
Time Optimal Motion Planning and
Motion Control for Industrial
Manipulators

Marius Nordheim Røv

Master of Science in Cybernetics and Robotics

Supervisor: Anton Shiriaev, ITK
Co-supervisor: Stepan Pchelkin, ITK

Department of Engineering Cybernetics

Submission date: May 2014

Norwegian University of Science and Technology

Title: Time Optimal Motion Planning and Motion Control
for Industrial Manipulators

Student: Marius Nordheim Røv

Problem description:

Planning time optimal trajectories for industrial robot manipulators is one of
the demanding subjects in robotics since even a small increase in productivity can
generate a substantial profit in production. The task assumes planning time-optimal
trajectories for given scenarios for the robot ABB IRB140 (circular and straight line
motion of the TCP) and validating/analyzing the results when applying a control
strategy. In particular, we are interested in the possibility of connecting two (or
more) path segments, each with their own assigned velocity profile.

The following steps in investigation are planned:

– Developing dynamical model for the robot ABB IRB140.

– Analysis of geometric and velocity constraints.

– Applying methods for path generation and velocity assignment (motion plan-
ning).

– Investigating velocity assignments for connection points between path segments.

– Validation/analysis of the results with applied motion control.

The thesis should be organized according to existing guidelines, and delivered at the
Department of Engineering Cybernetics within the 2nd of June.

Supervisor: Professor Anton Shiriaev, ITK
Co-Supervisors: Postdoctoral Fellow Leonid Paramonov, ITK

PhD Candidate Stepan Pchelkin, ITK

Abstract

The ever growing need to make industry more efficient and safe has
introduced robots as potential replacements for manual labour. Even
minor increases in productivity can generate substantial profit in produc-
tion, which makes time optimal control one of the demanding subjects in
robotics. In the developement of robotic systems, two major aspects can
be distinguished: motion planning and motion control. The purpose of
motion planning is to generate a set of desired trajectories (profiles) for
each actuator of the system on a path. The goal of the motion controller
is to achieve accurate and robust tracking of the given profiles. In this
thesis we have investigated these two aspects with regards to time optimal
motion for paths that are exactly known in advance.

We assigned velocity profiles using a method called path constrained
trajectory planning on a set of case paths. The resulting motion planning
profiles were simulated for an industrial robot manipulator, ABB IRB140.
The dynamics of the robot were modeled, and a state-of-the-art orbital
stabilization based control structure was implemented. The motion plan-
ning and simulations with motion control resulted in faster periods of
motion than what could be obtained with the commercial planner from
the robot producer company, ABB.

In literature, velocity profiles are usually given with velocity set to zero
at the initial and final points for given paths. When connecting two
path segments into new and longer paths, it would be desireable to keep
some velocity through the connection point, to achieve near time optimal
motion periods. We have combined a set of paths and analyzed the
results from simulations when applying various velocity assignments at
the connection points. When connecting paths that are well geometrically
conditioned, we found that we can set boundary level velocity through
the connection point and still track the desired trajectories with high
accuracy. This was examplified with a horizontal circle connected to
a vertical circle, which performed with a maximum deviation of 0.005
radians from its desired trajectory. For sharp corner connection points,
tracking fails. A possible solution was found by implementing a transition
phase to round off corners. This was examplified for a connection point
with a 90 degree corner using boundary level velocity profiles, and it was
shown how to tune the transition phase to obtain better results.

Sammendrag (Norwegian)

Det alltid økende behovet for å gjøre industriproduksjon mer trygt
og effektivt har lansert roboter som potensielle erstattere for manuell
arbeidskraft. Selv små forbedringer i produktiviteten kan generere bety-
delig profitt i produksjonen, noe som gjør tidsoptimalisering til et av de
mest etterspurte tema innen robotikk. I utviklingen av robotsystemer,
kan vi skille mellom to aspekter: bevegelsesplanlegging og bevegelses-
regulering. Formålet i bevegelsesplanleggingen er å generere et sett av
ønskede hastighetsprofiler for hver aktuator i systemet på en gitt bane.
Målet til bevegelsesregulatoren er å oppnå nøyaktig og robust sporing
av de gitte profilene. I denne avhandlingen har vi undersøkt disse to as-
pektene med tanke på tidsoptimal bevegelse når banene er forhåndskjente.

Vi har tildelt hastighetsprofiler ved bruk av en metode kalt ’path-constrained
trajectory planning’ på et sett av baner. De resulterende hastighetsprofile-
ne ble simulert for en industriell robot-manipulator, ABB IRB140. Dyna-
mikkene til roboten ble modellert, og en state-of-the-art regulatorstruktur
baser på orbital stabilisering ble implementert. Bevegelsesplanleggingen
og simuleringer med bevegelsesregulator resulterte i raskere tidsperioder
for bevegelsene enn hva som kunne oppnås med den kommersielle plan-
leggeren fra robot-produsent-selskapet, ABB.

I litteraturen er som regel hastighetsprofiler gitt verdien null i start-
og sluttpunktene for gitte baner. Når man tilkobler to bane-segmenter til
nye og lengre baner, vil det være ønskelig å beholde hastighet gjennom
tilkoblingspunktet for å oppnå en nær tidsoptimal bevegelsestid. Vi har
kombinert et sett baner, og analysert resultatet fra simuleringer hvor
forskjellige hastighetsprofiler er tilordnet i tilkoblingspunktet. Når man
tilkobler baner som er godt geometrisk tilpasset, fant vi at man kunne
sette hastigheten til grenseverdier og fortsatt oppnå høy nøyaktighet.
Dette ble vist med en horisontal sirkel tilkoblet en vertikal sirkel, noe
som ga et maksimalavvik på 0.005 radianer fra ønsket baneprofil. For
tilkoblingspunkter med skarpe hjørner, feiler banesporingen. En mulig
løsning ble funnet ved å implementere en overgangsfase for å avrunde
hjørner. Dette ble eksemplifisert for et 90 graders hjørne med hastighets-
profil satt til grenseverdier, og det ble vist hvordan man kan innstille
overgangsfasen for å oppnå bedre resultater.

Preface

This master thesis was given in the spring of 2014 by the Depart-
ment of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU) as part of the M.Sc. program in engineering
cybernetics. The work is a continuation of the project work from the
fall of 2013. My supervisor has been Professor Anton Shiriaev from the
Department of Engineering Cybernetics, NTNU. My Co-Supervisors have
been Postdoctoral Fellow Leonid Paramonov and PhD Candidate Stepan
Pchelkin, both from the Department of Engineering Cybernetics, NTNU.

I would like to thank my supervisor, Prof. Anton Shiriaev, for his
guidance through these interesting topics over the last year. I would also
like to thank the Co-Supervisors for providing me with valuable help and
answers during the project work leading up to the master thesis. Lastly,
I would like to thank my family. I am so grateful for your support during
my years at NTNU.

Trondheim, May 2014
Marius Nordheim Røv

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Motivation and Introduction to Industrial Robot Manipulators . . . 1

1.1.1 The IRB140 Robot Manipulator 2
1.2 Scope and Emphasis . 2
1.3 Outline of Report . 3

2 Concepts and Theories 5
2.1 Robot Manipulator Kinematics . 5

2.1.1 The Denavit-Hartenburg Convention 5
2.1.2 Forward Kinematics . 7
2.1.3 Inverse Kinematics . 7

2.2 Robot Manipulator Dynamics . 8
2.2.1 The Euler Lagrange Equations 8
2.2.2 Holonomic Constraints . 10
2.2.3 The Recursive Newton-Euler Formulation 10

2.3 Motion Planning Terminology . 13
2.4 Motion Control Theory . 15

3 Mathematical Modeling of the IRB140 Manipulator 17
3.1 Kinematics . 17

3.1.1 Forward Kinematics . 17
3.1.2 Inverse Kinematics . 20
3.1.3 Velocity Kinematics . 21

3.2 Dynamics . 22
3.2.1 Parameter Estimation . 22
3.2.2 Finding Vectors and Mass Centers 22
3.2.3 The Inertia Tensor . 23
3.2.4 The Newton-Euler Formulation 24

vii

3.3 Discussion . 26

4 Motion Planning 27
4.1 Path Planning . 27
4.2 Path-Constrained Trajectory Planning 28

4.2.1 Time Optimalization . 29
4.2.2 Virtual Holonomic Constraints 30
4.2.3 Finding Velocity Profiles . 30

4.3 Motion Planning on Case Paths . 33
4.3.1 Case 1: Horizontal Circular Motion 33
4.3.2 Case 2: Vertical Circular Motion 39
4.3.3 Case 3: Straight Line Motion 43

4.4 Discussion . 47

5 Motion Control 49
5.1 Orbital Stabilization . 49
5.2 Motion Control Simulations on Case Trajectories 50

5.2.1 Simulink Layout . 51
5.2.2 Case 1: Horizontal Circular Motion 52
5.2.3 Case 2: Vertical Circular Motion 55
5.2.4 Case 3: Straight Line Motion 57

5.3 Discussion . 60

6 Connecting Path Segments 63
6.1 The Usability of PCTP . 63
6.2 Simulations . 64

6.2.1 Case 1: Horizontal Circle Connected to a Straight Line . . . 65
6.2.2 Case 2: Vertical Circle Connected to a Straight Line 67
6.2.3 Case 3: Horizontal Circle Connected to a Vertical Circle . . . 70

6.3 Discussion . 74

7 Connections with Sharp Corners 75
7.1 Corners in Pick-and-Place Motions 75
7.2 Sharp Corners in Path Constrained Motion 76

7.2.1 Simulations with Transition Segment 80
7.2.2 Design Options . 82

7.3 Discussion . 86

8 Concluding Remarks 87

Bibliography 89

A Derivations and Definitions 91

A.1 Order Reduction for Matlab Simulations 92
A.2 Transformation Matrix . 93
A.3 Jacobian for Linear Velocity . 94
A.4 Inertia Matrices . 94
A.5 SolidWorks Parameter Estimation 95
A.6 Velocity Profile Generation Points 95

B Maple Code 97

C MATLAB: Simulink 113

D MATLAB: Level-2 S-function 117

E ABB Datasheet 123

List of Figures

1.1 Industrial robotic production plant in Tianjin, China (Great Wall Motor
Company). Image courtesy of the ABB Group. 2

1.2 General set of components in a robotic system. 3
1.3 CAD model of the ABB IRB140 robot manipulator in initial position.

The CAD model can be downloaded from the ABB web site. [5] 4

3.1 Assignment of coordinate frames as basis for DH parameter representation
of a simplified version of the 6DOF IRB140 manipulator. 18

3.2 Illustrating the geometrical view of the robot. The figure to the left is
used for finding θ1, while the figure to the right is used for finding θ2 and
θ3. 20

4.1 Comparing 3 types of cubic splines, using the CurveFitting Toolbox
in Matlab. The resulting interpolations show csapi (blue dashed line),
csape(red dashed line) and pchip (black line) over the same set of points. 31

4.2 Velocity profile for an example path coordinate using the natural cubic
spline, csape (red dashed line) closing in on the boundaries (blue lines). 32

4.3 Geometrical view of the robot in the xy-plane. The blue circle is centered
on (xc1, yc1, zc1) with a radius R1. θ1 ∈ [−π, π]. 33

4.4 Geometrical view of the robot in the xz-plane. Blue line represents a
circle in the xy-plane with radius R1, centered on (xc1, yc1, zc1). 34

4.5 Showing q∗i as functions of θ1 ∈ [−π, π]. 36
4.6 Velocity constraints along the horizontal circular path. 36
4.7 Comparing three types of cubic splines on four different velocity profile

scenarios for the horizontal circular path. csapi (blue dashed), csape (red
dashed), pchip (black). 37

4.8 Showing planned velocity profiles for the horizontal circular case, with
various end point settings, together with the velocity constraints. Red
dashed line shows the chosen Spline. Black, blue and green lines show
boundary lines for q1, q2 and q3 respectively. 38

4.9 Geometrical view of the robot in the xz-plane. Blue line represents a
circle in the yz-plane with radius R2, centered on (xc2, yc2, zc2). 40

xi

4.10 Showing q∗i as functions of θ2 ∈ [−π, π] for a vertical circle with radius
R2, centered on (xc2, yc2, zc2). 41

4.11 Boundary curves for the vertical circle path. 41
4.12 Comparing three types of cubic splines on four different velocity profile

scenarios for the vertical circular path. csapi (blue dashed), csape (red
dashed), pchip (black). 42

4.13 Showing planned velocity profiles for the vertical circular case, with various
end point settings, together with the velocity constraints. Red dashed
line shows the chosen Spline. Black, blue and green lines show boundary
lines for q1, q2 and q3 respectively. 43

4.14 Geometrical view of the robot in the xz-plane. Blue line represents a
straight line with length R1. 44

4.15 Showing q∗i as functions of x ∈ [0.45, 0.65], for the straight line path . . 45
4.16 Boundary curves for the straight line path case. 45
4.17 Comparing three types of cubic splines on four different velocity profile

scenarios for the straight line path. csapi (blue dashed), csape (red
dashed), pchip (black). 46

4.18 Showing planned velocity profiles for the straight line case, with various
end point settings, together with the velocity constraints. Red dashed
line shows the chosen Spline. Black, blue and green lines show boundary
lines for q1, q2 and q3 respectively. 46

5.1 Simulink model of the IRB140 with orbital stabilization control and a
motion planning structure. 51

5.2 Time evolution of θ1 for the velocity profile where starting and ending
velocities are set to zero. 52

5.3 Obtained velocity profile, θ̇1, generated by cubic spline interpolation for
the horizontal circle path. 53

5.4 Showing obtained trajectory for the horizontal circle in joint space. q1
(black), q2 (blue), q3 (green). Dashed lines show the desired trajectory.
Left figure: Starting and ending velocity set to zero. Right figure: Starting
and ending velocity set to boundary level. 53

5.5 Showing obtained trajectory for the horizontal circle in task space. x(t)
(red), y(t) (blue), z(t) (black). Dashed lines show the desired trajectory.
Left figure: Starting and ending velocity set to zero. Right figure: Starting
and ending velocity set to boundary level. 54

5.6 Showing the error vector for the horizontal circle path, Yhc, i.e the error
between the desired Φ(θ1) and obtained q(t). y1 (red), y2 (blue), y3
(black). Left figure: Starting and ending velocity set to zero. Right figure:
Starting and ending velocity set to boundary level. 54

5.7 Time evolution of θ2 ∈ [−π, π]. 55

5.8 Resulting velocity profile for the vertical circle, obtained by cubic spline
interpolation. 56

5.9 Showing the obtained (continuous) trajectories with the desired trajecto-
ries (dashed) from simulations for the vertical circular path. Upper figures
show task space trajectories: x(t) (red), y(t) (blue), z(t) (black). Lower
figures show joint space trajectories: q1 (black), q2 (blue), q3 (green).
Figures to the left show the result of having boundary level velocities at
the end points, while the figures to the right show the same result using
zero end point velocities. 56

5.10 Showing the error vector for the vertical circle path, Yvc, i.e the error
between the desired Φ(θ2) and obtained q(t). y1 (red), y2 (blue), y3
(black). Left figure: Starting and ending velocity set to zero. Right figure:
Starting and ending velocity set to boundary level. 57

5.11 Time evolution for the straight line path with the velocity profile set to
zero starting and ending velocity. 57

5.12 Resulting velocity profile with zero starting and ending velocity for the
straight line path, obtained by cubic spline interpolation. 58

5.13 Showing the obtained (continuous) trajectories with the desired trajecto-
ries (dashed) from simulations for the straight line path. Upper figures
show task space trajectories: x(t) (red), y(t) (blue), z(t) (black). Lower
figures show joint space trajectories: q1 (black), q2 (blue), q3 (green).
Figures to the left show the result of having boundary level velocities at
the end points, while the figures to the right show the same result using
zero end point velocities. 59

5.14 Showing the error vector for the straight line path, Y, i.e the error between
the desired Φ(x) and obtained q(t). y1 (red), y2 (blue), y3 (black). Left
figure: Starting and ending velocity set to zero. Right figure: Starting
and ending velocity set to boundary level. 59

6.1 Example of a path badly suited for path constrained trajectory planning,
similar to the example seen in [10]. 64

6.2 Resulting trajectory in joint space of combining a horizontal circle and
a straight line path. The velocity profiles are set with low starting and
ending velocities for both path segments. Dashed lines show desired
trajectory. 65

6.3 Resulting trajectory in task space of combining a horizontal circle and
a straight line path. The velocity profiles are set with low starting and
ending velocities for both path segments. Dashed lines show desired
trajectory. 66

6.4 Error between desired and obtained joint values on the combined horizon-
tal circle and straight line path. 66

6.5 Resulting trajectory in joint space of combining a horizontal circle and
a straight line path. The velocity profiles are set with boundary level
velocities at the connection point for both path segments. Dashed lines
show desired trajectory. 67

6.6 Resulting trajectory in joint space of combining a vertical circle and a
straight line path. The velocity profiles are set with low starting and
ending velocities for both path segments. Dashed lines show desired
trajectory. 68

6.7 Resulting trajectory in task space of combining a vertical circle and a
straight line path. The velocity profiles are set with low starting and
ending velocities for both path segments. Dashed lines show desired
trajectory. 68

6.8 Error between desired and obtained joint values on the combined vertical
circle and straight line path. 69

6.9 Resulting trajectory in joint space of combining a vertical circle and
a straight line path. The velocity profiles are set with boundary level
velocities at the connection point for both path segments. Dashed lines
show desired trajectory. 69

6.10 Resulting trajectory in joint space of combining a horizontal circle and a
vertical circle path. Upper figure: Velocity profiles are set to zero at the
connection point between the two paths. Lower figure: Velocity profiles
are set to boundary level velocity through the connection point. Dashed
lines show desired trajectory. 71

6.11 Resulting trajectory in task space of combining a horizontal circle and a
vertical circle path. Upper figure: Velocity profiles are set to zero at the
connection point between the two paths. Lower figure: Velocity profiles
are set to boundary level velocity through the connection point. Dashed
lines show desired trajectory. 72

6.12 Resulting error vector when combining a horizontal circle and a vertical
circle path. Upper figure: Velocity profiles are set to zero at the connection
point between the two paths. Lower figure: Velocity profiles are set to
boundary level velocity through the connection point. 73

7.1 Illustration of the blending procedure developed by Lloyd and Hayward
[9]. Figure from [23]. 76

7.2 Combining two path segments using a third segment designed as a suitable
transition path. 77

7.3 Rounding corner between two path segments for path constrained motion.
The desired path is shown in blue. The new path will follow the red circle
from the point where the dashed line meets the blue curved path segment
and continue up the straight line from where the red circle touches the
straight line path segment. 78

7.4 Illustrating the geometry of a circular segment. Illustration from Wikipedia. 79
7.5 Showing planned q∗i (θt) for the transition segment with radius rt = 0.04

(m). We see that the initial positions align with the corresponding
positions of q∗i (θ1) for θ1 = β. 80

7.6 Resulting trajectory in joint space as functions of θ ∈ [−π, β] after im-
plementing the transition path segment. Transition segment is using
lower velocity profile, resulting in higher path accuracy. Highlighted area
(between the red lines) shows the area of effect from the transition segment. 81

7.7 Resulting trajectory in task space after implementing the transition path
segment. 81

7.8 Highlighting the effect of tuning the transition segment radius for the
obtained y(t) (blue) with desired trajectory (dashed blue). Top left:
rt = 0.03. Top right: rt = 0.035. Bottom left: rt = 0.04. Bottom right:
rt = 0.08. (m) . 82

7.9 Error in task space after implementing the transition path segment,
showing the result for four different rt of the transition segment. Top left:
rt = 0.03. Top right: rt = 0.035. Bottom left: rt = 0.04. Bottom right:
rt = 0.08. (m) . 83

7.10 Highlighting the effect of tuning the transition segment velocity profile
on the obtained y(t) (blue) with desired trajectory (dashed blue). Top
left: zero velocity profile settings. Top right: Low velocity profile settings.
Bottom left: velocity profile equal to horizontal circle velocity profile.
Bottom right: higher velocity profile settings. 84

7.11 Error vector in task space after implementing the transition path seg-
ment, showing the result for four different velocity profile settings on the
transition segment. 85

7.12 A more robust way of implementing, adding more possible transition
paths with various level of precision. The circle with a thicker line shows
the same circle as in Figure 7.3. 85

A.1 Showing how the mass center of link 3 was calculated in SolidWorks. . . 95

C.1 Simulink model - Overall structure of the simulation of orbital stabilization
on the motion planning cases . 114

C.2 IRB140 block - Containing a Level-2 MATLAB S-Function block for
simulating the dynamics of the IRB140 manipulator. 114

C.3 Controller block - Taking in the desired and obtained joint values for
orbital stabilization. Also containing a block for friction handling. . . . 114

C.4 Trajectory block - Structure of the trajectory generation, is generated in
the Velocity profile block, the desired trajectory signal is then computed
in a Matlab function. 115

C.5 Example of trajectory generation block for the straight line - Velocity
profile is generated in the Velocity profile block, the desired trajectory
signal is then computed in a Matlab function. 115

C.6 Velocity profile block - Simple structure of the interpolation by the look-
up-table block. 116

C.7 Motion generator block structure - Taking the vector q(t) as input. . . . 116

List of Tables

3.1 DH parameter table . 18
3.2 Known lengths from datasheet . 19
3.3 Masses and centre of mass calculated by SolidWorks for the simplified

3DOF model of the IRB140. 23

4.1 Constraints for position (qi) and velocity (q̇i) 30
4.2 Points used in the cubic spline interpolation in Figure 4.1. 31

5.1 Planned periods of motion, T , for various end point velocity profiles. Tf,i
shows the periods of motion for end point velocities set to boundary levels,
Ts,i shows the periods of motion for end point velocities set to zero, Tv,s
shows the periods of motion for zero initial velocity and boundary level
final velocity, Tr,s shows the periods of motion for boundary level initial
velocity and zero final velocity. 61

5.2 Obtained periods of motion, T , for various end point velocity profiles.
Tf,i shows the periods of motion for end point velocities set to boundary
levels, Ts,i shows the periods of motion for end point velocities set to zero,
Tv,s shows the periods of motion for zero initial velocity and boundary
level final velocity, Tr,s shows the periods of motion for boundary level
initial velocity and zero final velocity. 61

A.1 Points used in the cubic spline interpolation for the horizontal circle. . . 95
A.2 Points used in the cubic spline interpolation for the vertical circle. . . . 95
A.3 Points used in the cubic spline interpolation for the straight line with

boundary level velocities at the starting and ending points. 96
A.4 Points used in the cubic spline interpolation for the straight line with zero

velocities at the starting and ending points. 96
A.5 Points used in the cubic spline interpolation for the straight line with

boundary level velocity at the starting point and zero at the ending point. 96

xvii

Chapter1Introduction

1.1 Motivation and Introduction to Industrial Robot
Manipulators

A robot is a mechanical device, equipped with actuators and sensors, set to perform
a certain task in an operating workspace. The ISO definition of an industrial
robot is an automatically controlled, reprogrammable, multipurpose manipulator
programmable in three or more axes. [14] The ever growing need to make industry
more efficient and safe has introduced robots as potential replacements for manual
labour. More and more industries choose to have parts of their production work force
consist of robots instead of humans. This year, the The International Federation
of Robotics wrote a press release confirming the numbers of industrial robot sales
(168 000 units) in 2013 and they predict an average increase of 6% per year starting
between year 2014 and 2016. [1] Typical jobs for robots in the industry include
welding, painting, product inspection, assembly and testing to name a few. As
the technology advances, the requirements follow, and the desire to optimalize the
productivity is strong, since even small improvements can generate substantial profits
in production. In Figure 1.1 we see a robotic production plant in Tianjin, China,
where several manipulators are collaborating, doing various tasks on a car assembly
line. These tasks should all be accomplished at high speed, with high endurance and
precision.

