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Summary 
A telemetry buoy is a standalone device used to receive acoustic pulse-position modulated 
signals from digital tags attached to fish. The buoy is submerged in the sea and will store any 
valid signals from tagged fish. The received information typically includes an ID and can 
include information such as salinity level, depth, temperature, acceleration data and more. The 
goal of this master thesis was to design and validate a system for a low power telemetry buoy 
which utilizes digital signal processing.  
 
This thesis is a continuance of the work, done by the same author, in the project described in 
Acoustic telemetry buoy project report [4]. The goal of the previous project was to answer the 
question ”is it possible to design a low power acoustic telemetry buoy which satisfies at least 

one year operation and 100 000 stored receptions based on digital signal processing?”. The 
conclusion was that it should be possible to design as system which meets the requirements 
using the UC3B microcontroller. In addition it is recommended to design an external 
reception detector to wake up the microcontroller and initiate reception. 
 
While the previous project focused on the digital part of the system the master thesis focuses 
on designing a complete system. The main building blocks that have been designed are 

� Variable gain amplifier 
� Active analogue band pass filter 
� Reception detector 
� MCU with external flash 

 
Several design concepts have been discussed for each block whereas one complete system 
prototype have been fully designed, assembled and tested. The system has been proved to 
work by successfully receiving signals from a standard Thelma fish tag. 
 
The prototype has been thoroughly tested and adjustments to improve performance have been 
suggested. One of the most important criteria is low power consumption and the minimum of 
one year operation. Current measurements and energy consumption calculations conclude 
with an expected operation time of 1.51 years. Calculations show that the expected operating 
time is further increased to 2.21 years if the new Atmel AT32UC3L microcontroller is used in 
the final design. The design fulfils the other provided requirements with good margin. 
 
The final conclusion is therefore that the system design provided in this report, together with 
the suggested improvements and the UC3L microcontroller, provides Thelma with a good 
basis for developing the leading standalone ultra low power acoustic telemetry buoy on the 
market. 
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1. Introduction 
This chapter describes the project definition with associated prototype requirements as well as 
the background for the project. Furthermore a short summary of the results of the previous 
acoustic telemetry buoy project is provided in section 1.3 followed by a short summary of the 
similar products available.  

1.1 Project definition 

The goal of this master thesis is to design and validate a system for a low power telemetry 
buoy which utilizes digital signal processing and fulfils the requirements specified in the 
following. 
 
The telemetry receiver should meet the following specifications: 

• Store at least 100 000 receptions with individual time stamps 
• Operating time of at least one year using one D-cell Tadiran 19Ah lithium battery [23] 
• Handle acoustic receptions of modulated signals with carrier frequencies ranging from 

60 kHz – 80 kHz. 
 
In addition to the specifications it is desired to have the following features: 

• High level of digital control to create a versatile and easy modifiable product 
• Possibility to support new forms of modulation schemes without hardware 

modifications 
 

1.2 Background 

A telemetry buoy is a standalone device used to receive acoustic pulse-position modulated 
signals from digital tags attached to fish. The buoy is submerged in the sea and will store any 
valid signals from tagged fish. The received information typically includes an ID and can 
include information such as salinity level, depth, temperature, acceleration data and more. 
 
Automatic receiver buoys play an important role for the applicability of acoustic telemetry in 
large scale studies of fish and other species’ behaviour in the ocean. The placement of several 
telemetry buoys in strategic positions provides the ability to monitor behavioural patterns for 
long periods of time.  
 
At the time of writing Thelma AS has a manual operated telemetry receiver. This is used to 
manually observe tagged fish for research purposes. In many situations it is neither practical 
nor possible to have people operating such a device. This is typically research where records 
are done in a period of several weeks or months. It is desired to have a stand-alone device that 
can be left for a longer period of time that records the presence of tagged fish. Some solutions 
exist, but the device must typically be fetched to retrieve the recorded information. Thelma 
wishes to develop their own product with improved performance compared to the competing 
products, and the ability to add more user friendly data retrieval through GSM 
communication.  
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1.3 Earlier work 

This master thesis is a continuance of the work, done by the same author, in the project 
described in Acoustic telemetry buoy project report [4]. This section provides a short summary 
of the key observations made in the project. The complete report is found in appendix C. 
 
The goal of the previous project was to answer the question ”is it possible to design a low 

power acoustic telemetry buoy which satisfies at least one year operation and 100 000 stored 

receptions based on digital signal processing?”  

 
The conclusion reads: 
“The final conclusion is therefore that the AT32UC3B microcontroller should be used for 

further design. With this controller it should be possible to design an acoustic telemetry buoy 

that meets the requirements given in section 1.1. If a good external trigger for reception can 

be constructed this will provide the lowest energy consumption. The system should though 

incorporate digital filtration to allow compatibility with various frequencies and modulation 

schemes.” 

 
In addition to the final conclusion several forms of modulation schemes where discussed. The 
most important observations with respect to modulation are quoted below: 
 
“Kilfoyle and Baggeroer states in an IEEE report [8] that the frequency content of an 

underwater telemetry signal remains largely contained within its original band whereas the 

amplitude and phase of the signal can vary widely in both time and space. This observation 

naturally concludes that modulation schemes using pulse position or frequency are of the 

most interest.” 

 

“For acoustic telemetry this modulation form can provide a higher throughput than PPM due 

to its better immunity against multipath distortion if the same frequency is not repeated too 

frequently. It will not add much complexity for the fish tag, but the receiver must be able to 

separate the different frequencies which will add complexity to the digital or analogue signal 

processing.” 

 

The battery to be used is specified in section 1.1 is also studied and it is shown that to be able 
to utilize the battery the system must operate at a voltage area of 2 – 3.7V. Even with this 
requirement the total capacity of the battery is reduced to about 13Ah resulting in an 
estimated total energy of 163800 J which leads to a maximum average current consumption of 
1.48 mA for the complete system. 
 

1.4 Available solutions 

There are currently two other vendors of telemetry buoys; VEMCO and SONOTRONICS. 
The latest telemetry buoy from each vendor is the VR2W and the SUR respectively. The 
following will provide a short description of these products. 
 
VR2W 
The VEMCO produced VR2W have the following features: 

• 8 MB of memory 
• 1 000 000 detections 
• 15 months operating time 
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• Receiver frequency: 69.0 kHz 
• Bluetooth communication 
• Real time clock 

 
 

 

 

SUR – Submersible Ultrasonic Receiver 
The SONOTRONICS produced SUR have the following features: 

• 1 MB flash memory 
• 100 000 detections 
• 7-12 months operating time using two batteries 
• 15 selectable frequencies ranging 30 kHz – 150 kHz 
• RS-232 communication 
• Real time clock 
• Ping and response function to check if the SUR have any data 

 
Note that the SUR will not listen to all 15 frequencies at the same time. It will listen for a 
particular frequency for two seconds, then it will power down for one second, power up and 
listen to the next frequency. In addition a one second delay is added after all 15 frequencies 
have been scanned. As a result a particular frequency will be checked every 46 seconds. With 
these delays the receiver will have an operating time of seven months. It is possible to 
increase the delays to achieve up to twelve months operating time.  
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2. Design principles 
This chapter covers the hardware and software design techniques and principles used to 
design the acoustic telemetry buoy.  
 

2.1 Undersampling 

The most common form of digitizing an analogue signal is sampling according to the Nyquist 
theorem in equation (2.1). 
 max2

s
f f> ⋅  (2.1) 

Where 
fs is the sampling frequency 
fmax is the highest frequency of the analogue signal 
 
To avoid violating the theorem a low-pass filter must be used as in Figure 2-1. 
 

 
Figure 2-1 - Nyquist sampling with low pass filtration 

 
If the criteria in (2.1) is violated aliasing will occur. Aliasing refers to an effect that causes 
different continuous signals to be indistinguishable when sampled. As an example a 100 Hz 
sinusoidal signal is sampled with a sampling frequency fs = 80 Hz. The resulting sampled 
signal is illustrated in Figure 2-2. Notice that when the 100 Hz sinusoidal is sampled, the 
result is a 20 Hz sinusoidal. It is therefore not possible to distinguish the alias of the 100 Hz 
signal from an original 20 Hz signal. 
 

 
Figure 2-2 - Aliasing example, adapted from [3] 

 
If all other frequencies are removed by a filter as in Figure 2-3, we can utilize the alias. 
Knowing that no frequencies outside the area [ ]80 ,120f Hz Hz∈ will occur we know that the 

20Hz digitized signal must originate from a 100 kHz analogue signal. This technique is 
known as undersampling or band pass sampling. 
 

 
Figure 2-3 Undersampling with band pass filtration 
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According to undersampling theory [4], if the sampling rate fs satisfies (2.2), the original 
signal can be reconstructed without any loss.  
 

 
2 2

1
H L

s

f f
f

k k
≤ ≤

−
 (2.2) 

Where k is an integer satisfying 

 1 H

H L

f
k

f f

 
≤ ≤  

− 
 (2.3) 

Where  

fs is the sampling frequency 

fh is the highest frequency component of the signal 

fl is the lowest frequency component of the signal 

 
Since a lower frequency is used over the same period of time without loss of information the 
result is fewer samples and therefore a more power efficient solution. The signal to noise ratio 
(SNR) typically decreases when reducing the number of samples, but since the band pass 
filter also reduces the bandwidth of the noise the SNR remains unchanged. 
 
When receiving acoustic signals from fish tags, not all frequencies are of interest. As 
specified the section 1.1, only frequencies [ ]60 ,80f kHz kHz∈  are relevant. Assuming that a 

band pass filter as in Figure 2-3 removes all other frequencies we can calculate the valid 
values of k: 
 

 

3

3

80 10
1

60 10

1 4

k

k

 ⋅
≤ ≤  

⋅ 

≤ ≤

 (2.4) 

 
By using (2.2) the valid sample frequencies that do not produce overlapping of aliases are: 
 
Table 2-1 - Valid sample frequencies 

k lowest fs [Hz] highest fs [Hz] 

1 160000 ∞ 

2 80000 120000 

3 53333,33333 60000 

4 40000 40000 

 
Notice that k = 1 provides the more common Nyquist frequency and k = 4 is the absolute 
minimum undersampling frequency where 2

s
f B= ⋅ . By using a sampling frequency of 40 

kHz the frequency aliases will occur as shown in Figure 2-4. 

 
Figure 2-4 - Frequency spectrum when undersampling with fs = 40 kHz 
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Notice that both the negative and the positive frequency components are aliased. When 
undersampling, the frequency band will be aliased with an offset equal to the sampling 
frequency. The band is drawn with an incline with increasing frequency. The dotted lines are 
the resulting aliases. When using fs = 40 kHz we get the inverse frequency band in 0-20 kHz 
since this is an alias of the negative frequency band. This will not present a problem as long as 
it is compensated for in software. 
 
The latter example results in frequency bands with no separation. This will in theory require 
an optimal band pass filter to avoid aliasing. Some aliasing may still be permitted as long as 
this only contains signal levels below the noise floor and/or signals below the dynamic range 
of the ADC. Choosing a sampling frequency fs = 58 kHz will provide more separation as 
shown in Figure 2-5. Some of the original frequencies will occur at two aliased frequencies, 
but since they don’t overlap they can be removed using a digital filter. 

 
Figure 2-5 – Frequency spectrum when undersampling with fs = 58 kHz 

 

2.2 General low-power design considerations 

In addition to choosing the component with the lowest power consumption there are several 
other factors that must be taken into consideration. The highest level of integration usually 
results in the lowest power consumption. In an embedded system this often means choosing a 
microcontroller with many of the needed features inbuilt. Connecting “components” in an 
internal circuit instead of on a PCB will in most cases result in less leakage, provide the 
possibility of running the components closer to the voltage limits and a higher grade of 
optimization.  
 
The most fundamental low-power requirement for any embedded system is that the system 
must be interrupt driven. This will allow the processor to sleep whenever the CPU is not 
needed for computation. Delay routines of the type 
for(int i = 0; i < 200; i++){ 
//do nothing 
} 
are therefore strongly prohibited in a low-power application. The solution is to use a timer 
with an associated interrupt to wake the processor when the delay has expired. Modules that 
can relieve the CPU will also contribute to more time in sleep modes. This can for instance be 
a communication module, DMA controller, timer, etc. 
 
Computation prohibits the CPU or MCU from being in a sleep mode. It is therefore vital that 
the computation time is at a minimum. This requires not only a high frequency and a powerful 
CPU instruction set, but that the program is constructed and optimized for the specific CPU. 
To achieve this, great knowledge about the instruction set and the compiler is required. 
Optimization settings for the compiler must be set, but without knowledge about the CPU the 
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program will never be optimal. An example is using floating-point numbers on a CPU without 
hardware support for this. All computation will therefore have to be done in software which 
will lead to a large increase in computation time. 
 
Oscillators will also contribute to the overall power consumption. The designer must not only 
consider the frequency, but also the type of oscillator. The typical oscillators are internal RC 
oscillator, external clock, external crystal and external resonator. Factors that must be 
considered are 

• Power consumption  
• Start-up time 
• Stability (jitter) 
• Accuracy 

 
Studying for instance the XMEGA manual [25] we find that the internal RC oscillator has the 
shortest start-up time and is for many microcontrollers the oscillator that requires the least 
amount of power. The downsides are that an RC oscillator typically will be more inaccurate 
and have a grater amount of jitter. 
 
Since a real-time clock often is required in an embedded system many microcontrollers 
feature an ultralow-power, low frequency oscillator designed especially for 32.768 kHz quartz 
crystals. The low frequency usually excludes the possibility of using this oscillator as a 
system clock. On AVR and AVR32 microcontrollers it can though be used as reference to do 
runtime calibration of the internal RC oscillator to achieve greater accuracy. 
 
Most microcontrollers have the ability of connecting an external crystal, external clocks are 
therefore seldom used. The external clock option can though be used if there are several other 
devices that require an oscillator. The devices can then share the same clock.  
 
Unwanted oscillations may also contribute to an increase in power consumption. It is 
therefore important to use appropriate decoupling and insure a stable digital level on unused 
inputs. A high input resistance is also important to ensure that a minimum of current is 
consumed.  
 

2.3 Specific power consumption considerations 

This section describes considerations, specified by the manufacturer, for minimizing power 
consumption in a microcontroller. The devices studied are limited to Atmel AVR XMEGA, 
Atmel AVR32 UC3 and Texas Instruments MSP430. 
 
Sleep modes enables the microcontroller to shut down unused modules to save power. When 
the device enters sleep mode, program execution is stopped. Interrupts or reset is used to wake 
the device again. Moreover, the individual clock to unused peripherals can be stopped during 
normal operation to save power. 
 
The wake-up time for the device is dependent on the sleep mode and the frequency of the 
main clock source. The start-up time for the system clock source must be added to the wake-
up time for sleep modes where the clock source is stopped. The ability to get into and out of 
the low-power modes and process data quickly is crucial because current is wasted by the 
CPU waiting for the clock to become stable [24]. Some MCUs have a two-stage clock wake-
up providing a low-frequency clock to the CPU while a high-frequency clock is being 
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stabilized. On these devices the CPU may be operational in a short time, but running 
inefficient due to the low frequency. 
 
For the XMEGA [25] the power reduction register provides a method to stop the clock to 
individual peripherals.  This can be used in sleep modes to reduce overall power consumption 
significantly. On some Texas Instruments devices [24] the peripherals have the ability to  
disable themselves automatically when not in use. For more complex devices like the AVR32 
UC3 [26] the ability to control the clock is at a much more detailed level. The synchronous 
clock generator can adjust the performance of the system, according to the current 
requirements, by switching between three different clock sources; internal RC-oscillator, 
PLL0 and oscillator0. Depending on the developers design it may be better to scale the clock 
instead of switching the source. This can be done in most MCUs “on-the-fly”. In addition to 
scaling and switching the synchronous clock for the CPU, the clock for each of the internal 
buses can be scaled down when the bus is not utilized completely. The DMA controller 
allows the bus to work at a different speed then the CPU. Hence having a DMA can lower the 
power consumption both in active and sleep mode [24]. 
 
Leakage current is sometimes overlooked when choosing a low-power MCU, but it must be 
considered for the most demanding low-power applications [24]. For the UC3 [26] all pins 
that are not connected externally to pull-ups, pull-downs, ground or power should be left as 
inputs, but with the internal pull-up enabled. This will ensure a stable digital level while 
reducing the input current with the internal resistor and thereby ensure the lowest possible 
power consumption 
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3. System overview 
As described in section 1.3 the project report Acoustic telemetry buoy [4] concludes that the 
microcontroller AT32UC3B should be used together with a reception detector in the 
development of the telemetry buoy application. It also states that the telemetry buoy should 
incorporate some form of digital signal processing to allow compatibility with various 
frequencies and modulation schemes.  
 
Figure 3-1 shows the system design concept. To be able to utilize the benefits of 
undersampling the system incorporates an analogue band-pass filter. Furthermore it features 
an automatic gain control amplifier. This is used to adjust the sensitivity of the receiver and 
provide a means of adjusting the signal to a suitable level before performing sampling. The 
reception detector will act as both a wakeup source for the microcontroller and a means of 
measuring the signal level. This signal can then be used as feedback in the AGC loop.  
 
The filter, variable gain amplifier and reception detector will always be on, these blocks will 
therefore have to be designed for ultra low power consumption. The microcontroller will 
control the analogue gain in the variable gain amplifier, perform sampling, digital signal 
processing, decoding and storage of the reception if found valid. 
 
The hydrophone will be selected based on the physical shape of the buoy and is not a topic of 
this report. The amount of gain in the fixed gain stage will depend on the choice of 
hydrophone and is therefore not covered. 
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Figure 3-1 - System overview 
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4. Analogue design 
This chapter describes the analogue design of the telemetry buoy. The analogue circuit 
consists of three main blocks: 

• Variable gain control amplifier 
• Band pass filter  
• Signal detector. 

The following sections will discuss several implementation methods for each of the blocks. 
The Design Solution section describes the choice for implementation for each of the described 
methods. 
 

4.1 Signal properties 

Before designing the analogue circuit it is important to determine the properties of the signal 
it should handle. Thelma’s fish tags typically output a signal of about 150 dB (relative to 1µP 
at 1m) [9]. The ambient noise in the spectra of interest (60kHz to 80kHz) in sea water is 
dominated by thermal noise and sonic noise produced by weather. The SINTEF report Fish 

telemetry manual [8] provides the equation 
 
 ( 10 log )TL SL NL B DT= − + −  (4.1) 
 
Where 

SL:  transmitter source level (dB) 

TL:  transmission loss (dB) 

B:  bandwidth of channel 

NL: noise level per unit bandwidth 

DT: detection threshold 

 
The result TL ultimately results in the dynamic range of the analogue circuit. The TL level 
will provide the highest signal level above the noise floor. Signals below the noise floor 
cannot be retrieved and are therefore of no interest. As shown in Figure 4-1 the lowest 
ambient noise level is about 20 dB. Assuming a bandwidth of the signal of 500Hz and that all 
signals above the noise floor can be retrieved the maximum dynamic range is found: 
 
 150 (20 10log500) 0 103DR dB= − + − =  (4.2) 
 
The AGC circuit should therefore have a dynamic gain range of 103 dB. 
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Figure 4-1 - Noise in the sea, adapted from [8] 

 

4.1.1 Transmission protocol for Vemco fish-tags 

The telemetry buoy should be designed to receive signals defined by Vemco. This section 
provides a short description gathered from the report Acoustic telemetry buoy [4] written by 
the same author as this report. 
 
Existing digital acoustic fish tags use pulse position modulation (PPM) to send information. 
The package includes an ID and can include specific information such as temperature, depth, 
salinity, heart rate, checksum and more.  
 
The most common format that is used is defined by Vemco. The description is provided by 
Thelma and is in essence as follows 

• Differential pulse-position modulated signal 
• Pulse length Tp = 10ms for all pulses 
• Timeslot Ts = 20ms, pulses occur in the middle of the timeslot 
• There are M = 4 bits coded by each pulse, this gives 24 = 16 time slots 
• A transmission starts with two synchronization pulses. The difference in time between 

the pulses Tsync corresponds to the amount of data that will be transmitted i.e. the 
number of expected pulses. 

• A guard time Tg it added between all pulses to compensate for any multipath or echo 
distortions.  

• A transmission ends with an 8-bit CRC checksum. 
• All pulses are detected on a rising edge. 
• Timing is always referred to the rising edge of a pulse. 

 
Figure 4-2 gives an example of a transmission of the data 30 and checksum 5. In addition to 
the listed specifications the following applies for the example: 

• Tg = 380ms, guard time to suppress multipath distortion 
• Tsync = 360ms, it is assumed that this means that one byte + CRC will be transmitted 
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Figure 4-2 - Example of a Vemco DPPM packet 

 
 
The time delays between the pulses are calculated by the transmitter as in Table 4-1. 
 
Table 4-1 - Composition of a DPPM Vemco signal 

Delay between Delay components Information Delay 
Pulse 1-2 Synchronization time Tsync.  Defined by protocol, specifies 

a total of 6 pulses i.e. 1 byte 
data 

360ms 

Pulse 2-3 Guard time Tg + 1 x Timeslot Ts,  Data[7:4] = 00012 400ms 
Pulse 3-4 Guard time Tg + 14 x Timeslot 

Ts, data: 
Data[3:0] = 11102 660ms 

Pulse 4-5 Guard time Tg + 0 x Timeslot Ts CRC[7:4] = 00002 380ms 
Pulse 5-6 Guard time Tg + ¨5 x Timeslot Ts  CRC[3:0] = 01012 480ms 
  SUM 2280ms 
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4.2 Automatic gain control amplifier 

The automatic gain control (AGC) circuit consists of a variable gain stage, measurement and 
control stage as shown in Figure 4-3. The control stage may be either analogue or digital. For 
the telemetry buoy a digital approach is chosen to be able to alter the settings without 
modifying any hardware. The digital approach also provides the possibility of using digital 
potentiometers to adjust the gain. 

 
Figure 4-3 - AGC system overview 

 
The level measurement can be done in several ways. These are described in section 4.4 
Reception detector. The variable gain stage can be realised in several ways. The following 
sections will cover realisation by using a variable gain amplifier IC and by using operational 
amplifiers together with digital potentiometers. 
 

4.2.1 Variable gain amplifier IC 

The intelligent hydrophone buoy designed by Jan Eyolf Bjørnson [7] uses a variable gain 
amplifier (VGA) IC (AD604). Analog devices is the main supplier of VGA’s. The devices 
offer a high dynamic range, linar amplification and high bandwidth. The downside is the 
rather high current consumption. The device requiring the least power (AD600) will draw a 
supply current of 14 mA. The AGC provides a signal to the reception detector. The VGA will 
therefore have to be enabled at all times. A current consumption of 14mA is considerably 
over the maximum limit of 1.48 mA as specified in 1.3. This makes the VGA IC unsuitable 
for the battery powered telemetry buoy.  
 

4.2.2 Variable gain amplifier using digital potentiometers 

Digital potentiometers alter the resistance by connecting the “wiper” to the resistors through a 
set of CMOS transistors.  The control signal varies from protocols like I2C and SPI to basic 
inputs such as step up and step down. The most common types have 256 or 32 discrete steps. 
The downside of using digital potentiometers is the tolerance. The end-to-end resistance 
typically has a tolerance of ±25% to ±30% [11]. This is manly due to process variations. 
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Maxim application notes [11] and [12] describe four principles for connecting a digital 
potentiometer in an operational amplifier connection. The configurations are described in the 
following sections. 
 

4.2.2.1 Traditional audio control configuration 

The traditional volume control shown in Figure 4-4 features a potentiometer at the input 
followed by an amplifier with fixed gain. This configuration will provide a linear gain. The 
downside is that the signal is scaled down before being amplified. For small signals this will 
result in a reduction of the signal to noise ratio (SNR). Noise introduced by the potentiometer 
or after the potentiometer will be more significant since the amplification is always at 
maximum after the signal scaling.  

Input

Output

 
Figure 4-4 - Traditional volume control 

 

4.2.2.2 Non-inverting configuration with one additional resistor 

The circuit diagram is shown in Figure 4-5. This configuration provides a linear gain, but the 
gain is dependent on the end-to-end resistance of the digital potentiometer. The gain will 
therefore have the same tolerance as the potentiometer. This may not be a problem in an AGC 
application if the tolerance is taken into consideration at the design stage. 

