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Summary

Approximate Bayesian Computation (ABC) methods is a technique used
to make parameter inference and model selection of issues of intractable
likelihood and complex models.
In this thesis, we briefly discuss the philosophy of Bayesian inference and
elaborated more on the definition, implementation and demonstration of
the three ABC algorithms. We wanted to know the efficiency of the ABC
methods in computing the samples of posterior parameters compare to the
analytically computation of the posterior parameters. The ABC algorithm
is applied on two simple toy examples. In these toy examples, the posterior
pdf is known before implementing the algorithm. We further compare the
samples of posterior parameter values obtained using ABC to the true pos-
terior and hence verify the accuracy of the algorithm.
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1 Introduction
Approximate Bayesian Computation (ABC) is a statistical technique and
it was developed in past decades to make inference about parameters and
for models selection in complex situations which often are encountered in
population genetics. The Bayesian revolution, together with modern com-
puters and powerful algorithms has allowed statistician to exploit Bayesian
methodology in ecology, genetics and epidemiology.

Construction of models that describe our observations and that can directly
simulate artificial data sets for given parameters can often be made. How-
ever, it is generally difficult to assess model parameters given a data set,
that is computing the likelihood of the model. A naturally flexible struc-
ture within which to address these problems, is provided by the Bayesian
paradigm. Certainly, the notion of simulating parameter values only re-
ally makes sense in a Bayesian approach. Since this approach allows a
stochastic interpretation of the model parameters it is often straightforward
to write a computer code to simulate data but difficult to work out the an-
alytical likelihood function. Bayesian inference requires us to compute the
likelihood function. In population ecology, genetics and epidemiology, a
class of techniques, known as ABC has been developed to avoid the com-
putation of likelihood in posterior distributions [1]. Bayesian methods are
important not only because they circumvent the null hypothesis testing, but
also because they allow for statistical inference. These ABC techniques
complement the development of statistical inference in complex mathemat-
ical models.

1.1 Problem statement
Many areas in biological and environmental science encounters model se-
lection challenges due to the complex and complicated nature of the mod-
els. Researchers are constantly dealing with this issue of selection and
comparison, in particular when different complex stochastic models and
reasonable selection criteria explains the data reasonably. In most situa-
tion, its quite a challenge to select models that are suitable among class of
competing models and this often requires deeper understanding of the con-
cept. Many techniques has been proposed in view of the above and arguably
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the most popular currently is the Bayesian approach. In the past decades,
the Bayesian approach has found its use in many areas, among them are the
model selection and statistical inference .

In the Bayesian paradigm, the best model strike the right balance between
experience and goodness of fit. Several algorithms have been proposed
for model selection based on Bayes concept, and Reversible-Jump Markov
chain Monte Carlo (RJ-MCMC), Metropolis-Hasting Markov chain Monte
Carlo (MH-MCMC) simulation and nonlinear filtering are examples of the
popular algorithms used in these studies [2]. Essentially, the evaluation is
based on maximum likelihood estimates and a penalty term to avoid com-
plex models. The number of parameters in the model is often penalised. In
many cases, the marginal likelihood estimation is made for each model sep-
arately, and the results are used to determine the plausibility of each model.
This approach may cause problems when we are dealing with large data set
which requires many parameters resulting in complex models. Computing
the parameter likelihood in nonlinear cases is very difficult due to the non-
Gaussian nature like multi-modality, of the phenomena.

The use of ABC algorithms was one of the recommended alternatives for
models selection and parameter estimation in the Bayesian framework. If
we compare ABC with the methods mentioned above, ABC is straightfor-
ward and general because it does not require extra evaluation criteria to
differentiate between complex models. The model parameter inference can
be made through evaluation of the similarity between the observed and sim-
ulated data.
Consider the variable xd being the observational data set. In the Bayesian
paradigm , the posterior probability density function (pdf) , contains all the
information about the parameters of interest θ and is defined as

p(θ|xd) =
p(xd|θ)p(θ)

p(xd)
= const× p(xd|θ)p(θ) (1)

where p(xd|θ) is the likelihood function , p(θ) is the prior pdf and p(xd) is
the marginal likelihood. Since the likelihood function p(xd|θ) may not be
on a closed analytical form, as in population genetics, the ABC methods [3]
uses a rejection technique to circumvent the computation of the likelihood
function. If we observe xd ∼ p(xd|θ) and p(θ) is the prior pdf of the
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parameter θ, then the original ABC algorithm jointly simulates

θ∗ ∼ p(θ), x∗d ∼ p(x|θ∗),

and accept the simulated θ∗d, if the simulated variable x∗d is equal or close
to the observed value, xd.

There are many algorithms that can be used to implement the ABC tech-
nique. We firstly define the ABC Rej algorithm which is the basis ABC
algorithm and it is based on ideas from rejection and importance sampling.
Secondly, the Markov Chain Monte Carlo (McMC) algorithm is defined,
which keeps proposals within non-negligible posterior areas (regions) and
lastly the ABC Population Monte Carlo (Population Monte Carlo (PopMC))
is presented.