In developing robotic systems, two major aspects can be distinguished, namely
motion planning and motion control. In Figure 1.2 we see the general structure
of a robotic system, where the motion planning components are highlighted. The
purpose of robot motion planning is to generate a set of desired trajectories for
each actuator of the system. This is often obtained by guiding the robotic system
through a field of (dynamic) obstacles present in the workspace of the robot, while
respecting the existing physical limitations. The desired trajectories serve as input
to the motion controller. Mainly, the purpose of the motion controller is to achieve

1

2 Chapter 1 - Introduction

Figure 1.1: Industrial robotic production plant in Tianjin, China (Great Wall
Motor Company). Image courtesy of the ABB Group.

accurate and robust tracking of the given desired trajectories. Over the last decades,
a huge amount of work has been done in the field of robotic motion control. We refer
to [7] for a relatively updated and complete overview.

In this text we will focus on methods for motion planning with respect to time
optimalization, as well as study a motion control strategy that achieves high precision
tracking for preplanned trajectories.

1.1.1 The IRB140 Robot Manipulator

Throughout the text, we will be using the robot IRB140 as our working example robot.
The IRB140 is an industrial robot produced by the ABB Group. The manipulator has
six revolute joints, all controlled by AC-motors (6 degrees of freedom). A Computer-
aided design (CAD) model of the robot can be seen in Figure 1.3, showing its default
initial position. The manipulator is suited for welding, painting, assembly and other
tasks that require high speed and accuracy. It also has the possibility to be mounted
on walls and roofs, with its relatively modest size and around 100 kg of weight. The
datasheet given by ABB, is included in the file folder related to this paper, and is
also available on the web. A compressed version of the datasheet can be seen in
Appendix E.

1.2 Scope and Emphasis

The main contribution of the thesis is a study of motion planning of near time optimal
trajectories when combining path segments, which may be useful in many situations
where robotic industrial production applies. We have planned velocity assignments
based on velocity and geometric constraints, with the goal of obtaining time optimal

1.3 - Outline of Report 3

Figure 1.2: General set of components in a robotic system.

periods of motion along preplanned paths. In most of the literature found on the
subject, the initial and final velocity is set to zero for any given path segment. We
will investigate the possibilities of connecting two (or more) paths into new and longer
paths without having to set the velocity to zero at the connection point between the
path segments. During this study, a special case surfaced, where two path segments
are connected in such a fashion that they generate sharp corners. Some time is given to
finding a new way of dealing with such cases. To ensure high precision path tracking,
we will study a state-of-the-art motion control strategy based on orbital stabilization.
The control structure, as well as mathematical models of the manipulator, were
implemented in Simulink, where we simulated the manipulator behavior on several
case paths with various velocity assignment profiles. The mathematical modeling
of the manipulator robot is presented as a compressed and corrected version of the
project work leading up to this thesis. (See [13] for this project report.)

1.3 Outline of Report

The report is laid out in the following way: Chapter 2 deals with the theoretical
background that is needed to follow the text, explaining various common methods
and concepts that will be used later. In Chapter 3, some of the concepts from Chapter
2 will be used to derive mathematical models of our working example robot, IRB140.
In Chapter 4, the problem of path and trajectory planning is concerned. We will
introduce 3 case paths, and the problem of trajectory planning is handled thoroughly
for each case, using path constrained trajectory planning. Then, in Chapter 5 we
relate the motion planning results with dynamics when we deal with the motion
control problem of the IRB140 on the paths. We will use a controller based on orbital
stabilization, and perform simulations on the desired trajectories. In Chapter 6, we
will analyze the possibilities of connecting the presented paths into new and longer
paths. We will see how the periods of motion for the new trajectories compare to the
results from the motion planning stage. Lastly, in Chapter 7 we make an attempt
to solve some issues concerning sharp corners, discovered from the results of the
analyzis in Chapter 6.

4 Chapter 1 - Introduction

Figure 1.3: CAD model of the ABB IRB140 robot manipulator in initial position.
The CAD model can be downloaded from the ABB web site. [5]

Chapter2Concepts and Theories

This chapter briefly explains the governing theories and methods used in this paper.
We start in Section 2.1 by introducing some mathematical modeling methods related
to the kinematics of robot manipulators. The mathematical modeling is continued in
Section 2.2 where we focus on the dynamics of manipulators. In Section 2.3 we focus
on path and trajectory planning, and clarify some common terminology. Then, in
Section 2.4 we investigate some theory related to robot motion control.

2.1 Robot Manipulator Kinematics

In this section we introduce common methods for mathematically describing the
kinematics of robot manipulators with degree of freedom, n (n-DOF). Note
that many different notations can be found in the literature when dealing with
mathematical robotics. The notation used in this chapter will be similar to that of
[26].

2.1.1 The Denavit-Hartenburg Convention

It is obvious that dealing with robot manipulators with n degrees of freedom can
become very complex as n grows. Therefore, it is natural to seek a structured way
to express robot joints and frames. The Denavit-Hartenburg (DH) Convention is
a common way to achieve this goal. One reason why the DH convention is popular is
because of its systematic nature, making engineers able to simplify complex situations
and agree on a universal language with which they can communicate. [26, p. 76] We
seek to find a homogeneous transformation matrix, Ai = Ai(qi), that expresses the
position and orientation of frame oixiyizi with respect to frame oi−1xi−1yi−1zi−1.
Each homogeneous transformation, Ai, can be represented as a product of four basic
transformations, as seen in Equation (2.1).

5

6 Chapter 2 - Concepts and Theories

Ai(qi) = Rotz,θi
Transz,di

Transx,ai
Rotx,ai

, i = 1 . . . n (2.1)

The individual basic rotation matrices can be seen in [26] and any other book
on robotics. Performing the calculations on Equation (2.1), gives the matrix as
shown in Equation (2.2).

Ai =


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (2.2)

The matrix Ai, will then be of the form in (2.3), where the matrix Ri−1
i represents

the rotation between the two frames oixiyizi and oi−1xi−1yi−1zi−1. The vector oi−1
i

represents the coordinate vector between the frames.

Ai =
[

Ri−1
i oi−1

i

0 1

]
(2.3)

To obtain the matrix Ai it can be seen from (2.2) that we need to find the parameters
ai, αi, di and θi. Here ai is the link length, αi is the link twist, di is the link
offset, and θi is the joint angle. These parameters can be easily obtained if we
arrange the frame definitions correctly according to the DH convention. In [26, p.
110], the following algorithm is presented for assigning frames

1. Establish a base frame. Set the origin anywhere on the z0-axis. The x0 and y0
axes are chosen conveniently to form a right-handed frame.

2. Locate the origin oi where the common normal to zi and zi−1 intersects zi. If
zi intersects locate oi at this intersection. If zi and zi−1 are parallel, locate oi
in any convenient position along zi.

3. Establish xi along the common normal between zi−1 and zi through oi, or in
the direction normal to the zi−1 − zi plane if zi−1 and zi intersect.

4. Establish yi to complete a right handed frame.

5. Establish the end effector frame onxnynzn.

6. Create a table of DH parameters ai, di, αi and θi.

2.1.2 - Forward Kinematics 7

By doing these steps, we can readily obtain values for the parameters. The link
length will be the distance along xi from the intersection of the xi and zi−1 axes to
oi. The link twist is the angle from zi−1 to zi measured about xi. The link offset
will be the distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes.
If the joint is prismatic, di will be a variable, which is denoted d∗i . Lastly, the joint
angle is the angle from xi−1 to xi measured about zi−1. If joint i is revolute, θi will
be a variable, and denoted θ∗i .

2.1.2 Forward Kinematics

Looking at (2.3) it is clear it would be more useful to find a way to represent
any frame, most often the base frame, with respect to any other frame. This can
be obtained simply by multiplication of the homogeneous matrices, Ai, in order,
starting and ending with the desired frames. Performing this multiplication we can
now express the position and orientation of ojxjyjzj with respect to oixiyizi, by a
transformation matrix, T ij . The most interesting transformation matrix is often
the one who express the position and orientation of the end effector with respect to
the base frame o0x0y0z0.

T0
n = A1(q1) . . .An(qn) (2.4)

where T0
n is of the form

T0
n =

[
R0
n o0

n

0 1

]
(2.5)

This matrix together with the DH convention defines the forward kinematic equations
for a manipulator and makes us able to map from joint variables to end effector
position and orientation. However, to be able to control a manipulator, the inverse
problem needs to be solved, i.e. given position and orientation of the end effector,
we must solve for the corresponding joint variables.

2.1.3 Inverse Kinematics

The problem of inverse kinematics can be stated as follows: [26, pp. 93-94] Find a
solution, or possibly multiple solutions, of the equation

T 0
n(q1, . . . , qn) = H (2.6)

where H is a given 4x4 homogeneous transformation ∈ SE(3), and
T 0
n(q1, . . . , qn) = A1(q1) · · ·An(qn).

8 Chapter 2 - Concepts and Theories

The problem of inverse kinematics is in general more difficult than the forward
kinematics problem. This is not hard to understand, considering the complexity of
the nonlinear trigonometric equations that needs to be solved with high n. However,
there are techniques to simplify the problem, like geometric approaches and kinematic
decoupling methods. In this paper the geometric approach will be used in several
different situations for the ABB IRB140 manipulator.

2.2 Robot Manipulator Dynamics

The previous sections describe the motion of robots without consideration of the
torques and forces that produce the motion. In this section we deal with the dynamics
of robot manipulators, which explicitly describe the relationship between motion and
force. This relation is essential in being able to implement control algorithms on a
robot manipulator. What follows is the derivation presented in [26, pp. 240-241], of
a set of differential equations, namely the Euler-Lagrange Equations, making us
able to understand the dynamics of the robot manipulator.

2.2.1 The Euler Lagrange Equations

To arrive at the Euler-Lagrange Equations, we begin by inspecting Newton’s second
law

d(mv)
dt

= f (2.7)

For a particle with mass, m, constrained to move vertically, with downward gravity
force, mg, (2.7) becomes

mÿ = f −mg (2.8)

where the left hand side of (2.8) can be written as

mÿ = d

dt
(mẏ) = d

dt

∂

∂ẏ

(
1
2mẏ

2
)

= d

dt

∂K
∂ẏ

(2.9)

Here, K = 1
2mẏ

2 is the kinetic energy. Similarly, the gravitational force in (2.8) can
be expressed as

mg = ∂

∂y
(mgy) = ∂P

∂y
(2.10)

where P = mgy, is the potential energy due to gravity. We now define a Lagrangian,
L = K − P, and observe that if we differentiate the Lagrangian with respect to y
and ẏ, we obtain

∂L
∂y

= −∂P
∂y

(2.11)

2.2.1 - The Euler Lagrange Equations 9

and

∂L
∂ẏ

= ∂K
∂ẏ

(2.12)

We are now able to rewrite (2.8) as

d

dt

∂L
∂ẏ
− ∂L
∂y

= f (2.13)

Equation (2.13) is called the Euler-Lagrange Equation for the example of the
particle in the xy-plane, moving parallel to the y-axis. A robot manipulator with n
degrees of freedom, can be described by a similar set of equations, using so called
generalized coordinates (q1, . . . , qn) as follows:

d

dt

∂L
∂q̇k
− ∂L
∂qk

= τk, k = 1, . . . , n (2.14)

where τk is the force associated with qk. By using (2.14), we can now describe the
dynamics of the robot manipulator. The question of deriving these equations for the
robot still remains, and will be clarified in Section 2.2.3. Let us first rewrite (2.14)
to a convenient form which is often used in the literature of robotics. In [26, pp.
255-257] it is shown how to arrive at the following form of (2.14)

n∑
i=1

mij(q)q̈j +
n∑
j=1

n∑
k=1

cijk(q)q̇j q̇k + gi(q) = τi (2.15)

Here, the terms cijk are known as the Christoffel symbols, which are found by

cijk = 1
2

{
∂dkj
∂qi

+ ∂dki
∂qj

− ∂dij
∂qk

}
(2.16)

The form in (2.15) is useful due to its linearity in the q̇j q̇k terms, making for a
convenient way of dealing with trajectory generation. Another form of (2.14), that
is often used, is by matrix representation

M(q)n×n


q̈1
...
q̈n

+ C(q, q̇)n×n


q̇1
...
q̇n

+G(q)n×1 =


τ1
...
τn

 . (2.17)

where the matrix M(q) is called the Inertia Matrix, and is symmetric and positive
definite for any manipulator, making it useful for control problems. The matrix
C(q, q̇) is the Coriolis-Centrifugal Matrix and G(q) is known as the Gravity
Vector.

10 Chapter 2 - Concepts and Theories

2.2.2 Holonomic Constraints

Before we look at methods for deriving the dynamic equations, let us introduce
some terminology concerning constraint analysis regarding (2.14). If the particle
from the example in Section 2.2.1, joined by a new set of particles, is free to move
about without any restrictions, then it is easy to describe their motion by Newton’s
second law. However, if the motions of the particles are constrained in some fashion,
then one must take into account not only the externally applied forces, but also the
constraint forces. With this in mind, we can now introduce the term of holonomic
constraints. [26, p. 244] A constraint on the k coordinates, r1, . . . , rk is called
holonomic if it is an equality constraint of the form

gi(r1, . . . , rk) = 0, i = 1, . . . , l. (2.18)

By differentiating (2.18) we get an expression of the form

k∑
j=1

∂gi
∂rj
· drj = 0 (2.19)

The holonomic constraints will be important in Chapter 4 when we look at path
constrained trajectory planning, using virtual holonomic constraints.

2.2.3 The Recursive Newton-Euler Formulation

In this section we will see how to derive the dynamic equations from Section 2.2.1
for robotic manipulators. There are mainly two methods for obtaining this goal,
namely the Lagrangian formulation and the Newton-Euler formulation. As the title
suggest, we are going to focus on the Newton-Euler formulation in this paper. It
should be pointed out that both the formulations are equivalent in almost all respects,
although they build upon two different philosophies. While the Lagrangian method
treats the manipulator as a whole and perform the analysis using the Lagrangian
function, the Newton-Euler formulation treat each link of the robot in turn, writing
down the equations for linear and angular motion. In [26, p. 272] it is argued that
the Lagrangian formulation might be more suitable if one is interested in obtaining
closed-form equations that describe the time evolution of the generalized coordinates.
The Newton-Euler formulation is suggested to be more suited if we are interested in
knowing what generalized forces need to be applied in order to realize a particular
time evolution of the generalized coordinates. For this paper, however, it is not of
much difference which formulation is chosen.

The Newton-Euler formulation is explained in detail in [26, pp. 271-279], and
only the most important parts are restated here. It should also be noted that several
errors are found in this section of [26], so some care should be taken while using the

2.2.3 - The Recursive Newton-Euler Formulation 11

2006 version of this book. First, we introduce a set of vectors and parameters which
are listed below.

ac,i acceleration of the center of mass of link i
ae,i acceleration of the end of link i
ωi angular velocity of frame i with respect to frame 0
αi angular acceleration of frame i with respect to frame 0
gi acceleration due to gravity
fi the force exerted by link i-1 on link i
τi torque exerted by link i-1 on link i
Rii+1 rotation matrix from frame i to frame i+1
zi axis of actuation of frame i with respect to frame 0
mi the mass of link i
Ii inertia tensor of link i about a frame parallel to frame i
ri−1,ci vector from origin of frame i-1 to the center of mass of link i
ri,ci vector from the origin of frame i to the center of mass of link i
ri−1,i vector from the origin of frame i-1 to the origin of frame i

The force balance for a single link i rises the following equation based on New-
ton’s second law

fi −Rii+1fi+1 +migi = miac,i (2.20)

Next, one can compute the moment balance equation for link i. The moment exerted
by a force f about a point is given by f × r, where r is the radial vector from the
point where the force is applied to the point about which we are computing the
moment. In the moment equation, the vector migi does not appear, since it is applied
directly at the center of mass. Thus, we have

τi −Rii+1τi+1 + fi × ri−1,ci −
(
Rii+1fi+1

)
= ωi × (Iiωi) + Iiαi (2.21)

The main point in the Newton-Euler formulation consists of finding vectors f1, . . . , fn
and τ1, . . . , τn corresponding to a given set of vectors q, q̇, q̈. In other words, we
find the forces and torques in the manipulator that correspond to a given set of
generalized coordinates and their first two derivates. The general idea is as follows.
Given q, q̇, q̈, suppose we can determine all of the velocities and accelerations of
various parts of the manipulator, that is, all of the quantities ac,i, ωi and αi. Then
we can solve (2.20) and (2.21) recursively to find all the forces and torques as follows.
First, set fn+1 = 0 and τn+1 = 0. This expresses the fact that there is no link n+ 1.
We can then solve (2.20) and (2.21). Repeating this for each link in order, will then

12 Chapter 2 - Concepts and Theories

give a full solution once we find an easily computed relation between q, q̇, q̈ and
ac,i, ωi, and αi. This can be obtained by a recursive procedure in the direction of
increasing i. For the angular velocity we get

ω
(0)
i = ω

(0)
i−1 + zi−1q̇i (2.22)

where the superscript (0) denotes that ωi is express in the inertial frame. We can
now use the rotation of joint i expressed in frame i, bi = (R0

i)TR0
i−1z0, to get

ωi =
(
Ri−1
i

)T
ωi−1 + biq̇i (2.23)

Next, for the angular acceleration, the time derivate of (2.22) gives

ω̇
(0)
i = ω̇

(0)
i−1 + zi−1q̈i + ω

(0)
i × zi−1q̇i (2.24)

which can be expressed in frame i as

αi =
(
Ri−1
i

)T
αi−1 + biq̈i + ωi × biq̇i (2.25)

The next step is to find an expression for ae,i and ac,i. The linear velocity of the
mass center of link i is

v
(0)
c,i = v0

e,i−1 + ω
(0)
i × r

(0)
i−1,ci (2.26)

which gives
a

(0)
c,i = a

(0)
e,i−1 × r

(0)
i−1,ci + ω

(0)
i ×

(
ω

(0)
i × r

(0)
i−1,ci

)
(2.27)

With this, we are ready to express the acceleration of the center of mass of link i in
frame i as follows

ac,i = (Ri−1
i)Tae,i−1 + ω̇i × ri−1,ci + ωi × (ωi × ri−1,ci) (2.28)

where we have used the fact that the rotation matrix is skew symmetric, giving the
property R(a× b) = Ra×Rb. Finding ae,i can now be done simply by substituting
the vector ri−1,i for ri−1,ci and arrive at the expression

ae,i = (Ri−1
i)Tae,i−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i) (2.29)

These equations concludes the recursive Newton-Euler formulation, which is now
done in two steps. Consider a robot manipulator with n links. We begin with
setting the initial conditions of ω0, α0, ac,0 and ae,0 equal to zero. Also, the terminal
conditions of fn+1 and τn+1 should be set equal to zero. Next, we perform the
forward recursion, solving the equations (2.23), (2.25), (2.29) and (2.28) in the
given order for each link from 1, to n. Finally, we perform the backward recursion
by solving (2.20) and (2.21) for each link, starting from link n, and ending with link
1. Completing this recursion, we will have obtained all the needed expressions to
form the dynamic equations in (2.15).

2.3 - Motion Planning Terminology 13

2.3 Motion Planning Terminology

In this section we address the planning of a motion for a robot manipulator, and
clarify some related terminology used throughout the paper. The detailed methods
are best explained using a case robot with obtained kinematic relations, and will be
saved for Chapter 4. When considering robotic systems set to perform specific tasks,
we can distinguish between two types of movements. Movements can in some cases
be specified in which only a certain set of points withing the robot workspace must
be visited. These types of movements represents what is called pick-and-place
motion. In other cases movements can be set to follow a certain path exactly. This
is called path-constrained motion.

The pick-and-place motion represents a movement of the robot where two desired
positions are given. Firstly, the position where an object, e.g a factory product,
is picked. Secondly, the position where the object is to be placed. The user of
such a motion planner provide the pick and place positions, as well as intermediate
positions to avoid collisions during the motion. There are numerous algorithms found
in literature to adress this type of trajectory generation problem, and algorithms for
such motions will often be implemented for tasks such as e.g. component mounting
and packing tasks, where there exists freedom in the design of the path between the
pick and place positions.

In path constrained motions, a path is typically presented as function of a path
parameter, meaning the motion can be described in one degree-of-freedom. [17]
Implementing such motion generation will often be used in tasks such as e.g. cutting
and inspection. The path parameter can be used to describe the process and actua-
tor constraints by a set of functions. In this paper we will be focusing mainly on
path-constrained motion for preplanned paths where the paths will be made up of
common geometrical shapes such as circular motions and straight lines. These paths
will then be used to study the problem of time optimalization.

In literature, several terms related to motion planning are used. Concider the
motion planning for a robot manipulator, starting at an initial position and ending
at a goal position. Given specified initial and end configurations, path planning
is the problem of finding a collision free path connecting these configurations. By
its description, this problem may sound like an easy task, yet the path planning
problem is among the most difficult problems in computer science. [26, p. 163] The
computional complexity of the best known complete path planning algorithm grows
exponentially with the number of internal degrees of freedom of the robot. As the
purpose of this paper is to investigate methods for time optimal control, the path
planning problem will be reduced to simple feasible predefined paths.

14 Chapter 2 - Concepts and Theories

Trajectory planning is a term that has been used for decades in robotics, and refers
mainly to the problem of determining both a path and a velocity function for a robot
arm. [10, p. 792] As one can expect, the velocity profile on a path will come in under
concern when addressing time optimality. Methods for finding a suitable velocity
profile that minimizes time, is something that has been investigated since the 1980s.
One such method uses constraint-based analysis to reach a sub-optimal solution to
the problem, and is called path-constrained tajectory planning. This method
will be investigated thoroughly throughout the paper. Path-constrained trajectory
planning is also useful outside the scope of traditional industry robots. In [15], the
method is used for a machine crane, with a discussion regarding the reverse motion.
For further discussion and other methods see e.g [2] and [6].

In the discussion of trajectory planning, we will need to know some basic inter-
polation techniques, in particular the cubic spline will be used in this paper. A
spline is defined as a sufficiently smooth piecewise polynomial interpolant. Sufficiently
smooth means, in this case, that we need to mandate the order of the spline to fit
our needs for a given curve fitting problem. A spline function g(x) of order p with
knots t1, . . . , tJ , is presented in [3, p. 247] on the form

g(x) =
J+p+1∑
j=1

βjGj(x) (2.30)

where

{
Gj(x) = (x− tj)p+, j = 1, . . . , J
GJ+j(x) = xj−1 j = 1, . . . , p+ 1

A cubic spline will be such a function, of order, p = 3. Splines on this form are
frequently used in practice. There are several different types of cubic splines with
different end point settings, which will be discussed further in Section 4.2.3.

