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Abstract—Constructing Sustainable Smart Water Supply systems are facing serious challenges all around the world with the fast
expansion of modern cities. Water quality is influencing our life ubiquitously and prioritizing all the urban management. Traditional
urban water quality control mostly focused on routine tests of quality indicators, which include physical, chemical and biological groups.
However, the inevitable delay for biological indicators has increased the health risk and leads to accidents such as massive infections in
many big cities. In this paper, we first analyze the problem, technical challenges, and research questions. Then we provide a possible
solution by building a risk analysis framework for the urban water supply system. It takes indicator data we collected from industrial
processes to perceive water quality changes, and further for risk detection. In order to provide explainable results, we propose an
Adaptive Frequency Analysis (Adp-FA) method to resolve the data using indicators’ frequency domain information for their inner
relationships and individual prediction. We also investigate the scalability properties of this method from indicator, geography and time
domains. For the application, we select industrial quality data sets collected from a Norwegian project in 4 different urban water supply
systems, as Oslo, Bergen, Stremmen and Alesund. We employ the proposed method to test spectrogram, prediction accuracy and time

consumption, comparing with classical Artificial Neural Network and Random Forest methods. The results show our method better
perform in most of the aspects. It is feasible to support industrial water quality risk early warnings and further decision support.

Index Terms—Sustainable Water Supply, Water Quality Control, Data Perception, Risk Evaluation, Frequency Analysis, Scalability.

1 INTRODUCTION

D URING the latest years of 21st century, two important
phenomena have been emerging: urbanization and
information technologies. The United Nations (UN) Depart-
ment of Economic and Social Affairs (DESA) reports that
for the first time ever, the majority of the world’s popula-
tion lives in cities, and this proportion continues to grow
with projections of 68% by 2050 [1]. Urban water supply
systems are the most critical infrastructure all over the
world. A Smart Water Supply system that integrates sensors,
controllers, cloud computing and data technologies, are
essential for the development of sustainable smart cities in
the future. It is aiming to provide safe, stable and sufficient
water for the increasing requirements in many expanding
cities. However, the urban water quality is facing serious
challenges from industrial, agriculture and social pollution.

To emphasize the importance of water safety in urban
supply is nowadays a truism. In 2015, the United Nations
Development Programme published the Sustainable Devel-
opment Goals (SDGs), including Clean Water and Sanitation
as Goal 6 [2]. The dwindling supplies of safe drinking
water is a major problem impacting every continent, around
2.1 billion people [3]. The concerns of the modern society
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regarding this issue are reflected in numerous legislative
initiatives in this field, such as the European Union Water
Framework Directive [4], United States Clean Water Act [5].
The prevalent water supply process can be divided into
3 sections, including water source management, treatment,
and distribution.

Traditional water quality control is taken after water
treatment. But the current water sources are mainly ground-
water and surface water. They are significantly prone to
chemical and microbial contamination. The quality control
after the water treatment apparently delays the risk de-
tection and reduces the response time to take preventive
measures. In Norway, the new national standard for water
quality in the source area is in progress [6] [7].

Water quality refers to physical, chemical, and biolog-
ical characteristics as indicators. Among the water quality
indicators, biological indicators have a more direct impact
over people’s health. Most of the national standards are
made on biological indicator levels. Typical indicators in-
clude coliform, escherichia coli (Ecoli), intestinal enterococci
(Int), clostridium perfringens (ClPerf), etc. Further treatment
actions are made according to the test results [8]. Coliform
itself is not usually causing serious illness, but their presence
is a signal to indicate other active pathogenic organisms
presentation. Some special types of Ecoli are the reason for
water poisoning. Int is more dangerous to cause urinary
tract infections, bacterial endocarditis, diverticulitis, and
meningitis. The tests of biological indicators are primarily
based on the bacterial culture in the laboratory. This process
can take up to 24-48 hours. Compare to the effectual time
on the human body, the danger is much higher than other
indicators. In Norway, the giardia outbreak in Bergen 2004
affected more than 2500 people including young children
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due to the bacteria test delay results. Therefore, we have a
severe requirement for early risk detection in smart water
supply systems.

There have been some trial work for water quality
control based on data. In 2018, Hounslow [9] interpreted
multiple water quality indicators. In 2015, Yagur-Kroll et
al [10] showed a group of general bacterial sensor cells
for water quality monitoring. There is some research work
to use data for water quality prediction. Holger et al [11]
designed an Artificial neural network to predict salinity
level for an Australian river named Murray. Based on the
data collected at Astane station in Sefidrood River, Iran,
Orouji and his colleagues designed a series of models as
ANFIS, GA and Shuffled FLA to predict water quality chem-
ical indicators (sodium, potassium, magnesium, etc) in [12]
[13] [14]. Chang et al [15] proposed a systematic analysis
framework to predict N Hs-H levels for Dahan River in Tai-
wan, China. However, their work is generally on individual
quality indicator and ignored the inner relationship between
them.

Today the advanced ubiquitous sensing technologies
cut across many areas of modern research, industry and
daily life [16]. They offer the ability to detect, transmit
and measure more environmental indicators. A sustainable
smart water supply system adopts various sensors in order
to manage resources and monitor water quality efficiently.
In this process, data becomes an important tool to improve
our understanding of existing systems. By observing data
itself, through the appropriate methods, we can perceive the
changes in our water supply system. In practice, we applied
many different sensors in the water source areas, including
multiple sensors for pH, temperature, conductivity, etc. The
massive data collected by those low-cost sensors plus the
recent data analysis technologies, help us greatly improve
the water quality control process.