The specific objectives of the study is:

1. Present the underlying ideas of the ABC parameter inference ap-
proach.

2. Define and discuss alternative ABC algorithms.

3. Implement and demonstrate alternative ABC algorithm.

The remaining of the study will be organized into four sections. Section
two and three would entail the background theories and methodological is-
sues respectively, whiles the two last sections would focus on simulation
examples and conclusion of the work.
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2 Basic Theory
The frequentist and Bayesian statistics differ in the interpretation of prob-
ability. For a frequentist, probability of an event is defined as the limit of
the relative frequency of the occurrence of an event in a large number of
trials. On the other hand, probability of an event in Bayesian context is
defined as the plausibility of the event to occur, given the available infor-
mation. Bayesian statistics do not consider probability as a frequency of oc-
currences but as a quantitative encoding of our knowledge about variables.
Bayesian methods in particular, makes is possible to integrate scientific ex-
perience in the analysis by means of a prior model. Bayesian techniques
may be applied to complicated and complex problems that conventional
frequentist methods would find it difficult to handle [4].

2.1 Model Parameter Inference
In this section we formalize the difference between frequentist and Bayesian
approaches to statistical inference. Consider the variable X : [X1, ..., Xq] ∈
ΩX1 × ... × ΩXq = ΩX being a q-variable and let θ : [θ1, , ..., θp] ∈
Ωθ1 ...Ωθp = Ωθ be a p-variable vector called a model parameter. The model
parameters θ may represent the expectation and variance of a population
from which X is a random variable.

Define the statistical model,

X p(x;θ) probability density/mass function,

and assume that the set observations are available with outcomes

Xd : X1, ...,Xn iid p(x;θ)

xd : x1, ...,xn

For example Xd : X1, ..., Xn could be the height of n final year statis-
tic students at NTNU selected at random with outcome xd : x1, x2, ..., xn.
From the selection process and experience, we specify a model that is in-
dependent and normally distributed with mean µ and variance σ2, where
−∞ < µ <∞ and σ2 > 0.

The model parameter can be written as θ = (µ, σ2) with a pdf,
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X  p(x; θ) = p(x;µ, σ2) =
1√
2πσ

exp
(
− (xi − µ)2

2σ2

)
(2)

and likelihood function,

L(θ; xd) = p(xd;θ) =
n∏
i=1

p(xi;µ, σ)

=
n∏
i=1

1√
2πσ

exp
(
− (xi − µ)2

2σ2

)
= (2πσ2)

−n
2 exp(− 1

2σ2

n∑
i=1

(xi − µ)2)

(3)

2.2 Classical Inference
The classical frequentist approach defines probability as a relative frequency
of occurrence of a large number of trials in an experiment [5].
Considering the model parameter θ as a fixed , unknown constant, the max-
imum likelihood (ML) method is often used to assess the parameter values
that maximize the likelihood function [6].
The ML estimator for the model parameter θ is defined as ;

θ̂ = argmaxθ{p(xd;θ)}

= argmaxθ
{ n∏
i=1

p(xi;θ)
}

θ̂ = θML(xd)

(4)

For a given p(x;θ) and observation set xd one may define sufficient statis-
tics sθ(xd) = [sθ1(xd), ..., sθp(xd)], [6] such that ,

p(xd;θ) = h1(sθ(xd);θ)h2(xd)

with h1(.) and h2(.) suitable functions, hence

θ̂ = θML(xd) = θML(sθ(xd))

5



2.3 Bayesian Inference
In contrast, the Bayesian approach allows probability to represent subjec-
tive uncertainty or subjective belief [7]. To make inference about a model
parameter θ, there is a need to have information or knowledge about the
unknown θ prior to obtaining the data.
From 2.1, we have a model p(x;θ) and there is a need to specify a prior
pdf for θ. The distribution is called the prior pdf because this quantifies the
uncertainty about θ before the data is known [8].
Consider θ : [θ1, , ..., θp] as a random variable with user specified prior pdf,
θ  p(θ) and define the posterior pdf as,

[θ|Xd = xd] p(θ|xd) = const× p(xd|θ)p(θ)

= const×
n∏
i=1

p(xi|θ)p(θ)
(5)

For a given p(x|θ) with sufficient statistics sθ(xd) one has

p(θ|xd) = const× h1(sθ(xd)|θ)p(θ)

= p(θ|sθ(xd))
(6)

Usual Bayesian point estimators are defined by central tendency of the pos-
terior pdf. Specific point estimates derived from the posterior distribution
are:

θ̃MAP = MAP [θ|xd] = MAP [θ|sθ(xd)]
θ̃E = E[θ|xd] = E[θ|sθ(xd)]

(7)

2.4 Approximate Bayesian Computation ABC
The main focus of Bayesian statistics is the posterior distribution:

p(θ|xd) = const× p(xd|θ)p(θ) (8)
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Bayesian algorithm like McMC typically requires calculations of the like-
lihood p(xd|θ) for evaluation. This raises the question as to whether the
algorithm can assess the posterior distribution without being able to calcu-
late the likelihood.

The McMC algorithm can be developed to sample jointly over the param-
eters of interest and the variables [9]. With the use of ABC methods, the
posterior pdf can be assessed even when the likelihood is not available for
McMC simulation. There are two reasons, one mathematical and one com-
putational, causing the likelihood function not to be available for McMC
simulation. Mathematical reasons involve the functions being unavailable
in closed form whereas the computational reasons are related to the expen-
sive nature of simulating and calculating the likelihood function [9].

