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We use a hybrid approach which executes ant colony algorithm in combination with beam search (ACO-BS) to solve the Simple
Assembly Line Balancing Problem (SALBP). The objective is to minimise the number of workstations for a given fixed cycle time,
in order to improve the solution quality and speed up the searching process. The results of 269 benchmark instances show that
95.54% of the problems can reach their optimal solutions within 360 CPU time seconds. In addition, we choose order strength and
time variability as indicators to measure the complexity of the SALBP instances and then generate 27 instances with a total of 400
tasks (the problem size being much larger than that of the largest benchmark instance) randomly, with the order strength at 0.2, 0.6
and 0.9 three levels and the time variability at 5-15, 65-75, and 135-145 levels. However, the processing times are generated following
a unimodal or a bimodal distribution. The comparison results with solutions obtained by priority rule show that ACO-BS makes
significant improvements on the quality of the best solutions.

1. Introduction

An assembly line is a continuous production line consisting
of materials and workstations combined with conveyor belts,
and it can link men and machines closely and efficiently [1].
Assembly lines are flow-oriented systems that are indispens-
able for both the production of high quantity standardized
products and low volume production of customized products
[2]. Effective design and redesign of assembly lines require
high investment and running costs and are essential in man-
ufacturing industries [3]. In addition, assembly planning and
control play important roles in managing expanding product
ranges, reducing delivery time and costs, and increasing
profitability [4].

The Assembly Line Balancing Problem (ALBP) is a well-
studied classic problem [5] and can be seen as a generalization
of the Bin Packing problem where precedence constraints

are added [6]. It focuses on assigning tasks to workstations
with the aim of satisfying the precedence relationships among
the tasks, the workload limitation of the workstations, and
optimizing performance measures [7]. According to Becker
and Scholl [8], there are four types of ALBP: SALBP-I aims
to minimise the number of workstations with a given fixed
cycle time; SALBP-II minimises the cycle time with a given
number of workstations; SALBP-E aims to minimise the cycle
time and the number of workstations at the same time by
considering their relation with the total idle time or the
inefficiency of the line; SALBP-F determines the feasibility of
the problem with given the number of workstations and the
cycle time.

ALBP is a well-known NP-hard problem, and it has been
researched for more than sixty years. It was first studied
by Salveson [5] who constructed a mathematical model of
ALBP and suggested a solution procedure. For decades, the
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core problem has been extended to meet robotic, machining,
and disassembly contexts, but even the simple version is still
challenging [3].

Exact methods and approximate methods have been used
to solve ALBP. According to Baybars [9], if n denotes the
total number of tasks, there are n! possible sequences of
tasks in SALBP; if there are r precedence constraints, then
there are approximately n!/2r distinct, feasible sequences.
Consequently, the required computational time for obtaining
an optimal solution with an exact method for most of ALBP
increases exponentially with the instance size considered [3].
This limits the performance of exact methodologies especially
when the problem size is extremely large. Therefore, explor-
ing efficient heuristic methodologies to cope with large scale
ALBP within an acceptable time period is clearly necessary.

Recently, meta-heuristic algorithms such as the genetic
algorithm, particle swarm optimisation and the ant colony
optimisation algorithm have been used to deal with ALBP
due to these algorithms’ good performance on optimisation
[1].

Swarm intelligence algorithms are based on the collective
behavior in decentralized, self-organized systems and consist
of agents interacting with each other and the environment.
There is no centralized control structure. This kind of algo-
rithms can be scalable since the number of agents can be
easily added or removed. Besides, each agent is simple to
design, and reliance on individual agents is small. Although
each agent is not sophisticated, complex tasks can be solved in
cooperation. As to ant colony algorithm, its main novel idea
is the synergistic use of cooperation among many relatively
simple agents which communicate by distributed memory
implemented as pheromone deposited on edges of a graph
[10]. The colony as a whole coordinates the activities without a
direct communication between individual ants, as an isolated
ant basically moves at random [11]. Each ant can build a
solution step by step, and information left by other ants is
used during the solution generation process. Good solutions
can be obtained eventually without direct communication.

ACO has good performance on solving combinatorial
optimisation problems. To effectively address the assem-
bly line balancing problem with complicating factors such
as parallel workstations, stochastic task durations, and
mixed-models, McMullen and Tarasewich [12] proposed
an approach based on ant techniques and, in comparison
with other heuristics, showed that the proposed method is
competitive with other heuristic methods in terms of the
performance measures used in the study. Bautista and Pereira
[13] used an ant algorithm incorporating some ideas that
have offered good results with SALBP to solve the time
and space constrained ALBP and get much better results
than those by Tabu search. Kucukkoc and Zhang [14] and
Zhong and Ai [1] also explored ALBP with ant colony
based approaches. Therefore, ACO based methodologies
show promising performance in coping with ALBP, and ACO
is sufficiently flexible to be combined with other algorithms
to achieve better performance.

With the development of products, the problem size
is increasing and the complexity in the assembly process
is greatly increasing to a large extent. Although many
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explorations have been undertaken by researchers, the devel-
opment of methods to suit the complex assembly context is
urgent, with the increasing of complexity of ALBP. In this
study, we focus more on the performance of the algorithm
on the large scale ALBP. In order to deal with ALBP in a large
problem size, we hybridized ACO with Beam Search (ACO-
BS) to improve the efficiency and improve the computational
performance of the algorithm so that satisfactory results
can be obtained within an acceptable computation time.
The paper is organized as follows: Section 2 presents works
solving ALBP by ant techniques; Section 3 shows the problem
description with the mathematical model; the algorithm
of ACO-BS is comprehensively developed in Section 4; the
proposed algorithm is tested with benchmark instances
at first and then the larger scale problems are generated
to further explore the performance of the algorithm. The
computational results are given in Section 5, and Section 6
gives contributions of the work and the future directions.

2. Literature Review

The ant colony algorithm has been applied to solve ALBP,
and the traditional ant colony algorithms have been adapted
to deal with the complex models of ALBP. Furthermore,
researchers have also validated the effectiveness of the ant
colony heuristic in solving ALBP. Baykasoglu and Dereli [15]
integrated the computer method of sequencing operations for
assembly lines, ranked the positional weight heuristic, and
the ant colony heuristic to deal with the simple and U-shaped
ALBPs. Additionally, Fattahi et al. [16] developed a heuristic
approach based on the ant colony optimisation approach
to solve the medium- and large-size scales of this problem,
since the problem is NP-hard. The experimental results
validate the effectiveness and the efficiency of the proposed
algorithm.

