
ISBN 978-82-471-xxxx-x (printed version)
ISBN 978-82-471-xxxx-x (electronic version)

ISSN 1503-8181

Doctoral theses at NTNU, 2010:XX

Fornavn Etternavn

Doctoral theses at NTNU, 2010:23

Fornavn Etternavn

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor
Faculty of Engineering Science and Technology

Department of Marine Technology

Tittel på avhandlingen

Undertittel på avhandlingen

Doctoral theses at NTNU, 2014:94

Øyvind Netland

Remote Inspection of
Offshore Wind Turbines

A Study of the Benefits,
Usability and Feasibility

ISBN 978-82-326-0112-7 (printed version)
ISBN 978-82-326-0113-4 (electronic version)

ISSN 1503-8181

D
octoral theses at N

TN
U

, 2014:94
Ø

yvind N
etland

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s
an

d
E

le
ct

ri
ca

l E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
s

N
or

w
eg

ia
n

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y

Th
es

is
 fo

r
de

gr
ee

 o
f P

hi
lo

so
ph

ia
e

D
oc

to
r

N
TN

U

Thesis for the degree of philosophiae doctor

Trondheim, xxxx 2010

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Marine Technology

Fornavn Etternavn

Tittel på avhandlingen
Undertittel på avhandlingen

Department of Marine Technology

Øyvind Netland

Remote Inspection of
Offshore Wind Turbines
A Study of the Benefits,
Usability and Feasibility

Thesis for the degree of Philosophiae Doctor

Trondheim, March 2014

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Engineering Cybernetics

NTNU
Norwegian University of Science and Technology

©

ISSN 1503-8181

IMT Report 2010-xx

Doctoral Theses at NTNU, 2010:xx

Printed by Skipnes Kommunikasjon as

Thesis for the degree of philosophiae doctor

Faculty of Engineering Science and Technology
Department of Marine Technology

Fornavn Etternavn

ISBN 82-471-xxxx-x (printed ver.)
ISBN 82-471-xxxx-x (electronic ver.)

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Engineering Cybernetics

© Øyvind Netland

ISBN 978-82-326-0112-7 (printed version)
ISBN 978-82-326-0113-4 (electronic version)
ISSN 1503-8181

ITK Report 2014-1-W

Doctoral theses at NTNU, 2014:94

Printed by Skipnes Kommunikasjon as

Summary
Offshore wind turbines are large, unmanned machines that are deliberately located in
areas with strong wind. Access to the turbines is expensive and time consuming, and
in periods of harsh weather, the turbines can be inaccessible. This is challenging for
operation and maintenance of the turbines, and the same maintenance strategies that
have been used successfully on land will not necessarily be viable offshore.

This thesis suggests the use of a remotely controlled robot that can be used to inspect
a turbine without accessing it. The robot is intended to be installed inside the wind
turbine nacelle and move on a rail. Since access to the turbine is not needed, inspections
can be done inexpensively, with less planning and regardless of the weather. This concept
has been evaluated with the NOWIcob tool and the simulation results indicated that it
would have a positive effect on the availability and cost of energy for offshore wind
turbines.

A remote inspection robot prototype has been developed, and used for evaluation of
the concept in four experiments. These were usability tests, where participants did both
remote inspections using the prototype and manned inspections. Two of the experiments
were pilot experiments with 4 participants each. The two larger experiments had 21 and
31 participants. Observations and participants’ suggestions from each of the experiments
were used to improve the prototype, following a user-centered development method.
This is a commonly used method within human-computer interaction to improve the
usability of a system. The results from the last experiment were the most accurate due to
an improved experiment procedure and the largest number of participants. They showed
that remote inspection was almost as effective as manned, and that remote inspections
would likely perform better if more time had been available.

To simplify the development of the prototype’s control system, a method for using
code generated from MathWorks Simulink Coder, called Software Module Real-time Tar-
get (SMRT), was developed. It is intended for embedded developers that would like to
include code generated by Simulink Coder into a larger software project. It has been
designed to be used with only a minimal knowledge of Simulink Coder. As SMRT by
itself can be of interest for other developers, it has been described in its own chapter.
The code is also available as open source online.

The experiments presented in this thesis mark the end of the work with the current
prototype and the laboratory testing. The experiments have demonstrated the plausi-
bility of using a telerobot for remote inspections, with almost the same effectiveness as

i

Summary

manned inspection. The experience gained from these experiments will be brought into
the next phase, which will be the development of a new prototype for installation in a
real wind turbine. The laboratory evaluation has been an important and necessary step
in the development of such a system.

ii

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
philosophiae doctor (PhD) at the Norwegian University of Science and Technology. The
work for this thesis has been carried out at the Department of Engineering Cybernetics
in the period from April 2010 to March 2014. It has been funded by Norwegian Re-
search Centre for Offshore Wind Technology (NOWITECH) and the Research Council of
Norway.

This PhD started when I sent my former master thesis supervisor and future PhD
advisor Amund Skavhaug an email, and asked if he thought it was I good idea for me
to pursue a PhD. He obviously did, and I was happy to start working with an interesting
topic within wind energy, which I see as an important industry for the future. I think
Amund and me make a good team. He is a constant source of ideas, and I think I do a
good job at sorting them and put the best ones into use. As a supervisor, Amund is always
available when you need assistance. I know this is appreciated by all his students, both
master and PhDs, but sometimes I worry that he is too available for his own good.

I would also like to thank Dag Sjong for his contributions to establishing the PhD po-
sition. Norsk Automatisering AS, which consists of Dag and Amund, has also contributed
during my work, and I look forward to continue the co-operation with them, to take the
remote inspection concept from the laboratory and into wind turbines.

My experiments would not be possible without the students that participated, the
master student that helped me during one of the experiment Hilde Marie Schade, and
the mechanical workshop at the department that put the laboratory together. Amund
also put me in contact with Gunnar Jenssen from Sintef, who gave me valuable advice
before the experiments and co-authored two of the articles.

I have enjoyed working together with the other PhDs and post docs in our depart-
ment. We always managed to get into interesting and strange conversations during lunch
and coffee breaks. I am glad the Wednesday meeting tradition is alive and well, and hope
to sneak by every once in a while to get some delicious cake. I also had the opportunity
to work with several master students, especially Viktor Fidje and Tor Karlsen.

As part of NOWITECH, I have also had colleagues outside our department, both the
NOWITECH PhD students and the members of work package 5. It has been interesting
to talk with people with very different backgrounds within the multidisciplinary field of

iii

Preface

wind energy. It has often been difficult to understand the work of the other PhDs, but I
have learned a lot about wind energy from trying.

I have my parents, Jan and Berit, to thank for a good upbringing and support. I
grew up 200 meters from the student housing area of the Norwegian University of Life
Sciences, and I knew I wanted to be a student a long time before I had any idea what
that meant. That I would continue all the way to a PhD was not necessarily given, but I
suspect that it was my father’s secret plan all along. I would also like to thank my sister
Malena, even if she tried to sabotage my academic career by sitting on my homework to
get some attention. Fortunately, she has stopped doing that, and I wish her luck on her
master thesis in food science.

Finally, I would like to thank my fiancee and the love of my life, Marie. I might
not have been the best at showing it, but I have appreciated and depended on your
encouragement and complete support during these years.

iv

Contents

Summary i

Preface iii

Contents v
List of Figures . vii
List of Tables . ix
Nomenclature . xi

1 Introduction 1
1.1 Motivation . 1
1.2 Main Contributions . 6
1.3 Thesis Outline . 7
1.4 List of Publications . 8

2 Operation and Maintenance of Offshore Wind Farms 11
2.1 Maintenance Strategies . 11
2.2 Remote Maintenance . 14
2.3 Cost-Benefit Evaluation of Remote Inspection 18

3 Prototyping and Evaluation of Remote Inspection for Offshore Wind 21
3.1 Related Work with Usability Testing of Telerobots 21
3.2 The Laboratory . 29
3.3 The Remote Inspection Prototype . 33
3.4 Results . 42
3.5 Discussion . 49

4 Simulink Coder Generated Code as a Module within a Software Project 53
4.1 Simulink Coder for Embedded Linux . 53
4.2 Software Module Real-Time Target . 57
4.3 Discussion . 65

v

Contents

5 Concluding Remarks 67
5.1 Conclusions . 67
5.2 Future Work . 69

6 Original Publications 71
Paper A Adaption of MathWorks Real-Time Workshop for an Unsupported Em-

bedded Platform . 73
Paper B Prototyping and Evaluation of a Telerobot for Remote Inspection of

Offshore Wind Farms . 81
Paper C Two Pilot Experiments on the Feasibility of Telerobotic Inspection of

Offshore Wind Turbines . 89
Paper D Software Module Real-Time Target: Improving Development of Em-

bedded Control System by Including Simulink Generated Code into
Existing Code . 95

Paper E An Experiment on the Effectiveness of Remote, Robotic Inspection Com-
pared to Manned . 101

Paper F Evaluation of Remote Inspection of Offshore Wind Turbines with a
Tablet Controlled Telerobot . 109

Paper G A Review of Experiments Evaluating the Usability of Mobile Telerobots 123

Bibliography 137

vi

List of Figures

1.1 Two wind turbines at Smøla wind farm. 1
1.2 Comparison between a 2.3MW turbine blade from Smøla wind farm and a

bus. 2
1.3 View from the top of a wind turbine at Hundhammerfjellet wind farm. . . . 3
1.4 Frequency and downtime caused by different types of failures. The data is

from 600 Swedish wind turbines on land over a 5-year period (Ribrant et al.
2007). 5

2.1 Concept illustration of a remote inspection robot inside a simplified and generic
nacelle. The nacelle consists of main bearings, gearbox, generator, transformer
and cabinets for electronics. The inspection robot is indicated with an arrow.
An example rail configuration is also shown. 15

2.2 The improvements in availability and cost of energy compared to the base
case. 19

3.1 Examples of different types of displays from Nielsen et al. (2005). 25
3.2 A section of the lab for evaluation of remote inspection 29
3.3 The prototype remote inspection robot used in the experiments. 33
3.4 A description complete control system as intended when installed in a wind

turbine. 35
3.5 The Simulink Model used as part of the robot control system during the second

experiment. 37
3.6 The evolution of the GUI. 38
3.7 Different views for the tablet controller. Controls for manual adjustments are

shown in the lower left corners. 41
3.8 Results from the pilot experiment. Error bars are not shown due to the low

number of participants. 42
3.9 Average detection rates for manned (µM), teleoperated (µT) and assisted in-

spections (µA). 43
3.10 Average NASA-TLX results for manned, teleoperated and assisted inspections. 44
3.11 The detection rates grouped on inspection method. 46

vii

List of Figures

3.12 Average NASA-TLX results for manned and remote inspections. 46
3.13 The detection rates grouped on the most used tablet view. 47
3.14 Average NASA-TLX results for map, orginal and difference views. 48
3.15 Van De Laan results for the remote inspection prototype. 48

4.1 The Beaglebone development board. 57
4.2 The relationship between generated and custom code in SMRT compared to

a typical use of GRT . 59
4.3 Simulink model used in the test (colors indicates period of tasks). 61
4.4 Graphical representation of communication between generated and custom

code in SMRT . 63

viii

List of Tables

3.1 Descriptions of usability test variants for evaluation of remote inspection. . . 32
3.2 Comparison between movement on rail and full mobility. 34
3.3 The evolution of the prototype versions. 36

4.1 Where configurations are stored in GRT and SMRT using Eclipse. 60
4.2 Execution time and periods of tasks used in scheduling test. 61
4.3 Results from simulations running for 3 hours. 62

ix

Nomenclature

CBM Condition-based maintenance

CM Condition monitoring

CMS Condition monitoring system

CTV Crew Transfer Vessels

ERT Embedded Real-Time Target

GRT Generic Real-Time Target

NOWIcob Norwegian Offshore Wind Cost and Benefit Model

O&M Operation and maintenance

PTZ Pan/Tilt/Zoom

RMS Rate Monotonic Scheduling

RTDM Xenomai real-time driver model

RTW Real-Time Workshop, the former name for Simulink Coder

TLC Target Language Compiler

xi

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Two wind turbines at Smøla wind farm.

The world’s energy production is today strongly dominated by fossil fuels, which is
causing a growing concern for anthropogenic climate change. Even if this is a contro-
versial topic in the general public, it has a strong scientific consensus. According to the
Intergovernmental Panel on Climate Change (Alexander et al. 2013): “Continued emis-
sions of greenhouse gases will cause further warming and changes in all components

1

1. Introduction

of the climate system. Limiting climate change will require substantial and sustained
reductions of greenhouse gas emissions”. It is not realistic that all of the reduction in
emissions can come from decreased global energy consumption, especially due to the
rapid economic growth in areas with large populations. An increase in the production of
energy from other sources than fossil fuels would also be necessary.

The earliest reliable historical accounts of windmills were from the 7th century in the
Persian-Afghan border region of Seistan (Hau et al. 2000). More famous, at least from
a European perspective, are the European windmills from the 12th century in England,
Flanders and northern France. These were used in Europe until their peak in the 19th
century when steam powered milling took over (Musgrove 2010).

Experiments with wind turbines for electricity generation started in the late 1800s,
and over the years, a large number of different concepts were tested. An example was
the first megawatt (1.25MW) turbine called “Grandpa’s Knob”. It was built in the United
States in 1941, but it was not commercially viable, and the plans for building several
similar turbines were discarded. After the oil crisis in 1973, there was a renewed in-
terest for wind energy. While many countries experimented with large wind turbines,
the Danish started building smaller and less complex machines, which often were sold
to farmers. The look of modern wind turbines, with tubular towers and upwind rotors
with three blades came from these. During the 1980s, the Danish producers were able
to mass-produce these machines, and contributed to about half of the installed capacity
during the Californian wind boom. In the 1990s, European countries started to build on
a large scale. Today, wind energy contributes significantly to the energy production in
Denmark, with 26% of the total electricity generation (EWEA 2012), Spain, Germany
etc.

Figure 1.2: Comparison between a 2.3MW turbine blade from Smøla wind farm and a bus.

2

1.1. Motivation

The size of wind turbines have increased steadily over the years. Since the wind
energy increase with the square of the robot diameter, larger turbines are more effective
and have a lower impact on the environment (Caduff et al. 2012). A turbine blade and
a bus are shown together in figure 1.2, as an illustration of the size of modern wind
turbines. The turbine in the figure is 2.3MW, thus it not considered a large turbine by
today’s standard. According to RenewableEnergyWorld.com, the world’s largest offshore
wind turbine in October 2013 was the Samsung S7.0-1711, which is 196 meter tall, with
a rotor diameter of 171 meters and a rated power of 7 MW.

Offshore wind energy is one of the more promising renewable sources of energy for
the future. The capacity factor of a turbine, i.e. the percentage of the theoretical maxi-
mum energy output, can be increased from about 25% on land to about 40% offshore
(Junginger et al. 2003) due to favorable wind conditions. Offshore wind turbines have
on average 3000 full load hours per year, while wind turbines on land typically have
2000-2300 (Morthors et al. 2009).

Although people are generally positive to wind energy, most people do not want to
have turbines close by, the so called “not in my backyard” problem. This is less of a
problem for offshore wind turbines. Unless they are very close to the shore, the problem
with audible noise is likely to be negligible. The visual impact depends on the viewing
conditions, but according to Bishop (2002), any effect from turbines more than 20 km
from the shore would be rare.

Figure 1.3: View from the top of a wind turbine at Hundhammerfjellet wind farm.

1http://www.renewableenergyworld.com/rea/news/article/2013/10/securing-the-worlds-largest-
wind-turbine

3

1. Introduction

According to EWEA (2012), it was about 5 GW of installed offshore wind energy ca-
pacity in Europe in 2012. It is estimated that the installed capacity will grow to 40 GW
by 2020 and 150 GW by 2030 (EWEA 2011). This would correspond to about 4% of EU
electricity consumption in 2020 and about 14% in 2030. Unfortunately, it is expensive
to both build and operate turbines offshore, especially since turbine locations are delib-
erately chosen for their windy conditions. Harsh weather can delay the installation and
prevent personnel from accessing the turbines for maintenance. While wind turbines
on land have one of the lowest estimated levelized cost for power plants built in 2018,
offshore turbines have one of the highest (EIA 2013). This means that these ambitious
plans only will be possible if technology is improved and the cost of both installation
and operation is reduced.

Offshore wind farms are located in areas with strong and stable wind for optimal
energy production. Unfortunately, these are about the worst locations for operating the
turbines. Waves can make it difficult or impossible to access the turbines by boat, and
wind cause problems for lifting operations and access by helicopter. Often there are both
strong wind and high waves. In the North Sea, where many offshore wind projects are
planned, the turbines can be inaccessible for long periods due to the weather, especially
in the winter months. Even if the weather conditions are favorable, there is still a high
cost associated with transporting personnel to and from the turbines. Where a car driven
by the maintenance personnel themselves is sufficient to access a wind turbine on land,
a large boat with its own crew fitted with special equipment for turbine access is needed
offshore. The same for heavy lifting operations, where a mobile crane can be used on
land, a jack-up rig or another specialized vessel is needed offshore.

There are relatively few offshore wind farms today, and they have all been built re-
cently. This means that there are little available information about the actual cost of
operation and maintenance (O&M) for offshore wind turbines. However, estimates sug-
gest that between 20% and 25% of the total energy cost from offshore wind turbines will
be due to O&M (Lu et al. 2010; Musial et al. 2006; Snyder et al. 2009; Wiggelinkhuizen
et al. 2007), compared to 10% to 15% on land. Blanco (2009) estimated the O&M con-
tribution to be as much as 30%. In the development of a tool for estimating the cost of
wind energy, an O&M cost of 0.007 USD/kWh was used for onshore turbines and 0.020
USD/kWh for offshore (Fingersh et al. 2006). It seems as if the cost of O&M for offshore
wind is expected to be approximately twice what it would be on land, but estimates of
3 and 5 times the cost has also been used (McMillan et al. 2007).

More data is available for wind turbines on land. Figure 1.4 show the relationship
between frequency and downtime for different types of failures in 600 Swedish onshore
turbines based on data from Ribrant et al. (2007). It shows that that most of the frequent
failures cause relatively short downtimes. These frequent, minor failures are expected to
become more time consuming to repair offshore (McMillan et al. 2007), as waiting time
for suitable weather and transportation time must be added to the downtime. A turbine
can be down for days or weeks due to a minor failure if it happens at a period when the

4

1.1. Motivation

020406080

0 100 200 300 400

Hub

Driveytrain

Mechanicalybrakes

Structure

Entireyunit

Generator

Yawysystem

Gears

Controlysystem

Blades/pitch

Sensors

Hydraulics

Electricysystem

Failuresypery1000yturbines

Downtimeyperyfailureyfhours(

Figure 1.4: Frequency and downtime caused by different types of failures. The data is from 600
Swedish wind turbines on land over a 5-year period (Ribrant et al. 2007).

turbine is inaccessible due to strong wind. This is likely to be a period when the turbine
could have operated at maximum capacity, making this downtime especially costly.

For onshore turbines, it has been a low tolerance for increased investment costs to
increase the efficiency of O&M (Musial et al. 2006). Although the same pressure to keep
the investment cost low exists for offshore turbines, it is more accepted that an increase
in the investment might be necessary in order to reduce the need for time consuming
and expensive offshore maintenance operations.

The concept of performing maintenance tasks remotely, using a telerobot system,
has been evaluated in this thesis. If some maintenance tasks can be performed without
needing to access the turbines, there will be an direct economic benefit from reduced
cost of transportation to the turbines, and indirect benefits as increased availability be-
cause it is possible to do tasks at a shorter notice and regardless of the weather. Not all
maintenance tasks are feasible to do remotely, as it would require a too complicated and
expensive system. Inspections have been identified as the task that is easiest to perform
remotely, and how remote inspections perform compared to the alternative of manned
inspections has been evaluated in this thesis.

5

1. Introduction

1.2 Main Contributions

In this thesis, the remote inspection concept has been evaluated to determine whether it
is a viable alternative to manned inspections for the use in offshore wind turbines. The
main contributions from this work are:

• The evaluation of the potential use and advantage of remote inspection and remote
maintenance of offshore wind turbines, including simulations with the NOWIcob
tool.

• A review of experiments described in the literature that have evaluated the usabil-
ity of telerobots in other fields.

• A laboratory for testing inspections has been built with visually similar equipment
as one might find in an industrial system. The laboratory has several errors that
can be visible or hidden for each inspection.

• A series of usability tests that compared the use of remote and manned inspec-
tions in the laboratory. No other experiments with a direct comparison between
performing a task with a robot or in person have been found in the literature.

• The development of a flexible method for using code generated from Simulink
Coder that are easy to combine with manually written code.

• Contributed to the work of Norsk Automatisering AS to get further funding for
commercialization and to install and test a remote inspection prototype in a wind
turbine.

6

1.3. Thesis Outline

1.3 Thesis Outline

The reminder of this thesis is organized as follows:

Chapter 2: Operation and Maintenance of Offshore Wind Farms is an introduction to
the maintenance of offshore wind farms, and how remote inspection can be used
together with the tools and methods used today.

Chapter 3: Prototyping and Evaluation of Remote Inspection for Offshore Wind
describes the user-centered development of a remote inspection prototype, includ-
ing a series of usability tests. This chapter is based on articles G, B, C, E and F.

Chapter 4: Simulink Coder Generated Code as a Module within a Software Project
describes a method for using MathWorks Simulink Coder for generating code as a
part of a larger software project. This was used in the development of the remote
inspection prototype, and is based on articles A and D.

Chapter 5: Concluding Remarks summarizes the work, concludes the thesis and de-
scribe the future plans for the project.

Chapter 6: Original Publications contains five published peer-reviewed conference pa-
pers as well as two submitted journal paper manuscript.

7

1. Introduction

1.4 List of Publications

The work underlying this thesis has produced the following publications (ordered by
publication type, and chronologically numbered):

Journal Papers

Paper F: Ø. Netland, G. Jenssen, A. Skavhaug, “Evaluation of Remote Inspection of Off-
shore Wind Turbines with a Tablet Controlled Telerobot” submitted to the IEEE
Transactions on Human-Machine Systems.

Paper G: Ø. Netland, A. Skavhaug, “A Review of Experiments Evaluating the Usability of
Mobile Telerobots” submitted to the IEEE Transactions on Human-Machine Systems.

Peer-reviewed Conference Papers

Paper A: Ø. Netland, A. Skavhaug, “Adaption of MathWorks Real-Time Workshop for an
Unsupported Embedded Platform” published in the Conference Proceedings of the
36th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA 2010). DOI: 10.1109/SEAA.2010.53.

Paper B: Ø. Netland, A. Skavhaug, “Prototyping and Evaluation of a Telerobot for Re-
mote Inspection of Offshore Wind Farms” published in the Conference Proceed-
ings of the 2nd International Conference on Applied Robotics for the Power Industry
(CARPI 2012). DOI: 10.1109/CARPI.2012.6473351.

Paper C: Ø. Netland, A. Skavhaug, “Two Pilot Experiments on the Feasibility of Teler-
obotic Inspection of Offshore Wind Turbines” published in the Conference Proceed-
ings of the 2nd Mediterranean Conference on Embedded Computing (MECO 2013).
DOI: 10.1109/MECO.2013.6601378.

Paper D: Ø. Netland, A. Skavhaug, “Software Module Real-Time Target: Improving De-
velopment of Embedded Control System by Including Simulink Generated Code
into Existing Code” published in the Conference Proceedings of the 39th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA 2013).
DOI: 10.1109/SEAA.2013.51.

Paper E: Ø. Netland, G. Jenssen, H.M. Schade, A. Skavhaug, “An Experiment on the
Effectiveness of Remote, Robotic Inspection Compared to Manned” published in
the Conference Proceedings of the 2013 IEEE International Conference on Systems,
Man, and Cybernetics (IEEE SMC 2013).

NOWITECH Reports

• Ø. Netland, A. Skavhaug, “Condition Monitoring of Offshore Wind Farms - State of
the Art Study”, 2010.

8

http://dx.doi.org/10.1109/SEAA.2010.53
http://dx.doi.org/10.1109/CARPI.2012.6473351
http://dx.doi.org/10.1109/MECO.2013.6601378
http://dx.doi.org/10.1109/SEAA.2013.51

1.4. List of Publications

• Ø. Netland, A. Skavhaug, “Pre-Study on Cost-effective, Remote, Environmental
Friendly O&M of Large Scale Offshore Wind Turbine Plants”, 2011.

Other Publications

• Ø. Netland, A. Skavhaug, “Remote Presence: Performing Maintenance of Offshore
Wind Farms without Leaving your Office", 29th International Conference on Com-
puter Safety, Reliability and Security SAFECOMP 2010, Vienna, Austria, Sept 2010.

• Ø. Netland, A. Skavhaug, “Remote Presence, Cost-Effective Robotic Inspection and
Maintenance of Offshore Wind Turbines”, 6th EWEA PhD Seminar on Wind Energy
in Europe, Trondheim, Norway, Sept 2010.

• Ø. Netland, A. Skavhaug, “Extending Condition Monitoring of Offshore Wind Farms
with Remote Inspection” 24th International Congress on Condition Monitoring and
Diagnostics Engineering Management (COMADEM 2011), Stavanger, Norway, May
2011.

• Ø. Netland, G. Jenssen, A. Skavhaug, “Experimental design of a feasibility study
for remote inspection of wind turbines”, EWEA Offshore 2011, Amsterdam, The
Netherlands, Nov 2011.

Other Presentations

• Ø. Netland, A. Skavhaug, "Remote presence, Operation and Maintenance of Off-
shore Wind Farms Without Leaving Your Office" poster presentation at the Deep
Sea Offshore Wind R& D Seminar, Jan 2011.

• Ø. Netland, J. Heggset, "Remote Presence", invited presentation at NCEI Drift og
vedlikehold av offshore vindturbiner - nye muligheter gjennom instrumentering, Trond-
heim, Norway, Sept 2011.

• Poster presentations at the NOWITECH day in 2011 and 2013. Awarded best poster
award in 2013.

• Several presentations at NOWITECH WP5 meetings, both internal and with indus-
try partners.

9

1. Introduction

10

Chapter 2

Operation and Maintenance of
Offshore Wind Farms

This chapter is an introduction to maintenance of offshore wind farms, and a description
of how remote inspection compares to other maintenance strategies that are used today.

2.1 Maintenance Strategies

Regular maintenance is important for the safe and reliable operation of industrial sys-
tems. There are several strategies for how maintenance is planned and performed. The
most commonly used are the following (Rausand et al. 2004):

2.1.1 Corrective Maintenance

Corrective maintenance is repair or replacement after a failure occurs, or “run-to-failure”.
It is risky and often expensive to rely on corrective maintenance alone. When a compo-
nent of a turbine fails, this can often cause damage to the rest of the turbine. A typical
example would be a failure in a cooling or lubrication system that other systems rely on.

2.1.2 Preventive Maintenance

Preventive maintenance is to repair or replace worn components before they cause fail-
ures. This is normally less expensive and time consuming than corrective maintenance.
In addition, downtime caused by a failure is avoided. The disadvantage of preventive
maintenance is that it could be performed before it is needed, or that a preventable
failure can happen before the planned preventive maintenance. Some failures, typically
those that are externally caused, e.g. lightning, cannot be prevented with preventive
maintenance, as they happen regardless of the condition of the equipment.

11

2. Operation and Maintenance of Offshore Wind Farms

Different strategies can be used in order to determine when and which maintenance
tasks to perform. The simplest being clock-based or calendar-based, when maintenance
is performed at regular time intervals. These time intervals are set based on the expected
life of different components. Age-based maintenance is similar to clock-based, but plan
maintenance based on how much the system has been used, which often is a better
estimate for when maintenance is needed. The clock-based approach, however, is easier
to organize, as it is known ahead of time when maintenance is supposed to be performed.

2.1.3 Condition-based Maintenance

Condition-based maintenance (CBM) is a type of preventive maintenance that is per-
formed based on the condition of the turbine. To get information about the condition,
a condition monitoring system (CMS) is used, which continuously analyze information
from sensors in the turbine. The intention is to predict failures early enough that pre-
ventive maintenance can be performed before they occur. Maintenance is performed
when it is required based on the current observed condition, but not earlier than that.

