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Problem Description

The project is aimed at analyzing the properties of the walker dynamics in a
vicinity of its stable gait. In particular, we expect to investigate the charac-
teristics such as speed of contraction to the gait, its region of attraction and
sensitivity of the gait to perturbations given either as small changes of the
slope or impulse-like external forces of small amplitude and duration along
the gait. It is planned that the delivered results will be scalable for analysis
of the similar periodic trajectories of hybrid mechanical systems with more
than two degrees of freedom. And at the end of the project we plan to present
the procedure for computing these characteristics in general.
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Abstract

The compass-gait biped is a deceptively simple walking machine that is of-
ten used as a standard benchmark for testing new concepts and methods
in legged locomotion. This study will focus on developing a procedure for
finding passive gaits of this specific biped by employing the notion of virtual
holonomic constraints. First an introduction to the mathematical founda-
tions behind the basic theory is given, then a rigorous treatment of the
hybrid dynamics of the biped and the reduction of the system complexity
using virtual holonomic constraints are presented. The reduced dynamics of
the biped are used to find relations among the gait parameters leading to
the formulation of a minimization problem that yields limit cycle solutions
of the hybrid system when solved. The stability of the detected limit cycles
is assessed using the notion of transverse linearization, and the procedure for
deriving an auxiliary linear system for determining orbital stability of the
passive gaits is presented. All major results are visualized and the matlab
and Maple implementation code is enclosed in either the relevant chapters
or the appendixes.
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1 INTRODUCTION 1

1 Introduction

1.1 Background and Motivation

The study of passive walking devices is a fascinating field that gained wide
recognition following the seminal paper by McGeer in 1990 [12]. McGeer
introduced the concept of the rimless wheel traveling down an inclined slope
to illustrate how rolling can be transformed into walking by a simple meta-
morphosis.

Wheeled locomotion is one of the most efficient modes of transportation
due to the minimal energy required to keep the motion going; an ideal wagon
wheel on a downward slope will continue rolling steadily along the incline
indefinitely. This rolling motion can be transformed into a walking motion
by removing the rim from the wheel, leaving the spokes acting as a set of
static legs, as can be seen in Figure 1.1. Unlike the ordinary wheel, the rimless

Figure 1.1: Illustration of metamorphosis from wagon wheel to biped walker de-
scribed by McGeer [12] in 1990.

wheel loses energy with each impact with the ground and the modification
is clearly less efficient than the original configuration.

Instead of removing the rim completely, imagine splitting the rim halfway
between each spoke, and then remove all but two of the spokes. These
remaining spokes act as a pair of legs with semicircular feet that can swing
freely by introducing a pin joint between them in the hub, effectively creating
a hip joint. This new synthetic wheel is one of the most simple legged robots,
that has the property of walking like a biped while rolling like a wheel.

This sort of biped is known as a passive walker due to it’s ability to settle
into a steady gait on a downward slope without requiring any active control
or energy input. Comparing this motion with that of the wheel it becomes
clear that this walking gait is highly energy efficient, and it is desirable to
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study these passive gaits to gain a deeper understanding of how to design
efficient walking patterns for other actuated legged robots.

The robot studied in this thesis is a planar two-link walker, commonly
known as the compass-gait biped due to the fact that the locomotion pro-
duced is analogous to the movement of a pair of compasses or dividers. A
simple illustration of the biped is depicted in Figure 1.2. The compass-gait

Figure 1.2: Illustration of the compass-gait biped studied in this thesis.

biped resembles the synthetic wheel, but it lacks the semicircular feet that
allows for a smooth rolling motion during the gait cycle. This introduces
impulsive impact forces that causes discontinuous effects in the dynamics of
the robot each time a new leg hits the ground, making analytical arguments
for the existence of periodic gaits for this configuration difficult. There was
a series of publications following the initial results by McGeer that proposed
different strategies for finding and analyzing passive gaits for a variety of
walking devices. The important paper [8] by Goswami et al. published in
1998 demonstrated the existence of stable periodic gaits for the compass-gait
biped for a variety of slope angles. The paper utilized numerical compu-
tational methods that relied on approximations of the full dynamics of the
biped, instead of attempting analytical arguments, stating

For a general nonlinear system, the analytical demonstration of
the existence of a limit cycle, it’s local orbital stability, and the
analytical procedure to find it still remain a challenge. [8, p. 1287]
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In the last decade there has been extensive research into developing new
techniques for analyzing nonlinear systems such as the compass-gait biped.
This resulted in a series of publications e.g. [5, 17, 18, 19] on the concept
of virtual holonomic constraints1, which outlined a new approach for finding
and characterizing limit cycles of hybrid dynamic systems. The introduction
of virtual holonomic constraints enabled the use of analytical arguments for
the existence of limit cycles, such as periodic gaits, and the development of
tools for finding and characterizing such periodic solutions.

The paper [5] by Freidovich et al. demonstrated how to apply the theory
of virtual holonomic constraints to the problem of finding passive gaits for
the compass-gait biped. The aim of this thesis is to verify and expand upon
the results achieved in [5], and hopefully give a comprehensive introduction
to the principle of virtual holonomic constraints and their application to hy-
brid dynamic systems. In addition, the concept of transverse linearization
as a tool for assessing stability of passive gaits will be presented along with
obtained results, in the context of the compass-gait biped. Relevant proce-
dures and algorithms will be implemented using matlab or Maple, and will
be listed either in the relevant chapters or in the appendixes.

1.2 Structure of Thesis Report

The thesis report is organized as follows. Chapter 2 gives a brief introduction
to mathematical concepts, theory and notation that are relevant to solving
the task at hand. Chapter 3 presents terminology and assumptions made
regarding the compass-gait biped, and proceeds with deriving equations of
motion using the Euler-Lagrange formalism and a set of discrete update laws
that describe the dynamics at impact. These parts are combined into a hybrid
dynamics system and a matlab script for simulating the complete dynamics
of the biped is presented. In Chapter 4 the concept of virtual holonomic
constraints are utilized to form relations between the generalized coordinates
that are valid along a cycle, allowing for a reduction in system dimension
and formulating the reduced dynamics of the system. A general integral for
finding specific linear combinations of the reduced dynamics is also proposed.
Chapter 5 exploits certain properties of the reduced dynamics of the system
to derive a differential equation for the virtual holonomic constraint that
allows for a compact formulation of the gait search algorithm. A step-by-
step procedure for finding periodic gaits based on this algorithm is then
stated along with a matlab script implementing the procedure. Chapter
6 introduces the concept of transverse linearization of the system dynamics

1The precise definition of these terms will be presented in Chapter 2.
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along a periodic trajectory. This linearization is used to define an auxiliary
linear system than can be used to determine the stability of the proposed
periodic gait for the compass-gait biped. Chapter 7 presents some important
results of the gait search procedure developed in Chapter 5 and analyzes the
stability of the detected periodic gaits by utilizing the results of transverse
linearization from Chapter 6. Important properties of the developed search
procedure are discussed in the context of the numerical results. Chapter 8
summarizes the results obtained in the thesis and presents a brief conclusion
and final remarks.
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2 Mathematical Foundations

This chapter aims to give a brief introduction to some important results from
classical mechanics, differential calculus and control theory.

2.1 Euler-Lagrange Equations

The 2-DOF2 planar biped is a mechanical system that, despite its simple
construction, exhibits highly nonlinear dynamics. The derivation of a math-
ematical model for the motion the biped experiences during its gait cycle
is therefore relevant for studying the physical properties of the system. A
general procedure for deriving a set of differential equations that describe
the time evolution of a mechanical system subject to holonomic constraints
is presented in [20], and will be summarized here.