SALBP, which belongs to a class of intensively studied
combinatorial optimisation problems known to be NP-hard,
has attracted the attention of researchers and practitioners of
operations research for almost half a century [2]. With the
development of ALBP, the core problem has been extended
from a manual assembly background to robotic, machining,
and disassembly contexts; thus there are various industrial
environments and line configurations [3]. Researchers try to
narrow down the gap between academic research and the
reality faced by practitioners, with more constraints consid-
ered in order to explore more realistic problems. To eftectively
address the assembly line balancing problem with compli-
cating factors such as parallel workstations, stochastic task
durations, and mixed-models, McMullen and Tarasewich
[12] proposed an approach based on ant techniques, and
comparison with other heuristics showed that the proposed
method is competitive with other heuristic methods in terms
of the performance measures used in this study. Simaria
and Vilarinho [11] presented an method to solve the two-
sided mixed-model ALBP with an ant colony optimisa-
tion algorithm, where two ants “work” simultaneously to
build a balancing solution which verifies the precedence,
zoning, capacity, side, and synchronism constraints. The
superior performance of the approach was demonstrated
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by the results of a computational experiment. AkpiNar et
al. [17] presented a hybrid algorithm combining an ant
colony algorithm with a genetic algorithm for type I mixed-
model ALBP with features such as parallel workstations,
zoning constraints and sequence dependent setup times
between tasks. To carry out assembly sequence planning and
assembly line balancing simultaneously, Lu and Yang [18]
proposed an ant colony algorithm based on the searching
mechanism and the pheromone updating mechanism. In
addition, the assembly task time, the time for changing
assembly directions, changing assembly tools, and the time
for moving heavy parts in the workstation were also consid-
ered.

There are many situations in which multiple objectives
are taken into account and these objectives are sometimes
conflicting. Therefore, methods to solve multiobjective ALBP
are valuable to guide practitioners. McMullen and Tarasewich
[19] simultaneously addressed the objectives of crew size,
system utilization, the probability of jobs being completed
within a certain time frame, and system design costs, and
the superiority of the modified ant colony optimisation
technique was shown in comparative results. Zha and Yu [20]
presented a new hybrid algorithm of ant colony optimisation
and filtered beam search to solve the U-line rebalancing
problem with two objectives. In the process of constructing
a path, each ant explores several nodes for one step and
chooses the best one by global and local evaluation at
a given probability. The proposed algorithm was shown
to be good at solving the U-line rebalancing problem.
Kucukkoc and Zhang [14] introduced a type-E parallel two-
sided ALBP and proposed a new ant colony optimisation
method with optimised parameters for solving the problem
and found promising ways to simultaneously minimise two
conflicting objectives, namely, cycle time and number of
workstations.

Some researchers used one colony of ants to update
the pheromone values and guide the searching process,
while other researchers used multiple colonies of ants in
the searching process so as to make the searching pro-
cess more efficient. Multiple ants can be applied to the
searching process in multiple objective problems. Agrawal
and Tiwari [21] utilized collaborative ant colony optimi-
sation, which maintained bilateral colonies of ants which
independently identified the two sequences but utilized the
information obtained by their collaboration to guide the
future path in solving a balancing problem in mixed-model
disassembly, and the effectiveness and robustness of the
proposed approach were well demonstrated. Ozbakir et al.
[22] studied parallel assembly lines with a novel multiple-
colony ant algorithm, and the effective algorithm was exam-
ined with benchmark instances and compared with other
algorithms.

In conclusion, there are many approaches related to ACO
and ALBP, and developing approaches that can solve ALBP
within an acceptable time were critical in real industrial
applications, since ALBP is a NP-hard problem and ALBP of
complex products brings new challenges. More advances in
methods to solve ALBP are necessary to suit the dynamic and
changing industrial environment.

3. Problem Description

3.1 Problem Description. ALBP is about assigning tasks to
workstations, while optimizing certain criterion and not
violating a number of possible restrictions, and can be divided
into Simple Assembly Line Balancing Problem (SALBP) and
General Assembly Line Balancing Problem (GALBP) [9].

For SALBP, the cumulative constraints associated with
the available work time at workstations, and the precedence
constraints established by the order in which the tasks must
be executed need to be taken into account [23]. Nevertheless,
GALBP problems contain additional considerations, such as
the restricted assignment of tasks [24], or the assignment in
a block of certain tasks [25]. Large scale SALBP is considered
in this study.

According to Baybars [9], there are five main assumptions
in SALBP:

(A-1) a task cannot be split among two or more
stations, and all tasks must be processed.

(A-2) tasks cannot be processed in arbitrary sequences
due to technological precedence requirements.

(A-3) all stations under consideration are equipped
and manned to process any one of the tasks, and any
task can be processed at any station.

(A-4) the task process times are independent of
the station at which they are performed and of the
preceding or following tasks.

(A-5) the assembly system is assumed to be designed
for a unique model of a single product.

3.2. Mathematical Model
Notation

n: total number of tasks;
UB: upper bound of the total number of workstations;
LB =[Y" t;/C]: lower bound of the total number of

workstatizlnsl, fori=1,...,m

t;: processing time of task 7, fori = 1,...,n;

C: cycle time;

P: set of pairs of tasks (i, k) such that i immediately
precedes k;

P,(S;): set of tasks that precede (succeed) i, for i =
1L,...,m

E; = [(t; + Yrep ti)/Cl: lower bound on the number
of the workstation to which task i can be assigned, for
i=1,...,m

L; = UB+1-[(t; + Yies ti)/C]: upper bound on
the number of the workstation to which task i can be
assigned, fori=1,...,m;

Variables

x; € {0,1} L, if and only if task i is assigned to
workstation j; otherwise, 0 (Vi; j = E;,...,L;);



y; € {0,1} 1, if and only if any task is assigned to
workstation j (j = LB + 1,...,UB); otherwise, 0.

The mathematical model of SALBP-I is as follows:

UB
min z = Z iy (1)
j=LB+1
L;
Zxﬁ—1 i=1,2,...,n (2)
Jj=Ei
Yti-x;<C j=1,2,...,LB ©)
i=1
n
Zti.xijgc-yj j=LB+1,...,UB (4)
i=1
L; Ly
Yixi< )Y jox V(k)eP (5)
Jj=E; J=Ek

The objective function (1) minimises the total number
of workstations; constraint (2) suggests that every task is
assigned to one and only one workstation; workload con-
straints (3) and (4) imply that the total processing time of
each workstation does not exceed the cycle time; constraint
(5) ensures that all the precedence relations are satisfied.

