
Sensor-based Real-time
Control of Industrial Robots

Thesis for the degree of Philosophiae Doctor

Trondheim, August 2013

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Engineering Cybernetics

Johannes Schrimpf



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Engineering Cybernetics

© Johannes Schrimpf

ISBN 978-82-471-4568-5 (printed ver.)
ISBN 978-82-471-4569-2 (electronic ver.)
ISSN 1503-8181

ITK Report 2013-8-W

Doctoral theses at NTNU, 2013:225

Printed by NTNU-trykk



To my parents.



ii



Summary

This PhD thesis presents topics related to sensor-based real-time robot con-
trol in applied automation.

While in the past industrial challenges often could be solved with tradi-
tional robot programming methods, the industry looks more and more to-
wards the automation of complex tasks that need real-time sensor-feedback
in the control loop of the robot. This is especially important in applications
where the workpiece shape or characteristics are uncertain or unknown.
When working on such workpieces, the movement has to be adjusted in
real-time, ie. while the robot is moving. To achieve this, sensors are added
in the control loop of the robot.

One challenge for the implementation of industrial solutions including
real-time control is the lack of appropriate interfaces in most commercially
available robots. When such interfaces are not present, in-house developed
solutions can be used to access the low-level system of the robots, at least
for research applications. These usually require modifications of the hard-
ware, the software platform or both. Often, interfaces are implemented that
allows for parts of the control loop being moved to an external PC. In this
thesis, real-time interfaces for two different industrial manipulators are pre-
sented that are used for lab experiments and demonstrators. The real-time
interfaces work position-based and have update frequencies of about 100Hz.
Ethernet UDP is used to communicate with the external controller platform.
Experiments are presented that measure the delays in the low-level systems
of the robots.

To externally control the movement of the real-time controlled robots
from an application controller, a trajectory generator is needed. This the-
sis gives an overview of three different on-line trajectory generators that
were in-house developed. The real-time capabilities of the presented trajec-
tory generators were analyzed in order to ensure that the requirement for
response times of the real-time interfaces are met.

Based on a presented real-time interface and trajectory generator, a
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test platform was built. The test platform demonstrates tracking of a line
that is sketched on the workpiece. The robot tool is controlled to keep a
fixed distance between tool and workpiece, while maintaining an orientation
perpendicular to the workpiece surface. The line tracking is done using a
line-of-sight based control method. Experiments are presented, measuring
the delays in the robot-sensor system.

The main part of this thesis is a presentation of an automated robotic
sewing cell that demonstrates a case of sewing for the furniture industry.
The system is able to sew together two parts with slightly different shapes. A
two-robot solution is presented that controls the work pieces independently
during the sewing operation. A force sensor is integrated in the control
system to keep a constant sewing force. The seam allowance is controlled
by an edge control system based on optical sensors that are mounted on
the sewing machine. The real-time capabilities of the system are analyzed.
Experiments are presented showing the feasibility of the presented control
methods. The seam quality was evaluated by manual inspection and was
found to be adequate. Further steps were identified that are necessary to
include the demonstrator in an industrial setup, mainly corner matching,
sewing of the last few centimeters and the material handling before and
after the sewing operation.
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Chapter 1

Introduction

1.1 Motivation

The automation of complex industrial processes is an important topic in
current robotics research. Especially in high-cost countries like Norway, a
large effort is put into automation in order to keep the production in the
country rather than outsourcing to low-cost countries.

Robots can be found everywhere in manufacturing companies. In 2012,
the worldwide stock of operative robots was estimated to be about 1 400 000
units[rob]. The largest part of these installations solve assembly, painting,
welding, or pick-and-place tasks that are pre-programmed and repeatable
for mass production.

Challenges arise when tasks that are complex are to be automated and
the robot system has to interact with an unknown environment or has to
handle unpredictable behavior of the work pieces. In the recent years, there
has been a new trend in robotics in the direction of real-time sensor inte-
gration, increasing the possibility to develop adaptive real-time controlled
robot applications. In addition, the number and types of sensors are increas-
ing while the cost is decreasing. At the same time, robot manufacturers are
opening their control systems for research. This enables development of new
real-time controlled applications.

1.2 Real-time Robot Control

The advance in the area of real-time robotics during the past decades has
large benefits for the industry. This advance opens the possibility to auto-
mate complex industrial tasks that cannot be automated with traditional
robot platforms due to the lack of possibilities for sensor integration in the
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Application

High Level
Controller

On-line Trajec-
tory Generator

Low-level Controller

Servo Controllers
and Robot

Sensors

setupstatus

twist, target poseq, pose

q, (q̇, q̈)q, (q̇)

τq

sensor data

Figure 1.1: The model of a real-time robot controller. q is the joint position
vector, τ the joint torques. Details of low-level controller interfaces are
discussed in Chapter 2, implementations of trajectory generators in Chapter
3. Examples of applications using the whole control loop are presented in
Chapter 4 and 5.

real-time control loop. By including sensors in the control loop, it is possi-
ble to build systems that interact with their surroundings while the robot
is moving. Especially when working with workpieces with unknown shape
or material characteristics, it is important to measure the current state of
the system in order to generate robot motions that solve the specified task.
This flexibility makes it also possible to use the robot system not only for
operations that are pre-programmed, but also use the robot in small scale
production lines where the products are changing rapidly or the products
cannot be modeled satisfactory, for example due to non-rigid materials.

When controlling a robotic system, different control layers can be de-
fined. The control problem is typically decomposed into three tasks: path
planning, trajectory generation and trajectory tracking [SHV06]. Path plan-
ning is the problem to find a collision free path that connects an initial
configuration with a final configuration of the robot. Trajectory generation
is the process of computing a time dependent function of the desired path
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which specifies the motion of the robot. The trajectory tracking is the task
to control the robot to move on the desired trajectory.

When controlling a robot in real-time and including sensor input into
the control loop, the trajectory cannot be specified in advance. Figure 1.1
shows the author’s view on a robot system in real-time control mode. On the
top layer an application sets up a high-level controller that gets input values
from an external sensor system and calculates movement commands for the
robot. These commands are communicated to the next layer, consisting
of the trajectory generator that also provides the high-level controller with
status updates from the robot such as the robot tool pose or the joint
positions. The trajectory generator periodically receives the actual joint
positions and calculates new joint position set points. These are sent to the
low-level controller that calculates the torque set points that are sent to the
servo controllers.

In traditional robot controllers, all the control layers are included in
the controller cabinet and a high-level language is used to program the
robot. The possibility to include sensor inputs in the real-time control
loop of commercially available robots is often very limited, if present at all.
Furthermore, there is usually no interface to the lower control layers. On
the other hand, sensor-based robot control has become a large field in the
research community in the past decades and there have been developed a
large number of in-house solutions for accessing the low-level controllers of
commercially available robots. But also the industry begins to work with
the automation of complex processes that require real-time control of the
robots which leads to the robot manufacturers slowly opening up the access
to the low-level controllers by providing real-time interfaces.

Two types of interfaces to the low-level system can be found for com-
mercially available robots that offer possibility for real-time control: joint-
position-based interfaces and torque-based interfaces:

Joint-position-based interfaces allow the control of the robot by com-
manding joint positions to the low-level controller of the robot. Some
interfaces also require velocity and acceleration set points. They usu-
ally have a cycle frequency of about 100Hz and the low-level controller
in the robot is responsible for calculating the motor torques. An ex-
ternal trajectory generator has to be used to calculate the trajectory
of the robot.

Torque-based interfaces have a higher update frequency, usually above
1000Hz. These interfaces require an external motion controller to
calculate the torques from the desired motion or sensor input. The
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torques are then sent to the low-level system of the robot. Torque-
based interfaces are mainly used for research activities.

The presented PhD work focuses on the use of joint-position-based in-
terfaces for industrial robots together with external trajectory generation
in order to work on the automation of complex industrial applications. A
special focus is on sensor-integration in the real-time control loop of indus-
trial robots. The presented work suggests solutions for challenges in the
automated sewing of two non-rigid parts to subassemblies that are to be
used in the furniture industry.

1.3 Contributions and Scope of this Thesis

The presented work can be classified as applied research, driven by demands
from the industry to integrate real-time controlled robots in industrial ap-
plications. Therefore the focus is on experimentation and integration of
methods that are well known in research into industrial demonstrator cases
rather than generation of theory.

This thesis covers topics in different levels of real-time control of indus-
trial robots, with the following core areas:

• Real-time interfaces for industrial robots

• On-line trajectory generation

• Line tracking with tool orientation control

• Automated sewing

The work in this thesis started with the development of real-time in-
terfaces for industrial manipulators in order to build a platform for experi-
mentation with real-time robot control in industrial cases. After the initial
development, the focus moved away from pure low-level development to-
wards applications utilizing the real-time interfaces for sensor-based robot
control. Working areas included development of on-line trajectory gener-
ators, implementation of demonstrators and experiment setups. A special
emphasis was on flexible and reconfigurable implementations that are based
on widely available hardware and preferable on open-source software. An-
other design choice was on using software platforms that are well suited
for fast prototyping. An important part was the analysis of the real-time
capabilities of the systems built, especially in respect to the decision to
use flexible systems rather than customized systems that would result in a
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better performance. A test platform was built, demonstrating an applica-
tion where the robot follows a line drawn on a workpiece while keeping the
tool perpendicularly orientated to the workpiece surface in a fixed distance.
This case was chosen to demonstrate the system’s ability to interact with
the surroundings based on sensor input, inspired by painting and welding
applications.

When the experiments showed satisfactory results, the way was paved
for using the developed systems in real industrial applications. Among
various challenges presented by the different project partners, the topic of
automated sewing was chosen to demonstrate the benefits of real-time robot
control in manufacturing.Recent research projects emphasized the need of
sensor-based real-time control to solve the challenge of sewing automation.
Even though the sewing application is quite specific, the applied methods
are kept as general as possible and have a significant value to other projects
that benefit of real-time robot control.

While many parts of the whole sensor-based robot systems were dis-
cussed, the following list gives an overview of topics that are not discussed
in the presented work due to the limited time and more specific focus on
other parts:

• Torque-based joint control (not accessible in the used robots)

• Mathematical details in the trajectory generators (handled by the used
libraries)

• Optimal control solutions and control parameter adjustment (due to
limited time and due to desired simplicity and flexibility)

A more detailed overview of the contributions is presented in the follow-
ing subsections.

1.3.1 Real-time Interfaces to Industrial Robots

An overview is given of the robot platforms available in the laboratory that
were used in the PhD project. The presented robots can be controlled in
real-time either with a native interface or using software and/or hardware
manipulations on the robot platform. One emphasis of the presented work
is on real-time interfaces that allow joint position control of the robot.

A special focus is on real-time control of the Nachi SC15F and the
Univeral Robots UR5 robot since the used interfaces were enhanced (SC15F)
or developed (UR5), and tested as a part of this work. These interfaces are
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evaluated and the behavior is discussed with respect to available interfaces
for other robots.

The author’s contributions are:

• The real-time interface for the Nachi SC15F was developed by the
author before starting the PhD project. It was enhanced and tested
as part of the presented work.

• The real-time interface for the Universal Robots UR5 was designed,
implemented and tested in close cooperation between the author and
Morten Lind as part of the presented work.

1.3.2 On-line Trajectory Generation

To achieve sensor-based robot control using a joint-position-based real-time
interface, a trajectory generator has to be used that can generate a robot
motion based on sensor input. Different trajectory generators are presented
that are either based on in-house developed software or already existing
frameworks. The behavior and performance of the different implementations
is evaluated.

A special emphasis is on trajectory generators and control applications
developed in Python. Python is a flexible high-level language with a large
number of available libraries and with the possibility to include C code and
C libraries for computation intensive parts of the programs. Examples for
supported libraries and framework related to robotics are ROS1, OpenCV2

and Orocos3. Python on Ubuntu was chosen as main programming plat-
form, rather than a hard real-time language, to build a flexible system that
allows for rapid prototyping. Throughout the different papers the matter
of delays in the system are discussed, also with respect to the choices of
software and hardware.

The author’s contributions are:

• The author was involved in design, testing and enhancement of the
presented trajectory generator PyMoCo.

• The author single-handedly designed, implemented and tested the pre-
sented trajectory generator based on Orocos PyKDL.

• The author single-handedly designed, implemented and tested the pre-
sented trajectory generator based on Orocos KDL.

1http://www.ros.org
2http://opencv.willowgarage.com
3http://www.orocos.org
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• The author designed and conducted experiments regarding the real-
time capabilities of the trajectory generators in close cooperation with
Morten Lind.

1.3.3 Line Tracking with Tool Orientation Control

An experimentation platform was analyzed that demonstrates line-following
with tool orientation control as used in applications like painting, welding
or sewing. The robot tool follows a line sketched on the workpiece in a fixed
distance while maintaining an orientation perpendicular to the workpiece
surface. The platform was designed by the author prior to the PhD work.
The author’s contributions during the PhD work were:

• Mathematical formulation of the control algorithms.

• Detailed real-time analysis of the control system.

• Modelling and simulation of the case of approaching a straight line.

• Experiments were designed and conducted in close cooperation with
Morten Lind.

1.3.4 Automated Sewing

This thesis includes work on an automated sewing cell as application for real-
time robot control. The research setting is a sewing cell installation consist-
ing of an industrial sewing machine and two robots controlling the sewing
operation in real-time. Widely available software and hardware technologies
were used to build a highly flexible system for operational experimentation
and control prototyping. The software architecture and the communication
structure are presented and different control mechanisms and methods are
discussed.

Included topics are:

• Strategies to control the sewing operation of non-rigid materials

• Strategies for position control and force control of two different parts

• Synchronization between the two robots

• Real-time analysis of the control system

Experiments are included that show the feasibility of the proposed plat-
form and control mechanisms.

The authors contributions are:
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• Design of the different control methods for the sewing operation.

• Design and implementation of the overall system in close cooperations
with colleagues.

• Experiments and analysis regarding the control strategies were con-
ducted in close cooperation with colleagues.

• Experiments and analysis regarding the delays in the system.

1.4 Overview of the Included Publications

This section presents a short overview of the included publications.

1.4.1 Open Real-Time Robot Controller Framework

M. Lind, J. Schrimpf, and T. Ulleberg, Open real-time robot controller
framework, Proceedings 3rd Conference on Assembly Technologies and
Systems (CATS), 2010

This paper describes topics in external real-time control of industrial
robots. Experiments are presented, analyzing the behavior of three different
real-time controlled robots with respect to delays in the low-level system.

1.4.2 Real-Time Sensor Servoing using Line-of-Sight Path
Generation and Tool Orientation Control

J. Schrimpf, M. Lind, T. Ulleberg, C. Zhang, and G. Mathisen, Real-
time sensor servoing using line-of-sight path generation and tool orien-
tation control, Proceedings 3rd Conference on Assembly Technologies
and Systems (CATS), 2010

This paper describes a demonstrator setup for line-of-sight path tracking
with tool orientation control. In the demonstrator setup the robot tool has
to follow a line on the workpiece while keeping the tool orientated perpen-
dicularly to the workpiece distance in a constant distance.

1.4.3 Time-Analysis of a Real-Time Sensor-Servoing System
using Line-of-Sight Path Tracking

J. Schrimpf, M. Lind, and G. Mathisen, Time-analysis of a real-time
sensor-servoing system using line-of-sight path tracking, IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2011,
pp. 2861 –2866
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This paper contains a time analysis for the line-of-sight path tracking
demonstrator. The different delays in the system are described. A model of
the system is presented for the case of approaching a straight line. The influ-
ence of the line-of-sight parameters is discussed. Experiments are presented
comparing the estimated delay with experimental data.

1.4.4 Experiments towards Automated Sewing with a Multi-
Robot System

J. Schrimpf and L. E. Wetterwald, Experiments towards automated
sewing with a multi-robot system, International Conference on Robotics
and Automation (ICRA), 2012

This paper describes a concept for an automated sewing cell. The sewing
cell consists of a sewing machine, two robots, and sensors for force and edge
measurements. Different control strategies are described and experiments
are presented to examine the feasibility of the different control methods.

1.4.5 Implementation Details of External Trajectory Gener-
ation for Industrial Robots

J. Schrimpf, M. Lind, A. Skavhaug, and G. Mathisen, Implementation
details of external trajectory generation for industrial robots, Proceed-
ings of IWAMA 2012 - The Second International Workshop of Advanced
Manufacturing and Automation, 2012

This paper describes implementation details for three different on-line
trajectory generators. Experiments are presented that analyze the response
times of the different implementations. General topics in robot control
and trajectory generation are discussed with a focus of real-time trajectory
generation using the Python programming language.

1.4.6 Real-Time System Integration in a Multi-Robot Sewing
Cell

J. Schrimpf, L. E. Wetterwald, and M. Lind, Real-time system integra-
tion in a multi-robot sewing cell, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012

This paper describes the implementation of an automated sewing demon-
strator. The used control strategies for force and edge control are presented.
Experiments are presented showing the performance of the proposed control
strategies.
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1.4.7 Python-Based Robot Motion Control

M. Lind, L. Tingelstad, and J. Schrimpf, Real-time robot trajectory gen-
eration with python, IROS2012 Workshop on Robot Motion Planning:
Online, Reactive, and in Real-time, 2012

This paper describes the design of PyMoCo, a framework for external
on-line trajectory generation. Performance measurements are presented for
different canonical trajectory generators. General topics of using Python on
a mainstream Linux platform are discussed with respect to the performance
of the presented framework.

1.4.8 Real-Time Analysis of a Multi-Robot Sewing Cell

J. Schrimpf, M. Lind, and G. Mathisen, Real-time analysis of a multi-
robot sewing cell, IEEE International Conference on Industrial Technol-
ogy (ICIT), 2013

This paper presents a real-time analysis of an automated sewing cell.
The communication and computation delays in the different parts of the
system are measured and discussed. The real-time capability of the used
software is discussed on the basis of the measurements.

1.5 PhD Thesis Outline

This thesis is designed as a collection of papers with a summarizing intro-
duction.

Chapter 2 presents real-time interfaces that were used or developed during
the presented work, including experiments measuring the delays in the
robot system.

Chapter 3 gives an overview of the trajectory generators that were de-
veloped or used. This chapter also includes timing experiments to
determine computation and communication delays in the presented
implementations.

Chapter 4 presents a demonstrator system for sensor-based tracking of
a visual line using a real-time controlled robot. The delays in the
control system are estimated by analyzing the different system parts.
Experiments are presented to compare the estimated delay with the
delay in the real system.
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Chapter 5 summarizes the work that was done in the field of automated
sewing. Based on an industrial case, a sewing cell installation was
designed and experiments were conducted, both concerning the seam
quality and the real-time characteristics of the sewing cell and the
control loops.

Chapter 6 contains the attached publications produced during the PhD
work, including the bibliographic information for the contained papers
and short declarations of contributions.

Chapters 2 to 5 include a motivation, related work and a summary of
presented designs, implementations and experiments. These chapters also
include references to the attached publications. When referring to attached
publications, the complete title will be used as notation. Each chapter
includes an introduction and an overview of related work in the specific
work area as well as a conclusion of the presented part.
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Chapter 2

Real-time Interfaces to
Industrial Robots

This chapter describes real-time interfaces that were used or developed dur-
ing the presented work. These interfaces are used throughout the work that
is presented in the attached publications. The experiments at the end of the
chapter were presented in ”Open Real-Time Robot Controller Framework”
[LSU10].

2.1 Motivation

Sensor-based robot control plays an important role in the automation of
complex industrial processes. These processes often require the use of sen-
sors in the control loop of the robot in order to react in real-time to unfore-
seen events or to work with unpredictable materials. Most industrial robots
have a very limited access for real-time control in the high-level robot con-
troller. Some robot manufacturers offer special sensor packages to include
for example force sensors into the control loop or to alter the trajectory
while moving the robot based on sensor input. A more flexible alternative
is to use a direct interface to the low-level controller of the robot and thereby
replace the high-level controller and typically also the trajectory generator
with a custom implementation of these components. These interfaces often
use Ethernet to communicate the actual joint states to the external con-
troller and to receive joint update data. Only few robot manufacturers offer
such interfaces. If the applied robot lacks this feature, modifications have
to be made to the robot controller in order to allow for real-time low-level
control of the joints.

13
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2.2 Related Work

A comprehensive overview of commercially available real-time interfaces for
industrial robots is presented in [KW10].

In Kubus et al. [KSK+10], two different real-time control architectures
for real-time control of Stäubli manipulators are presented. One architecture
is developed for RX manipulators. Modifications are made on the control
hardware and the controller board is replaced by a standard PC running
QNX Neutrino. More PCs are added for sensor data processing execution of
manipulation primitives, and user interface software. Joint position control
is done with a frequency of more than 10 kHz. Internal communication is
handled via the QNX QNet protocol. The other presented architecture is
built to control TX manipulators. A low-level interface can be accessed
using a C library. This library allows access to the control loop at rates up
to 1 kHz, but is limited by the used hardware to a rate of 250Hz. The low-
level system is connected to the external controller via an Ethernet TCP/IP
connection to exchange set points and feedbacks. It is noted that TCP/IP
is not real-time capable, especially in bigger networks, but in the point-to-
point connection between the two controllers proves to meet the real-time
demands.

Another modification of an industrial robot manipulator is presented by
Blomdell et al. [BBB+05]. The design and implementation of a real-time
interface to the ABB S4CPlus control system is described. The implementa-
tion uses shared memory via the PCI bus. Three different sampling times in
the controller platform are described. The high level language ABB RAPID
has a sampling time of 0.1 s, the interface to the arm servo control 4ms and
the internal sampling time for the JR3 force/torque sensor 0.125ms. Ex-
periments were included that demonstrate force control via the interface.
It is concluded that the 4ms sampling time is a good trade-off for many
force control applications in respect to the needed computational power.
It is also stated that applications using force control in an extremely stiff
environment, higher update frequencies may be required.

2.3 NACHI SC15F

This section presents an overview of an in-house developed real-time inter-
face to a NACHI SC15F robot. The interface is used in several setups, for
example the test platform for sensor-based robot control that is presented
in Chapter 4. Figure 2.1 shows the robot during an experiment with a com-
pliance controller using the sensor input from a force sensor mounted on the
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Figure 2.1: The NACHI SC15F in compliance control mode.

tool flange.

The SC15F is a 6-axis industrial manipulator. It ships with a NACHI
AX controller box that does not natively offer an interface for external real-
time control of the robot. The controller internally consists of the main
controller and a servo controller board that does the dynamics calculations.

A low-level interface system has been built that intercepts the connection
between the main controller and the servo controller. This interface offers
observation and manipulation of the joint angles in the low-level system.
By forwarding the current joint states to an external computer system and
returning correction values, it is possible to control the joint angles from
external applications. The communication runs with a cycle time of 10ms.
This cycle time is comparable to commercial robots with low-level interfaces
as for example KUKA robots with RSI (Robot Sensor Interface).

Figure 2.2 shows the concept of the real-time interface. It is connected
to the external controller PC via Ethernet/UDP. The commands from the
external PC are stored in the interface system until a new command is
sent. This makes the real-time interface robust for packet loss or other
interruption of the connection and ensures that the communication cycles
in the original connection are kept and are not depending on the immediate
answer from the external controller.



16 Real-time Interfaces to Industrial Robots

Figure 2.2: The NACHI robot with controller. License: CC BY-SA Morten
Lind.

2.4 Universal Robots UR5

A other research activity in the lab is gathered around a Universal Robots
UR51. The UR5 is a relatively inexpensive 6-axis industrial manipulator
with a reach of 85 cm and a maximal payload of 5 kg. This section presents
an overview of different control methods and a more detailed description of
an in-house developed real-time communication interface to the robot based
on a C-API provided by the robot manufacturer. This API offers access to
the low-level controller of the robot.

2.4.1 Control Methods

The UR5 includes a controller platform with a teach pendant that allows
the costumer to program the robot using a graphical user interface. Alter-
natively, it is possible to write programs in a scripting language and either
save the programs on the robot controller or send commands via a TCP in-
terface to the robot. These programs are processed in the native high-level
controller.

A more experimental feature for developers is the possibility to run
user-written C-programs that interact with the controller with a cycle time
of 8ms. The UR5 controller is based on a Debian GNU/Linux system,
which can be accessed by the user either via SSH (Secure Shell) or directly

1former UR-6-85-5-A
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Figure 2.3: The Universal Robot with controller. The low-level controller
(LLC) is a user space program which uses an API to access the servo con-
troller. License: CC BY-SA Morten Lind.

by attaching a keyboard to the controller. The native high-level controller
program can be stopped by a script and the user-written controller program
can be started to access the low-level functions of the robot. This is done
by programming a custom application and linking it to a C library file,
distributed by the robot manufacturer on request.

2.4.2 Router Implementation

A router program was implemented that allows an external control PC to
control the robot via Ethernet, see Figure 2.3.

The program runs on the UR5 controller PC and uses the C-API to
access functions in the low-level controller. The program sends the actual
joint values received through the API to the external control PC and waits
for a respond packet containing joint updates. The Universal Robots servo
controller can be controlled by either communicating joint velocities or a
combination of joint position, joint velocity and joint acceleration. Since
most trajectory generators give a trajectory consisting of position set points,
an extrapolator was included into the router program in order to calculate
the expected joint velocities and accelerations when only joint positions are
given. The interface runs with an update frequency of 125Hz which result
in a cycle time of 8ms. When in real-time control mode, the low-level API
expects new joint updates within a time window of 4ms. Exceeding this
limit results in neglecting the new data or in a disconnect, depending on an
option in the implementation.
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2.5 Timing Experiments

High update frequencies of the real-time interfaces are a crucial requirement
for a robotic system which has to react in real-time to sensor-inputs. On
the other side this does not guarantee that the robot’s reaction time and the
delay when following a trajectory are in the same order of magnitude. Due
to the proprietary nature of most industrial robots, the low-level controller
has to be treated as a black box and may contain unknown filters, controller
parameters and communication delays. Also the mechanical characteristics
and motor parameters of industrial manipulators are often unknown.

This section presents a summary of experiments using the presented
real-time interfaces in order to examine the response characteristics of the
low-level interfaces as presented in the included publication ”Open Real-
Time Robot Controller Framework” [LSU10]. To do this, two different input
signals were commanded to the robots, a step and a cosine trajectory. The
step response was used to measure the delay from sending a command to
the robot until a significant movement can be seen in the output values of
the robot. The cosine trajectory was chosen to examine the tracking delay
of the robot. The step size for the step response was experimentally adapted
to the tolerances of the low-level interface regarding maximum step sizes. It
is important to mention that no tweaking or optimization in the low-level
controller was performed and that different control parameters may lead to
different results.

The response time is defined as the time between a command is sent
until half a step before a significant response is visible in the actual robot
position. The tracking delay is defined as the delay between the commanded
and the actual cosine trajectory at the steepest point.

The robots that were used in the experiments are a Nachi SC15F, a
Universal Robots UR5 and a KUKA KR60L30 HA with RSI. The KUKA
robot was included in the experiment in order to compare the responses to
a robot that offers a native interface to the low-level controller.

Figure 2.4 shows the plots for the response of the Nachi SC15F robot.
From the step response it can be seen that the response time of the SC15F
robot is about 45ms, while the tracking delay is around 120ms. Figure 2.5
shows the corresponding plots for the Universal Robots UR5. Here, the
response time is observed to be around 12ms and the tracking delay is
about 9ms. The results for the KUKA KR60L30 are shown in Figure 2.6.
The response time was recorded to be about 42ms, whereas the tracking
delay was around 115ms.

It has to be mentioned that the results for the different robots are not
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completely comparable due to different real-time interfaces, specifications,
and robot size. While the SC15F and the KR60L30 real-time interfaces are
joint-encoder-based, the UR5 interface takes commanded velocity and ac-
celeration set points into account. Another difference may be in the internal
processing and filtering of data in order to be tolerant to trajectories that
are not directly feasible for the robot. These implementation details are not
known due to the proprietary nature of the robot controllers.

2.6 Conclusions

Two implementations for position-based real-time interfaces for commer-
cially available industrial robots have been presented. In the case of the
Nachi SC15F manipulator, the controller hardware was modified in order
to gain access to the low-level controller. The update frequency of the
interface is 100Hz. In the case of the Universal Robots UR5, a router ap-
plication was installed on the native robot controller hardware in order to
gain access to the low-level functionality of the robot from an external PC.
The application was programmed in C using an API to access the low-level
controller. The update frequency is 125Hz. The interfaces can be accessed
using Ethernet UDP. In both cases the low-level controllers are proprietary
and the control parameters as well as the internal data flow are not known.

To gain a better understanding of the low-level systems of the two robots,
the movement responses to a step input and to a cosine input were recorded.
The response time was defined as the time between sending a command to
the robot until a movement is recorded. The tracking delay was defined
as the delay between the commanded and the actual cosine trajectory at
the steepest point. This was also done for a KUKA KR60L30 robot using
the RSI interface. The responses of the SC15F and the KR60L30 robot
were quite similar, about 40ms for the response time and about 115ms
for the tracking delay. The response time for the UR5 was observed to
be 12ms, whereas the tracking delay was 9ms. The large discrepancy can
be explained by different low-level controllers, specifications, robot size and
filtering. Furthermore, the interface of the UR5 has an interface that expects
position, velocity and acceleration set points, while the two other interfaces
only expect joint position set points.

It is important to notice that the experiments are not meant to compare
the performance of the robots, but rather to give an understanding of the
real-time abilities of the low-level controller in order to be able to carry out
timing analyses of control systems that include the examined robots.