Input

Output

 
Figure 4-5 - Non-inverting amplifier with linear gain 

 

4.2.2.3 Non-inverting configuration without additional resistors 

The circuit diagram is shown in Figure 4-6. This configuration eliminates the gain tolerance 
introduced by the end-to-end tolerance of the digital potentiometer. The gain adjustment will 
though be non-linear. If we define [ ]0,1N ∈  as the position of the wiper and G as the gain we 

get the expression 

 ( ) 1
1

N
G N

N
= +

−
 (4.3) 

The result is plotted in Figure 4-7. 
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Input

Output

 
Figure 4-6 - Non-inverting amplifier with non-linear gain 

 
Note that this connection will result in an infinite gain when N = 1. The gain must therefore 
be limited either in software or by external resistors 
 

 
Figure 4-7 - Gain as a function of N 

 

4.2.2.4 Potentiometer in a positive feedback configuration 

The circuit diagram is shown in Figure 4-8. In this configuration the potentiometer is 
supplying the operational amplifier with positive feedback in addition to the negative 
feedback via the fixed resistors. If we define Kn as the negative feedback fraction and Kp as 
the positive feedback fraction it can be shown [12] that the gain of the circuit is 
 

 
1

n

p n

K
G

K K

−
=

−
 (4.4) 

 
Notice that the system becomes unstable when the positive feedback fraction Kp exceeds the 
negative feedback fraction Kn. It must therefore be ensured in software or with an additional 
resistor that Kp < Kn. If a software approach is chosen we get an amplifier which is not 
dependent on the end-to-end tolerance of the potentiometer. 
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Input

Output

 
Figure 4-8 - Positive feedback configuration 

 
The gain is non-linear as shown in Figure 4-7. Here Kn is set to 2/3. 

 
Figure 4-9 - Gain as function of Kp 

 

4.2.2.5 Non-idealities of a digital potentiometer 

When designing a variable gain amplifier (VGA) using digital potentiometers it is important 
to understand the non-idealities of digital potentiometers.  This section addresses the most 
important factors. 
 
End-to-end tolerance 
An important factor is the tolerance of the end-to-end resistance. If the AGC design is a 
traditional control loop this may not present a problem. For a low power design it is desired to 
avoid using a continuous control loop. A more effective approach is to measure the signal 
strength and calculate the correct gain. This approach requires that the gain has little tolerance 
or that some sort of lookup table is generated at production.  This lookup table may be hard to 
generate and it is therefore preferable to use a configuration which eliminates that the gain is 
dependent on the end-to-end tolerance. This leaves the traditional audio gain, the non-

inverting design without additional resistors and the positive feedback configurations. 
 
Discrete resistance value 
As opposed to traditional potentiometers the digital potentiometer has fixed resistance steps. 
Typical values are 32, 64, 128 and 256 steps. If a higher resolution is needed several 
potentiometers can be used. 
 
Frequency dependent operation 
The datasheet for each individual potentiometer specifies a -3dB crossover frequency.  For a 
100k potentiometer this value is typically in the area of 40 kHz – 80 kHz. This is due to the 
stray capacitance between the wiper and ground [13] as shown in Figure 4-10. 
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C

 
Figure 4-10 - Non-ideal digital potentiometer 

  
The introduction of a capacitance in the circuit will lead to frequency dependent gain. This 
may present a problem even when the signal is below the given bandwidth of the 
potentiometer. If we consider the configuration described in section 4.2.2.3 and view the 
potentiometer as two resistors we get the connection as in Figure 4-11. The dotted line 
encapsulates the digital potentiometer. 

Input

Output

                     

R1

Input

Output

R2

C

 
Figure 4-11 - Non-inverting configuration with non-ideal potentiometer 

 
The transfer function is as follows 

 2 2 1 2 2

1 1

1

( ) 1 1

1

R R R R Cs R
G H s

RZ R

sR C

+
= = + = + =

+

 (4.5) 

 
The bode plot for (4.5) is shown in Figure 4-12. R1 = R2 = 50k, C = 60 pF. Notice that for 
frequencies higher than 50 kHz the gain is non-linear with respect to frequency.  It is therefore 
vital that this capacitance is taken into consideration, especially when using the digital 
potentiometer in a feedback loop. 
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Figure 4-12 - Bode plot of gain transfer function 

 

4.2.3 Design solution 

Of the previously described techniques, only the digital potentiometer approach is able to 
provide a satisfactory result with respect to low power. It is preferable that the VGA has linear 
and known gain. This will enable the traditional automatic gain controller to set the correct 
gain with only one measurement. The traditional volume control circuit described in section 
4.2.2.1 is therefore chosen as the base point for the design. To achieve a good gain resolution 
the system will use three digital potentiometers. This will provide 3 6256 16.7 10= ⋅ steps.. 
 
The main disadvantage of the circuit is that the amplifier it self will always be at full gain 
where the signal is being damped before being amplified. At small signal levels this can lead 
to a problem where noise generated inside or after the digital potentiometer is being amplified 
to an extent where the original signal cannot be retrieved. This can be internally generated 
noise, SPI crosstalk and noise due to change of gain setting. By introducing a filter between 
the digital potentiometer and the amplifier noise outside the spectra for interest is damped. 
 
Another challenge is DC drift. As specified in section 4.1 the amplifier should have a dynamic 
range of minimum 103dB. This gives us a maximum gain of  
 

 
103
20

max 10 141254G = =  (4.6) 
 
With such a large gain even the smallest DC offset can make the system saturate and thereby 
fail. Introducing a high pass filter will remove any DC offset. This will be discussed further in 
section 4.3 Filter design. To achieve this gain several operational amplifiers will be used in a 
cascade configuration, please refer to section 4.5.1 Operational amplifier on page 43 for 
details. The following section will suggest specific circuit solutions for the filter combined 
with the amplifier. 
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4.3 Filter design 

To avoid aliasing when undersampling as described in section 2.1 on page 4 it is vital that the 
signal is limited in bandwidth. This requires a band pass filter that will limit the bandwidth of 
the signal. The following section describes a filter that removes DC offset and noise generated 
in the potentiometer. 
 

4.3.1 Potentiometer noise removal filter 

To remove DC offset, noise generated in the potentiometer and noise related to changing the 
setting of the potentiometer a simple first order filter is implemented as depicted in Figure 
4-13. To minimize the power consumption we wish to only add passive components to this 
filter. Due to the high tolerances of coils it is desired to avoid using these when possible. The 
filter design is therefore concentrated around first order RC filters. 

 
Figure 4-13 - Digital potentiometer with first order high pass filter 

 
When choosing filter component values it is important to consider the frequency dependent 
operation of the digital potentiometer. In this application the wiper resistance and capacitance 
must be taken into account. Figure 4-35 shows the more detailed circuit where RH and RL are 
dependent on the wiper position, RW is the wiper resistance and CW is the wiper capacitance.  

 
Figure 4-14 - Non-ideal potentiometer with first order high pass filter 

 

To fully understand the behaviour of the circuit the transfer function ( )fH s o

i

V

V
=  must be 

derived. 
 
To analyse the circuit several impedances must be calculated. Figure 4-15 shows the different 
impedances.  
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Figure 4-15 - Impedances of the potentiometer and filter circuit 

 
The impedances are derived in an ascending order. 
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Using these expressions the transfer functions can be derived using simple voltage divide 
calculations. All voltages are referred to Figure 4-15. 
 

 4

4

p

i H

V Z

V Z R
=

+
 (4.11) 

 2

2

W

p W

V Z

V R Z
=

+
 (4.12) 

 1

1
1

1
o

W

V R

V
R

sC

=

+

 (4.13) 

 

 4 2 1

4 2
1

1

1
po W o

i i p W H W

VV V V Z Z R

V V V V Z R R Z
R

sC

= ⋅ ⋅ = ⋅ ⋅
+ +

+

 (4.14) 



    

   21 

Inserting equations (4.7), (4.8), (4.9) and (4.10) into (4.14) gives the final transfer function 
 

( )( ) ( ) ( )( ) ( )( )( ) ( )
1 1

2
1 1 1 1 1 1 1

( ) o L

i W L W H L W W L W W W H W W W L L H

V R R C s
H s

V C C R R R R R R s C C R R R C R C R R R C R C R s R R
= =

+ + + + + + + + + + + +

 (4.15) 

 
The frequency response of (4.15) is plotted in Figure 4-16. The end-end resistance, wiper 
resistance and wiper capacitance are all typical numbers from the datasheet for the 
MAX5401EKA. R1 and C1 are chosen to provide a corner frequency of 60 kHz for the RC 
connection. The values are as follows 

� R1 = 100 kΩ 
� C1 = 26.53 pF 
� RH = RL = 50 kΩ 
� CW = 25 pF 
� RW = 250 Ω 
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Figure 4-16 - Bode response of both ideal and non-ideal potentiometer and filter circuit 

 
The blue curve represents the frequency response with an ideal potentiometer. The green 
curve represents the frequency response with a non-ideal potentiometer. Notice that the 
response is only affected in the upper frequency area. For the given component values the 
non-ideal behaviour adds an additional pole at f2 = 329 kHz. The other pole lies at f1 = 46 
kHz. It is important to notice that the poles will vary with potentiometer position.  
 
Using MATLAB the cut-off frequencies or roots are plotted in Figure 4-17. The maximum 
value is 255 due to the 8-bit resolution. The high frequency pole at f2 will not affect the 
frequency band of interest and is not discussed further. The low frequency pole f1 varies with 
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about 15 kHz. This may represent a problem and components should be chosen so that this 
variation is kept at a minimum. The variation will increase with decreasing value of R1 and 
consequently increasing value of C1. Increasing R1 to 500 kΩ and C1= 5.3 pF results in a variation 
of 3.6 kHz as shown in Figure 4-18. The upper cross frequency is now decreased to 268 kHz, but still 
out of the frequency band of interest and can therefore be ignored.  
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Figure 4-17 - Root frequencies in Hz as function of potentiometer position with R1 = 100kΩ, C1 = 26.5pF 
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Figure 4-18 - Root frequencies in Hz as function of potentiometer position with R1 = 500kΩ, C1 = 5.3pF 
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4.3.2 The intuitive filter solution 

The intuitive filter solution is based on cascading several equal filters to gain a steep roll off. 
To limit the bandwidth of the signal at the high end, all operational amplifier stages are 
designed as a first order non-inverting active low pass filter with a gain of 25. The circuit 
diagram is shown in Figure 4-19. 

 
Figure 4-19 - Active low pass filter circuit diagram 

 
An expression for Z1 is needed to derive an expression for the gain 
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 (4.16) 

The expression for the total gain is derived. 
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As with the high pass filter it is desired to use large resistors to minimize the power 
dissipation. The crossover frequency should be 80 kHz. The resistor ratio is equal to the fixed 
pass band gain 

 
3
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3 2

1 25

24
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R
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 (4.18) 

 
Capacitor values are available in fewer values than resistors. A standard capacitor value of 
4.7pF is therefore chosen for C2. The expression for the crossover frequency is used to 
calculate the resistor values. The constant gain of one is neglected. The absolute value is 
found 

 3 3

2 2
2 3 2 2 2 3 2 0 2

| ( ) |
( )

R R
G s

R R C s R R R C Rω
≈ =

+ +
 (4.19) 

 
The crossover frequency is found when |G(s)| equals the pass band gain divided by the square 
root of two. 
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1

| ( ) | 24
2

G s = ⋅  (4.20) 

 
By combining (4.19) and (4.20) the expression for the crossover frequency is found. 
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(4.18) is inserted to (4.21) 
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By inserting C2 = 4.7pF and using (4.18) the resistor values are found. 
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 (4.23) 

Figure 4-20 shows the frequency response of the filters and the combined circuit where four 
Low pass filters with gain, three potentiometers and four high pass filters as described in 
section 4.3.1 are cascaded. The high pass filter from section 4.3.1 is used for both noise 
removal as described earlier and bandwidth limitation of the signal. The values used are: 
 
R1 = 473.68kΩ 
R2 = 17637Ω 
R3 = 423.3kΩ 
C1 = 5.6pF 
C2 = 4.7pF 
 
Where several connections of the same type are used they are identical with respect to both 
connection diagram and component values. The frequency response is simulated using a 
Matlab script found in appendix 2. 
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Figure 4-20 - Bode plot of filters and combined circuit 

 
The complete circuit provides a pass band gain of 92dB and a bandwidth of 60 kHz. The 
requirement is 103 dB gain with a 20 kHz bandwidth. Obviously this configuration is not 
suitable. A filter with a steeper roll off is needed. The following sections will describe a more 
complex filter design with better performance. 
 

4.3.3 Butterworth filter 

The Butterworth filter is designed to have a frequency response which is as flat as 
mathematically possible in the passband. Its poles are arranged as evenly spread complex 
conjugated poles in a circle. The radius of the circle determines the crossover frequency. An 
example of a 4th order Butterworth filter pole placement is shown in Figure 4-21. The 
placement of the zero points determines whether it is a high or low pass filter.  
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Figure 4-21 - Butterworth filter pole arrangement 

 
The general transfer function for a Butterworth low pass filter is [14] 
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Where  
K is a constant 

N is the order of the filter 

p is the complex pole 

0ω is the crossover frequency 

 
A general second order low pass filter is given [14] by 
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 (4.25) 

 
The poles are described as the complex position in Figure 4-21.  By comparing the 
denominators of (4.24) and (4.25). For a second order filter we find that 
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Since p1 and p2 are complex conjugated and can be written as 

 1 0

2 0

p

p

ω α
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 (4.27) 

The product yields 
 2

1 2 0 0 0( )p p ω ω α α ω⋅ = ⋅ ∠ − =  (4.28) 
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Therefore (4.26) reduces to 
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Where real(p) is the common real part of the complex poles. Notice that the closer the poles 
are to the imaginary axis the higher Q value. Poles closer to the imaginary axis results in a 
less stable filter and hence a high Q value filter is more likely to oscillate than a filter with 
low Q value. 
 
For analogue implementation of the filter, the Sallen and Key configuration is chosen as a 
demonstration and offers a second order filter using only one operational amplifier. The low 
pass circuit is shown in Figure 4-22. A high pass circuit is gained by swapping the capacitors 
with resistors and vice versa. 
 

 
Figure 4-22 - Sallen and key configuration 

 
The transfer function, derived by Texas Instruments in application note Analysis of the Sallen-

key Architecture [15], is given in equation (4.30). 
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By comparing (4.30) with the general equation (4.25) we find that 
 
 1 2 1 2 1R R C C =  (4.31) 

 ( ) 0
1 1 2 1 1 2 1R C R C R C K

Q

ω
+ + − =  (4.32) 

 2
0 1ω =  (4.33) 

 
Note that for the general Sallen and Key expression the crossover frequency is 1 [rad/s]. The 
component values will first be calculated for this frequency and then scaled to fit the desired 
crossover frequency. 
  



    

   28 

Since the resistors are available in more values than capacitors the capacitor values are chosen 
as a base point. The capacitors are chosen to be equal. 
 
 1 2C C C= =  (4.34) 
 
Solving (4.31), (4.32) and (4.33) with the insertion method gives the following solution 
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2 1 2

1
1R

R C C
=  (4.36) 

 
For this design it is desired to have a fourth order filter low pass filter and a fourth order high 
pass filter to get the proper damping of frequencies outside the pass band. A fourth order low 
pass filter filter is  realized by calculating the poles for a fourth order Butterworth filter and 
using two Sallen and Key configurations with different Q values/different pole sets in 
cascade. A Matlab script found in appendix 1 was used to calculate the component values and 
simulate the frequency response of the circuit.  
 
The frequency response of the complete Sallen and Key implemented Butterworth filter and 
the filter designed in section 4.3.2 is shown in Figure 4-23. The component values for the 
Butterworth filter are calculated by finding the four poles for each filter and using two values 
for  (4.29), and calculating (4.34), (4.35) and (4.36) for each Q value or complex conjugated 
pole set. 
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Figure 4-23 - Frequency response of Butterworth and intuitive filter 

 
The Butterworth is clearly an improvement with respect to gain and roll off. A steeper roll off 
is still desired. The next section will therefore describe the Chebyshev filter. 
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4.3.4 Chebyshev filter 

The Chebyshev filter is known for its steep roll off [14]. The cost of the steeper roll off is 
ripple in the passband. For many applications such as audio tone control this is not acceptable 
due to noticeable distortion, but for the telemetry buoy design the signal consist of digital 
pulses and a slight variation between the different frequency bands is tolerable as long as the 
receive threshold is set accordingly. 
 
The steeper roll off is achieved by placing the poles closer to the imaginary axis as shown in 
Figure 4-24. 

 
Figure 4-24 - Chebyshev filter pole placement 

  
The general transfer function for a Chebyshev filter is [14] 

 
( ) ( ) ( )1

1 2

( )
2

N

P

N

N

K
T s

s p s p s p

ω

ε −

⋅
=

⋅ − − −�

 (4.37) 

Where 
K is a constant 

N is the order of the filter 

p is the complex pole 

0ω is the crossover frequency 

and 
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In (4.38) the | ( ) |

P
T jω  is the maximum ripple in the passband which is defined at the design 

stage. For this design the allowed ripple is set to 1 dB. Note that it follows that the crossover 
frequency 

P
ω  will be defined by -1 dB and not the usual -3dB. Due to the steep roll off this 

detail is not considered in the calculations. 
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The same script as for the Butterworth filter in appendix 1 is used for simulation and the same 
equations for calculating resistor values (4.34), (4.35) and (4.36) are therefore used for both 
the Butterworth and the Chebyshev filter only scaling the gain factor and changing the pole 
placement. Figure 4-25 shows the response of the intuitive, Butterworth and Chebyshev filter. 
It is clear that the Chebyshev filter offers the steepest roll off and the narrowest bandwidth. 
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Figure 4-25 - Frequency response of Chebyshev, Butterworth and the intuitive filter 

 
To provide low power consumption it is desired to use as few active components as possible 
as well as high resistor values to reduce the power dissipation. The Sallen and Key 
configurations uses one operational amplifier and is versatile with respect to component 
values. The example implementation is therefore based on this implementation. 
 
As described earlier, due to high amplification it is important to remove any DC drift and low 
pass noise due to changes in the potentiometer setting. A high pass filter as described in 
section 4.3.1 is therefore inserted after every digital potentiometer. 
 
To avoid that this filter and the potentiometer has substantial impact on the Chebshev filter a 
unity gain amplifier is placed after each digital potentiometer stage. It is important to notice 
that in order to use high resistor values the capacitors much have small values. The unity gain 
amplifier will ensure that the wiper capacitance, described in section 4.2.2.5, of the digital 
potentiometer does not have impact on the Sallen and Key configuration. The complete 
configuration is depicted in Figure 4-26.  
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Figure 4-26 - Variable gain amplifier and filter block diagram 

 
The Gain Adjustment block is realised as in Figure 4-27. To ensure that the high pass filter 
does not interfere with the Chebyshev filter the crossover frequency is selected to be as low as 
10 kHz. Selecting a capacitor value of C2 = 150pF yields a resistor value of 
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 (4.39) 
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Figure 4-27 - Gain Adjustment block realisation 

 
The low and high pass Sallen and Key filters are realised as previously described in section 
4.3.3 on page 25. The component values are calculated with the Matlab script provided in 
appendix 1. Note that the component references in the script and the schematics may deviate 
due to automatic annotation with the design program.  
 
The frequency response for the complete circuit in Figure 4-26 is shown in Figure 4-28. The 
green line shows the complete circuit at full amplification, the blue shows the original 
Chebyshev filter with amplification. Notice that the insertion of digital potentiometers does 
not affect the frequency band of interest. 
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Figure 4-28 - Frequency response of variable gain circuit with Chebyshev filtration, potentiometers at 

max amplification 

 
With the intuitive filter solution in section 4.3.2 the setting of the digital potentiometers 
affected the crossover frequencies. Figure 4-29 shows the frequency response with different 
gain settings. It is easy to see that the impact on the crossover frequencies is minimal. The 
Matlab script for the simulations is provided in appendix 4. 
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Figure 4-29 - Frequency response with different gain settings 

 
An important factor is the linearity of the gain. Figure 4-30 shows the gain plotted as a 
function of the potentiometer setting of one of the potentiometers. As a result of the internal 
wiper capacitance of the potentiometer the gain is not perfectly linear. The result is though 
quite close and is regarded as satisfactory. 
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Figure 4-30 - Gain vs. digital potentiometer setting 

 

4.3.5 Design solution 

As described in the previous section the Chebyshev filter provides the best solution with 
respect to roll off. There is though one major drawback with the Chebyshev solution when 
designing a filter for low power. The Chebyshev filter requires high Q values which requires 
an operational amplifier with high performance when applying high frequencies.  
 
Faulkner and Grimbleby informs in the IEEE article Active filters and gain-bandwidth 

product[16] that it has become a more or less accepted practice to concentrate attention on the 
question of sensitivity to variations in passive components rather than to variations of 
amplifier gain. The implication is that the amplifier gain can be assumed to be arbitrarily high. 
When, on the other hand, the need arises for an engineering design to meet a given practical 
specification, it usually becomes clear that the primary problem is the relation between circuit 
configuration and required amplifier performance in terms not of DC gain, but of gain-
bandwidth product.  
 
It is important to notice that the effect of finite gain-bandwidth product on filter performance 
cannot be calculated by assuming the gain to be real. Neglecting the phase angle leads, for 
instance, to the conclusion that the Q factor is always reduced as the frequency is increased 
whereas in fact for many configurations the Q factor increases 
 
Faulkner and Grimbleby provide two important equations for calculating the actual crossover 
frequency for the Sallen-Key and the Rauch configurations: 
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 (4.40) 

Where 
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0ω is the actual crossover frequency 

Q  is the actual Q factor 

L
ω is the crossover frequency with an ideal operational amplifier 

L
Q is the Q factor with an ideal operational amplifier 

T
ω is the Gain-Bandwidth product of the operational amplifier 
B  is the gain of the amplifier i.e. B = 1 + R1/R2 for non-inverting configuration  

 

The power consumption for an operational amplifier (opamp) increases with higher gain-
bandwidth product. This means that for low power applications (4.40) must always be 
considered in order to design a circuit which is optimal with respect to power consumption 
and filter characteristics.  
 
We see that in order to use an opamp with low gain-bandwidth product we need to 
compensate by using low Q values and low gain. The following procedure is used to calculate 
the required gain-bandwidth product of the opamp: 

1. Define a maximum allowable deviation in crossover frequency due to the finite gain-
bandwidth product. 

2. Define a filter gain 
3. Calculate the Q values of the filter, for Butterworth: use (4.29) 
4. Use (4.40) to find the minimum

T
ω  

 
If the calculated 

T
ω  results in an opamp with too high power consumption the Q value or the 

gain will have to be lowered.  
 
The calculation procedure is performed on the low-pass Chebyshev filter calculated in section 
4.3.4: 

1. The maximum allowable deviation is defined as 300Hz 
2. Gain is set to 7. 
3. Q values are calculated with the Matlab script in appendix 1 and are: Q1 = 8.95, Q2 = 

3.71. 
4. (4.40) is rewritten to  
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 By defining  
 0 L

ω ω δ= −  (4.42) 
 Where  

 δ is the deviation in frequency. 
 
 The gain bandwidth products become 
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Operational amplifiers with a gain-bandwidth product as high as (4.43) draws currents of 5-10 
mA. This is a too high power consumption for the telemetry buoy application. The filter 
performance must be reduced to lower the power consumption.  
 
As a compromise the design will use a Butterworth configuration which has much lower Q 
values. In addition we see that amplification in the filter comes at a much greater cost than 
amplification outside the filter. The realisation of the filter will therefore have unity gain. 
 
The design of an analogue filter can be made more effective by using available software tools. 
Texas instruments provide a filter design program FilterPro for free. The program suggests 
standard component values for circuit types such as Sallen and Key, MFB Single-Ended and 
MFB fully differential. The user can specify crossover frequencies, order of filter and choose 
from filter types such as Butterworth, Chebyshev, Bessel, Linear Phase and more. In addition 
to providing the schematic and the component values the program also specifies the required 
gain-bandwidth product for the opamps. It is not documented how this is done, but tests 
indicate that the same procedure is used with 0.3% deviation. The user interface is shown in 
Figure 4-31. 
 

 
Figure 4-31 - FilterPro user interface 

 
The multiple feedback (MFB) configuration provides a second order filter with only one 
operational amplifier as with the Sallen and Key configuration. The difference is that the 
MFB requires less gain-bandwidth of the opamp [17]. The implementation will therefore be 
based on the MFB configuration. The configuration of a second order low pass filter is shown 
in Figure 4-32. The high pass filter configuration is found by changing all resistors with 
capacitors and vice versa. The procedure for calculating the component vales is the same as 
for the Sallen and Key configuration described earlier only using a different transfer function 
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equation for the implementation. This time we will though use the FilterPro program to find 
the component values. Screenshots of the design is found in appendix 4. 
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Figure 4-32 - Multiple feedback configuration 

 
The configuration of the complete variable gain amplifier with filter will be similar to the one 
presented in section 4.3.4 and is shown in Figure 4-33. The main difference is the filter 
configuration and since the filter gain is unity, the gain is moved to operational amplifiers 
outside the filter. All gain blocks have a high pass filter in front. This has two main functions; 
it will remove much of the low frequency noise emitted by the digital potentiometer when 
changing the setting, secondly it will remove any DC offset which can lead to saturation of 
the opamp.  Note that some of the filter blocks have gain not equal to unity. This is to be able 
to utilize operational amplifiers with a gain-bandwidth product of 3 MHz and 12 MHz. The 
total gain of the filter is though unity. The filter will use two amplifiers with 3 MHz gain-
bandwidth product and two amplifiers with 12 MHz gain-bandwidth product. 
 