Holonomic constraints

Consider a system consisting of k particles free to move unconstrained relative
to each other. Deriving a set of differential equation that describe the motion
of these particles is trivial using Newton’s 3rd Law for each particle i as

mir̈i = Fext (2.1)

where ri is the position vector of the particle and Fext is the sum of the
external forces applied to it. In the case of a kinematic chain, such as a robot
manipulator, each of these particles are restricted in their movements relative
to each other due to physical links present in the system. These restrictions
can be modeled as massless rods pairwise connecting the particles to form
a rigid chain. Using the position notation from (2.1) such a rod between
particle i and i + 1 can be mathematical represented as a constraint on the
form

(ri − ri+1)
T (ri − ri+1) = l2 (2.2)

where l is the length of the rod. The restriction (2.2) can be rewritten as
hi (ri, ri+1) = 0. The notation can easily be expanded to constraints on the
full k coordinates of the system as

hi (r1, . . . , rk) = 0, i = 1, . . . ,m (2.3)

2The degrees of freedom denote how many independent parameters must be defined to
uniquely identify the configuration of the system. In the case of the biped, with assump-
tions discussed later, only the angles of the two legs are needed to fully specify its position
and orientation.
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where m is the number of constraints present in the system. Equality con-
straints on the form (2.3) are called holonomic constraints and motivates the
introduction of generalized coordinates when modeling the system.

Generalized coordinates

If there exists an n-dimensional column vector q(t) = [q1(t), . . . , qn(t)]
T such

that the position vectors of the k particles subjected to the constraints (2.3)
can be expressed as

ri = ri(q1(t), . . . , qn(t)), i = 1, . . . , k (2.4)

where q1(t), . . . , qn(t) are all independent, then q(t) are called the generalized
coordinates of the system.

The holonomic constraints restrict the motion of the particles such that
the system has m fewer degrees of freedom relative to the unconstrained
system. This reduction in dimension is maintained by constraint forces3 that
ensure the equality constraints are satisfied. The dynamics outlined in (2.1)
must be modified to include these new internal forces by introducing the
added term Fint on the right-hand side,

mir̈i = Fext + Fint (2.5)

The internal forces Fint greatly increase the complexity of computing the
dynamics of the system, and finding a representation of the coordinates ri
such that these forces vanish is desired.

In fact, by applying the Principle of Virtual Work and d’Alembert’s Prin-
ciple to (2.3) - (2.5) it can be shown [3, 20] that explicit computation of the
constraint forces Fint can be avoided if the position vectors are represented
using generalized coordinates. Finding a representation of the system in n
independent generalized coordinates q(t) is therefore the first step in deriving
the complete dynamics of the mechanical system.

The Lagrangian and equations of motion

In a kinematic chain, such as a biped robot, each link of the mechanical sys-
tem can be approximated as a particle with mass mi located at the center of
mass of the link. Each particle is then connected using holonomic constraints
on the form hi(q1, . . . , qn) = 0 where q1, . . . , qn are generalized coordinates

3In the case of particles linked with rods, the constraint forces are exerted by the rod
on the particles directed along ri − ri+1. Without these forces the rod could be freely
compressed or stretched by the motion of the particles.
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measuring the orientation of each link. One possible choice of generalized
coordinates is the absolute angle of each link measured from an axis defined
in the inertial frame.

Once the appropriate generalized coordinates have been assigned to the
system, the holonomic constraints on the form (2.3) become trivial. The
kinetic K (q, q̇) and potential P (q) energy of the robot can then easily be de-
rived using the expressions for the generalized coordinates. The Lagrangian
of the mechanical system is then formed as

L (q, q̇) = K (q, q̇)− P (q) (2.6)

where K (q, q̇) = 1
2
q̇TM(q)q̇. Here q ∈ R

n and q̇ ∈ R
n are the vectors of

generalized coordinates and velocities andM(q) ∈ R
n×n is the inertia matrix

of the system. The Lagrangian can be used to obtain a set of differential
equations that describe the time evolution of the system by substituting it
into the expression

d

dt

[
∂L (q, q̇)

∂q̇

]
− ∂L (q, q̇)

∂q
= B(q)u (2.7)

where B(q) ∈ R
n×m is a full rank input matrix and u ∈ R

m is a vector of
independent control inputs. Assuming that the matrix M(q) is symmetric
and positive definite for each q ∈ R

n and that P = P (q) is independent of q̇,
(2.7) can be written in a compact matrix form (see [20]) known as the robot
equations of motion

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (2.8)

where C (q, q̇) ∈ R
n×n is a matrix of centrifugal and Coriolis terms and

G(q) ∈ R
n is the gravity vector. Using the previously stated assumptions

about the Lagrangian, the elements of the matrices on the left-hand side of
(2.8) can be computed as

mkj (q) =
d

dq̇k

[
d

dq̇j
K (q, q̇)

]
(2.9)

ckj (q, q̇) =
1

2

n∑
i=1

(
∂mkj

∂qi
+
∂mki

∂qj
+
∂mij

∂qk

)
q̇i (2.10)

gk (q) =
∂P (q)

∂qk
(2.11)

where the subscript k is the row and j is the column of the appropriate matrix,
and qi, qj and qk is the appropriate elements of the generalized coordinate
vector q.
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When (2.8) is used for simulating the dynamics of the mechanical system
the equations of motion are usually reformulated as a state space model with
the 2n - dimensional state vector x = [q, q̇]T . The system can then be stated
as system of 2n first order differential equations

ẋ = f(x) + g(x)u

y = h(x)
(2.12)

where y is the measured output.

2.2 Hybrid Dynamic Systems

The Euler-Lagrange equations of motion (2.8) describe the unrestricted con-
tinuous dynamics of the physical system, and do not take into consideration
constraints imposed by the environment where the motion occurs. In the
case of a walking biped, one such restriction is the ground impact that oc-
curs when the foot of the robot impacts with the floor during a step. During
this phase of the walking cycle an exchange of stance and swing leg should oc-
cur, and the generalized coordinates q(t) should experience a transformation
to reflect the new state of the system.

These dynamics are not continuous in nature and can not be modeled
using only Euler-Lagrange equations. A complete mathematical model of
the walking biped must therefore involve a set of discrete dynamics that
describe the instantaneous change in state during the impact. A system that
exhibits behavior of both continuous and discrete dynamics is called a hybrid
dynamic system and can be described by three important properties:

1. One or more ordinary differential equations of the form ẋ = f(x)+g(x)u
that describe the unrestricted continuous dynamics of the mechanical
system.

2. One or more hypersurfaces S(x) that define boundary conditions for
the continuous dynamics such that the configuration x− ∈ Γ− indicate
an impact on the surface S.

3. One or more discrete mappings F : Γ− → Γ+ that maps the solution
of the continuous dynamics at impact x− ∈ Γ− to the updated coor-
dinates x+ ∈ Γ+ after the impact on S. The transformation F is an
instantaneous discrete transition to new coordinates, which initializes
the next differential equation and the motion continues until the next
impact on S.
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The superscripts −,+ indicate the configuration of the system just before
and just after impact, respectively, and can be mathematically expressed as

x− = lim
t→T−

x(t)

x+ = lim
t→T+

x(t)
(2.13)

where t = T is the time of impact.
The continuous dynamics of the 2-DOF biped are identical before and

after impact due to the symmetric construction of the robot. The hybrid
dynamic system therefore only needs one differential equation that describes
the time evolution of the generalized coordinates during motion, which can be
expressed as Euler-Lagrange equations on the form (2.8). The only boundary
condition applicable to these dynamics is the impact that occurs during heel
strike with the floor, at which point the configuration of the robot should
experience an instantaneous mapping to updated generalized coordinates and
velocities. Due to the static nature of the inclined floor, the hypersurface can
be uniquely defined as S = S(q) independent of the generalized velocities q̇.
The full hybrid dynamics of the biped can then be stated as (see [13])

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, q /∈ S
F (q−, q̇−) : Γ− → Γ+, q− ∈ S (2.14)

where Γ− and Γ+ indicate the full configuration of the biped before and after
impact, respectively. Algorithm 1 gives a brief outline of the procedure for
simulating the hybrid dynamic system defined in (2.14).

