

 I

Preface
This report is a result of the master thesis carried out in second semester of the 5th and final
year of a master study at the institute of Engineering Cybernetics, IME faculty at the
Norwegian University of Science and Technology. The project is a continuance of the autumn
project carried out in the previous semester. The complete report for the autumn project is
found digitally in appendix C.

The master thesis assignment is provided by Thelma AS in collaboration with the institute of
Engineering Cybernetics. Thelma provided the specification as well as an office space with
access to assembly and test equipment.

This master thesis included development, assembly and testing of a complete system. This is a
major task to complete in only five months and focus has therefore been on testing the system
as a design concept rather than implementing all details of a final product. Suggestions for
further development have though been included at the end of this report.

I would like to thank my teaching supervisor Jo Arve Alfredsen for his great effort and
guidance throughout the project. I would also like to express gratitude towards Åge
Grønningsæter at Thelma for his help and support.

Finally I would like to thank Atmel Norway and John Olav Horrigmo at the institutes’
component service for providing equipment, components and tools.

Trondheim

31st of July 2009

Stian Orø Moen

 II

Summary
A telemetry buoy is a standalone device used to receive acoustic pulse-position modulated
signals from digital tags attached to fish. The buoy is submerged in the sea and will store any
valid signals from tagged fish. The received information typically includes an ID and can
include information such as salinity level, depth, temperature, acceleration data and more. The
goal of this master thesis was to design and validate a system for a low power telemetry buoy
which utilizes digital signal processing.

This thesis is a continuance of the work, done by the same author, in the project described in
Acoustic telemetry buoy project report [4]. The goal of the previous project was to answer the
question ”is it possible to design a low power acoustic telemetry buoy which satisfies at least

one year operation and 100 000 stored receptions based on digital signal processing?”. The
conclusion was that it should be possible to design as system which meets the requirements
using the UC3B microcontroller. In addition it is recommended to design an external
reception detector to wake up the microcontroller and initiate reception.

While the previous project focused on the digital part of the system the master thesis focuses
on designing a complete system. The main building blocks that have been designed are

� Variable gain amplifier
� Active analogue band pass filter
� Reception detector
� MCU with external flash

Several design concepts have been discussed for each block whereas one complete system
prototype have been fully designed, assembled and tested. The system has been proved to
work by successfully receiving signals from a standard Thelma fish tag.

The prototype has been thoroughly tested and adjustments to improve performance have been
suggested. One of the most important criteria is low power consumption and the minimum of
one year operation. Current measurements and energy consumption calculations conclude
with an expected operation time of 1.51 years. Calculations show that the expected operating
time is further increased to 2.21 years if the new Atmel AT32UC3L microcontroller is used in
the final design. The design fulfils the other provided requirements with good margin.

The final conclusion is therefore that the system design provided in this report, together with
the suggested improvements and the UC3L microcontroller, provides Thelma with a good
basis for developing the leading standalone ultra low power acoustic telemetry buoy on the
market.

 III

Contents
PREFACE... I

SUMMARY .. II

CONTENTS...III

1. INTRODUCTION... 1

1.1 PROJECT DEFINITION... 1
1.2 BACKGROUND .. 1
1.3 EARLIER WORK ... 2
1.4 AVAILABLE SOLUTIONS .. 2

2. DESIGN PRINCIPLES .. 4

2.1 UNDERSAMPLING.. 4
2.2 GENERAL LOW-POWER DESIGN CONSIDERATIONS... 6
2.3 SPECIFIC POWER CONSUMPTION CONSIDERATIONS ... 7

3. SYSTEM OVERVIEW... 9

4. ANALOGUE DESIGN ... 10

4.1 SIGNAL PROPERTIES .. 10
4.1.1 Transmission protocol for Vemco fish-tags... 11

4.2 AUTOMATIC GAIN CONTROL AMPLIFIER.. 13
4.2.1 Variable gain amplifier IC .. 13
4.2.2 Variable gain amplifier using digital potentiometers.. 13
4.2.3 Design solution.. 18

4.3 FILTER DESIGN.. 19
4.3.1 Potentiometer noise removal filter .. 19
4.3.2 The intuitive filter solution .. 23
4.3.3 Butterworth filter... 25
4.3.4 Chebyshev filter... 29
4.3.5 Design solution.. 33

4.4 RECEPTION DETECTOR .. 37
4.4.1 Detecting a signal using an RMS to DC converter ... 37
4.4.2 Detecting a signal using a product detector.. 37
4.4.3 Detecting a signal using a diode detector ... 38
4.4.4 Detecting a signal using a modified diode detector .. 38
4.4.5 Design solution.. 40

4.5 COMPONENT SELECTION ... 42
4.5.1 Operational amplifier.. 43
4.5.2 Digital potentiometer .. 43

5. DIGITAL DESIGN ... 45

5.1 CALCULATING AND SETTING THE GAIN IN THE AGC LOOP.. 45
5.2 SAMPLING AND FILTRATION.. 46
5.3 DECODING THE SIGNAL... 46
5.4 STORING THE RECEIVED DATA .. 46
5.5 RECOVERING THE STORED DATA... 47

6. PROTOTYPE DESIGN.. 48

6.1 POWER DISTRIBUTION ... 48
6.2 PREAMP .. 49
6.3 VARIABLE GAIN AMPLIFIER AND FILTER ... 50
6.4 RECEPTION DETECTOR .. 51
6.5 CONNECTORS AND HEADERS... 52
6.6 MCU AND FLASH MEMORY .. 52
6.7 PCB LAYOUT .. 53

7. FIRMWARE.. 56

 IV

7.1 ADC_FUNCTIONS ... 58
7.2 CLOCK_FUNCTIONS .. 59
7.3 DSP_FUNCTIONS .. 59
7.4 EIC_FUNCTIONS ... 59
7.5 RTC_FUNCTIONS .. 59
7.6 SPI_FUNCTIONS .. 60
7.7 TC_FUNCTIONS... 60
7.8 USART_FUNCTIONS... 60
7.9 TEST_FUNCTIONS .. 61
7.10 MAIN.C .. 61

8. TEST AND MEASUREMENT PROCEDURES.. 62

8.1 FUNCTIONALITY TESTS ... 62
8.1.1 Power distribution... 63
8.1.2 Preamp .. 63
8.1.3 Variable gain amplifier and filter ... 64
8.1.4 Reception detector... 64
8.1.5 USB circuit .. 65
8.1.6 MCU and flash memory .. 65
8.1.7 Complete system test ... 66

8.2 PERFORMANCE TESTS AND MEASUREMENTS ... 67
8.2.1 Variable gain amplifier and filter ... 67
8.2.2 Reception detector... 71
8.2.3 MCU and flash memory .. 73

9. TEST RESULTS AND MEASUREMENT DATA... 74

9.1 ACCURACY OF THE RESULTS ... 74
9.2 FUNCTIONALITY TEST RESULTS .. 75
9.3 PERFORMANCE TEST AND MEASUREMENT RESULTS .. 78

9.3.1 Variable gain amplifier and filter test results ... 78
9.3.2 Reception detector test results... 81
9.3.3 MCU and flash memory test results .. 83

10. DISCUSSION .. 84

10.1 ANALOGUE DESIGN... 84
10.1.1 Band pass filter... 84
10.1.2 Variable gain amplifier .. 85
10.1.3 Reception detector .. 87

10.2 DIGITAL DESIGN.. 88
10.2.1 MCU and Flash memory .. 88

10.3 COMBINED DESIGN ... 90

11. FURTHER DEVELOPMENT... 92

11.1 THE CHOICE OF MICROCONTROLLER ... 92
11.2 DESIGN IMPROVEMENTS ... 93
11.3 ADDITIONAL FUNCTIONALITY... 94
11.4 DEVELOPMENT OF NEW MODULATION SCHEMES... 94

12. CONCLUSION.. 97

13. APPENDIX LIST.. 98

14. BIBLIOGRAPHY ... 98

 1

1. Introduction
This chapter describes the project definition with associated prototype requirements as well as
the background for the project. Furthermore a short summary of the results of the previous
acoustic telemetry buoy project is provided in section 1.3 followed by a short summary of the
similar products available.

1.1 Project definition

The goal of this master thesis is to design and validate a system for a low power telemetry
buoy which utilizes digital signal processing and fulfils the requirements specified in the
following.

The telemetry receiver should meet the following specifications:

• Store at least 100 000 receptions with individual time stamps
• Operating time of at least one year using one D-cell Tadiran 19Ah lithium battery [23]
• Handle acoustic receptions of modulated signals with carrier frequencies ranging from

60 kHz – 80 kHz.

In addition to the specifications it is desired to have the following features:

• High level of digital control to create a versatile and easy modifiable product
• Possibility to support new forms of modulation schemes without hardware

modifications

1.2 Background

A telemetry buoy is a standalone device used to receive acoustic pulse-position modulated
signals from digital tags attached to fish. The buoy is submerged in the sea and will store any
valid signals from tagged fish. The received information typically includes an ID and can
include information such as salinity level, depth, temperature, acceleration data and more.

Automatic receiver buoys play an important role for the applicability of acoustic telemetry in
large scale studies of fish and other species’ behaviour in the ocean. The placement of several
telemetry buoys in strategic positions provides the ability to monitor behavioural patterns for
long periods of time.

At the time of writing Thelma AS has a manual operated telemetry receiver. This is used to
manually observe tagged fish for research purposes. In many situations it is neither practical
nor possible to have people operating such a device. This is typically research where records
are done in a period of several weeks or months. It is desired to have a stand-alone device that
can be left for a longer period of time that records the presence of tagged fish. Some solutions
exist, but the device must typically be fetched to retrieve the recorded information. Thelma
wishes to develop their own product with improved performance compared to the competing
products, and the ability to add more user friendly data retrieval through GSM
communication.

 2

1.3 Earlier work

This master thesis is a continuance of the work, done by the same author, in the project
described in Acoustic telemetry buoy project report [4]. This section provides a short summary
of the key observations made in the project. The complete report is found in appendix C.

The goal of the previous project was to answer the question ”is it possible to design a low

power acoustic telemetry buoy which satisfies at least one year operation and 100 000 stored

receptions based on digital signal processing?”

The conclusion reads:
“The final conclusion is therefore that the AT32UC3B microcontroller should be used for

further design. With this controller it should be possible to design an acoustic telemetry buoy

that meets the requirements given in section 1.1. If a good external trigger for reception can

be constructed this will provide the lowest energy consumption. The system should though

incorporate digital filtration to allow compatibility with various frequencies and modulation

schemes.”

In addition to the final conclusion several forms of modulation schemes where discussed. The
most important observations with respect to modulation are quoted below:

“Kilfoyle and Baggeroer states in an IEEE report [8] that the frequency content of an

underwater telemetry signal remains largely contained within its original band whereas the

amplitude and phase of the signal can vary widely in both time and space. This observation

naturally concludes that modulation schemes using pulse position or frequency are of the

most interest.”

“For acoustic telemetry this modulation form can provide a higher throughput than PPM due

to its better immunity against multipath distortion if the same frequency is not repeated too

frequently. It will not add much complexity for the fish tag, but the receiver must be able to

separate the different frequencies which will add complexity to the digital or analogue signal

processing.”

The battery to be used is specified in section 1.1 is also studied and it is shown that to be able
to utilize the battery the system must operate at a voltage area of 2 – 3.7V. Even with this
requirement the total capacity of the battery is reduced to about 13Ah resulting in an
estimated total energy of 163800 J which leads to a maximum average current consumption of
1.48 mA for the complete system.

1.4 Available solutions

There are currently two other vendors of telemetry buoys; VEMCO and SONOTRONICS.
The latest telemetry buoy from each vendor is the VR2W and the SUR respectively. The
following will provide a short description of these products.

VR2W
The VEMCO produced VR2W have the following features:

• 8 MB of memory
• 1 000 000 detections
• 15 months operating time

 3

• Receiver frequency: 69.0 kHz
• Bluetooth communication
• Real time clock

SUR – Submersible Ultrasonic Receiver
The SONOTRONICS produced SUR have the following features:

• 1 MB flash memory
• 100 000 detections
• 7-12 months operating time using two batteries
• 15 selectable frequencies ranging 30 kHz – 150 kHz
• RS-232 communication
• Real time clock
• Ping and response function to check if the SUR have any data

Note that the SUR will not listen to all 15 frequencies at the same time. It will listen for a
particular frequency for two seconds, then it will power down for one second, power up and
listen to the next frequency. In addition a one second delay is added after all 15 frequencies
have been scanned. As a result a particular frequency will be checked every 46 seconds. With
these delays the receiver will have an operating time of seven months. It is possible to
increase the delays to achieve up to twelve months operating time.

 4

2. Design principles
This chapter covers the hardware and software design techniques and principles used to
design the acoustic telemetry buoy.

2.1 Undersampling

The most common form of digitizing an analogue signal is sampling according to the Nyquist
theorem in equation (2.1).
 max2

s
f f> ⋅ (2.1)

Where
fs is the sampling frequency
fmax is the highest frequency of the analogue signal

To avoid violating the theorem a low-pass filter must be used as in Figure 2-1.

Figure 2-1 - Nyquist sampling with low pass filtration

If the criteria in (2.1) is violated aliasing will occur. Aliasing refers to an effect that causes
different continuous signals to be indistinguishable when sampled. As an example a 100 Hz
sinusoidal signal is sampled with a sampling frequency fs = 80 Hz. The resulting sampled
signal is illustrated in Figure 2-2. Notice that when the 100 Hz sinusoidal is sampled, the
result is a 20 Hz sinusoidal. It is therefore not possible to distinguish the alias of the 100 Hz
signal from an original 20 Hz signal.

Figure 2-2 - Aliasing example, adapted from [3]

If all other frequencies are removed by a filter as in Figure 2-3, we can utilize the alias.
Knowing that no frequencies outside the area []80 ,120f Hz Hz∈ will occur we know that the

20Hz digitized signal must originate from a 100 kHz analogue signal. This technique is
known as undersampling or band pass sampling.

Figure 2-3 Undersampling with band pass filtration

 5

According to undersampling theory [4], if the sampling rate fs satisfies (2.2), the original
signal can be reconstructed without any loss.

2 2

1
H L

s

f f
f

k k
≤ ≤

−
 (2.2)

Where k is an integer satisfying

 1 H

H L

f
k

f f

 
≤ ≤  

− 
 (2.3)

Where

fs is the sampling frequency

fh is the highest frequency component of the signal

fl is the lowest frequency component of the signal

Since a lower frequency is used over the same period of time without loss of information the
result is fewer samples and therefore a more power efficient solution. The signal to noise ratio
(SNR) typically decreases when reducing the number of samples, but since the band pass
filter also reduces the bandwidth of the noise the SNR remains unchanged.

When receiving acoustic signals from fish tags, not all frequencies are of interest. As
specified the section 1.1, only frequencies []60 ,80f kHz kHz∈ are relevant. Assuming that a

band pass filter as in Figure 2-3 removes all other frequencies we can calculate the valid
values of k:

3

3

80 10
1

60 10

1 4

k

k

 ⋅
≤ ≤  

⋅ 

≤ ≤

 (2.4)

By using (2.2) the valid sample frequencies that do not produce overlapping of aliases are:

Table 2-1 - Valid sample frequencies

k lowest fs [Hz] highest fs [Hz]

1 160000 ∞

2 80000 120000

3 53333,33333 60000

4 40000 40000

Notice that k = 1 provides the more common Nyquist frequency and k = 4 is the absolute
minimum undersampling frequency where 2

s
f B= ⋅ . By using a sampling frequency of 40

kHz the frequency aliases will occur as shown in Figure 2-4.

Figure 2-4 - Frequency spectrum when undersampling with fs = 40 kHz

 6

Notice that both the negative and the positive frequency components are aliased. When
undersampling, the frequency band will be aliased with an offset equal to the sampling
frequency. The band is drawn with an incline with increasing frequency. The dotted lines are
the resulting aliases. When using fs = 40 kHz we get the inverse frequency band in 0-20 kHz
since this is an alias of the negative frequency band. This will not present a problem as long as
it is compensated for in software.

The latter example results in frequency bands with no separation. This will in theory require
an optimal band pass filter to avoid aliasing. Some aliasing may still be permitted as long as
this only contains signal levels below the noise floor and/or signals below the dynamic range
of the ADC. Choosing a sampling frequency fs = 58 kHz will provide more separation as
shown in Figure 2-5. Some of the original frequencies will occur at two aliased frequencies,
but since they don’t overlap they can be removed using a digital filter.

Figure 2-5 – Frequency spectrum when undersampling with fs = 58 kHz

2.2 General low-power design considerations

In addition to choosing the component with the lowest power consumption there are several
other factors that must be taken into consideration. The highest level of integration usually
results in the lowest power consumption. In an embedded system this often means choosing a
microcontroller with many of the needed features inbuilt. Connecting “components” in an
internal circuit instead of on a PCB will in most cases result in less leakage, provide the
possibility of running the components closer to the voltage limits and a higher grade of
optimization.

The most fundamental low-power requirement for any embedded system is that the system
must be interrupt driven. This will allow the processor to sleep whenever the CPU is not
needed for computation. Delay routines of the type
for(int i = 0; i < 200; i++){
//do nothing
}
are therefore strongly prohibited in a low-power application. The solution is to use a timer
with an associated interrupt to wake the processor when the delay has expired. Modules that
can relieve the CPU will also contribute to more time in sleep modes. This can for instance be
a communication module, DMA controller, timer, etc.

Computation prohibits the CPU or MCU from being in a sleep mode. It is therefore vital that
the computation time is at a minimum. This requires not only a high frequency and a powerful
CPU instruction set, but that the program is constructed and optimized for the specific CPU.
To achieve this, great knowledge about the instruction set and the compiler is required.
Optimization settings for the compiler must be set, but without knowledge about the CPU the

 7

program will never be optimal. An example is using floating-point numbers on a CPU without
hardware support for this. All computation will therefore have to be done in software which
will lead to a large increase in computation time.

Oscillators will also contribute to the overall power consumption. The designer must not only
consider the frequency, but also the type of oscillator. The typical oscillators are internal RC
oscillator, external clock, external crystal and external resonator. Factors that must be
considered are

• Power consumption
• Start-up time
• Stability (jitter)
• Accuracy

Studying for instance the XMEGA manual [25] we find that the internal RC oscillator has the
shortest start-up time and is for many microcontrollers the oscillator that requires the least
amount of power. The downsides are that an RC oscillator typically will be more inaccurate
and have a grater amount of jitter.

Since a real-time clock often is required in an embedded system many microcontrollers
feature an ultralow-power, low frequency oscillator designed especially for 32.768 kHz quartz
crystals. The low frequency usually excludes the possibility of using this oscillator as a
system clock. On AVR and AVR32 microcontrollers it can though be used as reference to do
runtime calibration of the internal RC oscillator to achieve greater accuracy.

Most microcontrollers have the ability of connecting an external crystal, external clocks are
therefore seldom used. The external clock option can though be used if there are several other
devices that require an oscillator. The devices can then share the same clock.

Unwanted oscillations may also contribute to an increase in power consumption. It is
therefore important to use appropriate decoupling and insure a stable digital level on unused
inputs. A high input resistance is also important to ensure that a minimum of current is
consumed.

2.3 Specific power consumption considerations

This section describes considerations, specified by the manufacturer, for minimizing power
consumption in a microcontroller. The devices studied are limited to Atmel AVR XMEGA,
Atmel AVR32 UC3 and Texas Instruments MSP430.

Sleep modes enables the microcontroller to shut down unused modules to save power. When
the device enters sleep mode, program execution is stopped. Interrupts or reset is used to wake
the device again. Moreover, the individual clock to unused peripherals can be stopped during
normal operation to save power.

The wake-up time for the device is dependent on the sleep mode and the frequency of the
main clock source. The start-up time for the system clock source must be added to the wake-
up time for sleep modes where the clock source is stopped. The ability to get into and out of
the low-power modes and process data quickly is crucial because current is wasted by the
CPU waiting for the clock to become stable [24]. Some MCUs have a two-stage clock wake-
up providing a low-frequency clock to the CPU while a high-frequency clock is being

 8

stabilized. On these devices the CPU may be operational in a short time, but running
inefficient due to the low frequency.

For the XMEGA [25] the power reduction register provides a method to stop the clock to
individual peripherals. This can be used in sleep modes to reduce overall power consumption
significantly. On some Texas Instruments devices [24] the peripherals have the ability to
disable themselves automatically when not in use. For more complex devices like the AVR32
UC3 [26] the ability to control the clock is at a much more detailed level. The synchronous
clock generator can adjust the performance of the system, according to the current
requirements, by switching between three different clock sources; internal RC-oscillator,
PLL0 and oscillator0. Depending on the developers design it may be better to scale the clock
instead of switching the source. This can be done in most MCUs “on-the-fly”. In addition to
scaling and switching the synchronous clock for the CPU, the clock for each of the internal
buses can be scaled down when the bus is not utilized completely. The DMA controller
allows the bus to work at a different speed then the CPU. Hence having a DMA can lower the
power consumption both in active and sleep mode [24].

Leakage current is sometimes overlooked when choosing a low-power MCU, but it must be
considered for the most demanding low-power applications [24]. For the UC3 [26] all pins
that are not connected externally to pull-ups, pull-downs, ground or power should be left as
inputs, but with the internal pull-up enabled. This will ensure a stable digital level while
reducing the input current with the internal resistor and thereby ensure the lowest possible
power consumption

 9

3. System overview
As described in section 1.3 the project report Acoustic telemetry buoy [4] concludes that the
microcontroller AT32UC3B should be used together with a reception detector in the
development of the telemetry buoy application. It also states that the telemetry buoy should
incorporate some form of digital signal processing to allow compatibility with various
frequencies and modulation schemes.

Figure 3-1 shows the system design concept. To be able to utilize the benefits of
undersampling the system incorporates an analogue band-pass filter. Furthermore it features
an automatic gain control amplifier. This is used to adjust the sensitivity of the receiver and
provide a means of adjusting the signal to a suitable level before performing sampling. The
reception detector will act as both a wakeup source for the microcontroller and a means of
measuring the signal level. This signal can then be used as feedback in the AGC loop.

The filter, variable gain amplifier and reception detector will always be on, these blocks will
therefore have to be designed for ultra low power consumption. The microcontroller will
control the analogue gain in the variable gain amplifier, perform sampling, digital signal
processing, decoding and storage of the reception if found valid.

The hydrophone will be selected based on the physical shape of the buoy and is not a topic of
this report. The amount of gain in the fixed gain stage will depend on the choice of
hydrophone and is therefore not covered.

 k VGA
Reception

detector

Microcontroller

FFT Digital

filters

Signal

decoding

RTC

AGC

algorithm

Storage

functions

Non-volatile

memory

ADC, sampling

ADC, signal level

Interrupt

Variable gain

amplifier

Band pass

filter

Reception

detector
Fixed gain

amplifier
Hydrophone

Figure 3-1 - System overview

 10

4. Analogue design
This chapter describes the analogue design of the telemetry buoy. The analogue circuit
consists of three main blocks:

• Variable gain control amplifier
• Band pass filter
• Signal detector.

The following sections will discuss several implementation methods for each of the blocks.
The Design Solution section describes the choice for implementation for each of the described
methods.

4.1 Signal properties

Before designing the analogue circuit it is important to determine the properties of the signal
it should handle. Thelma’s fish tags typically output a signal of about 150 dB (relative to 1µP
at 1m) [9]. The ambient noise in the spectra of interest (60kHz to 80kHz) in sea water is
dominated by thermal noise and sonic noise produced by weather. The SINTEF report Fish

telemetry manual [8] provides the equation

 (10 log)TL SL NL B DT= − + − (4.1)

Where

SL: transmitter source level (dB)

TL: transmission loss (dB)

B: bandwidth of channel

NL: noise level per unit bandwidth

DT: detection threshold

The result TL ultimately results in the dynamic range of the analogue circuit. The TL level
will provide the highest signal level above the noise floor. Signals below the noise floor
cannot be retrieved and are therefore of no interest. As shown in Figure 4-1 the lowest
ambient noise level is about 20 dB. Assuming a bandwidth of the signal of 500Hz and that all
signals above the noise floor can be retrieved the maximum dynamic range is found:

 150 (20 10log500) 0 103DR dB= − + − = (4.2)

The AGC circuit should therefore have a dynamic gain range of 103 dB.

 11

Figure 4-1 - Noise in the sea, adapted from [8]

4.1.1 Transmission protocol for Vemco fish-tags

The telemetry buoy should be designed to receive signals defined by Vemco. This section
provides a short description gathered from the report Acoustic telemetry buoy [4] written by
the same author as this report.

Existing digital acoustic fish tags use pulse position modulation (PPM) to send information.
The package includes an ID and can include specific information such as temperature, depth,
salinity, heart rate, checksum and more.

The most common format that is used is defined by Vemco. The description is provided by
Thelma and is in essence as follows

• Differential pulse-position modulated signal
• Pulse length Tp = 10ms for all pulses
• Timeslot Ts = 20ms, pulses occur in the middle of the timeslot
• There are M = 4 bits coded by each pulse, this gives 24 = 16 time slots
• A transmission starts with two synchronization pulses. The difference in time between

the pulses Tsync corresponds to the amount of data that will be transmitted i.e. the
number of expected pulses.

• A guard time Tg it added between all pulses to compensate for any multipath or echo
distortions.

• A transmission ends with an 8-bit CRC checksum.
• All pulses are detected on a rising edge.
• Timing is always referred to the rising edge of a pulse.

Figure 4-2 gives an example of a transmission of the data 30 and checksum 5. In addition to
the listed specifications the following applies for the example:

• Tg = 380ms, guard time to suppress multipath distortion
• Tsync = 360ms, it is assumed that this means that one byte + CRC will be transmitted

 12

Figure 4-2 - Example of a Vemco DPPM packet

The time delays between the pulses are calculated by the transmitter as in Table 4-1.

Table 4-1 - Composition of a DPPM Vemco signal

Delay between Delay components Information Delay
Pulse 1-2 Synchronization time Tsync. Defined by protocol, specifies

a total of 6 pulses i.e. 1 byte
data

360ms

Pulse 2-3 Guard time Tg + 1 x Timeslot Ts, Data[7:4] = 00012 400ms
Pulse 3-4 Guard time Tg + 14 x Timeslot

Ts, data:
Data[3:0] = 11102 660ms

Pulse 4-5 Guard time Tg + 0 x Timeslot Ts CRC[7:4] = 00002 380ms
Pulse 5-6 Guard time Tg + ¨5 x Timeslot Ts CRC[3:0] = 01012 480ms
 SUM 2280ms

 13

4.2 Automatic gain control amplifier

The automatic gain control (AGC) circuit consists of a variable gain stage, measurement and
control stage as shown in Figure 4-3. The control stage may be either analogue or digital. For
the telemetry buoy a digital approach is chosen to be able to alter the settings without
modifying any hardware. The digital approach also provides the possibility of using digital
potentiometers to adjust the gain.

Figure 4-3 - AGC system overview

The level measurement can be done in several ways. These are described in section 4.4
Reception detector. The variable gain stage can be realised in several ways. The following
sections will cover realisation by using a variable gain amplifier IC and by using operational
amplifiers together with digital potentiometers.

4.2.1 Variable gain amplifier IC

The intelligent hydrophone buoy designed by Jan Eyolf Bjørnson [7] uses a variable gain
amplifier (VGA) IC (AD604). Analog devices is the main supplier of VGA’s. The devices
offer a high dynamic range, linar amplification and high bandwidth. The downside is the
rather high current consumption. The device requiring the least power (AD600) will draw a
supply current of 14 mA. The AGC provides a signal to the reception detector. The VGA will
therefore have to be enabled at all times. A current consumption of 14mA is considerably
over the maximum limit of 1.48 mA as specified in 1.3. This makes the VGA IC unsuitable
for the battery powered telemetry buoy.

4.2.2 Variable gain amplifier using digital potentiometers

Digital potentiometers alter the resistance by connecting the “wiper” to the resistors through a
set of CMOS transistors. The control signal varies from protocols like I2C and SPI to basic
inputs such as step up and step down. The most common types have 256 or 32 discrete steps.
The downside of using digital potentiometers is the tolerance. The end-to-end resistance
typically has a tolerance of ±25% to ±30% [11]. This is manly due to process variations.

 14

Maxim application notes [11] and [12] describe four principles for connecting a digital
potentiometer in an operational amplifier connection. The configurations are described in the
following sections.

4.2.2.1 Traditional audio control configuration

The traditional volume control shown in Figure 4-4 features a potentiometer at the input
followed by an amplifier with fixed gain. This configuration will provide a linear gain. The
downside is that the signal is scaled down before being amplified. For small signals this will
result in a reduction of the signal to noise ratio (SNR). Noise introduced by the potentiometer
or after the potentiometer will be more significant since the amplification is always at
maximum after the signal scaling.

Input

Output

Figure 4-4 - Traditional volume control

4.2.2.2 Non-inverting configuration with one additional resistor

The circuit diagram is shown in Figure 4-5. This configuration provides a linear gain, but the
gain is dependent on the end-to-end resistance of the digital potentiometer. The gain will
therefore have the same tolerance as the potentiometer. This may not be a problem in an AGC
application if the tolerance is taken into consideration at the design stage.

Input

Output

Figure 4-5 - Non-inverting amplifier with linear gain

4.2.2.3 Non-inverting configuration without additional resistors

The circuit diagram is shown in Figure 4-6. This configuration eliminates the gain tolerance
introduced by the end-to-end tolerance of the digital potentiometer. The gain adjustment will
though be non-linear. If we define []0,1N ∈ as the position of the wiper and G as the gain we

get the expression

 () 1
1

N
G N

N
= +

−
 (4.3)

The result is plotted in Figure 4-7.