Both presented low-level interfaces are frequently used in research projects
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Figure 2.4: Step and cosine response for the Nachi SC15F, based on
[LSU10]. Δq is the size of the step, A the amplitude of the cosine, and
ν the frequency of the cosine. The response time is measured in the step
response from the position change at time 0.00 s until half a step before the
first significant movement, shown as the red mark. The tracking delay is
measured at the zero-crossing of the cosine curves.
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Figure 2.5: Step and cosine response for the Universal Robots UR5, based
on [LSU10]. Δq is the size of the step, A the amplitude of the cosine, and
ν the frequency of the cosine. The response time is measured in the step
response from the position change at time 0.00 s until half a step before the
first significant movement, shown as the red mark. The tracking delay is
measured at the zero-crossing of the cosine curves.
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Figure 2.6: Step and cosine response for the KUKA KR60L30, based on
[LSU10]. Δq is the size of the step, A the amplitude of the cosine, and
ν the frequency of the cosine. The response time is measured in the step
response from the position change at time 0.00 s until half a step before the
first significant movement, shown as the red mark. The tracking delay is
measured at the zero-crossing of the cosine curves.
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and demonstrator setups at the laboratory, which demonstrated the usabil-
ity of the interfaces.
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Chapter 3

On-line Trajectory
Generation

This chapter gives an overview of on-line trajectory generation of indus-
trial robots. It will start with a short description of the topic followed
by descriptions and an evaluation of different in-house programmed trajec-
tory generator software. The work is presented in the included publications
”Open Real-Time Robot Controller Framework” [LSU10], ”Implementation
Details of External Trajectory Generation for Industrial Robots” [SLSM12]
and ”Real-Time Robot Trajectory Generation with Python” [LTS12].

3.1 Motivation

As described in Chapter 1.1, a robot controller consists of different con-
trol layers. One layer is the trajectory generator. A trajectory is a time-
dependent function q(t) that specifies the motion of the robot, where q
contains the joint positions of the robot. Kröger [Krö10] distinguishes be-
tween the following two concepts:

Off-line trajectory generation is when the trajectory is calculated in
advance and cannot be influenced during its execution.

On-line trajectory generation is when the motion of the robot can be
(re-)calculated and/or adapted while the robot is moving.

When using on-line trajectory generation, the new state for all joints is
calculated in each control cycle. This is typically done with an update fre-
quency in the order of 100Hz for position-based low-level interfaces. These
interfaces typically have joint angles as input, often combined with joint

25
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Joint space
controller

Robot and
environment

f(t)q̈d(t), q̇d(t),qd(t) q(t)

Figure 3.1: Scheme for trajectory-following control, common in indus-
trial robots, as presented in Kröger [Krö10]. The desired joint states
q̈d(t), q̇d(t),qd(t) are sent to the joint controller, which minimizes the error
between the desired position qd(t) and the actual position q(t). The output
f(t) of the joint controller represents the forces/torques commanded to the
robot joints.

velocities and accelerations. Figure 3.1 shows the scheme for a trajectory-
following controller as often found in industrial robots.

Not all real-time interfaces for industrial robots have this kind of inter-
face. Some robots, especially those that are used in research, offer interfaces
that have higher update frequencies and other control methods. These usu-
ally work on torque control of the joint motors. The control loop has an
update frequency of about 1 kHz or more. When using on-line trajectory
generators with these interfaces, an additional layer in the external con-
troller platform is needed to calculate the torques from the desired joint
states.

In applications that use sensor input to control the robot trajectory,
the next desired joint state is calculated on-line. This means that a new
joint state is calculated in each interpolation cycle. Different strategies
can be used to generate the robot movement. Often, a natural way is to
command velocities in tool space based on a position or velocity error, but
also movement towards a target pose that can be updated in real-time is
common. To achieve this, most trajectory generator frameworks offer a
variation of different canonical trajectory generators.

3.2 Related Work

Since this chapter focuses on implementations, this section mainly presents
frameworks and libraries that can be used to implement on-line trajectory
generators. Examples for the use of such on-line trajectory generation
frameworks in robot applications can be found in countless publications.
Most of these publications focus mainly on the robot applications and not
the underlying principles for trajectory generation. While there are many



3.3. Implementations 27

publications on traditional off-line trajectory generation, only a few publi-
cations focus on the concept of on-line trajectory generation. A compre-
hensive overview of these publications and the concept of on-line trajectory
generation is presented in Kröger [Krö10].

Lloyd and Hayward [LH93] presented a framework called RCCL (Robot
Control C Library) for programming of real-time robot controllers. It is a
package of C routines for UNIX environments. Primitives are defined for
target points in joint or Cartesian coordinates. The target points can be
modified on-line and the motion can be canceled in response to sensor or
control inputs. Smooth paths are provided which can be adjusted in real-
time. Details are presented for path blending.

Orocos
1 (Open Robot Control Software), presented in Bruyninckx

[Bru01], is a general-purpose and open robot control software package. It
consists of C++ libraries for advanced machine and robot control. The Oro-
cos libraries can be used in different levels of the control structure of the
robot, for example the KDL (Kinematics and Dynamics Library) component
can be used for kinematics and dynamics calculations based on kinematic
chains and kinematic solvers. The RTT (Orocos Real-Time Toolkit) al-
lows for real-time integration and communication, while the BFL (Bayesian
Filtering Library) provides algorithms for data filtering and processing.

A commercially available library for trajectory generation is the Re-

flexxes
2 library, presented in Kröger [Krö11]. It focuses on high perfor-

mance and provides smooth trajectories with response times below 1ms.
Based on the current state of motion, the target state of motion and mo-
tion constraints, a new state of motion and trajectory is generated. Due to
the low response time the library is able to react to unforeseen events. It
switches smoothly between different trajectory generation methods.

3.3 Implementations

This section presents a short overview of different implementations of tra-
jectory generators that have been used during the PhD work. All trajec-
tory generators were developed in-house, based on open source software.
All presented trajectory generators are programmed to use joint-position-
based low-level interfaces for industrial robots with an update frequency of
about 100Hz. The author contributed to the development of the presented
PyMoCo framework by intensive discussions and testing. The two Orocos-
based trajectory generators were designed and programmed single handedly

1http://www.orocos.org
2http://www.reflexxes.com
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by the author as part of this PhD work.

3.3.1 PyMoCo

PyMoCo3 is an in-house developed on-line trajectory generation framework
entirely programmed in Python. The kinematics calculations are imple-
mented using the python-math3d library4 and the NumPy package5. The
objective was to develop a flexible and general framework with functional-
ity to include own trajectory generators and robot interfaces. It includes
several canonical trajectory generators, for example a tool velocity trajec-
tory generator and trajectory generator to move the tool linearly towards
a target pose. Details are presented in the attached publications ”Open
Real-Time Robot Controller Framework” [LSU10] and ”Real-Time Robot
Trajectory Generation with Python” [LTS12].

3.3.2 Orocos-PyKDL-based Trajectory Generator

While PyMoCo was developed as a flexible and general framework, an alter-
native implementation was programmed that focuses more on performance
than PyMoCo. It was implemented in Python and uses the Orocos KDL
library6 with the PyKDL Python wrapper for kinematics calculations. By
doing this, the computation-intensive parts are computed in C instead of
Python. Interpolation in tool space and 3D mathematics are implemented
using the python-math3d library. Even though it can be adapted to be
used for different robot models, the focus was on control of the Universal
Robots UR5. It includes trajectory generators to move the tool linearly in
tool space and in joint space, as well as a tool velocity trajectory generator
and a joint velocity trajectory generator.

3.3.3 Orocos-C++-based Trajectory Generator

In order to compare the Python-based implementations with a pure C++
implementation, a minimal implementation of a trajectory generator was
programmed in C++ using the Orocos KDL library for both kinematics
calculations and trajectory interpolation. It includes trajectory generators
to move the tool linearly to a target position, as well as a tool-velocity
trajectory generator.

3https://launchpad.net/pymoco
4https://launchpad.net/pymath3d
5http://www.numpy.org
6http://www.orocos.org/kdl
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Figure 3.2: Response times for the different implementations for 10 000
samples: Orocos KDL, Orocos PyKDL, and PyMoCo. The red marker is at
the position of the maximum response time.

3.4 Real-time Characteristics

The response times of the presented implementations were measured in an
experiment. The goal with this experiment was to compare the different
implementations to each other rather than running an absolute benchmark.
A test platform was set up, using a PC with an 8 core 2.8GHz CPU and 8GB
RAM. The operating system was Ubuntu Linux with the CPU frequency
scheduler set to ”performance”. This disables frequency scaling, which was
found to have a large impact on the results of this experiment. The low-level
interface of the robot was emulated by a C++ program on the same PC
as the trajectory generators. Each implementation was tested by recording
the response times for 10 000 steps, while commanding a linear tool motion
with a constant low speed. The response time is the time from a request for
a new joint update is sent to the trajectory generator until the joint update
is received in the low-level interface. The results are shown in Figure 3.2.
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The measured response times for the C++ implementation have a mean
value of 0.265ms and a maximum value of 0.459ms. The Python imple-
mentation using Orocos PyKDL has a slightly slower response with a mean
value of 0.345ms and a maximum value of 0.488ms. Finally, PyMoCo has a
mean response time of 0.537ms and a maximum response time of 0.859ms.

All trajectory generators manage to respond within 1ms. Using the tra-
jectory generators via Ethernet, connected to a real robot, the response time
will increase slightly. Industrial robots with real-time interfaces, like KUKA
robots with RSI or the Universal Robots UR5 have typically a deadline of
a few milliseconds. For example, the UR5 has a deadline of 4ms. When
this deadline is exceeded, the robot skips one interpolation cycle, keeping
the last position command. Depending on strategies in the implementation
of the real-time interface on the robot, a strategy can be implemented that
allows for larger response times, for example by extrapolating. Another
strategy could be to set the robot in a security stop modus. Depending on
how critical the outcome of one or more missed cycles are on the application,
a stricter or more lenient strategy can be chosen.

3.5 Conclusions

Three different trajectory generator frameworks were presented. One frame-
work, PyMoCo, was entirely programmed in Python. The development fo-
cus was on creating a general framework that makes it possible to easily im-
plement custom trajectory generators for robots that offer a position-based
real-time interface. PyMoCo includes a set of canonical trajectory genera-
tors. A second implementation, also implemented in Python, was based on
Orocos PyKDL. By using the Orocos library, the computational-intensive
parts are computed in C code. Also this trajectory generator comes with
a set of canonical trajectory generators. A third implementation was pro-
grammed entirely in C++ using the Orocos KDL library. In comparison to
the other trajectory generator, it only includes minimal functionality. It was
implemented to compare the response times of the Python implementations
with a C/C++ implementation.

A timing experiment was conducted to measure the response times of
the three trajectory generators. All trajectory generators responded within
1ms, which is more than satisfactory for the use with the robots in the
lab. As expected, the C++ implementation had the fastest response time
while PyMoCo had the largest computation time of the three presented
frameworks. It is important to notice that not only the response time is
important for the choice of the framework but also the functionality that is
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required for the desired installation.
The PyMoCo framework and the trajectory generator that is based on

Orocos PyKDL are actively used in several laboratory setups, which demon-
strates the usability of the developed frameworks.
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Chapter 4

Line Tracking with Tool
Orientation Control

This chapter presents a system for sensor-based robot control that was
presented in the enclosed publications ”Real-Time Sensor Servoing using
Line-of-Sight Path Generation and Tool Orientation Control” [SLU+10] and
Time-Analysis of a Real-Time Sensor-Servoing System using Line-of-Sight
Path Tracking [SLM11]. The setup is carried out as an eye-in-hand robot
system, where the robot has to follow a line sketched on a surface in a con-
stant distance as shown in Figure 4.1. The tool orientation is controlled
such that it is aligned perpendicularly to the workpiece surface.

4.1 Motivation

Many robotic movements can be preprogrammed without any further ad-
justments while the robot is moving. On the other hand, there are in-
dustrial applications where the movements of the working tools have to be
adjusted according to changes in the environment or workpieces with uncer-
tain shapes. Some of these industrial applications require that the working
tool has the ability to follow one or another form of a line. Examples are
the tracking of a line for welding, following the contour of a fabric dur-
ing a sewing operation or painting applications. These applications can be
designed to work fully automated or in cooperations with humans. One
example is an application where the human is marking a path on the work-
piece where it has to be machined, painted, welded or cut, either in advance
or while the robot is moving. When automating such processes, a sensor
system is required that is capable of detecting these lines or contours in
order to generate an appropriate trajectory of the robot. Especially if the
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Figure 4.1: The demonstrator system. The robot is following a line with a
constant distance between tool and surface.

path cannot be predicted before starting the operation, a tight integration
of the sensors in the real-time control loop is needed.

The demonstrator presented in this chapter addresses such applications
by introducing a control system where the robot follows a marked line on the
workpiece while keeping the tool in a constant distance from the workpiece
and the tool orientated perpendicularly to the surface.

4.2 Related Work

The demonstrated work is related to several topics in automation and con-
trol. The proposed line-tracking algorithm is closely related to challenges
in marine systems where a vessel has to follow a given path. Fossen [Fos02]
and Børhaug [Bør08] present line-of-sight-based path-following methods for
vessels, that have been the starting point for the algorithm used in the
demonstrator system.

Different sensor systems have been presented to follow a desired path
on a workpiece surface. A combination of a fixed camera and a force sensor
to measure the surface orientation are presented in Hosada et al. [HIA98].
The paper presents a hybrid visual/force servoing to move a robot on an un-
known workpiece. The fixed camera is used to estimate the robot’s position.
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A desired path is marked at the camera image and the robot follows this
path using visual servoing, while a force controller is used to hold the tool
in contact with the workpiece. The surface normal at the tool is estimated
using the force data. This is done by decomposing the measured forces into
frictional forces in the direction of the end-effector motion and the normal
force.

A system with a camera attached to the robot tool is presented in Zhang
et al. [ZCX06]. A hybrid vision/force controller is used for programming the
desired path for a painting task. The vision controller is used to move the
tool along a painted line on the workpiece. A force controller is used to hold
the tool in contact with the workpiece and to determine the surface normal.
This is done by following a zigzag path and calculating the orientation from
the force data. Experiments are presented that show that it is possible
to achieve high accuracy and that the system is suitable for automatically
generating tool paths for manufacturing operations.

De Graaf et al. [GAMJ05] presents a robot-based system for real-time
3D seam-tracking for laser welding, using a mechanism to synchronize a
seam-tracking sensor with an industrial robot. The authors point out that
measurement near the focal spot is necessary to meet the accuracy demands.
A triangulation-based seam-tracking sensor that uses a laser-line is mounted
on the robot tool. The authors distinguish between two types of tracking
strategies. The first type consisted of two steps, first sensor-based teaching
of the seam locations, and then laser welding. The second type are strategies
that include real-time measurements to track the seam during the welding
process. While the first method can lead to higher accuracy due to the
absence of constraints for the robot movement, the second method may
be preferred due to time saving. The paper presents a synchronization
method to synchronize the data from the sensor to the location of the real-
time controlled robot. A method for sensor-guided robotic laser welding is
proposed. The path is generated from the vision sensor in some distance
ahead from the welding spot. The measured locations are stored in a buffer.

Another approach for seam-tracking in a welding process is presented in
Zhou et al. [ZLC06]. The seam path is tracked before the welding operation
by using visual servoing. A camera is used to capture images of the seam.
The tracking is done in 2D. Experiments are presented that show reliable
tracking without special light sources for the camera. The accuracy was
measured to be adequate for high quality welding processes.

Another 3D real-time seam-tracking system is presented by Kim et
al. [KCL+08]. The method is based on the previous mentioned meth-
ods presented in de Graaf et al. [GAMJ05] and Zhou et al. [ZLC06]. A
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triangulation-based laser sensor is mounted on the tool, with a servo motor
that makes it possible to change the working distance by tilting the laser
stripe. Experiments are presented that verify that the tracking is working
with good accuracy.

The mentioned systems have in common that they are closely connected
to industrial cases. The system presented in this PhD work intends to aim
at industrial application as well, but the focus is on general methods of
sensor-based robot control rather than on one specific case. The testing
and development of the real-time interface to the robot, and the real-time
analysis of the control loop including the sensors are seen as the main con-
tribution of this work.

4.3 Demonstrator

This section presents design and implementation of the demonstrator setup.

Different cases were defined for the system. In all cases, the tool has to
keep a constant distance from the surface.

• Line following on a 2D surface.

• Line following on a 3D surface without tool orientation control, cf.
Figure 4.2.

• Line following on a 3D surface with tool orientation control, cf. Fig-
ure 4.3.

Figure 4.2: 3D line tracking without
tool orientation control.

Figure 4.3: 3D line tracking with
tool orientation control.

The algorithms presented in this chapter were designed for the latter
case. The other cases were tested by deactivating the unused controller
components.
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Figure 4.4: The tool mounted on the robot. It includes four lasers and
a camera for distance measurements. The tip was designed to protect the
sensor system and was not used in the experiments.

4.3.1 System Description

This section describes the demonstrator system. An overview is given of the
hardware as well as the control strategies that are applied. Mathematical
details can be found in the enclosed publication ”Real-Time Sensor Ser-
voing using Line-of-Sight Path Generation and Tool Orientation Control”
[SLU+10].

Hardware

The demonstrator system is based on a Nachi SC15F 6-axis industrial robot
with the real-time interface presented in Section 2.3. The robot is connected
to a controller PC running Ubuntu linux with a controller program imple-
mented in C++.

A tool is mounted on the robot’s tool flange including four lasers and
a Prosilica GC1350 Gigabit Ethernet Camera, see Figure 4.4. Using this
tool, the distance between the laser diodes and the workpiece surface can be
calculated by triangulation using the laser positions on the camera image,
cf. Figure 4.5. The camera is connected to the controller PC.
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Figure 4.5: Concept of triangulation-based distance measurement.

Tool Distance and Orientation Control

The four triangulation-based distance measurements are used to control
the distance between the tool and the workpiece surface as well as the
tool orientation. The distance dz between the tool and the workpiece is
calculated by taking the average of the measurements,

dz =
1

4

4∑

i=1

dzi , (4.1)

where dzi are the separate distance measurements.
A controller is used, in this example a P-controller, to calculate a velocity

vz that moves the robot tool center point to the desired height,

vz = −kz(dz − ddes) , (4.2)

where ddes is the desired distance between tool center point and the
workpiece.

The outward surface normal n is calculated by taking the cross product
of perpendicular vectors constructed from the positions of the laser projec-
tions pn in the tool coordinate system,

n =



nx

ny

nz


 = (p3 − p1)× (p4 − p2) . (4.3)
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From this normal the error eθ is defined,

eθ =

⎡
⎣eθ,xeθ,y
eθ,z

⎤
⎦ =

⎡
⎣ ny

−nx

0

⎤
⎦ . (4.4)

The correcting angle velocity ω is calculated using a P-controller with
the gain kθ,

ω =

⎡
⎣ωx

ωy

ωz

⎤
⎦ = −kθeθ . (4.5)

Line-of-sight Path Following

A guidance method was used for trajectory generation that is based on a
line-of-sight guidance algorithm. This algorithm is related to guidance con-
trollers used for the navigation of vessels presented in [Fos02] and [Bør08].

Figure 4.6 shows the principle of the used algorithm. The workpiece
surface in the area of the projection of the tool center point is recorded
by a camera. The tool center point is marked in the figure as a green
cross. A circle is laid around the projection with a given radius. Then,
the intersections with the line are calculated and set as possible waypoints.
The direction is now found towards the desired waypoint, i.e. the waypoint
that gives the lowest deviation from the previous direction. This direction
is then set as movement direction in the trajectory generator, together with
a desired speed in this direction. The direction is updated whenever a new
image is received and processed. The behavior of the algorithm can be
influenced by changing the radius of the circle. A larger radius makes the
system more robust against disturbances and delays in the control system,
while a smaller radius results in a faster approach to and less deviation from
the desired path. This parameter is very dependent on the application. An
analysis of the stability dependent on the radius, velocity and the delay in
the control system for the case of approaching a straight line is presented
in the attached publication”Time-analysis of a real-time sensor-servoing
system using line-of-sight path tracking” [SLM11].

The calculation from the waypoint coordinate to the movement direction
is done as follows. First, the angle ΨLOS is calculated by

ΨLOS = atan2 (yk − y, xk − x) , (4.6)

where (xk, yk) are the coordinates of the waypoint and (x, y) are the coor-
dinates of the projection of the tool center point.
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Figure 4.6: The line-of-sight algorithm. The cross marks the projection of
the tool center point on the surface. The arrow points in the direction of
movement. The blue circle is drawn around the tool center point with a
defined radius. The red points are the possible waypoints, from which the
waypoint is chosen which gives the lowest derivation from the actual heading.
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Trajectory
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Real-Time
Interface
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System

Figure 4.7: Signal flow in the control system.

Then, the velocity in the x-y plane is derived from the movement speed
v and the LOS angle ΨLOS by

[
vx
vy

]
=

[
v · cos(ΨLOS)
v · sin(ΨLOS)

]
. (4.7)

Together with the previous calculated velocities we get the twist

ξ =
[
vx vy vz ωx ωy ωz

]T
, (4.8)

which is sent to the tool velocity trajectory generator.

4.3.2 Real-time Analysis

In order to model and understand the behavior of the system, an analysis
was conducted, documenting the delays in the system. Figure 4.7 shows the
components that contribute to the total delay.
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Part Delay

Camera 66 ms
Vision Software 30 ms
Trajectory Generator 15 ms
Real-Time Interface 3 ms
Robot System 120 ms

Sum 234 ms

Table 4.1: Delays in the demonstrator system.

The worst-case delay in the vision system is calculated by adding the
time between two successive images, 50ms, to the communication delay to
the PC which is calculated to be 16ms. The resulting delay is 66ms. The
processing time in the vision software is measured by adding time stamps to
the data. The worst-case delay is measured to be 30ms. The combined time
for communication, processing and delays due to the asynchronous control
loops of the robot and the vision system is found to be 15ms. A further
3ms is added in the real-time interface. The delay that is most difficult
to determine is the delay in the robot system. The actual responses are
unknown due to the proprietary nature of the low-level system of the robot.
An estimation for the delay is the tracking delay, measured in Section 2.5.
The presented experiment shows a delay of 120ms between a commanded
and a measured cosine motion of the robot. The total estimated worst-case
delay is hence 234ms. Since most of the delay contributions are independent
from each other, and the stated delays are worst-case delays, the real delay
is expected to be lower. Table 4.1 summarizes the delays in the system.

To understand the influence of the parameters in the system, a model
was derived showing the behavior of the system when approaching a straight
line. The starting position is in a given distance from the line with the
distance less that the line-of-sight radius. These parameters are the line-of-
sight radius R, the robot tool speed v, the cycle time of the sensor system
ts, and the delay in the control loop d. The delay d is the number of
discretization steps ts, forming the complete delay in the control loop. The
linear system describing the distance py from the line at time k is

x[k + 1] = Ad x[k] (4.9)
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with

x[k] =

⎛
⎜⎜⎜⎝

py[k]
py[k − 1]

...
py[k − d]

⎞
⎟⎟⎟⎠ , Ad =

⎛
⎜⎜⎜⎝

1 0 0 −a
1 0 0

. . .
...

0 1 0

⎞
⎟⎟⎟⎠ , (4.10)

where a is

a =
v ts
R

. (4.11)

v is the tool speed. ts is the step size, i.e. the cycle time of the sensor
system. R is the line-of-sight radius. The system has d+1 states. Figure 4.8
shows the stability regions of the parameter a plotted against the delay d.
The figure shows that the stable area quickly decreases with increasing delay.
This means that it is important to decrease the delay in the system in order
to make the system more stable.

It can be seen that a is proportional to the tool speed v, the step size ts
and inversely proportional to the line-of-sight radius R. This means that a
larger radius R increases the stability of the system, while the tool speed v
and the step size ts have to be decreased in order to increase the stability.
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Figure 4.8: The stability regions for parameter a plotted against the delay d.
d is the number of delayed steps in the control loop due to the communication
and computation delays. The parameter a is proportional to the tool speed
and the step size. Furthermore, it is inversely proportional to the line-of-
sight radius.
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Figure 4.9: Step response as a function of the line-of-sight radius. The
starting point is 0.01m from the line, i.e. at the coordinate (0.00, 0.01).

The system was simulated on a PC in order to analyze the behavior in
different situations. Figure 4.9 shows the step response of the simulated
system while approaching a line from a starting point 0.01m from the line.
The experiment was conducted for different radii. The figure shows that
the behavior of the algorithm is very dependent on the chosen radius. A
compromise has to be found between fast approach to the line and less
oscillation.

A series of experiments was done by comparing simulation results with
the real response. Different delays were chosen for the simulation in order
to gain an understanding whether the estimated delay is an acceptable ap-
proximation. The simulations were conducted with 200ms delay and 250ms
delay. Figure 4.10 and Figure 4.11 show the system following a corer in the
path with two different velocities, 40mms−1 and 100mms−1 while keeping
the line-of-sight radius constant at 25mm. It can be seen that the real
path is quite near the simulated paths. The deviations can be explained by
the unknown behavior of the low-level system and the mechanical system
of the robot. A small error is also introduced in the process of fitting the
coordinate systems of the simulated and the measured data. The experi-
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Figure 4.10: Simulation and experiment for a tool velocity of 40mms−1.
The rounded corner is due to the line-of-sight radius of 25mm. The robot
does not react instantly when the corner is detected. This is due to the delay
in the control loop.

ment shows that the delay in the real system is in the magnitude of the
estimated delay. The experiment with 40mms−1 tool speed results only in
a small overshoot, while the response of the experiments with 100mms−1

tool speed results in a damped oscillation. In both cases, the change to-
wards the new direction is not instant when the line-of-sight radius reaches
the corner. This is due to the delay in the control system.

4.4 Conclusion

A system was presented demonstrating line tracking on an unknown work-
piece with tool orientation control to keep the tool perpendicularly orien-
tated to the workpiece surface. The distance between the tool and the
workpiece is controlled to be constant while the robot moves along the line.
A triangulation-based sensor system was proposed consisting of a camera
and four laser diodes. The sensor system was used to calculate the distance
between workpiece and the tool, and the surface normal. A line-of-sight
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Figure 4.11: Simulation and experiment for a tool velocity of 100mms−1.
The line-of-sight radius is 25mm. Due to the large velocity and delay the
robot is overshooting.
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based algorithm was used to move the robot tool along a line drawn on
the workpiece. A real-time analysis was conducted in order to identify the
delays in the control loop. Models were created for the case of approaching
a straight line. The influence of the line-of-sight radius and the movement
speed on the behavior of the system were discussed. Experiments for the
case of moving around a corner were conducted and the measurement data
was compared with simulated data in order to verify the identified delays.



Chapter 5

Automated Sewing

This chapter presents an automated sewing cell that is able to sew together
two parts of slightly different shapes. Sensor-based real-time control is used
to hold a constant tension in the workpiece as well as to control the seam
allowance. The system was presented in the attached publications ”Ex-
periments towards Automated Sewing with a Multi-Robot System”[SW12],
”Real-Time System Integration in a Multi-Robot Sewing Cell”[SWL12] and
”Real-Time Analysis of a Multi-Robot Sewing Cell”[SLM13].

5.1 Motivation

The automation of the sewing process is a difficult task in automation.
Many challenges arise from this subject. Operations that are easily handled
by humans result in complex systems when automated, often with extensive
use of sensors. The uncertain characteristics of the non-rigid workpieces lead
to difficulties during the handling, and to uncertain measurements and esti-
mations. Small variations in the stiffness may result in different mechanical
behavior and to a different response in the control system as one example.
Although many related tasks can be solved with conventional robot inter-
faces, the control of the sewing process strongly benefits from high control
frequencies and real-time control of the robots. This is especially important
at higher sewing speeds. There is a request from the industry to work on
the automation of these processes, both due to quality improvements for
complex sewing automation and due to the high labor costs, especially in
high-cost countries such as Norway.

The demonstrated case is part of several research projects in the working
area of automated sewing. The roots of the project go back to 2005 when
the TEMPO project was funded by The Research Council of Norway and

47



48 Automated Sewing

industrial partners to work on cases and studies related to usage of sen-
sors in automated production, for example seam tracking during a sewing
operation. The follow up project Automatisert 3D Sammenføyning

(Automated 3D Sewing) was started in 2008 with focus on sewing of
synthetic fiber to leather parts and on initial experimentation on sewing
of 3D-shaped assemblies. The delivery was a demonstrator system based
on a sewing machine and a real-time controlled robot to handle both the
stacking of the different parts and the sewing operation. The demonstrator
system was presented in Wetterwald et al. [WDRU08]. The success of the
project led to the projectRobust Industriell Søm (Robust Industrial

Sewing Automation), founded in 2011, that focuses more on industrial
stability of the already developed demonstrators as well as on joining of
parts with different shapes in order to create 3D-shaped assemblies. This
PhD work, which was part of the SFI Norman research program1, was
conducted in close cooperation with the mentioned projects.

5.2 Related Work

Several research groups have worked in the area of handling of automated
sewing in recent years. This chapter presents an overview of some projects
related to the presented work.

In Gershon and Porat [GP88] and Gershon [Ger90], an automated sewing
cell consisting of one robot and a sewing machine is presented. The sewing
machine speed is set by a PC. The tension in the work piece is controlled
using a force sensor in the control loop. Machine vision is used in a separate
control loop for the seam allowance. Experiments compare the system with
a simulated model. Discrepancies are due to the assumption of stiff cloth
panels, perfect images and an accurate robot. It is reported that the seam
quality varies considerably between different fabric types.

Gershon [Ger93] defines different categories for the handling of flexible
materials, either sensor-based or sensor-less. Gershon writes that complex
tasks may be best solved using a combination of different strategies. He
emphasizes the difficulty of automated sewing due to buckling and different
forces acting on the fabrics, but points out that satisfactory performance
can be achieved using feedback control.

Paraschidis et al. [PFV+95] presents a robotic system for handling flat
textile materials. The authors point out the difficulties of the handling
of non-rigid materials due to unknown material characteristics. They use

1http://www.sfinorman.no
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vision and force/torque sensors to experiment with different handling op-
erations. They identify problems and challenges during the experiments,
including unpredictable behavior of the material, problems with lighting for
the vision analysis, calibration errors, and noise in the force/torque mea-
surements. They highlight the benefits of previous knowledge of material
characteristics in order to develop fast and reliable algorithms.

In Gottschalk and Seliger [GS96], a device for handling curved fabrics
during a sewing operation based on rollers in front of and behind the needle
is presented. Different feeding speeds allow for adapting to different seam
lengths of the two workpieces. The seam path is planned based on exper-
imentally investigated material properties. The authors mention that the
process of insertion of the workpieces into the system has to be automated
or simplified in order to apply the system in the industry.

