct word being omitted in the recognized sentence. Lastly, an insertion
error means that an extra word was added to the recognized sentence [14]. In equation 4.1, S, D
and I are the number of substitutions, deletions and insertions, respectively. N is the total number
of words in the reference sentence, i.e. the true transcription.

WER =
S +D + I

N
(4.1)

WER can be calculated using the Levenshtein distance, or edit distance between two utterances
[32]. For calculations presented in this chapter, an open source code Python implementation of the
edit distance algorithm1 was modi�ed to return the total number of substitution, insertion, and
deletion errors for all reference-hypothesis pairs in a model evaluation.

As mentioned, WER is a common performance metric when evaluating general-purpose ASR
systems. The systems of interest here, however, are not general-purpose, and so WER is not that
useful, except for the evaluations that used an LM instead of the grammar. There are a very limited
number of valid sentences, at least in the provisional grammar. Each sentence represents a unique
command, and the consequence of mixing them can be unfortunate. A performance metric that
for this reason makes more sense to use here, is simply the accuracy of which the system is able
to classify sentences correctly as one of the 10 valid commands (or as out-of-grammar). Another
reason to not use WER for the grammar evaluations is that misclassi�ed samples that are not
classi�ed as <unk> are guaranteed to be somewhat similar to the right utterance, which means
that the WER will probably be low no matter how many misclassi�cations are done. Because
some noisy samples had to be removed from the luxdb, the distribution of data is not uniform
between the classes. For cases like this, it is often useful to calculate the F1 score instead of just
the accuracy of the di�erent classi�cations [26].

Another option for presenting the results of a classi�cation task is a confusion matrix (CM),
which is probably the most unambiguous representations possible. CMs are in the format At,p,
where t is the true class and p is the model hypothesis, or predicted class. This makes it possible
to see which classes the system often confuses. As there is a total of 171 confusion matrices from
the experiments performed, only a select few will be included here. The CMs included di�er from
usual CMs in that they include an extra <unk> class for unclassi�able utterances. This is only
included among the predicted classes, because no out-of-vocabulary samples were present in the
luxdb to test Sphinx' rejection accuracy.

1Available at https://github.com/zszyellow/WER-in-python
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4.2 GMM/HMM

As explained in section 3.3, evaluations were performed using both the luxgrammar and the
language model. This section presents the most important �ndings from both kinds of evaluations.
A more complete set of results can be found in the tables in appendix A. The results are represented
here as plots of accuracy as function of SNR, as this makes it easier to compare them. Clean speech
is included in the plots as SNRdB =∞, for further simplicity. The F1 score of each evaluation was
also calculated, but as they turned out almost indistinguishable from the accuracy values, they are
only included in the appendix (A.3).

4.2.1 Cross-validation

The simple 5-fold cross-validation on context-independent phone based models trained on the
luxdb gave an average utterance classi�cation accuracy of 58.31%. This is the accuracy of clean
speech recognition, so based on this result it is clear that training a general model on a bigger
Norwegian database is desirable.

4.2.2 Benchmark models

Figure 4.1 shows the performance of the three baseline models, and table 4.1 shows a confusion
matrix for nst_full. As mentioned, there are too many confusion matrices to include all of them.
Even for a single model there is a unique matrix for each of the 9 each SNRs tested. Table 4.1
therefore shows a combined confusion matrix for all SNRs used for evaluation of nst_full, in
other words the sum of the individual matrices (which can be found in appendix A.2). The
individual CMs reveal that most of the confusion stems from the model not being able to classify
utterances with high levels of noise, as seen by the high number of unk misclassi�cations. For
lower SNRs, the model correctly classi�es most utterances, but there are some obvious points of
confusion here too, which are underlined.

3 6 12 20 30 40 60 ∞0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

SNRdB

A
cc
u
ra
cy

(%
)

nafta_12
nst_small
nst_full

Figure 4.1: Classi�cation accuracies for the three benchmark models
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Table 4.1: Total confusion matrix for all evaluations on nst_full

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 294 0 0 0 3 31 0 0 0 0 185
AL 0 322 0 0 0 0 8 0 0 0 138

AR2 0 0 215 4 23 0 0 17 0 8 174
AR3 0 0 0 246 39 0 0 0 9 0 192
AR1 0 4 0 5 276 0 0 0 1 10 163
PA 34 0 0 0 0 217 0 0 0 0 208
PL 0 6 0 0 0 0 211 0 0 0 170

PR2 0 0 8 0 3 0 0 199 1 11 255
PR3 0 0 0 17 6 0 0 0 179 47 237
PR1 0 0 0 2 19 0 0 0 0 254 229

4.2.3 Adaptations

Figure 4.2 plots accuracies of the benchmark models after they have been MLLR adapted on the
same noisy data. The plot in �gure 4.3 shows and compares the e�ect of MAP adaptation and
combined MAP+MLLR adaptation on nst_full.
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Figure 4.2: Classi�cation accuracies after MLLR adaptation

4.2.4 Multistyle

Figure 4.4 plots the results of the multistyle model evaluations compared to the most successful
adapted model from above. The 0% accuracy for 3 and 12 dB are not errors in the plot, but errors
that occurred in the actual evaluation. By interpolating, however, it seems like the accuracy would
be about 20-25% for 12 dB if no error had occurred.
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Figure 4.3: Accuracies for all models trained on the full NST, including benchmarks and adapta-
tions.
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Figure 4.4: Accuracies for multistyle training compared to the best model from adaptations.
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4.2.5 Language Model WERs

For the language model evaluations, WER makes more sense as a metric. The following �gures
plot the LM WER equivalents of the plots in the previous sections.
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Figure 4.5: WERs for the three benchmark models

4.2.6 Out-of-grammar classi�cations

To get an impression of how far o� the out-of-grammar (unk) classi�cations seen in the CM above
are, recognition using an LM was performed on some of the samples that Sphinx couldn't classify
while using the grammar. Table 4.2 shows the results.
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Figure 4.6: WERs for the three models after MLLR
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Figure 4.7: WERs for all models trained on the full NST, including benchmarks and adaptations.
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Figure 4.8: WERs for multistyle training compared to the best model from adaptations.