Lastly, let us clarify some terminology related to the mathematical spaces that
will be used in this paper. The transformations explained in Section 2.1.2 make
us able to remap our mathematical models between spaces. The 3 dimensional
Euclidean space, denoted W, will be called the world or task space. A robot in this
space is denoted A (or A1, . . . ,An for linkage). An obstacle region is denoted O and
a configuration space is denoted by C. A smooth manifold X , called the state space,
may be X = C or it may be a phase space derived from C if dynamics are considered.
This notation is similar to what is found in commonly used literature, e.g. [10].

2.4 - Motion Control Theory 15

2.4 Motion Control Theory

Let us revisit the result from Section 2.2 where we found the differential equations in
matrix form, (2.17), for the robot dynamics.

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (2.31)

where u is the input torque. A basic PD controller can be applied, where

u = −Kp(q∗ − q)−Kd(q̇∗ − q) = −Kpe−Kdė (2.32)
e = (q∗ − q), ė = (q̇∗ − q̇) (2.33)

where q∗ denotes the desired trajectory. It can be shown that this control strategy
yields asymptotic tracking, by using a Lyapunov function candidate on the form

V = 1
2 q̇

TM(q)q̇ + 1
2e

TKpe (2.34)

thus, for a constant reference, i.e. q̇∗ = 0, we have a Lyapunov function candidate
that satisfies V > 0 ∀ (q, q̇) 6= (q∗, 0), at which V = 0. Next we can show that
V̇ ≤ 0 ∀ q̇ 6= 0, which implies the system is heading towards equilibrium.

V̇ = q̇TM(q)q̈ + 1
2 q̇

T Ṁ(q)q̇ + q̇TKpe (2.35)

V̇ = q̇T (u− C(q, q̇)q̇ −G(q)) + 1
2 q̇

T Ṁ(q)q̇ + q̇TKpe (2.36)

V̇ = q̇T (u−G(q) +Kpe) + 1
2 q̇

T (Ṁ(q)− 2C(q, q̇))q̇ (2.37)

(2.38)

Using the skew symmetric properties of Ṁ(q) − 2C(q, q̇), as can be seen in [26, p.
121], we see that the term q̇T (M(q)− 2C(q, q̇))q̇ dissapears. We can then insert the
controller equations to get

V̇ = q̇T (u−G(q) +Kpe) (2.39)
V̇ = −q̇TKdq̇ ≤ 0 ∀ q̇ 6= 0 (2.40)

Next, suppose V̇ ≡ 0, i.e. V̇ is equal to 0 for all instants. Then q̇ ≡ 0, which implies
q̈ ≡ 0 if Kd is chosen to be positive definite. This means e = 0, and what follows
from La Salle’s theorem (see e.g. [25]) is proof of global asymptotic stability for
q = q∗. This result will be used in Section 5.1 where we will expand on these results
and introduce orbital asymptotic stability.

Chapter3Mathematical Modeling of the
IRB140 Manipulator

In this chapter we consider mathematical modeling of the IRB140 presented in
Section 1.1.1. Based on the methods and concepts from Chapter 2, we will derive the
kinematics and dynamics of the robot manipulator. Some of the results presented
here will be similar to those obtained in the project work leading up to this thesis.
[13]

3.1 Kinematics

As stated in Section 2.1,Forward kinematics makes us able to describe the position
and orientation of an end effector given values for the joint variables of the robot.
Inverse kinematics is focused on determining the values of the joint variables when
knowing the end effector position and orientation. Lastly, velocity kinematics,
makes us able to write down a Jacobian for the system.

3.1.1 Forward Kinematics

The IRB140 has 6 degrees of freedom (n=6). The manipulator has convenient
placement of the last 3 joints, making it able to reach every point in its workspace,
by only using its first 3 degrees of freedom, i.e. the first 3 joints. By exploiting this
fact, we can introduce a simplification of the robot from n=6 to n=3, reducing the
degrees of freedom to 3. The resulting simplified model is illustrated in Figure 3.1.
Following Section 2.1.1, the coordinate frames were assigned according to the rules
of the DH convention, as seen in Figure 3.1.

Note that the initial positions of the joints are chosen such that link 2 is verti-
cal and link 3 is horizontal. This means that the x3 axis is locked in horizontal
direction at the end effector. The resulting DH parameter table from the analysis
can be found in Table 3.1, where the numerical values of the lengths ai and di can be
found from the datasheets supplied by ABB [4], which is included in Appendix E.

17

18 Chapter 3 - Mathematical Modeling of the IRB140 Manipulator

Figure 3.1: Assignment of coordinate frames as basis for DH parameter representa-
tion of a simplified version of the 6DOF IRB140 manipulator.

Having found the parameters, each homogeneous transformation, Ai, can now be
represented as a product of four basic transformations as explained in Section 2.1.1.
First, let us note that the θi-parameters contain difference and sum angles for θ2
and θ3 respectively. Since the calculations later on will become very complex, these
expressions were compressed using common trigonometric identities before stating
the Ai-matrices. The 3 homogeneous transformation matrices for the IRB140 are

Table 3.1: DH parameter table
Link ai αi di θi

1 a1 −π2 d1 q∗1
2 a2 0 0 q∗2 − π

2
3 a3 0 0 q∗3 + π

2

3.1.1 - Forward Kinematics 19

found to be

A1 =


cos(q1) 0 − sin(q1) a1 cos(q1)
sin(q1) 0 cos(q1) a1 sin(q1)

0 −1 0 d1

0 0 0 1

 (3.1)

A2 =


sin(q2) cos(q2) 0 a2 sin(q2)
− cos(q2) sin(q2) 0 −a2 cos(q2)

0 0 1 0
0 0 0 1

 (3.2)

A3 =


− sin(q3) − cos(q3) 0 −a3 sin(q3)
cos(q3) − sin(q3) 0 a3 cos(q3)

0 0 1 0
0 0 0 1

 (3.3)

Now, having defined A1, A2 and A3, we can use (2.4) to obtain the transformation
matrix that relates the end effector frame to the base frame. The calculation of T0

3
is done using Maple, and can be seen in Appendix B. The resulting transformation
matrix takes the form seen in (3.4). The individual matrix elements, rp,q, for
p, q = 1, 2, 3, as well as dx, dy and dz of (3.4) can be seen in (A.1). Having obtained
the link lengths from the datasheet, which are stated in Table 3.2, we see that the
distances from the origin to the point (dx, dy, dz) of the end effector can now be
described by the joint angles qi.

T0
3 =


r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1

 (3.4)

Table 3.2: Known lengths from datasheet
d1 0.352 m
a1 0.070 m
a2 0.360 m
a3 0.445 m

20 Chapter 3 - Mathematical Modeling of the IRB140 Manipulator

3.1.2 Inverse Kinematics

In this section we solve the problem of inverse kinematics which is stated in (2.6),
for the IRB140. We will be looking at a geometric approach to the general inverse
solution to this problem for the manipulator. In later chapters this geometrical
approach will be used on predefined paths.

The geometric approach starts by analyzing the projections into the plane, as can
be seen from Figure 3.2. The inverse kinematic solution can be then be analytically
derived. θ1 is straight forward to write down from the figure. The two-argument
arctangent function is used for easier computer programming capability. For θ1 and
θ3, we also have to consider the ’elbow-up’ and ’elbow-down’ solutions. The base
joint, q1 ∈ [−π, π], is mechanically constrained (See the datasheet [4]), so there will
not be multiple solutions other than the two ’elbow-up’ and ’elbow-down’ solutions
for q2 and q3.

θ1 = A tan 2(±dy,±dx) (3.5)

θ3 is found by using the law of cosines, while also considering θ1 (see Figure 3.2), to
obtain

cos θ3 = s2 + r2 − a2
2 − a2

3
2a2a3

(3.6)

which becomes

cos θ3 = (dx + a1 cos(θ1))2 + (dy + a1 sin(θ1))2 + (dz − d1)2 − a2
2 − a2

3
2a2a3

:= D (3.7)

Figure 3.2: Illustrating the geometrical view of the robot. The figure to the left is
used for finding θ1, while the figure to the right is used for finding θ2 and θ3.

3.1.3 - Velocity Kinematics 21

Taking care of the ’elbow-up’ and ’elbow-down’-solutions we get

θ3 = A tan 2(D,±
√

1−D2) (3.8)

And lastly we find θ2 as

θ2 = A tan 2(dz − d1,
√

(dx + a1 cos(θ1))2 + (dy + a1 sin(θ1))2)

−A tan 2(a3 sin(θ3), a2 + a3 cos(θ3))
(3.9)

It is now possible to determine q1, q2 and q3 by investigating our defined initial
position, i.e. the position as can be seen in Figure 3.1. Notice that the angle
equations in this case contain the nonlinear trigonometric equations from from T0

3,
which can be seen in (A.1), making for a relatively complex problem even for a
manipulator with 3 degrees of freedom.

3.1.3 Velocity Kinematics

In this section we derive the velocity relationships of the IRB140, relating the linear
and angular velocities of the end effector to the joint velocities. Mathematically,
the forward kinematic equations define a function between the space of Cartesian
positions and orientations and the space of joint positions. The velocity relationships
are then determined by the Jacobian of this function. The Jacobian is one of the
most important quantities in the analysis and control of robot motion. [26]. For
finding a coordinate vector for the cartesian position of the flange with respect to
the base frame, we can use

P0 =
[
I3×3 03×1

]
T0

3

[
03×1

1

]
(3.10)

which gives the vector containing the position elements of T3
0 as

P0 =


− cos(q1)[a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)− a2 sin(q2)− a1]
− sin(q1)[a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)− a2 sin(q2)− a1]
−a3 cos(q2) sin(q3)− a3 sin(q2) cos(q3) + a2cos(q2) + d1

 (3.11)

Now it is possible to find the Jacobian for linear velocity. This is done by calculating
the partial derivate of P0, to get the linear velocity of the end effector. Now using
the fact that the Jacobian for linear velocity must satisfy

v0
n = Jvq̇ (3.12)

22 Chapter 3 - Mathematical Modeling of the IRB140 Manipulator

we obtain the Jacobian for linear velocity, expressed as a 3× 3-matrix

Jv3×3 =


j11 j12 j13

j21 j22 j23

j31 j32 j33

 (3.13)

The individual matrix elements of (3.13) can be seen in Appendix A.3. Similarly,
the Jacobian for angular velocity could be found using ω0

n = Jω q̇, to obtain the full
Jacobian matrix J = [Jv, Jω]T .

3.2 Dynamics

In the previous sections we analysed the kinematics of the IRB 140. The kinematic
equations describe the robot motion without consideration of the forces and torques
producing the motion. To be able to control the manipulator to behave in a desired
manner, both concepts needs to be accounted for. The goal of this section is to find
the dynamic equations for the manipulator (IRB140), which explicitly describes
the relationship between force and motion.

3.2.1 Parameter Estimation

Section 2.2 explained how the dynamic model can be found by a recursive algorithm
known as the Newton-Euler formulation. It was described how the algorithm requires
computation of a set of equations related to velocity and acceleration. To be able
to use set up the formulation, we first need to find some estimates for the different
components used in the equations. As we can see in (2.23), (2.25), (2.29) and (2.28),
we need to find some vectors that describe the frame positions relative to the mass
centers of the links. Also, we need to find matrices for the inertia tensor.

3.2.2 Finding Vectors and Mass Centers

Unfortunately, the producer company of the IRB140, ABB, does not include all the
needed information in the datasheet. However, on their website ([5]) it is possible to
download CAD-models for the robot, which can be used to calculate the masses and
mass centers using commercial software, such as SolidWorks. This was done using
the Mass Properties function in SolidWorks, where we have the possibility to combine
links to account for our simplification from a 6-DOF to a 3-DOF model. This can be
seen in Section A.5. The results from this analysis can be seen in Table 3.3. The
datasheet from ABB claims the total mass of the robot to be 98kg. Calculations in
SolidWorks show the total mass of the links as ≈71.5 kg, this leaves 26.5kg to the
base, which seems reasonable.

3.2.3 - The Inertia Tensor 23

Table 3.3: Masses and centre of mass calculated by SolidWorks for the simplified
3DOF model of the IRB140.

Link Mass(in kg) Centre of Mass (in mm)
1 34.655 x = 89.03 y = −27.87 z = 43.12
2 15.994 x = 198.29 y = −92.43 z = 9.73
3 20.862 x = 79.96 y = 4.56 z = 5.86

Now, having found the mass centers, it is possible to determine the vectors that
was introduced in Section 2.2.3. Note that the mass centers stated here are based on
the distance from frame i− 1 to the center of mass of link i.

Vectors from the origin of frame i-1 to the origin of frame i:

~r0,1 =
[
a1 −d1 0

]T
~r1,2 =

[
a2 0 0

]T
~r2,3 =

[
a3 0 0

]T
Vectors from the origin of frame i-1 to the center of mass of link i:

~r0,c1 =
[
0.08903 −0.02789 0.04312

]T
~r1,c2 =

[
0.19829 −0.09243 0.00973

]T
~r2,c3 =

[
0.07996 0.00456 0.00586

]T
Vectors from the origin of frame i to the center of mass of link i:

~r1,c1 = ~r0,c1 − ~r0,1

~r2,c2 = ~r1,c2 − ~r1,2

~r3,c3 = ~r2,c3 − ~r2,3

3.2.3 The Inertia Tensor

The inertia matrix often appears when dealing with angular momentum, kinetic
energy and resultant torque of rigid systems. These are also used directly in the
Newton-Euler algorithm, which is the goal of this section, so estimations of these
are needed. SolidWorks gives the possibility to show the Inertia matrix for the links
from the CAD-models, and these values have been used in this paper. The results
show that the biggest values are found on the diagonals of the matrices, as expected.

24 Chapter 3 - Mathematical Modeling of the IRB140 Manipulator

This means the mass distribution is close to symmetric with respect to the frame.
Another way of finding an estimate of the inertia matrices, without the use of CAD
software, would therefore be to approximate the links to common shapes such as
cylinders or cuboids and used the known inertia tensor expressions for such shapes.

3.2.4 The Newton-Euler Formulation

Having found the needed components, we can now derive the recursive Newton-Euler
formulation for the IRB140 manipulator. Note that the expressions that come out
of this recursion can be very large, even for a 3-DOF manipulator, and because of
that, the resulting equations are not shown in this paper. However, the Maple code
written to compute the equations, can be found in Appendix B, and is also included
in the file folder related to this paper. Instead we will present the symbolic recursion
in this section, showing how the recursion is derived for the IRB 140 with the found
vectors, rotation matrices and parameters. The rotation matrices are calculated
using the upper left 3× 3-matrices in Ai from (3.1)-(3.3). We begin by defining the
initial gravity vector, g0 to be

~g0 =
[
0 0 −g

]T
where g = 9.81ms2 , and the rotation axis vector z0,

~z0 =
[
0 0 1

]T
according to our defined frames in Figure 3.1.

Now we can find the gravity vector related to each link by using

gi = (R0
i)T g0 (3.14)

as well as the axis of rotation of joint i expressed in frame i by using

bi = (R0
i)T zi−1 (3.15)

where
zi = R0

i z0 (3.16)

The vectors are calculated as seen in Appendix B.

Forward Recursion

We now continue with the forward recursion for the 3-DOF model of the IRB 140,
starting with link 1 and ending with link 3, as follows

3.2.4 - The Newton-Euler Formulation 25

Link 1:

Angular velocity: ω1 = b1q̇1

Angular acceleration: α1 = b1q̈1 + ω1 × b1q̇1

Center acceleration: ac,1 = ω̇1 × r0,c1 + ω1 × (ω1 × r0,c1)
End acceleration: ae,1 = ω̇1 × r0,1 + ω1 × (ω1 × r0,1)

Link 2

Angular velocity: ω2 = (R1
2)Tω1 + b2q̇2

Angular acceleration: α2 = (R1
2)Tα1 + b2q̈2 + ω2 × b2q̇2

Center acceleration: ac,2 = (R1
2)Tae,1 + ω̇2 × r1,c2 + ω2 × (ω2 × r1,c2)

End acceleration: ae,2 = (R1
2)Tae,1 + ω̇2 × r1,2 + ω2 × (ω2 × r1,2)

Link 3

Angular velocity: ω3 = (R2
3)Tω2 + b3q̇3

Angular acceleration: α3 = (R2
3)Tα2 + b3q̈3 + ω3 × b3q̇3

Center acceleration: ac,3 = (R2
3)Tae,2 + ω̇3 × r2,c3 + ω3 × (ω3 × r2,c3)

End acceleration: ae,3 = (R2
3)Tae,2 + ω̇3 × r2,3 + ω3 × (ω3 × r2,3)

Backward recursion

Having found the expressions for the velocities and accelerations, we begin the
backward recursion, starting from link 3, down to link 1, as follows

Link 3

Force on link: f3 = m3ac,3 −m3g3

Torque: τ3 = −f3 × r2,c3 + I3α3 + ω3 × (I3ω3)

Link 2

Force on link: f1 = R1
2f2 +m1ac,1 −m1g1

Torque: τ2 = R2
3τ3 − f2 × r1,c2 +R2

3f3 × r2,c2 + I2α2 + ω2 × (I2ω2)

26 Chapter 3 - Mathematical Modeling of the IRB140 Manipulator

Link 1

Force on link: f3 = m3ac,3 −m3g3

Torque: τ1 = R1
2τ2 − f1 × r0,c1 +R1

2f2 × r1,c1 + I1α1 + ω1 × (I1ω1)

3.3 Discussion

This concludes the mathematical modeling of the IRB140. In Section 3.1 we expressed
the kinematics using common technique found in literature. In Section 3.2 we derived
equations describing the dynamics of the manipulator using the Recursive Newton-
Euler formulation. This resulted in a set of differential equations for the torque
of each link of the simplified 3-link model of the IRB140. The resulting numerical
equations from the recursions are very long and can be seen in length using the Maple
code attached to this paper. In the project work leading up to this thesis, a similar
model was validated by performing a simulation with a constant reference trajectory
vector. This was done by implementing the model to a simple Simulink model in
Matlab, where the reference vector was set to qd = [π6 ,

π
4 ,−

π
6]T , and the initial

vector was set to q0 = [0 0 0]T . We used a classic PD controller as presented in
Section 2.4. The gain and damping matrices was set to Kp =diag(150, 150, 150) and
Kd =diag(50, 50, 50) respectively. The updated and corrected model was validated
in a similar manner for this paper, verifying that the model behaves as expected.
See [13] to see the full procedure of how this was performed. It should be mentioned
that for control purposes, we also need models for friction components.

Chapter4Motion Planning

The last chapter dealt with the mathematical modeling of the kinematics and
dynamics of the IRB140 manipulator. The goal of this chapter to investigate path
constrained motion planning of the manipulator. We will study the problem of
optimizing the time used to complete motions along various feasible paths. For
this we will use a method called path-constrained trajectory planning, which is a
method that avoids using the system dynamics in the planning process. We begin by
looking at the underlying theories and concepts used by this method. Then we will
use these concepts to perform motion planning on 3 different path cases. Also, we
will investigate the use of spline interpolation for finding velocity assignments that
produces (sub-)optimal velocity profiles subject along the paths. A huge amount of
tools exists for generating splines in Matlab and Maple, and we will see the differences
between those most relevant to the motion planning problem.

4.1 Path Planning

In robotics, a predefined path is a discription of how the states of the robot should
evolve. As mentioned in Section 2.3, the problem of path planning is among the
most difficult problems in computer science. The main concern in this paper is
time optimalization, so the path planning problem can be simplified into finding a
feasible predefined path that is subject to differential constraints. As mentioned in
the introduction, a total of 3 such predefined path cases will be investigated in this
chapter.

One often wish to find a parameterization of a path in task space and rewrite
it in joint space. The definition of such path is a vector Φ(s), where s = s(t) is a
real and piecewise twice differentiable function, that works as a path parameter. The
path has a starting point, s(t0) = s0 and an ending point s(te) = se. It is often

27

28 Chapter 4 - Motion Planning

useful to parameterize the path as

P0 =


x

y

z

 (4.1)

where P0 corresponds to the vector found for the end effector position in (3.11) by
the expression

P0 =
[
I3×3 03×1

]
T0

3

[
03×1

1

]
(4.2)

By using this parameterization, we can define a path coordinate, s = s(t), as a
function of the generalized coordinates that describe that particular path.

4.2 Path-Constrained Trajectory Planning

Having found a path coordinate, it is possible to define the desired path in the joint
space. Given some path coordinate, s = s(t), a path in the configuration space, C,
can be parameterized by

Φ(s) =
[
φ1(s) φ2(s) · · · φn(s)

]T
. (4.3)

Then it follows that the velocity and acceleration in joint space can be expressed as
Φ̇(s) = Φ′(s)ṡ and Φ̈(s) = Φ′′(s)ṡ2 + Φ′(s)s̈ respectively. When we assign a value,
s = s∗(t), such that the velocity along the trajectory behaves as desired, this becomes
what is reffered to as a motion generator, where the explicit dependence on time
dissapears. Taking this approach is called path-constrained trajectory planning,
and a reason why this method is useful when our goal is time optimization will be
highlighted in Section 4.2.1. See [10, pp. 846-856] for a deeper discussion on this
topic. Let us for clarity write this parameterization mathematically as follows

q =


q∗1(t)
q∗2(t)
...

q∗n(t)

 = Φ(s)|s=s∗(t) =


φ1(s)
φ2(s)

...
φn(s)



∣∣∣∣∣∣∣∣∣∣∣
s=s∗(t)

(4.4)

The variable, s, is now to be interpreted as a motion generator [10], which directly
assign the joint velocities and accelerations by

q̇ = Φ′(s)ṡ (4.5)
q̈ = Φ′′(s)ṡ2 + Φ′(s)s̈ (4.6)

4.2.1 - Time Optimalization 29

4.2.1 Time Optimalization

Consider now the optimization problem that minimizes the traversal time along a
path, starting at t0 and ending at tf , i.e

minimize
τ

∫ tf

t0

dt (4.7)

Solving such problems can become very difficult, especially when the workspace of
robots have collision objects of different shapes and sizes. In general we want to
perform optimization problems on convex sets rather than non-convex. The definition
of a convex set in Euclidean space, W, is that for every pair of points within an
object, every point on a straight line segment between the points are also within the
object. [12] It is clear that searching for a solution over the full path space does not
fit this definition. However, there are methods for handling such challenges. The
parameterization from the previous sections can be exploited to reformulate the
optimalization problem such that we get a change in the cost function. Using the
chain rule we observe that

df
dt = df

ds
ds
dt =⇒ dt = 1

ṡ
ds, (4.8)

from which we see that minimizing the traversal time is equivalent to minimizing
the inverse of the path coordinate velocity. This gives us a new formulation of the
optimization problem

minimize
τ(t)

∫ tf

t0

dt = minimize
s(t)

∫ sf

s0

1
ṡ

ds, (4.9)

where ṡ is a given velocity assignment along the trajectory.

With such a parameterization, the time evolution of the joints along the path
for the robot manipulator, can be accessed by integrating a differential equation on
the form

ṡ−1 = 1
h(s) (4.10)

The observation in (4.9) is very important, because together with (4.10), we can now
close in on the optimal time solution by analyzing the boundary constraints.