In Seliger and Stephan [SS98], an overview of the challenge of automated
sewing is presented, especially the sewing of 3D-shaped products. The focus
is on material handling. The authors suggest adaptive control strategies
based on measurements of the seam allowance and the feed rate during the
sewing operation

In Kudo et al. [KNMB00], a system based on two robots that cooper-
ate to handle a single fabric similar to a human worker during the sewing
operation is presented. The implementation includes controllers for tension
control, control of the pressing force, and synchronization with the sewing
machine speed. A visual tracking controller controls the position of the
fabric during the sewing operation. The applied robots are a 4-DOF and a
5-DOF robot. These robots were selected to match the task complexity and
the available space. Experiments are presented to show the effectiveness of
the system. The experiment that is most related to the work in this chapter
is sewing along a curved line, which is done smoothly and only with small
errors.

A sewing cell demonstrator that is closely related to this work is pre-
sented in Wetterwald et al. [WDRU08]. The sewing cell is able to sew
leather parts to similarly shaped fiber parts. It is based on a single robot
and a sewing machine. A sensor is included to measure the part position
during the sewing operation based on laser-triangulation. An optical ve-
locity sensor is used to synchronize the robot speed with the sewing speed.
Experiments are presented, demonstrating that the system is able to pro-
duce parts with a satisfactory level of quality. However, the authors state
that work has to be done regarding the quality stability.

Another sewing concept is presented by Winck et al. [WDBH09]. The
authors remark that as of the date of their publication no fabric control
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strategy has made the jump from a demonstrator system to an industrial
system. One reason for this has been the lack of robustness of the used con-
trol methods, for example synchronization between a robot and the sewing
machine in order to prevent buckling. As another reason, they mention the
research focus on sewing single fabrics, while there is a demand of sewing
together two fabrics. Based on these challenges, they present an approach
based on a servo-controlled feed mechanism. Servo motors are mounted on
the sewing machine to control the feeding as well as the orientation of the
fabrics. The fabrics are controlled independently and separated by a thin
plate. By doing this, they move away from a human-like control method.
Path control is done by pattern recognition of the fabric together with an
open-loop controller. A prototype is presented that successfully controls
fabric through multiple trajectories. Due to the open-loop fabric position
control, there is inaccuracy in the fabric position. Therefore the authors
emphasize the need for sensor-based feedback control.

In Koustoumpardis et al. [KZA06], an overview of a robotic system for
handling of non-rigid materials, as well as fabric handling strategies for the
whole sewing process is presented. The presented demonstrator system con-
sists of a single robot and a sewing machine. The gripper is designed to press
the fabric to the table. A force sensor is mounted on the tool to measure
the tension or compression in the fabric. The robot velocity is regulated
by a neuro-controller. The goal is to synchronize the robot speed with the
sewing machine speed. A fuzzy-based visual servoing controller guides the
fabrics during the sewing process. The authors identify the following han-
dling tasks in a sewing process: ply separation, placement on the working
table, manipulation towards the sewing needle and tension control during
the sewing operation. A set of sub-tasks is described for preparation of
the sewing operation including the planning of the sewing process for the
present fabric. The sewing operation is divided into manipulation of the
part towards the needle, the stitching process and the rotation around the
needle. This rotation is used to position the part for the next edge. More
details of the neural network control system are presented amongst others
in Koustoumpardis and Aspragathos [KA11].

5.3 Design and Implementation

This chapter presents implementation details of the sewing cell that is used
as the main demonstrator platform for the presented work. The design and
implementation were made by a small team in which the author played a
major part.
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Figure 5.1: Ekornes recliner with footstool. The sewing of the cover of
the footstool was chosen as demonstration case for the sewing cell. Image
source: ekornes.no.

5.3.1 Design Criteria

The following criteria were identified prior to the design of the system:

• The system has to be able to sew together two parts with slightly
different shape.

• The system should be as robust to material variations and uncertain-
ties in material characteristics and shapes as possible.

• The system should not introduce unnecessary complexity, but rather
be constructed to be as simple as possible.

• The system should allow for rapid prototyping in order to experi-
ment with the control system as well as the program logic without big
changes in the software.

As industrial case, the automated sewing of a cover for a footstool as
shown in Figure 5.1 was chosen. Preliminary experiments, presented in
the attached publication ”Experiments towards Automated Sewing with a
Multi-Robot System” [SW12], show that there are large variations of the
force response for clamped parts, cf. Figure 5.2. Further variations are
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Figure 5.2: The force response for a clamped part with two different lengths.
Each experiment was repeated three times (green: 150mm, blue: 250mm).

introduced by varying material thickness and shape. These uncertainties
underline the need for sensor-feedback to control the sewing process. Based
on the presented challenges, the design criteria, and the experiences of the
preceding work, it was chosen to build a system based on two robots. This
makes it possible to control the feeding of the two parts independently.
Sensors and robots with real-time interfaces were chosen in order to achieve
control frequencies in the order of 100Hz. This frequency range is quite
typical for position-based low-level interfaces for industrial robots.

Regarding the software design, it was decided to build a distributed
system rather than a monolithic one in order to divide the complex system
into simpler components with distinct boundaries of concerns. The main
programming language was chosen to be Python due to its support for
fast prototyping and the large collection of available libraries. Python has
also the possibility to use compiled libraries, for example C/C++ libraries
for computation-intensive parts. This makes it possible to run complex
computations nearly as fast as in a compiled language. Microcontroller
code and low-level drivers were programmed in C/C++.

It was decided to regularly reinvestigate the real-time characteristics of
the code in order to verify the decision of choosing a scripted language
instead of a compiled language.

5.3.2 Sewing Cell Demonstrator

This section describes the hardware of the sewing cell shown in Figure 5.3
as well as the integration of the hardware components in the control system.
The structure of the different components is shown in Figure 5.4.
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Figure 5.3: The sewing machine with the two robots. Force sensors are
mounted on the end-effectors to measure the tension in the work pieces.

Sewing Machine

The core of the sewing cell is a Dürkopp Adler DA195 industrial sewing
machine. This sewing machine was chosen due to its ability to set different
stitch lengths for the two parts. The stitch lengths are mechanically ad-
justable and are considered to be included in future control methods. The
drive speed is controlled by a microcontroller board connected to the drive
controller. The same board is also connected to the pneumatic valves to
control the pressure foot, the thread cutter and the thread tensioner. An
Ethernet connection to the control PC is used to include the sewing machine
functions in the control system.

Industrial Robots

Two UR5 robots from the manufacturer Universal Robots are installed in
the sewing cell to lead the workpieces into the sewing machine. The robots
are mounted in a configuration that allows for independent control of both
workpieces during the sewing operation, as shown in Figure 5.3.

The real-time interface described in Section 2.4 is used to control the
robot in combination with the trajectory generator described in Section 3.3.2.



54 Automated Sewing

Edge Sensor
(upper)

Force Sensor
(upper)

Force Sensor
(lower)

Edge Sensor
(lower)

Sewing Process
Controller
(upper)

Sewing Process
Manager

Sewing Process
Controller
(lower)

Trajectory
Generator
(upper)

Robot
(upper)

Trajectory
Generator
(lower)

Robot
(lower)

Sewing
Machine

Figure 5.4: Structure of the sewing cell. There are individual components
for the control loops of the upper and the lower robot. For each robot there
is a sewing process controller which includes an edge controller and a force
controller. The sewing process manager is responsible for setting up the
sewing process controllers and controlling the sewing machine.
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Figure 5.5: The pinch tool for gripping the workpieces.

Robot Tools

Different tools were developed for different tasks in the sewing cell. Fig-
ure 5.5 depicts a pinch tool that is used for the sewing operation. The tool
is limited to experiments where the gripping point is outside the sewing
path. This limitation is due to the simplicity of the gripper and the lack of
functionality for grip shifting.

A two-needle gripper is under development to extend the functionality
of the pinch gripper. The gripper includes two needles which can hold the
workpiece at two gripping points at the same time. The needles can be
operated independently. The gripper was designed to be able to sew the
main part of a seam while holding in the sewing line. The last part of the
seam is done by holding the part in a gripping point away from the sewing
machine. To avoid collisions with the sewing machine for the last part of
the seam, the tool is rotated around the new gripping point.

For experiments concerning the whole sewing process including material
handling, a set of grippers was designed based on a gripping area instead of
a gripping point. The grippers are shown in Figure 5.6.
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Figure 5.6: An alternative tool for gripping the workpieces.

Force Sensors

Force sensors are mounted to the robot end-effectors to measure the force
in the fabrics during the sewing operation. The force sensors are ATI mini
45 with a Net/FT controller box. They are connected to the control PC
via Ethernet using an open source driver2. The sensor rate is set to 1 kHz.
This frequency is well above the frequency of the robot interface which is
125Hz.

Edge Sensors

Position control is an important part of the sewing operation. The system
must be able to place the seam in a given distance from the edge, i.e.
with a fixed seam allowance. To achieve this, an edge sensor is needed to
measure the position of the work piece in front of the needle. A wing-shaped
plastic sensor plate was built and placed between the two parts as shown
in Figure 5.7. The plate is the housing for two optical linear arrays, one on
each surface. The sensor array communicates a one-dimensional image to a
microcontroller board that is connected to the control PC via Ethernet. On
the PC, an edge detector computes the edge position based on a threshold
for the amount of light that indicates which parts of the sensor is covered
by the work piece.

2
netft rdt driver from http://ros.org
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Figure 5.7: The edge sensor plate includes one optical sensor array on each
side to measure the position of the edge near the needle. The plate is placed
between the two workpieces during the sewing operation

Due to issues with friction at the sensor plate, a new sensor system
was designed. It is based on a stereovision system. Figure 5.8 shows the
cameras mounted on the sewing table. Another problem was inaccurate
measurements for thicker parts due to an air gap between the sensor and
the workpiece edge. Figure 5.9 shows a screenshot of the edge detection
software. The new system is still under development.

Software Platform, Communication and Middleware

A distributed software system was built that keeps the different parts of
the system independent and as simple as possible. ROS3 (Robot Operating
System) was chosen as middleware due to its features as well as the accep-
tance and distribution in the robotics research community. ROS is a set
of libraries and tools for development of robot applications. It provides a
communication system including messages and services. Using a C++ or
Python API, it is possible to develop a distributed system for the different
parts of a software system, e.g. sensor drivers, robot interfaces, controllers,
administrative code. The largest amount of the code was implemented in
Python, while microcontroller code and low-level drivers were written in
C/C++. The operating system of the control PCs was Ubuntu Linux with
low latency kernel.

3http://www.ros.org



58 Automated Sewing

Figure 5.8: A stereo camera is mounted to the sewing machine in order to
record the edge position.

Figure 5.9: Edge detection based on the stereo camera system is done in the
vision software.
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Figure 5.10: The sewing coordinate system.

5.3.3 Control System

This section explains the control system of the sewing demonstrator, pre-
sented in the attached publication ”Real-Time System Integration in a
Multi-Robot Sewing Cell” [SWL12].

Control Coordinate System

A sewing coordinate system has been defined to describe the directions of
the force control and the edge control, see Figure 5.10.

The force controller is programmed to control the sewing force between
the gripping point and the needle, which results in end-effector movements
towards or away from the needle. The edge position of the part is controlled
by rotating around the needle, which results in end-effector movements on
a circular path around the needle. The two components are then combined
with a feed-forward velocity to a resulting end-effector velocity.

The end-effector velocity vcmd that is commanded to the robot is calcu-
lated as follows:

vcmd = vforce + vedge + vff (5.1)

with vforce being the velocity component from the force controller, vedge

the velocity component from the edge controller and vff the feed-forward
velocity.

The feed-forward velocity vff is calculated from the frequency of the
sewing machine drive fdrive and the estimated stitch length lstitch,
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Figure 5.11: The edge control loop.

vff = lstitchfdriven̂feed (5.2)

where n̂feed is the unit vector in feed direction. The estimated stitch
length is amongst others dependent of the stitch length configuration of
the sewing machine, the sewing force, the material characteristics, and the
thickness of the material.

Edge Control

To keep the seam in a constant distance from the edge, an edge controller
was developed. As mentioned before, the edge controlling is done by rotating
the work piece around the needle.

The control loop is depicted in Figure 5.11. The control input is the
edge error which is constructed from the edge measurement pfabric and the
desired edge position pdes by

vedge sensor = −kedge(pfabric − pdes)n̂
⊥
feed (5.3)

where n̂⊥feed is the unit vector perpendicular to the feed direction. vedge sensor

represents the desired movement on the edge sensor.

A desired angular velocity around the needle ωneedle is calculated from
the desired velocity on the edge sensor,

ωneedle =
rsensor × vedge sensor

‖rsensor‖2 , (5.4)

with rsensor being the vector from the needle to the edge sensor. The desired
end-effector velocity caused by the edge control vedge is then constructed
from the desired angular velocity and the gripper-to-needle vector r by

vedge = r× ωneedle . (5.5)
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Figure 5.12: The force control loop.

Force Control

Figure 5.12 shows the force control loop that is used to keep the sewing
force constant.

Unlike the edge controller, the force controller uses filtered sensor input.
This is due to the large influence of the feeding mechanism which leads
to oscillations in the force measurement. A moving average filter with the
time window of one stitch is used to compute the average force in the sewing
direction,

F ||average = r̂TFaverage , (5.6)

where r̂T is the gripper-to-needle unit vector.
The velocity component at the end-effector is calculated

vforce =
[
kp(‖r‖)(F ||average − F

||
des) + ki(‖r‖)ζ

]
r̂ (5.7)

with
ζ̇ = (F ||average − F

||
des) . (5.8)

To compensate the changes in the force response due to the changing
gripper-to-needle distance ‖r‖), kp and ki are scaled linearly with the dis-
tance:

kp(‖r‖) = kp0‖r‖, kp0 > 0 (5.9)

ki(‖r‖) = ki0‖r‖, ki0 > 0 . (5.10)

5.4 Real-time Analysis

This section summarizes a real-time analysis of the sewing cell. The results
have been presented in the attached publication ”Real-Time Analysis of a
Multi-Robot Sewing Cell” [SLM13].
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In the planning phase of the sewing cell, it was decided to use real-time
controlled robots to solve the task of automated sewing. Another design
choice was to use Python as main programming language, motivated by
the high flexibility and usability of the language. To verify that the choices
were feasible, an analysis of the real-time characteristics of the control loops
including the sensors and the mechanical system was carried out. One
objective was to analyze whether the control system was able to benefit
from the robots’ low cycle time and tracking delay. Another objective was
to detect possibilities for improvement of the system by identifying large
delays that could be decreased by hardware or software modifications.

5.4.1 Delay Measurements

Due to the distribution of the system on different hardware and software
platforms, it is difficult to obtain a precise overview of all delays in the
system. It was decided to estimate the delay in the main control loops by
measuring the delay in different parts of the signal paths. Figure 5.13 shows
the different paths that were looked into.

The paths are as follows:

1: red The time from sending a command from the trajectory generator
to the robot until a movement is measured at the force sensor

2: green The time from receiving force data until a corresponding com-
mand is sent from the trajectory generator to the robot

3: blue The time from receiving edge data until a corresponding command
is sent from the trajectory generator to the robot

4: purple The time when the computation in the sew controller is triggered
by the new joint state update until a new twist is sent to trajectory
generator

Delays in the Robot System

The measurement of delays in the robot system is difficult since it is not
possible to directly communicate time stamps through the physical system.
Another issue is the proprietary low-level controller of the robot with un-
known parameter settings and control strategies. Even though the actual
positions of the robot can be obtained from the real-time interface, the ac-
curate point in time when the position is recorded is unknown. To meet
these challenges, an experiment was designed that records the delay from
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Figure 5.13: The deployment of the different components including the paths
for the real-time measurements. The paths are symmetric for the ”Upper”
and the ”Lower” control loop. The ”Net F/T” nodes represent the force
sensors. The ”XMega: Optical Line Sensor Control” node includes the edge
detection sensors and the corresponding hardware platform.
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Figure 5.14: Delay through the robot system from obtaining a new robot
state in the trajectory generator until a movement can be measured at the
force sensor. The green marker is at the position of the minimum response
time and the red marker at the position of the maximum response time.

when the robot is commanded to move from a constant position to another
position until the robot began to move. A ramp was commanded to the
robot through the trajectory generator and a time stamp was recorded.
The point in time when the robot began to move was then measured by
recording data on the force sensor. This path is marked in Figure 5.13 by
the red arrow. Since the force sensor has an update frequency of 1 kHz,
this measurement is relatively accurate. The time-stamped data is then
compared to the previous recorded time stamp of the velocity command.

The result of 1000 experiments is shown in Figure 5.14, including the
delay in the force sensor which is stated in the data sheet to be 0.288ms.

The measured delays are between 13ms and 23ms. Most measurements
are in the range of 14ms to 16ms, while a small peak also can be found at
22ms. The peak at 22ms indicates that there are a few cycles where the
movement command is processed in a later cycle than most commands, i.e.
about 8ms later.

Time Analysis for the Force Measurement

The remaining delay in the force control loop is the delay from the point
in time when a new force value is received until a velocity command based
on this force value is sent to the robot. To measure this contribution to the
total delay, the force data is time stamped and the time stamp is evaluated
when the data is sent to the robot. This path is marked by the green arrow
in Figure 5.13.

Figure 5.15 presents the histogram of 10 000 measured delays. It can
be seen that the delays are between 5.1ms and 10.7ms. The average delay
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Figure 5.15: Delays for the force measurements through the ROS system.
The green marker is at the position of the minimum response time and the
red marker at the position of the maximum response time.

is near 8ms which is the cycle time of the robot. This delay is due to
the asynchronous loops in the trajectory generator. This is because the
calculation of the next step already begins right after an update is sent to
the robot. The calculated twist for the next update is then stored in the
trajectory generator until the next actual value is received from the robot.
The communication is depicted in Figure 5.16.

Time Analysis for the Edge Measurement

Another delay measurement was conducted for the edge measurement, the
same way as done for the force measurement. A time stamp was added to
the data from the line sensor and was evaluated at the point in time when
the motion was processed in the trajectory generator. Figure 5.17 shows
10 000 measurements of the blue path in Figure 5.13.

The minimum delay was 5.5ms and the maximum delay was 21.0ms.
The even distribution between of the delays is due to the asynchronous loops
for the trajectory generator which runs at 125Hz, and the line sensor which
runs at about 100Hz.

Delay in the Sewing Controller

The main loop in the sewing process controller is synchronized with the
trajectory generator by using a blocking call to receive the actual joint
angles. When a new joint update arrives in the trajectory generator, the
sewing process controller is notified. The timing constraints in the real-
time interface of the robot do not allow calculation of the new twist before
a joint update is sent to the robot. Instead the calculation is triggered at
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Figure 5.17: Delays for the edge measurements through the ROS system
in the active sewing system. The green marker is at the position of the
minimum response time and the red marker at the position of the maximum
response time.
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Figure 5.18: Delay for the data from the trajectory generator to the sewing
controller and back to the trajectory generator. The green marker is at the
position of the minimum response time and the red marker at the position
of the maximum response time.

the same time a new joint update is sent to the robot, and then a new
twist is calculated and communicated to the trajectory generator to be
used in the next cycle. The following experiment examines the time from
the notification of the sewing process controller until a new twist is received.
The path is shown in Figure 5.13 as the purple arrow. This is to assure that
the new twist is not further delayed. The delay for 10 000 measurements is
shown in Figure 5.18.

The measured delays have a maximum value of 2.6ms which is well below
the cycle time of the robot. This shows that no further delay is introduced
due to computation time.
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5.4.2 Delay Summary

The worst-case delays for the different paths in the system are summarized
in Table 5.1.

System Part Max Delay Path

Tra. Generator - Robot Movement 22.8ms Red
Force Sensor - Tra. Generator 10.7ms Green
Edge Sensor - Tra. Generator 21.0ms Blue
Tra. Generator - Tra. Generator 2.6ms Purple

Table 5.1: Worst-case delays for different system parts in the sewing cell.

The overall delays for the force loop and the edge loop are calculated
by adding the delays for the robot system and the corresponding delay for
the sensor data. It was found to be 33.5ms for the force loop and 43.8ms
for the edge loop. The experiments show that the largest contribution to
the overall delay is due to the delay in the robot’s real-time interface, the
low-level control system, and the mechanical system. This is a delay which
cannot be influenced by the user. The remaining delays are mainly due to
synchronization of control loops with different cycle frequencies. Compu-
tation times in the different components and communication delays play a
minor role in the system.

An unexpected delay of an additional cycle was found for a small number
of measurements of the delay from the commanded robot motion until the
movement. This delay is object of further investigation.

5.5 Control and Seam Quality

This section is an excerpt from the experiments which have been presented
in the attached publication ”Real-Time System Integration in a Multi-Robot
Sewing Cell” [SWL12].

As described in Section 5.3.3, independent force and edge control is used
to control the robots. Both robots work in this control mode independently
of each other. However, the mechanical setup leads to dependencies due to
friction and light-occlusion that may affect the edge sensor. The following
experiment was conducted to determine whether the controllers work as
intended during the sewing operation. In the experiments, two similarly
shaped workpieces were set up manually in the sewing cell and the sewing
operation was done automated using force and edge control. The force
controller was set up to hold a desired force of 2N in the workpiece.
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Figure 5.19: Sewing force value and edge error of the upper robot for a
typical sewing process with two robots.
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Figure 5.20: Sewing force value and edge error of the lower robot for a
typical sewing process with two robots.
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Figure 5.19 shows the force and edge measurements for the upper robot,
while Figure 5.20 shows the same measurements for the lower robot. It
can be seen that the force controller keeps the sewing force at the desired
set point. Even though the force measurement is filtered using a sliding
average filter with the window size of one stitch, the force variation due
to the sewing foot movement can be seen as a small oscillation. The edge
measurement represents the displacement of the part at the sensor plate.
Since the sensor plate is located some centimeters in front of the needle and
the edge correction is done by rotation, the real edge error on the workpiece
is generally observed to be lower than the measured edge error. This holds
for an ordinary sewing operation. Anyhow, the measured edge error at the
sensor plate is below 3mm, which was found to more than satisfactory for
the sewing operation of these parts.

It can be seen that the edge error measurements are quite similar for the
two parts, but with different sign. This is due to the mechanical construc-
tion in which the sensors are mounted with opposite orientation in respect
to each other. The plot of the upper edge measurement shows more distur-
bances than the plot for the lower measurement. This can be explained by
the mechanical system where the upper part is resting on the sensor plate
which has an elastic mount allowing for oscillations induced by the feeding
mechanism, while the lower part rests on the more stable sewing machine
base.

Due to the distance between the edge sensor and the needle, as well as
the complex mechanical behavior of the workpiece in the sewing cell, it is
difficult to draw conclusions concerning the real seam quality only based
on the measurements. Low error measurements indicate that the resulting
seam likely is of a good quality, but a quality check of the sewn part is
essential.

Figure 5.21 shows an example of a finished seam. Manual inspection
shows that the seam is of a satisfactory quality, except for the offset at
the corner which is about 10mm for the depicted assembly. This error
concerning the corner matching is caused by noninteracting control loops
for the two workpieces. This challenge is further discussed in Section 5.6.
It was observed that local peaks in the edge error measurements usually are
not significantly visible on the seam. On the other hand, an uneven edge,
for example due to markings cut into the edge, can result in false control
responses since the markings are unmodeled. This is usually not a problem
due to the damping behavior of the mechanical system.
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Figure 5.21: The assembly of two parts, sewn in the experiment with two
robots. The seam runs from left to right and is nicely placed at a nearly fixed
distance from the edge. At the end of the seam an accumulated error of the
feeding can be observed as a longitudinal displacement between the corners
of approximately 10mm.

5.6 Velocity Synchronization and Corner Match-
ing

Preliminary work has been done to work on the challenge of matching the
corners at the end of the sewing operation. This challenge arises from
different feed velocities for the two parts due to independent control loops
for the upper and the lower part. Experiments have shown that the feed
speed is highly dependent on factors like sewing force and material thickness.
Since the demonstrated system is designed to handle materials of different
thicknesses and material characteristics, concepts have been designed to
compensate for the differences in the sewing speed. Early experiments have
shown that the feed speed can be influenced by temporal changes in the
sewing force, cf. the attached publication ”Experiments towards Automated
Sewing with a Multi-Robot System” [SW12].

Another convenient way to influence the feed speed is through mechani-
cal adjustment of the stitch length in the sewing machine. Two adjustment
wheels on the front of the sewing machine allow for changing of the stitch
length independently for the upper and the lower part. A mechanical servo-
based system has been suggested to control the feed speeds in real-time.
In combination with observation and estimation of the sewing force, such
a servo-system could be used for corner matching. However, this system
was put back to the benefit of other control methods that do not need me-
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chanical adjustments on the sewing machine. This is because the use of the
method would constrain the presented methods to sewing machine, which
allow this special kind of stitch length control.

Another promising concept is based on synchronization of the two dis-
tances between the robot tools and the needle. In this method, the robot
with the lower measured force is in the previously presented force control
mode while the other robot is programmed to keep the same tool-to-needle
distance as the force-controlled robot. The edge control is not influenced
by the changed control method. A supervisor system is used to observe the
force measurements of the two robots, and if needed to switch the leader
and the follower.

The proposed method has the drawback of allowing larger sewing forces
in the distance-controlled work piece than the desired set point of 2N. How-
ever, preliminary experiments show that the sewing force does not exceed
about 10N, even for experiments with introduced stitch length differences
of about 30%. This rise of the sewing force is considered to be acceptable
since visual inspection of the part does not reveal flaws in the seam quality.
Notice that the set point of 2N is no hard requirement, but rather is cho-
sen based on experience. It is found to be a good compromise between a
low sewing force not interfering with the feeding mechanism of the sewing
machine and a force high enough to ensure that the workpiece responds on
the robots edge controlling.

5.7 Overall Process

To include an automated sewing cell in a larger installation, mechanisms
for material handling have to be included into the system.

An overall sewing operation can be divided into the following parts:

• Identification and location of the parts on a table or in a storage
system

• Picking and possibly turning of the parts

• Pairing the parts for sewing

• Moving the parts into the sewing machine area and under the sewing
foot

• The sewing operation

• Removing the part from the sewing machine and moving it out of the
sewing cell
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Figure 5.22: Pairing of two parts.

• Quality check

The industrial applicability and hence the overall process is an important
part of the project. Even though the material handling was no direct part of
the presented work, a series of experiments and concept studies were started
due to the importance for the success of the sewing demonstrator. Figure
5.22 shows an experimental pairing operation based on visual detection of
the workpieces and force control during the stacking operation.

5.8 Conclusions and Future Work

The presented work is a major step towards the automation of the sewing
of 3D-shaped assemblies. A sewing demonstrator was presented that is able
to sew two parts with slightly different shapes. The concept of independent
force and position control has been demonstrated for a two-robot solution.
The feasibility has been demonstrated for cases of nearly straight seams.
Figure 5.23 shows an assembly of four parts that has been sewn in the
demonstrator cell. The handling of the material was done manually while
the sewing operation was fully automated. The assembly has been inspected
manually and found to be of acceptable quality concerning the seam, but
with some flaws at the end of the seam.

New challenges have been identified and investigated based on the used
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Figure 5.23: An assembly of four parts that have been sewn in the sewing
cell. The handling before and after the sewing operation has been done
manually while the sewing operation was fully automated.

strategies, for example different feeding velocities of the two parts and re-
sulting issues with the corner matching. Promising solutions have been
designed and preliminary experiments have been conducted.

Preliminary work has been done towards corner matching and a concept
has been presented to accomplish this task. Future work includes the fur-
ther implementation of the presented method as well as experiments with
new tools that make it easier to combine the different stages of the sewing
operation. A promising tool concept is based on grippers that can shift the
grip during the sewing operation.

Regarding the control of the sewing speed of both parts, it is imaginable
to work on a control system that is based on mechanical adjustment of the
stitch length for both parts in the sewing machine.

Further improvements of the stability of the system in regard to different
material types and material thicknesses can be expected from the integration
of the mentioned stereo camera system, replacing the current sensor plate.

Probably the most important task for future work is the integration of
the sewing operation in the overall process including the material handling
before and after the sewing. This is especially important with respect to
industrialization of the presented demonstrator cell.

Since the presented work was designed to be as general as possible re-
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garding material shape and characteristics, it is conceivable to work on a
demonstrator that is more adapted to a special case in order to gain in-
dustrial stability and to accelerate the transition into an industrial system
rather than a proof of concept.



Chapter 6

Included Publications

This chapter is a compilation of pre-prints of papers prepared during the
period of the PhD scholarship. The compilation is to be considered the
main contribution of this thesis. Each paper is presented in its own section
which opens with the bibliographic information for the contained paper and
a declaration of contributions.
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6.1 Open Real-Time Robot Controller Framework

M. Lind, J. Schrimpf, and T. Ulleberg, Open real-time robot con-
troller framework, Proceedings 3rd Conference on Assembly Tech-
nologies and Systems (CATS), 2010

Declaration of co-authorship
Experiment setups for and conduction on the three different robot con-

trollers were a collaborative effort among Morten Lind, Johannes Schrimpf,
Sebastian Dransfeld, and Thomas Ulleberg. Morten Lind implemented the
final versions of all external control code, that was used in conducting the
experiments. The experiments were developed and planned in close coop-
eration between Morten Lind and Johannes Schrimpf.

• Sebastian Dransfeld single-handedly performed all experiment setup
and measurements for the KUKA RSI control.

• The Nachi controller setup was enabled by the efforts of Johannes
Schrimpf, with help from Thomas Ulleberg, to intercept and modify
the internal Nachi controller communication. The measurement ex-
periments on the Nachi controller were carried out in collaboration
between Morten Lind, Johannes Schrimpf, and Thomas Ulleberg.

• The gateway to the low-level control interface in the Universal Robots
controller was designed and tested in collaboration among Johannes
Schrimpf and Morten Lind, and was implemented by Johannes Schrimpf
on the native controller platform. The experiments with the Univer-
sal Robots controller were conducted by Morten Lind and Johannes
Schrimpf in collaboration.