The ABC method, was initially mentioned in 1984 through a pedagogi-
cal and philosophical argument in [10] and later a generalized version of
the method was developed in [3]. ABC method is used to substitute the cal-
culation of likelihood function by an algorithm that simulates and produces
an artificial data set x∗d, and calculates the distance between the simulated
data x∗d and observed data xd. The algorithm thereby generate a posterior
parameter sets and some examples are found in [11] and [12]. It is com-
mon for statisticians to use the sum of squared residuals (SSR) as measure
of discrepancy between the artificial data x∗d and the observed data xd. As-
sessment of the model parameters is made from the posterior parameter set.

Classical and Bayesian inference require the likelihood model p(x;θ) to
be available on explicit form, i.e with given x for a specific θ, the numeri-
cal value of p(x;θ) can be calculated.
It need not always be so, the model may be available only by a sample-
generating-function,

X = g(θ, ε) (9)

with g(., .) being a suitable function or numerical model, and the sample-
impulse ε = [ε1, ..., εq]  Uniq[0, 1]. Behind this sample-generating-
function there will always exist a pdf model, although not necessary on
analytical form.

The description above defines the ABC framework. Let the correspond-
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ing observation-set-generating-function be denoted :

Xd = [X1, ...,Xn] = [g(θ, ε1), ..., g(θ, εn)]

= gd(θ, εd)
(10)

with εd = (ε1, ..., εn) Uninq[0, 1].

The ABC approach aims as assessing the posterior pdf, defined by :

p(θ|xd) = const× p(xd|θ)p(θ)

= const× p(gd(θ, εd) = xd|θ)p(θ)
(11)

with εd  Uninp[0, 1]. Note that calculating p(gd(θ, εd) = xd|θ) for a
specific θ = θ∗ may not be simple. For the discrete case X ∈ ΩX being a
categorical sample space, assessing a consistent and unbiased estimator is
simple however see Algorithm 1.

Algorithm 1 ABC discrete Case
1: Initiate :
2: nx = 0
3: for i=1,...,S do
4: ε∗d  Uninq[0, 1]
5: x∗d = gd(θ

∗, ε∗d)
6: if [x∗d = xd] nx = nx+ 1

7: End do
8: p̂s(gd(θ

∗, ε) = xd|θ = θ∗) = nx
S

Then

p̂s(gd(θ
∗, εd) = xd|θ∗)

unbiased−−−−→
s→∞

p(gd(θ
∗, εd) = xd|θ∗)

For the continuous case with X ⊂ ΩX , being a continuous sample space
assessment of a non-parametric estimate is also available. See Algorithm
2.
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Algorithm 2 ABC continuous Case
1: Initiate
2: set τ ≥ 0 - tolerance
3: nxτ = 0
4: for i=1,...,S do
5: ε∗d  Uninq[0, 1]
6: x∗d = gd(θ

∗, ε∗d)
7: if [‖x∗d − xd‖ < τ ] nxτ = nxτ + 1

8: End do
9: p̂sτ (gd(θ

∗, εd) = xd|θ = θ∗) = 1
2τ
· nxτ
S

Then

p̂sτ (gd(θ
∗, εd) = xd|θ∗)

consistent−−−−−−→
s→∞,τ→0

p(gd(θ
∗, εd)|θ∗)

Hence, one may move θ∗ in the sample space Ωθ and explore the poste-
rior pdf p(θ|xd) of interest. The usual ABC approach is not to numerically
assess the posterior pdf , but rather sampling based inference.
Three sampling based ABC-estimators of the posterior pdf will be dis-
cussed and demonstrated.

• ABC Rejection (Rej) estimator

• ABC Markov chain Monte Carlo (McMC) estimator

• ABC Population Monte Carlo (PopMC) estimator

9



3 Algorithm Descriptions

We present the three alternative algorithm for assessing the ABC model
parameter posterior pdf.

3.1 ABC Rejection (Rej) algorithm

The ABC rejection algorithm is the initial and basic ABC algorithm and
it relies on ideas from importance sampling [10]. Assume that we have a
perfectly observed system in which there is no latent variable layer, and
represent the model parameter θ by a prior p(θ). A simulation model for
a new data set x∗d is define by p(x|θ). The following algorithm may be
used to assess the posterior pdf. Firstly, simulate from the joint distribution
p(θ,x) by simulating θ∗ ∼ p(θ) and then x∗d ∼ p(xd|θ∗). Secondly, reject
the proposed pair unless x∗d matches the observed data xd. The remaining
θ∗ is a sample from the required posterior pdf.

Approximate rejection sampling

The ABC Rej algorithm accepts model parameter values θ∗ provided the
associated simulated data x∗d is ”sufficiently close” to the observed data xd.
The algorithm is specified in pseudo code in Algorithm 3,

Algorithm 3 ABC Rejection Algorithm

1: Given an observe data xd, we assume a model Xd = gd(θ, εd).
2: Initiate:

• S- number of generations.

• ρ(., .)- distance.

• τ ≥ 0- tolerance.

3: for i=1,...,S do
4: Generate θ∗  p(θ)
5: Generate ε∗d  Uninq[0, 1]
6: Calculate x∗d = gd(θ

∗, ε∗d)
7: if ρ(x∗d,xd) < τ , keep θ∗ as sample from p(θ|xd).
8: End do
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To select the discrepancy function ρ(., .), the Euclidean distance is usu-
ally used as the norm for the rejection method though other norms can be
used. The algorithm is ”exact” in the sense that it produces a representative
realization from p(θ|xd). Smaller choice of the tolerance level τ is pre-
ferred but if it is too small, the rejection rate will be high. This will be a
challenge for high-dimension xd, since a close match between the observed
data xd and the simulated data x∗d, is highly unlikely.