 
 

Figure 4-33 - Filter and variable gain amplifier block diagram 

 
The complete maximum gain of the ideal circuit is 
 
 4

, 20log(25 ) 111.8max dBG dB= =  (4.44) 

 
Please refer to the schematics in appendix 5b for a detailed circuit diagram with component 
values. 
 
Simulating the complete circuit in Multisim 10.1 provides the bode plot given in Figure 4-34. 
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Figure 4-34 - Simulated bode plot of variable gain amplifier and filter 

 

4.4 Reception detector 

There are two principles for detecting a modulated signal pulse; measuring the envelope of 
the carrier frequency or measure the power in the carrier frequency band. This section 
describes one technique for measuring the power of a signal, two techniques for detecting the 
envelope of the signal and finally a modification which results in a third way of measuring the 
power. 
 

4.4.1 Detecting a signal using an RMS to DC converter 

In high frequency amplitude-shift-keying (ASK) radio reception applications a logarithmic 
amplifier (logamp) is often used to demodulate the signal by producing a DC signal 
proportional to the logarithm of the power of the input signal [5]. These circuits typically 
operate with frequencies up to several GHz consuming currents of 4 – 68mA (Analog 
Devices).   
 
High frequency is not relevant to the telemetry buoy application, but a similar technique can 
be utilised using a RMS to DC converter. This IC produces a DC output signal directly 
proportional to the root-mean-square of the input signal. These devices are typically used in 
applications such as true RMS multimeters. An example of such a device is the AD737 which 
consumes a current of only 160µA handling frequencies up to 100 kHz [6]. The downside of 
using such a converter is that it requires both positive and negative power supply voltage. 
This will require an additional regulator to the system which will contribute to an increase in 
overall power consumption. 
 

4.4.2 Detecting a signal using a product detector 

The product detector produces an output signal by calculating the product of the input signal 
and a local oscillator. Alternatively the input signal can be multiplied with its inverse signal as 
for the intelligent hydrophone buoy designed by Jan Eyolf Bjørnson [7]. Assuming that the 
input signal is a sinusoidal as in equation (4.45) 
 sin( )

in
V A tω=  (4.45) 

The output signal W becomes 
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By low pass filtering the output W we get a signal 2 / (2 )
L

W A U= −  which clearly is negative 
proportional to the square of the input amplitude. 
 
This technique can provide a very fast response time, it is though important to limit this 
response time with the low pass filter to reduce the vulnerability to transient distortion. The 
downside of this technique is that the analogue multiplier typically requires a current of more 
than 6 mA. To be able to use this technique in the telemetry buoy design a sampling scheme 
must be designed where the multiplier is deactivated when not reading the signal level. This 
excludes the possibility of having the reception detector as a wake-up source for the 
microcontroller. 
 

4.4.3 Detecting a signal using a diode detector 

The simplest form of envelope detector is the diode detector shown in Figure 4-35. If the 
capacitor and the resistor is chosen correctly Vout will follow the envelope of the input signal 
Vin. Some distortion in the form of ripple voltage will occur as the capacitor discharges. As 
long as the ripple lies below our threshold voltage this ripple is not of relevance to this 
application. In AM modulated audio signals however this is an important disadvantage of the 
envelope detector. 

R CVin Vout

D

 
Figure 4-35 - Diode detector 

 
When the input signal is larger than the sum of the capacitor voltage and the diode drop 
voltage, assuming the constant voltage drop model for the diode, the output voltage will be 
equal to the input voltage minus the diode drop 
 

 
out in D

in D out

V V V

for

V V V

= −

+ ≥

 (4.47) 

 
For this application the envelope detector should be used to measure signal strength. When 
signal strength reaches a certain threshold limit this will trigger a reception. The envelope 
detector will also serve as a level measurement in the AGC loop.  It is therefore important that 
short pulses and transient voltages are suppressed to avoid a high rate of false triggers and 
level references.  
 

4.4.4 Detecting a signal using a modified diode detector 

A modification is made where the capacitor is charged through a resistor (R2). This 
introduces a low pass filter which will suppress transients and provide a more accurate signal 
level representation as the voltage power is a result of signal over time instead of 
instantaneous voltage. The circuit is shown in Figure 4-36. 
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Figure 4-36 - Modified diode detector 

 
When the input signal exceeds the capacitor voltage and the diode drop voltage, again 
assuming the constant voltage drop model for the diode and a constant input voltage, the 
differential equation is derived in (4.48). 
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The solution of (4.48) is 
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= − +  (4.49) 
 
This is only valid when the input signal is constant. If the input signal to the circuit in Figure 
4-36 is a sinusoidal without a DC component the input voltage will be constant equal to zero 
for the negative half period. Note that for discharge R = R1 + R2. 
 

For the positive half period the input signal is described by  
 
 ( ) sin( )

i
v t A tω=  (4.50) 

 
The differential equation is derived as follows 
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The solution is  
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C1 is found by defining the initial condition as v(0) 
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This gives us the final expression for the positive half period 
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When the input signal is a sinusoidal with a DC component equal to zero, (4.49) will be used 
when the signal is negative and (4.54) when the signal is positive that is 

 
(4.49) for  0 < ωt < π  

(4.54) for π  < ωt < 2π   
 
The model is to complex to determine R1, R2 and C directly. Simulations are therefore needed 
to determine the values. 
 

4.4.5 Design solution 

The modified diode detector is chosen for final design. Its simplicity and low power feature 
makes this circuit the most suitable for the telemetry buoy application. The circuit is 
simulated in Multisim 10.l. A test signal is generated as shown in Figure 4-37. The circuit 
outputs a sinusoidal of 69 kHz, 1Vpp, 0V DC, in bursts of 1ms.  
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Figure 4-37 - Generating test signal 

 
 
The detector circuit in Figure 4-38 uses a Schottky diode to provide a threshold voltage as low 
as possible. For small signals this voltage drop may still be crucial. R5 and R6 are therefore 
added to provide a bias for the diode. Unlike capacitors, resistors are available in most values 
and accuracies. A standard capacitor value is therefore chosen as a base point for the design. 
 
To provide a short detection time while still suppressing transient voltages R1 is chosen so 
that the voltage is at 63% of maximum after 5 cycles of the 69 kHz. R2 is chosen so that the 
level falls at a sufficient rate while wasting a minimum of current. Assuming 1 V peak and a 
sinusoidal input the total current consumption of the circuit is   
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Figure 4-38 - Modified diode detector 

 
The output level will be limited by the peak level of the signal. It is desired to amplify this 
signal to utilize the full voltage range. A simple low pass filtration is also added to remove 
ripple. The amplification circuit is shown in Figure 4-39. To minimize the power consumption 
the resistors should be as large as possible while preserving the characteristics of the 
operational amplifier. The downside of using large resistors is that the circuit is more 
vulnerable to electrical noise. It is therefore important to consider this when designing the 
PCB layout.   
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Figure 4-39 - Signal amplifier with low-pass filtration 

 
Finally a digital signal is produced by a comparator to generate an external interrupt request to 
the MCU. The circuit is simulated with a fixed compare value. In the final design circuit this 
voltage will be set by the MCU to provide an adaptive solution in addition to the AGC. The 
circuit is shown in Figure 4-40. 
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Figure 4-40 - Comparator circuit 

  
The simulated results are shown in the two following scope plots. The channels are 
connected: 

1. Original signal around zero (Figure 4-37) 
2. Rectified signal (Figure 4-38) 
3. Amplified output (Figure 4-39) 
4. Comparator output (Figure 4-40) 

 

 
Figure 4-41 – Simulation scope plot: Modified diode detector trig 

 

 
Figure 4-42 - Simulation scope plot: Modified diode detector 

 

4.5 Component selection 

This section covers the component selection. The most vital components are the operational 
amplifiers and the digital potentiometer.  
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4.5.1 Operational amplifier 

For this application the most important factors of the operational amplifier are power 
consumption, gain bandwidth product and rail to rail output.  
 
Section 4.3.5 describes the requirements for the amplifiers used in the filter circuit. It is 
required both operational amplifiers with a gain-bandwidth product of minimum 3 MHz and 
12 MHz. To minimize the overall power consumption this design will use two different 
operational amplifiers for the filter circuit. 
 
The LMV552MM operational amplifier manufactured by National Instruments operates at an 
extremely low power consumption of 34µA per amplifier. It features rail to rail output and a 
gain bandwidth product of 3MHz.  
 
The highest signal frequency is 80 kHz. By stretching the gain bandwidth product to its 
specified value all amplifier elements will damp the highest signal with 3 dB. To avoid this, 
the calculations are based on a maximum frequency of 100 kHz. This gives us a maximum 
gain per amplifier of  
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 (4.56) 

 
Four amplifiers are therefore needed to achieve the minimum of 103 dB gain. A gain of 25 
per amplifier is chosen to provide a good dynamic range while staying well within the gain 
bandwidth limitation. The total gain is  
 4 20 log(25) 112

dB
G dB= ⋅ =  (4.57) 

 
The LMV562MM operational amplifier manufactured by National Instruments operates at a 
power consumption of only 110uA while providing a gain-bandwidth of 12 MHz. It follows 
that this is one of the markets best amplifier with respect to gain-bandwidth / power 
consumption ratio. It also features rail-to-rail output and operates at voltages down to 2.7 V. 
 
The design will therefore use four LMV552MM for gain, two for the active filter and two for 
the reception detector, in all six amplifiers. It will use two LMV562MM for the active filter. 
 
 

4.5.2 Digital potentiometer 

As described in section 4.2.2.5 it is important to consider the bandwidth and the wiper 
capacitance of the potentiometer. It is desired to have a potentiometer with as low wiper 
capacitance as possible to allow the potentiometer to have a high end-to-end resistance and 
thereby dissipating a minimum of power.   
 
It is also desired to have as large a resolution as possible, this is typically 8-bit. If there is 
more than one potentiometer per package it is vital that the cross-talk between the channels is 
much lower than the gain between the channels.  
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The interface should be SPI or I2C to ensure a correct gain setting. The interface frequency 
should be high to avoid interference with the signal band. The current consumption of a 
CMOS digital potentiometer is typically a few µA, but must be taken into consideration when 
choosing the potentiometer. 
 
The 100 kΩ digital potentiometer MAX5401EKA is chosen for its very low wiper capacitance 
of 25pF while consuming only 5µA. At 50% setting it will provide a bandwidth of  
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 (4.58) 

 
It also features 8-bit resolution with a SPI compatible interface. 
 
The design will therefore use three MAX5401EKA for the AGC circuit and one for the reception 
detector, in all four MAX5401EKA. 
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5. Digital design 
This chapter includes a brief description of the digital hardware design of the telemetry buoy. 
For extensive details please refer to the project report Acoustic telemetry buoy [4] which is the 
basis for the whole digital design. The report [4] concludes that the Atmel AVR32 UC3 series 
of microcontrollers should be used for further design. 
 
The design is concentrated around the Atmel microcontroller AT32UC3B1256. Key features 
are [19]: 

• 48 pin package 
• 75 DMIPS at 60 Mhz 
• 7 peripheral DMA channels 
• 10-bit internal ADC 
• 256K Bytes internal flash memory 
• 32K Bytes internal SRAM 
• Universal Serial Bus 2.0 
• 3.3V Operation 

 
The main tasks of the digital part of the system are: 

• Calculation and setting the gain in the AGC loop 
• Sampling and digital filtration of the analogue signal 
• Decoding of the received signals 
• Storing received data with time stamps 
• Providing the stored data to the user 

 
The following sections provide an overview of the listed tasks. Please refer to chapter 7 for a 
description of the implemented firmware.  

5.1 Calculating and setting the gain in the AGC loop 

Section 4.4 Reception detector describes a way of providing an analogue DC signal which is 
proportional to the amplitude of the filtered signal. This signal can be converted to a digital 
number using the internal ADC of the AT32UC3B microcontroller. If the signal is too strong 
the amplifier might saturate. It is therefore important that the microcontroller ensures that the 
signal is below the saturation limit of the amplifiers when measuring the signal level. 
 
The amplifier gain is set by setting the wiper position of the digital potentiometers via the SPI. 
It is important that the MCU waits until the level signal has stabilized after altering the gain 
setting before converting the signal using the internal ADC. 

 
A simplified functional schematic of the variable gain amplifier is shown in Figure 5-1. The 
wiper position, from low to high, is proportional to the input number. The equation for the 
gain is therefore 
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 (5.1) 

Where 

n
x
 is the 8-bit digital position of the wiper of potentiometer x 
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Figure 5-1 - Simplified variable gain amplifier 

 
The gain is though somewhat lower due to the inserted filtration and using non-ideal 
operational amplifiers. Using the simulation result provided in Figure 4-34 on page 37, the 
maximum gain is found to be 105dB. The new expression becomes 
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 (5.2) 

   

5.2 Sampling and filtration 

The sampling is done with the internal ADC. The detector offers a comparator configuration 
which is connected to an interrupt pin on the AT32UC3B. This configuration allows the 
microcontroller to be in a sleep mode when not receiving. The signal will be undersampled as 
described in section 2.1 on page 4. The frequency can be further filtered digitally before 
determining if the signal is a valid pulse of the correct frequency.  

5.3 Decoding the signal 

The AT32UC3B microcontroller has several internal timers which can run either with the 
system clock or the 32 kHz external or internal oscillator as clock source. These timers can be 
used with either the ADC and a firmware routine or the interrupt triggered by the reception 
detector to determine the pulse position. When the time separation of the pulses is determined 
the data can be retrieved.  Each transmission ends width a CRC check and this must be 
validated before storing the data. 

5.4 Storing the received data 

The telemetry buoy should be able to store 100 000 receptions with ID, data and time stamps. 
Assuming an 8-bit ID, 16 bits of data and a time stamp of 48 bits the complete memory must 
be a minimum of 7.2 Mbit. To ensure that the data is not lost due to a system failure or 
removal of the battery the memory should be non-volatile. It is also important that the 
memory unit requires a minimum of power to store data. The latter requires a low current 
consumption as well as a short write time. 
 
A serial flash AT45DB321 is chosen for this project. Key features are: 

� 32 MBit of storage 
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� SPITM interface 
� 2.7-3.6V operation 
� 25uA standby current 
� 5uA Deep power down current 
� 12mA write operation current 
� 3ms page programming time (512 bit) 

 

5.5 Recovering the stored data 

Some form of interface must be provided for recovering the stored data. This interface might 
be Bluetooth, USB, RS232, GSM, Argos or other. It is preferable that the system can be 
adapted to any of these communication forms. The USB interface is chosen for this project. A 
UART to USB bridge FT232R is used for the communication. The AT32UC3B also features 
an inbuilt USB interface. This can be adapted for the final product, but the complexity of use 
makes it unsuitable for a prototype where it is to be used with debugging as well as recovering 
the stored data. 
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6. Prototype design 
A prototype was designed in order to test both the analogue and digital hardware designs as 
well as having a realistic platform for testing the firmware. The prototype is arranged as six 
blocks: 

� Preamp 
� Variable gain amplifier and filter 
� Reception detector 
� Connectors and headers 
� Power distribution 
� MCU and Flash memory 

 
The system is structured as in Figure 6-1. 
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Figure 6-1 - Schematic overview 

 
These hardware blocks will be described in the following sections. For a compete 
documentation please refer to the complete schematics, bill of materials and assembly 
diagram provided in appendix 5-7. 
 

6.1 Power distribution 

The schematic for the power distribution is shown in Figure 6-2. The power can be supplied 
from the USB or from an external DC power supply. The system is protected against wrong 
polarization with Q1. A P-channel MOSFET is used instead of a simple diode to eliminate 
any voltage drop. A fuse is mounted to protect the circuit against overload and short circuit. 
 
The AT32UC3B requires a supply voltage of 3.3V. To limit the number of voltage regulators 
and the power loss that follows, the system voltage is chosen to be 3.3V for both the analogue 
and the digital design. The linear regulator LMS8117AMP is chosen for the prototype. It is 
important to notice that for the final product the system will require a buck-boost switching 
regulator carefully chosen to suit the power requirements of the final product. As for the 
prototype the voltage regulator is rather oversized for handling USB communication, LEDs, 
debugging etc.  
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The input voltage is limited by the voltage regulator U12 and is ranging from 4.5 – 12V DC. 
The current is limited to 0.45A by the transistor Q1. 
 
To measure the current the prototype features four current shunt monitors INA138NA. The 
device amplifies the voltage drop over the series resistor with a gain of 100. This enables real-
time current monitoring using an oscilloscope. The system offers three individually monitored 
power sections: 

� Variable gain amplifier and filter 
� Reception detector 
� MCU and flash 

 
In addition the sum of the three sections can be monitored to measure the current of the 
complete system. Debugging features and additional circuitry such as the preamp and LEDs 
are bypassed the monitors. 
 
Signal ground is created by using a secondary voltage regulator LP3992IMF of 1.5V. As an 
alternative the internal 1.8V voltage regulator of the AT32UC3B can be selected as the signal 
ground. This will eliminate two external components and reduce the power consumption. The 
regulator is chosen with a jumper on P2. U17 can be shut down using a jumper on P3. 
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Figure 6-2 - Power distribution schematic 

 
 

6.2 Preamp 

The schematic for the preamp is shown in Figure 6-3. This block is added to provide support 
for various hydrophones, both passive and active. For a final design the preamp should have 
fixed gain suited for a specific hydrophone element. The choice of such an element is 
dependent on physical size and shape of the final product and is therefore not the scope of this 
prototype design.  
 
The preamp provides possibilities such as 
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� Variable signal damping with R44 
� Variable signal amplification with R45 
� Choice of output signals 

o Direct 
o Damped 
o Amplified 
o Grounded 

� Power source for an active two wire hydrophone 
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Figure 6-3 – Preamp schematic 

 

6.3 Variable gain amplifier and filter 

The background for the design of the variable gain amplifier and the filter is covered in 
section 4.2 and section 4.3 respectively. The schematic for the combined circuit is shown in 
Figure 6-4. The AGC_intput is connected to the output of the Preamp. The AGC_output is 
connected to the ADC input of the MCU and the reception detector. 
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Figure 6-4 - Variable gain amplifier and filter schematic 

 

6.4 Reception detector 

The design of the reception detector is covered in section 4.4 on page 37. The schematic is 
shown in Figure 6-5 - Reception detector schematic. 
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Figure 6-5 - Reception detector schematic 
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6.5 Connectors and headers 

The schematic for the connectors and headers block is shown in Figure 6-6. The block 
includes the following headers: 

� Power input – 4.5 – 12V external voltage input 
� Current sense – output from the current shunt monitors 
� Hydrophone – input signal from the hydrophone 
� JTAG – programming and debugging of the AT32UC3B 
� GPIO – connected in parallel with the LEDs for measurement and connection of 

external circuitry 
� SPI and USART – for debugging purpose and possible external circuity 
� Analogue – connected to the ADC inputs of the AT32UC3B, for debugging and 

possible additional inputs 
� Power output – for potential additional external circuitry and measurements 

 
In addition to headers this block includes a USB connector with a USB to UART bridge 
connected to the USART1 of the AT32UC3B. This is to be used for debugging and analysis 
of the results. The USART signals are connected through a DIP switch. This is to ensure that 
the USB does not draw any current from the microcontroller when performing current 
measurements. Series resistors are due to the different operating voltage of U19 and the 
microcontroller. 
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Figure 6-6 - Connections and headers schematic 

6.6 MCU and Flash memory 

The schematic for the MCU and flash block is shown in Figure 6-7. This block includes the 
digital design described in chapter 5. In addition to the microcontroller and the serial flash the 
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block includes six LEDs for indication and three switches for debugging. The LEDs can be 
disconnected from the microcontroller to avoid interference when performing current 
measurements.  
 
The AT32UC3B1256 is decoupled according to the recommendations given by Atmel in 
application note AVR32715: AVR32 UC3B Schematic Checklist [20]. 
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Figure 6-7 - MCU and Flash memory schematic 

 

6.7 PCB layout 

For the physical prototype a four layer PCB is used.  The two inner layers are reserved for 
ground and VCC where the ground layer is a large plane whereas the VCC is divided into the 
different power sections described in section 6.1 on page 48. The layers gnd, vcc, top and 
silkscreen are shown in Figure 6-8.  The bottom layer is reserved for digital signals while the 
top layer consists only of analogue signal paths. Having the gnd and vcc planes in between 
will help reduce the influence of digital noise in the analogue circuitry. Placing the vcc and 
ground planes in the inner layers also provides a decoupling effect helping reduce the noise 
further.  
 
All the components are grouped on the PCB as in the schematic pages. This provides a good 
overview as well as ensuring noise immunity when separating the digital and analogue 
circuits. Notice that the digital circuits are placed to the right while the analogue are placed far 
to the left. This spacing will ensure a minimum of digital noise impact on the analogue 
circuitry.  
 
The gerber files for the PCB are available in appendix A. 



    

   54 

 
Figure 6-8 - PCB layout 

  
The assembled prototype is depicted in Figure 6-9. 
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Figure 6-9 - Assembled prototype 
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7. Firmware 
The firmware for the prototype is written in the programming language C. AVR32 Studio 
2.12 was used which includes a gcc compiler ported by Atmel to work with AVR32® 
microcontrollers. It also includes a software framework written by Atmel. The framework 
includes drivers for all modules, some with examples, as well as a digital signal processing 
(DSP) library and more. The drivers, the examples and the DSP library [27] have been used in 
the design of the firmware.  
 
The firmware for the prototype is only written for testing and measurement purposes.  It is not 
written to be either speed or size optimal, but serves as a good basis for testing and further 
development. The complete code is found in appendix 8 and B. The float diagrams for the 
main routine and the active interrupt routines are shown in Figure 7-1, Figure 2-1, Figure 7-3 
and Figure 7-4. 
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Figure 7-1 - Main routine float diagram 
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Figure 7-2 - Reception interrupt handler 

 
Note that the reception handler uses Fast Fourier transform to check the frequency. This 
means that several carrier frequencies easily can be supported as well as a multiple frequency 
shift keying modulation scheme.  
 

 
Figure 7-3 - RTC interrupt handler 
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Figure 7-4 - ADC conversion complete interrupt handler 

 
The code is structured as ”MUDULE_functions.c” and “MODULE_functions.h”. As an 
example the function for setting the gain in the variable gain amplifier is found in 
“SPI_functions.c” since the SPI module is used to set the gain. The only exception is the 
functions used for testing which is found in TEST_functions.c. In addition the config.h file 
includes configuration settings such as pin configurations, CPU speed, sample frequency and 
more. This way of structuring the configuration makes it easy to use the same functions for 
different boards and applications. The following sections will describe the main functions of 
each C-file to be used as reference. For additional details please refer to the complete c-code 
provided in appendix 8 and B. 
 

7.1 ADC_functions 

void init_ADC( void ); 
This function initializes the ADC to use the signal from the variable gain amplifier and filter 
as input. It sets the prescaler in accordance to the datasheet, enables complete ADC interrupt 
and enables the hardware trigger from timer counter TIOA channel 0. The timer counter can 
then be used to initiate an ADC conversion. This will ensure a stable and accurate sampling 
frequency without CPU involvement.  
 
static void ADC_complete_irq( void ); 
Stores the new adc value to the sample array and increments the sample counter. If the sample 
was the last of the burst the sampling is disabled while signalling this with the sample_flag. 
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7.2 CLOCK_functions 

void init_clock( void ); 
This function initializes the system to use either external crystal or external clock as input to 
the PLL. The PLL will produce a CPU frequency of 60 MHz and a peripheral frequency of 15 
MHz. The function also sets the memory unit to use one wait state according to the datasheet.   

7.3 DSP_functions 

FreqPower_t check_signal( void ); 
This function removes the DC offset and performs a 16-bit 64-point complex FFT on the 
global array sample which holds the values of the most recent sample burst. It then searches 
for the frequency with the highest power in the positive frequency area and returns the power 
and the frequency in kHz. The function requires that a burst consists of 64 16-bit fixed point 
samples.  
 