The PyMoCo control framework was conceived and designed by Morten
Lind, with a cooperative contribution from Johannes Schrimpf. PyMoCo
was implemented single-handedly by Morten Lind, and tested extensively
in close cooperation among Morten Lind and Johannes Schrimpf.

The paper was written, prepared, and submitted by Morten Lind. Jo-
hannes Schrimpf contributed review of the final version. All graphics is
designed and produced by Morten Lind.

Comments

• In early publications, the term motion control was used as synonym
for trajectory generation. We were enlightened that trajectory gen-
eration was the correct term. To clarify the difference between the
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low-level controller system and the trajectory generation system, the
term trajectory generation was used in later publications.
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Abstract
The challenge with advanced robot control in manufacturing is two-fold, regarding industrial robot controllers:
1) General real-time control from external entities are not supported; and only for special cases of application
scenarios, limited real-time extensions to the controller can be purchased. 2) The robot controller application-
platforms are robot centric; leaving an external application to battle with achieving the desired behaviour.
Based on free and open software resources, experiments have been performed with three industrial robot con-
trollers, and measurements of response times and tracking delay from external control are presented. Also
presented is the design of a motion control framework, demonstrating external integration of force feedback and
visual servoing.
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1 INTRODUCTION

The past couple of decades have seen an ever increasing de-
mand for flexibility and adaptability in manufacturing automa-
tion. Regarding the near future of manufacturing in western
countries, a quite probable scenario is that manufacturing of
simple goods with no or little variation, will be almost non-
existing. The manufacturing industry that will remain in this
part of the world will have emphasis on a high degree of cus-
tomization, almost to the level of having no product catalogue.

One of the drivers for this effect is the market demands, re-
questing customization and personalization, simply due to the
possibility [1]. This is a stimulative and additive effect, changing
existing manufacturing companies and shaping new ones. An-
other driver for this is the outsourcing or relocation of uncompli-
cated large-series production to low-cost countries. This latter
effect is a subtractive and inhibitory effect in the sense that it re-
moves manufacturing companies that do, or can, not change,
and prevents establishment of new manufacturing companies
that only manufacture simple goods.

These two effects are, of course, but two among a whole range
of other effects, and can not encompass the plethora of aspects
and types of manufacturing. However, in the general subject
of manufacturing research, they are the predominant effects
discussed regarding automation.

Automation is well in the process of taking over shop-floor level
activities, like processing, handling, and transportation. Fac-
tory level activity, like orchestration, real-time (re-)scheduling,
and online logistics management, is under development to be
automated, hence closing the gap between Enterprise Re-
source Planning (ERP) systems and shop-floor control.

Motivation

Robot manipulators are used to meet the requirements of
agility, reachability, flexibility, adaptability, dexterity, etc., in
manufacturing systems. The most flexible kind of industrial ma-
nipulator is the (serially linked) articulate robot, and it mostly

has 6 degrees of freedom (DOF). A challenge with such mech-
anisms is, that the mapping between the actuator and opera-
tional spaces are highly non-linear. This is why an advanced
motion controller is always found associated with such a robot.

Historically, there has not been an overall application control
at the factory or shop-floor levels, so robot-centric application
controllers were implemented co-located with the motion con-
trollers in the robot controllers. These have evolved to quite ad-
vanced platforms, but typically remain closed and proprietary,
shielding off the underlying servo controller from the application
programmer. Hence, the native application controllers are well
suited for the use cases that were part of the platform devel-
opers’ design criteria, but virtually excludes or hinders all other
uses and application scenarios.

To render the robots more general and generic, the world of
robotics has seen some projects aimed at developing open
controllers, independent of the robot and controller manufac-
turers. Examples of such are the Open Modular Controller, de-
veloped by a team led by Jensen [2], and the OROCOS project
[3]. Such projects provide an advanced application platform,
which is completely open, and thus allowing any application
scenario within the limits of mechanics, hardware, and real-
time communication.

Facing the need for application flexibility and factory-wide au-
tomated control, the robot controllers are no longer adequate
as application platform. Further, the open application-platform
controllers may also be too complex, since they remain robot
centric. I.e. they still assume that it is within the application
controller of the robot, that the major part of the application is
to be implemented.

In a distributed, intelligent system for automatic control at fac-
tory or shop-floor level, the application platform is in “the sky”;
i.e. in the local network in the factory. Such a control system,
e.g. a Holonic Manufacturing System [4], will benefit from soft
real-time access to motion- or servo-control. Local application
scenarios, like sensor-servo-based motion control, will need
semi-hard real-time access to the servo-controller [5].

3rd CIRP Conference on Assembly Technologies and Systems, 2010

Open Real-Time Robot Controller Framework 81



Related Work

Real-time external motion-control of native controllers for in-
dustrial manipulators is not a new phenomenon. In special ap-
plications, where the application platform in the native controller
is inadequate, or where the real-time application control is al-
ready implemented on another computer platform, there hardly
exists any viable alternative.

Cederberg et al. [6] mention 10Hz interaction frequency with
an ABB IRB 2400/16 robot with an S4CPlus controller, through
the native application controller. They use a combination of a
RAPID program running in the controller and an external pro-
gram using RAP to communicate from the external program.
The tracking delay is not quantified, but judging from the pro-
grams presented, and by experience with the S4CPlus con-
troller, it seems realistic to guess at no less than 500ms. This
is an example of real-time control through the application plat-
form in the commercial controller, and may be classified as a
gentle technique for circumventing the native application plat-
form.

Wetterwald et al. [7] used the KUKA RSI with a KR60L30 HA
robot for external motion (correction) control in a sewing appli-
cation. This is a hybrid approach, since part of the application is
implemented in the main controller, whereas the external con-
trol performs sensor-based real-time trajectory corrections. In
their experiments, the robot motion could have been controlled
freely over RSI, but the KUKA application platform was chosen
for part of the entire application; somewhat due to historical
reasons in the project.

Bigras et al. [8] implements a force-control loop around the op-
erational space position-control over KUKA RSI with a KUKA
KR210 robot. A central part of their work is impedance mod-
elling of the robot joints and surroundings. This demonstrates
a quite advanced control application made possibly by the real-
time access to the KUKA controller.

Schnell et al. [9] used an advanced open controller, the Open
Modular Controller [2], implementing servo-level control and
providing a flexible platform for integration on top of a PC-
platform. They used an ASEA IRB6/2 robot, and apart from
the mechanical arm and servos, only the servo amplifiers were
reused. At the lowest level, the controller itself addresses the
servo amplifiers through a PMAC controller board. This is an
example of a demanding effort for recycling old robots, com-
pletely modernizing their control system. An outdated applica-
tion platform is replaced by a new, open, and advanced appli-
cation platform.

A simple and most elegant external real-time control of an in-
dustrial robot is described by Dallefrate et al. [10]. They used
the 7-DOF Mitsubishi PA-10 robot. The PA-10 controller sup-
ports direct access to velocity or torque control on the servo
controller. Though elegant, it takes some effort to implement a
trajectory controller to close a position control loop around ei-
ther velocity or torque control. The servo controller of the PA-10
is accessible over ARCNET, with the possibility of achieving a
control frequency up to 1kHz. They report an impressively low
jitter of less than 4μs, in their specific Linux+RTAI environment.

Paper Outline

The remainder of this paper is in two parts. The first part,
in Section 2, presents a simplified, conceptual model of how
an industrial robot controller is organized. It is used as ba-
sis for the discussion of motion and servo controllers. Ex-
periments with three different robot controllers are discussed
and the performance-results are presented. The second part,
in Section 3, gives a conceptual overview of the implemented

Figure 1: Simplified view of the communication within an indus-
trial robot controller.

framework for real-time, external motion-control. Finally, some
concluding remarks and acknowledgements.

2 ROBOT CONTROLLERS

In this part, a simple conceptual model of a standard robot con-
troller is presented. Afterwards, experiences with external con-
nection to three different controllers is shortly described. Finally
performance measurements on the three case-controllers are
presented and discussed.

2.1 Controller Basics

Figure 1 illustrates a possible, if naive and simplified, commu-
nication diagram for the interesting components in a standard
type of robot controller. Labels in the figure indicate the order
of magnitude for frequency of interaction between the compo-
nents.

At the top level the application controller handles the logic of the
user application, and submits motion segment specifications to
the motion controller. The motion controller will execute these
by interpolation according to the motion type, and control the
servo controller in executing the motion. The servo controller
makes a refinement of the interpolated points from the motion
controller. These finely spaced position targets are executed
by, say, velocity commands to the servos, their synchroniza-
tion and positions being monitored and controlled. The servos
control the motor currents and read back the motor encoder
values.

2.2 Robot Experiences

The results in this part of the paper is based on working ex-
perience with three different robot controllers, each of which
supports external motion control. All communication is over or-
dinary, unmodified Ethernet, using UDP or TCP connections.

NACHI SC15F

By installation of an embedded single board computer (SBC),
transparently intercepting the communication between the in-
ternal motion controller and the servo controller. The actual
joint positions from the servo controller is sent out in a UDP
packet over Ethernet, and is received by the external motion
controller. This emission of joint positions are bound to the in-
terpolation period between motion and servo controllers. The
SBC further listens for UDP packets from the external motion
controller, sending position commands to override the com-
mands from the internal motion controller.
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In the native NACHI controller, the internal communication fre-
quency between motion and servo controllers can be config-
ured freely within some range, but defaults to 100Hz; which is
understood to be recommended. The servo controller provides
pure joint position control with joint position feedback.

KUKA KR60L30 HA with RSI

Experience with the KUKA RSI control interaction is mainly
from a sewing application [7]. KUKA RSI supports external po-
sition control over TCP in real-time, either in joint or operational
space, with position feedback. The version of RSI used is 2.1
with RSI-XML version 1.1.

The interpolation period of the RSI communication is 12ms;
i.e., a frequency of 83.33Hz. The external control must be syn-
chronized to the feedback from the RSI controller, with a 4ms
time window to respond with a new desired position specifica-
tion.

The possibility of real-time external motion-control in opera-
tional space may be a major advantage for companies that do
not have the competence for developing or dare commissioning
third part, free and open, motion control.

Universal Robots UR-6-85-5-A

The 6-DOF UR-6-85-5-A articulate manipulator from Universal
Robots has an internal PC running a GNU/Linux OS for motion
and application control. It is very open for access and deploy-
ment of software. The servo controller is directly accessible by
compiling a “motion controller” program, using an API header
file and linking with a library file; both supplied from Universal
Robots. On the native controller computer, the high-level con-
troller is then replaced by this new controller.

The controller in the presented work is about 100 lines of C-
code, which simply implements an adaptor to the servo con-
troller, exposing it over UDP sockets to an external motion con-
troller. The servo controller sends, at 125Hz, the actual posi-
tion and velocity joint-vectors; i.e. a packet containing (qa, q̇a).
In response, it requires the desired position, velocity, and ac-
celeration joint-vectors for the next interpolation period; i.e. a
packet containing (qd, q̇d, q̈d). Alternatively it is possible to
control by pure joint velocity, and a future release of the con-
troller software will give access to joint torque control as well.

2.3 Experiments and Performance

The expected performance of an external motion controller ap-
plication will, naturally, depend heavily on the performance of
the underlying servo controller. Specifically it is the response
time and the tracking delay which are of interest in real-time
sensor-servoing applications.

For the specific experiments presented in this paper, to be fair
to KUKA and NACHI, it is imperative to mention here, that no
tweaking or optimization of filtering in the servo-controllers was
performed. It is possible to change the filtering, and possibly
lower both response time and tracking delay.

Response Time and Tracking Delay

Response time is defined as the time from a change is made in
the desired motion until an effect can be observed in the actual
motion. The tracking delay is the amount of time that the ac-
tual motion is trailing the desired motion. These quantities are
chosen for measurement mainly due to external observability,
but also because they are of importance for designing motion
control applications.

Robot Response [ms] Tracking [ms]

NACHI 45 120
KUKA 42 115
UR 12 9

Table 1: Summary of numerical results for response time and
tracking delay for the different robots.

Both response time and tracking delay are observed from the
external side, and hence they include network transport time.
However, the latency in a standard switched local network will
be of the order of 200μs, which hardly contributes compared to
the interpolation cycle period of around 10ms.

These quantities are measured by customized small programs
that do nothing but addressing the robot servo controller di-
rectly over the network. While executing some desired motion,
the corresponding times of sending and receiving the positions
are logged together with the positions.

Response time is found by commanding the servo controller
with a step function, the step being set as high as the pertinent
servo controller accepts. Tracking delay is measured on a ramp
or a sine motion as the time the actual position of a joint is
trailing the desired position.

Measurements

Some selected measurements are displayed by plots of desired
and actual joint position vs. time. The desired positions sent to
the robot are shown as green crosses connected by green line
segments, and the actual positions reported from the robot are
shown as blue points connected by blue line segments.

Figure 2 shows plots of sine responses from the robot con-
trollers. The motions shown are generated with 10◦ amplitude
and at a cyclic frequency of 1Hz. All measurements are mov-
ing only the base shoulder joint (joint 0), with the upper arm
vertical and the forearm horizontal. The plots show the first 1.5
periods of the motion. The experiments continued for several
periods with the same behaviour as observed in the plots.

Figure 3 shows plots of step responses from the experiment
controllers. For each robot is seen an individual size of the step,
which has been experimentally maximized. The maximization
is done to ensure as fast and strong a response as possible.
Since the KUKA and NACHI servo controller performs filtering
of the motion, they accept a much larger step than the unfiltered
servo control in the Universal Robots robot. The time axis in the
plots have been zeroed to the time where the step is sent.

Measurement series for the sine responses were made on all
robots by specialized programs. The step responses are calcu-
lated from one single experiment, since it has no parameters.
The tracking delay was inspected over a series of experiments
where both amplitude and frequency was varied.

Results

By analysis of Figures 2 and 3 some estimates of the sine-
and step-responses for the different robot controllers can be
extracted.

Measurement of tracking delay is performed at the steepest po-
sition of the desired trajectory as the horizontal shift to the ac-
tual trajectory on the sine response curves. The response time
is measured as the time passed from the step is sent and until
a half interpolation cycle before the first significantly changed
interpolation point.
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(a) NACHI (b) KUKA with RSI. (c) Universal Robot.

Figure 2: Sine wave tracking by the three experiment robots.

(a) NACHI (b) KUKA with RSI. (c) Universal Robot.

Figure 3: Step responses from the three experiment robots.

The numerical results from the analysis of the plots are sum-
marized in Table 1.

The KUKA and NACHI robots have similar characteristics with
just beyond 40ms response time and around 120ms tracking
delay. This is easily understood if it is assumed that their servo
controllers have a motion buffer for estimating trajectory pa-
rameters, and filter the control to the desired trajectories for the
servos.

From experiments with the Universal Robots robot, both re-
sponse time and tracking delay is measured to around 10ms,
which is around one interpolation period. This observation is
consistent with the absence of trajectory parameter estimator
and filtering.

3 CONTROLLER FRAMEWORK: PYMOCO

The “space” of motion control is huge, and it may interact with
many systems of very different nature. Therefore it is preferable
to keep motion control on the most agile platform, providing
a vast amount of libraries for computing and communication.
This leaves the ultimate flexibility to the application designer
regarding implementation method or paradigm, programming
language, and platform. This is in strong opposition to the ap-
plication platform design within contemporary robot controllers.

This part presents a simple framework for motion control that
have been developed, tested, and used in applications; how-
ever, still to be considered experimental. Since it is entirely im-
plemented in the Python Programming Language, it has been
named PyMoCo.

An important advantage of having the entire code base in
Python is that it should require almost no effort in porting
it among any Operation System platform that supports the
Python interpreter; e.g. OS X, any Windows OS, or any
GNU/Linux distribution. Debian and Ubuntu distributions of
GNU/Linux was used for developing, testing, and applying it.

The Natural Level of Separation

It is in the motion control layer that advanced control scenar-
ios with respect to external orchestration or real-time sensor-
integration will be relatively easy. One level lower, in the servo
controller, things get control theoretically quite involved, and
will anyways be rather robot specific regarding dynamics, me-
chanics, and electronics. Further, below the servo controller
level, the control frequency will be very high and jitter tolerance
low.

In this light, interfacing to the servo controller from an external
motion controller should be considered a natural choice. Sys-
tem and application developers will thus be empowered by the
possibility of implementing suitable motion control, while the
robot manufacturer takes care of the very robot specific and
complex control issues.

Servo Controller Interfaces

For the KUKA and NACHI robots, the trajectory data for the
interface is of the same nature: Joint positions are sent to
the controller and joint positions are received. The Univer-
sal Robots controller requires additional trajectory data: joint-
velocities and -accelerations. The data returned from the Uni-
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Figure 4: Class diagram of the central classes in the PyMoCo
design.

versal Robots servo controller is also extended with actual joint
velocities.

To control the Universal Robots robot with the same interface
as the KUKA and NACHI robots, a P(ID)-controller at the in-
terface layer will be implemented; possibly at the cost of some
response time and tracking delay. This will enable use of the
same motion controllers across all of the robots. However,
some motion controllers may in fact take advantage of the ex-
plicit control of accelerations and velocities.

3.1 Framework Design

A class diagram of some core classes and some specific con-
trollers in the framework is presented in Figure 4. The central
classes are explained in this section.

The controller framework provides two essential classes: The
ServoPublisher and the Controller. They are the functional
proxies to communicate with the servo controller. Similar to the
ServoPublisher class, publisher classes for sensor inputs can
be implemented; ForcePublisher is one such sensor publisher.
The Controller class, besides from having some fundamental
functionality itself, is the base class for the hierarchy of differ-
ent motion controller classes.

The ServoPublisher Class

The ServoPublisher supports the publisher-subscriber pattern,
calling a special method on each subscriber when there are
new state data from the servo controller. The ServoPublisher
is an abstract base class, and is to be specialize into proxies
for the different controllers; e.g. NACHIServoPublisher, etc.

The Controller Class

The Controller base class is an abstract class for mediating the
desired motion from an explicit controller to the servo controller.
It will need specific implementations for implementing motion
control strategies.

Notable functionalities, which reside in the base Controller are
the ability to address data in correct format to the servo con-
troller; consistency checks on the data; scaling of data into
known limits of the servo controller, if so configured; and pro-
viding a basic handler of notifications from the ServoPublisher.

In specialized base-controllers, i.e. those that differentiate
among the different servo controllers, special consistency
checks or control aspects can be implemented. An example is
the implementation of a basic P(ID)-controller for the Universal
Robots controller, URPositionController, where position control
can be implemented over the raw servo controller interface.

The KinematicsController Class

A KinematicsController is to be distinguished from a joint-
based controller, in that it relates operational space to the joint
space of the robot. The controller classes that specialize the
abstract class JointController, is only relating to the joint space
of the robot.

A fundamental component of a KinematicsController is a Kine-
maticsComputer class. The KinematicsComputer is the class
that provides the fundamental computation elements for the ac-
tual robot, mathematically relating joint and operational spaces.
This leaves the KinematicsController specializations to focus
on motion strategies and application of sensor inputs.

The KinematicsController is an abstract entity which must be
specialized to implement some motion strategy. Example mo-
tion strategies are CompliancyController, ToolLinearController,
ToolVelocityController, etc.

The SensorPublisher Class

To accommodate and distribute asynchronous sensor input,
the implementer must provide specializations of the abstract
class SensorPublisher. Some external sensors may support
polling and some may submit asynchronous publications of
their data. Both of these can be handled and cross-transformed
in a specialized SensorPublisher.

As an example, consider a force sensor system which broad-
casts force data over the network, but does not support polling.
A ForcePublisher can be implemented to collect force data,
and support polling internally to the controllers in the PyMoCo
framework. This is an important decoupling mechanism.

3.2 Examples: Compliance Control System and Visual
Servoing

A complicated control scenario, which serve as a good proof-
of-concept, is the implementation of a 6D force compliance
control. The NACHI robot has been equipped with a 6D force
sensor at the tool flange, giving full force and torque data in its
reference system. The force sensor is connected to a LabView
application on a PC running Mandriva GNU/Linux. Sensor data
are broadcast over UDP as fast as they are read off the sensor.

The purpose of a force compliance controller is to achieve the
motion that “follow” the force and torque applied to the robot
tool. The core communications in this PyMoCo application is
best illustrated by the sequence diagram, shown in Figure 5.

It is important to note here, that there are two independent
sequences in Figure 5, and that they trigger asynchronously.
One sequence is triggered by the ServoPublisher publishing
new state data from the servo controller, and the other is the
one triggered by the ForcePublisher, publishing new force data.
In general the sensor publishing event does not have a fixed
timely pattern and may be cyclic, sporadic, or episodic. The
coupling between the servo and sensor data is performed in
the the ComplianceController.

Using the NACHI robot with 120ms tracking delay and 45ms re-
sponse time, cf. Table 1, the input from the force sensor needs
some filtering to match the delays in the servo controller. This
was done by a simple exponential moving average with a suit-
able smoothing constant. The resulting control is adequate for
manipulating the robot by hand, or generally in slow-varying
force applications. This result would be similar with the KUKA
robot.

Another case of use of the PyMoCo framework is described
in [11]. In that application, the PyMoCo framework is used
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Figure 5: Sequence diagram illustrating the two, asynchronous, cyclic interactions in a single-sensor servoing controller.

as a component in an application, which handles multiple sen-
sor inputs and processing in its own framework. The PyMoCo
framework is configured to provide a ToolVelocityController to
the application.

4 CONCLUSIONS

We have described how access is gained to servo-level control
from an external PC for three different industrial 6-axis manipu-
lators. The three methods of access are very different, but may
be considered as spanning the possibilities of external servo
level control.

The experiments, based on sine wave tracking, show some
considerable response times and tracking delays for the purely
position-controlled robots, and minimal response time and
tracking delay for the robot commanded by acceleration, ve-
locity, and position.

The framework for external motion control, PyMoCo, has been
sketched at the software design level. The framework provides
some basic types of controllers, which can be customized or
extended, and provides utilities and connectivity for further im-
plementation of general or specialized motion controllers and
sensor publishers.

Future work will concentrate on more advanced motion con-
trollers and sensor integration in the presented framework. Par-
allel to this, we will be planning activities toward integration of
new robot controllers as well as optimize the filter settings of
the KUKA and NACHI controllers; cf. Section 2.3.

5 ACKNOWLEDGEMENTS

Thanks to professor Terje Lien, Norwegian University of Sci-
ence and Technology, for good support and discussions.

We owe thanks to NACHI Robotic Systems Inc. for allowing a
guided insight into their controller protocol. Without their will-
ingness and help, the interaction with the NACHI robot would
not have been possible in our setting.

Esben Hallundbæk Østergaard, Universal Robots, gave good
help and guidance in interfacing to their servo controller.

Sebastian Dransfeld, SINTEF Raufoss Manufacturing AS,
spent some hours in the laboratory on our request. We are
thankful to him for performing the response measurements on
the KUKA robot controller.

This work has been financed mainly by the IntelliFeed project,
and, through the Norwegian University of Science and Tech-
nology, the RAMP project under the SFI Norman research pro-
gramme. Both the IntelliFeed project and the SFI Norman pro-
gramme are funded by The Research Council of Norway.

6 REFERENCES

[1] Carpanzano, E., Jovane, F., 2007, Advanced Automation
Solutions for Future Adaptive Factories, CIRP Annals -
Manufacturing Technology, 56/1:435–438.

[2] Jensen, S.M., 1998, Open Modular Controller, Proceed-
ings of the 29th International Symposium on Robotics.

[3] Bruyninckx, H., 2001, Open Robot Control Software: the
OROCOS project , Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, volume 3,
2523–2528.

[4] Vrba, P., Marı́k, V., 2005, From Holonic Control to Vir-
tual Enterprises: The Multi-Agent Approach, Zurawski, R.
(editor), The Industrial Information Technology Handbook,
CRC Press.

[5] Blomdell, A., Bolmsjo, G., Brogardh, T., Cederberg, P.,
Isaksson, M., Johansson, R., Haage, M., Nilsson, K.,
Olsson, M., Olsson, T., Robertsson, A., Wang, J., 2005,
Extending an Industrial Robot Controller: Implementation
and Applications of a Fast Open Sensor Interface, IEEE
Robotics Automation Magazine, 12/3:85–94.

[6] Cederberg, P., Olsson, M., Bolmsjö, G., 2002, Remote
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• In early publications, the term motion control was used as synonym
for trajectory generation. We were enlightened that trajectory gen-
eration was the correct term. To clarify the difference between the
low-level controller system and the trajectory generation system, the
term trajectory generation was used in later publications.

• The correct Equation 7 is
[
eθ,x eθ,y eθ,z

]T
=

[
ny −nx 0

]T
, with

the points p1 to p4 layed out such that n is an outward normal.
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AbstractIn the future, industrial robot systems have to be more flexible and autonomous to serve the needs of
increasing product variation and shorter time-to-market. In the past, off-line programming of robot systems was
often sufficient to meet the demands. But now, considering more complex automation tasks like handling of non
rigid materials, the need for robot systems to interact in real-time with their surroundings is getting more and
more important.
This paper describes real-time sensor servoing concepts aimed at industrial applications such as welding or
sewing. To evaluate the methods, an adequate test platform is developed. A real-time, line-following algorithm
based on a line-of-sight concept is presented, as well as a tool orientation control algorithm based on surface
normal detection. The robot system consists of a 6-axis industrial manipulator and a vision system including a
camera with four laser pointers used in distance measurements. The goal is to show new concepts for appli-
cations where the tool to surface-normal orientation has to be controlled in real-time according to a specified
trajectory or control scheme, and where the path cannot be pre-programmed in the robot program. In the test
case the tool is orientated perpendicularly to the workpiece surface and the path is given by a marking. Prelimi-
nary experiments verify that the algorithms work properly on the test platform.

Keywords:
robotics, manufacturing, real-time control, sensor servoing, visual servoing, line-of-sight, tool orientation control,
laser triangulation, eye-in-hand

1 INTRODUCTION

Nowadays, increasing product variations, shorter time-to-
marked, and more complex automation tasks like handling of
non rigid materials, lead to new challenges in manufactur-
ing. Industrial robot systems have to be more flexible and au-
tonomous than ever. While in the past off-line programmed
robot system were sufficient to meet the demands, today real-
time interaction with the surroundings and thus sensor integra-
tion and real-time control are often desirable.

These demands have led us to implement a servo-level inter-
face and an external motion controller for a NACHI SC15F 6-
axis industrial manipulator [1]. The next natural step was to
build, demonstrate, and evaluate a sensor interface, demon-
strating the possibilities of real-time sensor servoing within
manufacturing. It was decided to build a system which in-
tegrates different control algorithms and sensors to show the
possibilities of real-time robot control. The focus is on cases
where the tool has to follow a given path and has to be ori-
entated perpendicularly to the workpiece, as for example in
welding or sewing applications [2]. Common systems use time-
consuming offline programming or, less time consuming, path
planning based on CAD models [3]. To make the system more
flexible for changes and independent of CAD files, the focus is
on a system which does not need to be preprogrammed, but
uses online path-planning in real-time.

The challenge can be divided into two smaller parts: the path-
following and the tool orientation detection and control. Path-
following is a common scenario in many automatization areas,
not only robotics, for example in navigation of ships and vehi-
cles. A common method is the line-of-sight algorithm [4, 5].

As solution for the surface normal detection, there were pro-
posed different methods, including force sensors or visual sen-
sors. Marques et al. use a triangulation based surface orien-
tation and distance sensor which allows contactless sensing of
the surface orientation [6]. A similar sensor is used by Caccia
to detect the surface normals and distances for the navigation
of underwater vehicles [7].

Other systems use force sensors to measure the surface ori-
entation. One robot system which combines a fixed camera for
position detection and force sensors for the surface orientation
detection is developed by Hosoda et al. [8].

Zhang et al. proposed an automatic robot program generation
method based on a combination of an eye-in-hand vision sys-
tem to follow a marked path on the workpiece and a force sen-
sor to measure the tool orientation [9]. In the resulting sys-
tem, the robot has to move on a defined pattern, for example
a zigzag path, to detect the local geometry. This is suitable for
path generation in advance, but not for smooth path-following
in real-time.

In this paper a visual line-of-sight tracking method is combined
with the advantages of contactless surface orientation and dis-
tance measurement based on laser triangulation. This gives
us a system which allows smooth line tracking with the tool
orientated normal to the surface in real-time. Effort was con-
centrated on the practical implementation of the test platform
which will be used as starting point for further evaluations of
the real-time interface.

As test case, a scenario is defined where the tool has to follow
an optical marked path on the workpiece, while orientated per-
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Figure 1: The test platform consists of a NACHI SC15F with a
real time sensor interface and a hilly shaped workpiece.

pendicularly to the workpiece surface. The first tests verify that
the algorithms work properly on the test platform.

2 SYSTEM DESCRIPTION

The test platform consists of a table with a 3-D structured sur-
face and a NACHI SC15F 6-axis industrial manipulator with a
tool, which is to be aligned perpendicularly to the workpiece
surface and has to follow an optically marked line on the work-
piece, as illustrated in Figure 1. The tool is a placeholder for
a real tool, which can be used in applications such as welding
and sewing [2].

The tool center point was defined to be at a given distance from
the tool flange; in our experiments 10cm. The tool coordinate
systems origin is in the tool center point and the z-axis stands
perpendicularly to the tool flange.

The desired movement of the tool is given by the combination of
a marked path on the workpiece as well as the surface normal
vectors at the desired path. A vector was defined, expressing
the deviation of the actual tool center point from the desired
tool center point in the tool coordinate system, both in position
and orientation:

e =
[
ex ey ez eθ,x eθ,y eθ,z

]T
, (1)

where ex and ey denote the distance between the desired posi-
tion and the projection of the tool center point in the x-y plane.
ez is the deviation along the z-axis, and eθ,x, eθ,y and eθ,z the
deviations in rotation around the x-, y- and z-axis, respectively.
In general, correction of rotation around the z-axis is possible,
but due to rotation symmetry it will not be considered in our
demonstrator; hence, erz will be set to 0.