Table 4.2: True text and predicted text when using a language model to transcribe samples that
couldn't be transcribed when using a grammar.

True Predicted
slå av relé to av relé to
slå av armatur også her driver
slå av relé én lokalmiljøet
slå av relé tre slå av relé én drøye
slå av relé tre slå av relé én drøye
slå på relé én slå på relé én en
slå på relé tre det forelå den
slå av armatur slå opp armatur
slå av armatur alternativer
slå av relé tre slå opp elevtallet
slå på relé én slå på relé én
slå av lyset aviser
slå av relé én slå av relé tre den
slå på relé tre slå på relé én tredje
slå av relé tre av relé tre
slå på relé to logg på relé to
slå av relé tre lag ruller tre
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4.3 Google Cloud Speech
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Figure 4.9: Google Speech performance measures.



Chapter 5

Discussion

5.1 GMM / HMM

5.1.1 Benchmarks

The �rst results in �gure 4.1 seem promising for clean speech signals. As expected, the performance
decreases signi�cantly with increased noise levels. Something worth noticing is the surprisingly
little di�erence between the benchmark models trained on di�erent databases. nst_full barely
performs better than the two others, despite being trained on almost 10 times more data. For
the language model evaluations shown in �gure 4.5, the di�erence is also small, but even more
surprisingly, nst_small seems to perform best out of the three models. Common for all the
models is that none of them perform well in the presence of noise. An utterance classi�cation
accuracy of around 5% and a WER of over 95% for an SNR of 3 decibels means that the model is
not better than a model that randomly assigns each utterance to one of the 11 classes (including
unk).

5.1.2 Adaptation

The results of MLLR, as seen in �gure 4.2, shows that this simple adaptation method improves
the performance of all models noticeably. It also makes the model performance even more similar
between the three models. This indicates that the adaptation to noisy data has a greater impact
than adding more training data, at least in this case. This might be due to the fact that the
databases used have such small variations in environment and speaking style that adding more
data from the same database doesn't really bring any new knowledge to the model.

MAP adaptation, as evident by �gure 4.3, improves performance further, just as the theory
will suggest. Keeping in mind that the MAP adaptation performed here did not include any
data directly from luxdb, it is safe to say that the model was adapted to the environmental
noise, and not the testing data. MLLR adaptation of the already MAP adapted model did not
seem to improve performance signi�cantly, which suggests that nst_full cannot be improved by
further adaptation using the existing noise recordings. Although adaptations did improve model
performance, the resulting models can still not be said to be noise robust.

5.1.3 Multistyle Training

The limited multistyle experiment plotted in �gure 4.4 shows that this attempt was not really
successful, and that it is of more use to train on clean data and adapt to noisy data later.

5.1.4 Improvement Potential

As is evident by the confusion matrix in table 4.1, a signi�cant portion of the clips could not be
classi�ed by the Sphinx4 decoder. Even though all audio samples used for evaluation contains
utterances found in the grammar, some of them are classi�ed as unknown, which means that
Sphinx thinks they're out-of-grammar. There are a couple of ways this could be improved upon
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in practice. One could perform additional analysis on all utterances that are classi�ed as <unk>,
for instance using a di�erent form of decoding constraint. Looking at the results from language
model evaluations in table 4.2, several transcriptions are close to being correct, and some actually
are. One way of improving accuracy could therefore be to use a decoder with a language model to
further analyze all utterances that are rejected by the grammar decoder.

Other points of confusion include the words "av" and "på" and "én" and "tre". One possible
remedy for the "på" / "av" confusion, although not speech recognition related, is to use information
about the speci�c system that the ASR system is used for. In the case of the luxgrammar, the
probability of an utterance being slå på lyset (turn on the light) should be zero when the
lights are already on. If the system classi�es the utterance as slå på lyset when the lights are
on, the correct transcription is most probably slå av lyset and vice versa. This will work for
slå på / av armatur too, but not necessarily when the system is confusing relé én with
relé tre (relay one and relay three), as those are di�erent relays that might not depend on
each other. This problem must be addressed through the improvement of the SR system itself,
eventually implementing some kind of special case model for solving this type of confusion.

5.1.5 Sphinx4 vs. Pocketsphinx

After training the acoustic model with Sphinxtrain, the WER is automatically evaluated by a
script that uses the Pocketsphinx decoder. Although the results from this evaluation were not
saved, the few that were observed seemed to be better than what was achieved with Sphinx4. This
is consistent with the �ndings by Gaida et al. [8], which in short are that Pocketsphinx performs
better than Sphinx4. Future work could be done on evaluating the model performance using
Pocketsphinx instead of Sphinx4.

5.2 Google Cloud Speech

The plots in �gure 4.9 show that gspeech performs good in general. It is, however, less accurate
than the GMM/HMM models for cleaner speech, as seen in the comparison with the best NST-
trained model in �gure 5.1. This is expected, as gspeech, in contrast to the Sphinx system, does
not use a grammar constraint. From �gure 5.2, it seems like the constraint is the most crucial
feature for Sphinx to perform better than the Google system for lower levels of noise. For higher
levels of noise, gspeech is clearly superior, even to Sphinx using a grammar. In other words, this
is the most noise robust system out of the two.

Google proving superior is not a big surprise. Their systems consist of neural networks trained
on huge amounts of data, probably a proper multistyle training consisting of multiple dialects,
noise levels and all other thinkable factors.

5.3 Production Considerations

Sphinx adds complexity to the system. Although Sphinx4 is Java based and �ts well into the
pipeline, its integration means another potential point of failure. For a startup with speech recog-
nition as anything other than �rst priority, this might not be worth the e�ort. Delegating all the
speech processing to Google or another provider therefore seems to be a better alternative in some
ways. This, however, raises other concerns, most notably about pricing and privacy, which the
company has to take into account.

5.4 Limitations

In addition to the narrow focus on environmental noise, which does not take into account micro-
phone or reverberations, nor variations in accents and dialects, the experiments have some other
speci�c limitations worth addressing. This section is dedicated to those limitations.
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Figure 5.1: The most successful Sphinx model compared to GSpeech
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Figure 5.2: The most successful Sphinx model used with a language model, compared to GSpeech.