Jardine et al. (2006) describes three key steps of condition monitoring. A short de-
scription of each of them is given here:

Data acquisition obtains data from the system. Data can be acquired online or offline,
where online means that the system is capable of acquiring the data by itself,
usually with sensors. Offline means that a person is doing a measurement or anal-
ysis and feed the results back into the condition monitoring system. For offshore
wind turbines, online acquisition is preferable, as it will not require transportation
to the turbines. Many different types of measurements can be used for condition
monitoring of wind turbines. The most common measurements are vibration mon-
itoring of the drive train and temperature measurements of bearings and electrical
equipment. Lubrication oil analyses provide useful information about the condi-
tion of gearboxes and bearings, but it is difficult to do online. Yang et al. (2012)
has a comprehensive list of other possible techniques. The different techniques are
able to identify different failures, thus a combination of several systems will be
necessary.

Data processing analyze the data. The first step will usually be to remove data from
faulty sensors or other errors in the data. The further analysis will depend on
the type of data. Waveform data, e.g. vibration and acoustic data, can be ana-
lyzed both in the time-domain (e.g. comparison with ARMA models) and in the
frequency-domain (e.g. fast Fourier transform). Images, from thermographic or
normal cameras, can be analyzed with image processing.

Maintenance decision support use the processed data for diagnostics and prognostics.
Diagnostics attempt to detect whether faults are present in the system based on
the available data. Prognostics attempt to predict the future condition of the sys-

12

2.1. Maintenance Strategies

tem. A commonly used metric for this is the remaining useful life. Both diagnostics
and prognostics are usually found with statistical approaches, artificial intelligence
approaches (e.g. neural networks and fuzzy logic) or model-based approaches. Re-
gardless of the method, the diagnostics and prognostics will not be perfect, thus
it will always be a compromise between being able to detect faults early, and the
probability that the condition monitoring will create false positive diagnoses or too
conservative predictions.

Several research projects, e.g. CONMOV (Wiggelinkhuizen et al. 2007) and Clever-
farm (Giebel et al. 2004), have looked into how CBM can make O&M of wind turbines
more effective, especially offshore. Unfortunately, it is not easy to test the effect of CBM.
The wind turbines are so reliable that a large number of them running for several years
must be observed to gather enough data to see a change in the number of failures. It is
also difficult to get data from controlled experiments. Owners of wind turbines are not
eager to induce failures in turbines to test how well a CMS is able to detect them.

Besnard et al. (2010) presents results from a life-cycle-cost simulation, which indi-
cates that CBM most likely will have an economical benefit for offshore wind energy,
and will reduce the risk of expensive maintenance operations. McMillan et al. (2007)
presents a similar simulation, but has focused on the CMS’ ability to produce accurate
diagnoses. It was estimated that the diagnoses from a CMS should be accurate between
60% and 80% of the time in order to be cost-effective.

13

2. Operation and Maintenance of Offshore Wind Farms

2.2 Remote Maintenance

The cost of O&M can be reduced significantly if maintenance could be performed with-
out accessing the turbines, i.e. remote maintenance. This would require a system capable
of doing maintenance tasks autonomously or controlled remotely from land. The pro-
posed method in this thesis is to have a remotely controlled robot inside each wind tur-
bine nacelle, as this is where most of the equipment is located. It would also be possible
to extend the concept to other areas of the turbine.

The cost of such a system would be dependent on its capabilities. It could be possible
to develop a system able to do a large range of maintenance operations, but that would
likely be too expensive to be viable for wind turbines. Larger maintenance operations
would not be possible to do remotely, regardless of the system, as they would require
spare parts that are larger than what could be stored in the turbines.

2.2.1 Remote Inspection

The easiest type of maintenance tasks to do remotely is inspections. An inspection system
only need to observe the turbine, not interact with it. A remotely controlled inspection
robot that move around the turbine, equipped with cameras and sensors could allow an
operator on land to inspect the turbine as if he was there. A concept illustration of such
a system moving on a rail inside the nacelle of a wind turbine is shown in figure 2.1.
The reason for using a rail for the robot is discussed in 3.3.1.

2.2.1.1 Sensors

Since the operator is not physically present at the wind turbine, he is dependent on
the telerobot’s sensors for the inspection, and observes the turbine through these. This
means that the sensors should be able to provide him with the same information as if
he was there. Humans rely on their vision, which also is important during inspections,
thus the telerobot should be equipped with one or several cameras. The camera quality
is important to get the best view of the equipment and for the feeling of being present
in the turbine.

Hearing is also important during inspections, as unusual sounds often are indica-
tions of problems. With suitable equipment, a robot system can identify where a sound
originates from faster and more accurately than a human could. Sounds can be isolated,
both with the use of directional microphones and by using sound processing.

Thermographic cameras are expected to be an important type of sensor for remote
inspection. Such cameras are frequently used during manned inspections to search for
hot spots in the equipment. Hot spots can be caused by both friction and over-current,
which both can be early symptoms of failures. Yang et al. (2012) discuss the possibility
of using thermography as part of CM, but because of the high cost of such cameras, it is

14

2.2. Remote Maintenance

Figure 2.1: Concept illustration of a remote inspection robot inside a simplified and generic
nacelle. The nacelle consists of main bearings, gearbox, generator, transformer and cabinets for
electronics. The inspection robot is indicated with an arrow. An example rail configuration is also
shown.

not considered a viable method. Since an inspection robot can move around, one camera
can be used to observe different parts of the turbine, making it more cost effective.

Remote inspections can be performed regardless of weather conditions and while the
turbine is running. Both sound and heat are best observed on running machinery. Some
sounds will only be present when the machine runs, and a hot spot will slowly dissipate
when no new heat is generated. This is an important advantage for remote inspections
as turbines normally are stopped for safety reasons when accessed by personnel.

Touching the machinery is to use a human sense that is difficult to replicate with a
telerobot. However, it is possible to have a small robotic arm with sensors for detecting
temperature, vibrations and possibly a small camera. This can be used similar to a human
hand. It will likely be more appropriate to display the measurements on a screen than to
induce heat and vibration to the hands of the operator.

2.2.1.2 Remote Inspection and Condition Monitoring

Remote inspection would not be the same as condition monitoring, nor would it replace
it. The two technologies have different and complimentary abilities. Condition monitor-
ing operates continuously to produce diagnoses or predictions without human interac-

15

2. Operation and Maintenance of Offshore Wind Farms

tion. The intention of remote inspections is instead to replicate how manned inspections
are performed, by allowing human eyes, ears and ingenuity to be a part of the system,
as if the operator was in the turbine himself.

The diagnoses from condition monitoring are not always accurate, and it is possible
that there are false positives. Normally, these would not be detected before a mainte-
nance team investigates the diagnosis on site. With remote inspection, it can be investi-
gated without expensive access to the turbine, thus unnecessary operations due to false
positives can be prevented. When a diagnosis is accurate, remote inspections can be used
as a tool for preparing and planning maintenance operations.

Remote inspections can also be used to monitor parts of the equipment or look for
symptoms that are difficult to find with condition monitoring. In some cases, the sen-
sors on the remote inspection robot can be a replacement for a faulty sensor used by
condition monitoring, at least for short durations.

2.2.1.3 Storing of Information

As all information the operator sees is already transferred digitally, it is trivial to store
all or parts of this information. In addition, the remote inspection robot can gather
information autonomously. Stored information can be useful for future reference, to see
how the condition of the equipment has changed over time.

Storing or logging of information during remote inspections can be done without
operator intervention. This is in contrast to logging during manned inspections, which
will be done manually. This means that the technician will decide what information to
register based on subjective observations. Information that was not found important at
the time might not be stored.

2.2.1.4 Uses of Remote Inspection

Some of the potential uses of remote inspection, both as a standalone system and to-
gether with CMS, are listed below:

• Inspections can be performed at almost no cost, allowing inspections to be per-
formed frequently.

– Each inspection increase probability that an error is detected.
– Frequent inspections increase the probability that an inspection is performed

after a symptom of an error becomes visible and before it causes a failure.

• Can be used to investigate a failure and plan corrective maintenance. To get cor-
rect information early can reduce downtime if spare parts have to be ordered. The
personnel can also be better prepared when they have studied the failure before-
hand.

16

2.2. Remote Maintenance

• Verify diagnoses from the CMS.

– False positive diagnoses can be identified as such with remote inspection,
before they cause an unnecessary maintenance action.

– Correct diagnoses can be studied with remote inspection as part of the plan-
ning of preventive maintenance.

– Since the consequence of false positives can be reduced, the CMS can lower
its thresholds for giving diagnoses, thus reducing the probability that a failure
will go unnoticed.

• A CMS will often have a large number of sensors that both increase the cost of the
system and the number of sensors failures.

– CMS can use information from the sensors on the mobile inspection robot,
and possibly reduce the number of sensors installed in the turbine. An exam-
ple is that a thermographic camera could replace a large number of tempera-
ture sensors.

– Sensors on the inspection robot can be used as an alternative for a failed
sensor. Although the sample time and accuracy likely will be lower, it can at
least reduce the urgency of replacing the sensor.

2.2.2 Remote Repair and Replacements

It is outside the scope of this thesis to consider how a remote system could perform repair
and replacements. However, it could be a possible addition to remote inspection in the
future. This would likely be limited to replacing small parts, cleaning, lubrication etc.
When considering figure 1.4, it is obvious that the most frequent failures are minor ones
that could be possible to do remotely. This means that even the ability to do a limited
number of maintenance tasks could significantly reduce the need to travel offshore. It is
not feasible to develop a robot that can do large maintenance tasks, at least not at an
affordable cost.

17

2. Operation and Maintenance of Offshore Wind Farms

2.3 Cost-Benefit Evaluation of Remote Inspection

In NOWITECH work package 5, which covers the topic of operation and maintenance, it
has been developed a simulation tool called NOWIcob (Hofmann et al. 2013). It has been
developed for analyzing the consequences of different decisions related to the mainte-
nance and logistic strategy of offshore wind farms. It uses a time-sequential event-based
Monte Carlo technique to simulate the operational period.

In a co-operation with the developers of NOWIcob, a cost-benefit evaluation of re-
mote inspection for offshore wind farms has been performed. Three simulation cases
have been defined. These share the same set of possible failures, their failure rates and
what type of maintenance that is required. For larger maintenance tasks, a pre-inspection
task is required as part of the planning.

In the base case, there is no condition monitoring nor remote inspection. Preventive
maintenance is performed yearly, and corrective maintenance is performed when there
has been a failure.

The second case includes a state of the art condition monitoring system that provides
warnings about future failures. If condition-based maintenance is performed before the
failure occurs, the task will be less expensive and time consuming. However, the condi-
tion monitoring system is not perfect, and will not detect all failures. It is also assumed
that half of the alarms are false positives and that the sensors of the condition monitoring
system can fail and need repair.

The third case has a remote inspection system in addition to the condition moni-
toring. This means that pre-inspections and investigations of false alarms can be done
remotely. However, since remote inspections are considered to take longer, these tasks
take twice as long. There are also other potential benefits to remote inspections, e.g.
reduction of failures due to inexpensive, frequent inspections. Since these effects are
uncertain and difficult to quantify they have not been included in these simulations. A
remote inspection system failure has also been added to the list of possible failures.

The investment cost of the turbines has been estimated to be 2,250,000 Euro/MW,
with an addition to the cost of 120,000 Euro for a condition monitoring system and
60,000 Euro for a remote inspection system. A wind farm with 100 3MW turbines was
used for the simulation. The wind farm was located 40 km from a harbor, a reasonable
distance for future wind farms. Each case was simulated with two crew transfer vessels
(CTV) equipped with advanced systems for accessing the turbines. A jack-up was avail-
able and could be leased for periods of 2 weeks when operations that include heavy
lifting were required.

For each case, a 20-year simulation was run 20 times. The results are shown in
figure 2.2, as the improvement in availability and cost of energy compared to the base
case. Relative values have been used to minimize any bias in our assumptions for the
simulations. Especially the parameters regarding cost are considered preliminary. The
availability are likely a more reliable result than the cost of energy, as it does not rely on

18

2.3. Cost-Benefit Evaluation of Remote Inspection

0%

5%

10%

15%

20%

Time-based
availability

Electricity-based
availability

CostMofMEnergy

Im
p

ro
ve

m
en

tM
co

m
p

ar
ed

M
to

Mb
as

eM
ca

se
M(

%
)

Condition
Monitoring

Remote
Inspection

Figure 2.2: The improvements in availability and cost of energy compared to the base case.

any assumptions about the costs.
Both condition monitoring and remote inspection have significant improvements

from the base case. This is as expected, as relying on corrective maintenance alone is not
considered a viable strategy. It is also clear that the improvements are larger for remote
inspection than condition monitoring. When some maintenance tasks are performed re-
motely, even trivial ones as checking for false alarms and pre inspections, there are more
time available to do other tasks and thus reducing the total downtime. The reduced cost
of energy is mostly due to less downtime, but there was also a small reduction in the use
of both CTVs and chartering of the jack-up, which reduce the O&M cost.

The simulations presented in this paper demonstrate a significant potential economic
benefit by using remote inspections. The availability is higher than without remote in-
spection, and the cost of energy is reduced. The validation of the NOWIcob tool is a
continuous ongoing process, but as a tool for comparing different strategies the results
should be transferable to the real world.

19

2. Operation and Maintenance of Offshore Wind Farms

20

Chapter 3

Prototyping and Evaluation of
Remote Inspection for Offshore
Wind

This chapter presents the following work:

• 3.1 presents related work with evaluation of usability of telerobots, and is based
on article G.

• 3.2 describes the laboratory used in our experiments, and is based on article B.

• 3.3 describes the user-centered development of the prototype and the different
versions used in the experiments from articles C, E and F

• 3.4 presents the results of the performed usability tests and is based on articles
C, E and F. Detailed descriptions of each of the experiments can be found in the
articles.

• 3.5 discusses the most important results from the experiment. Discussions of the
individual experiments can be found in articles C, E and F.

3.1 Related Work with Usability Testing of Telerobots

Traditionally, robotic research has focused on increasing the robots’ capabilities, and
robotic systems "have been developed by robotics experts for use by robotic experts"
(Scholtz 2002). Human-robot interaction (HRI) considers the interaction between robots
and their users, in addition to the capabilities of the robot. As most users of telerobots
are experts in the task the robot is used for, i.e. domain experts, they often have less
experience from controlling robots. This makes the human-robot interaction especially
important.

21

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

Human-robot interaction can be considered a subset of human-computer interaction
(Yanco et al. 2002). The concept of usability is often applied when evaluating computer
systems, especially when a system is intended for novice users. Similarly, it can be used
when evaluating robot systems where the intended users are not robot experts. Usability
is defined in ISO-9241 (ISO 1998) as the "extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction in
a specified context of use". Usability tests (Dumas 1999) are experiments where potential
end users of a system use it for relevant tasks, and the results are used to evaluate its
usability.

3.1.1 Usability Goals

Usability goals describe different aspects of the usability of a system. Different definitions
of usability goals exist. In the ISO-9241 standard, (ISO 1998) the three usability goals of
effectiveness, efficiency and satisfaction are used. Other often-used goals are learnability
and memorability (Rogers et al. 2011; Schneiderman et al. 2010), which consider how
easy it is to learn and remember how to use a system.

For this thesis, we define and use the same five usability goals as in article G. They
are also suitable usability goals for telerobots in general. In addition to the three goals
defined in the ISO standard, workload (Adams 2002) and situation awareness (Endsley
1988) have been added, because of their relevance for telerobots.

3.1.1.1 Effectiveness

The effectiveness is how accurately and completely a telerobot is able to perform its
intended task. It is measured differently depending on the task the robot is used for.

• The size of an explored area.

• The ratio of targets found when searching.

• The score in a game like Robotflag.

The participants can also be asked to rate how successful they believed they were.
A potential problem is that people cannot be expected to evaluate their own success
objectively and accurately.

3.1.1.2 Efficiency

The efficiency is the amount of time or resources spent when using the robot. It is usually
measured as the time it takes to complete a task. Efficiency is often linked to effective-
ness, as an efficient system allow the user more time for the main task, thus improving
its effectiveness.

22

3.1. Related Work with Usability Testing of Telerobots

3.1.1.3 Satisfaction

The satisfaction is the users’ subjective assessment of how pleased they were with the
telerobot system. It is usually evaluated with a questionnaire or similar.

3.1.1.4 Workload

The workload relates to how demanding, mentally and physically, it is to use the system.
It is demanding to perceive and understand a large amount of information from the
robot and decide appropriate actions. If the workload becomes more than the user can
handle, the performance will decrease while the chance of doing incorrect decisions will
increase.

Workload is often evaluated subjectively with the NASA-TLX survey (Hart et al.
1988). Although not specifically targeted at telerobots, this technique is commonly used.
Workload can also be estimated with measurements that are expected to correlate with
it.

• The amount of commands given by the participants (joystick use, number of keys
pressed etc.) is an indicator of the effort and the workload of using the system.

• A secondary task can be given (answering math questions, simple computer game
etc.), and the performance of the secondary task indicates the workload from the
primary task. High performance means low workload.

3.1.1.5 Situation Awareness

Situation awareness (SA) refers to the robot user’s ability to be aware of, and understand
the situation of the robot. A definition of SA is “the perception of the robots’ location, sur-
roundings, and status; the comprehension of their meaning; and the projection of how
the robot will behave in the near future” (Yanco et al. 2004a). The user is not physically
present at the robot’s location, and cannot observe it directly, thus it becomes difficult to
maintain situation awareness. In several real-world search and rescue operations, it was
estimated that the robots were stationary about half of the time because their operators
tried to understand what was going on around them (Murphy et al. 2005).

Situation awareness measurements can be grouped into three categories; explicit,
implicit and subjective (Yanco et al. 2004a). Subjective measurements are self-reporting
of SA, like 3D SART (Endsley et al. 1998). Implicit measures are measurements that are
assumed to correlate with SA, as the number of collisions. A high number of collisions
or near collisions is expected to correlate with low situation awareness.

Explicit measures consist of pausing the experiment to quiz the participants about
their knowledge of the location and situation of the robot. This is an accurate sample of
the participants’ awareness at a specific time in the experiment. Unfortunately, explicit
measures will interfere with the rest of the experiment.

23

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

3.1.1.6 Qualitative Results

Some articles present observations that were done by the experimenters or suggestions
by the participants. These qualitative results are useful for identifying problems and to
get ideas for improvements, which is important when applying a user-centered design
(Adams 2002; Beaudouin-Lafon et al. 2003). It is assumed that qualitative results often
are used for this, even if it is not mentioned in an article. Qualitative results from par-
ticipants that have experience with the tasks the robots are intended for are especially
valuable.

3.1.2 Relevant Usability Tests for The Development of Remote Inspection

The experiments and findings that are presented here is a selection that are considered
relevant for the prototyping and evaluation of the remote inspection system, from the
full review in article G. The consequences of these findings for remote inspection are
discussed in the relevant parts of 3.3. In article G, the experiments have also been cate-
gorized and summarized in tables.

3.1.2.1 Displaying Information

The user of a telerobot is not able to see the robot or its environment. Both the task the
robot is used for, and the control of the robot are dependent on information from the
sensors on the robot. How it is displayed to the user is thus important for the telerobot
usability.

Most user interfaces for telerobot control will display either video streams from cam-
eras on the robot, a map of the robot’s environment or both. Several experiments have
been performed to compare different variations of this. For robots used to explore an
unknown environment, it is common to use information from distance sensors to build a
map of the robot’s environment. These maps can be normal 2D maps where the user sees
the robot and its environment from above. The map information can also be displayed
in three dimensions from the perspective of the robot or slightly behind, which is called
virtual reality.

It seems that "there is useful navigational information, in both the map and the
video sets of information, integrating the information can yield better results than using
either map or video individually." (Nielsen et al. 2006a) However, in experiments were a
video display and a map display have been shown side-by-side (video+map), as shown
in figure 3.1(a); it has not performed better that the best of the video or map alone
(Nielsen et al. 2005; Yanco et al. 2006; Yanco et al. 2007). This implies that the users
only managed to use one of the displays at the time.

Augmented reality (Ricks et al. 2004) is a method for fusing a video into a 3D repre-
sentation of the map, as shown in figure 3.1(b). The two displays shown in figure 3.1
are showing the same information, but it is easier to pay attention to all the information

24

3.1. Related Work with Usability Testing of Telerobots

(a) A video+map display. (b) An augmented reality display.

Figure 3.1: Examples of different types of displays from Nielsen et al. (2005).

in the augmented reality display. Several experiments (Nielsen et al. 2005; Ricks et al.
2004) have shown that this was beneficial, especially for situation awareness.

There are also simpler methods for fusing information, e.g. to show distance indica-
tors together with a video. These indicators can be organized around the video display
(Eliav et al. 2011), overlaid on the video as a HUD (Eliav et al. 2011) or as a separate
display besides the video (Yanco et al. 2007). Experiments (Eliav et al. 2005; Eliav et al.
2011) suggests that the HUD solution is preferable. This is as expected, since the user
can notice changes in the symbols overlaid the video without looking away.

3.1.2.2 View Perspectives

One of the potential advantages of virtual and augmented reality interfaces was identi-
fied as the ability to view the robot and its environment from a third person perspective.
To test whether this actually is an advantage, one should compare two interfaces that
are equal except the view perspective. We have identified two experiments that did such
a comparison. The results showed that a third person perspective was an advantage for
both video (Keyes et al. 2006) and map (Bruemmer et al. 2006) based interfaces. Es-
pecially situation awareness was improved, probably due to the ability to see the robot
within its environment, which makes it easier to see how far it is from obstacles.

Telerobots with cameras often have pan/tilt/zoom (PTZ), which allow the user to
turn the camera and look around without moving or turning the robot. This has a pos-
itive effect on the usability, especially situation awareness (Hughes et al. 2004; Nielsen
et al. 2006b). For many robots, it is also faster and more convenient to turn the camera
than the robot.

A potential disadvantage with PTZ cameras is that users can be unaware of the direc-
tion the camera is facing. This can cause confusion and loss of situation awareness, espe-
cially if the user incorrectly assumes that the camera is centered when moving (Hughes

25

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

et al. 2004; Yanco et al. 2004b). It is important to communicate the direction of the cam-
era to the operator. To make it easy to center the camera, some systems have a button
that does this automatically (Baker et al. 2004).

3.1.2.3 Levels of Autonomy

The operator of a telerobot has to make due with limited information about the robot’s
environment, and there will often be some communication delay. This makes the con-
trol of telerobots a challenging task, which can be confirmed by the evaluation of robot
search and rescue during the World Trade Center disaster (Casper et al. 2003). In this
real-world situation, two operators were needed to control each robot, which is an indi-
cator of how difficult this can be, especially in a stressful situation.

The level of autonomy describes to which extent a system, like a telerobot, is able to
operate without the interaction of a human. The level of autonomy has been shown to
have an effect on both situation awareness and workload in other applications (Endsley
et al. 1999), thus it is likely that different levels of autonomy for telerobots will have an
effect on these and other usability goals.

Both computer and human control have their benefits, and the optimal compromise
between the two are likely to be dependent on the current task, robot system etc. Para-
suraman et al. (2000) start their article with the following question: "Technical develop-
ments in computer hardware and software now make it possible to introduce automation
into virtually all aspects of human-machine systems. Given these technical capabilities,
which system functions should be automated and to what extent?".

Sheridan (1992) introduced a scale of ten levels of automation, from the operator
controlling the robot directly; to an autonomous control system that completely ignores
the operator. These can be applied to different stages of information processing and
decision making to describe a system. Although it would be possible to describe telerobot
systems with this method, we have instead grouped the most common control schemes.
These are ranged from low to high autonomy.

Teleoperated is when the operator has full and direct control over the robot, typically
controlled with one or multiple joysticks.

Safe mode is the same as teleoperated, except that the control system will intervene to
prevent collisions and similar.

Waypoint control lets the operator specify waypoints the control system navigates be-
tween. If the robot has a camera, it is often controlled separately.

Shared mode means that the control is shared between the user and the control system.
How the control is shared varies between implementations.

• User initiative or adjustable autonomy allow the user to adjust how the con-
trol is shared between the control system and itself.

26

3.1. Related Work with Usability Testing of Telerobots

• Robot initiative or adaptive autonomy allow the control system to adjust how
the control is shared between the user and itself.

• Mixed initiative is a mix of user and robot initiative, where both can adjust
the how the control is shared.

Autonomous control systems are in full control over the robot. The operator does not
interact, or interacts very little with the robot.

For experiments with real robots, safe mode is normally used instead of teleoperated,
to reduce the chance of the robot damaging itself or its environment. In an experiment
that compared the two for a real robot (Marble et al. 2003; Marble et al. 2004), the
participants felt most in control when using safe mode, as they did not need to worry
about colliding.

Higher autonomy (waypoint and shared mode) assists the operator, and the results
show that participants spend less of their time interacting with the robot than when
using teleoperation or safe mode (Bruemmer et al. 2008; Crandall et al. 2002; Few et
al. 2008; Nielsen et al. 2008) and performed better on secondary tasks (Crandall et al.
2002). These are indicators of lower workload, and means that the operator spends less
of their time navigating the robot and more time on their main task, e.g. searching for
targets. Experiments show that higher autonomy correlates with higher effectiveness in
such tasks (Bruemmer et al. 2003; Bruemmer et al. 2005; Bruemmer et al. 2008; Few
et al. 2008; Goodrich et al. 2007; Nielsen et al. 2007; Nielsen et al. 2008).

3.1.2.4 Touch Screen Interfaces

Most telerobots are controlled from desktop computers with keyboard, mouse and some-
times joysticks. Joysticks are especially useful for teleoperation, as it provides intuitive
and accurate control. The versatility of the joystick as an input device is demonstrated
by Song et al. (2007). The most common alternative to keyboard, mouse and joysticks
are touch screens, which have become increasingly popular with the increased use of
smart phones and tablet computers. When a large touch screen interface was compared
to a traditional and well-tested joystick based interface (Keyes et al. 2010), there was no
significant difference in usability. When different ways to control a robot with a smart
phone was compared (Truar et al. 2012), the best results were achieved when using the
touch screen.

A touch screen is a “blank canvas on which control surfaces are dynamically created”
(Micire et al. 2009b), thus it can be tailored to the specific application. There are limitless
interaction methods, which also is a challenge as it can be difficult to choose the most
intuitive touch gesture for a specific command. This was studied by Micire et al. (2009a),
where 31 participants were asked to describe how they would prefer to interact with the
touch screen to control robots to do specific tasks. An overview of the popularity of the
different types of gestures for different commands was presented. These results are a

27

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

good starting point for defining which touch gestures to use for a touch based robot
control system. Similarly, six participants were observed while controlling a robot with
a touch interface (Micire et al. 2009b). The behavior of each was described in detail,
and it was found that they developed their own individual interaction styles that varied
more than the experimenters had anticipated.

28

3.2. The Laboratory

3.2 The Laboratory

To evaluate remote inspection we have built a laboratory consisting of generic industrial
equipment as seen in figure 3.2. The equipment is there to be observed, not used, so
it only needs to be visually similar to industrial equipment to be a sufficiently realistic
mock-up of a wind turbine. That the equipment has little in common with the equipment
in a wind turbine is not relevant. The laboratory can be inspected both in person and
remotely, allowing a direct comparison between the two inspection methods.

Figure 3.2: A section of the lab for evaluation of remote inspection

In the laboratory, we have defined several targets that the participants should search
for during inspections. These can be added and removed from the laboratory between
each inspection, which allowed us to be in control of the laboratory and the targets.

Evaluations in a laboratory, where the experimenters have full control, are more
suitable for experiments than an actual wind turbine. Wiggelinkhuizen et al. (2007) de-
scribed the problem of relying on naturally occurring failures for evaluating the ability
to detect them. In the CONMOW project, condition monitoring was tested on five tur-
bines for two years with no major failures. Other data of interest was collected, but this
demonstrates a problem with testing a prevention system by waiting for naturally occur-
ring failures and events. Other advantages of doing experiments in laboratories are that
there are less safety concerns, and it is less time consuming to do experiments.