In this situations other features that summarizes the information in the data
xd may be used in the discrepancy function. The features can be statistical
dispersion (for example mean and variance) and some auto-correlation de-
pending on the kind of problem at hand.
In simple cases, if a sufficient summary statistics sθ(xd) can be identified
for p(θ|xd) one may use ρ(sθ(xd), sθ(x

∗
d)) < τ for some given value of τ .

Example of ABC-Rej algorithm - Weibull distribution

Let Xd : X1, X2, ..., Xn being the sample of dielectric failures of a ceramic
capacitor. The observational set is (iid) from a Weibull distribution. In order
to compute the posterior pdf, we would need a prior to draw the simulated
data x∗d. In this example, uniform distribution is used. It is very important,
when dealing with simulated-based inference to keep the dimension of the
data low, in order for the method to work better. One may find the sufficient
summary statistics for the observations to reduce the dimension of the sets
of data. Depending on the type of distribution at hand, many people calcu-
late the distance between the observed data xd and simulated data x∗d, when
dealing with Rejection algorithm. In this Example, ABC-Rej algorithm is
used and Euclidean distance (

√
(x̄∗d − x̄d)2) plays an important role in the

simulation process.

In our toy example, we create 30 iid observations from a Weibull pdf with
parameters θ = (2, 4) to obtain xd and compute mean and standard de-
viation as summary statistics. This summary statistics helps reduce the
computational burden associated with large data. We randomly draw sam-
ple parameters from a uniform pdf to find the simulated data x∗d. Since the
Weibull pdf has two parameters, we draw parameters from θ1 = Uni[0.01, 6]
and θ2 = Uni[0.01, 10] for the shape and scale respectively. We choose a
monotonically decreasing tolerance τ = (1, 0.5, 0.2, 0.05)

11



Figure 1: The approximate joint posterior distribution for θ1 and θ2 in the weibull
pdf with samples size N = 104 × 2.0 produced by ABC Rej iterations with
τ=(1, 0.5, 0.2, 0.05).

In Figure 1, the accepted θ-values for four values of τ are displayed.
Note that, as the τ gets very small, the number of parameters that is ac-
cepted is decreased. In the limiting case where the τ → 0, and n→∞, the
sample θ∗ would approach the correct posterior pdf (θ|xd). In practice, we
would get less and less points with high operational cost. Also, when the τ
is large, we typically gets more θ∗ and a better approximation of the shape
of the pdf, but the posterior estimate is severely biased. We can see that,
when τ = 1 most points are widely distributed around the true parameters.
Further more, when τ = 0.05, there is less number of parameter values
θ∗ that is accepted and this reduce the precision of shape of the posterior
and also a lot of information about the estimated parameter is lost. When
τ = 0.2, there are enough values θ∗ that are concentrated around the true
parameter. This value of τ = 0.2 gives a reasonable approximation of the
shape of the posterior pdf.
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3.2 ABC Markov Chain Monte Carlo (McMC) algorithm

The main purpose for McMC approach to ABC sampling is to keep pro-
posals within non-negligible posterior regions. An important issue that
needs to be considered when applying ABC methods is the ability to re-
ject good proposals due to the strict matching condition of observed and
simulated data in view of attaining accurate approximation. Focusing on
the Metropolis-Hastings algorithm, ABC McMC approach is shown in Al-
gorithm 4.

Algorithm 4 ABC McMC

1: Given an observe data set xd, we assume a model Xd = g(θ, εd).
2: Initiate:

• S- number of generations.

• ρ(., .)- distance.

• τ ≥ 0- tolerance.

• q(θ∗|θi−1)-proposal

3: Sample

• θo such that p(θo) ≥ 0

4: for i=1,...,S do
5: Set : θi = θi−1

6: Generate: θ∗  q(θ|θi)
7: Generate: ε∗d  Uninq[0, 1]
8: Calculate: x∗d = gd(θ

∗, ε∗d)
9: if ρ(x∗d,xd) ≤ τ

• Calculate :

• α∗ = min
(
1, p(θ

∗)
p(θi)
× q(θi|θ∗)

q(θ∗|θi)

)
10: With probability α∗ set:

• θi = θ∗

11: End if
12: End do

13



An example of ABC McMC algorithm - Normal distribution

We apply the ABC McMC algorithm to assess the approximate likelihood
values bases on simulated samples. We illustrate this in a toy example
where, we have 20 iid observation from a Gaussian pdf with µ = 4.6 and
σ = 1.9 hence θ = (4.6, 1.9). We use a prior pdf from a normal pdf
with (µ, σ) = (4, 1.5), a distance measure |x̄∗d − x̄d| and a tolerance τ =
(0.1, 0.2) for mean and standard deviation respectively.

Figure 2: Estimates of the posterior distribution of two different parameters of a
normal distribution by the ABC-MCMC algorithm. The trace plot and histogram
represents the estimated parameter samples with sizeN = 104×3.0 and tolerance
values τ = (0.1, 0.2).