7.4 EIC_functions 

void init_EIC( void ); 
This function initializes the external interrupt controller to generate a synchronous interrupt at 
the rising flank of the digital output of the reception detector.  
 
static void eic_int_reception_handler( void ); 
This function handles the reception of a signal. It functions as shown in Figure 7-2. This is the 
same routine which is used during the test of the complete system as specified in section 
8.1.7. The routine can easily be changed to include digital filtration, validation of the signal 
and more. The interrupt flag is cleared at the end of the routine to avoid several parallel 
instances and the possibility of stack overflow. 
 

7.5 RTC_functions 

void init_RTC( void ); 
Initializes the RTC timer to use the 32.000 kHz external crystal as source and divide the clock 
by 32 thus configuring the timer to count milliseconds. The time variables are reset to default 
0.  An interrupt is generated each second to update the time variables.  
 
void rtc_irq( void ); 
The interrupt handler updates a simplified RTC clock, counting seconds, minutes, hours and 
days. The clock will always start at zero when resetting the device. 
 
time_variable_t get_time( void ); 
Ensures that no update of the time variables is ongoing while reading the time. Returns a 
structure containing milliseconds, seconds, minutes, hours and days. 
 
time_variable_t calculate_time_diff(time_variable_t t1, time_variable_t t2); 
Takes two structures with the time as argument. Will calculate and return t1 - t2. This routine 
is mainly used to calculate the space between each pulse in the PPM signal received from the 
fish tag. 
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7.6 SPI_functions 

void init_SPI( void ); 
Initializes the SPI module to use with the digital potentiometers. Initiates the manual CS for 
the external dataflash to high. 
 
void set_gain( U32 gain ); 
Sets the gain of the variable gain amplifier by calculating the potentiometer settings and 
updating the potentiometers via the SPI interface if necessary. The gain is calculated so that 
the signal is at maximum throughout the system to achieve the best SNR. 
 
void set_theshold( unsigned char data); 
Updates the potentiometer which sets the threshold for the digital output of the reception 
detector. Input it the raw data sent to the potentiometer. i.e voltage = (data/255)*3.3V. 
 
void store_data_in_dataflash(unsigned char * data, unsigned short size); 
Stores a maximum of 512 bytes of data to address 0 in the dataflash. The microcontroller does 
not have sufficient chip selects. The dataflash is therefore connected to a gpio pin which must 
be set manually. To avoid that any other chip select is active while using the SPI module the 
selected NPCS pin in the SPI module is configured as a GPIO pin during the writing of the 
page. The system is reset to the previous setting at the end of the function. The function is 
only implemented to measure time and current consumption. 
 
unsigned char read_data_from_dataflash(unsigned char *data, unsigned short size); 
Reads a maximum of 512 bytes of data form address 0 in the dataflash. This routine is only 
implemented to validate that the store_data_in_dataflash routine is functioning. The chip 
select is manipulated in the same manner as with the store function. 
 

7.7 TC_functions 

void init_TC( void ); 
Initializes the timer counter used for timing the sampling of the analogue signal. The timer is 
initialized as stopped. 
 
void enable_sampling( void ); 
Starts the timer counter, rests the sample counter variable and enables the ADC interrupt. The 
ADC is set to starts a conversion each time the timer reaches the value defined in the RC 
register.  
 
void diable_sampling( void ); 
Stops the sampling timer and disables the ADC interrupt. 

7.8 USART_functions 

void init_USART( void ); 
Initializes the USART to communicate with the UART to USB bridge. The baudrate is 
defined in config.h 
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7.9 TEST_functions 

void test( void ); 
Includes all functional and performance tests which requires the use of the MCU. Only the 
test of the complete system is not defined here. For details about the tests please refer to 
chapter 8.  
 

7.10  main.c 

The main.c file runs all init functions as well as setting the gain and threshold for the test of 
the complete system. 
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8. Test and measurement procedures 
This chapter describes the tests needed to validate the prototype. Tests are divided into 
functional and performance tests. As an example a functional test of a digital Fourier 
transform routine will be that that dominant frequency of the output can be pinpointed as the 
input frequency. The performance tests can include the execution time, power consumption of 
the microcontroller and the accuracy of the output.  
 
Functionality tests should be performed for the following modules/circuits: 

� Power distribution 
� Preamp 
� Variable gain amplifier and filter 
� USB circuit 
� MCU and Flash memory 
� Complete system 

 
When all listed modules/circuits have passed the functionality tests, the performance tests can 
be carried out.  
 
Performance tests should be performed to the following modules. 

� Variable gain amplifier and filter 
� Reception detector 
� MCU and flash memory 

 
Unless other setting is specified all tests shall be carried out under the following conditions: 

� external power supply of 5.0 V connected 
� Jumper on pins 4-3 on header P1 
� Jumper on pins 4-3 on header P2 
� Jumper on pins 4-3 on header P3 
� Jumper on pins 5-6 on header P4 
� 1 Ω resistor placed in socket R39 
� 22 Ω resistor placed in socket R35 

 
� 100 Ω resistor placed in socket R38 
� 1 Ω resistor placed in socket R42 
� All switches on S1 and S2 in OFF position 

 
GND is reference to all voltage measurements unless other is specified 
 
The following sections will describe the tests to be performed in detail. 
 

8.1 Functionality tests 

These tests are used to indicate that the assembly has been carried out correctly. These tests 
should be performed before ant performance tests to ensure that the measurements that require 
high accuracy are carried out under correct operating conditions.  
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8.1.1 Power distribution 

The power distribution block tasks are to provide a stable operating voltage for the circuit and 
provide a means of measuring the current consumption of selected modules.  
 
The functional tests are as follows.  
 
Test # 1  

Motive Ensure correct operating voltages 

Module Power distribution 

Tool Oscilloscope 

Min value 3.25 V 

Max value 3.35 V 

Procedure Measure the voltage at P12 pin 1, U13 pin 4, U14 pin 4, U16 pin 4.  

  Ensure that there are no short or long term voltages outside the limits 

Measured value(s)   

Status   

 
Test # 2  

Motive Ensure that the current measurement circuits function properly 

Module Power distribution 

Tool Oscilloscope 

Min value 0.5 V 

Max value 3 V 

Procedure Measure the voltage at P5 pin 1,2,3,4 

  Ensure that there are no short or long term voltages outside the limits 

Measured value(s)   

Status   

 
Test # 3  

Motive Ensure that the SGND regulator circuit is functioning properly 

Module Power distribution 

Tool Oscilloscope 

Min value 1.45 V 

Max value 1.55 V 

Procedure Measure the voltage at P12 pin 2 

  Ensure that there are no short or long term voltages outside the limits 

Measured value(s)   

Status   

 
 
 
 

8.1.2 Preamp 

The preamp is added to the prototype to be able to scale the input signal so that the prototype 
can be used with various types of signal sources. 
 
The functional tests are as follows.  
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Test # 4  

Motive Ensure that the Preamp functions properly 

Module Preamp 

Tool Oscilloscope, signal generator 

Min value 500 mVp-p 

Max value 100 mVp-p 

Procedure Connect the signal generator to P6. Adjust it to 70kHz sinusoidal, 

  150mVp-p. Adjust R44 and R45 to centre position. 

  Measure the signal at P4 pin 5. Ensure that the signal is not outside the 

  specified limits. Check that the amplitude changes when turning the 

  potentiometers R44 and R45 

Measured value(s)   

Status   

 

8.1.3 Variable gain amplifier and filter 

The variable gain amplifier and filter block scales the signal according to the C-function 
set_gain(). This is to provide the ADC and the detector with a signal of the correct amplitude 
as well as setting the sensitivity of the receiver.  
 
The functional tests are as follows.  
 
Test # 5  

Motive Ensure that the Variable gain and filter block functions properly 

Module Variable gain and filter 

Tool Oscilloscope, signal generator, JTAGICEmkII 

Min value - 

Max value - 

Procedure Remove jumper at P4 when performing this test. Connect signal generator 

  to P4 pin 2. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the 

  Oscilloscope to P11 pin 3.  Use the set_gain() function with the MCU 

  to set the gain to 1, 10, 100, 200. Observe that the output signal is 

  a 70 kHz sinusoidal and that the amplitude changes when changing gain. 

Measured value(s)   

Status   

 

8.1.4 Reception detector 

The reception detector provides a DC which is proportional to the amplitude of the output 
signal of the variable gain amplifier and filter. The analogue output of the detector can be 
used to estimate the signals amplitude. The block also features a digital “wake-up” signal with 
variable threshold. 
The functional tests are as follows.  
 
Test # 6  

Motive Ensure that the Detector block functions properly 

Module Reception detector 

Tool Oscilloscope, signal generator, JTAGICE mkII 

Min value - 
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Max value - 

Procedure Remove jumper at P4 when performing this test. Connect signal generator 

  to P4 pin 2. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the 

  Oscilloscope to P11 pin 2.  Use the set_gain() function with the MCU 

  to set the gain to 1, 10, 100, 200. Observe that the output signal changes 

  is a DC signal that changes value when changing gain. 

Measured value(s)   

Status   

 
 
Test # 7  

Motive Ensure that the Detector block digital output functions properly 

Module Reception detector 

Tool Oscilloscope, signal generator, JTAGICE mkII 

Min value - 

Max value - 

Procedure Remove jumper at P4 when performing this test. Connect signal generator 

  to P4 pin 8. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the 

  Oscilloscope to P8 pin 2.  Use the set_gain() function with the MCU 

  to set the gain to 100. Use the set_threshold() function to set the threshold 

  to 128. Vary the signal amplitude and observe that the output changes. 

Measured value(s)   

Status   

 
 

8.1.5 USB circuit 

The USB circuit is used to output debug information and data typically to a terminal program.  
 
The tests are as follows: 
Test # 8  

Motive Ensure that the USB circuit functions properly 

Module Connectors and headers 

Tool JTAGICEmkII, Terminal program 

Min value - 

Max value - 

Procedure Set all switches on S2 to the ON position. 

  Connect the USB to a PC. Open a terminal program and select the 

  associated COM-port. Use the usart_write_line() function to send a known 

  string. Verify that the same string have been received with the terminal 

  program. 

Measured value(s)   

Status   

8.1.6 MCU and flash memory 

The MCU is the main processing unit in the system and has many tasks and C-functions that 
must be tested. All C-functions not described in this section has been tested during the 
development of the code and can therefore be assumed to work as specified in the code 
comments and in chapter 7. The external components such as serial flash and external crystal 
will be covered by the following tests. 
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Test # 9  

Motive Ensure that the MCU crystal oscillators functions properly 

Module MCU and flash memory 

Tool JTAGICE mkII, Terminal program 

Min value - 

Max value - 

Procedure Connect the USB to a PC. Open a terminal program and select the 

  Correct COM-port. Initialize the MCU to use the external high speed crystal 

  as clock source and start the RTC. Write the clock variables to the USART 

  indefinitely with delay between each send. Observe that the clock changes 

  value in the terminal program. 

Measured value(s)   

Status   

 
 
Test # 10  

Motive Ensure that the MCU flash functions properly 

Module MCU and flash memory 

Tool JTAGICE mkII, Terminal program 

Min value - 

Max value - 

Procedure Use the store_data_in_dataflash() function to store a page where all bytes 

  are 0x55. Use the read_data_from_dataflash() function to read the data 

  back. Check that all the data is 0x55, write "OK" to USART if OK, otherwise 

  write "fail". Perform the same procedure again with the number 0x11. 

Measured value(s)   

Status   

 

8.1.7 Complete system test 

This section describes the most comprehensive and important functionality test. To verify that 
the system design concept works the system shall be tested with a standard Thelma fish tag 
and a passive hydrophone. 
 
Test # 20  

Motive Ensure that the system concept works 

Module All 

Tool JTAGICE mkII, Terminal program, Thelma fish tag, passive hydrophone 

Min value - 

Max value - 

Procedure Connect the passive hydrophone to P6 input. Set the variable gain amplifier to 
2000 using the set_gain() function. Set the threshold limit of the detector to 80 i.e 1 
V. Enable rising flank external interrupt for the input connected to the digital 
output of the reception detecor. The interrupt service routine should be as described 
in Figure 8-1. 
Lower both the fish tag and the hydrophone into water with a spacing of 1-5 
meters. Verify that the interrupt triggers and that the output has plausible values. 
Perform the same test with gain set to 100 000. Set the threshold limit to a 
reasonable value. 
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Figure 8-1 - Reception test interrupt handler float diagram 

 

8.2 Performance tests and measurements 

Performance tests will be carried out for the modules: 
� Variable gain amplifier and filter 
� Reception detector 
� MCU and flash memory 

 
The goal of the tests is to achieve enough data to be able to validate the prototype 
characteristics with respect to frequency response, low power, CPU performance, accuracy 
and correctness. The tests will be performed on a module by module basis to be able to 
pinpoint any weaknesses in the design and suggest improvements. 
 
The following tests should be carried out after the prototype has passed all the functionality 
tests. 
 

8.2.1 Variable gain amplifier and filter 

The following procedures will test the variable gain amplifier and filter and provide data for 
further analysis. 
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Test # 11  

Motive Find the gain response curve of the variable gain amplifier 

Module Variable gain amplifier and filter 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude 

  should be as specified for each measurement. 

  Remove the jumper at P4. Connect the signal generator to P4 pin 2. 

  Connect the oscilloscope to P11 pin 3. 

  Use the set_gain() function to set the gain as specified in the table. 

  Set the signal generators amplitude as specified in the table.  

  Note the output amplitude of the signal and calculate the gain. 

Amplitude [mV] Gain Measured amplitude [mV] Calculated gain 

100 1     

100 2     

100 5     

100 10     

10 20     

10 50     

10 100     

1 200     

1 500     

1 1000     

0,1 2000     

0,1 5000     

0,1 10000     

0,01 20000     

0,01 50000     

0,01 100000     

0,01 140000     

 
 
 
Test # 12  

Motive Find the frequency response curve of the variable gain amplifier and filter 

Module Variable gain amplifier and filter 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal with a frequency as 

  specified in the table. Set the amplitude to 200 mVp-p. 

  Remove the jumper at P4. Connect the signal generator to P4 pin 2. 

  Connect the oscilloscope to P11 pin 3. 

  Use the set_gain() function to set the gain to 10. 

  Note the amplitude of the output signal at the different frequencies. 

Frequency [kHz] Output amplitude 

10   

20   

30   

40   

50   

52   

55   

58   
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60   

62   

65   

68   

70   

72   

75   

78   

80   

82   

85   

88   

90   

100   

110   

120   

 
 
 
Test # 13  

Motive Measure internally generated noise with no input signal 

Module Variable gain amplifier and filter 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Remove jumper at P4. Place a jumper at P4 pin 7-8 

  Connect the oscilloscope to P11 pin 3. 

  Use the set_gain() function to set the gain according to the table 

  Measure the RMS value of the output signal at the various gain settings. 

Gain Output [mVrms] 

1   

2   

5   

10   

20   

50   

100   

200   

500   

1000   

2000   

5000   

10000   

20000   

50000   

100000   

140000   

 
 
 
 
 
 



    

   70 

Test # 13  

Motive Measure internally generated noise with no input signal 

Module Variable gain amplifier and filter 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Remove jumper at P4. Place a jumper at P4 pin 7-8 

  Connect the oscilloscope to P11 pin 3. 

  Use the set_gain() function to set the gain according to the table 

  Measure the RMS value of the output signal at the various gain settings. 

Gain Output [mVrms] 

1   

2   

5   

10   

20   

50   

100   

200   

500   

1000   

2000   

5000   

10000   

20000   

50000   

100000   

140000   

 
 
Test # 14  

Motive Measure the current consumption of the variable gain amplifier and filter 

Module Variable gain amplifier and filter 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude  

  should be as specified for each measurement. 

  Remove jumper at P4. Connect the signal generator to P4 pin 2. 

  Connect the oscilloscope to P5 pin 2, AGC current measurement output. 

  Use the set_gain() function to set the gain as specified in the table. 

  Set the signal generators amplitude as specified in the table.  

  Note the output voltage of the signal and calculate the current consumption 

Amplitude [mV] Gain Measured voltage[mV] Calculated current [mA] 

100 1     

100 2     

100 5     

100 10     

10 20     

10 50     

10 100     

1 200     

1 500     

1 1000     
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0,1 2000     

0,1 5000     

0,1 10000     

0,01 20000     

0,01 50000     

0,01 100000     

0,01 140000     

 
 
 

8.2.2 Reception detector 

The following procedures will test the reception detector and provide data for further analysis. 
 
Test # 15  

Motive Find the response curve of the reception detector analogue output 

Module Reception detector 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal, the amplitude and 

  frequency should be as specified for each measurement. 

  Remove jumper at P4. Connect the signal generator to P4 pin 2. 

  Connect CH1 on the oscilloscope to P11 pin 2. Connect CH2 to P11 pin 3. 

  Use the set_gain() function to set the gain to 1. 

  Note the output voltage of both the signals 

Amplitude [mV] Frequency [kH<] Measured amplitude (CH2) [mV] Detector output [mV] 

0 60     

10 60     

20 60     

50 60     

100 60     

150 60     

200 60     

300 60     

500 60     

700 60     

1000 60     

1300 60     

1500 60     

1800 60     

2000 60     

2500 60     

0 70     

10 70     

20 70     

50 70     

100 70     

150 70     

200 70     

300 70     

500 70     
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700 70     

1000 70     

1300 70     

1500 70     

1800 70     

2000 70     

2500 70     

0 80     

10 80     

20 80     

50 80     

100 80     

150 80     

200 80     

300 80     

500 80     

700 80     

1000 80     

1300 80     

1500 80     

1800 80     

2000 80     

2500 80     

 
 
Test # 16  

Motive Measure the current consumption of the reception detector 

Module Reception detector 

Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude 

  should be as specified for each measurement. 

  Remove jumper at P4. Connect the signal generator to P4 pin 2. 

  Connect CH1 on the oscilloscope to P5 pin 3. Connect CH2 to P11 pin 3. 

  Use the set_gain() function to set the gain to 1. 

  Note the output voltage of both the signals 

Amplitude [mV] Measured amplitude (CH2) [mV] Detector output [mV] 

0     

10     

20     

50     

100     

200     

500     

1000     

2000     

 
 
Test # 17  

Motive Find the step response curve for the reception detector 

Module Reception detector 
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Tool JTAGICEmkII, oscilloscope, signal generator 

Procedure Set the signal generator to generate a sinusoidal of 70 kHz with an 

  amplitude of 1000 mV. Set the scope to single trigger on CH1, input signal. 

  Remove jumper at P4.  

  Connect CH1 on the oscilloscope to P5 pin 3. Connect CH2 to P11 pin 3. 

  Use the set_gain() function to set the gain to 1. 

  Connect the signal generator to P4 pin 2 and store the response curve. 

 

8.2.3 MCU and flash memory 

The following procedures will measure the execution time and current consumption for the 
main functions of the MCU. The most important functions include storing data, functions 
used to receive data and digital signal processing. Execution times for some of the functions 
are already benchmark tested by Atmel in [28] and the datasheet [19] provides current 
consumption for active and static mode, hence the table only includes routines written 
especially for the prototype. 
 
Test # 18  

Motive Find the execution time of the main CPU activities 

Module MCU and flash memory 

Tool JTAGICEmkII, oscilloscope 

Procedure Connect the oscilloscope CH2 to P8 pin 1.  

  Use the oscilloscope to measure the execution time by setting GPIO0 

  before the routine and clearing the same pin after the routine: 

  AVR32_set_gpio_pin(GPIO0); 

  set_gain(100); 

  AVR32_clear_gpio_pin(GPIO0); 

  Perform this procedure on every routine in the table.  

  Note the width of the positive pulse for each routine. 

Action Execution time MCU [uS] 

get 64 samples   

get 256 samples   

Store flash page 512 byte   

set_gain()   

get_time()   

calculate_time_difference();   

find dominating frequency   

 
 
Test # 19  

Motive Find the current consumption of the MCU and flash in sleep mode with RTC 

Module MCU and flash memory 

Tool JTAGICEmkII, oscilloscope 

Procedure Connect the oscilloscope to pin 4 on header P5 

  Enable the RTC with external 32.000kHz crystal, enable pull-ups for all 

  
unconnected pins or pins usually set to output. Put the MCU in sleep mode  
deep stop. Measure the voltage with the oscilloscope and calculate the 

  Current consumption. 
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9. Test results and measurement data 
This chapter presents the results of the tests and measurements described in chapter 8. To 
provide a good basis for analysis the results are presented as graphs and figures. Please refer 
to appendix E for the raw data for each test. The c-code for each test is found in 
test_functions.c and test_functions.h in appendix 8 and B.  
 
 

9.1 Accuracy of the results 

The current measurements are carried out using a series resistor and a current shunt resistor 
amplifier with an amplification of 100. A TENMA 72-7235 150MHz oscilloscope is used for 
all measurements.  
 
The tolerance of the measurements is calculated as follows: 
Series resistor: 1% 
Resistor in current shunt amplifier circuit: 499kΩ, 1% 
Current shunt amplifier total output error: 2%. 
Oscilloscope vertical accuracy: 3% 
 
The worst case scenario error is calculated in Table 9-1. 
 

Table 9-1 - Worst case measurement error 

Device Error Comment 

Series resistor -1%  
Current shunt resistor 492.01/500 - 1 = -1.6%  100 gain is for 500k resistor 
Current shunt amplifier output 
error 

-2%  

Oscilloscope measurement 
error: 

-3%  

SUM -7.6%  
 
If we assume that noise and thermal effects are small and can be neglected, current 
measurements have a tolerance of 7.6%. For voltage measurements the tolerance is only 
dependent on the oscilloscope and is 3%. Time measurements are done by toggling a port pin. 
This will introduce a slight delay, but can be neglected due to the relatively long execution 
time of the routines/algorithms. The oscilloscope will introduce a tolerance of 0.01% for time 
measurements. A summary of the tolerances is given in Table 9-2. 
 
Table 9-2 - Measurement tolerances 

Measurement Tolerance 

Current 7.6% 
Voltage 3% 
Time 0.01% 
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9.2 Functionality test results 

Functionality test #8 revealed one error in design; the TxD and RxD pins on the AT32UC3B 
where connected to the TxD and RxD pins respectively on the USB-UART bridge. Swapping 
these pins solves the problem and the test is passed. The schematics is updated to the correct 
setting.  
 
 
Functionality test #20 passed. A sample of the terminal output is provided below. 
 
*** Telemetry Buoy Running *** 
Pulse detected: 
 space: 00381 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06317 
 
 
Pulse detected: 
 space: 00460 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06341 
 
 
Pulse detected: 
 space: 00680 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06147 
 
 
Pulse detected: 
 space: 00520 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06244 
 
 
Pulse detected: 
 space: 00500 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06410 
 
 
Pulse detected: 
 space: 00460 ms, 00000 s 
Frequency: 00069 kHz 
 Power: 06218 
 
 
The results are plausible. Figure 9-1 and Figure 9-2 shows oscilloscope measurement of the 
reception. 
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Figure 9-1 - Reception of real signal, CH1: variable gain amplifier output, CH2: Detector analogue output 

 

 
Figure 9-2 - Reception of real signal, CH1: variable gain amplifier output, CH2: Detector digital output 

 
Increasing the amplification to 100 000 introduces much noise. The modification done to the 
original diode detector by inserting the extra resistor to suppress short term voltages makes 
the system function well even under noisy conditions. The reception works fine even with the 
extremely high gain. Both the timing of the pulses and the frequency measurement output is 
correct. The scope shot of the test with a gain of 100 000 is shown in Figure 9-3. 
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Figure 9-3 - Reception of real signal with high gain and high noise level, CH: variable gain amplifier 

output, CH2: Detector analogue output 

 
 
The prototype passed all other tests without modification. Please refer to appendix E for 
details. 
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9.3 Performance test and measurement results 

The performance tests are presented as diagrams. Please refer to appendix E for the raw data. 
 

9.3.1 Variable gain amplifier and filter test results 

 
Test #11: Find the gain response curve of the variable gain amplifier 
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Figure 9-4- Gain response curve 
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Test #12: Find the frequency response curve of the variable gain amplifier and filter 
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Figure 9-5 - Frequency response of the variable gain amplifier and filter 

 
 

Test # 13: Measure the internal noise with no input signal 
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Figure 9-6 - Internal noise vs gain 
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Test #14: Measure the current consumption of the variable gain amplifier and filter 

0,139

0,1395

0,14

0,1405

0,141

0,1415

0,142

0,1425

0,143

0,1435

0,144

0 20000 40000 60000 80000 100000 120000 140000 160000

Set_gain value

C
u

rr
e

n
t 

[m
A

]

 
Figure 9-7 - Current consumption vs. set_gain value for the variable gain amplifier and filter 
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9.3.2 Reception detector test results 

Test #15: Find the response curve of the analogue output of the reception detector 
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Figure 9-8 - Response curve for the reception detector for various frequencies 

 
Test #16: Measure the current consumption of the reception detector 
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Figure 9-9 - Current consumption vs. input amplitude of the reception detector 
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Test #17: Find the step response curve for the reception detector 

 
Table 9-3 - Reception detector response 
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9.3.3 MCU and flash memory test results 

The execution time was tested with a CPU frequency of 60 Mhz. 
 
