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Volterra operators on Hardy spaces of
Dirichlet series

By Ole Fredrik Brevig at Trondheim, Karl-Mikael Perfekt at Trondheim and
Kristian Seip at Trondheim

Abstract. For a Dirichlet series symbol g.s/ D
P
n�1 bnn

�s , the associated Volterra
operator Tg acting on a Dirichlet series f .s/ D

P
n�1 ann

�s is defined by the integral

f 7! �

Z C1
s

f .w/g0.w/ dw:

We show that Tg is a bounded operator on the Hardy space Hp of Dirichlet series with
0 < p <1 if and only if the symbol g satisfies a Carleson measure condition. When appro-
priately restricted to one complex variable, our condition coincides with the standard Carleson
measure characterization of BMOA.D/. A further analogy with classical BMO is that exp.cjgj/
is integrable (on the infinite polytorus) for some c > 0 whenever Tg is bounded. In particu-
lar, such g belong to Hp for every p <1. We relate the boundedness of Tg to several other
BMO-type spaces: BMOA in half-planes, the dual of H1, and the space of symbols of bounded
Hankel forms. Moreover, we study symbols whose coefficients enjoy a multiplicative structure
and obtain coefficient estimates for m-homogeneous symbols as well as for general symbols.
Finally, we consider the action of Tg on reproducing kernels for appropriate sequences of sub-
spaces of H2. Our proofs employ function and operator theoretic techniques in one and several
variables; a variety of number theoretic arguments are used throughout the paper in our study
of special classes of symbols g.

1. Introduction

By a result of Pommerenke [32], the Volterra operator associated with an analytic func-
tion g on the unit disc D, defined by the formula

(1.1) Tgf .z/ WD

Z z

0

f .w/g0.w/ dw; z 2 D;
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180 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

is a bounded operator on the Hardy space H 2.D/ if and only if g belongs to the analytic
space of bounded mean oscillation BMOA.D/. In view of the factorizationH 2 �H 2 D H 1 and
C. Fefferman’s famous duality theorem, according to which BMOA.D/ is the dual of H 1.D/,
it follows that Tg is bounded if and only if the corresponding Hankel form Hg is bounded,
where

Hg.f; h/ WD

Z
T
f .z/h.z/g.z/ dm1.z/; f; h 2 H 2.D/:

In recent years, it has become known how to give a direct proof of the equivalence of the
boundedness of Tg and Hg (see [3]), with no mention of bounded mean oscillation (BMO)
or Carleson measures, relying instead on the square function characterization of H 1 to show
that Tgf is in H 1.D/ whenever f and g are in H 2.D/. Although the systematic study of
Tg was conducted much later than that of the Hankel form Hg (see [2, 4]), one could now,
based on this insight, easily imagine an exposition of the one variable Hardy space theory
which considers the boundedness of Volterra operators before BMOA and Hankel operators.
One advantage would then be that the John–Nirenberg inequality, by Pommerenke’s trick [32],
has an elementary proof for functions g such that Tg is bounded.

This conception of Volterra operators, as objects of primary interest for understand-
ing BMO, underlies the present investigation of such operators on Hardy spaces of Dirichlet
series Hp with 0 < p <1. The precise definition of these spaces will be given in the next
section; suffice it to say at this point that every Dirichlet series f .s/ D

P
n�1 ann

�s in Hp

defines an analytic function for Re s > 1
2

, and that Hp can be identified with the Hardy space
Hp.D1/ of the countably infinite polydisc D1, through the Bohr lift. For a Dirichlet series
symbol g.s/ D

P
n�1 bnn

�s , we consider the Volterra operator Tg defined by

(1.2) Tgf .s/ WD �
Z C1
s

f .w/g0.w/ dw; Re s >
1

2
:

We denote the space of symbols g such that Tg W Hp ! Hp is bounded by Xp. The index
p D 2 is special, and we frequently write X instead of X2.

A general question of interest in the theory of Hardy spaces of Dirichlet series is to
reveal how the different roles and interpretations of BMO manifest themselves in this infinite-
dimensional setting. The space of symbols generating bounded Hankel forms has been shown
to be significantly larger than .H1/� (see [30]), and the space .H1/� itself also lacks many of
the familiar features from the finite-dimensional setting. For instance, a function f in .H1/�

does not always belong to Hp for every p <1 (see [26]). By Pommerenke’s trick, however,
it is almost immediate that the corresponding inclusion does hold for the space X, i.e.,

X �
\

0<p<1

Hp:

Furthermore, .H1/� is notoriously difficult to deal with, in part owing to the fact thatHp.D1/,
viewed as a subspace of Lp.T1/, is not complemented when p ¤ 2. We shall find that the
space X is significantly easier to manage.

One of our main results is that the spaces Xp can be characterized by a Carleson measure
condition, in analogy with what we have in the classical one variable theory. In our context,
the Carleson measure associated with the symbol g will live on the product of T1 and a half-
line. Again deferring precise definitions to the next section, we mention that this result takes the
following form: The symbol g belongs to Xp if and only if there exists a constantC (depending
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on g and p) such thatZ
T1

Z 1
0

jf�.�/j
p
jg0�.�/j

2� d� dm1.�/ � Ckf k
p
Hp

holds for every f in Hp. Here m1 denotes Haar measure on T1, while � is a character on
T1 and f�.s/ WD

P
n�1 an�.n/n

�s for the Dirichlet series f .s/ D
P
n�1 ann

�s . This result,
proved in Section 5, is based on an adaption to our setting of an ingenious argument from
a recent paper of Pau [31]. Our Carleson measure condition gives us the opportunity to study
non-trivial Carleson embeddings on the polydisc D1, see Sections 5.2 and 5.3. Our under-
standing is incomplete, but some of the questions asked are more tractable than the important
embedding problem of Hp (see [34, Section 3]) while still being of a similar character. In the
classical setting, the description in terms of Carleson measures shows that Tg is bounded on
Hp.D/ if and only if it is bounded on H 2.D/. We will see that our Carleson measure charac-
terization implies that if g is in Xp, then g is in Xkp for every positive integer k. As is typical
in this setting, we have not been able to do better than this for a general symbol g, and the
following interesting problem remains open:

Question 1. Is Tg bounded on H2 if and only if it is bounded on Hp for every p <1?

We are able to give an affirmative answer to this question only in the case when g is
a linear symbol, i.e., when g has non-zero coefficients only at the primes pj so that

g.s/ D
X
j�1

ajp
�s
j :

Before proceeding to give a closer description of our results, we would like to mention
another open problem related to Question 1. In Section 6, we will observe that if Tg WH2!H2

is bounded, then the corresponding multiplicative Hankel form is bounded. Furthermore, we
will show that if Tg W H1 ! H1 is bounded, then g is in .H1/�. Hence, if the answer to
Question 1 is positive, then so is the answer to the following.

Question 2. Do we have X2 � .H
1/�?

The reverse inclusion is easily shown to be false. In fact, it is not even true when formu-
lated for the finite-dimensional polydisc D2 (see Theorem 6.6).

To give appropriate background and motivation for our general result about Carleson
measures, we have chosen to begin by exploring in some detail the distinguished space X2

and its many interesting facets. This will allow us to exhibit the ubiquitous presence of number
theoretic arguments in our subject, which is a consequence of our operators Tg being defined
in terms of integrals on the half-plane Re s > 1=2. Roughly speaking, if trying to understand
Tg at the level of the coefficients of Tgf , one has to investigate the interplay between the
number of divisors d.n/ of an integer n and its logarithm, logn. One may also analyze symbols
of number theoretic interest in terms of their function theoretic properties. In fact, our first
interesting example of a bounded Volterra operator Tg W Hp ! Hp will be established by the
result, shown in Section 2, that the primitive of the Riemann zeta function,

g.s/ D �

Z
.�.s C 1/ � 1/ ds D

1X
nD2

1

n logn
n�s;
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182 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

is of bounded mean oscillation on the line Re s D 0. Such a BMO condition easily implies
that g is in X2, and also that g is in Xp for 0 < p <1, once our Carleson measure condition
is in place.

To close this introduction, we now describe briefly the contents of the six subsequent
sections of this paper. We begin in Section 2 by introducing the Hardy spaces Hp and start
from the preliminary result that H1 � X �

T
0<p<1Hp. In our setting, there is a consid-

erable gap between H1 and
T
0<p<1Hp, as for instance functions in H1 are bounded

analytic functions in the half-plane Re s > 0, while functions in
T
0<p<1Hp in general will

be analytic in the smaller half-plane Re s > 1=2. In Section 2, the main point is to demonstrate
how X can be thought of as a space of BMO functions in the classical sense. Using the notation
C� for the half-plane ¹s W Re.s/ > �º and D for the class of functions expressible as a Dirichlet
series in some half-plane C� , we prove that

BMOA.C0/ \D � X � BMOA.C1=2/;

and we also show that ecjgj is integrable for some positive constant c whenever g is in X.
Section 3 and Section 4 investigate properties of X with no counterparts in the classical

theory. After showing that the primitive of �.s C ˛/ � 1 is in X if and only if ˛ � 1, we make
in Section 3 a finer analysis by identifying and studying a scale of symbols associated with the
limiting case ˛ D 1. More specifically, we find that if we replace p�1�s in the Euler product for
�.s C 1/ by �.logp/p�1�s , then this new symbol is in X if and only if � � 1, the point being
to nail down the exact edge for a symbol to be in X when its coefficients enjoy a multiplicative
structure. The methods used to prove this result come from two number theoretic papers of
respectively Hilberdink [24] and Gál [19].

In Section 4, we deduce conditions on the coefficients bn of a symbol g.s/D
P
n�1bnn

�s

to be in X. We begin by showing that a linear symbol is in X if and only if g is in H2. This
leads naturally to a consideration of m-homogeneous symbols, i.e., symbols such that bn is
non-zero only if n has m prime factors, counting multiplicity. We obtain optimal weighted
`2-conditions for every m � 2, showing in particular that the Dirichlet series of g in general
converges in C1=m and in no larger half-plane. Letting m tend to1, we find that there exists
a positive constant c, not larger than 2

p
2, such that

kTgk � C

 
jb2j

2
C

1X
nD3

jbnj
2ne�c

p
logn log logn

!1=2
holds for every g in X. These results are inspired by and will be compared with analogous
results of Queffélec et al. [5, 27] on Bohr’s absolute convergence problem for homogeneous
Dirichlet series.

Section 5 begins with our general result about Carleson measures and is subsequently
concerned with a study of to what extent our results for X2 carry over to Xp. As already
mentioned, our understanding remains incomplete, but we will see that a fair amount of non-
trivial conclusions can be drawn from our general condition.

In the last two sections, we return again to the Hilbert space setting. Section 6 explores
the relationship between Tg , Hankel operators, and the dual of H1. In particular, this section
gives background for what we have listed as Question 2 above. Finally, Section 7 investigates
the compactness of Tg , with particular attention paid to the action of Tg on reproducing ker-
nels. Here we return to the symbols considered in Section 3 which will allow us to display an
example of a non-compact Tg -operator.
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 183

Notation. We will use the notation f .x/� g.x/ if there is some constant C > 0 such
that jf .x/j � C jg.x/j for all (appropriate) x. If we have both f .x/� g.x/ and g.x/� f .x/,
we will write f .x/ � g.x/. If

lim
x!1

f .x/

g.x/
D 1;

we write f .x/ � g.x/. The increasing sequence of prime numbers will be denoted by ¹pj ºj�1,
and the subscript will sometimes be dropped when there can be no confusion. Given a positive
rational number r , we will denote the prime number factorization

r D p
�1
1 p

�2
2 � � �p

�d
d

by r D .pj /� . This associates uniquely to r the finite multi-index �.r/ D .�1; �2; : : : /. For
� in T1, we set �.r/ WD .�j /� , when r D .pj /� . If r is an integer, say n, then the multi-
index �.n/ will have non-negative entries. We let .m; n/ denote the greatest common divisor
of two positive integers m and n. The number of prime factors in n will be denoted �.n/
(counting multiplicities) and !.n/ (not counting multiplicities), and �.x/ will denote the num-
ber of primes less than or equal to x. We will let logk denote the k-fold logarithm so that
log2 x D log log x, log3 x D log log log x, and so on. To avoid cumbersome notation, we will
use the convention that logk x D 1 when x � xk , where x2 D ee and xkC1 D exk for k � 2.