Passive walkers

The 2-DOF planar biped studied in this thesis is a hybrid dynamic system on
the form (2.14) with the exception that the motion of the robot is unaffected
by a control input u. The robot is placed on a shallow slope allowing for
gravity to be the only driving force of motion, which means that the system is
not controllable in the sense of control theory. The hybrid model formulation
that will be utilized in the rest of this chapter will therefore be changed to

M(q)q̈ + C(q, q̇)q̇ +G(q) = 0, q /∈ S
F (q−, q̇−) : Γ− → Γ+, q− ∈ S (2.15)

where all parameters are as described in (2.14). Such a system is commonly
described as a passive walker and is known to possess walking gaits that are
highly energy-efficient due to the lack of a control torque (see [12]). These
walking gaits can be formulated as periodic solutions of the hybrid system
(2.15) and are of particular interest in this thesis.



10 2 MATHEMATICAL FOUNDATIONS

Algorithm 1: Simulating the hybrid dynamic system defined in (2.14)

IN is a vector of user-defined inputs.
OUT is a matrix containing the simulation data returned by the
routine

Set initial conditions: q0 ← IN(1), q̇0 ← IN(2)
Set predefined input sequence: u← IN(3)

while simulation not finished do

Initialize: q0 ← q+, q̇0 ← q̇+

repeat
Integrate: [q, q̇] ←M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u

until q ∈ S;

Compute update: Γ+ � [q+, q̇+]T ← F (q−, q̇−), [q−, q̇−]T ∈ Γ−;
end

OUT ← q, q̇ ∀t

2.3 Periodic Cycles

Periodic cycles is an important class of solutions for general dynamics systems
of the form ẋ = f(x). These cycles define oscillations of the solution around
an equilibrium point and are also referred to as periodic solutions.

Definition

The most general definition of a nontrivial periodic solution is given in [10]
as

x(t) = x(t+ T ), ∀t ≥ 0 (2.16)

where T > 0 define the period of oscillation. This solution is called a non-
trivial periodic cycle to exclude constant solutions of the form x(t) = C,
which corresponds to equilibrium points of the dynamic system. Although
such a trivial solution can be viewed as an oscillation with period T = 0,
these equilibrium points are not of interest when studying dynamics motions
and will not be explored further in this text.

Periodic solutions are recognized in phase portraits as closed trajectories
of the system, which are commonly referred to as periodic orbits or closed
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orbits. This behavior is easily observed in linear systems on the form

ẋ = Ax (2.17)

where A ∈ R
2×2 is a system matrix with complex eigenvalues ±jβ. The

solution of this system after transformation to real Jordan form is given by

z1(t) = r0 cos(βt+ θ0), z2(t) = r0 sin(βt+ θ0) (2.18)

where z1, z2 are the respective axis in the phase plane and

r0 =
√
z21(0) + z22(0), θ0 = tan−1

[
z2(0)

z1(0)

]

The expressions in (2.18) are easily recognized as the equations for a circle
with radius r0, meaning that the phase portrait of the system will consist
of infinitely many closed orbits arranged as concentric circles in the plane.
There are two important properties that this solution illustrates. Firstly, the
amplitude of oscillation is determined uniquely by the radius of the circle r0 =
r0(z1(0), z2(0)) which is dependent on the initial conditions of the system.
Secondly, choosing the initial conditions [z1(0), z2(0)]

T = [0, 0]T gives r0 = 0
and reduces the periodic solution (2.18) to the trivial case of an equilibrium
point at the origin. Such an equilibrium point is called a center and all
trajectories around this point are closed orbits with constant amplitude. The
phase portrait of a linear system on the form (2.17) is shown in Figure 2.1,
initialized with three different initial conditions.

Limit cycles

Contrary to the periodic solutions of linear systems (2.18), there exist nonlin-
ear systems that possess periodic solutions which amplitude are independent
of initial conditions. These systems may exhibit a single isolated periodic
orbit in their phase portrait, instead of the continuum of closed orbits that
characterizes a linear oscillator. Such an isolated periodic orbit is known as
a limit cycle, and has some interesting properties. To illustrate such a limit
cycle, consider the nonlinear Van der Pol equation:

ẋ1 = x2

ẋ2 = −x1 +
(
1− x21

)
x2

(2.19)

The phase portrait of (2.19) is shown in Figure 2.2 for three different initial
conditions. The phase portrait shows that there is a closed trajectory that
attracts all other trajectories starting off the orbit. This is a property of
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Figure 2.1: Phase portrait of a linear system on the form (2.17), initial conditions
are depicted as circles on the closed orbits.
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Figure 2.2: Phase portrait of the Van der Pol equation with stable limit cycle,
initial conditions are depicted as circles on the three trajectories.
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stable limit cycles, all trajectories in the vicinty of the limit cycle ultimately
tend toward the closed orbit as t → ∞. The amplitude at steady state is in
other words completely independent of the initial conditions.

Finding limit cycles analytically in general is a very difficult problem,
although there are ways of proving existence of periodic orbits. The Poincaré-
Bendixson Criterion (see [10]) can assure the existence of a periodic orbit in
a closed bounded subset of the plane M , but not its uniqueness. Meaning
that the nature and quantity of limit cycles inM can not be determined, but
the criterion assures that there are at least one periodic orbit in M .

Gait cycles

Limit cycles are especially interesting in the study of gaits of walking robots.
The dynamics (2.15) of these walking machines are usually highly nonlinear
and possess multiple degrees of freedom. Finding walking gaits for such
mechanical systems is equivalent to finding limit cycles among the generalized
coordinates and velocities such that the configuration of the robot is periodic
with period equal to the time between steps. Using the notation introduced
for hybrid dynamical systems, this can be stated as

Γ+
i � [qi, q̇i]

T = [qi+1, q̇i+1]
T ∈ Γ+

i+1 (2.20)

where the subscript indicates step i and Γ+ is the hypersurface containing
the updated state vector after impact.

In addition to finding a limit cycle such that (2.20) is satisfied, the limit
cycle should ideally be stable meaning that small perturbations from the
periodic orbit should not cause the robot to topple over. If such a stable
limit cycle can be found in the dynamics, the robot can be started with
initial conditions away from the periodic orbit and will gradually converge
to the stable gait. This property is very important for physical testing since
small uncertainties related to measuring and manufacturing of the walking
machine will always result in perturbations of the desired orbit.

2.4 Stability of Periodic Orbits

Determining the stability of dynamic systems is one of the main problems
in control theory, and the literature on the subject is vast (e.g. [2, 10]).
Generally the stability of a system describes how solution trajectories behave
as t → ∞, but there exist numerous definitions detailing different types
of stability. A comprehensive treatment of these concepts are beyond the
scope of this text, but some important results relevant to this thesis will be
discussed.
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Stability of linear discrete-time systems

A discrete linear system on the form

x[k + 1] = Ax[k] (2.21)

excited by non-zero initial conditions x0 is said to be marginally stable or
stable in the sense of Lyapunov if every finite initial state x0 excites a bounded
response. The system (2.21) is asymptotically stable if every finite initial
state x0 excites a bounded response which, in addition, approaches x = 0 as
k → ∞.

Theorem 1. [2, Theorem 5.D4]

1. The equation (2.21) is marginally stable if and only if all eigenvalues
of A have magnitudes less than or equal to 1 and those equal to 1 are
simple roots of the minimal polynomial of A.

2. The equation(2.21) is asymptotically stable if and only if all eigenvalues
of A have magnitudes less than 1.

Proof. The proof is given in detail in [2] and will not be repeated here.