29

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

3.2.1 The Targets

Two types of targets were used in the laboratory. 12 error markers that represent errors
in the equipment that are unknown to the participants were defined. In addition to the
error markers, approximately 20 locations in the laboratory were used to hide paper
clips.

The error markers were designed to resemble actual errors, and to be as realistic as
possible, but due to the requirements of the experiments, realism was not the only crite-
ria. It was considered more important that the participants, with their lack of experience
from inspections, were able to recognize the error markers. Thus, the error markers were
designed so most people would understand that maintenance would be necessary. Since
the experiments will consist of several inspections performed in sequence, each with
different error markers visible, they also had to be easy to add to and remove from the
laboratory.

The paper clips were used as a known object for the participants to look for. They
can resemble a known symptom or pattern that an inspector will actively search for. The
shape of the paper clips made it easy to attach and detach them to the equipment.

The laboratory was built to compare the probability that an error is detected with
remote and manned inspections, to demonstrate whether remote inspection is a possible
alternative. The targets were therefore designed to be detectable for both inspection
types. The laboratory was not designed to evaluate whether remote inspection is capable
of detecting the same errors as manned inspection, as this would be meaningless unless
the errors were realistic and the participants had the appropriate experience. For the
experiments presented in this thesis, we assume that a remote inspection robot, intended
for use in an actual wind turbine, can be equipped with sensors capable of detecting the
same errors as maintenance personnel on site.

3.2.2 Measurements in the Laboratory

Based on the usability goals presented in 3.1.1, the following methods for evaluating the
usability of remote inspection was used in one or more of the experiments performed in
the laboratory.

3.2.2.1 Effectiveness

• The detection rate for error markers measure the effectiveness for identify errors
with unknown symptoms

• The detection rate for paper clips is a secondary measurement of the effective-
ness, thus it is considered less important. The paper clips represent errors with
symptoms that are known to the participants before the inspection.

30

3.2. The Laboratory

3.2.2.2 Efficiency

As remote inspections do not require personnel to travel for accessing the turbines, it
is acceptable that the inspections themselves take longer to perform. Therefore, it was
not a priority to measure the efficiency, and the temporal workload component in the
NASA-TLX survey is the only related measurement. The participants were given more
time for remote inspections than manned, as it was expected to be less efficient.

3.2.2.3 Satisfaction

• A Van der Laan survey (Van Der Laan et al. 1997), which evaluates the subjective
satisfaction of the participants and the general usability of the system.

• Comment text field in final evaluation.

• Informal interview after inspections.

3.2.2.4 Workload

A NASA-TLX survey (Hart et al. 1988) is used to get the participants’ subjective evalua-
tion of their workload.

3.2.2.5 Situation Awareness

There are no specific measurements for situation awareness. Due to the relative small
size of the laboratory, and that the robot moves on a predetermined path, situation
awareness is considered less relevant.

However, this is expected to be a larger problem in an actual wind turbine, where the
environment is larger and cluttered with equipment. Evaluation of situation awareness
would be important in such a setting.

3.2.3 Types of Usability Tests

Different types of usability tests are performed for different reasons. Three different
types that can be used for evaluation of remote inspection, and other similar concepts,
are described in table 3.1.

Two pilot experiments and two larger quantitative experiments have been performed
and are described in this thesis. The pilot experiments gave some preliminary results, but
more importantly they evaluated the laboratory and the test procedure so the following
experiments could be improved, which is discussed in 3.5.1. The two quantitative ex-
periments had 21 and 31 participants, and thus the results are more reliable than in the
smaller pilot experiments. These are referred to as the first and second experiment.

31

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

Pilot experiment

Purpose
• Evaluate the lab, error

markers and the
experiment procedure.

• Identify problems with
the prototype.

Defining Characteristics
• Few participants, no special requirements.
• Provide only preliminary results.
• Mainly an evaluation of the experiment itself, not

the telerobot.

Quantitative experiment

Purpose
• Compare remote and

manual inspections to
determine whether
remote inspection is a
viable alternative.

• Can also compare
different variations of
remote inspection.

Defining Characteristics
• Many participants (20+), not realistic that they

should have experience from maintenance.
• Each participant perform a number of inspections

using both remote and manned inspection.
• Each error marker should be used the same number

of times with each tested inspection method.
• Participants should not be interacted with or asked

to think out loud, to avoid influencing the results.

Qualitative experiment

Purpose
• Find usability problems

in the prototype.
• Get ideas for

improvement.
• Get subjective comments

about the prototype and
concept.

Defining Characteristics
• Few participants, preferably with maintenance

experience.
• Observations of the participants and their comments

are more important than their performance.
• Remote inspection can be tested alone or compared

with manned inspection.
• Less important to have a controlled experiment with

accurate quantitative measurements.

Table 3.1: Descriptions of usability test variants for evaluation of remote inspection.

As the laboratory and experiment procedure were designed for participants without
experience from maintenance, it was not a priority to recruit maintenance personnel for
qualitative experiments.

32

3.3. The Remote Inspection Prototype

3.3 The Remote Inspection Prototype

3.3.1 Physical Description

The same physical prototype, shown in figure 3.3, has been used throughout the exper-
iments described in this thesis. A short description of the choices for the physical design
is given here.

Figure 3.3: The prototype remote inspection robot used in the experiments.

The advantages and disadvantages of a robot that move on a rail are compared with
a freely moving robot in table 3.2. We have decided to use the rail solution, because a
freely moving robot was considered unnecessarily complex and expensive for our ap-
plication. Movement on a rail is a low-cost and simple method for getting the robot up
from the floor and close to the equipment. The rail can be customized for the individual
nacelle so the robot is able to reach all points of interest.

The prototype uses a rail consisting of two aluminum pipes, which it grips to as a
roller coaster. It is not possible for the robot to fall off the rail, which could damage the
turbine or itself. This is considered an important safety feature. The design was created
with simplicity and low cost in mind, and built at the mechanical workshop at our de-
partment. Due to inaccuracies from bending the pipes, we experienced some problems
with the robot, and it was not able to use the whole rail. The experiments were designed
so this limitation would not have any significant effect. For future prototypes, a more
reliable rail system should be used. For commercial applications, it will be important
that the rail is suitable for mass production and easy installation.

A bicycle chain was attached to the side of one of the pipes. The robot pulls itself

33

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

Movement on rail

Advantages
• Simple and reliable.
• Can be powered through rails.
• Easy to know exact position.
• Not dependent on the

environment to move.

Disadvantages
• Can only reach where the rail goes.
• Require installation of rail.
• Where the robot can move is decided when

installing the rail.

Free movement

Advantages
• Can potentially reach

everywhere.

Disadvantages
• Obstacles limit movement.
• Reach higher ground (climbing) is difficult.
• Needs batteries for power.
• Can get stuck or fall.

Table 3.2: Comparison between movement on rail and full mobility.

forward with a cogwheel on this chain, in a simple rack and pinion solution. Such meth-
ods are often used for railways with steep gradients, and allow the robot to move on
the rail even if it is vertical. This is an important ability, as it is desirable to have as few
limitations to how the rail can be designed inside the wind turbine as possible.

3.3.2 Control System

While the physical prototype remained the same for all the experiments, the control
system was improved between each experiment based on comments from the partici-
pants, i.e. a user-centered development. A summary of how different parts of the system
evolved between the experiments are shown in table 3.3. The control system consist of
three parts, the robot control computer running on the robot (3.3.2.1), the user client
(3.3.2.2) and the control methods (3.3.2.3 and 3.3.2.4).

3.3.2.1 Robot Control Computer

The robot prototype is controlled with a Beaglebone development board with an ARM
processor. The Beaglebone is described in detail in 4.2.1. The communication between
the Beaglebone on the robot and the rest of the system is over wireless network com-
munication. For use in a wind farm, it is assumed that there is a wireless network inside

34

3.3. The Remote Inspection Prototype

Figure 3.4: A description complete control system as intended when installed in a wind turbine.

each nacelle, and a wired connection from the turbine to land, as illustrated in figure
3.4.

For the first experiments, the Beaglebone ran an Angstrom Linux distribution, which
is the default operating system for the board. For the last experiment, an Ubuntu distri-
bution patched with Xenomai was used instead. Ubuntu allowed for hardware floating-
point arithmetic, and Xenomai provide hard real-time execution of tasks. Although not
strictly necessary, as the Beaglebone have abundant computing resources for this appli-
cation, it is expected to improve the performance and reliability of the system.

The robot is equipped with a motor, with a rotary encoder, for moving along the rail.
The rack and pinion solution makes it impossible for the robot to spin, thus the encoder
is an accurate measurement of the robot’s relative position and speed. The position was
reset each time the robot reached the start or end of the rail, by using infrared line
detectors to detect markings on the rail. The camera is a Creative 1080p web-camera on
a pan and tilt mechanism that was moved with servomotors. All motors and sensors were
connected directly to the I/O pins on the Beaglebone or through some simple passive
electronic components. The camera connected through USB, and since the encoding was
done on the camera, it does not load the CPU of the Beaglebone.

35

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

Experiment Control method GUI

Pilot

Teleoperated using a
gamepad controller.
Movement control is
relative to the rail.

Split screen with 2D map and control
on the side. Crosshair for camera pan
and tilt are overlaid the video.

First

Teleoperated using a
gamepad controller.
Movement control is
relative to the camera
direction.

Full screen video. 2D map and a square
indicating camera pan, tilt and zoom
are overlaid the video.

Second
Assisted control using a
tablet.

Full screen video. Crosshair for camera
pan and tilt and indicators for robot
position and camera zoom are overlaid
the video. 3D map and other views on
the tablet screen.

Table 3.3: The evolution of the prototype versions.

Pan and tilt for the camera of a telerobot have been found to be beneficial in several
experiments, as described in 3.1.2.2. As our prototype moves on a rail, the pan and tilt
becomes even more important as the robot cannot turn itself.

For the two main experiments, the robot control program consisted of a combina-
tion of code generated with Mathworks Simulink Coder and manually written code. The
Simulink model that was used is shown in figure 3.5. The method for including gener-
ated code into a normal code project was developed for the prototype and was called
Software Module Real-time Target (SMRT). Since this method can be used in other ap-
plications than for our prototype, it has been described in detail in chapter 4, and is
available online under the LGPL v3 license.

The control system can control either the speed or position of the robot and the
camera’s pan and tilt based on commands from the connected user interface. Sensor
information, camera video stream and the status of the robot are sent back to the user
interface. The control program acts based on the commands from the user interface. If
the connection is lost, the control system stops the robot at its current position.

36

3.3. The Remote Inspection Prototype

Figure 3.5: The Simulink Model used as part of the robot control system during the second
experiment.

3.3.2.2 User Client

How the look of the user client has evolved between the experiments is shown in fig-
ure 3.6. All versions of the user interface share the same focus on displaying the video
stream. This is because it is what the participants use to identify errors, thus it is prefer-
able that it is shown as large as possible. This is also the main reason for not using an
augmented reality type display that was described to be beneficial in 3.1.2.1. For the
two main experiments, the video was shown in full screen.

In the pilot and the first experiments, a simple 2D map of the robot and its environ-
ment was used, as seen in figures 3.6(a) and 3.6(b). Either shown on the side of the
video or overlaid on the corner of the video. As this map was considered too simple for
describing the robots position in a complex environment, as a wind turbine, a 3D map
solution was developed for the second experiment. It was not shown on the main com-
puter, but instead on the tablet controller as seen in figure 3.7(a). The reason for this is
that the map would have taken a significant proportion of the main screen.

All versions have green HUD lines overlaid the video stream. These are indicators of
camera position, zoom etc., and are meant to improve the participants’ situation aware-
ness. These were not evaluated during the experiments, and except some minor design
changes, they remain the same throughout the experiments.

The client was developed with Java, using a Model-View-Controller (MVC) (Reen-

37

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

(a) GUI used in the pilot experiments.

(b) GUI used in the first experiment.

(c) GUI used in the second experiment.

Figure 3.6: The evolution of the GUI.
38

3.3. The Remote Inspection Prototype

skaug 1979) method. It is a modular design method, so different parts of the system can
be modified or replaced. The user client used in the experiments will likely be one part
of a larger system for controlling several remote inspection systems within a wind farm,
thus the modularity of the software is important for future extensions. The client con-
nects to a server running on the Beaglebone on the robot, and communicates via UDP
messages for minimal latency. For the second experiment, a simple checksum system
was implemented to verify that the correct content was received in the UDP packets.

3.3.2.3 Teleoperated Inspection

The inspection method used in the pilot and first experiments were named teleoper-
ated inspection. The participants controlled the robot directly with two joysticks on a
gamepad controller. For both experiments, the robot speed was controlled with the left
joystick and the camera with the right.

In the pilot experiments the robot speed was controlled relative to the rail, meaning
that forward and backward on the joystick would move the robot forward and backward
on the rail. This was considered confusing, as the robot spent most of its time with the
camera looking to the side. For the first experiment, this was changed to controlling the
robot relative to the direction of the camera. The user’s joystick movement will then
correspond to the robot’s movement when seen from the user’s perspective.

3.3.2.4 Assisted Inspection

The intention of assisted inspection is that the control system should assist the users to
do better inspections. The first part of this is to have a higher level of autonomy for the
control of the inspection robot. Instead of having direct control of the robot, the user
moves it between pre-determined observation points. For other telerobots, higher levels
of autonomy tend to increase the effectiveness and reduce the workload (Bruemmer
et al. 2003; Bruemmer et al. 2008). As this robot has fewer degrees of freedom than a
freely moving robot, the control system for the increased autonomy is relatively simple.
However, the same benefits of autonomy are expected, e.g. control of the robot should
be easier for the participants, so they can focus more on their inspections.

The concept of assisted inspection was first tested in the first experiment, as an in-
teractive simulation (Beaudouin-Lafon et al. 2003). This means that a computer pro-
gram that simulated how the robot would have worked was used instead of the actual
robot. The video shown to the users was from the robot’s camera, but it had been pre-
generated, and was not live. Assisted inspection using the robot was implemented for the
second experiment, which is the version described here. In addition to the higher level
of autonomy, a tablet computer was introduced as an input device. This was a Samsung
Galaxy 10.1 tablet running Android. As described in 3.1.2.4, touch screens have the ben-
efit of being highly customizable as an input device. The gamepad on the other hand,

39

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

was suitable for teleoperated control, but was less suitable for the assisted inspection
control.

The observation points used in the second experiment were determined by defining
six robot locations on the rail. These were found based on how all parts of the laboratory
could be covered with the fewest number of locations, and did not consider where the
targets would be. For each of the locations the camera could look upwards, straight or
downwards. This means that there were a total of 18 observation points. This gave the
participants on average 17 seconds on each observation point, when not subtracting the
time for moving between them, thus the available time was limited. The users could
move between these locations by swiping up, down, left or right on the tablet computer.

In addition to being a useful input device, the tablet functioned as a second screen of
the interface. Similar concepts have been tested for interactive television (Cruickshank
et al. 2007) for displaying electronic program guide etc., and more recently for game
consoles (Carey 2012). The Nintendo has the Wii U controller with a touch screen and
Microsoft has the SmartGlass smart phone app for interaction with the Xbox 360.

It can be difficult to pay attention to two displays on the same screen at the same time
(Keyes et al. 2006), thus it is likely even more difficult to pay attention to two different
screens. This implies that we cannot expect the users to notice any information presented
on the secondary tablet screen. Therefore, we limit this screen to display information
that can assist the user but are not essential. The user can check the information at his
convenience, but can otherwise ignore it. During the second experiment, the participants
could switch between three views on the tablet computer:

3D Map View shows a 3D model of the robot’s environment seen from behind it, as
seen in 3.7(a). Most control systems for telerobots have a map of the robot’s en-
vironment. For search and rescue robots, such maps are typically built based on
information from distance sensors. For remote inspection of wind turbines, it is
easier to attain a map of the robot’s environment, since the layout of the turbine is
known. For this view, we assume that a 3D model of the turbine interior is avail-
able. An operator of remote inspection is less dependent on the map for navigation,
as the robot moves on a rail, thus it is considered justified to have the map on a
secondary screen.

Original View shows an image taken from the robot’s current position when the labo-
ratory was in original condition, i.e. no visible targets. It takes advantage of the
possibility to collect and store historical information gathered by the robot. In a
real system, the operator would be able to browse through multiple versions of
the same image and observe the condition change over time. Although it is pos-
sible to store images from previous manned inspections as well, this cannot be
automated in the same way, nor be an integrated part of the inspection system.

Difference View is an extension of the original view, where image analysis is used to
compare the original image with the current camera image. A background subtrac-

40

3.3. The Remote Inspection Prototype

(a) Tablet showing a 3D map of the laboratory. (b) Tablet showing a difference view. Red marks dif-
ference between previous and current image. The
bolt within the green oval is missing in the camera
image and the three regions of red are due to this.

Figure 3.7: Different views for the tablet controller. Controls for manual adjustments are shown
in the lower left corners.

tion algorithm (Piccardi 2004) implemented with OpenCV (Bradsky et al. 2008)
was used. A typical example of how this would be seen by the users is shown in
figure 3.7(b).

Due to the inaccurate position and camera direction, it was not always possible
to get an acceptable match. This problem was reduced by dividing the image into
an 8 by 5 grid, where each cell was translated (moved) on the original images to
get the best possible match before doing the background subtraction. This was not
an optimal solution, as it was inaccurate and computationally demanding, but was
good enough to evaluate the concept. Each image comparison took between 1 and
2 seconds, and ran continuously. This means that the red markings on the tablet
image were updating every other second. Together with time for the camera to
focus and adjust light, it typically took 5 seconds from arriving at an observation
point until a usable difference image was shown.

To improve the image matching, it would be necessary to use other image align-
ment methods (Szeliski 2006) that can do rotations, perspective transform etc. in
addition to comparing two flat images. If the robot position and camera direction
were more accurate, it would also be easier to compare the images.

41

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

3.4 Results

A short description of the individual experiments and their results are presented here.
The experiments are described in detail in articles C, E and F. All error bars that are
shown in the graphs of this section represent 95% confidence intervals.

3.4.1 Pilot Experiments

Two pilot experiments with 4 participants each were performed. The participants did two
inspections, one remote and one manned. Two groups of targets, with 4 error markers
and 4 paper clips each, were defined, and these were rotated between the inspections.
The participants had 4 minutes for each inspection.

The second pilot experiment differed from the first, as the task of looking for paper
clips was not used. The participants were also allowed to test the remote inspection
system before their inspections. This was not permitted in the first.

3.4.1.1 Errors and Paper-Clips

The results from the experiment are seen in figure 3.8. Due to the small number of
participants, these results are considered preliminary.

0 %

20 %

40 %

60 %

80 %

100 %

Errors 1st Clips 1st Errors 2nd

D
et

ec
ti

o
n

 r
at

e
(%

)

Manned

Remote

Figure 3.8: Results from the pilot experiment. Error bars are not shown due to the low number
of participants.

3.4.2 First Experiment

The first larger experiment was performed as a quantitative usability test, where 21
participants did 9 inspections each, a total of 189 inspections. The number of targets in

42

3.4. Results

the inspections was randomly assigned, with between 0 and 2 error markers and 1 and
4 paper clips for each inspection.

Three different inspection methods were tested, teleoperated remote inspection, sim-
ulated assisted remote inspection and manned inspection. Each participant performed
3 inspections of each type in a randomized order. The participants had 3 minutes for
manned inspections and 4 minutes 30 seconds for the remote.

3.4.2.1 Errors and Paper-Clips

The combined number of error markers each of the participants found, was used to
calculate their detection rate for each of the three methods. The same was done for the
paper clips. The average detection rates are shown in figure 3.9. The detection rate of
teleoperated remote inspection is 68% of the detection rate of manned inspection for
error markers, and 90% for paper clips.

The results were analyzed with a one-way ANOVA with an alpha value of .05 and a
Tukey HSD post test, which found the following:

• No significant difference for error markers (F (2, 60) = 0.64, p = 0.53).

• No significant difference for found paper clips (F (2, 60) = 1.49, p = 0.23).

0 %

20 %

40 %

60 %

80 %

100 %

Errors Clips

D
et

ec
ti

o
n

 r
at

e
(%

)

Manned

Teleoperated

Assisted (simulation)

Figure 3.9: Average detection rates for manned (µM), teleoperated (µT) and assisted inspections
(µA).

3.4.2.2 NASA-TLX

The average NASA-TLX results for the three different inspection methods are shown in
figure 3.10. The results were analyzed with a one-way ANOVA with an alpha value of
.05 and a Tukey HSD post test, which found the following:

43

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

• Significant difference for mental workload (F (2, 183) = 6.0, p = 0.003). The post
hoc test found that teleoperated (M = 40.2, SD = 20.3) was significantly different
from both manned (M = 32.0, SD = 16.6) and assisted (M = 28.9, SD = 19).

• Significant difference for physical workload (F (2, 183) = 92.57, p < 0.001). The
post hoc test found that manned (M = 45.2, SD = 20.4) was significantly different
from both teleoperated (M = 13.8, SD = 13.4) and assisted (M = 10.3, SD =
12.2).

• Significant difference for temporal workload (F (2, 183) = 13.6, p < 0.001). The
post hoc test found that teleoperated (M = 45.9, SD = 21.8) was significantly
different from both manned (M = 33.3, SD = 17.8) and assisted (M = 25.9, SD =
24.6).

• Significant difference for effort (F (2, 183) = 10.43, p < 0.001). The post hoc test
found that assisted (M = 34.7, SD = 18.8) was significantly different from both
manned (M = 49.5, SD = 15.5) and teleoperated (M = 43.0, SD = 19.8).

• No significant difference for performance (F (2, 183) = 0.7, p = 0.5).

• No significant difference for frustration (F (2, 183) = 2.71, p = 0.07).

0

20

40

60

80

100

Mental Physical Temporal Perform Effort Frustration

N
A

SA
-T

LX
LS

co
re Manned

Teleoperated

Assisted
(simulation)

Figure 3.10: Average NASA-TLX results for manned, teleoperated and assisted inspections.

44

3.4. Results

3.4.3 Second Experiment

The second experiment was similar to the first, with some improvements to the proce-
dure and 31 participants. The presented results are based on 30 participants doing 4
inspections each, a total of 120 inspections. Four groups of targets, with 3 error markers
and 4 paper clips each, were defined, and these were rotated between the inspections.

Two inspection methods were tested; assisted inspection implemented on the robot
system and manned inspection. Each participant did two inspections of each type in a
randomized order. The participants had 3 minutes for manned inspections and 5 minutes
for the remote.

The results of one participant were not used because of severe technical problems
with the robot during both of his remote inspections. In addition, one manned inspection
was by accident performed without paper clips, so the paper clip measurement for this
and the corresponding remote inspection have been omitted in the analysis.

3.4.3.1 Errors and Paper-Clips

The average detection rates for the inspections sorted for inspection methods are shown
in figure 3.11(a). The detection rate of teleoperated remote inspection is 83% of the
detection rate of manned inspection for error markers, and 85% for paper clips.

The average difference in detection rates (µM − µR) between two corresponding
remote and manned inspections are shown in figure 3.11(b). The positive values means
that the manned inspection performed better.

The results were analyzed with a within-subject design, one-tailed t-test with an
alpha value of .05, which found the following:

• Not significant for error markers
(M = 6.7%, SD = 40%), t(59) = 1.286, p = .102.

• Significant for paper clips
(M = 10.3%, SD = 32%), t(58) = 2.451, p = .009.

Many participants did not manage to visit all the observation points during their
remote inspections, i.e. did not properly complete their inspection. Our estimated de-
tection rate, shown as the third bar in figure 3.11(a), is based on the ratio of targets
that was found in the part of the inspection the participants actually completed. Fol-
lowing the same estimate, the average time for completed remote inspections would be
approximately 5 minutes and 30 seconds, almost twice that of manned inspections.

There were not found any significant correlations between the participants’ experi-
ence with computer games or remotely controlled toys and the number of found targets.

45

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

0 %

20 %

40 %

60 %

80 %

100 %

Errors Clips

D
et

ec
ti

o
n

 r
at

e
(%

)

Manned

Remote

Estimate

(a) Average detection rates for manned (µM), remote in-
spections (µR) and an estimated result for remote inspec-
tion if given more time.

-20 %

0 %

20 %

Errors Clips

D
if

fe
re

n
ce

 in

d
et

ec
ti

o
n

 r
at

e
(%

)

(b) Average difference in the detection
rates with manned and remote inspections
(µM − µR).

Figure 3.11: The detection rates grouped on inspection method.

3.4.3.2 NASA-TLX

The average NASA-TLX results for the two different inspection methods are shown in
figure 3.12.

The results were analyzed with a within-subject design, one-tailed t-test with an
alpha value of .05, which found the following:

0

20

40

60

80

100

Mental Physical Temporal Perform Effort Frustration

N
A

SA
-T

LX
LS

co
re

Manned

Remote

Figure 3.12: Average NASA-TLX results for manned and remote inspections.

• Significant for mental workload (M = −6, SD = 19), t(59) = −2.601, p = .012.

• Significant for physical workload (M = 30, SD = 25), t(59) = 9.177, p < .001.

46

3.4. Results

• Significant for temporal workload (M = −9, SD = 19), t(59) = 3.467, p = .001.

• Not significant for performance (M = −4, SD = 21), t(59) = −1.405, p = .165.

• Not significant for effort (M = 0.1, SD = 17), t(59) = 0.039, p = .969.

• Not significant for frustration (M = 3, SD = 21), t(59) = 1.086, p = .282.

3.4.3.3 Tablet Controller View

The map and difference views were used 29% of the time each, while the original view
was used 42% of the time. The results were grouped based on which tablet controller
view that was perferred for each inspection. These results are showed in figures 3.13
and 3.14.

The results were analyzed with a one-way ANOVA with an alpha value of .05 and a
Tukey HSD post test, which found the following:

0 %

20 %

40 %

60 %

80 %

100 %

Errors Clips

D
et

ec
ti

o
n

 r
at

e
(%

)

Map

Org

Diff

(a) Average detection rates for map, orginal and difference
views.

0

20

40

60

80

100

Rating

Su
b

je
ct

iv
e

R
at

in
g

Map

Org

Diff

(b) Participants’ subjective usefulness
rating for map, orginal and difference
views.

Figure 3.13: The detection rates grouped on the most used tablet view.

• Significant difference for rating (F (2, 57) = 15.95, p < .001). The post hoc test
found that map (M = 33, SD = 29) was significantly different from both original
(M = 80, SD = 25) and difference (M = 67, SD = 24).

• Significant difference for mental workload (F (2, 57) = 3.80, p = .028). The post
hoc test found that orginal (M = 58, SD = 19) was significantly different from
difference (M = 44, SD = 11).

• No significant difference for error markers (F (2, 57) = 0.07, p = 0.933).

• No significant difference for paper clips (F (2, 57) = 0.8, p = 0.454).

47

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

0

20

40

60

80

100

Mental Physical Temporal Perform Effort Frustration

N
A

SA
-T

LX
LS

co
re

Map

Org

Diff

Figure 3.14: Average NASA-TLX results for map, orginal and difference views.

• No significant difference for physical workload (F (2, 57) = 0.434, p = 0.65).

• No significant difference for temporal workload (F (2, 57) = 0.053, p = 0.949).

• No significant difference for performance (F (2, 57) = 0.89, p = 0.416).

• No significant difference for effort (F (2, 57) = 0.712, p = 0.495).

• No significant difference for frustration (F (2, 57) = 2.203, p = 0.12).

3.4.3.4 Van der Laan

The results from the Van der Laan survey (Van Der Laan et al. 1997) given to the partic-
ipants after they completed all four inspections are shown in figure 3.15.

-2

-1

0

1

2

-2 -1 0 1 2

U
se
fu
ln
es
s

Satisfaction

Figure 3.15: Van De Laan results for the remote inspection prototype.