3.3. Reversibility of ALBP. One ALBP instance can transfer
to its reverse version after all the precedence relationships are
reversed. If S,,, = {S;,...,S,,} is a solution for the reverse
problem, then a solution for the original problem can be
obtained by inverting the workstation orders of S,,,. Thus,
a solution for the original problem can be § = {S,,,...,S;}.
Following Bautista and Pereira [13], we solve the original
problem and the reverse problem, respectively, and then
choose a better solution from the solutions obtained.

Before comparing the solutions of the two versions,
solutions of the reverse problem are transferred to those of
the original problem. There are two criteria for selecting
the best solution: (1) number of workstations and (2) idle
time in the last workstation. The second criterion is added
due the fact that there are always large plateaus when only
the first criterion is used, and more idle time in the last
workstation means better resource utilization of the previous
workstations. When there are several solutions with the same
number of workstations, preference goes to the solution with
more idle time in the last workstation, and then the solution
will be chosen randomly if there are still ties after the above
two steps.

4. The Algorithm of ACO-BS

For the classical ant colony algorithm, many ants search for
solutions separately in one iteration. According to Dorigo et
al. [28], there are three kinds of classical ant colony algorithm:
ant system, ant-density, and ant-quantity, and for the latter
two models, each ant lays pheromone at each step, while for
ant system, ants lay pheromone after the end of the tour.
Thus, pheromone values are updated by global information
in the ant system model, while local information is used to
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update the pheromone values in the other two models. Not
surprisingly, the results of ant system model are better since
global information rather than local information is used to
guide the solution searching process.

However, with the ant system model, although ants may
start from different starting points, there will still be large
amounts of repetition when the algorithm progresses step
by step during the searching process. For SALBP-I, even
if different tasks are chosen by different ants to assign the
current workstation, there is still a large possibility that the
task sets generated by some ants for one workstation are the
same. When there is no rule to prevent this kind of repetition,
the searching process will not be effective when compared to
other methods. This motivates us to add rules to prevent the
repetition of assignment for each workstation.

Beam search is an adaptation of the branch and bound
method in which only certain nodes are evaluated, and only
promising nodes are kept for further branching and the
remaining nodes are pruned permanently [29]. Beam width
and the number of extensions are two important parameters
in beam search, which progresses level by level, and moves
downward from the best B,;; promising nodes at each level.
B, is defined to be the beam width [29]. Meanwhile, the
running time of beam search is polynomial of the problem
size; thus an efficient searching process must involve more
searching constraints. The extension number allowed for each
node can be restricted to further speed up the searching
process.

Since the beam search algorithm progresses level by level
and ALBP can be seen as task assignment workstation by
workstation, the searching framework of the beam search
can be easily applied to ALBP. Of course, repetition of task
assignment for every workstation can be controlled when
using the beam search structure. On the other hand, for each
workstation, selection rule in the ant colony algorithm can
be used for task selection, and the quality of solution in
one iteration can be used in the next iteration to guide the
searching direction.

The general logic of the ACO-BS algorithm is as follows:
At first, due to the reversibility of SALBP-I, a better solution
is chosen after solving the original problem and the reverse
problem once respectively, following the priority rule. The
chosen solution is used to initialize the best-so-far solution
(Spsp)- In addition, the results obtained by priority rule are
compared with those obtained by ACO-BS to show the extent
that ACO-BS improves the quality of solutions. Next, within
a certain time, solutions to original problem and the reverse
problem are obtained by using ACO-BS for each iteration.
The pheromone values are updated corresponding to the
solutions obtained so as to guide the searching process of
the next iteration. If there is a better solution than S,
(determined by the abovementioned criteria in Section 3.3),
Spsy is updated by a better one.

4.1. Priority Rule. Before assigning tasks, the priority values
of tasks are computed as follows:

m=%+ N )

i=1,...,n (6)
max <i<p |Si| !
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Vv

m=m+1
S={S1, S5, s St} \1/

‘ Stop ’

N’=N; Crem =C; Sn=0

Delete tasks of Sm in N

v

Put tasks which t; < Crem and their
predecessors are assigned in Nay

[T

Sort tasks in N, by priority values

%

Choose a task with the highest
priority value in Nay

v

Delete the chosen task j in N’

Crem= Crem'tj

\2

Put tasks which t; < C o, and their

predecessors are assigned in Ny,

v

Put task j in Sy

FIGURE 1: Flowchart for priority rule.

Starting from the first workstation, put all the tasks in a set N
and set the idle time to be C. |S jI is the number of successors
of task j. Also, tasks whose predecessors have been assigned
are put into the set N,,,,,.. Figure 1 shows the flowchart for
priority rule. The assignment is implemented by the following
steps:

Step 1. Determine the available tasks. Examine tasks in N,
and put all tasks with processing time equal to the idle time
into the available task set N,,, since saturating the time
resource of a workstation is preferable in order to improve
the utilization of resources. If N,, is empty, tasks with no
predecessor and processing time less than the idle time are
put into set N,,.

Step 2. If N, is not empty, choose a task with the highest
priority value from N, (if there is more than one task with
the highest priority value, choose one from them randomly),
and go to Step 3. If the set is empty, go to Step 4.

Step 3. Delete the chosen task from N, set N, and N, to
be ¢, and the idle time will decrease by the processing time of
the assigned task. Go to Step 1.

Step 4. Close the current workstation. If N is not empty, open
a new one and set the cycle time to be C and then go to Step
1; if N is empty, end the procedure.

4.2. ACO-BS Algorithm. There are four steps in the ACO-BS
algorithm. The first step is used to initialize the parameters,
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input an instance

V!

| use PR to find a solution for the instance |

v

| use PR to find a solution for the reverse problem |

v

choose the better one to be Sy

v

initialize all pheromone values to be 0.5

V2

c=0

v

use BS to find solutions for the instance

v

use BS to find solutions for the reverse problem

Yes

N

no new generated

solution?

update pheromone values with S

choose S, from the generated solutions

| P—

compute ¢

V4

update pheromone values with Sy,

\/

Sy is better

V
No ,
Yes

set all pheromone values to be 0.5

CPU time>360
Yes

than S

update Sy with Sy

FIGURE 2: Flowchart for ACO-BS. ¢ denotes the convergence value.

and Steps 2 to 4 are repeated within a certain time. The
flowcharts for ACO-BS and BS are shown in Figures 2 and
3.

Step 1 (initialization). Generate one solution by using the
priority rule described in Section 4.1 for the original problem
and its reverse version. Then two criteria that are introduced
in Section 3.3 are used to choose a better solution, which is
used to initialize the best-so-far solution.

Additionally, the pheromone value is one important
concept in the ant colony algorithm, and it is used to
guide the searching process for good solutions. Let 7; (i =
1,...,UB;j = 1,...n) be the pheromone value between
task j and workstation i, and all the pheromone values are
initialized to be 0.5.