An example of the model parameter samples generated by the ABC
McMC is shown in Figure 2. In the figure, there are two types of plots,
which are the trace and the density plots for the posterior samples. From
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the trace plot, it is evident that the samples are all concentrating around the
true parameters as expected and from the density plot we can see that the
samples are approximately retrieving to the true parameter values in both
values.

3.3 ABC Population Monte Carlo (PopMC) algorithm
The population Monte Carlo algorithm is an adaptive iteration important
sampling technique, with important functions depending on previously gen-
erated samples [13]. There are two challenges that confront this method,
which is the continuous nature of xd and cases when the prior pdf is far
from the posterior pdf, making it improbable to generate simulated data
x∗d that is close to the observed data xd. The ABC-PopMC can be used
to solve the first problem, with the aid of the tolerance and discrepancy
function, and the other problem is complex and needs more attention. Gen-
erally, when the target distribution is different from the prior distribution
acquiring an accurate posterior is difficult and requires a lot of adjustment
to the sampling and distance and tolerance. A special case of the ABC
PopMC algorithm is when an algorithm with successive steps towards the
posterior pdf is achieved by applying the weighted sampling from the set of
parameter values whose distances between observed xd and simulated x∗d
is smaller than a given threshold.

We initiate this algorithm by sampling N values from the prior p(θ) which
is know as the particles. For each sample θ∗, we generate a simulated data
x∗d and calculate the distance between the observed and simulated data. We
accept θ∗ if ρ(x∗d,xd) ≤ τ0. In this initial step, we associate to each θ∗ the
same weight , wi,0 = 1/N for i = 1, ..., N .
In successive iterations , we perform sampling from a proposal distribution
and re-weight the particle system so it targets the desired posterior pdf. For
details see Algorithm 5.

3.4 Discrepancy function and Tolerance level of ABC
The main objective of the ABC algorithm is not finding point estimates of
the parameters but instead to obtain samples from the posterior pdf. Recall
that the posterior pdf of a parameter θ is the distribution of that parameter
conditioned on the observed data xd, p(θ|xd).
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From numerous simulations, we obtain θ∗ as a sample from the posterior
pdf using a pre-define distance ρ(x∗d,xd) between the observed and simu-
lated data. For a given tolerance level τ , the posterior pdf p(θ|ρ(x∗d,xd) ≤
τ) = p(θ|xd) [3].

It is often convenient to define ρ(x∗d,xd) as a distance between summary
statistics, lets say s(x∗d) and s(xd). Taking an example, we let s(.) be the
sample mean, so we can say ρ(x∗d,xd) = (x̄∗d− x̄d)

2 is the squared distance
between the sample means. However, some statistics carry more informa-
tion about the parameter that others.

If ρ(s(x∗d), s(xd)) are chosen as the difference between the sufficient statis-
tic for p(θ|xd), then the approximation given by an ABC algorithm will
be exact when τ → 0 [14]. Many computational challenges occur when
the tolerance threshold τ is very small, which may be resolved by using a
sequence of tolerance criteria. The number of iterations in the ABC algo-
rithm, will depend of the sequence of tolerance criteria. If the tolerance
is too small the algorithm will results in high rejection rate and poor as-
sessment of the posterior pdf. The main challenge, is to set values of the
tolerance level τ that balance the approximation to the posterior pdf against
the rejection rate.
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Algorithm 5 ABC Popmc Algorithm

1: Given an observe data set xd, we assume a model Xd = g(θ, εd).
2: Initiate:

• S- number of generations.

• ρ(., .)- distance.

• τ ≥ 0- tolerance.

• q(θ∗|θ∗; Σ+
θ ) - transition probability

3: for i=1,...,N do
4: (A) Label
5: Generate θ∗ ∼ p(θ)
6: Generate ε∗d  Uninq[0, 1]
7: Calculate x∗d = gd(θ

∗, ε∗d)
8: if [ρ(x∗d,xd) > τ ] go to (A) else
9: Set θo,i ← θ∗

10: Set wo,i ← 1
N

End do
11: Particle set : θo : {θo,i; i = 1, ..., N}
12: Weight set: wo : {woi; i = 1, ..., N}
13: Calculate : Σo -Var , set θo with weight wo.
14: for t=1,...,S do
15: for i=1,...,N do
16: (B) Label
17: Generate :θ+  set θj−1 with probability wj−1
18: Generate : θ∗  q(θ|θ+, 2Σj−1)
19: Generate : ε∗d  Uninq[0, 1]
20: Calculate : x∗d = gd(θ

∗, ε∗d)
21: if [ρ(x∗d,xd) > τ ] go to (B) else
22: Set θj,i = θ∗

23: Set w+
j,i =

p(θj,i)∑N
j=1 w(j−1),kq

(
θj,i|θ(j−1),k;2Σj−1

)
24: End for
25: Calculate :wj,i = w+

j,i/
∑N

k=1w
+
j,k

26: Particle set : θj : {θj,i; i = 1, ..., N}
27: Weight set: wj : {wj,i; i = 1, ..., N}
28: Calculate : Σj -Var of set θo with weight wo

29: End for
30: Assess p(θ|xd) from set θs with weights ws.
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4 Experiment and Analysis
In this section, we apply the various ABC algorithms to two different cases,
discrete and continuous respectively. In the previous chapter, we defined
and discussed the algorithms.