48

3.5. Discussion

3.5 Discussion

This is a discussion for the series of experiments. It is based on the discussions in articles
C, E and F, but with a stronger emphasis on discussing the combined results.

3.5.1 Experience from the Pilot Experiments

The experience gained from performing these experiments was more important than
the results. We found that it was important that the participants could test the remote
inspection system before they started their inspection. When not given this opportunity,
the participants spent a large portion of their time getting used to the system, which had
a negative effect on the results. It is also realistic that the operators of such a system
would have some training before using it.

In the first pilot experiment, it was observed that some participants gave up on find-
ing more error markers and focused entirely on finding paper clips. In the second pilot
experiment, when the paper clip task was not used, a similar observation was made,
except that without the paper clip task the participants gave up the inspection entirely.
The paper clip task functioned both as an additional measurement and as a motivation
for continuing the inspection. Due to this, the paper clips were used for the rest of the
experiments.

3.5.2 Comparison of the Usability of Remote and Manned Inspections

When considering the results from all experiments, remote inspections have a lower av-
erage detection rate than manned inspections. However, the difference is not large, and
has been reduced as the remote inspection prototype has been improved. It is important
to remember that the experiments were performed approximately 10 minutes after the
participants used the robot for the first time. This is compared with doing examinations
in person, which is a commonplace task for most people.

Remote inspection performed best compared to manned inspection in the second
experiment, where the assumed best version of the prototype was used. It was also
the experiment with the most precise results. The difference in detection rates were
significant for the paper clips, but not for the error markers. This suggests that remote
inspection is less effective, but only marginally so.

If remote inspections have a lower detection rate, it will result in a higher risk of
turbine failures, with the cost and downtime associated with this. This problem can be
reduced by performing remote inspections more often, as two remote inspections would
combined have a higher detection rate than one manned inspection. This assumes that a
remote inspection system is capable of detecting the same errors as manned inspections.
This assumption should be examined in future research.

49

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

It is also possible that improving the remote inspection prototype would reduce or
eliminate the difference between remote and manned inspections. The assisted inspec-
tion simulation in the first experiment performed as well as manned inspection, and it
only used information gathered by the robot. The mental workload was also the same as
for the manned inspections, while it was significantly higher for regular remote inspec-
tions. It did have the advantage of less delay and other problems with the prototype, but
it means that there is a potential for remote inspection to be as good as or better than
manned inspection given an improved implementation.

It was common that participants ran out of time before they had inspected the whole
laboratory remotely. That the participants had a short time available for the remote
inspections were also supported by the significantly higher temporal workload ratings
for remote inspections and the large number of comments that mentioned this as a
problem. In a real setting it is not very likely that an inspection would be aborted before
completion due to time, which some of the participants in the experiment had to do.
This means that some targets were never seen by some of the participants. Since the
intention of the experiments were to examine whether remote inspections were able to
detect targets as well as manned inspection, it will skew the results that some targets
were never seen by some participants.

To get an indication of what the detection rate would be if the participants had
enough time to complete their inspections, an estimate was calculated for the second
experiment. It was based on the ratio of found targets within the part of the labora-
tory that each participant actually visited, and was almost identical to the results from
the manned inspections. Although it is difficult to determine how reliable this estimate
is, it does indicate that given more time to complete the inspections properly, the re-
mote inspections could be as effective as the manned. Since it is acceptable that remote
inspections takes longer time than manned, the estimated results are relevant.

Another problem in the experiments was that contrary to the plan of having targets
that were possible to detect with both inspection methods, one error marker was in
practice not possible to detect with the remote inspection and no participants did so
in all of the experiments. This was not due to a limitation in the concept of remote
inspection, but to the quality of the camera. In retrospect, this error marker should not
have been used. It did not make a large difference in the first experiment, but in the
second this particular target were found 7 times during manned inspections, more than
half of the total difference between the two inspection methods.

3.5.3 Comparison of Teleoperated and Assisted Inspections

In the first experiments, it was clear that having direct control of the robot with a joy-
stick control was not optimal. Too much time and attention were given to controlling the
robot, which means that less remains for the inspection. The assisted inspection simula-
tion tested in the first experiment demonstrated that without any communication delays

50

3.5. Discussion

or similar with the robot, the remote inspection could potentially be as good as or better
than manned.

There were two main changes between the teleoperated inspections from the first
experiment to the assisted inspection in the second. The control was easier, with a way-
point type control, and the tablet was introduced as an input device and a secondary
screen. This resulted in an improved effectiveness for remote inspection in the second
experiment when compared to the respective manned inspections. The comments from
the participants also support that the assisted inspection control method was an im-
provement. No participants were observed to have any problems with the controls.

However, the efficiency was not improved, and perhaps reduced, as it was still dif-
ficult for many participants to complete their inspections properly within the increased
time available. The control of the robot was easier, but it still took some time to move
the robot, which can explain some of the low efficiency. Two other likely reasons were
identified.

• Assisted inspection encouraged the participants to be systematic and thorough.
It was observed that some participants studied the image from each observation
point closely and found all or almost all targets there before moving on. The prob-
lem was that they did not have enough time to be equally thorough on the whole
laboratory. Even if this had a negative effect on the performance of assisted inspec-
tion in this experiment, we argue that it is positive that the system encourages this
type of approach.

• Active use of the original and difference views on the tablet required time, espe-
cially the difference view as the time to stabilize the image and for running the
algorithm was significant. These views were still considered useful by the partic-
ipants. The use of these views did not change the detection rate, which suggests
that any advantage provided by these were not larger than the disadvantage of
having less time for the rest of the inspection.

3.5.4 Evaluation of the Experiments

There was a low precision in the results due to high variance. This is expected when do-
ing experiments with people. The problem with low precision was especially pronounced
for the error markers in the first experiment, as seen in the large 95% confidence inter-
vals in figure 3.9. The main reasons for this were identified as:

• Few error markers divided between many inspections.

• The error markers being harder to find than intended.

• Limited number of participants.

The reason for having few error markers for each inspection was that it was consid-
ered realistic that such errors were uncommon. Unfortunately, the participants tended

51

3. Prototyping and Evaluation of Remote Inspection for Offshore Wind

to get frustrated and gave up when not finding any or only a few error markers. For the
second experiment, it was three error markers per inspection, compared to between zero
and two in the first experiment. A more thorough description of the inspection task was
also given to the participants. Due to this, there was a higher ratio of found error mark-
ers in the second experiment. Combined with more error markers in total, this means
that each finding had a smaller effect on the results, and subsequently the variance in
the results was lower.

The lower variance and increased number of participants resulted in lower 95% con-
fidence intervals for the second experiment. An example is that in the first experiment,
15% of the error markers were found with remote inspection, and the confidence inter-
val was 15%. For the second experiment, 33% of the error markers were found with a
confidence interval of 7%. The confidence interval is less than one quarter of the mea-
sured value instead of the same size. This makes the results of the second experiment
significantly more reliable.

How difficult it was to detect each of the targets varied. This was controlled for in
the experiments by having each target being used the same number of times for the
different tested inspection methods. In the second experiment, predetermined groups of
targets, intended to be of similar combined difficulty, were always shown together. This
resulted in a well-balanced experiment.

3.5.5 External Validity

Our test environment has not been compared with an actual wind turbine, thus the
results can only be considered an indication of how a system for remote inspection
would function in a real scenario. Testing in a real wind turbine would be expensive,
time-consuming and there would be safety concerns to consider. A controlled experiment
where errors are added and removed on demand would be impossible, or at least very
impractical.

Although the error markers are not authentic errors, they are representative in the
sense that they are difficult to find, unknown to the participants, but recognizable as
errors when detected.

Since one of the participants in the second experiment had relevant experience, we
asked him to comment on how realistic he found the error markers to be. According
to him, some of the error markers were highly realistic, and was symptoms that he
actively searched for due to his training. Some of the other error markers, which were
frequently identified by other participants, he was unable to find, as he did not expect
them. This is a strong indicator that these error markers were not realistic, but since
other participants correctly identified them, they are still considered appropriate targets
in these experiments with participants without inspection experience.

52

Chapter 4

Simulink Coder Generated Code as
a Module within a Software Project

This chapter presents the following work based on articles A and D:

• 4.1 is a general description of how Simulink Coder can be used for embedded
control systems, and how to modify it for a specific use.

• 4.2 presents the Software Module Real-time Target (SMRT) solution, which is a
different approach to using the code generated from Simulink. This solution was
developed as part of the prototype described in chapter 3, but has evolved into a
separate project.

• 4.3 discusses SMRT and its use.

All code associated with SMRT, instructions for using it and description of how to
port it for other platforms are found on the SMRT web site 1, under the LGPL v3 license.

4.1 Simulink Coder for Embedded Linux

4.1.1 Simulink Coder

Simulink is a part of MathWorks Matlab that can be used for graphical modelling and
simulations of dynamic systems. A Simulink model consists of blocks with different func-
tionality that can be connected together to make complex systems.

A Simulink simulation will calculate the state of each Simulink block at specified
points in time during the simulation. The intervals between these points in time are
called time steps. How the states of the blocks change between the time steps depend
on their properties and how they are interconnected. The simulation calculates how the
states of the blocks in the model change over time.

1http://www.itk.ntnu.no/smrt/index.php

53

4. Simulink Coder Generated Code as a Module within a Software Project

In control theory, it is common to model a system in Simulink and then design a
controller for it. An example of such a system would be the yaw drive of an offshore
wind turbine, and the controller is intended to keep the turbine pointing towards the
wind. Simulations can then be used to find how well the controller performs under
different conditions. A large number of controller parameters can be tested in a shorter
time and a lower cost that if it was done on the actual system. There will also be no
damage to the system if the controller misbehaves.

Simulink Coder (MathWorks 2012), or Real-Time Workshop as it was named when
paper A was written, is a toolbox for Simulink. It generates code that when executed will
do the same calculations as a Simulink simulation of the same model. As the generated
code is an accurate representation of a Simulink model, it can be used to implement a
control system that is identical to a controller modelled in Simulink. After testing with
simulations, it will be necessary to test against the actual system, and Simulink Coder
offers a method for continue using Simulink for this. If we assume that the code gen-
eration process is perfect, it will generate code that is a correct implementation of the
model. The alternative to this would be to write code that implements the Simulink
model manually and updating it every time the model changes. This is not cost effec-
tive, and the result will be unreliable because every change in the model could possibly
introduce coding errors.

4.1.2 Host and Target

An embedded system is often intended for a specific task and can lack equipment like
screens, keyboard etc. that a developer normally would use. Therefore, it is common to
use a normal laptop or desktop computer for developing and compiling the programs
that will run on the embedded system. This computer is referred to as the host computer,
while the embedded system is referred to as the target computer.

It is easy to get Simulink Coder to generate code from a Simulink model. However,
depending on the requirements of the system, it can be difficult to have it build a pro-
gram that runs on the target computer. It will often be necessary to have specific code for
the target computer, use cross-compilers, and write code manually for drivers, hardware
interfaces and complex functions (Skavhaug et al. 2002). This requires both experience
with the embedded platform that is used and knowledge of how code is generated by
Simulink Coder. However, when set up correctly, it is easy and efficient for users without
this experience to do changes in the Simulink model, generate code and test it.

4.1.3 System Target

A system target is a set of files that define how Simulink Coder should generate and
build code. The default target is called Generic Real-time Target (GRT) and is included
in the basic toolbox. This generates platform independent C-code that implements the

54

4.1. Simulink Coder for Embedded Linux

Simulink model, and builds it for the host computer. Another alternative is the Embedded
Real-time Target (ERT), which provides the developer with a more detailed control of the
code generation. Unfortunately this require an additional and expensive toolbox, thus
we avoided it during our work, and used GRT instead. There are also system targets that
are platform-specific, meaning that they are intended to be an easy to use solution for a
specific embedded platform.

Custom system targets can be created by copying the files of an existing system
target. It can then be modified to generate and build code for the target computer with
the necessary requirements. Three files define GRT:

System target file is a TLC-file that defines how the code is generated and which op-
tions that are available. In most cases, it will not be necessary to change this.

The makefile template is used by Simulink Coder to generate a Makefile, which in turn
determines how the code is built. For GRT it comes in different variants depending
on the build environment. Changes in how the code should be built can be specified
here.

The main-file is a C code file with a main function, the first function executed by a C-
program. The main function in this file will manage the initialization and execution
of the model using the generated code. Changes to how the generated code is
initialized and executed can be specified here.

A custom system target, based on the generic real-time target, can be designed to
produce a program that implements a control system on a target computer. Two changes
are needed to accomplish this, and possibly more depending on the requirements. Firstly,
the makefile template must be changed so the program will be built correctly for the
embedded platform. This will often consist of specifying that a cross-compiler should be
used, and possibly other build instructions.

Secondly, the default GRT main file does not execute the code in real-time, which
means that when the state of all blocks at one time step is calculated, the system imme-
diately starts calculating the next time step. This is a suitable behavior for simulations,
as you would like to do the simulation as quickly as possible, but when interacting with a
system in the real world, the control system must operate in real-time. Code that control
when each time step is executed can be added to the main file.

4.1.4 S-functions

A custom system target can be used to specify how code is generated and built, but these
are target specific settings and do not modify the behavior of the Simulink model itself. If
it is necessary to define your own functionality that is not available in the basic Simulink
blocks, then S-functions should be used. These are custom Simulink blocks that can be
divided into three categories:

55

4. Simulink Coder Generated Code as a Module within a Software Project

Non-inlined S-functions are defined by a C-file following a certain template that de-
fines how the block behaves in a simulation. Code generated for the block will
behave as it does in simulations. The C-file is compiled within Matlab on the host
computer, which means that it is not possible to use target specific code with non-
inline S-functions. Code generated by non-inline S-functions will have reduced
performance compared to code generated by inline S-functions.

Fully inlined S-functions are defined by a C-file and a TLC-file. The C-file is the same
as for non-inlined S-functions, while the TLC-file defines how code is generated
for the block. This gives the developer full control of how code is generated, and
target specific code can be used. The block’s behavior in simulations and in the
generated code can be different, since they are defined in two different files. The
downside is that the TLC language is Simulink specific, and can be difficult to work
with for developers without prior experience.

Wrapper S-functions are a variant of fully inlined S-functions, with a third file contain-
ing code that is shared between the two others. This makes it possible to have the
same functionality in simulations and when executing the generated code, without
the reduced performance of non-inline S-functions. Only some TLC code is needed
to make a wrapper S-function.

For embedded control systems, there are two main uses for custom code through
S-functions. Firstly, there could be some specific logic or mathematical function that
is easier to define with code than with Simulink blocks. This can often be non-inlined
S-functions, or possibly wrapper S-functions, as the block should do the same in simula-
tions and in the control program.

The second use is to access a resource the target system has, e.g. I/O signals. The
host will normally not have the same resource, thus a fully inlined S-function should be
used. The TLC-file should specify how to generate code that uses this resource. It is often
desirable to define an alternative behavior for when the block is used in simulations.

56

4.2. Software Module Real-Time Target

4.2 Software Module Real-Time Target

4.2.1 Xenomai Linux on Beaglebone

The Beaglebone2 is a credit-card sized ARM development board (figure 4.1). It was
used as the control system for the robot prototype that was described in 3.3, and for
the development and evaluation of Software Module Real-time Target (SMRT). Its small
size and affordable cost makes it a suitable embedded device for many control system
applications where Simulink and SMRT can be used. Compared to similar devices, the
Beaglebone has the advantage of a large number of I/O pins, including I2C, UART, GPIO,
PWM and ADC.

Figure 4.1: The Beaglebone development board.

The Ubuntu distribution was used for the same reasons as given in 3.3.2.1. The hard-
ware floating-point arithmetic is considered especially important when running Simulink
Coder generated code, as it relies heavy on floating-point variables.

SMRT and the Beaglebone are suitable for implementing control systems that inter-
acts with the outside world. Such systems will often have real-time constraints, meaning
that in addition to producing a correct result, the result also has to be produced at the
correct time. A hard real-time constraint means that if a result is produced too late the
system will fail its purpose, possibly with dire consequences.

Ordinary Linux is not considered a real-time system, because it is not predictable
enough to guarantee that real-time constraints will be met. This is because the Linux
kernel is not fully pre-emptive. If it is currently executing critical code in the kernel,
other tasks will not be allowed to run until this has finished. It might be a rare event

2More information about Beaglebone at: http://www.beagleboard.org/bone

57

4. Simulink Coder Generated Code as a Module within a Software Project

that another task is significantly delayed, but when operating on a millisecond scale, a
one in a million event is likely to happen once every 17th minute.

There are several additions to Linux that allow tasks to run with higher priority
than the Linux kernel itself, with pre-emptive scheduling, i.e. supporting hard real-time.
Xenomai (Gerum 2004) was chosen because it is a well-maintained, documented and
active project with an available port for the Beaglebone. Other well-known alternatives
are RTAI, RT-Linux (Barabanov et al. 1996) and Preempt-RT. Barbalace et al. (2007)
compared the real-time performance of Xenomai with regular Linux, RTAI and VxWorks,
where Xenomai was shown to be a valid alternative to both VxWorks and RTAI.

Xenomai uses a co-kernel approach, which means that a small real-time kernel runs
besides the Linux kernel on the same CPU. This kernel does the scheduling for all the
real-time tasks, and when idle, it allows the Linux kernel to run. All interrupts are also
processed by the real-time kernel before they are sent to the Linux kernel. We followed
the instructions from a web page 3 to port Xenomai for the Beaglebone. The port con-
sists of combining the Linux kernel patches necessary for both the Beaglebone and for
Xenomai.

4.2.2 SMRT

Some of the challenges with setting up Simulink Coder for an embedded system are
discussed in section 4.1. Several methods for automating the code generation and build
process for different hardware and software platforms have been presented (Gong 2000;
Quaranta et al. 2001; Teng 2000), including article A.

Many of the alternatives to SMRT, both provided by MathWorks as part of Simulink
Coder or other toolboxes and third parties, are solutions that create a ready to use pro-
gram for a specific embedded platform. This will be a suitable solution for many projects,
and are typically used by control engineers that want to implement their algorithms on
hardware with minimal need for coding. The disadvantage is that it requires knowledge
of how Simulink Coder generates code and the TLC language to do customizations or
add your own code to the project.

SMRT is not intended to be an alternative to this, or to be a method for setting up
a control system with minimal effort. It is intended for developers that are developing
an embedded system which consist partly of code generated from Simulink Coder, thus
flexibility and easy integration with other code and development tools are important.
A different approach is used, where the main file, which compiles into a standalone
program, is replaced with smrt.c. This files does not have a main function, instead it
has functions for initializing and executing threads that run the generated code. SMRT
can be built as a shared library, and its functions can be used by other software projects
where the functionality of the Simulink model can be used. Figure 4.2 compares the

3http://yapatel.org/wiki

58

4.2. Software Module Real-Time Target

relationship between the generated and custom code in SMRT compared to a more
typical solution.

Typical Simulink Coder

Custom
Code Module with

generated code

Generated code Software project
with custom code

SMRT

Custom
Code

Custom
Code

Figure 4.2: The relationship between generated and custom code in SMRT compared to a typical
use of GRT

The intended users of SMRT are embedded developers that are not expected to be
experts in how Simulink Coder works. Because of this, SMRT has been designed to
require no specific knowledge about Simulink Coder, its code generation process, nor the
TLC programming language. SMRT has been tested in Eclipse, but other development
environments should be possible to use too. If Eclipse is used, all configurations of SMRT
can be found within the project, where an experienced Eclipse user would expect to find
them, instead of fragmented in several Matlab and Simulink specific locations as seen
in table 4.1. SMRT has also been configured to use external mode in Simulink, which
means that the value of signals on the running embedded system can be viewed in
near real-time, within Simulink. Some block parameters can also be adjusted without
restarting the program.

4.2.3 SMRT Multitasking

A Simulink model using a fixed step solver, which is necessary for Simulink Coder, have
a model sample time that is the interval between the time steps of a simulation. This
value can be set manually or chosen by Simulink. When running a simulation, all blocks
will be executed at each of these time steps, i.e. single-tasking. In SMRT, single-tasking
is implemented by starting one periodic Xenomai real-time task that executes the whole
model.

Some parts of a control system might need to respond fast, and need a short sample
time, while other parts can be updated less often. If this would be implemented with
single-tasking, all blocks in the system would have to operate at the same sample time
as the part that required the fastest response, thus it would require more CPU cycles
than necessary. To avoid this, it is possible to specify the sample time of each individual
block in a Simulink model, i.e. multitasking. In SMRT, multitasking is implemented by
starting one periodic Xenomai real-time task for each of the sample times in the model.

59

4. Simulink Coder Generated Code as a Module within a Software Project

Configuration GRT SMRT

Options for Makefile Simulink config NA

Build instructions Makefile template Eclipse project

Build options for external code Makefile template NA

Cross-compilation Makefile template Eclipse project

Compiler and linker flags Makefile template Eclipse project

Periodic execution main() file SMRT Library

Implementation of multitasking main() file SMRT Library

Calls to custom code main() file and S-functions Eclipse project

I/O and hardware interfacing S-functions and external code Eclipse project

Aperiodic events External code Eclipse project

Table 4.1: Where configurations are stored in GRT and SMRT using Eclipse.

Each task is given a priority depending on their sample time, the lower the sample
time, the higher the priority. This follows the rate monotonic scheduling (RMS) principle
(Burns et al. 2001; Liu et al. 1973). As the number of tasks and their sample times are
known when building the system, it is appropriate to use RMS. As the SMRT tasks are
likely to be part of a larger program with its own tasks, these must be considered if
utilization tests or response time analysis are used to determine the schedulability of the
whole system.

When using multitasking, Simulink prevents direct connections between blocks of
different sample times. This is typically resolved by using Rate transition blocks. As a part
of our SMRT implementation for Xenomai, we have developed an S-function, a variation
of a rate transition block that uses a Xenomai mutex for protecting a variable that is
shared between the tasks. Since Xenomai mutexes implements priority inheritance (Sha
et al. 1990), we avoid problems related to unbounded priority inversion, and a high
priority task is guaranteed access to the variable as fast as possible. The S-function is
implemented in TLC, but knowledge of TLC is not necessary for using it.

60

4.2. Software Module Real-Time Target

Task Period Execution time Priority

A 40ms 10ms 94

B 50ms 12ms 93

C 70ms 20ms 92

Table 4.2: Execution time and periods of tasks used in scheduling test.

Figure 4.3: Simulink model used in the test (colors indicates period of tasks).

4.2.4 Task Scheduling Test

The SMRT library has been implemented to execute its multiple tasks according to the
rate monotonic principle. We wanted to test that it behaved as expected, and compare
it with other uses of generated code. Three S-functions were created that performed
busy-wait loops measured to take 10ms, 12ms and 20ms of execution time.

In a small test, each of these S-functions was executed periodically, as defined in
table 4.2. Their combined utilization is 77.6% ≤ m(2

1
m − 1) for m = 3 (Liu et al. 1973),

meaning that an ideal rate monotonic scheduling would guarantee no deadline misses.
The Simulink model was run with three different configurations. The first used GRT

modified to run each Simulink task as a Xenomai real-time thread. The second was
SMRT using Xenomai threads, while the last was SMRT using normal Linux threads.
The response time was defined as the time from when a period was supposed to start,
until its execution was completed. This was measured over a period of three hours, and
the results are shown in table 4.3.

Using response time analysis (Burns et al. 2001) on the set of tasks, we find that
the theoretical worst-case response time is 10ms for task A, 22ms for task B and 64ms
for task C. The worst-case results when using Xenomai (both GRT and SMRT) were, in

61

4. Simulink Coder Generated Code as a Module within a Software Project

Results
GRT +
Xenomai

SMRT +
Xenomai

SMRT +
Linux

A
Average response time
Max response time
Ratio of deadline missed

10.3ms
10.4ms
0.000%

10.0ms
10.1ms
0.000%

10.3ms
198.5ms
0.003%

B
Average response time
Max response time
Ratio of deadline missed

17.7ms
22.9ms
0.000%

17.0ms
22.2ms
0.000%

17.2ms
230.9ms
0.004%

C
Average response time
Max response time
Ratio of deadline missed

44.7ms
66.5ms
0.000%

41.7ms
64.0ms
0.000%

41.0ms
334.6ms
0.007%

Table 4.3: Results from simulations running for 3 hours.

this test, indistinguishable from these theoretical values. This is as expected and demon-
strates the hard real-time capabilities of Xenomai. It also suggests that SMRT correctly
follows the rate monotonic principle. Whether SMRT or GRT was used had no observable
effect on the scheduling, nor was it expected.

SMRT and Xenomai had predictable worst-case performance in this test, but this was
because the used blocks have specifically been designed to have predictable and known
execution times. This does not imply that other Simulink models have predictable execu-
tion times, even when running in Xenomai. This is because the temporal performance of
the different Simulink blocks varies. If real-time performance is important for Simulink
generated code, then the blocks in the model should be chosen carefully. Information
about how different blocks are expected to behave is given at page 1-93 in the Simulink
Coder user guide (MathWorks 2012).

As expected, using normal Linux threads resulted in significantly higher worst-case
execution times. There were also multiple deadline misses during the 3-hour test. This
shows that when SMRT is used for applications that have hard real-time requirements,
normal Linux is not suitable.

4.2.5 Input and Output S-functions

S-functions are used to include custom code into a Simulink model, but can be difficult
to use as they are coded in the Simulink specific TLC language. It is intended that users
of SMRT should not need to use TLC. To allow for custom code without using TLC, two
S-functions were developed that run code specified in C-functions defined in a normal

62

4.2. Software Module Real-Time Target

code file.
The input S-function is a Simulink block with one output signal. For each time step,

this block calls the C-function with the name that is specified in the block parameter. This
function will return a value, which will be set as the output signal of the block. What
this function does and how the return value is calculated is defined in the C-file outside
of Simulink, specified by the developer. If the developer fails to specify a C-function with
the correct name and type in the project, there will be an error when linking with the
SMRT library. Multiple such blocks can be used in the same model, but each should spec-
ify a different function name. This S-function allows custom functionality of a Simulink
block to be defined together with the rest of the code project, outside of the Simulink
context, and without any TLC code. This makes it easy for programmers with experience
from embedded systems and the C-language to create custom Simulink blocks.

A similar output S-function is also available, which is a block with one input signal.
Each time step, the function specified in the block parameter is executed, with the input
signal as one of the parameters. This has the same benefits as the input S-function.

Figure 4.4 shows how the generated code is a part of the larger written code, and
how the input and output S-functions can act as the interface between the two parts. The
figure also shows that some parts of the whole application can be implemented without
using the Simulink generated code. This demonstrate that with SMRT, the developers
can chose freely which parts of the system that it is suitable to implement in Simulink,
and which are more practical to implement manually.

Generated Code
Inputs
to the
system

Written Code

Set
functions

Get
functions

Get values
from inputs

Get values from
written code

Outputs
from the
system

Input
S-funcs

Output
S-funcs

Base Task

Tasks in written code

Set values to
written code

Input
S-funcs

Output
S-funcs

Sub Tasks

Get values
from the

inputs

Set values to
the outputs

Set values
to the

outputs

Figure 4.4: Graphical representation of communication between generated and custom code in
SMRT

A typical use of these input and output S-functions are for communicating with the
I/O of the embedded system. Set and get functions for the different I/O pins of the
system can be created, and the S-functions can specify these in the parameters. The
S-function will then either read or write to the I/O at every time step.

Although the S-functions are developed with TLC, it is not needed for using them.
They are also platform independent, as their generated code only consists of a function
call. The current versions only have one input or output, and do not do anything in a

63

4. Simulink Coder Generated Code as a Module within a Software Project

Simulink simulation, but these are possible improvements. A third variation, with both
input and output signal could be beneficial in some situations, and should be developed.

4.2.6 Xenomai Real-Time Drivers for Beaglebone GPIO and PWM

Xenomai tasks can run at a higher priority than the Linux kernel. However, if the Xeno-
mai task uses a Linux system call, this will run in the context of the Linux kernel, and
thus lose its real-time capability. This means that a Xenomai task that access the I/O
of the Beaglebone using Linux drivers will lose its real-time priority, and introduce un-
predictable delays. To circumvent this, I/O drivers can be developed using the Xenomai
real-time driver model (RTDM).