Step 2 (generate solutions from the original problem and
the reverse one respectively by BS). Unlike the priority rule
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Start
No
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No
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put it into Scom

No
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those in Sex

put i™ partial solution in Spar»>and put Ry in

N ext

— renew Spar With min{Big;|S par|} best solutions from Spyy

F1GURE 3: Flowchart for BS.

which is used for task selection, the selection rule here makes
use of the pheromone values and priority values of the tasks.
Unlike the computation of priority values used in priority
rule, the priority values used in ACO-BS are processed as
follows [30] after they are computed using (6):

I_TIj_rlmin+1

1; ,
! Mimax

j=1...,n (7)

where Mmin = mlnlsjsnr]j and Mmax = maXlSanf’]j.

When choosing tasks from the set N,,, the probability
p; that task j is chosen by workstation k is used. Choose a
task by maximizing the probability p; or by roulette-wheel
method is determined randomly with the same probability.

p; is calculated by the summation rule as follows [Choose a
task by maximizing the probability p; or by roulette-wheel
method is determined 29]:

(8)

p. =
! 2geN,, (Zle Tiq) "7!1

Partial solutions are extended by a set of tasks assigned to one
workstation. In order to better illustrate the procedure of the
algorithm, we illustrate the situation for the first workstation
at first, and then the next steps are given.

At first, task assignment for the first workstation is
explored for n,,, times, and the procedure is the similar as
that by priority rule, but task selection rule here contains



pheromone values and the priority values of tasks. Let S,
be the initial empty partial solution set and S,,, be the set
that stores the task sets of the last workstation of all the
partial solutions. For the first workstation, the two sets are the
same. After each exploration, the task assignment for the first
workstation, which is different to those in S,,, and its lower
bound (will be described later) is less than ISbeI, which is the
number of workstations needed in the best-so-far solution, is
putinto S, and S,,;, because the task assignment for the first
workstation is also a partial solution.

After the assignment of the first workstation, there will
be at most 7., partial solutions in S,,,. One partial solution
is picked one time, and then the following steps are repeated
until the partial solution is extend for n,, times (Let m
denotes the workstation which is currently considered; S, =

¢):

(SI) ext = 1; R, = ¢ stores the task set for workstation
m.

(S2) implement task assignment for workstation m,
and get the task set R, for the workstation.

(S3) extend the partial solution considered by the task
set Ry for workstation m. If the extended solution is a
complete solution, go to Step 4, else go to Step 5.

(S4) put the extended partial solution to S,,,, which

stores the complete solutions.

(S5) If the lower bound (described below) of the
workstation needed after the assignment for the
partial solution is less than [S,| and R, is different
from all the factors in S_,, the partial solution will be
putinto S,

com

ext>

(S6) ifext = n,,,, end this procedure; else ext = ext+1
and R, = ¢ and go to Step 2.

There are criteria to select the partial solutions generated, and
only partial solutions which will not lead to solutions worse
than S, can be extended in the next round. When choosing
extensions after filling one workstation, two criteria are used.
First,let N,,, be the set of tasks not assigned according to one
partial solution s, and the lower bound on the workstations
needed is as follows [2]:
> t.
LB, = [—’EZ’W J } (9)
Partial solutions are ranked by increasing the lower bound
defined above. If there are ties after ranking by the first
criterion, our preference goes to partial solutions with less
idle time in the last workstation (further ties are broken
randomly). Finally, for each workstation considered, there
will be min{B,,;4, |S,, |} generated, and B,,; denotes the
width of beam and |S,,| denotes the number of partial
solutions obtained.

This step ends where there is no partial solution that can
be extended. The partial solution set is empty when it is about
to open a new workstation, and the extended partial solution,
which is the complete solution, is put into S

par

com*
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Step 3 (choose the iteration best solution and update
pheromone values). Since in Step 2, if the lower bound for
a partial solution is no less than S|, it is aborted. Thus,
there may be a situation in which there is no solution obtained
in Step 2. If so, the best-so-far solution is used to update the
pheromone values.

If there is a solution obtained in Step 2, an iteration best
solution S;, is chosen with the two criteria introduced in
Section 3.3. S, is then used to update the pheromone values.
Pheromone values 7;; between task j and workstation i (i =
L...,IS4l; j = 1,...,n) are updated. There are two updating
processes, (1) pheromone evaporation, for each 7;; needs to
be updated, and there is (1 — p) - 7;; left after evaporation.
p € (0, 1] is the evaporation rate, assigned as 0.1 in this study.
(2)7;j increases p when task j is assigned to workstation i in
Sib.

When a pheromone value 7; is too small, task j tends
never to be assigned to workstation i; when the value is too
large, task j tends always to be assigned to workstation i.
Consequently, the solution space is small, and this may lead to
bad quality of the solutions generated. Thus, the pheromone
values are restricted to the interval [T, Tl tO prevent
stagnation [32], and 7,,;, = 0.01 and 7, = 0.99.If a
pheromone value is larger than 7, after updating, it will
be replaced by 7,,,,; if the value is smaller than 7, after
updating, it is replaced by 7,

If S, is better than S, ¢ (by using criteria in Section 3.3),
Spsy is updated by S,

Step 4 (calculating the convergence value). After the initial-
ization of the pheromone values in Step 1, the convergence
value is 1. All the pheromone values are initialized to be 0.5
when the convergence value is less than 0.05. According to
Kong et al. [33], pheromone reinitialization is an important
strategy to avoid premature convergence by preventing the
algorithm searching around a local optima continuously with
low effectiveness. The convergence value is calculated as
follows [30]:

convergence

n [Spsrl .
Zj:] Zi:l min {Tmax - Tij’ Tij - Tmin} (10)

= 2 .
n: 'Sbsf ' (Tmax - Tmin)

5. Computational Results

The ACO-BS algorithm was implemented in MATLAB and
was run on all the instances using an Intel Core i7-6700 (3.40
gigahertz) processor, with 32 gigabytes of available memory.
The computation times spent on obtaining the best solutions
and the standard deviations are reported, and all running
time reported is given in CPU time seconds.

5.1. Results of Benchmark Instances of SALBP-I

5.11 Results by ACO-BS. In order to exhibit the superior
performance of the algorithm developed in this paper, we
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tested the algorithm with benchmark instances (SALBP-I)
published on https://assembly-line-balancing.de/.