It is worth noting that the cost function for the minimum time problem could
be expanded to also consider power and energy consumption, by adding

γ1

∫ tf

t0

(
n∑
i=1

(τi(t))2dt (4.11)

30 Chapter 4 - Motion Planning

for energy, or

γ2

∫ tf

t0

(
n∑
i=1

(q̇i(t)τi(t))2dt (4.12)

for power consumption. These can be implemented to the cost function together
with (4.7) by introducing the weight parameters γ1 and γ2. However, the purpose of
this paper is to only optimize with respect to time, i.e. γ1 = γ2 = 0.

4.2.2 Virtual Holonomic Constraints

In Section 2.2.2, we introduced the term holonomic constraints. As an example,
the motion of a particle constrained to lie on a surface, for example a sphere, is
subject to a holonomic constraint. If the particle is able to fall off the sphere under
the influence of gravity, the constraint becomes non-holonomic. We have seen that
equality constraints are of the form gi(r) = 0, i=1, . . . , l. Now consider (4.4) where
we synchronized the joints along the path to an independent configuration variable.
If the geometric function in (4.4) is preserved by some control action along solutions
of the closed-loop system, it is called a virtual holonomic constraint [20] [19] [18].
These constraints express relations among the generalized coordinates q1, q2 and q3
for our case of the robot manipulator IRB140. For a feasible motion, such relations
can always be found. [19, p. 2] If the system is fully actuated, the dynamics along
the orbit of the motion is controlled, whereas for underactuated systems, it is not
the case, the dynamics are fixed.

4.2.3 Finding Velocity Profiles

Naturally, robot manipulators will have velocity and acceleration constraints due
to the limits on the actuators and the obtainable torque. The configuration is also
usually constrained, and Table 4.1 shows the position and velocity constraints for the
IRB140, as presented by the product manual from its producer ABB. These velocity
constraint values are used in the rest of this paper. Note that it is straight forward
to also account for the acceleration constraints linked to the system dynamics. For
our case, however, these are found less restrictive than the velocity constraints, and
are not to be accounted for here.

Table 4.1: Constraints for position (qi) and velocity (q̇i)
Link qi,min (rad) qi,max (rad) q̇i,min (rad/s) q̇i,max (rad/s)

1 −3.1415 3.1415 −3.4907 3.4907
2 −1.5708 1.9199 −3.4907 3.4907
3 −4.0143 0.8727 −4.5379 4.5379

4.2.3 - Finding Velocity Profiles 31

Table 4.2: Points used in the cubic spline interpolation in Figure 4.1.
Point 1 2 3 4 5 6 7 8 9 10 11
θ −π −2.4 −1.8 −1 −0.35 0 0.35 1 1.8 2.4 π

θ̇ 1 1.5 5.6 6.5 8 8.5 8 6.5 5.6 1.5 1

In Section 4.2.1, we showed how minimizing traversal time is equivalent to minimizing
the inverse of the path coordinate velocity. With this result, we can create the upper
boundaries for the velocity profile by inspecting the boundary curves generated by
the velocity constraints. Let ¯̇qi be the maximum speed of joint i of the IRB140
manipulator. The boundary problem for the speed of each joint can then be expressed
as

‖φ̇i(s)‖ ≤ ‖φ′i(s)ṡ‖ ≤ ¯̇qi (4.13)

Thus, the maximum value of ṡ can be found as

max ‖ṡ‖ = min
i

¯̇qi
‖φ′i(s)‖

(4.14)

Now, the question of finding a suitable velocity profile still remains. The velocity
profile should be suitable to fit (4.14). As explained earlier, a natural condidate
would be a differential equation that relate s to ṡ. This make for effective constraint
handling of each joint velocity. The differential equation as described would be of
the form

ṡ = h(s) (4.15)

Matlab has the possibility to implement cubic splines in Simulink, which would be
suitable as candidates for the function h(s). There are numerous choices that could

Figure 4.1: Comparing 3 types of cubic splines, using the CurveFitting Toolbox in
Matlab. The resulting interpolations show csapi (blue dashed line), csape(red dashed
line) and pchip (black line) over the same set of points.

32 Chapter 4 - Motion Planning

Figure 4.2: Velocity profile for an example path coordinate using the natural cubic
spline, csape (red dashed line) closing in on the boundaries (blue lines).

give equally good results, such as Bezier polynomials. In Figure 4.1 3 different types
of cubic splines are plotted on the same set of points. The black line shows the
pchip function which can be found using the CurveFitting Toolbox in Matlab. This
is a so-called Piecewise Cubic Hermite Interpolating Polynomial. Both the blue
dashed line, which is produced using the csapi function, and the red dashed line,
which is produced using the csape function produces cubic spline interpolants. The
difference is found, as one can see on the figure, in the end point conditions. The csapi
uses so-called not-a-knot end conditions, while the csape uses Lagrange end conditions.

We see that the csapi overshoots both the pchip and the csape at the end points.
The pchip undershoots both csapi and csape both near the end points as well as the
turning point near s = 1 and s = −1. It could be argued that the pchip is too flat
for this situation. However, with rearranging and adding of more control points, it
would probably give good results as well. The choice between csapi and csape seems
arbitrary, given point modifications. With the csape one also has the possibility to
choose other end conditions. The function Spline in Maple corresponds to the csape
with Lagrange end conditions in Matlab. Figure 4.1 also show the points used when
generating the splines, and the points are also listed in Table 4.2. The spline method
used in this paper was chosen to be the csape, i.e. the cubic spline with Lagrange
end points. The reason for this choice is that the Look-Up Table block in Simulink
uses the cubic spline produced by the csape function, which makes for a handy way
to implement the velocity profile in Simulink for simulations. The resulting spline,
when using the points in Table 4.2 is plotted together with a set of velocity constraint
curves in Figure 4.2, illustrating how this method can be used to close in on the
velocity boundary constraints to generate near time optimal velocity profiles. In the
following sections we will look at 3 different path cases and analyze them by applying
the method of path constrained trajectory planning.

4.3 - Motion Planning on Case Paths 33

4.3 Motion Planning on Case Paths

Here we will present 3 case paths which will be subject to motion planning using the
results and observations obtained from the previous sections. These path cases will
be used throughout the rest of the thesis.

4.3.1 Case 1: Horizontal Circular Motion

In Section 3.1.2 we could see how the problem of inverse kinematics can become
complex very quickly, even for a 3-DOF manipulator. The objective of this paper
is to study time optimal control, so let us simplify the problem and introduce a
case where the workspace is restricted to only one elbow-configuration. Consider a
circle in the xy-plane with center at (xc1 = 0.65, yc1 = 0, zc1 = 0.3) (m) and radius
R1 = 0.2 (m). Deriving the inverse kinematics of the end effector on such circle can
be done analytically. Figure 4.3 illustrates the robot position in the xy-plane. The
path can be parameterized as

P0
1 =


x

y

z

 =


R1 cos(θ1) + xc1

R1 sin(θ1)
zc1

 (4.16)

where P0
1 corresponds to the vector found for the end effector position in (3.11), by

the expression

P0 =
[
I3×3 03×1

]
T0

3

[
03×1

1

]
(4.17)

Figure 4.3: Geometrical view of the robot in the xy-plane. The blue circle is
centered on (xc1, yc1, zc1) with a radius R1. θ1 ∈ [−π, π].

34 Chapter 4 - Motion Planning

Figure 4.4: Geometrical view of the robot in the xz-plane. Blue line represents a
circle in the xy-plane with radius R1, centered on (xc1, yc1, zc1).

Now, let us define a path coordinate as a function of the generalized coordinates that
describe that path, e.g. the angular position

θ1 = Atan2(y(t), x(t)− xc1) (4.18)

From the figure it is easy to see that the x- and y-coordinates vary with θ1, where
θ1 ∈ [−π, π] is the angle defining the location along the the circle. From this we can
represent the first joint with respect to the angle θ1 as follows (see 1)

q∗1(θ1) = arctan(R1 sin(θ1) , R1 cos(θ1) + xc1) (4.19)

Now similar representations for the two last joints can be found. Figure 4.4 illustrates
the robot position in the xz-plane. Let us define some of the lengths and angles in the
figure using well known mathematical laws. First, the line l(θ1) can be represented
using the law of pythagoras

l(θ1) =
√

(d1 − zc1)2 + (xc1 − a1 +R1 cos(θ1))2 (4.20)

Secondly, the angle θm can be represented using the law of cosines

θm = arccos
(
a2

3 + a2
2 − l2(θ1)

2a3a2

)
(4.21)

Now, using the law of sines, the angle between a2 and l(θ1) can be found, making us
able to represent θb as

θb = a3 sin(θm)
l(θ1) − θf (4.22)

1The * in (4.19) denotes a desired joint angle value

4.3.1 - Case 1: Horizontal Circular Motion 35

where θf is the angle between the lines h(θ1) and l(θ1), and can be expressed as

θf = arctan
(

d1 − zc1
xc1 − a1 +R1 cos(θ1)

)
(4.23)

Finally, q2 and q3 can, along with q1, be expressed in terms of a single variable, θ1.
Using the defined initial positions as seen in Figure 3.1, we get

q∗2(θ1) = π

2 − θb (4.24)

q∗3(θ1) = π

2 − θm (4.25)

Observing the solution to the inverse kinematics problem in this case, we see that the
nonlinear equations from the forward kinematics analysis are avoided. It is obvious
that restricting the end effector to follow a simple predefined geometric figure such
as a circle gives big benefits in terms of simplicity, and more importantly it makes
for a convenient parameterization of the joints.

As mentioned, the joint angles are functions of a single variable, θ1, i.e. q∗i = q∗i (θ1).
Taking the time dependancy of θ1 along the desired path, i.e. θ1 = θ∗1(t), we see that
we have obtained a parameterization of the path that fits the form of (4.3), where
θ∗1(t) is a real and twice differentiable function of time. Defining the functions that
parameterize each joint q = Φ(θ1), we complete the parameterization, meaning (4.4)
will take the following form for the IRB140 on the horizontal circle:

q =


q∗1(t)
q∗2(t)
q∗3(t)

 = Φ(θ1)|θ1=θ∗
1 (t) =


φ1(θ1)
φ2(θ1)
φ3(θ1)


∣∣∣∣∣∣∣∣
θ1=θ∗

1 (t)

(4.26)

Figure 4.5 shows the resulting evolution for the target trajectory as functions of the
path parameter, and θ1 is now to be interpreted as a motion generator (see e.g. [10]),
which directly assign the joint velocities and accelerations by

q̇ = Φ′(θ1)θ̇1 (4.27)

q̈ = Φ′′(θ1)θ̇1
2 + Φ′(θ1)θ̈1 (4.28)

For the horizontal circle path, the minimization problem can then be described simply
by substituting the path coordinate from (4.9) and (4.10) with θ1 to obtain

minimize
θ1(t)

∫ θ1,f

θ1,0

1
θ̇1

dθ1 (4.29)

where
θ̇1 = h(θ1) (4.30)

36 Chapter 4 - Motion Planning

Figure 4.5: Showing q∗i as functions of θ1 ∈ [−π, π].

Now we can state the boundary problem expression from (4.13) as

‖φ̇i(θ1)‖ ≤ ‖φ′i(θ1)θ̇1‖ ≤ ¯̇qi (4.31)

and the maximum value of θ̇ can be found as

max ‖θ̇1‖ = min
i

¯̇qi
‖φ′i(θ1)‖

(4.32)

The resulting boundary curve plot was made in Matlab and can be seen in Fig-
ure 4.6. Note that acceleration constraints are not concerned, due to them being

Figure 4.6: Velocity constraints along the horizontal circular path.

4.3.1 - Case 1: Horizontal Circular Motion 37

Figure 4.7: Comparing three types of cubic splines on four different velocity profile
scenarios for the horizontal circular path. csapi (blue dashed), csape (red dashed),
pchip (black).

less restrictive than the velocity constraints, as explained in [18] The calculations of
Φ(θ1) were first made in Maple, and then implemented to Matlab, and the code for
the calculations can be seen in Appendix B. We see that in this case, the boundary
curve, b2 (green line), corresponding to the constraint on the second joint is less
restrictive than b1 (black line) and b3 (blue line) throughout the complete motion
from θ1 = −π to θ1 = π. At the end points of the motion, b1 works as the velocity
constraint boundary, as well as around θ = 0. Between these points, b3 works as the
constraint boundary.

The spline functions generated by Matlab can be seen in Figure 4.7 for four different
velocity profiles. The upper left figure shows the planning result when using near
time optimal velocity at the end points. The upper right figure shows the planning
result of having zero velocity at the end points. The bottom figures show the results
of planning with one end point set to zero velocity and the other set to near time
optimal velocity. We can see that the the planned velocity profiles are symmetrical
around θ1 = 0 for the first two cases, while for the last two cases the velocity profiles
are asymmetrical. It can be argued from the results in the figure that both the csape
and the csapi splines can be used as out spline generator for this case, whereas the
pchip seems to be too flat near the end points.

38 Chapter 4 - Motion Planning

Figure 4.8: Showing planned velocity profiles for the horizontal circular case, with
various end point settings, together with the velocity constraints. Red dashed line
shows the chosen Spline. Black, blue and green lines show boundary lines for q1, q2
and q3 respectively.

Figure 4.8 shows the csape splines together with the boundary curves from Fig-
ure 4.6 for the various scenarios. The points used for the generation of the splines
can be seen in Appendix A.6. We see that the csape function produces fitting splines
for this set of boundary constraint curves.

Now, calculating the cost function of (4.29), it is possible to find the period
of motion, T for the various scenarios. The calculations were done in Maple and the
output of the calculation can be seen in Appendix B for the scenario with near time
optimal end point velocities. The following periods of motion for the four different
velocity profile scenarios were obtained:

Boundary level velocity at both the start and end point:

Tf,θ1 =
∫ θ1,e

θ1,0

1
θ̇1

dθ1 = 0.9178941914 ≈ 0.92 sec (4.33)

Zero velocity at both the start and end point:

Ts,θ1 =
∫ θ1,e

θ1,0

1
θ̇1

dθ1 = 1.559323510 ≈ 1.56 sec (4.34)

4.3.2 - Case 2: Vertical Circular Motion 39

Zero velocity at the starting point, boundary level velocity at the end
point:

Tv,θ1 =
∫ θ1,e

θ1,0

1
θ̇1

dθ1 = 1.238609000 ≈ 1.24 sec (4.35)

Boundary level velocity at the starting point, zero velocity at the end
point:

Tr,θ1 =
∫ θ1,e

θ1,0

1
θ̇1

dθ1 = 1.238609000 ≈ 1.24 sec (4.36)

Note that Tv,θ1 and Tr,θ1 are planned with equal periods of motion, due to the
symmetry around θ1 = 0 on the velocity profiles.

4.3.2 Case 2: Vertical Circular Motion

In this section the desired path will be a vertical circle. The vertical circle path can
be parameterized as

P0
2 =


x

y

z

 =


xc2

R2 sin(θ2)
R2 cos(θ2) + zc2

 (4.37)

where θ2 is the angle defining the circle, with radius R2 = R1 = 0.2 (m), centered on
(xc2 = 0.45, yc2 = 0, zc2 = 0.5) (m) in the yz-plane. We can then express the angular
position as the path coordinate as follows

θ2 = Atan2(y(t)− yc2 , z(t)− zc2) (4.38)

The inverse kinematics can then be calculated analytically in a similar fashion as
for the horizontal circle. Figure 4.9 illustrates the robot following the vertical circle
path. The base joint can in this case be expressed as

q∗1(θ2) = arctan(R2 sin(θ2) , xc2), (4.39)

From the figure we observe that the following two equalities must hold

l(θ2) + a1 =
√
x2
c2 +R2

2 sin2(θ2) (4.40)

and
h(θ2) + d1 = R2 cos(θ2) + zc2 (4.41)

With this we can express θm by using the law of cosines, and θb by using the law of
sines

θm = arccos
(
a2

3 + a2
2 − l2(θ2)− h2(θ2)

2a3a2

)
(4.42)

θb = arcsin
(

a3 sin(θm)√
l2(θ2) + h2(θ2)

)
+ arctan

(
h(θ2)
l(θ2)

)
(4.43)

40 Chapter 4 - Motion Planning

Figure 4.9: Geometrical view of the robot in the xz-plane. Blue line represents a
circle in the yz-plane with radius R2, centered on (xc2, yc2, zc2).

The resulting expressions for the remaining joints are now dependant on a single
variable, θ2.

q∗2(θ2) = π

2 − θb (4.44)

q∗3(θ2) = π

2 − θm (4.45)

In Figure 4.10 the joint angles q∗i are shown as functions of θ2 ∈ [−π, π]. Note
that q1 starts and ends at 0, and that q2 and q3 starts in positions equal to the
final position of the horizontal circle. This was a achieved by chosing R2 = R1 and
specifying the center of the vertical circle to be located directly above the position
where the horizontal circle path ended, which will be useful in Chapter 6.

In Figure 4.11, we see the boundaries for the vertical circle path. Compared
to the horizontal circle, these boundaries are less restrictive, meaning we can achieve
higher velocity along the vertical circle than for the horizontal circle. This is because
the third joint boundary curve is less restrictive in this case, while for the horizontal
circle this boundary was the most restrictive. Figure 4.12 shows the velocity profile
generated by three different cubic splines for the vertical circle with four different
velocity profiles. The top left figure shows the result of using near time optimal
velocity at the initial and final points. The top right figure shows the planning
results when using zero velocity at both end points. The bottom left figure shows the
planning result of using zero initial velocity and boundary level final velocity. Lastly,
the bottom right figure shows the planning result of using boundary level initial

4.3.2 - Case 2: Vertical Circular Motion 41

Figure 4.10: Showing q∗i as functions of θ2 ∈ [−π, π] for a vertical circle with radius
R2, centered on (xc2, yc2, zc2).

velocity and zero final velocity. Although the benefit may be negligible, we see that
the csape spline is the most aggressive of the splines, especially around θ2 = −2.2.
The csape spline seems to be a good choice also in these scenarios, as was the case
for the horizontal circle. In Figure 4.13 we see the velocity profile plotted with the
boundary curves from Figure 4.11.

We can now calculate the cost function of (4.29), in the same manner as for
the horizontal circle, using θ2 instead of θ1. The periods of motion for the different
velocity profiles were found to be

Figure 4.11: Boundary curves for the vertical circle path.

42 Chapter 4 - Motion Planning

Figure 4.12: Comparing three types of cubic splines on four different velocity profile
scenarios for the vertical circular path. csapi (blue dashed), csape (red dashed),
pchip (black).

Boundary level velocity at both the start and end point:

Tf,2 =
∫ θ2,e

θ2,0

1
θ̇2

dθ2 = 0.6407211965 ≈ 0.64 sec (4.46)

Zero velocity at both the start and end point:

Ts,2 =
∫ θ2,e

θ2,0

1
θ̇2

dθ2 = 1.454589090 ≈ 1.46 sec (4.47)

Zero velocity at the starting point, boundary level velocity at the end
point:

Ts,2 =
∫ θ2,e

θ2,0

1
θ̇2

dθ2 = 1.047656910 ≈ 1.05 sec (4.48)

Boundary level velocity at the starting point, zero velocity at the end
point:

Ts,2 =
∫ θ2,e

θ2,0

1
θ̇2

dθ2 = 1.047656910 ≈ 1.05 sec (4.49)

We see that the planned periods of motion for the vertical circle are significantly
faster than for the horizontal circle with the same radius.

4.3.3 - Case 3: Straight Line Motion 43

Figure 4.13: Showing planned velocity profiles for the vertical circular case, with
various end point settings, together with the velocity constraints. Red dashed line
shows the chosen Spline. Black, blue and green lines show boundary lines for q1, q2
and q3 respectively.

4.3.3 Case 3: Straight Line Motion

In the case of straight lines, the problem will be slightly different from the circular
motions. For this paper, a straight line path was chosen to go up the radius of the
horizontal circle, starting from the point (xc2, yc2, zc1) and ending at (xc1, yc1, zc1).
The x-coordinate works as a path coordinate, i.e. x = x(t), meaning the velocity
profile will be in m/s and not rad/s, as for the previous cases. The inverse kinematics
will in this case be similar to the horizontal circle, only using the x-coordinate instead
of θ1. For the base joint, the expression simply becomes

q∗1(x) = 0 (4.50)

since the base is not to be rotated throughout the path. Figure 4.14 illustrates the
robot at the end of the path. Finding expressions for the second and third joints are
then readily done as follows:

44 Chapter 4 - Motion Planning

l(x) =
√

(d1 − zc3)2 + (x− a1)2 (4.51)

θm = arccos
(
a2

3 + a2
2 − l2(x)

2a3a2

)
(4.52)

θf = arctan
(
d1 − zc1
x− a1

)
(4.53)

θb = arcsin
(
a3 sin(θm)

l(x)

)
− θf (4.54)

q∗2(x) = π

2 − θb (4.55)

q∗3(x) = π

2 − θm (4.56)

Figure 4.15 shows the joints throughout the path from x = 0.45 to x = 0.65. We
can see that the base joint is kept steady at 0, while the second and third joint starts
in the same position where the horizontal and vertical circle ended. The angle of
the second joint, as seen by the green line, rises, while the third joint, seen by the
blue line, decreases. The path ends before the joint values crosses the bounds of the
manipulator workspace.

In Figure 4.16 the boundary curves for the velocity profile of the straight line
path are plotted. We can see both boundary curves are kept relatively steady for the
first half of the path, and then slowly decreasing for the second half. The boundary

Figure 4.14: Geometrical view of the robot in the xz-plane. Blue line represents a
straight line with length R1.

4.3.3 - Case 3: Straight Line Motion 45

Figure 4.15: Showing q∗i as functions of x ∈ [0.45, 0.65], for the straight line path

Figure 4.16: Boundary curves for the straight line path case.

generated by the third joint (blue line) is the most restrictive of the two, and the
velocity profile curve will need to be kept below this boundary curve throughout the
whole path. In Figure 4.17, the csapi, csape and pchip splines are plotted with for the
same velocity profile scenarios as the two previous cases. We see that for this case, the
csapi spline is not suited, for the velocity profile with zero initial velocity and bound-
ary level final velocity. However, the csape spline is well suited for this situation. The
velocity profiles are plotted with the boundary curves from Figure 4.16 in Figure 4.18.

Again, we can calculate the cost function, as for the previous cases, and find
the planned periods of motions for the straight line path for the different velocity
profile scenarios. This resulted in the following:

46 Chapter 4 - Motion Planning

Figure 4.17: Comparing three types of cubic splines on four different velocity profile
scenarios for the straight line path. csapi (blue dashed), csape (red dashed), pchip
(black).

Figure 4.18: Showing planned velocity profiles for the straight line case, with
various end point settings, together with the velocity constraints. Red dashed line
shows the chosen Spline. Black, blue and green lines show boundary lines for q1, q2
and q3 respectively.

4.4 - Discussion 47

Boundary level velocity at both the start and end point:

Tf,x =
∫ xe

x0

1
ẋ

dx = 0.1441163069 ≈ 0.14 sec (4.57)

Zero velocity at both the start and end point:

Ts,x =
∫ xe

x0

1
ẋ

dx = 0.3807147146 ≈ 0.38 sec (4.58)

Zero velocity at the starting point, boundary level velocity at the end
point:

Tv,x =
∫ xe

x0

1
ẋ

dx = 0.2546097936 ≈ 0.26 sec (4.59)

Boundary level velocity at the starting point, zero velocity at the end
point:

Tr,x =
∫ xe

x0

1
ẋ

dx = 0.2712823391 ≈ 0.27 sec (4.60)

Note that for the straight line, the two planned periods of motion Tv,x and Tr,x are
not equal. The two circle paths have symmetry around the midpoint on their velocity
profiles, whereas the velocity profile for the straight line is asymmetrical.