4.1 Multinomial distribution
The multinomial distribution is the generalization of the binomial distribu-
tion to situations where each trial has k > 2 possible outcomes and it is
denoted Mnom(π, n) with n being number of trials and π = (π1, ..., πk)
being the model parameters.
An experiment is multinomial if,

• consist of n independent trials

• each trial results in one of the mutually exclusive events E1, ..., Ek.

• The eventEj occurs with a probability πj ,j = 1, .., k, with
∑

i πi = 1

Let X = (X1, X2, ..., Xk) be the number of outcomes of each event. Even
though the individual Xj are random, they sum to the number of trials,

k∑
j=1

Xj = n

hence the Xj are negatively dependent. The pdf of X is given by the multi-
nominal pdf,

X p(x;π) =
n!

x1!...xk!

k∏
j=1

π
xj
j (12)

where xj ∈ N⊕ and
∑

j xj = n

The marginal pdf of the multinomial pdf are binomial,Bin(πj, n) ,

Xj  p(xj; πj) =

(
n

xj

)
π
xj
j (1− πj)n−xj
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Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the beta distri-
bution for k > 1. A Dirichlet distributed variable X = (X1, ..., Xk) is dis-
tributed asDir(α) which is parameterized by a vector α = (α1, ..., αk),αi >
0. The probability density is given as

X p(x;α) =
Γ(
∑k

j=1 αj)∏k
j=1 Γ(αj)

k∏
j=1

xj(αj−1) (13)

where x = (x1, ..., xk) ∈ Ωx such that xj ≥ 0 and
∑

j x
j = 1, while Γ(.) is

the gamma function.

The marginal distributions are beta distributions [15]:

X i  p(x;α) = Beta(αi, α0 − αi)

=
Γ(αi + α0 − αi)
Γ(αi)Γ(α0 − αi)

xαi−1(1− x)(α0−αi)−1

where 0 ≤ x ≤ 1 and α0 =
∑

j αj .

The Model

Let X = (X1, X2, X3) be the number of balls that falls into three boxes
with different probabilities and we fix the number of balls to n hence

∑
i xi =

n. We know that the probability for a ball to fall in each box is πi with
constraint

∑
i πi = 1. In this case Xi are not independent and the joint

probability of vector x = (x1, x2, x3) is multinomial distributed. The like-
lihood of π based on Xd = X is defined as the joint probability function of
X1 = x1, X2 = x2, X3 = x3 which is ,

L(π; xd) = p(x;π)

=
[ n!

x1!x2!x3!

] 3∏
i=1

πx
i

i

= n!
3∏
i=1

πx
i

i

xi!

(14)
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We further compute the log-likelihood function for Equation14

log
{
L(π; xd)

}
= log(n!)−

3∑
i=1

log(xi!) +
3∑
i=1

xi log(πi) (15)

The MLE for a model parameter π is ;

π̂ = argmaxπ
{
logL(π; xd)

}∑
i

π̂ = 1

We introduction the the Lagrange multiplier into the object function,

Q(π; xd) = log(n!)−
3∑
i=1

log(xi!) +
3∑
i=1

xi log(πi) + λ(1−
3∑
i=1

πi) (16)

and we take the derivative of the object function, and set to zero,

dQ

dπ
=
xi

πi
− λ = 0

dQ

dλ
= 1−

k∑
i=1

πi = 0

(17)

We solve the system of equation and obtain the ML estimator for π as

π̂i =
xi

n
; i = 1, ..., 3

In order to find the Bayesian posterior pdf of the model parameters, we
define a prior model for π and it would be appropriate to use Dirichlet dis-
tribution which is a conjugate prior of the multinomial distribution. The
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posterior pdf for the model parameters is ,

p(π|x) ∝ p(x|π)p(π)

= n!
3∏
i=1

πx
i

i

xi!
× Γ(

∑3
i=1 αi)∏3

i=1 Γ(αi)

3∏
i=1

παi−1
i

∝
3∏
i=1

πx
i

i

3∏
i=1

παi−1
i

=
3∏
i=1

παi−1+xi
i

(18)

hence
p(π|x) ∼ Dir(αp)

with αp = (αp1, αp2, αp3) and αpi = αi + xi, i = 1, ..., 3. Hence the
marginal distribution for the posterior is

p(πi;αpi) = Beta(αpi, αp0 − αpi)

where αp0 =
∑

i αpi = α0 + n.

Since we are using Dirichlet prior which is a conjugate prior for the multi-
nomial pdf, we would derive a Dirichlet posterior pdf. This makes esti-
mation of the posterior pdf very simple by referring to the corresponding
Dirichlet distribution.

ABC-Rej estimation of the posterior distribution
The Dirichlet posterior pdf of the parameter π, with a Beta marginal dis-
tribution, could be used in statistical inference like hypothesis testing or
confidence interval construction . Focus of this study is to evaluate the ac-
curacy of the estimated of posterior pdf by using ABC algorithms.

We consider the multinomial distribution as a complex function g(θ, ε) for
which the likelihood is difficult to compute, and assign a Dirichlet prior pdf
to the model parameters θ = π. Then we simulate data x∗d for the Dirich-
let prior p(θ) given multinomial g(θ, ε) and use the ABC-Rej algorithm to
assess the ABC posterior pdf.
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Note that in this specific case Xd ∈ Ωx = N3⊕, which is a discrete vari-
able. Hence it is possible to use a identity tolerance function, entailing
acceptance if x∗d = xd.