Similar definitions can be stated for continuous-time linear systems and
are readily available in [2]. These results are not needed in this thesis and
will not be expanded upon here.

Orbital stability

The notion of stability for equilibrium points can be extended to periodic
solutions, with the use of coordinate substitution and linearization. Suppose
that x�(t) is a nontrivial periodic solution to the nonlinear system

ẋ = f(x) (2.22)

and the behavior of other solutions x(t) in neighbor of the periodic orbit is
of interest. The stability of x�(t) can be investigated by defining

y = x− x�(t) (2.23)

so that the origin y = 0 becomes an equilibrium point for the nonlinear
system

ẏ = ẋ− ẋ�(t)

ẏ = f(y − x�(t))− f(x�(t))

ẏ = F (y, x�(t))

(2.24)
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The behavior of this equilibrium can be investigated by checking the eigen-
values of the matrix A(t) of the linearization

ż = A(t)z, A(t) =

(
∂F (y, x�(t))

∂y

)∣∣∣∣
y=0

(2.25)

If the equilibirum y = 0 is stable, the periodic solution x�(t) is stable since
the behavior of solutions near x�(t) is equivalent to the behavior of solutions
of (2.24) near y = 0. The system (2.24) can never be asymptotically stable
in the sense of Lyapunov since z = x�(t) is a non-vanishing solution [19].

By extending the notion of stability in the sense of Lyapunov from stabil-
ity of an equilibrium to stability of an invariant set, it is possible to classify
the stability properties of periodic orbits. Let M ⊂ D be a closed invari-
ant set of (2.22) where f is a continuously differentiable map from domain
D ⊂ R

n into R
n. Define an ε-neighborhood of M by

Uε = {x ∈ R
n | dist(x,M) < ε} (2.26)

where dist(x,M) is the minimum distance from x to a point in M ; that is

dist(x,M) = inf
y∈M

‖x− y‖ (2.27)

Definition 1. [10, Definition 8.1] The closed invariant set M of (2.22) is

1. stable, if for each ε > 0, there is δ > 0 such that

x(0) ∈ Uδ ⇒ x(t) ∈ Uε, ∀t ≥ 0 (2.28)

2. asymptotically stable if it is stable and δ can be chosen such that

x(0) ∈ Uδ ⇒ lim
t→∞

dist(x(t),M) = 0 (2.29)

A periodic solution x�(t) of (2.22) can be regarded as an invariant setM .
The closed orbit can then be described as the invariant set

γ = {x ∈ Rn | x = x�(t), 0 ≤ t ≤ T} (2.30)

where t = T is the period of the solution. Orbital stability of the periodic
solution can then be defined as

Definition 2. [10, Definition 8.2] A nontrivial periodic solution x�(t) of
(2.22) is

1. orbitally stable if the closed orbit γ generated by x�(t) is stable.

2. asymptotically orbitally stable if the closed orbit γ generated by x�(t) is
asymptotically stable.

Asymptotically stable periodic orbits is commonly referred to as stable
limit cycles, which are important in the study of walking gaits.
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Poincaré first return map

A standard tool for determining the stability properties, such as orbital
stability, of nontrivial periodic orbits is the Poincaré first return map (see
[13, 19]). The initial step is to construct a (n− 1)-dimensional hypersurface
S, known as a Poincaré section, which is transversal to the flow of the peri-
odic orbit γ in state space at all points. Such a hypersurface is illustrated in
Figure 2.3.

Figure 2.3: Poincaré surface S and linearization TS with periodic orbit γ (grey)
and another solution converging to the orbit (black). Illustration � 2008 Elsevier.
Reproduced, with permission, from Annual Reviews in Control, vol. 32, no. 2,
A. Shiriaev, L. Freidovich, and I. Manchester, “Can we make a robot ballerina
perform a pirouette? Orbital stabilization of periodic motions of underactuated
mechanical systems,” pp. 200 211, 2008.

The behavior of the system is studied on a subset S0 ⊂ S that must
contain the intersection with the periodic trajectory γ. Let the map P :
S0 → S be defined by the first hit rule, such that P maps the initial solution
of γ belonging to S0 into the points where the solutions intersects S again
for the first time. The corresponding time-discrete system

x⊥[k + 1] = P (x⊥[k]) , x⊥ ∈ R
n−1 (2.31)

is known as the Poincaré first return map. The map has a fixed point P (x∗⊥) =
x∗⊥ defined by the periodic orbit γ. If the map is contracting, the periodic
solution x�(t) is asymptotically stable and the resulting periodic orbit is a
stable limit cycle. Contraction can be verified by linearizing the map P
around the periodic solution γ as

δx⊥[k + 1] =
dP

dx⊥

∣∣∣∣
x⊥=x∗⊥

· δx⊥[k], δx⊥ = x⊥ − x∗⊥ (2.32)
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forming the mapping dP : TS → TS which acts on the plane TS tangent
to S at the point of intersection between γ and S. The periodic orbit γ
is locally stable if the eigenvalues of dP is strictly inside of the unit circle,
as in the case of a linear time-discrete system. The rate of convergence for
the solution can be estimated by the absolute value of the eigenvalue of dP
closest to the unit circle.

2.5 First Integrals of Dynamic Systems

Definition

Consider an nth order system of ordinary differential equations

ẋi = fi(t, x1, x2, . . . , xn), i = 1, 2, . . . n (2.33)

where fi are continuous differentiable functions defined on a domain D ∈
R
n+1. The system can be written in more compact form as

Ẋ = f(t,X) where X =

⎡
⎢⎢⎢⎣
x1(t)
x2(t)
...

xn(t)

⎤
⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎣
f1(t,X)
f2(t,X)

...
fn(t,X)

⎤
⎥⎥⎥⎦ (2.34)

Define another differentiable function F (t,X) on the same domain D and
calculate the Lie derivative (see [10]) of this function along the trajectories
of f

LfF (t,X) =
∂F (t,X)

∂t
+

n∑
i+1

∂F (t,X)

∂xi
fi(t,X) =

dF (t,X)

dt
(2.35)

If the function F (t,X) is non-constant and satisfies the relation

LfF (t,X) = 0, ∀X ∈ D (2.36)

then F (t,X) is called a first integral of the system (2.34). In other words
F (t,X) is a quantity that keeps its value along all solution trajectories of the
system.

Reducing order of dynamics

First integrals are one of the main methods for finding solutions of nonlinear
dynamics, since a conserved quantity on the form F (t,X) = C define an
implicit relation between the degrees of freedom of the system. Through a
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nontrivial coordinate transformation, the first integral can be used to substi-
tute out one of the degrees of freedom and thus reduce the dimension of the
system.

F (t, x1, x2, . . . , xn) = C → x1 = φ(t, x2, x3, . . . , xn, C) (2.37)

This transformation can then be substituted into the remaining fi of the
dynamic system and removing the dependence on x1

fi(t, x1, x2, . . . , xn) = fi(t, φ, x2, . . . , xn) = fi(t, x2, x3, . . . , xn) (2.38)

The order of the system after substituting the first integral is then (n − 1),
a reduction in order of 1.

The first integral (2.37) is not unique, there may exist several independent
first integrals for a given dynamical system. If F1(t,X), . . . , Fn(t,X) are
functionally-independent first integrals, then any other first integral F (t,X)
can be found as

F (t,X) = Φ(F1(t,X), . . . , Fn(t,X)) (2.39)

where Φ(. . .) is a differentiable function defined on the domain D.

Proof.
Let F1(t,X), . . . , Fn(t,X) be independent first integrals of the system (2.34)
defined on domain D ∈ R

n+1 and Φ(F1(t,X), . . . , Fn(t,X)) a differentiable
function defined on the same domain then

LfF (t,X) = LfΦ(F1, . . . , Fn) =
n∑
i+1

∂Φ

∂Fi

dFi
dt

(2.40)

since Fi(t,X) is a first integral

dFi
dt

= 0 →
n∑
i+1

∂Φ

∂Fi

dFi
dt

= → LfF (t,X) = 0 (2.41)

F (t,X) is therefore a first integral of the system (2.34).