RTDM drivers are similar to normal Linux drivers, but use RTDM functions instead of
the Linux equivalents. When built they are loaded into the Linux kernel just as another
kernel module. Real-time task can then interact with them. Since SMRT with Xenomai
is intended to have hard real-time performance, we have developed RTDM drivers for
the GPIO and PWM I/O pins for the Beaglebone, which is available at the SMRT project
web site.

4.2.7 Porting SMRT to other platforms

The input and output S-functions are platform independent, and can be used unchanged
for SMRT regardless of the target platform. With some modifications, it should be possi-
ble to use these S-functions for other Simulink Coder projects as well.

The SMRT implementation is not specific to the Beaglebone hardware, and it should
be possible to run SMRT unchanged for Xenomai on other hardware.

As the current implementation of SMRT uses several Xenomai specific functions, it
would require some work to port SMRT to other operating systems. However, all these
functions have POSIX equivalents, thus it should be possible. If ported to a non real-
time system, increased response times and missed deadlines as shown with Linux in
4.2.4 should be expected.

64

4.3. Discussion

4.3 Discussion

The Software Module Real-time Target use the code generated from Simulink Coder as
a software module available for other parts of the project to use. With this method, both
the configuration and custom code can be specified with tools an embedded developer
is comfortable with, e.g. C-code, the Eclipse IDE and Makefiles. S-functions have been
developed to simplify the interface between generated code and the rest of the program,
thus there is no need to develop S-functions for this or learn the TLC-language.

SMRT for Xenomai Linux has been tested on a Beaglebone development board. A
test of the scheduling showed that it was seemingly identical with the theoretical rate
monotonic scheduling and as good as other uses of Simulink generated code. There was
not found any undesirable behavior for hard real-time. The SMRT code and instruction
for using it is available online under the LGPL v3 license.

SMRT was used for the development of the control system for the robot prototype de-
scribed in 3.3. It made it possible add code generated from Simulink into a code project,
and allowed simple interaction between the generated and written code. Simulink ex-
ternal mode was useful for debugging and testing the control system, as it allowed the
robot to run the program, while values were shown in near real-time in Simulink.

65

4. Simulink Coder Generated Code as a Module within a Software Project

66

Chapter 5

Concluding Remarks

5.1 Conclusions

5.1.1 Remote Inspection of Offshore Wind Turbines

This thesis has presented the concept of remote, robotic inspections of offshore wind
turbines as a cost- and time-effective alternative to the manned inspections performed
today. The potential economic benefit to remote inspection was demonstrated with a life-
cycle cost simulation tool called NOWIcob. The results suggested improved availability
and a reduction in the cost of energy when remote inspections were used.

An assumption for the NOWIcob simulation was that remote inspections are as ef-
fective as manned, meaning that the same number of problems is identified with both
alternatives. A series of usability tests, two smaller pilot experiments and two larger
experiments with 21 and 31 student volunteers have been performed to evaluate this
assumption. A remote inspection prototype was developed and used for inspections in a
laboratory and compared to manned inspections.

A comprehensive review of usability tests of mobile telerobots found in the literature
has been performed as part of the preparation of our own experiments. It both describes
the best practice for performing such experiments, and has an overview of their results.
No other experiments with a direct comparison of participants performing a task with a
robot and in person were found in the review. This could be because telerobots often are
considered for tasks that are impossible or too dangerous for humans to do. For remote
inspection, this is not the case, and it was necessary to get a direct comparison between
the two methods.

The last experiment was the largest and had the most reliable results. Based on these
we find that remote inspections with the current prototype and test procedure were able
to find approximately 84% of the errors that manned inspections found. This means that
it cannot be considered equally effective, but it is also a promising result. The difference
between remote and manned inspections was smaller in this last experiment than in

67

5. Concluding Remarks

the earlier ones. This is likely to be due to improvements of the prototype. Further
improvements are expected to reduce the difference even more.

It was identified several strong indications that most or all of the difference between
the inspection methods was because many participants did not have enough time avail-
able to properly complete their remote inspections. Some of the reasons for this are
due to the participants having to wait for the robot system, and some could be because
the assisted inspection method encouraged systematic and thorough inspections. Given
more time, remote inspections are likely to be as effective as manned. Since remote in-
spection does not require time consuming transportation, it can be beneficial even if the
inspections take longer to perform. The system should still be developed to be faster and
more efficient to use.

Our conclusion is that although an effectiveness equal to that of manned inspections
has not been demonstrated, it performed well enough to justify continued research on
the topic. Further development should focus on reducing the time the operator has to
wait for the robot, and on including more and better sensors.

5.1.2 Simulink Coder Generated Code as a Module within a Software
Project

Software Module Real-time Target (SMRT) was developed to simplify the development
of the telerobot prototype. It has become a project on its own, which can be useful for
other projects. It is intended to make it easy to use code generated by Simulink Coder as
a part of larger project, in an environment the developer prefers. Most other solutions
make a standalone program from the generated code, within the context of Matlab and
Simulink.

SMRT is intended for embedded developers that are not experts in Simulink Coder.
This means that it is not necessary to know how Simulink Coder generates code or
how to use the Simulink specific TLC language. If another method is customized for the
specific requirements of a project, this knowledge will most likely be necessary.

68

5.2. Future Work

5.2 Future Work

There are no plans for continuing the series of experiments using the current laboratory
and prototype. As the results from the laboratory is promising, it is more important to
focus the research on evaluation in a real environment. An improved prototype capable
of detecting the same errors, as it is possible to find during manned inspections should
be developed.

The project will be continued within the EU project Leanwind, with the installation
of a full-featured prototype in an offshore wind turbine. The lessons learned during the
experiments will be used for the development of this system, to ensure its usability.

One of the advantages of evaluating remote inspection in a laboratory is, as argued
in this thesis, that a large number of participants can do inspections in a controlled
environment within a short time frame. To find out how to evaluate a prototype in a
offshore wind turbine in operation will be a challenging task.

There is currently no known need for doing updates to the SMRT concept for Xeno-
mai on Beaglebone. However, it is possible to continue the development of SMRT to
work on other software and hardware platforms.

One of the problems of using Simulink Coder is the high cost of the software. Because
of this, it could be an idea to explore the use of SMRT with open source alternatives to
Simulink.

69

5. Concluding Remarks

70

Chapter 6

Original Publications

This chapter contains five published peer-reviewed conference papers, as well as two submit-
ted journal paper manuscript.

71

Paper A

Paper A Adaption of MathWorks Real-Time Workshop for an
Unsupported Embedded Platform

Published in the Conference Proceedings of the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2010) at Lille, France, September 2010.

73

Adaption of MathWorks Real-Time Workshop for an Unsupported Embedded
Platform

Øyvind Netland
Norwegian University of
Science and Technology

Department of Engineering Cybernetics
Email: oyvind.netland@itk.ntnu.no

Amund Skavhaug
Norwegian University of
Science and Technology

Department of Engineering Cybernetics
Email: amund.skavhaug@itk.ntnu.no

Abstract

This paper describes how to configure MathWorks Real-
Time Workshop to automatically build a control system ap-
plication for an unsupported embedded computer platform.
The application can be generated with a single command,
allowing for quick iterations of testing and debugging. The
I/O interface and control algorithm of the application is de-
scribed in a Simulink model. In this paper an AVR32 embed-
ded computer running AVR32-Linux was used, but it should
also be relevant for adapting Real-Time Workshop for other
embedded platforms.

1 Introduction

Embedded computers are often used to control a physical
system. This can be everyday objects, from the microwave
in your kitchen to the brakes of your car, or an industrial
system like a part of a factory or a ship. Control systems be-
comes increasingly more complex, which leads to increased
chance of failure, that can result in serious economical con-
sequences or personal injury.

A control system is often modelled with a tool like
Simulink, a toolbox for the Matlab program from Math-
Works. In Simulink, a dynamical model can be developed
and simulated, until it is ready to test on the actual physical
system.

Translating a Simulink model into computer code, and
updating it every time the model changes is a difficult and
time consuming task, that is prone to errors. It is not very
cost effective, and the result will be unreliable.

The Simulink add-on Real-Time Workshop (RTW), is a
tool for rapid software development. It can rapidly generate
code that performs the same calculation as a Simulink sim-
ulation, free from human coding errors. Failures of control
system are often more serious than for other computer sys-

tems, since losing control over a physical system can create
dangerous situations. It can have large economical conse-
quences and threaten the reputation of responsible parties.

Using RTW for rapid software development of control
systems, is a well known and used concept, for both devel-
opment and for teaching purposes. [11] discusses how RTW
and similar tools have been used as student exercises at the
department for engineering cybernetics at NTNU since the
mid 1990s. [6] shows a successful usage of RTW for teach-
ing digital signal processing.

A RTW system target defines how code is generated.
Some, like the xPC-target, generates code for a specific
platform and purpose. These can generate code that with
no modifications can be used for real-time control systems
[9,10]. Others, like the generic real-time target (GRT), gen-
erates code that can be used on different platforms and pur-
poses, but might require some modifications.

This paper describes how a custom RTW system target,
based on GRT was created. It generates real-time control
systems for AVR32-Linux described in the following parts.

• Background: Present background information.

• Preliminary tests: Tests of the selected platform.

• AVR32 Real-Time Target: RTW target for creating
real-time control systems for AVR32.

• S-functions for I/O: Custom Simulink blocks.

• Demonstration Experiment: Testing of the complete
systems capabilities.

The contributions from this work is a RTW system tar-
get for AVR32-Linux and a description of how to make a
similar solution for other unsupported platforms.

Paper A

75

2 Background

2.1 Real-Time Control system

A real-time system [3] is a computer system with real-
time constraints, which means that a calculation must be
both correct and completed at the correct time. Failing to
do so will result in failure or reduction of the performance
of the system.

Most control systems have a periodical execution. Each
period read measurements, executes a control algorithm,
and sets actuator commands. A system like this have a real-
time constraint, since it must perform these operations be-
fore the end of the period in order to work.

2.2 Simulink and Real-Time Workshop

Simulink is a Matlab toolbox, and makes a numerical
simulation of a dynamical system, with a graphical block
diagramming tool. A simulation of a model consists of a nu-
merical calculation of the dynamical system for every time
step. The time step can be fixed or variable, but most RTW
system targets like GRT only supports fixed, so only fixed
will be used here.

Real-Time Workshop is a Simulink add-on for generat-
ing C code based on a Simulink model. The RTW generated
code will perform the exact same numerical calculation as
the Simulink program would do. If the time steps in the
RTW generated code executes periodically, with a period
equal to the fixed time step, then the resulting program will
be an implementation of the model in real-time.

2.3 RTW System Target

When using RTW, the first option the user is presented
with is which RTW system target to use. It defines how the
code should be generated and compiled. The RTW User’s
Guide [13] explains how it generates code, and the different
targets that are available. The three RTW systems that will
be best for an unsupported embedded system is listed below.
All of these must be modified to execute the time steps in
real-time.

Generic real-time target (GRT) generates code that can
run on many different platforms with little or no modifica-
tion.

GRT malloc is the same as GRT, but all variables used
during execution are dynamically allocated when needed in-
stead of being declared in advance.

Embedded real-time target (ERT) generates code espe-
cially for embedded platforms. The code is more efficient,
and more suited for production than GRT. It also have op-
tions for more detailed control of code generation. RTW

Embedded Coder [12] is required, which makes it less avail-
able.

Other targets are also included in RTW and Embedded
Coder, but these are specialised for a specific platform or
usage.

A RTW system targets is defined by a few files, and
changing these will change the way code will be generated.
To make a new RTW system target, the files from an exist-
ing target can be copied and modified.

2.4 Simulink S-function

S-functions are Simulink blocks written in a computer
language, and are used when none of the blocks in the
Simulink block library have the required functionality.
There are three different types of S-functions:

A noninlined S-function only have a S-function code file,
which will be used both for Simulink simulations and for
RTW code generation. This is the simplest S-function since
it only requires one file, but the code generated by RTW will
be ineffective.

A fully inlined S-function uses a S-function code file
during Simulink simulations, and a target block file for
RTW code generation, which gives optimal performance
for both situations. The functionality of the S-function in
Simulink can differ from the functionality of the RTW gen-
erated code, since it is defined by two different files.

A wrapper S-function have a third file which defines the
functionality of the S-function. Both the S-function code
file and the target block file will call functions from this
third file. This allows the functionality of both Simulink
simulations and RTW generated code to be defined by the
same file, without any loss of performance.

2.5 AVR32

AVR32 [2] is a processor architecture that was developed
by Atmel Norway, who are the producer of the 8-bit AVR
micro controller. The first CPU of this architecture was the
AT32AP7000 [1], that was released in 2006. AVR32 is a
32-bit processor, for the embedded marked. It is designed
to have high code density and low power usage.

AVR32-Linux is a port of the Linux kernel for the
AVR32 architecture. Together with some basic tools (GNU
toolchain, Busybox and uClibc), it is a complete lightweight
Linux distribution with development tools. Further infor-
mation about the AVR32 Linux project can be found at
avr32linux.org. The kernel version used for this work was
2.6.20.

The STK1000 development board was used, with the
STK1002 daughter-board. The CPU model was the
AT32AP7000. Other CPUs with different properties have

Paper A

76

been released since then, and more are probably following.
None of these are discussed here.

3 Preliminary tests

3.1 Test of RTW generated code

After selecting a hardware and software platform, it is
important to test and verify its ability to perform its intended
task. Since the platform must be able to run RTW generated
code, it is a natural choice to determine this first. Prerequi-
sites for this test is a working compiler and other necessary
tools for building applications for the embedded computer.
The GRT target should be tested first, since it is generic and
widely available. If it is not possible to run GRT code on
the selected platform, the ERT target can be considered if
available.

The GRT target was used for testing RTW code for
AVR32-Linux. Since it is running Linux, the UNIX make-
file was used for compilation. It was modified to use the
AVR32-Linux compiler, by setting the following variable
CC=avr32-linux-gcc.

Other platforms must set this variable to its own com-
piler, which can give compiler errors specific to the plat-
form. How these are solved, if it is even possible is not
discussed here, since it will require knowledge of the tar-
get architecture and operating system. For AVR32-Linux,
the -m32 compiler flag had to be removed, since it is not
recognized by the AVR32 compiler.

3.2 Timer Precision Test

To execute the RTW generated code periodically, the op-
erating system must provide a timer, with a period equal to
the Simulink models time step. What period is required,
will depend on the physical system, if it is fast changing it
will require a short time step period.

To fulfil the real-time constraint of a periodic control sys-
tem, two conditions must be met. Firstly, the system must
be able to create precise timers. Secondly, all calculations
needed for a time step must be completed during that period.
The shorter the period, the harder the second condition will
be, since the same calculations must be done in less time.
If the real-time constraint is broken, the control system will
not behave correctly, and give undesirable results.

To implement timers on the AVR32-Linux platform, an
internal Linux timer, with a maximum resolution of 1000Hz
or 1ms, was used. AVR32 is considered to have too low
capacity to run RTW code with a shorter time step than 1ms,
so using the internal Linux timer is acceptable. This is a
limitation of the hardware, Linux is able to generate shorter
periods [4].

Table 1. Results of preliminary tests
CPU Pentium 4 AT32AP7000
OS Ubuntu Linux AVR32 Linux
Clock 2.4GHz 140MHz
Average Periode 100013µs 9995µs
Periode Std.Dev. 2057µs 7µs
µs/float 0.00273 0.492
cycles/float 6.55 68.8
µs/fixed 0.00269 0.123
cycles/fixed 6.47 17.2

It is not enough that the timer has sufficient resolution,
it must also be accurate. This was tested with a small pro-
gram that logged the time between 10000 periods of 10ms
generated by the operating system. For comparison, the test
was run on an Ubuntu Linux desktop computer as well as
the AVR32-Linux system. A standard Ubuntu Linux have a
minimum timer period of 10ms, which is the reason this pe-
riod was used. 10ms is also a realistic period for the AVR32
system. The averages and standard deviations are shown in
Table 1.

The average time is very close to 10ms for both platform.
A 0.05% deviation for the AVR32 is very good. The stan-
dard deviation describes how accurate the timers are, and
the AVR32-Linux performs much better than the Ubuntu
desktop computer. A standard deviation of 0.07% of the
period is not a noticeable inaccuracy.

The most likely reason that the AVR32 performed much
better than the Pentium 4, is that the AVR32-Linux kernel
was a preemtable kernel, while the Ubuntu kernel was not.
[8] discusses the how a preemtable kernel will give lower
latency for audio/video, and it will have the same effect for
timers. If the kernel is busy when the timer triggers, it can
interrupt a preemtable kernel, but it has to wait if the kernel
is unpreemtable. Preemtability has been a compile option
for all 2.6 versions of Linux, but normal desktop systems
like Ubuntu does not use it by default.

The time measurements in these tests used the
GetTimeOfDay function in Linux. It returns results in
microseconds, but might not be that accurate. It can also be
a problem that the system is used to measure itself. If the
timers are wrong because of a problem in the system, mea-
surements from the same system might not be able to detect
it. This method was still used, because it is more practical
than setting up an external measurement system. Because
of a large sampling size and since accuracy down to 1µs is
not necessary, this measurement method was considered to
be accurate enough for this purpose.

Paper A

77

3.3 Floating-point performance

If the selected platform has any other potential weak-
nesses, these should also be tested. For the AVR32 plat-
form, one such potential weakness was floating-point oper-
ations. The AT32AP7000 CPU does not have a floating-
point unit (FPU), witch means low floating-point perfor-
mance. Simulink models use floating-point numbers by de-
fault, but can be converted to fixed-point [5], which might
require swapping some unsupported blocks with supported
ones. It is important to know the CPU floating-point perfor-
mance, so it can be considered when deciding if this extra
work is necessary and have the desired effect.

A test was performed, consisting of 100 million multipli-
cations. Floating-point and fixed-point multiplications were
tested on both the AVR32 and the Pentium 4 platform, the
time and number of CPU cycles used in average for each
test is shown in Table 1.

AT32AP7000 CPU used 4 times as many cycles on a
floating-point multiplication than a fixed-point. This is re-
garded as a positive result, since the lack of FPU would
suggest that the floating-point performance could be even
worse. The Pentium 4 is considerable faster than the
AVR32, as expected. It also used the same time for both
fixed- and floating-point multiplications, since it has a built
in FPU.

3.4 Preliminary test conclusion

The preliminary tests should be able to reveal if the se-
lected platform is able to perform the task it is intended for,
and if there are any weaknesses that is important to be aware
of. The AVR32 platform is able to run RTW generated code,
and generate accurate timers. The only problem is the poor
floating-point performance, so it should be avoided if effec-
tive code is important.

4 AVR32 Real-Time Target

4.1 Custom RTW target

As described in 2.3, a custom RTW target can be created
based on an existing one. It can be modified so it will gen-
erate code and build an application with the required prop-
erties.

The three RTW system targets described in 2.3 can be
used as the basis for a custom target. AVR32 used the GRT
target as a basis, since 3.1 showed that it is possible to run
GRT code on AV32, and it is more widely available than
ERT. The GRT malloc was not tested, but should offer no
advantages over the normal GRT for this purpose.

If GRT code is not running on the selected platform, or
if the goal is to create production code, then the ERT target

should be considered. The ERT is not too different from
GRT, so the rest of this paper should still be relevant.

AVR32 real-time target is different from the GRT in two
ways. It builds the application for the AVR32 architecture,
and it implements timers, for real-time execution. It con-
sists of the three files described below, that are placed in the
folder MATLAB ROOT/rtw/c/avr32.

4.2 avr32.tlc

This is the system target file, based on grc.tlc, and
it controls how code is generated. The following changes
were done:

• avr32.tmf was set as Makefile template.

• The build directory suffix was set to avr32 rtw.

4.3 avr32.tmf

This is the Makefile template, which is based on
grt unix.tmf, the standard Makefile template for GRT
on UNIX/Linux platforms. The following changes were
done to compile the code for AVR32:

• avr32.tlc was set as system target file.

• avr32-linux-gcc was set as compiler.

• The -m32 compiler flag was removed, since it is not
recognized by the compiler.

• -lpthread was added to linking options, to enable
the pthread library.

• avr32 main.c was selected as the applications
main file.

• Updated the folder of the AVR32 target files.

4.4 avr32 main.c

When RTW generates code, it does not create a main
function, which is needed for a C application. The main
function is defined by a RTW system target specific file, and
modifications to this file will affect all applications built us-
ing that target. avr32 main.c is based on grt main.c,
with the addition of code for periodic execution of the time
steps. Only one periodic task was needed, so threads were
not used. When all the code for one period is executed, the
program will wait until the start of the next period. It is in-
dicated in grt main.c where code should be added for
this purpose.

Code for logging calculation time for each time step, and
other debug information can also be added to this file where
appropriate. This can be used for evaluating the perfor-
mance of the control system.

Paper A

78

5 S-functions for I/O

5.1 Type of S-function

To create code for I/O operations, S-functions were cre-
ated, which allows I/O channels to be represented by blocks
in the Simulink model. The S-function only contain user-
space code, so if a device driver is needed, it must be loaded
beforehand. The S-function is supposed to be inactive dur-
ing a Simulink simulation, which means that an fully in-
lined S-function is the best choice since the functionality of
a simulation and RTW code can be different.

How many I/O channels one S-function should represent
is a design question. Either one S-function for each channel,
one S-function for all inputs and another for all outputs, or
anything between. It should be avoided that one S-function
have both input and output channels, since inputs should be
executed in the start of a time step, while outputs should be
in the end. This will not be possible if they are in the same
blocks, because RTW code executes one block at the time.

5.2 S-function code file

The S-function code file decide the functionality of the
S-function during Simulink simulations. During simula-
tion, the I/O blocks are supposed to stay inactive, so the
basic sfuntmpl basic.c template was used. The only
modifications were to define the number of inputs, outputs
and parameters of the block, which is defined in this file no
matter what type of S-function it is.

5.3 Target block file

The target block file specify how RTW should generate
code for the S-function, and is written in the TLC language.
To make S-functions for an I/O card two TLC functions
were used. The function InitializeCondition gen-
erates code that runs when the application is started, and
code needed to initialize the I/O card should be added here.
The function Outputs generates code that runs once every
time step, and should be used for calculating the S-function
outputs, often based on the inputs.

If one S-function generates code for more than one I/O
channel, it is important that code only is generated for chan-
nels that are connected in Simulink. This is because I/O op-
erations are time consuming, and performing unnecessary
operations is ineffective.

6 Demonstration Experiment

To verify that the solution is working, a small test was
performed with the use of an AVR ATMega128 acting as an

0 0.05 0.1

0

2

4

Time

V
a
lu

e

Figure 1. Result of sine test

I/O card, with a SPI interface to the AVR32. To enable SPI
communication in Linux a device driver [7] was developed.

The purpose of the test was to send a sine signal from
an output to an input of the I/O card, with a time step of
5ms. Fig. 1 shows the original sine signal together with
the signal sent through the I/O card. The second signal is
updated every period (5ms), with a 5ms old value from the
original signal.

The time used for accessing the different channels on
this I/O-card was also tested. An input channel took about
300µs, while an output took about 250µs.

7 Discussion

The creation of an AVR32 real-time target and S-
functions for the I/O card, makes it easy to build a real-time
control system application for an AVR32 processor from a
Simulink model. When selecting this target in the RTW op-
tion page, the whole process is automated by clicking the
build button. This is a quick method of creating an appli-
cation without the possibility of human coding errors. It al-
lows for efficient testing and debugging the Simulink model
on a physical system.

The preliminary test 3.3 confirmed that floating-point
performance is a weakness for the AT32AP7000 CPU,
since it does not have a FPU. This suggest that the num-
ber of floating-point operations should be minimized. To
avoid that RTW uses floating-point operations, the Simulink
model must be converted to fixed-point. This will make the
AVR32s calculations more effective, but will require extra
work, limit the possibilities in Simulink, and possible in-
crease overhead.

A small experiment was set up, and it demonstrated that
a simple system with an I/O card worked as defined in the
Simulink model. A signal was sent from an output channel,
and the correct signal was received on the input channel
connected to this output. It was only delayed by one period.
When a value is changed by the output, it is not possible
for the input channel to see the change before the next time
period, so one period delay is the best possible result.

The tests of the I/O card showed that each I/O operations
took between 250µs and 300µs. At least one input and one

Paper A

79

output is needed for a working control system, and such a
system will use more than 500µs each period on just I/O
operations. This confirms that it is no purpose for having
timers that are faster than 1ms when using the AVR32 and
this I/O card. It is possible to use timer period down to 1ms,
but the 10ms period that was tested in 3.2 will be a better
choice for most applications.

The AVR32 RTW system target was based on the GRT
target that comes with RTW, but it could also been based
on the ERT target. The main reason for using the GRT is
that it is available for everybody that have RTW, while ERT
will require the additional Embedded Coder add-on. Since
the AVR32 is a 32 bit CPU running on Linux, the platform
is close enough to a x86 Linux system that the GRT code
is possible to use. For other platforms this might not be
the case, and the ERT is an alternative, since it provides
more detailed control over the code generaton. It is also the
preferred choice for code that will be used for final products.

All the necessary steps for implementing a similar solu-
tion for other embedded platforms are described in 3, 4 and
5. Below is a short list over questions that must be answered
when following these steps, based on the experience from
AVR32.

• Are the hardware architecture and the operating system
compatible with RTW generated code?

• What are the platforms performance limitations?

• Can it create timers of sufficient resolution and accu-
racy for its intended use?

• Which RTW system target should be used as a tem-
plate?

• What must be changed in the Makefile template for the
program to compile properly?

• What code must be added to the main file to make it
execute the code periodically?

• Which S-functions must be created for interfacing the
I/O card?

• Will the I/O card require development of kernel
drivers?

8 Conclusion

Real-Time Workshop has been adopted to build a real-
time control system application for the AVR32 platform
based on a Simulink model, using a modified generic real-
time target. The same approach should be possible for other
unsupported embedded systems, by using either the generic
real-time target or the embedded real-time target from the

Embedded Coder add-on. The ERT target should be con-
sidered for production code, since it is optimized for that
purpose.

Creating code with RTW is an automated code generat-
ing process, that will be time efficient and prevent human
coding errors. These are both important economical con-
cerns, since it will allow for faster and cheaper development
of control systems, and the complete product will be more
reliable. It can also be used for educational purposes, and
make it possible for students to quickly test their Simulink
models on a physical system.

For the AVR32 and other CPUs without FPU, the
Simulink model can be converted from using floating-point
numbers to fixed-point for the most effective code execu-
tion. It is advised to consider if fixed-point should be used
before creating the Simulink model, since it can make the
conversion process easier.

References

[1] Atmel Corporation. AT32AP7000 Preliminary.
[2] Atmel Corporation. AVR32 Architecture Manual.
[3] A. Burns and A. Wellings. Real-Time Systems and Program-

ming Languages. Pearson, 3 edition, 2001.
[4] Z. Chen, X. Luo, and Z. Zhang. Research reform on embed-

ded linux’s hard real-time capability in application. In Proc.
Int. Conf. Embedded Software and Systems Symposia ICESS
Symposia ’08, pages 146–151, 2008.

[5] B. Chou and T. Erkkinen. Converting models from floating
point to fixed point for production code generation. MAT-
LAB Digest, 17(6), 11 2008.

[6] W.-S. Gan, Y.-K. Chong, W. Gong, and W.-T. Tan. Rapid
prototyping system for teaching real-time digital signal pro-
cessing. Education, IEEE Transactions on, 43(1):19–24, feb
2000.

[7] A. R. Greg Kroah-Hartman, Jonathan Corbet. Linux Device
Drivers. O’Reilly, 3rd edition, 2005.

[8] R. Love. Lowering latency in linux: Introducing a pre-
emptible kernel. Linux Journal, 97, May 2002.