Figure 3: Density estimate of the posterior distribution for three different param-
eters of beta distribution , obtained through ABC-Rej using Multinomial distribu-
tion with 1 sample size and N = 103× 1.0 iterations and tolerance value τ = 0.1.

The Findings

In the experiment the simulation of the model is done in one sample size,
with two red balls, two blue balls and one green ball, X = (2, 2, 1), gen-
erated with three probability π = (0.3, 0.5, 0.2). The prior model of π is
tri-variate Dirichlet with hyperparameters α = (1, 1, 1)

To assess the posterior pdf, we sample N = 1000 values of π∗ and gen-
erate the simulated data sets x∗d. The ABC Rej algorithm with a toler-
ance level τ = 0.1 is used. Due to the design of the experiment we
can calculate the posterior pdf analytically, and it is Dirichlet (αp), with

22



αp = (1 + 2, 1 + 2, 1 + 1). The posterior marginals are Beta distributed.
Figure 3 display the three marginal pdfs of π which are beta distributed.
The figures display the prior pdfs (solid line), posterior pdfs (coloured line)
and the samples of the [π|xd] from the ABC Rej algorithm.

4.2 Pareto Distribution
The Pareto distribution which was defined by the Italian civil engineer,
economist, and sociologist Vilfredo Pareto in the 19th century, is repre-
sented asX ∼ Par(α, β) with shape and location parameters (α, β). Graph-
ically, the Pareto distribution is skewed with heavy or slow decaying tails
that is, most of the data is located in the tails, and is used for modelling of
income and city population distributions. The pdf of Pareto distribution is ,

X  p(x;α, β) =
βαβ

xβ+1
I(x ≥ α), (19)

with model parameters α ∈ R⊕ as known and β > 2. The parameter α is
the minimum value of X and we fix it to α0, while β is a positive parameter
which determines the concentration of data towards the mode.

Gamma Distribution

The Gamma distribution Gam(λ, κ) is one of the widely use distribution
for reliability and life testing analysis [16]. It is also related to the beta
distribution and arises naturally in the processes for which the waiting times
between Poisson distributed events are relevant. The pdf is given as ,

X  p(x;λ, κ) =
λκ

Γ(κ)
xk−1 exp(−λx)I(x ≥ 0) (20)

for parameters λ ∈ R⊕ and κ ∈ R⊕.

The Model

Consider X = (X1, ..., Xn) being a sample of income from a population.
The observation set is independent and identically distributed (iid) from
a Pareto pdf with model parameter (α0, β), and α0 fixed. The likelihood
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function for the Pareto distribution parameter β, given the outcome xd :
x1, ..., xn is ;

L(β; xd) = p(xd; β)

=
n∏
i=1

βαβ0

xβ+1
i

I(xi ≥ α0)

= βnαnβ0
[ n∏
i=1

xi
]−(β+1)

I(x(1) ≥ α0)

(21)

where x(1) = min{x1, ..., xn}, define the log-likelihood function,

logL(β; xd) = nβlogα0 + nlogβ − (β + 1)
n∑
i=1

logxi + logI(x(1) ≥ α0)

(22)
The MLE of the model parameter β is

β̂ = argmaxβ
{
logL(β; xd)

}
We compute the estimate for β, by taking the derivative of log-likelihood
and set it equal to zero,

d

dβ
(β|xd) = nlogα0 + n

1

β
−
∑
i

logxi = 0

β̂ =
[ 1

n

∑
i

logxi − logα0

]−1 (23)

The ML estimator for β is

β̂ =
[ 1

n

∑
i

logXi − logα0

]−1
From this ML estimator we observe that the sufficient statistic for β based
on xd is

sβ(xd) =
∑
i

logxi
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In order to identify the Bayesian posterior pdf of the model parameter β
in the Pareto pdf, we use the conjugate prior Gamma model. This is math-
ematically expressed as,

p(β|xn) ∼ p(xd|β)× p(β)

= βnαnβ0
[ n∏
i=1

xi
]−(β+1)

I(x(1) ≥ α0)×
λκ

Γ(κ)
βκ−1 exp(−λβ)

∼ βnαnβ0
[ n∏
i=1

xi
]−(β+1)

βκ−1 exp(−λβ)

= βκ+n−1 exp{nβ logα0} exp{−(β + 1)
∑
i

log xi} exp{−λβ}

= βκ+n−1 exp{−(λ+
∑
i

log xi − n logα0)β}

(24)

hence
p(β|xd) ∼ Gam(λp, κp)

Hence the Gamma pdf is a conjugate prior model for iid samples from
the Pareto pdf with given α0 , with posterior model parameters λp = λ +∑n

i=1 log xi − n logα0 and κp = κ+ n.
Hence the corresponding sufficient statistics s1(x) =

∑
i log xi, as we ob-

served from the ML-estimator above.

