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Abstract—The maritime industry generally anticipates having
semi-autonomous ferries in commercial use on the west coast of
Norway by the end of this decade. In order to schedule main-
tenance operations of critical components in a secure and cost-
effective manner, a reliable prognostics and health management
system is essential during autonomous operations. Any remaining
useful life prediction obtained from such system should depend
on an automatic fault detection algorithm. In this study, an
unsupervised reconstruction-based fault detection algorithm is
used to predict faults automatically in a simulated autonomous
ferry crossing operation. The benefits of the algorithm are
confirmed on data sets of real-operational data from a marine
diesel engine collected from a hybrid power lab. During the ferry
crossing operation, the engine is subjected to drastic changes in
operational loads. This increases the difficulty of the algorithm to
detect faults with high accuracy. Thus, to support the algorithm,
three different feature selection processes on the input data is
compared. The results suggest that the algorithm achieves the
highest prediction accuracy when the input data is subjected to
feature selection based on sensitivity analysis.

Index Terms—Automatic fault detection, feature selection,
marine diesel engine, prognostics and health management, vari-
ational autoencoder

I. INTRODUCTION

Only five years ago, most people considered autonomous
and semi-autonomous ships as a futuristic fantasy [1]. To-
day, however, this assumption has changed dramatically since
inland semi-autonomous ferries will most definitely be in
commercial use on the west coast of Norway by the end of this
decade [2]. These ferries are intended to navigate entirely by
themselves a short distance across a river or a fjord. Thus, the
crew members will ideally carry out duties other than main-
taining, operating, and navigating the vessels. Additionally,
securing regulatory permission, support from the industry, and
public approval for semi-autonomous ferries requires evidence
they are at least as safe as traditional ferries [3].

Ideally, semi-autonomous ferries will transfer real-time di-
agnostics and prognostics information to a control center on-
shore to conduct analysis and schedule maintenance operations

of critical systems, components, and sub-components. One
of the most critical components is the marine diesel engine
as it has a leading position in both propulsion and power
generation [4]. Even though the navigation mission for the
ferry is rather simple in theory, the marine diesel engine
will be subjected to changing environmental conditions and
various operational loads. Consequently, faults and failures
could occur in a totally random pattern [5]. Hence, in a main-
tenance perspective, a prognostics and health management
(PHM) system, which both include automatic fault detection
and associated remaining useful life (RUL) predictions, is
crucial in autonomous operations. When the RUL is predicted,
the maintenance operation can be scheduled to the next
appropriate port of call for the ferry [6]. Nevertheless, the RUL
prediction is the available time prior to operational failure after
a fault is detected within the engine. Thus, any RUL prediction
should depend on an intelligent and reliable fault detection
algorithm.

During the last two years, the growth of intelligent fault
detection algorithms has increased drastically. Usually, the
algorithms have dependent on a supervised classifier [7], [8].
In other words, the algorithms demand fault labels in the
training procedure. However, due to a general lack of fault
labels for critical components in the maritime industry [9],
an appropriate fault detection algorithm should not depend
on a supervised classifier. An alternative approach is the
utilization of unsupervised reconstruction-based fault detec-
tion algorithms [10], [11]. Usually, these algorithms train a
Variational Autoencoder (VAE), in an unsupervised practice,
to reconstruct normal operation data. In this way, the VAE
will provide a greater reconstruction error on unexpected
patterns in faulty degradation data. Finally, the reconstruction
error is used as an anomaly score function (ASF) before an
algorithm is applied to detect faults automatically. However,
in semi-autonomous ferries, the sensor measurements might
differ strongly between different engine operational loads. This
increases the difficulty for the VAE to construct an accurate



ASF. Thus, the input data should be subjected to a feature
selection process in order to support the VAE in the demanding
reconstruction process.