At present, zettabytes of data are collected by these
numerous sensors [17] [18]. At the same time, stronger data
analysis tools have been developed. Water quality indica-
tors are typical spatiotemporal variables. The analysis can
be divided into correlation analysis and numerical predic-
tion analysis. Early works with correlation analysis include
Hardoon et al [19] used Kernel Correlation Analysis method
for web page images and associated texts. For multiple
variables, Principal component analysis (PCA) is often the
first choice. Jolliffe et al [20] reviewed classical PCA and
newly developed methods such as Robust PCA, Adaptive
PCA etc. Luo et al [21] applied tensor model in correlation
analysis for gait recognition. But they did not consider the
correlations in the time domain. As for spatiotemporal data
analysis, most of the recent work is facing very huge data
sets. For example, Gudmundsson et al [22] surveyed the
player’s trajectories in team-sports with respect to behav-
ior and prediction. Lecun et al [23] proposed the pioneer
concept for Deep Learning to deal with spatiotemporal data.
Liu et al [24] analyzed 3D human actions with modern LSTM
method. Laptev et al [25] detects anomalies in the industrial
platform data. However, their work has to rely on large
training sets, which we cannot provide currently in water
supply systems. In addition, the explanation with those
methods cannot support the requirements for industrial use.

In this paper, we introduce our preliminary experi-
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ence in Norway. First, we analyze the problem, challenges
and research questions. Second, based on water quality
data collected from water supply systems, we propose a
framework for water quality analysis with data perception.
Third, we provide an adaptive frequency analysis method
for risk detection and prediction. This method is scalable
in multiple domains, including water quality indicators,
geography and time. Furthermore, by application, we select
industrial quality data sets collected from a national project
in 4 different Norwegian city water supply systems, as Oslo,
Bergen, Strommen and Alesund. We show our preliminary
findings of the frequency property relationship between
water quality indicators, as well as risk detection, prediction
and evaluation analysis. The results are compared also with
classical Artifical Neural Network and Random Forest in
their prediction accuracy and time consumption. In addi-
tion, scalability in time domain is also analyzed.

There are several visible motivations for this research.
First, it takes the advantage of the modern data analysis
technologies to solve a water quality control problem in
future Sustainable Smart Water Supply systems, especially
in transferring the knowledge across different indicator,
geography and time domains. Second, it copes with the
practical water source monitoring process, applies the data
directly collected from the industrial process. This avoids
questions such as laboratory data reliability and industrial
applicability. This is also valuable to the current water
supply in urban infrastructure systems. Third, it builds the
connection between easily accessible physical and chemical
indicators with biological indicators that are critical to water
quality risk. Fourth, this work provides the support for
further reasoning of decision-making process and analysis
over the pollution from industrial and residential activities
in the corresponding water source areas.

2 PROBLEM ANALYSIS
2.1 System Description

Water source management is to control the origins of drink-
ing water. In order to improve the water quality for the end
users, the control in the water source is naturally a critical
step. However, this is often neglected by most water sup-
ply systems because of geographical inaccessibility, costly
tests or unprofessional operators. The Norwegian standard
process for water quality control is to take samples from
the water source area twice or four times a month from the
several inflow points in the area. After, the samples have to
be tested in the lab for all of the water quality indicators.
In this work, we collected the data from 4 different cities
from Norway, generally from 2007 to 2015. Their locations
are shown in Figure 1.

The water source from Oslo is Maridalsvannet, which
is the biggest lake in this municipality. The water from the
lake will be sent to the Oset Water Treatment plant (WTP)
in the north of Oslo. The primary inflows are Skjeersjoelva
and Dausjoelva. The lake has an area of 3.83 km? and 149
meters in height. The water serves as the main drinking
water source locally and covers approximate 90% of Oslo’s
water consumption. Weekly raw-water samples are taken
from the lake and analyzed for physical-chemical and fecal
indicator organisms.
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Fig. 1: Urban Water Sources in Norway

The water source of Bergen is coming from Svartediket
lake in the east of Bergen. It is an artificial lake in Hordaland.
It covers 0.5 km? and 75 m in height. Drinking water is
collected at a 28 m depth in Svartediket. After treatment,
the clean drinking water is stored in a 15,000 m3 large
water pool inside the mountain. It covers the drinking water
requirement for over 70% population in Bergen.

Strommen is taking the freshwater from all the river
networks around Nitelva. The biggest lake nearby is Qyeren
in the Glomma River watershed. It is located in the south-
east of Lillestrom. The water is transferred to the Nedre
Romerike Avlopsselskap/Vannverk (NRV) treatment plant.
All the water source area takes the surface of more than 121
km?, with an average height of 101 m. The rivers around
are 0.5 m to 71 m high.

Alesund is a city with 47,000 citizens. It lies on the west
coast of Norway. The drinking water for the dwellers mainly
comes from Brusdalsvatnet lake. This lake sits on Uksenya
in the community of Alesund and Skodje in Mere og Roms-
dal province. It takes the inflow from Spjelkavikelva river.
The water is pumped from the lake to a warehouse inside
Emblemsfjellet. It has an area of 7.52 km? and 26 m above
sea level. The lake itself has a volume of 300 million m?.