There are 269 benchmark instances of SALBP-I. Optimal
solutions can be obtained for 170 instances by using the
priority rule only. After ten runs of ACO-BS (360 CPU time
seconds for each run, there are 87 more instances whose
optimal solutions can be obtained by the ACO-BS algorithm.
There are 12 instances whose optimal solutions cannot be
found by ACO-BS (n,,, = 10, B,;; = 20), however, when the
time limit increases, the results are better. For example, for the
instance Warnecke (with task number of 58 and cycle time of
60), the optimal result can be found, with the average solution
found to be 27.7 (standard variation is 0.483); there are three
runs in ten in which the optimal solution can be found, with
the running times of 2931.790, 2687.077, and 3570.333. Of
course, due the increased searching space, the results can
be better when the width of the beam and the number of
extensions increase. However, this will increase the running
time.

Table 1 show the results of the benchmark instances. For
each instance, the given cycle time, best solution ever found,
solution found by priority rule, the best solution found by
ACO-BS, the difference between solution found by priority
rule, and the best solution found by ACO-BS are reported.
Besides, the average and standard variation of solutions found
in ten runs and the running times are also reported. The
running time here is the computational time to find the best
solution by ACO-BS for the first time. We can see from Table 1
that the algorithm performs well in most instances, but there
are some instances that are a little tricky (tricky instances
here refer to those whose optimal results cannot be found
or cannot be found in every run). Such tricky instances are
marked in Table 1. We explore their characteristics in order
to have a better understanding of the complex instances and
lay the foundation for the generation of such tricky instances.

5.1.2. Comparative Results with ACO, Genetic Algorithm, and
Particle Swarm Algorithm. According to the results shown
in Table 1, ACO-BS can achieve significantly better results
than those obtained by the priority rule. However, further
comparative experiments are needed to show the superiority
of ACO-BS. The Ant Colony Optimization (ACO), which
has similar framework with ACO-BS except the beam search
part, Genetic Algorithm (GA) in Leu et al. [26] and Particle
Swarm Optimization (PSO) in Dou et al. [27], are used to
compare with the ACO-BS.

Since ACO-BS begins with a solution obtained by the
priority rule, the other algorithms will also use the priority
rule to get the initial solutions. Specifically, ACO will initialize
the best-so-far solution by the priority rule, and the number
of ants is set to be 20 to compare with ACO-BS which has the
beam width of 20; GA with population size of 50 has initial
solutions obtained by the priority rule and four heuristic
methods in Leu et al. [26] (except the third one in [26]),
and 10 initial solutions are obtained with these five methods
applied to the original problem and the reverse one; PSO
has 30 initial solutions, with 10 obtained the same way as
the 10 initial solutions obtained in GA, and the other initial
solutions are randomly generated. Thus, the best solutions

Differences to optimal solutions

Instances
- ACO-BS - GA
- ACO — PSO

FIGURE 4: Comparison results between ACO, GA, in Leu et al. [26],
and PSO in Dou et al. [27].

found by ACO, GA, and PSO will not be worse than those
found by the priority rule as well. The other parameters in
GA and PSO are the same as those in the corresponding two
published papers.

The numbers of instances that can reach optimal solutions
by ACO, GA, and PSO are 33, 24, and 23, respectively. Figure 4
shows the comparative results between ACO, GA, and PSO
on the 99 benchmark instances whose optimal solutions
cannot be reached by the priority rule. On the x axis are the
99 instances, and on the y axis are the differences between
the best solutions found in 10 runs within 360 CPU time
seconds and the corresponding optimal solutions. For GA
and PSO, the difference between the best solution found and
the corresponding optimal one ranges from 0 to 2. However,
the largest difference between the best solution found by
ACO and the corresponding optimal solution is 1. What is
more, there are significantly more points related to ACO
falling on the x axis, which means that among the three
algorithms considered, ACO has comparatively better ability
in searching solutions for ALBP.

In order to highlight the integration of beam search to
ACO, ACO is compared with ACO-BS. With the increase of
beam width in ACO-BS from 20 to 100, the number of ants
used in ACO is increased to be 100, and the running time
limit is also set to be 720 CPU time seconds. The numbers of
instances whose optimal solutions can be reached by ACO
and ACO-BS are 33 and 87, respectively. The comparative
result is shown in Figure 5. From the points falling on x
axis, we can see that there are many instances, whose optimal
solutions cannot be reached by ACO but they can be reached
by ACO-BS. Thus, with the integration of beam search, ACO-
BS achieves significantly better solutions than those obtained
by ACO. Thus, ACO-BS improves a lot in solving ALBP,
compared with ACO.

Therefore, ACO shows superiority compared with GA
in Leu et al. [26] and PSO in Dou et al. [27], and ACO-BS
improves ACO by integrating beam search in ACO.
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TABLE 1: Results of benchmark instances.

Instances C Optimal Priority rule ACO-BS Difference Solution Running time [s]
avg. std. avg. std.