Finding k independent first integrals for the n dimensional system (2.34)
enables reduction of the order of the system down to (n − k). If k = n a
general integral of the system can be obtained without integration of the
nonlinear dynamics.

In the case of mechanical systems such as the biped walker, an intuitive
choice of first integral is the total energy E = K+P of the robot. Since energy
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is a conserved quantity for a physical system, E should keep its constant value
along the solution trajectories of (2.15). The equations of motion for the
biped are formed using the Euler-Lagrange equations, and the Lagrangian
(2.6) can therefore be used to define a first integral for the biped as

E =
n∑
i=1

q̇i
∂L
∂q̇i

− L

E = 2K − (K − P)

E = K + P

(2.42)

Unfortunately, the reduction of order for a mechanical system using a con-
served quantity is in general an unsolved problem as stated in [5].

2.6 Reduced Dynamics

First integrals are one important method for reducing the order of general
dynamic systems, but not all systems are fully integrable and possess a first
integral. In this section another method for reducing the dimensions of dy-
namic systems not dependent on finding first integrals is introduced. The
following procedure is documented in full or partially in [13, 16, 17, 18] and
interested readers are refered to these publications for a comprehensive treat-
ment of the subject.

Virtual holonomic constraints

Any nontrivial periodic trajectory q�(t) of the system (2.15) is a solution
of the differential equations in (2.15). This means that the solution can be
defined on a finite interval of time as q�(t) = q�(t + T ), ∀t where T is the
period of the cycle. The time evolution of the generalized coordinates is not
the only way of describing this periodic trajectory, the motion can actually be
fully described using any scalar variable θ� that uniquely defines a particular
point on the trajectory during the specified time interval.

The periodic cycle can then be re-parametrized in terms of the new mea-
sure of progress θ as

q1� = φ1(θ), . . . , qn� = φn(θ), θ = θ�(t), ∀t ∈ [0, T ] (2.43)

where the functions φ1(θ), . . . , φn(θ) are referred to as virtual holonomic con-
straints. Similiarly to holonomic constraints previously discussed, virtual
holonomic constraints serve to reduce the dimension of the state space by
imposing certain relations between the generalized coordinates. However,
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unlike physical constraints such as steel rods linking particles together, vir-
tual holonomic constraints are relations between coordinates kept invariant
by a control law or the product of certain feasible motions of the system.

The shape of the functions φ1(θ), . . . , φn(θ) depend on the choice of the
scalar variable θ and how it parameterizes points along the trajectory of the
cycle. To ensure certain properties of the constraint functions, such as being
invertible, it is desired that θ(t) is a monotonic function of time. One obvious
choice (see [17]) for θ that fulfills this criteria is

O (q�) =
{
[q, q̇] ∈ R

2n : q = q�(t), q̇ = q̇�(t), t ∈ [0, T ]
}

(2.44)

which describe the distance of travel along the periodic orbit. Parameterizing
the trajectory in terms of arc length is often a complicated task, but for many
systems simpler choices of θ exist.

The virtual holonmic constraints given in (2.43) describes the n-dimensional
system using (n+1) parameters, meaning that one of the generalized coordi-
nates may be chosen as the scalar variable θ. In the case of the planar biped,
the time evolution of the stance foot4 is described by the generalized coordi-
nate q1(t) which is monotonic throughout the motion. A possible choice of
virtual constraints for the general n-dimensional system is therefore

q2� = φ2(θ), . . . , qn� = φn(θ), q1� = θ(t), ∀t ∈ [0, T ] (2.45)

where φ2(θ), . . . , φn(θ) are scalar smooth functions that have continuous first
and second derivatives.

αβγ - equations

The expressions for the scalar functions θ�(·) and φ1(·), . . . , φn(·) are unknown
quantities, but it is possible to derive equations with respect to these variables
using the equations of motions defined in (2.15). An important property of
the equations of motion

M(q)q̈ + C(q, q̇)q̇ +G(q) = 0 (2.46)

is that the matrix C(q, q̇) depends linearly on q̇, as seen in (2.10). The virtual
holonomic constraints of the system and their derivatives can be described
in vector notation as

q(t) =

⎡
⎢⎢⎢⎣
φ1(θ)
φ2(θ)
...

φn(θ)

⎤
⎥⎥⎥⎦ = Φ(θ), q̇(t) = Φ′(θ)θ̇, q̈(t) = Φ′′(θ)θ̇2 + Φ′(θ)θ̈ (2.47)

4The stance foot is the foot of the robot that stays in contact with the ground during
a step.
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where Φ′(θ) = dΦ(θ)
dθ

and the time dependence of θ = θ(t) has been skipped
for readability. Substituting for these relations in (2.46) yields the expression

M(Φ(θ))
[
Φ′′(θ)θ̇2 + Φ′(θ)θ̈

]
+C

(
Φ(θ),Φ′(θ)θ̇

)
Φ′(θ)θ̇+G(Φ(θ)) = 0 (2.48)

which can be rewritten on the form

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (2.49)

where

α(θ) =M(Φ(θ))Φ′(θ)

β(θ) =M(Φ(θ))Φ′′(θ) + C
(
Φ(θ),Φ′(θ)θ̇

)
Φ′(θ)

γ(θ) = G(Φ(θ))

(2.50)

The equations described in (2.49) is referred to as the αβγ-equations or the
reduced dynamics of the system. An interesting property of the reduced sys-
tem dynamics is that linear combinations of arbitrarily chosen αβγ-equations
are on the form

(μ1(θ)α1(θ) + μ2(θ)α2(θ)) θ̈ + (μ1(θ)β1(θ) + μ2(θ)β2(θ)) θ̇
2

+ (μ1(θ)γ1(θ) + μ2(θ)γ2(θ)) = 0
(2.51)

where μ1(θ), μ2(θ) are θ-dependent weights and αi(·), βi(·), γi(·), i ∈ [1, 2] are
coefficients of two arbitrarily chosen equations on the form (2.49). It is easily
verifiable that (2.51) is another expression for the reduced dynamics of the
original system (2.46).

Due to the lack of control input to the system, each of the n equations can
be integrated and used to describe the full evolution of θ, θ̇ and θ̈ assuming
the relations (2.47) are kept invariant. This means that the reduced dynam-
ics are only valid if initial conditions are chosen to satisfy the constraints
q(0) = Φ(θ(0)) and q̇(0) = Φ′(θ(0))θ̇(0). When searching for periodic mo-
tions of the system it is assumed that these synchronization functions between
the generalized coordinates do in fact exist such that the virtual holonomic
constraints are kept invariant along the target trajectory.

The main advantage of utilizing virtual holonomic constraints is that an
n-dimensional system can be reduced to a scalar equation on the form (2.49)
which greatly simplifies trajectory planning and stability analysis of the full
system.



22 2 MATHEMATICAL FOUNDATIONS

Conserved quantity for reduced dynamics

The behavior of the reduced system dynamics is much easier to classify than
the original system. An important property of (2.49) is the existence of a
conserved quantity that keeps its value along the target trajectory defined
by the virtual holonomic constraints.

Theorem 2. [18, Theorem 1]: Along any solution θ(t) of the equation

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0

provided α(θ) = 0 the integral function

I(θ, θ̇, θ0, θ̇0) = θ̇2 − ψ(θ, θ0)

[
θ̇20 −

∫ θ

θ0

ψ(θ0, s)
2γ(s)

α(s)
ds

]
(2.52)

where

ψ(x, θ0) = exp

{
−2

∫ x

θ0

β(τ)

α(τ)
dτ

}
(2.53)

preserves its zero value.