40 CHAPTER 5. DISCUSSION

5.4.1 Testing Database

There are several problems with the database collected and used for model evaluations, some
of which are mentioned in section 3.1.4. The "self-service" recording interface makes it hard to
control the environment that recordings are performed in. Although the most obviously corrupted
recordings were removed from the database, there is probably a signi�cant amount of background
noise present in some of the remaining samples too. Despite the web interface, there were also
relatively few participants. Many of the speakers have gone through the recording process many
times, so there is enough data to get an impression of the performance of the models evaluated,
but a higher amount of speakers and samples in general would be preferable.

Another factor in the recording process worth mentioning is that it doesn't account for the
Lombard e�ect. This e�ect, in short, means that speakers tend to subconsciously raise their voice
levels when they experience background noise. This is very often accompanied by a change in
the spectral contents of the speech signal too [38], something that might be signi�cant for speech
recognition.

Some of the problems mentioned could be solved by performing the data collection in a more
controlled way. An example could be to record the speakers inside an an-echoic chamber while
they listen to environmental noise on headphones. This would eliminate environmental noise in
the clean speech recording and induce the Lombard e�ect.

The acquisition of noise data also had its shortcomings. All noise data was recorded using
one of two microphones, and the amount of data is limited. Most of the speech recordings were
performed with di�erent microphones than those that were used for noise recordings. This means
that the corruption is not that realistic, as it doesn't take into account the channel. The small
amount of noise also lead to reuse of the samples, both in adaptation and testing. This could have
had a signi�cant impact on the evaluations of the adapted models, because it is possible that they
adapted to the speci�c noise clips and not to the noise in general. For similar evaluations in the
future, this could be handled by dividing noise data into training and testing parts.

5.4.2 Evaluator Problems

As seen by the results of multistyle training, the Sphinx4 based Evaluator ran into problems
with some audio �les. In these cases the Sphinx decoder threw a Too many UTTERANCE_START
exception. In addition to the 3 and 12 dB cases for multistyle, this seemed to happen for all audio
samples with an SNR of 9 or 10, which is why those are not included in the evaluations. The
reason for the errors could not be identi�ed, because not enough time was available for thorough
debugging. Despite these problems, which would be important to �x in a �nal product, the
evaluator has been su�cient for researching how the given models perform.

5.4.3 Other

MLLR adaptation was only attempted on noisy samples from the luxdb. It would make sense to
see if an adaptation to clean data is just as e�ective, or if noisy adaptation data is essential for
performance improvements.

5.5 Future work

5.5.1 General Evaluation of Sphinx

It would be interesting to evaluate the noise robustness of the pre-trained English model that is
included with Sphinx decoders. Assuming that the model is well trained, this could reveal whether
Sphinx is able to compete with Google Speech when it comes to noise robust speech recognition.
This could be done completely without collection any new speech data, for instance using the open
speech data-set Speech Commands [35].
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5.5.2 Recurrent Neural Networks

Limited time and computational resources lead to CTC being an infeasible technique for the scope
of this thesis. In the future, more work could be put into training a neural network using CTC.
Using one or multiple GPUs instead of a single CPU for training, and using all the speech data
available in NST and other Norwegian databases, better results will probably be achieved. For a
properly trained network, it would also be interesting to implement a form of constrained decoding,
as explained in Graves' 2012 book [11]. In the context of small-vocabulary recognition, a grammar
like the one used in the Sphinx experiments would be a natural constraint. It could be interesting to
see how di�erent kinds of neural networks, including hybrid models, perform with such a grammar
in general, and how robust they would be to noise compared to GMM/HMMs.

5.5.3 Denoising

Although the main goal of this thesis has been to �nd a noise robust classifier, the experiments
have focused on evaluating the performance and robustness of di�erent acoustic models based
on GMM/HMMs. As it is hard to evaluate the performance of a system by looking at a single
component in isolation, future work may look at other methods of improving robustness in a
system, like pre-processing in the form of denoising, e.g. using auto-encoders.

5.6 Resource Intensity

The thesis introduction states that the objective is to �nd which methods of speech classi�cation
has the most favorable trade-o� between noise robustness and computational resource intensity.
However, only a single kind of self-implemented system was successfully evaluated here. Consider-
ing the fact that the self-implemented systems based on neural networks were not able to recognize
a single word, it wouldn't matter how light on resources it is. It is obvious that using a third-party
service is the choice that is least demanding of computational resources, so this was not interesting
to evaluate either. Resource intensity, therefore, has not been given much attention in this thesis,
and will have to be a topic for future work.
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Chapter 6

Conclusion

RNN based and traditional GMM/HMM based speech recognition systems have been trained on
big Norwegian speech databases. While the RNN based models proved too demanding to train
properly, the traditional models were trained on clean speech data and later adapted to speech data
corrupted by street noise. The utterance classi�cation accuracies and word error rates of models
have been evaluated for noise simulated at di�erent signal-to-noise ratios, in order to see how
robust the models are to such noise. For comparison, a commercially available speech recognition
system was also evaluated.

The self-trained models, used in conjunction with a prede�ned grammar, seemed to perform well
for clean speech, but quickly deteriorated with increasing levels of noise. The points of confusion
for clean speech were easy to spot in a confusion matrix, and could probably be �xed with some
further engineering of the system. The confusions for noisy speech, however, are too many to �x
on a case-by-case basis, and indicates that the system is probably not su�ciently robust for a
real-life scenario. It is hard to say whether the GMM/HMM systems give a good trade-o� between
noise robustness and resource intensity, because no other systems were possible to evaluate for
comparison, except the commercial one. This system without a doubt proved more stable and
noise robust than any of the self-trained models.

To �nd the most favorable classi�er for noise robust small-vocabulary recognition, which is
the academic focus of this thesis, more research is needed. The choice of system between the
self-trained and commercial one, which is more interesting from the business perspective, comes
down to practical considerations regarding pricing and privacy of the commercial system, and the
resources available for further developing a self-made system.
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Appendix A

Detailed Results

A.1 Complete Tables of Results

Table A.1 lists the resulting accuracies from all evaluations performed, both with and without using
the luxgrammar. Table A.2 lists resulting WERs from evaluations performed using language
models only.