Test #18 Find the execution time for the main MCU activities 

 

Action Execution time MCU [uS] 

get 64 samples 1210

get 256 samples 4561

Store flash page 512 byte 1280

set_gain() 54,408

get_time() 4,9704

calculate_time_difference(); 4,4936

find dominating frequency 439,92

 
 
Test #19 Find the current consumption of the MCU and flash in sleep mode with RTC 
 
Measured voltage:  35.6 mV 
Calculated current: 356 uA.  
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10. Discussion 
This chapter discusses the measurement results and compares them to the analogue and digital 
design chapters. The measurements will first be discussed module by module while the last 
section will discuss the complete system. 

10.1  Analogue design 

The analogue design in general fulfils its low power demands with good margin. The 
functionality is somewhat as expected although there are some adjustments that should be 
done to provide optimal characteristics. The following sections describe this in detail for each 
circuit type. 

10.1.1 Band pass filter 

The filter acts as simulated with the correct crossover frequencies. It is though required to 
investigate if this filter has the characteristics needed for the telemetry buoy application. 
 
The design of the filter is a compromise of using amplifiers with low gain-bandwidth product 
and hence low power consumption and filter characteristics. Using the measured frequency 
response we plot the first positive and the first negative alias for the chosen sampling 
frequency of 58 kHz. The result is shown in Figure 10-1. We clearly see that due to the non-
ideal filter characteristics the result is an overlap between the first positive and the first 
negative alias. It follows that a high power signal with a lower frequency than the high pass 
crossover frequency might be mistaken for a signal inside the pass band.  It is therefore 
important that either the filter is improved by increasing the flank of the analogue filter or by 
increasing the sampling frequency.  
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Figure 10-1 - Plot of aliases for fs = 58 kHz 

 
The allowable sampling frequencies are listed in Table 2-1 on page 5. Choosing a sampling 
frequency of 90 kHz will result in less overlap as seen in Figure 10-2. It is important to notice 
that although there is an overlap much of these frequencies can be filtered out digitally when 
using a higher sampling frequency and this may not represent any problem. 
 
The discussion of whether the improvements should be done in the analogue domain or in the 
digital domain is covered in section 10.3 on page 90. 



    

   85 

0

200

400

600

800

1000

1200

1400

-100 -50 0 50 100 150

Original

Positive alias

Negaticve alias

Dig. Freq. Area

 
Figure 10-2 - Plot of aliases for fs = 90 kHz 

 
 

10.1.2 Variable gain amplifier 

The variable gain amplifier functions well. Together with the filter it only consumes a current 
of about 300 uA. This is exceptionally low compared to the alternative variable gain amplifier 
ICs which would require about three AD600 each consuming 14 mA to provide the same 
amplification.  
 
Some adjustments are though needed to get optimal behaviour. We see from Figure 9-4 that 
the gain is non-linear. This can be compensated for in firmware, but this might require that an 
individual compensation table is constructed for each produced unit. It is desired to avoid this 
if possible to ease the production time and cost.  
 
When testing the variable gain amplifier the high gain forces the use of very small input 
signals which cannot be measured with an ordinary oscilloscope. Analysis will therefore have 
to be based on theories not verified by measurements.  
 
It is the author’s conviction that the root of the problem is the generated signal ground. The 
signal ground SGND is generated as shown in Figure 10-3. 
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Figure 10-3 - SGND generation 

 
Since the SGND power is not ideal both noise and signal can occur at the top of the signal 
ground. This can lead to unwanted feedback in the amplifier. As an example we consider the 
first and the last amplification segment of the variable gain amplifier as shown in Figure 10-4. 
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If the signal routed to SGND through resistors connected to the output of the operational 
amplifier and SGND, is not completely removed by the regulator and the decoupling this may 
have impact the variable gain amplifier performance. According to the phase of the output 
signal the feedback may be negative or positive. We also notice that the effect of this 
feedback is dependent on the wiper position of the digital potentiometer. This may be the 
reason for the non-linear behaviour. Note that this is only an example of one feedback. If the 
SGND does not suppress all signals, these feedbacks will occur in all amplifier segments, 
both in the filter and the variable gain amplifier. 
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Figure 10-4 - Unwanted feedback example 

 
To analyse this behaviour further we assume the following scenario: 

� The output signal of U7A is a 70 kHz sinusoidal with an amplitude of 1V 
� The voltage regulator has not the sufficient bandwidth to suppress the signal routed to 

SGND through R17 and R18. 
� The SGND is only decoupled with 1uF 
� No other feedbacks occur 

 
The output of the last amplification segment will result in a voltage divider as in Figure 10-5 
where Xc is the equivalent signal resistance of the 1 uF decoupling capacitor at 70 kHz. 
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Figure 10-5 – Signal equivalent voltage divider 

 
The result is a signal voltage on the SGND with an amplitude of 11.41 uV. The maximum 
gain of the amplifier is about 140 000. It follows that the worst case scenario leads to a 
feedback resulting in an unwanted output voltage of  
 611.4 10 140000 1.59

out
V V

−= ⋅ ⋅ =  (10.1) 
Note that this is not accurate numbers, but only an example to emphasize the importance of 
the design of the SGND circuit. 
 
Depending on the phase of the output signal may result in a negative or positive feedback. If 
the unwanted feedback results in a dominating positive feedback, the circuit may start to 
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oscillate and produce noise. The measurements of test #13 show a great deal of self-generated 
noise at high gain settings. It is believed that this is a result of the same effect as the latter 
example. We notice that the noise is increasing with the gain setting.  With low gain setting 
the wiper Figure 10-4 will be at the low end of the potentiometer thus resulting in about the 
same signal at the negative and positive input of the operational amplifier. It follows that the 
CMRR will suppresses the noise signal.  At high gain settings the wiper will be at the top 
position of the potentiometer thus resulting in different feedback factors for the negative and 
the positive input. It follows that the effect of the unwanted feedback signal is greater. 
 
It is therefore believed that a great improvement in both noise and linearity characteristics of 
the variable gain amplifier can be achieved by 

� Selecting a high bandwidth – low noise regulator 
� Adding additional decoupling of the SGND 
� Placing the regulator close to the amplifier 
� Using copper planes rather than wires to reduce voltage drops in the PCB. 

 

10.1.3 Reception detector 

The reception detector provides a well functioning analogue and digital output while 
consuming less than 70 uA. The output voltage is somewhat lower than the simulations, but 
the output is as good as frequency independent and linear in the area 60 – 80 kHz.  
 
Due to its ultra low power consumption the circuit could be duplicated and used to measure 
the signal amplitude with a fixed pre-amplification to provide a forward coupling in the AGC 
control loop and hence a faster system response. The system then becomes: 
 

 
Figure 10-6 - AGC control loop with forward coupling 

 
The complete system test given in test #20 shows that the reception detector performs 
remarkably well even with a relatively high level of noise. The sea will though introduce new 
noise sources like engine propellers, waves, bubbles, etc. It is therefore required that the 
circuit is tested in situ with a complete system to adjust the component values for optimal 
behaviour. 
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10.2  Digital design 

The digital design of the telemetry buoy project was mainly defined in the report Acoustic 

telemetry buoy [4]. It presents calculations that support the use of digital signal processing in 
the application. The following section will similar calculations mainly based on real 
measurements rather than the assumptions made in [4]. 

10.2.1 MCU and Flash memory 

The diagram for a typical reception is shown in Figure 10-7. It does not include all details, but 
provides an estimate for the execution time for a typical reception.  
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Figure 10-7 - Reception float diagram 

 
An example of using 256 point sample bursts with a 256 point FFT is given in Table 10-1. 
The signal to be received is the 6 pulse example provided in section 4.1.1 on page 11.  
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Table 10-1 - Total receive active execution time 

Pulses: 6     

Routine Execution time [uS] Executions per reception Total [us] 

get_time 4,97 6 29,82 

set gain 54,408 12 652,896 

get_signal_level 89,6 6 537,6 

Do_sampling_burst 4561 6 27366 

FFT 232,2 6 1393,2 

Find_dominating_freq 1759,68 6 10558,08 

Caclulate_time_diff 4,49 6 26,94 

store temp time 2 6 12 

Decode signal 50 1 50 

  Total: 40626,536 

  
The measured execution times are based on compilation with no optimization. With speed 
optimization the total execution time will decrease considerably.  
 
Test #19 shows a current consumption of 356 uA with the MCU in deep stop sleep mode with 
the RTC enbled. This represents the static current consumption of both the MCU and the 
external dataflash when not receiving.  
 
In addition to receiving and running the RTC the MCU will have to store the values to the 
external dataflash and adjust the reception sensitivity by adjusting the gain of the variable 
gain amplifer and the reception detector threshold for the interrupt line. 
 
A sensitivity adjustment will have the active execution time as specified in Table 10-2. 
 
Table 10-2 - Sensitivity adjustment active execution time 

Routine Exection time [uS] Executions per adjustment Toal [us] 

set gain 54,408 1 54,408 

get_signal_level 89,6 1 89,6 

  Total: 144,008 

 
Storing one page of data to the dataflash will result in an additional active time of 1280 uS for 
the microcontroller. In addition the dataflash will consume more current when storing this 
page from the receive buffer to the actual flash memory. The total energy consumption for the 
digital design per year is calculated in Table 10-3. It is assumed a 1:10 ratio between correct 
and false receptions due to noise. Furthermore it is assumed that storing a reception with ID, 
data and time stamp requires 72 bytes of data. All current numbers, except the deep stop with 
RTC, are collected from the datasheets [19] and [21]. 
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Table 10-3 - Digital design energy consumption per year 

Action Active time [uS] Executions per year Current [mA] Voltage Energy per Year 

Receive 40626,536 100000 23,5 3,3 315,0587867 

False receive 6756,266 1000000 23,5 3,3 523,9484283 

deep stop with RTC 3,1536E+13 1 0,356 3,3 37048,4928 

sensitivity adjustment 144,008 31536000 23,5 3,3 352,1883841 

Store page 1280 14062,5 23,5 3,3 1,3959 

Flash store from buffer 6000 14062,5 17 3,3 4,7334375 

    Total: 38245,81774 

 
The results of the calculations will be used for further analysis in the following section. 

10.3  Combined design 

The prototype system design concept has been proven to work with existing tags in test #20. 
Besides this test the most important factor of the telemetry buoy application is low power 
consumption. The specifications provided in section 1.1 on page 1 lists the criteria of one year 
operation and a minimum of 100 000 receptions. The report Acoustic telemetry buoy [4] 
provides a calculation showing that the total battery energy is about 163800 J. For this to be 
correct the system must be able to operate at a voltage of 2 – 3.7 V. The following 
calculations are based on the assumption that a buck-boost regulator with an average power 
loss of 1 mW is available and used in the final product. The total energy consumption per year 
is shown in Table 10-4. 

Table 10-4 - Total system energy consumption per year 

Module Avarage current [mA] Voltage Power consumption [W] Energy per year [J] 

Voltage regulator     0,001 31536 

VGA and filter 0,304 3,3 0,0010032 31636,9152 

Reception detector 0,07 3,3 0,000231 7284,816 

MCU and Flash       38245,81774 

   Total: 108703,55 

  
The lifetime of the telemetry buoy design is therefore 

163800
1.51

108704lifetime

J
T years

J
= =  (10.2) 

 
This number includes 100 000 receptions per year and will increase if optimisation is applied 
to the compilation. 

Section 10.1.1 addresses the issue that either the analogue filter should be improved or the 
sampling frequency should be increased to avoid unwanted aliasing. It is also important to ask 
the question if increased performance should be a result of analogue or digital signal 
processing. In any low power application an increase in performance comes with a cost of 
added power consumption. It is therefore important to map the systems power consumption in 
order to decide where the added performance comes with the lowest cost.  

 

Figure 10-8 shows a pie chart of the energy consumption distribution. The raw data for the pie 
chart is found in appendix B. We clearly notice that the assumed loss in the voltage regulator, 
the variable gain amplifier and filter and the microcontroller sleep mode with RTC accounts 
for the majority of the energy consumption whilst the digital part of the reception is barely 
noticeable. It is therefore obvious that the complexity of the reception algorithm with 
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sampling and all digital signal processing can be substantially increased without any 
noticeable increase in overall lifetime of the telemetry buoy.  
 
It can therefore be concluded that in order to reduce the overall power consumption the 
complexity of the analogue filter can be reduced while increasing the sampling frequency, 
applying digital filters and FFT algorithms in the microcontroller firmware. It should 
therefore be considered to apply the standard Nyquist sampling theorem using a sampling 
frequency of at least twice of the highest frequency component. Note that this assumption 
only yields when only sampling at reception.  
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Figure 10-8 - Energy consumption distribution for one year system operation 

 
Another important factor in a combined analogue and digital design is noise. Noise generated 
by the digital circuits can be a major problem in many applications. For this design it has not 
been identified any noise influence on the analogue circuits as a result of digital activities. 
The noise level was the same at the variable gain amplifier and filter output with the MCU 
disconnected from its power source and connected. The SPI did not introduce any noticeable 
noise. This is believed to be a result of the separation and space between the digital and 
analogue circuits as well as routing the digital tracks on one layer, analogue on a different 
layer with the GND plane in between acting as a shield.  
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11. Further development 
This chapter discusses the further development of the telemetry buoy, changes that should be 
made, suggestion of components, added functionality and more.  
 

11.1 The choice of microcontroller 

At the end of this project Atmel launched a new UC3 microcontroller; the AT32UC3L. This 
device has even lower power consumption than the former UC3 microcontrollers and new 
power saving features such as an event system, ultralow power RTC timer and the ability to 
operate at voltages down to 1.6V. 
 
If we consider Figure 10-8 we notice that one of the most power consuming tasks is having 
the RTC enabled when in deep stop. The datasheet for the AT32UC3L [22] specifies that 
having the microcontroller in Shutdown mode with the RTC timer running with an external 
crystal will consume only 1.5 uA. The same energy calculations is performed as in section 
10.3, but using the power specifications for the AT32UC3L. It is also worth to notice that the 
UC3L operates at a somewhat lower system frequency of 50 MHz. The execution times have 
therefore been scaled from 60 MHz to 50 MHz. The resulting power estimation for the MCU 
activities for VCC = 3.3 V is presented in Table 11-1.  
 
Table 11-1 - Energy consumption for the main MCU activities 

Action 
Active time at 
50 MHz [uS] Executions per year Current [mA] Voltage Energy per Year 

Receive 58502,21184 100000 15 3,3 289,5859486

False receive 8107,5192 1000000 15 3,3 401,3222004

Shutdown with RTC 3,1536E+13 1 0,015 3,3 1561,032

Sensitivity adjustment 207,37152 31536000 15 3,3 323,7135786

Store page 1536 14062,5 15 3,3 1,0692

Flash store from buffer 7200 14062,5 17 3,3 5,680125

    Total: 2582,403053

 
This is a reduction down to 6.7% of the power consumption for the AT32UC3B, mainly due 
to the extremely low power consumption of the RTC. The UC3L can operate at voltages 
down to 1.6V. This means that a lower system voltage can be used if the analogue design is  
adapted to this voltage. This will lead to a substantial increase in the overall battery lifetime.  
 
The overall energy consumption of the system with the UC3L is presented in Table 11-2. 
 
Table 11-2- Overall system energy consumption using the UC3L 

Module Avarage current [mA] Voltage 
Power consumption 
[W] Energy per year [J] 

Voltage regulator     0,001 31536

VGA and filter 0,304 3,3 0,0010032 31636,9152

Reception detector 0,07 3,3 0,000231 7284,816

MCU and Flash       2582,403053

  Total: 73040,13

 
  
Using the new energy consumption of the MCU the battery lifetime can be calculated for the 
telemetry buoy 
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163800

2.24
73040lifetime

J
T years

J
= =   (11.1) 

 
The energy consumption distribution chart from section 10.3 with the energy calculations for 
the UC3L is shown in Figure 11-1. 
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Figure 11-1 - Energy consumption distribution for one year operation using the UC3L 

 
We see that the voltage regulator and the variable gain amplifier and filter accounts for largest 
energy consumption. Lowering the system voltage can help reduce the VGA and filter 
section. We also notice that the selection of the voltage regulator is one of the most important 
tasks with respect to power consumption when designing the final product.  
 

11.2 Design improvements 

Chapter 10 discusses the performance of the prototype design of the telemetry buoy. One 
important design factor for improving the design must be to eliminate the occurrence of 
aliases. In section 10.3 it is concluded that the performance improvement should mainly be 
done in the digital domain by increasing the sampling frequency and adding digital filtration. 
This will not have great impact on the power consumption, but will considerably increase the 
reliability and performance of the system. Using the UC3L microcontroller the designer 
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should also consider if the bandwidth of the filter should be increased to support a wider 
range of modulation schemes such as multiple frequency shift keying in a wider frequency 
band. 
 
Section 10.1.2 provides a list of ways of improving the performance of the noise and gain 
linearity of the variable gain amplifier. These improvements to the signal ground should be 
considered when designing a new prototype. It has though been shown that the prototype 
functions well both with the gain set to 2000 and to 100 000. The noise is suppressed in the 
reception detector and the correctness of the gain may not be as an important factor as 
previously assumed. A too high gain will indeed cause saturation, but the high level of 
analogue filtration rebuilds the signal to a sinusoidal and the FFT algorithm is able to 
calculate the correct frequency of the original signal. 
 

11.3 Additional functionality 

The prototype was designed to test the design concept of the telemetry buoy. Only a USB 
debug interface was implemented. The final design will have to include some sort of user 
interface. Whether this is GSM, Bluetooth, USB or any other interface will be up to the 
designer and the market demand. Whichever interface is chosen, a general low level interface 
to the receiver should be defined to easily be able to develop new user interfaces using this 
low level communication layer to the receiver.  
 
The algorithm for the automatic gain control is not implemented, but it should be a relatively 
easy task considering that the gain does not need to be perfectly adjusted to receive the correct 
signals. The algorithm for setting the threshold is also missing. The idea with the design is to 
make this an adaptive solution where the threshold limit is increased for every false reception 
and decreased for every defined period of time of no reception. This algorithm will stabilise 
the ratio between false and correct receptions.  
 
The telemetry buoy is to work for at least one year without human intervention. It is therefore 
necessary to apply functions to handle events such as deadlock, program counter corruption or 
other unforeseen problems. The most effective tool for this is the use of a watchdog timer. 
The UC3 series of microcontrollers has this module inbuilt and it should be utilized. 
 
The RTC is implemented as a simplified clock. A complete RTC with set functions should be 
added. This is an easy task to implement and Atmel provides this algorithm in the application 
note “AVR134: Real-Time Clock using the Asynchronous Timer”.  

 
The AT32UC3 series offer a wide range of microcontrollers with high performance and it 
should not be a problem to select a microcontroller of sufficient capacity for handling the 
additional functionality. 
 

11.4  Development of new modulation schemes 

As described in section 1.3 it has been found that modulation schemes using pulse position 
and frequency are the most suitable for underwater acoustic communication. At the time of 
writing the dominating modulation scheme for digital fish tags is differential pulse position 
(DPPM). The system design is prepared for easy implementation and support for frequency 
modulation schemes through the powerful Atmel DSP library with optimized FFT algorithms 
for the UC3 series of microcontrollers.  
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To emphasize the advantage of using frequency as a modulation, this section will present a 
suggestion for a new modulation scheme using a combination of DPPM and MFSK (multiple 
shift keying) especially designed for fish telemetry. The new algorithm will greatly increase 
the throughput of the transmission. This demonstrated with an example at the end of this 
section. 
 
As an example a total of twelve different frequencies are used. These are divided into two 
categories where eight frequencies are main frequencies used to code three bits of data and the 
last four are backup frequencies. We have 
 

 1..8

9..12

f main frequencies

f backup frequencies

⇒

⇒
 (11.2) 

 
Furthermore we define the DPPM to have a total of four time slots per pulse coding a total of 
two bits per pulse. As described in section 4.1.1 on page 11 the DPPM scheme requires a 
guard time between pulses to ensure that the multipath distortion does not disrupt the transfer. 
The guard time is only needed between pulses of the same frequency. The following rule 
therefore applies 

1. No pulse of the same frequency can be repeated until the guard time of this frequency 
has expired. 

The frequency is though used to code a defined bit pattern, to still be able to code this pattern 
we define the second rule 

2. During the guard period of frequency n, the free backup frequency m of the lowest 
order will be used as a substitute coding the bit pattern of frequency n until the guard 
time for frequency n has expired. The backup frequency m will not be free for this 
period of time. 

It follows that the amount of backup frequencies will limit the amount of data that can be 
transferred until the number of backup frequencies exceeds the guard time divided by the time 
slot length in the DPPM scheme. 
 
To be able to detect collisions a third rule is defined 

3. A transfer is always initiated with frequency f1. 
The last rule also applies to the Vemco standard format. The rising flank of the pulse is a 
result of the shortest travel distance from the transmitter to the receiver and is not distorted by 
multipath. 

4. All time measurements are referred to the rising edge of the pulse. All pulses except 
the first pulse occur in the middle of the timeslot. 

The last rules are needed for formality reasons. 
5. The bits coded by the DPPM schemes are calculated before the MFSK coded bits. 
6. Bits are sent with MSB first. 

 
The following presents an example where f1 = 0002, f2 = 0012, …, f8 = 1112. Timeslot T1 = 
002, T2 = 012, T3 = 10, T4 = 112. 
 
In the example the data  000111102 followed by a CRC 000001012 is sent. We assume the 
receiver knows the number of bits to be received. 
 
The generation of the transmission details is as follows 

1. First pulse is always f1 
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2. Data[7:6] = 002  � pulse 2 in slot T1 
3. Data[5:3] = 0112  � pulse 2 if of frequency f4, f9 represents 0002 
4. Data[2:1] = 112  � pulse 2 in slot T4 
5. Data[0] + CRC[7:6] = 0002 � pulse 2 of frequency f9, f10 represents 0002 
6. CRC[5:4] = 002 � pulse 3 in slot T1 
7. CRC[3:1] = 0102 � pulse 3 of frequency f3, f11 represents 0102 
8. CRC[0]    = 12  � pulse 4 in slot T2, any frequency can be chosen 

 
The example is illustrated in Figure 11-2. 
 

 
Figure 11-2 - Example transmission using a DPPM and MFSK scheme 

 
The total time of this transfer is nine timeslots. If a slot size of 20 ms, as with the Vemco 
signal described in section 4.1.1 on page 11, is used the total transmission time becomes 
180ms whereas with the Vemco standard the transmission would be 2280 ms. The 
transmission throughput is thereby increased by a factor of 12,5 for this example. Decoding 
this signal with the system concept described in this report will not introduce any considerable 
increase in complexity or execution time due to the already implemented FFT routine. It 
should also be possible to implement the modulation scheme on a transmitter without 
substantial modifications. 
 
At the time of writing no other competitor product supports such a scheme and looking at the 
specifications provided in section 1.4 it is likely to believe that support for such a scheme 
would require the competitors to design a completely new product. Using a similar 
modulation scheme as the described in this section can therefore provide Thelma with a good 
competitive edge. 
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12. Conclusion 
The goal of this project was to design and validate a mixed analogue and digital receiver 
system for an acoustic telemetry buoy fulfilling the requirements provided in section 1.1. 
Several design solutions have been discussed for each system function whereas one complete 
system have been developed and tested.  
 
The system design concept has been proven to work by successfully receiving signals from an 
existing standard Thelma fish tag. Calculations based on current consumption, execution time 
and values provided in the components’ datasheets have confirmed that the design solution 
will provide an expected battery lifetime of over two years, if the UC3L is selected as the 
main microcontroller for final design.   
 
Some adjustments need to be made before designing the final product. These are mainly 
minor changes where some component values are adjusted and some microcontroller settings 
such as sampling frequency are changed. All suggested improvements are found in section 10 
and 11. It is also vital that some additional tests are performed in situ to optimize the design. 
 