 15

Input

Output

Figure 4-6 - Non-inverting amplifier with non-linear gain

Note that this connection will result in an infinite gain when N = 1. The gain must therefore
be limited either in software or by external resistors

Figure 4-7 - Gain as a function of N

4.2.2.4 Potentiometer in a positive feedback configuration

The circuit diagram is shown in Figure 4-8. In this configuration the potentiometer is
supplying the operational amplifier with positive feedback in addition to the negative
feedback via the fixed resistors. If we define Kn as the negative feedback fraction and Kp as
the positive feedback fraction it can be shown [12] that the gain of the circuit is

1

n

p n

K
G

K K

−
=

−
 (4.4)

Notice that the system becomes unstable when the positive feedback fraction Kp exceeds the
negative feedback fraction Kn. It must therefore be ensured in software or with an additional
resistor that Kp < Kn. If a software approach is chosen we get an amplifier which is not
dependent on the end-to-end tolerance of the potentiometer.

 16

Input

Output

Figure 4-8 - Positive feedback configuration

The gain is non-linear as shown in Figure 4-7. Here Kn is set to 2/3.

Figure 4-9 - Gain as function of Kp

4.2.2.5 Non-idealities of a digital potentiometer

When designing a variable gain amplifier (VGA) using digital potentiometers it is important
to understand the non-idealities of digital potentiometers. This section addresses the most
important factors.

End-to-end tolerance
An important factor is the tolerance of the end-to-end resistance. If the AGC design is a
traditional control loop this may not present a problem. For a low power design it is desired to
avoid using a continuous control loop. A more effective approach is to measure the signal
strength and calculate the correct gain. This approach requires that the gain has little tolerance
or that some sort of lookup table is generated at production. This lookup table may be hard to
generate and it is therefore preferable to use a configuration which eliminates that the gain is
dependent on the end-to-end tolerance. This leaves the traditional audio gain, the non-

inverting design without additional resistors and the positive feedback configurations.

Discrete resistance value
As opposed to traditional potentiometers the digital potentiometer has fixed resistance steps.
Typical values are 32, 64, 128 and 256 steps. If a higher resolution is needed several
potentiometers can be used.

Frequency dependent operation
The datasheet for each individual potentiometer specifies a -3dB crossover frequency. For a
100k potentiometer this value is typically in the area of 40 kHz – 80 kHz. This is due to the
stray capacitance between the wiper and ground [13] as shown in Figure 4-10.

 17

C

Figure 4-10 - Non-ideal digital potentiometer

The introduction of a capacitance in the circuit will lead to frequency dependent gain. This
may present a problem even when the signal is below the given bandwidth of the
potentiometer. If we consider the configuration described in section 4.2.2.3 and view the
potentiometer as two resistors we get the connection as in Figure 4-11. The dotted line
encapsulates the digital potentiometer.

Input

Output

R1

Input

Output

R2

C

Figure 4-11 - Non-inverting configuration with non-ideal potentiometer

The transfer function is as follows

 2 2 1 2 2

1 1

1

() 1 1

1

R R R R Cs R
G H s

RZ R

sR C

+
= = + = + =

+

 (4.5)

The bode plot for (4.5) is shown in Figure 4-12. R1 = R2 = 50k, C = 60 pF. Notice that for
frequencies higher than 50 kHz the gain is non-linear with respect to frequency. It is therefore
vital that this capacitance is taken into consideration, especially when using the digital
potentiometer in a feedback loop.

 18

10
4

10
5

10
6

10
7

0

45

90

P
h
a
s
e
 (

d
e
g

)

Bode Diagram

Frequency (rad/sec)

0

5

10

15

20

25

30

System: untitled1

Frequency (rad/sec): 3.34e+005

Magnitude (dB): 3.01

M
a
g
n
itu

d
e
 (

d
B

)

Figure 4-12 - Bode plot of gain transfer function

4.2.3 Design solution

Of the previously described techniques, only the digital potentiometer approach is able to
provide a satisfactory result with respect to low power. It is preferable that the VGA has linear
and known gain. This will enable the traditional automatic gain controller to set the correct
gain with only one measurement. The traditional volume control circuit described in section
4.2.2.1 is therefore chosen as the base point for the design. To achieve a good gain resolution
the system will use three digital potentiometers. This will provide 3 6256 16.7 10= ⋅ steps..

The main disadvantage of the circuit is that the amplifier it self will always be at full gain
where the signal is being damped before being amplified. At small signal levels this can lead
to a problem where noise generated inside or after the digital potentiometer is being amplified
to an extent where the original signal cannot be retrieved. This can be internally generated
noise, SPI crosstalk and noise due to change of gain setting. By introducing a filter between
the digital potentiometer and the amplifier noise outside the spectra for interest is damped.

Another challenge is DC drift. As specified in section 4.1 the amplifier should have a dynamic
range of minimum 103dB. This gives us a maximum gain of

103
20

max 10 141254G = = (4.6)

With such a large gain even the smallest DC offset can make the system saturate and thereby
fail. Introducing a high pass filter will remove any DC offset. This will be discussed further in
section 4.3 Filter design. To achieve this gain several operational amplifiers will be used in a
cascade configuration, please refer to section 4.5.1 Operational amplifier on page 43 for
details. The following section will suggest specific circuit solutions for the filter combined
with the amplifier.

 19

4.3 Filter design

To avoid aliasing when undersampling as described in section 2.1 on page 4 it is vital that the
signal is limited in bandwidth. This requires a band pass filter that will limit the bandwidth of
the signal. The following section describes a filter that removes DC offset and noise generated
in the potentiometer.

4.3.1 Potentiometer noise removal filter

To remove DC offset, noise generated in the potentiometer and noise related to changing the
setting of the potentiometer a simple first order filter is implemented as depicted in Figure
4-13. To minimize the power consumption we wish to only add passive components to this
filter. Due to the high tolerances of coils it is desired to avoid using these when possible. The
filter design is therefore concentrated around first order RC filters.

Figure 4-13 - Digital potentiometer with first order high pass filter

When choosing filter component values it is important to consider the frequency dependent
operation of the digital potentiometer. In this application the wiper resistance and capacitance
must be taken into account. Figure 4-35 shows the more detailed circuit where RH and RL are
dependent on the wiper position, RW is the wiper resistance and CW is the wiper capacitance.

Figure 4-14 - Non-ideal potentiometer with first order high pass filter

To fully understand the behaviour of the circuit the transfer function ()fH s o

i

V

V
= must be

derived.

To analyse the circuit several impedances must be calculated. Figure 4-15 shows the different
impedances.

 20

Figure 4-15 - Impedances of the potentiometer and filter circuit

The impedances are derived in an ascending order.

 1 1
1 1

1 1

11 sR C
Z R

sC sC

+
= + = (4.7)

1

1 1
2 1

1 1 1
1

1
1

||
1 ()W

W
C

W W

W

Z
sC R C s

Z X Z
s C C R sC C

Z
sC

+
= = =

+ +
+

 (4.8)

 1 1
3 2

1 1 1

1
()W W

W W

R C s
Z R Z R

s C C R sC C

+
= + = +

+ +
 (4.9)

1 1

1 1 13
4

1 13

1 1 1

1
()

1
()

L W

W WL

L
L W

W W

R C s
R R

s C C R sC CR Z
Z

R C sR Z
R R

s C C R sC C

 +
+ 

+ + = =
++

+ +
+ +

 (4.10)

Using these expressions the transfer functions can be derived using simple voltage divide
calculations. All voltages are referred to Figure 4-15.

 4

4

p

i H

V Z

V Z R
=

+
 (4.11)

 2

2

W

p W

V Z

V R Z
=

+
 (4.12)

 1

1
1

1
o

W

V R

V
R

sC

=

+

 (4.13)

 4 2 1

4 2
1

1

1
po W o

i i p W H W

VV V V Z Z R

V V V V Z R R Z
R

sC

= ⋅ ⋅ = ⋅ ⋅
+ +

+

 (4.14)

 21

Inserting equations (4.7), (4.8), (4.9) and (4.10) into (4.14) gives the final transfer function

()() () ()() ()()() ()
1 1

2
1 1 1 1 1 1 1

() o L

i W L W H L W W L W W W H W W W L L H

V R R C s
H s

V C C R R R R R R s C C R R R C R C R R R C R C R s R R
= =

+ + + + + + + + + + + +

 (4.15)

The frequency response of (4.15) is plotted in Figure 4-16. The end-end resistance, wiper
resistance and wiper capacitance are all typical numbers from the datasheet for the
MAX5401EKA. R1 and C1 are chosen to provide a corner frequency of 60 kHz for the RC
connection. The values are as follows

� R1 = 100 kΩ
� C1 = 26.53 pF
� RH = RL = 50 kΩ
� CW = 25 pF
� RW = 250 Ω

-45

-40

-35

-30

-25

-20

-15

-10

-5

M
a
g
n
itu

d
e
 (

d
B

)

10
4

10
5

10
6

10
7

10
8

-90

-45

0

45

90

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/sec)

Figure 4-16 - Bode response of both ideal and non-ideal potentiometer and filter circuit

The blue curve represents the frequency response with an ideal potentiometer. The green
curve represents the frequency response with a non-ideal potentiometer. Notice that the
response is only affected in the upper frequency area. For the given component values the
non-ideal behaviour adds an additional pole at f2 = 329 kHz. The other pole lies at f1 = 46
kHz. It is important to notice that the poles will vary with potentiometer position.

Using MATLAB the cut-off frequencies or roots are plotted in Figure 4-17. The maximum
value is 255 due to the 8-bit resolution. The high frequency pole at f2 will not affect the
frequency band of interest and is not discussed further. The low frequency pole f1 varies with

 22

about 15 kHz. This may represent a problem and components should be chosen so that this
variation is kept at a minimum. The variation will increase with decreasing value of R1 and
consequently increasing value of C1. Increasing R1 to 500 kΩ and C1= 5.3 pF results in a variation
of 3.6 kHz as shown in Figure 4-18. The upper cross frequency is now decreased to 268 kHz, but still
out of the frequency band of interest and can therefore be ignored.

0 50 100 150 200 250 300
0

1

2

3
x 10

7

0 50 100 150 200 250 300
4.5

5

5.5

6
x 10

4

Figure 4-17 - Root frequencies in Hz as function of potentiometer position with R1 = 100kΩ, C1 = 26.5pF

0 50 100 150 200 250 300
0

1

2

3
x 10

7

0 50 100 150 200 250 300
5.6

5.7

5.8

5.9

6
x 10

4

Figure 4-18 - Root frequencies in Hz as function of potentiometer position with R1 = 500kΩ, C1 = 5.3pF

 23

4.3.2 The intuitive filter solution

The intuitive filter solution is based on cascading several equal filters to gain a steep roll off.
To limit the bandwidth of the signal at the high end, all operational amplifier stages are
designed as a first order non-inverting active low pass filter with a gain of 25. The circuit
diagram is shown in Figure 4-19.

Figure 4-19 - Active low pass filter circuit diagram

An expression for Z1 is needed to derive an expression for the gain

2

3
32

1 3
3 2

3
2

1

||
1 1C

R
RsC

Z R X
R C s

R
sC

⋅

= = =
+

+

 (4.16)

The expression for the total gain is derived.

3

3 2 31

2 2 2 3 2 2

1
() 1 1 1

R

R C s RZ
G s

R R R R C s R

+
= + + = +

+
 (4.17)

As with the high pass filter it is desired to use large resistors to minimize the power
dissipation. The crossover frequency should be 80 kHz. The resistor ratio is equal to the fixed
pass band gain

3

2

3 2

1 25

24

passband

R
G

R

R R

= + =

⇒ = ⋅

 (4.18)

Capacitor values are available in fewer values than resistors. A standard capacitor value of
4.7pF is therefore chosen for C2. The expression for the crossover frequency is used to
calculate the resistor values. The constant gain of one is neglected. The absolute value is
found

 3 3

2 2
2 3 2 2 2 3 2 0 2

| () |
()

R R
G s

R R C s R R R C Rω
≈ =

+ +
 (4.19)

The crossover frequency is found when |G(s)| equals the pass band gain divided by the square
root of two.

 24

1

| () | 24
2

G s = ⋅ (4.20)

By combining (4.19) and (4.20) the expression for the crossover frequency is found.

3

2 2
2 3 2 0 2

2 2 2
3 2 3 2 0 2

1
24

2()

288 ()

R

R R C R

R R R C R

ω

ω

= ⋅
+

 = + 

 (4.21)

(4.18) is inserted to (4.21)

2 2 2
2 2 3 2 0

2
3 2 0

2
3 2 0

3 2 0

3
2 0

(24) 288 () 1

576 288 () 1

288 288()

1

1

R R R C

R C

R C

R C

R
C

ω

ω

ω

ω

ω

 = + 

 = + 

=

=

⇒ =

 (4.22)

By inserting C2 = 4.7pF and using (4.18) the resistor values are found.

3 3 12

2

2 2

1 1
423.3

2 2 80 10 4.7 10

1
17637

24

R k
fC

R R

π π −
= = = Ω

⋅ ⋅ ⋅ ⋅

= ⋅ = Ω

 (4.23)

Figure 4-20 shows the frequency response of the filters and the combined circuit where four
Low pass filters with gain, three potentiometers and four high pass filters as described in
section 4.3.1 are cascaded. The high pass filter from section 4.3.1 is used for both noise
removal as described earlier and bandwidth limitation of the signal. The values used are:

R1 = 473.68kΩ
R2 = 17637Ω
R3 = 423.3kΩ
C1 = 5.6pF
C2 = 4.7pF

Where several connections of the same type are used they are identical with respect to both
connection diagram and component values. The frequency response is simulated using a
Matlab script found in appendix 2.

 25

10
3

10
4

10
5

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a
g
n
itu

d
e
 (

d
B

)

Potentiometer w ith high pass f ilter

Frequency (Hz)

10
3

10
4

10
5

12

14

16

18

20

22

24

26

28

M
a
g
n
itu

d
e
 (

d
B

)

Active low pass f ilter w ith gain

Frequency (Hz)

10
3

10
4

10
5

-10

-5

0

5

10

15

20

25

M
a
g
n
itu

d
e
 (

d
B

)

Combined potentiometer, HP and LP

Frequency (Hz)

Complete AGC w ith 4 gain stages, 3 potentiometes and 4 HP

Frequency (Hz)

10
3

10
4

10
5

-40

-20

0

20

40

60

80

100

System: untitled1

Frequency (Hz): 4.57e+004

Magnitude (dB): 89.3

System: untitled1

Frequency (Hz): 1.05e+005

Magnitude (dB): 89.3

M
a
g
n
itu

d
e
 (

d
B

)

Figure 4-20 - Bode plot of filters and combined circuit

The complete circuit provides a pass band gain of 92dB and a bandwidth of 60 kHz. The
requirement is 103 dB gain with a 20 kHz bandwidth. Obviously this configuration is not
suitable. A filter with a steeper roll off is needed. The following sections will describe a more
complex filter design with better performance.

4.3.3 Butterworth filter

The Butterworth filter is designed to have a frequency response which is as flat as
mathematically possible in the passband. Its poles are arranged as evenly spread complex
conjugated poles in a circle. The radius of the circle determines the crossover frequency. An
example of a 4th order Butterworth filter pole placement is shown in Figure 4-21. The
placement of the zero points determines whether it is a high or low pass filter.

 26

Figure 4-21 - Butterworth filter pole arrangement

The general transfer function for a Butterworth low pass filter is [14]

()() ()

0

1 2

()
N

N

K
T s

s p s p s p

ω⋅
=

− − −�

 (4.24)

Where
K is a constant

N is the order of the filter

p is the complex pole

0ω is the crossover frequency

A general second order low pass filter is given [14] by

2 20

0

()
a

T s

s s
Q

ω
ω

=

+ +

 (4.25)

The poles are described as the complex position in Figure 4-21. By comparing the
denominators of (4.24) and (4.25). For a second order filter we find that

2 20
1 2 0

2 2 20
1 2 1 2 0

()()

()

s p s p s s
Q

s s p p p p s s
Q

ω
ω

ω
ω

− − = + +

− + + ⋅ = + +

 (4.26)

Since p1 and p2 are complex conjugated and can be written as

 1 0

2 0

p

p

ω α

ω α

= ∠


= ∠ −
 (4.27)

The product yields
 2

1 2 0 0 0()p p ω ω α α ω⋅ = ⋅ ∠ − = (4.28)

 27

Therefore (4.26) reduces to

0
1 2

0 0

1 2

()

2 ()

p p
Q

Q
p p real p

ω

ω ω

− + =

⇒ = − = −
+ ⋅

 (4.29)

Where real(p) is the common real part of the complex poles. Notice that the closer the poles
are to the imaginary axis the higher Q value. Poles closer to the imaginary axis results in a
less stable filter and hence a high Q value filter is more likely to oscillate than a filter with
low Q value.

For analogue implementation of the filter, the Sallen and Key configuration is chosen as a
demonstration and offers a second order filter using only one operational amplifier. The low
pass circuit is shown in Figure 4-22. A high pass circuit is gained by swapping the capacitors
with resistors and vice versa.

Figure 4-22 - Sallen and key configuration

The transfer function, derived by Texas Instruments in application note Analysis of the Sallen-

key Architecture [15], is given in equation (4.30).

() ()()2

1 2 1 2 1 1 2 1 1 2

()
1 1

o

i

V K
H s

V s R R C C s R C R C R C K
= =

+ + + − +
 (4.30)

By comparing (4.30) with the general equation (4.25) we find that

 1 2 1 2 1R R C C = (4.31)

 () 0
1 1 2 1 1 2 1R C R C R C K

Q

ω
+ + − = (4.32)

 2
0 1ω = (4.33)

Note that for the general Sallen and Key expression the crossover frequency is 1 [rad/s]. The
component values will first be calculated for this frequency and then scaled to fit the desired
crossover frequency.

 28

Since the resistors are available in more values than capacitors the capacitor values are chosen
as a base point. The capacitors are chosen to be equal.

 1 2C C C= = (4.34)

Solving (4.31), (4.32) and (4.33) with the insertion method gives the following solution

2 2 2 2 2 2 2

0 1 0 1 2 1 1 1
2

1 2 1

4 4 41
2 ()

C C Q C C k C Q C Q k
R

C Q C C

ω ω− − − +
= ⋅

+
 (4.35)

2 1 2

1
1R

R C C
= (4.36)

For this design it is desired to have a fourth order filter low pass filter and a fourth order high
pass filter to get the proper damping of frequencies outside the pass band. A fourth order low
pass filter filter is realized by calculating the poles for a fourth order Butterworth filter and
using two Sallen and Key configurations with different Q values/different pole sets in
cascade. A Matlab script found in appendix 1 was used to calculate the component values and
simulate the frequency response of the circuit.

The frequency response of the complete Sallen and Key implemented Butterworth filter and
the filter designed in section 4.3.2 is shown in Figure 4-23. The component values for the
Butterworth filter are calculated by finding the four poles for each filter and using two values
for (4.29), and calculating (4.34), (4.35) and (4.36) for each Q value or complex conjugated
pole set.

10
3

10
4

10
5

-40

-20

0

20

40

60

80

100

120

M
a
g
n
itu

d
e
 (

d
B

)

Combined band pass transfer function

Frequency (Hz)
Figure 4-23 - Frequency response of Butterworth and intuitive filter

The Butterworth is clearly an improvement with respect to gain and roll off. A steeper roll off
is still desired. The next section will therefore describe the Chebyshev filter.

 29

4.3.4 Chebyshev filter

The Chebyshev filter is known for its steep roll off [14]. The cost of the steeper roll off is
ripple in the passband. For many applications such as audio tone control this is not acceptable
due to noticeable distortion, but for the telemetry buoy design the signal consist of digital
pulses and a slight variation between the different frequency bands is tolerable as long as the
receive threshold is set accordingly.

The steeper roll off is achieved by placing the poles closer to the imaginary axis as shown in
Figure 4-24.

Figure 4-24 - Chebyshev filter pole placement

The general transfer function for a Chebyshev filter is [14]

() () ()1

1 2

()
2

N

P

N

N

K
T s

s p s p s p

ω

ε −

⋅
=

⋅ − − −�

 (4.37)

Where
K is a constant

N is the order of the filter

p is the complex pole

0ω is the crossover frequency

and

2

2

1
| () |

1

1
1

| () |

P

P

T j

T j

ω
ε

ε
ω

=
+

⇒ = −

 (4.38)

In (4.38) the | () |

P
T jω is the maximum ripple in the passband which is defined at the design

stage. For this design the allowed ripple is set to 1 dB. Note that it follows that the crossover
frequency

P
ω will be defined by -1 dB and not the usual -3dB. Due to the steep roll off this

detail is not considered in the calculations.

 30

The same script as for the Butterworth filter in appendix 1 is used for simulation and the same
equations for calculating resistor values (4.34), (4.35) and (4.36) are therefore used for both
the Butterworth and the Chebyshev filter only scaling the gain factor and changing the pole
placement. Figure 4-25 shows the response of the intuitive, Butterworth and Chebyshev filter.
It is clear that the Chebyshev filter offers the steepest roll off and the narrowest bandwidth.

10
3

10
4

10
5

-100

-50

0

50

100

150

M
a
g
n
itu

d
e

 (
d
B

)

Combined band pass transfer function

Frequency (Hz)
Figure 4-25 - Frequency response of Chebyshev, Butterworth and the intuitive filter

To provide low power consumption it is desired to use as few active components as possible
as well as high resistor values to reduce the power dissipation. The Sallen and Key
configurations uses one operational amplifier and is versatile with respect to component
values. The example implementation is therefore based on this implementation.

As described earlier, due to high amplification it is important to remove any DC drift and low
pass noise due to changes in the potentiometer setting. A high pass filter as described in
section 4.3.1 is therefore inserted after every digital potentiometer.

To avoid that this filter and the potentiometer has substantial impact on the Chebshev filter a
unity gain amplifier is placed after each digital potentiometer stage. It is important to notice
that in order to use high resistor values the capacitors much have small values. The unity gain
amplifier will ensure that the wiper capacitance, described in section 4.2.2.5, of the digital
potentiometer does not have impact on the Sallen and Key configuration. The complete
configuration is depicted in Figure 4-26.

 31

Figure 4-26 - Variable gain amplifier and filter block diagram

The Gain Adjustment block is realised as in Figure 4-27. To ensure that the high pass filter
does not interfere with the Chebyshev filter the crossover frequency is selected to be as low as
10 kHz. Selecting a capacitor value of C2 = 150pF yields a resistor value of

 2 3 12
0

1 1
106.1

2 10 10 150 10
R k

Cω π −
= = = Ω

⋅ ⋅ ⋅
 (4.39)

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U1
MAX5401EKA

SGND
SGND

VCC

GND
R1C2

AGC_Input

Gain_Control[0..5]

Figure 4-27 - Gain Adjustment block realisation

The low and high pass Sallen and Key filters are realised as previously described in section
4.3.3 on page 25. The component values are calculated with the Matlab script provided in
appendix 1. Note that the component references in the script and the schematics may deviate
due to automatic annotation with the design program.

The frequency response for the complete circuit in Figure 4-26 is shown in Figure 4-28. The
green line shows the complete circuit at full amplification, the blue shows the original
Chebyshev filter with amplification. Notice that the insertion of digital potentiometers does
not affect the frequency band of interest.

 32

-150

-100

-50

0

50

100

150

M
a
g
n
itu

d
e
 (

d
B

)

10
3

10
4

10
5

-360

0

360

720

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (Hz)
Figure 4-28 - Frequency response of variable gain circuit with Chebyshev filtration, potentiometers at

max amplification

With the intuitive filter solution in section 4.3.2 the setting of the digital potentiometers
affected the crossover frequencies. Figure 4-29 shows the frequency response with different
gain settings. It is easy to see that the impact on the crossover frequencies is minimal. The
Matlab script for the simulations is provided in appendix 4.

10
5

30

40

50

60

70

80

90

100

110

120

M
a
g
n
itu

d
e
 (

d
B

)

Combined band pass transfer function

Frequency (Hz)

Figure 4-29 - Frequency response with different gain settings

An important factor is the linearity of the gain. Figure 4-30 shows the gain plotted as a
function of the potentiometer setting of one of the potentiometers. As a result of the internal
wiper capacitance of the potentiometer the gain is not perfectly linear. The result is though
quite close and is regarded as satisfactory.

 33

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

5

Figure 4-30 - Gain vs. digital potentiometer setting

4.3.5 Design solution

As described in the previous section the Chebyshev filter provides the best solution with
respect to roll off. There is though one major drawback with the Chebyshev solution when
designing a filter for low power. The Chebyshev filter requires high Q values which requires
an operational amplifier with high performance when applying high frequencies.

Faulkner and Grimbleby informs in the IEEE article Active filters and gain-bandwidth

product[16] that it has become a more or less accepted practice to concentrate attention on the
question of sensitivity to variations in passive components rather than to variations of
amplifier gain. The implication is that the amplifier gain can be assumed to be arbitrarily high.
When, on the other hand, the need arises for an engineering design to meet a given practical
specification, it usually becomes clear that the primary problem is the relation between circuit
configuration and required amplifier performance in terms not of DC gain, but of gain-
bandwidth product.

It is important to notice that the effect of finite gain-bandwidth product on filter performance
cannot be calculated by assuming the gain to be real. Neglecting the phase angle leads, for
instance, to the conclusion that the Q factor is always reduced as the frequency is increased
whereas in fact for many configurations the Q factor increases

Faulkner and Grimbleby provide two important equations for calculating the actual crossover
frequency for the Sallen-Key and the Rauch configurations:

0

2

2

1
1

2

1 1 1
1

2

L
L L

T

L L
L L

L T T

B Q

B Q B Q
Q Q

ω
ω ω

ω

ω ω

ω ω

  
= − ⋅   

  

    
 = − ⋅ + ⋅        

 (4.40)

Where

 34

0ω is the actual crossover frequency

Q is the actual Q factor

L
ω is the crossover frequency with an ideal operational amplifier

L
Q is the Q factor with an ideal operational amplifier

T
ω is the Gain-Bandwidth product of the operational amplifier
B is the gain of the amplifier i.e. B = 1 + R1/R2 for non-inverting configuration

The power consumption for an operational amplifier (opamp) increases with higher gain-
bandwidth product. This means that for low power applications (4.40) must always be
considered in order to design a circuit which is optimal with respect to power consumption
and filter characteristics.

We see that in order to use an opamp with low gain-bandwidth product we need to
compensate by using low Q values and low gain. The following procedure is used to calculate
the required gain-bandwidth product of the opamp:

1. Define a maximum allowable deviation in crossover frequency due to the finite gain-
bandwidth product.

2. Define a filter gain
3. Calculate the Q values of the filter, for Butterworth: use (4.29)
4. Use (4.40) to find the minimum

T
ω

If the calculated

T
ω results in an opamp with too high power consumption the Q value or the

gain will have to be lowered.

The calculation procedure is performed on the low-pass Chebyshev filter calculated in section
4.3.4:

1. The maximum allowable deviation is defined as 300Hz
2. Gain is set to 7.
3. Q values are calculated with the Matlab script in appendix 1 and are: Q1 = 8.95, Q2 =

3.71.
4. (4.40) is rewritten to

0

1
2 1

L L
T

L

B Q ω
ω

ω

ω

⋅ ⋅
=

−

 (4.41)

 By defining
 0 L

ω ω δ= − (4.42)
 Where

 δ is the deviation in frequency.

 The gain bandwidth products become

3

,1 3

3

3

,2 3

3

1 1 7 8.95 80 10
668

80 10 3002 21 1
80 10

1 1 7 3.71 80 10
277

80 10 3002 21 1
80 10

L L
T

L

L

L L
T

L

L

B Q
Mhz

B Q
Mhz

ω
ω

ω δ

ω

ω
ω

ω δ

ω

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ = ⋅ =

+ ⋅ −
− −

⋅

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ = ⋅ =

− ⋅ −
− −

⋅

 (4.43)

 35

Operational amplifiers with a gain-bandwidth product as high as (4.43) draws currents of 5-10
mA. This is a too high power consumption for the telemetry buoy application. The filter
performance must be reduced to lower the power consumption.

As a compromise the design will use a Butterworth configuration which has much lower Q
values. In addition we see that amplification in the filter comes at a much greater cost than
amplification outside the filter. The realisation of the filter will therefore have unity gain.

The design of an analogue filter can be made more effective by using available software tools.
Texas instruments provide a filter design program FilterPro for free. The program suggests
standard component values for circuit types such as Sallen and Key, MFB Single-Ended and
MFB fully differential. The user can specify crossover frequencies, order of filter and choose
from filter types such as Butterworth, Chebyshev, Bessel, Linear Phase and more. In addition
to providing the schematic and the component values the program also specifies the required
gain-bandwidth product for the opamps. It is not documented how this is done, but tests
indicate that the same procedure is used with 0.3% deviation. The user interface is shown in
Figure 4-31.

Figure 4-31 - FilterPro user interface

The multiple feedback (MFB) configuration provides a second order filter with only one
operational amplifier as with the Sallen and Key configuration. The difference is that the
MFB requires less gain-bandwidth of the opamp [17]. The implementation will therefore be
based on the MFB configuration. The configuration of a second order low pass filter is shown
in Figure 4-32. The high pass filter configuration is found by changing all resistors with
capacitors and vice versa. The procedure for calculating the component vales is the same as
for the Sallen and Key configuration described earlier only using a different transfer function

 36

equation for the implementation. This time we will though use the FilterPro program to find
the component values. Screenshots of the design is found in appendix 4.

R3R1

C1

GND GND

C2

R2

Figure 4-32 - Multiple feedback configuration

The configuration of the complete variable gain amplifier with filter will be similar to the one
presented in section 4.3.4 and is shown in Figure 4-33. The main difference is the filter
configuration and since the filter gain is unity, the gain is moved to operational amplifiers
outside the filter. All gain blocks have a high pass filter in front. This has two main functions;
it will remove much of the low frequency noise emitted by the digital potentiometer when
changing the setting, secondly it will remove any DC offset which can lead to saturation of
the opamp. Note that some of the filter blocks have gain not equal to unity. This is to be able
to utilize operational amplifiers with a gain-bandwidth product of 3 MHz and 12 MHz. The
total gain of the filter is though unity. The filter will use two amplifiers with 3 MHz gain-
bandwidth product and two amplifiers with 12 MHz gain-bandwidth product.

Figure 4-33 - Filter and variable gain amplifier block diagram

The complete maximum gain of the ideal circuit is

 4

, 20log(25) 111.8max dBG dB= = (4.44)

Please refer to the schematics in appendix 5b for a detailed circuit diagram with component
values.