ABC-MCMC assessment of posterior pdf
To illustrate the ABC-MCMC approach, we may consider inference in
modelling of Auto insurance coverage. In this study we focus on the ac-
curacy of the estimated posterior pdf. We assume that the underlying dis-
tribution for the auto insurance coverage follows a Pareto distribution with
shape parameter β = 2 and scale parameter α0 = 1.
To generate a data set, we simulated 30 insurers (n = 30), from a Pareto dis-
tribution with the above parameter values. It is important to specify a good
prior distribution p(θ) and Gamma pdf is used as the prior. Even good pro-
posals are often rejected due to strict matching condition of observed data
xd and simulated data x∗d in order to obtain a reliable approximation.
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We consider the Pareto distribution, with α0 = 1 given as a complex func-
tion g(θ, ε)for which the likelihood is difficult to compute, and assign a
Gamma prior pdf to the model parameter θ = β. The Pareto distribution
defines Xd = gd(θ, ε). The model parameters in the prior Gamma pdf is
(κ, λ) = (4, 5). In the ABC McMC algorithm, the squared distance be-
tween sufficient statistics s(xd) =

∑30
i=1 log xi was used as distance func-

tion, and different tolerances are used in different runs.

Figure 4: The posterior distribution of β at three tolerance level τ =
(0.1, 0.05, 0.01) of a Pareto-Gamma distribution, obtained through ABC-McMC
algorithm. On the right-hand side, the histogram represents the estimated posterior
distribution, the red and blue lines indicates the true posterior distribution and the
prior distribution respectively. The trace plot on the left-hand side represent values
of a Gamma distribution
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The Findings

Figure 4 displays the results of three runs for different tolerance values
τ = (0.1, 0.05, 0.01). The prior pdf (blue line) and posterior pdf (red line)
are both Gamma pdfs. The histogram displays samples of the posterior
parameter values obtained using ABC-MCMC. The sample traces in the left
displays demonstrate that convergence is obtained. The trace plot clearly
shows that, when the tolerance values are decreasing, convergence to the
true parameter is fast resulting to a better approximation. Furthermore, the
figure shows that there is no significant different between the plots if τ is
below 0.05.

ABC-Popmc assessment of posterior pdf

To illustrate the ABC-popmc approach, we use the same set-up as in the
previous. We draw enough samples from the prior and check the reduction
rate using ρ(x∗d,xd) ≤ τ at a reasonable value of τ . If we consider a tol-
erance of τ = 1, this would help us to get a sufficient proposals because
of less rejection , but the resulting posterior estimates will not be accurate.
Our objective is to reduce the τ so we can get sufficient proposal that will
move to become a good posterior. In this work , we are fortunate to have
a conjugate prior which means we have a closed-form expression for the
posterior pdf and can compare our results with the truth.

The Findings

Figure 5 represents the results from assessment of posterior pdf of the pa-
rameter β by ABC Popmc algorithm with tolerance τ = (0.1, 0.01). The
prior Gamma pdf (blue line) and posterior Gamma pdf (red line) are ana-
lytically computed. The posterior samples of the paramter values are dis-
played in the histogram. The left display contains trace plots of the sample.
From the two trace plots , its can be seen that large τ give wide spread of
samples compared to smaller τ . This indicates that, when the tolerance is
very small, there is a small variance of the samples. Also an increase in the
particle size would results in a better approximation and estimation.
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Figure 5: The estimated posterior for parameter β in a Pareto pdf at tolerance level
τ = (0.1, 0.01), sample size N = 30 and particle size S = 300. The posterior
distribution is obtained by the ABC-popmc algorithm
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5 Conclusion
This section presents the conclusions drawn from the findings as well as
recommendations for future works .

Final remarks
We presented an approach for Bayesian analysis named Approximate Bayesian
Computation (ABC). Conventional methods of parameter estimation or in-
ference are applicable if the likelihood function is available and easy to
compute. In recent times, due to modernization and population growth,
there have being increase in data size and complex models in areas of ge-
netic, ecology and epidemiology, resulting to exploration of larger parame-
ter sets and making it complicated to make inference about them.

In this work, we define and demonstrate three kinds of ABC methods and
related algorithms namely, ABC-Rej algorithm, ABC McMC algorithm and
ABC PopMC algorithm. We demonstrated the power of these algorithms
in posterior pdf estimation, assuming there is an intractable likelihood. We
implement this algorithms and demonstrate them on simple toy examples.
ABC Rej algorithm was used to estimate parameter of a Multinomial pdf
and a Dirichlet prior pdf. Also the two other algorithms were used to esti-
mate the parameter of a Pareto pdf with a Gamma prior pdf.

In spite of the fact that, ABC approach provides ways to bypass intractable
likelihood functions, this approach comes with a cost. The ABC is more
computational expensive than the standard Bayesian methods. A typical
example is seen in the multinomial pdf where an increase in observation
from 1 to 100 increases the computation time from 7 seconds to 2 minutes
respectively.

There are some limitations associated with this approach of parameter in-
ference and some identified in this work is as follows:
The precise assessment of the posterior requires either setting the tolerance
level to very low (approaching zero) or increase the number of simulation
with low tolerance. Also summary statistics selected for the ABC accep-
tance is highly empirical. Therefore an automated approach with approxi-
mate sufficiency would be attractive for non-standardized and complex set-
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tings.

Recommendations
Future analysis into ABC methods is needed for more conclusive results.
The development of ABC methods may solve the issues of finding posterior
with intractable likelihood. The validity of the methods is still in question.
Attaining convergence requires increasing the sample size and letting the
tolerance approach zero, which is unpractical. We recommend a fixed error
bound for positive tolerance and the use of a finite sample size to improve
the implementation and assessment of the method. Also, comparing of
ABC methods with other approximation based inference like variational
Bayesian methods and expectation propagation should be explored. We
recommend a dimensional reduction technique and use of summary statis-
tics n standardized settings..
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