For Thelma this telemetry buoy can lead to a good competitive advantage. There are mainly 
two competing products on the market; the VR2W manufactured by Vemco and the SUR 
manufactured by Sonotronics. If Thelma develops this prototype further to a final product, 
Thelma’s telemetry buoy will have advantages over its competitors such as 

� Extended battery lifetime 
� Always listening to several frequencies 
� Ability to receive at several frequencies simultaneously 
� Support for new frequencies and modulation schemes can be made with the same 

hardware 
� Special versions can be developed using the same hardware platform only 

developing new firmware 
 
 
The final conclusion is therefore that the system design provided in this report, together with 
the suggested improvements and the UC3L microcontroller, provides Thelma with a good 
basis for developing the leading standalone ultra low power acoustic telemetry buoy on the 
market. 
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13. Appendix list 
 
Printed appendices 
 

1. Matlab script for calculating component values and simulating Butterworth and 
Chebyshev filters. 

2. Matlab script for simulating the intuitive filter frequency response. 
3. Matlab script for simulation Chebyshev filter with digital potentiometers 
4. Screenshots of filter design with FilterPro 
5. Schematics 

a. Preamp 
b. Auto gain and filter 
c. Reception detector 
d. Connectors and headers 
e. Power distribution 
f. MCU and Flash memory 

6. Bill of materials 
7. PCB assembly diagram 
8. C-code for prototype testing 

 
Digital appendices 
 

A. Gerber files for PCB prototype 
B. Complete C-code for the prototype 
C. Acoustic telemetry buoy report [4] in pdf format. 
D. Energy calculations for the complete system with UC3B and UC3L 
E. Test results data 
F. Matlab scripts for filter simulations 
G. This report in pdf format 
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1. Matlab script for calculating component values and 
simulating Butterworth and Chebyshev filters 
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%Script that gives the bode responce of chebychev or Butterworth filter

%Implemented as Sallen & Key configuration. Script will calculate all

%Component values according to the crossover frequency and gain settings.

clc

clear all

 

%desired lower corner frequency [Hz]

f0 = 60000;

 

%desired higher corner frequency [Hz]

f1 = 80000;

 

%desired passband gain per amplifier

k =2.000001;

 

%low pass filter order

n_l = 4;

 

%high pass filter order

n_h = 4;

 

 

%Uncomment the poles to use

 

%calculate general (w0 = 1) lowpass butterworth pole positions

all_poles = roots([(-1)^n_l, zeros(1,2*n_l-1),1]);

negative_real_poles = all_poles(find(real(all_poles)<0));

den = poly(negative_real_poles);

 

%chebychev poles with 3dB rippel

%negative_real_poles = [-0.0340675444 + 0.3785869383i

%                      -0.0340675444 - 0.3785869383i

%                       -0.0822463277 + 0.1568158444i

%                       -0.0822463277 - 0.1568158444i];

                       

%chebychev poles with 1 dB rippel

negative_real_poles = [ -0.0558133907 + 0.3933445644i

                        -0.0558133907 - 0.3933445644i

                        -0.1347454448 + 0.1629286533i

                        -0.1347454448 - 0.1629286533i];

     

 

 

 

%calculate desired w0/Q for filter tranferfunction one and 2

w0_Q1 = -(negative_real_poles(1)+negative_real_poles(2));

w0_Q2 = -(negative_real_poles(3)+negative_real_poles(4));

 

%plot general low pass function

%H_butt = tf([k*k],den);

%bode(H_butt);

 

 

%plot general high pass function

%H_butt = tf([k*k 0 0 0 0],den)

%bode(H_butt)
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%hold on

 

%%

% ******* LOW PASS CALCULATIONS *******

 

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C1 = C;

C2 = C;

C3 = C;

C4 = C;

 

%calcualte Resistor values for w0 = 1 for first sallen key circuit

w0 = 1; %do not change!

Q1  =  w0/w0_Q1;

%R1 = (-1/Q1+sqrt(1/Q1^2-4*(C1+C2*(1-k))*1/C2))/(2*(C1+C2*(1-k)))

R1 = 1/2*(w0*C2-sqrt(w0^2*C2^2-4*Q1^2*C2*C1-4*Q1^2*C2^2+4*Q1^2*C2^2*k))/(Q1*C2*(C1+C2-

C2*k));

R2 = 1/(R1*C1*C2);

 

%calcualte Resistor values for w0 = 1 for second sallen key circuit

Q2  = w0/w0_Q2;

R3 = 1/2*(w0*C4-sqrt(w0^2*C4^2-4*Q2^2*C4*C3-4*Q2^2*C3^2+4*Q2^2*C4^2*k))/(Q2*C4*(C3+C4-

C4*k));

R4 = 1/(R3*C3*C4);

 

%define lowpass filter transferfunction

nom1 = [k];

den1 = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

 

nom2 = [k];

den2 = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

 

%Calculate nominal low pass transfer function (i.e. w0 = 1)

H_l1 = tf(nom1,den1);

H_l2 = tf(nom2,den2);

H_l  = H_l1*H_l2

 

%scale values to get crossover at f0

 

C = C/(f1*2*pi); %scale to freqency

C_desired = 47e-12;

 

%scale to stadard capacitor value

factor  = C/C_desired

C = C/factor     %scale to resistors

 

C1 = C

C2 = C

C3 = C

C4 = C

 

R1 = R1*factor

R2 = R2*factor

R3 = R3*factor

R4 = R4*factor
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%Calculate actual transferfunction

nom1a = [k];

den1a = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

 

nom2a = [k];

den2a = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

 

H_la1 = tf(nom1a,den1a);

H_la2 = tf(nom2a,den2a);

H_a  = H_la1*H_la2;

 

 

 

%%

%******* HIGH PASS CALCULATIONS *******

 

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C5 = C;

C6 = C;

C7 = C;

C8 = C;

 

%calcualte Resistor values for w0 = 1 for third sallen key circuit

w0 = 1; %do not change!

Q1  =  w0/w0_Q1

R6 = 1/2*(w0*C5+sqrt(w0^2*C5^2-4*Q1^2*C6*C5+4*Q1^2*C6*C5*k-4*C5^2*Q1^2+4*C5^2*Q1^2*k))/

(C5*Q1*(C6+C5));

R5 = 1/(R6*C5*C6);

 

%calcualte Resistor values for w0 = 1 for fourth sallen key circuit

Q2  = w0/w0_Q2

Q1  = w0/w0_Q1

R8 = 1/2*(w0*C7+sqrt(w0^2*C7^2-4*Q2^2*C8*C7+4*Q2^2*C8*C7*k-4*C7^2*Q2^2+4*C7^2*Q2^2*k))/

(C7*Q2*(C8+C7));

R7 = 1/(R8*C7*C8);

 

 

%define highpass filter transferfunction

nom3 = [k*R5*R6*C5*C6 0 0];

den3 = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

 

nom4 = [k*R7*R8*C7*C8 0 0];

den4 = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

 

%Plot nominal transfer function (i.e. w0 = 1)

H_h1 = tf(nom3,den3)

H_h2 = tf(nom4,den4)

H_h  = H_h1*H_h2

 

 

%scale values to get crossover at f0

%factor = 100e3; %component scale factor
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C = C/(f0*2*pi); %scale to freqency

C_desired = 47e-12;

 

%scale to stadard capacitor value

factor  = C/C_desired

C = C/factor     %scale to resistors

 

C5 = C

C6 = C

C7 = C

C8 = C

 

R5 = R5*factor

R6 = R6*factor

R7 = R7*factor

R8 = R8*factor

 

 

%Calculate actual high pass transferfunction

nom3a = [k*R5*R6*C5*C6 0 0];

den3a = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

 

nom4a = [k*R7*R8*C7*C8 0 0];

den4a = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

 

H_ha1 = tf(nom3a,den3a);

H_ha2 = tf(nom4a,den4a);

H_ha   = H_ha1*H_ha2;

 

%calculate total band pass transferfunction

 

H = H_a*H_ha;

 

%Bodeplots

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

 

 

figure(1)

P.Title.String = 'Low pass transfer function';

subplot(2,2,1);

bode(H_a,P);

 

P.Title.String = 'High pass transfer function';

subplot(2,2,2);

bode(H_ha,P);

 

P.Title.String = 'Combined band pass transfer function';

figure(2);

bode(H,P);

 

%%

%figure(1);

%subplot(2,2,1);
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%bode(Hni,P);

%P.Title.String = 'Active low pass filter with gain';

%subplot(2,2,2);

%title('Active Low Pass');

%bode(G,P);

%P.Title.String = 'Combined potentiometer, HP and LP';

%subplot(2,2,3);

%title('Combined one link');

%bode(G*Hni,P);

%bode(Hp*Hlp,P); only for testing

%subplot(2,2,4);

%title('Full AGC responce');

%bode(Hni*G*Hni*G*Hni*G*Hp*G,P);

 

 

 

 



 
 
 
 
 

2. Matlab script for simulating the intuitive filter 
frequency response 
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%Script that gives the bode responce of the variable gain amplifier

%and filter designed by the intuitive solution

clc

clear all

%wiper position (0 means top, full input signal)

hold on

N = 0.0;

%potentiometer end-to-end resistance

RP = 100e3;

%high pass capacitor value

C1 = 5.6e-12

%desired lower corner frequency [Hz]

f0 = 60000;

%filter resistor value

R1 = 1/(C1*2*pi*f0)

 

%low pass filter resistor value

R3 = 423.3e3;

R2 = 17637;

%low pass filter capacitor value

C2 = 4.7e-12;

 

%Wiper resistance

RW = 250;

%Wiper capacitance

CW = 25e-12;

 

%calculate potentimeter resistor values.

RL = RP*(1-N)

RH = RP*N

 

 

%transfer function for an ideal potentiometer and high pass filter

Hi = tf([RL*R1*C1 0],[C1*(R1*RL+RH*RL+RH*R1) RH+RL])

 

%transfer function for high pass filter without potentiometer

Hp = tf([R1*C1 0],[R1*C1 1])

 

%transfer function for an non-ideal potentiometer with HP-filter

Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+

((RW+R1)*C1+RW*CW)*RL) RL+RH])

 

 

%Transferfunction for the Active low pass filter with gain

G = 1+tf([R3],[R2*R3*C2 R2]);

hold on

 

%Plot transfer functions

 

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

P.Title.String = 'Potentiometer with high pass filter';

 

jadda = 'jadda';
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figure(1);

subplot(2,2,1);

bode(Hni,P);

P.Title.String = 'Active low pass filter with gain';

subplot(2,2,2);

title('Active Low Pass');

bode(G,P);

P.Title.String = 'Combined potentiometer, HP and LP';

subplot(2,2,3);

title('Combined one link');

bode(G*Hni,P);

bode(Hp*Hlp,P); only for testing

P.Title.String = 'Complete AGC with 4 gain stages, 3 potentiometes and 4 HP';

subplot(2,2,4);

title('Full AGC responce');

bode(Hni*G*Hni*G*Hni*G*Hp*G,P);

 

 

%Calculate poles as a function of potentiometer position.

K = 255;

for k=1:K

    RL = RP*(1-k/K);

    RH = RP*k/K;

    den = [CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+((RW+R1)

*C1+RW*CW)*RL) RL+RH];

    r_temp = -roots(den)/(2*pi);

    r1(k) = r_temp(1);

    r2(k) = r_temp(2);

end

 

%check that the upper pole does not efffect the frequency band of interesst

lowest_high_pole = min(r1)

 

%check the crossoverfreqeuncy variation

variation = max(r2)-min(r2)

 

 

 



 



 
 
 
 
 

3. Matlab script for simulating the Chebyshev filter with 
digital potentiometers 
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%Script that gives the bode responce of the chebyshev filter, potentiometer

%and the high pass potentiometer noise removal filter 

 

clc

clear all

hold on

%desired lower corner frequency [Hz]

f0 = 60000;

 

%desired higher corner frequency [Hz]

f1 = 80000;

 

%desired passband gain per amplifier

k = 7;

 

%low pass filter order

n_l = 4;

 

%high pass filter order

n_h = 4;

 

 

%Uncomment the poles to use

 

%calculate general (w0 = 1) lowpass butterworth pole positions

all_poles = roots([(-1)^n_l, zeros(1,2*n_l-1),1]);

negative_real_poles = all_poles(find(real(all_poles)<0));

den = poly(negative_real_poles);

 

%chebychev poles with 3dB rippel

%negative_real_poles = [-0.0340675444 + 0.3785869383i

%                      -0.0340675444 - 0.3785869383i

%                       -0.0822463277 + 0.1568158444i

%                       -0.0822463277 - 0.1568158444i];

                       

%chebychev poles with 1 dB rippel

negative_real_poles = [ -0.0558133907 + 0.3933445644i

                        -0.0558133907 - 0.3933445644i

                        -0.1347454448 + 0.1629286533i

                        -0.1347454448 - 0.1629286533i];

     

 

 

 

%calculate desired w0/Q for filter tranferfunction one and 2

w0_Q1 = -(negative_real_poles(1)+negative_real_poles(2));

w0_Q2 = -(negative_real_poles(3)+negative_real_poles(4));

 

%plot general low pass function

%H_butt = tf([k*k],den);

%bode(H_butt);

 

%plot general high pass function

H_butt = tf([k*k 0 0 0 0],den)

 

%bode(H_butt)
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%hold on

 

 

% ******* LOW PASS CALCULATIONS *******

 

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C1 = C;

C2 = C;

C3 = C;

C4 = C;

 

%calcualte Resistor values for w0 = 1 for first sallen key circuit

w0 = 1; %do not change!

Q1  =  w0/w0_Q1;

%R1 = (-1/Q1+sqrt(1/Q1^2-4*(C1+C2*(1-k))*1/C2))/(2*(C1+C2*(1-k)))

R1 = 1/2*(w0*C2-sqrt(w0^2*C2^2-4*Q1^2*C2*C1-4*Q1^2*C2^2+4*Q1^2*C2^2*k))/(Q1*C2*(C1+C2-

C2*k));

R2 = 1/(R1*C1*C2);

 

%calcualte Resistor values for w0 = 1 for second sallen key circuit

Q2  = w0/w0_Q2;

R3 = 1/2*(w0*C4-sqrt(w0^2*C4^2-4*Q2^2*C4*C3-4*Q2^2*C3^2+4*Q2^2*C4^2*k))/(Q2*C4*(C3+C4-

C4*k));

R4 = 1/(R3*C3*C4);

 

%define lowpass filter transferfunction

nom1 = [k];

den1 = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

 

nom2 = [k];

den2 = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

 

%Plot nominal low pass transfer function (i.e. w0 = 1)

H_l1 = tf(nom1,den1);

H_l2 = tf(nom2,den2);

H_l  = H_l1*H_l2;

 

 

%scale values to get crossover at f0

factor = 100e3; %component scale factor

C = C/(f1*2*pi); %scale to freqency

C = C/factor     %scale to resistors

C1 = C

C2 = C

C3 = C

C4 = C

 

R1 = R1*factor

R2 = R2*factor

R3 = R3*factor

R4 = R4*factor

 

 

%Calculate actual transferfunction

nom1a = [k];
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den1a = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

 

nom2a = [k];

den2a = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

 

H_la1 = tf(nom1a,den1a);

H_la2 = tf(nom2a,den2a);

H_a  = H_la1*H_la2;

 

 

 

 

%******* HIGH PASS CALCULATIONS *******

 

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C5 = C;

C6 = C;

C7 = C;

C8 = C;

 

%calcualte Resistor values for w0 = 1 for third sallen key circuit

w0 = 1; %do not change!

Q1  =  w0/w0_Q1

R6 = 1/2*(w0*C5+sqrt(w0^2*C5^2-4*Q1^2*C6*C5+4*Q1^2*C6*C5*k-4*C5^2*Q1^2+4*C5^2*Q1^2*k))/

(C5*Q1*(C6+C5));

R5 = 1/(R6*C5*C6);

 

%calcualte Resistor values for w0 = 1 for fourth sallen key circuit

Q2  = w0/w0_Q2

Q1  = w0/w0_Q1

R8 = 1/2*(w0*C7+sqrt(w0^2*C7^2-4*Q2^2*C8*C7+4*Q2^2*C8*C7*k-4*C7^2*Q2^2+4*C7^2*Q2^2*k))/

(C7*Q2*(C8+C7));

R7 = 1/(R8*C7*C8);

 

 

%define highpass filter transferfunction

nom3 = [k*R5*R6*C5*C6 0 0];

den3 = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

 

nom4 = [k*R7*R8*C7*C8 0 0];

den4 = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

 

%Plot nominal transfer function (i.e. w0 = 1)

H_h1 = tf(nom3,den3)

H_h2 = tf(nom4,den4)

H_h  = H_h1*H_h2

 

 

%scale values to get crossover at f0

factor = 100e3; %component scale factor

C = C/(f0*2*pi); %scale to freqency

C = C/factor     %scale to resistors

C5 = C

C6 = C

C7 = C
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C8 = C

 

R5 = R5*factor

R6 = R6*factor

R7 = R7*factor

R8 = R8*factor

 

 

%Calculate actual high pass transferfunction

nom3a = [k*R5*R6*C5*C6 0 0];

den3a = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

 

nom4a = [k*R7*R8*C7*C8 0 0];

den4a = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

 

H_ha1 = tf(nom3a,den3a);

H_ha2 = tf(nom4a,den4a);

H_ha   = H_ha1*H_ha2;

 

%calculate total band pass transferfunction

 

H = H_a*H_ha;

 

%Bodeplots

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

 

%P.Title.String = 'Variable gain amp and ';

figure(1);

bode(H,P);

 

hold on

 

%******* Potentiometer with high pass filter transfer function ****

 

%wiper position (0 means top, full input signal)

N = 0.0;

%potentiometer end-to-end resistance

RP = 100e3;

%high pass capacitor value

C1 = 150e-12;

%filter resistor value

R1 = 106.1e3;

 

%Wiper resistance

RW = 250;

%Wiper capacitance

CW = 25e-12;

 

%calculate potentimeter resistor values.

RL = RP*(1-N)

RH = RP*N

 

%total transfer function for an non-ideal potentiometer with high pass
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%filter

 

Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+

((RW+R1)*C1+RW*CW)*RL) RL+RH])

 

%The complete transferfunction for low pass chebyshev, high pass Chebyshev,

%and potentiomters with filter

 

TF_tot = Hni*Hni*Hni*H;

bode(TF_tot,P);

 

pass_band_gain = evalfr(TF_tot,69000*2*pi)

gain = 10^(pass_band_gain/20)

 

Hni_fixed=Hni;

K = 256;

step_size = 1;

for k=1:step_size:K-1

    RL = RP*(1-k/K);

    RH = RP*k/K;

    Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)

*RH+((RW+R1)*C1+RW*CW)*RL) RL+RH]);

    TF_tot = Hni*Hni_fixed*Hni_fixed*H;

   % bode(TF_tot,P);

    test((k-1)/step_size+1) = freqresp(TF_tot,69e3*2*pi);

    test((k-1)/step_size+1) = sqrt(real(test((k-1)/step_size+1))^2 + imag(test((k-1)

/step_size+1))^2);

    

    %for p=1:size(temp)

    %    bode_diagrams(k,p) = temp(p);

    %end

 

 

end

figure(2);

plot(test);

 

 

 

 

 

 

 



 
 
 
 
 

4. Screenshots of filter design with FilterPro 
 



 
 
 

 



 
 
 
 
 

5. Schematics 
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6. Bill of materials 
 
 



LibRef Designator Quantity Value Comment

Capacitor C1 1 15pF 0603 capactitor

Capacitor C2 1 150p 0603 capactitor

Capacitor C3, C6, C8 3 150pF 0603 capactitor

Capacitor C4 1 47pF 0603 capactitor

Capacitor C5 1 4.7pF 0603 capactitor

Capacitor C7 1 100pF 0603 capactitor

Capacitor C9, C11, C13, C14 4 33pF 0603 capactitor

Capacitor C10, C12 2 22pF 0603 capactitor

Capacitor C15, C16, C17, C18, C19, C20, C21, C26, C27, C30, C33, C35, C38, C40, C42, C44, C46, C50, C68, R20 100nF 0603 capactitor

Capacitor C22, C24, C67 3 10nF 0603 capactitor

Capacitor C23, C34, C37, C64, C695 4.7uF 0603 capactitor

Capacitor C28, C29, C31, C32, C36, C39, C41, C43, C45, C51, C53, C5512 33nF 0603 capactitor

Capacitor C47, C57 2 2.2uF 0603 capactitor

Capacitor C48 1 470pF 0603 capactitor

Capacitor C52, C54, C56 3 2.7nF 0603 capactitor

C_pol C60, C61 2 10uF C_pol

Capacitor C62, C63 2 1uF 0603 capactitor

Capacitor C65, C66 2 100n 0603 capactitor

BAT54T1G D1 1 BAT54T1G

LED D2, D3, D4, D5, D6, D7, D8, D9, D109 SMD LED

Fuse 1 F1 1 Fuse 1

Resistor F2 1 Ferrite bed

USB connector J1 1 USB connector

Inductor L1 1 10mH Inductor

Header 2X2 P1, P2, P3 3 Power Source Select, Regulator ON/OFF, Regulator Select

Header 4X2 P4 1 Input selection

Header 5 P5 1 Current Sense

Header 2 P6, P9 2 Hydrophone input, Power input

Header 5X2 P7, P8, P10 3 GPIO, JTAG, SPI and USART

Header 4 P11 1 Analogue

Header 3 P12 1 Power output

FDV304P Q1 1 FDV304P

Resistor R1 1 48.7k 0603 Resistor

Resistor R2 1 69.8k 0603 Resistor

Resistor R3 1 115k 0603 Resistor

Resistor R4, R5, R13, R14 4 106k 0603 Resistor

Resistor R6, R8, R15, R17 4 8k 0603 Resistor

Resistor R7, R9, R16, R18 4 191k 0603 Resistor

Resistor R10, R11 2 64.9k 0603 Resistor

Resistor R12 1 130k 0603 Resistor

Resistor R19 1 174k 0603 Resistor

Resistor R20 1 422k 0603 Resistor

Resistor R21 1 23.2k 0603 Resistor

Resistor R22 1 56.2k 0603 Resistor

Resistor R23 1 300k 0603 Resistor

Resistor R24 1 100k 0603 Resistor

Resistor R25 1 3.48k 0603 Resistor

Resistor R26, R33, R34 3 10k 0603 Resistor

Resistor R27, R28, R29, R30, R31, R32, R37, R48, R49, R?10 100R 0603 Resistor

Res2 R35, R38, R39, R42 4 socket Res2

Resistor R36, R40, R41, R43 4 499k 0603 Resistor

Potentiometer R44, R45 2 100k Pot

Resistor R46, R47 2 1k 0603 Resistor

Resistor R50 1 252k 0603 Resistor

Resistor R51 1 40k 0603 Resistor

Resistor R52 1 1M 0603 Resistor

SW DIP-8 S1 1 SW DIP-8

SW DIP-4 S2 1 Resistor select

Button SW1, SW2, SW3 3 Push button

MAX5401EKA U1, U3, U6, U8 4 MAX5401EKA

LMV552MM U2, U4, U7, U9 4 100R, LMV552MM

LMV652MM U5 1 LMV652MM

AT32UC3B1256_n U10 1 AT32UC3B1256

AT45DB321-SU U11 1 AT45DB321

LMS8117AMP U12 1 LMS8117AMP, 3.3V

INA138NA, Current shunt monitorU13, U14, U15, U16 4 INA138NA, Current shunt monitor

LP3992IMF U17 1 LP3992IMF, 1.5V

LMP7715 U18 1 LMP7715

FT232R - USB - UART bridgeU19 1 FT232R - USB - UART bridge

XTAL Y1, Y2 2 12MHz, 32.000kHz



 
 
 
 
 

7. PCB assembly diagram 
 
 





 
 
 
 
 

8. C-code for prototype testing 
 

1) main.c 
2) config.h 
3) ADC_functions.c 
4) ADC_functions.h 
5) CLOCK_functions.c 
6) CLOCK_functions.h 
7) DSP_functions.c 
8) DSP_functions.h 
9) EIC_functions.c 
10) EIC_functions.h 
11) RTC_functions.c 
12) RTC_functions.h 
13) SPI_functions.c 
14) SPI_functions.h 
15) TC_functions.c 
16) TC_functions.h 
17) TEST_functions.c 
18) TEST_functions.h 
19) USART_fucntions.c 
20) USART_fucntions.h 
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/*
FILE: main.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Main file for the project
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include <avr32\io.h>
#include "gpio.h"
#include "usart.h"
#include "pm.h"
#include "USART_functions.h"
#include "config.h"
#include "CLOCK_functions.h"
#include "stdio.h"
#include "tc.h"
#include "TC_functions.h"
#include "adc.h"
#include "ADC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"
#include "intc.h"
#include "dsp_debug.h"
#include "SPI_functions.h"
#include "spi.h"
#include "rtc.h"
#include "RTC_functions.h"
#include "eic.h"
#include "EIC_functions.h"
#include "TEST_functions.h"

void display_level((((unsigned short level););););

int main((((void)))) {{{{

//Initialize modules
INTC_init_interrupts();();();();
init_clock();();();();
init_USART();();();();
init_ADC();();();();
init_TC();();();();
init_SPI();();();();
init_RTC();();();();
init_EIC();();();();

usart_write_line((((USB_USART,,,, "\n\n *** Telemetry Buoy Running ***\n"););););