Simulating the complete circuit in Multisim 10.1 provides the bode plot given in Figure 4-34.

 37

Figure 4-34 - Simulated bode plot of variable gain amplifier and filter

4.4 Reception detector

There are two principles for detecting a modulated signal pulse; measuring the envelope of
the carrier frequency or measure the power in the carrier frequency band. This section
describes one technique for measuring the power of a signal, two techniques for detecting the
envelope of the signal and finally a modification which results in a third way of measuring the
power.

4.4.1 Detecting a signal using an RMS to DC converter

In high frequency amplitude-shift-keying (ASK) radio reception applications a logarithmic
amplifier (logamp) is often used to demodulate the signal by producing a DC signal
proportional to the logarithm of the power of the input signal [5]. These circuits typically
operate with frequencies up to several GHz consuming currents of 4 – 68mA (Analog
Devices).

High frequency is not relevant to the telemetry buoy application, but a similar technique can
be utilised using a RMS to DC converter. This IC produces a DC output signal directly
proportional to the root-mean-square of the input signal. These devices are typically used in
applications such as true RMS multimeters. An example of such a device is the AD737 which
consumes a current of only 160µA handling frequencies up to 100 kHz [6]. The downside of
using such a converter is that it requires both positive and negative power supply voltage.
This will require an additional regulator to the system which will contribute to an increase in
overall power consumption.

4.4.2 Detecting a signal using a product detector

The product detector produces an output signal by calculating the product of the input signal
and a local oscillator. Alternatively the input signal can be multiplied with its inverse signal as
for the intelligent hydrophone buoy designed by Jan Eyolf Bjørnson [7]. Assuming that the
input signal is a sinusoidal as in equation (4.45)
 sin()

in
V A tω= (4.45)

The output signal W becomes

 38

2sin() sin()

(1 cos(2))
2

A t A t A
W t

U U

ω ω
ω

− ×
= = − − (4.46)

By low pass filtering the output W we get a signal 2 / (2)
L

W A U= − which clearly is negative
proportional to the square of the input amplitude.

This technique can provide a very fast response time, it is though important to limit this
response time with the low pass filter to reduce the vulnerability to transient distortion. The
downside of this technique is that the analogue multiplier typically requires a current of more
than 6 mA. To be able to use this technique in the telemetry buoy design a sampling scheme
must be designed where the multiplier is deactivated when not reading the signal level. This
excludes the possibility of having the reception detector as a wake-up source for the
microcontroller.

4.4.3 Detecting a signal using a diode detector

The simplest form of envelope detector is the diode detector shown in Figure 4-35. If the
capacitor and the resistor is chosen correctly Vout will follow the envelope of the input signal
Vin. Some distortion in the form of ripple voltage will occur as the capacitor discharges. As
long as the ripple lies below our threshold voltage this ripple is not of relevance to this
application. In AM modulated audio signals however this is an important disadvantage of the
envelope detector.

R CVin Vout

D

Figure 4-35 - Diode detector

When the input signal is larger than the sum of the capacitor voltage and the diode drop
voltage, assuming the constant voltage drop model for the diode, the output voltage will be
equal to the input voltage minus the diode drop

out in D

in D out

V V V

for

V V V

= −

+ ≥

 (4.47)

For this application the envelope detector should be used to measure signal strength. When
signal strength reaches a certain threshold limit this will trigger a reception. The envelope
detector will also serve as a level measurement in the AGC loop. It is therefore important that
short pulses and transient voltages are suppressed to avoid a high rate of false triggers and
level references.

4.4.4 Detecting a signal using a modified diode detector

A modification is made where the capacitor is charged through a resistor (R2). This
introduces a low pass filter which will suppress transients and provide a more accurate signal
level representation as the voltage power is a result of signal over time instead of
instantaneous voltage. The circuit is shown in Figure 4-36.

 39

D
R1 CVin Vout

R2

Figure 4-36 - Modified diode detector

When the input signal exceeds the capacitor voltage and the diode drop voltage, again
assuming the constant voltage drop model for the diode and a constant input voltage, the
differential equation is derived in (4.48).

2R C

i o o

i i

v v dv
C

R dt

=

−
=

 (4.48)

The solution of (4.48) is

 () ((0))
t

RC
o o i i

v t v v e v
−

= − + (4.49)

This is only valid when the input signal is constant. If the input signal to the circuit in Figure
4-36 is a sinusoidal without a DC component the input voltage will be constant equal to zero
for the negative half period. Note that for discharge R = R1 + R2.

For the positive half period the input signal is described by

 () sin()

i
v t A tω= (4.50)

The differential equation is derived as follows

2

sin()
R C

o o

i i

A t v dv
C

R dt

ω

=

−
=

 (4.51)

The solution is

()

1 2 2 2

cos() sin()
()

1

t

RC
A RC t t

v t C e
R C

ω ω ω

ω

− −
= ⋅ −

+
 (4.52)

C1 is found by defining the initial condition as v(0)

()0

1 2 2 2

1 2 2 2

cos(0) sin(0)
(0)

1

(0)
1

RC
A RC

v C e
R C

A RC
C v

R C

ω ω ω

ω

ω

ω

− ⋅ − ⋅
= −

+

= +
+

 (4.53)

This gives us the final expression for the positive half period

()

2 2 2 2 2 2

cos() sin()
() (0)

1 1

t

RC
A RC t tA CR

v t v e
R C R C

ω ω ωω

ω ω

− − 
= + − + + 

 (4.54)

 40

When the input signal is a sinusoidal with a DC component equal to zero, (4.49) will be used
when the signal is negative and (4.54) when the signal is positive that is

(4.49) for 0 < ωt < π

(4.54) for π < ωt < 2π

The model is to complex to determine R1, R2 and C directly. Simulations are therefore needed
to determine the values.

4.4.5 Design solution

The modified diode detector is chosen for final design. Its simplicity and low power feature
makes this circuit the most suitable for the telemetry buoy application. The circuit is
simulated in Multisim 10.l. A test signal is generated as shown in Figure 4-37. The circuit
outputs a sinusoidal of 69 kHz, 1Vpp, 0V DC, in bursts of 1ms.

XFG1

C1

100uF

XFG2

J2

1mV 0mV

Signal

Figure 4-37 - Generating test signal

The detector circuit in Figure 4-38 uses a Schottky diode to provide a threshold voltage as low
as possible. For small signals this voltage drop may still be crucial. R5 and R6 are therefore
added to provide a bias for the diode. Unlike capacitors, resistors are available in most values
and accuracies. A standard capacitor value is therefore chosen as a base point for the design.

To provide a short detection time while still suppressing transient voltages R1 is chosen so
that the voltage is at 63% of maximum after 5 cycles of the 69 kHz. R2 is chosen so that the
level falls at a sufficient rate while wasting a minimum of current. Assuming 1 V peak and a
sinusoidal input the total current consumption of the circuit is

3

1
35.4

2 2 2 10 10 2

Vp
I A

R
µ= = =

⋅ ⋅ ⋅
 (4.55)

 41

R5
250kΩ

10nF

C1

3.5kΩ

R1

D1A

BAT15_099
10kΩ

R2
R6
40kΩ

VCC

3.3V

Figure 4-38 - Modified diode detector

The output level will be limited by the peak level of the signal. It is desired to amplify this
signal to utilize the full voltage range. A simple low pass filtration is also added to remove
ripple. The amplification circuit is shown in Figure 4-39. To minimize the power consumption
the resistors should be as large as possible while preserving the characteristics of the
operational amplifier. The downside of using large resistors is that the circuit is more
vulnerable to electrical noise. It is therefore important to consider this when designing the
PCB layout.

U1A

LMV552MM

3

2

4

8

1

C5

50pF

VCC

3.3V

R8

800kΩ

R9
200kΩ

Figure 4-39 - Signal amplifier with low-pass filtration

Finally a digital signal is produced by a comparator to generate an external interrupt request to
the MCU. The circuit is simulated with a fixed compare value. In the final design circuit this
voltage will be set by the MCU to provide an adaptive solution in addition to the AGC. The
circuit is shown in Figure 4-40.

 42

U1B

LMV552MM

3

2

4

8

1

VCC

3.3V

R10

Figure 4-40 - Comparator circuit

The simulated results are shown in the two following scope plots. The channels are
connected:

1. Original signal around zero (Figure 4-37)
2. Rectified signal (Figure 4-38)
3. Amplified output (Figure 4-39)
4. Comparator output (Figure 4-40)

Figure 4-41 – Simulation scope plot: Modified diode detector trig

Figure 4-42 - Simulation scope plot: Modified diode detector

4.5 Component selection

This section covers the component selection. The most vital components are the operational
amplifiers and the digital potentiometer.

 43

4.5.1 Operational amplifier

For this application the most important factors of the operational amplifier are power
consumption, gain bandwidth product and rail to rail output.

Section 4.3.5 describes the requirements for the amplifiers used in the filter circuit. It is
required both operational amplifiers with a gain-bandwidth product of minimum 3 MHz and
12 MHz. To minimize the overall power consumption this design will use two different
operational amplifiers for the filter circuit.

The LMV552MM operational amplifier manufactured by National Instruments operates at an
extremely low power consumption of 34µA per amplifier. It features rail to rail output and a
gain bandwidth product of 3MHz.

The highest signal frequency is 80 kHz. By stretching the gain bandwidth product to its
specified value all amplifier elements will damp the highest signal with 3 dB. To avoid this,
the calculations are based on a maximum frequency of 100 kHz. This gives us a maximum
gain per amplifier of

6

max 3
max

max, max

3 10
30

100 10

20log() 20log(30) 29.5
dB

GainBandwidth
G

f

G G dB

⋅
= = =

⋅

= = =

 (4.56)

Four amplifiers are therefore needed to achieve the minimum of 103 dB gain. A gain of 25
per amplifier is chosen to provide a good dynamic range while staying well within the gain
bandwidth limitation. The total gain is
 4 20 log(25) 112

dB
G dB= ⋅ = (4.57)

The LMV562MM operational amplifier manufactured by National Instruments operates at a
power consumption of only 110uA while providing a gain-bandwidth of 12 MHz. It follows
that this is one of the markets best amplifier with respect to gain-bandwidth / power
consumption ratio. It also features rail-to-rail output and operates at voltages down to 2.7 V.

The design will therefore use four LMV552MM for gain, two for the active filter and two for
the reception detector, in all six amplifiers. It will use two LMV562MM for the active filter.

4.5.2 Digital potentiometer

As described in section 4.2.2.5 it is important to consider the bandwidth and the wiper
capacitance of the potentiometer. It is desired to have a potentiometer with as low wiper
capacitance as possible to allow the potentiometer to have a high end-to-end resistance and
thereby dissipating a minimum of power.

It is also desired to have as large a resolution as possible, this is typically 8-bit. If there is
more than one potentiometer per package it is vital that the cross-talk between the channels is
much lower than the gain between the channels.

 44

The interface should be SPI or I2C to ensure a correct gain setting. The interface frequency
should be high to avoid interference with the signal band. The current consumption of a
CMOS digital potentiometer is typically a few µA, but must be taken into consideration when
choosing the potentiometer.

The 100 kΩ digital potentiometer MAX5401EKA is chosen for its very low wiper capacitance
of 25pF while consuming only 5µA. At 50% setting it will provide a bandwidth of

3 4

1
127

2 50 10 25 10
BW kHz

π
= =

⋅ ⋅ ⋅
 (4.58)

It also features 8-bit resolution with a SPI compatible interface.

The design will therefore use three MAX5401EKA for the AGC circuit and one for the reception
detector, in all four MAX5401EKA.

 45

5. Digital design
This chapter includes a brief description of the digital hardware design of the telemetry buoy.
For extensive details please refer to the project report Acoustic telemetry buoy [4] which is the
basis for the whole digital design. The report [4] concludes that the Atmel AVR32 UC3 series
of microcontrollers should be used for further design.

The design is concentrated around the Atmel microcontroller AT32UC3B1256. Key features
are [19]:

• 48 pin package
• 75 DMIPS at 60 Mhz
• 7 peripheral DMA channels
• 10-bit internal ADC
• 256K Bytes internal flash memory
• 32K Bytes internal SRAM
• Universal Serial Bus 2.0
• 3.3V Operation

The main tasks of the digital part of the system are:

• Calculation and setting the gain in the AGC loop
• Sampling and digital filtration of the analogue signal
• Decoding of the received signals
• Storing received data with time stamps
• Providing the stored data to the user

The following sections provide an overview of the listed tasks. Please refer to chapter 7 for a
description of the implemented firmware.

5.1 Calculating and setting the gain in the AGC loop

Section 4.4 Reception detector describes a way of providing an analogue DC signal which is
proportional to the amplitude of the filtered signal. This signal can be converted to a digital
number using the internal ADC of the AT32UC3B microcontroller. If the signal is too strong
the amplifier might saturate. It is therefore important that the microcontroller ensures that the
signal is below the saturation limit of the amplifiers when measuring the signal level.

The amplifier gain is set by setting the wiper position of the digital potentiometers via the SPI.
It is important that the MCU waits until the level signal has stabilized after altering the gain
setting before converting the signal using the internal ADC.

A simplified functional schematic of the variable gain amplifier is shown in Figure 5-1. The
wiper position, from low to high, is proportional to the input number. The equation for the
gain is therefore

31 2

1 2 3
3

25 625 25
256 256 256

390625
256

o

i

V nn n
G

V

n n n
G

= = ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅

 (5.1)

Where

n
x
 is the 8-bit digital position of the wiper of potentiometer x

 46

Figure 5-1 - Simplified variable gain amplifier

The gain is though somewhat lower due to the inserted filtration and using non-ideal
operational amplifiers. Using the simulation result provided in Figure 4-34 on page 37, the
maximum gain is found to be 105dB. The new expression becomes

105
20

max

1 2 3 1 2 3
3

10 178828

178828
256 94.34

G

n n n n n n
G

= =

= ⋅ =

 (5.2)

5.2 Sampling and filtration

The sampling is done with the internal ADC. The detector offers a comparator configuration
which is connected to an interrupt pin on the AT32UC3B. This configuration allows the
microcontroller to be in a sleep mode when not receiving. The signal will be undersampled as
described in section 2.1 on page 4. The frequency can be further filtered digitally before
determining if the signal is a valid pulse of the correct frequency.

5.3 Decoding the signal

The AT32UC3B microcontroller has several internal timers which can run either with the
system clock or the 32 kHz external or internal oscillator as clock source. These timers can be
used with either the ADC and a firmware routine or the interrupt triggered by the reception
detector to determine the pulse position. When the time separation of the pulses is determined
the data can be retrieved. Each transmission ends width a CRC check and this must be
validated before storing the data.

5.4 Storing the received data

The telemetry buoy should be able to store 100 000 receptions with ID, data and time stamps.
Assuming an 8-bit ID, 16 bits of data and a time stamp of 48 bits the complete memory must
be a minimum of 7.2 Mbit. To ensure that the data is not lost due to a system failure or
removal of the battery the memory should be non-volatile. It is also important that the
memory unit requires a minimum of power to store data. The latter requires a low current
consumption as well as a short write time.

A serial flash AT45DB321 is chosen for this project. Key features are:

� 32 MBit of storage

 47

� SPITM interface
� 2.7-3.6V operation
� 25uA standby current
� 5uA Deep power down current
� 12mA write operation current
� 3ms page programming time (512 bit)

5.5 Recovering the stored data

Some form of interface must be provided for recovering the stored data. This interface might
be Bluetooth, USB, RS232, GSM, Argos or other. It is preferable that the system can be
adapted to any of these communication forms. The USB interface is chosen for this project. A
UART to USB bridge FT232R is used for the communication. The AT32UC3B also features
an inbuilt USB interface. This can be adapted for the final product, but the complexity of use
makes it unsuitable for a prototype where it is to be used with debugging as well as recovering
the stored data.

 48

6. Prototype design
A prototype was designed in order to test both the analogue and digital hardware designs as
well as having a realistic platform for testing the firmware. The prototype is arranged as six
blocks:

� Preamp
� Variable gain amplifier and filter
� Reception detector
� Connectors and headers
� Power distribution
� MCU and Flash memory

The system is structured as in Figure 6-1.

AGC_Input AGC_Output

Gain_control

V
C

C
_A

G
C

Variable Gain amplifier and filter
AGC2.SchDoc

Signal_in

Reseption_in

Regulator_out

VCC_MCU

Detector_interrupt

VCC_LEDS

GPIO

JTAG
Analogue
USART

SPI

MCU and Flash memory
MCU2.SchDoc

V
C

C
_t

o_
A

G
C

Current_measurement_Detector

VCC_to_Preamp

SGND_input

External_power_input

Current_measurement_AGC

VCC_to_MCU

VCC_to_Detector

Current_measurement_MCU

USB_Power_input

Current_measurement_Total

VCC_to_header

VCC_to_LEDs

Power Distribution
Power.SchDoc

Current_measurement_AGC

GPIO

VCC_Regulated

External_power

Analogue

USART
Current_measurement_MCU

JTAG

Current_measurement_Detector

Current_measurement_Total

SPI

USB_power

Hydrophone_signal

Connectors and Headers
Connect.SchDoc

SPI

V
C

C
_D

et
ec

to
r

Input_signal

Output_analog
Output_digital

Reception detector
Detector.SchDoc

Output_Preamp

V
C

C
_P

re
am

p

Input

Preamp
Preamp.SchDoc

Figure 6-1 - Schematic overview

These hardware blocks will be described in the following sections. For a compete
documentation please refer to the complete schematics, bill of materials and assembly
diagram provided in appendix 5-7.

6.1 Power distribution

The schematic for the power distribution is shown in Figure 6-2. The power can be supplied
from the USB or from an external DC power supply. The system is protected against wrong
polarization with Q1. A P-channel MOSFET is used instead of a simple diode to eliminate
any voltage drop. A fuse is mounted to protect the circuit against overload and short circuit.

The AT32UC3B requires a supply voltage of 3.3V. To limit the number of voltage regulators
and the power loss that follows, the system voltage is chosen to be 3.3V for both the analogue
and the digital design. The linear regulator LMS8117AMP is chosen for the prototype. It is
important to notice that for the final product the system will require a buck-boost switching
regulator carefully chosen to suit the power requirements of the final product. As for the
prototype the voltage regulator is rather oversized for handling USB communication, LEDs,
debugging etc.

 49

The input voltage is limited by the voltage regulator U12 and is ranging from 4.5 – 12V DC.
The current is limited to 0.45A by the transistor Q1.

To measure the current the prototype features four current shunt monitors INA138NA. The
device amplifies the voltage drop over the series resistor with a gain of 100. This enables real-
time current monitoring using an oscilloscope. The system offers three individually monitored
power sections:

� Variable gain amplifier and filter
� Reception detector
� MCU and flash

In addition the sum of the three sections can be monitored to measure the current of the
complete system. Debugging features and additional circuitry such as the preamp and LEDs
are bypassed the monitors.

Signal ground is created by using a secondary voltage regulator LP3992IMF of 1.5V. As an
alternative the internal 1.8V voltage regulator of the AT32UC3B can be selected as the signal
ground. This will eliminate two external components and reduce the power consumption. The
regulator is chosen with a jumper on P2. U17 can be shut down using a jumper on P3.

F1

Fuse 1

D8

IN
1

G
N

D
2

Cout 4SD3

Vout 5
U17

LP3992IMF, 1.5V

IN
3

G
N

D
1

OUT
2

U12 LMS8117AMP, 3.3V

10uF
C60

GND
GND

10uF
C61

GND
100R

R37

GND

VCC_to_AGC

VCC_to_Detector

VCC_to_MCU

VCC_to_Preamp

OUT
1

G
N

D
2

V
+

5

IN+
3

IN -4

U13
INA138NA, Current shunt monitor

socket
R35

OUT 1

G
N

D
2

V
+

5

IN+
3

IN -
4

U14
INA138NA, Current shunt monitor

socket
R38

OUT 1

G
N

D
2

V
+

5

IN+3

IN -
4

U16
INA138NA, Current shunt monitor

socket
R42

499k
R36

GND

GND

GND

Current_measurement_AGC

Current_measurement_Detector

Current_measurement_MCU

OUT 1

G
N

D
2

V
+

5

IN+3

IN -4

U15
INA138NA, Current shunt monitor

socket
R39

GND

Current_measurement_Total

1uF
C62

GND

GND

1uF
C63

SGND

GND

12
34

P3

Regulator ON/OFF

12
34

P2

Regulator Select

SGND_input

GND

499k
R40

499k
R43

499k
R41

VCC_to_header

VCC_to_LEDs

3

1

2

Q1

FDV304P

1M
R52

External_power_input
USB_Power_input

GND

12
34

P1

Power Source Select

Figure 6-2 - Power distribution schematic

6.2 Preamp

The schematic for the preamp is shown in Figure 6-3. This block is added to provide support
for various hydrophones, both passive and active. For a final design the preamp should have
fixed gain suited for a specific hydrophone element. The choice of such an element is
dependent on physical size and shape of the final product and is therefore not the scope of this
prototype design.

The preamp provides possibilities such as

 50

� Variable signal damping with R44
� Variable signal amplification with R45
� Choice of output signals

o Direct
o Damped
o Amplified
o Grounded

� Power source for an active two wire hydrophone

Input

1
4

3

-

+

5
2

U18
LMP7715

VCC_Preamp

10mH

L1
Inductor

100n

C65

100k

R44

100k

R45
GND

Output_Preamp

4.7uF C64

GND
1 2
3 4
5 6
7 8

P4

Input selection

VCC_Preamp

100n C66

VCC_Preamp

GND

Decoupling

SGND

Figure 6-3 – Preamp schematic

6.3 Variable gain amplifier and filter

The background for the design of the variable gain amplifier and the filter is covered in
section 4.2 and section 4.3 respectively. The schematic for the combined circuit is shown in
Figure 6-4. The AGC_intput is connected to the output of the Preamp. The AGC_output is
connected to the ADC input of the MCU and the reception detector.

 51

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U1
MAX5401EKA

SGND
SGND

69.8k

R2

115k

R3

15pF
C1

GND
SGND

64.9k

R11

130k

R12

4.7pF
C5

GND

SGND

GND

191k

R7

8k

R6

SGND

GND

GND
SGND

174k

R19

22pF

C12

33pF

C11

GND
SGND

422k
R20

33pF
C13

33pF
C14

106k
R4150p

C2
7H

8
L

1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U3
MAX5401EKA

SGND
SGND GND

191k

R9

8k

R8

SGND

GND 106k
R5

150pF
C3

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U6
MAX5401EKA

SGND
SGND GND

191k

R18

8k

R17

SGND

GND 106k
R14

150pF
C8

AGC_Input

AGC_Output

47pF
C4

SGND

48.7k

R1

7
6

5

-

+

8
4

U4B
LMV552MM

SGND
GND

191k

R16

8k

R15

106k
R13

SGND

150pF
C6

100pF
C7

SGND

64.9k

R10

1
2

3

-

+

8
4

U5A
LMV652MM

33pF
C9

56.2k
R22

SGND
SGND

23.2k
R21

22pF
C10

7
6

5 +

-

8
4

U5B
LMV652MM

VCC_AGC VCC_AGC

VCC_AGC VCC_AGC
VCC_AGC

VCC_AGC VCC_AGC

VCC_AGC
VCC_AGC

VCC_AGC

VCC_AGC VCC_AGC

VCC_AGC

100nF
C15

100nF
C16

100nF
C17

100nF
C18

100nF
C19

100nF
C20

100nF
C21

GND

VCC_AGC
Decoupling

Gain_control

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

M
IS

O
M

O
SI

SC
K

N
PC

S0
N

PC
S1

N
PC

S2
N

PC
S3

C
S_

D
F

SPI

1
2

3 +

-

8
4

U2A
LMV552MM

7
6

5

-

+

8
4

U2B
LMV552MM

7
6

5

-

+

8
4

U7B
LMV552MM

1
2

3 +

-

8
4

U4A
LMV552MM

1
2

3 +

-

8
4

U7A
LMV552MM

Figure 6-4 - Variable gain amplifier and filter schematic

6.4 Reception detector

The design of the reception detector is covered in section 4.4 on page 37. The schematic is
shown in Figure 6-5 - Reception detector schematic.

4.7uF

C23 10nF

C24

3.48k

R25

10k
R26

GNDGND

1
2

3 +

-

8
4

U9A
100R

VCC_Detector

Input_signal

Output_digital

Output_analog

300k

R23

100k

R24

10nF

C22

GND VCC_Detector

GND

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U8
MAX5401EKA

GND

VCC_Detector

GND

SPI

VCC_Detector

GND

100nF

C25

100nF

C26

VCC_Detector

GND

Decoupling

VCC_Detector

VCC_Detector

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

252k
R50

40k
R51

GND

D1

BAT54T1G

7
6

5

-

+

8
4

U9B
LMV552MM 100R

R?

Figure 6-5 - Reception detector schematic

 52

6.5 Connectors and headers

The schematic for the connectors and headers block is shown in Figure 6-6. The block
includes the following headers:

� Power input – 4.5 – 12V external voltage input
� Current sense – output from the current shunt monitors
� Hydrophone – input signal from the hydrophone
� JTAG – programming and debugging of the AT32UC3B
� GPIO – connected in parallel with the LEDs for measurement and connection of

external circuitry
� SPI and USART – for debugging purpose and possible external circuity
� Analogue – connected to the ADC inputs of the AT32UC3B, for debugging and

possible additional inputs
� Power output – for potential additional external circuitry and measurements

In addition to headers this block includes a USB connector with a USB to UART bridge
connected to the USART1 of the AT32UC3B. This is to be used for debugging and analysis
of the results. The USART signals are connected through a DIP switch. This is to ensure that
the USB does not draw any current from the microcontroller when performing current
measurements. Series resistors are due to the different operating voltage of U19 and the
microcontroller.

1 2
3 4
5 6
7 8
9 10

P7

JTAG

1 2
3 4
5 6
7 8
9 10

P8

GPIO

1 2
3 4
5 6
7 8
9 10

P10

SPI and USART

1
2

P9

Power input

V+ 1

DM 2

DP 3

GND 4SH
D

5

J1 USB connector

1
2
3
4
5

P5

Current Sense

1
2
3

P12

Power output

1
2
3
4

P11

Analogue

Connectors and headers

VCCIO4

VCC20

USBDM16

USBDP15

NC8

RESET#19

NC24

OSCI27

OSCO28

3V3OUT17

G
N

D
18

G
N

D
21

T
E

ST
26

G
N

D
7

A
G

N
D

25

TXD 1

RXD 5

RTS# 3

CTS# 11

DTR# 2

DSR# 9

DCD# 10

RI# 6

CBUS0 23

CBUS1 22

CBUS2 13

CBUS3 14

CBUS4 12

U19 FT232R - USB - UART bridge

F2

Ferrite bed10nF

C67

GND

GND

D9

D10

100R

R48

100R

R49

100nF
C68

4.7uF
C69

GND

GND

1
2
3
4

8
7
6
5

S2

Resistor select

1k

R46

1k

R47

USART

GND

External_power

JTAG

GND

VCC_Regulated VCC_R

VCC_R
GND

VCC_R

VCC_R

GNDSGND

Analogue

GND

GPIO

GND

VCC_R

SPI

GND

Current_measurement_AGC

Current_measurement_MCU
Current_measurement_Detector

Current_measurement_Total

USB_power

1
2

P6

Hydrophone input

GND

Hydrophone_signal

TxD0
RxD1

USART

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

TMS
TDO
TDI

TCK
RESET

JTAG

ADC4
ADC1
ADC0

Analogue

Figure 6-6 - Connections and headers schematic

6.6 MCU and Flash memory

The schematic for the MCU and flash block is shown in Figure 6-7. This block includes the
digital design described in chapter 5. In addition to the microcontroller and the serial flash the

 53

block includes six LEDs for indication and three switches for debugging. The LEDs can be
disconnected from the microcontroller to avoid interference when performing current
measurements.

The AT32UC3B1256 is decoupled according to the recommendations given by Atmel in
application note AVR32715: AVR32 UC3B Schematic Checklist [20].

Signal_in
Reseption_in

G
N

D
1

TCK 2
TDI 3

TDO 4
TMS 5

V
D

D
C

O
R

E
6

(A
D

C
0)

 P
A

03
7

(A
D

C
1)

 P
A

04
8

(IN
T

0)
 P

A
0

5
9

(IN
T

1)
 P

A
0

6
10

(A
D

C
4)

 P
A

07
11

PA0812

G
N

D
13

A
D

V
R

E
F

14
V

D
D

A
N

A
15

V
D

D
O

U
T

16

V
D

D
IN

17

V
D

D
C

O
R

E
18

G
N

D
19

PA09 (NPCS2)
20

PA10 (NPCS3)
21

Xin32KHz
22

Xout32kHz 23

V
D

D
IO

24

PA
1

3
25

PA14 (MOSI)
26

PA15 (SCK)
27

PA16 (NPCS0)
28

PA17 (NPCS1)
29

Xin 30

Xout 31
PA

2
0

32

PA
2

1
33

PA
2

2
34

PA23 (TxD0)35

V
D

D
IO

36

G
N

D
37

DP38

DM39

VBUS40

V
D

D
PL

L
41

V
D

D
C

O
R

E
42

PA24 (RxD0)43

PA25 (MISO)44

PA
2

6
45

PA
2

7
46

RESET_N
47

V
D

D
IO

48

U10
AT32UC3B1256

GND

SPI

GPIO

JTAG

USART

Analogue

Regulator_out

VDDCORE

VCC_MCU

10
0n

F

C44

33
nF

C45

VDDANA and ADVREF

VDDIN

10
0n

F

C42

33
nF

C43

10
0n

F

C40

33
nF

C41

10
0n

F

C38

33
nF

C39

4.
7u

F

C37

VDDIO

10
0n

F

C35

33
nF

C36

4.
7u

F

C34

VDDIN
VDDIN

GND

2.
2u

F

C47

VDDOUT

47
0p

F

C48

10
0n

F

C50

33
nF

C51

2.
7n

F

C52

33
nF

C53

2.
7n

F

C54

33
nF

C55

2.
7n

F

C56

VDDCORE

2.
2u

F

C57

VDDPLL

GND

VDDCORE

Place close to pinPlace close to pinPlace close to pin Place close to pin

Place close to pin Place close to pin Place close to pinPlace

D2

D3

D4

D5

D6

D7

100R

R27

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

S1

SW DIP-8

SW1

SW2

SW3

GND

GND

GND

10k R33

VDDIN

1
00

nF

C33

10
0

nF

C27

10
0n

F

C30

SI
1

SCK
2

RESET
3

CS
4

WP
5VCC
6GND
7SO
8

U11

AT45DB321

VDDIN

GND
10k R34

close to pin

100R

R28

100R

R29

100R

R30

100R

R31

100R

R32

1
2

Y1
XTAL

1
3

Y2
XTAL

33nF

C28

33nF
C29

GND

GND

33nF
C31

33nF
C32

GND

GND

10
0n

F

C46

Dataflash VCC

Detector_interrupt

Decoupling

VCC_LEDS

G
PI

O
0

G
PI

O
1

G
PI

O
2

G
PI

O
3

G
PI

O
4

G
PI

O
5

G
PI

O
6

G
PI

O
7

GPIO

A
D

C
4

A
D

C
1

A
D

C
0

Analogue

TxD0
RxD1

USART

TMS
TDO
TDI
TCK
RESET

JTAG

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

ADC4
ADC1
ADC0

Analogue

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

Place close to pin
Place

close to pin

Figure 6-7 - MCU and Flash memory schematic

6.7 PCB layout

For the physical prototype a four layer PCB is used. The two inner layers are reserved for
ground and VCC where the ground layer is a large plane whereas the VCC is divided into the
different power sections described in section 6.1 on page 48. The layers gnd, vcc, top and
silkscreen are shown in Figure 6-8. The bottom layer is reserved for digital signals while the
top layer consists only of analogue signal paths. Having the gnd and vcc planes in between
will help reduce the influence of digital noise in the analogue circuitry. Placing the vcc and
ground planes in the inner layers also provides a decoupling effect helping reduce the noise
further.