This paper investigates automatic fault detection for marine
diesel engine degradation in a simulated autonomous ferry
crossing operation. The unsupervised reconstruction-based
fault detection algorithm proposed in [11], is also used in this
study to predict faults automatically. The VAE is the selected
reconstruction model. Two data sets of real-operational data
from a marine diesel engine are used. The first data set is a
simulated ferry crossing during normal operation, while the
second data set is the exact same ferry crossing operation
except a fault is introduced at an unknown time step. First, the
VAE is trained on the normal operation data. Then, the VAE
estimates an ASF by computing a reconstruction error at each
time step in the second data set, namely, the faulty degradation
data. In the end, the algorithm detects a fault automatically
by predicting the time step with the highest acceleration in
the ASF. In order to examine the need for a feature selection
process to support the VAE reconstruction process, both the
normal operation data and the faulty degradation data are used
to create three different input dimension scenarios: all input
features, feature selection based on human domain knowledge
(HDK), and feature selection based on sensitivity analysis
(SA). In all three scenarios, an individual reconstruction model
is used due to different input dimensions.

Our on-going project intends to develop an intelligent
PHM system to provide real-time decision automation for
autonomous maritime operations. Currently, the project mainly
consists of two parts. The first part is the development of
a step-wise feature selection approach to support both diag-
nostics and prognostics algorithms. The second part, on the
other hand, is devoted to the development of both automatic
fault detection algorithms and RUL prediction algorithms.
Nevertheless, in this paper, we are only focusing on automatic
fault detection. This study’s principal contributions are as
follows:
• Three input dimension scenarios on real-operational ma-

rine diesel engine degradation data are compared.
• Feature selection processes drastically improve the accu-

racy of unsupervised reconstruction-based fault detection
algorithms.

The overall organization of the paper is as follows. Section
II introduces the essential background on the VAE and unsu-
pervised reconstruction models. The experimental procedure,
results, and discussions are elaborated in section III. Section
IV concludes and finishes the paper and presents objectives
for future work.

II. BACKGROUND

This section introduces the essential background on the VAE
and the unsupervised reconstruction models.

A. Variational autoencoder

The VAE was developed by Kingma and Welling in 2013
and models the underlying probability distribution utilizing

Bayesian inference [12]. The VAE includes an encoder func-
tion z = qθe(z|x) and a decoder function r = pθd(x|z). Thus,
compared to the traditional autoencoder [13], the VAE im-
proves generalization since the latent variables z are stochastic
in nature. The VAE objective function is to maximize the
variational lower bound JV AE [14]:

JV AE(θe, θd) = −DKL

(
qθe(z|x) || pθd(z)

)
+Eqθe (z|x)[log pθd(x|z)]

(1)

where DKL is the Kullback-Leibeler divergence. The first
expression is referred to the latent loss and measures how
close z match the encoder function. The second expression is
the reconstruction log-likelihood and referred to the generative
loss. Nevertheless, the reconstruction error needs a Monte
Carlo estimate of the expectation [12]. Since this estimate
is not easily differentiable, a reparameterization scheme of z
is used to collect the gradients of the decoder in order to
use the back-propagation algorithm [15]. First, the reparam-
eterization scheme applies a deterministic variable such that
z = µ + σε, ε ∼ N (0, 1) [12]. In this way, the encoder
produces vectors of both means µ and standard deviations
σ rather than vectors of real values. Finally, these vectors
are applied as the latent vector in the decoder. A Gaussian
reconstruction distribution is normally utilized in the decoder
for real-valued input data. The VAE can be stacked with many
hidden layers in both the encoder and decoder depending on
the dimensionality of the input data. It should be noted that
unsupervised pre-training should be considered for very deep
VAE structures.

B. Unsupervised reconstruction models

As similar to [11], the reconstruction models in this study
are also configured with three hidden layers and corresponding
hidden units (h1,h2,h3) in the encoder and three hidden layers
with corresponding hidden units (h3,h2,h1) in the decoder.
However, due to different input dimensions, the selection pro-
cess of the hidden units is based on the following experience-
based formula:

h1 = Z
(
n · 1.2

)
h2 = Z

(
h1

2

)
h3 = Z

(
h2

2

)
where n is the number of input features in the specific
scenario. Consider xt = [x1 . . . xn]t as the input vector of
measurements at time step t. In order to train the reconstruc-
tion models in an unsupervised practice, xt is also utilized
as the target yt for reconstruction at each t. To measure error
calculations, each reconstruction model uses a fully connected
output layer where the mean squared error (MSE) is the chosen
loss function:

MSE =
1

n

n∑
i=1

||ŷi − yi||2 (2)

where n is the number of input features, ŷi is the ith predicted
measurement and yi is the ith target measurement.