These four cities have different water source types as
lakes or rivers. The general impact factors for water quality
are not the same. For example, Maridalsvannet lake is
surrounded with some industrial factories and residents,
Svartediket lake is known to have more active bacteria,
Qyeren area covers a large surface and easily affected by
rainstorms, and Brusdalsvatnet lake is rural and better
preserved. This brings diverse difficulties for water quality
monitoring, risk detection and prediction.

Norway has adopted stringent drinking water quality
guidelines in accordance with the European Water Directive
Framework [6]. In which, water quality indicators can be
divided into 4 groups, including,

a. Physical data. Drinking water has to verify physical
attributes in water quality for the whole supply process.

b. Chemical data. Chemical indicators are the traditional
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representation of water quality. They provide information
on what is impacting on the system as well.
c. Biological data. Biological indicators are direct mea-
sures of the health of the fauna and flora in the water supply.
d. Environmental data. Environment data can be a lead-
ing impact factor for water quality in some places.

2.2 Challenges & Questions

In order to evaluate the risk from water quality change and
analyze the mechanism behind the data resources, we are
facing several challenges:

a. Data Sparsity: the pool of available data is often very
large. In practice, for water quality indicator samples, the
overlaps between two conditions (such as the same time,
same location) are often very small or none. This is based on
two main reasons. First, the operators who take the samples
do not follow the standard procedure (incomplete indicator
collections, and data loss). Second, data standard has been
changed over last years (indicators have been added or
removed). These make the data set sparse.

b. Data Synchronization: current sensing technologies
can support real-time data collection over most of the phys-
ical and chemical indicators for water quality. However, for
biological indicators, which are the key factors for health,
the tests usually take much longer time, from several hours
to several days. This makes the data set difficult to synchro-
nize.

c. Risk Modeling: the final objective of drinking wa-
ter quality control is to improve health. Some specific
biological indicators as bacteria can cause significant dis-
ease outbreaks, such as Ecoli. When they broadcast in the
drinking water distribution system, the consequences can
be irreversible. The relationship between those biological
indicators and drinking water risk needs a new model.

From our trial work in the smart water supply system in
Norway, we try to provide a solution to improve water ser-
vices, starting from water source management and control.
Here we generate some research questions.

e Risk Detection and Prediction. Based on the data
analysis, can we predict the risk?

e Domain Explanation. Based on the data analysis
result, can we provide any domain explanation?

o Evaluation. Based on the prediction results, how can
we evaluate different methods?

3 APPROACH FORMULATION
3.1 Framework

In this paper, we propose a framework to analyze and
predict water quality risk as shown in Figure 2. In this
framework, the whole process can be divided into five parts.

All the raw data is collected from the sensor networks
and laboratory tests of water source areas. It covers all
the relevant water quality indicators. Data pre-processing
usually involves transforming raw data into an analytical
format. Cleaning, Synchronization, and Normalization. It
has to take into account the raw data which are out-of-
range, missing, multi-resolution and with different units.
Here is worth to note that the clustering and declustering
processes are optional. This is designed to ensure the data
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Fig. 2: System Framework

can be organized from different perspectives and simple to
find hidden patterns. For example, cluster and decluster can
consider the time-sensitive features in water quality, as a
different time scale, such as days, weeks, months, seasons
or years.

After the data is prepared, we need to find the key
factors from multiple dimensions of indicators by primary
correlations analysis, probability distribution and generate
training and testing data sets. The eventual aim of this
work is to predict water quality risk. In order to find the
risk model, we have investigated with researchers from
water quality control. Here the risk evaluation model is
further divided into three parts. Cycle detection is to find the
hidden cycle for indicator changes in the time domain. Peak
value calculation is used to track and evaluate the levels of
multiple biological bacteria outbreak. Parameter correction
is based on training set adaptation.

Furthermore, we have to decluster the results and pre-
dict accurate bacteria indicators, both in tendency and val-
ues. These values can map to different risk modes according
to practical water source management standards in different
countries and regions. Future decision support in water
treatment plants can adjust to both prediction and risk
mode. Also, in practice, the models need to be evolved with
both domain knowledge data set growing.

3.2 Domain Knowledge Analysis

The Norwegian government always gives the highest prior-
ity to the drinking water supply for people. We are working
as a group for water quality control in the water sources.
This team contains the water experts, sampling operators,
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water treatment plant managers, policy makers, and data
researchers. In this project, in order to improve the expla-
nation ability of the results, we try to interpret from the
domain knowledge of water quality.

First, we can check an example as the biological indi-
cators from raw data in Oslo, as shown in Figure 3 to see
whether we can predict the data by visualization. As we
listed two different bacteria Coliform, Ecoli in this picture,
we find it is hardly possible for this task.
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Fig. 3: Original Biological Indicators from Oslo

Next, we consider the water quality evaluation and risk
detection, currently there are several key factors need to be
specified:

o Cycle. Cycle detection for water quality is to find the
periodic characters for indicator changes in the time
domain. Detected cycles in water quality can be ben-
eficial to find predict biological indicators, analyze
leading indicators and take preventive measures.

e Peak Values. For water quality biological indica-
tors, the peak values imply infection outbreaks. It
is sensitive to quality evaluation. The peak values
prediction is critical to water quality classification,
development of standards and initialization of early
warning mechanism.

e Scalability. Sustainable computing requires computa-
tional scalability. In water quality control, we need to
deal with generally the scalability of indicators in the
time domain.