All the components are grouped on the PCB as in the schematic pages. This provides a good
overview as well as ensuring noise immunity when separating the digital and analogue
circuits. Notice that the digital circuits are placed to the right while the analogue are placed far
to the left. This spacing will ensure a minimum of digital noise impact on the analogue
circuitry.

The gerber files for the PCB are available in appendix A.

 54

Figure 6-8 - PCB layout

The assembled prototype is depicted in Figure 6-9.

 55

Figure 6-9 - Assembled prototype

 56

7. Firmware
The firmware for the prototype is written in the programming language C. AVR32 Studio
2.12 was used which includes a gcc compiler ported by Atmel to work with AVR32®
microcontrollers. It also includes a software framework written by Atmel. The framework
includes drivers for all modules, some with examples, as well as a digital signal processing
(DSP) library and more. The drivers, the examples and the DSP library [27] have been used in
the design of the firmware.

The firmware for the prototype is only written for testing and measurement purposes. It is not
written to be either speed or size optimal, but serves as a good basis for testing and further
development. The complete code is found in appendix 8 and B. The float diagrams for the
main routine and the active interrupt routines are shown in Figure 7-1, Figure 2-1, Figure 7-3
and Figure 7-4.

Start

main()

Init interrupts

Init Clock

Init ADC

Init Timer /

counter

Init SPI

Init RTC

Init External

interrupt

Print ”Telemetry

Buoy running” to

USB

Set gain to

2000

Set detection

threshold to

80 i.e 1V

End

Figure 7-1 - Main routine float diagram

 57

Store current

time in

temp_time

Start

reception

interrupt

Perform

sample burst

Find dominating

frequency and

power

FFT

Store temp_time

as previous_time

Calculate time

difference between

temp_time and

previous_time

Print out time

difference,

frequency and

power to USB

End

Figure 7-2 - Reception interrupt handler

Note that the reception handler uses Fast Fourier transform to check the frequency. This
means that several carrier frequencies easily can be supported as well as a multiple frequency
shift keying modulation scheme.

Figure 7-3 - RTC interrupt handler

 58

Start ADC

complete

interrupt

Store

sample in

array

Sample_nr

< max_nr_of_samples?

Increase

sample_nr

Disable

sampling

Sample_flag

=

False

End

Yes

No

Figure 7-4 - ADC conversion complete interrupt handler

The code is structured as ”MUDULE_functions.c” and “MODULE_functions.h”. As an
example the function for setting the gain in the variable gain amplifier is found in
“SPI_functions.c” since the SPI module is used to set the gain. The only exception is the
functions used for testing which is found in TEST_functions.c. In addition the config.h file
includes configuration settings such as pin configurations, CPU speed, sample frequency and
more. This way of structuring the configuration makes it easy to use the same functions for
different boards and applications. The following sections will describe the main functions of
each C-file to be used as reference. For additional details please refer to the complete c-code
provided in appendix 8 and B.

7.1 ADC_functions

void init_ADC(void);
This function initializes the ADC to use the signal from the variable gain amplifier and filter
as input. It sets the prescaler in accordance to the datasheet, enables complete ADC interrupt
and enables the hardware trigger from timer counter TIOA channel 0. The timer counter can
then be used to initiate an ADC conversion. This will ensure a stable and accurate sampling
frequency without CPU involvement.

static void ADC_complete_irq(void);
Stores the new adc value to the sample array and increments the sample counter. If the sample
was the last of the burst the sampling is disabled while signalling this with the sample_flag.

 59

7.2 CLOCK_functions

void init_clock(void);
This function initializes the system to use either external crystal or external clock as input to
the PLL. The PLL will produce a CPU frequency of 60 MHz and a peripheral frequency of 15
MHz. The function also sets the memory unit to use one wait state according to the datasheet.

7.3 DSP_functions

FreqPower_t check_signal(void);
This function removes the DC offset and performs a 16-bit 64-point complex FFT on the
global array sample which holds the values of the most recent sample burst. It then searches
for the frequency with the highest power in the positive frequency area and returns the power
and the frequency in kHz. The function requires that a burst consists of 64 16-bit fixed point
samples.

7.4 EIC_functions

void init_EIC(void);
This function initializes the external interrupt controller to generate a synchronous interrupt at
the rising flank of the digital output of the reception detector.

static void eic_int_reception_handler(void);
This function handles the reception of a signal. It functions as shown in Figure 7-2. This is the
same routine which is used during the test of the complete system as specified in section
8.1.7. The routine can easily be changed to include digital filtration, validation of the signal
and more. The interrupt flag is cleared at the end of the routine to avoid several parallel
instances and the possibility of stack overflow.

7.5 RTC_functions

void init_RTC(void);
Initializes the RTC timer to use the 32.000 kHz external crystal as source and divide the clock
by 32 thus configuring the timer to count milliseconds. The time variables are reset to default
0. An interrupt is generated each second to update the time variables.

void rtc_irq(void);
The interrupt handler updates a simplified RTC clock, counting seconds, minutes, hours and
days. The clock will always start at zero when resetting the device.

time_variable_t get_time(void);
Ensures that no update of the time variables is ongoing while reading the time. Returns a
structure containing milliseconds, seconds, minutes, hours and days.

time_variable_t calculate_time_diff(time_variable_t t1, time_variable_t t2);
Takes two structures with the time as argument. Will calculate and return t1 - t2. This routine
is mainly used to calculate the space between each pulse in the PPM signal received from the
fish tag.

 60

7.6 SPI_functions

void init_SPI(void);
Initializes the SPI module to use with the digital potentiometers. Initiates the manual CS for
the external dataflash to high.

void set_gain(U32 gain);
Sets the gain of the variable gain amplifier by calculating the potentiometer settings and
updating the potentiometers via the SPI interface if necessary. The gain is calculated so that
the signal is at maximum throughout the system to achieve the best SNR.

void set_theshold(unsigned char data);
Updates the potentiometer which sets the threshold for the digital output of the reception
detector. Input it the raw data sent to the potentiometer. i.e voltage = (data/255)*3.3V.

void store_data_in_dataflash(unsigned char * data, unsigned short size);
Stores a maximum of 512 bytes of data to address 0 in the dataflash. The microcontroller does
not have sufficient chip selects. The dataflash is therefore connected to a gpio pin which must
be set manually. To avoid that any other chip select is active while using the SPI module the
selected NPCS pin in the SPI module is configured as a GPIO pin during the writing of the
page. The system is reset to the previous setting at the end of the function. The function is
only implemented to measure time and current consumption.

unsigned char read_data_from_dataflash(unsigned char *data, unsigned short size);
Reads a maximum of 512 bytes of data form address 0 in the dataflash. This routine is only
implemented to validate that the store_data_in_dataflash routine is functioning. The chip
select is manipulated in the same manner as with the store function.

7.7 TC_functions

void init_TC(void);
Initializes the timer counter used for timing the sampling of the analogue signal. The timer is
initialized as stopped.

void enable_sampling(void);
Starts the timer counter, rests the sample counter variable and enables the ADC interrupt. The
ADC is set to starts a conversion each time the timer reaches the value defined in the RC
register.

void diable_sampling(void);
Stops the sampling timer and disables the ADC interrupt.

7.8 USART_functions

void init_USART(void);
Initializes the USART to communicate with the UART to USB bridge. The baudrate is
defined in config.h

 61

7.9 TEST_functions

void test(void);
Includes all functional and performance tests which requires the use of the MCU. Only the
test of the complete system is not defined here. For details about the tests please refer to
chapter 8.

7.10 main.c

The main.c file runs all init functions as well as setting the gain and threshold for the test of
the complete system.

 62

8. Test and measurement procedures
This chapter describes the tests needed to validate the prototype. Tests are divided into
functional and performance tests. As an example a functional test of a digital Fourier
transform routine will be that that dominant frequency of the output can be pinpointed as the
input frequency. The performance tests can include the execution time, power consumption of
the microcontroller and the accuracy of the output.

Functionality tests should be performed for the following modules/circuits:

� Power distribution
� Preamp
� Variable gain amplifier and filter
� USB circuit
� MCU and Flash memory
� Complete system

When all listed modules/circuits have passed the functionality tests, the performance tests can
be carried out.

Performance tests should be performed to the following modules.

� Variable gain amplifier and filter
� Reception detector
� MCU and flash memory

Unless other setting is specified all tests shall be carried out under the following conditions:

� external power supply of 5.0 V connected
� Jumper on pins 4-3 on header P1
� Jumper on pins 4-3 on header P2
� Jumper on pins 4-3 on header P3
� Jumper on pins 5-6 on header P4
� 1 Ω resistor placed in socket R39
� 22 Ω resistor placed in socket R35

� 100 Ω resistor placed in socket R38
� 1 Ω resistor placed in socket R42
� All switches on S1 and S2 in OFF position

GND is reference to all voltage measurements unless other is specified

The following sections will describe the tests to be performed in detail.

8.1 Functionality tests

These tests are used to indicate that the assembly has been carried out correctly. These tests
should be performed before ant performance tests to ensure that the measurements that require
high accuracy are carried out under correct operating conditions.

 63

8.1.1 Power distribution

The power distribution block tasks are to provide a stable operating voltage for the circuit and
provide a means of measuring the current consumption of selected modules.

The functional tests are as follows.

Test # 1

Motive Ensure correct operating voltages

Module Power distribution

Tool Oscilloscope

Min value 3.25 V

Max value 3.35 V

Procedure Measure the voltage at P12 pin 1, U13 pin 4, U14 pin 4, U16 pin 4.

 Ensure that there are no short or long term voltages outside the limits

Measured value(s)

Status

Test # 2

Motive Ensure that the current measurement circuits function properly

Module Power distribution

Tool Oscilloscope

Min value 0.5 V

Max value 3 V

Procedure Measure the voltage at P5 pin 1,2,3,4

 Ensure that there are no short or long term voltages outside the limits

Measured value(s)

Status

Test # 3

Motive Ensure that the SGND regulator circuit is functioning properly

Module Power distribution

Tool Oscilloscope

Min value 1.45 V

Max value 1.55 V

Procedure Measure the voltage at P12 pin 2

 Ensure that there are no short or long term voltages outside the limits

Measured value(s)

Status

8.1.2 Preamp

The preamp is added to the prototype to be able to scale the input signal so that the prototype
can be used with various types of signal sources.

The functional tests are as follows.

 64

Test # 4

Motive Ensure that the Preamp functions properly

Module Preamp

Tool Oscilloscope, signal generator

Min value 500 mVp-p

Max value 100 mVp-p

Procedure Connect the signal generator to P6. Adjust it to 70kHz sinusoidal,

 150mVp-p. Adjust R44 and R45 to centre position.

 Measure the signal at P4 pin 5. Ensure that the signal is not outside the

 specified limits. Check that the amplitude changes when turning the

 potentiometers R44 and R45

Measured value(s)

Status

8.1.3 Variable gain amplifier and filter

The variable gain amplifier and filter block scales the signal according to the C-function
set_gain(). This is to provide the ADC and the detector with a signal of the correct amplitude
as well as setting the sensitivity of the receiver.

The functional tests are as follows.

Test # 5

Motive Ensure that the Variable gain and filter block functions properly

Module Variable gain and filter

Tool Oscilloscope, signal generator, JTAGICEmkII

Min value -

Max value -

Procedure Remove jumper at P4 when performing this test. Connect signal generator

 to P4 pin 2. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the

 Oscilloscope to P11 pin 3. Use the set_gain() function with the MCU

 to set the gain to 1, 10, 100, 200. Observe that the output signal is

 a 70 kHz sinusoidal and that the amplitude changes when changing gain.

Measured value(s)

Status

8.1.4 Reception detector

The reception detector provides a DC which is proportional to the amplitude of the output
signal of the variable gain amplifier and filter. The analogue output of the detector can be
used to estimate the signals amplitude. The block also features a digital “wake-up” signal with
variable threshold.
The functional tests are as follows.

Test # 6

Motive Ensure that the Detector block functions properly

Module Reception detector

Tool Oscilloscope, signal generator, JTAGICE mkII

Min value -

 65

Max value -

Procedure Remove jumper at P4 when performing this test. Connect signal generator

 to P4 pin 2. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the

 Oscilloscope to P11 pin 2. Use the set_gain() function with the MCU

 to set the gain to 1, 10, 100, 200. Observe that the output signal changes

 is a DC signal that changes value when changing gain.

Measured value(s)

Status

Test # 7

Motive Ensure that the Detector block digital output functions properly

Module Reception detector

Tool Oscilloscope, signal generator, JTAGICE mkII

Min value -

Max value -

Procedure Remove jumper at P4 when performing this test. Connect signal generator

 to P4 pin 8. Adjust the signal generator to 10 mVp-p, 70 kHz. Connect the

 Oscilloscope to P8 pin 2. Use the set_gain() function with the MCU

 to set the gain to 100. Use the set_threshold() function to set the threshold

 to 128. Vary the signal amplitude and observe that the output changes.

Measured value(s)

Status

8.1.5 USB circuit

The USB circuit is used to output debug information and data typically to a terminal program.

The tests are as follows:
Test # 8

Motive Ensure that the USB circuit functions properly

Module Connectors and headers

Tool JTAGICEmkII, Terminal program

Min value -

Max value -

Procedure Set all switches on S2 to the ON position.

 Connect the USB to a PC. Open a terminal program and select the

 associated COM-port. Use the usart_write_line() function to send a known

 string. Verify that the same string have been received with the terminal

 program.

Measured value(s)

Status

8.1.6 MCU and flash memory

The MCU is the main processing unit in the system and has many tasks and C-functions that
must be tested. All C-functions not described in this section has been tested during the
development of the code and can therefore be assumed to work as specified in the code
comments and in chapter 7. The external components such as serial flash and external crystal
will be covered by the following tests.

 66

Test # 9

Motive Ensure that the MCU crystal oscillators functions properly

Module MCU and flash memory

Tool JTAGICE mkII, Terminal program

Min value -

Max value -

Procedure Connect the USB to a PC. Open a terminal program and select the

 Correct COM-port. Initialize the MCU to use the external high speed crystal

 as clock source and start the RTC. Write the clock variables to the USART

 indefinitely with delay between each send. Observe that the clock changes

 value in the terminal program.

Measured value(s)

Status

Test # 10

Motive Ensure that the MCU flash functions properly

Module MCU and flash memory

Tool JTAGICE mkII, Terminal program

Min value -

Max value -

Procedure Use the store_data_in_dataflash() function to store a page where all bytes

 are 0x55. Use the read_data_from_dataflash() function to read the data

 back. Check that all the data is 0x55, write "OK" to USART if OK, otherwise

 write "fail". Perform the same procedure again with the number 0x11.

Measured value(s)

Status

8.1.7 Complete system test

This section describes the most comprehensive and important functionality test. To verify that
the system design concept works the system shall be tested with a standard Thelma fish tag
and a passive hydrophone.

Test # 20

Motive Ensure that the system concept works

Module All

Tool JTAGICE mkII, Terminal program, Thelma fish tag, passive hydrophone

Min value -

Max value -

Procedure Connect the passive hydrophone to P6 input. Set the variable gain amplifier to
2000 using the set_gain() function. Set the threshold limit of the detector to 80 i.e 1
V. Enable rising flank external interrupt for the input connected to the digital
output of the reception detecor. The interrupt service routine should be as described
in Figure 8-1.
Lower both the fish tag and the hydrophone into water with a spacing of 1-5
meters. Verify that the interrupt triggers and that the output has plausible values.
Perform the same test with gain set to 100 000. Set the threshold limit to a
reasonable value.

 67

Measured
value(s)

Status

Store current

time in

temp_time

Start

Perform

sample burst

Find dominating

frequency and

power

FFT

Store temp_time

as previous_time

Calculate time

difference between

temp_time and

previous_time

Print out time

difference,

frequency and

power to USB

End

Figure 8-1 - Reception test interrupt handler float diagram

8.2 Performance tests and measurements

Performance tests will be carried out for the modules:
� Variable gain amplifier and filter
� Reception detector
� MCU and flash memory

The goal of the tests is to achieve enough data to be able to validate the prototype
characteristics with respect to frequency response, low power, CPU performance, accuracy
and correctness. The tests will be performed on a module by module basis to be able to
pinpoint any weaknesses in the design and suggest improvements.

The following tests should be carried out after the prototype has passed all the functionality
tests.

8.2.1 Variable gain amplifier and filter

The following procedures will test the variable gain amplifier and filter and provide data for
further analysis.

 68

Test # 11

Motive Find the gain response curve of the variable gain amplifier

Module Variable gain amplifier and filter

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude

 should be as specified for each measurement.

 Remove the jumper at P4. Connect the signal generator to P4 pin 2.

 Connect the oscilloscope to P11 pin 3.

 Use the set_gain() function to set the gain as specified in the table.

 Set the signal generators amplitude as specified in the table.

 Note the output amplitude of the signal and calculate the gain.

Amplitude [mV] Gain Measured amplitude [mV] Calculated gain

100 1

100 2

100 5

100 10

10 20

10 50

10 100

1 200

1 500

1 1000

0,1 2000

0,1 5000

0,1 10000

0,01 20000

0,01 50000

0,01 100000

0,01 140000

Test # 12

Motive Find the frequency response curve of the variable gain amplifier and filter

Module Variable gain amplifier and filter

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal with a frequency as

 specified in the table. Set the amplitude to 200 mVp-p.

 Remove the jumper at P4. Connect the signal generator to P4 pin 2.

 Connect the oscilloscope to P11 pin 3.

 Use the set_gain() function to set the gain to 10.

 Note the amplitude of the output signal at the different frequencies.

Frequency [kHz] Output amplitude

10

20

30

40

50

52

55

58

 69

60

62

65

68

70

72

75

78

80

82

85

88

90

100

110

120

Test # 13

Motive Measure internally generated noise with no input signal

Module Variable gain amplifier and filter

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Remove jumper at P4. Place a jumper at P4 pin 7-8

 Connect the oscilloscope to P11 pin 3.

 Use the set_gain() function to set the gain according to the table

 Measure the RMS value of the output signal at the various gain settings.

Gain Output [mVrms]

1

2

5

10

20

50

100

200

500

1000

2000

5000

10000

20000

50000

100000

140000

 70

Test # 13

Motive Measure internally generated noise with no input signal

Module Variable gain amplifier and filter

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Remove jumper at P4. Place a jumper at P4 pin 7-8

 Connect the oscilloscope to P11 pin 3.

 Use the set_gain() function to set the gain according to the table

 Measure the RMS value of the output signal at the various gain settings.

Gain Output [mVrms]

1

2

5

10

20

50

100

200

500

1000

2000

5000

10000

20000

50000

100000

140000

Test # 14

Motive Measure the current consumption of the variable gain amplifier and filter

Module Variable gain amplifier and filter

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude

 should be as specified for each measurement.

 Remove jumper at P4. Connect the signal generator to P4 pin 2.

 Connect the oscilloscope to P5 pin 2, AGC current measurement output.

 Use the set_gain() function to set the gain as specified in the table.

 Set the signal generators amplitude as specified in the table.

 Note the output voltage of the signal and calculate the current consumption

Amplitude [mV] Gain Measured voltage[mV] Calculated current [mA]

100 1

100 2

100 5

100 10

10 20

10 50

10 100

1 200

1 500

1 1000

 71

0,1 2000

0,1 5000

0,1 10000

0,01 20000

0,01 50000

0,01 100000

0,01 140000

8.2.2 Reception detector

The following procedures will test the reception detector and provide data for further analysis.

Test # 15

Motive Find the response curve of the reception detector analogue output

Module Reception detector

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal, the amplitude and

 frequency should be as specified for each measurement.

 Remove jumper at P4. Connect the signal generator to P4 pin 2.

 Connect CH1 on the oscilloscope to P11 pin 2. Connect CH2 to P11 pin 3.

 Use the set_gain() function to set the gain to 1.

 Note the output voltage of both the signals

Amplitude [mV] Frequency [kH<] Measured amplitude (CH2) [mV] Detector output [mV]

0 60

10 60

20 60

50 60

100 60

150 60

200 60

300 60

500 60

700 60

1000 60

1300 60

1500 60

1800 60

2000 60

2500 60

0 70

10 70

20 70

50 70

100 70

150 70

200 70

300 70

500 70

 72

700 70

1000 70

1300 70

1500 70

1800 70

2000 70

2500 70

0 80

10 80

20 80

50 80

100 80

150 80

200 80

300 80

500 80

700 80

1000 80

1300 80

1500 80

1800 80

2000 80

2500 80

Test # 16

Motive Measure the current consumption of the reception detector

Module Reception detector

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal of 70 kHz, the amplitude

 should be as specified for each measurement.

 Remove jumper at P4. Connect the signal generator to P4 pin 2.

 Connect CH1 on the oscilloscope to P5 pin 3. Connect CH2 to P11 pin 3.

 Use the set_gain() function to set the gain to 1.

 Note the output voltage of both the signals

Amplitude [mV] Measured amplitude (CH2) [mV] Detector output [mV]

0

10

20

50

100

200

500

1000

2000

Test # 17

Motive Find the step response curve for the reception detector

Module Reception detector

 73

Tool JTAGICEmkII, oscilloscope, signal generator

Procedure Set the signal generator to generate a sinusoidal of 70 kHz with an

 amplitude of 1000 mV. Set the scope to single trigger on CH1, input signal.

 Remove jumper at P4.

 Connect CH1 on the oscilloscope to P5 pin 3. Connect CH2 to P11 pin 3.

 Use the set_gain() function to set the gain to 1.

 Connect the signal generator to P4 pin 2 and store the response curve.

8.2.3 MCU and flash memory

The following procedures will measure the execution time and current consumption for the
main functions of the MCU. The most important functions include storing data, functions
used to receive data and digital signal processing. Execution times for some of the functions
are already benchmark tested by Atmel in [28] and the datasheet [19] provides current
consumption for active and static mode, hence the table only includes routines written
especially for the prototype.

Test # 18

Motive Find the execution time of the main CPU activities

Module MCU and flash memory

Tool JTAGICEmkII, oscilloscope

Procedure Connect the oscilloscope CH2 to P8 pin 1.

 Use the oscilloscope to measure the execution time by setting GPIO0

 before the routine and clearing the same pin after the routine:

 AVR32_set_gpio_pin(GPIO0);

 set_gain(100);

 AVR32_clear_gpio_pin(GPIO0);

 Perform this procedure on every routine in the table.

 Note the width of the positive pulse for each routine.

Action Execution time MCU [uS]

get 64 samples

get 256 samples

Store flash page 512 byte

set_gain()

get_time()

calculate_time_difference();

find dominating frequency

Test # 19

Motive Find the current consumption of the MCU and flash in sleep mode with RTC

Module MCU and flash memory

Tool JTAGICEmkII, oscilloscope

Procedure Connect the oscilloscope to pin 4 on header P5

 Enable the RTC with external 32.000kHz crystal, enable pull-ups for all

unconnected pins or pins usually set to output. Put the MCU in sleep mode
deep stop. Measure the voltage with the oscilloscope and calculate the

 Current consumption.

 74

9. Test results and measurement data
This chapter presents the results of the tests and measurements described in chapter 8. To
provide a good basis for analysis the results are presented as graphs and figures. Please refer
to appendix E for the raw data for each test. The c-code for each test is found in
test_functions.c and test_functions.h in appendix 8 and B.

9.1 Accuracy of the results

The current measurements are carried out using a series resistor and a current shunt resistor
amplifier with an amplification of 100. A TENMA 72-7235 150MHz oscilloscope is used for
all measurements.

The tolerance of the measurements is calculated as follows:
Series resistor: 1%
Resistor in current shunt amplifier circuit: 499kΩ, 1%
Current shunt amplifier total output error: 2%.
Oscilloscope vertical accuracy: 3%

The worst case scenario error is calculated in Table 9-1.

Table 9-1 - Worst case measurement error

Device Error Comment

Series resistor -1%
Current shunt resistor 492.01/500 - 1 = -1.6% 100 gain is for 500k resistor
Current shunt amplifier output
error

-2%

Oscilloscope measurement
error:

-3%

SUM -7.6%

If we assume that noise and thermal effects are small and can be neglected, current
measurements have a tolerance of 7.6%. For voltage measurements the tolerance is only
dependent on the oscilloscope and is 3%. Time measurements are done by toggling a port pin.
This will introduce a slight delay, but can be neglected due to the relatively long execution
time of the routines/algorithms. The oscilloscope will introduce a tolerance of 0.01% for time
measurements. A summary of the tolerances is given in Table 9-2.

Table 9-2 - Measurement tolerances

Measurement Tolerance

Current 7.6%
Voltage 3%
Time 0.01%

 75

9.2 Functionality test results

Functionality test #8 revealed one error in design; the TxD and RxD pins on the AT32UC3B
where connected to the TxD and RxD pins respectively on the USB-UART bridge. Swapping
these pins solves the problem and the test is passed. The schematics is updated to the correct
setting.

Functionality test #20 passed. A sample of the terminal output is provided below.

*** Telemetry Buoy Running ***
Pulse detected:
 space: 00381 ms, 00000 s
Frequency: 00069 kHz
 Power: 06317

Pulse detected:
 space: 00460 ms, 00000 s
Frequency: 00069 kHz
 Power: 06341

Pulse detected:
 space: 00680 ms, 00000 s
Frequency: 00069 kHz
 Power: 06147

Pulse detected:
 space: 00520 ms, 00000 s
Frequency: 00069 kHz
 Power: 06244

Pulse detected:
 space: 00500 ms, 00000 s
Frequency: 00069 kHz
 Power: 06410

Pulse detected:
 space: 00460 ms, 00000 s
Frequency: 00069 kHz
 Power: 06218

The results are plausible. Figure 9-1 and Figure 9-2 shows oscilloscope measurement of the
reception.

 76

Figure 9-1 - Reception of real signal, CH1: variable gain amplifier output, CH2: Detector analogue output

Figure 9-2 - Reception of real signal, CH1: variable gain amplifier output, CH2: Detector digital output

Increasing the amplification to 100 000 introduces much noise. The modification done to the
original diode detector by inserting the extra resistor to suppress short term voltages makes
the system function well even under noisy conditions. The reception works fine even with the
extremely high gain. Both the timing of the pulses and the frequency measurement output is
correct. The scope shot of the test with a gain of 100 000 is shown in Figure 9-3.

 77

Figure 9-3 - Reception of real signal with high gain and high noise level, CH: variable gain amplifier

output, CH2: Detector analogue output

The prototype passed all other tests without modification. Please refer to appendix E for
details.

 78

9.3 Performance test and measurement results

The performance tests are presented as diagrams. Please refer to appendix E for the raw data.

9.3.1 Variable gain amplifier and filter test results

Test #11: Find the gain response curve of the variable gain amplifier

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20000 40000 60000 80000 100000 120000 140000 160000

Set_gain value

m
e

a
s

u
re

d
 g

a
in

Figure 9-4- Gain response curve

 79

Test #12: Find the frequency response curve of the variable gain amplifier and filter

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

Frequency [kHz]

O
u

tp
u

t
[m

V
]

Figure 9-5 - Frequency response of the variable gain amplifier and filter

Test # 13: Measure the internal noise with no input signal

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000 140000 160000

Set_gain value

N
o

is
e
 [

m
V

 R
M

S
]

Figure 9-6 - Internal noise vs gain

 80

Test #14: Measure the current consumption of the variable gain amplifier and filter

0,139

0,1395

0,14

0,1405

0,141

0,1415

0,142

0,1425

0,143

0,1435

0,144

0 20000 40000 60000 80000 100000 120000 140000 160000

Set_gain value

C
u

rr
e

n
t

[m
A

]

Figure 9-7 - Current consumption vs. set_gain value for the variable gain amplifier and filter

 81

9.3.2 Reception detector test results

Test #15: Find the response curve of the analogue output of the reception detector

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600

Output [mV]

In
p

u
t

a
m

p
li

tu
d

e
 [

m
V

]

60 kHz

70 kHz

80 khz

Figure 9-8 - Response curve for the reception detector for various frequencies

Test #16: Measure the current consumption of the reception detector

0,0655

0,066

0,0665

0,067

0,0675

0,068

0,0685

0,069

0,0695

0 500 1000 1500 2000 2500

Input amplitude [mV]

C
u

rr
e
n

t
[m

A
]

Figure 9-9 - Current consumption vs. input amplitude of the reception detector

 82

Test #17: Find the step response curve for the reception detector

Table 9-3 - Reception detector response

 83

9.3.3 MCU and flash memory test results

The execution time was tested with a CPU frequency of 60 Mhz.