2. The Hardy spaces Hp, symbols of Volterra operators, and BMO in half-planes

2.1. Hardy spaces of Dirichlet series. The Bohr lift of the Dirichlet series

f .s/ D
X
n�1

ann
�s

is the power series Bf .z/ D
P
n�1 anz

�.n/. For 0 < p <1, we define Hp as the space of
Dirichlet series f such that Bf is in Hp.D1/, and we set

kf kHp WD kBf kHp.D1/ D

�Z
T1
jBf .z/jp dm1.z/

� 1
p

:

Here m1 denotes the Haar measure of the infinite polytorus T1, which is simply the product
of the normalized Lebesgue measure of the torus T in each variable. Note that for p D 2, we
have

kf kH2 D

 
1X
nD1

janj
2

! 1
2

:

We refer to [33] (or to [6, 22]) for a treatment of the properties of Hp, describing briefly the
basic results we require below. For a character � in T1, we define

f�.s/ WD

1X
nD1

an�.n/n
�s:

For � in R, the vertical translation of f will be denoted by f� .s/ WD f .s C i�/. It is well
known (see [22, Section 2]) that if f converges uniformly in some half-plane C� , then f� is
a normal limit of vertical translations ¹f�kºk�1 in C� .
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184 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

The conformally invariant Hardy space Hp
i .C� / consists of holomorphic functions in

C� that are finite with respect to the norm given by

kf kHp
i .C� /

WD sup
�>�

�
1

�

Z
R
jf .� C i t/jp

dt

1C t2

� 1
p

:

The following connection between Hp and Hp
i .C0/ can be obtained from Fubini’s theorem:

(2.1) kf k
p
Hp D

Z
T1
kf�k

p

H
p
i .C0/

dm1.�/:

Based on (2.1), one can deduce Littlewood–Paley-type expressions for the norms of Hp. This
was first done for p D 2 in [7, Proposition 4], and later for 0 < p <1 in [8, Theorem 5.1],
where the formula

kf k
p
Hp � jf .C1/j

p(2.2)

C

Z
T1

Z
R

Z 1
0

jf�.� C i t/j
p�2
jf 0�.� C i t/j

2� d�
dt

1C t2
dm1.�/

was obtained. When p D 2, we have equality between the two sides of (2.2). We note in passing
that this fact can be used to relate X to H1, the space of bounded Dirichlet series in C0
endowed with the norm

kf k1 WD sup
�>0

jf .s/j; s D � C i t:

Indeed, let Mg denote the operator of multiplication by g on H2, and recall the result that
Mg is bounded if and only if g is in H1, with kMgk D kgk1 (see [22, Theorem 3.1]). Since
.fg/0 D f 0g C .Tgf /0, it then follows from the Littlewood–Paley formula and the triangle
inequality that

(2.3) kTgk � 2kgk1

and consequently H1 � X.
Dirichlet series in Hp for 0 < p <1 are however generally convergent only in C1=2. In

this half-plane, we have the following local embedding from [22, Theorem 4.11]. For every �
in R,

(2.4)
Z �C1

�

jf .1
2
C i t/j2 dt � Ckf k2

H2 :

It is sometimes more convenient to use the equivalent formulation that

(2.5) kf k2
H2

i .C1=2/
� �Ckf k2

H2 :

It is interesting to compare (2.1) and (2.5). These formulas illustrate why both half-planes C0
and C1=2 appear in the theory of the Hardy spaces Hp. It will become apparent in what follows
that both half-planes show up in a natural way also in the study of Volterra operators.

2.2. BMO spaces in half-planes. The space BMOA.C� / consists of holomorphic
functions in the half-plane C� that satisfy

kgkBMO.C� / WD sup
I�R

1

jI j

Z
I

ˇ̌̌̌
f .� C i t/ �

1

jI j

Z
I

f .� C i�/ d�

ˇ̌̌̌
dt <1:
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 185

We let as before D denote the space of functions that can be represented by Dirichlet series
in some half-plane. The abscissa of boundedness of a given g in D , denoted by �b , is the
smallest real number such that g.s/ has a bounded analytic continuation to Re.s/ � �b C ı for
every ı > 0. A classical theorem of Bohr [10] states that the Dirichlet series g.s/ converges
uniformly in Re.s/ � �b C ı for every ı > 0.

Lemma 2.1. Assume that g is in D \ BMOA.C0/. Then:

(i) g has �b � 0,

(ii) g� is in BMOA.C0/ and kg�kBMO D kgkBMO for every character �,

(iii) g is in
T
0<p<1Hp and exp.cjBgj/ is integrable on T1 for some c > 0.

An interesting point is that the space D \ BMOA.C0/ enjoys a stronger translation invar-
iance, expressed by items (i) and (ii), than what the space BMOA.C0/ itself does. Lemma 2.1
can also be interpreted as saying that D \ BMOA.C0/ is only “slightly larger” than H1. We
will later see that part (iii) of Lemma 2.1 holds whenever Tg is a bounded operator.

Proof of Lemma 2.1. By the definition of �b , there exists a positive numberM such that
jg.� C i t/j �M whenever � � �b C 1. Since g is assumed to be in BMOA.C0/, there exists
a constant C such thatZ 1

�1

jg.i�/ � g.�b C 1C i t/j
�b C 1

.�b C 1/
2 C .� � t /2

d�

�
� C:

Therefore, by the triangle inequality, we find thatZ tC�bC1

t��b�1

jg.i�/j d� � 2.�b C 1/ � .M C C/:

Writing g as a Poisson integral, we see that this bound implies (i). Now (ii) follows immediately
from the translation invariance of BMOA, the characterization of BMOA in terms of Poisson
integrals, and that f� is a normal limit of vertical translations of f in C0 by (i). To prove (iii),
we use the John–Nirenberg inequality to conclude that there are c D c.kgkBMO/ > 0 and
C D C.kgkBMO/ such that

kecjg�g.1/jkL1i .iR/
WD

1

�

Z
R
ecjg.it/�g.1/j

dt

1C t2
� C:

Since �b.g/ � 0, we know that g is absolutely convergent at s D 1, so

kecjg�g.1/jkL1i .iR/
� kecjgjkL1i .iR/

;

where the implied constant depends on g, but only on the absolute value of its coefficients. In
particular, we can conclude that

kecjg�jkL1i .iR/
� �C ;

for every � 2 T1, and �C does not depend on �, by (ii). Integrating over T1 and using Fubini’s
theorem as in (2.1) allows us to conclude that exp.cjBgj/ is in L2.T1/, which also implies
that g is in

T
0<p<1Hp.

Brought to you by | Universitetsbiblioteket I Trondheim NTNU Universitetsbiblioteket
Authenticated

Download Date | 9/6/19 12:15 PM



186 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

We require the following standard result, which can be extracted from [20, Section VI.1].

Lemma 2.2. Let g be holomorphic in C� . Then the measure

�g.s/ D jg
0.� C i t/j2.� � �/ d�

dt

1C t2

is Carleson for Hp
i .C� / if and only if g is in BMOA.C� /, and k�gkCM.Hp

i /
� kgk2BMO.C0/

.

We are now ready for a first result, saying that for the boundedness of Tg it is suffi-
cient that g is in BMOA.C0/ and necessary that it is in BMOA.C1=2/. On the one hand, it is
a preliminary result, following rather directly from the available theory of H2, outlined above.
On the other hand, as we shall see in Section 3 and Section 4, C0 and C1=2 are the extremal
half-planes of convergence for symbols g inducing bounded Volterra operators.

Theorem 2.3. Let Tg be the operator defined in (1.2) for some Dirichlet series g in D .

(a) If g is in BMOA.C0/, then Tg is bounded on H2.

Suppose that Tg is bounded on H2. Then,

(b) g satisfies condition (iii) from Lemma 2.1;

(c) g is in BMOA.C1=2/.

Proof. We apply (2.2) to Tgf and use Lemmas 2.1 and 2.2. Since .fg0/� D f�g0�, we
find that

kTgk2H2 �

Z
T1

Z
R

Z 1
0

j.fg0/�.� C i t/j
2� d�

dt

1C t2
dm1.�/

�

Z
T1
kf�k

2
H2

i .C0/
kg�k

2
BMO.C0/

dm1.�/

D kf k2
H2kgk

2
BMO.C0/

:

This completes the proof of (a).
For (b), we first observe that Tg1 D g, so that g is in H2. Applying Tg inductively to

the powers gn, for n D 1; 2; : : : , we get that

kgnkH2 � kTgknnŠ:

Using this and the triangle inequality, we obtain

kecjBgjk
1=2

L1.T1/
D kecjBgj=2kL2.T1/ �

1X
nD0

�
ckTgk
2

�n
;

which implies that ecjBgj is integrable whenever c < 2=kTgk.
To prove (c), we use the Littlewood–Paley formula for H 2

i .C1=2/ and (2.5) to see thatZ
R

Z 1
1=2

jf .� C i t/j2jg0.� C i t/j2
�
� �

1

2

�
d�

dt

1C t2
� kTgf k2H2

i .C1=2/

� kTgf k2H2

� kTgk2kf k2H2 :
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 187

This means that

�g.s/ D jg
0.� C i t/j2

�
� �

1

2

�
d�

dt

1C t2

is a Carleson measure for H2 in C1=2. By [29, Theorem 3], this implies that�g.s/ is a Carleson
measure for the non-conformal Hardy space H 2.C1=2/, which as in Lemma 2.2 means that
h.s/ WD g.s/=.sC1=2/ is in BMO.C1=2/. Indeed, we have proved that khkBMO.C1=2/ � kTgk.

Let us show that the factor .s C 1=2/�1 can be removed, so that g is in fact in the space
BMOA.C1=2/. We note first that if jI j � 1, then it follows from the local embedding (2.4) thatZ

I

jg.1
2
C i t/j2 dt � jI j � kgk2

H2 ;

since g is in H2 by (b). Hence we only need to consider intervals of length jI j < 1. For
a character � in T1, we define

h�.s/ WD
g�.s/

s C 1=2
:

Clearly, kTg�k D kTgk for every � in T1. This means that

sup
�2T1

kh�kBMO.C1=2/ � kTgk:

In particular, the BMO-norm of h is uniformly bounded under vertical translations of g, so that
we only need to consider intervals I D Œ0; �� for � < 1. On this interval, .s C 1=2/�1 and its
derivative is bounded from below and above. It follows that g is in BMO.C1=2/.

Combined with a result from [22], part (b) of Theorem 2.3 yields the following result.

Corollary 2.4. If Tg is bounded on H2, then for almost every character � on T1,
there is a constant C such that

(2.6) jg�.� C i t/j � C log
1C jt j

�

holds in the strip 0 < � � 1=2.

Proof. We assume that Tg is bounded on H2. Then by part (b) of Theorem 2.3, there
exists a positive number c such that the four functions e˙cg and e˙icg are in H2. Now let f be
any of these four functions. Then [22, Theorem 4.2] shows that, for almost every character �,
there exists a constant C (depending on �) such that

jf�.� C i t/ � f .C1/j � C
1C

p
jt j

�

for every point � C i t in C0. Combining the acquired estimates for the four functions e˙cg

and e˙icg and taking logarithms, we obtain the desired result.

Our bound (2.6) shows that almost surely jg�j grows at most as general functions in
BMOA.C0/ at the boundary of C0. It would be interesting to know if this result could be
strengthened. For instance, is it true that g� almost surely satisfies the BMO condition locally,
say on finite intervals, whenever Tg is bounded on H2? Note that we cannot hope to have
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188 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

the stronger result that g� is almost surely in BMOA.C0/. Indeed, the proof of part (a) of
Theorem 2.3 gives that if g� is in BMOA.C� / for one character �, then this holds for all
characters �. In view of this fact and what will be shown in Section 4, g� will in general be in
BMOA.C1=2/ and in none of the other spaces BMOA.C� / for 0 � � < 1=2.

2.3. An unbounded Dirichlet series in the space BMO. The canonical example of
an unbounded function in BMO.R/ is log jt j, the primitive of 1=t . The Riemann zeta function
�.s/ is a meromorphic function with one simple pole, at s D 1. We now show that the primitive
of �.�.s/ � 1/ has bounded mean oscillation on the line � D 1. In view of Theorem 2.3, this
supplies us with an example of a bounded Tg -operator.

Theorem 2.5. The Dirichlet series

g.s/ WD

1X
nD2

1

n logn
n�s

is in BMOA.C0/.

Proof. We will show that g is in BMOA.C"/, with BMO-norm uniformly bounded in
" > 0. Since g.s � 1=2/ is in H2, we can use the local embedding as in the proof of Theo-
rem 2.3 (c) to conclude that g satisfies the BMO-condition for intervals of length jI j � 1.

Focusing our attention on short intervals, we fix a real number a and 0 < T < 1 and set

c WD
X

logn<1=T

1

n1C" logn
n�ia:

To prove the theorem, we will show thatZ aCT

a

jg."C i t/ � cj2 dt � CT;

where C is a universal constant.
Notice first thatZ aCT

a

jg."C i t/ � cj2 dt D

Z T

0

j�g."C i t/ � cj2 dt;
where �g.s/ WD 1X

nD2

n�ia

n logn
n�s:

Accordingly, set bn WD n�ia=.n logn/. Then we have that�Z aCT

a

jg."C i t/ � cj2 dt

�1=2
�

�Z T

0

ˇ̌̌̌ X
logn<1=T

bnn
�".n�it � 1/

ˇ̌̌̌2
dt

�1=2

C

�Z T

0

ˇ̌̌̌ X
logn>1=T

bnn
�"n�it

ˇ̌̌̌2
dt

�1=2
:

To deal with the second term, we use the local embedding (2.4) in a similar manner as above,
using now that Z T

0

jf .1
2
C "C i t/j2 dt � kf k2

H2
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 189

in this case, since T < 1. This gives us thatZ T

0

ˇ̌̌̌ X
logn>1=T

bnn
�"n�it

ˇ̌̌̌2
dt �

X
logn>1=T

njbnj
2
� T;

as desired.
For the first term, we compute:

(2.7)
Z T

0

ˇ̌̌̌ X
logn<1=T

bnn
�".n�it � 1/

ˇ̌̌̌2
dt D

X
logm<1=T
logn<1=T

bnbm.mn/
�"hmn.T /;

where

hmn.T / WD
.n=m/�iT � 1

i log m
n

�
n�iT � 1

i log 1
n

�
.1=m/�iT � 1

i logm
C T:

We write hmn as a Taylor series in T , whence

hmn.T / D

1X
kD3

dkmnT
k;

where

dkmn WD
.�i/k�1

kŠ

��
log

n

m

�k�1
� .logn/k�1 �

�
log

1

m

�k�1�
:

The point is that in the coefficient dkmn, the terms of order .logm/k�1 and .logn/k�1 cancel.
Estimating the remaining terms in a crude manner, we have that

jdkmnj �
2k

kŠ

k�2X
jD1

.logm/j .logn/k�j�1:

Note that for 1 � j � k � 2, we have

T k
X

logm<1=T
logn<1=T

jbnjjbmj.logm/j .logn/k�j�1 � T:

We observe that this inequality fails if j D 0 or j D k � 1, corresponding to the terms which
disappear from dkmn.