[9] K. H. Low, H. Wang, and M. Y. Wang. On the development
of a real time control system by using xPC target: solution
to robotic system control. In Proc. IEEE Int Automation
Science and Engineering Conf, pages 345–350, 2005.

[10] P. S. Shiakolas and D. Piyabongkarn. On the development
of a real-time digital control system using xPC-target and a
magnetic levitation device. In Proc. 40th IEEE Conf. Deci-
sion and Control, volume 2, pages 1348–1353, 2001.

[11] A. Skavhaug, T. Lundheim, B. Vik, and T. I. Fossen. A
decade of rapid software development for control system ex-
periments.. lessons learned. Proceedings of the 15th IFAC
World Congress 2002, 2002.

[12] The MathWorks Inc. Real-Time Workshop 7 Embedded
Coder Users Guide.

[13] The MathWorks Inc. Real-Time Workshop 7 Users Guide,
2010a edition, 04 2010.

Paper A

80

Paper B

Paper B Prototyping and Evaluation of a Telerobot for
Remote Inspection of Offshore Wind Farms

Published in the 2nd International Conference on Applied Robotics for the Power Industry
(CARPI 2012) in Zurich, Switzerland, September 2012.

81

Prototyping and Evaluation of a Telerobot for
Remote Inspection of Offshore Wind Farms

Øyvind Netland and Amund Skavhaug,

Abstract—A telerobot can be used for inspection at a location
far from where its user is, i.e. remote inspection. This paper
presents the design and implementation of a lab for evaluation
of remote inspection, consisting of a telerobot prototype and an
environment for it to operate in. Remote inspection can be used
in many industries, but we argue that it is especially suitable
for offshore wind turbines, since these are large, unmanned
and complicated machines at difficult to reach locations. Remote
inspection of offshore wind turbines has the potential to reduce
the maintenance cost, increase the knowledge of the turbines’
condition and the predictability of maintenance. The typical user
of remote inspection is expected to have expertise in maintenance,
not robotics. Therefore we suggest evaluating remote inspection
using usability tests, which consider how easy it is to learn, and
use a system for its intended purpose.

I. INTRODUCTION

Wind energy is expected to be an important addition to fossil
fuels in the future. A large scale development of wind energy
is driving the industry offshore where there are large available
areas with suitable wind conditions. Offshore wind turbines
can be built larger and have fewer problems with visual
and audible noise, since they are located far from land and
habitation. In 2011, the European Wind Energy Association
(EWEA) [1] were able to identify over 130 GW of offshore
wind energy projects in various stages of planning. These are
ambitious plans, when there are currently just above 8 GW in
operation or under construction.

A wind turbine is a large, complicated and unmanned ma-
chine that is expected to have approximately 97% availability
[2]. Turbines are normally inspected and maintained on a
regular basis to ensure reliable operation and avoid down
time. Although there are little available operational data from
offshore wind farms, the cost of operation and maintenance
is expected to be significantly higher than on land, due to
the increased cost of transportation, expensive equipment for
heavy lifting and delays caused by harsh weather. Estimations
presented in [3] indicates that between 25% and 30% of the
total energy cost for offshore wind energy will be from O&M,
while it is only between 10% and 15% on land. Lowering the
cost of O&M is important to make offshore wind energy more
economically viable, and to realise the ambitions plans.

Ribrant et al [4] have surveyed failure data from about
600 Swedish onshore wind turbines over 5 years. We have
extracted the frequency of different types or failures and the
average downtime caused by these, and created a bar-graph
shown in figure 1. The figure shows that except for the blades
and pitch, the most frequent failures originates inside the
generator room on top of the tower, also called the nacelle.

 0

 20

 40

 60

 80

 100

Hub
Drive train

Mechanical brakes

Structure

Entire unit

Generator

Yaw system

Gears
Control system

Blades/pitch

Sensors

Hydraulics

Electric system

 0

 50

 100

 150

 200

 250

 300

 350

 400

N
um

be
r

of
 f

ai
lu

re
s

pe
r

ye
ar

 p
er

 1
00

0
tu

rb
in

es

Av
er

ag
e

do
w

nt
im

e
pe

r
fa

ilu
re

 (
ho

ur
s)Number of failures

Downtime per failure

Fig. 1. Failure frequency and average downtime per failure for different
parts of wind turbines

It is reasonable to expect that offshore turbines will have
similar failure rates to what is described in figure 1. The
downtime is, however, expected to be higher, due to the extra
time needed to get available transportation, waiting for ac-
ceptable weather conditions and the transportation itself. This
makes all failures more serious, but especially the frequent
failures that can be repaired relatively quickly on land, will
cause significantly more downtime for offshore turbines.

This article will first describe how inspection and condition
monitoring of wind turbines are done traditionally (section II),
followed by how telerobots can be used for remote inspections
(section III). We have built a prototype of a telerobot for
remote inspection of a wind turbine nacelle, which is described
in section IV. The article ends with section V, describing
different approaches to evaluating a remote inspection system
with usability tests

II. INSPECTION OF WIND TURBINES

There are different strategies for performing maintenance,
the simplest being corrective maintenance which is only
performed after the machine has failed. Wind turbines are
expected to have high availability and repairing failures can
be expensive, so corrective maintenance alone is not a viable
alternative. Preventive maintenance takes action before a fail-
ure, and can be scheduled based on time or accumulated use.
Both time and use based maintenance depend on estimates for
deciding when maintenance is necessary. Incorrect estimates
can result in unnecessary, expensive preventive maintenance,
or more seriously that a failure happens before preventive
maintenance is performed.

Paper B

83

Condition based maintenance schedule maintenance using
what is known about the condition of the wind turbine, either
from inspections or from automatic condition monitoring
systems, to optimize the maintenance. The cost of maintenance
can often be reduced without increasing the risk of failures.

A. Manual Inspection

Wind turbines are typically inspected once or twice a year
together with preventive maintenance. Most of this work is
performed inside the nacelle, which contain all the equipment
for electricity generation and most auxiliary systems. Some
equipment can be found in the hub, the pitch controller being
the most important. Many turbines require climbing on the
outside of the nacelle to access the hub, making it a safety
concern. To inspect the blades is even more difficult.

Manual inspections of offshore wind turbines require trans-
portation by boat or helicopter. Helicopter is a fast an ex-
pensive alternative, while boats are less expensive and slow.
Regardless of the transportation method, it will be significantly
more expensive and time consuming than transportation to a
turbine on land. Whether access to a wind turbine is possible,
depends on the wave and wind conditions. A wind turbine in
the North Sea is expected to be inaccessible most of the time
during the winter months.

During an inspection a technician search for signs of wear
or damage to the equipment in the turbine and problems like
oil leaks, loose cables etc. In some cases abnormal sound or
vibrations can be detected. A commonly used tool is a thermal
camera to look for areas with increased temperature, which can
indicate increased friction or an electrical problem. For safety
reasons, a turbine is often stopped when accessed by people.
This limits what manual inspection can find, as heat, sound
and vibrations are best to observe when the turbine is running.

B. Condition Monitoring

Condition monitoring analyses a large amount of sensor
information from the wind turbine to estimate its current
condition. It is an automated, continuous process requiring
little human intervention. The condition monitoring system’s
diagnosis of the current health of the turbine and its prediction
of future condition can be used to plan maintenance. Condition
monitoring is considered to become standard equipment on
future offshore wind turbines, but the number and types of
sensors used will differ. There have been several research
projects looking into the use of condition monitoring for
offshore wind turbines [3], [5]. Unfortunately it is difficult
to document the effect of condition monitoring, as it requires
observation of many wind turbines for several years.

A condition monitoring system is assumed to be superior
to a human for analysing sensor measurements for abnormal
signals predicting failures, but is limited to its available
sensors, which can’t cover all unforeseen situations. When a
potential problem is identified, the condition monitoring is not
a suitable system for studying the problem in detail to decide
which actions to take. There are also some problems that are

easier for personnel in the turbine to detect visually, e.g. visible
wear on parts, loose cables etc.

III. REMOTE INSPECTION OF WIND TURBINES

A telerobot is a programmed mechanical device that is
controlled from a distance, usually with a computer interface.
Telerobots can be used to inspect locations that are dangerous
or impossible for humans to work in, e.g. nuclear power plants
[6], the inside of large machinery [7] or inside pipes [8]. The
motivation for using telerobots for inspection can also be to
reduce cost, rather than doing something that is otherwise
impossible. Remote inspection of the nacelle of an offshore
wind turbine as described in this article is an example of this.
Other parts of a wind turbine can also be inspected using
robotics, e.g. the blades [9], the hub or the tower structure.

Both condition monitoring and remote inspection have the
same goal; to reduce the need for manual inspections of
wind turbines, but they are not mutually exclusive solutions.
Condition monitoring provides a continuous monitoring of the
turbine, using pre-defined sensors and diagnosis algorithms.
Remote inspection benefits from the problem solving abilities
of a human user, and can be used to investigate problems
identified by condition monitoring in detail [10], examine
unforeseen situation, in depth inspections and for planning
maintenance operations.

To examine different parts of the nacelle the robot must be
able to move around, and have sensors that approximate the
senses a person would use during an inspection, e.g. cameras
for vision and microphones for listening. Since a robot can
observe the turbine while it is running, a thermal camera can
potentially be even more useful than during manual inspec-
tions, when the turbine is usually stopped. However, it is not
certain that these expensive cameras would be cost-effective
for remote inspection, when one is required in each turbine.
The robot can also have sensors for measuring temperature,
vibration, voltage, current etc.

A. Usability of Remote Inspection

Usability is a term from human-computer interaction [11]
that refers to how easy and enjoyable a computer system is to
use, and how well it can be used to solve the task it’s intended
for. It’s also an important concept in robotics, within human-
robot interaction (HRI), and usability tests [12] are used for
evaluating robots in several research projects. Among the
most noteworthy is the development and usability evaluation
of a robot control interface for search and rescue robots at
University Massachusetts Lowell [13], and several large scale
usability tests performed at Idaho National Laboratory [14],
[15]. We have been unable to find any usability tests evaluating
the use of telerobots for remote inspection or any experiments
that compares a telerobot and a human performing the same
task.

Usability is broken down into usability goals, but different
sources do this differently. In the ISO 9241-11 standard [16],
the usability goals of effectiveness, efficiency and satisfaction
are used. In HRI the situation awareness [17] is often also

Paper B

84

considered a usability goal, because the ability to know where
the robot is and be aware of its situation is so important when
controlling a telerobot you are not able to see directly [18]. For
the purpose of evaluating the usability of remote inspection,
we define the following usability goals:

1) Effectiveness: The effectiveness of an inspection is how
accurately the results from the inspection reflect the inspected
system’s true condition. The scheduling of maintenance is
decided based on the information gained from inspections, thus
effectiveness is considered the most important of the usability
goals when judging inspections.

2) Efficiency: The efficiency of an inspection is the total
amount of resources consumed during the inspection, most
importantly the time and cost. For offshore wind turbines, we
can claim that remote inspection will always be more efficient
than manual inspections. Any small variations in the inspection
time will be insignificant compared to the additional time and
cost required to plan manual inspections, and transportation to
the turbine.

3) Satisfaction: Satisfaction describes whether the inspec-
tion task feels enjoyable or frustrating. Satisfaction does not
directly influence the results or cost of an inspection, but are
important for a good working environment.

4) Situation Awareness: Situation awareness is defined in
[18] defined as ”the perception of the robots location, sur-
roundings, and status; the comprehension of their meaning;
and the projection of how the robot will behave in the near
future”. It is important for successful operation of a telerobot,
as it is difficult to get the robot to do what you need, if you
don’t have a good understanding of its situation. Situation
awareness is linked to the other usability goals, since low SA
can lead to incorrect results (decreased effectiveness), longer
completion time (decreased efficiency) and user frustration
(decreased satisfaction).

IV. PROTOTYPE

A. Mechanical Construction

Our prototype is a semi-mobile robot moving on a rail,
shown in figure 2. It grips to the rail similar to a roller-coaster,
making it able to hang upside down. It is equipped with a
camera on a pan and tilt mechanism, but no other sensors, as
it is intended for evaluation based around visual inspection.
The design was created with simplicity and low cost in mind
and built at the mechanical workshop at our department.

The cost is an important factor, since wind energy is a low
margin industry where large additional costs are unacceptable.
The prototype has an estimated part cost of 2.000 euros, and a
basic commercial version based on the concept is expected to
cost 10-20 times as much. An expensive thermal camera will
add to this.

In table I two methods for movement is compared. A robot
able to move freely around in a wind turbine, with little floor
area and many obstacles, is considered to be unnecessarily
complex and expensive for our application. Movement on rail
is considered to be a better alternative. The rail can be cus-
tomized for the individual nacelle so the robot is able to reach

Fig. 2. Our prototype without cover and camera, hanging from a section of
the rail.

TABLE I
COMPARISON BETWEEN MOVEMENT ON RAIL AND FULL MOBILITY

Advantages Disadvantages

Movement
on rail

• Simple and reliable.
• Can be powered

through rails.
• Easy to know exact

position.
• Not dependent on the

environment to move.

• Can only reach where
the rail goes.

• Require installation of
rail.

• Where the robot can
move is decided when
installing the rail.

Full
mobility

• Can potentially reach
everywhere.

• Obstacles limit
movement.

• Reach higher ground
(climbing) is difficult.

• Needs batteries for
power.

• Can get stuck.

all points of interest, and it can easily reach both high and low
locations. The possibility of powering the robot through the
rails, and not depend on batteries, is also important. A fully
mobile robot must use batteries, which increase weight, reduce
lifespan, and introduces the risk of completely disabling the
robot by running out of batteries without reaching a charging
station.

The rail used by the prototype consists of two aluminium
pipes as shown in figure 2, where one of the pipes has a
bicycle chain attached to its side. This solution was chosen
for the low cost and availability of materials, and works well
for prototyping. A commercial product based on this concept
must use a rail that is more suitable for mass production, e.g. a
monorail extruded in aluminium. The bicycle chain is a simple
rack and pinion implementation, a technique often used for
railways with steep gradients. With this solution, the prototype
is able to move on a vertical rail.

B. Control System

The robot is controlled by a small, single board ARM com-
puter, called Beaglebone, running a Linux operating system.
A client program controls the robot and displays information
about itself and from its sensors. It is implemented in Java, and
runs on a normal desktop computer. The connectivity between

Paper B

85

Network

Client
Computer

WiFi
Access Point

WiFi

GPIO

PWM

USB

Wifi
Dongle

Camera
Rotary

encoder

Motor

Servos in
pan/tilt

Robot

Beaglebone

Fig. 3. Control system design

the Beaglebone and client is through a network, as shown
in figure 3. The wireless connection between the robot and
the network is encrypted. The Beaglebone board is able to
communicate directly with all the sensors and actuators on
the robot, using USB, GPIO and PWM signals, reducing the
need for additional electronics.

Since the robot is moving on a rail, it can only move in
two directions, forward and backwards. The default control is
direct teleoperation, where the desired speed is set in the user
interface, and the robot is moved forward or backward with
keyboard or mouse clicks. The robot’s speed and direction can
also be controlled with an analog joystick on a gamepad, which
is considered a more intuitive method with more accurate
control. The speed of the robot is derived from an optical
encoder, and used by a PI controller to set the PWM signal
controlling the motor. The operator can also control the
position instead of the speed of the robot. Position control
can also be used for autonomous inspection, where the robot
can autonomously move around in the turbine and collect data,
e.g. take photos or video. Images of interesting locations taken
at regular intervals make it possible to observe change or wear
over time, which can be a useful tool for understanding the
current condition.

V. APPROACH FOR EVALUATING THE USABILITY OF
REMOTE INSPECTION

Remote inspection of offshore wind turbines is a potential
alternative to manual inspections. We don’t, however, know
how remote inspections would work in practice, as it is not
commonly used, nor have we found any experimental results.
This section describes three different variants of experiments,
shown in table II, for evaluating the usability of remote
inspection and compare it to manual inspections.

A pilot experiment is only expected to give preliminary
usability results, but will provide important experience be-
fore performing other experiments. Quantitative experiments
should have a large number of participants to get statistical
significant quantitative results, like [19]. It is suitable to
test whether a system is as usable as planned, to compare
remote and manual inspections, or to compare different remote
inspection systems. Qualitative experiments focus on obser-
vation and comments from the participants, and are used to
explore how different solutions works and to get new ideas
for improvements.

Fig. 4. A section of the lab for evaluation of remote inspection

A. Lab Environment

To test the usability of inspection methods, it is necessary
to have something to inspect. One alternative is to perform
the experiment in an actual industrial system, like a wind
turbine. To get access to such a location is difficult, and even if
access is possible it will be restricted. Being unable to change
the environment as needed will make it difficult to perform
a controlled experiment. There are also safety concerns, like
high voltage and danger of falling, which would interfere with
the experiment. In the development of a remote inspection
product, it would be necessary to perform tests in a realistic
environment, but it is not appropriate to do this before a
prototype have been thoroughly tested elsewhere.

A better solution for prototype evaluation is in a lab that rep-
resents an industrial system. We have built such a lab, which
consists of non-functional industrial equipment, as shown in
figure 4. The intention is not to have an exact representation
of a specific system, but to have an environment where we
can introduce error markers that represent wear, early stages
of failures and other problems that should be detected during
an inspection. We have defined several such markers in our
lab, which each can easily be switched between an error and
normal state. It should be challenging to identify the markers
in error state, but not so challenging that the participants
aren’t able to find any during inspections. Figure 5 shows two
examples of markers, where the top images show normal states
and the bottom ones show error state. It is important to perform
a pilot experiment to test how challenging the markers are. The
ones that are found to be too easy or too challenging to find
will not provide useful results in a quantitative experiment. In
contrast to an industrial location, we have full control over
our lab, and can change it depending on what we want to test.
The lab can represent pristine condition, with all markers in
normal state, or worn condition, with one or more marker in
error state.

B. Participants

Usability tests are supposed to have potential end users as
participants, which for remote inspection would be mainte-

Paper B

86

TABLE II
DESCRIPTIONS OF USABILITY TEST VARIANTS FOR EVALUATION OF REMOTE INSPECTION

Experiment Purpose Defining Characteristics

Pilot
experiment

• Evaluate the lab and the experiment
procedure.

• Determine which error markers that
should be used in future experiments.

• Identify problems with the robot.

• Few participants, no special requirements.
• Provide only preliminary results.
• An evaluation of the experiment itself, not the telerobot.

Quantitative
experiment

• Compare the effectiveness of remote
and manual inspections (ratio of
markers found) to determine whether
remote inspection is a viable
alternative.

• Can also compare different variations
of remote inspection.

• Many participants (20+), not realistic that they should have experience from
maintenance.

• Each participant performs a number of inspections using both remote and manual
inspection.

• To get the best quantitative results, the conditions for each inspection should be as
identical as possible.
– Same time limit per inspection.
– Balance the use of markers over the participants and inspection methods.
– Participants should not be interacted with or asked to think out loud.

Qualitative
experiment

• Find the prototypes usability
problems.

• Get ideas for improvement of the
prototype.

• Few participants, preferably with maintenance experience
• The participants opinions, ideas and frustrations are more important than their

performance.
• Remote inspection can be tested alone or compared with manual inspection.
• An accurate measure of effectiveness is not important so the experiment can be

performed less stringent than a quantitative experiment.

Fig. 5. Examples of error markers: normal cable (top left), loose cable
(bottom left), normal fuse (top right) and tripped fuse (bottom right)

nance personnel. It is considered difficult to recruit these as
participants for usability tests, especially in large numbers. If a
few, or even one, of the participants in a qualitative experiment
have such a background, it will significantly increase the value
of the results. The opinions, criticism and ideas from people
with real experience in the task the robot is supposed to do
will be valuable for further development. In HRI, students or
visitors to a museum or event where the experiment takes place
is often used as participants. This is the most realistic method
for recruiting a large group of participants, which we want for
quantitative experiments.

C. Task

Before starting an experiment, the participants should be
given the opportunity to look at the lab in pristine condition,

meaning markers in error state. Knowing this, corresponds to
knowing the original condition of equipment before inspecting
it. The main task given to the participants is to inspect the lab
one or more times with different error markers, using either
remote or manual inspection. For quantitative experiments it
is important that the use of markers and the order remote and
manual inspection is performed at is balanced over the partic-
ipants, to reduce the effect learning will have on the results.
The time available for each inspection should be the same, to
keep as many variables constant as possible. Quantitative and
pilot experiments focus on observations and comments, and
are less affected by parameters of the experiments.

It is expected that doing just an inspection task will be
too easy for the participants. To make it more challenging, a
secondary task can be introduced. Our suggestion for such a
task is to search for a unknown number of items of a certain
type. The participants should be told that this task is less
important than the inspection task. In addition to making the
inspection more challenging, the secondary task gives us a
second quantitative measurement.

D. Measurements

During an experiment we can measure the usability using
some or all of the following usability measures:

1) Effectiveness: The ratio of error markers that was found
is a quantitative measure of the effectiveness of the inspection.
If something is incorrectly identified as an error state, it will
reduce the effectiveness.

2) Efficiency: We do not have any specific measurements
for efficiency, as remote inspection is considered to be inher-
ently more efficient.

3) Satisfaction: How satisfied the participants were with
an inspection can be evaluated by asking them to fill out a
questionnaire directly after each inspection. For qualitative

Paper B

87

experiments, the participants should be asked to think out
loud while inspecting, to give the experimenters a better
understanding of how the participants think and experience the
system. Think out loud should not be used during quantitative
experiments, as it might affect the results.

4) Situation Awareness: How well the secondary task is
performed can be used as an indicator or an implicit measure
[18] of situation awareness. The more the participants are
aware of the robot’s surroundings, the more likely is it that
objects will be noticed. Similarly to satisfaction, the subjective
situation awareness can be found based on questionnaires and
from observing participants that thinks out loud [20].

VI. CONCLUSION

We have built a lab for evaluating remote inspection, which
consists of a prototype inspection robot moving on a rail in
an environment that represents an industrial system. The lab
can be inspected either remotely using the robot or manually,
which makes it possible to compare these two types of
inspection directly.

In this article, we argue that the usability of a telerobot
is equally important as its capabilities for use in remote in-
spection. We have therefore defined three variants of usability
tests that evaluate different aspects of the lab and the remote
inspection concept. The intention of pilot experiments is to
evaluate the lab and the experimental procedure, but they
are not expected to give any conclusive results. Qualitative
experiments can provide valuable opinions about the system
and ideas for improvement, while quantitative experiments of
remote inspection can test whether it is equally effective as
manual inspection.

Offshore wind energy is expected to be an important source
of energy in the future. It is, however, known that operation
and maintenance will be a challenge, due to the remote loca-
tion of offshore wind turbines. Our ongoing experiments will
indicate whether remote inspection is as effective as manual
inspection and therefore a viable alternative. The results also
give directions for future field studies of inside actual wind
turbines, and the evaluation of the potential for cost savings
with remote inspection.

ACKNOWLEDGMENT

This work is performed in cooperation and with funding
from Norwegian Research Centre for Offshore Wind Technol-
ogy (NOWITECH). The authors will like to thank the master
students that have been involved in the research, especially
Viktor Fidje and Tor Karlsen, for their work with the early
prototypes of our robot. Norsk Automatisering AS should also
be thanked, for their financing of the early prototypes.

REFERENCES

[1] EWEA, “Wind in our Sails,” Tech. Rep., 2011.
[2] A. Henderson, “Offshore Wind Energy Ready to Power a Sustainable

Europe,” Concerted Action on Offshore Wind Energy in Europe, Tech.
Rep. December, 2001.

[3] E. Wiggelinkhuizen, L. Rademakers, T. Verbruggen, S. Watson, J. Xiang,
G. Giebel, E. Norton, M. Tipluica, A. Christensen, and E. Becker,
“CONMOW Final Report,” Energy research Centre of the Netherlands,
Tech. Rep., 2007.

[4] J. Ribrant and L. Bertling, “Survey of failures in wind power systems
with focus on Swedish wind power plants during 19972005,” Energy
Conversion, IEEE Transactions on, vol. 22, no. 1, pp. 167–173, Mar.
2007.

[5] G. Giebel, A. Juhl, K. Hansen, J. Giebhardt, T. Pahlke, H. Waldl,
M. Rebbeck, O. Brady, R. Ruffle, M. Donovan, and Others,
“CleverFarm-A SuperSCADA system for wind farms,” RisøNational
Laboratory, Tech. Rep. August, 2004.

[6] B. Luk, K. Liu, A. Collie, D. Cooke, and S. Chen, “Tele-operated climb-
ing and mobile service robots for remote inspection and maintenance in
nuclear industry,” Industrial Robot: An International Journal, vol. 33,
no. 3, pp. 194–204, 2006.

[7] W. Fischer, G. Caprari, R. Siegwart, I. Thommen, W. Zesch, and
R. Moser, “Foldable magnetic wheeled climbing robot for the inspection
of gas turbines and similar environments with very narrow access holes,”
Industrial Robot: An International Journal, vol. 37, no. 3, pp. 244–249,
2010.

[8] F. Tâche, W. Fischer, G. Caprari, R. Siegwart, R. Moser, and F. Mon-
dada, “Magnebike: A magnetic wheeled robot with high mobility
for inspecting complex-shaped structures,” Journal of Field Robotics,
vol. 26, no. 5, pp. 453–476, 2009.

[9] N. Elkmann and T. Felsch, “Robot for rotor blade inspection,” Applied
Robotics for the Power Industry (CARPI), 2010 1st International Con-
ference on, 2010.

[10] Ø. Netland and A. Skavhaug, “Extending Condition Monitoring of
Offshore Wind Farms with Remote Inspection,” in 24th International
Congress on Condition Monitoring and Diagnostics Engineering Man-
agement, 2011.

[11] J. Preece, Y. Rogers, and H. Sharp, Interaction design: Beyond human-
computer interaction, 3rd ed. John Wiley & Sons, 2011.

[12] J. Dumas and J. Fox, “Usability Testing: Current Practice and Future
Directions,” Human-Computer Interaction: Development Process, p.
231, 2009.

[13] B. Keyes, M. Micire, J. Drury, and H. Yanco, “Improving human-robot
interaction through interface evolution,” in Human-Robot Interaction,
2010, no. February, pp. 183–202.

[14] D. Few, C. Roman, D. Bruemmer, and W. Smart, “What Does it Do?:
HRI Studies with the General Public,” in Robot and Human interactive
Communication, 2007. The 16th IEEE International Symposium on.
IEEE, 2007, pp. 744–749.

[15] C. Nielsen, D. Gertman, and D. Bruemmer, “Evaluating robot technolo-
gies as tools to explore radiological and other hazardous environments,”
Response, and Robotics, 2008.

[16] ISO, “ISO 9241-11: Ergonomic Requirements for Office Work with
Visual Display Terminals (VDTs): Part 11: Guidance on Usability,”
Tech. Rep. November, 1998.

[17] M. Endsley, “Design and evaluation for situation awareness enhance-
ment,” in Human Factors and Ergonomics Society Annual Meeting
Proceedings, vol. 32, no. 2. Human Factors and Ergonomics Society,
1988, pp. 97–101.

[18] H. Yanco and J. Drury, “Where am I? Acquiring situation awareness
using a remote robot platform,” in Systems, Man and Cybernetics, 2004
IEEE International Conference on, vol. 3. IEEE, 2004, pp. 2835–2840.

[19] D. Bruemmer, R. Boring, D. Few, J. Marble, and M. Walton, “I call
shotgun!: an evaluation of mixed-initiative control for novice users of a
search and rescue robot,” in Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol. 3. IEEE, 2003, pp. 2847–2852.

[20] J. Drury, B. Keyes, and H. Yanco, “Lassoing hri: analyzing situation
awareness in map-centric and video-centric interfaces,” in Proceedings
of the ACM/IEEE international conference on Human-robot interaction.
ACM, 2007, pp. 279–286.

Paper B

88

Paper C

Paper C Two Pilot Experiments on the Feasibility of
Telerobotic Inspection of Offshore Wind Turbines

Published in the Conference Proceedings of the 2012 Mediterranean Conference on Embed-
ded Computing (MECO 2013) in Budva, Montenegro, June 2013.