Test #18 Find the execution time for the main MCU activities

Action Execution time MCU [uS]

get 64 samples 1210

get 256 samples 4561

Store flash page 512 byte 1280

set_gain() 54,408

get_time() 4,9704

calculate_time_difference(); 4,4936

find dominating frequency 439,92

Test #19 Find the current consumption of the MCU and flash in sleep mode with RTC

Measured voltage: 35.6 mV
Calculated current: 356 uA.

 84

10. Discussion
This chapter discusses the measurement results and compares them to the analogue and digital
design chapters. The measurements will first be discussed module by module while the last
section will discuss the complete system.

10.1 Analogue design

The analogue design in general fulfils its low power demands with good margin. The
functionality is somewhat as expected although there are some adjustments that should be
done to provide optimal characteristics. The following sections describe this in detail for each
circuit type.

10.1.1 Band pass filter

The filter acts as simulated with the correct crossover frequencies. It is though required to
investigate if this filter has the characteristics needed for the telemetry buoy application.

The design of the filter is a compromise of using amplifiers with low gain-bandwidth product
and hence low power consumption and filter characteristics. Using the measured frequency
response we plot the first positive and the first negative alias for the chosen sampling
frequency of 58 kHz. The result is shown in Figure 10-1. We clearly see that due to the non-
ideal filter characteristics the result is an overlap between the first positive and the first
negative alias. It follows that a high power signal with a lower frequency than the high pass
crossover frequency might be mistaken for a signal inside the pass band. It is therefore
important that either the filter is improved by increasing the flank of the analogue filter or by
increasing the sampling frequency.

0

200

400

600

800

1000

1200

1400

-100 -50 0 50 100 150

Original

Positive alias

Negaticve alias

Dig. Freq. Area

Figure 10-1 - Plot of aliases for fs = 58 kHz

The allowable sampling frequencies are listed in Table 2-1 on page 5. Choosing a sampling
frequency of 90 kHz will result in less overlap as seen in Figure 10-2. It is important to notice
that although there is an overlap much of these frequencies can be filtered out digitally when
using a higher sampling frequency and this may not represent any problem.

The discussion of whether the improvements should be done in the analogue domain or in the
digital domain is covered in section 10.3 on page 90.

 85

0

200

400

600

800

1000

1200

1400

-100 -50 0 50 100 150

Original

Positive alias

Negaticve alias

Dig. Freq. Area

Figure 10-2 - Plot of aliases for fs = 90 kHz

10.1.2 Variable gain amplifier

The variable gain amplifier functions well. Together with the filter it only consumes a current
of about 300 uA. This is exceptionally low compared to the alternative variable gain amplifier
ICs which would require about three AD600 each consuming 14 mA to provide the same
amplification.

Some adjustments are though needed to get optimal behaviour. We see from Figure 9-4 that
the gain is non-linear. This can be compensated for in firmware, but this might require that an
individual compensation table is constructed for each produced unit. It is desired to avoid this
if possible to ease the production time and cost.

When testing the variable gain amplifier the high gain forces the use of very small input
signals which cannot be measured with an ordinary oscilloscope. Analysis will therefore have
to be based on theories not verified by measurements.

It is the author’s conviction that the root of the problem is the generated signal ground. The
signal ground SGND is generated as shown in Figure 10-3.

IN1

G
N

D
2

Cout 4SD3

Vout 5

LP3992IMF, 1.5V

GND

1uF

GNDGND

3.3V

SGND100nF ¨100nF

GND GND

Figure 10-3 - SGND generation

Since the SGND power is not ideal both noise and signal can occur at the top of the signal
ground. This can lead to unwanted feedback in the amplifier. As an example we consider the
first and the last amplification segment of the variable gain amplifier as shown in Figure 10-4.

 86

If the signal routed to SGND through resistors connected to the output of the operational
amplifier and SGND, is not completely removed by the regulator and the decoupling this may
have impact the variable gain amplifier performance. According to the phase of the output
signal the feedback may be negative or positive. We also notice that the effect of this
feedback is dependent on the wiper position of the digital potentiometer. This may be the
reason for the non-linear behaviour. Note that this is only an example of one feedback. If the
SGND does not suppress all signals, these feedbacks will occur in all amplifier segments,
both in the filter and the variable gain amplifier.

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U1
MAX5401EKA

SGND
SGND GND

191k

R7

8k

R6

SGND

GND
106k
R4150p

C2

AGC_Input

VCC_AGC VCC_AGC

1
2

3 +

-
8

4

U2A
LMV552MM

7H
8

L
1

Vdd6

GND2

D
IN

4

SC
L

K
5

C
S

3

U6
MAX5401EKA

SGND
SGND GND

191k

R18

8k

R17

SGND

GND 106k
R14

150pF
C8

VCC_AGCVCC_AGC

1
2

3 +

-

8
4

U7A
LMV552MM

Figure 10-4 - Unwanted feedback example

To analyse this behaviour further we assume the following scenario:

� The output signal of U7A is a 70 kHz sinusoidal with an amplitude of 1V
� The voltage regulator has not the sufficient bandwidth to suppress the signal routed to

SGND through R17 and R18.
� The SGND is only decoupled with 1uF
� No other feedbacks occur

The output of the last amplification segment will result in a voltage divider as in Figure 10-5
where Xc is the equivalent signal resistance of the 1 uF decoupling capacitor at 70 kHz.

191k
R6

8k
R6

2.27
Xc

GND

SGND

Signal 1V

Figure 10-5 – Signal equivalent voltage divider

The result is a signal voltage on the SGND with an amplitude of 11.41 uV. The maximum
gain of the amplifier is about 140 000. It follows that the worst case scenario leads to a
feedback resulting in an unwanted output voltage of
 611.4 10 140000 1.59

out
V V

−= ⋅ ⋅ = (10.1)
Note that this is not accurate numbers, but only an example to emphasize the importance of
the design of the SGND circuit.

Depending on the phase of the output signal may result in a negative or positive feedback. If
the unwanted feedback results in a dominating positive feedback, the circuit may start to

 87

oscillate and produce noise. The measurements of test #13 show a great deal of self-generated
noise at high gain settings. It is believed that this is a result of the same effect as the latter
example. We notice that the noise is increasing with the gain setting. With low gain setting
the wiper Figure 10-4 will be at the low end of the potentiometer thus resulting in about the
same signal at the negative and positive input of the operational amplifier. It follows that the
CMRR will suppresses the noise signal. At high gain settings the wiper will be at the top
position of the potentiometer thus resulting in different feedback factors for the negative and
the positive input. It follows that the effect of the unwanted feedback signal is greater.

It is therefore believed that a great improvement in both noise and linearity characteristics of
the variable gain amplifier can be achieved by

� Selecting a high bandwidth – low noise regulator
� Adding additional decoupling of the SGND
� Placing the regulator close to the amplifier
� Using copper planes rather than wires to reduce voltage drops in the PCB.

10.1.3 Reception detector

The reception detector provides a well functioning analogue and digital output while
consuming less than 70 uA. The output voltage is somewhat lower than the simulations, but
the output is as good as frequency independent and linear in the area 60 – 80 kHz.

Due to its ultra low power consumption the circuit could be duplicated and used to measure
the signal amplitude with a fixed pre-amplification to provide a forward coupling in the AGC
control loop and hence a faster system response. The system then becomes:

Figure 10-6 - AGC control loop with forward coupling

The complete system test given in test #20 shows that the reception detector performs
remarkably well even with a relatively high level of noise. The sea will though introduce new
noise sources like engine propellers, waves, bubbles, etc. It is therefore required that the
circuit is tested in situ with a complete system to adjust the component values for optimal
behaviour.

 88

10.2 Digital design

The digital design of the telemetry buoy project was mainly defined in the report Acoustic

telemetry buoy [4]. It presents calculations that support the use of digital signal processing in
the application. The following section will similar calculations mainly based on real
measurements rather than the assumptions made in [4].

10.2.1 MCU and Flash memory

The diagram for a typical reception is shown in Figure 10-7. It does not include all details, but
provides an estimate for the execution time for a typical reception.

Store current

time in

temp_time

Signal of valid

frequency and power?

Start

Adjust gain

in VGA

Perform

sample burst

Find dominating

frequency and

power

Store temp_time

as previous_time

End

Calculate time difference

between temp_time and

previous_time, store for

decode

Last pulse?

Decode signal

Yes

No Yes

No

4.97uS

Set_gain(); 54.408 uS

Get_signal_level(); 89.6 uS

Set_gain(); 54.408 uS

Total = 198.416 uS

64 sampl: 439.92 uS

256 sampl: 1759.68 uS (assumed)

64 sampl: 1210 uS

256 sampl: 4561 uS

FFT

4.49 uS

2 us (assumed)

50 uS (assumed)

64 sampl: 44.4 uS (benchmark test)

256 sampl: 232.2 uS (benchmark test)

Figure 10-7 - Reception float diagram

An example of using 256 point sample bursts with a 256 point FFT is given in Table 10-1.
The signal to be received is the 6 pulse example provided in section 4.1.1 on page 11.

 89

Table 10-1 - Total receive active execution time

Pulses: 6

Routine Execution time [uS] Executions per reception Total [us]

get_time 4,97 6 29,82

set gain 54,408 12 652,896

get_signal_level 89,6 6 537,6

Do_sampling_burst 4561 6 27366

FFT 232,2 6 1393,2

Find_dominating_freq 1759,68 6 10558,08

Caclulate_time_diff 4,49 6 26,94

store temp time 2 6 12

Decode signal 50 1 50

 Total: 40626,536

The measured execution times are based on compilation with no optimization. With speed
optimization the total execution time will decrease considerably.

Test #19 shows a current consumption of 356 uA with the MCU in deep stop sleep mode with
the RTC enbled. This represents the static current consumption of both the MCU and the
external dataflash when not receiving.

In addition to receiving and running the RTC the MCU will have to store the values to the
external dataflash and adjust the reception sensitivity by adjusting the gain of the variable
gain amplifer and the reception detector threshold for the interrupt line.

A sensitivity adjustment will have the active execution time as specified in Table 10-2.

Table 10-2 - Sensitivity adjustment active execution time

Routine Exection time [uS] Executions per adjustment Toal [us]

set gain 54,408 1 54,408

get_signal_level 89,6 1 89,6

 Total: 144,008

Storing one page of data to the dataflash will result in an additional active time of 1280 uS for
the microcontroller. In addition the dataflash will consume more current when storing this
page from the receive buffer to the actual flash memory. The total energy consumption for the
digital design per year is calculated in Table 10-3. It is assumed a 1:10 ratio between correct
and false receptions due to noise. Furthermore it is assumed that storing a reception with ID,
data and time stamp requires 72 bytes of data. All current numbers, except the deep stop with
RTC, are collected from the datasheets [19] and [21].

 90

Table 10-3 - Digital design energy consumption per year

Action Active time [uS] Executions per year Current [mA] Voltage Energy per Year

Receive 40626,536 100000 23,5 3,3 315,0587867

False receive 6756,266 1000000 23,5 3,3 523,9484283

deep stop with RTC 3,1536E+13 1 0,356 3,3 37048,4928

sensitivity adjustment 144,008 31536000 23,5 3,3 352,1883841

Store page 1280 14062,5 23,5 3,3 1,3959

Flash store from buffer 6000 14062,5 17 3,3 4,7334375

 Total: 38245,81774

The results of the calculations will be used for further analysis in the following section.

10.3 Combined design

The prototype system design concept has been proven to work with existing tags in test #20.
Besides this test the most important factor of the telemetry buoy application is low power
consumption. The specifications provided in section 1.1 on page 1 lists the criteria of one year
operation and a minimum of 100 000 receptions. The report Acoustic telemetry buoy [4]
provides a calculation showing that the total battery energy is about 163800 J. For this to be
correct the system must be able to operate at a voltage of 2 – 3.7 V. The following
calculations are based on the assumption that a buck-boost regulator with an average power
loss of 1 mW is available and used in the final product. The total energy consumption per year
is shown in Table 10-4.

Table 10-4 - Total system energy consumption per year

Module Avarage current [mA] Voltage Power consumption [W] Energy per year [J]

Voltage regulator 0,001 31536

VGA and filter 0,304 3,3 0,0010032 31636,9152

Reception detector 0,07 3,3 0,000231 7284,816

MCU and Flash 38245,81774

 Total: 108703,55

The lifetime of the telemetry buoy design is therefore

163800
1.51

108704lifetime

J
T years

J
= = (10.2)

This number includes 100 000 receptions per year and will increase if optimisation is applied
to the compilation.

Section 10.1.1 addresses the issue that either the analogue filter should be improved or the
sampling frequency should be increased to avoid unwanted aliasing. It is also important to ask
the question if increased performance should be a result of analogue or digital signal
processing. In any low power application an increase in performance comes with a cost of
added power consumption. It is therefore important to map the systems power consumption in
order to decide where the added performance comes with the lowest cost.

Figure 10-8 shows a pie chart of the energy consumption distribution. The raw data for the pie
chart is found in appendix B. We clearly notice that the assumed loss in the voltage regulator,
the variable gain amplifier and filter and the microcontroller sleep mode with RTC accounts
for the majority of the energy consumption whilst the digital part of the reception is barely
noticeable. It is therefore obvious that the complexity of the reception algorithm with

 91

sampling and all digital signal processing can be substantially increased without any
noticeable increase in overall lifetime of the telemetry buoy.

It can therefore be concluded that in order to reduce the overall power consumption the
complexity of the analogue filter can be reduced while increasing the sampling frequency,
applying digital filters and FFT algorithms in the microcontroller firmware. It should
therefore be considered to apply the standard Nyquist sampling theorem using a sampling
frequency of at least twice of the highest frequency component. Note that this assumption
only yields when only sampling at reception.

Deep stop with

RTC

23 %

Voltage

regulator

19 %

VGA and filter

19 %

Reception

detector

4 %

Free capacity

35 %

Flash store

from buffer

0 %

Sensitivity

adjustment

0 %

Store page

0 %

False receive

0 %

Receive

0 %

Figure 10-8 - Energy consumption distribution for one year system operation

Another important factor in a combined analogue and digital design is noise. Noise generated
by the digital circuits can be a major problem in many applications. For this design it has not
been identified any noise influence on the analogue circuits as a result of digital activities.
The noise level was the same at the variable gain amplifier and filter output with the MCU
disconnected from its power source and connected. The SPI did not introduce any noticeable
noise. This is believed to be a result of the separation and space between the digital and
analogue circuits as well as routing the digital tracks on one layer, analogue on a different
layer with the GND plane in between acting as a shield.

 92

11. Further development
This chapter discusses the further development of the telemetry buoy, changes that should be
made, suggestion of components, added functionality and more.

11.1 The choice of microcontroller

At the end of this project Atmel launched a new UC3 microcontroller; the AT32UC3L. This
device has even lower power consumption than the former UC3 microcontrollers and new
power saving features such as an event system, ultralow power RTC timer and the ability to
operate at voltages down to 1.6V.

If we consider Figure 10-8 we notice that one of the most power consuming tasks is having
the RTC enabled when in deep stop. The datasheet for the AT32UC3L [22] specifies that
having the microcontroller in Shutdown mode with the RTC timer running with an external
crystal will consume only 1.5 uA. The same energy calculations is performed as in section
10.3, but using the power specifications for the AT32UC3L. It is also worth to notice that the
UC3L operates at a somewhat lower system frequency of 50 MHz. The execution times have
therefore been scaled from 60 MHz to 50 MHz. The resulting power estimation for the MCU
activities for VCC = 3.3 V is presented in Table 11-1.

Table 11-1 - Energy consumption for the main MCU activities

Action
Active time at
50 MHz [uS] Executions per year Current [mA] Voltage Energy per Year

Receive 58502,21184 100000 15 3,3 289,5859486

False receive 8107,5192 1000000 15 3,3 401,3222004

Shutdown with RTC 3,1536E+13 1 0,015 3,3 1561,032

Sensitivity adjustment 207,37152 31536000 15 3,3 323,7135786

Store page 1536 14062,5 15 3,3 1,0692

Flash store from buffer 7200 14062,5 17 3,3 5,680125

 Total: 2582,403053

This is a reduction down to 6.7% of the power consumption for the AT32UC3B, mainly due
to the extremely low power consumption of the RTC. The UC3L can operate at voltages
down to 1.6V. This means that a lower system voltage can be used if the analogue design is
adapted to this voltage. This will lead to a substantial increase in the overall battery lifetime.

The overall energy consumption of the system with the UC3L is presented in Table 11-2.

Table 11-2- Overall system energy consumption using the UC3L

Module Avarage current [mA] Voltage
Power consumption
[W] Energy per year [J]

Voltage regulator 0,001 31536

VGA and filter 0,304 3,3 0,0010032 31636,9152

Reception detector 0,07 3,3 0,000231 7284,816

MCU and Flash 2582,403053

 Total: 73040,13

Using the new energy consumption of the MCU the battery lifetime can be calculated for the
telemetry buoy

 93

163800

2.24
73040lifetime

J
T years

J
= = (11.1)

The energy consumption distribution chart from section 10.3 with the energy calculations for
the UC3L is shown in Figure 11-1.

VGA and filter

19 %

Reception

detector

4 %

Free capacity

56 %

Flash store from

buffer

0 %

Sensitivity

adjustment

0 %

Store page

0 %

False receive

0 %

Receive

0 %
Shutdown with

RTC

1 %

Voltage

regulator

20 %

Figure 11-1 - Energy consumption distribution for one year operation using the UC3L

We see that the voltage regulator and the variable gain amplifier and filter accounts for largest
energy consumption. Lowering the system voltage can help reduce the VGA and filter
section. We also notice that the selection of the voltage regulator is one of the most important
tasks with respect to power consumption when designing the final product.

11.2 Design improvements

Chapter 10 discusses the performance of the prototype design of the telemetry buoy. One
important design factor for improving the design must be to eliminate the occurrence of
aliases. In section 10.3 it is concluded that the performance improvement should mainly be
done in the digital domain by increasing the sampling frequency and adding digital filtration.
This will not have great impact on the power consumption, but will considerably increase the
reliability and performance of the system. Using the UC3L microcontroller the designer

 94

should also consider if the bandwidth of the filter should be increased to support a wider
range of modulation schemes such as multiple frequency shift keying in a wider frequency
band.

Section 10.1.2 provides a list of ways of improving the performance of the noise and gain
linearity of the variable gain amplifier. These improvements to the signal ground should be
considered when designing a new prototype. It has though been shown that the prototype
functions well both with the gain set to 2000 and to 100 000. The noise is suppressed in the
reception detector and the correctness of the gain may not be as an important factor as
previously assumed. A too high gain will indeed cause saturation, but the high level of
analogue filtration rebuilds the signal to a sinusoidal and the FFT algorithm is able to
calculate the correct frequency of the original signal.

11.3 Additional functionality

The prototype was designed to test the design concept of the telemetry buoy. Only a USB
debug interface was implemented. The final design will have to include some sort of user
interface. Whether this is GSM, Bluetooth, USB or any other interface will be up to the
designer and the market demand. Whichever interface is chosen, a general low level interface
to the receiver should be defined to easily be able to develop new user interfaces using this
low level communication layer to the receiver.

The algorithm for the automatic gain control is not implemented, but it should be a relatively
easy task considering that the gain does not need to be perfectly adjusted to receive the correct
signals. The algorithm for setting the threshold is also missing. The idea with the design is to
make this an adaptive solution where the threshold limit is increased for every false reception
and decreased for every defined period of time of no reception. This algorithm will stabilise
the ratio between false and correct receptions.

The telemetry buoy is to work for at least one year without human intervention. It is therefore
necessary to apply functions to handle events such as deadlock, program counter corruption or
other unforeseen problems. The most effective tool for this is the use of a watchdog timer.
The UC3 series of microcontrollers has this module inbuilt and it should be utilized.

The RTC is implemented as a simplified clock. A complete RTC with set functions should be
added. This is an easy task to implement and Atmel provides this algorithm in the application
note “AVR134: Real-Time Clock using the Asynchronous Timer”.

The AT32UC3 series offer a wide range of microcontrollers with high performance and it
should not be a problem to select a microcontroller of sufficient capacity for handling the
additional functionality.

11.4 Development of new modulation schemes

As described in section 1.3 it has been found that modulation schemes using pulse position
and frequency are the most suitable for underwater acoustic communication. At the time of
writing the dominating modulation scheme for digital fish tags is differential pulse position
(DPPM). The system design is prepared for easy implementation and support for frequency
modulation schemes through the powerful Atmel DSP library with optimized FFT algorithms
for the UC3 series of microcontrollers.

 95

To emphasize the advantage of using frequency as a modulation, this section will present a
suggestion for a new modulation scheme using a combination of DPPM and MFSK (multiple
shift keying) especially designed for fish telemetry. The new algorithm will greatly increase
the throughput of the transmission. This demonstrated with an example at the end of this
section.

As an example a total of twelve different frequencies are used. These are divided into two
categories where eight frequencies are main frequencies used to code three bits of data and the
last four are backup frequencies. We have

 1..8

9..12

f main frequencies

f backup frequencies

⇒

⇒
 (11.2)

Furthermore we define the DPPM to have a total of four time slots per pulse coding a total of
two bits per pulse. As described in section 4.1.1 on page 11 the DPPM scheme requires a
guard time between pulses to ensure that the multipath distortion does not disrupt the transfer.
The guard time is only needed between pulses of the same frequency. The following rule
therefore applies

1. No pulse of the same frequency can be repeated until the guard time of this frequency
has expired.

The frequency is though used to code a defined bit pattern, to still be able to code this pattern
we define the second rule

2. During the guard period of frequency n, the free backup frequency m of the lowest
order will be used as a substitute coding the bit pattern of frequency n until the guard
time for frequency n has expired. The backup frequency m will not be free for this
period of time.

It follows that the amount of backup frequencies will limit the amount of data that can be
transferred until the number of backup frequencies exceeds the guard time divided by the time
slot length in the DPPM scheme.

To be able to detect collisions a third rule is defined

3. A transfer is always initiated with frequency f1.
The last rule also applies to the Vemco standard format. The rising flank of the pulse is a
result of the shortest travel distance from the transmitter to the receiver and is not distorted by
multipath.

4. All time measurements are referred to the rising edge of the pulse. All pulses except
the first pulse occur in the middle of the timeslot.

The last rules are needed for formality reasons.
5. The bits coded by the DPPM schemes are calculated before the MFSK coded bits.
6. Bits are sent with MSB first.

The following presents an example where f1 = 0002, f2 = 0012, …, f8 = 1112. Timeslot T1 =
002, T2 = 012, T3 = 10, T4 = 112.

In the example the data 000111102 followed by a CRC 000001012 is sent. We assume the
receiver knows the number of bits to be received.

The generation of the transmission details is as follows

1. First pulse is always f1

 96

2. Data[7:6] = 002 � pulse 2 in slot T1
3. Data[5:3] = 0112 � pulse 2 if of frequency f4, f9 represents 0002
4. Data[2:1] = 112 � pulse 2 in slot T4
5. Data[0] + CRC[7:6] = 0002 � pulse 2 of frequency f9, f10 represents 0002
6. CRC[5:4] = 002 � pulse 3 in slot T1
7. CRC[3:1] = 0102 � pulse 3 of frequency f3, f11 represents 0102
8. CRC[0] = 12 � pulse 4 in slot T2, any frequency can be chosen

The example is illustrated in Figure 11-2.

Figure 11-2 - Example transmission using a DPPM and MFSK scheme

The total time of this transfer is nine timeslots. If a slot size of 20 ms, as with the Vemco
signal described in section 4.1.1 on page 11, is used the total transmission time becomes
180ms whereas with the Vemco standard the transmission would be 2280 ms. The
transmission throughput is thereby increased by a factor of 12,5 for this example. Decoding
this signal with the system concept described in this report will not introduce any considerable
increase in complexity or execution time due to the already implemented FFT routine. It
should also be possible to implement the modulation scheme on a transmitter without
substantial modifications.

At the time of writing no other competitor product supports such a scheme and looking at the
specifications provided in section 1.4 it is likely to believe that support for such a scheme
would require the competitors to design a completely new product. Using a similar
modulation scheme as the described in this section can therefore provide Thelma with a good
competitive edge.

 97

12. Conclusion
The goal of this project was to design and validate a mixed analogue and digital receiver
system for an acoustic telemetry buoy fulfilling the requirements provided in section 1.1.
Several design solutions have been discussed for each system function whereas one complete
system have been developed and tested.

The system design concept has been proven to work by successfully receiving signals from an
existing standard Thelma fish tag. Calculations based on current consumption, execution time
and values provided in the components’ datasheets have confirmed that the design solution
will provide an expected battery lifetime of over two years, if the UC3L is selected as the
main microcontroller for final design.

Some adjustments need to be made before designing the final product. These are mainly
minor changes where some component values are adjusted and some microcontroller settings
such as sampling frequency are changed. All suggested improvements are found in section 10
and 11. It is also vital that some additional tests are performed in situ to optimize the design.

For Thelma this telemetry buoy can lead to a good competitive advantage. There are mainly
two competing products on the market; the VR2W manufactured by Vemco and the SUR
manufactured by Sonotronics. If Thelma develops this prototype further to a final product,
Thelma’s telemetry buoy will have advantages over its competitors such as

� Extended battery lifetime
� Always listening to several frequencies
� Ability to receive at several frequencies simultaneously
� Support for new frequencies and modulation schemes can be made with the same

hardware
� Special versions can be developed using the same hardware platform only

developing new firmware

The final conclusion is therefore that the system design provided in this report, together with
the suggested improvements and the UC3L microcontroller, provides Thelma with a good
basis for developing the leading standalone ultra low power acoustic telemetry buoy on the
market.

 98

13. Appendix list

Printed appendices

1. Matlab script for calculating component values and simulating Butterworth and
Chebyshev filters.

2. Matlab script for simulating the intuitive filter frequency response.
3. Matlab script for simulation Chebyshev filter with digital potentiometers
4. Screenshots of filter design with FilterPro
5. Schematics

a. Preamp
b. Auto gain and filter
c. Reception detector
d. Connectors and headers
e. Power distribution
f. MCU and Flash memory

6. Bill of materials
7. PCB assembly diagram
8. C-code for prototype testing

Digital appendices

A. Gerber files for PCB prototype
B. Complete C-code for the prototype
C. Acoustic telemetry buoy report [4] in pdf format.
D. Energy calculations for the complete system with UC3B and UC3L
E. Test results data
F. Matlab scripts for filter simulations
G. This report in pdf format

14. Bibliography

[1] Paul McCormac, National Semiconductor, May 2004:

Effects and Benefits of Undersampling in High-Speed ADC applications

[2] Wang Yiding, Wang Yunhong, Zhao Shi, IEEE - November 2007:
Errors analysis of spectrum inversion methods

[3] James H. McClellan, Ronald W. Schafer, Mark A, Yoder 2003:

Signal processing first

[4] Stian Orø Moen student project 2009:
Acoustic telemetry buoy

[5] Eamon Nash, Analog Devices Inc, Jan 2000:
Design A Logamp RF Pulse Detector

 99

[6] Analog Devices application note - 2000:
AD737: True RMS-to-DC Converter, Rev F

[7] Jan Eyolf Bjørnsen, master thesis Jun 10th 2002:
Utvikling av intelligent hydrofonbøye for PINPOINT II

[8] Inge Mohus and Bård Holand, SINTEF report 1980:
Fish Telemetry manual

[9] Thelma brochure June 2007:
Marine related R&D

[10] Robert J. Ulrick 1983:
Principles of underwater sound, 3

rd
 edition

[11] Maxim application note 864, Nov 28, 2001:
EPOT Applications: Gain Adjustment in Op-Amp Circuits

[12] Maxim application note 1828, Dec 26, 2002:
Audio Gain Control Using Digital Potentiometers

[13] Maxim application note 1828, Feb 27, 2004:
How to increase the bandwidth of digital potentiometers 10x to 100x

[14] Adel S. Sedra and Kenneth C. Smith, 2004:

Microelectronic Circuits, fifth edition

[15] Texas instruments application note – September 2002:
Analysis of the SAllen-Key Architecture, rev SLOA024B

[16] E. A. Faulkner and J. B. Grimbleby – IEEE report 16th July 1970:
Active filters and gain-bandwidth product

[17] Maxim application note 1762 – 28th September 2002:

A beginners guide to filter topologies

[19] Atmel AVR32 datasheet 04/08:
AT32UC3B Series Preliminary, Rev G

[20] Atmel AVR32 application note:
AVR32715: AVR32 UC3B Schematic Checklist, Rev 32095D-AVR32-12/08

[21] Atmel datasheet 08/07:
32-Mbit, 2.7 Volt DataFlash® AT45DB321D datasheet preliminary,

[22] Atmel AVR32 datasheet 06/09:
AT32UC3L064, AT32UC3L032, AT32UC3L016 Preliminary, Rev A

[23] Tadiran datasheet 01/06:
MODEL TL-5930, Rev. B

 100

[24] Texas Instruments application report:
Choosing An Ultralow-Power MCU, SLAA207 – June 2004

[25] Atmel datasheet:
XMEGA Manual, 8077B-AVR-06/08

[26] Atmel AVR32 application note:
 AVR32739: AVR32 UC3 Low power software design, Rev 32093B-AVR32-05/08

[27] Atmel AVR32 application note:

AVR32765: AVR32 DSPLib Reference Manual, rev A 07/09

[28] Atmel AVR32 application note:
AVR32718: AT32UC3 Series Software Framework DSPLib, Rev 32076A-AVR32-
11/07

Appendices

1. Matlab script for calculating component values and
simulating Butterworth and Chebyshev filters

26.07.09 11:13 C:\Documents and Settings...\butterworth_and_Chebyshev_filter.m 1 of 5

%Script that gives the bode responce of chebychev or Butterworth filter

%Implemented as Sallen & Key configuration. Script will calculate all

%Component values according to the crossover frequency and gain settings.

clc

clear all

%desired lower corner frequency [Hz]

f0 = 60000;

%desired higher corner frequency [Hz]

f1 = 80000;

%desired passband gain per amplifier

k =2.000001;

%low pass filter order

n_l = 4;

%high pass filter order

n_h = 4;

%Uncomment the poles to use

%calculate general (w0 = 1) lowpass butterworth pole positions

all_poles = roots([(-1)^n_l, zeros(1,2*n_l-1),1]);

negative_real_poles = all_poles(find(real(all_poles)<0));

den = poly(negative_real_poles);

%chebychev poles with 3dB rippel

%negative_real_poles = [-0.0340675444 + 0.3785869383i

% -0.0340675444 - 0.3785869383i

% -0.0822463277 + 0.1568158444i

% -0.0822463277 - 0.1568158444i];

%chebychev poles with 1 dB rippel

negative_real_poles = [-0.0558133907 + 0.3933445644i

 -0.0558133907 - 0.3933445644i

 -0.1347454448 + 0.1629286533i

 -0.1347454448 - 0.1629286533i];

%calculate desired w0/Q for filter tranferfunction one and 2

w0_Q1 = -(negative_real_poles(1)+negative_real_poles(2));

w0_Q2 = -(negative_real_poles(3)+negative_real_poles(4));

%plot general low pass function

%H_butt = tf([k*k],den);

%bode(H_butt);

%plot general high pass function

%H_butt = tf([k*k 0 0 0 0],den)

%bode(H_butt)

26.07.09 11:13 C:\Documents and Settings...\butterworth_and_Chebyshev_filter.m 2 of 5

%hold on

%%

% ******* LOW PASS CALCULATIONS *******

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C1 = C;

C2 = C;

C3 = C;

C4 = C;

%calcualte Resistor values for w0 = 1 for first sallen key circuit

w0 = 1; %do not change!