Table A.1: Classi�cation accuracy (%) of all models evaluated for di�erent levels of noise.

Model \SNRdB 3 6 12 15 20 30 40 60 ∞
lm_nafta_12_mllr 2.88 4.42 13.08 20.96 36.92 67.31 74.81 73.65 73.08

lm_nst_full_multistyle 1.73 2.69 7.12 14.23 29.23 57.5 62.5 57.31 53.85
nst_small_mllr 8.08 14.42 29.81 40.77 58.46 82.5 88.08 89.23 87.12

nst_full_map_mllr 10.38 18.46 36.35 49.04 65.77 86.54 90.38 91.35 91.54
lm_nst_full_map 2.69 4.42 10.0 18.85 35.96 66.73 74.42 63.08 57.69

nst_full_multistyle 0.0 10.77 0.0 34.81 52.69 80.58 87.5 88.85 88.85
nst_full_mllr 7.88 13.65 31.15 43.27 58.46 83.85 87.88 89.81 89.42

lm_nst_small_mllr 3.27 5.58 15.77 25.77 42.5 72.69 77.31 70.77 69.81
nafta_12 5.58 9.23 20.0 30.19 45.0 71.15 81.73 86.54 86.73
nst_full 5.96 10.58 23.46 33.46 50.19 77.12 85.19 90.19 87.88

nafta_12_mllr 7.69 15.19 32.88 44.42 59.81 84.04 88.27 88.65 89.42
lm_nst_small 1.73 2.88 8.85 14.04 29.04 56.35 64.04 60.77 58.65

nst_small 5.58 9.23 20.58 31.73 47.5 74.42 84.81 87.88 86.73
lm_nst_full 1.54 2.31 5.77 12.31 26.73 54.62 61.35 59.23 54.62

nst_small_multistyle 7.88 14.42 30.58 41.15 55.38 78.65 80.96 80.58 78.27
lm_nst_full_mllr 2.12 5.19 11.54 23.46 39.81 70.19 75.38 68.85 64.42

lm_nst_full_map_mllr 2.88 6.54 12.5 24.81 41.92 73.27 80.38 70.96 66.73
nst_full_map 10.19 17.31 34.62 47.88 63.85 85.19 90.96 91.35 89.42

Table A.2: WERs for models evaluated using a language model instead of grammar

Model \SNRdB 3 6 12 15 20 30 40 60 ∞
nst_full_multistyle 96.59 93.71 84.5 70.64 53.92 29.89 25.31 29.78 32.02

nafta_12_mllr 94.89 92.01 74.75 60.36 42.04 19.07 14.97 15.77 16.2
nst_full_mllr 95.68 90.36 79.38 57.27 38.89 16.46 14.01 18.38 21.47

nst_small 96.75 93.39 81.41 70.54 54.18 30.58 25.04 29.09 29.04
nst_full 97.23 95.15 86.63 73.63 57.49 31.38 26.16 26.9 32.29

nst_full_map 95.36 92.91 82.42 65.64 43.79 22.75 17.47 29.14 33.51
nst_full_map_mllr 94.89 90.3 79.01 57.65 37.29 16.36 11.93 20.56 24.77

nst_small_mllr 94.94 90.36 72.4 55.67 37.88 15.98 12.63 18.7 18.01
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A.2 Confusion Matrices

Tables A.3 to A.11 show confusion matrices for all evaluations performed on nst_full. 162 more
matrices were produced, but are not included, as they don't provide much information beyond
what is already seen here.

Table A.3: nst_full_3_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 3 0 0 0 1 2 0 0 0 0 51
AL 0 9 0 0 0 0 0 0 0 0 43

AR2 0 0 2 0 1 0 0 0 0 1 45
AR3 0 0 0 3 2 0 0 0 0 0 49
AR1 0 0 0 2 4 0 0 0 0 2 43
PA 0 0 0 0 0 2 0 0 0 0 49
PL 0 0 0 0 0 0 3 0 0 0 40

PR2 0 0 0 0 0 0 0 2 0 1 50
PR3 0 0 0 1 0 0 0 0 0 2 51
PR1 0 0 0 1 1 0 0 0 0 3 51

Table A.4: nst_full_6_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 7 0 0 0 1 3 0 0 0 0 46
AL 0 15 0 0 0 0 1 0 0 0 36

AR2 0 0 3 1 4 0 0 1 0 1 39
AR3 0 0 0 4 2 0 0 0 0 0 48
AR1 0 0 0 1 11 0 0 0 1 0 38
PA 0 0 0 0 0 4 0 0 0 0 47
PL 0 1 0 0 0 0 3 0 0 0 39

PR2 0 0 0 0 0 0 0 1 0 1 51
PR3 0 0 0 2 1 0 0 0 1 1 49
PR1 0 0 0 0 2 0 0 0 0 6 48

Table A.5: nst_full_12_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 22 0 0 0 1 3 0 0 0 0 31
AL 0 28 0 0 0 0 0 0 0 0 24

AR2 0 0 7 2 4 0 0 2 0 1 33
AR3 0 0 0 16 4 0 0 0 2 0 32
AR1 0 0 0 0 17 0 0 0 0 3 31
PA 3 0 0 0 0 7 0 0 0 0 41
PL 0 1 0 0 0 0 8 0 0 0 34

PR2 0 0 0 0 1 0 0 2 0 1 49
PR3 0 0 0 2 0 0 0 0 4 1 47
PR1 0 0 0 0 2 0 0 0 0 11 43
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Table A.6: nst_full_15_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 27 0 0 0 0 4 0 0 0 0 26
AL 0 34 0 0 0 0 1 0 0 0 17

AR2 0 0 14 1 4 0 0 2 0 3 25
AR3 0 0 0 21 4 0 0 0 2 0 27
AR1 0 1 0 1 28 0 0 0 0 1 20
PA 6 0 0 0 0 11 0 0 0 0 34
PL 0 1 0 0 0 0 12 0 0 0 30

PR2 0 0 0 0 1 0 0 6 0 0 46
PR3 0 0 0 3 1 0 0 0 8 3 39
PR1 0 0 0 1 4 0 0 0 0 13 38

Table A.7: nst_full_20_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 38 0 0 0 0 5 0 0 0 0 14
AL 0 40 0 0 0 0 2 0 0 0 10