Fig. 1. The small marine diesel engine included in the hybrid power lab at
the Department of Ocean Operations and Civil Engineering at the Norwegian
University of Science and Technology in Aalesund.

III. EXPERIMENTAL STUDY

In the ensuing experimental study, Microsoft Windows 10
is the operating system, Java 8 is the programming language,
“deeplearning4j” (DL4J) version 1.0.0-beta3 [16] is the deep
learning library and NVIDIA GeForce GTX 1060 6 GB is the
graphics processing unit used. The reconstruction models are
trained and evaluated on real-operational data from a marine
diesel engine.

A. Data sets

A hybrid power lab, founded by the Department of Ocean
Operations and Civil Engineering at the Norwegian University
of Science and Technology in Aalesund, is used to collect the
data sets. The lab consists of a small marine diesel engine with
a generator, a marine battery system, a marine DC switchboard
with necessary power converters, and a marine automation
system to control the entire process. The power produced is
fed back to the power grid in order to simulate load changes
in the system. The marine diesel engine is shown in Figure 1.

During the data collection process, the engine is run by an
operating profile that aims to simulate a real-life autonomous
ferry crossing on the west coast of Norway. First, the ferry
leaves shore in a safe and constant velocity. Then, the ferry
increases its velocity until a suitable velocity is reached. This
velocity is kept constant before the velocity decreases safely.
Finally, the ferry breaks just before it docks. The total duration
of the ferry crossing is 22 minutes and 40 seconds and the
complete engine operating profile is shown in Figure 2.

The engine operating profile is run both when the normal
operation data and the faulty degradation data are collected.
Thus, the difference between the two data sets is that a fault is
introduced at an unknown time step in the faulty degradation
data. Hence, the main goal is to predict the time step where
the fault occurs, namely, the fault time step ft.

The engine has both a primary and a secondary water
cooling system, where the secondary cools the primary. The
primary cooling is controlled internally in the engine by a bi-
metal thermostatic valve, which opens at 78 ◦C and fully open
at 90 ◦C. The secondary cooling is controlled by a frequency

TABLE I
REAL-OPERATIONAL DATA SETS COLLECTED FROM THE MARINE DIESEL

ENGINE.

Data set Time (seconds) Frequency Time steps
Normal operation data 1360 2 Hz 2720
Faulty degradation data 1360 2 Hz 2720

Fig. 2. Operating profile for a simulated autonomous ferry crossing.

operated fan circulating air through a heat exchanger. The fault
introduced is a malfunction of the fan. This results in loss of
cooling efficiency in the secondary cooling system. An alarm
is triggered in the marine automation system when the cooling
water temperature increases 85 ◦C.

Table I summarizes the two data sets collected. As seen
in Figure 2, the engine load changes drastically throughout
the ferry crossing operating profile. Thus, the sensor measure-
ments differ strongly between the different engine loads. This
affects the ability of the VAE to reconstruct an ASF with high
degradation relevance. Therefore, in this study, both the normal
operation data and the faulty degradation data are further used
to create three different input dimension scenarios: all input
features, feature selection based on HDK, and feature selection
based on SA.

1) All input features: The raw data sets collected in this
study includes 47 input features in total, e.g., operational loads,
temperature, pressure, flow, and engine speed measurements.
This scenario utilizes all 47 input features, and hence, neglects
the degradation relevance for each input feature regarding
the specific fault used in this study. Thus, in this scenario,
the difficulty for the VAE to reconstruct an accurate ASF
increases.

2) Feature selection based on human domain knowledge:
In this scenario, valuable HDK is used to select degradation
relevant input features concerning the specific fault. The goal
of this selection process is to reduce the amount of noise in
the reconstructed ASF, and hence, support the algorithm to
predict ft with higher accuracy. This selection process results
in 22 input features.