89

Two Pilot Experiments on the Feasibility of
Telerobotic Inspection of Offshore Wind Turbines

Øyvind Netland
Department of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

Email: oyvind.netland@itk.ntnu.no

Amund Skavhaug
Department of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

Email: amund.skavhaug@itk.ntnu.no

Abstract—With cyber-physical systems, it is not necessary to
be physically present at a location to perform work there. Inspec-
tion of offshore wind farms is a task that would be beneficial to do
remotely, due to the time and high cost required for accessing the
turbines for manned inspections. Such remote inspections must be
equally effective at finding errors in the turbines, since errors that
aren’t found can cause expensive failures. This paper describes
a remote inspection robot prototype, and how it was used to
compare participants’ ability to identify errors using remote and
manned inspections in two experiments. The results demonstrated
that errors with both known and unknown symptoms were
successfully identified using remote inspections, although not as
effectively as manned. This is considered promising for remote
inspections, and what we have learned in these experiments
is used in the planning of a larger experiment, and in the
development of an improved prototype.

Keywords—Robotic inspection, Human-robot interaction, Wind
energy, Cyber-physical systems

I. INTRODUCTION

There are many challenges for installing and operating
wind turbines in offshore areas, causing problems for the
ambitious plans for offshore wind. Especially operation and
maintenance is difficult, as access is expensive and unpre-
dictable. There are limited operational data available from
offshore wind turbines, but it has been estimated that between
25% and 30% of the total energy cost of offshore wind energy
will be from operation and maintenance (O&M), compared to
only 10% to 15% on land [1].

Operation of wind turbines on land typically relies on
information from manned inspections for planning mainte-
nance. This is possible because of the relatively easy and
inexpensive access, while frequent manned inspections of off-
shore wind turbines would be prohibitively expensive. Offshore
wind turbines are located in areas with high average wind
speeds for maximum energy production. Since the turbines
are inaccessible when the wind speeds and wave heights
exceeds a certain threshold, there can often be long periods
where manned inspections, and maintenance operations, are
impossible to be performed.

In this paper we investigate whether remote inspections
with a cyber-physical system is a feasible alternative to manned
inspections. A remotely controlled robot, or telerobot, can be
equipped with sensors for inspecting the equipment inside the
turbine. The use of robotics for inspections has typically been

to bring an expensive robot to the site and have it access an
area that are impossible or dangerous for humans to access,
e.g. inside generators [2] and for examining the blades of wind
turbines [3].

The main motivation for using remote inspection for off-
shore wind turbines is to reduce the need to visit the turbine,
thus it would be counterproductive to bring the robot to and
between turbines. One or more robots should be permanently
installed inside the nacelle of each wind turbine. This is the
room where all the equipment used for electricity production
and auxiliary systems are located, thus most failures that can
be detected during inspections originate from here. Since each
turbine requires its own robot, the cost of the robot must be low
for it to be economically viable for the low margin wind energy
industry. The robot must also be able to operate unattended for
long periods, so it should be highly reliable.

Before robotics can be introduced on an offshore wind farm
or similar, the concept should be evaluated in a laboratory
environment. Two experiments have been performed with a
remote inspection robot prototype as the first part of such an
evaluation. The purpose of these was to determine whether
remote inspection is feasible as an alternative to manned.

II. EQUIPMENT

A. The Robot Prototype

A robot system that is permanently installed in a wind
turbine must be low cost and highly reliable, thus we want
to build it as simple as possible. A prototype of such a
robot for laboratory testing has been designed and built at
our department (figure 1). It moves on a rail, because we
consider this advantageous when doing inspection tasks in an
enclosed area, like a wind turbine nacelle, which are packed
with equipment. It is a simple way to get the robot up from the
floor, and closer to the equipment that is being inspected. A
freely moving robot would need to climb to achieve the same,
which increases the cost and complexity, while the reliability
will be reduced. Because the robot grips to the rail, similarly
as a roller coaster, it can’t fall off the rail and cause damage
to itself or nearby equipment. This is considered an important
safety feature. The rail also makes it easy to know the robot’s
position and the robot can be powered through the rail, both
simplifying the robot and reduce its cost.

The prototype is equipped with a 1080p USB camera from
Creative, on a pan and tilt mechanism. It faces forward by

Paper C

91

Fig. 1. The robot prototype (without camera attached).

default, and can turn approximately 90 degrees to each side as
well as up and down. Since this is the only sensor available
on the prototype, the evaluation will be limited to visual
inspection. Other sensors will be added in future versions
of the robot, including thermographic camera, microphone,
temperature and vibration sensors. Especially theromigraphic
cameras are expected to be useful for inspections of actual
wind turbines, as it is a common tool during manned inspec-
tions.

The robot is controlled by a Beaglebone development
card, with an ARM processor. It uses an Angstrom Linux
distribution, which is intended for embedded applications.
With many GPIO and PWM pins, the Beaglebone can connect
to the motor encoder, the motor driver and the servo motors
controlling the pan and tilt, with only a few additional passive
electronic components. The control system is implemented in
C, and communicates with a client using UDP. The camera
video is streamed to the client using a small open source
program called mjpg-streamer.

The robot is controlled from a desktop computer using a
keyboard, mouse or a gamepad. The gamepad is considered
the best control interface, and was used in the experiments.
The user interface is a Java application running on a 24-inch
monitor with a 1920x1200 resolution. As seen in figure 2, the
interface is a typical telerobot control interface, with a large
video display and a control panel on the side. Since it can be
difficult for the user to be aware of the direction the camera
faces, this was indicated on the screen as green lines overlaid
on the video stream [4].

An inspection robot would be used by personnel with
experience from inspections, who will not necessarily have
expertise in controlling robots. Thus, it is important that the
robot is easy to use and suitable for doing inspections, i.e. high
usability [5]. One of the goals of the experiments is to improve
the usability of the robot and the control interface through user
centered design [6].

B. The Laboratory

To evaluate inspections, there must be something to inspect.
For this purpose, we have created a laboratory environment
[7], shown in figure 3. It is intended to be a mock-up of
visually similar equipment as one might find in an industrial
system that can be observed during inspections. However, it

is not considered a replication of a wind turbine. Around
this equipment, a rail for the remote inspection prototype is
installed. It consists of an upper part, lower part and a transition
between these. Only the larger upper part is used during the
experiments.

Fig. 3. The laboratory environment

The purpose of inspections is usually to identify wear, dam-
age and other problems before they cause more serious failures.
We divide these problems into two groups; errors that can be
identified by recognizing known symptoms or patterns, and
errors that have unexpected symptoms or symptoms unknown
to the inspector.

To evaluate the participant’s ability to find errors with
known symptoms, a number of paper clips were positioned in
the laboratory before each of the inspections. Paper clips were
used since they are easily recognizable, but small enough to be
hard to find. They are also easy to attach to most objects. The
number of paper clips that were found during an inspection
was used as a measure for the effectiveness for finding errors
with known symptoms.

Evaluation of the ability to find errors with unknown
symptoms is more complicated. We have defined eight error
makers that represent wear, damage or other errors in the
equipment, based on information from actual inspection pro-
cedures and interviews with maintenance personnel. Each of
these was unique, as finding one should not give an advantage
when looking for the others. The markers were designed to
be recognizable as error conditions for the untrained partici-
pants in our experiments, but were not intended to represent
authentic errors. Even though actual errors often would be
more subtle and difficult to identify, we consider untrained
participants’ ability to identify our error markers to be a
reasonable approximation to trained inspectors’ ability to find
actual errors. Thus the number of error markers that were
found was used as a measure of the effectiveness for finding
errors with unknown symptoms.

Two groups (A and B) of errors were created, with four
paper clip locations and four error markers in each group. They
were divided with the intention that the two groups should
have various types of errors at various locations, but that the
combined difficulty of each group should be as similar as
possible.

Paper C

92

Fig. 2. The user interface

III. METHODS

A. First Experiment

There were four participants in the experiment, three PhD-
students and one post.doc. recruited from the Department of
Engineering Cybernetics were the experiment took place. None
of the participants have been involved in the development
of the robot and the laboratory, or used the robot before.
The participants were first given 2 minutes to look and
familiarize themselves with the equipment without any visible
error markers. Personnel doing inspections is expected to know
the original condition of the equipment. This was performed
without using the robot.

Before the inspections, the participants were told that they
had two tasks. The primary task was to look for signs of wear,
damage or other conditions that would require maintenance.
The secondary task was to look for paper clips that were hidden
in the laboratory. Each participants performed two inspections,
one manned and one remote. For manned inspections the par-
ticipants could move freely in the room with the equipment to
look for error markers and paper clips. With remote inspections
the same task was performed by controlling the robot from an
adjoining room. Both inspections lasted four minutes.

For each inspection the paper clips and error markers from
one of the two groups were shown. Two participants had group
A during their remote inspection while the other two had that
group during their manned inspections. The participants did
not know how many items they were supposed to find. Two
of the participants performed manned inspection first, and the
other did remote first, so the learning effect would skew the
results as little as possible.

If there was a technical problem with the robot during
remote inspections, the system would be restarted and the
inspection continued with an additional 10 second time to
compensate for the loss of concentration.

After both inspections were performed, the participants
were given the opportunity to comment on the experience and
suggest improvements in a short informal interview.

B. Second Experiment

The second experiment was performed with four new
participants, three master students and one PhD student. As
in the first experiment, all were from the department were the
experiment took place, but none of them had been involved in
the development of the robot and the laboratory, or used the
robot before. This experiment was performed as the first one,
except:

• Before inspecting, each participant were given 2 min-
utes to look at the equipment both with and without
the robot, instead of just without the robot.

• Only the primary task of searching for error markers
was given to the participants, the secondary task of
finding paper-clips was not used.

IV. RESULTS

The results, sorted for remote and manned inspections, are
shown in figure 4. There is a significant difference between
the number of found error markers in the first experiment (t =
−2.45, df = 6, p < 0.05), but not for paper clips in the first
experiment (t = −1.94, df = 3.5, p = 0.074) or error markers
in the second (t = −0.655, df = 5.9, p = 0.27).

Paper C

93

Fig. 4. Results comparing remote and manned inspections

V. DISCUSSION

A. Discussion of the Experiments

Due to the low number of participants, the results can only
be considered preliminary and not conclusive. But there is a
trend, especially in the first experiment that remote inspection
with our early prototype was less effective than manned. The
participants of the first experiment complained that they would
have performed better if they were allowed to test the robot
before starting the inspection. It was observed that they wasted
time in the start of the inspections to learn how to control the
robot. Some of the reason for the low effectiveness of remote
inspection in the first experiment can be attributed to this.

When the participants were able to test the robot before-
hand, there was a smaller difference in the number or error
markers. This is also realistic, as the operator of such a system
would have, at least, basic training in its use.

The results demonstrate that the error markers were of
suitable difficulty. All markers were identified by at least one
participant, while none were found by all. The comments by
the participants, both during and after the inspections, indicated
that the error markers represented unknown symptoms the par-
ticipants did not expect. While when the markers were noticed,
the participants did understand that they were indications of
errors. Thus we consider them to be suitable replacements for
real errors in this application. Real errors might be more subtle
in their nature and more difficult to identify, but the personnel
doing real inspections would also be more experienced than
the participants in these experiments.

The task of looking for paper-clips where removed from
the second experiment because it was observed that some
participants prioritized finding paper clips and ignored the
errors with unknown symptoms. A likely reason for this was
that the participants found the task of looking for unknown
symptoms frustrating, and it was easier to focus on the more
clearly defined paper clip task. In the second experiment, it was
observed that when getting frustrated, the participants tended
to give up. This is not the effect we intended to accomplish by
removing the paper-clips, thus we advise keeping the paper-
clips in future experiments. If nothing else, the paper-clip task
keeps the participants from giving up.

B. Usability Issues

Based on the results from these experiments and comments
from the participants, we have identified the following usability
issues in our prototype:

• The camera could only be turned approximately 180
degrees, which limited its use.

• The robot movement are controlled by moving the
left joystick forward or backward. When the camera
looked to the side, this forward and backward move-
ment of the joystick would create a sideways motion
from the user’s perspective, which was reported to be
confusing.

• The map and controls on the side of the user interface
use a large portion of the screen size, which instead
could be used to show a larger video display.

VI. CONCLUSIONS

Inspection of offshore wind turbines performed remotely
with a cyber-physical system can be less expensive and more
predictable than traditional manned inspections. There is a
large potential economic benefit of this, especially because
of the high cost of transportation offshore. The experiment
presented in this paper is the first of a series of planned
experiments for determining how effective remote inspection,
using an inexpensive telerobot, can be compared to manned
inspections.

The laboratory used for the two experiments is not a
realistic representation of an offshore wind turbine, but the
inspection task given to the participants is considered to be
an adequately realistic inspection task. Although the results
show that remote inspection is less effective than manned
inspections, we consider the results promising for inexpensive
remote inspection of offshore wind turbines. The comments
from the participants will inspire improvements in the proto-
type that will be evaluated again in a new and larger experiment
currently being designed. The larger number of participants
will give results of higher precision, so the difference in
effectiveness between the methods, if any, can be determined
with more confidence.

REFERENCES

[1] E. Wiggelinkhuizen, L. Rademakers, T. Verbruggen, S. Watson, J. Xiang,
G. Giebel, E. Norton, M. Tipluica, A. Christensen, and E. Becker,
“CONMOW Final Report,” Energy research Centre of the Netherlands,
Tech. Rep., 2007.

[2] G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Sieg-
wart, P. Schoeneich, F. Rochat, F. Mondada, and R. Moser, “Highly
compact robots for inspection of power plants,” in Applied Robotics
for the Power Industry (CARPI), 2010 1st International Conference on.
IEEE, 2010.

[3] N. Elkmann and T. Felsch, “Robot for rotor blade inspection,” Applied
Robotics for the Power Industry (CARPI), 2010 1st International Con-
ference on, 2010.

[4] M. Baker, R. Casey, B. Keyes, and H. A. Yanco, “Improved interfaces
for human-robot interaction in urban search and rescue,” in Systems, Man
and Cybernetics, 2004 IEEE International Conference on, vol. 3, 2004,
pp. 0–5.

[5] ISO, “ISO 9241-11: Ergonomic Requirements for Office Work with
Visual Display Terminals (VDTs): Part 11: Guidance on Usability,” Tech.
Rep. November, 1998.

[6] J. A. Adams, “Critical considerations for human-robot interface devel-
opment,” in Proceedings of 2002 AAAI Fall Symposium, 2002, pp. 1–8.

[7] Ø. Netland and A. Skavhaug, “Prototyping and Evaluation of a Telerobot
for Remote Inspection of Offshore Wind Farms,” in Applied Robotics
for the Power Industry (CARPI), 2012 2nd International Conference on,
2012.

Paper C

94

Paper D

Paper D Software Module Real-Time Target: Improving
Development of Embedded Control System by
Including Simulink Generated Code into Existing
Code

Published in the Conference Proceedings of the 39th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2013) at Santander, Spain, September
2013.

95

Software Module Real-Time Target: Improving Development of Embedded Control
System by Including Simulink Generated Code into Existing Code

Øyvind Netland, Amund Skavhaug
Department of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

oyvind.netland@itk.ntnu.no

Abstract—The method presented in this paper, Software
module real-time target (SMRT), aim to make code generated
by Simulink Coder easy to include into a real-time embedded
code project. It is intended to give developers experienced in
embedded programming better control and flexibility when
using Simulink Coder, without having to understand the code
generation process. A general methodology, SMRT, has been
defined, and a library for using SMRT has been implemented
for Xenomai Linux. The library can be modified for other op-
erating systems. This solution has been tested on a Beaglebone
development board and used in the development of a robot
prototype.

Keywords-Embedded Programming; Simulink Coder; Rapid
Prototyping; Real-Time; Xenomai; Linux

I. INTRODUCTION

MathWorks Simulink is a de facto standard for modeling
and simulating control systems. Simulink Coder [1] (for-
merly known as Real-Time Workshop) generates C and C++
code, which can be used to implement a controller based
on the Simulink model. Some changes are typically needed
in the code depending on the embedded target computer
platform and the required functionality of the control system.
Several solutions have been developed to make it easy for
control engineers to use Simulink Coder without expertise
in embedded programming [2], [3], [4]. In practice it has,
however, been shown that custom code for drivers, hardware
interfaces and complex functions often are needed [5].

In this paper we describe a method called Software
Module Real-time Target (SMRT). It uses the generated code
as a module within a larger software project, instead of
attaching bits of custom code to the generated code. This is
shown in figure 1. The intention was not to make a ready to
use solution for control engineers that does not require any
embedded programming, but instead to assume that some
custom programming will be necessary and tailor a solution
for this. The intended users are embedded programmers that
can specify platform specific code and custom functionality
in languages and tools they are familiar with. There is no
need to have specific knowledge of how Simulink Coder
works.

Typical Simulink Coder

Custom
Code Module with

generated code

Generated code Software project
with custom code

SMRT

Custom
Code

Custom
Code

Figure 1. The relationship between generated and custom code in SMRT
compared to a typical use of Simulink Coder.

II. SOFTWARE MODULE REAL-TIME TARGET

A. System Target File

A system target file defines how Simulink Coder generates
and builds code. Generic Real-time Target (GRT) is included
in the Simulink Coder toolbox, and generates generic C-code
that will run the simulation steps of the Simulink model.
With some modifications this code can run on an embedded
system, operate in real-time and interact with its environment
with I/O signals. Alternatives to GRT include embedded
real-time target (ERT), which provides more control over
the code generation process and is intended for resource
constrained embedded hardware. From our experience with
GRT for embedded Linux [6] we found that the code
generated by GRT was suitable for the SMRT concept. Thus
it was preferred over ERT, which require the additional
Embedded Coder toolbox, at an additional cost.

In its current form, SMRT use the GRT system target file
for code generation. A possible future change would be to
define a system target file specifically for SMRT, possibly
making it easier to use.

B. Integration with Eclipse Project

With Eclipse, we have convenient access to all (generated
and written) code and build instructions in the same IDE.
The generated source files and necessary files from the
Matlab installation path were easily accessible as short-
cuts in the Eclipse project. A makefile based project is also
possible, especially for Linux hosts where this is the norm.
Both these options, together with SMRT, have the advantage
that configuration options are stored within the project files

Paper D

97

Table I
WHERE CONFIGURATIONS ARE STORED IN GRT AND SMRT.

Configuration GRT SMRT

Options for Makefile Simulink config NA

Build instructions Makefile template Eclipse project

Build options for ex-
ternal code

Makefile template NA

Cross-compilation Makefile template Eclipse project

Compiler and linker
flags

Makefile template Eclipse project

Periodic execution main() file SMRT Library

Implementation of
multitasking

main() file SMRT Library

Calls to custom code main() file and
S-functions

Eclipse project

I/O and hardware in-
terfacing

S-functions and
external code

Eclipse project

Aperiodic events External code Eclipse project

or the SMRT library as shown in table I. If the GRT
generated code was used directly, the same configuration
options would be found in different locations throughout the
system, making it more difficult to use without experience
with Simulink Coder.

C. SMRT Library for Xenomai

GRT provides a main C-file, which creates a program that
initializes and runs the code generated from the Simulink
model. As this file is unchanged when code is generated,
the user can modify it to enable custom functionality. The
SMRT library replaces this main file by providing a library
of functions for controlling the execution of the generated
code. This allows the generated code to be a part of a larger
program.

We have implemented an SMRT library for Xenomai
Linux, and tested it on a Beaglebone ARM development
board. The library provides one function for initializing the
Simulink model and another that will wait as long as the
model is executing, possibly indefinitely.

A Simulink model consists of blocks, where each does a
specific operation. Most blocks have one sample time, which
defines the time between each execution of the block, i.e. its
period. Some blocks can also have several sample times, but
this is less common. When initializing the Simulink model,
the SMRT library starts one periodic thread for each of its
sample times. The priorities of these threads are specified
at compile time depending on their periods, shorter periods
means higher priorities. This is according to the principle of
rate monotonic scheduling [7], [8].

D. S-functions

S-functions are programmable Simulink blocks. They are
useful for implementing custom functionality, communica-
tion with I/O etc. The most flexible and efficient S-functions

Table II
EXECUTION TIME AND PERIODS OF TASKS USED IN SCHEDULING TEST.

Task Period Execution time Priority

A 40ms 10ms 94
B 50ms 12ms 93
C 70ms 20ms 92

for code generation are called fully inlined S-functions,
and all S-functions mentioned in this article are of this
type. When generating code, each block creates code that
implements its functionality. For fully inlined S-functions
this is defined with the TLC programming language, which
is specific to Matlab and Simulink.

We have developed three S-functions for SMRT. These
were implemented with TLC, but knowledge of TLC is
not needed to use them. This is considered an advantage,
as most developers will not know TLC. The first of the
developed S-functions is an alternative to the standard rate
transition block developed for Xenomai. It uses a Xenomai
mutex to ensure that only one thread can access the resource
stored by the block at the same time. It also implements
priority inheritance [9] to prevent priority inversion. This
block can be modified to use mutex functions of other real-
time systems if needed.

Two other S-functions were created for communication
between the Simulink model and the rest of the program.
These are called input and output S-functions. The input
S-function lets the user specify a function defined outside
Simulink and uses the value this function returns as a signal
in the Simulink model. The output S-function lets the user
specify a function that takes a Simulink signal as one of its
parameters. Exactly what these functions will do is entirely
up to the programmer. In figure 2 it is shown how the
generated code can interact with the written code and I/O.
Different parts of the program can be implemented entirely
in Simulink, as written code or a combination of these.

III. TESTING OF SMRT ON XENOMAI LINUX

We have performed three tests with our SMRT implemen-
tation for Xenomai on a Beaglebone development board.

A. Task Scheduling Test

The SMRT library has been implemented to execute its
multiple threads according to the rate monotonic principle.
We wanted to test that it behaved as expected, and compare it
with other uses of generated code. Three S-functions were
created that performed busy-wait loops measured to take
10ms, 12ms and 20ms of execution time.

In a small test, each of these S-functions was executed
periodically, as defined in table III. Their combined uti-
lization is 77.6% ≤ m(2

1
m − 1) for m = 3 [7], meaning

that an ideal rate monotonic scheduling would guarantee no
deadline misses.

Paper D

98

Generated Code
Inputs
to the
system

Written Code

Set
functions

Get
functions

Get values
from inputs

Get values from
written code

Outputs
from the
system

Input
S-funcs

Output
S-funcs

Base Task

Tasks in written code

Set values to
written code

Input
S-funcs

Output
S-funcs

Sub Tasks

Get values
from the

inputs

Set values to
the outputs

Set values
to the

outputs

Figure 2. Graphical representation of communication between generated and written code in SMRT.

Table III
RESULTS FROM SIMULATIONS RUNNING FOR 3 HOURS.

Results
GRT + SMRT + SMRT +

Xenomai Xenomai Linux

A
Average response time 10.3ms 10.0ms 10.3ms

Max response time 10.4ms 10.1ms 198.5ms

Ratio of deadlines missed 0.000% 0.000% 0.003%

B
Average response time 17.7ms 17.0ms 17.2ms

Max response time 22.9ms 22.2ms 230.9ms

Ratio of deadlines missed 0.000% 0.000% 0.004%

C
Average response time 44.7ms 41.7ms 41.0ms

Max response time 66.5ms 64.0ms 334.6ms

Ratio of deadlines missed 0.000% 0.000% 0.007%

The Simulink model was run with three different config-
urations. The first used GRT modified to run each Simulink
task as a Xenomai real-time thread. The second was SMRT
using Xenomai threads, while the last was SMRT using
normal Linux threads. The response time was defined as
the time from when a period was supposed to start, until its
execution was completed. This was measured over a period
of three hours, and the results are shown in table III.

Using response time analysis [8] on the set of tasks, we
find that the theoretical worst case response time is 10ms for
task A, 22ms for task B and 64ms for task C. The worst
case results when using Xenomai (both GRT and SMRT)
were, in this test, indistinguishable from these theoretical
values. This is as expected and demonstrates the hard real-
time capabilities of Xenomai. Whether SMRT or GRT was
used had no observable effect on the scheduling. Even
though our test suggest that SMRT execution steps have a
predictable worst case performance, it will not be predictable
if its Simulink model contains blocks with unpredictable
execution times.

As expected, normal Linux threads result in significantly
higher worst case execution times. There were also multiple
deadline misses during the 3 hour test. This shows that
when SMRT is used for applications that have hard real-
time requirements, normal Linux is not suitable.

Figure 3. Simulink model used for speed control of a DC motor (Colors
indicates sample times).

B. PI Speed Control of DC motor

SMRT was used to control the speed of a DC motor, with
the Simulink model shown in figure 3. This demonstrated its
applicability for a control task and validated the S-functions
that have been created.

A rotary encoder was handled by interrupt routines in
the code outside of Simulink. The calculated position was
stored in a variable accessed by an input S-function. The
motor was controlled from the Simulink model with an
output S-function that used a manually written motor driver.
This motor driver and other I/O operations used Xenomai
real-time drivers (RTDM) that had been developed for the
Beaglebone board, not the normal Linux drivers. This was
to ensure low worst case access times to I/O.

The Xenomai mutex S-function was tested by sampling
the encoder position with a slower sample time than the PI
controller runs at. This is indicated by the different colors of
the blocks in figure 3. Due to the low resolution of the rotary
encoder, a slow sample rate beneficial to avoid a ”noisy”
speed signal. It will however reduce the performance of the
PI controller, but that is not the main concern of this test.

The actual speed of the motor, when following a square
signal reference is shown in figure 4. The results were
as expected, when considering the low resolution of the
encoder. The behavior of the S-functions was as intended.

C. SMRT in Development of an Embedded System

The DC motor controller was used as a part of a larger
project, the prototype of an inspection robot (figure 5)

Paper D

99

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

sp
ee

d

Speed
Speed Reference

Figure 4. Plot of the speed and its reference.

Figure 5. Robot prototype using SMRT

intended for use in offshore wind turbines [10]. Algorithms
for controlling the movement and camera motion of the
robot were implemented in Simulink. The generated code
was integrated into a program that took care of the network
communication and other background tasks.

External mode in Simulink creates a connection between
Simulink and the generated code running on the embedded
target. SMRT allows for this, which makes it possible to
observe the signals in a running model from Simulink. Some
parameters in the model can also be changed without having
to restart the program. The use of external mode shortened
the time needed for both implementing the control system
and tuning its parameters. The simple interface between
written and generated code made it easy to combine these
two.

IV. CONCLUSION

A method for easing the inclusion of Simulink generated
code into a project of manually written code has been
presented. The method is called software module real-
time target (SMRT), since the generated code is used as
a software module available for other parts of the project to
use. The main advantage of this method is that both the
configuration and the written code can be specified with
tools an embedded developer is comfortable with, i.e. C-
code, Eclipse settings and Makefiles. S-functions have been
developed to simplify the interface between generated code

and the rest of the program, thus there is no need to develop
S-functions for this or learn the TLC-language.

SMRT for Xenomai Linux has been tested on a Beagle-
bone development board. A test of the scheduling showed
that it was seemingly identical with the theoretical rate
monotonic scheduling and as good as other uses of Simulink
generated code. There was not found any undesirable behav-
ior for hard real-time. In addition, SMRT has successfully
been used in the development of an embedded control
system, and the created S-functions behaved as intended.

The future plans for SMRT is to further test and document
the solution for Xenomai running on Beaglebone, including
real-time I/O drivers and interfaces. This is available online
[11] together with a guide for porting SMRT to other
hardware and software platforms.

REFERENCES

[1] Simulink Coder User Guide, 2013th ed. MathWorks, 2012.

[2] F. Teng, “Real-time control using Matlab Simulink,” in
Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, vol. 4, 2000, pp. 2697–2702.

[3] W. Gong, W. Gan, and Y. Chong, “Rapid prototyping system
for teaching real-time digital signal processing,” Education,
IEEE Transactions on, vol. 43, no. 1, pp. 19–24, 2000.

[4] G. Quaranta and P. Mantegazza, “Using MATLAB-Simulink
RTW to Build Real Time Control Applications in User Space
with RTAILXRT,” in Realtime Linux Workshop, 2001.