Combining these estimates with (2.7) we obtainZ T

0

ˇ̌̌̌ X
logn<1=T

bnn
�".n�it � 1/

ˇ̌̌̌2
dt � T

also for the first term, concluding the proof.

3. Multiplicative symbols

In this section, we study symbols of the form

(3.1) g.s/ D

1X
nD2

 .n/

logn
n�s;
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190 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

where  .n/ is a positive multiplicative function. We know from the previous section that if
 .n/ D n�1, then g is in BMOA.C0/, and therefore g is in X. We begin by considering the
distinguished case when the function  .n/ corresponds to horizontal shifts of the Riemann
zeta function. To be more precise, our first task will be to show that g is not in X when g is the
function in BMOA.C1�˛/ with coefficients given by  .n/ D n�˛ and 1=2 � ˛ < 1. In par-
ticular, this means that the Dirichlet series g.s/ D

P
n�2 1=.

p
n logn/n�s , identified in [15]

as the symbol of the multiplicative analogue of Hilbert’s matrix and shown there to generate a
bounded multiplicative Hankel form, is indeed far from belonging to X, as it corresponds to
the case ˛ D 1=2.

In this section and the next, we will be working at the level of coefficients. Observe that
if f .s/ D

P
n�1 ann

�s and g.s/ D
P
n�2 bn=.logn/n�s; then

Tgf .s/ D
1X
nD2

1

logn

�X
kjn
k<n

akbn=k

�
n�s:

Since the operator

a1 C

1X
nD2

ann
�s
7! a1 C

1X
nD2

an

logn
n�s

is trivially bounded and even compact on H2, we will sometimes tacitly replace Tg with�Tg ,

�Tgf .s/ WD 1X
nD2

1

logn

�X
kjn

akbn=k

�
n�s;

where it is understood that b1 D 1.

Theorem 3.1. The operator Tg is unbounded when g is the primitive of �.s C ˛/ � 1
and ˛ < 1.

Proof. If f .s/ D
P
n�1 ann

�s , then with the convention just described, we have that

Tgf .s/ D
1X
nD2

1

n˛ logn

X
kjn

akk
˛n�s:

We now choose f .s/ D
QJ
jD1.1C p

�s
j /, which satisfies kf kH2 D 2J=2. Let J be a subset

of ¹1; : : : ; J º.
Choosing n D nJ , where

nJ WD

Y
j2J

pj ;

we see that X
kjnJ

akk
˛
D n˛J

Y
j2J

.1C p�˛j /:

It follows that

kTgf k2H2 D

X
J¤;

1

.lognJ/
2

Y
j2J

.1C p�˛j /2;
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 191

which gives

kTgf k2H2 � 2
J�1 min

jJj�J=2

1

.lognJ/
2

Y
j2J

.1C p�˛j /2:

We conclude that
kTgf k2H2 � ecJ

1�˛.logJ/�˛
kf k2

H2

for an absolute constant c.

The preceding clarification of the case of horizontal shifts of primitives of the Riemann
zeta function motivates a more careful examination of what we need to require from the mul-
tiplicative function  .n/ in (3.1) for g to belong to X. We will now see that a surprisingly
precise answer can be given if we make a slight modification of the Euler product associated
with �.s/.

We will need the following simple decomposition of bounded Tg -operators. Let Mh;x

denote the truncated multiplier associated with h.s/ D
P
n�1 cnn

�s and x � 1:

Mh;xf .s/ WD
X
n�x

�X
kjn

ckan=k

�
n�s;

where f .s/ D
P
n�1 ann

�s . We observe that Mh;x acts boundedly on H2 for every Dirichlet
series h, but the point of interest is to understand how the norm of Mh;x grows with x. Trun-
cated multipliers are linked to Tg by the following lemma.

Lemma 3.2. Suppose that Tg acts boundedly on H2. Then

3

4

1X
kD0

4�kkM
g 0;e2

kf k2H2 � kTgf k2H2 � 4

1X
kD0

4�kkM
g 0;e2

kf k2H2

for every f in H2.

Proof. We start from the expression

kTgf k2H2 D

1X
nD2

1

.logn/2

ˇ̌̌̌X
kjn

bk.log k/an=k

ˇ̌̌̌2
;

which we split into blocks in the following way:

1X
kD0

1

4k

X
e2
k�1

<n�e2
k

ˇ̌̌̌X
kjn

bk.log k/an=k

ˇ̌̌̌2
� kTgf k2H2

� 4

1X
kD0

1

4k

X
e2
k�1

<n�e2
k

ˇ̌̌̌X
kjn

bk.log k/an=k

ˇ̌̌̌2
:

The upper bound is immediate from the right inequality, and the lower bound follows from the
left inequality and the fact thatX

e2
k�1

<n�e2
k

ˇ̌̌̌X
kjn

bkan=k

ˇ̌̌̌2
D kM

g 0;e2
kf k2H2 � kMg 0;e2

k�1f k2H2 :
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192 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

The preceding lemma, which says that Tg is bounded whenever the norm of Mg 0;x

grows roughly as log x, connects the study of Tg to the truncated multipliers considered by
Hilberdink [24] in a purely number theoretic context. Based on this observation, we shall now
present a natural scale of multiplicative symbols g�, where 0 < � <1, such that g� induces
a bounded Tg -operator if and only if � � 1. We shall later see, in Section 7, that Tg� is non-
compact for the pivotal point � D 1.

Theorem 3.3. For 0 < � <1, let g be the Dirichlet series (3.1), where  .n/ is the
completely multiplicative function defined on the primes by  .p/ WD �p�1.logp/. Then Tg is
bounded if and only if � � 1.

Proof. We begin with the case � < 1, for which we adapt the proof of [24, Theo-
rem 2.3]. Hence we let '.n/ be an arbitrary positive arithmetic function and note that the
Cauchy–Schwarz inequality implies that

kMg 0;xf k
2
H2 D

X
n�x

ˇ̌̌̌X
d jn

 .d/an=d

ˇ̌̌̌2
�

X
n�x

X
d jn

 .d/

'.d/

X
kjn

 .k/'.k/jan=kj
2:

We therefore find that

(3.2) kMg 0;xk
2
H2 �

X
n�x

'.n/ .n/max
m�x

X
d jm

 .m/

'.m/
:

We now require that ' be a multiplicative function satisfying

'.pk/ WD

´
1; p �M;

K
P1
rD1  .p

r/; p > M;

where the positive parameters K and M will be determined later. We find that

X
n�x

'.n/ .n/ �
Y
p

 
1C

1X
kD1

'.pk/ .pk/

!

� exp

 X
p�M

1X
kD1

 .pk/CK
X
p>M

 
1X
kD1

 .pk/

!2!

D exp
� X
p�M

�p�1 logp
1 � �p�1 logp

CK
X
p>M

�2p�2.logp/2

.1 � �p�1 logp/2

�
:

By Abel summation and the prime number theorem in the form

�.y/ D
y

logy
C

y

.logy/2
CO

�
y

.logy/3

�
;

we infer that

(3.3)
X
n�N

'.n/ .n/ � exp
�
� logM CO.1/CO

�
K

logM
M

��
:
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We now turn to the second factor on the right-hand side of (3.2). We then use that also

ˆ.m/ WD
X
d jm

 .d/

'.d/

is a multiplicative function. We observe that

ˆ.pk/ D

kX
rD0

 .pr/

'.pr/
�

´
1C

P1
rD1  .p

r/; p �M;

1CK�1; p > M:

Consequently,

ˆ.m/ �
Y
p�M

 
1C

1X
rD1

 .pr/

!
.1CK�1/!.m/(3.4)

� exp
�
� logM CO.1/CO

�
K�1

log x
log2 x

��
;

where we used the fact that !.m/� log.m/=log2.m/. If we now choose M D log x and
K D .log x/=log2 x, and insert (3.3) and (3.4) into (3.2), then we find that

kMg 0;xk
2
� C.log x/2�:

Finally, we invoke Lemma 3.2 and conclude that Tg is bounded whenever � < 1.
To show that Tg is bounded when � D 1 we modify the proof. In addition to the function

'.n/, we use another auxiliary function hx.n/ and use the Cauchy–Schwarz inequality to obtain

kMg 0;xf k
2
H2 D

X
n�x

ˇ̌̌̌X
d jn

 .d/an=d

ˇ̌̌̌2
�

X
n�x

X
d jn

 .d/

'.d/hx.n=d/

X
kjn

 .k/'.k/jan=kj
2hx.n=k/:

We require from hx.n/ that
sup
m

X
e2
k
�m

h
e2
k .m/ <1:

This will ensure boundedness if we can prove that

ˆh.m/ WD
X
d jm

 .d/

'.d/hx.m=d/

enjoys the same uniform bound as that we found for ˆ.m/ for a suitable hx.n/. To this end,
we choose

hx.n/ D

´
1;

p
x < n � x;

exp
�
�2 log2

logx
lognC1

�
; 1 � n �

p
x;

which implies that

ˆh.m/ � ˆ.m/e
2 log3 x � exp

�
log2mC 2 log3 x CO.1/

�
:
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194 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

This means that in what follows, we may assume that log.m/ � .log x/=.log2 x/
2. Using again

the definition of hx.n/, we also obtain, for ı > 0,

(3.5)
X
d jm

m=d�xı

 .d/

'.d/hx.m=d/
� ˆ.m/e2 log2

1
ı :

On the other hand, if m D xˇ with 0 < ˇ < 1, then arguing as before and choosing the same
M and K, we get

ˆ.m/ � exp
�

log2 x � log
1

ˇ
CO.1/

�
:

Hence, with ˇ D logm=log x and ı D ˇ=2, we find in view of (3.5) thatX
d jm

d�
p
m

 .d/

'.d/hx.m=d/
� C log x:

It remains to estimate

(3.6)
X
d jm

d�
p
m

 .d/

'.d/hx.m=d/
� e2 log3 x

X
d jm

d�
p
m

 .d/

'.d/
:

Note first that X
d jm

d�
p
m

 .d/

'.d/
� m�"=2

X
d jm

d " .d/

'.d/
DW m�"=2E.m/:

The definition of E.m/ shows that, in particular,

E.pk/ D

kX
rD0

p"r .pr/

'.pr/
�

´
.1 � p" .p//�1; p �M;

1CK�1p".1 �  .p//=.1 � p" .p//; p > M:

We may assume that " is so small that the factor .1 �  .p//=.1 � p" .p// does not exceed 2.
Letting P denote an arbitrary finite set of primes p, we then get that

E.m/ �
Y

p�logm

�
1 � p" .p/

��1 max
P W

P
p2P logp�logm

Y
p2P

�
1C 2K�1p"

�
� exp

�
.logm/" log2mC 2K

�1 max
logx

log2 x
�p�x

p"

logp
logmCO.1/

�
:

We now choose
" WD

4 log3 x
logm

:

Then the latter estimate becomes

E.m/ � exp
�
.logm/" log2mCK

�1 .log x/"

log2 x
logm

�
� exp

�
log2mCO.1/

�
� exp

�
log2 x CO.1/

�
:

We finally observe that the factor m�"=2 will take care of the term log3 x in the exponent on
the right-hand side of (3.6).
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Following an insight of Gál [19], we argue in the following way in order to show that Tg
is unbounded when � > 1. We start from the fact thatY

p�y

p D ey.1Co.1//;

which is a consequence of the prime number theorem. We let '.n/ be the multiplicative func-
tion defined by setting

'.pr/ WD

´
1; p �

logx
log2 x

and r � 1
2

log2 x;

0; otherwise:

Then '.n/ D 0 for n > x if x is large enough. We set an WD '.n/=.
P
n '.n//

1=2 and use the
Cauchy–Schwarz inequality to see that�X

n�x

ˇ̌̌̌X
d jn

ad .
n
d
/

ˇ̌̌̌2�1=2
�

P
n '.n/

P
d jn '.d/ .n=d/P
n '.n/

:

To simplify the writing, we set y WD log x=log2 x and ` WD b1
2

log2 xc. Then we infer from the
preceding estimate that� X

n�N

ˇ̌̌̌X
d jn

ad .
n
d
/

ˇ̌̌̌2�1=2
�

Y
p�y

1C `C ` .p/C .` � 1/ .p2/C � � � C  .p`/

1C `

�

Y
p�y

�
1C

`

`C 1
 .p/

�
D exp

�
�`

`C 1
logy CO.1/

�
� .log x/�

0

for some 1 < �0 < � when x is sufficiently large. We appeal again to Lemma 3.2 to conclude
that Tg is unbounded.

We notice that, clearly, the symbol g is not in BMOA.C0/ for any � > 0. In fact,
for � > 0,

1X
nD1

 .n/n�� D
Y
p

�
1 �  .p/p��

��1
� exp

 
�
X
p

logp
p1C�

!
� e�=� ;

which shows that g is not even in the Smirnov class of C0.