Arcusl 3786 21 22 21 1 21 0 3.437 0.077
Arcus2 11570 13 14 13 1 13 0 65.417 60.831
Barthol2 84 51 52 51 1 51 0 7.575 0.127
Barthol2 85 50 51 51 0 51T 0 0.254 0.022
Barthol2 87 49 50 49 1 49 0 7.818 0.161
Barthol2 89 48 49 48 1 48 0 8.277 0.182
Barthol2 91 47 48 47 % 1 47 0 8.333 0.257
Barthol2 93 46 47 46+ 1 46 0 8.034 0.201
Barthol2 95 45 46 45 1 45 0 8.193 0.153
Barthol2 97 44 45 44 % 1 44 0 8.013 0.175
Barthol2 99 43 44 43 % 1 43 0 9.656 3.344
Barthol2 101 42 43 42 % 1 42 0 11.605 7.768
Barthol2 104 41 42 41% 1 41 0 8.338 0.182
Barthol2 106 40 41 40 1 40 0 10.094 3.506
Barthol2 109 39 40 39 1 39 0 8.675 0.203
Barthol2 112 38 39 38 1 38 0 8.583 0.197
Barthol2 115 37 38 37 1 37 0 8.758 0.174
Barthol2 118 36 37 36 1 36 0 8.864 0.127
Barthol2 121 35 36 35 1 35 0 11.590 4.274
Barthol2 125 34 35 34 1 34 0 8.886 0.153
Barthol2 129 33 34 33 1 33 0 9.145 0.144
Barthol2 133 32 33 32 1 32 0 9.107 0.175
Barthol2 137 31 32 31 1 31 0 9.190 0.115
Barthol2 146 29 30 29 1 29 0 10.081 2.874
Barthol2 152 28 29 28 1 28 0 9.309 0.130
Barthol2 157 27 28 27 % 1 27 0 9.233 0.117
Barthol2 163 26 27 26 1 26 0 9.232 0.118
Barthol2 170 25 26 25% 1 25 0 9.306 0.109
Barthold 403 14 15 14 1 14 0 8.093 0.255
Barthold 434 13 14 13 1 13 0 8.597 0.108
Barthold 470 12 13 123 1 12 0 8.691 0.130
Barthold 513 1 12 11 1 1 0 8.618 0.131
Barthold 626 9 10 PES 1 9 0 8.423 0.103
Buxey 41 8 8 1 8 0 0.812 0.014
Buxey 47 7 8 7 % 1 7 0 16.977 4.762
Gunther 54 9 10 PR 1 9 0 1.035 0.011
Heskiaoff 205 5 6 5% 1 5 0 1.050 0.031
Jackson 10 5 6 5% 1 5 0 0.081 0.015
Kilbridge 69 8 9 8x 1 8 0 1.784 0.065
Kilbridge 79 7 8 Ve 1 7 0 1.758 0.022
Kilbridge 92 6 7 6% 1 6 0 1.736 0.050
Kilbridge 138 4 5 4% 1 4 0 1.567 0.035
Lutz2 1 49 50 49 1 49 0 8.561 6.649
Lutz2 12 44 47 44 % 3 4457 0.527 99.253 84.952
Lutz2 13 40 42 40 2 40 0 7149 6.477
Lutz2 14 37 38 37 1 37.77 0.483 61.574 105.705
Lutz2 15 34 35 34 1 34 0 7.567 4.152
Lutz2 16 31 33 31 2 31 0 8.813 5.541
Lutz2 17 29 30 29 1 29 0 14.619 6.265
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TaBLE 1: Continued.
Instances C Optimal Priority rule ACO-BS Difference Solution Running time s]
avg. std. avg. std.
Lutz2 18 28 29 28 1 28 0 27.185 11.602
Lutz2 19 26 27 26 1 26 0 8.493 5.250
Lutz2 20 25 26 25% 1 25 0 2.688 0.081
Lutz2 21 24 25 24 % 1 24 0 2.748 0.078
Lutz3 110 15 16 15% 1 15.87 0.422 31.939 42.531
Lutz3 118 14 15 14 1 14.47 0.516 82.378 107.850
Mansoor 62 3 4 3% 1 3 0 0.130 0.007
Mukherje 201 22 23 22 1 22 0 4.698 0.094
Sawyer 41 8 1 8 0 0.959 0.020
Sawyer 47 8 7 % 1 717 0.316 225.300 145.082
Tonge 251 14 15 14 1 14.77 0.483 17.315 36.100
Tonge 320 1 12 11 1 1 0 3.575 0.079
Warnecke 54 31 32 31 1 31 0 50.685 47.707
Warnecke 56 29 30 29 1 29 0 20.740 14.768
Warnecke 60 27 29 28 1 28T 0 7.998 5.720
Warnecke 62 27 28 27 % 1 27 0 21.701 16.420
Warnecke 65 25 27 25% 1 25 0 4.152 2.172
Warnecke 68 24 25 24 % 1 24 0 13.874 11.894
Warnecke 71 23 24 23 1 23 0 14.076 13.767
Warnecke 82 20 21 20 1 20 0 3.393 2.080
Warnecke 92 17 18 17 1 17 0 4.433 3.124
Warnecke 104 15 16 15% 1 15 0 2.266 0.037
Warnecke 11 14 15 14 1 14 0 3.053 1.544
Wee-mag 30 62 63 62 1 62 0 6.444 2.356
Wee-mag 46 34 35 34x% 1 34 0 8.894 6.803
Wee-mag 47 32 33 33 0 337 0 10.019 5.176
Wee-mag 52 31 32 31 1 31 0 4.056 0.040
Wee-mag 56 30 31 30 1 30 0 4.113 0.034
Scholl 1394 50 51 51 0 517 0 7.531 9.124
Scholl 1452 48 49 48 1 48.97 0.316 24.050 7363
Scholl 1483 47 48 48 0 48" 0 12.256 19.041
Scholl 1515 46 47 47 0 47" 0 13.600 10.953
Scholl 1584 44 45 44 % 1 4497 0.316 75.227 118.097
Scholl 1659 42 43 43 0 43T 0 3.568 0.032
Scholl 1742 40 41 40 1 40.8° 0.422 47.947 66.518
Scholl 1787 39 40 39 1 39.87 0.422 174.619 130.467
Scholl 1834 38 39 38 1 38.27 0.422 200.751 111.410
Scholl 1883 37 38 38 0 38T 0 149.149 160.662
Scholl 1935 36 37 37 0 377 0 185.443 149.573
Scholl 1991 35 36 35x% 1 35.17 0.316 200.308 113.994
Scholl 2049 34 35 35 0 357 0 45.256 18.299
Scholl 2111 33 34 34 0 34T 0 50.165 74.052
Scholl 2177 32 33 32 1 327" 0.483 156.656 103.493
Scholl 2247 31 32 32 0 327 0 47580 24.497
Scholl 2322 30 31 30 1 30.9" 0.316 75.187 89.942
Scholl 2402 29 30 29 1 29.4F 0.516 141.810 110.054
Scholl 2488 28 29 28 1 28.77 0.483 60.101 69.595
Scholl 2580 27 28 27 % 1 27.27 0.422 142.472 102.649
Scholl 2680 26 27 26 1 26 0 35.804 16.163
Scholl 2787 25 26 25% 1 25 0 49.832 28.863

Note. xindicates that an optimal solution is found; Theside the average of solution indicates trickiness.



12 Mathematical Problems in Engineering
TaBLE 2: Characteristics of tricky instances.

Instances C Sum Mean Var timin tmax TV tmin/C tmax/C Mean/C (O

Barthol2 85 4234 28.608 356.716 1 83 83 0.012 0.977 0.337 0.258
Lutz2 12 485 5.449 8.205 1 10 10 0.083 0.833 0.454 0.776
Lutz2 14 485 5.449 8.205 1 10 10 0.071 0.714 0.389 0.776
Lutz3 110 1644 18.472 184.525 1 74 74 0.009 0.673 0.168 0.776
Lutz3 118 1644 18.472 184.525 1 74 74 0.009 0.627 0.157 0.776
Sawyer 47 324 10.800 36.855 1 25 25 0.021 0.532 0.230 0.448
Tonge 251 3510 50.143 1505.400 1 156 156 0.004 0.622 0.200 0.200
Warnecke 60 1548 26.690 206.077 7 53 7.571 0.117 0.883 0.445 0.591
Wee-mag 47 1499 19.987 46.419 2 27 13.5 0.043 0.575 0.425 0.227
Scholl 1394 69655 234.529 38911.047 5 1386 2772 0.004 0.994 0.168 0.582
Scholl 2247 69655 234.529 38911.047 5 1386 277.2 0.002 0.617 0.104 0.582

Note. For instances of Scholl, only the statistical information of tricky instances with the smallest and largest cycle time is reported in order to show the tendency
character of the problem; “Sum” in the second column is the sum of processing times; and “t,,;,” and “t,,,,” denote the minimum and maximum task time,

respectively.
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FIGURE 5: Comparative results between ACO and ACO-BS.