3) Feature selection based on sensitivity analysis: This
scenario is based on the first part of our on-going project.
The step-wise feature selection approach is based on variance-
based sensitivity analysis. In order to remove redundant infor-
mation among the input features and reduce the computational
complexity of variance-based sensitivity analysis, a Pearson



TABLE II
JOINT HYPER-PARAMETERS.

Hyper-parameter Method/value
Optimization algorithm Stochastic gradient descent

lr method Adaptive moment estimation [19]
lr 1 · 10−4

l2 regularization 1 · 10−4

Weight initialization Xavier [20]
Activation function Rectified linear unit [21]

correlation analysis is conducted. Additionally, a surrogate
model is adopted since conventional variance-based sensitivity
analysis cannot be applied to the data sets directly [17], [18].
This selection process results in 12 input features.

B. Data normalization

Each input measurement xn in the normal operation data is
normalized with zero mean and unit variance normalization:

x̂n =
xn − µ
σ

(3)

where µ and σ is the mean and the corresponding standard
deviation of the normal operation data, respectively. Then, the
normalization statistics obtained from the normal operation
data are applied to the faulty degradation data.

C. Hyper-parameter configuration and training

The three reconstruction models are configured with joint
hyper-parameters, as similar to [11]. Joint hyper-parameters
are used in order to create reliable comparisons between
the three input dimension scenarios. The selected hyper-
parameters are summarized in Table II. An early stopping (ES)
approach is used during the training process of each recon-
struction model in order to reconstruct the normal operation
data as accurately as possible. The total reconstruction error of
all time steps in the normal operation data Enod is monitored
by the ES approach for each epoch:

Enod =

Tnod∑
t=1

(
1

n

n∑
i=1

||ŷi − yi||2
)
t

(4)

where Tnod is the total number of time steps in the normal
operation data and the second term is the MSE in Eq. 2.
The training process is terminated if the number of epochs
with no reduction on Enod is greater than four. Finally, the
reconstruction model, obtained from the epoch with the lowest
Enod, is used for validation on the faulty degradation data.

D. Fault prediction

Ellefsen et al. [11] used an unsupervised reconstruction-
based fault detection algorithm for maritime components.
Their proposed algorithm is also used in this work in order to
predict ft. First, the raw ASF is estimated by computing the
MSE, Eq. 2, at each time step in the faulty degradation data.
Normally, the raw ASF includes high amounts of noise. Thus,
the algorithm generates three sliding windows of length w in
order to smooth the ASF:

w =
Tfdd
p

(5)

TABLE III
THE TRUE FAULT TIME STEP ft COMPARED TO THE PREDICTED FAULT

TIME STEP f̂t ON THE FAULTY DEGRADATION DATA FOR EACH SCENARIO.

Scenario n ft p w f̂t

All input features 47 1979

60 45 2529
70 39 2540
80 34 2544
90 30 2548
100 27 2549

HDK 22 1979

60 45 2012
70 39 1852
80 34 1861
90 30 1863
100 27 1867

SA 12 1979

60 45 1994
70 39 2004
80 34 2000
90 30 1863
100 27 1867

where Tfdd is the total number of time steps in the faulty
degradation data and p is a tune-able and application-
dependent parameter. Next, the three sliding windows slide
across the raw ASF for each time step, where a distance
equivalent to w is applied between each sliding window. Then,
in order to remove a certain amount of noise in the raw
ASF, the average reconstruction error is calculated in the three
windows. Thus, since p decides the length of w, it also decides
the amount of smoothing performed on the ASF. Next, the
velocity between windows 1 and 2 and between 2 and 3 are
calculated. Finally, the acceleration between the two velocities
is estimated. A comparison between the raw ASF and the
smooth ASF for each scenario is shown in Figure 3.

According to [11], the maximum increase in sensor mea-
surements deviations compared to typical sensor measure-
ments in normal operation data is a clear symptom of a
fault. Therefore, the maximum acceleration is used as the
fault indicator since this point indicates increasing velocity,
and hence, an accelerated increase in the ASF. The increasing
velocity indicates that one or several feature measurements
have begun to diverge from the normal operation data quickly.
Thus, the algorithm detects the maximum acceleration and the
corresponding fault time step f̂t. Please see [11], for a more
comprehensive explanation of the algorithm.