The system can be seen as a closed loop control system con-
sisting of the vision system, divided in the hardware part and
the software part; a robot controller (PyMoCo) written in Python
[1]; the real-time interface to the robot controller; and the robot
system. The structure of this system is depicted in Figure 2.

2.1 Tool Distance and Orientation Detection

Triangulation-based Distance Sensor Principle

To detect the tool distance and orientation with reference to the
workpiece surface, a system was defined, which is based on

Figure 2: The control structure - from upper left: real-time in-
terface, robot, camera, vision system, PyMoCo (Python motion
controller).

Figure 3: A triangulation-based distance sensor with a CCD-
array. When the sensor is moved in vertical direction, the laser
point is projected to another position on the CCD array.

several triangulation based distance measurements. The sen-
sor system is closely related to the Opto 3D sensor described
in [6] and a sensor described in [7].

Triangulation-based distance sensors consist of a light source,
mostly a laser beam, which acts as a pointer, and a detector
which is mounted at some distance from the laser source, as
shown in Figure 3. Ideally, the laser source for triangulation
has a high accuracy to illuminate a small spot over a large dis-
tance. Depending on the distance to be measured, the desired
accuracy and the light conditions of the environment, infrared
sensors can be used as light source instead of the laser.

The light emitted by the light source is reflected by the object’s
surface and returns to the detector. A lens focuses the reflected
light onto a light-sensitive component, which can detect the po-
sition of the light point on the projection, e.g. CCD arrays, spe-
cial photo diodes, or cameras. Thereby, the angle between the
laser beam and the returning light can be measured, and hence
the distance can be calculated.

Implementation of the Distance Measurement

In our setup, four laser pointers are used. Even if theoretically
three laser pointers are sufficient, one extra laser is attached for
symmetric reasons in the algorithm and to increase the accu-
racy by eliminating linear dependencies in the surface normal
detection.

90 J. Schrimpf, M. Lind, T. Ulleberg, C. Zhang and G. Mathisen (2010)



Figure 4: The sensor system attached to a tool changing sys-
tem. The stick is a placeholder for a real tool.

The sensor hardware consists of four low cost laser pointers
and a Prosilica GC1350 Gigabit ethernet camera, mounted on
the tool as shown in Figure 4.

The distance dzi between the sensor i and the surface can be
derived by the formula

dzi = fi(u) with i ∈ {1, 2, 3, 4} , (2)

where u is the x-pixel-value of the center of the laser dot on the
image and fi is a nonlinear function, which is extracted from
calibration measurements, as shown in Figure 5.

The resolution of the height measurement depends on the dis-
tance between the workpiece and the camera. The depen-
dency is shown in Figure 6. In the working height of 10cm,
the resolution is around 4.3 pixel

mm .

The distance between the tool and the surface was defined to
be the average of the separate distance measurements:

dz =
1
4

4∑
i=1

dzi , (3)

where dz is the distance between the tool and the workpiece
and dzi are the separate distance measurements.

By taking the working height of 10cm into account, the height
error ez can be derived.

ez = 10cm − dz , (4)

which is used as input to the tool height controller.

Implementation of the Tool Orientation Measurement

To determin the tool orientation in reference to the surface, the
surface normal vector is calculated. The calculation of the sur-
face normal vector of the workpiece at the tool center point is
based on four distance measurements around the tool center
point. On the basis of the measured distance and the physical
setup it is possible to derive the coordinates of the four laser
dots p1 to p4 on the surface in tool coordinates:

Figure 5: In the vision system the x-values of the laser point
projection on the picture are converted to heights. This fig-
ure shows the dependency between the x-pixel and the height
measurement for each laser.

Figure 6: The height measurement resolution is dependent on
the actual distance between the camera and the workpiece.

pi =
[
xi yi zi

]T
with zi = dzi , (5)

where xi and yi are given by the coordinates of the lasers on
the tool x-y-plane.

To derive the surface normal vector, it was assumed that the
local area around the tool center point is planar. Now, two vec-
tors are described by the positions of the laser points refer-
enced in tool coordinates, preferably vectors with a right angle
in-between. By calculating the cross product of two vectors, the
resulting normal vector n can be calculated:

n =
[
nx ny nz

]T
= (p3 − p1) × (p4 − p2) . (6)

By comparing this normal vector with the tool’s z-axis, the de-
viation from the desired position can be described, for example
by a vector which acts as rotation axis and by the angle of rota-
tion around this axis. In our case, the axis-vector lies in-plane
and the rotation angle equals the angle between the normal
vector of the plane and the z-axis.

Now the error values can be derived:
[
eθ,x eθ,y eθ,z

]T
=
[
nx ny 0

]T
. (7)
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Figure 7: In the line-of-sight algorithm a circle is drawn around
the tool center point, and the intersection points between the
circle and the marked path are taken as possible way-points.
Our algorithm choses the way-point with the smallest angle de-
viation from the actual movement direction.

eθ,z is 0 in this case, since rotations around the tool’s z-axis are
not taken into account.

These values can now be passed on to a tool orientation con-
troller which translates the deviation from the desired alignment
to rotation commands for the robot controller.

Technically, the tool orientation algorithm is programmed in
C++ using the OpenCV library [10], which is a cross-platform
computer-vision library focusing on real-time image process-
ing.

2.2 Line-of-Sight Path Following

As line tracking algorithm, an autopilot algorithm described in
[4] is used. The method is called Line-of-Sight guidance (LOS).
In the LOS algorithm the direction of motion ΨLOS of a vessel
is defined by the coordinates of the next way-point:

ΨLOS = atan2
(

yk − y
xk − x

)
, (8)

where (xk, yk) are the coordinates of the way-point and (x, y)
are the coordinates of the vessel. If the vessel enters a circle-
of-acceptance around the actual way-point, the next way-point
is chosen.

In our tracking algorithm, a sliding way-point is used, which
lies on the line to follow in a constant distance. A circle is as-
sumed around the projection of the tool center point, and the
intersection points between this circle and the marked line are
considered as possible way-points, see Figure 7. Our algorithm
choses the way-point with the smallest angle deviation from the
actual movement direction.

The main parameter in this method is the radius, which has
large influence on both accuracy and robustness of the system.
While a larger radius makes the system more robust, the accu-
racy is decreased. On the other hand, low values for the radius
give more accuracy, but disturbances can make the method
unstable. In general, this method is very robust against dis-
turbances, when the radius is chosen large enough, but it is
always a compromise between accuracy and stability [5].

As with the tool orientation algorithm, the tracking algorithm is
implemented with OpenCV.

The output of the line-of-sight algorithm is the desired xd and
yd value in tool coordinate system. These values correspond
with the ex and ey values:

Figure 8: The graphical user interface allows to set the pa-
rameters for the line following and the tool orientation detection
algorithms.

[
ex ey

]T
=
[
xd yd

]T
(9)

The stability is also highly dependent on the desired movement
speed of the robot. For fast movements the radius has to be
increased to ensure the stability of the tracker.

2.3 Tool Velocity Controller

The robot movement planning is done by using an open tool
velocity controller which is connected to a servo-level controller
interface of the robot.

The input to the tool velocity controller is a 6-element move-
ment vector, in principle a twist, which includes both a linear
movement vector and an angular velocity vector.

ξ =
[
vx vy vz ωx ωy ωz

]T
(10)

The first 3 elements build a linear movement vector for the robot
tool, while the remaining 3 elements describe angular velocities
around the tool center point. The movement vector is derived
by applying a P-Controller to the e-vector defined in formula 1:

ξ = diag(K) · e (11)

with

K =
[
Kx Ky Kz Kθ,x Kθ,y Kθ,z

]T
. (12)

2.4 GUI

A graphical user interface (GUI) was developed to monitor and
adjust the control program. It is shown in Figure 8. In the GUI it
is possible to change the value of the radius of the line-of-sight
algorithms. It can be adjusted according to the disturbances
applied to the test platform. Two additional sliders allow ad-
justing the thresholds for line-detection and laser-detection for
using the system under different light conditions.
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In the figure, the dots on the line are possible way-points de-
rived by the line-of-sight algorithm. The cross corresponds to
the projection of the tool center point of the workpiece and
the arrow points in the movement direction towards the cho-
sen way-point. One can clearly see the laser points and
their deviation from the square, which represents a slight non-
perpendicular orientation.

3 EXPERIMENTS

To verify the mentioned control methods, a test case was de-
fined where the robot tool had to follow a marked line with the
tool orientation perpendicularly orientated to the workpiece sur-
face.

A hilly shaped workpiece with a marked path was mounted
on an freely movable table. The algorithms were tested un-
der static conditions and under random disturbances simulated
by shifting the table position during robot path following.

In the initial experiments it could be verified that the algorithms
work properly in the test setup. Further experiments will be
done to evaluate the influence of the LOS radius and the move-
ment speed on the accuracy and stability of the line following.

Furthermore, delays in the robot system were discovered which
are assumed to be motion buffering in the servo controller [1].

4 CONCLUSION

A test platform was built to demonstrate real-time sensor-
servoing applications. A test case was defined where the tool
has to follow a marked path on the workpiece and remain
aligned perpendicularly to the workpiece surface. A contact-
less sensor system was implemented using a camera and four
laser beams to measure the distance between the tool and the
workpiece. The surface normal is calculated based on the dis-
tance measurements. The camera is also used to identify the
path on the workpiece. A way-point system was implemented,
based on a line-of-sight guidance algorithm. The vision system
was implemented using C++ and OpenCV.

A controller was implemented in Python to convert the mea-
surement results into motion commands, which are passed to
a low level servo controller interface.

It was observed that the sensor-servoing system works prop-
erly in the initial test scenarios, and can be used for further ex-
periments. It serves as a starting point for evaluation of different
control strategies and servo-controller constraints in industrial
applications [1].
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Time-Analysis of a Real-Time Sensor-Servoing System using
Line-of-Sight Path Tracking

Johannes Schrimpf, Morten Lind, Geir Mathisen

Abstract— This paper presents a study of the real-time
control conditions for a robotic system with visual servo control.
The system is based on an industrial manipulator with a
modified controller allowing real-time joint-level control. The
work is particularly concerned with delays and path deviations.
The focus is on the Line-of-Sight based path tracking controller.
The paper describes an analysis of the different delays in the
sensor-robot system and a model is presented based on the
overall delay. Further the stability of the modeled system is
analyzed in respect to a specific control case. The correctness
of the estimated system delay is indicated by comparison of
simulated and experimental results.

I. INTRODUCTION

A challenge in sensor-integrated, real-time controlled

robot systems is to achieve acceptable performance in speed

and accuracy, since such systems are burdened with unde-

sired system delays [1]. The total system delay has con-

tributions from different sources, some delays are tunable,

some sources are replaceable and some delays or sources are

strongly connected to the application and are thus inherent.

Due to stability, performance and quality requirements, the

existing system delays should be considered and allowed for

in the control algorithms.

A test platform for the demonstration and evaluation of

different sensor servoing techniques was built by the authors

and presented in [2]. It focuses on cases where the robot tool

has to follow a curve at a given distance from the surface.

A tool orientation controller was introduced to the system

to enable the tracking of 3D-shaped objects and surfaces.

An important design criterion was to build a flexible system

which is free from knowledge of the workpiece.

Another design criterion was the use of consumer grade

sensor hardware, ensuring affordability and easy availability.

A consequence of this is that the setup is applicable for even

small research projects, and is thus attractive to commission

in non-critical production installations.

In the present version of the system a eye-in-hand con-

figuration is used, based on a triangulation distance sensor,

related to the Opto3D sensor [3]. Caccia, [4], used a similar

sensor to detect surface normals and distances for the naviga-

tion of underwater vehicles. A related sensor servoing system

was built by Hosoda et al. [5]. This system navigates visually

guided on unknown surfaces by utilizing an external camera

J. Schrimpf and G. Mathisen are with the Department of Engineering
Cybernetics, Norwegian University of Science and Technology, Trondheim,
Norway. E-mail: johannes.schrimpf@itk.ntnu.no.

M. Lind is with the Department of Production and Quality Engineering,
Norwegian University of Science and Technology, Trondheim, Norway.

G. Mathisen is also with SINTEF ICT, Trondheim, Norway.

and a force sensor at the tool. Another relevant system was

built by Zhang et al. [6] who proposed a system which allows

for automatic robot program generation. The method utilizes

an eye-in-hand vision system for path tracking, combined

with a force sensor for orientation detection. For orientation,

the tool moved in a zigzag path on the surface to detect

the local geometry. The Line-of-Sight (LOS) path-tracking

algorithm is employed on the test platform. This is known

from the navigation of ships [7], [8].

The main contribution of this paper is the derivation of a

simplified linear model of the combined experimental sensor

and control system. The analysis of eigenvalues of the model

yields a computational method for determining stability; in

terms of limits on characteristic parameters; and with the

total system delay as input. Estimation and measurement

of contributions to the total delay in the sensor and control

loop; provides a basis for evaluating the usability of different

sensor and robot systems for given application requirements.

The presented experimental system, with different types

of hardware, has already been planned for use in a robotized

sewing application. Other applications in manufacturing sys-

tems such as welding or grinding are conceivable.

II. SENSOR SERVOING TEST PLATFORM

A test platform was built to study real-time sensor ser-

voing. A detailed overview of the system and its controllers

was presented in [2]. Since the following sections depend on

understanding the different parts of the system, a summary

is given in this section.

The test platform is built around a NACHI SC15F 6-axis

industrial manipulator. A real-time interface was built into

the main controller to make it possible to connect an external

motion controller to the robot system.

A sensor system is attached to the robot tool flange. The

sensor system is made up of an Ethernet camera and four

laser pointers, arranged at an angle to the camera, allowing

distance measurements by triangulation. A vision controller

system was designed in C++ using OpenCV and included

controllers for the tool distance, the tool orientation and a

Line-of-Sight target generation algorithm.

The test platform was used to demonstrate a case where the

tool follows an optical marked line on the workpiece surface

at a given distance, and with the tool aligned perpendicularly

to the workpiece surface. The system is depicted in Fig. 1.

The control loop consists of the triangulation-based sensor

system, the vision system, the controller system, and the

robot, including the real-time interface and the low-level
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Fig. 1. The test platform consisting of a six-axis manipulator with sensor
system attached to the tool, and a workpiece attached to a x-y table.

controller, as shown in Fig. 2. The parts are described in

the following subsections.

Fig. 2. The control system consists of four main parts: The tool including
an Ethernet camera and four laser pointers, the vision system consisting of
the height and orientation detection as well as the Line-of-Sight waypoint
algorithm, the controller system including the Python Motion Controller
PyMoCo, and the NACHI SC15F 6-axis industrial manipulator with the
real-time interface and the low-level controller.

A. Tool Distance and Orientation Detection

The basic requirement for the control system is to keep

the tool at a defined distance to the tracking point, and

with a defined orientation to the surface vicinity of the

tracking point. Since the shape of the workpiece is unknown,

a sensor system was built to provide distance measurements

around the tool center point. The distance is measured by

laser triangulation. An Ethernet camera and four lasers are

mounted on the tool-holder to measure the distances.

The camera used in the sensor system is a GC1350 Gigabit

Ethernet Camera with a maximal resolution of 1360x1024

and a frame rate of 20 fps at this resolution. It is mounted

on the tool flange, together with four low-cost laser LEDs.

To detect the orientation of the surface and the distance

between tool and workpiece, the vicinity of the projection of

the tool center point was assumed to be approximately flat.

The tool-distance is defined as the average distance of the

four separate distance measurements. The 3D laser points in

the tool coordinate system are derived from the four distance

measurements and the surface normal is computed by the

cross product of two vectors between the laser points.

B. Line-of-Sight Path Following

A Line-of-Sight (LOS) guidance algorithm was used as the

target generation algorithm. The LOS algorithm is related to

the approaches for marine vessel navigation mentioned in

[7] and [8]. This is a waypoint-based navigation algorithm.

The vessel follows the course in the direction of the actual

waypoint on the desired path until it enters a circle-of-

acceptance around the waypoint. Then a new waypoint on the

desired path is chosen, which is located in a predefined look-

ahead distance on the path. This distance is called the Line-

of-Sight radius. The heading of the vessel is then derived as

follows:

ΨLOS = atan2 (yk − y, xk − x) , (1)

where (xk, yk) are the coordinates of the waypoint and

(x, y) are the coordinates of the vessel.

In the demonstrator system, a sliding waypoint is used,

which is updated every time new sensor data is available. To

chose a new waypoint, a picture is taken of the area around

the projection of the tool center point on the surface and

the intersections between a circle around this point and the

marked line are found. These points are possible waypoints.

The actual direction is determined by choosing the waypoint

which gives the lowest deviation from the actual direction of

motion of the tool; see Fig. 3.

Fig. 3. The Line-of-Sight algorithm. The cross marks the projection of
the tool center point on the surface. The arrow points in the direction of
movement. The blue circle is drawn around the tool center point with
a defined radius. The red points are the possible waypoints, from which
the waypoint is chosen which gives the lowest derivation from the actual
heading.

It is important to mention that the line-of-sight radius is

a central design criterion of the system, since it influences

both the robustness and the accuracy of the path tracking;

confer Sect. IV.

C. Application Controller

The outputs from the vision algorithm are a vector includ-

ing deviations in the tool orientation and tool height from the

desired tool position relative to the surface, and the direction

towards the next waypoint. In the application controller these

values are converted into a spatial velocity vector, which
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leads the robot tool towards the desired pose. A P-controller

is used for the height and orientation control. However, this

will be replaced by a more advanced controller in the next

version of the demonstrator.

The velocity in the x-y-plane is derived from the move-

ment speed v and the LOS angle ΨLOS :

[
vx vy

]T
=

[
v · cos(ΨLOS) v · sin(ΨLOS)

]T
(2)

The velocity vector is passed to the Tool Velocity Motion

Controller.

D. Motion Controller

The Python Motion Controller framework, PyMoCo [1], is

used as the motion controller for the robot system. It provides

a tool velocity controller, based on an inverse Jacobian

controller. This controls the joint position vector for the low-

level controller leading to the desired spatial velocity of the

tool. It is coupled to the real-time robot control interface via

a UDP Ethernet connection.

E. Real-Time Interface and Robot

The real-time interface used to control the NACHI SC15F

6-axis industrial manipulator was created by installing an

embedded single board computer into the original controller.

This intercepted the communication between the motion

controller and the low-level controller. It offers an interface

for external motion controllers, connected via Ethernet, to

send commanded joint angles and read the current joint

angles of the manipulator. The internal communication fre-

quency between the motion and the low-level controller in

the NACHI controller is kept at the default value of 100 Hz.

The interface offers only position control of the joints, using

the original low-level controller.

III. REAL-TIME ANALYSIS OF THE TEST

PLATFORM

The overall performance of the complete system is heavily

dependent on the transport delays and computation times

in the system, as well as on the cycle time in the sensor

system. This section describes and estimates the delays in

the different subsystems. To ensure stability of the system

according to the calculation in the following section, the

delay is estimated in a conservative way from worst case

delays of the individual subsystems. The subsystems are

depicted in Fig. 4.

Fig. 4. The data flow in the system.

A. Camera System

A Prosilica GC1350 Gigabit Ethernet Camera is used for

image capturing. The delay in the sensor system consists

basically of the time for the camera to capture and prepare

the image and the transfer time. The transfer time from the

camera to the PC was measured to be 16 ms, while the

time between two successive pictures is 50 ms, based on the

frame rate of 20 fps. This leads us of a total dead-time of

66 ms in the sensor system. Since the following delays in the

sensor system are less than 50 ms, the frame-rate of 20 fps

is the limiting value for the cycle time of the sensor system.

Time measurements in the vision system, which were done

by adding timestamps to the incoming data, verify that this

update frequency is achieved.

B. Vision Software

The worst case image processing time in the vision

program was measured to be 30 ms. Both the laser tracker

and the line tracking algorithm need about half this time to

process the image data.

C. Motion Controller

In the tool velocity controller, the sensor data is processed

after the arrival of a new joint position vector from the

low-level controller. Since the cycle time in the real-time

communication to the low-level controller is 10 ms, this

value is taken as the worst case value for the delay between

the arrival of the sensor data and the processing time in the

motion controller. The calculation of the motion controller

takes an average time of around 3 ms, before the updated

joint values are sent to the real-time interface. The transfer

time between the PC and the real-time interface is around

2 ms.

D. Real-Time Interface

The timing in the real-time interface is specified by

communication between the main controller and the low-

level controller. In normal operation, the data from the

motion controller is sent to the low-level controller 3 ms

after it reaches the real-time interface. This delay is due to

synchronization with the native control flow.

E. Low-Level Controller

The original NACHI low-level controller (LLC) is used

and directly addressed by the real-time interface board. Since

the input for the low-level controller are joint positions, or

actually joint encoder values for each joint, filtering and low-

level trajectory interpolation are performed in the low-level

controller unit. Since the behavior of the LLC-robot system

is not known, and there is no possibility of interfacing the

low-level controller at torque level, the robot system can be

seen as a black box. To describe the characteristics of the

low-level controller, the tracking delay is defined as the time

that the actual motion is trailing the commanded motion.

The behavior of the low-level controller of the NACHI

SC15F was analyzed in [1]. In the presented work, for

computational purposes the proprietary low-level controller
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Part Delay
Camera 66 ms
Vision Algorithms 30 ms
Motion Controller 15 ms
Real-Time Interface 3 ms
Servo Controller 120 ms
Sum 234 ms

TABLE I

DELAYS IN THE SYSTEM.

is approximated as a delay element. The tracking delay in

[1] was found constant at 120 ms within each measurement

series, and across all measurement series. The main reason

for this delay is filtering in the low-level controller. It was

observed that the delay is independent of the velocity.

Industrial low-level controllers typically use a cascade

control structure with control parameters for the different

control loops [9]. At present, the real-time interface is not

able to access these control parameters.

F. Overview

An overview of the different delays in the system is shown

in Table I.

The total system delay is around 234 ms, where the

contribution from the sensor system is found to be 96 ms and

the contribution from the robot control system is 138 ms.

As mentioned before, these are worst case delays. It was

observed that the average delay for the different parts are

some milliseconds below the worst case delay. However, the

worst case delays are used in the analysis.

The cycle time of the sensor system was found to be

50 ms.

G. Discussion

Since fast response times are very important in sensor

servoing and long delays and large cycle times can render the

system unstable, it is desirable to reduce the delays in the

individual subsystems. Different solutions are possible for

these subsystems. The sensor system, for example, is very

dependent on the hardware; e.g. the link between camera and

PC may be a bottleneck.

The vision algorithm is a part of the system which is not

yet optimized, so it would be relatively easy to gain time

savings in this part, yet the calculations in the vision system

make up just 13% of the total system delay. The obvious

improvements are to use a faster PC, to implement more

time-efficient image processing algorithms, or to distribute

the processing to several CPUs, alternatively use a fast

FPGA. All three improvement techniques are independent

and any subset could be realized.

The greatest delay is due to motion filtering in the low-

level controller. This is tied to the chosen robot platform.

Robots are available on the market, which use other control

strategies for real-time control which reduces the delay in the

filter. For example, the low-level controller in the Universal

Robots UR-6-85-5-A requires commanding by a triple of

joint positions, velocities and accelerations. This relieves the

burden of filtering and trajectory planning in the low-level

controller. The external motion controller has to take over the

calculation of these values, which is not hard to implement

due to the desired motion scheme being known.

IV. LINE-OF-SIGHT ALGORITHM

In some applications, for example in welding and sewing,

the path may not be complete unknown. Quite frequently

the path will be known to be a sequence of straight line

segments.

Hence the special simple case of following a straight line is

modeled and analyzed. For this case the equations for motion

in the x- and y-directions are given from the following delay

differential equations 4 and 3. The line is defined to lie on the

x-axis of the coordinate system, so py describes displacement

from the given path, see Fig. 5. v is the commanded speed

and τ is the system delay.

Fig. 5. Sketch of the Line-of-Sight algorithm for the case that the system
has to follow the x-axis. The controlled tool point, which is located at
(px, py) has to move to the forward intersection point between the tool-
centered circle with the radius R and the x-axis.

ṗy(t) = −v py(t− τ)

R
(3)

ṗx(t) =
√
v2 − ṗ2y(t) = v

√
1− p2y(t− τ)

R2
(4)

It is obvious from the equations that the motion is deter-

mined by three parameters: the speed v, the Line-of-Sight

radius R and the delay τ . The translational symmetry of the

problem along the line to track (the x-direction) is manifested

in complete independence of px in the equations. It is further

interesting that for the equation of motion for the y-direction,

the functional dependence of parameters v and R is only

through the ratio v/R.

Though the speed, v, is always the same, the velocity in

the x-direction is dependent on the error in the y-direction.

The maximal velocity in the x-direction is reached when the

actual point lies on the line.

Since the demonstrator system is time-discrete due to the

cycle time of the sensor system, the system is rewritten into a

time-discrete form. The longest cyclic period in the system is

used as discretization step ts. For the presented system, this

is the measured cycle time from the sensor system, which is

50 ms.

d is defined as the number of discretization steps ts,

forming the complete system delay τd. τd is a multiple of ts
which is close to τ . For stability analysis τd > τ should be
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chosen to ensure that the stability regions also hold for the

simplified system.

py[k + 1] = py[k]− v ts
py[k − d]

R
(5)

px[k + 1] = px[k] + v ts

√
1− p2y[k − d]

R2
(6)

Since the movement in the x-direction has no influence on

the stability of the system, only the motion in the y-direction

is analyzed. This is done by analyzing the linear system:

x[k + 1] = Ad x[k] (7)

with

x[k] =

⎛
⎜⎜⎜⎝

py[k]
py[k − 1]

...

py[k − d]

⎞
⎟⎟⎟⎠ , Ad =

⎛
⎜⎜⎜⎝

1 0 0 −a
1 0 0

. . .
...

0 1 0

⎞
⎟⎟⎟⎠ (8)

where a is

a =
v ts
R

(9)

One can see that the model has d + 1 states. From

the model it is possible to derive the stability criteria (all

eigenvalues within the unit circle), which will be dependent

on the parameter a. Fig. 6 depicts the regions of stability

with respect to the above-named parameter a and the delay.
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Fig. 6. The stability regions for parameter a plotted against the delay d.

The figure clearly illustrates that the stable area for a
decreases quickly with an increasing number of delayed steps

d. Therefore it is important to identify and minimize the

delays in the system and try to speed up the calculations.

Since a is also dependent on the cycle time, and thereby

the chosen ts, the region of stability can be increased by

choosing a sensor system with a smaller cycle time. If the

cycle time gets lower than the cycle time of the robot system,

the control cycle time of the robot is the limiting factor in the

system. Since both ts and d are given by the equipment used,

the parameters left variable in the system are the velocity

and the LOS radius. For many applications, the desired tool

velocity is given by the process, and therefore the radius has

to be adjusted to fit the system requirements.

For many systems it is desirable to choose a radius that

prevents the system from oscillating, but at the same time

approaches the desired path as fast as possible. It has also to

be taken into account that for applications with other paths

than a straight line the system may overshoot even if it acts

overcritically damped in the case of a line. If additionally

external disturbances have to be taken into account it can be

necessary to increase the radius even more. This leads to a

more robust system that is less accurate and less sensitive.

The influence of different LOS radii on the system with

constant velocity is shown in the simulation in Fig. 7. The

figure presents the above analyzed case of a line. The cycle

time used in the simulation is 50 ms and the delay is set to

250 ms, which is the nearest multiple of the cycle time, that

fits our estimated delay. The velocity is set to 0.05 m
s . The

initial displacement is set to 0.01 m.
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Fig. 7. Step response as a function of the Line-of-Sight radius.

V. EXPERIMENTS

To indicate the correctness of the estimated delays in

the system, a test case was defined where the robot has

to follow a 90◦ corner in the path. A simple geometric

computation was used to generate trajectories. Simulations

for different speeds were done with two different delays:

200 ms and 250 ms. These delays were chosen since they fit

best with the expected delay found in Sect. III. The results

were compared with the behavior of the real robot-sensor

system. From the history of experimentation on the path

tracking setup, a radius of 25 mm has been found to be a

comfortable compromise between precision and robustness

for tool speeds up to 100 mm
s . Fig. 8 shows the results for a

velocity of 40 mm
s , which was found by simulation to lead

to a system with roughly critical damped behavior. Fig. 9

illustrates the result for a test with a tool speed of 100 mm
s ,

which was the maximum velocity used in the experiments.

In Fig. 8 a small deviation from the reference line is visible

on the negative x-axis. The real coordinate system is fitted

to the simulation coordinate system with nodes outside the

corner region. Since there are small fluctuations in the robot
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Fig. 8. Simulation and experiment for a tool velocity of 40 mm/s.
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Fig. 9. Simulation and experiment for a tool velocity of 100 mm/s.

movement on the axis, there is a small offset between the

theoretical movement and the measured movement. Other

uncertainties in the fitting occur if the system still oscillates

in the regions of the node on the y-axis. This behavior can

be seen in Fig. 9, in which the measured curve seems to

be offset slightly in the x-direction. The deviation during

the transient oscillation in both figures can be explained by

the unknown behavior of the motion filtering and therefore

uncertainties in the modeling. However, the figures show that

the measured behavior of the system fits fairly well with the

expected behavior.

VI. CONCLUSION

A real-time sensor servoing system, using Line-of-Sight

trajectory generation was analyzed. A test case was defined

for straight line tracking and a theoretical model, based

on delay differential equations, was developed to analyze

stability criteria for the case of approaching a straight line.

The worst case delay in the real system was investigated by

analyzing different part systems and the result was used in

the model as an upper boundary.

Parameters in the Line-of-Sight trajectory generation were

identified. Especially the influence of the Line-of-Sight ra-

dius for a given tool velocity was studied. The influence of

the delays and the parameters on the stability of the system

was analyzed.

Experiments were done to verify that the delay found for

the parts of the robot control system and the theoretical

model fit together with the behavior of the overall system.

It was found that the results of the experiments confirm

the theory. The methods presented in this paper can be

generalized to analyze similar real-time sensor systems, such

as systems for sewing or welding.