Q1 = w0/w0_Q1;

%R1 = (-1/Q1+sqrt(1/Q1^2-4*(C1+C2*(1-k))*1/C2))/(2*(C1+C2*(1-k)))

R1 = 1/2*(w0*C2-sqrt(w0^2*C2^2-4*Q1^2*C2*C1-4*Q1^2*C2^2+4*Q1^2*C2^2*k))/(Q1*C2*(C1+C2-

C2*k));

R2 = 1/(R1*C1*C2);

%calcualte Resistor values for w0 = 1 for second sallen key circuit

Q2 = w0/w0_Q2;

R3 = 1/2*(w0*C4-sqrt(w0^2*C4^2-4*Q2^2*C4*C3-4*Q2^2*C3^2+4*Q2^2*C4^2*k))/(Q2*C4*(C3+C4-

C4*k));

R4 = 1/(R3*C3*C4);

%define lowpass filter transferfunction

nom1 = [k];

den1 = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

nom2 = [k];

den2 = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

%Calculate nominal low pass transfer function (i.e. w0 = 1)

H_l1 = tf(nom1,den1);

H_l2 = tf(nom2,den2);

H_l = H_l1*H_l2

%scale values to get crossover at f0

C = C/(f1*2*pi); %scale to freqency

C_desired = 47e-12;

%scale to stadard capacitor value

factor = C/C_desired

C = C/factor %scale to resistors

C1 = C

C2 = C

C3 = C

C4 = C

R1 = R1*factor

R2 = R2*factor

R3 = R3*factor

R4 = R4*factor

26.07.09 11:13 C:\Documents and Settings...\butterworth_and_Chebyshev_filter.m 3 of 5

%Calculate actual transferfunction

nom1a = [k];

den1a = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

nom2a = [k];

den2a = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

H_la1 = tf(nom1a,den1a);

H_la2 = tf(nom2a,den2a);

H_a = H_la1*H_la2;

%%

%******* HIGH PASS CALCULATIONS *******

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C5 = C;

C6 = C;

C7 = C;

C8 = C;

%calcualte Resistor values for w0 = 1 for third sallen key circuit

w0 = 1; %do not change!

Q1 = w0/w0_Q1

R6 = 1/2*(w0*C5+sqrt(w0^2*C5^2-4*Q1^2*C6*C5+4*Q1^2*C6*C5*k-4*C5^2*Q1^2+4*C5^2*Q1^2*k))/

(C5*Q1*(C6+C5));

R5 = 1/(R6*C5*C6);

%calcualte Resistor values for w0 = 1 for fourth sallen key circuit

Q2 = w0/w0_Q2

Q1 = w0/w0_Q1

R8 = 1/2*(w0*C7+sqrt(w0^2*C7^2-4*Q2^2*C8*C7+4*Q2^2*C8*C7*k-4*C7^2*Q2^2+4*C7^2*Q2^2*k))/

(C7*Q2*(C8+C7));

R7 = 1/(R8*C7*C8);

%define highpass filter transferfunction

nom3 = [k*R5*R6*C5*C6 0 0];

den3 = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

nom4 = [k*R7*R8*C7*C8 0 0];

den4 = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

%Plot nominal transfer function (i.e. w0 = 1)

H_h1 = tf(nom3,den3)

H_h2 = tf(nom4,den4)

H_h = H_h1*H_h2

%scale values to get crossover at f0

%factor = 100e3; %component scale factor

26.07.09 11:13 C:\Documents and Settings...\butterworth_and_Chebyshev_filter.m 4 of 5

C = C/(f0*2*pi); %scale to freqency

C_desired = 47e-12;

%scale to stadard capacitor value

factor = C/C_desired

C = C/factor %scale to resistors

C5 = C

C6 = C

C7 = C

C8 = C

R5 = R5*factor

R6 = R6*factor

R7 = R7*factor

R8 = R8*factor

%Calculate actual high pass transferfunction

nom3a = [k*R5*R6*C5*C6 0 0];

den3a = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

nom4a = [k*R7*R8*C7*C8 0 0];

den4a = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

H_ha1 = tf(nom3a,den3a);

H_ha2 = tf(nom4a,den4a);

H_ha = H_ha1*H_ha2;

%calculate total band pass transferfunction

H = H_a*H_ha;

%Bodeplots

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

figure(1)

P.Title.String = 'Low pass transfer function';

subplot(2,2,1);

bode(H_a,P);

P.Title.String = 'High pass transfer function';

subplot(2,2,2);

bode(H_ha,P);

P.Title.String = 'Combined band pass transfer function';

figure(2);

bode(H,P);

%%

%figure(1);

%subplot(2,2,1);

26.07.09 11:13 C:\Documents and Settings...\butterworth_and_Chebyshev_filter.m 5 of 5

%bode(Hni,P);

%P.Title.String = 'Active low pass filter with gain';

%subplot(2,2,2);

%title('Active Low Pass');

%bode(G,P);

%P.Title.String = 'Combined potentiometer, HP and LP';

%subplot(2,2,3);

%title('Combined one link');

%bode(G*Hni,P);

%bode(Hp*Hlp,P); only for testing

%subplot(2,2,4);

%title('Full AGC responce');

%bode(Hni*G*Hni*G*Hni*G*Hp*G,P);

2. Matlab script for simulating the intuitive filter
frequency response

26.07.09 11:26 C:\Documents and Settings\Stian O...\potentiometer_and_filter.m 1 of 2

%Script that gives the bode responce of the variable gain amplifier

%and filter designed by the intuitive solution

clc

clear all

%wiper position (0 means top, full input signal)

hold on

N = 0.0;

%potentiometer end-to-end resistance

RP = 100e3;

%high pass capacitor value

C1 = 5.6e-12

%desired lower corner frequency [Hz]

f0 = 60000;

%filter resistor value

R1 = 1/(C1*2*pi*f0)

%low pass filter resistor value

R3 = 423.3e3;

R2 = 17637;

%low pass filter capacitor value

C2 = 4.7e-12;

%Wiper resistance

RW = 250;

%Wiper capacitance

CW = 25e-12;

%calculate potentimeter resistor values.

RL = RP*(1-N)

RH = RP*N

%transfer function for an ideal potentiometer and high pass filter

Hi = tf([RL*R1*C1 0],[C1*(R1*RL+RH*RL+RH*R1) RH+RL])

%transfer function for high pass filter without potentiometer

Hp = tf([R1*C1 0],[R1*C1 1])

%transfer function for an non-ideal potentiometer with HP-filter

Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+

((RW+R1)*C1+RW*CW)*RL) RL+RH])

%Transferfunction for the Active low pass filter with gain

G = 1+tf([R3],[R2*R3*C2 R2]);

hold on

%Plot transfer functions

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

P.Title.String = 'Potentiometer with high pass filter';

jadda = 'jadda';

26.07.09 11:26 C:\Documents and Settings\Stian O...\potentiometer_and_filter.m 2 of 2

figure(1);

subplot(2,2,1);

bode(Hni,P);

P.Title.String = 'Active low pass filter with gain';

subplot(2,2,2);

title('Active Low Pass');

bode(G,P);

P.Title.String = 'Combined potentiometer, HP and LP';

subplot(2,2,3);

title('Combined one link');

bode(G*Hni,P);

bode(Hp*Hlp,P); only for testing

P.Title.String = 'Complete AGC with 4 gain stages, 3 potentiometes and 4 HP';

subplot(2,2,4);

title('Full AGC responce');

bode(Hni*G*Hni*G*Hni*G*Hp*G,P);

%Calculate poles as a function of potentiometer position.

K = 255;

for k=1:K

 RL = RP*(1-k/K);

 RH = RP*k/K;

 den = [CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+((RW+R1)

*C1+RW*CW)*RL) RL+RH];

 r_temp = -roots(den)/(2*pi);

 r1(k) = r_temp(1);

 r2(k) = r_temp(2);

end

%check that the upper pole does not efffect the frequency band of interesst

lowest_high_pole = min(r1)

%check the crossoverfreqeuncy variation

variation = max(r2)-min(r2)

3. Matlab script for simulating the Chebyshev filter with
digital potentiometers

26.07.09 11:35 C:\Documents and...\Chebyshev_with_potentiomter_and_high_pass.m 1 of 5

%Script that gives the bode responce of the chebyshev filter, potentiometer

%and the high pass potentiometer noise removal filter

clc

clear all

hold on

%desired lower corner frequency [Hz]

f0 = 60000;

%desired higher corner frequency [Hz]

f1 = 80000;

%desired passband gain per amplifier

k = 7;

%low pass filter order

n_l = 4;

%high pass filter order

n_h = 4;

%Uncomment the poles to use

%calculate general (w0 = 1) lowpass butterworth pole positions

all_poles = roots([(-1)^n_l, zeros(1,2*n_l-1),1]);

negative_real_poles = all_poles(find(real(all_poles)<0));

den = poly(negative_real_poles);

%chebychev poles with 3dB rippel

%negative_real_poles = [-0.0340675444 + 0.3785869383i

% -0.0340675444 - 0.3785869383i

% -0.0822463277 + 0.1568158444i

% -0.0822463277 - 0.1568158444i];

%chebychev poles with 1 dB rippel

negative_real_poles = [-0.0558133907 + 0.3933445644i

 -0.0558133907 - 0.3933445644i

 -0.1347454448 + 0.1629286533i

 -0.1347454448 - 0.1629286533i];

%calculate desired w0/Q for filter tranferfunction one and 2

w0_Q1 = -(negative_real_poles(1)+negative_real_poles(2));

w0_Q2 = -(negative_real_poles(3)+negative_real_poles(4));

%plot general low pass function

%H_butt = tf([k*k],den);

%bode(H_butt);

%plot general high pass function

H_butt = tf([k*k 0 0 0 0],den)

%bode(H_butt)

26.07.09 11:35 C:\Documents and...\Chebyshev_with_potentiomter_and_high_pass.m 2 of 5

%hold on

% ******* LOW PASS CALCULATIONS *******

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C1 = C;

C2 = C;

C3 = C;

C4 = C;

%calcualte Resistor values for w0 = 1 for first sallen key circuit

w0 = 1; %do not change!

Q1 = w0/w0_Q1;

%R1 = (-1/Q1+sqrt(1/Q1^2-4*(C1+C2*(1-k))*1/C2))/(2*(C1+C2*(1-k)))

R1 = 1/2*(w0*C2-sqrt(w0^2*C2^2-4*Q1^2*C2*C1-4*Q1^2*C2^2+4*Q1^2*C2^2*k))/(Q1*C2*(C1+C2-

C2*k));

R2 = 1/(R1*C1*C2);

%calcualte Resistor values for w0 = 1 for second sallen key circuit

Q2 = w0/w0_Q2;

R3 = 1/2*(w0*C4-sqrt(w0^2*C4^2-4*Q2^2*C4*C3-4*Q2^2*C3^2+4*Q2^2*C4^2*k))/(Q2*C4*(C3+C4-

C4*k));

R4 = 1/(R3*C3*C4);

%define lowpass filter transferfunction

nom1 = [k];

den1 = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

nom2 = [k];

den2 = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

%Plot nominal low pass transfer function (i.e. w0 = 1)

H_l1 = tf(nom1,den1);

H_l2 = tf(nom2,den2);

H_l = H_l1*H_l2;

%scale values to get crossover at f0

factor = 100e3; %component scale factor

C = C/(f1*2*pi); %scale to freqency

C = C/factor %scale to resistors

C1 = C

C2 = C

C3 = C

C4 = C

R1 = R1*factor

R2 = R2*factor

R3 = R3*factor

R4 = R4*factor

%Calculate actual transferfunction

nom1a = [k];

26.07.09 11:35 C:\Documents and...\Chebyshev_with_potentiomter_and_high_pass.m 3 of 5

den1a = [R1*R2*C1*C2 (R1*C1+R2*C1 + R1*C2*(1-k)) 1];

nom2a = [k];

den2a = [R3*R4*C3*C4 (R3*C3+R4*C3 + R3*C4*(1-k)) 1];

H_la1 = tf(nom1a,den1a);

H_la2 = tf(nom2a,den2a);

H_a = H_la1*H_la2;

%******* HIGH PASS CALCULATIONS *******

%choose C1=C2=C3=C4=C

C = 1;%47e-12;

C5 = C;

C6 = C;

C7 = C;

C8 = C;

%calcualte Resistor values for w0 = 1 for third sallen key circuit

w0 = 1; %do not change!

Q1 = w0/w0_Q1

R6 = 1/2*(w0*C5+sqrt(w0^2*C5^2-4*Q1^2*C6*C5+4*Q1^2*C6*C5*k-4*C5^2*Q1^2+4*C5^2*Q1^2*k))/

(C5*Q1*(C6+C5));

R5 = 1/(R6*C5*C6);

%calcualte Resistor values for w0 = 1 for fourth sallen key circuit

Q2 = w0/w0_Q2

Q1 = w0/w0_Q1

R8 = 1/2*(w0*C7+sqrt(w0^2*C7^2-4*Q2^2*C8*C7+4*Q2^2*C8*C7*k-4*C7^2*Q2^2+4*C7^2*Q2^2*k))/

(C7*Q2*(C8+C7));

R7 = 1/(R8*C7*C8);

%define highpass filter transferfunction

nom3 = [k*R5*R6*C5*C6 0 0];

den3 = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

nom4 = [k*R7*R8*C7*C8 0 0];

den4 = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

%Plot nominal transfer function (i.e. w0 = 1)

H_h1 = tf(nom3,den3)

H_h2 = tf(nom4,den4)

H_h = H_h1*H_h2

%scale values to get crossover at f0

factor = 100e3; %component scale factor

C = C/(f0*2*pi); %scale to freqency

C = C/factor %scale to resistors

C5 = C

C6 = C

C7 = C

26.07.09 11:35 C:\Documents and...\Chebyshev_with_potentiomter_and_high_pass.m 4 of 5

C8 = C

R5 = R5*factor

R6 = R6*factor

R7 = R7*factor

R8 = R8*factor

%Calculate actual high pass transferfunction

nom3a = [k*R5*R6*C5*C6 0 0];

den3a = [R5*R6*C5*C6 (R6*C6 + R6*C5 + R5*C6*(1-k)) 1];

nom4a = [k*R7*R8*C7*C8 0 0];

den4a = [R7*R8*C7*C8 (R8*C8 + R8*C7 + R7*C8*(1-k)) 1];

H_ha1 = tf(nom3a,den3a);

H_ha2 = tf(nom4a,den4a);

H_ha = H_ha1*H_ha2;

%calculate total band pass transferfunction

H = H_a*H_ha;

%Bodeplots

P = bodeoptions;

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz';

P.Xlim = [1000 500000];

%P.Title.String = 'Variable gain amp and ';

figure(1);

bode(H,P);

hold on

%******* Potentiometer with high pass filter transfer function ****

%wiper position (0 means top, full input signal)

N = 0.0;

%potentiometer end-to-end resistance

RP = 100e3;

%high pass capacitor value

C1 = 150e-12;

%filter resistor value

R1 = 106.1e3;

%Wiper resistance

RW = 250;

%Wiper capacitance

CW = 25e-12;

%calculate potentimeter resistor values.

RL = RP*(1-N)

RH = RP*N

%total transfer function for an non-ideal potentiometer with high pass

26.07.09 11:35 C:\Documents and...\Chebyshev_with_potentiomter_and_high_pass.m 5 of 5

%filter

Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)*RH+

((RW+R1)*C1+RW*CW)*RL) RL+RH])

%The complete transferfunction for low pass chebyshev, high pass Chebyshev,

%and potentiomters with filter

TF_tot = Hni*Hni*Hni*H;

bode(TF_tot,P);

pass_band_gain = evalfr(TF_tot,69000*2*pi)

gain = 10^(pass_band_gain/20)

Hni_fixed=Hni;

K = 256;

step_size = 1;

for k=1:step_size:K-1

 RL = RP*(1-k/K);

 RH = RP*k/K;

 Hni= tf([RL*R1*C1 0],[CW*C1*R1*((RL+RW)*RH+RL*RW) (((C1+CW)*RL+(RW+R1)*C1+RW*CW)

*RH+((RW+R1)*C1+RW*CW)*RL) RL+RH]);

 TF_tot = Hni*Hni_fixed*Hni_fixed*H;

 % bode(TF_tot,P);

 test((k-1)/step_size+1) = freqresp(TF_tot,69e3*2*pi);

 test((k-1)/step_size+1) = sqrt(real(test((k-1)/step_size+1))^2 + imag(test((k-1)

/step_size+1))^2);

 %for p=1:size(temp)

 % bode_diagrams(k,p) = temp(p);

 %end

end

figure(2);

plot(test);

4. Screenshots of filter design with FilterPro

5. Schematics

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\MasterSchematic.SchDocDrawn By:

AGC_Input AGC_Output

Gain_control

V
C
C
_
A
G
C

Variable Gain amplifier and filter
AGC2.SchDoc

Signal_in

Reseption_in

Regulator_out

VCC_MCU

Detector_interrupt

VCC_LEDS

GPIO

JTAG
Analogue
USART

SPI

MCU and Flash memory
MCU2.SchDoc

V
C
C
_
to
_
A
G
C

Current_measurement_Detector

VCC_to_Preamp

SGND_input

External_power_input

Current_measurement_AGC

VCC_to_MCU

VCC_to_Detector

Current_measurement_MCU

USB_Power_input

Current_measurement_Total

VCC_to_header

VCC_to_LEDs

Power Distribution
Power.SchDoc

Current_measurement_AGC

GPIO

VCC_Regulated

External_power

Analogue

USART
Current_measurement_MCU

JTAG

Current_measurement_Detector

Current_measurement_Total

SPI

USB_power

Hydrophone_signal

Connectors and Headers
Connect.SchDoc

SPI

V
C
C
_
D
et
ec
to
r

Input_signal

Output_analog
Output_digital

Reception detector
Detector.SchDoc

Output_Preamp

V
C
C
_
P
re
am

p

Input

Preamp
Preamp.SchDoc

Main schematic

1 7

page 2 page 3 page 4

page 5 page 6

page 7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\Preamp.SchDocDrawn By:

Input

1
4

3

-

+

5
2

U18
LMP7715

VCC_Preamp

10mH

L1
Inductor

100n

C65

100k

R44

100k

R45
GND

Output_Preamp

4.7uF C64

GND
1 2
3 4
5 6
7 8

P4

Input selection

VCC_Preamp

100n C66

VCC_Preamp

GND

Decoupling

SGND

2

Preamp

7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\AGC2.SchDocDrawn By:

7H
8

L
1

Vdd
6

GND
2

D
IN

4

S
C
L
K

5

C
S

3

U1
MAX5401EKA

SGND
SGND

69.8k

R2

115k

R3

15pF

C1

GND
SGND

64.9k

R11

130k

R12

4.7pF

C5

GND

SGND

GND

191k

R7

8k

R6

SGND

GND

GND

SGND

174k

R19

22pF

C12

33pF

C11

GND
SGND

422k

R20

33pF

C13

33pF
C14

106k
R4150p

C2
7H

8
L

1

Vdd
6

GND
2

D
IN

4

S
C
L
K

5

C
S

3

U3
MAX5401EKA

SGND
SGND GND

191k

R9

8k

R8

SGND

GND 106k
R5

150pF

C3

7H
8

L
1

Vdd
6

GND
2

D
IN

4

S
C
L
K

5

C
S

3

U6
MAX5401EKA

SGND
SGND GND

191k

R18

8k

R17

SGND

GND 106k
R14

150pF

C8

AGC_Input

AGC_Output

47pF
C4

SGND

48.7k

R1

7
6

5

-

+

8
4

U4B
LMV552MM

SGND
GND

191k

R16

8k

R15

106k
R13

SGND

150pF

C6

100pF
C7

SGND

64.9k

R10

1
2

3

-

+

8
4

U5A
LMV652MM

33pF

C9

56.2k
R22

SGND
SGND

23.2k
R21

22pF

C10

7
6

5
+

-

8
4

U5B

LMV652MM

VCC_AGC
VCC_AGC

VCC_AGC VCC_AGC
VCC_AGC

VCC_AGC VCC_AGC

VCC_AGC
VCC_AGC

VCC_AGC

VCC_AGC VCC_AGC

VCC_AGC

100nF
C15

100nF
C16

100nF
C17

100nF
C18

100nF
C19

100nF
C20

100nF
C21

GND

VCC_AGC

Decoupling

Gain_control

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

SGSG

M
IS
O

M
O
S
I

S
C
K

N
P
C
S
0

N
P
C
S
1

N
P
C
S
2

N
P
C
S
3

C
S
_
D
F

SPI

1
2

3
+

-

8
4

U2A
LMV552MM

7
6

5

-

+

8
4

U2B
LMV552MM

7
6

5

-

+

8
4

U7B
LMV552MM

1
2

3
+

-

8
4

U4A
LMV552MM

1
2

3
+

-

8
4

U7A
LMV552MM

Variable gain amplifier and filter

3 7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\Detector.SchDocDrawn By:

4.7uF

C23 10nF

C24

3.48k

R25

10k
R26

GNDGND

1
2

3
+

-

8
4

U9A
100R

VCC_Detector

Input_signal

Output_digital

Output_analog

300k

R23

100k

R24

10nF

C22

GND VCC_Detector

GND

7H
8

L
1

Vdd
6

GND
2

D
IN

4

S
C
L
K

5

C
S

3

U8
MAX5401EKA

GND

VCC_Detector

GND

SPI

VCC_Detector

GND

100nF

C25

100nF

C26

VCC_Detector

GND

Decoupling

VCC_Detector

VCC_Detector

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

252k
R50

40k
R51

GND

D1

BAT54T1G

7
6

5

-

+

8
4

U9B
LMV552MM

100R

R?

4

Reception Detector

7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\Connect.SchDocDrawn By:

1 2
3 4
5 6
7 8
9 10

P7

JTAG

1 2
3 4
5 6
7 8
9 10

P8

GPIO

1 2
3 4
5 6
7 8
9 10

P10

SPI and USART

1
2

P9

Power input

V+
1

DM
2

DP
3

GND
4S

H
D

5

J1
USB connector

1
2
3
4
5

P5

Current Sense

1
2
3

P12

Power output

1
2
3
4

P11

Analogue

Connectors and headers

VCCIO
4

VCC
20

USBDM
16

USBDP
15

NC
8

RESET#
19

NC
24

OSCI
27

OSCO
28

3V3OUT
17

G
N
D

1
8

G
N
D

2
1

T
E
S
T

2
6

G
N
D

7
A
G
N
D

2
5

TXD
1

RXD
5

RTS#
3

CTS#
11

DTR#
2

DSR#
9

DCD#
10

RI#
6

CBUS0
23

CBUS1
22

CBUS2
13

CBUS3
14

CBUS4
12

U19 FT232R - USB - UART bridge

F2

Ferrite bed
10nF

C67

GND

GND

D9

D10

100R

R48

100R

R49

100nF

C68

4.7uF

C69

GND

GND

1
2
3
4

8
7
6
5

S2

Resistor select

1k

R46

1k

R47

USART

GND

External_power

JTAG

GND

VCC_Regulated
VCC_R

VCC_R
GND

VCC_R

VCC_R

GNDSGND

Analogue

GND

GPIO

GND

VCC_R

SPI

GND

Current_measurement_AGC

Current_measurement_MCU
Current_measurement_Detector

Current_measurement_Total

USB_power

1
2

P6

Hydrophone input

GND

Hydrophone_signal

TxD0
RxD1

USART

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

TMS
TDO
TDI
TCK

RESET

JTAG

ADC4
ADC1
ADC0

Analogue

5 7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\Power.SchDocDrawn By:

F1

Fuse 1

D8

IN
1

G
N
D

2

Cout
4

SD
3

Vout
5

U17
LP3992IMF, 1.5V

IN
3

G
N
D

1

OUT
2

U12 LMS8117AMP, 3.3V

10uF
C60

GND
GND

10uF
C61

GND
100R

R37

GND

VCC_to_AGC

VCC_to_Detector

VCC_to_MCU

VCC_to_Preamp

OUT
1

G
N
D

2
V
+

5

IN+
3

IN -
4

U13
INA138NA, Current shunt monitor

socket
R35

OUT
1

G
N
D

2
V
+

5

IN+
3

IN -
4

U14
INA138NA, Current shunt monitor

socket
R38

OUT
1

G
N
D

2
V
+

5

IN+
3

IN -
4

U16
INA138NA, Current shunt monitor

socket
R42

499k
R36

GND

GND

GND

Current_measurement_AGC

Current_measurement_Detector

Current_measurement_MCU

OUT
1

G
N
D

2
V
+

5

IN+
3

IN -
4

U15
INA138NA, Current shunt monitor

socket
R39

GND

Current_measurement_Total

Power Distribution

1uF
C62

GND

GND

1uF
C63

SGND

GND

12
34

P3

Regulator ON/OFF

12
34

P2

Regulator Select

SGND_input

GND

499k
R40

499k
R43

499k
R41

VCC_to_header

VCC_to_LEDs

3

1

2

Q1

FDV304P

1M
R52

External_power_input
USB_Power_input

GND

12
34

P1

Power Source Select

6 7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 26.07.2009 Sheet of
File: C:\Documents and Settings\..\MCU2.SchDocDrawn By:

Signal_in
Reseption_in

G
N
D

1

TCK
2

TDI
3

TDO
4

TMS
5

V
D
D
C
O
R
E

6

(A
D
C
0
)
P
A
0
3

7

(A
D
C
1
)
P
A
0
4

8

(I
N
T
0
)
P
A
0
5

9

(I
N
T
1
)
P
A
0
6

1
0

(A
D
C
4
)
P
A
0
7

1
1

PA08
12

G
N
D

1
3

A
D
V
R
E
F

1
4

V
D
D
A
N
A

1
5

V
D
D
O
U
T

1
6

V
D
D
IN

1
7

V
D
D
C
O
R
E

1
8

G
N
D

1
9

PA09 (NPCS2)
20

PA10 (NPCS3)
21

Xin32KHz
22

Xout32kHz
23

V
D
D
IO

2
4

P
A
1
3

2
5

PA14 (MOSI)
26

PA15 (SCK)
27

PA16 (NPCS0)
28

PA17 (NPCS1)
29

Xin
30

Xout
31

P
A
2
0

3
2

P
A
2
1

3
3

P
A
2
2

3
4

PA23 (TxD0)
35

V
D
D
IO

3
6

G
N
D

3
7

DP
38

DM
39

VBUS
40

V
D
D
P
L
L

4
1

V
D
D
C
O
R
E

4
2

PA24 (RxD0)
43

PA25 (MISO)
44

P
A
2
6

4
5

P
A
2
7

4
6

RESET_N
47

V
D
D
IO

4
8

U10
AT32UC3B1256

GND

SPI

GPIO

JTAG

USART

Analogue

Regulator_out

VDDCORE

VCC_MCU

1
0
0
n
F

C44
3
3
n
F

C45

VDDANA and ADVREF

VDDIN

1
0
0
n
F

C42

3
3
n
F

C43

1
0
0
n
F

C40

3
3
n
F

C41

1
0
0
n
F

C38

3
3
n
F

C39

4
.7
u
F

C37

VDDIO

1
0
0
n
F

C35

3
3
n
F

C36

4
.7
u
F

C34

VDDIN
VDDIN

GND

2
.2
u
F

C47

VDDOUT

4
7
0
p
F

C48

1
0
0
n
F

C50

3
3
n
F

C51

2
.7
n
F

C52

3
3
n
F

C53

2
.7
n
F

C54

3
3
n
F

C55

2
.7
n
F

C56

VDDCORE

2
.2
u
F

C57

VDDPLL

GND

VDDCORE

Place close to pinPlace close to pinPlace close to pin Place close to pin

Place close to pin Place close to pin Place close to pinPlace

D2

D3

D4

D5

D6

D7

100R

R27

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

S1

SW DIP-8

SW1

SW2

SW3

GND

GND

GND

10k R33

VDDIN

1
0
0
n
F

C33

1
0
0
n
F

C27

1
0
0
n
F

C30

SI
1

SCK
2

RESET
3

CS
4

WP
5

VCC
6

GND
7

SO
8

U11

AT45DB321

VDDIN

GND
10k R34

close to pin

100R

R28

100R

R29

100R

R30

100R

R31

100R

R32

1
2

Y1
12MHz

1
3

Y2
32.000kHz

33nF

C28

33nF
C29

GND

GND

33nF
C31

33nF
C32

GND

GND

1
0
0
n
F

C46

Dataflash VCC

Detector_interrupt

Decoupling

VCC_LEDS

G
P
IO

0

G
P
IO

1

G
P
IO

2

G
P
IO

3

G
P
IO

4

G
P
IO

5

G
P
IO

6

G
P
IO

7

GPIO

A
D
C
4

A
D
C
1

A
D
C
0

Analogue

TxD0
RxD1

USART

TMS
TDO
TDI
TCK
RESET

JTAG

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

ADC4
ADC1
ADC0

Analogue

MISO
MOSI
SCK

NPCS0
NPCS1
NPCS2
NPCS3
CS_DF

SPI

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO

Place close to pin
Place

close to pin

Variable gain amplifier and filter

7 7

6. Bill of materials

LibRef Designator Quantity Value Comment

Capacitor C1 1 15pF 0603 capactitor

Capacitor C2 1 150p 0603 capactitor

Capacitor C3, C6, C8 3 150pF 0603 capactitor

Capacitor C4 1 47pF 0603 capactitor

Capacitor C5 1 4.7pF 0603 capactitor

Capacitor C7 1 100pF 0603 capactitor

Capacitor C9, C11, C13, C14 4 33pF 0603 capactitor

Capacitor C10, C12 2 22pF 0603 capactitor

Capacitor C15, C16, C17, C18, C19, C20, C21, C26, C27, C30, C33, C35, C38, C40, C42, C44, C46, C50, C68, R20 100nF 0603 capactitor