Proof. The proof of this theorem is readily available in [13, 15, 18] among
others and will not be repeated here.

The integral in (2.52) is not a true first integral for the system (2.46)
since it only preserves it’s value along a specific trajectory defined by the
virtual holonomic constraints. In other words, the conserved quantity is only
conserved along those trajectories that keep the virtual holonomic constraints
invariant. This property is useful in the sense that (2.52) can be used as a
measure of discrepancy between the target orbit defined by (2.49) and the
current configuration of the robot in state space. In order to facilitate such
an argument, knowledge of time derivative of the function I(θ, θ̇, θ0, θ̇0) is
needed.

Theorem 3. [18, Theorem 2]: With x and y being some constants, the time
derivative of the function I(θ, θ̇, x, y) defined by (2.52), calculated along a
solution [θ(t), θ̇(t)] of the system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = W (2.54)

can be computed as

d

dt
I = θ̇

{
2

α(θ)
W − 2β(θ)

α(θ)
I

}
(2.55)
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Proof. The time derivative of I = I(θ, θ̇, x, y) along a solution of (2.49) is

d

dt
I = θ̇

∂

∂θ
I + θ̈

∂

∂θ̇
I (2.56)

where

∂

∂θ
I = −

[
θ̇20 −

∫ θ

θ0

ψ(θ0, s)
2γ(s)

α(s)
ds

]
∂

∂θ
ψ(θ, θ0)

+ ψ(θ, θ0)
∂

∂θ

[∫ θ

θ0

ψ(θ0, s)
2γ(s)

α(s)
ds

] (2.57)

which using the Fundamental Theorem of Calculus can be simplified to

∂

∂θ
ψ(θ, θ0) =

∂

∂θ
exp

{
−2

∫ θ

θ0

β(τ)

α(τ)
dτ

}

= −2ψ(θ, θ0)
∂

∂θ

∫ θ

θ0

β(τ)

α(τ)
dτ

= −ψ(θ, θ0)
2β(θ)

α(θ)

∂

∂θ

[∫ θ

θ0

ψ(θ0, s)
2γ(s)

α(s)
ds

]
= ψ(θ0, θ)

2γ(θ)

α(θ)
=

1

ψ(θ, θ0)

2γ(θ)

α(θ)

(2.58)

leading to the expressions of the partial derivatives on the form

∂

∂θ
I =

[
θ̇20 −

∫ θ

θ0

ψ(θ0, s)
2γ(s)

α(s)
ds

]
ψ(θ, θ0)

2β(θ)

α(θ)

+
ψ(θ, θ0)

ψ(θ, θ0)

2γ(θ)

α(θ)

= −
[
I − θ̇2

] 2β(θ)

α(θ)
+

2γ(θ)

α(θ)

∂

∂θ̇
I = 2θ̇

(2.59)

The time derivative can then be calculated using the fact that α(θ) = 0 as

d

dt
I = θ̇

{
2γ(θ)

α(θ)
− 2β(θ)

α(θ)

[
I − θ̇2

]}
+

(
W − β(θ)θ̇2 − γ(θ)

)
α(θ)

2θ̇

= θ̇

{
2

α(θ)
W − 2β(θ)

α(θ)
I

} (2.60)
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It is trivial to verify that the time derivative of the integral (2.52) is
indeed zero along the target trajectory (W = 0, I = 0), and that I keeps its
zero value along the orbit.

Energy formulation for reduced dynamics

The integral (2.52) is not the only conserved quantity for the reduced system.
Lagrangian systems such as the planar biped possess first integrals for their
equations of motion on the form (2.42), and it’s reasonable to assume that
similar quantities exist for the reduced system.

Lemma 1. [5, Lemma 3]: Along any solution θ(t) of the nonlinear system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (2.61)

the energy function, if well-defined for some constant x,

Ex(θ, θ̇) =
1

2
Ψx(θ)θ̇

2 +

∫ θ

x

γ(τ)

α(τ)
Ψx(τ)dτ (2.62)

where

Ψx(θ) = exp

{∫ θ

x

2β(τ)

α(τ)
dτ

}
(2.63)

preserves its value Ex(θ(t), θ̇(t)) ≡ Ex(θ(0), θ̇(0)). In particular, we have

Ex(θ(0+), θ̇(0+)) ≡ Ex(θ(T−), θ̇(T−)) (2.64)

for the time moments right after an impact and right before the next impact.

Proof. The idea behind the proof is to restate (2.61) in a form that is reminis-
cent of the Euler-Lagrange equations of motion by exploiting the Lagrangian
L(θ, θ̇) = 1

2
Mθ(θ)θ̇2−P(θ). First multiplying (2.61) with the scalar integrat-

ing factor μ(θ) yields

μ(θ)α(θ)θ̈ + μ(θ)β(θ)θ̇2 + μ(θ)γ(θ) = 0 (2.65)

where μ(θ) will be chosen such that (2.65) correspond with

d

dt

[
∂L (q, q̇)

∂q̇

]
− ∂L (q, q̇)

∂q
=Mθ(θ)θ̈ +

1

2

∂Mθ(θ)

∂θ
θ̇2 + μ(θ)γ(θ) (2.66)

where the last term is due to the fact that

∂P(q)

∂q
= G(q) ↔ G(Φ(θ)) = γ̄(θ) = μ(θ)γ(θ) (2.67)
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according to (2.50). Comparing terms between (2.65) and (2.66) yields the
following relations

μ(θ)α(θ) =Mθ(θ)

μ(θ)β(θ) =
1

2

∂ (μ(θ)α(θ))

∂θ
=

1

2

(
∂μ(θ)

∂θ
α(θ) + μ(α)

∂α(θ)

∂θ

)
(2.68)

Rearranging the equation and integrating using separation of variables gives

2

∫ θ

x

β(τ)

α(τ)
dτ =

∫ α(θ)

α(x)

1

α(τ)
dτ +

∫ μ(θ)

μ(x)

1

μ(τ)
dτ

exp

{
2

∫ θ

x

β(τ)

α(τ)
dτ

}
=

exp {lnα(θ) + lnμ(θ)}
exp {lnα(x) + lnμ(x)}

μ(θ) =
μ(x)α(x)

α(θ)
exp

{
2

∫ θ

x

β(τ)

α(τ)
dτ

}
=
μ(x)α(x)

α(θ)
Ψx(θ)

(2.69)

Substituting μ(θ) (with μ(x)α(x) = 1) into the energy expression yields

Ex(θ(t), ˙θ(t) =
1

2
Mθ(θ)θ̇2 + P(θ) =

1

2
μ(θ)α(θ)θ̇2 +

∫ θ

x

μ(τ)γ(τ)dτ

=
1

2
Ψx(θ)θ̇

2 +

∫ θ

x

γ(τ)

α(τ)
Ψx(τ)dτ

(2.70)

Verifying that (2.62)is a conserved quantity for (2.61) is easily checked
by time differentiation of the integral along the trajectories of the reduced
dynamics resulting in d

dt
Ex(θ(t), θ̇(t)) = 0.

Similarly to (2.52) the energy-like function for the reduced dynamics is
not a true first integral since it does not keep its value for all possible initial
conditions of (2.46).

2.7 Numerical Optimization

Searching for limit cycles of mechanical dynamic systems such as the compass-
gait biped in (2.14) is a daunting task. The sheer number of variables, and
the relative small region of attraction for the periodic orbit make manual
searches next to impossible to perform with any degree of success.

In order to obtain meaningful results in a reasonable amount of time,
the search must be structured mathematically. One way of doing this is
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transforming the problem from finding limit cycles to finding minimizers of
an objective, and then employing numerical optimization algorithms to find
such a minimizer.