4.4 Discussion

In this chapter we have performed motion planning for a set of case paths, and
obtained the resulting planned periods of motion using different velocity profile
scenarios. We have seen the results of velocity profile generations for three different
interpolation functions in Matlab. The cubic spline function csape was able to handle
velocity profile generation for both circular and straight line scenarios, making it a
well rounded choice for velocity assignment tasks.

Having obtained the periods of motion, it is important to answer if these times
are optimal. Clearly, the answer is no. The results from the motion planning pre-
sented in this chapter shows that we can only achieve near time optimal velocity
profiles, using path constrained trajectory planning with cubic splines. It is probably
possible to obtain even better results if one spends more time investigating the
methods for generating the velocity profile, e.g. adding more points, or using other
methods for curve fitting. The results obtained here are however expected to perform
relatively well. From results found in the paper Integrated Time-Optimal Trajectory
Planning and Control Design for Industrial Robot Manipulator presented by Pchelkin,
Shiriaev, Robertsson and Freidovich [18], we know that our planned time of Tf,θ1 is
at least 25% faster than what can be obtained using the commercial ABB planner
running on maximum velocity.

48 Chapter 4 - Motion Planning

It is also possible to attack the optimization problem by using the dynamic in-
formation obtained in Chapter 3.2, where we arrived at (2.17). This matrix equation
can be rewritten to a non-matrix-form, which has convenient linear properties. The
new representation for the differential equations takes the form

n∑
i=1

mij(q)q̈j +
n∑
j=1

n∑
k=1

cijk(q)q̇j q̇k + gi(q) = τi (4.61)

For trajectory generation, the linearity in q̇j q̇k can be exploited, whereas for control
problems the matrix form of (2.17) is better suited because of the non-singularity
of M(q), making it useful for manipulations of q̈. Now, substituting for the path
coordinate, s, (2.15) becomes

n∑
i=j

mijq(s)q′j(s)s̈+

 n∑
j=1

n∑
k=1

cijkq(s)q′j(s)q′k(s) +
n∑
j=1

mijq(s)q′′j (s)

 ṡ2+gi(q(s)) = τi

(4.62)
This can now be stated in the compressed form

αi(s)s̈+ βi(s)ṡ2 + γi(s) = τi (4.63)

Recall from Section 4.1, where a path parameterization was defined as f(s). A
suitable path parameter for the horizontal circle was found to be θ1. Now, having
related the dynamics of the manipulator to a path coordinate, the dynamics along
the path described in the previous section can be stated in terms of αi, βi and γi.
Substituting into (4.63) we then get

αi(θ1)θ̈1 + βi(θ1)θ̇1
2 + γi(θ1) = τi (4.64)

where

αi(θ1) =
n∑
i=j

mijq(θ1)q′j(θ1)θ̈1

βi(θ1) =

 n∑
j=1

n∑
k=1

cijkq(θ1)q′j(θ1)q′k(θ1) +
n∑
j=1

mijq(θ1)q′′j (θ1)


γi(θ1) = gi(q(θ1))

With this result, we see that we can define the optimalization problem with τ being
the constraining factor on the system, and thus optimalization will be done with
respect to the torque bounds. We can solve the time optalization problem using
methods such as second-order cone programming or dynamic programming. For
further discussion on these methods, see e.g. [24] and [21]. In Chapter 5 we will use
the motion planning results from this chapter combined with motion control.

Chapter5Motion Control

In this chapter, the motion planning from Chapter 4 will be complimented with a
feedback control design. We will investigate how the manipulator behaves when
implementing a chosen motion control strategy. Simulations will be performed, where
the manipulator is set to follow the desired trajectories obtained from the motion
planning in Section 4.3. The obtained periods of motion from the simulations will be
compared to the planned periods of motion, and we will analyze the performance of
the controller in terms of tracking accuracy along the paths.

5.1 Orbital Stabilization

In Section 2.4 we looked at the classic PD tracking controller using feedback and
gravity cancellation. For a deeper discussion on this control strategy, see [22]. In
[16] an extension of this controller is introduced, guaranteeing tracking for rigid-joint
robots. This is called PD+ control, and achieves global uniform asymptotic stability
of the origin for the dynamic system on the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (5.1)

which we found in Section 3.2 for the IRB140. The PD+ control law that is suggested
in [16] takes the form

τ = M̂(q)q̈∗(t) + Ĉ(q, q̇)q̇∗(t) + Ĝ(q)−Kpe−Kdė (5.2)
e = q − q∗, ė = q̇ − q̇∗(t) (5.3)

where M̂(q), Ĉ(q, q̇) and Ĝ(q) are estimates for M(q), C(q, q̇) and G(q) respectively.
In [18] it is shown how to transform this regulator into one that is appropriate for
orbital stabilization. This procedure is restated here.

First, let us define a new matrix Q∗(t) = [q∗(t), q̇∗(t), q̈∗(t)]. Given an asymp-
totically stabilizing feedback control law, τ = U(e, ė, Q∗(t)) where q∗(t) is defined by

49

50 Chapter 5 - Motion Control

q =


q∗1(t)
q∗2(t)
q∗3(t)

 = Φ(s)|s=s∗(t) =


φ1(s)
φ2(s)
φ3(s)


∣∣∣∣∣∣∣∣
s=s∗(t)

(5.4)

and s = s∗(t) is the solution to the differential equation s = h(s), where the right
hand side is obtained from the motion planning procedure from Chapter 4. The
goal is to transform the previous control law into a new control law that ensures
asymptotic orbital stability, meaning

inf
s∈[0,T]

∥∥∥∥∥
[
q(0)− q∗(s)
q̇(0)− q̇∗(s)

]∥∥∥∥∥ ≤ δ ⇒
∥∥∥∥∥
[
q(t)− q∗(s)
q̇(t)− q̇∗(s)

]∥∥∥∥∥ ≤ ε (5.5)

∀ ε, δ > 0, where s is some variable that determines the shortest distance between the
trajectories q(t) and q∗(t). Further one want to obtain asymptotic orbital closeness,

lim
t→∞

{
inf

s∈[0,T]

∥∥∥∥∥
[
q(t)− q∗(s)
q̇(t)− q̇∗(s)

]∥∥∥∥∥
}

= 0 (5.6)

for a planned period T of the target trajectory. See [19, pp. 893-906] and [8, pp.
281-289] for related discussions.

Now, following [18], the propose is to substitute the classical tracking error, e =
q − q∗(t) and its time derivative to get

y = q − Φ(s), ẏ = q̇ − Φ′(s)ṡ (5.7)
s = Pr(q, q̇), ṡ = h(s) (5.8)

where Pr(q, q̇) is an arbitrary smooth projection operator defined to ensure that
Pr(q∗(t), q̇∗(t)) = s∗(t). The new control law,τ = U(y, ẏ, Q∗(t)), leading to asymp-
totic orbital stability then becomes

τ = M̂(q)q̈∗(t) + Ĉ(q, q̇)q̇∗(t) + Ĝ(q)−Kpy −Kdẏ (5.9)

The stability statements of such control strategy are further discussed in [18], [19]
and [8] and will not be restated here.

5.2 Motion Control Simulations on Case Trajectories

In this section the manipulator will be simulated following the case paths introduced
in Chapter 4 with the regulator based on orbital stabilization introduced in the last
section. The horizontal circle has a radius, R1 = 0.2 (m), centered on the point
(xc1 = 0.65, yc1 = 0, zc1 = 0.3) in the xy-plane. The vertical circle also has a radius of

5.2.1 - Simulink Layout 51

Figure 5.1: Simulink model of the IRB140 with orbital stabilization control and a
motion planning structure.

R2 = 0.2 (m) and is centered on (xc2 = 0.45, yc2 = 0, zc2 = 0.5) in the yz-plane. The
straight line will go up the radius of the horizontal circle, starting at (xc2, yc1, zc1)
and ending at (xc1, yc1, zc1). In addition to the current model of the robot dynamics,
found in Section 3.2, a simple friction model was implemented,

F (v) = Fcsgn(v) + βv (5.10)

where Fc is the coulumb friction, β is the viscous friction coefficient and v is the
relative velocity of the contact surfaces. The friction is compensated by adding to the
control signal. The values of the friction parameters was given by Stepan Pchelkin
from the work done in [18], and can be found in the Matlab models in the file folder
related to this paper.

5.2.1 Simulink Layout

The complete dynamic model and control structure were implemented in Simulink,
and the overall closed loop structure can be seen in Figure 5.1. The motion generator
block contains a MATLAB function that generates the path coordinates θ1, θ2 and
x, according to Section 4.3.1, Section 4.3.2 and Section 4.3.3 respectively, taking
the position vector, q, as input. The trajectory block contains the results from
the trajectory planning from Chapter 4, including cubic spline interpolations for
generating the velocity profiles, θ̇1, θ̇2 and ẋ. Inverse kinematic relations were first
computed in Maple and transformed to MATLAB code as seen in Appendix B.
The output of this block is the desired trajectory for each path case, which for the
horizontal circle will be q∗ = Φ(θ1), as well as the derivatives q̇∗ = Φ′(θ1)θ̇1 and
q̈∗ = Φ′′(θ1)θ̇1

2 + Φ′(θ1)θ̈1, and similarly for the vertical circle and straight line. This
signal is taken as input for the controller block, together with the measured signals
of q and q̇. In this block the control law is implemented, using estimates for the
dynamic model together with the friction model. The gain matrices were tuned by

52 Chapter 5 - Motion Control

trial and error, and the friction model coefficients were obtained by the work done in
[18]. The input signal, τ goes into the manipulator block, IRB140, where the robot
is modeled by a Level 2-MATLAB S-function. Further details on this model can be
seen in Appendix C.

5.2.2 Case 1: Horizontal Circular Motion

The model was simulated based on the trajectory planning for the horizontal circle
from Section 4.3.1. Figure 5.2 shows the obtained time evolution of the function θ1
from −π to π. We see that the obtained period of motion is Ts,1 = 1.50 seconds.
The corresponding velocity profile can be seen in Figure 5.3, where we see that
we have used the velocity profile with zero velocity at the end points. The same
model was also simulated using the other velocity profiles presented in Section 4.3.1.
The resulting time period when using boundary level velocities at the end points
was found to be Tf,1 = 0.90 seconds. The full set of planned and obtained time
periods can be seen in Table 5.1 and Table 5.2 respectively. In Figure 5.4 we see
the joint responses for the velocity profiles with zero and boundary level end point
velocities. The continuous lines represent the obtained trajectories and the dashed
lines represent the desired trajectories. Initialvalues for the joints are set equal to the
initial positions from the desired trajectory. It can be seen that the tracking works
well. The obtained trajectory align closely to the desired trajectory, especially for
the velocity profile with zero velocity at the end points. A plot of the error vector,

Y = [y1, y2, y3]
yi = qi − φi(θ1), i = 1, 2, 3

for the two velocity profile cases can be seen in Figure 5.6. We see that the

Figure 5.2: Time evolution of θ1 for the velocity profile where starting and ending
velocities are set to zero.

5.2.2 - Case 1: Horizontal Circular Motion 53

Figure 5.3: Obtained velocity profile, θ̇1, generated by cubic spline interpolation
for the horizontal circle path.

trajectory deviates from its desired trajectory by 0.0002 radians at its peak for the
velocity profile with zero end point velocities. For the velocity profile with boundary
level velocities we see a sudden spike to 0.035 radians deviation at the start of the
motion. This is expected since the initial velocity is set to boundary levels. Figure 5.5
shows the trajectories in task space. The dashed line represent the desired task space
trajectories as for the joint space plots. The difference between the two velocity
profiles is also reflected here. We see a slightly larger error between the obtained
trajectory and the desired trajectory for the velocity profile with boundary level
end point velocity. This is most notable for y(t). Also, it can be seen that the
velocity profile with higher end point velocities reaches well over 1.5 orbits of the
circle, whereas with zero end point velocities we reach only one full orbit in the same
time span.

Figure 5.4: Showing obtained trajectory for the horizontal circle in joint space. q1
(black), q2 (blue), q3 (green). Dashed lines show the desired trajectory. Left figure:
Starting and ending velocity set to zero. Right figure: Starting and ending velocity
set to boundary level.

54 Chapter 5 - Motion Control

Figure 5.5: Showing obtained trajectory for the horizontal circle in task space. x(t)
(red), y(t) (blue), z(t) (black). Dashed lines show the desired trajectory. Left figure:
Starting and ending velocity set to zero. Right figure: Starting and ending velocity
set to boundary level.

Figure 5.6: Showing the error vector for the horizontal circle path, Yhc, i.e the error
between the desired Φ(θ1) and obtained q(t). y1 (red), y2 (blue), y3 (black). Left
figure: Starting and ending velocity set to zero. Right figure: Starting and ending
velocity set to boundary level.

5.2.3 - Case 2: Vertical Circular Motion 55

5.2.3 Case 2: Vertical Circular Motion

The simulation of the motion controller on the vertical circle case presented in
Section 4.3.2 was done in a similar fashion as for the horizontal circle. The new
path coordinate θ2, was generated by the motion generator block in Simulink (see
Figure 5.1, and a new set of path functions, Φ(θ2) was implemented in the trajectory
generation block. Figure 5.7 shows the obtained time evolution of θ2 ∈ [−π, π], when
using zero velocity end points, as seen in Figure 5.8. The total time of the motion
was found to be Ts,2 = 1.34 seconds, which is faster than the period of motion from
the trajectory planning in Section 4.3.2, where we planned a time period of 1.46
seconds. Simulating with boundary level velocities at the end points, we obtained the
period of motion, Tf,2 = 0.66 seconds, compared to a planned time of 0.64 seconds.
The resulting trajectory plots can be seen in Figure 5.9 for both cases, in the joint
and task space. We observe that using boundary level velocity as initial velocity
results in a larger deviation from the desired path during the first 0.5 seconds of the
motion compared to the horizontal circle case. However, when using zero initial and
ending velocity, the result is close to what was found for the horizontal circle case.
This is reflected in Figure 5.10, where the error vector can be seen for both velocity
profile cases. The zero velocity end point simulation resulted a deviation of around
0.0008 radians at its peak. For the case of boundary level velocities we see a similar
situation as for the horizontal case, where the error is largest at the start of the
motion, due to having high velocity at the initial point. This initial error decreases
rapidly during the first 0.5 seconds of the motion, as reflected on the trajectory plots.
In addition to the results presented here, the vertical circle was simulated using the
velocity profile with zero starting velocity and boundary ending velocity, as well as
the velocity profile with boundary starting velocity and zero ending velocity. The
resulting periods of motion for these cases can be seen in Table 5.2.

Figure 5.7: Time evolution of θ2 ∈ [−π, π].

56 Chapter 5 - Motion Control

Figure 5.8: Resulting velocity profile for the vertical circle, obtained by cubic spline
interpolation.

Figure 5.9: Showing the obtained (continuous) trajectories with the desired trajec-
tories (dashed) from simulations for the vertical circular path. Upper figures show
task space trajectories: x(t) (red), y(t) (blue), z(t) (black). Lower figures show joint
space trajectories: q1 (black), q2 (blue), q3 (green). Figures to the left show the
result of having boundary level velocities at the end points, while the figures to the
right show the same result using zero end point velocities.

5.2.4 - Case 3: Straight Line Motion 57

Figure 5.10: Showing the error vector for the vertical circle path, Yvc, i.e the error
between the desired Φ(θ2) and obtained q(t). y1 (red), y2 (blue), y3 (black). Left
figure: Starting and ending velocity set to zero. Right figure: Starting and ending
velocity set to boundary level.

5.2.4 Case 3: Straight Line Motion

In this section we will se the result of using the control structure for the straight
line case. The path coordinate and desired trajectories were implemented to the
model similarly to the previous cases. Figure 5.11 shows the resulting time evolution
for the path coordinate, with initial value 0.45 (m) and final value 0.65 (m). The
velocity profile can be seen in Figure 5.12, where we see that the end points are set
to zero. This resulted in the period of motion Ts,3 = 0.36 seconds, and the same
simulation using boundary level end point velocities was found to be Tf,3 = 0.14
seconds. Figure 5.13 shows the resulting trajectories in task space and joint space.
Note that the resulting trajectories are plotted over different time spans. The results
using boundary level end point velocities (left on figure), it can be seen that we get

Figure 5.11: Time evolution for the straight line path with the velocity profile set
to zero starting and ending velocity.

58 Chapter 5 - Motion Control

Figure 5.12: Resulting velocity profile with zero starting and ending velocity for
the straight line path, obtained by cubic spline interpolation.

a slight, but stable deviation from the desired trajectory, while for the zero initial
velocity case, the desired and obtained trajectories align closely. In Figure 5.14 we see
the resulting error vector, Y for the two velocity profiles mentioned. We observe that
the error is around 0.03 radians for the second joint (y2), using boundary level end
point velocities. This is less than for the circular paths. When using zero velocities
at the end points we see a neglectable error of only 5 × 10−5 radians. The same
simulation was also run using boundary initial velocity and zero final velocity, as
well as a simulation with zero initial velocity and boundary final velocity. Resulting
periods of motion, Tr,3 and Tv,3 can be seen in Table 5.2. The Matlab files used for
the simulations can be found in the file folder related to this paper.

5.2.4 - Case 3: Straight Line Motion 59

Figure 5.13: Showing the obtained (continuous) trajectories with the desired
trajectories (dashed) from simulations for the straight line path. Upper figures show
task space trajectories: x(t) (red), y(t) (blue), z(t) (black). Lower figures show joint
space trajectories: q1 (black), q2 (blue), q3 (green). Figures to the left show the
result of having boundary level velocities at the end points, while the figures to the
right show the same result using zero end point velocities.

Figure 5.14: Showing the error vector for the straight line path, Y, i.e the error
between the desired Φ(x) and obtained q(t). y1 (red), y2 (blue), y3 (black). Left
figure: Starting and ending velocity set to zero. Right figure: Starting and ending
velocity set to boundary level.

60 Chapter 5 - Motion Control

5.3 Discussion

Table 5.1 summarizes the planned periods of motion from Chapter 4. Table 5.2
shows the obtained periods of motion from simulations with motion control. We
can see that the obtained values are close to the expected planned values, and in
most cases the obtained periods of motion are slightly faster than the results from
the trajectory planning. When analyzing the results for q̇, it was observed that
the joints are pushed close to the constraints found in Table 4.1. The resulting
plots of q̇ can be seen by running the simulations with the Matlab files in the file
folder related to this paper. As can be seen from the error vector plots, the tracking
still performs well under these conditions. However, it may be benefitial to losen
up the velocity profile if one needs even better performance in terms of precision
which is often the case in robotics. The simulations suggest that the method of path
constrained trajectory planning combined with a feedback controller that achieves
orbital stabilization works well for simple predefined paths such as the ones used here.

We have seen how the period of motion is significantly faster using boundary level
initial values on the velocity profile. Using boundary level initial velocities might
seem unnatural from what can be expected in practical situations. However, in the
next chapter we will use these velocity profiles to connect the path cases and generate
new combined paths. We have seen that the velocity profiles with boundary level
initial velocity generates a starting error in the tracking of the desired trajectory.
It would be interesting to see this error vector for simulations on connected paths
where we have velocity through the connection point, using boundary level velocity
for both the ending point of the first path segment and the initial point of the second
path segment. With regards to time optimality in particular, the results from this
chapter show that it would be desireable to avoid having to use zero velocity in the
connection points between the path segments, if possible.

5.3 - Discussion 61

Table 5.1: Planned periods of motion, T , for various end point velocity profiles. Tf,i
shows the periods of motion for end point velocities set to boundary levels, Ts,i shows
the periods of motion for end point velocities set to zero, Tv,s shows the periods
of motion for zero initial velocity and boundary level final velocity, Tr,s shows the
periods of motion for boundary level initial velocity and zero final velocity.

Planned Tf,s (s) Ts,s (s) Tv,s (s) Tr,s (s)
Horizontal circle 0.92 1.56 1.24 1.24
Vertical circle 0.64 1.46 1.05 1.05
Straight line 0.14 0.38 0.26 0.27

Table 5.2: Obtained periods of motion, T , for various end point velocity profiles.
Tf,i shows the periods of motion for end point velocities set to boundary levels, Ts,i
shows the periods of motion for end point velocities set to zero, Tv,s shows the periods
of motion for zero initial velocity and boundary level final velocity, Tr,s shows the
periods of motion for boundary level initial velocity and zero final velocity.

Obtained Tf,s (s) Ts,s (s) Tv,s (s) Tr,s (s)
Horizontal circle 0.90 1.50 1.23 1.09
Vertical circle 0.66 1.34 1.08 1.04
Straight line 0.14 0.36 0.26 0.26

Chapter6Connecting Path Segments

In the previous chapter, the IRB140 manipulator was simulated following a set
of trajectories with a control strategy implemented. In this chapter we want to
analyze the possibility of connecting two or more paths, each with their own velocity
assignment, and study the behavior of the manipulator for the desired trajectories
with motion control.

6.1 The Usability of PCTP

The benefits of using PCTP (Path Constrained Trajectory Planning) have been
seen in the previous chapters. However, the method has some limitations for some
situations. In [10, pp 846-856], the usability of PCTP is discussed further. S. M.
LaValle explains how some paths may be badly suited for path constrained trajectory
planning. For example see the path in Figure 6.1. When the robot following the
path reaches Point 1, as seen in the figure, the differentiability assumption will be
violated and would require infinite acceleration to traverse while remaining on the
path. However, some models may make it possible to make a complete stop at Point
1, and then start again. Concider a floating particle in the plane. The particle can
be decelerated to rest exactly at Point 1, and then start in a new direction to exactly
follow the curve. This assumes that the particle is fully actuated. [10, p. 850] If
there are nonholonomic constraints, then the given path must at least satisfy them
before accelerations can be considered.
At Point 2 in Figure 6.1, another interesting case can be seen. The robot might not
be able to hold a high speed through this part of the path, if the corner is too sharp
between the straight line and the curved line. Also, the curved line itself might bring
difficulties in some cases, if the curvature is too high. However, it may be possible
to hold (some) speed through point 2, in exchange for accuracy in the tracking. In
the following sections we will investigate further on these issues, using the paths
presented in the previous chapters. We will run simulations for the model of the
IRB140 and connect the paths from the previous chapters, and analyze the results.

63

64 Chapter 6 - Connecting Path Segments

6.2 Simulations

The paths presented in Chapter 4, as well as some others, were combined to create
longer paths consisting of two path segments. Several combinations were simulated
using Simulink and Matlab, and some of the results are presented here. To be able
to connect two paths, one needs to be able to change motion planning components
between the path segments immediately after a path segment has completed. This
was achieved by implementing a detection signal, which by default was set to 0, and
then was given a value of 1 when a path segment was completed. The completion
of the first path segment was detected by using a decrease detector which detects
whenever a signal decreases. For example, for the horizontal circle, the path coordi-
nate θ1 ∈ [−π, π] will drop back down to −π after reaching the value π, meaning the
circular path segment is completed. From a programming point of view, it is straight
forward to replace this method with equivalent solutions for cases where we do not
want to traverse the full length of a path segment. We will see this in Chapter 7.
Using the same sampling frequency as the standard ABB controller for the IRB140
(∆s = 0.004s) means that we will overshoot the goal path by one sample value, which
also needed to be handled for greater accuracy. When the detection signal is equal to
1, the path coordinate, velocity profile and desired joint trajectories, Φ(s), changes,
and the new inputs get fed to the controller. For plotting the results, the detection
signal also needed to be sent to the reference-generation mechanism. The Matlab
and Simulink files can be found in the file folder related to this report.