Capacitor C22, C24, C67 3 10nF 0603 capactitor

Capacitor C23, C34, C37, C64, C695 4.7uF 0603 capactitor

Capacitor C28, C29, C31, C32, C36, C39, C41, C43, C45, C51, C53, C5512 33nF 0603 capactitor

Capacitor C47, C57 2 2.2uF 0603 capactitor

Capacitor C48 1 470pF 0603 capactitor

Capacitor C52, C54, C56 3 2.7nF 0603 capactitor

C_pol C60, C61 2 10uF C_pol

Capacitor C62, C63 2 1uF 0603 capactitor

Capacitor C65, C66 2 100n 0603 capactitor

BAT54T1G D1 1 BAT54T1G

LED D2, D3, D4, D5, D6, D7, D8, D9, D109 SMD LED

Fuse 1 F1 1 Fuse 1

Resistor F2 1 Ferrite bed

USB connector J1 1 USB connector

Inductor L1 1 10mH Inductor

Header 2X2 P1, P2, P3 3 Power Source Select, Regulator ON/OFF, Regulator Select

Header 4X2 P4 1 Input selection

Header 5 P5 1 Current Sense

Header 2 P6, P9 2 Hydrophone input, Power input

Header 5X2 P7, P8, P10 3 GPIO, JTAG, SPI and USART

Header 4 P11 1 Analogue

Header 3 P12 1 Power output

FDV304P Q1 1 FDV304P

Resistor R1 1 48.7k 0603 Resistor

Resistor R2 1 69.8k 0603 Resistor

Resistor R3 1 115k 0603 Resistor

Resistor R4, R5, R13, R14 4 106k 0603 Resistor

Resistor R6, R8, R15, R17 4 8k 0603 Resistor

Resistor R7, R9, R16, R18 4 191k 0603 Resistor

Resistor R10, R11 2 64.9k 0603 Resistor

Resistor R12 1 130k 0603 Resistor

Resistor R19 1 174k 0603 Resistor

Resistor R20 1 422k 0603 Resistor

Resistor R21 1 23.2k 0603 Resistor

Resistor R22 1 56.2k 0603 Resistor

Resistor R23 1 300k 0603 Resistor

Resistor R24 1 100k 0603 Resistor

Resistor R25 1 3.48k 0603 Resistor

Resistor R26, R33, R34 3 10k 0603 Resistor

Resistor R27, R28, R29, R30, R31, R32, R37, R48, R49, R?10 100R 0603 Resistor

Res2 R35, R38, R39, R42 4 socket Res2

Resistor R36, R40, R41, R43 4 499k 0603 Resistor

Potentiometer R44, R45 2 100k Pot

Resistor R46, R47 2 1k 0603 Resistor

Resistor R50 1 252k 0603 Resistor

Resistor R51 1 40k 0603 Resistor

Resistor R52 1 1M 0603 Resistor

SW DIP-8 S1 1 SW DIP-8

SW DIP-4 S2 1 Resistor select

Button SW1, SW2, SW3 3 Push button

MAX5401EKA U1, U3, U6, U8 4 MAX5401EKA

LMV552MM U2, U4, U7, U9 4 100R, LMV552MM

LMV652MM U5 1 LMV652MM

AT32UC3B1256_n U10 1 AT32UC3B1256

AT45DB321-SU U11 1 AT45DB321

LMS8117AMP U12 1 LMS8117AMP, 3.3V

INA138NA, Current shunt monitorU13, U14, U15, U16 4 INA138NA, Current shunt monitor

LP3992IMF U17 1 LP3992IMF, 1.5V

LMP7715 U18 1 LMP7715

FT232R - USB - UART bridgeU19 1 FT232R - USB - UART bridge

XTAL Y1, Y2 2 12MHz, 32.000kHz

7. PCB assembly diagram

8. C-code for prototype testing

1) main.c
2) config.h
3) ADC_functions.c
4) ADC_functions.h
5) CLOCK_functions.c
6) CLOCK_functions.h
7) DSP_functions.c
8) DSP_functions.h
9) EIC_functions.c
10) EIC_functions.h
11) RTC_functions.c
12) RTC_functions.h
13) SPI_functions.c
14) SPI_functions.h
15) TC_functions.c
16) TC_functions.h
17) TEST_functions.c
18) TEST_functions.h
19) USART_fucntions.c
20) USART_fucntions.h

Programmer's Notepad - main.c

/*
FILE: main.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Main file for the project
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include <avr32\io.h>
#include "gpio.h"
#include "usart.h"
#include "pm.h"
#include "USART_functions.h"
#include "config.h"
#include "CLOCK_functions.h"
#include "stdio.h"
#include "tc.h"
#include "TC_functions.h"
#include "adc.h"
#include "ADC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"
#include "intc.h"
#include "dsp_debug.h"
#include "SPI_functions.h"
#include "spi.h"
#include "rtc.h"
#include "RTC_functions.h"
#include "eic.h"
#include "EIC_functions.h"
#include "TEST_functions.h"

void display_level((((unsigned short level););););

int main((((void)))) {{{{

//Initialize modules
INTC_init_interrupts();();();();
init_clock();();();();
init_USART();();();();
init_ADC();();();();
init_TC();();();();
init_SPI();();();();
init_RTC();();();();
init_EIC();();();();

usart_write_line((((USB_USART,,,, "\n\n *** Telemetry Buoy Running ***\n"););););

//set reception detector threshold to 1 V.
set_threshold((((80););););

//set variable gain amplifier gain to 2000, or actually 380 due to unlinearity
set_gain((((2000););););

while((((TRUE););););

}}}}

//function outputs the signal level on the LEDS as a bar graph
void display_level((((unsigned short level))))
{{{{

char leds ==== ((((level////1024 ++++ 0.5););););

gpio_set_gpio_pin((((LED6););););
gpio_set_gpio_pin((((LED5););););
gpio_set_gpio_pin((((LED4););););
gpio_set_gpio_pin((((LED3););););
gpio_set_gpio_pin((((LED2););););
gpio_set_gpio_pin((((LED1););););

if ((((leds >=>=>=>= 1))))
gpio_clr_gpio_pin((((LED1););););

if ((((leds >=>=>=>= 2))))

Page 1, 26.07.2009 - 15:30:41

Programmer's Notepad - main.c

gpio_clr_gpio_pin((((LED2););););
if ((((leds >=>=>=>= 3))))

gpio_clr_gpio_pin((((LED3););););
if ((((leds >=>=>=>= 4))))

gpio_clr_gpio_pin((((LED4););););
if ((((leds >=>=>=>= 5))))

gpio_clr_gpio_pin((((LED5););););
if ((((leds >=>=>=>= 6))))

gpio_clr_gpio_pin((((LED6););););

}}}}

Page 2, 26.07.2009 - 15:30:41

Programmer's Notepad - config.h

/*
FILE: config.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes configuration parameters
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef config_h
#define config_h

#include "usart.h"

//Specify the base operating frequency
#define F_CPU 60000000

//Specify the clock speed of the timer/counter used for sampling
#define F_TIM 15000000

//Specify the sampling frequency
#define F_SMP 57692

//specify the number of samples per burst
#define NUMBER_OF_SAMPLES 64 //must be 6*n due to filter optimization

//specify maximum analogue gain
#define MAX_GAIN 178828

//specify the gain of the cascaded stages
#define GAIN1 25
#define GAIN2 625
#define GAIN3 25

//specify the number of steps for the digital potentiometers.
#define POT_RES 256

//Uncomment to select clock source
#define EXTERNAL_CRYSTAL 1
//#define EXTERNAL_CLOCK 1

//The RTC timer prescaler
#define RTC_PRESCALER 4 //will provide the RTC counter to count milliseconds

//GPIO MAP DEFINES
//ADC signal input
#define SIGNAL_IN_PIN AVR32_ADC_AD_0_PIN
#define SINGAL_IN_ADC_CHANNEL 0
#define SIGNAL_IN_ADC_FUNCTION AVR32_ADC_AD_0_FUNCTION

//ADC signal level
#define SIGNAL_LEVEL_PIN AVR32_ADC_AD_1_PIN
#define SIGNAL_LEVEL_CHANNEL 1
#define SIGNAL_LVEL_FUNCTION AVR32_ADC_AD_1_FUNCTION

//ADC spare input
#define ADC_EXTRA_PIN AVR32_ADC_AD_4_PIN
#define ADC_EXTRA_CHANNEL 4
#define ADC_EXTRA_FUNCTION AVR32_ADC_AD_4_FUNCTION

//Reception detecor interrupt pin
#define EXT_INT_RECEPTION_PIN AVR32_EIC_EXTINT_1_PIN
#define EXT_INT_RECEPTION_FUNCTION AVR32_EIC_EXTINT_1_FUNCTION
#define EXT_INT_RECEPTION_LINE EXT_INT1
#define EXT_INT_RECEPTION_IRQ AVR32_EIC_IRQ_1

//SPI pin definitions
define SPI_MOSI_PIN AVR32_SPI_MOSI_0_0_PIN
define SPI_MOSI_FUNCTION AVR32_SPI_MOSI_0_0_FUNCTION
define SPI_MISO_PIN AVR32_SPI_MISO_0_0_PIN
define SPI_MISO_FUNCTION AVR32_SPI_MISO_0_0_FUNCTION
define SPI_SCK_PIN AVR32_SPI_SCK_0_0_PIN
define SPI_SCK_FUNCTION AVR32_SPI_SCK_0_0_FUNCTION
define SPI_NPCS0_PIN AVR32_SPI_NPCS_0_0_PIN
define SPI_NPCS0_FUNCTION AVR32_SPI_NPCS_0_0_FUNCTION
define SPI_NPCS1_PIN AVR32_SPI_NPCS_1_0_PIN

Page 1, 26.07.2009 - 15:28:52

Programmer's Notepad - config.h

define SPI_NPCS1_FUNCTION AVR32_SPI_NPCS_1_0_FUNCTION
define SPI_NPCS2_PIN AVR32_SPI_NPCS_2_0_PIN
define SPI_NPCS2_FUNCTION AVR32_SPI_NPCS_2_0_FUNCTION
define SPI_NPCS3_PIN AVR32_SPI_NPCS_3_0_PIN
define SPI_NPCS3_FUNCTION AVR32_SPI_NPCS_3_0_FUNCTION
define SPI_DATAFLASH_CS AVR32_PIN_PA08

//USB <--> USART definitions
define USB_USART (&AVR32_USART1)
define USB_USART_RX_PIN AVR32_USART1_RXD_0_0_PIN
define USB_USART_RX_FUNCTION AVR32_USART1_RXD_0_0_FUNCTION
define USB_USART_TX_PIN AVR32_USART1_TXD_0_0_PIN
define USB_USART_TX_FUNCTION AVR32_USART1_TXD_0_0_FUNCTION

//PIN definitions
#define LED6 AVR32_PIN_PA27
#define LED5 AVR32_PIN_PA26
#define LED4 AVR32_PIN_PA22
#define LED3 AVR32_PIN_PA21
#define LED2 AVR32_PIN_PA20
#define LED1 AVR32_PIN_PA13

// USART options.
static const usart_options_t USART_OPTIONS ====

{{{{
....baudrate ==== 9600,,,,
....charlength ==== 8,,,,
....paritytype ==== USART_NO_PARITY,,,,
....stopbits ==== USART_1_STOPBIT,,,,
....channelmode ==== USART_NORMAL_CHMODE

};};};};

#endif

Page 2, 26.07.2009 - 15:28:52

Programmer's Notepad - ADC_functions.c

/*
 * ADC_functions.c
 *
 * Created on: 26.jun.2009
 * Author: Stian O. Moen
 *
 */

#include "ADC_functions.h"
#include "gpio.h"
#include "config.h"
#include "adc.h"
#include "intc.h"
#include "USART_functions.h"
#include "TC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"

volatile signed int sample_nr;;;;

A_ALIGNED dsp16_t sample[[[[NUMBER_OF_SAMPLES];];];];

volatile char sample_flag;;;;

__attribute__((((((((__interrupt__))))))))
static void ADC_complete_irq((((void))))
{{{{

//gpio_clr_gpio_pin(AVR32_PIN_PA06);
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;

if ((((sample_nr <<<< NUMBER_OF_SAMPLES))))
{{{{

sample[[[[sample_nr]]]] ==== ((((adc->->->->LCDR....ldata ---- dc_offset)*)*)*)*32;;;;
sample_nr++;++;++;++;

}}}}
else
{{{{

disable_sampling();();();();
// Clear the interrupt flag by reading the ADC_LCDR register.
volatile unsigned short dummy ==== adc->->->->LCDR....ldata;;;;

}}}}

}}}}

void init_ADC((((void))))
{{{{

// GPIO pin/adc-function map.
static const gpio_map_t ADC_GPIO_MAP ====

{{{{
{{{{AVR32_ADC_AD_0_PIN,,,, AVR32_ADC_AD_0_FUNCTION},},},},
{{{{AVR32_ADC_AD_1_PIN,,,, AVR32_ADC_AD_1_FUNCTION},},},},

};};};};

// ADC IP registers address
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;

// Assign and enable GPIO pins to the ADC function.-
gpio_enable_module((((ADC_GPIO_MAP,,,, sizeof((((ADC_GPIO_MAP)))) //// sizeof((((ADC_GPIO_MAP[[[[0]));]));]));]));

// configure ADC
adc_configure((((adc););););

// Enable the ADC channels.
adc_enable((((adc,,,,SINGAL_IN_ADC_CHANNEL););););
//adc_enable(adc,SIGNAL_LEVEL_CHANNEL);

//change prescaler settings to satisfy the meximum ADC frequency limitation
adc->->->->MR....prescal ==== 3;;;; //prescaler = div16

//enable hardware trigger from timer counter TIOA channel 0
adc->->->->MR....trgen ==== 1;;;;
adc->->->->MR....trgsel ==== 0;;;;

Disable_global_interrupt();();();();

Page 1, 26.07.2009 - 15:27:50

Programmer's Notepad - ADC_functions.c

// Initialize interrupt vectors.

// Register the ADC complete interrupt handler to the interrupt controller.
INTC_register_interrupt(&(&(&(&ADC_complete_irq,,,, AVR32_ADC_IRQ,,,, AVR32_INTC_INT1););););

Enable_global_interrupt();();();();

}}}}

//This function will take one sample of the signal output of the variable gain
//amplifier and filter. It is not used.
signed short get_signal_sample((((void))))
{{{{

volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
adc_start((((adc););););
return adc_get_value((((adc,,,, SINGAL_IN_ADC_CHANNEL););););

}}}}

//performs one ADC conversion for the reception detector analogue output.
signed short get_signal_level((((void))))
{{{{

volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
adc_enable((((adc,,,,SIGNAL_LEVEL_CHANNEL););););
DISABLE_ADC_INTERRUPT();();();();
adc_start((((adc););););
return adc_get_value((((adc,,,, SIGNAL_LEVEL_CHANNEL););););

}}}}

Page 2, 26.07.2009 - 15:27:50

Programmer's Notepad - ADC_functions.h

/*
 * ADC_functions.h
 *
 * Created on: 26.jun.2009
 * Author: Stian O. Moen
 */

#ifndef ADC_FUNCTIONS_H_
#define ADC_FUNCTIONS_H_

#include "config.h"
#include "dsp.h"

#define ENABLE_ADC_INTERRUPT() adc->IER.drdy = 1;
#define DISABLE_ADC_INTERRUPT() adc->IER.drdy = 0;

//Prototypes
void init_ADC((((void););););
signed short get_signal_sample((((void););););
signed short get_signal_level((((void););););

extern A_ALIGNED dsp16_t sample[];[];[];[];
extern volatile signed int sample_nr;;;;
extern volatile char sample_flag;;;;

#endif /* ADC_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:28:17

Programmer's Notepad - CLOCK_functions.c

/*
FILE: clock.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Functions for changing system or timer clock source and prescaling
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include "CLOCK_functions.h"

//Init_clock will set the CPU to use the PLL as main oscillator, PLL is
//setup to provide 60Mhz from the external 12MHz crystal

void init_clock((((void))))
{{{{
#ifdef EXTERNAL_CRYSTAL

// Switch main clock to external oscillator 0 (crystal).
pm_switch_to_osc0(&(&(&(&AVR32_PM,,,, FOSC0,,,, AVR32_PM_OSCCTRL0_STARTUP_4096_RCOSC););););

#endif
#ifdef EXTERNAL_CLOCK

//switch to external clock
pm_enable_osc0_ext_clock(&(&(&(&AVR32_PM););););
pm_enable_clk0(&(&(&(&AVR32_PM,,,, 0););););
pm_switch_to_clock(&(&(&(&AVR32_PM,,,, AVR32_PM_MCSEL_OSC0););););

#endif

volatile avr32_pm_t**** pm ==== &&&&AVR32_PM;;;;

/* start PLL0 and switch main clock to PLL0 output */
local_start_pll0((((pm););););

}}}}

/* Start PLL0, enable a generic clock with PLL0 output then switch main clock to PLL0
output.
 All calculations in this function suppose that the Osc0 frequency is 12MHz. */
void local_start_pll0((((volatile avr32_pm_t**** pm))))
{{{{
// pm_switch_to_osc0(pm, FOSC0, OSC0_STARTUP); // Switch main clock to Osc0.

/* Setup PLL0 on Osc0, mul=9 ,no divisor, lockcount=16, ie. 12Mhzx10 = 120MHz output */
/*void pm_pll_setup(volatile avr32_pm_t* pm,

 unsigned int pll,
 unsigned int mul,
 unsigned int div,
 unsigned int osc,
 unsigned int lockcount) {
 */
pm_pll_setup((((pm,,,,

0,,,, // use PLL0
9,,,, // MUL=7 in the formula
1,,,, // DIV=1 in the formula
0,,,, // Sel Osc0/PLL0 or Osc1/PLL1
16);););); // lockcount in main clock for the PLL wait lock

/*
 This function will set a PLL option.
 *pm Base address of the Power Manager (i.e. &AVR32_PM)
 pll PLL number 0
 pll_freq Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency
range 160-240Mhz.
 pll_div2 Divide the PLL output frequency by 2 (this settings does not change the
FVCO value)
 pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster
startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
 */
/* PLL output VCO frequency is 120MHz. We divide it by 2 with the pll_div2=1. This

enable to get later main clock to 60MHz */
pm_pll_set_option((((pm,,,, 0,,,, 1,,,, 1,,,, 0););););

/* Enable PLL0 */
pm_pll_enable((((pm,,,,0););););

/* Wait for PLL0 locked */
pm_wait_for_pll0_locked((((pm)))) ;;;;

Page 1, 26.07.2009 - 15:28:31

Programmer's Notepad - CLOCK_functions.c

//setup PLL
pm_gc_setup((((pm,,,,

EXAMPLE_GCLK_ID,,,,
1,,,, // Use Osc (=0) or PLL (=1), here PLL
0,,,, // Sel Osc0/PLL0 or Osc1/PLL1
0,,,, // disable divisor
0);););); // no divisor

/* Enable Generic clock */
pm_gc_enable((((pm,,,, EXAMPLE_GCLK_ID););););

pm_cksel((((pm,,,, 1,,,, 0,,,, 0,,,, 0,,,, 0,,,, 0););););

// Set one wait-state (WS) for flash controller. 0 WS access is up to 30MHz for
HSB/CPU clock.
// As we want to have 60MHz on HSB/CPU clock, we need to set 1 WS on flash controller.
flashc_set_wait_state((((1););););

pm_switch_to_clock((((pm,,,, AVR32_PM_MCSEL_PLL0);););); /* Switch main clock to 60MHz */
}}}}

Page 2, 26.07.2009 - 15:28:31

Programmer's Notepad - CLOCK_functions.h

/*
FILE: clock.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Functions for changing system or timer clock source and prescaling
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef clock_h
#define clock_h

#include "config.h"
#include "pm.h"
#include "gpio.h"
#include "flashc.h"

define EXAMPLE_GCLK_ID 2
define EXAMPLE_GCLK_PIN AVR32_PM_GCLK_2_PIN
define EXAMPLE_GCLK_FUNCTION AVR32_PM_GCLK_2_FUNCTION
define FOSC0 12000000

void init_clock((((void););););
void local_start_pll0((((volatile avr32_pm_t**** pm););););
#endif

Page 1, 26.07.2009 - 15:28:43

Programmer's Notepad - DSP_functions.c

/*
 * DSP_functions.c
 *
 * Created on: 28.jun.2009
 * Author: Stian O. Moen
 */

#include "dsp.h"
#include "DSP_functions.h"
#include "config.h"
#include "ADC_functions.h"
#include "TC_functions.h"

//The DC level of the signal for the 1.5V regualtor
A_ALIGNED dsp16_t dc_offset ==== 465;;;;

//will reuturn a struct containing the frequency of the highest power with
//the assisated power. The rreturn frequency is scaled to acount for the
//undersampling.
FreqPower_t find_dominating_frequency((((dsp16_complex_t ****complex_vector))))
{{{{

dsp16_t vector_abs[[[[NUMBER_OF_SAMPLES];];];];
dsp16_vect_complex_abs((((vector_abs,,,, complex_vector,,,, NUMBER_OF_SAMPLES););););
//dsp16_debug_print_vect(vector_abs, NUMBER_OF_SAMPLES);
//find highest value
dsp16_t max_value ==== dsp16_vect_max((((vector_abs,,,, NUMBER_OF_SAMPLES););););
//find the location of the highest value

int i ==== 0;;;;
char exit ==== FALSE;;;;
while ((((exit ======== FALSE))))
{{{{

i++;++;++;++;
if ((((max_value ======== vector_abs[[[[i]]]] |||||||| i >=>=>=>= NUMBER_OF_SAMPLES))))

exit ==== TRUE;;;;
}}}}
FreqPower_t return_value;;;;
//calculate the alias frequency in kHz for 64 point two sided FFT
return_value....freq ==== ((((i*(*(*(*(F_SMP////2)/)/)/)/32.0)/)/)/)/1000.0++++F_SMP////1000.0;;;;

return_value....power ==== max_value;;;;
return return_value;;;;

}}}}

//The function will perform a sample burst, remove the DC offset and
//find the dominating frequency and assosiated power. This frequency
//and power is returned
FreqPower_t check_signal((((void))))
{{{{

A_ALIGNED dsp16_complex_t vect1[[[[NUMBER_OF_SAMPLES];];];];
enable_sampling();();();();
while((((sample_flag ======== TRUE););););
//remove DC
int i;;;;
for ((((i ==== 0;;;; i <<<< NUMBER_OF_SAMPLES;;;; i++)++)++)++)
{{{{

sample[[[[i]]]] -=-=-=-= dc_offset;;;;
}}}}

dsp16_trans_realcomplexfft((((vect1,,,, sample,,,, NLOG););););
return find_dominating_frequency((((vect1););););

}}}}

Page 1, 26.07.2009 - 15:29:20

Programmer's Notepad - DSP_functions.h

/*
 * DSP_functions.h
 *
 * Created on: 28.jun.2009
 * Author: Stian O. Moen
 */

#ifndef DSP_FUNCTIONS_H_
#define DSP_FUNCTIONS_H_

#include "dsp.h"

//needed for FFT routine
#define NLOG 6

#define SIZE NUMBER_OF_SAMPLES

//The struct is used to specify a frequency with an assosiated power
typedef struct FreqPower{{{{

unsigned short freq;;;;
unsigned short power;;;;

}}}} FreqPower_t;;;;

extern A_ALIGNED dsp16_t dc_offset;;;;

FreqPower_t find_dominating_frequency((((dsp16_complex_t ****complex_vector););););
FreqPower_t check_signal((((void););););

#endif /* DSP_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:29:28

Programmer's Notepad - EIC.functions.c

/*
 * EIC.functions.c
 *
 * Created on: 02.jul.2009
 * Author: Stian O. Moen
 */

#include "compiler.h"
#include "EIC_functions.h"
#include "eic.h"
#include "intc.h"
#include "gpio.h"
#include "RTC_functions.h"
#include "USART_functions.h"
#include "usart.h"
#include "DSP_functions.h"
#include "config.h"

//variables used by the external intertupt handler
time_variable_t current_pulse,,,, previous_pulse;;;;

//debug function: converts unsigned short to string.
void short_to_char((((char ****string,,,, unsigned short number))))
{{{{

string[[[[0]]]] ==== number////10000 ++++ 0x30;;;;
number -=-=-=-= ((((number////10000)*)*)*)*10000;;;;
string[[[[1]]]] ==== number////1000 ++++ 0x30;;;;
number -=(-=(-=(-=(number////1000)*)*)*)*1000;;;;
string[[[[2]]]] ==== number////100 ++++ 0x30;;;;
number -=-=-=-= ((((number////100)*)*)*)*100;;;;
string[[[[3]]]] ==== number////10 ++++ 0x30;;;;
number -=-=-=-= ((((number////10)*)*)*)*10;;;;
string[[[[4]]]] ==== number ++++ 0x30;;;;
string[[[[5]]]] ==== '\0';;;;

}}}}

//Interrupt handler of the External interrupt reception detector
__attribute__((((((((__interrupt__))))))))
static void eic_int_reception_detector((((void))))
{{{{

char temp_string[[[[6];];];];
gpio_clr_gpio_pin((((LED6););););

//Save vurrent time in temporary variable
current_pulse ==== get_time();();();();
//adjust gain here.