5.2. Results of Randomly Generated Instances. According to
Scholl [34], the following three indicators can be used to
measure the complexity of the ALBP instances:

Order Strength (OS): OS is defined as the number of
arcs in the transitive closure of the precedence graph divided
by n - (n — 1)/2, that is, the maximal number of arcs in an
acyclic graph with n nodes. The middle values of OS seem
to be harder than the low or high order strength values [35].
Nevertheless, when OS is 1 there is only one task sequence
feasible; when OS is 0, SALBP-I becomes the bin packing
problem, which is also NP-hard [34].

Time Variability (TV): TV is measure by ¢, /¢ ,.:,» which
reflects the time structure of one instance. t.,, and ;.
denote the longest and shortest processing time, respectively.
A smaller TV suggests a higher complexity.

Time Interval (TI): The interval is defined as
[tmin/C> tmax/Cl,  which indicate the relation between
the cycle time and the processing times. Instances with a
time interval that is small and near to the right border of
[0, 1] is expected to be relatively complicated.

Thus, we consider OS, TV, and time interval to measure
the complexity of instances. We can see from Table 2 that the
minimum processing time tends to be quite small (usually 1,
with 5 and 7 as larger values). The OS seems to be around 0.2,
0.6, and 0.8. The smallest TV is 7.571, while the largest one can
be 277.2. Additionally, the ratio of the minimum processing
time to cycle time tends to be less than 0.1, and the maximum
processing time ranges from 0.5 to a figure that is close to 1.
The ratio of mean processing time to cycle time varies from
0.157 to 0.445. The minimum variation of processing time is
8.205; however, the largest is approximately 5000 times the
minimum one.

Finally, we choose OS and TV as the main measurements
for the tricky level of instances, and set three levels of OS (0.2,
0.6, and 0.9) and three levels of TV (5-15, 65-75, and 135-145).
We pay attention to the minimum processing time, and give
priority to the instance with a smaller minimum processing
time. As we want to explore the larger scale instance, we
choose the problem size to be 400. As the tricky level and the
problem size level are high, we enlarge the time limit of one
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TABLE 3

(a) Statistical description of precedence graphs of random instances.

OSlevel OS  Number of stages Number Of beginning nodes  Number Of ending nodes  Number of pairs precedence relations
0.2 0.208 40 3 2 551
0.6 0.607 40 3 4 862
0.9 0.904 50 2 7 1079
(b) Statistical description of processing times of random instances.
Statistical information for processing times Information for normal distributions used
TV level Mean Var timin nax TV tmin/C tmax/C Type mean std.
253.902 5899.542 35 457 13.057 0.035 0.457 Bottom 250 80
5-15 501.938 22247106 63 855 13.572 0.063 0.855 central 500 150
825.698 19925.720 69 999 14.478 0.069 0.999 bimodal 250 (750) 100 (250)
251.145 6878.485 8 539 67.375 0.008 0.539 Bottom 250 80
65-75 502.035 21738.550 14 985 70.357 0.014 0.985 central 500 150
816.795 23440.324 14 999 71.357 0.014 0.999 bimodal 250 (750) 100 (250)
253.125 6818.070 4 577 144.25 0.004 0.577 Bottom 250 80
135-145 500.297 25632.059 7 978 139.714 0.007 0.978 central 500 150
832.472 19895.062 7 999 142.714 0.007 0.999 bimodal 250 (750) 100 (250)

Note. Figures in the brackets of last two columns are means and standard deviations of one normal distribution, which is used to generate a bimodal distribution.

run from 360 CPU time seconds to 720 CPU time seconds
and the width of beam increases to be 100 and the number of
extensions increases to 30.

5.2.1. Generation of Random Instances. The random instances
generation consists two parts: arc generation and task times
generation.

Arc generation: According to Otto et al. [36], the con-
cept of stages allows for a direct manipulation of stages
characteristics. Following Otto et al. [36] and Kolisch et
al. [37], we use three steps to generate precedence arcs.
Firstly, the average number of tasks per stage is selected, and
then the number of tasks per stage is generated following
a truncated normal distribution (that is, the number is
generated following a normal distribution iteratively until the
number is no less than 1). Next, each beginning node (nodes
have no predecessor) is assigned one successor, and each
other node is assigned one predecessor. After assignments
for all the nodes, one successor is chosen randomly for those
having no successor. Finally, the second step is repeated until
the expected complexity is reached.

During the abovementioned procedure, the following
aspects should be taken into account. First, there should be
redundant arcs. According to Kolisch et al. [37], let N =
(V, A) be a network with node set V and arc set A, and an arc
(ig, i) is called redundant if there are arcs (i, i,),. . ., (i;_;, i) €
A and s > 2. Second, predecessors and successors of nodes
can only be chosen from the previous stage and the next stage,
respectively. Last, tasks are always considered in the order
of increasing order, and the added precedence relationships
follow the topological rule.

Task times generation: Kilbridge and Wester [38] found
that task times usually follow a unimodal or a bimodal
distribution. Following Morrison et al. [35], processing times

of tasks are generated randomly according to some pre-
specified normal distribution. Three kinds of task times are
used: peak at the bottom: tasks times are drawn from a
normal distribution with the mean centered around small
times; peak in the middle: task times are drawn from a normal
distribution with the mean of C/2; bimodal: task times are
drawn from a combination of two normal distribution with
means centered around small and large times.

Besides, task times are rounded to the next integer and
possible rounding effects are compensated by setting the
default cycle time to 1000, which is large enough to allow
flexible time structures [36].

5.2.2. Results of Randomly Generated Instances. Tables 3(a)
and 3(b) show the statistical description of the precedence
graph and processing times of randomly generated instances,
respectively. For the OS levels of 0.2 and 0.4, the number of
stages is 40, while for the OS level of 0.9, the number of stages
is 50. The number of stages is tuned by hand, and we find that
when the number of stages is large, the number of iterations
to add arcs so as to increase OS is less.

As to processing times, there are three types of distribu-
tion to generate the processing times for each TV level and the
three TV values for one TV level are close in order to control
the impact of TV, if impacts of OS or distribution types of
processing times are expected to be examined.