4. Homogeneous symbols and coefficient estimates

The multiplicative symbols of the previous section represent analytic functions in C0.
However, we saw in Theorem 2.3 that for Tg to be bounded, it is necessary that g be in
BMOA.C1=2/. We will begin this section by showing that the latter condition cannot be
relaxed by much. Indeed, to begin with, we will prove that linear Dirichlet series give examples
of bounded Tg -operators with symbols g converging in C1=2 but in no larger half-plane.
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196 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Theorem 4.1. Let g.s/ D
P
p bpp

�s be any linear symbol in H2. Then

kTgk D kgkH2 :

Proof. We consider an arbitrary function f .s/ D
P
n�1 ann

�s in H2 and compute

kTgf k2H2 D

1X
nD2

1

.logn/2

ˇ̌̌̌X
pjn

bp.logp/an=p

ˇ̌̌̌2
:

By the Cauchy–Schwarz inequality,ˇ̌̌̌X
pjn

bp.logp/an=p

ˇ̌̌̌2
�

�X
pjn

logp
��X

pjn

jbpj
2.logp/jan=pj

2

�
� .logn/

X
pjn

jbpj
2.logp/jan=pj

2:

This shows that kTgk � kgkH2 . Since Tg1 D g, clearly kTgk � kgkH2 .

We note that the space of linear symbols g in H2 is embedded not only in BMOA.C1=2/
but in fact satisfies the local Dirichlet integral conditionZ 1

0

Z 1

1=2

jg0.� C i t/j2 d� dt � kgk22;

as shown in [28, Example 4]. We do not know if this stronger embedding can be established
for a general symbol in X.

While the norm of a linear function g viewed as an element in the dual of H1 is also
equivalent to kgkH2 (see [23]), there is a striking contrast between the preceding result and the
characterization of linear multipliers. Indeed, let againMg denote the operator of multiplication
by g on H2, and recall that kMgk D kgk1 (see [22, Theorem 3.1]). Hence, in the special case
when g is linear, it follows from Kronecker’s theorem that

kMgk D kgk1 D sup
�>0

ˇ̌̌̌X
p

bpp
�s

ˇ̌̌̌
D

X
p

jbpj:

The difference between a linear symbol g acting as a multiplier Mg and as a symbol of the
Volterra operator Tg is therefore dramatic: A bounded multiplier has coefficients in `1, while
the boundedness of Tg means that the coefficients are in `2. The former implies absolute con-
vergence in C0 and the latter only in C1=2.

We may understand the phenomenon just observed in the following way. For a general
symbol g.s/ D

P
n�1 bnn

�s , we have, using also (2.3), the series of inequalities

(4.1)

 
1X
nD1

jbnj
2

!1=2
� kTgk � 2kgk1 � 2

1X
nD1

jbnj:

The case of linear functions shows that neither the left nor the right inequality can be improved.
Loosely speaking, the maximal independence between the terms in a linear symbol serves to
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make kTgkminimal and thus equal to kgk2 and, at the same time, to make kMgkmaximal and
hence equal to

P
n�1 jbnj. This motivates an investigation of what happens when the depen-

dence between the terms in the symbol increases. Such a study, originating in the classical
work of Bohnenblust and Hille [9], has already been made in the case of multipliers, in terms
of m-homogeneous Dirichlet series. We will now follow the same path for Tg -operators.

Recall that �.n/ gives the number of prime factors in n, counting multiplicities. An
m-homogeneous Dirichlet series is of the form

(4.2) g.s/ WD
X

�.n/Dm

bnn
�s:

In this terminology, linear symbols are 1-homogeneous Dirichlet series. A precise relation-
ship between boundedness and absolute convergence for m-homogeneous Dirichlet series was
found in [5, 27]: X

�.n/Dm

jbnj
.logn/

m�1
2

n
m�1
2m

� Cm





 X
�.n/Dm

bnn
�s






1

:

Here the exponent of logn on the left-hand side cannot be improved. Making the choice
m D

p
logn=log2 n in (4.2), we may obtain the following statement: If for some c; C > 0

we have

(4.3)
1X
nD1

jbnj
exp.c

p
logn log2 n/
p
n

� C







1X
nD1

bnn
�s







1

;

then c < 1. It was later shown in [13,17] that (4.3) holds for c < 1=
p
2, and that this is optimal.

The series of inequalities (4.1) suggests that we should search for upper `2-estimates for
kTgk as the appropriate analogues of the lower `1-estimates (4.2) and (4.3). Therefore, we now
aim at finding weights wm.n/ such that

(4.4) kTgk �
� X
�.n/Dm

jbnj
2wm.n/

� 1
2

for g.s/ D
X

�.n/Dm

bnn
�s:

The crucial ingredient in the proof of Theorem 4.1 which covers the casem D 1, is the estimateX
pjn

logp � logn:

To find a replacement for this estimate, we argue as follows. Observe that if m � �.n/, thenX
kjn

�.k/Dm

log k �
X
p1jn

X
p2jn

� � �

X
pmjn

log.p1p2 � � �pm/(4.5)

D m
X
p1jn

� � �

X
pmjn

logpm D m!.n/m�1 logn:

This is sharp, up to a constant depending only on m. Indeed, let n be square-free, so that
�.n/ D !.n/. ThenX

kjn
�.k/Dm

log k D
X
pjn

X
pjkjn
!.k/Dm

logp D
X
pjn

.logp/

 
!.n/ � 1

m � 1

!
D .logn/

 
!.n/ � 1

m � 1

!
:

This gives us an example of an admissible weight w2.n/, since !.n/=logn is bounded. It turns
out that we can obtain the following optimal result from (4.5).
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198 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Theorem 4.2. The inequality in (4.4) holds when m D 2 with the weight function

(4.6) w2.n/ D C2
logn
log2 n

and C2 an absolute constant. This is sharp in the sense that we cannot replace log2 n in (4.6)
by .log2 n/

1C" for any " > 0. When m � 3, the inequality in (4.4) holds with

(4.7) wm.n/ D Cm
n
m�2
m

.logn/m�2

and Cm an absolute constant. This is also sharp in the sense that we cannot replace .logn/m�2

in (4.7) by .logn/mC"�2 for any " > 0.

Proof. To prove that (4.6) is sufficient, we let Tg act on f .s/ D
P
n�1 ann

�s . By the
Cauchy–Schwarz inequality,

kTgf k2H2 �

1X
nD2

1

.logn/2

� X
kjn

�.k/D2

.log2 k/ log k
�� X

kjn
�.k/D2

jbkj
2 log k

log2 k
jan=kj

2

�

�

1X
nD2

log2 n
.logn/2

� X
kjn

�.k/D2

log k
�� X

kjn
�.k/D2

jbkj
2 log k

log2 k
jan=kj

2

�
:

We complete the proof by using (4.5) and the well-known estimate !.n/� logn=.log2 n/.
To prove that (4.6) is best possible, we assume that there is some " > 0 such that

kTgk � C2
� X
�.n/D2

jbnj
2 logn
.log2 n/1C"

� 1
2

for every 2-homogeneous Dirichlet series g. Let x be a large real number and consider the
symbol

g.s/ D
X

x=2<p�x

.log2.pq//
1C"=2

p
.pq/�s;

where q � ex is a prime number. The weight condition is then satisfied uniformly in x, sinceX
�.n/D2

jbnj
2 logn
.log2 n/1C"

D

X
x=2<p�x

log.pq/ log2.pq/
p2

�
x log x
x2

�.x/ � 1:

We now want to show that kTgk is unbounded as x !1, and choose as a test function

(4.8) f .s/ WD
Y

x=2<p�x

.1C p�s/:

Let Sx denote the set of square-free numbers generated by the primes x=2 < p � x, so that
kf k2

H2 D jSxj D 2
N.x/, whereN.x/ WD �.x/ � �.x=2/. Note that if n is in Sx , then we have

!.n/ � N.x/. It follows from the prime number theorem that

N.x/ �
x

2 log x
:
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 199

Set Vx WD ¹n 2 Sx W !.n/ � N.x/=2º. By the symmetry of the binomial expansion

jSxj D

N.x/X
nD0

 
N.x/

n

!
D

X
n<N.x/=2

 
N.x/

2

!
C jVxj;

we find that jVxj � jSxj=2. Then

kTgk2 �
kTgf k2H2

kf k2
H2

�
1

jSxj

X
n2Vx

1

.log.nq//2

ˇ̌̌̌ X
pqjnq

.log2.pq//
1C"=2

p
log.pq/

ˇ̌̌̌2

�
1

jSxj

X
n2Vx

ˇ̌̌̌X
pjn

.log2 q/
1C"=2

p

ˇ̌̌̌2

�
1

jSxj

X
n2Vx

ˇ̌̌̌
.log x/1C"=2

x
!.n/

ˇ̌̌̌2
� .log x/";

giving the desired conclusion.
The proof that (4.7) is sharp is similar. Let " > 0 be given and consider

g.s/ D
X
n2Sx
!.n/Dm

n�1C1=m.logn/m�1C"=2n�s:

We observe thatX
�.n/Dm

jbnj
2n1�2=m.logn/2�m�" D

X
n2Sx
!.n/Dm

.logn/m

n
�
.log x/m

xm
.�.x//m � 1:

Now, if n is in Sx , then it follows from the prime number theorem that logn� x. As test
function, we use again (4.8). The function

t 7! t�1C1=m.log t /m�1C"=2

is eventually decreasing for every m � 3 and every " > 0. We find that

kTgk2 �
kTgf k2H2

kf k2
H2

�
1

jSxj

X
n2Vx

1

.logn/2

ˇ̌̌̌ X
kjn

�.k/Dm

k�1C1=m.log k/m�1C"=2
ˇ̌̌̌2

�
1

jSxj

X
n2Vx

1

x2

ˇ̌̌̌
ˇx�mC1.log x/mC"=2

 
!.n/

m

!ˇ̌̌̌
ˇ
2

� .log x/"
1

jSxj

X
n2Vx

1� .log x/";

where we used that k � xm in the inner sum.
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200 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

It remains to establish that the inequality in (4.4) holds with the weight (4.7). Let Tg act
on f .s/ D

P
n�1 ann

�s . By the Cauchy–Schwarz inequality,

kTgf k2H2 �

1X
nD2

1

.logn/2

� X
kjn

�.k/Dm

k2=m�1.log k/m
�

�

� X
kjn

�.k/Dm

jbkj
2k1�2=m.log k/2�mjan=kj

2

�
:

Hence it suffices to show that

Am.n/ WD
X
kjn

�.k/Dm

k2=m�1.log k/m � .logn/2:

Suppose that n has the prime factorization n D .pj /� . Let�� denote a decreasing rearrangement
of � and let�n D .pj /�� . The function

t 7! t2=m�1.log t /m

is eventually decreasing for every m � 3, so clearly Am.n/� Am.�n/. On the other hand�n � n, so we may without loss of generality assume that n D�n. Hence, we have that

n D p
�1
1 � � �p

�d
d
;

where �1 � �2 � � � � � �d > 0. By the prime number theorem,

(4.9) pd �
X
p�pd

logp D log

 
dY
jD1

pj

!
� logn:

By summing over the largest prime first, we find that

Am.n/ �
X
p�pd

.m logp/mp2=m�1
�X
q�p

q2=m�1
�m�1

�

X
p�pd

p.logp/

� p2d � .logn/2

using the prime number theorem twice.

As promised, Theorem 4.2 exhibitsm-homogeneous Dirichlet series g in X that converge
in C1=m, but in no larger half-plane, for everym � 2. This can be loosely interpreted as saying
that the more prime factors we have in each non-zero term, the closer we get to the half-
plane C0. In this sense, the multiplicative symbols of Section 3 correspond to m D1, and it
is therefore not surprising that they converge in C0.

Setting m D
p
2 logn=log2 n, we are led to a family of weights w (cf. (4.3)) that give

estimates of type (4.4) with no reference to homogeneity, allowing arbitrary Dirichlet series g.
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 201

Theorem 4.3. If c < 2, then

(4.10) kTgk � C

 
1X
nD2

jbnj
2n exp

�
�c
p

logn log2 n
�! 12

:

Conversely, if (4.10) holds for every Tg -operator, then c � 2
p
2.

Proof. We observe first that we must have c � 2
p
2 for (4.10) to hold in view of the

sharpness of Theorem 4.2 and the fact that

n1�2=m

.logn/m�2
D n.logn/2 exp

�
�2
p
2
p

logn log2 n
�
;

if m D
p
2 logn=log2 n.

It remains therefore only to show the positive result that (4.10) holds whenever 0 < c < 2.
To simplify the notation, we set

'c.k/ WD exp
�
c
p

log k log2 k
�
:

By the Cauchy–Schwarz inequality,

kTgf k2H2 �

1X
nD2

1

.logn/2

�X
kjn

'c.k/

k
.log k/2

��X
kjn

jbkj
2 k

'c.k/
jan=kj

2

�
:

Choosing some c0, c < c0 < 2, we find thatX
kjn

'c.k/

k
.log k/2 �

X
kjn

'c0.k/

k
DW A.n/:

The rest of the proof is devoted to showing that A.n/� .logn/2, which is precisely what is
needed.