AR2 0 0 23 0 4 0 0 2 0 1 19
AR3 0 0 0 31 5 0 0 0 1 0 17
AR1 0 2 0 1 32 0 0 0 0 2 14
PA 3 0 0 0 0 23 0 0 0 0 25
PL 0 1 0 0 0 0 25 0 0 0 17

PR2 0 0 1 0 1 0 0 13 0 3 35
PR3 0 0 0 1 1 0 0 0 13 5 34
PR1 0 0 0 0 2 0 0 0 0 23 31

Table A.8: nst_full_30_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 46 0 0 0 0 5 0 0 0 0 6
AL 0 45 0 0 0 0 2 0 0 0 5

AR2 0 0 37 0 2 0 0 2 0 0 8
AR3 0 0 0 42 1 0 0 0 1 0 10
AR1 0 0 0 0 40 0 0 0 0 1 10
PA 3 0 0 0 0 39 0 0 0 0 9
PL 0 0 0 0 0 0 40 0 0 0 3

PR2 0 0 2 0 0 0 0 33 0 4 14
PR3 0 0 0 2 0 0 0 0 34 6 12
PR1 0 0 0 0 0 0 0 0 0 45 11

Table A.9: nst_full_40_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 49 0 0 0 0 4 0 0 0 0 4
AL 0 48 0 0 0 0 2 0 0 0 2

AR2 0 0 41 0 1 0 0 4 0 0 3
AR3 0 0 0 41 6 0 0 0 2 0 5
AR1 0 1 0 0 45 0 0 0 0 1 4
PA 3 0 0 0 0 46 0 0 0 0 2
PL 0 0 0 0 0 0 41 0 0 0 2

PR2 0 0 1 0 0 0 0 48 0 1 3
PR3 0 0 0 3 0 0 0 0 35 12 4
PR1 0 0 0 0 2 0 0 0 0 49 5
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Table A.10: nst_full_60_db

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 52 0 0 0 0 2 0 0 0 0 3
AL 0 52 0 0 0 0 0 0 0 0 0

AR2 0 0 44 0 2 0 0 2 0 0 1
AR3 0 0 0 45 6 0 0 0 1 0 2
AR1 0 0 0 0 49 0 0 0 0 0 2
PA 8 0 0 0 0 43 0 0 0 0 0
PL 0 0 0 0 0 0 41 0 0 0 2

PR2 0 0 2 0 0 0 0 48 1 0 2
PR3 0 0 0 1 1 0 0 0 43 9 0
PR1 0 0 0 0 3 0 0 0 0 52 1

Table A.11: nst_full_clean

T \P AA AL AR2 AR3 AR1 PA PL PR2 PR3 PR1 unk
AA 50 0 0 0 0 3 0 0 0 0 4
AL 0 51 0 0 0 0 0 0 0 0 1

AR2 0 0 44 0 1 0 0 2 0 1 1
AR3 0 0 0 43 9 0 0 0 0 0 2
AR1 0 0 0 0 50 0 0 0 0 0 1
PA 8 0 0 0 0 42 0 0 0 0 1
PL 0 2 0 0 0 0 38 0 0 0 3

PR2 0 0 2 0 0 0 0 46 0 0 5
PR3 0 0 0 2 2 0 0 0 41 8 1
PR1 0 0 0 0 3 0 0 0 0 52 1
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A.3 F1 scores
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Figure A.1: F1 scores for the three benchmark models
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Figure A.2: F1 scores for the three benchmark models after MLLR
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Figure A.3: F1 scores for all models trained on the full NST, including benchmarks and adaptations.
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Appendix B

Data Preparation Scripts

B.1 Audio Processing

The script in listing B.1 was used to mix all speech audio in one directory with noise from another
directory using a certain SNR.

Listing B.1: noisify.py

#!/usr/bin/python3

import soundfile
import argparse
import os
from math import sqrt, log10
import numpy as np

INT16_MAX = 2**15-1
INT16_MIN = -2**15

def open_audio(audiofile):
with soundfile.SoundFile(audiofile) as sf:

audio = sf.read(dtype="int16")
sr = sf.samplerate
assert sr == 16000

return audio

def get_amp_factor(speech_power, noise_power, snr):
return sqrt(speech_power/(snr*noise_power))

def get_sig_power(signal):
sigsum = 0
mu = sum(signal)/len(signal)
for x in signal:

sigsum += (x - mu)**2
return sigsum/len(signal)

def noisify_sf(speech_sig, noise_sig, snr):
speech_power = get_sig_power(speech_sig)
noise_power = get_sig_power(noise_sig)
a = get_amp_factor(speech_power, noise_power, snr)
noise_sig = np.array(a*noise_sig, dtype="int32")
scaled_noise_power = get_sig_power(noise_sig)
mixed_signal = np.clip(noise_sig+speech_sig, INT16_MIN, INT16_MAX)
# Clipping the signal, then converting back to int16
return np.array(mixed_signal, dtype="int16")

def main(speechdir, noisedir, outdir, snr):
speech_filenames = [wavfile for wavfile in os.listdir(speechdir) if ".wav" in

wavfile ]
noise_filenames = os.listdir(noisedir)
noise_sigs = []
for noise_fn in noise_filenames:
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noise_sigs.append(open_audio(os.path.join(noisedir, noise_fn)))
noiseindex = 0
nc = 0 # noise clip (sample) number
num_sfs = len(speech_filenames)
num_noiseclips = len(noise_sigs)
for i, speech_fn in enumerate(speech_filenames):

print("Noisifying file {}/{} using noise clip {}/{} ({})".format(
i+1, num_sfs, nc+1, num_noiseclips, noise_filenames[nc]), end=’\r’)

speech = open_audio(os.path.join(speechdir, speech_fn))
while noiseindex + len(speech) >= len(noise_sigs[nc]):

nc = (nc + 1) % num_noiseclips
noiseindex = 0

noisy_speech = noisify_sf(speech, noise_sigs[nc][noiseindex:noiseindex+len(
speech)], snr)

noiseindex += len(speech)
soundfile.write(os.path.join(outdir, speech_fn), noisy_speech, 16000)