3.3 Basic Modeling

The original water quality indicators are changing in non-
linear and disordered way. Since we have eliminated the
processing with ordinary black box methods, we have to
seek for regular data analysis according to their traits. We
can not deduce the cycle directly from the visual observation
from the data, such as in Figure 3. However, if we examine
the indicators as regular electronic signals, then signal fre-
quency tools can be applied to detect cycles.
We define water quality indicators as:

fl(t)v t:t07t17t27°"7tiT' (1)
According to the water indicator standards in different
countries or regions, ¢ is defined as:

i=1,2, .. N.
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For example, in Norway, we have typically 11 collected
water indicators. We give the corresponding mapping from
the water quality indicators to the model as follows. But
in practice, different cities would select a fraction of them
to test and record. Different water quality indicators have
diversified units. This is because of two main reasons.
First, the indicators represent different practical features.
Second, even for the same indicator in different countries
or regions, they can have different units according to the

local standards.
Formulation Mapping

f1(t) Temperature (°C).

f2(t) Conductivity (mS/m).

f3(t) Turbidity (FNU).

fa(t) Color (mgPt/L).

f5(t) pH.

fe(t) Alkalinity (mmol/L).

f7(t) Coliform (cfu/100 ml).

fs(t) Ecoli (cfu/100 ml).

fo(t) Int (cfu/100 ml).

f10(t) ClPerf (cfu/100 ml).

f11(t) Termotol coliform (cfu/100 ml).

Thus, here we get,

Physical Indicators 1<i<4

fi(t) =< Chemical Indicators 5<i<6 2)
Biological Indicators 7 <i <11

3.4 Cycle Detection

Next step, we design an algorithm to analyze the spectrum
properties for all the water quality indicators in order to
find the relationships between the indicators and different
cities. Traditional methods for water quality analysis mostly
concentrated on the indicator changes or for individual
prediction.

To our knowledge, our method is the first trial to analyze
water quality in the frequency domain. The analysis can
help easily to find the indicator cycles and their predictions.
Our algorithm is shown in Algorithm 1.

We list the symbols in this algorithm as follows:

Fysxnxr Input data set with M cities, N indica-
tors and T recordings.

Smxnxkx Output data set with M cities, N indi-
cators and K frequencies.

M N, T Clustering results.

kmn FFT results frequency for city m, indi-
cator n.

Alkmn) FFT results amplitudes for city m, in-
dicator n.

Ylkmn] FFT results with frequencies and am-
plitudes for city m, indicator n.

Sig_k Significant frequency.

In order to cope with the diverse units, normalization
is an inevitable step to process the data. In this work, we
transform all the water quality indicators of raw data to

Data: FunxT
Result: Sjr«NxK
- Initialization;
- *Clustering to M ' ;
whilem < M do
- *Clustering to N or T';
- Normalization;
whilen < N do
Adp-FFT with Fopy = Ylkmn] ;
Sig_k =k in max(Alkmn]);
if Sig_k < T/2 then
else
‘ Smn =0;
end
end

Smnlkm] (0 <n < N);

- SiaxNxK;

end

- *Declustering to M, N, T;

- SMxNxK;
Algorithm 1: Water quality frequency domain analysis
algorithm

have a mean of zero and a standard deviation of 1. Some
people also call this z-score standardization.

For regular frequency domain analysis, people often use
the Fast Fourier Transform (FFT) method. Classical FFT is
defined as in Equation 3. In this equation, y[k] of length T is
the result of FFT for the indicator sequence x[t] of length T

T-1

ylk] = Y e 27 gt 3

t=0

As we can see from this equation, the length 7" is an
important parameter in FFT. But in practice, different water
quality indicators are difficult to synchronize both for city
and indicator domains. In addition, the clustering step in
the Algorithm 1 can create changes for T'. Thus, here we
define a function T/, as adaptive parameter of T, as in the
Equation 4.

/BTLTTL
N

N
Thpp =C X X Y 4)

n=1

In this equation, C' X oy, is the adaptive parameter for the
clustering effect in the city domain, in which C' represents
clustering scale among all the cities and o, as the weight
value for each city. For the second part of the equation repre-
sent the synchronization effect between different indicators.
N is the number of indicator types in one city. For example,
in Oslo, we have N = 10, but Bergen has N = 7. T}, is the
recording length of indicator n, 3, is adaptive weight value
for indicator n.

So the overall adaptive FFT (Adp-FFI) method, we
define as in the Equation 5, in which we considered the clus-
tering and synchronization effect in water quality indicator
frequency analysis.
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1 ey
y(kmn) = Z e_QTUT’/”" Smn(t) ()

From here we get complete spectrograms of all the
indicators. After, we have to find the significant frequency
in order to detect the cycles for different quality indicators.
To get the significant frequency, first, we use the following
equation to find the maximal amplitude in the frequency
domain.

Ak, = max(\/(y(kmn)m)Z + (Y(kmn)im)?) (6)

In this Equation 6, y(kmn )re and y(kmn )im represent the
real and imaginary parts of y(ky,,, ) in the result of Adp-FFT.
Y(kmn) is the sequence of complex numbers.