E. Experimental results and discussions

Table III shows the predicted fault time step f̂t for each
scenario. Five different p values are used to examine the
robustness of each reconstruction model. The lowest p value,
however, is determined to 60 since any lower value might
smooth the ASF too much, and hence, ignoring important
degradation patterns. The true fault time step ft in the faulty
degradation data is determined based on the first time the
cooling water temperature increases 85 ◦C. It should be noted
that both ft and f̂t can be divided by two in order to be
consistent with Figure 2.

As seen in Table III, the scenario utilizing all input features
performs late f̂t predictions for all p values. This scenario
neglects the relevance of degradation for each input feature
concerning the specific fault used in this study. Thus, as seen



(a) (b)

(c) (d)

(e) (f)

Fig. 3. ASF comparison between the three scenarios. p = 60 in the smooth ASF. (a) All input features - raw ASF. (b) All input features - smooth ASF. (c)
HDK - raw ASF. (d) HDK - smooth ASF. (e) SA - raw ASF. (f) SA - smooth ASF.

in Figure 3, a spike occurs in the smooth ASF when the engine
load increases rapidly in order for the ferry to break just
before it docks. Hence, the algorithm detects the maximum
acceleration in the breakpoint in front of the spike. The spike
occurs since engine speed, redundant measurements on engine
loads, and several battery measurements are included in the
data sets. These features increase the difficulty for the VAE
to construct an accurate ASF, especially when the engine load
is above 50%. However, these features have no degradation
relevance for the fault, and hence, they should be disregarded
in order to remove noise for the fault detection algorithm.

As opposed to the scenario utilizing all input features, the
scenarios based on HDK and SA remove both irrelevant and
redundant input features concerning the fault. Thus, these
scenarios perform accurate f̂t predictions, especially when
p = 60.

The accuracy evaluations on the faulty degradation data in
the three scenarios are shown in Table IV. The accuracy is
defined as follows:

Accuracy (%) =

(
1− ||f̂t − ft||

2720

)
· 100 (6)

where 2720 is the total number of time steps in the faulty



TABLE IV
ACCURACY EVALUATION ON THE FAULTY DEGRADATION DATA FOR EACH

SCENARIO.

p Accuracy (%)
All input features HDK SA

60 79.78 98.79 99.45
70 79.38 95.33 99.08
80 79.23 95.66 99.23
90 79.08 95.74 95.74

100 79.04 95.88 95.88
Avg. Accuracy 79.30 96.28 97.88

degradation data. As seen in Table IV, both the HDK and
SA scenario perform consistent accuracy above 95% for all p
values. Nevertheless, the scenario based on SA performs the
highest average accuracy.

IV. CONCLUSION AND FUTURE WORK

This paper has examined automatic fault detection for ma-
rine diesel engine degradation in a simulated autonomous ferry
crossing operation. An unsupervised reconstruction-based fault
detection algorithm has been used to predict faults automat-
ically. The VAE is used as the reconstruction model. Two
data sets of real-operational data have been collected from
a hybrid power lab including a marine diesel engine. The first
data set is a simulated ferry crossing during normal operation,
while the second data set is the exact same ferry crossing
except a fault is introduced at an unknown time step. First,
the VAE is trained on the normal operation data. Then, the
VAE estimates an ASF by computing a reconstruction error
at each time step in the faulty degradation data. In the end,
the algorithm detects a fault automatically by predicting the
time step with the highest acceleration in the ASF. Although
the navigation mission for the ferry is simple, the engine
is subjected to drastic changes in operational loads during
the simulated ferry crossing operation. This increases the
difficulty of the algorithm to detect faults with high accuracy.
Thus, to support the algorithm, three different feature selection
processes on the input data have been compared.

The algorithm achieved an average accuracy of 97.88%
when the input data were subjected to feature selection based
on SA. SA removes both irrelevant and redundant input
features concerning the specific fault used in this study. Thus,
drastically improving the prediction accuracy of the algorithm.
However, any feature selection process might remove input
features which could be of relevance for other faults with
different degradation nature. Hence, introducing several other
faults in the hybrid power lab will be part of future work.
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