//set reception detector threshold to 1 V.
set_threshold((((80););););

//set variable gain amplifier gain to 2000, or actually 380 due to unlinearity
set_gain((((2000););););

while((((TRUE););););

}}}}

//function outputs the signal level on the LEDS as a bar graph
void display_level((((unsigned short level))))
{{{{

char leds ==== ((((level////1024 ++++ 0.5););););

gpio_set_gpio_pin((((LED6););););
gpio_set_gpio_pin((((LED5););););
gpio_set_gpio_pin((((LED4););););
gpio_set_gpio_pin((((LED3););););
gpio_set_gpio_pin((((LED2););););
gpio_set_gpio_pin((((LED1););););

if ((((leds >=>=>=>= 1))))
gpio_clr_gpio_pin((((LED1););););

if ((((leds >=>=>=>= 2))))
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gpio_clr_gpio_pin((((LED2););););
if ((((leds >=>=>=>= 3))))

gpio_clr_gpio_pin((((LED3););););
if ((((leds >=>=>=>= 4))))

gpio_clr_gpio_pin((((LED4););););
if ((((leds >=>=>=>= 5))))

gpio_clr_gpio_pin((((LED5););););
if ((((leds >=>=>=>= 6))))

gpio_clr_gpio_pin((((LED6););););

}}}}
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/*
FILE: config.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes configuration parameters
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef config_h
#define config_h

#include "usart.h"

//Specify the base operating frequency
#define F_CPU 60000000

//Specify the clock speed of the timer/counter used for sampling
#define F_TIM 15000000

//Specify the sampling frequency
#define F_SMP 57692

//specify the number of samples per burst
#define NUMBER_OF_SAMPLES 64  //must be 6*n due to filter optimization

//specify maximum analogue gain
#define MAX_GAIN 178828

//specify the gain of the cascaded stages
#define GAIN1 25
#define GAIN2 625
#define GAIN3 25

//specify the number of steps for the digital potentiometers.
#define POT_RES 256

//Uncomment to select clock source
#define EXTERNAL_CRYSTAL 1
//#define EXTERNAL_CLOCK 1

//The RTC timer prescaler
#define RTC_PRESCALER 4 //will provide the RTC counter to count milliseconds

//GPIO MAP DEFINES
//ADC signal input
#define SIGNAL_IN_PIN AVR32_ADC_AD_0_PIN
#define SINGAL_IN_ADC_CHANNEL 0
#define SIGNAL_IN_ADC_FUNCTION AVR32_ADC_AD_0_FUNCTION

//ADC signal level
#define SIGNAL_LEVEL_PIN AVR32_ADC_AD_1_PIN
#define SIGNAL_LEVEL_CHANNEL 1
#define SIGNAL_LVEL_FUNCTION AVR32_ADC_AD_1_FUNCTION

//ADC spare input
#define ADC_EXTRA_PIN AVR32_ADC_AD_4_PIN
#define ADC_EXTRA_CHANNEL 4
#define ADC_EXTRA_FUNCTION AVR32_ADC_AD_4_FUNCTION

//Reception detecor interrupt pin
#define EXT_INT_RECEPTION_PIN              AVR32_EIC_EXTINT_1_PIN
#define EXT_INT_RECEPTION_FUNCTION         AVR32_EIC_EXTINT_1_FUNCTION
#define EXT_INT_RECEPTION_LINE    EXT_INT1
#define EXT_INT_RECEPTION_IRQ    AVR32_EIC_IRQ_1

//SPI pin definitions
#  define SPI_MOSI_PIN         AVR32_SPI_MOSI_0_0_PIN
#  define SPI_MOSI_FUNCTION    AVR32_SPI_MOSI_0_0_FUNCTION
#  define SPI_MISO_PIN         AVR32_SPI_MISO_0_0_PIN
#  define SPI_MISO_FUNCTION    AVR32_SPI_MISO_0_0_FUNCTION
#  define SPI_SCK_PIN    AVR32_SPI_SCK_0_0_PIN
#  define SPI_SCK_FUNCTION     AVR32_SPI_SCK_0_0_FUNCTION
#  define SPI_NPCS0_PIN        AVR32_SPI_NPCS_0_0_PIN
#  define SPI_NPCS0_FUNCTION   AVR32_SPI_NPCS_0_0_FUNCTION
#  define SPI_NPCS1_PIN        AVR32_SPI_NPCS_1_0_PIN
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#  define SPI_NPCS1_FUNCTION   AVR32_SPI_NPCS_1_0_FUNCTION
#  define SPI_NPCS2_PIN        AVR32_SPI_NPCS_2_0_PIN
#  define SPI_NPCS2_FUNCTION   AVR32_SPI_NPCS_2_0_FUNCTION
#  define SPI_NPCS3_PIN        AVR32_SPI_NPCS_3_0_PIN
#  define SPI_NPCS3_FUNCTION   AVR32_SPI_NPCS_3_0_FUNCTION
#  define SPI_DATAFLASH_CS    AVR32_PIN_PA08

//USB <--> USART definitions
#  define USB_USART               (&AVR32_USART1)
#  define USB_USART_RX_PIN        AVR32_USART1_RXD_0_0_PIN
#  define USB_USART_RX_FUNCTION   AVR32_USART1_RXD_0_0_FUNCTION
#  define USB_USART_TX_PIN        AVR32_USART1_TXD_0_0_PIN
#  define USB_USART_TX_FUNCTION   AVR32_USART1_TXD_0_0_FUNCTION

//PIN definitions
#define LED6 AVR32_PIN_PA27
#define LED5 AVR32_PIN_PA26
#define LED4 AVR32_PIN_PA22
#define LED3 AVR32_PIN_PA21
#define LED2 AVR32_PIN_PA20
#define LED1 AVR32_PIN_PA13

// USART options.
static const usart_options_t USART_OPTIONS ====

{{{{
....baudrate ==== 9600,,,,
....charlength ==== 8,,,,
....paritytype ==== USART_NO_PARITY,,,,
....stopbits ==== USART_1_STOPBIT,,,,
....channelmode ==== USART_NORMAL_CHMODE

};};};};

#endif
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/*
 * ADC_functions.c
 *
 *  Created on: 26.jun.2009
 *      Author: Stian O. Moen
 *
 */

#include "ADC_functions.h"
#include "gpio.h"
#include "config.h"
#include "adc.h"
#include "intc.h"
#include "USART_functions.h"
#include "TC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"

volatile signed int sample_nr;;;;

A_ALIGNED dsp16_t sample[[[[NUMBER_OF_SAMPLES];];];];

volatile char sample_flag;;;;

__attribute__((((((((__interrupt__))))))))
static void ADC_complete_irq((((void))))
{{{{

//gpio_clr_gpio_pin(AVR32_PIN_PA06);
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;

if ((((sample_nr <<<< NUMBER_OF_SAMPLES))))
{{{{

sample[[[[sample_nr]]]] ==== ((((adc->->->->LCDR....ldata ---- dc_offset)*)*)*)*32;;;;
sample_nr++;++;++;++;

}}}}
else
{{{{

disable_sampling();();();();
// Clear the interrupt flag by reading the ADC_LCDR register.
volatile unsigned short dummy ==== adc->->->->LCDR....ldata;;;;

}}}}

}}}}

void init_ADC((((void))))
{{{{

// GPIO pin/adc-function map.
static const gpio_map_t ADC_GPIO_MAP ====

{{{{
{{{{AVR32_ADC_AD_0_PIN,,,, AVR32_ADC_AD_0_FUNCTION},},},},
{{{{AVR32_ADC_AD_1_PIN,,,, AVR32_ADC_AD_1_FUNCTION},},},},

};};};};

// ADC IP registers address
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;

// Assign and enable GPIO pins to the ADC function.-
gpio_enable_module((((ADC_GPIO_MAP,,,, sizeof((((ADC_GPIO_MAP)))) //// sizeof((((ADC_GPIO_MAP[[[[0]));]));]));]));

// configure ADC
adc_configure((((adc););););

// Enable the ADC channels.
adc_enable((((adc,,,,SINGAL_IN_ADC_CHANNEL););););
//adc_enable(adc,SIGNAL_LEVEL_CHANNEL);

//change prescaler settings to satisfy the meximum ADC frequency limitation
adc->->->->MR....prescal ==== 3;;;; //prescaler = div16

//enable hardware trigger from timer counter TIOA channel 0
adc->->->->MR....trgen ==== 1;;;;
adc->->->->MR....trgsel ==== 0;;;;

Disable_global_interrupt();();();();
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// Initialize interrupt vectors.

// Register the ADC complete interrupt handler to the interrupt controller.
INTC_register_interrupt(&(&(&(&ADC_complete_irq,,,, AVR32_ADC_IRQ,,,, AVR32_INTC_INT1););););

Enable_global_interrupt();();();();

}}}}

//This function will take one sample of the signal output of the variable gain
//amplifier and filter. It is not used.
signed short get_signal_sample((((void))))
{{{{

volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
adc_start((((adc););););
return adc_get_value((((adc,,,, SINGAL_IN_ADC_CHANNEL););););

}}}}

//performs one ADC conversion for the reception detector analogue output.
signed short get_signal_level((((void))))
{{{{

volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
adc_enable((((adc,,,,SIGNAL_LEVEL_CHANNEL););););
DISABLE_ADC_INTERRUPT();();();();
adc_start((((adc););););
return adc_get_value((((adc,,,, SIGNAL_LEVEL_CHANNEL););););

}}}}

Page 2, 26.07.2009 - 15:27:50



Programmer's Notepad - ADC_functions.h

/*
 * ADC_functions.h
 *
 *  Created on: 26.jun.2009
 *      Author: Stian O. Moen
 */

#ifndef ADC_FUNCTIONS_H_
#define ADC_FUNCTIONS_H_

#include "config.h"
#include "dsp.h"

#define ENABLE_ADC_INTERRUPT() adc->IER.drdy = 1;
#define DISABLE_ADC_INTERRUPT() adc->IER.drdy = 0;

//Prototypes
void init_ADC((((void););););
signed short get_signal_sample((((void););););
signed short get_signal_level((((void););););

extern A_ALIGNED dsp16_t sample[];[];[];[];
extern volatile signed int sample_nr;;;;
extern volatile char sample_flag;;;;

#endif /* ADC_FUNCTIONS_H_ */
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/*
FILE: clock.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Functions for changing system or timer clock source and prescaling
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include "CLOCK_functions.h"

//Init_clock will set the CPU to use the PLL as main oscillator, PLL is
//setup to provide 60Mhz from the external 12MHz crystal

void init_clock(((( void ))))
{{{{
#ifdef EXTERNAL_CRYSTAL

// Switch main clock to external oscillator 0 (crystal).
pm_switch_to_osc0(&(&(&(&AVR32_PM,,,, FOSC0,,,, AVR32_PM_OSCCTRL0_STARTUP_4096_RCOSC););););

#endif
#ifdef EXTERNAL_CLOCK

//switch to external clock
pm_enable_osc0_ext_clock(&(&(&(&AVR32_PM););););
pm_enable_clk0(&(&(&(&AVR32_PM,,,, 0););););
pm_switch_to_clock(&(&(&(&AVR32_PM,,,, AVR32_PM_MCSEL_OSC0););););

#endif

volatile avr32_pm_t**** pm ==== &&&&AVR32_PM;;;;

/* start PLL0 and switch main clock to PLL0 output */
local_start_pll0((((pm););););

}}}}

/* Start PLL0, enable a generic clock with PLL0 output then switch main clock to PLL0 
output.
   All calculations in this function suppose that the Osc0 frequency is 12MHz. */
void local_start_pll0((((volatile avr32_pm_t**** pm))))
{{{{
//  pm_switch_to_osc0(pm, FOSC0, OSC0_STARTUP);  // Switch main clock to Osc0.

/* Setup PLL0 on Osc0, mul=9 ,no divisor, lockcount=16, ie. 12Mhzx10 = 120MHz output */
/*void pm_pll_setup(volatile avr32_pm_t* pm,

                  unsigned int pll,
                  unsigned int mul,
                  unsigned int div,
                  unsigned int osc,
                  unsigned int lockcount) {
   */
pm_pll_setup((((pm,,,,

0,,,, // use PLL0
9,,,, // MUL=7 in the formula
1,,,, // DIV=1 in the formula
0,,,, // Sel Osc0/PLL0 or Osc1/PLL1
16);););); // lockcount in main clock for the PLL wait lock

/*
   This function will set a PLL option.
   *pm Base address of the Power Manager (i.e. &AVR32_PM)
   pll PLL number 0
   pll_freq Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency 
range 160-240Mhz.
   pll_div2 Divide the PLL output frequency by 2 (this settings does not change the 
FVCO value)
   pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster 
startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
  */
/* PLL output VCO frequency is 120MHz. We divide it by 2 with the pll_div2=1. This 

enable to get later main clock to 60MHz */
pm_pll_set_option((((pm,,,, 0,,,, 1,,,, 1,,,, 0););););

/* Enable PLL0 */
pm_pll_enable((((pm,,,,0););););

/* Wait for PLL0 locked */
pm_wait_for_pll0_locked((((pm)))) ;;;;
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//setup PLL
pm_gc_setup((((pm,,,,

EXAMPLE_GCLK_ID,,,,
1,,,, // Use Osc (=0) or PLL (=1), here PLL
0,,,, // Sel Osc0/PLL0 or Osc1/PLL1
0,,,, // disable divisor
0);););); // no divisor

/* Enable Generic clock */
pm_gc_enable((((pm,,,, EXAMPLE_GCLK_ID););););

pm_cksel((((pm,,,, 1,,,, 0,,,, 0,,,, 0,,,, 0,,,, 0););););

// Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for 
HSB/CPU clock.
// As we want to have 60MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
flashc_set_wait_state((((1););););

pm_switch_to_clock((((pm,,,, AVR32_PM_MCSEL_PLL0);););); /* Switch main clock to 60MHz */
}}}}
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/*
FILE: clock.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Functions for changing system or timer clock source and prescaling
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef clock_h
#define clock_h

#include "config.h"
#include "pm.h"
#include "gpio.h"
#include "flashc.h"

#  define EXAMPLE_GCLK_ID             2
#  define EXAMPLE_GCLK_PIN            AVR32_PM_GCLK_2_PIN
#  define EXAMPLE_GCLK_FUNCTION       AVR32_PM_GCLK_2_FUNCTION
#  define FOSC0 12000000

void init_clock(((( void ););););
void local_start_pll0((((volatile avr32_pm_t**** pm););););
#endif
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/*
 * DSP_functions.c
 *
 *  Created on: 28.jun.2009
 *      Author: Stian O. Moen
 */

#include "dsp.h"
#include "DSP_functions.h"
#include "config.h"
#include "ADC_functions.h"
#include "TC_functions.h"

//The DC level of the signal for the 1.5V regualtor
A_ALIGNED dsp16_t dc_offset ==== 465;;;;

//will reuturn a struct containing the frequency of the highest power with
//the assisated power. The rreturn frequency is scaled to acount for the
//undersampling.
FreqPower_t find_dominating_frequency((((dsp16_complex_t ****complex_vector))))
{{{{

dsp16_t vector_abs[[[[NUMBER_OF_SAMPLES];];];];
dsp16_vect_complex_abs((((vector_abs,,,, complex_vector,,,, NUMBER_OF_SAMPLES););););
//dsp16_debug_print_vect(vector_abs, NUMBER_OF_SAMPLES);
//find highest value
dsp16_t max_value ==== dsp16_vect_max((((vector_abs,,,, NUMBER_OF_SAMPLES););););
//find the location of the highest value

int i ==== 0;;;;
char exit ==== FALSE;;;;
while ((((exit ======== FALSE))))
{{{{

i++;++;++;++;
if ((((max_value ======== vector_abs[[[[i]]]] |||||||| i >=>=>=>= NUMBER_OF_SAMPLES))))

exit ==== TRUE;;;;
}}}}
FreqPower_t return_value;;;;
//calculate the alias frequency in kHz for 64 point two sided FFT
return_value....freq ==== ((((i*(*(*(*(F_SMP////2)/)/)/)/32.0)/)/)/)/1000.0++++F_SMP////1000.0;;;;

return_value....power ==== max_value;;;;
return return_value;;;;

}}}}

//The function will perform a sample burst, remove the DC offset and
//find the dominating frequency and assosiated power. This frequency
//and power is returned
FreqPower_t check_signal((((void))))
{{{{

A_ALIGNED dsp16_complex_t vect1[[[[NUMBER_OF_SAMPLES];];];];
enable_sampling();();();();
while((((sample_flag ======== TRUE););););
//remove DC
int i;;;;
for ((((i ==== 0;;;; i <<<< NUMBER_OF_SAMPLES;;;; i++)++)++)++)
{{{{

sample[[[[i]]]] -=-=-=-= dc_offset;;;;
}}}}

dsp16_trans_realcomplexfft((((vect1,,,, sample,,,, NLOG););););
return find_dominating_frequency((((vect1););););

}}}}
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/*
 * DSP_functions.h
 *
 *  Created on: 28.jun.2009
 *      Author: Stian O. Moen
 */

#ifndef DSP_FUNCTIONS_H_
#define DSP_FUNCTIONS_H_

#include "dsp.h"

//needed for FFT routine
#define NLOG 6

#define SIZE NUMBER_OF_SAMPLES

//The struct is used to specify a frequency with an assosiated power
typedef struct FreqPower{{{{

unsigned short freq;;;;
unsigned short power;;;;

}}}} FreqPower_t;;;;

extern A_ALIGNED dsp16_t dc_offset;;;;

FreqPower_t find_dominating_frequency((((dsp16_complex_t ****complex_vector););););
FreqPower_t check_signal((((void););););

#endif /* DSP_FUNCTIONS_H_ */
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/*
 * EIC.functions.c
 *
 *  Created on: 02.jul.2009
 *      Author: Stian O. Moen
 */

#include "compiler.h"
#include "EIC_functions.h"
#include "eic.h"
#include "intc.h"
#include "gpio.h"
#include "RTC_functions.h"
#include "USART_functions.h"
#include "usart.h"
#include "DSP_functions.h"
#include "config.h"

//variables used by the external intertupt handler
time_variable_t current_pulse,,,, previous_pulse;;;;

//debug function: converts unsigned short to string.
void short_to_char((((char ****string,,,, unsigned short number))))
{{{{

string[[[[0]]]] ==== number////10000 ++++ 0x30;;;;
number -=-=-=-= ((((number////10000)*)*)*)*10000;;;;
string[[[[1]]]] ==== number////1000 ++++ 0x30;;;;
number -=(-=(-=(-=(number////1000)*)*)*)*1000;;;;
string[[[[2]]]] ==== number////100 ++++ 0x30;;;;
number -=-=-=-= ((((number////100)*)*)*)*100;;;;
string[[[[3]]]] ==== number////10 ++++ 0x30;;;;
number -=-=-=-= ((((number////10)*)*)*)*10;;;;
string[[[[4]]]] ==== number ++++ 0x30;;;;
string[[[[5]]]] ==== '\0';;;;

}}}}

//Interrupt handler of the External interrupt reception detector
__attribute__((((((((__interrupt__))))))))
static void eic_int_reception_detector((((void))))
{{{{

char temp_string[[[[6];];];];
gpio_clr_gpio_pin((((LED6););););

//Save vurrent time in temporary variable
current_pulse ==== get_time();();();();
//adjust gain here.

//Perform sample_burst, FFT an find dominating frequency and power
FreqPower_t signal ==== check_signal();();();();

//assume valid pulse.calculate time and print data
time_variable_t difference ==== calculate_time_diff((((current_pulse,,,, previous_pulse););););
if ((((difference....millisec <<<< 0))))

difference ==== calculate_time_diff((((current_pulse,,,, previous_pulse););););
previous_pulse ==== current_pulse;;;;

//output the difference
usart_write_line((((USB_USART,,,, "Pulse detected:\n space: "););););
short_to_char((((temp_string,,,, difference....millisec););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " ms, "););););
short_to_char((((temp_string,,,, difference....sec););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " s\n"););););

//output the frequency and power
usart_write_line((((USB_USART,,,, "Frequency: "););););
short_to_char((((temp_string,,,, signal....freq););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " kHz\n"););););
usart_write_line((((USB_USART,,,, " Power: "););););
short_to_char((((temp_string,,,, signal....power););););
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usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, "\n\n\n"););););

gpio_set_gpio_pin((((LED6););););
eic_clear_interrupt_line(&(&(&(&AVR32_EIC,,,, EXT_INT_RECEPTION_LINE););););

}}}}

//Intitializes external interrupts
void init_EIC((((void))))
{{{{

// Structure holding the configuration parameters of the EIC module.
eic_options_t eic_options_reception;;;;

// Enable edge-triggered interrupt.
eic_options_reception....eic_mode ==== EIC_MODE_EDGE_TRIGGERED;;;;
// Interrupt will trigger on rising edge.

eic_options_reception....eic_edge ==== EIC_EDGE_RISING_EDGE;;;;
// Initialize in synchronous mode : interrupt is synchronized to the clock

eic_options_reception....eic_async ==== EIC_SYNCH_MODE;;;;
// Set the interrupt line number.

eic_options_reception....eic_line ==== EXT_INT_RECEPTION_LINE;;;;

// Map the interrupt lines to the GPIO pins with the right peripheral functions.
gpio_enable_module_pin((((EXT_INT_RECEPTION_PIN,,,, EXT_INT_RECEPTION_FUNCTION););););

Disable_global_interrupt();();();();

//register interrupt handler
INTC_register_interrupt(&(&(&(&eic_int_reception_detector,,,, EXT_INT_RECEPTION_IRQ,,,,

AVR32_INTC_INT0););););

// Init the EIC controller with the options
eic_init(&(&(&(&AVR32_EIC,,,, &&&&eic_options_reception,,,, 1););););

// Enable the chosen lines and their corresponding interrupt feature.
eic_enable_line(&(&(&(&AVR32_EIC,,,, eic_options_reception....eic_line););););
eic_enable_interrupt_line(&(&(&(&AVR32_EIC,,,, eic_options_reception....eic_line););););

Enable_global_interrupt();();();();
}}}}
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/*
 * EIC_functions.h
 *
 *  Created on: 02.jul.2009
 *      Author: Stian O. Moen
 */

#ifndef EIC_FUNCTIONS_H_
#define EIC_FUNCTIONS_H_

#include "eic.h"
#include "compiler.h"
#include "RTC_functions.h"

//prototypes
void init_EIC((((void););););

//global variables
extern time_variable_t current_pulse,,,, previous_pulse;;;;

#endif /* EIC_FUNCTIONS_H_ */
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/*
 * RTC_functions.c
 *
 *  Created on: 02.jul.2009
 *      Author: Stian O. Moen
 */

#include "rtc.h"
#include "config.h"
#include "compiler.h"
#include "intc.h"
#include "RTC_functions.h"
#include "gpio.h"

//global variable containing the
time_variable_t time;;;;

//RTC interrupt routine, updates a simplified real time clock.
//A clock with date and year can easily be implemented but is not
//needed for testing purpose.
__attribute__((((((((__interrupt__))))))))
void rtc_irq((((void))))
{{{{

//gpio_tgl_gpio_pin(AVR32_PIN_PA07);
// Increment the seconds counter and handle other variables
time....sec++;++;++;++;
if ((((time....sec >=>=>=>= 60))))
{{{{

time....sec ==== 0;;;;
time....min++;++;++;++;
if ((((time....min >=>=>=>= 60))))
{{{{

time....min ==== 0;;;;
time....hour++;++;++;++;
if ((((time....hour >=>=>=>= 24))))
{{{{

time....hour ==== 0;;;;
time....day++;++;++;++;

}}}}
}}}}

}}}}

// clear the interrupt flag
rtc_clear_interrupt(&(&(&(&AVR32_RTC););););

}}}}

//the function will initialize the RTC module to use the external 32.000
//crystal as source, devide by 32 to count milliseconds and generate an
//interrupt every 1000ms to count seconds as well as setting this as the top
//for the timer.
void init_RTC((((void))))
{{{{

//initialize time to zero, this is only for testing. A real RTC should
//always run and have functions to set the time. This can easily be
//implemented when the user interface is defined.
time....sec ==== 0;;;;
time....min ==== 0;;;;
time....hour ==== 0;;;;
time....day ==== 0;;;;

Disable_global_interrupt();();();();

//register RTC interrupt routine
INTC_register_interrupt(&(&(&(&rtc_irq,,,, AVR32_RTC_IRQ,,,, AVR32_INTC_INT0););););