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument("speechdir", type=str, help="Directory of speech audio files

")
parser.add_argument("noisedir", type=str, help="Directory of noise")
parser.add_argument("snrdb", type=int, help="SNR in dB Power")
args = parser.parse_args()
snr = 10**(args.snrdb/10)

speechdir = args.speechdir
if speechdir[-1] == ’/’:

speechdir = speechdir[:-1]
outdir = speechdir + "_" + str(args.snrdb) + "_dbsnr"
os.makedirs(outdir, exist_ok=True)
print("Adding noise. ’{}’ -> ’{}’".format(speechdir, outdir))
main(args.speechdir, args.noisedir, outdir, snr)



Appendix C

Evaluation Code

C.1 Java Evaluator Source Code

Listing C.1: Evaluator.java

package com.luxsave.eval;

import edu.cmu.sphinx.api.Configuration;
import edu.cmu.sphinx.api.StreamSpeechRecognizer;

import java.io.*;
import java.nio.file.Files;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Evaluator {

private static ArrayList<String> listDir(String dirPath){
ArrayList<String> wavFiles = new ArrayList<>();
try {

Files.list(new File(dirPath).toPath()).forEach(path -> {
wavFiles.add(path.toString());

});
} catch (IOException e){

System.out.println("Couldn’t open audio directory.");
}
return wavFiles;

}

private static Map<String, String> getFileIdTranscriptionPairs(String filename,
String wavRoot){
Pattern transRE = Pattern.compile("<s> *(.*) *</s>");
Pattern fidRE = Pattern.compile("[(](.*)[)]");
try {

BufferedReader reader = new BufferedReader(new FileReader(filename));
String line;
HashMap<String, String> fidTransPair = new HashMap<>();
while ((line = reader.readLine()) != null){

Matcher transM = transRE.matcher(line);
Matcher fidM = fidRE.matcher(line);
if (transM.find() && fidM.find()) {

String newTrans = transM.group(1);
String newFileId = wavRoot + fidM.group(1) + ".wav";
fidTransPair.put(newFileId, newTrans);

}
}
return fidTransPair;

} catch (Exception e) {
System.out.println(e);
return null;
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}
}

private static void saveFile(String filename, String text){
try {

PrintWriter fout = new PrintWriter(filename);
fout.println(text);
fout.close();

} catch (FileNotFoundException e){
System.out.println("Error while saving to file");
System.out.println(e.toString());

}

}

public static void main(String[] args) {

String modelPath;
String wavPath;
Map<String, String> fileIdTranscriptionMap;
if (args.length < 2){

System.out.println("Path to model and wav root dir not given. Exiting..."
);

return;
}
modelPath = args[0];
if (!modelPath.endsWith("/")) {

modelPath += "/";
}
wavPath = args[1];
if (!wavPath.endsWith("/")) {

wavPath += "/";
}
String transFile = modelPath + "luxdb_test.transcription";
fileIdTranscriptionMap = getFileIdTranscriptionPairs(transFile, wavPath);
boolean noUseGrammar = false;
if (args.length == 3 && args[2].contentEquals("--nogrammar")){

noUseGrammar = true;
}
File f = new File(modelPath + "mllr_matrix");
/* Use MLLR matrix if it exists */
boolean useMLLR = false;
if(f.exists() && !f.isDirectory()){

useMLLR = true;
}
if (fileIdTranscriptionMap == null){

System.out.println("Error in transcription file. Exiting.");
return;

}
Classifier classifier = new Classifier(fileIdTranscriptionMap);
Configuration configuration = new Configuration();
configuration.setAcousticModelPath("file:" + modelPath);
if (noUseGrammar){

configuration.setLanguageModelPath("file:" + modelPath + "nst.lm.bin");
configuration.setDictionaryPath("file:" + modelPath + "nst.dic");

} else {
configuration.setUseGrammar(true);
configuration.setGrammarName("luxgrammar");
configuration.setGrammarPath("file:" + modelPath);
configuration.setDictionaryPath("file:" + modelPath + "dictionary");

}
StreamSpeechRecognizer recognizer;
try {

recognizer = new StreamSpeechRecognizer(configuration);
if (useMLLR) {

recognizer.loadTransform(modelPath + "mllr_matrix", 1);
}

} catch (Exception e) {
System.out.println("Unable to initialize speech recognizer");
e.printStackTrace();
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return;
}

List<String> wavFiles = new ArrayList<>(fileIdTranscriptionMap.keySet());
try {

for (String wav : wavFiles){
String detectedWord;
try {

detectedWord = (new SpeechProcessor(recognizer, wav)).
recognizeOnce();

} catch (Error e){
System.out.println("Error recognizing utterance. Setting to <unk

>." + e.toString());
detectedWord = "<unk>";

}
classifier.classify(wav, fileIdTranscriptionMap.get(wav),

detectedWord);
}

} catch (Exception e) {
System.out.println("OTHER EXCEPTION: " + e.toString());
e.printStackTrace();

}
/* Generate results file with confusion matrix */
String resultsString = classifier.getConfusionMatrixCSV();
resultsString += "\nACC: " + classifier.getAccuracy() + "\n";
System.out.print(resultsString);
saveFile(modelPath + "results.csv", resultsString);

/* Generate complete transcription / classification JSON file */
ArrayList<String> classPairs = classifier.allClassificationPairs();
StringBuilder classPairsOutput = new StringBuilder();
for (String line : classPairs){

classPairsOutput.append(line).append("\n");
}
saveFile(modelPath + "classifications.json", classPairsOutput.toString());

}
}

Listing C.2: SpeechProcessor.java

package com.luxsave.eval;

import edu.cmu.sphinx.api.SpeechResult;
import edu.cmu.sphinx.api.StreamSpeechRecognizer;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;

public class SpeechProcessor {
private String wavFile;
private StreamSpeechRecognizer recognizer;

public SpeechProcessor(StreamSpeechRecognizer recognizer, String wavFileToRead) {
this.wavFile = wavFileToRead;
this.recognizer = recognizer;