//Perform sample_burst, FFT an find dominating frequency and power
FreqPower_t signal ==== check_signal();();();();

//assume valid pulse.calculate time and print data
time_variable_t difference ==== calculate_time_diff((((current_pulse,,,, previous_pulse););););
if ((((difference....millisec <<<< 0))))

difference ==== calculate_time_diff((((current_pulse,,,, previous_pulse););););
previous_pulse ==== current_pulse;;;;

//output the difference
usart_write_line((((USB_USART,,,, "Pulse detected:\n space: "););););
short_to_char((((temp_string,,,, difference....millisec););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " ms, "););););
short_to_char((((temp_string,,,, difference....sec););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " s\n"););););

//output the frequency and power
usart_write_line((((USB_USART,,,, "Frequency: "););););
short_to_char((((temp_string,,,, signal....freq););););
usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, " kHz\n"););););
usart_write_line((((USB_USART,,,, " Power: "););););
short_to_char((((temp_string,,,, signal....power););););

Page 1, 26.07.2009 - 15:29:35

Programmer's Notepad - EIC.functions.c

usart_write_line((((USB_USART,,,, temp_string););););
usart_write_line((((USB_USART,,,, "\n\n\n"););););

gpio_set_gpio_pin((((LED6););););
eic_clear_interrupt_line(&(&(&(&AVR32_EIC,,,, EXT_INT_RECEPTION_LINE););););

}}}}

//Intitializes external interrupts
void init_EIC((((void))))
{{{{

// Structure holding the configuration parameters of the EIC module.
eic_options_t eic_options_reception;;;;

// Enable edge-triggered interrupt.
eic_options_reception....eic_mode ==== EIC_MODE_EDGE_TRIGGERED;;;;
// Interrupt will trigger on rising edge.

eic_options_reception....eic_edge ==== EIC_EDGE_RISING_EDGE;;;;
// Initialize in synchronous mode : interrupt is synchronized to the clock

eic_options_reception....eic_async ==== EIC_SYNCH_MODE;;;;
// Set the interrupt line number.

eic_options_reception....eic_line ==== EXT_INT_RECEPTION_LINE;;;;

// Map the interrupt lines to the GPIO pins with the right peripheral functions.
gpio_enable_module_pin((((EXT_INT_RECEPTION_PIN,,,, EXT_INT_RECEPTION_FUNCTION););););

Disable_global_interrupt();();();();

//register interrupt handler
INTC_register_interrupt(&(&(&(&eic_int_reception_detector,,,, EXT_INT_RECEPTION_IRQ,,,,

AVR32_INTC_INT0););););

// Init the EIC controller with the options
eic_init(&(&(&(&AVR32_EIC,,,, &&&&eic_options_reception,,,, 1););););

// Enable the chosen lines and their corresponding interrupt feature.
eic_enable_line(&(&(&(&AVR32_EIC,,,, eic_options_reception....eic_line););););
eic_enable_interrupt_line(&(&(&(&AVR32_EIC,,,, eic_options_reception....eic_line););););

Enable_global_interrupt();();();();
}}}}

Page 2, 26.07.2009 - 15:29:35

Programmer's Notepad - EIC_functions.h

/*
 * EIC_functions.h
 *
 * Created on: 02.jul.2009
 * Author: Stian O. Moen
 */

#ifndef EIC_FUNCTIONS_H_
#define EIC_FUNCTIONS_H_

#include "eic.h"
#include "compiler.h"
#include "RTC_functions.h"

//prototypes
void init_EIC((((void););););

//global variables
extern time_variable_t current_pulse,,,, previous_pulse;;;;

#endif /* EIC_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:29:43

Programmer's Notepad - RTC_functions.c

/*
 * RTC_functions.c
 *
 * Created on: 02.jul.2009
 * Author: Stian O. Moen
 */

#include "rtc.h"
#include "config.h"
#include "compiler.h"
#include "intc.h"
#include "RTC_functions.h"
#include "gpio.h"

//global variable containing the
time_variable_t time;;;;

//RTC interrupt routine, updates a simplified real time clock.
//A clock with date and year can easily be implemented but is not
//needed for testing purpose.
__attribute__((((((((__interrupt__))))))))
void rtc_irq((((void))))
{{{{

//gpio_tgl_gpio_pin(AVR32_PIN_PA07);
// Increment the seconds counter and handle other variables
time....sec++;++;++;++;
if ((((time....sec >=>=>=>= 60))))
{{{{

time....sec ==== 0;;;;
time....min++;++;++;++;
if ((((time....min >=>=>=>= 60))))
{{{{

time....min ==== 0;;;;
time....hour++;++;++;++;
if ((((time....hour >=>=>=>= 24))))
{{{{

time....hour ==== 0;;;;
time....day++;++;++;++;

}}}}
}}}}

}}}}

// clear the interrupt flag
rtc_clear_interrupt(&(&(&(&AVR32_RTC););););

}}}}

//the function will initialize the RTC module to use the external 32.000
//crystal as source, devide by 32 to count milliseconds and generate an
//interrupt every 1000ms to count seconds as well as setting this as the top
//for the timer.
void init_RTC((((void))))
{{{{

//initialize time to zero, this is only for testing. A real RTC should
//always run and have functions to set the time. This can easily be
//implemented when the user interface is defined.
time....sec ==== 0;;;;
time....min ==== 0;;;;
time....hour ==== 0;;;;
time....day ==== 0;;;;

Disable_global_interrupt();();();();

//register RTC interrupt routine
INTC_register_interrupt(&(&(&(&rtc_irq,,,, AVR32_RTC_IRQ,,,, AVR32_INTC_INT0););););

//initalize RTC to use 32kHz source
rtc_init(&(&(&(&AVR32_RTC,,,,/*0*/ RTC_OSC_32KHZ,,,, RTC_PRESCALER););););

//set top to 1000 to generate interrupt each second.
rtc_set_top_value(&(&(&(&AVR32_RTC,,,, 1000););););

//Enable interrupt
rtc_enable_interrupt(&(&(&(&AVR32_RTC););););

Page 1, 26.07.2009 - 15:30:04

Programmer's Notepad - RTC_functions.c

// Enable the RTC
rtc_enable(&(&(&(&AVR32_RTC););););

Enable_global_interrupt();();();();
}}}}

//function returns time; intead of reading the global variable directly a
//this function assures that no writing is ongoing or will start during the
//read. This will prevent inconsistance between the time variables.
time_variable_t get_time((((void))))
{{{{

while((((rtc_is_interrupt(&(&(&(&AVR32_RTC));));));)); //wait until RTC interrupt is finished
Disable_global_interrupt();();();();
time_variable_t temp ==== time;;;;
temp....millisec ==== ((((unsigned short))))rtc_get_value(&(&(&(&AVR32_RTC););););
Enable_global_interrupt();();();();
return temp;;;;

}}}}

//calculates t1-t2. t1 must be larger than t2 to avoid negative time.
time_variable_t calculate_time_diff((((time_variable_t t1,,,, time_variable_t t2))))
{{{{

time_variable_t temp;;;;

//calculate days
temp....day ==== t1....day ---- t2....day;;;;

//calculate hours
if((((t1....hour ---- t2....hour >=>=>=>= 0))))
{{{{

temp....hour ==== t1....hour ---- t2....hour;;;;
}}}}
else
{{{{

temp....hour ==== t1....hour ++++ 24 ---- t2....hour;;;;
temp....day--;--;--;--;

}}}}

//calculate minutes
if((((t1....min ---- t2....min >=>=>=>= 0))))
{{{{

temp....min ==== t1....min ---- t2....min;;;;
}}}}
else
{{{{

temp....min ==== t1....min ++++ 60 ---- t2....min;;;;
temp....hour--;--;--;--;

}}}}

//calculate seconds
if((((t1....sec ---- t2....sec >=>=>=>= 0))))
{{{{

temp....sec ==== t1....sec ---- t2....sec;;;;
}}}}
else
{{{{

temp....sec ==== t1....sec ++++ 60 ---- t2....sec;;;;
temp....min--;--;--;--;

}}}}

//calculate milliseconds
if ((((t1....millisec ---- t2....millisec >=>=>=>= 0))))

temp....millisec ==== t1....millisec ---- t2....millisec;;;;
else
{{{{

temp....millisec ==== t1....millisec ++++ 1000 ---- t2....millisec;;;;
temp....sec--;--;--;--;

}}}}

return temp;;;;
}}}}

Page 2, 26.07.2009 - 15:30:04

Programmer's Notepad - RTC_functions.h

/*
 * RTC_functions.h
 *
 * Created on: 02.jul.2009
 * Author: Stian O. Moen
 */

#ifndef RTC_FUNCTIONS_H_
#define RTC_FUNCTIONS_H_

#include "compiler.h"

typedef struct time_variable {{{{
volatile short millisec;;;;
volatile U8 sec;;;;
volatile U8 min;;;;
volatile U8 hour;;;;
volatile short day;;;;
}}}} time_variable_t;;;;

//prototypes
void init_RTC((((void););););
time_variable_t get_time((((void););););
time_variable_t calculate_time_diff((((time_variable_t t1,,,, time_variable_t t2););););

#endif /* RTC_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:30:11

Programmer's Notepad - SPI_functions.c

/*
 * SPI_functions.c
 *
 * Created on: 30.jun.2009
 * Author: Stian O. Moen
 */

#include "spi.h"
#include "compiler.h"
#include "config.h"
#include "SPI_functions.h"
#include "gpio.h"

volatile avr32_spi_t ****spi ==== &&&&AVR32_SPI;;;;

unsigned char pot1_setting ==== 0;;;;
unsigned char pot2_setting ==== 0;;;;
unsigned char pot3_setting ==== 0;;;;

//SPI options for setup with the dataflash
static const spi_options_t DATAFLASH_options ====
{{{{

....reg ==== 3,,,,

....baudrate ==== 10000000,,,,

....bits ==== 8,,,,

....spck_delay ==== 0,,,,

....trans_delay ==== 0,,,,

....stay_act ==== 1,,,,

....spi_mode ==== 0,,,,

....modfdis ==== 1,,,,
};};};};

//SPI options for potentiometer updates.
static spi_options_t POTENTIOMETER_options ====
{{{{

....reg ==== 0,,,,

....baudrate ==== 10000000,,,,

....bits ==== 8,,,,

....spck_delay ==== 5,,,,

....trans_delay ==== 5,,,,

....stay_act ==== FALSE,,,,

....spi_mode ==== 0,,,,

....modfdis ==== TRUE
};};};};
//initialise to use potentiometer settings and set as master.
//The CS for the dataflash is set to high manually by the function
void init_SPI((((void))))
{{{{

static const gpio_map_t SPI_GPIO_MAP ====
{{{{
{{{{SPI_SCK_PIN,,,, SPI_SCK_FUNCTION},},},},
{{{{SPI_MISO_PIN,,,, SPI_MISO_FUNCTION},},},},
{{{{SPI_MOSI_PIN,,,, SPI_MOSI_FUNCTION},},},},
{{{{SPI_NPCS0_PIN,,,, SPI_NPCS0_FUNCTION},},},},
{{{{SPI_NPCS1_PIN,,,, SPI_NPCS1_FUNCTION},},},},
{{{{SPI_NPCS2_PIN,,,, SPI_NPCS2_FUNCTION},},},},
{{{{SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION}}}}

};};};};

// Assign GPIO to SPI
gpio_enable_module((((SPI_GPIO_MAP,,,,

sizeof((((SPI_GPIO_MAP)))) //// sizeof((((SPI_GPIO_MAP[[[[0]));]));]));]));

//initialize as master
spi_initMaster((((spi,,,, &&&&POTENTIOMETER_options););););

// Set selection mode: variable_ps, pcs_decode, delay.
spi_selectionMode((((spi,,,, 0,,,, 0,,,, 0););););

// Enable SPI.
spi_enable((((spi););););

//set manual chip select for dataflash to default high
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//initialize all potentiometers

Page 1, 26.07.2009 - 15:30:19

Programmer's Notepad - SPI_functions.c

short i;;;;
for ((((i ==== 0;;;; i <<<< 4;;;; i++)++)++)++)
{{{{

POTENTIOMETER_options....reg ==== i;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

}}}}

}}}}

//Funtion sets the gain using the digital potentiometers
//This function will provide a maximum level throughout the
//cicuit by prioritizing the first gain stages.
void set_gain((((U32 gain))))
{{{{

unsigned short n1,,,,n2,,,,n3;;;; //potentiometer settings
float g1,,,, g2,,,, g3;;;; //gain of the induvidual stages

//calculate gain for each gain stage
if ((((gain <=<=<=<= GAIN1)))) //gain is only needed in stage 1
{{{{

g1 ==== gain;;;;
g2 ==== 1;;;;
g3 ==== 1;;;;

}}}}
else if((((gain <=<=<=<= GAIN1****GAIN2))))
{{{{

g1 ==== GAIN1;;;;
g2 ==== gain //// GAIN1;;;;
g3 ==== 1;;;;

}}}}
else
{{{{

g1 ==== GAIN1;;;;
g2 ==== GAIN2;;;;
g3 ==== ((((gain //// GAIN1)))) //// GAIN2;;;;

}}}}

//calculate potentiometer settings and ensure that overflow does not occur
n1 ==== ((((g1 **** POT_RES //// GAIN1 ++++ 0.5););););
if ((((n1 >>>> 255)))) n1 ==== 255;;;;
n2 ==== ((((g2 **** POT_RES //// GAIN2 ++++ 0.5););););
if ((((n2 >>>> 255)))) n2 ==== 255;;;;
else if ((((n2 <<<< 1)))) n2 ==== 1;;;;
n3 ==== ((((g3 **** POT_RES //// GAIN3 ++++ 0.5););););
if ((((n3 >>>> 255)))) n3 ==== 255;;;;

//set potentiometer gain only if different from last value (to reduce noise)
if ((((n1 !=!=!=!= pot1_setting))))

update_potentiometer((((0,,,, ((((char)))) n1););););
if ((((n2 !=!=!=!= pot2_setting))))

update_potentiometer((((1,,,, ((((char)))) n2););););
if ((((n3 !=!=!=!= pot3_setting))))

update_potentiometer((((2,,,, ((((char)))) n3););););
}}}}

//updates the given potentiometer with the raw input data
void update_potentiometer((((unsigned char potentiometer,,,, char data))))
{{{{

spi_selectChip((((spi,,,, potentiometer););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, data););););
spi_unselectChip((((spi,,,, potentiometer););););

}}}}

//sets the threshold for the reception detector interrup with the raw input data
void set_threshold((((unsigned char data))))
{{{{

update_potentiometer((((3,,,, data););););
}}}}

//writes up-to one page to address zero. Different addresses can easily be implemented
//but is not needed for current measurement testing.
unsigned char store_data_in_dataflash((((unsigned char ****data,,,, unsigned short size))))
{{{{

//perform sanity check
if((((size >>>> DATAFLASH_PAGE_SIZE))))

Page 2, 26.07.2009 - 15:30:19

Programmer's Notepad - SPI_functions.c

return 0;;;;
spi_setupChipReg((((spi,,,, &&&&DATAFLASH_options,,,, F_CPU////2););););
//The dataflash is not connected to a NPCS pin. Instead a gpio pin is set
//manually to provide the chip select. To avoid that the SPI module
//selects another device while programmeing the flash the NPCS3 pin is
//rearranged to a gpio pin, thereby removing NPCS3 control for the SPI module
//And the NPCS3 is selected when communicating with the serial flash.
gpio_enable_gpio_pin((((SPI_NPCS3_PIN););););

//set high to not select device before intentional select
gpio_set_gpio_pin((((SPI_NPCS3_PIN););););
spi_selectChip((((spi,,,, 3););););
//select dataflash
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););

//check that SPI is not busy
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write command "buffer1 write"
spi_write((((spi,,,, CMD_WRITE_BUFFER_1););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write dont cares and buffer start index = 0
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0))))
;;;;spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write data to buffer
int i;;;;
for((((i ==== 0;;;; i <<<< size;;;; i++)++)++)++)
{{{{

spi_write((((spi,,,, data[[[[i]);]);]);]);
while((((spi_writeEndCheck((((spi)))) ======== 0););););

}}}}
//signal end of command by setting CS high
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//send command "Buffer 1 to Main Memory Page Program with Built-in Erase"
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););
spi_write((((spi,,,, CMD_BUFFER1_TO_MEM_WITH_ERASE););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write address bits and don't care. for testing the address is always 0
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););
spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0))))
;;;;spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//deselect serial flash
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//set options back to potentiometer settings
POTENTIOMETER_options....reg ==== 3;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

//arrange NPCS3 to SPI module
gpio_enable_module_pin((((SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION););););

return 1;;;;
}}}}

//reads up-to one page to address zero. Different addresses can easily be implemented
//but is not needed debug testing. This rutine is only used to test the correctness
//of the write routine.
unsigned char read_data_from_dataflash((((unsigned char ****data,,,, unsigned short size))))
{{{{

//perform sanity check
if((((size >>>> DATAFLASH_PAGE_SIZE))))

return 0;;;;
spi_setupChipReg((((spi,,,, &&&&DATAFLASH_options,,,, F_CPU////2););););
//The dataflash is not connected to a NPCS pin. Instead a gpio pin is set

Page 3, 26.07.2009 - 15:30:19

Programmer's Notepad - SPI_functions.c

//manually to provide the chip select. To avoid that the SPI module
//selects another device while programmeing the flash the NPCS3 pin is
//rearranged to a gpio pin, thereby removing NPCS3 control for the SPI module
//And the NPCS3 is selected when communicating with the serial flash.
gpio_enable_gpio_pin((((SPI_NPCS3_PIN););););

//set high to not select device before intentional select
gpio_set_gpio_pin((((SPI_NPCS3_PIN););););
spi_selectChip((((spi,,,, 3););););
//select dataflash
gpio_clr_gpio_pin((((SPI_DATAFLASH_CS););););

//check that SPI is not busy
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write command "Read page from main memory"
spi_write((((spi,,,, CMD_MAIN_PAGE_READ););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

//write three address bytes and four dummy bytes according to datasheet
unsigned short i;;;;
for((((i====0;;;; i <<<< 7;;;; i++)++)++)++)
{{{{

spi_write((((spi,,,, 0););););
while((((spi_writeEndCheck((((spi)))) ======== 0););););

}}}}

//read data
for((((i ==== 0;;;; i <<<< size;;;; i++)++)++)++)
{{{{

//write dummy to receive data
spi_write((((spi,,,,0););););
static unsigned short temp;;;;
spi_read((((spi,,,, &&&&temp););););
data[[[[i]]]] ==== ((((unsigned char)))) temp;;;;

}}}}

//deselect serial flash
gpio_set_gpio_pin((((SPI_DATAFLASH_CS););););

//set options back to potentiometer settings
POTENTIOMETER_options....reg ==== 3;;;;
spi_setupChipReg((((spi,,,, &&&&POTENTIOMETER_options,,,, F_CPU////2););););

//arrange NPCS3 to SPI module
gpio_enable_module_pin((((SPI_NPCS3_PIN,,,, SPI_NPCS3_FUNCTION););););
return 1;;;;

}}}}

Page 4, 26.07.2009 - 15:30:19

Programmer's Notepad - SPI_functions.h

/*
 * SPI_functions.h
 *
 * Created on: 30.jun.2009
 * Author: Stian O. Moen
 */

#ifndef SPI_FUNCTIONS_H_
#define SPI_FUNCTIONS_H_

//Specifies chip select order
#define DIGPOT1_CS 0
#define DIGPOT2_CS 1
#define DIGPOT3_CS 2
#define DIGPOT4_CS 3
#define FLASH_CS 0

//dataflash defines
#define CMD_WRITE_BUFFER_1 0x84
#define CMD_BUFFER1_TO_MEM_WITH_ERASE 0x83
#define CMD_MAIN_PAGE_READ 0xD2
#define DATAFLASH_PAGE_SIZE 528

//Prototypes
void update_potentiometer((((unsigned char potentiometer,,,, char data););););
void set_gain((((U32 gain););););
void set_threshold((((unsigned char data););););
void init_SPI((((void););););
unsigned char store_data_in_dataflash((((unsigned char ****data,,,, unsigned short size););););
unsigned char read_data_from_dataflash((((unsigned char ****data,,,, unsigned short size););););

#endif /* SPI_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:30:53

Programmer's Notepad - TC_functions.c

/*
 * TC_functions.c
 *
 * Created on: 22.jun.2009
 * Author: Stian O. Moen
 */

#include "tc.h"
#include "TC_functions.h"
#include "compiler.h"
#include "gpio.h"
#include "intc.h"
#include "USART_functions.h"
#include "ADC_functions.h"
#include <AVR32/io.h>
#include "ADC_functions.h"
#include "adc.h"

//Global variables
volatile avr32_tc_t ****tc ==== &&&&AVR32_TC;;;;

//initializes the timer counter to the options set in WAVEFORM_OPT.
//the timer is used to generate a hardware signal on timer/counter
//channel 0, triggering an ADC conversion.
void init_TC((((void))))
{{{{

// Initialize the timer/counter waveform.
tc_init_waveform((((tc,,,, &&&&WAVEFORM_OPT););););
tc_write_ra((((tc,,,, TC_CHANNEL,,,, 10);););); //assign a low value to reset TIOA
//Set ADC samplig frequency
tc_write_rc((((tc,,,, TC_CHANNEL,,,, ((((F_TIM //// 4)))) //// F_SMP););););
//ensure that the timer is stopped and reset so the sampling does not start
tc_stop((((tc,,,, TC_CHANNEL););););

}}}}

//This function will enable timer counter channel 0 to trigger an ADC conversion
// by hardware through TIOA
void enable_sampling((((void))))
{{{{

//include reset of timer
sample_nr ==== 0;;;;
sample_flag ==== TRUE;;;;
//enable ADC complete interrupt
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
ENABLE_ADC_INTERRUPT();();();();
tc_start((((tc,,,, TC_CHANNEL);););); // Start the timer/counter.

}}}}

//this function will stop the timer and disable the ADC interrupt
void disable_sampling((((void))))
{{{{

tc_stop((((tc,,,, TC_CHANNEL);););); // Stop the timer/counter and reset
counter

sample_flag ==== FALSE;;;;
volatile avr32_adc_t ****adc ==== &&&&AVR32_ADC;;;;
DISABLE_ADC_INTERRUPT();();();();

}}}}

Page 1, 26.07.2009 - 15:31:02

Programmer's Notepad - TC_functions.h

/*
 * TC_functions.h
 *
 * Created on: 22.jun.2009
 * Author: Stian O. Moen
 */

#ifndef TC_FUNCTIONS_H_
#define TC_FUNCTIONS_H_

#include "config.h"
#include "tc.h"

//specify the frequency of FPBA
#define FPBA F_CPU
//specify timer/counter channel to be used to trigger ADC conversion
#define TC_CHANNEL 0

//Prototypes

void init_TC((((void););););
void enable_sampling((((void););););
void disable_sampling((((void););););

extern volatile U32 tc_tick;;;;
extern volatile U16 print_sec;;;;
extern volatile avr32_tc_t ****tc;;;;

// Options for waveform generation setting up the hardware signal to trigger
// ADC conversions

static const tc_waveform_opt_t WAVEFORM_OPT ====
{{{{
....channel ==== TC_CHANNEL,,,, // Channel selection.

....bswtrg ==== TC_EVT_EFFECT_NOOP,,,, // Software trigger effect on TIOB.

....beevt ==== TC_EVT_EFFECT_NOOP,,,, // External event effect on TIOB.

....bcpc ==== TC_EVT_EFFECT_NOOP,,,, // RC compare effect on TIOB.

....bcpb ==== TC_EVT_EFFECT_NOOP,,,, // RB compare effect on TIOB.

....aswtrg ==== TC_EVT_EFFECT_NOOP,,,, // Software trigger effect on TIOA.

....aeevt ==== TC_EVT_EFFECT_NOOP,,,, // External event effect on TIOA.

....acpc ==== TC_EVT_EFFECT_CLEAR,,,, // RC compare effect on TIOA:
clear. this signal is used to trigger ADC conversion

....acpa ==== TC_EVT_EFFECT_SET,,,, // RA compare effect on TIOA: set.

....wavsel ==== TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,,,,// Waveform selection: Up mode
with automatic trigger(reset) on RC compare.

....enetrg ==== FALSE,,,, // External event trigger enable.

....eevt ==== 0,,,, // External event selection.

....eevtedg ==== TC_SEL_NO_EDGE,,,, // External event edge selection.

....cpcdis ==== FALSE,,,, // Counter disable when RC compare.

....cpcstop ==== FALSE,,,, // Counter clock stopped with RC
compare.

....burst ==== FALSE,,,, // Burst signal selection.

....clki ==== FALSE,,,, // Clock inversion.

....tcclks ==== TC_CLOCK_SOURCE_TC3 // Internal source clock 3,
connected to fPBA / 8.

};};};};
#endif /* TC_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:31:09

Programmer's Notepad - TEST_functions.c

/*
 * test_functions.c
 *
 * Created on: 16.jul.2009
 * Author: Stian O. Moen
 */

#include <avr32\io.h>
#include "gpio.h"
#include "usart.h"
#include "pm.h"
#include "USART_functions.h"
#include "config.h"
#include "CLOCK_functions.h"
#include "stdio.h"
#include "tc.h"
#include "TC_functions.h"
#include "adc.h"
#include "ADC_functions.h"
#include "dsp.h"
#include "DSP_functions.h"
#include "intc.h"
#include "dsp_debug.h"
#include "SPI_functions.h"
#include "spi.h"
#include "rtc.h"
#include "RTC_functions.h"
#include "eic.h"
#include "EIC_functions.h"
#include "TEST_functions.h"

//this function includes the code needed to provide the functionality and performance
//tests. To prevent interference between tests comment out the tests that are not
//to be performed only leaving one test. The complete system test is implemented
//to the system using the standard setup.
void test((((void))))
{{{{
/*
//test #5

set_gain(1);
set_gain(10);
set_gain(100);
set_gain(200);

//test #6
set_gain(1);
set_gain(10);
set_gain(100);
set_gain(200);

//test #7
set_gain(100);
set_threshold(70);

//test #8
usart_write_line(USB_USART, "Test successful\n");

//test #9
int i;
for(i =0; i < 20; i++)
{

volatile time_variable_t time = get_time();
usart_putchar(USB_USART, time.millisec);

}

//test #10
//create data set and store to flash
unsigned char flash_store_data[512];
for (i = 0; i < 512; i++)
{

flash_store_data[i] = 0x55;
}
store_data_in_dataflash(flash_store_data, sizeof(flash_store_data));

//read data black from flash

Page 1, 26.07.2009 - 15:31:15

Programmer's Notepad - TEST_functions.c

unsigned char flash_read_data[512];
for(i = 0; i < 512; i++)
{

flash_read_data[i] = 0;
}
read_data_from_dataflash(flash_read_data, sizeof(flash_read_data));

//validate data
char flag = 0;
for(i = 0; i < 512; i++)
{

if (flash_read_data[i] != flash_store_data[i])
flag = 1;

}
if (flag == 1)

usart_write_line(USB_USART, "Flash FAIL with 0x55\n");
else

usart_write_line(USB_USART, "Flash OK with 0x55\n");

//Perform same test with data = 0x11
for (i = 0; i < 512; i++)
{

flash_store_data[i] = 0x11;
}
store_data_in_dataflash(flash_store_data, sizeof(flash_store_data));

//read data black from flash
read_data_from_dataflash(flash_read_data, sizeof(flash_read_data));

//validate data
flag = 0;
for(i = 0; i < 512; i++)
{

if (flash_read_data[i] != flash_store_data[i])
flag = 1;

}
if (flag == 1)

usart_write_line(USB_USART, "Flash FAIL with 0x11\n");
else

usart_write_line(USB_USART, "Flash OK with 0x11\n");

//test #11
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);
set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #12
set_gain(10);
//SLEEP(AVR32_PM_SMODE_STATIC); //uncomment when performing test 12.

//test #13
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);

Page 2, 26.07.2009 - 15:31:15

Programmer's Notepad - TEST_functions.c

set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #14
set_gain(1);
set_gain(2);
set_gain(5);
set_gain(10);
set_gain(20);
set_gain(50);
set_gain(100);
set_gain(200);
set_gain(500);
set_gain(1000);
set_gain(2000);
set_gain(5000);
set_gain(10000);
set_gain(20000);
set_gain(50000);
set_gain(100000);
set_gain(140000);

//test #15
set_gain(1);

//test #16
set_gain(1);

//test #17
set_gain(1);

//test #18
gpio_set_gpio_pin(LED1);
enable_sampling();
while(sample_flag == TRUE);
gpio_clr_gpio_pin(LED1);

unsigned char test[512];
gpio_set_gpio_pin(LED1);
store_data_in_dataflash(test, sizeof(test));
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
set_gain(12000);
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
time_variable_t time = get_time();
gpio_clr_gpio_pin(LED1);

time_variable_t time2 = get_time();
gpio_set_gpio_pin(LED1);
calculate_time_diff(time2, time);
gpio_clr_gpio_pin(LED1);

A_ALIGNED dsp16_complex_t vect1[NUMBER_OF_SAMPLES];
gpio_set_gpio_pin(LED1);
FreqPower_t test_freq = find_dominating_frequency(vect1);
gpio_clr_gpio_pin(LED1);

gpio_set_gpio_pin(LED1);
signed short temp_level = get_signal_level();
gpio_clr_gpio_pin(LED1);

*/
//test #19; NB! should be performed without any initialization in main()

enable_all_pullups();();();();
init_RTC();();();();
SLEEP((((AVR32_PM_SMODE_DEEP_STOP););););

}}}}

void enable_all_pullups((((void))))

Page 3, 26.07.2009 - 15:31:15

Programmer's Notepad - TEST_functions.c

{{{{
//gpio_enable_pin_pull_up(AVR32_PIN_PA03);
//gpio_enable_pin_pull_up(AVR32_PIN_PA04);
gpio_enable_pin_pull_up((((AVR32_PIN_PA07););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA13););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA20););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA21););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA22););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA26););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA27););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA05););););
//gpio_enable_pin_pull_up(AVR32_PIN_PA06);
gpio_enable_pin_pull_up((((AVR32_PIN_PA25););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA14););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA15););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA16););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA17););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA09););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA10););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA08););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA23););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA24););););

//oscillator pins
gpio_enable_pin_pull_up((((AVR32_PIN_PA18););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA19););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA11););););
gpio_enable_pin_pull_up((((AVR32_PIN_PA12););););

}}}}

Page 4, 26.07.2009 - 15:31:15

Programmer's Notepad - TEST_functions.h

/*
 * test_functions.h
 *
 * Created on: 16.jul.2009
 * Author: Stian O. Moen
 */

#ifndef TEST_FUNCTIONS_H_
#define TEST_FUNCTIONS_H_

#define LED0 AVR32_PIN_PA13

void test((((void););););
void enable_all_pullups((((void););););

#endif /* TEST_FUNCTIONS_H_ */

Page 1, 26.07.2009 - 15:31:22

Programmer's Notepad - USART_functions.c

/*
FILE: USART_functions.c
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes functions for debug-output as well as output of data
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#include "USART_functions.h"
#include "config.h"

//This function initializes the USART to communicate with the USB-UART bridge
//Requires that the clock source is initialized
void init_USART((((void))))
{{{{

static const gpio_map_t USART_GPIO_MAP ====
{{{{
{{{{USB_USART_RX_PIN,,,, USB_USART_RX_FUNCTION},},},},
{{{{USB_USART_TX_PIN,,,, USB_USART_TX_FUNCTION}}}}

};};};};

// Assign GPIO to USART.
gpio_enable_module((((USART_GPIO_MAP,,,,

sizeof((((USART_GPIO_MAP)))) //// sizeof((((USART_GPIO_MAP[[[[0]));]));]));]));

// Initialize USART in RS232 mode. Must be changed if PLL setup is altered
usart_init_rs232((((USB_USART,,,, &&&&USART_OPTIONS,,,, F_CPU////2););););

}}}}

Page 1, 26.07.2009 - 15:31:29

Programmer's Notepad - USART_functions.h

/*
FILE: USART_functions.h
PROJECT: Telemetry Buoy project
DESCRIPTION: Includes functions for debug-output as well as output of data
DATE: 17.06.09
AUTHOR: Stian O. Moen
*/

#ifndef USART_funtions_h
#define USART_funtions_h

#include <avr32/io.h>
#include "compiler.h"
#include "pm.h"
#include "gpio.h"
#include "usart.h"
#include "config.h"
#include "stdio.h"

//Prototypes
void init_USART((((void););););
void write_character((((char c););););

#endif

Page 1, 26.07.2009 - 15:31:36

	rapport-pdf-printet
	complete appedices
	0 - Appendices
	1 - Matlab script
	1. Matlab script for calculating and simulating Butterworth and Chebychev filters
	2
	2. Matlab script for simulating the intuitive filter frequency responce
	3
	3. Matlab script for simulation Chebyshev filter with digital potentiometers
	4
	4. Screenshots of filter design with FilterPro
	5
	5. Schematics
	6
	6. Bill of materials
	7
	7. PCB assembly diagram
	8
	8. C-code
	main_c
	config_h
	ADC_functions_c
	ADC_functions_h
	CLOCK_c
	CLOCK_h
	DSP_c
	DSP_h
	EIC_c
	EIC_h
	RTC_c
	RTC_h
	SPI_c
	SPI_h
	TC_c
	TC_h
	TEST_c
	TEST_h
	USART_C
	USART_H