Figure 6.1: Example of a path badly suited for path constrained trajectory planning,
similar to the example seen in [10].

6.2.1 - Case 1: Horizontal Circle Connected to a Straight Line 65

6.2.1 Case 1: Horizontal Circle Connected to a Straight Line

The first case we will look at is a horizontal circle followed by a straight line. We
will use the circle and straight line presented in Chapter 4. This means a circle
with a radius, R1 = 0.2 (m), centered on (xc1 = 0.65, yc1 = 0, zc1 = 0.3). (m) The
straight line starts at (xc2 = 0.45, yc1 = 0, zc1 = 0.3) (m) and goes up the radius of
the horizontal circle, ending at the circle center. We see that we have generated a 90
degree corner connection point between the circle and straight line. In Chapter 4 we
planned trajectories using velocity profiles with zero starting and ending velocities
as well as boundary level starting and ending velocities for both the circle and
the straight line. In Figure 6.2 the resulting trajectory from the simulation of the
combined motion is plotted in the joint space. The starting and ending velocities
are set to zero for both path segments. The total time period of this motion was
found to be Thcsl,s = 1.728 (s). If we compare this time period to the planned period
of Ts,1 + Ts,3 = 1.940 (s), we see that the result from the simulation is faster than
the combined planned period of motion for the two cases. We see that the dashed
line, which show the desired trajectory, line up very close to the actual trajectory
shown by the continuous lines. In Figure 6.3 the same result can be seen in task
space. We can see a minor error for z(t) when the path reaches the straight line.
This error is reflected in the joint space error plot, seen in Figure 6.4, where we
can see an error spike of 0.0022 radians for y2 = q2 − φ2(P (q)). In Figure 6.5
we see the same simulation, using boundary level velocities for the velocity profiles
through the connection point between the horizontal circle and the straight line. We

Figure 6.2: Resulting trajectory in joint space of combining a horizontal circle
and a straight line path. The velocity profiles are set with low starting and ending
velocities for both path segments. Dashed lines show desired trajectory.

66 Chapter 6 - Connecting Path Segments

Figure 6.3: Resulting trajectory in task space of combining a horizontal circle
and a straight line path. The velocity profiles are set with low starting and ending
velocities for both path segments. Dashed lines show desired trajectory.

Figure 6.4: Error between desired and obtained joint values on the combined
horizontal circle and straight line path.

6.2.2 - Case 2: Vertical Circle Connected to a Straight Line 67

Figure 6.5: Resulting trajectory in joint space of combining a horizontal circle and
a straight line path. The velocity profiles are set with boundary level velocities at
the connection point for both path segments. Dashed lines show desired trajectory.

see that the first joint, q1, is unable to follow the desired trajectory through this
point and continues with a circular motion instead. The second and third joints are,
however, able to follow their desired trajectories through this point with only minor
errors, as the desired trajectories for these joints makes for natural soft connections
between the two path segments. The time period of motion with these velocity
settings was found to be Thcsl,vr = 1.434(s), which is faster than the planned time of
Tv,1 + Tr,3 = 1.509(s).

6.2.2 Case 2: Vertical Circle Connected to a Straight Line

In this section we will be using a vertical circle path instead of the horizontal circle
from Case 1, combined with the straight line path. The vertical circle will be the
same as the one presented in Chapter 4, i.e, R2 = R1 = 0.2m, centered around
(xc2 = 0.45, yc2 = 0, zc2 = 0.5). The trajectory will be a full circular motion around
the vertical circle followed by the horizontal straight line, corresponding to the
straight line from the previous case.

The resulting trajectory from simulations, using zero initial and ending velocities on
the velocity profiles is seen in Figure 6.6 for the joint space, and Figure 6.7 for the
task space. We see in Figure 6.8 that the trajectory is followed with about the same
accuracy as in case 1, showing how velocity assignment with PCTP is suited for corner
paths when we are able to stop at the corner and then start accelerating in another

68 Chapter 6 - Connecting Path Segments

direction. The total time of the combined path was found to be Tvcsl,s = 1.636(s),
whereas the combined planned time from Chapter 4 was Ts,2 + Ts,3 = 1.835(s).

Figure 6.6: Resulting trajectory in joint space of combining a vertical circle and a
straight line path. The velocity profiles are set with low starting and ending velocities
for both path segments. Dashed lines show desired trajectory.

Figure 6.7: Resulting trajectory in task space of combining a vertical circle and a
straight line path. The velocity profiles are set with low starting and ending velocities
for both path segments. Dashed lines show desired trajectory.

6.2.2 - Case 2: Vertical Circle Connected to a Straight Line 69

Figure 6.8: Error between desired and obtained joint values on the combined
vertical circle and straight line path.

Figure 6.9: Resulting trajectory in joint space of combining a vertical circle and a
straight line path. The velocity profiles are set with boundary level velocities at the
connection point for both path segments. Dashed lines show desired trajectory.

70 Chapter 6 - Connecting Path Segments

In Figure 6.9 we see the joint space result of the same simulation performed with
velocity profiles set to boundary level velocities through the connection point for
both path segments. Again we see that the first joint, q1, is unable to follow the
desired trajectory, while the second and third joint, q2 and q3 respectively, are able
to follow their trajectories. It is obvious that sharp corners, such as 90 degrees in
this case, is problematic for PCTP when we want to keep the velocity during the
connections, as expected. The total time when using boundary level velocity values
for the starting and ending point was found to be Tvcsl,vr = 1.262(s) for the vertical
circle combined with the straight line. In comparison the combined planned time
period from the planning phase can be found as Tv,2 + Tr,3 = 1.319(s)

6.2.3 Case 3: Horizontal Circle Connected to a Vertical Circle

As our last case we will combine the horizontal circle from Case 1 with the vertical
circle from Case 2 to obtain a new path. The trajectory will start by traversing
the horizontal circle once, and then immediately traverse the vertical circle. The
two earlier cases had 90 degree corner connection points, and we saw how tracking
of the desired trajectories failed when using boundary level velocities through the
connection points. In this case the direction of the trajectories before and after the
connection point are equal. This trajectory will give a softer connection point, and it
is interesting to see if it is possible to have velocity through the connection for this
case. First, manipulator was simulated for the trajectory using zero starting and
ending velocities for both velocity profiles. The resulting joint space and task space
trajectory can be seen in the upper figures of Figure 6.10 and Figure 6.11 respectively.

We see that the desired (dashed line) and obtained (continuous) trajectories align
closely throughout the entire path, and it is difficult to separate the two from the
figure without zooming in. In the upper figure of Figure 6.12 we see that the error
in this case reaches only 0.0002 radians at its heighest, giving a better performance
than for Case 1 and 2. The total time period of the combined motion was found
to be Thcvc,s = 2.909(s) for zero end point velocities for both path segments. In
comparison the planned time can be found as Ts,1 + Ts,2 = 3.014(s).

The lower figures of Figure 6.10 and Figure 6.11 shows the resulting trajec-
tory for joint and task space respectively, when using boundary level velocity profiles
through the connection point for the horizontal and vertical circles. We see that
in this case, the joints are able to follow their desired trajectories even when using
(sub-)optimal velocities through the connection point. The lower figure in Figure 6.12
shows a deviation spike of ≈ 0.0045 radians at the connection point in this case. By
this, we can conclude that using PCTP is suitable for combining preplanned path
segments when the segments take a form which are naturally suited for connection.

6.2.3 - Case 3: Horizontal Circle Connected to a Vertical Circle 71

Figure 6.10: Resulting trajectory in joint space of combining a horizontal circle and
a vertical circle path. Upper figure: Velocity profiles are set to zero at the connection
point between the two paths. Lower figure: Velocity profiles are set to boundary
level velocity through the connection point. Dashed lines show desired trajectory.

72 Chapter 6 - Connecting Path Segments

Figure 6.11: Resulting trajectory in task space of combining a horizontal circle and
a vertical circle path. Upper figure: Velocity profiles are set to zero at the connection
point between the two paths. Lower figure: Velocity profiles are set to boundary
level velocity through the connection point. Dashed lines show desired trajectory.

6.2.3 - Case 3: Horizontal Circle Connected to a Vertical Circle 73

Figure 6.12: Resulting error vector when combining a horizontal circle and a
vertical circle path. Upper figure: Velocity profiles are set to zero at the connection
point between the two paths. Lower figure: Velocity profiles are set to boundary
level velocity through the connection point.

74 Chapter 6 - Connecting Path Segments

The total time period of the motion in this case was found to be Thcvc,vr = 2.057(s),
whereas the combined planned time period can be found as Tv,1 + Tr,2 = 2.286(s).

6.3 Discussion

The results of this chapter highlights the points given by S. M. LaValle in [10, pp
846-856], where the usability of path constrained trajectory planning is discussed.
We see from the simulation results that sharp corner points are troublesome when
applying velocity through the connection between path segments. This results were
as expected. It was, however, seen that the method works well when being able to
decelerate to a full stop at the corner point and accelerate in a new direction.

Comparing the periods of motion obtained in this chapter, we have seen that
there is potential for significantly improving the time periods using higher velocities
at the connection points. An interesting observation was seen for scenarios where
the geometry of the path segments are well conditioned to make soft connection
points (i.e. no corners). This was demonstrated in Case 3, where we connected a
horizontal circle to a vertical circle. For this case, we were able to assign boundary
level velocity at the connection point for both path segments, resulting in a maximum
deviation spike of 0.0045 radians from the desired trajectory. It is suggested that
this observation can be used to redesign sharp corner points into softer connections
in exchange for some path accuracy error. This will be investigated in Chapter 7 for
the horizontal circle path connected to a straight line.

Chapter7Connections with Sharp Corners

In the previous chapter we simulated the IRB140 manipulator for various paths
consisting of two connected path segments. We could see how sharp corner connection
points can cause the manipulator to fail to track the desired path completely when
having a velocity profile with high velocity through the connection. This is clearly
not an acceptable situation for practical purposes, meaning the velocity profile needs
to be set to lower velocity, or even a full stop at the corner point to be able to
traverse the corner with a high level of precision. However, there are scenarios where
time optimality is given a higher priority than precision, and for such cases, it would
be desireable to be able to achieve an acceptable amount of precision while having
time optimalization as our primary goal. This chapter deals with this problem, and
will be based on Case 1 from the previous chapter, where a horizontal circle was
connected to a straight line, making a corner with an angle of 90 degrees.

7.1 Corners in Pick-and-Place Motions

As briefly mentioned in Section 2.3, point-to-point motions are motions where a high
level of freedom exists on the path between two locations. Algorithms dealing with
such motions are given a pick position and place position (as well as intermediate
positions to avoid collisions during the motion), and the task is to travel as fast as
possible between these two points. This means that the manipulator moves as fast as
possible from an initial configuration to a final configuration. The trajectory needs
to be respecting certain constraints while fulfulling a preformance criterium. The
most common criterium in industry, where the goal is higher production volume,
is the time optimality criterium. A method for obtaining smooth motions between
two points is presented in [11, pp. 42-52]. Our main focus in this paper is path
constrained motion, so we will not go into further detail on pick-and-place motion
here, however there is some inspiration to be found in the way of dealing with corners
in point-to-point motion. In [9] the problem of traversing corners is discussed for
pick-and-place motions (i.e linear segments). Figure 7.1 shows a path consisting

75

76 Chapter 7 - Connections with Sharp Corners

Figure 7.1: Illustration of the blending procedure developed by Lloyd and Hayward
[9]. Figure from [23].

of straight lines between 3 points, p1, p2 and p3. A so-called blend function, x(t)
is needed to describe the movement between the two linear segments. The circle
around p2 illustrates a blend sphere. The blend sphere is specified in which the path
may deviate from the linear segments, i.e the blending radii defined at each point is
given as ε1 = ε3 = 0 and ε2 > 0. The blend start and end points, pa and pb are then
defined by

pa = p2 − ε2
p2 − p1

‖p2 − p1‖
(7.1)

pb = p2 + ε2
p3 − p2

‖p3 − p2‖
(7.2)

At these points, a set of boundary conditions must hold in order to guarantee
continuity of the geometric path.

x(t = t1) = pa, x(t = t2) = pb, (7.3)
ẋ(t = t1) = va, ẋ(t = t2) = vb, (7.4)
ẍ(t = t1) = aa, ẍ(t = t2) = ab, (7.5)

These six conditions can be satisfied by connecting the blend start and end points by
a fifth-order polynomial. To see more details on this blending procedure, see [9].

7.2 Sharp Corners in Path Constrained Motion

Traversing corners with high velocities for path constrained motion does not seem to
be discussed much in literature. The blending procedure from the previous section is
designed for linear segments between a set of points. For path constrained motion,

7.2 - Sharp Corners in Path Constrained Motion 77

this will usually not be the case, and so we have to look for other solutions. There
was no solution found to this problem for path constrained motions in the literature
study, so an attempt to deal with the problem is presented here. Note that much
of the literature on the subject of path constrained trajectory planning use a path
coordinate, s, with a domain starting point at s0 = 0 and ending point at se = 1,
while in this paper we have used more specific values, e.g. a path coordinate, θ1,
starting at θ1,0 = −π and ending at θ1,e = π for circular motion.

Section 7.1 explains for pick-and-place motions how a sphere can be defined such
that we are allowed to round the corner anywhere within this sphere. The results
from Chapter 6 shows for path constrained motion how it is possible to traverse a
corner point with boundary level velocity assignments when the geometry of the
path segments are well conditioned. These two aspects can be combined to generate
a possible solution to corners for path constrained motion. In Figure 7.2 we see an
illustration of two path segments, each having their own path coordinate, θ1 and
θ2 with corresponding velocity profiles θ̇1 and θ̇2. The connection point between
the two path segments will be a sharp corner. The transition segment will be a
new path segment around the corner point, with the objective of making us able to
approximately track the corner point without having to deaccelerate to zero velocity
during the motion. This will come at the cost of some deviation error from the
desired path, due to rounding of corners. The method can be examplified for the
horizontal circular path segment connected to a straight line path segment from the
circle circumference in to the circle center point. This is equal to Case 1 from the
previous chapter. (See Section 6.2.1) Figure 7.3 shows the desired path (blue) around
the corner point. The circle (red) shown in the figure is going to be used to generate
a transition path segment.

Consider the path coordinate for the horizontal circular path, θ1 ∈ [−π, π] from the
previous chapters. Let us change the domain of the path coordinate to θ1 ∈ [−π, β],
where

β = π − α (7.6)

The angle α can be seen in Figure 7.3. We see that this angle can be derived as

α = arctan
(
rt
R1

)
(7.7)

Figure 7.2: Combining two path segments using a third segment designed as a
suitable transition path.

78 Chapter 7 - Connections with Sharp Corners

where R1 is the radius generated by making the curved blue line into a full circle,
and rt is the radius of the transition circle. This means that the path gets reduced
by the length

L = απR1

180 + rt (7.8)

In Figure 7.4 we see the general geometry of a circle segment. In our case, the length
h can be found as

h = R1

(
1− cos

(
θ

2

))
= R1 −

√
R2

1 −
c2

4 (7.9)

where

c = 2rt (7.10)
θ = 2α (7.11)

This makes us able to find the centre point of the transition circle relative to our
path circle. Recall the circular path having a centre point at (xc1, yc1, zc1) and the
straight line having a starting point at (xc2, yc1, zc1). The transition circle will then
be centered around (xc2 + h+ rt, yc1 + rt, zc1), where h is given from (7.9). Let θt
be the angle defining the location along the transition circle. The angular position
can now be taken as path coordinate for the transition segment.

Figure 7.3: Rounding corner between two path segments for path constrained
motion. The desired path is shown in blue. The new path will follow the red circle
from the point where the dashed line meets the blue curved path segment and
continue up the straight line from where the red circle touches the straight line path
segment.

7.2 - Sharp Corners in Path Constrained Motion 79

Then, we can perform the inverse kinematics calculations for the transition seg-
ment path as follows.

q∗1(θt) = arctan
(

rt sin θt
rt cos θt + xc2 + h+ rt

)
+ arctan

(
rt

xc2 + h+ rt

)
(7.12)

q∗2(θt) = π

2 − θb (7.13)

q∗3(θt) = π

2 − θm (7.14)

where
θm = arccos

(
a2

3 + a2
2 − l(θt)

2a3a2

)
(7.15)

θb = a3 sin(θm)
l(θt)

− θf (7.16)

l(θt) =
√

(d1 − zc1)2 + (xc2 + h+ rt − a1 + rt cos(θt))2 (7.17)

θf = arctan
(

d1 − zc1
xc2 + h+ rt − a1 + rt cos(θt)

)
(7.18)

The variables θm, θb, l(θt) and θf are aligned in the same manner as the inverse
kinematics of the horizontal circle path from Section 4.3.1. The new path will follow
the transition circle from the point where the dashed line meets the blue curved
path segment (see Figure 7.3) and continue up the straight line from where the red
circle touches the straight line path segment. This means that 1

4 of the transition
circle will be part of the new path, where the transition segment end points are
set as θt,0 = −π and θt,e = −π2 . Figure 7.5 shows the evolution of coordinates for

Figure 7.4: Illustrating the geometry of a circular segment. Illustration from
Wikipedia.

80 Chapter 7 - Connections with Sharp Corners

Figure 7.5: Showing planned q∗i (θt) for the transition segment with radius rt = 0.04
(m). We see that the initial positions align with the corresponding positions of q∗i (θ1)
for θ1 = β.

the desired trajectory of the transition segment for θt ∈ [−π, π]. We can see that
initialpositions for q1, q2 and q3 align with the corresponding positions for q∗(θ1) for
θ1 = β.

7.2.1 Simulations with Transition Segment

The manipulator was simulated for the combined path after implementing the transi-
tion segment with rt = 0.04 (m). The velocity profile, θ̇t, for the transition segment
was set to equal initial velocity as the final velocity of the velocity profile, θ̇1 for the
horizontal circle path segment. Recall from Section 6.2.1, that the base joint, q1 was
the only joint failing tracking of its desired path.

Figure 7.6 shows the obtained evolution of the coordinates q1, q2 and q3 after
implementing the transition segment. The area of effect from the transition segment
is highlighted for the first joint, q1. If we compare this with the same simulation
from Section 6.2.1, where the path was simulated without the transition segment
(see Figure 6.5), we see that the first joint is now able to track the desired trajectory.
The tracking is obviously not perfect due to the nature of the method, where we
round the corner to obtain a softer connection point.

Figure 7.7 shows the resulting trajectory in task space plotted with the desired
trajectory, excluding the transition segment. We see that we are able to track the
desired trajectory, at the cost of a deviation spike at the connection point for y(t).
The total period of motion, when using zero initial velocity for the horizontal circle
path segment, zero final velocity for the straight line path segment and boundary
velocity through the transition segment connection was found to be Tts,f1 = 1.4476(s).

7.2.1 - Simulations with Transition Segment 81

Figure 7.6: Resulting trajectory in joint space as functions of θ ∈ [−π, β] after
implementing the transition path segment. Transition segment is using lower velocity
profile, resulting in higher path accuracy. Highlighted area (between the red lines)
shows the area of effect from the transition segment.

Figure 7.7: Resulting trajectory in task space after implementing the transition
path segment.

82 Chapter 7 - Connections with Sharp Corners

Compared to the simulated period of motion from Section 6.2.1 with zero velocities
at the connection point (1.509 (s)), we can see that the time is improved. It is
slightly slower than the period of motion with boundary level connection velocities,
without the transition segment implementation, seen in Section 6.2.1. This case,
however, failed to track the desired trajectory. Using boundary velocities throughout
the entire combined path, we found a period of motion of Tts,f2 = 1.045(s), whereas
the planned time in this situation can be found as Tf,1 +Tf,3 = 1.044(s). We see that
the transition segment solution is able to keep up with the planned (sub-)optimal
period of motion also in this situation.

7.2.2 Design Options

Varying the radius length, rt, of the transition circle will obviously impact the results.
A larger radius means we can achieve more robust tracking for high velocities during
the transition segment. This will however come at the cost of larger deviation from
the original desired path. Chosing a small rt lets us come closer to the original
desired path. This also means we need to set a lower velocity profile during the
transition segment to be able to obtain robust and accurate tracking. Finding the
’best possible rt’ may not always be easy. For preplanned paths where we have the
possibility to perform simulations, we can simulate with varying rt (and α), and

Figure 7.8: Highlighting the effect of tuning the transition segment radius for the
obtained y(t) (blue) with desired trajectory (dashed blue). Top left: rt = 0.03. Top
right: rt = 0.035. Bottom left: rt = 0.04. Bottom right: rt = 0.08. (m)

7.2.2 - Design Options 83

Figure 7.9: Error in task space after implementing the transition path segment,
showing the result for four different rt of the transition segment. Top left: rt = 0.03.
Top right: rt = 0.035. Bottom left: rt = 0.04. Bottom right: rt = 0.08. (m)

choose the rt giving the least possible average error combined with the lowest possible
time period, over a chosen time span. The case of the horizontal circle connected to
a straight line, with a transition segment around the corner point was simulated for
several transition circle radiuses, rt. In Figure 7.7 the resulting trajectory in task
space from the simulation in the previous section can be seen. As mentioned earlier,
a transition circle radius of rt = 0.04 (m) was used in this case. We see that y(t)
(blue) has a deviation from the desired trajectory (dashed) around t = 1.3 where the
transition segment operates. In Figure 7.8 we can see the results of the simulations
in task space, highlighted for y(t), for four different transition circle radiuses. The
resulting total error in task space from these simulations can be seen in Figure 7.9.
We can observe that the results of using rt < 0.4 results in crossover issues for the
tracking of the desired trajectory (dashed line). Using rt > 0.4 did not give this
problem, but results in high deviation errors. Choosing rt ≈ 0.04 seems to be a good
choice in this case. In addition to rt, the velocity profile of the transition segment
will also affect the result. The velocity profile of the transition segment was chosen
to reflect the velocity profile for the horizontal circle path for the trajectory results
presented in Figure 7.6 and Figure 7.7. In Figure 7.10 we see the effect of tuning the
velocity profile of the transition segment, highlighted for y(t). We see that setting
too low and too high velocity profile values gives worse results. These results show
that spending time tuning the velocity profiles and the transition circle radius rt

84 Chapter 7 - Connections with Sharp Corners

Figure 7.10: Highlighting the effect of tuning the transition segment velocity profile
on the obtained y(t) (blue) with desired trajectory (dashed blue). Top left: zero
velocity profile settings. Top right: Low velocity profile settings. Bottom left: velocity
profile equal to horizontal circle velocity profile. Bottom right: higher velocity profile
settings.

may give better performance.