//initalize RTC to use 32kHz source
rtc_init(&(&(&(&AVR32_RTC,,,,/*0*/ RTC_OSC_32KHZ,,,, RTC_PRESCALER););););

//set top to 1000 to generate interrupt each second.
rtc_set_top_value(&(&(&(&AVR32_RTC,,,, 1000););););

//Enable interrupt
rtc_enable_interrupt(&(&(&(&AVR32_RTC););););
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// Enable the RTC
rtc_enable(&(&(&(&AVR32_RTC););););

Enable_global_interrupt();();();();
}}}}

//function returns time; intead of reading the global variable directly a
//this function assures that no writing is ongoing or will start during the
//read. This will prevent inconsistance between the time variables.
time_variable_t get_time((((void))))
{{{{

while((((rtc_is_interrupt(&(&(&(&AVR32_RTC));));));)); //wait until RTC interrupt is finished
Disable_global_interrupt();();();();
time_variable_t temp ==== time;;;;
temp....millisec ==== ((((unsigned short))))rtc_get_value(&(&(&(&AVR32_RTC););););
Enable_global_interrupt();();();();
return temp;;;;

}}}}

//calculates t1-t2. t1 must be larger than t2 to avoid negative time.
time_variable_t calculate_time_diff((((time_variable_t t1,,,, time_variable_t t2))))
{{{{

time_variable_t temp;;;;

//calculate days
temp....day ==== t1....day ---- t2....day;;;;

//calculate hours
if((((t1....hour ---- t2....hour >=>=>=>= 0))))
{{{{

temp....hour ==== t1....hour ---- t2....hour;;;;
}}}}
else
{{{{

temp....hour ==== t1....hour ++++ 24 ---- t2....hour;;;;
temp....day--;--;--;--;

}}}}

//calculate minutes
if((((t1....min ---- t2....min >=>=>=>= 0))))
{{{{

temp....min ==== t1....min ---- t2....min;;;;
}}}}
else
{{{{

temp....min ==== t1....min ++++ 60 ---- t2....min;;;;
temp....hour--;--;--;--;

}}}}

//calculate seconds
if((((t1....sec ---- t2....sec >=>=>=>= 0))))
{{{{

temp....sec ==== t1....sec ---- t2....sec;;;;
}}}}
else
{{{{

temp....sec ==== t1....sec ++++ 60 ---- t2....sec;;;;
temp....min--;--;--;--;

}}}}

//calculate milliseconds
if ((((t1....millisec ---- t2....millisec >=>=>=>= 0))))

temp....millisec ==== t1....millisec ---- t2....millisec;;;;
else
{{{{

temp....millisec ==== t1....millisec ++++ 1000 ---- t2....millisec;;;;
temp....sec--;--;--;--;

}}}}

return temp;;;;
}}}}
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/*
 * RTC_functions.h
 *
 *  Created on: 02.jul.2009
 *      Author: Stian O. Moen
 */

#ifndef RTC_FUNCTIONS_H_
#define RTC_FUNCTIONS_H_

#include "compiler.h"

typedef struct time_variable {{{{
volatile short millisec;;;;
volatile U8 sec;;;;
volatile U8 min;;;;
volatile U8 hour;;;;
volatile short day;;;;
}}}} time_variable_t;;;;

//prototypes
void init_RTC((((void););););
time_variable_t get_time((((void););););
time_variable_t calculate_time_diff((((time_variable_t t1,,,, time_variable_t t2););););

#endif /* RTC_FUNCTIONS_H_ */
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/*
 * SPI_functions.c
 *
 *  Created on: 30.jun.2009
 *      Author: Stian O. Moen
 */

#include "spi.h"
#include "compiler.h"
#include "config.h"
#include "SPI_functions.h"
#include "gpio.h"

volatile avr32_spi_t ****spi ==== &&&&AVR32_SPI;;;;

unsigned char pot1_setting ==== 0;;;;
unsigned char pot2_setting ==== 0;;;;
unsigned char pot3_setting ==== 0;;;;

//SPI options for setup with the dataflash
static const spi_options_t DATAFLASH_options ====
{{{{

....reg ==== 3,,,,

....baudrate ==== 10000000,,,,

....bits ==== 8,,,,

....spck_delay ==== 0,,,,

....trans_delay ==== 0,,,,

....stay_act ==== 1,,,,

....spi_mode ==== 0,,,,

....modfdis ==== 1,,,,
};};};};

//SPI options for potentiometer updates.
static spi_options_t POTENTIOMETER_options ====
{{{{

....reg ==== 0,,,,

....baudrate ==== 10000000,,,,

....bits ==== 8,,,,

....spck_delay ==== 5,,,,

....trans_delay ==== 5,,,,

....stay_act ==== FALSE,,,,

....spi_mode ==== 0,,,,

....modfdis ==== TRUE
};};};};
//initialise to use potentiometer settings and set as master.
//The CS for the dataflash is set to high manually by the function
void init_SPI((((void))))
{{{{

static const gpio_map_t SPI_GPIO_MAP ====
{{{{
{{{{SPI_SCK_PIN,,,, SPI_SCK_FUNCTION},},},},
{{{{SPI_MISO_PIN,,,, SPI_MISO_FUNCTION},},},},
{{{{SPI_MOSI_PIN,,,, SPI_MOSI_FUNCTION},},},},
{{{{SPI_NPCS0_PIN,,,, SPI_NPCS0_FUNCTION},},},},
{{{{SPI_NPCS1_PIN,,,, SPI_NPCS1_FUNCTION},},},},
{{{{SPI_NPCS2_PIN,,,, SPI_NPCS2_FUNCTION},},},},
{{{{SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION}}}}

};};};};

// Assign GPIO to SPI
gpio_enable_module((((SPI_GPIO_MAP,,,,

sizeof((((SPI_GPIO_MAP)))) //// sizeof((((SPI_GPIO_MAP[[[[0]));]));]));]));

//initialize as master
spi_initMaster((((spi,,,, &&&&POTENTIOMETER_options););););

// Set selection mode: variable_ps, pcs_decode, delay.
spi_selectionMode((((spi,,,, 0,,,, 0,,,, 0););););

// Enable SPI.
spi_enable((((spi););););

//set manual chip select for dataflash to default high
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//initialize all potentiometers
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short i;;;;
for ((((i ==== 0;;;; i <<<< 4;;;; i++)++)++)++)
{{{{

POTENTIOMETER_options....reg ==== i;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

}}}}

}}}}

//Funtion sets the gain using the digital potentiometers
//This function will provide a maximum level throughout the
//cicuit by prioritizing the first gain stages.
void set_gain((((U32 gain))))
{{{{

unsigned short n1,,,,n2,,,,n3;;;; //potentiometer settings
float g1,,,, g2,,,, g3;;;; //gain of the induvidual stages

//calculate gain for each gain stage
if ((((gain <=<=<=<= GAIN1)))) //gain is only needed in stage 1
{{{{

g1 ==== gain;;;;
g2 ==== 1;;;;
g3 ==== 1;;;;

}}}}
else if((((gain <=<=<=<= GAIN1****GAIN2))))
{{{{

g1 ==== GAIN1;;;;
g2 ==== gain //// GAIN1;;;;
g3 ==== 1;;;;

}}}}
else
{{{{

g1 ==== GAIN1;;;;
g2 ==== GAIN2;;;;
g3 ==== ((((gain //// GAIN1)))) //// GAIN2;;;;

}}}}

//calculate potentiometer settings and ensure that overflow does not occur
n1 ==== ((((g1 **** POT_RES //// GAIN1 ++++ 0.5););););
if ((((n1 >>>> 255)))) n1 ==== 255;;;;
n2 ==== ((((g2 **** POT_RES //// GAIN2 ++++ 0.5););););
if ((((n2 >>>> 255)))) n2 ==== 255;;;;
else if ((((n2 <<<< 1)))) n2 ==== 1;;;;
n3 ==== ((((g3 **** POT_RES //// GAIN3 ++++ 0.5););););
if ((((n3 >>>> 255)))) n3 ==== 255;;;;

//set potentiometer gain only if different from last value (to reduce noise)
if ((((n1 !=!=!=!= pot1_setting))))

update_potentiometer((((0,,,, ((((char)))) n1););););
if ((((n2 !=!=!=!= pot2_setting))))

update_potentiometer((((1,,,, ((((char)))) n2););););
if ((((n3 !=!=!=!= pot3_setting))))

update_potentiometer((((2,,,, ((((char)))) n3););););
}}}}

//updates the given potentiometer with the raw input data
void update_potentiometer((((unsigned char potentiometer,,,, char data))))
{{{{

spi_selectChip((((spi,,,, potentiometer););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, data););););
spi_unselectChip((((spi,,,, potentiometer););););

}}}}

//sets the threshold for the reception detector interrup with the raw input data
void set_threshold((((unsigned char data))))
{{{{

update_potentiometer((((3,,,, data););););
}}}}

//writes up-to one page to address zero. Different addresses can easily be implemented
//but is not needed for current measurement testing.
unsigned char store_data_in_dataflash((((unsigned char ****data,,,, unsigned short size))))
{{{{

//perform sanity check
if((((size >>>> DATAFLASH_PAGE_SIZE))))
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return 0;;;;
spi_setupChipReg((((spi,,,, &&&&DATAFLASH_options,,,, F_CPU////2););););
//The dataflash is not connected to a NPCS pin. Instead a gpio pin is set
//manually to provide the chip select. To avoid that the SPI module
//selects another device while programmeing the flash the NPCS3 pin is
//rearranged to a gpio pin, thereby removing NPCS3 control for the SPI module
//And the NPCS3 is selected when communicating with the serial flash.
gpio_enable_gpio_pin((((SPI_NPCS3_PIN););););

//set high to not select device before intentional select
gpio_set_gpio_pin((((SPI_NPCS3_PIN););););
spi_selectChip((((spi,,,, 3););););
//select dataflash
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););

//check that SPI is not busy
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write command "buffer1 write"
spi_write((((spi,,,, CMD_WRITE_BUFFER_1););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write dont cares and buffer start index = 0
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0))))
;;;;spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write data to buffer
int i;;;;
for((((i ==== 0;;;; i <<<< size;;;; i++)++)++)++)
{{{{

spi_write((((spi,,,, data[[[[i]);]);]);]);
while((((spi_writeEndCheck((((spi)))) ======== 0););););

}}}}
//signal end of command by setting CS high
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//send command "Buffer 1 to Main Memory Page Program with Built-in Erase"
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););
spi_write((((spi,,,, CMD_BUFFER1_TO_MEM_WITH_ERASE););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write address bits and don't care. for testing the address is always 0
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0))))
;;;;spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//deselect serial flash
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//set options back to potentiometer settings
POTENTIOMETER_options....reg ==== 3;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

//arrange NPCS3 to SPI module
gpio_enable_module_pin((((SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION););););

return 1;;;;
}}}}

//reads up-to one page to address zero. Different addresses can easily be implemented
//but is not needed debug testing. This rutine is only used to test the correctness
//of the write routine.
unsigned char read_data_from_dataflash((((unsigned char ****data,,,, unsigned short size))))
{{{{

//perform sanity check
if((((size >>>> DATAFLASH_PAGE_SIZE))))

return 0;;;;
spi_setupChipReg((((spi,,,, &&&&DATAFLASH_options,,,, F_CPU////2););););
//The dataflash is not connected to a NPCS pin. Instead a gpio pin is set
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//manually to provide the chip select. To avoid that the SPI module
//selects another device while programmeing the flash the NPCS3 pin is
//rearranged to a gpio pin, thereby removing NPCS3 control for the SPI module
//And the NPCS3 is selected when communicating with the serial flash.
gpio_enable_gpio_pin((((SPI_NPCS3_PIN););););

//set high to not select device before intentional select
gpio_set_gpio_pin((((SPI_NPCS3_PIN););););
spi_selectChip((((spi,,,, 3););););
//select dataflash
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););

//check that SPI is not busy
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write command "Read page from main memory"
spi_write((((spi,,,, CMD_MAIN_PAGE_READ););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write three address bytes and four dummy bytes according to datasheet
unsigned short i;;;;
for((((i====0;;;; i <<<< 7;;;; i++)++)++)++)
{{{{

spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

}}}}

//read data
for((((i ==== 0;;;; i <<<< size;;;; i++)++)++)++)
{{{{

//write dummy to receive data
spi_write((((spi,,,,0););););
static unsigned short temp;;;;
spi_read((((spi,,,, &&&&temp););););
data[[[[i]]]] ==== ((((unsigned char)))) temp;;;;

}}}}

//deselect serial flash
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//set options back to potentiometer settings
POTENTIOMETER_options....reg ==== 3;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

//arrange NPCS3 to SPI module
gpio_enable_module_pin((((SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION););););
return 1;;;;

}}}}
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/*
 * SPI_functions.h
 *
 *  Created on: 30.jun.2009
 *      Author: Stian O. Moen
 */

#ifndef SPI_FUNCTIONS_H_
#define SPI_FUNCTIONS_H_

//Specifies chip select order
#define DIGPOT1_CS 0
#define DIGPOT2_CS 1
#define DIGPOT3_CS 2
#define DIGPOT4_CS 3
#define FLASH_CS 0

//dataflash defines
#define CMD_WRITE_BUFFER_1 0x84
#define CMD_BUFFER1_TO_MEM_WITH_ERASE 0x83
#define CMD_MAIN_PAGE_READ 0xD2
#define DATAFLASH_PAGE_SIZE 528

//Prototypes
void update_potentiometer((((unsigned char potentiometer,,,, char data););););
void set_gain((((U32 gain););););
void set_threshold((((unsigned char data););););
void init_SPI((((void););););
unsigned char store_data_in_dataflash((((unsigned char ****data,,,, unsigned short size););););
unsigned char read_data_from_dataflash((((unsigned char ****data,,,, unsigned short size););););

#endif /* SPI_FUNCTIONS_H_ */
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/*
 * TC_functions.c
 *
 *  Created on: 22.jun.2009
 *      Author: Stian O. Moen
 */

#include "tc.h"
#include "TC_functions.h"
#include "compiler.h"
#include "gpio.h"
#include "intc.h"
#include "USART_functions.h"
#include "ADC_functions.h"
#include <AVR32/io.h>
#include "ADC_functions.h"
#include "adc.h"

//Global variables
volatile avr32_tc_t ****tc ==== &&&&AVR32_TC;;;;

//initializes the timer counter to the options set in WAVEFORM_OPT.
//the timer is used to generate a hardware signal on timer/counter
//channel 0, triggering an ADC conversion.
void init_TC(((( void ))))
{{{{

// Initialize the timer/counter waveform.
tc_init_waveform((((tc,,,, &&&&WAVEFORM_OPT););););
tc_write_ra((((tc,,,, TC_CHANNEL,,,, 10);););); //assign a low value to reset TIOA
//Set ADC samplig frequency
tc_write_rc((((tc,,,, TC_CHANNEL,,,, ((((F_TIM //// 4)))) //// F_SMP););););
//ensure that the timer is stopped and reset so the sampling does not start
tc_stop((((tc,,,, TC_CHANNEL););););

}}}}

//This function will enable timer counter channel 0 to trigger an ADC conversion
// by hardware through TIOA
void enable_sampling((((void))))
{{{{

//include reset of timer
sample_nr ==== 0;;;;
sample_flag ==== TRUE;;;;
//enable ADC complete interrupt
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
ENABLE_ADC_INTERRUPT();();();();
tc_start((((tc,,,, TC_CHANNEL);););); // Start the timer/counter.

}}}}

//this function will stop the timer and disable the ADC interrupt
void disable_sampling((((void))))
{{{{

tc_stop((((tc,,,, TC_CHANNEL);););); // Stop the timer/counter and reset 
counter

sample_flag ==== FALSE;;;;
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
DISABLE_ADC_INTERRUPT();();();();

}}}}
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/*
 * TC_functions.h
 *
 *  Created on: 22.jun.2009
 *      Author: Stian O. Moen
 */

#ifndef TC_FUNCTIONS_H_
#define TC_FUNCTIONS_H_

#include "config.h"
#include "tc.h"

//specify the frequency of FPBA
#define FPBA    F_CPU
//specify timer/counter channel to be used to trigger ADC conversion
#define TC_CHANNEL    0

//Prototypes

void init_TC(((( void ););););
void enable_sampling((((void););););
void disable_sampling((((void););););

extern volatile U32 tc_tick;;;;
extern volatile U16 print_sec;;;;
extern volatile avr32_tc_t ****tc;;;;

// Options for waveform generation setting up the hardware signal to trigger
// ADC conversions

static const tc_waveform_opt_t WAVEFORM_OPT ====
{{{{
....channel ==== TC_CHANNEL,,,, // Channel selection.

....bswtrg ==== TC_EVT_EFFECT_NOOP,,,, // Software trigger effect on TIOB.

....beevt ==== TC_EVT_EFFECT_NOOP,,,, // External event effect on TIOB.

....bcpc ==== TC_EVT_EFFECT_NOOP,,,, // RC compare effect on TIOB.

....bcpb ==== TC_EVT_EFFECT_NOOP,,,, // RB compare effect on TIOB.

....aswtrg ==== TC_EVT_EFFECT_NOOP,,,, // Software trigger effect on TIOA.

....aeevt ==== TC_EVT_EFFECT_NOOP,,,, // External event effect on TIOA.

....acpc ==== TC_EVT_EFFECT_CLEAR,,,, // RC compare effect on TIOA: 
clear. this signal is used to trigger ADC conversion

....acpa ==== TC_EVT_EFFECT_SET,,,, // RA compare effect on TIOA: set.

....wavsel ==== TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,,,,// Waveform selection: Up mode 
with automatic trigger(reset) on RC compare.

....enetrg ==== FALSE,,,, // External event trigger enable.

....eevt ==== 0,,,, // External event selection.

....eevtedg ==== TC_SEL_NO_EDGE,,,, // External event edge selection.

....cpcdis ==== FALSE,,,, // Counter disable when RC compare.

....cpcstop ==== FALSE,,,, // Counter clock stopped with RC 
compare.

....burst ==== FALSE,,,, // Burst signal selection.

....clki ==== FALSE,,,, // Clock inversion.

....tcclks ==== TC_CLOCK_SOURCE_TC3 // Internal source clock 3, 
connected to fPBA / 8.

};};};};
#endif /* TC_FUNCTIONS_H_ */
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/*
 * test_functions.c
 *
 *  Created on: 16.jul.2009
 *      Author: Stian O. Moen
 */

#include <avr32\io.h>
#include "gpio.h"
#include "usart.h"
#include "pm.h"
#include "USART_functions.h"
#include "config.h"
#include "CLOCK_functions.h"
#include "stdio.h"
#include "tc.h"
#include "TC_functions.h"
#include "adc.h"
#include "ADC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"
#include "intc.h"
#include "dsp_debug.h"
#include "SPI_functions.h"
#include "spi.h"
#include "rtc.h"
#include "RTC_functions.h"
#include "eic.h"
#include "EIC_functions.h"
#include "TEST_functions.h"

//this function includes the code needed to provide the functionality and performance
//tests. To prevent interference between tests comment out the tests that are not
//to be performed only leaving one test. The complete system test is implemented
//to the system using the standard setup.
void test((((void))))
{{{{
/*
//test #5

set_gain(1);
set_gain(10);
set_gain(100);
set_gain(200);

//test #6
set_gain(1);
set_gain(10);
set_gain(100);
set_gain(200);

//test #7
set_gain(100);
set_threshold(70);

//test #8
usart_write_line(USB_USART, "Test successful\n");

//test #9
int i;
for(i =0; i < 20; i++)
{

volatile time_variable_t time = get_time();
usart_putchar(USB_USART, time.millisec);

}

//test #10
//create data set and store to flash
unsigned char flash_store_data[512];
for (i = 0; i < 512; i++)
{

flash_store_data[i] = 0x55;
}
store_data_in_dataflash(flash_store_data, sizeof(flash_store_data));

//read data black from flash
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unsigned char flash_read_data[512];
for(i = 0; i < 512; i++)
{

flash_read_data[i] = 0;
}
read_data_from_dataflash(flash_read_data, sizeof(flash_read_data));

//validate data
char flag = 0;
for(i = 0; i < 512; i++)
{

if (flash_read_data[i] != flash_store_data[i])
flag = 1;

}
if (flag == 1)

usart_write_line(USB_USART, "Flash FAIL with 0x55\n");
else

usart_write_line(USB_USART, "Flash OK with 0x55\n");

//Perform same test with data = 0x11
for (i = 0; i < 512; i++)
{

flash_store_data[i] = 0x11;
}
store_data_in_dataflash(flash_store_data, sizeof(flash_store_data));

//read data black from flash
read_data_from_dataflash(flash_read_data, sizeof(flash_read_data));

//validate data
flag = 0;
for(i = 0; i < 512; i++)
{

if (flash_read_data[i] != flash_store_data[i])
flag = 1;

}
if (flag == 1)

usart_write_line(USB_USART, "Flash FAIL with 0x11\n");
else

usart_write_line(USB_USART, "Flash OK with 0x11\n");

//test #11
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);
set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #12
set_gain(10);
//SLEEP(AVR32_PM_SMODE_STATIC); //uncomment when performing test 12.

//test #13
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);
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set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #14
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);
set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #15
set_gain(1);

//test #16
set_gain(1);

//test #17
set_gain(1);

//test #18
gpio_set_gpio_pin(LED1);
enable_sampling();
while(sample_flag == TRUE);
gpio_clr_gpio_pin(LED1);

unsigned char test[512];
gpio_set_gpio_pin(LED1);
store_data_in_dataflash(test, sizeof(test));
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
set_gain(12000);
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
time_variable_t time = get_time();
gpio_clr_gpio_pin(LED1);

time_variable_t time2 = get_time();
gpio_set_gpio_pin(LED1);
calculate_time_diff(time2, time);
gpio_clr_gpio_pin(LED1);

A_ALIGNED dsp16_complex_t vect1[NUMBER_OF_SAMPLES];
gpio_set_gpio_pin(LED1);
FreqPower_t test_freq =  find_dominating_frequency(vect1);
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
signed short temp_level  = get_signal_level();
gpio_clr_gpio_pin(LED1);

*/
//test #19; NB! should be performed without any initialization in main()

enable_all_pullups();();();();
init_RTC();();();();
SLEEP((((AVR32_PM_SMODE_DEEP_STOP););););

}}}}

void enable_all_pullups((((void))))
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{{{{
//gpio_enable_pin_pull_up(AVR32_PIN_PA03);
//gpio_enable_pin_pull_up(AVR32_PIN_PA04);
gpio_enable_pin_pull_up((((AVR32_PIN_PA07););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA13););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA20););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA21););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA22););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA26););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA27););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA05););););
//gpio_enable_pin_pull_up(AVR32_PIN_PA06);
gpio_enable_pin_pull_up((((AVR32_PIN_PA25););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA14););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA15););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA16););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA17););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA09););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA10););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA08););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA23););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA24););););

//oscillator pins
gpio_enable_pin_pull_up((((AVR32_PIN_PA18););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA19););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA11););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA12););););

}}}}
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/*
 * test_functions.h
 *
 *  Created on: 16.jul.2009
 *      Author: Stian O. Moen
 */

#ifndef TEST_FUNCTIONS_H_
#define TEST_FUNCTIONS_H_

#define LED0 AVR32_PIN_PA13

void test((((void););););
void enable_all_pullups((((void););););

#endif /* TEST_FUNCTIONS_H_ */
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/*
FILE: USART_functions.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes functions for debug-output as well as output of data
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include "USART_functions.h"
#include "config.h"

//This function initializes the USART to communicate with the USB-UART bridge
//Requires that the clock source is initialized
void init_USART((((void))))
{{{{

static const gpio_map_t USART_GPIO_MAP ====
{{{{
{{{{USB_USART_RX_PIN,,,, USB_USART_RX_FUNCTION},},},},
{{{{USB_USART_TX_PIN,,,, USB_USART_TX_FUNCTION}}}}

};};};};

// Assign GPIO to USART.
gpio_enable_module((((USART_GPIO_MAP,,,,

sizeof((((USART_GPIO_MAP)))) //// sizeof((((USART_GPIO_MAP[[[[0]));]));]));]));

// Initialize USART in RS232 mode. Must be changed if PLL setup is altered
usart_init_rs232((((USB_USART,,,, &&&&USART_OPTIONS,,,, F_CPU////2););););

}}}}
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/*
FILE: USART_functions.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes functions for debug-output as well as output of data
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef USART_funtions_h
#define USART_funtions_h

#include <avr32/io.h>
#include "compiler.h"
#include "pm.h"
#include "gpio.h"
#include "usart.h"
#include "config.h"
#include "stdio.h"

//Prototypes
void init_USART((((void););););
void write_character(((( char c ););););

#endif
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