Since x 7! 'c0.x/=x is eventually decreasing on Œ1;1/, we may, as in the last part of the
proof of Theorem 4.2, assume that n D�n. By splitting into homogeneous parts and using (4.9),
we find that

A.n/ D
X

m��.n/

X
kjn

�.k/Dm

'c0.k/

k
�

X
m��.n/

'c0
�
.logn/m

� X
kjn

�.k/Dm

1

k
:

In each inner sum
P
k�1, we divide every prime factor of k by some a > 0 and then bound

the resulting sum by an Euler product (Rankin’s trick), to obtain thatX
kjn

�.k/Dm

1

k
� a�m

Y
pjn

�
1 �

a

p

��1

D a�m exp
�
a
X
pjn

1

p
CO.1/

�

� a�m exp
�
a
X
p�pd

1

p

�
� a�m exp

�
a log2 pd

�
� exp

�
�m log aC a log3 n

�
:
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202 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Choosing a WD m=.log3 n/, we obtain in total

A.n/ �
X

m��.n/

exp
�
c0
p
m.log2 n/.logmC log3 n/ �m logmCm log4 nCm

�
� �.n/C

X
m�log2 n

exp
�
c0
p
2m.log2 n/.log3 n/ �m logmCm log4 nCm

�
;

where we first used that the exponential in the sum is bounded when m � log2 n, and then that
logm � log3 n when m � log2 n. To estimate the final sum, we use calculus to conclude that
the index m of the largest term should satisfy

c0
2

2
.log2 n/.log3 n/ D m

�
logm � log4 n

�2
;

and we see that m D .c02=2C o.1// log2 n=log3 n. Combining this with the standard estimate
�.n/ � logn=log 2, we find that

A.n/� lognC .log2 n/ exp
��

c0
2

2
C o.1/

�
.log2 n/

�
� .logn/2;

whenever c02 < 4, which is the desired estimate.

It is not surprising that there is a gap between the necessary and sufficient conditions
of Theorem 4.3. When considering inequality (4.3), the necessary condition obtained from
m-homogeneous Dirichlet series misses the sharp condition, also by a factor

p
2. In the latter

case, the proof of the sharp necessary condition captures cancellations by L1-estimates for
random trigonometric polynomials [13]. This suggests that our arguments, which only deal
with the absolute values of the coefficients of g, cannot be expected to tell the full story.

5. Boundedness of Tg on Hp

5.1. Carleson measure characterization. We will now consider the action of the
Volterra operator Tg on the Hardy spaces Hp, for 0 < p <1. To this end, we recall that
Xp denotes the space of symbols g in D such that the Volterra operator Tg acts boundedly
on Hp, and we set

kgkXp WD kTgkL.Hp/:

We will now establish our characterization of the elements of Xp in terms of Carleson
measures.

Applying the Littlewood–Paley formula (2.2) to Tgf , we immediately obtain a charac-
terization of the symbols g that belong to X2: g is in X2 if and only if it there is a positive
constant C.g/ such that

kTgf k2H2 �

Z
T1

Z
R

Z 1
0

jf�.� C i t/j
2
jg0�.� C i t/j

2� d�
dt

1C t2
dm1.�/

� C.g/2kf k2
H2 :

Using Fubini’s theorem, we may remove the integral over R, since each t represents a rotation
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 203

in each variable on T1. From this observation we obtain the characterization

(5.1)
Z

T1

Z 1
0

jf�.�/j
2
jg0�.�/j

2 � d� dm1.�/ � C.g/
2
kf k2

H2 :

Clearly, the smallest constant C.g/ in (5.1) satisfies

C.g/ � kTgkL.H2/:

Theorem 5.1. The operator Tg acts boundedly on Hp for 0 < p <1 if and only if
there is a positive constant C.g; p/ such that

(5.2)
Z

T1

Z 1
0

jf�.�/j
p
jg0�.�/j

2� d� dm1.�/ � C.g; p/
2
kf k

p
Hp

for all f 2 Hp. Furthermore, if

(5.3) C.g; p/ WD sup
kf kHpD1

�Z
T1

Z 1
0

jf�.�/j
p
jg0�.�/j

2� d� dm1.�/

� 1
2

;

then C.g; p/ � kTgkL.Hp/.

We observe that if we restrict to only one variable, meaning that we consider only
Dirichlet series over powers of a single prime, then the condition of Theorem 5.1 is independent
of p and reduces to the familiar one variable description of BMOA.D/.

Our proof of Theorem 5.1 adapts arguments from [31], the main difference being that we
will additionally integrate every quantity over T1. Before giving the proof, we collect some
preliminary results. By using Fubini’s theorem once more, we find that (5.2) is equivalent toZ

T1

Z
R

Z 1
0

jf�.� C i t/j
p
jg0�.� C i t/j

2� d�
dt

1C t2
dm1.�/(5.4)

� C.g; p/2kf k
p
Hp :

The virtue of introducing an extra parameter in (5.4) is that it allows us to apply techniques
adapted to the conformally invariant Hardy spaceHp

i .C0/. In addition to the Littlewood–Paley
formula (2.2), we will use the square function formula

(5.5) kf k
p
Hp � ja1j

p
C

Z
T1

Z
R

�Z
��

jf 0�.� C i t/j
2 d� dt

�p
2 d�

1C �2
dm1.�/;

which can be found in [14, Theorem 7]. Here, for � in R, �� is the cone

�� D ¹� C i t W jt � � j < �º:

For a holomorphic function f in C0, let f � denote the non-tangential maximal function

(5.6) f �.�/ WD sup
s2��

jf .s/j; � 2 R:

Since 1=.1C �2/ is a MuckenhouptAq-weight for all q > 1, it follows from the work of Gundy
and Wheeden [21] that f is in Hp

i .C0/ if and only if f � is in Lpi .R/ D L
p..1C �2/�1d�/

for 0 < p <1, with comparable norms.
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204 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Lemma 5.2. Let ' be a function and � a positive measure on ¹� C i t W 0 < � < 1º.
Then

(5.7)
Z

R

Z 1

0

j'.� C i t/j d�.�; t/ �

Z
R

Z
��

j'.� C i t/j
1C t2

�
d�.�; t/

d�

1C �2
:

If � is a positive measure on all of C0, then

(5.8)
Z

R

Z 1
0

j'.� C i t/j d�.�; t/�

Z
R

Z
��

j'.� C i t/j
1C t2

�
d�.�; t/

d�

1C �2
:

Proof. For � C i t in C0, we consider the set I.� C i t/ WD ¹� 2 R W � C i t 2 ��º.
A computation shows thatZ

I.�Cit/

d�

1C �2
�

�

1C t2
; 0 < � � 1;

and that Z
I.�Cit/

d�

1C �2
�

�

1C t2
; 0 < � <1:

Estimates (5.7) and (5.8) now follow from Fubini’s theorem.

Proof of Theorem 5.1. We may assume that g is in Hp since otherwise Tg is trivially
unbounded. Thus, for almost every � in T1, the measure

�g;�.�; t/ D jg
0
�.� C i t/j

2 � d�
dt

1C t2

is well defined on C0.
Suppose first that p � 2 and that (5.4) is satisfied. Then by the Littlewood–Paley for-

mula (2.2), Hölder’s inequality, and two applications of (5.4), we have that

kTgf k
p
Hp �

Z
T1

Z
R

Z 1
0

j.Tgf /�.� C i t/jp�2jf�.� C i t/j2 d�g;�.�; t/ dm1.�/

�

�Z
T1

Z
R

Z 1
0

j.Tgf /�jp d�g;�.�; t/ dm1.�/
�p�2

p

�

�Z
T1

Z
R

Z 1
0

jf�j
p d�g;�.�; t/ dm1.�/

� 2
p

� C.g; p/2kTgf k
p�2
Hp kf k

2
Hp ;

giving us that kTgf kHp � C.g; p/kf kHp :

Suppose now that Tg acts boundedly on Hp, still considering p � 2. By (5.7), Hölder’s
inequality, (5.6), (2.1), and the square function characterization, we haveZ

T1

Z
R

Z 1

0

jf�j
p d�g;� dm1

�

Z
T1

Z
R

Z
��

jf�.� C i t/j
p
jg0�.� C i t/j

2 d� dt
d�

1C �2
dm1.�/

�

Z
T1

Z
R
.f �� .�//

p�2

Z
��

j.Tgf /0�j
2 d� dt

d�

1C �2
dm1.�/

� kf k
p�2
Hp kTgf k2Hp � kTgk2L.Hp/kf k

p
Hp :

Brought to you by | Universitetsbiblioteket I Trondheim NTNU Universitetsbiblioteket
Authenticated

Download Date | 9/6/19 12:15 PM



Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 205

The remaining integral can be estimated using the uniform pointwise estimates that hold for f
and g in Hp in the half-plane Re.s/ � 1, yielding thatZ

T1

Z
R

Z 1
1

jf�j
p d�g;�.�; t/ dm1.�/� kf k

p
Hpkgk

2
Hp � kf k

p
HpkTgk2L.Hp/:

Suppose now that 0 < p < 2 and that (5.4) is satisfied. Using the square function char-
acterization (5.5), (5.6), Hölder’s inequality, (2.1), and (5.8), we obtain

kTgf k
p
Hp �

Z
T1

Z
R

�Z
��

jf�.� C i t/j
2
jg0�.� C i t/j

2 d� dt

�p
2 d�

1C �2
dm1.�/

�

Z
T1

Z
R
.f �� .�//

.2�p/p
2

�

�Z
��

jf�.� C i t/j
p
jg0�.� C i t/j

2 d� dt

�p
2 d�

1C �2
dm1.�/

� kf k
.2�p/p
2

Hp

�Z
T1

Z
R

Z
��

jf�.�Ci t/j
p
jg0�.�Ci t/j

2 d� dt
d�

1C �2
dm1.�/

�p
2

� kf k
.2�p/p
2

Hp

�Z
T1

Z
R

Z 1
0

jf�.� C i t/j
p d�g;�.�; t/ dm1.�/

�p
2

� kf k
.2�p/p
2

Hp C.g; p/pkf k
p2

2

Hp D C.g; p/
p
kf k

p
Hp :

Finally, we deal with the case when 0 < p < 2 and Tg WHp ! Hp is bounded. Note
first that by the Littlewood–Paley formula (2.2), we have

kTgf k
p
Hp �

Z
T1

Z
R

Z 1
0

j.Tg/�jp�2jf�j2 d�g;�.�; t/ dm1.�/:

Using Hölder’s inequality and this identity, we obtainZ
T1

Z
R

Z 1
0

jf�j
p d�g;�.�; t/ dm1.�/

� kTgf k
p2

2

Hp

�Z
T1

Z
R

Z 1
0

j.Tgf /�jp d�g;�.�; t/ dm1.�/
� 2�p

2

� kTgf k
p2

2

HpC.g; p/
2�p
kTgf k

p.2�p/
2

Hp

� C.g; p/2�pkTgk
p

L.Hp/
kf k

p
Hp :

By an approximation argument, we can a priori assume that C.g; p/ is finite. Then, by tak-
ing the supremum over norm-1 Dirichlet series f , we obtain that C.g; p/� kTgkL.Hp/; as
desired.

5.2. Necessary and sufficient conditions. Theorem 5.1 can be applied to find neces-
sary and sufficient conditions for membership in Xp, parallel to the result for X2 proved in
Theorem 2.3. However, there is one essential difficulty when passing from p D 2 to the gen-
eral case 0 < p <1, namely that the proof of part (c) of Theorem 2.3 relies on the local
embedding property of H2 expressed by (2.5). The local embedding extends trivially to hold
for p D 2k, for every positive integer k, since

(5.9) kf k2k
H2k

i .C1=2/
D kf kk2

H2
i .C1=2/

� �Ckf kk2
H2 D

�Ckf k2k
H2k ;
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206 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

but it is a well-known open problem whether it holds for any other p. We refer to [34, Section 3]
for a discussion of the embedding problem.

Arguing similarly for the embedding constant (5.3), we find for every positive integer n
that

(5.10) C.g; p/ � C.g; np/:

We will use this to prove a rather curious incomplete analogue to part (c) of Theorem 2.3.
In view of (5.9) and (5.10), we are allowed to apply integral powers before and after using
the local embedding property of H2, leading us to the expected necessary condition for g to
belong to Xp, but only for rational p.

Theorem 5.3. Suppose that g is in D .

(a) If g is in BMOA.C0/, then Tg is bounded from Hp to Hp.

(b) If g is in Xp, then g satisfies condition (iii) from Lemma 2.1.

(c) If g is in Xp and p is in QC, then g is in BMOA.C1=2/.

Proof. The proof of (a) is identical to the proof given for p D 2 in Theorem 2.3, using
Theorem 5.1, (5.4), and that Carleson measures in one variable are independent of p. The proof
of (b) is also the same.

For (c) we need two facts which follow from close inspection of the proof of Theorem 5.1.
First of all, it is clear from the first part of the proof that for p � 2 there is a constant C1,
independent of p, such that

kTgkL.Hp/ � C1C.g; p/;

where C.g; p/ is as in Theorem 5.1. Hence, we conclude by (5.10) that there is a constant C2
such that for every positive integer n we have

(5.11) kTgkL.Hnp/ � C2kTgkL.Hp/:

Secondly, by mimicking the next part of the proof, also for p � 2, we see that there is a constant
C3 such that

(5.12)
Z

R

Z 1

1=2

jf .s/jpjg0.s/j2.�� 1
2
/ d�

dt

1C t2
� C3kTgf k2Hp

i .C1=2/
kf k

p�2

H
p
i .C1=2/

;

at least for Dirichlet polynomials f . Here we have implicitly applied the maximal function
characterization of Hp

i .C1=2/. However, by the inner-outer factorization of Hp
i , we see that

the constants involved do not blow up as p !1. To prove the theorem, let p D 2k=n > 0
be a rational number. Hence, by (5.11), Tg is bounded on H2k , with control of the constant.
Combined with (5.12) and the embedding (5.9), we find, setting C4 D �C , thatZ

R

Z 1

1=2

jf .s/j2kjg0.s/j2.� � 1
2
/ d�

dt

1C t2
� C3kTgf k2H2k

i .C1=2/
kf k

2.k�1/

H2k
i .C1=2/

� C3C
2
4C

2
2 kTgk

2
L.Hp/kf k

2k
H2k :

It follows that �g.�C i t/ WD jg0.s/j2.� �1=2/ d�dt=.1C t2/ is a Carleson measure for H2k ,
with constant uniformly bounded by kTgk2L.Hp/

. Clearly, the argument in [29, Theorem 3]
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 207

produces uniform estimates, so we conclude that �g is a Carleson measure onH 2k
i .C1=2/, with

constant uniformly bounded by the same quantity. By appealing to the inner-outer factorization
again, we conclude that there is a constant C5 such that

k�gkCM.H2
i /
� C5kTgk2L.Hp/ � C6C.g; p/

2:

The proof is now completed by arguing as at the end of the proof of Theorem 2.3.