A major part of the overall delay is caused by the low-

level controller. To improve the performance of the system,

it is planned to use a Universal Robots UR-6-85-5-A which

offers a low-level controller with smaller tracking delay.

Further, a camera with a higher frame rate and a more

efficient implementation of the vision algorithm can lead

to a performance gain. By controlling the LOS radius in

real-time, dependent on the deviation from the path, a larger

stability region and greater robustness can be achieved while

keeping the accuracy when the deviation is small. This

improvement is planned to be included into the next version

of the test platform.
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Experiments towards Automated Sewing with a Multi-Robot

System

Johannes Schrimpf, Lars Erik Wetterwald

Abstract— In this paper a concept for automated multi-
robot-aided sewing is presented. The objective of the
work is to demonstrate automatic sewing of 3D-shaped
covers for recliners, by assembling two different hide parts
with different shapes, using two robots to align the parts
during sewing. The system consists of an industrial sewing
machine and two real-time controlled Universal Robots
6-axis industrial manipulators. A force feedback system
combined with optical edge sensors is evaluated for the
control of the sewing process. The force sensors are used
to synchronize the velocity and feed rate between the
robots and the sewing machine. A test cell was built to
determine the feasibility of the force feedback control and
velocity synchronization. Experiments are presented which
investigate the ability of the robot to feed a hide part
into the sewing machine using a force sensor and different
strategies for velocity synchronization.

I. Introduction

Because of the labor intensive nature of sewing op-
erations, the industry in high cost counties like Nor-
way has moved most of their sewing processes to
low cost countries. There are some exceptions that are
usually driven by the need for short time to market
and high customer flexibility, combined with logistical
advantages. However, the increasing labor costs in
high cost countries is challenging for the whole value
chain even if the majority of the production process
is highly automated and cost effective compared to
low cost countries. Hence, failing to increase produc-
tivity and capacity in the non-automated processes
like sewing operations will challenge more than just
the non-automated processes, and this has motivated
the development of new advanced automation such as
automated sewing.

An approach to automate complex sewing operations
needs to address the challenges of high product and
process variance. The technical solutions must handle
both the low volume and high mix that is common
in customized production, and the high complexity
of handling limp materials. This suggests that sensor
systems and in-process measurement able to describe
the sewing process, in addition to real-time control
based on the measurements, are needed to solve the
complex task of sewing. This paper describes an ap-
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proach to automated sewing using force sensors and
sensor-based real-time control.

II. Related work

Gershon et al. presented an approach for robotised
sewing, based on a system consisting of a sewing
machine and a robot manipulator with a multi-fingered
end-effector [1]. They proposed cameras, encoders,
proximity sensors and fabric tension sensors as sensor
systems to control the sewing process.

In 1998, Seliger and Stephan presented an overview of
the challenge of automated sewing [2]. They emphasize
that there are significant difficulties when automating
the sewing and handling process due to non-linear
material behavior. They also point out the difficulties
that arise from 3D shaped products, which are sewn
from 2D fabrics. Further they suggest the need for
adaptive control strategies with sensor input capable
of measuring both the feed rate and seam allowance of
the process.

Koustoumpardis et al. presented a robotized sewing
approach that is based on artificial intelligence [3]. They
used neural networks to control the tension in the fabric
using force measurements on the robot tool, focused on
controlling a single piece of fabric.

In 2009, Winck et al. [4] presented an approach for
automated sewing of two fabrics including an indus-
trial sewing machine and servo controlled feed dogs
which both fed and controlled the fabric and showed
the feasibility of such a sewing cell by building a
prototype. They focused on high-speed control and
precise actuation. The fabrics were separated by a
thin plate to enable independent control of the fab-
rics. The position information was gained by a vision
system which detected individual tracks in the fabric.
Their prototype implemented open loop control using
a predefined path and they emphasized the need for
feedback control of the fabric position.

Wetterwald et al. presented a sewing cell which was
able to attach a hide part to a fiber part as a subassem-
bly for later use in recliners [5]. The setup consisted
of a KUKA KR60L30 HA Robot and a DA550 sewing
machine. The sewing machine was capable of crimping
the part by using different in-feed and out-feed rates
in the sewing process. In addition to natural variations
in the process, the crimping generated the need for the
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continuous synchronization of the robot speed with the
actual feed rate of the sewing machine. To synchronize
the robot speed with the sewing machine’s feed rate, an
optical x/y displacement sensor was used to measure
the sewing speed, and a controller program computed
the robot speed in the sewing direction. A vision sys-
tem using laser triangulation detected the edge of the
hide, and a controller computed correction values for
the pre-programmed trajectory such that the seam was
located at a constant distance from the edge.

While the previous work mainly focuses on using a
single robot to control the fabrics, this work focuses on
sewing application that require two robots to control
the sewing process due to different shapes of the
workpieces. Winck et al. also focus on two pieces of
fabric, but in contrast to this work they used servo
controlled feed dogs and focus therefore on a different
sensor system.

III. Hardware

Our sewing test cell consists of four main parts:

• The sewing machine,
• two industrial robots with real-time interface,
• two force sensors and
• an edge sensor.

An overview of the above-named hardware will be
given in this section.

A. Sewing Machine

The sewing machine used in the test cell is a DA195.
This is an industrial sewing machine with differential
feed for the upper and lower fabrics. The feed rates
can be adjusted mechanically by two wheels on the
front of the sewing machine, but are not adjustable by
the control system of the test setup. The sewing speed
is controlled by an Efka AB321A drive and connected
to an Xmega-based development board which sets the
speed reference signal and enables real-time speed
control using Ethernet communication from the central
control PC. Other sewing machine function units, e.g.
sewing-foot control and stitch counter are also con-
nected to the Xmega board, and thus are accessible
from the control PC.

B. Industrial Robots

Two Universal Robots UR-6-85-5-A 6-axis industrial
manipulators are installed in the sewing cell to handle
the materials before, during and after the sewing pro-
cess. The controller of the UR-6-85-5-A consists of a PC
running Debian GNU/Linux and a low-level controller.
The robot offers an interface that allows to send motion

commands via TCP with a frequency of up to about
20 Hz.

Additionally, a real-time connector is programmed and
runs on the controller PC to obtain access with a higher
update frequency. This uses an API to access the low-
level controller which allows joint position, velocity
and acceleration control. The internal cycle time of the
low-level controller is 8 ms, cf. Fig. 1.

The Python-based robot controller framework PyMoCo
is used for motion generation [6]. It utilizes an inverse
Jacobian controller, which updates the robot joint an-
gles with a frequency of 125 Hz, according to the com-
manded tool velocity in the task space. This interface
is planned to be used in the control program.

Fig. 1. The Universal Robot with controller. An accessor was built
to access the low-level controller (LLC) and enable motion control
from an external PC. �Morten Lind 2011.

C. Force Sensor

The robots in the sewing cell are equipped with force
sensors between the robot tool flange and the gripper to
measure and control the pulling force during sewing.
The sensor type is ATI Mini45 with 6 DOF, and can
measure approximately ±300 N with a resolution of ap-
proximately 0.1 N. The force and torque measurements
are captured via an ATI Net F/T and communicated
to the control PC over an Ethernet connection. The
force measurement is integrated in a closed control loop
for the robots. The low-level robot controllers have an
internal cycle time of 8 ms, and the sewing machine has
a typical operating range of 120− 3600 rpm causing an
oscillation with a frequency of 2 − 60 Hz in the force
measurements due to the movement of the feed dog in
the sewing machine.

D. Edge Sensor

In order to maintain the correct seam allowance and
alignment between the two parts, a sensor system
capable of measuring the actual position of the part
edges in front of the needle point must be integrated
into the sewing cell.
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A sensor system was built which consists of two 1D-
optical arrays. These sensors act like a 1D camera and
can measure the amount of light in each pixel. The
sensor system is designed to be as flat as possible and
is installed between the two parts. The sensor system
is mounted at a distance of about 5 cm from the needle
to ensure smooth feeding for both parts.

Stephan [7] uses a similar approach utilizing an active
infrared sensor to track contours and detect edge de-
fects during sewing.

Using a PID controller promising tests were performed
which verified the feasibility of edge control using this
sensor, cf. Fig. 2.

Fig. 2. Edge controller for a one robot solution.

IV. Velocity Synchronization

Velocity Synchronization in automated sewing is a
complex task. The movement speed of the robots has to
be synchronized with the speed of the sewing machine
and with each other. The control task is to match the
seam length of the two parts while keeping the tension
between an upper and lower force limit. In the case of
different feed rates of the two parts due to material
properties and other disturbances, a force difference
will be accumulated during the sewing process which
needs to be compensated for.

The following challenges arise from the complex nature
of a sewing process and make a modelling of the
process difficult:

• Properties such as stiffness and thickness of differ-
ent parts vary to a large degree.

• Dependent on the different material properties the
same sewing machine speed results in different
feed rates and thereby actual sewing speeds.

• Changes in the force applied to the workpiece
influence the feed rate in ways that are difficult to
predict. Examples are changes in the stitch length
and slip in the feeding mechanism. These are not
only dependent on the force, but also the material
characteristics.

• The parts that have to been sewn together have
different shapes resulting in different performance
during sewing.

• The periodical movement of the feed dog disturbs
the measurements, especially when the gripper
position is near the feed dog.

In this section different solutions for a one-robot system
are discussed and then extended to a two-robot system.

The setup for a one-robot test system is illustrated in
Fig. 3. It consists of the sewing machine and the robot
with a force sensor attached to the tool flange. The
fabric is fastened to the robot at point PR = (xr, yr, zr)T.
The needle PN = (xn, yn, zn)T is the reference point
for the sewing coordinate system. The starting point
P0 = (x0, y0, z0)T is the point on the fabric where the
seam is started. When the sewing machine is active, it
moves the fabric with a velocity vsew.

Fig. 3. Test setup for velocity synchronization between the sewing
machine and the robot.

Since the feed rate depends on the properties of the
fabric, the sewing speed is not constant when applying
a constant reference speed in rpm to the sewing ma-
chine. The parameters which define the sewing process
are the sewing speed vsew and the robot speed vrob.

The following two strategies are suggested for a one-
robot solution:

• The robot matches the sewing machine speed by
pulling with a constant force.

• The robot and the sewing machine move with
a constant speed. The tension is controlled by
pull/release pulses of the robot.

In the first approach, the sewing speed is controlled by
a force controller, for example a PID controller, which
keeps the stretch in the workpiece constant. This is
done by forward feeding of the estimated sewing speed
to the robot, while compensating for deviations and
disturbances using force measurements at the robot
tool. A control scheme is depicted in Fig. 4.

In the second control method, both the robot and
sewing machine move with a constant speed. The sys-
tem is controlled to keep constant tension. If deviation
between the measured force and the force set point
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Fig. 4. Force velocity controller. The robot matches the sewing
machine speed by pulling with a constant force.

exceeds a predefined threshold, a temporary speed
change is applied in the robot controller to create a
pull pulse or release pulse, see. 5.

In other words:

• To decrease the tension, the robot is temporarily
slowed down, then speeded up, and finally set
back to the predefined speed when the robot has
returned to the planned trajectory.

• To increase the tension, the robot is speeded up,
then slowed down and finally set back to the
predefined speed when the robot has returned to
the planned trajectory.

Fig. 5. Force velocity controller. The robot and the sewing machine
use constant speed. The pulling force is controlled by pull/release
pulses of the robot.

While the first method is sufficient for a single-robot
system. For a two-robot system, the second method,
which allows sewing with constant force and constant
average speed, may be necessary to meet the corners
after the sewing process.

When two robots are used to feed two parts into
the sewing machine the feeding processes have to be
controlled independently. It is necessary to synchronize
the speed of movement between the robots in order to
get a uniform seam. Using this strategy, the corners will
match at the end of the seam.

Three different strategies for a two-robot system are
suggested:

• Synchronous robot movement.

• Asynchronous robot movement.
• Differential feeding in the sewing machine.

The first control strategy is based on parallel movement
of the two robots. During the sewing process, the
robot velocity is controlled by a force controller which
utilizes the force measurement of the two robot tools
to keep constant tension in the workpieces. When a
difference between the two measured forces is detected,
the movement of the robots is slowed down to increase
the tension in the fabrics. Due to nonlinearity, the
tension in the fabric which has the higher tension will
increase more than the tension in the other fabric. This
leads to a reduced velocity in this part at the sewing
point. After returning to the desired robot velocity, the
force difference will be decreased.

The second strategy is asynchronous feeding, allowing
different speeds in the two robots. In this way increas-
ing force on the one robot and a decreasing force on the
other robot can lead to a faster change in the feeding
velocities at the needle. After the correction, the robots
will return to the parallel feeding to ensure a smooth
seam process for the remaining part of the seam. The
control strategy for each robot is related to the second
approach in the single-robot system.

While the first two approaches use the robot movement
speed to control the feeding, the third approach is
based on control of the feeding mechanism in the
sewing machine. The feeding for the two different
fabrics can be adjusted by wheels on the front of the
sewing machine. By controlling the feeding speed using
servo motors, this mechanism can be used to to control
the sewing velocities independently, while the robots
move parallel to each other with a constant speed.

V. Experiments

A series of experiments was conducted to investigate
the suggested sewing control strategies. First, the me-
chanical behavior of the workpieces was tested with
a static force measurement setup. Second, a series of
sewing experiments was performed to analyze the
resulting force when sewing the parts.

The following experiments were conducted:

• Static force measurement of the workpiece to de-
termine the nonlinear material stiffness.

• Force measurement during sewing with constant
sewing machine speed and force control.

• Force measurement during sewing with pulling
and releasing pulses on the robot movement.

Only one robot was used in these experiments and the
same part is used for all experiments.
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A. Static Force Measurement

This experiment was performed to measure the behav-
ior of the workpieces when a stretching force is applied.
It was expected to see a spring-like behavior of the part,
with a nonlinear relationship between the distance and
resulting force. From previous research [5] it is also
known that the workpieces will have varying stiffness
and stretch properties depending on the type of hide
and thickness, and that these properties also can vary
over the part.

The experiment was conducted by fixing the workpiece
to a vice at one end, and to the force sensor on the
robot at the other end. Then the force was increased
by moving the robot increments away from the fixed
end. This experiment was repeated several times with
two different lengths between the fixed end and the
robot. The results are shown in Fig. 6.
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Fig. 6. Relation between the applied force and the stretch of the
textile parts.

The experiment clearly shows the nonlinear stiffness.
It can be seen that the variation in the stiffness is very
large for the same part length. This shows that it is
difficult to find a reliable stiffness model, even for a
single part.

B. Force Measurement During Sewing with Force Control

The second experiment uses the force control scheme
depicted in Fig. 4. A simple P controller is used, with a
working point of 2 N. A part of approximately 450 mm
length is fixed to the force sensor on the robot, and the
other end is placed under the feed dog of the sewing
machine with as little pre-tension as possible. Then the
sewing machine is started with a constant speed. The
robot movement is updated at a frequency of 20 Hz.
An integral term in the controller was neglected due
to stability issues with the low update frequency, but
is planned to be included when using the 125 Hz robot
interface.

Five series are shown in Fig. 7 as a running average
plot to filter the oscillating force caused by the feed
dog movement.
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Fig. 7. Unfiltered (one series) and filtered (five series) force during
sewing with force control. The high-frequent oscillation is due to the
feed dog movement.

The experiment shows that it is possible to control the
sewing force with simple means using a force sensor on
the tool. However when using this control scheme with
a P(ID) controller, the sewing time for each part may be
different since the feeding rate for different parts varies
for the same sewing machine speed due to material
properties. In a sewing process where two parts have
to be sewn together, it is important that both parts are
sewn at the same speed which results in varying forces
when using a PID controller for the sewing speed.
Therefore a more advanced control scheme has to be
considered which controls the force and the sewing
speed at the same time.

C. Force Measurement During Sewing with Pull and Re-
lease Pulses

The setup of the third experiment was identical to the
second experiment, but with constant speed on both
robot and sewing machine. Tests were conducted first
without control and then with a pull and release pulse
of the robot. The objective of the experiment was to
confirm that a pull pulse can be used to decrease the
tension in the workpiece while a release pulse can
be used to increase the tension. This effect is due to
different feeding rates at different sewing forces while
holding the sewing machine speed constant.

The pull pulse was applied by stopping the robot
for 0.5 seconds and then doubling the speed for 0.5
seconds, causing the robot to return to the original
trajectory after 1 second. The opposite was done to
apply a release pulse.
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Fig. 8. Force and robot speed during sewing with constant speed on
both robot and sewing machine with and without pull and release
pulses. The lower figure shows the robot speed when applying
pulses.

Five series are shown in Fig. 8 as a twelve data point
running average (0.12 s) plot to filter the oscillating
force caused by the feed dog movement. The force
plot clearly exemplifies the drop in the sewing force
after applying the pull pulse, and the sewing force
increases after applying the release pulse. When sewing
two parts together this effect can be used to control the
sewing speed of the two parts individually and at the
same time make sure that the total feed length of the
two parts is identical. It should be mentioned that the
velocity changes in the experiment were quite high to
show the principle of the method, while in a productive
system it is suggested to used much smaller pulses in
regular time intervals with the pulse time and intensity
dependent on the force error. In this way a nearly linear
movement with a constant speed can be applied on the
workpieces while controlling the force.

VI. Conclusion and FutureWork

A. Conclusion

An approach for sewing two parts using two force
controlled robots has been presented. It focuses on
the sewing of parts with edges of nearly identical
shapes, but allows for deviations which makes it nec-
essary to control the two parts independently. The

concept includes strategies for velocity synchronization
between the robots and the sewing machine as well as
a strategy for edge control. The complexity of velocity
synchronization is discussed and different strategies are
proposed.

A test setup was built to verify the possibility to control
the robot movement in the sewing direction by using
a force sensor on the tool holding the workpieces.
Different control strategies were suggested, and sewing
tests were performed to measure the actual response
of the applied control method. The results show that
it is possible to control the tension of the workpiece
during sewing without actively controlling the sewing
machine, and at the same time follow the planed tra-
jectory when allowing short-period control deviations.
This is important because the robot trajectories are
constrained by the need for matching the two corners
of the workpieces at the end of the seam.

B. Future Work

Further tests have to be performed including a test
setup with two robots to investigate any dependencies
between the part systems for the two fabrics. Also the
control algorithm for velocity adjustment in case of
variations in the feed-in speed have to be implemented
and tested to ensure that there is an even seam, and that
the corners fit together.
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Abstract Sensor-based robot control is an important field in flexible and reconfig-

urable production systems. External robot controllers can be used to achieve real-

time interaction between the user application and the robot. Only few robots offer

the possibility to interact with the low-level robot system in real-time. This paper

describes implementation details of external robot control that are used in visual and

force servoing applications. An overview is given over different layers in the con-

trol structure of a typical robot controller system. The focus is on the development

of trajectory generators and real-time interfaces to the industrial robots. The used

real-time interfaces are described and the real-time requirements for the external

trajectory generator are discussed. Experiments are presented showing the perfor-

mance of the example implementations when using different frameworks, libraries

and programming languages.

Keywords Industrial Robots, Trajectory Generation, Real-Time Robot Control

1 Introduction
In the past decades industrial robots have gained an important role in manufactur-

ing systems. This is due to the flexibility and reconfigurability of robots. While in

the past pre-programmed robots were used to execute repeatable operations without

interfacing with the environment, today most industrial robot systems use sensors

to react on external inputs. One example are pick-and-place operations where the

robot controller uses a vision system to detect stationary workpieces that have to be

picked and moves them to a target position. Dependent on the input of the vision

system, the workpiece positions are given to the trajectory generator in the robot to

move the robot to the desired position. In contrast to the pick-and-place scenario, the

control of complex processes like sewing demands much higher update frequencies

for the sensor system and a high-frequency interface to the robot controller is needed

to control the robots trajectory in real-time while the robot is moving. While pick-

and-place robot systems are well-established in the industry, sensor-based real-time

robot control is mainly encountered in research applications. Reasons for the slow

The authors wish to thank the SFI Norman programme and the Automated 3D Sewing
project founded by the Research Council of Norway.
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establishment of real-time control are the high complexity of the resulting control

systems, but also the low availability of industrial robots offering real-time inter-

faces and controller software that can be used with the few industrial robots that

offer real-time interaction.

Industrial Robots usually ship with a proprietary robot controller including a

tech pendant to program the robot. The user can write programs in the robot spe-

cific programming language including commands for robot movements and for the

program flow. Usually digital or analog inputs and outputs can be addressed to inter-

act with the environment and most robots allow communication via a serial port or

Ethernet. This is sufficient for standard operations where sensor analysis and robot

motion are processed one after another. However, when the sensor analysis must

affect the robot motion in real-time, special interfaces are required. Few commer-

cial industrial robots offer this possibility of real-time robot control. Robots often

have to be modified in order to control them from an external entity. In some cases

software modification are sufficient while in other cases hardware modifications are

needed to access the desired low-level functions. A survey on low-level robot con-

trol is presented in [Kröger and Wahl, 2010].

On the other hand there is a growing number of frameworks that help the user

to create their own external motion controllers for the available low-level interfaces.

Due to the increase of CPU power it becomes also possible to use user-friendly

high-level programming languages such as Python that require less programming

effort than usually used languages as C or C++. One example for a library for kine-

matics and dynamics calculations that can be used in trajectory generators is the

KDL library of the OROCOS project [Bruyninckx, 2001]. OROCOS KDL is writ-

ten in C++ and offers bindings for Python named PyKDL. Another tool for external

trajectory generation is the PyMoCo framework [Lind, 2012].

This paper intents to give insight in different implementations of external trajec-

tory generation based on sensor input and how they are integrated into the control

system. The implementations are using C++ or Python as programming language

and use the OROCOS KDL library or the PyMoCo framework.

Section 2 presents different applications that use real-time trajectory generation.

Section 3 gives an overview over the different parts of an external robot controller.

Section 4 describes the concepts of trajectory generators. In Section 5 different im-

plementations are described and the response time of these implementations is mea-

sured in Section 6. Section 7 concludes the paper with the results gained from the

experiments.

2 Example Applications
This section presents different applications that use external application controllers

and trajectory generators connected to real-time interfaces of the corresponding

robot to achieve sensor-based real-time control.

Line Following: Applications like grinding or welding may require that the tool is

orientated perpendicularly to the workpiece surface. A demonstrator system was

build to demonstrate following of a visible line on the workpiece with the tool

aligned perpendicularly to the surface, cf. Fig. 1. A line-of sight algorithm was
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used for the line following and a laser-based triangulation sensor was developed

to measure the tool orientation. A Nachi SC15F 6-axis industrial robot was used

as hardware platform. The system was presented in [Schrimpf et al., 2011].

Fig. 1 Model of the line-
following test platform. The
robot tools follows a marked
line.

Fig. 2 Automated sewing cell: The sewing process
is controlled in real-time by integrating sensors to
measure the tension in the workpiece and the lo-
cation of the edge in the control loop.

Fig. 3 Force control: The robot can be controlled by moving the tool.

Automated Sewing: Automated sewing is a challenge in production technology.

Usually pre-programmed movement patterns cannot be used for the robot to

control a sewing process due to the unpredictable behavior of limb material

and variations in the material characteristics. Fig. 2 shows a sewing cell that is

able to sew different workpieces without knowledge of the exact shape of the

work-pieces. Sensors are integrated for detection of the stretch in the workpiece

and the position of the edge in front of the needle. Two Universal Robots UR-

6-85-5-A are used to control the work-pieces in real-time based on the sensor

measurements. The system was presented in [Schrimpf and Wetterwald, 2012].
Force Control: Force control of the robot tool is a demanding application in re-

spect to timing constraints. Force control is used in applications where a tool
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has to apply a given force to a workpiece, for example in grinding applications.

Other applications is teaching the robot by moving the tool and recording the

movement or waypoints of the robot for later use in programs. Due to the stiff

behavior of most industrial robots small delays can lead to damages or non-

responsive behavior of the system when the real-time requirements are not met.

An example for controlling the robot by moving the tool is presented in [Lind

et al., 2010], cf. Fig. 3.

3 Real-Time Robot Control
To describe the structure of external robot controllers, Fig. 4 introduces a model that

defines different layers from the application to the robot servos.

Application

High Level

Controller

Trajectory

Generator

Low Level

Controller

Servo Controller Sensors

setupstatus

twist, target poseq/CartPos

q, (q̇, q̈)q, (q̇)

τq

Sensor data

Fig. 4 The model of a real-time robot controller. CC BY-SA J. Schrimpf.

It is important to notice that the borders between the different controllers can be

floating and that the different controllers are not necessarily implemented separately.

The High Level Controller is used directly by the application. It generates com-

mands to the trajectory generator by processing sensor data from the process.

In many sensor-based real-time controllers the commands to the trajectory gen-

erator are tool velocities to move the robot tool in the desired direction.

The Trajectory Generator is responsible to calculate a trajectory from the com-

mands from the high-level controller. The high-level controller usually com-

mands target positions or velocities in Cartesian coordinates that have to be

converted into angles q and possibly angle velocities q̇ and accelerations q̈ in

the joint space. The trajectory generator includes the necessary kinematics cal-

culations and trajectory interpolators for movements to a target.
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The Low-level Controller is responsible for calculating the inputs for the servo

controller motors. The input of the low-level controller is a trajectory in joint

space. It typically includes PD controllers and inverse dynamics calculations

that include gravity compensation and a dynamic model of the robot.
The Servo Controller consists of the electro-mechanical system of the robot, typ-

ically consisting of servo motors and their respective controllers. These con-

trollers may be integrated in the motor hardware or can be separate. In this

layer there is no coupling between the different motors and each controller only

controls one motor.

4 Real-Time Trajectory Generators
To control a robot in real-time from an application, a real-time trajectory genera-

tor is needed to generate a trajectory. Different trajectory generators are necessary

for different control scenarios. Simple trajectory generators move the joints of the

robot independently, either taking a target joint vector or a vector of joint speeds.

These movements generally result in a nonlinear movement in the Cartesian space.

More sophisticated trajectory generators are used to move the tool linearly in the

tool space. As input either a target tool pose or velocity is given by the application

controller.

Examples of trajectory generators are:

Joint Linear Generator The joint linear generator takes as input a target joint con-

figuration qtarget and interpolates the trajectory linearly in joint space.
Joint Velocity Generator The input for the joint velocity generator is a target joint

speed q̇target. The joints are moved with the commanded joint speed until a new

command arrives.
Tool Linear Generator The tool linear generator moves the robot linearly in tool

space to a target pose P in tool space.
Tool Velocity Generator The tool velocity generator moves the tool linearly in tool

space with a given twist (6D-movement speed). The tool is moved with the

target speed until a new command arrives.

Implementations of trajectory generators differ in functionality and strategies for

different situations. Examples are limits for robot joint positions, velocities and ac-

celerations or the behavior near singularities resulting in downscaling of the move-

ment when limits are reached, or changes in the trajectory to avoid singularities.

Other differences may be found among the representation of the input values and

different back-ends for handling of the real-time communication to the robot. Lin-

ear trajectory generators can be implemented to provide point-to-point movements

or more complicated trajectories using blending mechanisms.

Limits for velocities and accelerations can be defined by the robot hardware or

by the control task. The constraints by the robots are usually defined per joint while

task constraints usually are defined in tool space.

5 Implementations
Three different implementations are presented in this section based on different

frameworks and with different implementation focus. The focus of the implementa-
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tions is on tool velocity generators since these are commonly used in sensor-based

robot control, but also other trajectory generators are provided, for example linear

point-to-point trajectory generators to move the robot to the starting position.
PyMoCo: PyMoCo is a real-time trajectory generation framework that is entirely

implemented in Python. Python was chosen as platform to allow for rapid pro-

totyping of new controllers and interfaces and examine the possibilities to use

the Python programming language in real-time robot control. The focus of Py-

MoCo is to provide general interfaces that can be adapted to a large extent to

different robot interfaces and application controllers. It includes a wide range

of possibilities to constrain the generated motion to maximum joint velocities

and accelerations both in actuator space and joint space3.

Trajectory Generator Based on OROCOS PyKDL: A real-time trajectory gen-

erator has been implemented based on the Kinematics and Dynamics Library

that is part of OROCOS [Bruyninckx, 2001]. It provides the minimal function-

ality that is needed to control a Universal Robots UR-6-85-5-A linearly in tool

space, either by setting a target pose or a twist. For the interpolation in tool space

to move the robot to the target position, the python-math3d library is used in-

stead of KDL due to the lack of Python bindings for the according functions.

However the inverse kinematics and the inverse Jacobian calculations are done

by KDL.

Trajectory Generator Based on OROCOS KDL: Another implementation of a

real-time trajectory generator was programmed entirely in C++ using the ORO-

COS KDL libraries for both kinematics calculations and trajectory interpola-

tion.

6 Experiment: Respone Times of the Implementations:
To evaluate the response times of the different real-time trajectory generators a test

platform was set up. The used PC had an 8 core 2.8 GHz CPU and 8 GB RAM.

The low-level interface was emulated by a small C++ program on the same PC as

the trajectory generators. The time between sending a status update and getting the

response from the trajectory generator was recorded for a robot motion where the

tool moves with a constant low speed in the workspace. The response times were

recorded for 5000 steps for each implementation. The power management of the

Linux PC was set to performance to prevent higher response times due to frequency

scaling. The results are shown in Fig. 5.

The figures show that the C++ implementation using the OROCOS KDL library

gives the lowest response time with a mean value of 0.265 ms. The Python imple-

mentations respond slower with mean response times of 0.345 ms for the imple-

mentation using OROCOS PyKDL and 0.537 ms for the trajectory generator using

PyMoCo.

Without using the network the response time of all samples were less than 1 ms.

This will increase slightly with the use of external Ethernet. Of more concern are

the few response times that are about two times larger than the mean response time.

3 This is important for robots that have a different joint and actuator space for example due

to parallel links in an otherwise serial robot.
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Fig. 5 Response times for the different implementations for 10000 samples: ORO-
COS KDL, OROCOS PyKDL, and PyMoCo. The red marker is at the position of the
maximum response time.