The robustness of this method can be an issue if the sampling frequency of the
controller causes us to not be able to detect when the path coordinate reaches the
value β fast enough. The standard ABB controller has a sampling frequency of
∆s = 0.004(s), and simulations in this paper have used sampling frequency equal
to that of the ABB controller. A possible way to improve robustness, might be to
implement many different transition segments. For the presented case, this would
mean implementing many different transition circles with various radius lengths, as
illustrated in Figure 7.12, so that the robot will choose at least one of these circles
as its path in the transition segment startpoint, and not skip it completely. This will
however only be an issue for very small transition circles.

7.2.2 - Design Options 85

Figure 7.11: Error vector in task space after implementing the transition path
segment, showing the result for four different velocity profile settings on the transition
segment.

Figure 7.12: A more robust way of implementing, adding more possible transition
paths with various level of precision. The circle with a thicker line shows the same
circle as in Figure 7.3.

86 Chapter 7 - Connections with Sharp Corners

7.3 Discussion

In this chapter we have attempted to find a solution to the problem of sharp corners
when connecting path segments for path constrained motion. This problem surfaced
from the results in Chapter 6, where we observed that tracking failed for 90 degree
corner connections when using boundary level velocities at the connection points.
We have seen how implementing a transition segment around the corner point solves
the problem of tracking failure. This comes at the cost of some error from the
originally desired trajectory. The deviation spike resulting from the method was
seen to be ≈ 40 (mm) for a 90 degree corner with boundary level velocities. It
might be counterintuitive to use this solution for path constrained motion, because
we usually want a desired trajectory to be tracked exactly for such motions. It
is, however, argued that the method may be helpful for scenarios where the time
optimality criterium is rated higher than exact path tracking accuracy, especially at
the particular section of the path where the segments are connected. The results show
that the controller achieves high precision for other sections of the paths. Trading
for the path deviation error, we get a time improvement of the period of motion,
from 1.728 (s) to 1.4476 (s), which is significant.

Chapter8Concluding Remarks

In the search for ways to optimize industrial robot manipulator performance, this
paper has investigated several important steps needed to achieve robust and effective
motion planning and control with regards to time optimalization.

The problem of trajectory planning has been investigated using a method called path-
constrained trajectory planning. This method parameterizes the nominal evolution
of the full state space vector along a path, by using virtual holonomic constraints,
without taking the system dynamics into concern. With this approach, the explicit
dependence on time dissapears, allowing for implementation of a modified control
strategy that take advantage of these concepts. For the velocity assignment, various
curve fitting tools have been analyzed for generating time (sub-)optimal velocity pro-
files. The manipulator dynamics were modeled using the Newton-Euler formulation.
Using the scenario of a horizontal circular path the method gave a planned period
of motion of Ts,θ1 ≈ 0.917 seconds for the IRB140, which is more than 25% faster
than the commercial ABB planner running on maximum velocity. When simulating
the planned trajectory with boundary level end point velocity, complemented by a
feedback control strategy that achieves orbital stabilization, the period of motion
was found to be Tf,θ1 ≈ 0.901 seconds. Setting the end point velocities to zero
resulted in a period of motion of Ts,θ1 ≈ 1.502 seconds, compared to a planned
time of approximately 1.559 seconds. The control structure proved to be an efficient
tool for achieving accurate tracking of the preplanned trajectories. The maximum
deviation between desired and obtained trajectory was seen as 0.0002 radians for
zero velocity end point settings. We have presented the results of similar simulations
performed on various path scenarios.

We have investigated the possibilities of connecting path segments, and simulated
the manipulator for different cases. When connecting a horizontal circle path to a
straight line path up the circle radius, we established a new path with a 90 degree
corner point. We observed from simulations that tracking of the desired trajectory

87

88 Chapter 8 - Concluding Remarks

failed for one of the joints using boundary level velocity at the connection point.
However, when using zero velocity at the connection point, we were able to track the
desired path with only minor deviations. A horizontal circle path was connected to a
vertical circle path, which made for a "softer" connection point. In this case we were
able to traverse the connection point with boundary level velocity for both velocity
profiles. The conclusion that was drawn from the results was that immediate changes
in the velocity profile is not possible without using paths that were geometrically
conditioned to be connected.

An attempt was made to deal with this problem, using a "transition segment",
to smooth out the motion of the corner point. We observed that using the transition
segment, we were able to track the desired trajectory with a deviation of 40 mm using
boundary level velocity for the two path segments. It was concluded that this solution
can be useful, especially if time optimalization is regarded as more important than
accurate path tracking, e.g. packing tasks. We also showed how to tune the transition
segment to obtain more satisfying results. For less sharp angles, this solution should
provide better results than for sharp angles such as the 90 degree corner presented in
this paper. This would be of interest to investigate in further work. It is likely that
more work on the subject can lead to even better solutions, or improvements of the
suggested solution presented in this paper. A natural next step would be to test the
results on a real life manipulator. Unfortunately, the manipulator was unavailable
due to maintenance work for most of the time spent working on this thesis, so the
decision was made to focus the experiments on simulations.

Bibliography

[1] Arturo Baroncelli. Press release: President’s report - 2013 set new record in sales.
http://www.ifr.org, 2014.

[2] J Bobrow, S Dubowsky, and J Gibson. Time-optimal control of robotic manipu-
lators along specified paths. The International Journal of Robotics Research, (3),
1985.

[3] Jianging Fan and Qiwei Yao. Nonlinear Time Series: Nonparametric and Para-
metric Methods. Springer-Verlag New York, Inc., 2003.

[4] ABB Group. Datasheet for IRB 140 Industrial Robot. 2010.

[5] ABB Group. IRB 140 CADmodels. http://new.abb.com/products/robotics/industrial-
robots/irb-140/irb-140-cad, 2014.

[6] J Hollerbach. Dynamic scaling of manipulator trajectories. ASME Journal of
Dynamic Systems, Measurement and Control, (1), 1984.

[7] T.R. Kurfess. Robotics and automation handbook. CRC Press, London., 2005.

[8] G. Leonov. Generalization of the Andronov-Vitt theorem, volume 11. Regular
and Chaotic Dynamics, 2006.

[9] J Lloyd and V Hayward. Trajectory generation for sensor-driven and time-varying
tasks. International journal of robotics research, (12), 1993.

[10] Stephen M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[11] S Macfarlane and E Croft. Jerk-bounded manipulator trajectory planning: design
for real-time applications. Transactions on robotics and automation, (19), 2003.

[12] Jorge Nocedal and Stephen Wright. Springer Series in Operations Research:
Numerical Optimization, volume 2. Springer, 2006.

[13] Marius Nordheim Røv. Time optimal control of industrial manipulators. Project
work, NTNU, 2013.

[14] International Federation of Robotics. ISO 8373 - industrial robot definition.
http://www.ifr.org/industrial-robots/, 2013.

89

90 Bibliography

[15] Daniel Ortiz Morales, Simon Westerberg, Pedro La Hera, Uwe Mettin, Leonid
B. Freidovich, and Anton S. Shiriaev. Open-loop control experiments on driver
assistance for crane forestry machines. Robotics and Automation (ICRA), IEEE
International Conference, 2011.

[16] B. Paden and R. Panja. Globally asymptotically stable pd+ controller for robot
manipulators. Int. J. of Contr., 47, 1988.

[17] F Pfeiffer and R Johanni. A concept for manipulator trajectory planning. IEEE
journal of robotics and automation, (3), 1987.

[18] Stepan S. Pchelkin, Anton S. Shiriaev, Anders Robertsson, and Leonid B. Frei-
dovich. Integrated time-optimal trajectory planning and control design for in-
dustrial robot manipulator. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013.

[19] Anton S. Shiriaev, Leonid B. Freidovich, and Sergei V. Gusev. Transverse
linearization for controlled mechanical systems with several passive degrees of
freedom. Automatic Control, IEEE Transactions, 55(4), 2010.

[20] Anton S. Shiriaev, John Perram, Anders Robertsson, and Anders Sandberg.
Periodic motion planning for virtually constrained euler-lagrange systems. Systems
and Control Letters, 55:900–907, 2006.

[21] Kang Shin and N McKay. A dynamic programming approach to trajectory
planning of robotic manipulators. Automatic Control, IEEE Transactions, (6),
1986.

[22] M. Takegaki and S. Arimoto. A new feedback method for dynamic control of
manipulators. Journal of Dynamic Syst., Meas., and Control - Trans of ASME,
103(2), 1981.

[23] van Dijk N.J.M. Generic trajectory generation for industrial manipulators. Eind-
hoven University of Technology, Department of Mechanical Engineering, Dynamics
and Control, 2006.

[24] D Verscheure, B Demeulenaere, J Swevers, and J De Schutter. Time-optimal
path tracking for robots: A convex optimization approach. Automatic Control,
IEEE Transactions, (10), 2009.

[25] D. W. Jordan and P Smith. Nonlinear Ordinary Differential Equations. Oxford
University Press, 2007.

[26] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Springer, 2006.

AppendixADerivations and Definitions

For Matlab simulations the system needs to be transformed into a first-order nonlinear
form. The way this was done for the dynamic model of the IRB140 is presented in
Appendix A.1.

Appendix A.2 shows the transformation matrix from Section 3.1.1.

In Section 3.1.3 we found the Jacobian for linear velocity, expressed as a 3 × 3-
matrix. This matrix can be seen in Appendix A.3.

Appendix A.4 shows the inertia matrices from Section 3.2.3, while Section A.5
shows how SolidWorks was used for parameter estimation.

In Section A.6, we see the plots used for motion planning in Chapter 4.

91

92 Appendix A - Derivations and Definitions

A.1 Order Reduction for Matlab Simulations

Consider the first-order nonlinear form

ẋ = f(x, u)

From the dynamic equation on matrix form we get

q̈ = M(q)−1(−C(q, q̇)q̇ −G(q) + τ)

where M(q) is invertible. Now, the system can be reduced from m second-order
equations to 2m first-order equations by defining

x1 = q1, x2 = ẋ1 = q̇1

x3 = q2, x4 = ẋ3 = q̇2

...
...

x2m−1 = qm, x2m = ẋ2m−1 = q̇m

We can now get the suitable reduced form as follows

ẋ1 = x2

ẋ2 = f2(x, u)
ẋ3 = x4

ẋ4 = f4(x, u)
...

ẋ2m−1 = x2m

ẋ2m = f2m(x, u)

A.2 - Transformation Matrix 93

A.2 Transformation Matrix

T0
3 =


r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1

 (A.1)

in which

r11 = − cos(q1)[sin(q2) sin(q3)− cos(q2) cos(q3)]
r21 = − sin(q1)[sin(q2) sin(q3)− cos(q2) cos(q3)]
r31 = − cos(q2) sin(q3)− sin(q2) cos(q3)
r12 = − cos(q1)[sin(q2) cos(q3) + cos(q2) sin(q3)]
r22 = − sin(q1)[sin(q2) cos(q3) + cos(q2) sin(q3)]
r32 = sin(q2) sin(q3)− cos(q2) cos(q3)
r13 = − sin(q1)
r23 = cos(q1)
r33 = 0
dx = − cos(q1)[sin(q2)a3 sin(q3)− a3 cos(q2) cos(q3)− a2 sin(q2)− a1]
dy = − sin(q1)[a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)− a2 sin(q2)− a1]
dz = a2 cos(q2) + d1 − a3 cos(q2) sin(q3)− a3 sin(q2) cos(q3)

94 Appendix A - Derivations and Definitions

A.3 Jacobian for Linear Velocity

Jv3×3 =


j11 j12 j13

j21 j22 j23

j31 j32 j33

 (A.2)

in which

j11 = sin(q1)[a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)− a2 sin(q2)− a1]
j21 = cos(q1)[−a3 sin(q2) sin(q3) + a3 cos(q2) cos(q3) + a2 sin(q2) + a1]
j31 = 0
j12 = cos(q1)[a3 cos(q2) sin(q3)− a3 sin(q2) cos(q3) + a2]
j22 = sin(q1)[−a3 cos(q2) sin(q3)− a3 sin(q2) cos(q3) + a2 cos(q2)]
j32 = a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)
j13 = cos(q1)[−a3 sin(q2) cos(q3)− a3 cos(q2) sin(q3)]
j23 = sin(q1)[−a3 sin(q2) cos(q3)− a3 cos(q2) sin(q3)]
j33 = a3 sin(q2) sin(q3)− a3 cos(q2) cos(q3)

A.4 Inertia Matrices

I1 =


0.51205253974 0.00136134 0.051305

0.00136134 0.46407468859 0.0703356
0.051305 −0.0627205 0.55411384358

 (A.3)

I2 =


0.0948179 −0.00385971 0.037932
−0.00385971 0.32860416324 −0.00108897

0.037932 −0.00108897 0.27746300488

 (A.4)

I3 =


0.50006091595 −0.00186325 0.000934876
−0.00186325 0.0751527 −0.0152041
0.000934876 −0.0152041 0.51542475434

 (A.5)

A.5 - SolidWorks Parameter Estimation 95

A.5 SolidWorks Parameter Estimation

Figure A.1: Showing how the mass center of link 3 was calculated in SolidWorks.

SolidWorks was used for finding link masses and mass centers. We have used CAD
models of the IRB140, which can be downloaded from [5]. In Figure A.1 it is shown
how the manipulator parameters were obtained for the reduced to 3-DOF model by
combining links.

A.6 Velocity Profile Generation Points

Table A.1: Points used in the cubic spline interpolation for the horizontal circle.
Point 1 2 3 4 5 6 7 8 9 10 11 12 13
θ1 −π −2.7 −2.3 −1.8 −1 −0.35 0 0.35 1 1.8 2.3 2.7 π

θ̇1 ˙θ1,0 8.7 8.5 6.6 5.4 7.1 10 7.1 5.4 6.6 8.5 8.7 ˙θ1,e

Table A.2: Points used in the cubic spline interpolation for the vertical circle.
Point 1 2 3 4 5 6 7 8 9 10 11
θ2 −π −2.6 −1.8 −1.3 −0.6 0 0.6 1.3 1.8 2.6 π

θ̇2 ˙θ2,0 9 11.5 12.3 9.6 7.7 9.6 12.3 11.5 9 ˙θ2,e

96 Appendix A - Derivations and Definitions

Table A.3: Points used in the cubic spline interpolation for the straight line with
boundary level velocities at the starting and ending points.

Point 1 2 3
x 0.45 0.55 0.65
ẋ 1.55 1.42 1.22

Table A.4: Points used in the cubic spline interpolation for the straight line with
zero velocities at the starting and ending points.

Point 1 2 3 4 5 6 7
x 0.45 0.48 0.50 0.55 0.60 0.62 0.65
ẋ 0 1.40 1.50 1.40 1.35 1.18 0

Table A.5: Points used in the cubic spline interpolation for the straight line with
boundary level velocity at the starting point and zero at the ending point.

Point 1 2 3 4 5
x 0.45 0.55 0.60 0.62 0.65
ẋ 1.55 1.42 1.35 1.18 0

AppendixBMaple Code

Maple Code was used for throughout the paper for various calculations. Especially,
computing the Newton-Euler formulation leading to the dynamic model of the IRB140,
and the computations for the velocity assignment. The code is presented below, and
the runnable files can be found in the file folder related to the thesis.

97

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

KINEMATICS

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

Calculating end effector coordinates

> >

> >

> >

> >
> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

DYNAMICS

Defining the initial gravity vector

Defining the Inertia Matrices with values from SolidWorks

Defining mass center vectors with values from SolidWorks

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Forward Recursion for Link 1:

Forward Recursion for Link 2:

Forward Recursion for Link 3:

Backward Recursion for Link 3

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Backward Recursion for Link 2

Defining dynamic system matrix elements

Gravity vector

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

> >

> >

> >

> >

Code to convert matrix elements to matlab code

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Inverse Kinematic Calculations

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

> >

> >

Horizontal circle:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Vertical circle:

Straight line:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Transition segment:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Defining points and generating interpolating curve
(change the values of the points to change velocity profiles)

Horizontal circle:

Vertical circle:

Straight line:

Transition segment:

> >

> >

> >

> >

> >

> >

> >

(1)(1)

> >

> >

> >

> >

> >

> >

> >

> >

> >

(2)(2)

> >

> >

> >

> >

> >

> >

> >

> >

Calculating planned period of motion along the circle trajectory

Horizontal circle:

Vertical circle:

Straight line:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

(3)(3)

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Transition segment:

Converting results to matlab code

Horizontal circle:

Vertical circle:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Straight line:

Transition segment:

AppendixCMATLAB: Simulink

Most of the plots presented in the paper are made in MATLAB, and the simulations
are done by the use of Simulink. The most important Simulink systems are presented
here. The complete set of files can be found in the file folder related to this thesis.

113

114 Appendix C - MATLAB: Simulink

Figure C.1: Simulink model - Overall structure of the simulation of orbital stabi-
lization on the motion planning cases

.

Figure C.2: IRB140 block - Containing a Level-2 MATLAB S-Function block for
simulating the dynamics of the IRB140 manipulator.

Figure C.3: Controller block - Taking in the desired and obtained joint values for
orbital stabilization. Also containing a block for friction handling.

Appendix C - MATLAB: Simulink 115

Figure C.4: Trajectory block - Structure of the trajectory generation, is generated
in the Velocity profile block, the desired trajectory signal is then computed in a
Matlab function.

Figure C.5: Example of trajectory generation block for the straight line - Velocity
profile is generated in the Velocity profile block, the desired trajectory signal is then
computed in a Matlab function.

116 Appendix C - MATLAB: Simulink

Figure C.6: Velocity profile block - Simple structure of the interpolation by the
look-up-table block.

Figure C.7: Motion generator block structure - Taking the vector q(t) as input.

AppendixDMATLAB: Level-2 S-function

The manipulator was simulated using a Level-2 S-function. The information of this
function is presented here. Some of the expressions in the function are very long,
and only the shortened versions are seen here. The complete expressions can be seen
in the files found in the file folder related to the thesis.

117

1

Table of Contents
Initialization .. 1
Register number of input and output ports .. 1
Setup functional port properties to dynamically inherited. .. 1
Hard-code certain port properties .. 1
Register a single dialog parameter ... 2
Set block sample time ... 2
Decide accelerator .. 2
Register a callback method for block ... 2
Set initial conditions ... 2
Input definitions ... 2
Mass values found from SolidWorks calculations ... 2
Inertia tensor matrices found by SolidWorks calculations ... 3
Vectors from frame i-1 to mass center of link i .. 3
Inertia Matrix Estimate .. 3
Gravity Vector Estimate .. 3
Coriolis & Centrifugal matrix Estimate .. 3
Defining the Dynamic System .. 4
Friction model ... 4
Calculating DDq from the dynamic model .. 4
Order reduction .. 4
Output definitions ... 4

Initialization
 function IRB140(block)
 setup(block);

 function setup(block)

Register number of input and output ports
 block.NumInputPorts = 2;
 block.NumOutputPorts = 1;

Setup functional port properties to dynamically
inherited.

 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

Hard-code certain port properties
 block.InputPort(1).Dimensions = [6 1];
 block.InputPort(2).Dimensions = [3 1];
 block.InputPort(1).DirectFeedthrough = false;
 block.InputPort(2).DirectFeedthrough = false;

2

 block.OutputPort(1).Dimensions = [6 1];

Register a single dialog parameter
 block.NumDialogPrms = 0;

Set block sample time
 block.SampleTimes = [-1 0];

Decide accelerator
 block.SetAccelRunOnTLC(false);

Register a callback method for block
 block.RegBlockMethod('InitializeConditions', @InitializeConditions);
 block.RegBlockMethod('Outputs', @Outputs);

Set initial conditions
 function InitializeConditions(block)
 block.InputPort(1).Data(1) = 0;
 block.InputPort(1).Data(2) = 0;
 block.InputPort(1).Data(3) = 0;
 block.InputPort(1).Data(4) = 0;
 block.InputPort(1).Data(5) = 0;
 block.InputPort(1).Data(6) = 0;

 function Outputs(block)

Input definitions
 u1 = block.InputPort(2).Data(1);
 u2 = block.InputPort(2).Data(2);
 u3 = block.InputPort(2).Data(3);

 q1 = block.InputPort(1).Data(1);
 Dq1 = block.InputPort(1).Data(2);
 q2 = block.InputPort(1).Data(3);
 Dq2 = block.InputPort(1).Data(4);
 q3 = block.InputPort(1).Data(5);
 Dq3 = block.InputPort(1).Data(6);

Mass values found from SolidWorks calcula-
tions

 m1 = 34.655;

3

 m2 = 15.994;
 m3 = 20.862;

Inertia tensor matrices found by SolidWorks
calculations

 i11x = 0.51205253974; i11y = -0.385971e-2; i11z = 0.051305;
 i12x = 0.00136134; i12y = 0.46407468859; i13z = 0.0703356;
 i13x = 0.051305; i13y = -0.627205e-1; i13z = 0.55411384358;

 i21x = 0.0948179; i21y = -0.385971e-2; i21z = 0.037932;
 i22x = -0.385971e-2; i22y = 0.32860416324; i22z = -0.108897e-2;
 i23x = 0.037932; i23y = -0.108897e-2; i23z = 0.27746300488;

 i31x = 0.50006091595; i31y = -0.186325e-2; i31z = 0.000934876;
 i32x = -0.186325e-2; i32y = 0.0751527; i32z = -0.152041e-1;
 i33x = 0.000934876; i33y = -0.152041e-1; i33z = 0.51542475434;

Vectors from frame i-1 to mass center of link i
 r0c1x = 0.08903; r0c1y = -0.2789e-1; r0c1z = 0.04312;
 r1c2x = 0.19829; r1c2y = -0.9243e-1; r1c2z = 0.00973;
 r2c3x = 0.07996; r2c3y = 0.00456; r2c3z = 0.00586;