Theorem 2.5 now gives us an interesting example of a Tg -operator that is bounded on
all Hp-spaces.

Corollary 5.4. Let g be as in Theorem 2.5, i.e.,

g.s/ D

1X
nD2

1

n logn
n�s:

Then Tg W Hp ! Hp is bounded for every p <1.

5.3. Linear symbols. We will now extend Theorem 4.1 by proving that all linear sym-
bols g yield bounded operators Tg on Hp, for the whole range 0 < p <1. We do this by
showing that in this special case, the constant C.g; p/ in the Carleson measure condition (5.2)
may be chosen independently of p.

Theorem 5.5. Let

g.s/ D

1X
jD1

bjp
�s
j

be given. Then Tg is bounded on Hp if and only if g is in H2. In fact,

sup
f 2Hp; kf kHp�1

Z
T1

Z 1
0

jf�.�/j
p
jg0�.�/j

2� d� dm1.�/ D
1

4
kgk2

H2

holds whenever 0 < p <1.

It suffices to consider finitely many, say d , variables. The Poisson kernel on the polydisc
is then given by

Pz.w/ WD

dY
jD1

1 � jzj j
2

j1 � wj zj j2
;

where jzj j< 1 andw D .wj / is a point on Td . Suppose that 0 < ˛ � p and that f 2Hp.Dd /.
Then jf j˛ is separately subharmonic in each variable, which gives us the following.

Lemma 5.6. If f is in Hp.Dd /, then

jf .z/j˛ �

Z
Td
Pz.w/jf .w/j

˛ dmd .w/

for every point z in Dd and 0 < ˛ � p.
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208 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Lemma 5.6 shows that if the Carleson embedding condition (5.2) holds for all harmonic
functions f , for one p, then (5.2) holds for all f in Hp, for every p. Hence, to prove Theo-
rem 5.5, we only need to verify that linear functions g in H2 induce Carleson measures on the
harmonic functions for p D 2. Obviously this raises the question whether the corresponding
statement is true for other symbols g from Sections 3 and 4, or even if it could be true that
the Carleson condition for analytic functions implies the same condition for harmonic func-
tions, cf. Question 1 in the introduction. We only have the answer in the simplest case of linear
symbols.

To simplify the computations to be given below, we will use the multiplicative notation
that comes from identifying the dual of the compact abelian group T1 with the discrete abelian
group QC (see [22, 33]). This means that the Fourier series of f on T1 takes the formX

r2QC

c.r/�.r/;

where c.r/ D hf .�/; �.r/iL2.T1/. (The notation �.r/ is explained at the end of the introduc-
tion.)

Proof of Theorem 5.5. To see that the supremum cannot be smaller than 1=4, it suffices
to set g.s/ D pj�s and f .s/ D 1.

To prove the bound from above, we begin by expanding the function hp.�/ WD jf�jp=2

in a Fourier series on T1,
hp.�/ D

X
r2QC

c.r/�.r/:

Using Lemma 5.6 with zj D p��j �.pj / and ˛ D p=2, we get that

jf�.�/j
p=2
�

Z
Td
hp.w/Pz.w/ dmd .w/ D

X
.m;n/D1

c

�
m

n

�
.mn/���

�
m

n

�
;

where we in the last step integrated the Fourier series of hp term by term against the Poisson
kernel. It follows that

I� WD

Z
T1
jf�.�/j

p
jg0�.�/j

2 dm1.�/

�

dX
j;kD1

X
m�
n�
D
pj
pk

ˇ̌̌̌
c

�
m

n

�
c

�
�

�

�ˇ̌̌̌
.mn��pjpk/

��
jbj bkj logpj logpk;

where it is understood that .m; n/D 1 and .�; �/D 1. By symmetry, we get I� � 2I�;1C2I�;2,
where

I�;1 WD

dX
j;kD1

X
m�
n�
D
pj
pk

pj jm;pk jn

ˇ̌̌̌
c

�
m

n

�
c

�
�

�

�ˇ̌̌̌
.mn��pjpk/

��
jbj bkj logpj logpk;

I�;2 WD

dX
j;kD1

X
m�
n�
D
pj
pk

pj jm;pk j�

ˇ̌̌̌
c

�
m

n

�
c

�
�

�

�ˇ̌̌̌
.mn��pjpk/

��
jbj bkj logpj logpk :
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We estimate the contribution from these two sums separately. First, by the Cauchy–Schwarz
inequality, we have

I�;1 �

 
dX

j;kD1

X
.m;n/D1
pj jm;pk jn

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2 logpj logpk
.mn/2�

! 1
2

�

 
dX

j;kD1

X
.�;�/D1

ˇ̌̌̌
c

�
�

�

�ˇ̌̌̌2
jbj j

2
jbkj

2 logpj logpk
.pjpk/

2�

! 1
2

�

 X
.m;n/D1

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2 logm logn
.mn/2�

! 1
2

�

 X
.�;�/D1

ˇ̌̌̌
c

�
�

�

�ˇ̌̌̌2 dX
j;kD1

jbj j
2
jbkj

2 logpj logpk
.pjpk/

2�

! 1
2

;

where we in the final inequality changed the order of summation in the first factor and used
that

P
pj jm

logpj � logm. To compute the integrals, we will use the identityZ 1
0

.log a/2a�2�� d� D
1

4
;

which is valid for every a > 0. We use the Cauchy–Schwarz inequality again and take the two
integrals into the respective sums, to deduce thatZ 1

0

I�;1 � d� �

 X
.m;n/D1

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2 logm logn
4.logmn/2

! 1
2

�

 X
.�;�/D1

ˇ̌̌̌
c

�
�

�

�ˇ̌̌̌2 dX
j;kD1

jbj j
2
jbkj

2 logpj logpk
4.logpjpk/2

! 1
2

:

The fractions with logarithms are bounded by 1=16, so in total we get thatZ 1
0

I�;1 � d� �
1

16
kgk2

H2kf k
p
Hp :

To estimate I�;2, we use the Cauchy–Schwarz inequality and change the order of summation:

I�;2 �

 
dX

j;kD1

X
.m;n/D1;
pj jm

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2
jbkj

2 .logpj /2

.mpj /2�

! 1
2

�

 
dX

j;kD1

X
.�;�/D1
pk j�

ˇ̌̌̌
c

�
�

�

�ˇ̌̌̌2
jbj j

2 .logpk/2

.�pk/
2�

! 1
2

D kgk2
H2

� X
.m;n/D1

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2 X
pj jm

.logpj /2

.mpj /2�

� 1
2
� X
.�;�/D1

ˇ̌̌̌
c

�
�

�

�ˇ̌̌̌2X
pk j�

.logpk/2

.�pk/
2�

� 1
2

:
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210 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

The two factors are symmetrical, so by using the Cauchy–Schwarz inequality again we getZ 1
0

I�;2 � d� � kgk
2
H2

X
.m;n/D1

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2 X
pj jm

.logpj /2

4.logmpj /2

D
kgk2

H2

4

X
.m;n/D1

ˇ̌̌̌
c

�
m

n

�ˇ̌̌̌2
1

logm

X
pj jm

logpj

�
2C

logm
logpj

C
logpj
logm

��1

�
kgk2

H2kf k
p
Hp

16
;

where we used that logm=logpjClogpj =logm � 2when pj jm. Combining everything yieldsZ 1
0

I� � d� � 2

Z 1
0

I�;1 � d� C 2

Z 1
0

I�;2 � d� �
1

4
kgk2

H2kf k
p
Hp :

6. Comparison of X with other spaces of Dirichlet series of BMO type

6.1. Hardy spaces Hp and BMOA.C0/. Our initial motivation for studying Tg was
to consider X D X2 as a type of BMOA-space for the range of Hardy spaces Hp. From Theo-
rem 2.3, we have the following inclusions, which show that X is in every Hp, for 0 < p <1.

Corollary 6.1. We have the following inclusions:

H1 ¨ BMOA.C0/ \D ¨ X ¨
\

0<p<1

Hp:

Proof. The inclusions are all from Theorem 2.3. That the first inclusion is strict follows
from Theorem 2.5. The second inclusion was observed to be strict in the remark at the end of
Section 3, but it can also be deduced from any example in Section 4. The strictness of the last
inclusion follows from Theorem 4.2 and the fact that

(6.1) kgkHp � kgkH2

when g is an m-homogeneous Dirichlet series, with implied constants depending on m and p.
To verify (6.1), we argue as follows. Let d.n/ be the number of divisors of the positive integer n.
By the extension of Helson’s inequality discussed in [12, Section 5] and [35, Theorem 3], there
exist non-negative number ˛ and ˇ, depending on p, such that

(6.2)

 
1X
nD1

janj
2

Œd.n/�˛

! 1
2

�







1X
nD1

ann
�s







Hp

�

 
1X
nD1

janj
2Œd.n/�ˇ

! 1
2

:

The key point is that if �.n/ D m, then mC 1 � d.n/ � 2m, proving (6.1). (In fact, by a suit-
able application of Hölder’s inequality, we can prove (6.1) using only the right inequality
in (6.2).)

In the next three subsections, we will compare X with two other analogues of BMOA,
namely the dual space .H1/� and the space .H2 ˇH2/� of symbols generating bounded
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multiplicative Hankel forms. Let us first recall that neither of these spaces is contained in\
0<p<1

Hp:

This follows immediately from a result of Marzo and Seip [26], which states that the Riesz
projection P on the polytorus is unbounded from L1.T1/ to H 4.D1/. In fact, it is not even
known whether P.L1.T1// is contained inHp.D1/ for any p > 2. Note that P.L1.T1//
is naturally identified with .H1/�, and that it is strictly continuously contained in .H2 ˇH2/�

(see [30]).

6.2. Hankel forms. Let us now consider the space of symbols g such that the corre-
sponding Hankel forms Hg are bounded. The form Hg is given by

Hg.f h/ WD hf h; giH2 ;

from which it is clear, by definition, that Hg is bounded if and only if g is in .H2 ˇH2/�.
Applying the product rule for derivatives, we find that

(6.3) Hg.f h/ D f .C1/h.C1/g.C1/C hà�1.f 0h/; giH2 C hà�1.f h0/; giH2 ;

where

à�1f .s/ WD �
Z 1
s

f .w/ dw:

The “half-Hankel” form

(6.4) .f; h/ 7! hà�1.f 0h/; giH2

is bounded if and only if g 2 .à�1.àH2 ˇH2//�. It is clear from (6.3) that

(6.5) .à�1.àH2
ˇH2//� � .H2

ˇH2/�:

Whether the inclusion in (6.5) is strict, is an open problem. It was observed in [14] that it is
equivalent to an interesting Schur multiplier problem.

Corollary 6.2. Suppose that the Volterra operator Tg acts boundedly on H2. Then the
Hankel form Hg is bounded.

Proof. The Littlewood–Paley formula (2.2) may be polarized, to obtain

hf; giH2 D f .C1/g.C1/(6.6)

C
4

�

Z
T1

Z
R

Z 1
0

f 0�.� C i t/g
0
�.� C i t/� d�

dt

1C t2
dm1.�/:

We find that

hà�1.f 0h/; giH2 D
4

�

Z
T1

Z
R

Z 1
0

f 0�.� C i t/h�.� C i t/g
0
�.� C i t/� d�

dt

1C t2
dm1.�/:

Hence, it is clear from Theorem 5.1 that if Tg is bounded, then so is the form (6.4). Thus we
may complete the proof by using the inclusion (6.5).
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212 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

On weighted Dirichlet spaces of the disc (including the Hardy space), even in the vector-
valued setting, the boundedness of a half-Hankel form also implies the boundedness of the
corresponding Tg operator (see [3]). However, by [14, Lemma 10], a half-Hankel form on H2

generated by a symbol g with positive coefficients is bounded if and only if Hg is bounded.
Since the symbols of Theorem 3.1 generate bounded Hankel forms for ˛ � 1=2, but not
bounded Tg operators for ˛ < 1, this shows that the same relationship between the half-Hankel
form and Tg does not hold in the present context.

6.3. The dual of H1. The most tractable sufficient condition for g.s/ D
P
n�1 bnn

�s

to belong to .H1/� was put forward by Helson [23]: g is in .H1/� if

(6.7)
1X
nD1

jbnj
2d.n/ <1;

where again d.n/ denotes the number of divisors of the integer n. In fact, Helson’s result
is stated in terms of the Hankel form Hg considered above. If g satisfies (6.7), then Hg is
Hilbert–Schmidt. Note that, by a consideration of zero sets based on [35, Theorem 2], we can
show that a Dirichlet series g satisfying (6.7) will not always be in BMOA.C1=2/.

The examples of g in X2 considered in Sections 3 and 4 are easily seen to satisfy (6.7).
Moreover, we see that the symbols in Theorem 3.1, 1=2 < ˛ < 1, are in .H1/�, but not in X2.
Hence .H1/� is not contained in X2, and it is tempting to conjecture that X2 � .H

1/�.
First, let us show how to construct a class of Dirichlet series in .H1/� \X2 that do

not satisfy (6.7), showing that Helson’s criterion is not well adapted to understanding Volterra
operators.