We find the corresponding frequency of the amplitude
Ay, in the frequency domain is then the significant fre-
quency for city m, indicator n. We will provide more exam-
ples in Section 4.2.

3.5 Indicator Prediction

By getting the result of spectrograms for the indicators, our
work is not finished. We want to use these results to predict
the tendencies of the water quality, especially for biological
indicators. Algorithm 2 is designed as follows to perform
this function.

Data: Sy« Nx K
Result: FI\/I><N>< [T+ Pa]
- Initialization;
while m < M do
P, =P,
H,, = H;
whilen < N do
- Sort Spn ki) according to amplitude A, [k:);
- Select top H,, elements in Sy, k] ;
- Smnh[kt] = Smn[kt] (0 <NH < Hm) ;
if 0 <t, < P, then
- Calculate Ay, [Trn +tp) ;
- Calculate @, [Thn, + tp)] ;
- Calculate F,p, [Tinn + tp] 5

- tpt;
else
‘ 'an[t+tp] :O,'
end
- an[T + Pm]}
end
~4I'mN [T + P m] ;
end
-Fun([T + Pyl ;
Algorithm 2: Water quality prediction algorithm
We list the additional symbols as follows:
FrNirypu) Output prediction data set with M
cities, Py Prediction range.
H,, Number of harmonics.
Dy [Trnm + 1] Phase value for prediction at time

t + t,, in city m and indicator n.

6

We use adaptive strategy during the frequency transform
process as in Equation 5. In this Algorithm 2, we also adjust
our inverse transform Equation 7 as follows:

Tp

T Z 67271-'7 ﬁ y(kmn) (7)

M T —1

1

an(TP) =

In this equation, T, is defined the same as in Equation 4.
Inverse Adp-FFT is used to transform water quality indica-
tors from the frequency domain back to the time domain to
see its tendencies. The prediction result can be calculated
with the following formula. In this Equation 8, we have

Amn[t] = \/(Smnh[kmn]re>2 + (S’mnh[kmn
Smnh [kmn} im

Smnh[kmn]re

Fonlt] = Amnlt] X cos(2mk x t 4+ D)

]im)2

D [t] = tgil (8)

As for our experience, the prediction range P,,,, harmony
parameter H,, can both affect the accuracy. In practice, we
can set up a threshold for accuracy in order to find the
optimal solution of P,, and H,, values.

3.6 Scalability

Scalability is an important property to evaluate the algo-
rithms. For this water quality prediction issue, we consider
the scalability of our method in three data domains, indica-
tor, geography, and time.

3.6.1 Indicator domain scaling

The number of water quality indicators can vary from one
to several hundred, depending on the standards in different
countries or regions. Even, as for people’s requirement for
higher quality water, there are gradually new types of in-
dicators keep appearing. Traditional water quality research
mostly concentrated on individual indicator observation or
prediction. This is partly because it is highly challenging
to analyze the complex synergies between the physical,
chemical and biological indicators.

In this method, we are trying to find the indicator
relationship in the frequency domain. By visualizing the
spectrogram of indicators, we can discover their characters
in the frequency domain, and search for their resonance
effect.

In this algorithm, to scale in the indicator domain is
fairly easy by just adding the new indicator recordings into
the frequency analysis following Algorithm 1 and find the
significant frequency with Equation 6.

3.6.2 Geography domain scaling

Geography location is one of the most important factors
to affect the water quality, especially for the urban surface
water source. Geographical domain scaling is essential for
policy making, regional water source quality evaluations,
pollution analysis, etc. When we consider the geography
domain scaling in practice, there are several aspects can be
used for classification, such as:
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o Water source type (surface, river, ground, frozen,
desalination, etc);

o Water source description (area, depth, discharge,
flow velocity, efc);

o Locations (longitude, latitude, height, efc);

o Climate (tropical, dry, mild mid-latitude, cold mid-
latitude, polar, etc);

e Main pollution type (organic, inorganic, macroscopic
contaminants, etc);

o Residential states (types, population, main activities,
etc);

o Agriculture states (planting, farming, fishery, etc);

o Industrial states (factory types, main discharge, etc).

The geography domain scaling can be executed from the
perspectives in the above description. In this study, we use
a weighted arithmetic mean function for geography scaling.
This means the same water quality indicators in city, region
or country can be clustered, as shown in Equation 9.

’

F [t] _ Zm 1‘*/J fmn( ) (9)

Dt W'
m=1"mmn

In this equation, w,,,, is the weight of water quality
indicator n for the new geographical indicator F, . By
adjusting m', we can control the scaling process of the
geography domain. Changing different f,,(f) can be cus-
tomized to observe the data from different geographical
perspectives.

3.6.3 Time domain scaling

Water quality prediction is beneficial for the whole process
of water supply. It provides early warnings and supports
early preventive measures. Time domain scaling can con-
tribute to prolonging the warning time. At the same time, it
can be helpful to analyze water quality changes in the source
area for longer periods (e.g. from second records to year
records). In this study, one of the most important reasons
we choose frequency domain analysis for water quality data
processing is to cope with the time domain scaling issues.
The Algorithm 1 we use for cycle detection has applied
our Adp-FFT (Equation 5) to analyze frequency domain.
This method has an inherent time scaling property. So, we
can conclude time scaling property for adp-FFT as in the
following Equation 10, here we omit the proof process.

if AdP'FFT<fmn(t>) — y(kmn)

Adp-FFT(fyn (M) = y(Memn) = L (fomn

my(

then

)
(10)

By virtue of this good property, we can keep the proper-
ties we analyzed in the whole time domain. In this method,
we should have 1 < A < T,,,. Because, in practice, on one
side, we can not analyze the frequency properties in the
smaller time domain that we don’t have supported data. On
the other side, to group the whole data as one has lost the
meaning of analysis. We are going to give more examples of
time scaling in Section 4.3.