}

public String recognizeOnce(){
try {

InputStream stream = new FileInputStream(new File(this.wavFile));
recognizer.startRecognition(stream);
SpeechResult result;
StringBuilder recognizedStringBuilder = new StringBuilder();
while ((result = recognizer.getResult()) != null) {

recognizedStringBuilder.append(result.getHypothesis());
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recognizedStringBuilder.append(" ");
}
recognizer.stopRecognition();
return recognizedStringBuilder.toString();

} catch (IOException e) {
System.out.println(e.toString());
return null;

}
}

}

Listing C.3: Classifier.java

package com.luxsave.eval;

import java.util.*;

public class Classifier {
private ArrayList<String> stringClasses;
private Map<String, String> fileIdTrueClass = new HashMap<>();
private Map<String, String> fileIdPredictedClass = new HashMap<>();
private Map<String, Integer> sClassToIntMap = new HashMap<>();
private Map<Integer, String> intToSCLassMap = new HashMap<>();
private Map<String, String> classificationExceptions = new HashMap<>();
private int[][] confusionMatrix;

public Classifier(Map<String, String> fidTranscriptionPair) {
this.stringClasses = uniqueClassificationStrings(new ArrayList<>(

fidTranscriptionPair.values()));
Collections.sort(this.stringClasses);
this.stringClasses.add("<unk>");
int numClasses = this.stringClasses.size();
this.confusionMatrix = new int[numClasses][numClasses];
for (int i = 0; i < numClasses; i++){

this.sClassToIntMap.put(stringClasses.get(i), i);
this.intToSCLassMap.put(i, stringClasses.get(i));
for (int j = 0; j < numClasses; j++){

this.confusionMatrix[i][j] = 0;
}

}
}

private static String sanitizeHypothesis(String hypothesis){
if (hypothesis.contains("<unk>")){

return "<unk>";
}
String[] transcription = hypothesis.replace("<sil>", "")

.split(" ");
StringBuilder transcriptionBuilder = new StringBuilder();
for (String word : transcription){

if (!word.isEmpty()){
transcriptionBuilder.append(word).append(" ");

}
}
return transcriptionBuilder.toString();

}

public void classify(String fileId, String trueClass, String hypothesis){
String predictedClass = sanitizeHypothesis(hypothesis);
if (!this.sClassToIntMap.containsKey(predictedClass)){

classificationExceptions.put(fileId, predictedClass);
predictedClass = "<unk>";

}
int r = this.sClassToIntMap.get(trueClass);
int c = this.sClassToIntMap.get(predictedClass);
this.fileIdTrueClass.put(fileId, trueClass);
this.fileIdPredictedClass.put(fileId, predictedClass);
this.confusionMatrix[r][c]++;

}
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public String getConfusionMatrixCSV(){
String topRow = "class,AA,AL,ARTO,ARTRE,AREN,PA,PL,PRTO,PRTRE,PREN,unk";
StringBuilder csvMatrix = new StringBuilder(topRow);
for (int r = 0; r < stringClasses.size(); r++){

csvMatrix.append("\n").append(intToSCLassMap.get(r));
for (int c = 0; c < stringClasses.size(); c++){

csvMatrix.append(",").append(Integer.toString(confusionMatrix[r][c]))
;

}
}
return csvMatrix.toString();

}

private static ArrayList<String> uniqueClassificationStrings(ArrayList<String>
allClassificationStrings){
ArrayList<String> unique = new ArrayList<>();
for (String sClass : allClassificationStrings){

if (!unique.contains(sClass)){
unique.add((sClass));

}
}
return unique;

}

public double getAccuracy() {
int numTotalTranscriptions = this.fileIdTrueClass.size();
int numCorrectPredictions = 0;
for (int i = 0; i < this.stringClasses.size(); i++) {

numCorrectPredictions += this.confusionMatrix[i][i];
}
System.out.println("Correctly classified: " + numCorrectPredictions + "/" +

numTotalTranscriptions);
return (double) 100 * numCorrectPredictions / numTotalTranscriptions;

}

public ArrayList<String> allClassificationPairs(){
ArrayList<String> classificationPairs = new ArrayList<>();
for (Map.Entry<String, String> fidTrue: fileIdTrueClass.entrySet()) {

String fid = fidTrue.getKey();
String trueClass = fidTrue.getValue();
String predictedClass = fileIdPredictedClass.get(fid);
if (this.classificationExceptions.containsKey(fid)){

/* Do not duplicate non-grammar transcriptions */
continue;

}
if (!predictedClass.equals(trueClass)){

classificationPairs.add("{ \"key\":\"" + fid + "\", \"true\":\"" +
trueClass + "\", \"predicted\":\"" + predictedClass + "\", \"info
\":\"misclassified\" }");

} else {
classificationPairs.add("{ \"key\":\"" + fid + "\", \"true\":\"" +

trueClass + "\", \"predicted\":\"" + predictedClass + "\", \"info
\":\"correct\" }");

}
}
for (Map.Entry<String, String> fidErroneous : classificationExceptions.

entrySet()){
String fid = fidErroneous.getKey();
String trueClass = this.fileIdTrueClass.get(fid);
String predictedClass = fidErroneous.getValue();
classificationPairs.add("{ \"key\":\"" + fid + "\", \"true\":\"" +

trueClass + "\", \"predicted\":\"" + predictedClass + "\", \"info
\":\"out_of_grammar\" }");

}
return classificationPairs;

}
}
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C.2 Shell Scripts

This section contains scripts used for the �nal model evaluations. Script C.4 was used to perform
the �nal evaluations using the Sphinx4 evaluator with the luxgrammar. In case noise clips
with the desired SNR does not exist, it runs script B.1 to create them before evaluation. After
evaluations, the result �les are sorted in results directories for later analysis.

Listing C.4: noise_eval.sh

#!/bin/bash

MODELNAME="$1"

NOISIFIER="noisify.py" # assumes directory of noisify.py being added to PATH
EVALUATOR="java -jar ./evaluator/target/eval-1.0-SNAPSHOT-jar-with-dependencies.jar"

DIR_CLEANSPEECH="../2_data/luxdb/mono16"
DIR_NOISES="../2_data/luxdb/noise16"
DIR_EVALMODEL="./$MODELNAME"

SNRs=(3 6 12 15 20 30 40 60)
# Includes 60 for control. Results should be similar to clean speech.