Theorem 6.3. Suppose that N D ¹n1; n2; : : : º � Nn¹1º is a set with the property that
.nj ; nk/ D 1 if j ¤ k. If

(6.8) g.s/ D
X
n2N

bnn
�s;

then kTgkL.H2/ D kgkH2 . Moreover, for f .s/ D
P
n�1 ann

�s , we have�
ja0j

2
C

X
n2N

janj
2

� 1
2

�
p
2kf kH1 :

The second statement in the theorem yields

kgk.H1/� �
p
2kgkH2 ;

by the Cauchy–Schwarz inequality applied to hf; giH2 . Define the integers n1 WD 2, n2 WD 3�5,
n3 WD 7 � 11 � 13, and so on. The set N WD ¹n1; n2; : : : º satisfies the assumptions of Theo-
rem 6.3, but d.nj / D 2j , so (6.7) is not always satisfied.

Proof of Theorem 6.3. For the first statement, we simply observe thatX
njN
n2N

logn � logN;

which allows us to follow the proof of Theorem 4.1 to obtain that every Dirichlet series of the
form (6.8) satisfies kTgk D kgkH2 .
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 213

For the second statement, fix some n D nj , and set d WD !.n/, m WD �.n/, � WD �.n/.
By Helson’s iterative procedure [23], it is sufficient to demonstrate that for f in H 1.Dd /,

(6.9)
�
ja0j

2
C
1

2
ja� j

2

� 1
2

� kf kH1.Dd /:

We begin with Carleman’s inequality (see [36]), 
1X
kD0

jckj
2

k C 1

! 1
2

�







1X
kD0

ckw
k







H1.D/

:

Setting F.w/ D
P
k�0 ckw

k , we use F. Wiener’s trick (see [11]) with an mth root of unity,
say ', so that

Fm.w
m/ WD

1

m

�
F.w/C F.w'/C F.w'2/C � � � C F.w'm�1/

�
D

1X
kD0

cmkw
mk :

Clearly
kFmkH1.D/ � kF kH1.D/;

so we find from Carleman’s inequality that

(6.10)

 
1X
kD0

jcmkj
2

k C 1

! 1
2

�







1X
kD0

ckw
k







H1.D/

:

Returning to our function f in H 1.Dd /, we let fk denote the k-homogeneous part of f and
decompose f accordingly:

f .z/ D

1X
kD0

fk.z/:

Substituting zj 7! wzj , 1 � j � d , we find, using Fubini’s theorem, (6.10), and Minkowski’s
inequality, that 

1X
kD0

1

k C 1
kfkmk

2
H1.Dd /

! 1
2

�

Z
Dd

 
1X
kD0

jfkm.z/j
2

k C 1

! 1
2

dmd .z/ � kf kH1.Dd /:

We retain only the two first terms in the sum on the left-hand side. The proof of (6.9) is
completed by noting that kf0kH1.Dd / D ja0j and that ja� j � kfmkH1.Dd /, where the latter
inequality holds because j�j D �.n/ D m.

As for the question of whether X2 � .H
1/�, our best result is the following corollary of

the characterization given in Theorem 5.1. For its interpretation, one should recall that (5.10)
implies that X1 � X2. Hence, the corollary also motivates further interest in the question of
whether X2 D Xp for all p, 0 < p <1.

Corollary 6.4. Suppose that the Volterra operator Tg acts boundedly on H1. Then g
is in .H1/�.
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214 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Proof. Let f be a Dirichlet series in H1 and suppose that f .C1/ D 0. Let g be X1

and apply (6.6) along with the Cauchy–Schwarz inequality,

jhf; giH2 j �

ˇ̌̌̌Z
T1

Z
R

Z 1
0

f 0�.� C i t/g
0
�.� C i t/� d�

dt

1C t2
dm1.�/

ˇ̌̌̌
�

�Z
T1

Z
R

Z 1
0

jf 0�.� C i t/j
2

jf�.� C i t/j
� d�

dt

1C t2
dm1.�/

� 1
2

�

�Z
T1

Z
R

Z 1
0

jf�.� C i t/j jg
0
�.� C i t/j

2� d�
dt

1C t2
dm1.�/

� 1
2

:

We finish the proof by using Theorem 5.1 with p D 1, since the quantity on the second line is
bounded from above and below by kf k1=2

H1 in view of the Littlewood–Paley formula (2.2).

Observe that by part (a) of Theorem 5.3, this shows in particular that if g is in the
space BMOA.C0/ \D , then g is in .H1/�. This inclusion can also be deduced directly from
the two Littlewood–Paley formulas (2.2) and (6.6), using the Cauchy–Schwarz inequality and
Lemma 2.2.

6.4. On the finite polydisc Dd . Let us now confine ourselves to studying Dirichlet
series

f .s/ D

1X
nD1

ann
�s

restricted to the first d primes, by demanding that an D 0 if pj jn, for j > d . Through the
Bohr lift, the restricted Hardy spaces H

p

d
(which are complemented subspaces of Hp) are

isometrically identified with Hp.Dd /. We consider now a Dirichlet series g restricted to the
first d primes and let Tg act on H

p

d
.

Corollary 6.5. For 0 < p <1, Tg is bounded on H
p

d
if and only if it is bounded

on H2
d

.

Proof. This follows from Theorem 5.1, since the Carleson measure characterization is
now over Dd , and the Carleson measures of Hp.Dd / are independent of p (see [16]).

Moreover, using the result that H 2.Dd /ˇH 2.Dd / D H 1.Dd / from [18, 25], we con-
clude that symbols inducing bounded Tg -operators on the finite polydisc belong to .H 1.Dd //�.
This subsection is devoted to showing that, even in the finite-dimensional setting, the dual of
H 1 still does not characterize the bounded Tg -operators.

Let D denote the differentiation operator on Dirichlet series,

Df.s/ WD f 0.s/ D �

1X
nD2

an.logn/n�s:

Identifying again H
p

d
with Hp.Dd /, we find that we may write

(6.11) Df.z1; : : : ; zd / D �

dX
jD1

.logpj /zj àzj f .z1; : : : ; zd /:
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 215

Note the similarity between D and the radial differentiation operator

(6.12) Rf .z1; : : : ; zd / WD

dX
jD1

zj àzj f .z1; : : : ; zd /:

The Volterra operator Tg defined with the radial differentiation operator R and radial integra-
tion R�1 has previously been investigated on the unit ball Bd of Cd by a number of authors.
A seminal contribution is that of Pau [31], who proved that Tg is bounded on Hp.Bd / if and
only if g is in BMOA.Bd /. In particular, for p D 2, the Tg operator is bounded if and only if
the corresponding Hankel operator is bounded, i.e., if and only if g defines a bounded linear
functional on H 2.Bd /ˇH

2.Bd /.
We shall now see that the corresponding statement is not true on the finite polydisc D2.

The statement and proof are written for the Volterra operator defined in terms of radial differ-
entiation (6.12), but the argument works equally well for the half-plane differentiation (6.11).
In the following theorem, we use the notation g1 ˝ g2.z; w/ WD g1.z/g2.w/.

Theorem 6.6. There exist a function g1 in H1.D/ and a function g2 in BMOA.D/
such that Tg1˝g2 is unbounded on H 2.D2/.

To obtain the desired conclusion from this theorem, namely that Tg is not bounded simul-
taneously with the Hankel operatorHg even on the bidisc, it suffices to observe that the symbol
g1 ˝ g2 is in BMOA.D2/ and therefore in .H 2.D2/ˇH 2.D2//� D .H 1.D2//�.

Proof of Theorem 6.6. Suppose that f .z; w/ D
P
m;n�0 am;nz

mwn. Then

Rf .z;w/ D
X
m;n�0

.mC n/am;nz
mwn and R�1f .z; w/ D

X
m;n�0
mCn>0

am;n

mC n
zmwn:

We consider the Volterra operator Tgf D R�1.fRg/, choosing f D f1 ˝ f2, where f1 and
f2 are both in H 2.D/. We compute and find that

(6.13) f .z; w/Rg.z;w/ D f1.z/f2.w/
�
zg01.z/g2.w/C wg1.z/g

0
2.w/

�
:

We consider first the second term of (6.13), which we write as h1.z/h2.w/, where

h1.z/ WD f1.z/g1.z/ D

1X
mD0

amz
m

and

h2.w/ WD wf2.w/g
0
2.w/ D

1X
nD1

bnw
n:

Since f1 is in H 2.D/ and g is in H1.D/, clearly h1 is in H 2.D/, so
P
m�0 jamj

2 <1.
In a similar way, we see that h2 is the derivative of a function in H 2.D/ because f2 is in
H 2.D/ and g2 is in BMOA.D/ so that the operator Tg2 is bounded on H 2.D/. This means
that

P
n�1 jbnj

2=n2 <1. We conclude therefore that

kR�1.h1h2/k
2
H2.D2/ D

1X
mD0

1X
nD1

jamj
2jbnj

2

.mC n/2
�

1X
mD0

jamj
2
1X
nD1

jbnj
2

n2
<1:
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216 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Changing our attention to the first term in (6.13), it remains for us to show that we can
pick f1, f2, g1, and g2 satisfying our assumptions, so that the H 2.D2/-norm of

R�1
�
zf1.z/g

0
1.z/f2.w/g2.w/

�
is infinite. Replace for the moment zf1.z/g01.z/ with an arbitrary function h1 in zàH 2.D/, say

h1.z/ D

1X
mD1

amz
m:

Choose f2 and g2 as

f2.w/ D

1X
nD2

wn
p
n.logn/

and g2.w/ D � log.1 � w/:

The coefficients of h2.w/ WD f2.w/g2.w/ D
P
n�3 bnw

n are given by

bn D

n�1X
kD2

1
p
k.log k/

1

.n � k/
�

1
p
n.logn/

n�1X
kD2

1

n � k
�

1
p
n
:

Hence we find that

kR�1.h1h2/k
2
H2.D2/ �

1X
mD1

1X
nD3

jamj
2

.mC n/2n
�

1X
mD1

jamj
2 log.mC 2/
.mC 1/2

D1

for an appropriate choice of h1 in zàH 2.D/. However, by a factorization result of Aleksandrov
and Peller [1], there exist f j1 in H 2.D/ and gj1 in H1.D/ for 1 � j � 4, such that

h1.z/ D z

4X
jD1

f
j
1 .z/.g

j
1 /
0.z/:

Therefore, at least one of the four pairs .f j1 ; g
j
1 /, where 1 � j � 4, will do as the choice

of .f1; g1/.

7. Compactness of Tg on H2

7.1. Basic results. We turn to a brief discussion of compactness of Tg . Every polyno-
mial symbol g.s/ D

P
n�N bnn

�s defines a compact Tg -operator, since in this case Tg is the
sum of N diagonal operators with entries in c0. This means that all bounded operators from
Section 4 actually are compact. To see this, let SN denote the partial sum operator, acting on
a Dirichlet series f .s/ D

P
n�1 ann

�s by

SNf .s/ D

NX
nD1

ann
�s:

Suppose now that we have an estimate of the type kTgk2 �
P
n�2 jbnj

2w.n/ for some positive
weight function w.n/. If the right-hand side is finite for some Dirichlet series g, then

kTg � TSNgk
2
�

X
n�N

jbnj
2w.n/! 0; N !1;
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 217

demonstrating that Tg is compact. In particular, every bounded Tg -operator with a linear sym-
bol is compact, since then kTgkL.H2/ D kgkH2 , by Theorem 4.1. Let us also mention that the
Volterra operator defined by the primitive of the zeta function considered in Theorem 2.5,

g.s/ D

1X
nD2

1

n logn
n�s;

is compact by this argument and Theorem 4.3. In the next subsection, we will produce a con-
crete example of a non-compact operator, by testing the Volterra operator of Theorem 3.3, for
� D 1, against reproducing kernels for suitable subspaces of H2.

We mention that it is possible to prove versions of Theorems 2.3, 5.1 and 5.3 for compact-
ness, by replacing bounded mean oscillation by vanishing mean oscillation, and embeddings
by vanishing embeddings. The details are standard, see for instance [31] for the arguments in
a different setting.

We present only two results in this subsection. The first is that the closure of Dirichlet
polynomials in BMOA.C0/ is VMOA.C0/ \D , as it relies on the translation invariance (i)
of Lemma 2.1 enjoyed by Dirichlet series in BMOA.C0/. Recall that VMOA.C0/ consists of
those g 2 BMOA.C0/ such that

lim
ı!0C

sup
jI j<ı

1

jI j

Z
I

ˇ̌̌̌
f .it/ �

1

jI j

Z
I

f .i�/ d�

ˇ̌̌̌
dt D 0:

We endow the space BMO.C� / \D with the norm

kf kBMO.C� /\D WD jf .C1/j C kf kBMO.C� /:

Theorem 7.1. Let g be a symbol in VMOA.C0/ \D and let " be a positive number.
Then there is a Dirichlet polynomial P such that kg � P kBMO.C� /\D < ".