[5] A. Skavhaug, T. Lundheim, B. r. Vik, and T. I. Fossen, “A
decade of rapid software development for control system
experiments: Lessons learned,” in Proceedings of the 15th
IFAC World Congress, no. 1999, 2002.

[6] Ø. Netland and A. Skavhaug, “Adaption of MathWorks Real-
Time Workshop for an Unsupported Embedded Platform,”
in Software Engineering and Advanced Applications (SEAA),
2010 36th EUROMICRO Conference on. IEEE, 2010, pp.
425–430.

[7] C. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the
ACM (JACM), no. 1, pp. 46–61, 1973.

[8] A. Burns and A. Wellings, Real-time systems and pro-
gramming languages: Ada 95, real-time Java, and real-time
POSIX. Addison Wesley, 2001.

[9] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization,” Com-
puters, IEEE Transactions on, vol. 39, no. 9, pp. 1175–1185,
1990.

[10] Ø. Netland and A. Skavhaug, “Two Pilot Experiments on the
Feasibility of Telerobotic Inspection of Offshore Wind Tur-
bines,” in Proceedings of he 2nd Mediterranean Conference
on Embedded Computing, 2013.

[11] “Software Module Real-Time Target Project Page.” [Online].
Available: http://www.itk.ntnu.no/smrt/index.php

Paper D

100

Paper E

Paper E An Experiment on the Effectiveness of Remote,
Robotic Inspection Compared to Manned

Published in the Conference Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics (SMC 2013) at Manchester, United Kingdom, October 2013.

101

An Experiment on the Effectiveness of Remote,
Robotic Inspection Compared to Manned

Øyvind Netland
Department of Engineering Cybernetics

Norwegian University of
Science and Technoogy

Trondheim, Norway
Email: oyvind.netland@itk.ntnu.no

Gunnar Jenssen
SINTEF Technology and Society

Trondheim, Norway

Hilde Marie Schade and Amund Skavhaug
Department of Engineering Cybernetics

Norwegian University of
Science and Technoogy

Trondheim, Norway

Abstract—This paper evaluates the effectiveness of remote
inspections using a robot in a laboratory experiment. The ex-
periment differs from most human-robot interaction experiments
in its direct comparison of manned and robotic operations. 21
participants each performed three manned inspections and three
inspections with each of the two remote inspection methods;
teleoperated and assisted. The effectiveness was measured based
on the number of errors they were able to identify. Teleoperated
inspections were found to be less effective than manned, although
this difference was not statistical significant. Assisted inspections,
implemented as an interactive simulation prototype representing
a robot with higher autonomy, had similar effectiveness as
manned. Because of the time and high cost required for manned
inspections of offshore wind turbines, remote inspection can
give a large economic benefit. However, this will only be a
viable alternative if the robot system is inexpensive and remote
inspections are as effective for identifying errors as manned
inspections, which the experiment presented here suggests.

Index Terms—Telerobot, Remote Inspection, HRI

I. INTRODUCTION

Inspections are important for the reliability of industrial
installations, and are traditionally performed by maintenance
personnel on site. Alternatively, a remotely controlled robot on
site can perform inspections on behalf of an operator located
elsewhere. Such remote inspections are especially relevant
for sites that are difficult, expensive or dangerous to access.
Offshore wind turbines are large unmanned machined located
at remote locations with harsh weather conditions. There is
a high cost for accessing the turbines, thus regular manned
inspections, traditionally used on onshore turbines, will be
expensive, possibly prohibitively so. High maintenance cost
is one of several obstacles for the current ambitious plans for
offshore wind [1].

Inspection robots are typically expensive devices that are
brought to a site and used to access areas that are impos-
sible or dangerous for humans to access, e.g. the inside of
generators [2], and on the blades of wind turbines [3]. Wind
turbine nacelles are a dangerous work environment (high
voltage/falling), but the main purpose of our robot is to reduce
the need to travel offshore for inspections. To bring a robot
between turbines would be counterproductive. The robot is

instead intended to be a permanent installation inside the
nacelle of the wind turbine that can be controlled remotely.
With one or more robots in each turbine, the cost of each
individual robot must be kept low. The robots must also be
reliable enough to operate unattended for long periods. The
system is intended to be installed in the nacelle of wind
turbines, because the equipment that causes the most failures,
both in frequency and downtime are located there, e.g. most
of the electrical system, control system and the drive train [4].

When a remote inspection system has been installed, inspec-
tions can be performed inexpensively and quickly compared
to manned inspections. More frequent inspections would be
affordable, which could lead to an increased probability of
detecting problems early.

Usability, used in Human-Robot Interaction (HRI), is suit-
able to evaluate how well non-expert robot users are able to use
robots for specific tasks. Operators of remote inspection are
expected to be expert in maintenance, not robotics. Usability is
normally divided into different usability goals; effectiveness,
efficiency, satisfaction [5]. In HRI, situation awareness and
operator workload are also considered to be relevant [6].

Usability tests, were participants do relevant tasks with a
robot, have shown that operators perform better when they
don’t control the robot directly (high level of autonomy) [7],
[8]. Workload is reduced, making it easier to focus on the
main task. How information from the robot is displayed is
equally important, as it is easy to overlook information outside
the main display [9]. If possible, information from different
sources should be fused into the same display, e.g. show a
video display within a 3-dimensional map [10] or overlay the
direction of a pan and tilt camera on a video stream [11].

The purpose of the experiment described in this paper is
to evaluate whether remote inspection can be as effective as
manned for finding errors in a representation of an industrial
system. An inferior inspection method can fail to identify
errors early enough and cause expensive failures, which is not
acceptable. Two variants of remote inspections, with different
levels of autonomy, were compared to manned inspections.
Other experiments with direct comparisons between robot and

978-1-4799-0652-9/13/$31.00 c©2013 IEEE

Paper E

103

Fig. 1. The robot prototype used in the experiment.

manned operations were not found in the HRI literature. Most
experiment compared the usability of different robot systems.

II. EQUIPMENT

A. Mechanical Design

The robot prototype used in the experiment has been de-
signed and built at our department, and is shown in figure 1.
Although the current prototype is not build for reliability, it
moves on a rail, a proven and simple method that makes it
possible to make highly reliable future versions. Movement
on rail is suitable since the robot is intended to be a perma-
nent installation in a known area. It is also appropriate for
our experiments to focus on evaluating the effectiveness of
inspections, not on the technical challenges of moving and
climbing with a freely moving robot. The rail can be used
to supply power, for easy positioning, and ensures that the
robot does not fall and damage itself or other machinery. A
disadvantage of using rails is the additional cost of engineering
and installation of the rail itself, but this is likely less than the
increased cost of a freely moving robot.

B. Robot Equipment

The prototype has a 1080p USB camera from Creative on
a pan and tilt mechanism. For the experiment the camera was
limited to turn approximately 180 degrees in the direction
of the laboratory equipment. A robot operating in a real
wind turbine, or other installations, would probably benefit
from having a camera that can turn 360 degrees, or multiple
cameras [12]. The robot’s position on the rail is measured with
an optical encoder on the cogwheel moving the robot. The
position is corrected by infrared line finders when detecting
pre-determined markers on the rail.

The current prototype is intended for laboratory experi-
ments, thus it is only equipped with sensors needed for these.
Future versions will have thermographic cameras for detection
of hot spots from friction and electrical problems, microphones
for listing to running machinery and other sensors such as
temperature and vibration. The addition of a robotic arm for
maintenance tasks is also possible. The rail creates a stable
platform, which can support heavier equipment than a freely
moving robot.

Fig. 2. Part of the laboratory used in the experiment with a mock-up of a
nacelle and rail for the inspection robot.

C. Control System

The control system for the robot runs on a Beaglebone
development board [13] with an ARM based processor. This
board is inexpensive and only require a few additional elec-
tronic components, thus it is a cost-effective solution. We
used an Ångström Linux distribution, intended for embedded
applications. The software is a combination of code generated
by Mathworks Simulink Coder and manually written code
[14]. TCP/IP is used for robot-client communication, with a
wireless connection between the robot and the network.

D. User Interface

The user interface is a Java application displayed on a 24-
inch monitor with 1920x1200 resolution. The user interface
can be seen in figure 3. We neither wanted to display the video
and map side-by-side, nor to fuse the video into a 3D-map
[10]. Instead we prioritized to maximize the video display [11],
as it is the operators’ primary means for identifying errors. A
simple map was shown, non-intrusively, on top of the video
display (figure 3.a). The camera position is shown as a green
rectangle on top of the video (figure 3.b) [11]. Its position
illustrates the camera position, while the size illustrates the
zoom.

E. The Laboratory

We have built a laboratory [15] (figure 2) designed espe-
cially for these experiments. It is not intended to be a replica
of a wind turbine nacelle, but rather a mock-up of visually
similar equipment. We have defined eight error markers that
represent errors with symptoms unknown to the participants
performing inspections, e.g. wear and damage. One of the
markers is visible in figure 3.c. The markers can easily be
added and removed, giving us full control over the laboratory’s
state. The success rate of finding these is used as a measure of
the effectiveness for finding errors with unknown symptoms.

In addition to the error markers, we defined twenty locations
in the laboratory where we could place paper clips. These
represent errors or patterns that are known to an inspector.
The success rate of finding paper clips is used as a measure
of the effectiveness for finding errors with known symptoms.

Paper E

104

Fig. 3. The actual user interface used for teleoperation of inspection robot, some details are difficult to see due to scale but should not be important. (a:
map indicator, b: green square indicating camera direction, c: burnt plastic part, identified by a participant with a red circle)

External validity [16] refers to whether the results obtained
in a laboratory setting are transferable to the real-world. Our
error markers have been based on information from actual
inspection procedures and interviews with maintenance per-
sonnel. The laboratory has been tested in two pilot experiments
[17], but has not been validated against a real wind turbine.

III. METHODS

A. Participants

21 students participated in the experiment, 4 women and
17 men. All were 4th and 5th year engineering students,
studying electronics or cybernetics at NTNU, the university
where the experiment took place. During recruitment, it was
advertised that eight randomly selected participants would
receive gift cards from an electronic store. As engineering
students they were considered to be more than average profi-
cient with computers and interested in robotics, but none of
the participants had previous experience with the robot used
in the experiment. All the participants self-reported normal
or near normal eyesight with the glasses or lenses they used
during the experiment.

B. Inspection Methods

Three inspection methods were compared in the experiment.
1) Manned Inspection: For manned inspections the partici-

pants were given 3 minutes to inspect the laboratory in person.
They could observe, touch the equipment and move freely
around the laboratory.

2) Teleoperated Remote Inspection: During teleoperated
inspections, the participants controlled the robot directly with
a gamepad controller. The interface was designed to behave
similarly as console games with a first person perspective. The

camera was controlled with one joystick while movement and
camera zoom was controlled with the other.

For teleoperated inspections, the participants were given 4
minutes and 30 seconds to inspect the laboratory. In a real-
world scenario, manned inspections would require significant
additional time for transportation, thus we argue that this is
a fair comparison. We expected teleoperated inspection to be
less effective than manned and have a higher mental workload.

3) Assisted Remote Inspection: This is a feature currently
under development, where the robot moved autonomously
between pre-determined locations based on input from the
user. In the experiment an interactive simultation [18] ws used.
It did not move the robot, but instead showed the user pre-
generated images from the locations the robot would have
moved to. From the users’ perspective the simulation behaved
as the intended future system, except for the inability to
manually adjust the robot location or camera direction.

As for teleoperated inspections, the participants were given
4 minutes and 30 seconds for each inspection. We expected the
assisted inspection to be an improvement to the teleoperated
alternative, with similar effectiveness as manned inspection.

C. Experiment Design

The experiment was conducted over a two week period,
where each participant took part in two sessions.

1) First Session: The first session started by reading a script
for the participants, with a background story and instructions.
They were told that they were working with inspection of wind
turbines, which consisted of two tasks. The most important
was to find errors with unknown symptoms e.g. wear and
damage. The description was kept short on purpose and
no example of such symptoms was given, to prevent the

Paper E

105

participants from understanding exactly what to look for. The
second, and less critical, task was to find paper clips attached
to the equipment, which represented known symptoms. The
participants were told that there would be variable and un-
known (to them) numbers of error markers and paper clips
during each inspection, and that it could be none.

The participants were given 2 minutes with each inspection
method for studying the laboratory without errors or paper
clips before starting the experiment. It is expected that main-
tenance personnel are familiar with both the equipment they
inspect and the inspection methods they use.

The first session consisted of one inspection with each of
the methods, for a total of three inspections. The participants
were divided in three groups, each starting with a different
inspection method. For each inspection one to four paper
clips were placed at randomly selected pre-defined locations
in the laboratory. No error markers were used, as we wanted
to establish errors with unknown symptoms as rare events,
arguably a likely real-world scenario.

2) Second Session: The second session consisted of six
inspections. In each of these, a randomly selected zero to two
error markers was present. The number of paper clips was
as before. During the nine inspections by a participant, each
of the 8 error markers and 20 paper clips was shown once.
The different error markers are not expected to be equally
difficult to find. To balance the measurements, each error
marker was shown the same number of times for each of the
three inspection methods.

3) Procedures for Preventing and Handling Problems:
When preparing the laboratory for an inspection, the error
markers and paper clips from the previous inspection were
removed and the new ones were added. An item that was
accidentally present when it shouldn’t was not registered, in
order to not affect the results. We would not be able to know
if an item was missing, by mistake, from an inspection after
the fact. To prevent this, the presence of all error markers and
paper clips were checked twice before starting an inspection.

If there was a technical problem with the robot, 10 seconds
would be added to the remaining time after restarting.

D. Measurements

Before starting, the participants completed a form with
questions about their experience with computer games.

During remote inspections (teleoperated and assisted) the
participants registered their findings by clicking on the screen,
i.e. with no interaction with the experimenters. For manned
inspections such a solution was not possible, so the partici-
pants had to describe their findings to the experimenters that
registered it manually. All findings were time stamped. Apart
from the registration of findings, there was no interaction with
the participants.

After each inspection the participants filled out a NASA-
TLX [19] questionnaire on a computer. In addition they were
asked to rate how they prioritized looking for the error markers
compared to the paper clips. After the last inspection there was
also a text field for comments.

Fig. 4. Participants’ success rate when using the three methods (error bars
represents standard error).

IV. RESULTS

A. Participants’ Performance

The combined number of error markers each of the partici-
pants found was used to calculate their success rate with each
of the three methods. The same was done for the paper clips.
The average success rates are shown in figure 4. The results
were analyzed with one-way ANOVA, and there were no
significant differences between inspection methods for either
error markers (F (2, 60) = 0.64, p = 0.53) nor paper clips
(F (2, 60) = 1.49, p = 0.23).

When we only consider the first 3 minutes of the inspections
there was a significant difference between the inspection
method for paper clips (F (2, 60) = 7.99, p < 0.05) but not
for error markers (F (2, 60) = 2.33, p = 0.11) A Tukey HSD
post hoc test showed the number of paper clips found with
teleoperated inspections (M = 0.47, SD = 0.19) was signif-
icantly different from both manned (M = 0.69, SD = 0.23)
and assisted (M = 0.67, SD = 0.17).

There were not found any strong correlations between the
participants’ performance with remote inspection and their
experience with computer games.

B. NASA-TLX

The average NASA-TLX results for the three different
inspection methods are shown in figure 5. The results were an-
alyzed with a one-way ANOVA, and there were found signifi-
cant differences between the methods for mental (F (2, 183) =
6.0, p < 0.05), physical (F (2, 183) = 92.57, p < 0.05), tem-
poral (F (2, 183) = 13.6, p < 0.05) and effort (F (2, 183) =
10.43, p < 0.05). There were no significant differences for
performance (F (2, 183) = 0.7, p = 0.5) and frustration
(F (2, 183) = 2.71, p = 0.07). Post hoc comparisons using the
Tukey HSD test indicated the following significant differences:

• The mental workload of teleoperated (M = 40.2, SD =
20.3) was significantly different from both manned (M =
32.0, SD = 16.6) and assisted (M = 28.9, SD = 19).

• The physical workload of manned (M = 45.2, SD =
20.4) was significantly different from both teleoperated
(M = 13.8, SD = 13.4) and assisted (M = 10.3, SD =
12.2).

Paper E

106

Fig. 5. Average NASA-TLX results from the inspections of the three methods
(error bars represents standard error).

Fig. 6. Number of error markers found by the different inspection methods.

• The temporal workload of teleoperated (M =
45.9, SD = 21.8) was significantly different from both
manned (M = 33.3, SD = 17.8) and assisted (M =
25.9, SD = 24.6).

• The effort when using assisted (M = 34.7, SD = 18.8)
was significantly different from both manned (M =
49.5, SD = 15.5) and teleoperated (M = 43.0, SD =
19.8).

C. Error Markers

Figure 6 show how often each of the eight error markers
was found.

D. Participants’ Comments

Assorted comments from the participants are given below:
• Assisted inspection was the preferred method.
• It was challenging to control the robot directly.
• A method for manually adjusting the robot and camera

position would improve the assisted inspection.
• It was difficult to identify the unknown symptoms

V. DISCUSSION

A. Teleoperated Inspections versus Manned

There was a large, but not significant, difference in the num-
ber of errors found with teleoperated and manned inspections.
Combined with the NASA-TLX results and the participants’
comments, it is likely that teleoperated inspection was less
effective than manned. This was expected, as the participants
had to divide their attention between controlling the robot and

the inspection task itself. The high temporal workload and the
large number of findings towards the end of the inspections
suggest that teleoperated inspections also are less efficient.

The robot control system lost power approximately five
times during the experiment, which was resolved according to
the predetermined plan. This is not expected to have influenced
the results.

It is likely that there would be noticeable communication
latency between a robot in an offshore turbine and an oper-
ator on land. This will reduce the already low usability of
teleoperated inspection.

B. Assisted Inspections versus Manned

The results indicated a reduction in physical workload and
effort for assisted inspections, but no difference in the number
of found errors. These two methods are also similarly efficient,
indicated by most findings within the first 3 minutes of the
assisted inspections and low temporal workload (assumed to
be caused by more time available).

Assisted inspection combines the best of teleoperated and
manned inspections. It was shown to be as effective and
efficient as manned inspection, while it can be performed
comfortably, safely, inexpensively and quickly from a control
center on land. In a real-world situation, assisted inspections
would be more efficient than manned, since the time and cost
of transportation is avoided.

Participants’ comments confirmed our expectations that the
relatively few images available in the interactive simulation
was a disadvantage for assisted inspections. A possible im-
provement is to allow the operator to manually adjust the robot
and camera position.

If only considering the error markers that were found
relatively often (1, 2, 6 and 8 in figure 6), only the assisted
inspection was able to find all these. This could indicate that
assisted inspection is the more versatile inspection method.

C. Evaluation of the Experiment

Several factors in the experiment contributed to an increased
risk of type II errors, i.e. failing to detect a real difference, of
the effectiveness for finding errors with unknown symptoms.

• Few error markers divided between multiple inspections.
• The error markers being harder to find than intended.
• Limited number of participants.
The two first contributed to a low number of error markers

found in total, thus each finding had a large influence in the
result and contributed to the high variance. The participants in
this experiment found fewer markers than the participants in a
pilot experiment with the same errors. This is expected to be
due to a shorter description of the unknown symptoms, and
because some participants lost confidence when they didn’t
find errors during their first inspections (when there weren’t
any). Five participants didn’t find any unknown errors during
their nine inspections. Four of these had noticeable declines
in how they reported prioritizing the task of looking for error
markers, indicating that they had given up on finding any.

Paper E

107

To reduce the risk of type II errors in future experiments,
it should be considered using more errors divided on fewer
inspections, although this will, arguably, be less realistic. The
participants should be given a more precise description of
unknown symptoms, but not so descriptive that they are no
longer unknown. A larger number of participants would also,
as always for such experiment, be an advantage.

A limitation in the experiment is that the participants were
naive to the inspection task. However, recruiting 20 experi-
enced inspectors as participants were not feasible. Since the
same task is performed by the same participants using different
methods, we expect the relative effectiveness of these meth-
ods to be similar regardless of the participants’ experience.
However, comments from potential end users of the system
would benefit the development. To address this, we will,
if possible, perform a smaller experiment with maintenance
personnel with a strong focus on qualitative results rather than
quantitative.

D. External Validity

Our test environment has not been compared with an actual
wind turbine, thus the results can only be considered an
indication of how a system for remote inspection would
function in a real scenario. Testing in a real wind turbine
would be expensive, time-consuming and there would be
safety concerns to consider. A controlled experiment where
errors are added and removed on demand would be impossible.
To evaluate and improve the system as much as possible in
a laboratory environment, even an imperfect one, would be
beneficial before undertaking testing in a real-turbine.

Although the error markers are not authentic errors, they
are representative since they are difficult to find, unknown to
the participants, but recognizable as errors when detected.

VI. CONCLUSION

The laboratory experiment presented in this paper has com-
pared two variants of remote inspections with manned inspec-
tion. The participants attempted to identify errors with known
and unknown symptoms with each of the inspection methods.
We have argued that the experiment is a valid comparison
between the inspection methods, even if the error markers we
used were not necessarily authentic and the participants did
not have previous experience from actual inspections.

Of the two remote inspection methods the participants
performed best with, and preferred, assisted inspection. It
allowed the participants to focus more on observation and
inspection and less on controlling the robot. This method
performed similarly as the manned inspections, indicating that
it is a viable alternative that should be developed further.

The results from the experiment demonstrated that, in a
laboratory environment, remote inspection can be as effective
as manned inspections. Thus, using it can be economically
beneficial for operation and maintenance of offshore wind
turbine. We are planning a new experiment, following a
similar design, to investigate if improvements to the assisted
inspection method can further increase its effectiveness.

ACKNOWLEDGMENT

The authors would like to thank the participants in our
experiment, and the Norwegian Research Center for Offshore
Wind Technology (NOWITECH) for funding this research.

REFERENCES

[1] EWEA, “Wind in our Sails,” Tech. Rep., 2011.
[2] G. Caprari, A. Breitenmoser, W. Fischer, C. Hürzeler, F. Tâche, R. Sieg-

wart, P. Schoeneich, F. Rochat, F. Mondada, and R. Moser, “Highly
compact robots for inspection of power plants,” in Applied Robotics
for the Power Industry (CARPI), 2010 1st International Conference on.
IEEE, 2010.

[3] N. Elkmann and T. Felsch, “Robot for rotor blade inspection,” Applied
Robotics for the Power Industry (CARPI), 2010 1st International Con-
ference on, 2010.

[4] J. Ribrant and L. Bertling, “Survey of failures in wind power systems
with focus on Swedish wind power plants during 1997-2005,” Energy
Conversion, IEEE Transactions on, vol. 22, no. 1, pp. 167–173, 2007.

[5] ISO, “ISO 9241-11: Ergonomic Requirements for Office Work with
Visual Display Terminals (VDTs): Part 11: Guidance on Usability,”
Tech. Rep. November, 1998.

[6] J. A. Adams, “Critical considerations for human-robot interface devel-
opment,” in Proceedings of 2002 AAAI Fall Symposium, 2002, pp. 1–8.

[7] C. W. Nielsen and D. J. Bruemmer, “Hiding the system from the user:
Moving from complex mental models to elegant metaphors,” in Robot
and Human interactive Communication, The 16th IEEE International
Symposium on, 2007, pp. 756–761.

[8] D. J. Bruemmer, C. W. Nielsen, and D. I. Gertman, “How training and
experience affect the benefits of autonomy in a dirty-bomb experiment,”
in Human-Robot Interaction (HRI), 3rd ACM/IEEE International Con-
ference on. New York, USA: ACM, 2008, pp. 161–168.

[9] C. W. Nielsen and M. A. Goodrich, “Comparing the usefulness of video
and map information in navigation tasks,” in Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction. ACM, 2006,
pp. 95–101.

[10] B. Ricks, C. C. W. Nielsen, and M. A. M. Goodrich, “Ecological displays
for robot interaction: A new perspective,” in Intelligent Robots and
Systems, 2004 IEEE/RSJ International Conference on, vol. 3. IEEE,
2004, pp. 2855–2860.

[11] M. Baker, R. Casey, B. Keyes, and H. A. Yanco, “Improved interfaces
for human-robot interaction in urban search and rescue,” in Systems,
Man and Cybernetics, 2004 IEEE International Conference on, vol. 3,
2004, pp. 0–5.

[12] B. Keyes, R. Casey, H. A. Yanco, B. A. Maxwell, and Y. Georgiev,
“Camera Placement and Multi-Camera Fusion for Remote Robot Op-
eration,” Proceedings of the IEEE International Workshop on Safety,
Security and Rescue Robotics, pp. 22–24, 2006.

[13] “Beaglebone Website.” [Online]. Available: http://beagleboard.org/bone
[14] Ø. Netland and A. Skavhaug, “Software Module Real-Time Target:

Improving Development of Embedded Control System by Including
Simulink Generated Code into Existing Code,” in Software Engineering
and Advanced Applications, 39th Euromicro Conference on, 2013.

[15] ——, “Prototyping and Evaluation of a Telerobot for Remote Inspection
of Offshore Wind Farms,” in Applied Robotics for the Power Industry,
2012 2nd International Conference on, 2012.

[16] O. Shechtman, S. Classen, K. Awadzi, and W. Mann, “Comparison of
driving errors between on-the-road and simulated driving assessment: A
validation study,” Traffic injury prevention, vol. 10, no. 4, pp. 379–85,
Aug. 2009.

[17] Ø. Netland and A. Skavhaug, “Two Pilot Experiments on the Feasibility
of Telerobotic Inspection of Offshore Wind Turbines,” in Embedded
Computing (MECO), 2nd Mediterranean Conference on, 2013.

[18] M. Beaudouin-Lafon and W. Mackay, “Prototyping tools and tech-
niques,” Human-Computer Interaction: Development Process, p. 121,
2009.

[19] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research,” Advances
in Psychology, vol. 52, pp. 139–183, 1988.

Paper E

108

Paper F

Paper F Evaluation of Remote Inspection of Offshore Wind
Turbines with a Tablet Controlled Telerobot

Submitted to IEEE Transaction on Human-Machine Systems

109

Is not included due to copyright

Paper G

Paper G A Review of Experiments Evaluating the Usability of
Mobile Telerobots

Submitted to IEEE Transaction on Human-Machine Systems

123

Is not included due to copyright

	Summary
	Preface
	Contents
	List of Figures
	List of Tables
	Nomenclature

	1 Introduction
	1.1 Motivation
	1.2 Main Contributions
	1.3 Thesis Outline
	1.4 List of Publications

	2 Operation and Maintenance of Offshore Wind Farms
	2.1 Maintenance Strategies
	2.2 Remote Maintenance
	2.3 Cost-Benefit Evaluation of Remote Inspection

	3 Prototyping and Evaluation of Remote Inspection for Offshore Wind
	3.1 Related Work with Usability Testing of Telerobots
	3.2 The Laboratory
	3.3 The Remote Inspection Prototype
	3.4 Results
	3.5 Discussion

	4 Simulink Coder Generated Code as a Module within a Software Project
	4.1 Simulink Coder for Embedded Linux
	4.2 Software Module Real-Time Target
	4.3 Discussion

	5 Concluding Remarks
	5.1 Conclusions
	5.2 Future Work

	6 Original Publications
	A Adaption of MathWorks Real-Time Workshop for an Unsupported Embedded Platform
	B Prototyping and Evaluation of a Telerobot for Remote Inspection of Offshore Wind Farms
	C Two Pilot Experiments on the Feasibility of Telerobotic Inspection of Offshore Wind Turbines
	D Software Module Real-Time Target: Improving Development of Embedded Control System by Including Simulink Generated Code into Existing Code
	E An Experiment on the Effectiveness of Remote, Robotic Inspection Compared to Manned
	F Evaluation of Remote Inspection of Offshore Wind Turbines with a Tablet Controlled Telerobot
	G A Review of Experiments Evaluating the Usability of Mobile Telerobots

	Bibliography