3.7 Risk Modeling

In the water supply industry, most of the water quality
monitoring and control are taken in the treatment plant for
easy access reasons. Most countries or regions in the world
have made the water quality standards according to this
step.

In this paper, we propose the data perception approach
for water quality risk early detection and prediction in the
water source area. Among all the water quality indicators,
biological indicators are directly related to people’s health.
In the drinking water supply, we concentrate on most
the biological indicator changes, especially for their peak
values. Peak values normally represent environment alter.
This could be a sudden change from weather, industrial or
agricultural activities. This is an important alert for water
source protection. The peak values of biological indicators
require a special process in the treatment plants accordingly.

According to the present published version in [7], we
define the risk of water quality with peak values as follows:

filt) fit)=0&& f;(t—1)>0

) i) i) =0&& fi(t+1) <0

BO=9 00 £ £0&k fit) = maz(sy M
0 Others

In this definition, f;(¢) is a biological indicator, we
choose the peak value based on its first order derivative.
If there is no 0 derivative (data set is too small), we choose
the max value of the sequence.

4 APPLICATION

The application of this approach is based on our water
quality project in Norway. In this project, we are working
closely with the people coming from the whole water supply
process to improve water quality by early warnings. In
this team, there are water quality experts, source sampling
operators, treatment plant managers, policy makers, and
data researchers. In this section, we describe this application
and provide our preliminary results with analysis.

4.1 Data Collection & Description

The data we collected for this application is from several
industrial drinking water supply systems in Norway.

For geography domain, it includes 4 Norwegian cities,
Oslo, Bergen, Stremmen, and Alesund, as we depicted in
Section 2.1.

For indicator domain, constrained by the synchronization
of different cities, we select meaningful indicators as phys-
ical: conductivity, turbidity, and color, chemical: pH, and
biological: Coliform, Ecoli, and Int.

For time domain, it varies in different cities. We got the
data as Oslo (2009.01 - 2015.12), Bergen (2007.01 - 2015.12),
Strommen (2008.01 - 2014.12), and Alesund (2005.01 to
2015.12).

However, the data qualities are quite uneven. In practice,
some operators in the lab did not record all the sample
results correctly and led to massive missing values. For
example, the first issue is the time synchronization between
different cities is difficult. The data from Oslo, Bergen and
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Alesund was taken once a week, but Stremmen was once
every two weeks. The second issue is missing values. Some
of the physical and chemical indicators from Alesund were
only recorded 25 times for 11 years; alkalinities all equal
to zero; values for Ecoli are over 95% zero. In Bergen, they
did not record any data for Clostridium perfringen. After
discussions with domain experts, these issues can make
prediction accuracy fluctuate.

4.2

We are running our application according to the framework
designed in Section 3.1.

In data pre-processing, we have worked with water qual-
ity experts to clean the data which are errors, not meaningful
and correct the inaccurate values. We synchronized the data
according to the recordings from all the 4 cities in order to
keep most of the useful values. The normalization process
has been followed by our Algorithm 1. In this study, we
use the pre-processed weekly data sets to analyze related
features for Oslo, Bergen, Strommen and Alesund. In ad-
dition, we will analyze the scalability of this question in
Section 4.3.3.

In feature selection, we also synchronize collected usable
water quality indicators for analysis. As for the practical
constraints, we selected pH, Conductivity, Turbidity, and
Color as input features. Output biological indicators are
Coliform, Ecoli, and Int. Training set and testing set have
taken according to time. For each indicator, the first 90% of
recordings are used for training and the rest 10% are used
for testing.

The risk modeling, prediction and evaluation are based
on the models we gave in Section 3.4, 3.5, 3.7.

Implementation Process

4.3 Results & Analysis

In water research, there is no well-accepted theoretical
analysis for the complex interactions among all the water
quality indicators. This study takes the assumption as each
indicator is independent. But different from other work to
analyze each indicator separately, here we can provide a
perspective to find the relationships between indicators by
frequency analysis. At the same time, we present various
evaluations to show the prediction accuracy. In this section,
we also show the scalability of our method can serve as a
very powerful tool for practical water quality early warning.

4.3.1 Frequency domain analysis

The correlation analysis is a natural way to find the relation-
ship between different water quality indicators. We have
shown our results in our previous paper [26] [27]. From
there, we found no obvious results by direct correlation
findings between indicators. Frequency domain analysis in
this study is meaningful for water quality, in both theory
and practice. In our application, we have executed spectro-
gram analysis in 4 Norwegian cities for all the indicators
as weekly values using our Algorithm 1. The results of
spectrograms are shown in Figure 4. Different colors rep-
resent different indicators. The z-axes in the sub figures are
frequencies, y-axes are amplitude after Adp-FFT. We can see
from this figure, in 4 cities, there are some indicators share
the same significant frequency.