Proof. Let Bı denote the horizontal shift operator given by Bıg.s/ D g.s C ı/, and, as
above, let SN denote the partial sum operator. We choose P D BıSNg, for some ı > 0 and
N to be specified later. Clearly P.C1/ D b1 D g.C1/. Since g is in VMOA.C0/, we know
from [20, Theorem VI.5.1] that

lim
ı!0
kg � BıgkBMO.C0/ D 0:

Choose ı > 0 so that kg � BıgkBMO.C� / < "=2. Then

kg � P kBMO.C0/ � kg � BıgkBMO.C0/ C kBıg � P kBMO.C0/

<
"

2
C 2kBıg � BıSNgkH1 :

Now, by (i) of Lemma 2.1, we know that �b.g/ � 0. By a theorem of Bohr [10], this implies that
SNg.s/ converges uniformly to g.s/ in the closed half-plane Cı , for every ı > 0. Hence there
is some N D N.g; ı/ such that kBıg � BıSNgkH1 D kBı.g � SNg/kH1 < "=4:

Our second basic result is that Tg is never in any Schatten class, unless g is constant.
This is in line with [31, Theorem 6.7], showing that a radial Volterra operator Tg ¤ 0 defined
on H 2.Bd / can be in the Schatten class Sp only for p > d .
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218 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

Theorem 7.2. Let

g.s/ D

1X
nD1

bnn
�s

be a non-constant Dirichlet series. Then Tg WH2 ! H2 is not in Sp, for any p <1.

Proof. Since g is not constant, we know there is at least one non-zero term, so set

N D inf¹n � 2 W bn ¤ 0º <1:

We will use [37, Theorem 1.33] in the following way: Set en.s/ WD n�s and assume that
2 � p <1. Then the set ¹enºn�1 forms an orthonormal basis for H2, so that

kTgk
p
Sp
�

1X
nDN

kTgenk
p

H2 :

A simple computation shows that if n � N , then we have

kTgenk2H2 D

1X
mD2

jbmj
2.logm/2

.logmn/2
�
jbN j

2.logN/2

.lognN/2
�
jbN j

2.logN/2

.2 logn/2
:

In particular, kTgenkH2 � .jbN j logN/=.2 logn/ and hence

kTgk
p
Sp
� 1:

The inclusion between Schatten classes allows us to conclude that Tg cannot be in Sp for any p
with 0 < p <1.

7.2. Estimating y-smooth reproducing kernels. We will now study the action of Tg
on reproducing kernels for suitable subspaces of H2. The reproducing kernel kw of H2 itself
at w, where Re.w/ > 1=2, is given by

kw.s/ WD �.s C w/ D
Y
p

�
1 � p�s�w

��1
:

Considering these reproducing kernels is insufficient in our analysis of the multiplicative
symbol g from Theorem 3.3. Indeed, regardless of the value of �, the Dirichlet series g.s/
converges absolutely all the way down to Re.s/ D � > 0. Testing Tg on the kernels kw , in
C1=2 is therefore not enough to detect that it is unbounded for � > 1.

To address this, we consider y-smooth reproducing kernels. Let PC.n/ denote the largest
prime factor of n. The integer n is called y-smooth if PC.n/ � y. The y-smooth reproducing
kernels, kyw are defined for Re.w/ > 0 and y � 1, by cutting off prime numbers larger than y.
This means that we set kyw.s/ WD �.s C w; y/, where

�.s C w; y/ WD
Y
p�y

�
1 � p�s�w

��1
:

Notice that we already used another variant of cut-off kernels in the proof of Theorem 3.3.
Following Gál’s construction, we tested against a finite-dimensional kernel at � D 0, cut off
to be smooth (in the sense of primes) and retaining only suitable small powers of each prime.
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Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 219

Our motivation for turning to the more involved investigation of the reproducing kernels kyw.s/
is that they provide slightly better estimates than the rougher argument stemming from Gál’s
work. More specifically, we will see that the multiplicative symbol g from Theorem 3.3 with
� D 1 provides the only concrete example of a non-compact Tg -operator in this paper.
As in Section 3, we consider without loss of generality the operator �Tg instead of Tg , the
difference between the two being compact.

Suppose that f .s/ D
P
n�1 '.n/n

�s , where ' is a non-negative completely multipli-
cative function, and that g.s/ D

P
n�1 bnn

�s has non-negative coefficients. A computation
shows that

k�Tgf k2H2 D

1X
mD2

1X
nD2

.bm logm/.bn logn/'
�

mn

.m; n/2

�
(7.1)

�

1X
kD1

'.k/2

.log k C log mn
.m;n/

/2
:

We will now choose f to be a y-smooth reproducing kernel and estimate the innermost sum.

Lemma 7.3. Let '.n/ be the completely multiplicative non-negative function defined by
setting

'.n/ WD

´
n�� ; if PC.n/ � y;

0; otherwise:

Fix ˛, 0 < ˛ < 1. If y˛ � 1=� , then for sufficiently large y (depending on ˛), we have

S'.m; n/ WD

1X
kD1

'.k/2

.log k C log mn
.m;n/

/2
�

kk
y
� k
2
H2

..1C o.1//.1 � 2�/�1y1�2� C log mn
.m;n/

/2
;

where o.1/ tends to 0 as y !1.

Proof. We may assume that 0 < � < 1=2. Observe first that kky� k2H2 D �.2�; y/. For
simplicity of notation, we write a WD log mn

.m;n/
. By Abel summation, we see that

S'.m; n/ � 2�

Z 1
1

‰.x; y/ x�2�

.log x C a/2
dx

x
;

where as usual ‰.x; y/ denotes the number of y-smooth integers less than or equal to x.
Observe that �.s; y/ is the Mellin transform of ‰.x; y/,

�.s; y/ D s

Z 1
0

xs�1‰.x; y/ dx:

Hence by writing ‰.x; y/ as the inverse Mellin transform of �.s; y/, integrating over the verti-
cal line Re s D � for some 0 < � < 2� , and then changing the order of integration, we obtain

I WD

Z 1
1

‰.x; y/ x�2�

.log x C a/2
dx

x
D

Z 1
1

�
1

2�i

Z �Ci1

��i1

�.s; y/xs
ds

s

�
x�2�

.log x C a/2
dx

x

D
1

2�i

Z �Ci1

��i1

�.s; y/

�Z 1
1

xs�2�

.log x C a/2
dx

x

�
„ ƒ‚ …

DW J

ds

s
:
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220 Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series

By substituting x D et , using the identity

1

.t C a/2
D �

d

da

Z 1
0

e�.tCa/xdx;

and interpreting the resulting integral as a Laplace transform, we find that

J D

Z 1
0

e�t.2��s/

.t C a/2
dt

D �
d

da

�
e2�a

Z 1
2�

e�atL¹es�º.t/ dt

�
D

Z 1
2�

e�a.t�2�/.t � 2�/
dt

s � t
:

Therefore, by changing the order of integration again, we obtain that

I D

Z 1
2�

e�a.t�2�/.t � 2�/

�
1

2�i

Z �Ci1

��i1

�.s; y/
ds

s.s � t /

�
dt:

We evaluate the inner integral by residues, capturing the simple pole in s D t , to see that

I D

Z 1
2�

e�a.t�2�/.t � 2�/
�.t; y/

t
dt D

Z 1
0

�.t C 2�; y/

t C 2�
te�at dt:

Hence, to prove the statement of the lemma, we need to estimate

2�

�.2�; y/
I D

2�

�.2�; y/

Z 1
0

�.t C 2�; y/

t C 2�
te�at dt

from below. Observe that

�.t C 2�; y/

�.2�; y/
� exp

�
�Ct

X
p�y

p�2� logp
�
� exp

�
�C.1 � 2�/�1ty1�2�

�
when, say, t � 2y�˛. Here we have 1 < C D 1C o.1/. Assuming that � � y�˛, we have that
2�=.t C 2�/ � 1=2, and we therefore obtain

2�

�.2�; y/

Z 1
0

�.t C 2�; y/

t C 2�
te�at dt �

Z 2y�˛

0

t exp
�
�.aC C.1 � 2�/�1y1�2� /t

�
dt

�
1

2
�
aC C.1 � 2�/�1y1�2�

�2
for sufficiently large y. On the other hand, the same type of estimates carried out in reverse
order shows that

2�

�.2�; y/

Z 1
0

�.t C 2�; y/

t C 2�
te�at dt �

Z 1
0

t exp
�
�.aC C 0.1 � 2�/�1y1�2� /t

�
dt

D
1

.aC C 0.1 � 2�/�1y1�2� /2
;

where 1 > C 0 D 1C o.1/.
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Applying (7.1) and Lemma 7.3 to a symbol of multiplicative type (3.1), we find that

k�Tgky� k2H2

kk
y
� k
2
H2

�

X
PC.m/�y

X
PC.n/�y

 .mn/
.m; n/2�

.mn/�
(7.2)

�

�
.1C o.1//.1 � 2�/�1y1�2� C log

mn

.m; n/

��2
:

under the assumptions on y and � from Lemma 7.3.

Theorem 7.4. For 0 < � <1, let g be the Dirichlet series (3.1), where  .n/ is the
completely multiplicative function defined on the primes by  .p/ WD �p�1.logp/. Fix ˛ with
0 < ˛ < 1. If � D y�˛, then

(7.3)
k�Tgky� k2H2

kk
y
� k
2
H2

� y2.��1/:

In particular, Tg is not compact when � D 1.

Proof. Let �.n) denote the Möbius function, the only property of which we need is
that �.n/ D 0 unless n is square-free. Restricting the sums in (7.2) to square-free numbers and
using that .m; n/2� � 1, we find that

k�Tgky� k2H2

kk
y
� k
2
H2

�

X
PC.m/�y

�.m/¤0

X
PC.n/�y

�.n/¤0

 .mn/

.mn/�
(7.4)

�

�
.1C o.1//.1 � 2�/�1y1�2� C log

mn

.m; n/

��2
:

Now using thatm and n are y-smooth and square-free, so that both logm and logn are bounded
by �.y/ logy � .1C o.1//y by the prime number theorem, we obtain from (7.4) that

k�Tgky� k2H2

kk
y
� k
2
H2

�
1

y2

X
PC.m/�y

�.m/¤0

X
PC.n/�y

�.n/¤0

 .mn/

.mn/�

D
1

y2

X
PC.m/�y

�.m/¤0

 .m/

m�

X
PC.n/�y

�.n/¤0

 .n/

n�
D

�
1

y

X
PC.m/�y

�.m/¤0

 .m/

m�

�2
:

We may now complete the proof of the estimate (7.3) by the following computation:X
PC.m/�y

�.m/¤0

 .m/

m�
D

Y
p�y

�
1C

 .p/

p�

�
� exp

�X
p�y

 .p/

p�

�

� exp
�
�

y�

X
p�y

logp
p

�
� exp

�
�

y�
logy

�
:

In the last step, we used Mertens’s first theorem, which asserts that
P
p�y

logp
p
� logy is

bounded in absolute value by 2. Now (7.3) follows because y�� logy D logy C o.1/ when
y !1 by our choice of � .
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Finally, let ¹�j ºj�1 and ¹yj ºj�1 be sequences such that �j ! 0 and yj !1 as j !1.
Then for every Dirichlet polynomial P , we have that hP; kyj�j iH2 converges as j !1. On
the other hand, we have that

kk
yj
�j kH2 !1:

Therefore kyj�j =kk
yj
�j kH2 converges weakly to 0 in H2. Hence, the estimate shows, for suitably

chosen �j and yj , that Tg is not compact for � D 1.
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Math. 302 (2016), 410–432.
[16] S.-Y. A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620.
[17] A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes and K. Seip, The Bohnenblust–Hille inequality for homo-

geneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), no. 1, 485–497.
[18] S. H. Ferguson and M. T. Lacey, A characterization of product BMO by commutators, Acta Math. 189 (2002),

no. 2, 143–160.
[19] I. S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskunde (2) 23 (1949), 13–38.
[20] J. B. Garnett, Bounded analytic functions, Grad. Texts in Math. 236, Springer, New York 2007.
[21] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin

area integral, and Walsh–Paley series, Studia Math. 49 (1973/74), 107–124.
[22] H. Hedenmalm, P. Lindqvist and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions

in L2.0; 1/, Duke Math. J. 86 (1997), no. 1, 1–37.
[23] H. Helson, Hankel forms and sums of random variables, Studia Math. 176 (2006), no. 1, 85–92.

Brought to you by | Universitetsbiblioteket I Trondheim NTNU Universitetsbiblioteket
Authenticated

Download Date | 9/6/19 12:15 PM



Brevig, Perfekt and Seip, Volterra operators on Hardy spaces of Dirichlet series 223

[24] T. Hilberdink, An arithmetical mapping and applications to �-results for the Riemann zeta function, Acta
Arith. 139 (2009), no. 4, 341–367.

[25] M. T. Lacey and E. Terwilleger, Hankel operators in several complex variables and product BMO, Houston J.
Math. 35 (2009), no. 1, 159–183.

[26] J. Marzo and K. Seip, L1 to Lp constants for Riesz projections, Bull. Sci. Math. 135 (2011), no. 3, 324–331.
[27] B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl.

16 (2010), no. 5, 676–692.
[28] J.-F. Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011), no. 9,

2669–2696.
[29] J.-F. Olsen and E. Saksman, On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame

bound estimate, J. reine angew. Math. 663 (2012), 33–66.
[30] J. Ortega-Cerdà and K. Seip, A lower bound in Nehari’s theorem on the polydisc, J. Anal. Math. 118 (2012),

no. 1, 339–342.
[31] J. Pau, Integration operators between Hardy spaces on the unit ball of Cn, J. Funct. Anal. 270 (2016), no. 1,

134–176.
[32] C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation,

Comment. Math. Helv. 52 (1977), no. 4, 591–602.
[33] H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, HRI Lect. Notes 2, Hindus-

tan Book Agency, New Delhi 2013.
[34] E. Saksman and K. Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc. 41

(2009), no. 3, 411–422.
[35] K. Seip, Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z. 274 (2013), no. 3–4, 1327–1339.
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