# First get the clean speech benchmark
$EVALUATOR $DIR_EVALMODEL $DIR_CLEANSPEECH
mv "$DIR_EVALMODEL/results.csv" "./all_results/${MODELNAME}_clean.csv"
mv "$DIR_EVALMODEL/classifications.json" "./all_classifications/${MODELNAME}_clean.

json"

for snr in ${SNRs[*]}; do
# Noisify with the right SNR if not already done
DIR_NOISYSPEECH="${DIR_CLEANSPEECH}_${snr}_dbsnr"
if [ "$2" = "clean" ]; then rm -r $DIR_NOISYSPEECH; fi
if [ ! -d "$DIR_NOISYSPEECH" ]; then

$NOISIFIER $DIR_CLEANSPEECH $DIR_NOISES $snr
fi
$EVALUATOR $DIR_EVALMODEL $DIR_NOISYSPEECH
mv "$DIR_EVALMODEL/results.csv" "./all_results/${MODELNAME}_${snr}_db.csv"
mv "$DIR_EVALMODEL/classifications.json" \

"./all_classifications/${MODELNAME}_${snr}_db.json"
done
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Script C.5 is similar to C.4 , but uses a language model instead of the grammar.

Listing C.5: lm_eval.sh

#!/bin/bash

MODELNAME="$1"

NOISIFIER="noisify.py"
EVALUATOR="java -jar ./evaluator/target/eval-1.0-SNAPSHOT-jar-with-dependencies.jar"

DIR_CLEANSPEECH="../2_data/luxdb/mono16"
DIR_NOISES="../2_data/luxdb/noise16"
DIR_EVALMODEL="./$MODELNAME"

SNRs=(3 6 12 15 20 30 40 60)

# First get the ’clean’ speech benchmark
$EVALUATOR $DIR_EVALMODEL $DIR_CLEANSPEECH --nogrammar
mv "$DIR_EVALMODEL/results.csv" "./all_results/lm_${MODELNAME}_clean.csv"
mv "$DIR_EVALMODEL/classifications.json" "./all_classifications/lm_${MODELNAME}_clean

.json"

for snr in ${SNRs[*]}; do
# Noisify with the right SNR if not already done
DIR_NOISYSPEECH="${DIR_CLEANSPEECH}_${snr}_dbsnr"
if [ "$2" = "clean" ]; then rm -r $DIR_NOISYSPEECH; fi
if [ ! -d "$DIR_NOISYSPEECH" ]; then

$NOISIFIER $DIR_CLEANSPEECH $DIR_NOISES $snr
fi
$EVALUATOR $DIR_EVALMODEL $DIR_NOISYSPEECH --nogrammar
mv "$DIR_EVALMODEL/results.csv" "./all_results/lm_${MODELNAME}_${snr}_db.csv"
mv "$DIR_EVALMODEL/classifications.json" \

"./all_classifications/lm_${MODELNAME}_${snr}_db.json"
done
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Appendix D

Setup Scripts

D.1 CMU Sphinxtrain Setup

The Docker�le in listing D.1 should describe everything necessary to install Sphinxtrain. Running
docker build -t cmusphinx . in the directory of this �le will build a Docker image with a
working installation that can be run as a Docker container.

Listing D.1: Sphinxtrain Dockerfile

FROM debian
RUN apt-get -yqq update
RUN apt-get -yqq install autoconf make wget gcc bison file perl python python-dev

swig libtool git python3
WORKDIR /opt/

# Install sphinxbase
RUN git clone https://github.com/cmusphinx/sphinxbase.git; \

cd ./sphinxbase; \
git checkout 8d1bf98;\
./autogen.sh; ./configure; make clean all; make check; make install; \
cd /opt/

# Install pocketsphinx
RUN git clone https://github.com/cmusphinx/pocketsphinx.git; \

cd pocketsphinx; \
git checkout 600fe3e; \
./autogen.sh; ./configure; make clean all; make check; make install; \
cd /opt/

# Install sphinxtrain
RUN git clone https://github.com/cmusphinx/sphinxtrain.git; \

cd ./sphinxtrain; \
git checkout eb8bfba; \
./autogen.sh; ./configure; make clean all; make check; make install

# Install CMUCLMTK for making a language model, and sphinxbase-utils for making
binary LM

RUN wget https://sourceforge.net/projects/cmusphinx/files/cmuclmtk/0.7/cmuclmtk-0.7.
tar.gz; \
tar -xzf cmuclmtk-0.7.tar.gz; cd ./cmuclmtk-0.7; \
./configure; make check; make install; \
apt-get -yqq install sphinxbase-utils; \
cd /opt/

# Set all necessary environment variables
RUN echo "export LD_LIBRARY_PATH=/usr/local/lib" >> /root/.bashrc; \

echo "export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig" >> /root/.bashrc; \
echo "export PATH=/usr/local/bin:$PATH" >> /root/.bashrc; \
echo "alias train=/root/train.sh" >> /root/.bashrc

WORKDIR /root/
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D.2 WarpCTC Conda Setup

With Anaconda installed on a Linux or Darwin machine, the script seen in listing D.2 can be run to
achieve a setup similar to the one used for the CTC experiments in section 3.4. The only step that
should be remaining after this setup is to con�gure Keras to use Theano as back-end, which is
usually done by adding {"back-end": "theano"} to ~/.keras/keras.json. This script
should also be available at https://gitlab.com/snippets/1797979, but is included here
in case it disappears in the future.

Listing D.2: ctc_setup.sh template

#!/bin/bash

CONDAENV=warpctc

conda create -n $CONDAENV python=2.7
conda install -n $CONDAENV cmake make

source activate $CONDAENV
pip install ’keras==1.1.2’ ’theano==0.8.2’ lasagne ’scipy==0.18.1’ \

’numpy==1.15.4’ soundfile futures
git clone https://github.com/sherjilozair/ctc.git theano-warp-ctc/
mkdir theano-warp-ctc/build
cd theano-warp-ctc/build
cmake ..
make
cd ../python
python2 setup.py install

https://gitlab.com/snippets/1797979
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