Such behavior must be expected using non-specialized hardware and not using a

real-time operating system. However, a system using an external controller must be

designed failsafe and with a graceful degradation regarding lost samples in mind

anyway. In this particular case of the Universal Robot, a response time exceeding

4 ms results only in a skipped interpolation cycle. Further it is implemented a strat-

egy that allows for response times within 8 ms before the connection is defined as

lost. These are examples of deadlines for usefulness of results and for lost com-

munication and are both application and implementation specific. That is, different

strategies may lead to different values.

The results indicate that it is feasible to run a trajectory generator with a response

time not exceeding the deadline of 4 ms at a frequency of 125 Hz.

The distinction between soft and hard real-time in a formal sense has not been

addressed in the presented work. The authors are well aware that a hard real-time

system may need to be formally proven to be classified as such. The focus of the

real-time quality of the control system is on usability instead of formal proof of

worst case response times. There are numerous issues with plain Linux and real-

time, as well as several solutions to address these problems, e.g. special configura-

tion of the kernel before compilation regarding timers, interrupt handling and pre-

emption, as well as extensions with separate full real-time systems such as RTLinux
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and RTAI [Arthur et al., 2007]. The authors regard it as important to use an unmod-

ified "desktop system", both because of maintainability and ease of use in general.

One performance related issue was shown to be of such importance that it had

to be addressed despite this. Common Linux distributions include an automatic fre-

quency scheduler to save energy when there is no heavy usage of the CPUs. This

scaling of the CPU can lead to a higher response-time when active.

7 Conclusion
An overview over the concept of external real-time robot control has been demon-

strated and examples of industrial applications have been presented. The focus was

on real-time trajectory generation. Three different implementations of real-time tra-

jectory generators have been described that differ in functionality and the underly-

ing frameworks. Experiments have been conducted to evaluate the response times of

these different implementations. The experiments were intended to empirically eval-

uate whether deadlines can be expected to be exceeded or not. The results indicate

that it is feasible to run an external trajectory generator on common off-the-shelf

hardware and standard desktop Linux and still fulfill the real-time requirements of

the low-level control interface of a typical industrial robot.
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Real-Time System Integration in a Multi-Robot Sewing Cell

Johannes Schrimpf1, Lars Erik Wetterwald2 and Morten Lind2

Abstract— The sewing process is a manufacturing tech-
nology which presents severe challenges for automation.
Due to variations in the material properties and un-
predictable mechanical compliance, real-time sensor-based
control strategies are necessary to achieve satisfying re-
sults. This paper presents a sewing cell consisting of
two lightweight industrial robots and a sewing machine.
Sensors are included both for force and edge positioning
control. Experiments are presented showing the perfor-
mance of the proposed real-time control framework. The
experiments focus on the real-time control loop for force
and edge control during the sewing process.

I. Introduction
Sewing is a labor intensive process, which is hard to

keep as part of manufacturing in high cost countries.
Most of the sewing industry, including the equipment
manufacturers have outsourced their activities to low
cost countries. The motivation for keeping these pro-
cesses in high cost countries are usually the need for
short lead time in order-based production, and that the
sewing process is highly integrated with the rest of the
value chain. This is the case for a Norwegian producer
of recliners, and different approaches to automate their
manual sewing processes of leather covers for recliners
have been a major research activity the last years.

This paper describes an automated sewing cell de-
veloped for joining parts with different shapes using
two individually controlled robots. The specific case
presented involves the joining of four leather parts
which make up the footstool cover shown in Fig. 1. At
the same time it is an important goal for the research
work to develop flexible solutions capable of handling
different part geometries and material properties. The
chosen cell design uses two lightweight robot arms
which can control two parts individually. This enables
the system to sew parts with different geometry, re-
sulting in 3D shaped assemblies. Force measurements
are used to control the tension in the parts and edge
measurements are used to control the seam position
relative to the edges of the parts. The controller system
has no prior knowledge of the shape of the parts. The
main focus in this paper is verification of the control
framework and measurements of the force and edge
error during the sewing process.

Several research groups have worked in the area of
automated sewing:

1Department of Engineering Cybernetics, Norwegian
University of Science and Technology, Trondheim, Norway. E-
mail: johannes.schrimpf@itk.ntnu.no.

2SINTEF Raufoss Manufacturing AS, Trondheim, Norway.

Fig. 1. Processed part which has been sewn in the sewing cell.

Fig. 2. The sewing cell with two robots and a sewing machine.

Gershon et al. [1], [2] presented a sewing demon-
strator with sensor feedback. It consisted of a single
robot and a sewing machine. They used fabric tension
measurement and an edge sensor system based on cam-
eras to control the robot in real-time. They proposed
different sensors such as cameras, encoders, proximity
sensors and fabric tension sensor to control the sewing
process.

An overview of the challenge of automated sewing
was given presented by Seliger and Stephan [3]. They
emphasize the difficulties of material handling and
sewing that arise from the non-linear behavior of the
material. They suggest adaptive control strategies that
use measurement of the seam allowance and the feed
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rate during the sewing process.
Koustoumpardis et al. [4] presented an approach of

automated sewing using adaptive control strategies.
They used a controller that was based on neural net-
works to control the tension in the work-piece. They
focused on sewing of a single piece of fabric.

Winck et al. [5] described a sewing machine with
a servo-controlled feeding mechanism that both con-
trolled the edge and fed the work-pieces into the
sewing machine. A prototype was built to verify the
concept. They used independent control of the two
work-pieces that were separated by a thin plate. A
vision system tracked patterns on the fabric. The im-
plemented prototype used open loop path control and
they emphasize feedback control for the sewing pro-
cess.

Wetterwald et al. [6] built a sewing cell that was able
to attach fiber and leather parts for use in recliners. It
used a single robot and a sewing machine. For sensor
feedback a triangulation-based edge tracking system
was included to control the seam position on the part.
The robot speed was synchronized with the sewing
machine speed using an optical movement sensor.

The mentioned projects mainly focused on sewing
systems using either a single robot or servo-based
feeding mechanisms. The use of a single robot limits
the use cases to sewing of parts with the same edge
shape.

The work presented in this paper uses a concept
based on two independently working robots in order
to be able to control parts with different shapes that
may result in 3D-shaped subassemblies. Preliminary
experiments and synchronization between two parts
were discussed in [7].

II. Hardware
A. Sewing Machine

The sewing machine is a DA195 industrial sewing
machine providing individual feed rate for the upper
and the lower part. The controller of the machine is
connected to a development board that provides access
to the functions of the sewing machine via Ethernet.
These functions are control of the feed dog (up/down),
the thread cutter, the needle position and the drive
motor frequency. The sewing speed is determined by
the variable drive frequency and the mechanically ad-
justable stitch length. It is important to mention that
the feeding speed of the parts is highly dependent on
the fabric characteristics, in particular the thickness and
stiffness, meaning that the actual material feed rate
will differ from the set theoretical material feed. An
overview of the sewing cell with the sewing machine
is shown in Fig. 2.

B. Lightweight Industrial Robots
Two 6-axis industrial manipulators are used to hold

the parts and to control their position during the

sewing process. The robots are Universal Robot UR-6-
85-5-A. Finger grippers are mounted on a tool chang-
ing system at the robot tool flange. The grippers are
designed such that they can reach over the table, see
Fig. 3.

Fig. 3. The robots with finger grippers.

C. Force Sensors
Force sensors are mounted on the robot to measure

the force vector at the grip point towards the sewing
machine. The sensors are ATI Mini45 sensors that are
connected to Net/FT boxes. These provide access to the
sensor data via Ethernet.

D. Edge Sensors
To detect the position of the edge near the needle,

a sensor system based on two line sensor arrays is
installed in front of the presser foot, see Fig. 4. It is
installed such that the sensors are placed between the
two parts during the sewing process. The sensor arrays
act as one-dimensional cameras and can detect the light
falling onto the sensor. An algorithm is implemented
to detect the position of the edge on the sensor. LEDs
are used to control the background light. The sensors
are connected to development boards that provides an
Ethernet interface.

III. Software and Communication
A. Robot Interface

Two different interfaces are provided by the robot
manufacturer to communicate movement commands to
the robots:
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Fig. 4. The edge sensor system. One part is placed under the sensor
plate, the other part above.

• secondary client interface and
• UR_COMM_API.
The secondary client interface is an interface to the high

level controller in the Universal Robots controller. It ex-
poses the same functionality as provided to programs
that are created using the user interface on the robot. In
contrast to programming directly on the teach pendant,
it is possible to send the commands over a TCP socket
to the robot while the robot is running. Status packets
are sent on the same TCP socket from the robot to
the external controller including joint angles, velocities,
Cartesian tool coordinates, currents, etc. Using this
interface it is possible to create an external controller
that interacts with sensors and controls the robot with
a frequency of about 10 Hz.

The second interface used in the sewing cell is the
UR_COMM_API, a C-library that provides access to the
low-level controller of the robot. The controller system
of the UR-6-85-5-A is based on a Linux PC that runs
different controller facilities, for example the GUI, the
kinematics and dynamics and the low-level access to
the servo controller. By using the API it is possible
to run a custom program on the controller gaining
access to the low-level controller. In a loop of 8 ms it
is possible to read the current joint angles and angular
velocities and to send new joint set points (q, q̇, q̈) to
the controller. The main benefit of the API is the high
update frequency of 125 Hz.

B. Motion Controller

In order to control the robots from the PC, connec-
tor programs were designed to connect to the TCP
sockets of either the secondary client interface or the
router program that uses the UR_COMM_API. In case
of the secondary client interface, the functions for robot
movement, i.e. tool velocity control and tool linear
control can be used directly from the PC, while in case
of the low-level interface the kinematics calculations
have to be done on the external PC.

A kinematics controller has been programmed based
on Orocos KDL. It offers a tool linear trajectory generator

that moves the robot linearly in the base coordinate
system to a given pose and a tool velocity trajectory
generator that moves the tool with a given twist.

C. Force Filtering

Due to the high update frequency of the force mea-
surement, it is possible to record the force characteris-
tics in the part during each stitch while sewing. Since
the feeding is not linear, the force curve follows a
periodical shape during sewing. For the control algo-
rithms it is not desired to follow the high-frequency
movement of the feeding system, but to measure the
mean force over the period of one stitch. A force filter
was implemented using a running average with a time
window of one stitch.

D. Middleware

ROS is used as middleware in the sewing cell [8].
ROS is a framework that provides functionality for
communication between different nodes using services
and topics. A service is similar to a remote proce-
dure call in the way that the calling node sends a
request to another node and gets a response. Topics
are used to publish data from a publisher to one or
more subscribers. Both services and topics can be used
to communicate different data types between nodes.
Additionally ROS provides several tools and a packet
system to easily include 3rd party nodes and libraries
into the system.

The sensor and robot connectors in the sewing cell
are encapsulated in ROS nodes that can run on different
PCs and are connected through ROS via Ethernet.

The main nodes in the sewing system are:
• ati_net_ft - the interface to the force/torque sensor
• edge_sensor_server - the interface to the edge sen-

sors
• edge_finder - the edge detection algorithm
• ur_rt_connector - the interface to the robot
• sewing_machine_controller - the controller for the

sewing machine
• sewing_process_controller - process controller in-

cluding force- and edge-controller
• sewing_process_manager - the main application
The sewing_process_manager and the

sewing_machine_controller are common nodes for
the system. All the other nodes are duplicated, hence
there is one corresponding node for the upper robot
and one node for the lower robot.

E. Process Control System

The sewing cell includes two process controllers for
each robot:

• an edge controller to control the edge position at
the needle and

• a force controller to hold constant tension in the
part.
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F. Control Coordinate system
In order to ensure that the edge controller and the

force controller can act independently, and with as little
influence on each other as possible, a control coordinate
system was defined. This coordinate system describes
the position of the robot relative to the needle. To
compensate for displacement of the edge in front of the
sewing machine, the part is rotated around the needle.
To compensate for force error, the robot tool is moved
towards or away from the needle, see Fig. 5.

Fig. 5. The control coordinate system. Edge control results is a
rotation around the needle while force control moves the robot
towards or away from the needle. These movements are transformed
into the robot base coordinate system.

The output of the force controller and the edge
controller is a tool speed in force and edge direction.
This velocity vector is then transformed to the robot
base coordinate system. The robot command is calcu-
lated from the control velocities of the force and edge
controller, and the feed-forward speed of the sewing
machine.

G. Force Control
Both the elasticity in the part and the non-predictable

feeding speed lead to varying tension in the part and
inaccuracy in the predicted sewing speed. A constant
force has to be applied to the fabric to ensure stable
edge control. Too low tension leads to wrinkling and,
hence, inaccurate edge-measurements due to a possible
gap between the sensor and the part. Too high tension
increases the friction between the part and the sensor
housing, leading to a stick-slip effect; especially in the
initial phase when the part is not moving in the sewing
feed direction. Too high tension can also lead to lower
seam quality due to disturbance of the feeding system
of the sewing machine.

The tension in the part is measured by the force sen-
sors on the tool flange. The control scheme is depicted
in Fig. 6. A PI controller is used to control the force.

Due to the delay in the system, a derivative feedback
is neglected. Due to the reducing distance between the
grip point and the needle point the mechanical system
of the fabric increases stiffness as the sewing process
progresses. The control parameters are scaled with the
distance to compensate for this behavior.

Fig. 6. Force controller for one robot.

For future synchronization between the two robots, it
is optimal to measure the tension in the fabric along the
sewing direction. However, due to the current gripper
design it is necessary to grip the parts at an offset from
the seam line such that it is possible to control the seam
until the last stitch without having to release the grip
of the part; i.e. to allow for the grippers to progress
with the part past the sewing machine. As previously
described, the edge control is done by a rotation around
the needle. The force controller acts perpendicularly
to the edge controller by controlling the force on the
line between the grip point and the needle. Hence, the
two controllers should work independently. A coupling
was observed due to the fact that changes in the force
have influence on the pressure of the part on the sensor,
which leads to changes in the measured edge position.

H. Edge Control

Edge control is necessary to control the distance of
the seam from the edge of the part. To control the edge,
the part is rotated around the needle. The edge error is
measured by the edge sensor system that is installed
in front of the needle. The controller is depicted in
Fig. 7. It consists of a simple P controller. A derivative
feedback is not implemented due to the delay in the
system. An integral feedback is also neglected in the
current system due to mechanical issues that can lead
to a temporary sticking of the part on the sensor plate
or sewing table. Since the output of the P controller
is a tool velocity, the controller keeps moving the
robot until the part slips free. An integral feedback can
easily lead to instability since it increases the velocity
further, leading to a large oscillation; this effect has
been experienced.

IV. Experiments

A. The Sewing Process

A sewing process is executed in different stages:
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Fig. 7. Edge controller for one robot.

1) Move the robots to the starting positions.
2) Enable compliance control of the robots for

operator-assisted fixing of parts.
3) Start force control to achieve the right tension in

the part.
4) Start the edge control to adjust the parts to the

set seem allowance (edge position).
5) Start the sewing process

B. Sewing of one Part with Different Robot Interfaces

Experiments have been conducted to compare the
secondary client interface and the UR_COMM_API.

The frequency of the sewing machine was set to
12 Hz, which leads to a sewing speed of approximately
50 mm/s. Only the upper robot was used in order to
exclude influences from the second part. The P and I
parameter for the force controller were tuned to the
corresponding robot interface. The force set point was
set to 2 N. The update frequency for the robots were
10 Hz and 125 Hz. The log frequency of the sensors
was the same as the update frequency.

The filtered force value and the edge error for the two
interfaces are shown in Fig. 8 and 9. The plots show
the measurements during a typical sewing process
starting after the initial force and edge adjustment. The
measurement of the last part of the sewing process
(approximately 5−10 cm) are not shown since the robot
is not feedback controlled due to invalid measurements
after the part has passed the edge sensor.

It is important to mention that the actual edge error is
lower than the measured error since a rotation around
the needle results in a larger movement at the sensor
than at the point of the next stitch.

It is evident that the controller using the
UR_COMM_API controls better to the set point
and has a comparable edge error. The controller using
the secondary client interface has problems to reach
the force set point even with a PI controller. This is
caused by the limit of the P and I contribution of the
controller due to the dead time in the system.

C. Sewing with two Parts

This experiment demonstrates sewing with two
parts. As controller interface, the UR_COMM_API was
used. The force and edge error measurement for the
two robots are shown in Fig. 10 and 11.

The plots show that the behavior of the sewing of
two parts has no considerable influence on the sewing
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Fig. 8. Sewing force and edge error for a typical sewing process
using the secondary client interface with a single robot.
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Fig. 9. Sewing force value and edge error for a typical sewing
process using the UR_COMM_API interface with a single robot.

quality compared to sewing of a single part with
the same robot interface. The sign of the edge error
of the lower robot is opposite to that of the upper
edge measurement because of the reversed physical
mounting of the lower sensor. Not visible in the plots,
but visible when examining the sewn part is that the
lower part is fed slightly faster into the sewing machine
than the upper part which results in a displacement
of the corner, see Fig. 12. This error is systematic and
can be met with synchronizing the two robot systems
with a superior controller that adjusts either the control
parameters or the feeding parameters in the sewing
machine. This issue is theoretically addressed in [7].

V. Conclusion and FutureWork

A. Conclusion
This paper has presented details of a flexible, auto-

mated sewing cell, which it is able to sew together parts
of different shapes and materials. Sensor feedback is
used to control the sewing force in the parts and the
location of the seam on the parts. The system controls
the process in real-time without prior knowledge of
the part geometries. The system includes two robots
that can handle the two parts independently. Tests have
been conducted to evaluate the quality of the seam
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Fig. 10. Sewing force value and edge error for the upper robot for
a typical sewing process using the UR_COMM_API interface with
two robots.
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Fig. 11. Sewing force value and edge error for the lower robot for a
typical sewing process using the UR_COMM_API interface with two
robots.

for the cases of a single robot sewing or both robots
sewing. Two different robot interfaces with update
frequencies of 10 Hz and 125 Hz have been used and
the results of the control errors were compared. The
tests show that the faster interface results in a smoother
and more responsive control of the sewing force. The
results for the edge control were comparable. Both
control methods result in comparable sewing result
when investigating the sewn objects visually, but the
higher update frequency may be necessary when intro-
ducing an adaptive control strategy to match reference
points along the seam path. It was also shown that
the behavior of the control system was independent
of sewing with one part and one robot or two parts
with both robots.

B. Future Work

To introduce path matching into the system a syn-
chronization of the two robots has to implemented.
Preliminary tests and experiments are discussed in [7].

Another focus for future work is an automatic feed-
ing system to automate the whole process including
arrangement and handling of material.

Fig. 12. The assembly of two parts as sewn in the experiment with
two robots. The seam runs from left to right and is nicely placed at
a nearly fixed distance from the edge. At the end of the seam an
accumulated error of the feeding can be observed as a longitudinal
displacement between the corners of approximately 10 mm.

VI. Multimedia Contents
A video was submitted as appendix for this paper.

It shows sewing of different parts. It consists of five
different parts:

1) Sewing of two parts with the same shape as in
the experiments.

2) Sewing of two parts with different shapes.
3) Sewing of two identical parts with attached fiber.
4) Sewing of a curved path to test the edge control.
5) Time lapse video of five subsequent sewing pro-

cesses (10x speed).
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Real-Time Robot Trajectory Generation with Python*

Morten Lind1, Lars Tingelstad1 and Johannes Schrimpf2

Abstract— Design and performance measurements of a
framework for external real-time trajectory generation for
industrial robots is presented. The framework is implemented
entirely in Python. It serves as a proof of concept for performing
real-time trajectory generation in Python, from a PC with
connection to the motion controller in an industrial robot
controller. Robotic applications requiring advanced, custom
trajectory generation, and a high level of integration with
sensors and other external systems, may benefit from the
efficiency of Python in terms of reduced development time,
lower code complexity, and a large amount of accessible
software technologies.

The presented framework, dubbed PyMoCo, supplies a set
of simple trajectory generators, which are comparable to those
found in contemporary industrial robot controllers. Designing
and implementing new trajectory generators and integrating or
extending the included trajectory generators is central to the
design of PyMoCo. Laboratory applications involving real-time
sensor- and vision-based robot control has demonstrated the
usability of PyMoCo as a motion control framework and Python
as a robotics application platform. For robotics applications
with a control frequency not exceeding a couple of hundred
Hz, computation deadlines no shorter than some couples of
milliseconds and jitter tolerance at the order of a millisecond,
PyMoCo may be considered a feasible and flexible framework
for testing and prototype development.

I. INTRODUCTION

Robotic tasks of limited complexity such as simple posi-

tioning tasks, trajectory following or pick-and-place appli-

cations in well structured environments, are straightforward

to develop and integrate in the application platform of

the native robot controller using current commercial robot

control software (de Schutter, et al. (2007) [1]).

If robots communicate or interact with other robots or

systems, the implementation is most often based on vendor-

specific proprietary protocols and with limited performance

specifications that preclude online sensor-based control (De-
cré (2010) [2]). However, there is a strong market pull

for more flexible and cost effective robotic systems which

are able to integrate a multitude of sensors and operate

in unstructured environments. An example of this is the

increased use of industrial robots in small and medium-

sized manufacturing enterprises, often characterized by a

combination of low-volume, high variety, and custom-made

*The work presented has been financially supported by the The Research
Council of Norway through the research programmes “SFI Norman”,
“BIA Robust, industriell sømautomatisering” and “KMB Next Generation
Robotics”.

1Department of Production and Quality Engineering, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway

2Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology, Trondheim, Norway

e-addresses: {morten.lind, lars.tingelstad,
johannes.schrimpf} at ntnu.no

goods (EURON (2005) [3]). In order to meet these requests

from the industry, new methods for programming and system

integration are needed.

Many research laboratories therefore attempt to circum-

vent the application platform of the native robot controller,

which either precludes real-time interaction or does not

offer an appropriate set of technologies for solving the

pertinent problem, in order to directly interface the motion

control level. The motion control level is described as the

entity providing a real-time interface for addressing the joint

configuration space of the robot arm at an intermediate-level

frequency; in the range from 100Hz to 1 kHz. The ability to

address the motion control level from an external application

platform may thus give full control of choosing hardware

peripherals, programming software and control algorithms

(Decré (2011) [2]). The motion control level is often referred

to as low-level control in literature.

A. Related Work

Applications that utilize low-level interfaces, to the mo-

tion control level, are usually implemented with compiled,

intermediate-level languages, such as C or C++, and de-

ployed on some real-time operating system (OS) platform,

such as VxWorks, QNX, OS-9 and RTAI+Linux. The ob-

vious reasons for these choices are among requirements to

hard real-time performance; efficiency of computation with

short cycle times; and latency tolerance on the time scale of

microseconds.

Dallefrate et al. (2005) [4] used RTAI+Linux to control the

Mitsubishi PA10 robot at the motion control level in 1 kHz
over Arcnet.

Kubus et al. (2010) [5] modified Stäubli controllers and

gained external joint level position control rates of 10 kHz
and 250Hz from a QNX system on a standard PC.

Buys et al. (2011) [6] present a teleoperation setup us-

ing two KUKA Light-Weight Robots (LWR) coupled to

a Willow Garage Personal Robot (PR2). The two KUKA

LWR robots are controlled over the KUKA Fast Research

Interface (FRI) (Schreiber et al. (2010) [7]) for the KUKA

KRC2LR industrial controller from an external control unit

running RTAI+Linux. The communication is based on the

UDP protocol and has a configurable communication rate

of up to 1 kHz. The application was integrated using the

two component based robotic frameworks OROCOS (Open

Robot Control Software) (Bruyninckx (2001) [8] and Bruyn-
inckx et al. (2003) [9]) and ROS (Robot Operating System)

(Quigley et al. (2009) [10]).

A contemporary overview of the directly available low-

level accessibility in some industrial robot controllers can be
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found in Kröger and Wahl (2010) [11].

B. Motivation and Goals

The work underlying this paper is motivated by the desire

for making quick prototype development of real-time, sensor-

based robotics applications in a laboratory setting with

industrial robots. Our main application domain is industrial

manufacturing automation, and all laboratory projects in-

volve industrial robots for various types of tasks, ranging

from standard offline programmed robot control to sensor-

based real-time trajectory generation.

The presented work started out as a simple need for ex-

perimenting with motion control interfacing, and developed

into the robot control framework we call PyMoCo. When

developing real-time robotic applications, there are many

demanding issues involved. We aim at addressing two of

these:

• Maintenance and knowledge of specialized real-time

operating systems and platforms (hardware and soft-

ware).

• Development of C/C++ applications on real-time en-

abled software frameworks or platforms.

The goals of the presented work were to establish a

sufficiently stable real-time framework which is:

• based on a stock GNU/Linux kernel and a freely avail-

able operating system,

• and using a high-level scripted programming language

in pure user-mode.

Obtaining these two goals may have driven our develop-

ment away from supplying directly usable industrial solu-

tions. On the other hand it has been the enabling factor for

having many researchers as well as projects making progress

in advanced sensor-based robot control applications.

The specific choices of using stock Real-Time Linux1 ker-

nels with the Debian/Ubuntu operating systems and Python

as the programming language were well-considered in terms

of previous experiences and expertise.

As will be demonstrated later, see Section III, there is not

much effect on the performance from using the Real-Time

Linux kernel compared to using a standard Linux kernel.

The major concern towards real-time performance regards

the Python run-time efficiency and the implementation of

PyMoCo. While there exist a possibility, however remote,

that Real-Time Linux may some day guarantee an upper

bound to latency, the Python run-time system in its current

form, and possibly far into the future, does not possess hard

real-time quality.

The efficiency of using Python as a development lan-

guage, and even as an end-target platform has been well

known for some time (van Rossum (1998) [12]). Further,

the general scientific computational performance of Python

is well document by many papers and projects; see e.g. the

comprehensive paper by Cai et al. (2005) [13].

It is the purpose of this paper to give an overview of Py-

MoCo at the design and architectural level and to convey an

1https://rt.wiki.kernel.org/

impression of its level of feasibility as a software technology

for real-time trajectory generation in prototype development

of sensor-based applications of industrial robots.

C. Paper Outline
The remainder of this paper is outlined as follows. An

overview of PyMoCo is presented in Section II, performance

test setup and results are presented and discussed in Sec-

tion III, and general discussion and mention of further work

is presented in Section IV.

II. PYMOCO OVERVIEW

PyMoCo is a free and open source2 software framework

implemented entirely in Python, using the efficient NumPy3

library for numerical computations. This section gives an

overview of the architectural structure of PyMoCo.
The development of PyMoCo has been proceeding over

the past five years and by now amount to some 4500

lines of Python source code4. It includes back-ends to two

different robot types: A software-modified Universal Robots5

controller and hardware-modified Nachi Robotics AX10 and

AX20 controllers.

A. Applications
Though PyMoCo is a work in progress it has played a

central role in many manufacturing automation prototype

projects at our research laboratories.
The dual robot, real-time sensor-based sewing cell de-

scribed by Schrimpf et al. (2012) [14] has a setup that uses

PyMoCo trajectory generators.
Lind (2012) [15] used PyMoCo in the development of a

joint offset calibration method for industrial robots.
Tingelstad et al. (2012) [16] used PyMoco for a tight

tolerance compliant assembly task of critical aero engine

components.
Schrimpf et al. (2011) [17] used PyMoCo for a real-time

sensor-based control system with multiple sensors in a line-

following application.
Lind and Skavhaug (2011) [18] used PyMoCo’s

ToolLinearController trajectory generator intensively for a

real-time emulated production system setup involving several

robots.

B. Architecture and Design
The PyMoCo run-time provides three core interfaces to the

trajectory generation and application level systems. These are

described in the following.
1) RobotDefinition Interface: is a placeholder for all static

information about the robot in use. It provides such infor-

mation as static link transforms; joint transform parameters;

translators between different joint spaces: actuator, encoder,

and serial; the home pose of the robot; and it is a factory for

a set of joint transform function objects for the robot.

2PyMoCo can be branched from Launchpad: https://launchpad.
net/pymoco

3http://numpy.org/
4Measured using David A. Wheeler’s ’SLOCCount’ http://www.

dwheeler.com/sloccount/.
5http://www.universal-robots.com/
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2) FrameComputer Object: is the computational entity

for all kinematics computation. It is currently a single,

unspecialized class for unified kinematics computation for

all robot structures. For joint transform objects and static

link transforms, it relies on information retrieved from the

RobotDefinition interface at construction time.

3) RobotFacade Interface: is the main interface covering

the robot specific backend subsystem. Ultimately, in the

backend subsystem, there is a connection to the motion

controller entity of the operating robot. At any time, some

trajectory generator must be answering real-time requests

propagated from the robot motion controller through the

robot facade subsystem.

For illustrating the relationships of entities in setups for

real-time trajectory generation and robot application control

involving PyMoCo, two UML object diagrams are shown

and described in the following.

PyMoCo Runtime

Application Level

tlc:ToolLinearController

Native Robot Controller

rob_def:RobotDefinition

cm:ControllerManager

simple_app:SimpleApplication

rob_fac:RobotFacade

mc:NativeMotionController

fc:FrameComputer

Fig. 1. UML object diagram giving an overview of a simple PyMoCo
application, utilizing built-in trajectory generators managed by a Controller-
Manager object from PyMoCo.

The most simple runtime setup using PyMoCo for robot

control, illustrated by the UML object diagram in Fig. 1,

uses an object of the ControllerManager class, included

with PyMoCo. The ControllerManager class is managing

the switch of trajectory generators at the request of the

application code, ensuring that the switch will not skip a

control cycle request from the motion control level.

In the diagram in Fig. 1 weak or temporary associations

are represented by dashed lines and more persistent object

associations are illustrated by solid lines. The trajectory gen-

erator is exemplified by an object of the ToolLinearController

class. It uses the core PyMoCo entities and provides its

operational interface to a simple application; which is not

specified by PyMoCo. The simple application, developed

and provided by the user, thus only has to interface with

the ControllerManager object and the trajectory generator

objects that it requests from the controller manager.