8

More precisely, we give significant frequencies for dif-
ferent indicators in the 4 cities in Figure 5. Different colors
to represent different cities. 7 angles show different types of
indicators, including 3 biological indicators, as output and 4
physical and chemical indicators as input. Each spoke length
gives the value of their significant frequency with the unit
as weeks. We can interpret this figure from the following
aspects.

a. Many water quality indicators posses the periodic
properties, but not all of them. Some indicators do not have
significant frequencies, or they are not meaningful in the
field. Here we note them as zero. There are various reasons
for them. In practice, reasons can be data are not recorded,
measures are not standardized, efc. Our results show the
Frequency Zero indicators are: pH (Bergen, Alesund), Con-
ductivity (Oslo), Turbidity (Oslo, Bergen, Alesund), Color
(Oslo), Coliform and Int (Alesund).

b. Inside one city, some quality indicators share the
same significant frequency. We are interested in this feature,
because potentially, the physical or chemical indicator could
provide early risk warning for corresponding biological
indicators, because they are much faster to access. For
example, in Bergen, Color has the same frequency with
Coliform, Ecoli, and Int, as 51.89 weeks. From Figure 5, we
can see in details, Oslo can use pH for all the three indicator
predictions (50.86 weeks); Bergen can take Conductivity and
Color (51.89 weeks); Stremmen can use pH or Conductivity
to predict Ecoli (50.57 weeks); Alesund can take Color to
predict Ecoli (71.26 weeks).

c. Among all the cities, some indicators have similar sig-
nificant frequencies (concrete value depends on the number
of recordings). Our results show that Turbidity does not
support meaningful prediction for biological indicators in
all the 4 cities from the frequency analysis perspective. Ecoli
has similar significant frequencies in 3 cities (Oslo, Bergen
and Stremmen). Oslo and Bergen show good frequency
connections between indicators as 50.86 weeks and 51.89
weeks. This could potentially be used for different cities
collaborative analysis and provide risk early warning.

4.3.2 Risk prediction

The risk in the water supply system depends highly on
biological water quality indicators. The following treatment
process will regulate accordingly to the changes of them.
Based on our analysis in Section 3.2, peak values of those
indicators give important information. We compare our
frequency analysis methods with two classical prediction
methods, including artificial neural network (ANN) and
random forest (RF). We evaluate them from three aspects.
First one we calculate the average prediction accuracy for peak
values. Peak values were selected based on the risk model
defined in Section 3.7. Second one we apply Root Mean
Square Error (RMSE) for overall prediction accuracy. Third one
we measure the computation time as the efficiency of these
methods.

In this experiment, inputs of these methods are physical
and chemical indicators, as pH, Conductivity, Turbidity, and
Color. Their outputs are biological indicators as Coliform,
Ecoli, and Int. We take training and testing sets split as 90%
to 10% regarding limited recordings.
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Fig. 5: Weekly indicator significant frequency

For ANN method, we use a three-layer back propagation
(BP) network structure. Input layer as 4 nodes, 3 nodes in
the output layer, and hidden layer for 300 nodes. Hyperbolic
tangent (tanh) activation function is chosen considering we
have normalized the data sets. Batch size as N;/20 is based
on our data size. IV; is the total number of data recordings
in different cities. For each data set, we train them for 1000
times.

For RF method, we take into account the results from
frequency analysis to choose one input indicator which has
the same significant frequency as the heuristic important
feature. Initially, we choose 1000 as the number of trees in
the forest, and 40 to be the random seed for pseudo-random
number generator.

For our Frequency Analysis prediction method, we ap-
ply the method we described in Section 3.5. The parameter
as the number of harmonics is sensitive to the accuracy, we

have made the experiments and draw the chart to analyze
their relationships between different water indicators. In this
case, we chose 20 as the number of harmonics to be the
optimal solution. This part can be further improved by more
adaptive strategies.

Figure 6 shows the prediction accuracy for 3 biological
indicator peak values. This is a special evaluation of water
quality prediction. The x-axis is the combination of meth-
ods and cities and y-axis is the average prediction error.
Different colors show different water quality indicators.
Because the data sets have been normalized before, so there
is no unit for these errors. We can see from here if we
compare the three methods, Frequency Analysis performs
better than the other two for lower error values. As for
the comparison of indicators, Int shows higher error values,
Coliform and Ecoli do not show clear synchronization for
peak value prediction errors. Between different cities, Oslo
shows higher prediction error values among all these three
methods.

The general RMSE accuracy comparison is given in Fig-
ure 7. It shows overall accuracy for all the predicting points.
Axes are made the same meaning as Figure 6. Because it
takes all the points and calculate the average error values,
so in general, it is smaller than only peak value errors. The
error values do not show a high distinction between dif-
ferent methods. For the average RMSE of different methods,
our Frequency Analysis improves more than 10% than ANN
and RFE. The comparisons between indicators and cities do
not show substantial similarities in these results.

We also compare the prediction time consumption for
different methods. Here we did not test the time for each
concrete indicator. Because these methods are all applied in
the parallel platform. We have run the experiment 30 times
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and calculate the average time. The results are shown in
Figure 8. We can see ANN costs more than the other two
methods. Frequency Analysis is slightly better than RFE.
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Fig. 8: Time Consumption for Prediction

4.3.3 Scalability discussion

In Section 3.6, we have discussed theoretical scalability for
this method in indicator, geography and time domains.
As for we did not collect enough information for more
synchronized indicators (indicator domain) and cities (ge-
ography domain), in this section, we show the scalability
of our method in the time domain. As a reference, we also
test our method scalability in prediction accuracy and time
consumption.