The first step in creating this new problem formulation is defining a cri-
terion which should be minimized. In the case of a limit cycle, this could
intuitively be chosen as the error between initial conditions of the gait and
the configuration of the biped after impact. If these two state vectors are
identical, a periodic orbit has been found. This can be formulated as

min
q0,q̇0

f(q0, q̇0) = ‖q+ − q0‖2 + ‖q̇+ − q̇0‖2 (2.71)

where q0, q̇0 is the initial conditions of the gait and q+, q̇+ is the updated
state vector after impact caluclated using (2.14).

After defining the optimization criterion for the problem, a choice of algo-
rithm for the search procedure must be made. Numerical searches performed
in this thesis will be implemented in matlab and will utilize the built-in
nonlinear optimization function fminsearch. The algorithm is based on the
derivative-free Nelder-Mead method that attempts to find the minimum of
a nonlinear unconstrained optimization problem, specified by an objective
function f(x) and an initial estimate x0. The inner-workings of the imple-
mentation of the optimization routine is beyond the scope of this text, but
a comprehensive treatment of the Nelder-Mead method can be found in [14]
and documentation of the fminsearch function is readily available in [11].

Algorithm 2 below illustrates how optimization can be used to define
a search for limit cycles. The approach described is most likely extremely
computationally intensive and a minimizer might not be found, as such it is
just meant as an example of the flow in an optimization routine.
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Algorithm 2: Searching for periodic orbits using numerical optimiza-
tion
IN contains the user-defined initial guess
OUT contains the appropriate parameters returned by the routine

Set initial guess: qiter ← IN(1), q̇iter ← IN(2)
Set termination criteria: tolerance ← IN(3)

while f > tolerance do
Compute next iteration: [qiter, q̇iter] ← fminsearch(f, qiter, q̇iter);

Initialize: q0 ← qiter, q̇0 ← q̇iter
repeat

Integrate: [q, q̇] ←M(q)q̈ + C(q, q̇)q̇ +G(q) = 0
until q ∈ S;

Compute update: Γ+ � [q+, q̇+]T ← F (q−, q̇−), [q−, q̇−]T ∈ Γ−;

Compute state mismatch: f ← ‖qiter − q+‖2 + ‖q̇iter − q̇+‖2;
end

OUT ← [qiter, q̇iter]
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3 Modeling the Compass-gait Biped

This chapter is concerned with the techniques employed for modeling the
continuous and discrete dynamics of the compass-gait biped. The Euler-
Lagrange equations of motion for the system will be presented along with the
full hybrid dynamics describing the walker. In order to the make the subse-
quent discussion more comprehensible, terminology relevant to the physical
composition of the planar biped will first be presented.

3.1 Terminology

Stance leg
The term Stance leg refers to the balancing leg of the biped during a
step, and is not generally connected to a specific leg of the robot.

Swing leg
The term Swing leg refers to the leg that experiences detachment from
the ground and travels from behind the robot to the front during a
complete step.

Impact
After the swing leg has reached the end of the swing phase, it will hit
the slope that the biped travels along. This is referred to as the Impact
the robot experiences when transitioning to the next step.

Heel-strike
The Heel-strike is the specific impact that occurs during a normal
walking-cycle, meaning that the swing leg has hit the slope in front
of the robot while the swing foot is descending.

3.2 Physical Description

The compass-gait biped is one of the simplest walking devices and is a stan-
dard benchmark for studying periodic gaits. The robot consists of two links,
or legs, connected by a revolute hip joint that allows for rotational motion
in the 2-D plane. Figure 3.1 illustrates the planar biped along with some
important parameters. The orientation of the stance leg and swing leg are
described, respectively, by the absolute angles q1 and q2 with positive direc-
tion defined counter-clockwise. The biped is traveling down a shallow slope
with constant angle ψ measured from the horizontal. Each leg link is iden-
tical with total length l = a + b from hip joint to feet. The center of mass
of each of the legs is located at the distances a and b from the hip and feet,
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Figure 3.1: Schematic of the planar compass-gait biped on a shallow slope with
angle ψ.

respectively. m1 = m2 is the mass of the legs and mH is the mass of the hip
joint connecting each leg.

To simplify the derivation of the dynamics of the biped, some assumptions
have been made regarding the physical composition of the robot and the
physics of the impact.

� The legs and the hip are considered to be point masses and the moment
of inertia around their centers of mass equals zero.

� The stance leg is rigidly connected to the ground during a complete
step of the walking gait, meaning that each point of the robot can be
uniquely described by the two angles q1, q2.

� The robot has point feet that does not experience slipping or sliding
on the slope.

� The swing leg only experiences an impact with the ground during heel-
strike. Practically, the swing leg would trespass the surface of the slope
(and experience an impact) when it passes through the stance leg due
to the symmetry of the legs. The biped can be modified to prevent
this (see e.g [12]), but this does not affect the dynamics and will not
be treated in this thesis.

� The impact forces the foot of the swing leg experience during the col-
lision with the ground can be represented by impulses, and the impact
itself takes place over an infinitesimally small period of time.
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� Due to the impulsive nature of the impact forces, the robot configu-
ration q remains unchanged during the collision with the ground. An
argument for the validity of this assumption can be found in [1].

Having defined the assumptions and physical parameters connected to
the planar biped, the equations of motion can be derived using the Euler-
Lagrange approach.

3.3 Euler-Lagrange Equations of Motion

The first step to deriving the Lagrangian of the biped is to define the ho-
mogeneous transfer matrices that describe the orientation and position of
each link of the robot. One natural placement of local coordinate frames is
indicated in Figure 3.2, where each frame is rigidly attached to the appro-
priate point mass. The origins of each of these frames describe the following

Figure 3.2: Assignment of origins for the coordinate frames of the biped.

important points on the planar biped

o0 - Global coordinate frame fixed to the ground.

o1 - Coordinate frame fixed to the center of mass for the stance leg.

oH - Coordinate frame fixed to the center of mass of the hip joint

o2 - Coordinate frame fixed to the center of mass for the swing leg.

These coordinate frames are used to form homogeneous transformation ma-
trices on the form

H i
j =

[
Ri
j pij

01×3 1

]
(3.1)
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where Ri
j ∈ R

3×3 is the rotation matrix from frame j to frame i and pij ∈
R

3 is the distance between the origins of the respective frames expressed
in frame i. Finding rotation matrices is generally complicated, requiring a
parametrization of the total rotation of each frame in suitable coordinates
(see [20]). This process is greatly simplified by the fact that the planar biped
only experiences motion in a 2-D plane. The transformation matrices can
then be found by simple trigonometry and are stated for verification below:

H0
1 =

⎡
⎢⎢⎣

cos(−q1) − sin(−q1) 0 −b sin(−q1)
− sin(−q1) cos(−q1) 0 b cos(−q1)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

H1
H =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 a
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

H0
H = H0

1H
1
H

H0
2 =

⎡
⎢⎢⎣
cos(q2) − sin(q2) 0 l sin(−q1) + a sin(q2)
sin(q2) cos(q2) 0 l cos(−q1)− a cos(q2)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

(3.2)

The matrices (3.2) can now be employed to determine the position p(0)... and
velocity v(0)... of the center of mass of each point mass in xy coordinates in the
global frame o0 as

p
(0)
1 =

[
I2×2 02×2

] ·H0
1 ·

[
03×1

1

]
, v

(0)
1 =

d

dt
p
(0)
1

p
(0)
H =

[
I2×2 02×2

] ·H0
H ·

[
03×1

1

]
, v

(0)
H =

d

dt
p
(0)
H

p
(0)
2 =

[
I2×2 02×2

] ·H0
2 ·

[
03×1

1

]
, v

(0)
2 =

d

dt
p
(0)
2

(3.3)

where I2×2 is the identity matrix and p(0)... , v
(0)
... ∈ R

2.
In order to form the Lagrangian of the system and compute the Euler-

Lagrange equations, the kinetic and potential energy of the system must be
determined. The potential energy is the sum of the potential energy at the
center of mass for each point mass and can be expressed as