Inertia Matrix Estimate
 m11 = 0.5000000000e0 * i32y + 0.5000000000e0 * i31x + 0.5000000000e0 * i22... + 0.5000000000e0 * i21x + m3 * 0.696999999999999981e-1 + 0.1e1 * i12y + m2 * 0.490000000000000071e-2 + 0.1000000000e1 * r1c2y * m2 * r1c2x * sin((2 * q2)) - 0.1000000000e1 * m3 * r2c3y * r2c3x * sin((2 * q3 + 2 * q2)) + 0.5000000000e0 * m2 * r1c2y ^ 2 + 0.5000000000e0 * m2 * r1c2x ^ 2 + 0.5000000000e0 * m3 * r2c3x ^ 2 * cos((2 * q3 + 2 * q2)) - 0.5000000000e0 * m2 * r1c2x ^ 2 * cos((2 * q2)) + m3 * r2c3y * sin((q3 + q2)) * (-0.140000000000000013e0) + m2 * r1c2y * cos(q2) * 0.140000000000000013e0 + m3 * r2c3x * cos((q3 + q2)) * 0.140000000000000013e0 + m2 * r1c2x * sin(q2) * 0.140000000000000013e0 + 0.5000000000e0 * m2 * r1c2y ^ 2 * cos((2 * q2)) + m3 * r2c3y * cos((q3 + 2 * q2)) * 0.359999999999999987e0 - 0.5000000000e0 * m3 * r2c3y ^ 2 * cos((2 * q3 + 2 * q2)) + m3 * r2c3x * sin((q3 + 2 * q2)) * 0.359999999999999987e0 + 0.5000000000e0 * m3 * r2c3y ^ 2 + 0.5000000000e0 * m3 * r2c3x ^ 2 + r2c3y * m3 * cos(q3) * (-0.359999999999999987e0) + r2c3x * m3 * sin(q3) * (-0.359999999999999987e0) + 0.1000000000e1 * m2 * r1c2z ^ 2 + 0.1e1 * m1 * r0c1z ^ 2 + 0.1e1 * m1 * r0c1x ^ 2 + 0.1000000000e1 * m3 * r2c3z ^ 2 + m3 * sin(q2) * 0.504000000000000004e-1 + m3 * cos((2 * q2)) * (-0.647999999999999965e-1) - 0.5000000000e0 * i22y * cos((2 * q2)) - 0.5000000000e0 * i21y * sin((2 * q2)) + 0.5000000000e0 * i21x * cos((2 * q2)) - 0.5000000000e0 * i31x * cos((2 * q3 + 2 * q2)) + 0.5000000000e0 * i31y * sin((2 * q3 + 2 * q2)) + 0.5000000000e0 * i32x * sin((2 * q3 + 2 * q2)) + 0.5000000000e0 * i32y * cos((2 * q3 + 2 * q2)) - 0.5000000000e0 * i22x * sin((2 * q2));
 m12 = -0.1000000000e1 * i31z * sin(q3 + q2) - 0.1000000000e1 * i32z * cos(... + q2) - 0.1000000000e1 * r1c2x * m2 * r1c2z * cos(q2) + 0.1000000000e1 * r2c3x * m3 * r2c3z * sin(q3 + q2) - 0.1000000000e1 * sin(q2) * i22z + 0.1000000000e1 * r1c2y * m2 * r1c2z * sin(q2) + 0.1000000000e1 * cos(q2) * i21z + 0.1000000000e1 * r2c3y * m3 * r2c3z * cos(q3 + q2) - 0.3600000000e0 * m3 * r2c3z * cos(q2);
 m13 = 0.1000000000e1 * r2c3x * m3 * r2c3z * sin(q3 + q2) + 0.1000000000e1 ... r2c3y * m3 * r2c3z * cos(q3 + q2) - 0.1000000000e1 * i31z * sin(q3 + q2) - 0.1000000000e1 * i32z * cos(q3 + q2);
 m21 = 0.1000000000e1 * r1c2y * m2 * r1c2z * sin(q2) + 0.1000000000e1 * r2c... * m3 * r2c3z * cos(q3 + q2) - 0.1000000000e1 * i23y * sin(q2) + 0.1000000000e1 * r2c3x * m3 * r2c3z * sin(q3 + q2) - 0.1000000000e1 * r1c2x * m2 * r1c2z * cos(q2) + 0.1000000000e1 * i23x * cos(q2) + m3 * r2c3z * cos(q2) * (-0.359999999999999987e0) - 0.1000000000e1 * i33x * sin(q3 + q2) - 0.1000000000e1 * i33y * cos(q3 + q2);
 m22 = r2c3y * m3 * cos(q3) * (-0.719999999999999973e0) + r2c3x * m3 * sin(... * (-0.719999999999999973e0) + 0.1000000000e1 * m3 * r2c3y ^ 2 + 0.1000000000e1 * m2 * r1c2y ^ 2 + 0.1000000000e1 * m2 * r1c2x ^ 2 + 0.1000000000e1 * i23z + m3 * 0.129599999999999993e0 + 0.1000000000e1 * m3 * r2c3x ^ 2 + 0.1000000000e1 * i33z;
 m23 = 0.1000000000e1 * i33z + 0.1000000000e1 * m3 * r2c3x ^ 2 + r2c3y * m3... cos(q3) * (-0.359999999999999987e0) + r2c3x * m3 * sin(q3) * (-0.359999999999999987e0) + 0.1000000000e1 * m3 * r2c3y ^ 2;
 m31 = 0.1000000000e1 * r2c3y * m3 * r2c3z * cos(q3 + q2) + 0.1000000000e1 ... r2c3x * m3 * r2c3z * sin(q3 + q2) - 0.1000000000e1 * i33x * sin(q3 + q2) - 0.1000000000e1 * i33y * cos(q3 + q2);
 m32 = 0.1000000000e1 * i33z + 0.1000000000e1 * m3 * r2c3y ^ 2 - 0.36000000... * r2c3y * m3 * cos(q3) + 0.1000000000e1 * m3 * r2c3x ^ 2 - 0.3600000000e0 * r2c3x * m3 * sin(q3);
 m33 = 0.1000000000e1 * i33z + 0.1000000000e1 * m3 * r2c3y ^ 2 + 0.10000000... * m3 * r2c3x ^ 2;

Gravity Vector Estimate
 g = 9.81;
 g1 = 0;
 g2 = 0.1000000000e1 * r2c3y * m3 * sin(q3 + q2) * g - 0.1000000000e1 * r1c... m2 * cos(q2) * g - 0.1000000000e1 * r1c2x * m2 * sin(q2) * g - 0.1000000000e1 * r2c3x * m3 * cos(q3 + q2) * g + m3 * g * sin(q2) * (-0.359999999999999987e0);
 g3 = -0.1000000000e1 * r2c3x * m3 * cos(q3 + q2) * g + 0.1000000000e1 * r2... m3 * sin(q3 + q2) * g;

Coriolis & Centrifugal matrix Estimate
 c11 = sin(q2) * m3 * Dq1 * r2c3z * (-0.277555756156289135e-16) + ((0.10000... e1 * m3 * r2c3y ^ 2 * sin((2 * q3) + 0.2e1 * q2) + r1c2x * m2 * cos(q2) * 0.140000000000000013e0 + r2c3x * m3 * sin(q3 + q2) * (-0.140000000000000013e0) + r2c3x * m3 * cos(q3) * (-0.555111512312578270e-16) + r2c3x * m3 * cos(q3 + 0.2e1 * q2) * 0.719999999999999973e0 - 0.1000000000e1 * i21x * sin(0.2e1 * q2) - 0.1000000000e1 * m2 * r1c2y ^ 2 * sin(0.2e1 * q2) + 0.1000000000e1 * m2 * r1c2x ^ 2 * sin(0.2e1 * q2) - 0.1000000000e1 * m3 * r2c3x ^ 2 * sin((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * cos(q3 + q2) * (-0.140000000000000013e0) - 0.1000000000e1 * i22x * cos(0.2e1 * q2) - 0.1000000000e1 * i32y * sin((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * sin(q3) * 0.555111512312578270e-16 + r1c2y * m2 * sin(q2) * (-0.140000000000000013e0) + 0.1000000000e1 * i32x * cos((2 * q3) + 0.2e1 * q2) + 0.1000000000e1 * i31y * cos((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * sin(q3 + 0.2e1 * q2) * (-0.719999999999999973e0) + m3 * cos(q2) * 0.504000000000000004e-1 + m3 * sin(0.2e1 * q2) * 0.129599999999999993e0 + 0.1000000000e1 * i22y * sin(0.2e1 * q2) + 0.1000000000e1 * i31x * sin((2 * q3) + 0.2e1 * q2) + 0.2000000000e1 * r1c2y * m2 * r1c2x * cos(0.2e1 * q2) - 0.1000000000e1 * i21y * cos(0.2e1 * q2) - 0.2000000000e1 * r2c3y * m3 * r2c3x * cos((2 * q3) + 0.2e1 * q2)) * Dq2 + (-0.1000000000e1 * i32y * sin((2 * q3) + 0.2e1 * q2) - 0.1000000000e1 * m3 * r2c3x ^ 2 * sin((2 * q3) + 0.2e1 * q2) + r2c3x * m3 * cos(q3 + 0.2e1 * q2) * 0.359999999999999987e0 + 0.1000000000e1 * m3 * r2c3y ^ 2 * sin((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * sin(q3 + 0.2e1 * q2) * (-0.359999999999999987e0) - 0.2000000000e1 * r2c3y * m3 * r2c3x * cos((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * cos(q3 + q2) * (-0.140000000000000013e0) + r2c3x * m3 * cos(q3) * (-0.359999999999999987e0) + r2c3x * m3 * sin(q3 + q2) * (-0.140000000000000013e0) + 0.1000000000e1 * i31x * sin((2 * q3) + 0.2e1 * q2) + r2c3y * m3 * sin(q3) * 0.359999999999999987e0 + 0.1000000000e1 * i31y * cos((2 * q3) + 0.2e1 * q2) + 0.1000000000e1 * i32x * cos((2 * q3) + 0.2e1 * q2)) * Dq3);
 c12 = (-0.1000000000e1 * cos(q2) * i22z - 0.1000000000e1 * cos(q3 + q2) * ... - 0.1000000000e1 * sin(q2) * i21z + 0.1000000000e1 * r2c3z * m3 * r2c3x * cos(q3 + q2) + 0.1000000000e1 * sin(q3 + q2) * i32z - 0.1000000000e1 * r2c3z * m3 * r2c3y * sin(q3 + q2) + 0.1000000000e1 * sin(q2) * r1c2z * m2 * r1c2x + 0.1000000000e1 * cos(q2) * r1c2z * m2 * r1c2y + 0.3600000000e0 * sin(q2) * m3 * r2c3z) * Dq2 + (-0.2000000000e1 * cos(q3 + q2) * i31z - 0.2000000000e1 * r2c3z * m3 * r2c3y * sin(q3 + q2) + 0.2000000000e1 * sin(q3 + q2) * i32z + 0.2000000000e1 * r2c3z * m3 * r2c3x * cos(q3 + q2)) * Dq3;
 c13 = (-0.1000000000e1 * cos(q3 + q2) * i31z - 0.1000000000e1 * r2c3z * m3... 3y * sin(q3 + q2) + 0.1000000000e1 * sin(q3 + q2) * i32z + 0.1000000000e1 * r2c3z * m3 * r2c3x * cos(q3 + q2)) * Dq3 ^ 2;
 c21 = (-0.5000000000e0 * m2 * r1c2x ^ 2 * sin((2 * q2)) - 0.7000000000e-1 ... x * m2 * cos(q2) + 0.5000000000e0 * m2 * r1c2y ^ 2 * sin((2 * q2)) + 0.7000000000e-1 * r1c2y * m2 * sin(q2) + 0.5000000000e0 * i32x - 0.5000000000e0 * i31y + 0.5000000000e0 * i22x - 0.5000000000e0 * i21y + 0.5000000000e0 * i21x * sin((2 * q2)) + 0.5000000000e0 * i21y * cos((2 * q2)) + 0.5000000000e0 * i22x * cos((2 * q2)) - 0.5000000000e0 * i22y * sin((2 * q2)) + m3 * sin((2 * q2)) * (-0.647999999999999965e-1) + m3 * cos(q2) * (-0.252000000000000002e-1) + 0.1000000000e1 * r2c3y * m3 * r2c3x * cos((2 * q3 + 2 * q2)) - 0.5000000000e0 * i31x * sin((2 * q3 + 2 * q2)) - 0.5000000000e0 * i31y * cos((2 * q3 + 2 * q2)) - 0.5000000000e0 * i32x * cos((2 * q3 + 2 * q2)) + 0.5000000000e0 * i32y * sin((2 * q3 + 2 * q2)) + r2c3x * m3 * cos((q3 + 2 * q2)) * (-0.359999999999999987e0) - 0.5000000000e0 * m3 * r2c3y ^ 2 * sin((2 * q3 + 2 * q2)) + 0.7000000000e-1 * r2c3x * m3 * sin((q3 + q2)) + 0.7000000000e-1 * r2c3y * m3 * cos((q3 + q2)) + r2c3y * m3 * sin((q3 + 2 * q2)) * 0.359999999999999987e0 + 0.5000000000e0 * m3 * r2c3x ^ 2 * sin((2 * q3 + 2 * q2)) - 0.1000000000e1 * r1c2y * m2 * r1c2x * cos((2 * q2))) * Dq1 + ((-0.1000000000e1 * i33x * cos((q3 + q2)) - 0.1000000000e1 * i23y * cos(q2) - 0.1000000000e1 * i23x * sin(q2) + 0.1000000000e1 * i33y * sin((q3 + q2)) + 0.1000000000e1 * cos(q2) * i22z + 0.1000000000e1 * sin(q2) * i21z + 0.1000000000e1 * cos((q3 + q2)) * i31z - 0.1000000000e1 * sin((q3 + q2)) * i32z) * Dq2 + (-0.1000000000e1 * i33x * cos((q3 + q2)) - 0.1000000000e1 * sin((q3 + q2)) * i32z + 0.1000000000e1 * i33y * sin((q3 + q2)) + 0.1000000000e1 * cos((q3 + q2)) * i31z) * Dq3);

4

 c22 = (r2c3y * m3 * sin(q3) * 0.719999999999999973e0 + r2c3x * m3 * cos(q3... 0.719999999999999973e0)) * Dq3;
 c23 = (r2c3x * m3 * cos(q3) * (-0.359999999999999987e0) + r2c3y * m3 * sin... 0.359999999999999987e0) * Dq3;
 c31 = (0.1800000000e0 * r2c3x * m3 * cos(q3) - 0.1800000000e0 * r2c3x * m3... (q3 + (2 * q2)) + 0.1000000000e1 * r2c3y * m3 * r2c3x * cos(0.2e1 * q3 + (2 * q2)) - 0.5000000000e0 * m3 * r2c3y ^ 2 * sin(0.2e1 * q3 + (2 * q2)) + 0.7000000000e-1 * r2c3x * m3 * sin(q3 + q2) + 0.7000000000e-1 * r2c3y * m3 * cos(q3 + q2) + 0.1800000000e0 * r2c3y * m3 * sin(q3 + (2 * q2)) - 0.1800000000e0 * r2c3y * m3 * sin(q3) + 0.5000000000e0 * m3 * r2c3x ^ 2 * sin(0.2e1 * q3 + (2 * q2)) - 0.5000000000e0 * i31x * sin(0.2e1 * q3 + (2 * q2)) - 0.5000000000e0 * i31y - 0.5000000000e0 * i31y * cos(0.2e1 * q3 + (2 * q2)) + 0.5000000000e0 * i32x - 0.5000000000e0 * i32x * cos(0.2e1 * q3 + (2 * q2)) + 0.5000000000e0 * i32y * sin(0.2e1 * q3 + (2 * q2))) * Dq1 + ((-0.1000000000e1 * i33x * cos(q3 + q2) - 0.1000000000e1 * sin(q3 + q2) * i32z + 0.1000000000e1 * i33y * sin(q3 + q2) + 0.1000000000e1 * cos(q3 + q2) * i31z) * Dq2 + (-0.1000000000e1 * i33x * cos(q3 + q2) - 0.1000000000e1 * sin(q3 + q2) * i32z + 0.1000000000e1 * i33y * sin(q3 + q2) + 0.1000000000e1 * cos(q3 + q2) * i31z) * Dq3);
 c32 = (-0.3600000000e0 * r2c3y * m3 * sin(q3) + 0.3600000000e0 * r2c3x * m... s(q3)) * Dq2;

 c33 = 0;

Defining the Dynamic System
 M = [m11 m12 m13;m21 m22 m23;m31 m32 m33];
 C = [c11 c12 c13; c21 c22 c23; c31 c32 c33];
 G = [g1; g2; g3];

Friction model
 Ks1 = 21.522476573748172;
 Ks2 = 26.685483301181058;
 Ks3 = 9.699584289009023;
 Kp1 = 9.193839979114159;
 Kp2 = 5.106491748638457;
 Kp3 = 3.765788262834416;

 Fv1 = Ks1*sign(Dq1) + Kp1 * Dq1;
 Fv2 = Ks2*sign(Dq2) + Kp2 * Dq2;
 Fv3 = Ks3*sign(Dq3) + Kp3 * Dq3;

Calculating DDq from the dynamic model
 DynSys = (M^(-1))*([u1-Fv1; u2-Fv2; u3-Fv3] - C*[Dq1;Dq2;Dq3] - G);

Order reduction
 dx1 = Dq1;
 dx2 = DynSys(1);
 dx3 = Dq2;
 dx4 = DynSys(2);
 dx5 = Dq3;
 dx6 = DynSys(3);

Output definitions
 dx = [dx1;dx2;dx3;dx4;dx5;dx6];
 block.OutputPort(1).Data = dx;

Published with MATLAB® R2013a

AppendixEABB Datasheet

Specifications for the IRB140, as presented by ABB, are included here in a compressed
form. A more complete datasheet is included in the file folder related to the thesis.

123

IRB 140
Industrial Robot

Robotics

Main Applications
Arc welding
Assembly
Cleaning/Spraying
Machine tending
Material handling
Packing
Deburring

Small, Powerful and Fast
Compact, powerful IRB 140 industrial robot.
Six axis multipurpose robot that handles payload of 6 kg,
with long reach (810 mm). The IRB 140 can be floor mounted,
inverted or on the wall in any angle. Available as Standard,
FoundryPlus, Clean Room and Wash versions, all mechani-
cal arms completely IP67 protected, making IRB 140 easy to
integrate in and suitable for a variety of applications. Uniquely
extended radius of working area due to bend-back mecha-
nism of upper arm, axis 1 rotation of 360 degrees even as
wall mounted.
The compact, robust design with integrated cabling adds to
overall flexibility. The Collision Detection option with full path
retraction makes robot reliable and safe.

Using IRB 140T, cycle-times are considerably reduced where
axis 1 and 2 predominantly are used.
Reductions between 15-20 % are possible using pure axis
1 and 2 movements. This faster versions is well suited for
packing applications and guided operations together with
PickMaster.
IRB Foundry Plus and Wash versions are suitable for operat-
ing in extreme foundry environments and other harch environ-
ments with high requirements on corrosion resistance and
tightness. In addition to the IP67 protection, excellent surface
treatment makes the robot high pressure steam washable.
The white-finish Clean Room version meets Clean Room class
10 regulations, making it especially suited for environments
with stringent cleanliness standards.

©
 C

op
yr

ig
ht

 A
B

B
 R

ob
ot

ic
s.

P

R
10

03
1

E
N

_R
8

Fe
b

ru
ar

y
20

09
.

www.abb.com/robotics

IRB 140

Specification

Robot versions	 Handling	 Reach of	 Remarks

		 capacity	 5th axis	

IRB 140/IRB 140T	 6 kg	 810 mm	

IRB 140F/IRB 140TF	 6 kg	 810 mm	 Foundry Plus Protection

IRB 140CR/

IRB 140TCR	 6 kg	 810 mm	 Clean Room

IRB 140W/

IRB 140TW	 6 kg	 810 mm	 Wash Protection

Supplementary load (on upper arm alt. wrist)

	 on upper arm		 1 kg

	 on wrist		 0.5 kg

Number of axes

	 Robot manipulator 		 6

	 External devices		 6

Integrated signal supply	 12 signals on upper arm

Integrated air supply		 Max. 8 bar on upper arm

Performance

Position repeatability	 0.03 mm (average result from ISO test)

Axis movement	 Axis	 Working range

		 1, C Rotation	 360°

		 2, B Arm	 200°

		 3, A Arm	 280°

		 4, D Wrist	 Unlimited (400° default)

		 5, E Bend	 240°

		 6, P Turn	 Unlimited (800° default)

Max. TCP velocity 		 2.5 m/s

Max. TCP acceleration 	 20 m/s2

Acceleration time 0-1 m/s	 0.15 sec

Velocity

Axis no.	 IRB 140	 IRB 140T

1		 200°/s	 250°/s

2		 200°/s	 250°/s

3		 260°/s	 260°/s

4		 360°/s	 360°/s

5		 360°/s	 360°/s

6		 450°/s	 450°/s

Cycle time

5 kg Picking side 		 IRB 140 	 IRB 140T

cycle 25 x 300 x 25 mm 	 0,85s 	 0,77s

Electrical Connections

Supply voltage		 200–600 V, 50/60 Hz

Rated power

	 Transformer rating		 4.5 kVA

Power consumption typicly	 0,4 kW

Physical

Robot mounting		 Any angle

Dimensions

	 Robot base		 400 x 450 mm

	 Robot controller H x W x D	 950 x 800 x 620 mm

Weight

	 Robot manipulator		 98 kg

Environment

Ambient temperature for

	 Robot manipulator		 5 – 45°C

Relative humidity		 Max. 95%

Degree of protection,

Manipulator		 IP67

Options		 Foundry

			 Wash (High pressure steam washable)

			 Clean Room, class 6

			 (certified by IPA)	

Noise level		 Max. 70 dB (A)

Safety 		 Double circuits with supervision,

			 emergency stops and safety

			 functions,

			 3-position enable device

Emission		 EMC/EMI-shielded

Data and dimensions may be changed without notice

Working range

810

65

670

70

380

1092

712

352

151

486

670

810

70

70

486

352
712

1092

380

65

670 810

70 486

352

1092

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Z-
di

st
an

ce
 (m

m
)

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Z-
di

st
an

ce
 (m

m
)

L-distance (mm)

L-distance (mm)

1,5 kg

2 kg

3 kg

4 kg

5 kg

6 kg

6,5 kg
6 kg

5 kg

4 kg

3 kg

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Z-
di

st
an

ce
 (m

m
)

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Z-
di

st
an

ce
 (m

m
)

L-distance (mm)

L-distance (mm)

1,5 kg

2 kg

3 kg

4 kg

5 kg

6 kg

6,5 kg
6 kg

5 kg

4 kg

3 kg

	List of Figures
	List of Tables
	Introduction
	Motivation and Introduction to Industrial Robot Manipulators
	The IRB140 Robot Manipulator

	Scope and Emphasis
	Outline of Report

	Concepts and Theories
	Robot Manipulator Kinematics
	The Denavit-Hartenburg Convention
	Forward Kinematics
	Inverse Kinematics

	Robot Manipulator Dynamics
	The Euler Lagrange Equations
	Holonomic Constraints
	The Recursive Newton-Euler Formulation

	Motion Planning Terminology
	Motion Control Theory

	Mathematical Modeling of the IRB140 Manipulator
	Kinematics
	Forward Kinematics
	Inverse Kinematics
	Velocity Kinematics

	Dynamics
	Parameter Estimation
	Finding Vectors and Mass Centers
	The Inertia Tensor
	The Newton-Euler Formulation

	Discussion

	Motion Planning
	Path Planning
	Path-Constrained Trajectory Planning
	Time Optimalization
	Virtual Holonomic Constraints
	Finding Velocity Profiles

	Motion Planning on Case Paths
	Case 1: Horizontal Circular Motion
	Case 2: Vertical Circular Motion
	Case 3: Straight Line Motion

	Discussion

	Motion Control
	Orbital Stabilization
	Motion Control Simulations on Case Trajectories
	Simulink Layout
	Case 1: Horizontal Circular Motion
	Case 2: Vertical Circular Motion
	Case 3: Straight Line Motion

	Discussion

	Connecting Path Segments
	The Usability of PCTP
	Simulations
	Case 1: Horizontal Circle Connected to a Straight Line
	Case 2: Vertical Circle Connected to a Straight Line
	Case 3: Horizontal Circle Connected to a Vertical Circle

	Discussion

	Connections with Sharp Corners
	Corners in Pick-and-Place Motions
	Sharp Corners in Path Constrained Motion
	Simulations with Transition Segment
	Design Options

	Discussion

	Concluding Remarks
	Bibliography
	Derivations and Definitions
	Order Reduction for Matlab Simulations
	Transformation Matrix
	Jacobian for Linear Velocity
	Inertia Matrices
	SolidWorks Parameter Estimation
	Velocity Profile Generation Points

	Maple Code
	MATLAB: Simulink
	MATLAB: Level-2 S-function
	ABB Datasheet