In order to test the scalability of our method, we add the
step to cluster our data in seasons. In Norway, the seasons
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are generally mild. We use this scalability evaluation to find
the connections between indicator frequencies with seasons.
In this study, according to the government management
principles, we consider seasons according to the time, de-
fined as follows:

e Spring: February to April;

e Summer: May to July;

e Autumn: August to October;
o Winter: November to January.

Scalability is one of the most important profits we get
from this method. We have also run our whole application
for time scaling. We have solved the water quality prediction
for weekly data sets from 4 Norwegian cities in Section 4.3.
In order to evaluate the scalability of this method, we will
compare the season data results with weekly data sets
in the significant frequency, prediction accuracy of peak
values and RMSE, and the time consumption. We run the
experiment following Section 4.3.1 and 4.3.2 for Frequency
Analysis method on the seasonal data sets. The results are
recorded and further divided by the corresponding value
for weekly data sets.

We use radar charts to depict our scalability results. Fig-
ure 9 shows the scalability ratio on significant frequencies
of indicators. Water indicators are set at the 7 directions,
input indicators on the right side, output indicators on the
left side. The lengths of the vectors are the ratio values.
Different colors represent different cities. Here we see Oslo
and Bergen show the linear scalability for all the meaningful
indicators. Alesund has unified sub-linear scalability for
its meaningful indicators. As for Stremmen, Turbidity and
Color show their unique sub-linear scalability. We attribute
this exception to raw data recording errors based on do-
main analysis. In general, we can say the scalability for
this method shows good linear scalability in significant
frequency analysis for water quality indicators.

pH
0.5

0.4
Int 03
0.2
0.1

Cond

Ecoli Turb

Coliform Color

Oslo

Bergen Strgmmen Alesund

Fig. 9: Significant frequency scalability

As for the scalability in prediction accuracy, the results
are shown in Figure 10. This radar chart shows the output
indicators accuracy in two groups, Peak values on the right
side as PA, and RMSE on the right side as RMSE. Different
colors represent different cities. For seasonal data sets, since
the recordings are much less than weekly data, so the
training sets are limited. This makes the prediction accuracy
errors getting much higher. So, in this figure, we see the
ratios are in general more than 1. They are sub-linear. From
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this, we can say there is no general similarity for accuracy
scalability.
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Fig. 10: Accuracy scalability for frequency analysis

The time consumption scalability results are in Table 1.
We can see with the seasonal data sets, prediction time
consumption is overall obviously reduced. But the reduction
is sub-linear scalability.

City Scalability
Oslo 0.55
Bergen 0.59
Stremmen 0.67
Alesund 0.58

TABLE 1: Time consumption scalability

4.3.4 Limitation & Insight Analysis

Limitations of the frequency analysis method can be found
in the following aspects:

e This method is difficult to use for the data sets which
do not have significant frequency effects. Some water
indicators in our urban supply system do not have
the meaningful frequencies, the predictions for those
have shown high accuracy errors.

o This method analyzes the relationship between dif-
ferent indicators on their frequencies. Every indica-
tor is considered to be independent, this results in
higher level complex relations between indicators are
ignored.

e The parameters in the prediction, such as the number
of harmonics need time to adjust, this extra step
can take longer time. We are also looking for new
strategies to fix this.

This frequency analysis method for water quality pre-
diction can also bring many new visions for urban water
supply systems. We discussed with the domain experts, the
insight can be found from several perspectives:

o This work can provide suggestions for IoT integra-
tion sensor deployments in water supply systems.
For example, we found Color has a strong connection
with the biological indicators, so we suggest to put
more real-time color sensors all through the water
supply process in order to detect the risk.
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o Compare with most of the black box algorithms, this
method can provide explainable relationship analy-
sis between indicators on their frequencies.

o This method can also provide a method to evalu-
ate data quality. Industrial data collections are usu-
ally with noise. This method can find obviously
inaccurate points by abnormal frequency detection.
For example, the seasonal data in the Turbidity of
Stremmen is beyond scalability values, we are suspi-
cious for the quality in data collection.

e Urban systems can also be compared with this
method, so it provides a collaborative analysis be-
tween different cities for the national management
level.

5 CONCLUSION

Water quality is a very critical issue in modern urban life
all around the world, especially for Smart Water Supply sys-
tem development. Traditional monitoring and risk control
methods are difficult to detect bacteria broadcast on time
and provide efficient decision support. In this paper, we
propose an approach for water quality risk early warning
using data perception. With the application among four
different cities in Norway, we have proved the feasibility,
accuracy, and efficiency of our approach. The preliminary
results evaluated by domain experts are very promising.
This work is beneficial in generally three aspects:

e It provides an early warning mechanism from the
water source areas using cost-less data analysis tech-
niques. This prolongs the preventive measures re-
sponse time, and support more decision options in
the latter steps of water supply.

o This approach integrates indicator, geography and
time domains. It provides a new frequency domain
analysis perspective to find the relationship between
different indicators and their predictions. At the
same time, it embraces scalability for these three
domains.

o This work is applied to real industrial water supply
systems from 4 different Norwegian cities.
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