Surprisingly, the solutions found by PR are the same with
those found by ACO. The column of difference refers to the
differences between the solutions obtained by priority rule
and those obtained by ACO-BS, and this can indicate the
extent to which ACO-BS improves the quality of solutions.
Figure 6 shows the comparative results of ACO and ACO-
BS. For 11 instances, the solutions found by ACO are the same
with those by ACO-BS, while for the other 16 instances, there
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FIGURE 6: Comparative results between ACO and ACO-BS on 27 randomly generated instances.

are significant improvements in solution quality by ACO-BS
compared with ACO.

We can see from Table 4 that the most significant
tendency is that instances whose processing times follow
the bimodal distribution are more difficult, consistent with
Morrison et al. [35], since for all OS levels, there are 11
instances where there is no improvement after using ACO-
BS with the time limit of 720 CPU time seconds, with solution
quality of only one such kind of instance improved (OS level
is 0.2, TV level is 135-145). Besides, there are two instances
where there is no improvement on solution quality, with
OS levels of 0.6 and 0.9 respectively and TV levels of 5-15
and 65-75, respectively. However, the similarity is that their
processing times are generated following the distribution
peak in the middle.

As to the standard deviation of the solutions obtained and
improved by ACO-BS, it seems that the standard deviations
for instances with processing times generated following the
normal distribution (peaking at the bottom) tend to be 0.
This implies that these kinds of instances are easiest to be
solved.

Although the time limit to run ACO-BS is not quite large,
some tendencies have already been shown. This can be useful
to explore the characteristics of large scale instances.

6. Conclusions

A method based on the priority rule is used at first to generate
the first best so far solution. After using this method once on
the original problem and the reverse problem respectively,
63.20% of the total benchmark instances can reach the
optimal results. Based on the best so far solution obtained by
priority rule, ACO-BS searches for larger solution space in
order to reach more optimal results. After ten runs (360 CPU
time seconds for each run), 95.54% of the total benchmark
instances can reach the optimal results. What is more, these
results are better when increases in the width of the beam or

the number of extensions are allowed, or by increasing the
time limit for one run. We can conclude that the algorithm of
ACO-BS is good in solving SALBP-L.

Premature convergence is a challenging problem for
ACO, and several strategies are used to deal with this
problem. First, the pheromone values are restricted to the
interval of [0.01, 0.99] to prevent stagnation, so that there will
not be too large pheromone values that some tasks tend to be
assigned to the same workstation, and there will not be too
small pheromone values that some tasks tend to avoid being
assigned to a workstation. Thus, stagnation can be prevented
[32]. Also, there is an evaporation process when update the
pheromone values, so it is discouraged to assign one task
to the same position. Second, when choosing task from the
available task set, the probability that each task in the set is
chosen will be calculated. But with equal probability, one task
will be chosen from the set by maximizing the probability,
or by the roulette-wheel method. Thus, in this way, tasks
with a higher probability have a larger chance to be selected,
but tasks with a lower probability still have chances to be
selected. Third, the convergence value is calculated in every
iteration. Since the pheromone values are initialized to be
0.5, the convergence value is 1 at the beginning. When all the
pheromone values are close to 0.99 or 0.01, the convergence
value will be close to zero. The pheromone values will be
reinitialized to be 0.5 when the convergence value is less
than 0.05, and this will prevent the stagnation [33]. Therefore,
the strategies above always try to search for alternative
solutions rather than staying at the stagnation state. The
good results of ACO-BS compared with the results of ACO,
GA, and PSO also demonstrate that the algorithm has the
ability of jump out of local optimum and prevent premature
convergence.

With the development of the manufacturing industry and
the transformation from mass production to customization,
assembly of complex products within an acceptable period
has become urgent. Thus, we are concerned more about large



Mathematical Problems in Engineering 15
TABLE 4: Results of randomly generated instances.
OSlevel TV level Type PRIACO  ACO-BS Difference Solution Running time [s]
avg. std. avg. std.
5-15 bottom 106 102 4 102 0 466.411 10.825
65-75 bottom 105 101 4 101 0 569.084 2.131
135-145 bottom 105 102 3 102 0 559.794 6.917
5-15 middle 217 214 3 215 1 466.249 318.705
0.2 65-75 middle 216 215 1 215.4 0.548 369.356 155.936
135-145 middle 217 213 4 213.8 1.304 305.772 106.824
5-15 bimodal 388 388 0 388 0 14.027 0.055
65-75 bimodal 382 382 0 382 0 13.947 0.067
135-145 bimodal 390 389 1 389.6 0.548 1048.546 946.530
5-15 bottom 105 102 3 102 0 535.052 2.433
65-75 bottom 104 101 3 101 0 546.670 5.939
135-145 bottom 106 102 4 102 0 535.687 4.069
5-15 middle 218 218 0 218 0 111.478 133.562
0.6 65-75 middle 220 217 3 217.6 0.548 435.175 135.772
135-145 middle 215 214 1 214.8 0.447 452.758 102.803
5-15 bimodal 388 388 0 388 0 12.368 0.929
65-75 bimodal 382 382 0 382 0 13.208 1.178
135-145 bimodal 390 390 0 390 0 12.976 1.496
5-15 bottom 108 102 6 102.8 0.447 543.545 236.263
65-75 bottom 106 101 5 101 0 482.360 115.202
135-145 bottom 107 102 5 102 0 275.540 1.023
5-15 middle 232 228 4 230.2 1.643 558.983 261.882
0.9 65-75 middle 232 232 0 232 0 14.075 0.045
135-145 middle 229 228 1 228.8 0.447 264.277 348.637
5-15 bimodal 389 389 0 389 0 14.141 0.0592
65-75 bimodal 387 387 0 387 0 1343.375 743.422
135-145 bimodal 394 394 0 394 0 13.1387 1.227

scale ALBP in this study. In order to further examine the
performance of the algorithm in more complicated instances,
we generate large scale SALBP-I instances randomly and
explore solutions for them with ACO-BS. OS and TV are
chosen to measure the complexity of the random instances.
Compared with solutions obtained by priority rule, there are
significant improvements in the quality of the best solutions
after applying ACO-BS, which shows that ACO-BS is efficient
for small scale instances as well as large scale instances.
Therefore, ACO-BS is a promising tool for solving SALBP-I,
especially for those of complex products.

We browse further improvements, based on the current
ACO-BS, since there are a number of extensions for the
assignment of the workstation considered and the algorithm
can be greatly improved by parallel computing. When taking
advantage of this parallel feature, the algorithm will be able to
perform better.

Data Availability

All the benchmark instances (SALBP-I) used in this study can
be found on https://assembly-line-balancing.de/.
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