Fig. 1 also indicates a layered structure, where the native

robot controller containing the motion controller is lowest,

the PyMoCo run-time system is in the middle, and the

application level at the top. In a simple setup as the one

illustrated, PyMoCo may be considered more as a software

service than a software framework, since the client system,

i.e. the simple application, is cleanly separated from the

PyMoCo code.
The specific set of trajectory generators that are managed

by the controller manager are the ones supplied with Py-

MoCo, and they will be discussed shortly in Section II-C.

Application Level

PyMoCo Runtime

Native Robot Controller

rob_def:RobotDefinition

custom:TrajectoryGenerator

pc:ProcessController

sensor1:SensorSystem

ice:IceConnector

app:ApplicationControl

rob_fac:RobotFacade

mc:NativeMotionController

sensor2:SensorSystem

ros:ROSConnector

fc:FrameComputer

Fig. 2. Overview of an advanced PyMoCo application, utilizing the
core PyMoCo objects and implementing custom trajectory generators with
PyMoCo resources.

A more advanced, and realistic setup for sensor-based real-

time trajectory generation, is illustrated in Fig. 2. It shows an

application control at the application level which is strongly

integrated with network communication systems, illustrated

by connectors over ZeroC Ice
TM

(Henning (2004) [19]) and

ROS; process control; sensor systems which naturally con-

nect externally; and with a custom trajectory generator. The

custom trajectory generator is developed using the PyMoCo

software framework resources and takes on the real-time

obligations toward the pertinent robot motion controller

through the robot facade.

 : ToolLinearController

 : RobotFacade

 : FrameComputer

 : RobotDefinition

 : MotionController

2: get_joint_pos

2

3.1: get_flange_pose
3.1

1: moco_notify
1

4: compute_joint_step4

5: set_joint_increment

5

6: : serial2encoder

6

7: encoder_setpoint

7
0: control_cycle_start

0

3.2: get_inverse_jacobian 3.2

Fig. 3. The real-time cycle illustrated as a UML collaboration diagram
among core PyMoCo entities, the robot motion controller, and a trajectory
generator (of the class ToolLinearController).

The detailed mechanisms of the control cycle involving the

core elements of PyMoCo may be perceived from the UML

collaboration diagram in Fig. 3. The focus here is on the

computational real-time cycle from the trajectory generation

level and down, and hence the application logic and control

is not included. The MotionController class is not a real

class, but included for representing the motion controller in

the native robot controller. The trajectory generator used for

illustration here is, again, of the class ToolLinearController.
The control cycle is started by a notification from the

motion controller to the robot facade in PyMoCo; typically
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containing a lot of status information such as encoder

readings, velocities, etc. The robot facade propagates the

notification internally to a subscribing trajectory generator,

which then, using PyMoCo run-time facilities, computes a

control step in response. This control step is returned in

serial joint kinematics coordinates to the robot facade, which

translates it to encoder values and then in turn responds to

the motion controller.

C. Included Trajectory Generators

A (real-time) trajectory generator is an entity which ulti-

mately carries the real-time responsibility of timely respond-

ing to the motion controller request for a new control-setpoint

in joint space; or rather the joint encoder space. Neither

the motion controller or the trajectory generators are core

PyMoCo entities.

PyMoCo includes a set of simple trajectory generators.

They cover the typical trajectory generators that are repre-

sented by motion commands in the application platforms of

standard industrial robot controllers. None of the included

trajectory generators implement any advanced strategies for

dealing with arm configuration singularities, joint speed

or acceleration violations, joint limits, or other types of

circumstances that may lead the motion control system to

fail. Self-motion, or internal, singularities are dealt with by

using a configurable singular value cutoff in the inverse Ja-

cobian computation; which is probably the simplest possible

strategy.

The most common trajectory generators in standard robot

controller are included: joint space linear motion, tool space

linear motion, and real-time correction-responsive tool space

linear motion. An additional two real-time responsive tra-

jectory generators are included, which are rarely found in

standard robot controllers, but immensely useful in real-time

sensor-based robot control: tool space velocity motion and

joint space velocity motion. The tool space velocity generator

is the most frequently used in real-time sensor-based robot

control applications at our laboratories.

III. REAL-TIME PERFORMANCE

The high flexibility and versatility of Python as an appli-

cation platform for robot control, and as the implementation

language of PyMoCo alike, come at the cost of compu-

tational performance and real-time quality. The real-time

performance of a PyMoCo-based application is thus crucial

to investigate. It is the outcome of such an investigation

which will clarify whether PyMoCo is usable and feasible,

and, if at all, for which applications and robots.

This section presents results of an experimental setup

based on the Universal Robots controller. The Universal

Robots UR5 robot is used extensively in our laboratories,

since it may be externally controlled and exhibits fairly low

control delay and short motion response time; see Lind et al.
(2010) [20].

Schrimpf et al. (2012) [21] compares three different setups

for real-time trajectory generation; one of which is PyMoCo

and the others based on OROCOS kinematics. Though their

experiments are performed on one PC using local loop

back networking, and thus do not measure the over-the-wire

performance, the comparison is instructive. The purpose of

the experiments presented in this section is different, in that it

aims at making absolute, over-the-wire, realistic performance

tests that are valid for PyMoCo-based trajectory generation

applications.

A. Experiment Setup

The motion controller in the Universal Robots controller

is interfaced at 125Hz, i.e. a control period of 8ms, and

requires a response in 4ms. In the real controller, the native

application platform and trajectory generator can be shut

down, and a custom “router” application started. This router

application listens for external connections over TCP, and

mediates contact with the motion controller internally in

the robot controller. The router application, representing the

motion controller, can be emulated on an ordinary PC, the

purpose of which it is to log the response times from a

PyMoCo application running off another PC and connecting

through a switch.

All hardware used is consumer grade and not of highest

performance. Two PCs, both with an Intel i7 processor

are used for performance measurements, connected through

a standard 100Mbit s−1 switch, and using the on-board

Ethernet cards. The most important hardware to detail is

the PC running the PyMoCo application. It is an Intel i7-

860 processor running at 2.80GHz with four cores and two

threads per core.

Both PCs use the stock GNU/Debian Linux systems with

Preempt-RT patched kernels of version 3.2.0-3-rt-686-pae;

i.e. Real-Time Linux kernels. The most important software

versions to mention are Python, 2.7.3rc2, and NumPy, 1.6.2-

1. All software and kernels involved are taken from the

official Debian testing repositories6.

Starting from a standard Debian desktop installation, a

checklist of simple tweaks to ensure the best possible real-

time performance was followed:

1) Switch to single user mode. ($ telinit 1)

2) CPU frequency scaling should be set to

“performance”. ($ cpufreq-set -c [0..7]
-g performance)

3) Disable garbage collection in the Python

code for the real-time critical computations.

(gc.disable()/gc.enable())

4) Put the control process in a real-time scheduler queue.

($ chrt 99 ...)

5) Run the RT-critical processes from a remote login-

shell. ($ ssh ...)

6) Boot the Real-Time Linux kernel.

All experiments were conducted at a length of 100 000
samples, which at 125Hz amounts to about 13min running

time.

6http://ftp.debian.org/debian/dists/testing/
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B. Best Condition Performances

The most important experiments were to measure the

inherent response time of the PyMoCo run-time, by using

the ZeroVelocityController, and to performance test the two

most useful of the included trajectory generators: ToolVeloci-

tyController and ToolLinearController. All experiments were

executed under the best obtainable real-time conditions, as

per the check list in Section III-A.
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Fig. 4. Response time distribution for three different controllers. Average
response time is marked by a vertical blue line and worst-case is marked
by a vertical red line.

The results are visually observable from Fig. 4. Statistical

summaries of the response time samples are shown in Table I.

Trajectory Generator Worst [s] Average [s] Std. dev. [s]

ZeroVelocityController 0.00144 0.00115 0.00010

ToolVelocityController 0.00174 0.00149 0.00006

ToolLinearController 0.00236 0.00201 0.00008

TABLE I

STATISTICS OF MEASUREMENTS UNDER BEST REAL-TIME CONDITIONS.

These results show that the ToolLinearController is com-

putationally much heavier than the ToolVelocityController;

which was expected since it performs various checks along

its path to control bounded acceleration ramp-up and ramp-

down of the velocity. More importantly, the results also

show that both of the usable controllers are well within

the 4ms response time required by the Universal Robots

motion controller. The inherent response time of PyMoCo

indicated by the worst-case response time of the ZeroVe-

locityController gives the impression of the availability of

control computation time for any useful trajectory generator.

In case of a required 4ms response time, there is of the order

of 2.5ms time available for any trajectory generator in each

control cycle.

C. DH-Kinematics Performance

PyMoCo has a native kinematics formulation which is

flexible for specifying separately static link transforms and

joint transform functions. However, a DH formulation of the

kinematics is also supported, reducing the number of matrix

multiplications in the forward kinematics computation. The

DH formulation was used in one run with the ToolVeloci-

tyController under the same conditions as the ones used in

Table I. The comparable statistical results are seen in Table II

Kinematics Worst [s] Average [s] Std. dev. [s]

PyMoCo 0.00174 0.00149 0.00006

DH 0.00180 0.00151 0.00007

TABLE II

MEASUREMENT OF KINEMATICS IN DH FORMULATION.

It turned out that the DH formulation, contrary to the

expected, was slightly inferior to the standard formulation

in PyMoCo. This can be traced to NumPy being relatively

inefficient in assigning matrix element compared to multi-

plying matrices.

D. System Tweak Performance Effects

The last experiments addressed the effects of individual

omission of the various real-time enhancement tweaks, short-

listed in Section III-A. Results are given in Table III.

Tweak Worst [s] Average [s] Std. dev. [s]

All tweaks 0.00174 0.00149 0.00006

- Single user 0.00249 0.00206 0.00009

- CPU freq. sched. 0.00265 0.00212 0.00007

- Disable GC 0.00223 0.00156 0.00009

- RT scheduling 0.00203 0.00155 0.00005

- RT kernel 0.00183 0.00125 0.00005

TABLE III

EFFECT OF VARIOUS TWEAKS ON REAL-TIME PERFORMANCE.

It is observed from the table that all tweaks have signifi-

cant effect on the worst-case performance. The lower average

and higher worst-case response times of the standard kernel

are natural, since the low-level real-time enhancements in

the real-time kernel sacrifice some computational efficiency

for gaining lower worst-case latency. The fact that the

performance difference between a standard and a real-time

kernel is so low is evidence of the flow of the real-time

patches into the mainline Linux kernel over the recent years.

IV. DISCUSSION AND FURTHER WORK

This paper has presented an overview of the structure of

PyMoCo, a flexible, Python-based software framework for

trajectory generation and motion controller interfacing.

Various real-time performance experiments for assessing

its usability have been conveyed and the results have been

presented and discussed. Under the presented experiment

conditions, in terms of hardware, software, and system

setup, it can be inferred that PyMoCo may be a usable

software technology for trajectory generation in robot control

applications where the over-the-wire response time limit is

no lower than about some 3ms.
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The main contribution of PyMoCo is to provide users with

a very flexible framework for building real-time sensor-based

robot control applications at the laboratory prototyping stage.

Many laboratory prototyping projects have already utilized

PyMoCo, and it is considered good for learning and fast

prototyping. However, being tied to the Python language and

the Python run-time platform, it has no outlook of becoming

industrially real-time reliable.

The computational performance of contemporary CPUs

together with the current implementation and design of Py-

MoCo is the limiting factor for its use in various setups. For

instance, it is currently precluded that a KUKA LWR could

be controlled by a PyMoCo-based application over FRI with

maximum control rate. However, with CPU performance

increasing over time, such setups may be achievable for

PyMoCo in a not too distant future.

Notwithstanding the automatic performance gains of fu-

ture CPUs, there are a whole range of possibilities for

increasing the inherent performance of a pure Python ap-

plication. These range from downright porting of functional

code to C/C++ extension modules, whereby some flexibility

may be lost; over Cython (Behnel et al. (2011) [22]) for

automated translation and compilation of computationally

critical code blocks; with PyPy, a very fast re-implementation

of the Python run-time; to simply using more optimal and

specialized technologies within PyMoCo, e.g. integrating

PyKDL for kinematics computations as demonstrated by

Schrimpf et al. (2012) [21].

Among useful and functional features that will be ad-

dressed in the future work with PyMoCo are facilities for

trajectory blending. The methods described by Lloyd and
Hayward (1993) [23] and Volpe (1993) [24] are under

consideration.
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Real-Time Analysis of a Multi-Robot Sewing Cell

Johannes Schrimpf∗, Morten Lind∗∗, and Geir Mathisen∗

Abstract—This paper presents a sewing cell based on an
industrial sewing machine and two robots to control the
sewing operation in real-time. The software architecture and
the communication structure are presented. Both software
and hardware were chosen to build a flexible and highly
available system suitable for prototyping. The focus is on
analyzing the real-time characteristics of the control system.
Experiments were conducted to measure the delays in dif-
ferent parts of the system in order to gain an understanding
of the real-time performance and to show that the chosen
system is capable to make use of the robot’s high update
frequency and low tracking delay.

I. Introduction
Industrial sewing is a challenge for automation and

is still dominated by manual labor, especially in low-
volume productions. One challenge is the handling of
the non-rigid material which is difficult to model due
to high variations in the material characteristics and
unpredictable behavior during handling and processing.

Our project focuses on automated sewing of recliner
covers made of padded leather and textile parts. The
parts are sewn into sub-assemblies which again are
sewn into full covers. The difference in curvature of the
matched edges of the parts deforms the sub-assemblies
into shapes of intrinsic 3D curvature. Advanced strate-
gies have to be utilized for identifying, handling and
processing the sub-assemblies.

In a fully automated sewing cell, different operations
have to be carried out for the complete process of sewing
a sub-assembly:

• Detection and localization of the work pieces on a
conveyor or in a stack.

• Pairing of the parts to be sewn.
• Handling and feeding of the paired work pieces into

the sewing machine.
• Task control during the sewing operation.
• Handling after the sewing operation.
While all the operations in the process are important

for an operative automated sewing cell, up until the cur-
rent stage of the project, the focus has been on the sewing
operation. The presented work uses a concept based on
two independently working robots in order to be able
to control parts with different shapes that may result in
3D-shaped sub-assemblies. Preliminary experiments and
synchronization between two parts were discussed in [1]
and the further control concepts and measurements are
presented in [2].

∗Department of Engineering Cybernetics, Norwegian
University of Science and Technology, Trondheim, Norway. E-
mail: johannes.schrimpf@itk.ntnu.no.
∗∗SINTEF Raufoss Manufacturing AS, Trondheim, Norway.

Two Universal Robots UR51 were chosen for the
demonstrator, shown in Fig. 1, due to the possibility of
controlling the joints angles from an external PC at an
update frequency of 125 Hz and with response time in
the order of 10 ms.

Fig. 1. The sewing cell with two robots and a sewing machine.

The resulting quality of the sewing operation is hard
to quantify. This stems from the lack of a nominal sewing
path and accurate tolerances since all quality control
in the current production is based on human visual
inspection. The most concrete numerical description of
the seam path is that the seam has to be located within
some 5 mm from the edge to be acceptable.

During the phase of choosing the software platform
for the control PC, the main focus was on flexibility, wide
availability, and systems that allow for rapid prototyping
rather than industrial level reliability and stability. The
main control platform is a standard PC. Ubuntu Linux
was chosen as operating system due to maintainability,
a wide spectrum of available software packages, and
ease of use in general. The program code is mainly
programmed in Python and in C++, and ROS is used
for communication and organization of the different
software components of the system.

Previous publications on the demonstrated sewing cell
mainly focused on the quality of the sewing operation
itself as well as on the choices of sensors and control
strategies. The main focus of this paper is to analyze
the real-time characteristics of the control system in-
cluding the sensors and the robots. Another objective is
to demonstrate that the chosen software and hardware
solutions are suitable for utilizing the advantages of the
robot’s low cycle time and the low tracking delay.

1Previously known as UR-6-85-5-A
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Related work in the field of automated sewing has
been carried out by several other research groups. Ger-
shon et al. [3], [4] presented a sewing demonstrator
consisting of a single robot and a sewing machine.
Sensor feedback is used to control the tension and the
distance of the seam from the edge in real-time.

In Seliger and Stephan [5] an overview of the challenge
of automated sewing is presented. The text focuses on
the difficulties of the material handling and suggest
adaptive control strategies that use measurements of the
seam allowance and the feed rate during the process.

Another approach using adaptive control strategies is
presented in Koustoumpardis et al. [6]. The authors con-
trol the tension in a single workpiece using a controller
based on neural networks.

A sewing cell with servo-controlled feeding mecha-
nism is presented in Winck et al. [7]. The authors control
two parts independently that are separated by a thin
plate. The system is based on open loop path control
based on recognition of patterns on the work pieces. The
authors emphasize the need for feedback control for the
sewing process.

In Wetterwald et al. [8], a sewing cell that is able to
attach fiber to leather parts is presented. A single robot
is used together with sensors for edge detection and
sewing speed.

II. System Description

A. Hardware Overview

The sewing cell consists of the following hardware
components:

• Sewing machine
• Two robots
• Force sensors
• Edge sensors
• Control PC
This section describes the different hardware elements.
1) Sewing Machine: The main element of the sewing

cell is a DA195 industrial sewing machine. A micro-
controller board is used to access different functions on
the sewing machine such as setting the drive frequency,
controlling feed dog, thread cutter, and needle position.
Ethernet is used for the connection to the control PC. The
sewing machine has independent feeding mechanisms
for the upper and the lower part with mechanically
adjustable feed stitch length. The resulting feeding speed
depends on the settings in the sewing machine as well
as on the material thickness and characteristics.

2) Robots: Two Universal Robots UR5 6-axis robots
were chosen as robot platform. They are arranged such
that they can work in two planes, one plane for each
workpiece. The UR5 comes with an controller cabinet
based on a Debian GNU/Linux PC on which the native
controller is deployed. Universal Robots offers a devel-
opment library called UR_COMM_API to gain access to

low-level functions on the controller. Using this C-library
it is possible to replace the native motion controller by
an user supplied controller, directly accessing the low-
level controller with a control frequency of 125 Hz. In this
frequency it is possible to read the current joint angles
and command joint angles, velocities and accelerations
for the next time step.

To control the UR5 from an external PC, a router
application was programmed on the native controller
PC, giving access to the low-level controller via Ethernet.
A separate PC was installed running Ubuntu Linux. This
PC is used for motion generation using an in-house
developed trajectory generation framework2 based on
Orocos3 [9]. Several motion controllers are available for
different operations. The two trajectory generators used
in the project are a tool linear trajectory generator to control
the robot to the starting position and a tool velocity
trajectory generator to move the robot in real time based
on a given tool velocity (twist).

3) Force Sensors: To measure the tension in the work
piece, ATI Mini45 force/torque sensors are mounted on
the wrist of both of the robots. The sensors are connected
to the control PC using Net F/T boxes that offer an
Ethernet connection to the sensors. On the PC side, a
driver stack is used to connect to the Net F/T using the
RDT protocol over Ethernet4. The update frequency is
variable, and for the sewing application set to 1 kHz

4) Edge Sensors: The control of the edge position in
relation to the needle point of the sewing machine is
important for the sewing task. To measure the edge
position, two edge position sensors are mounted in front
of the sewing foot, one for the upper and one for the
lower part. The edge sensors consist of optical sensor
arrays that output a one-dimensional image. To gain
images of the two independent parts, a plate holding one
of the sensors is placed between the two parts, while the
other sensor is mounted directly on the sewing machine.
The sensors are connected to a microcontroller board that
sends the data via Ethernet to the control PC. The update
frequency of the sensor system is set to 80 Hz

5) Control PC: A standard PC with an 8-core 2.8 GHz
CPU and 8 GB RAM is used as control PC. Ubuntu
Linux is used as operating system rather than a real-
time operating system. This choice is in line with the
focus on flexible systems that are widely available and
that allow for rapid prototyping rather than on industrial
level reliability and stability.

B. Control System Mechanisms

To control a sewing operation the workpieces have
to be fed into the sewing machine such that the seam
is located at a constant distance from the edge of both

2launchpad.net/python-urlibs
3www.orocos.org
4www.ros.org/wiki/netft
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workpieces. Additionally, the tension between the work-
pieces and the robots has to be constant. Since the
sewing machine has a feeding mechanism of its own,
the robots have to adjust to the sewing speed in real-
time. To control the edge and the tension separately, a
coordinate system is defined such that corrections of the
edge position result in a rotation around the needle while
the tension is controlled by moving the robot towards or
away from the needle, cf. Fig. 2.

Fig. 2. The control coordinate system. Edge control results in a rotation
around the needle while force control moves the robot towards or away
from the needle. These movements are transformed into the robot base
coordinate system.

The principle of the force controller is depicted in Fig.
3. Since the sewing force measured at the robot’s tool is
highly dependent on the position of the sewing foot, a
running average filter is used to estimate the force over
the past period of the sewing foot movement. This intro-
duces a delay, but prevents the controller from following
the periodical force change of the feed mechanism. After
filtering, a PI-controller is used on the sewing force. A
derivative feedback is neglected due to the delay in the
control system.

Fig. 3. Force controller for one robot.

The edge controller is shown in Fig. 4. A pure propor-
tional controller is used. As was the case for the force
controller, a derivative feedback is neglected also for the
edge controller. The integral feedback is also neglected
due to mechanical issues when the workpiece is sticking,

which leads to an undesired accumulation of the integral
contribution.

Fig. 4. Edge controller for one robot.

To gain an understanding of the whole control struc-
ture including the robots, Fig. 5 shows the whole control
system and its control loops. The force and edge con-
trollers are implemented as high-level controllers. The
control output of the different controllers is added to the
feed forward speed of the sewing machine and results
in two velocity vectors as input for the correspondent
robots.

Application

High Level
Controller

Trajectory
Generator

Low Level
Controller

Servo Controller Sensors

setupstatus

twist, target poseq/CartPos

q, (q̇, q̈)q, (q̇)

τq

Sensor data

Fig. 5. The model of a real-time robot controller. CC BY-SA J. Schrimpf.

The force and edge error measurements for a typical
sewing process is shown in Fig. 6. It can be seen that the
controllers are able to hold both the edge position as well
as the sewing force in the desired range. It is important
to notice that the edge error is measured in front of
the needle and changes occurring at the sensor have
a smaller effect at needle position due to the rotational
control strategy.

C. System Architecture
The ROS framework is used as middleware to connect

the different sensors, controllers, and the robots [10].
ROS is a framework designed for robot controller sys-
tems that includes communication functionalities such as
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Fig. 6. Sewing force value and edge error for the lower robot for a
typical sewing operation. The edge error is the error at sensor position,
not at needle position.

Fig. 7. Component diagram for the sewing setup with marked paths
for time analysis among components.

publishing and receiving data via topics and providing
services similar to remote procedure calls. Programs that
integrate with the infrastructure in the ROS platform are
called nodes. Additionally, ROS provides tools for visu-
alization of data, and includes a package management
system for 3rd party software.

The deployment of the different nodes is shown in Fig.
7. The functions of the nodes are as follows:

• F-T Connector – interface to the force/torque sensor

• OLS Connector – interface to the optical linear array
• Edge Detector – edge detection algorithm
• Trajectory Generator – trajectory generator for the

robot
• Sewing Machine Connector – interface to the sewing

machine
• Sewing Process Control – process controller includ-

ing force and edge controller
• Sewing Process Manager – main application

III. Timing Experiments

A. Delays in the Robot System

In order to understand the behavior of the robot
system, it is necessary to know the time it takes for the
robot to process a new set of commanded joint angles.
An experiment was conducted to examine this delay. The
low-level interface to the robot operates with a frequency
of 125 Hz. In this frequency the actual joint angles are
communicated to the router program. New joint angles
have to be set in a time window of 4 ms in order to be
processed in the same cycle.

The arrival of a new joint update at the PC running
the trajectory generator was chosen as reference point for
this experiment. A ramp is commanded from the control
PC and the time stamp at the reference point in the
code is recorded when the movement is being processed.
To measure the movement the force sensor on the tool
was used running at a frequency of 1000 Hz, recording
the force caused by the movement command. The time-
stamped force data is then compared to the time stamp
from the movement command. The measured path is the
red path in Fig. 7. The result of the measurement for 1000
experiments is shown in Fig. 8.

Fig. 8. Delay through the robot system from obtaining a new robot
state in the trajectory generator until a movement can be measured at
the force sensor.

The recorded delays vary between 13.1 ms and 22.8 ms
with most measurements about 14 ms to 16 ms delay. The
small peak at 22 ms indicates that there are a few cycles
where the movement command is processed one cycle
later. The delays include the transmission time of the
data from the sensor to an external PC, which is stated
in the data sheet as 0.288 ms.
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B. Delay in the Sewing Controller
The time window for sending a joint update to the

low-level controller after receiving the current joint state
is 4 ms. This includes communication times and the
calculation of the new joint set-points in the trajectory
generator. Due to this hard timing constraint, the robot
control loop does not include the Sewing Process Con-
troller, but only the trajectory generator. This introduces
a delay of one cycle in the control system since the new
set-point that is calculated based on the current robot
position, the force and the edge measurement is received
in the trajectory generator after the new robot command
is computed.

To ensure that the data is not further delayed due to
long computation time in the sewing Process Controller,
it is desirable to know the time that it takes from the
computation is triggered by the new joint state update
until a new twist is sent to trajectory generator. The
measured path is the purple path in Fig. 7. A histogram
showing this delay for 10000 measurements is shown in
Fig. 9.

Fig. 9. Delay for the data from the trajectory generator to the sewing
controller and back to the trajectory generator.

The histogram shows that all the measured delays are
with a max value of 2.6 ms, which is below the deadline
of 8 ms, so there is no further delay introduced due to
long computation times.

C. Time Analysis for the Force Measurement
The total delay includes both the delay in the robot

and sensor system as well as the computation time in
the control system. Further delays are introduced by
the asynchronous control loops. In the first experiment
the duration was recorded between processing a motion
command in the trajectory generator until the robot
moves. In this experiment the remaining delay in the
force control loop is measured. This is done by exam-
ining time stamps from the force measurements when
the motion command is processed. The time stamps are
set in the F-T Connector node. The measured path is the
green path in Fig. 7.

Fig. 10 shows a histogram of the logged delays of
10000 measurements. The maximum delay in this mea-
surement series, marked red in the Figure, was 11.5 ms.

The average delay is just below 8 ms which is the cycle
time of the robot. This delay is mainly caused by the
time the set-point is stored in the trajectory generator
until the next movement command is triggered by a
new joint update from the low-level controller. This time
would increase when using a robot with a lower update
frequency.

Fig. 10. Delays for the force measurements through the ROS system.

D. Time Analysis for the Edge Measurement
The last experiment was repeated for the edge loop.

The time stamps are recorded in the OLS driver node,
then sent together with the data through the ROS system,
and evaluated when the motion is processed in the
trajectory generator. The measured path is the blue path
in Fig. 7.

Fig. 11. Delays for the edge measurements through the ROS system
in the active sewing system.

Fig. 11 shows a histogram of the logged delays of
10000 measurements. The maximum delay in this mea-
surement series, marked red in the Figure, was 21.5 ms.
The uniform distribution is due to the asynchronism
between the sensor loop and the control loop. This time
is also influenced by the update frequency of the robot
and will increase with a lower update frequency.

IV. Performance Analysis

Table I summarizes the worst case delays for different
system parts.

The most critical part of the system in respect to real-
time requirements is the connection between the trajec-
tory generator and the low-level controller of the robot.
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TABLE I
Worst case delays for different system parts

System Part Max Delay Path
Tra. Generator (set) - Robot Movement 22.8 Red
Force Sensor - Tra. Generator (process) 11.5 Green
Edge Sensor - Tra. Generator (process) 21.5 Blue
Tra. Generator - Tra. Generator (set) 2.6 Purple

The trajectory generator has to send a new joint vector
in a time window of 4 ms, otherwise the new command
is ignored, or if further delayed the robot performs a
security stop. Since the worst case delay from sending
the data from the trajectory generator to the sewing
controller and back to the trajectory generator is up to
about 2.6 ms and the trajectory generator also needs time
for calculations and communication, the command from
the sewing controller is delayed one cycle until it has an
effect on the commanded trajectory.

The worst case delay in the whole control loop, except
the process, is found by adding the worst case delay in
the robot to the worst case delay in the control system.
This is 34.3 ms for the force loop and 44.3 ms for the edge
control loop including the processing time in the sensor
hardware. It can be seen that for the edge loop half of the
total worst case delay is caused by communication, pro-
cessing, and the asynchronous control structure, while
the other half is caused by the robot system. For the
force loop the delay in the control system is smaller due
to the higher frequency of the sensor.

V. Conclusion and FurtherWork

A sewing cell was demonstrated that is able to sew
two parts into a sub-assembly. The different delays in
the control system were discussed. The focus was on
the real-time characteristics of the system, not on the
challenges of the sewing operation. Experiments were
presented to determine the delays in the system. The
results were discussed in respect to the requirements
of the real-time interface of the robots and the different
control loops in the system. The delays influenced by the
update frequency of the robot are identified and these
times will increase when using a robot with a lower
update frequency.

There are several possibilities to tune the software and
to decrease the delays in the system. One possibility is
to move away from Python to C++ on the cost of the
benefits Python is offering as a programming language
for fast prototyping. It is questionable whether the effects
would be significant since heavy calculations already
now are implemented using C libraries, and a large
amount of the delay is due to the asynchronous and
distributed structure of the system.

Another possibility would be to implement the pro-
gram monolithically to eliminate the communication
delays which would be contrary to the main design
decision to use a modular, distributed system.

In the current status the controller programs and the
trajectory generators run on different PCs to distribute
the load. This introduces a communication delay be-
tween the two parts of the program. It could be consid-
ered to distribute the program parts in another way, for
example use one PC for each robot trajectory generator
and the corresponding control program.

It was demonstrated, anyhow, that it is possible to
build a sewing system using components that are for-
mally not considered real-time capable while respecting
the requirements of the robots low-level controller and
using the benefits of real-time access to the robot. At the
same time it is possible to use the benefits of these com-
ponents, e.g. the high flexibility of the Python program-
ming language in order to write code for prototyping
and the communication platform offered by ROS.
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