P =
(
m1h

(0)
1 +mHh

(0)
H +m2h

(0)
2

)
g (3.4)
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where g is the gravitational constant and h(0)... = p(0)... · [ 01 ] is the height of
the respective centers of mass expressed in the global frame o0. The kinetic
energy is simply the sum of the translational energy of each point mass and
can be expressed as

K =
1

2

(
m1v

2
1 +mHv

2
H +m2v

2
2

)
(3.5)

Using the expressions (3.4) and (3.5) for the potential and kinetic energy, the
Euler-Lagrange equations of motion can be calculated

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= 0 j ∈ [1, 2] (3.6)

where L is the Lagrangian of the system derived from (3.4) and (3.5) as

L = K − P

Using the expressions (2.9) - (2.11) for the elements of the respective matrices,
the equations of motion for the passive compass-gait biped can be formulated
as

M(q)q̈ + C(q, q̇)q̇ +G(q) = 0 (3.7)

where

M(q) =

[
p1 −p2 cos(q1 − q2)

−p2 cos(q1 − q2) p3

]
(3.8)

C(q, q̇) =

[
0 −p2q̇2 sin(q1 − q2)

p2q̇1 sin(q1 − q2) 0

]
(3.9)

G(q) =

[−p4 sin(q1)
p5 sin(q2)

]
(3.10)

with the constant parameters p1 = mH l
2 + m1b

2 + m2l
2, p2 = m2la, p3 =

m2a
2, p4 = (m1b+m2l +mH l) g, p5 = m2ag. The equations of motion (3.7)

describe the continuous dynamics of the biped during the periodic gait and
is independent of the walking surface. In order to describe what happens to
the robot during heel-strike, an impact map must be formulated to prevent
trespassing of the surface slope during motion.

3.4 Formulating Impact Map

When the swing foot impacts the surface of the slope, an update of the
angular velocities q̇1, q̇2 should occur to prevent the biped from falling through
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the floor. This update can be formulated as a mapping between the velocities
just before and just after the collision with the ground on the form[

q̇+1
q̇+2

]
= Δ(q) ·

[
q̇−1
q̇−2

]
(3.11)

where the − and + signs denote the time instant right before and right after
impact, respectively. An important property of this impact mapping is the
assumption that the configuration of the biped, the generalized coordinates
q1, q2, remains unchanged during ground impact. This is due to the fact
that the impact forces F the biped experiences during impact are impulsive
in nature. An illustration of the impact forces and reference points for the
impact maps is depicted in Figure 3.3. There are multiple ways of calculating

Figure 3.3: Assignment of reference points for impact maps and impact forces.

the velocity updates of the biped. Presented below are two distinct methods
that exploit different properties of the impact to derive an impact map for
the collision on the form (3.11).

Conservation of angular momentum

Since the impact forces F are the only external forces affecting the biped, the
angular momentum about the impacting foot is conserved before and after
the collision for the system. The angular momentum L of a point mass can
be stated as

L = r ×mv (3.12)

where r is the position of the mass relative to a given reference point, m is the
mass and v is the velocity of the particle. Given that the biped is a system
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of point masses, the angular momentum of the robot about the impacting
foot is given by

L
(0)
Biped =

∑
i

r
(0)
i ×miv

+
i =

∑
i

r
(0)
i ×miv

−
i , i ∈ {1, 2, H} (3.13)

where the reference point is the origin o0 (see Figure 3.3]), and the position

vectors r
(0)
i relative to this point is given by

r
(0)
2 =

⎡
⎣−b sin(q2)b cos(q2)

0

⎤
⎦

r
(0)
H =

⎡
⎣−l sin(q2)l cos(q2)

0

⎤
⎦

r
(0)
1 = r

(0)
H +

⎡
⎣−a sin(−q1)−a cos(−q1)

0

⎤
⎦

(3.14)

The translational velocities v±i are independent of the reference point and
can be expressed using the angular velocities q̇± as

v−H =

⎡
⎣ 0
0
q̇−1

⎤
⎦×

⎡
⎣l sin(−q1)l cos(−q1)

0

⎤
⎦ , v+H =

⎡
⎣ 0
0
q̇+2

⎤
⎦×

⎡
⎣−l sin(q2)l cos(q2)

0

⎤
⎦

v−1 =

⎡
⎣ 0
0
q̇−1

⎤
⎦×

⎡
⎣b sin(−q1)b cos(−q1)

0

⎤
⎦ , v+1 = v+H +

⎡
⎣ 0
0
q̇+1

⎤
⎦×

⎡
⎣−a sin(−q1)−a cos(−q1)

0

⎤
⎦

v−2 = v−H +

⎡
⎣ 0
0
q̇−2

⎤
⎦×

⎡
⎣ a sin(q2)
−a cos(q2)

0

⎤
⎦ , v+2 =

⎡
⎣ 0
0
q̇+2

⎤
⎦×

⎡
⎣−b sin(q2)b cos(q2)

0

⎤
⎦

(3.15)

Substituting (3.14) and (3.15) into (3.13) and computing the crossproducts,
yields one equation for the two unknown velocities q̇+1 , q̇

+
2 . This means that

another equation is needed to solve the system.

The only forces that the pre-impact swing leg experiences during the
collision is the constraint force acting on it from the hip joint. This means
that the angular momentum of this leg about the hip is conserved through



3 MODELING THE COMPASS-GAIT BIPED 35

the impact, yielding another equation for the updated velocities on the form

L
(H)
Swing = r

(H)
1 ×m1v

+
1 = r

(H)
1 ×m1v

−
1

r
(H)
1 =

⎡
⎣−a sin(−q1)−a cos(−q1)

0

⎤
⎦ (3.16)

where the reference point is the origin oH and the velocities v±1 is given in
(3.15). Equations (3.13) and (3.16) combined results in the linear system[

L
(0)
Biped

L
(H)
Swing

]
= Q+q̇

+ = Q−q̇−[
L
(0)
Biped

L
(H)
Swing

]
=

[
p8 − p7c12 −p7c12 + p6

p8 −p7c12
] [
q̇+1
q̇+2

]
=

[
p10c12 −p11
−p9 0

] [
q̇−1
q̇−2

] (3.17)

where c12 = cos(q1 − q2) and the parameters p6 = m1l
2 +mH l

2 +m2b
2, p7 =

m1al, p8 = m1a
2, p9 = m1ab, p10 = m2lb+mH l

2+m1lb, p11 = m2ab. Solving
the system for q̇+ by inverting the matrix Q+ gives and impact map on the
form (3.11)

q̇+ =
[Q−1

+ · Q−
]
q̇− (3.18)

Integration of dynamics

Computing the impact map by conservation of angular momentum results
in a compact mapping that only contains information about the updated
velocities q̇+. Another quantity of interest is the impact forces F that occur
at the end of the swing leg as a result of the impact, since the assumption
that the biped does not slide or trespass the ground just after the collision is
dependent on these forces. It might therefore be of interest to calculate the
magnitude and direction of F to ensure that the assumption holds.

A procedure for finding an impact model that includes the unknown forces
F = [Fx, Fy]

T in addition to the update velocities q̇+ is utilized in [9] and
will be presented here for the biped. The first step of the procedure is to
express the continuous dynamics of the biped in excessive coordinates

x =
[
q1, q2, z1, z2

]T
(3.19)

where z1, z2 are Cartesian coordinates added to the foot of the stance leg as
indicated in Figure 3.3. The main idea of the procedure is then to “integrate”
these new continuous dynamics over the infinitesimally small duration of the
impact to obtain

Mx(q)
(
ẋ+ − ẋ−

)
= F ext (3.20)
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where F ext =
∫ t+
t− δF ext(τ)dτ is the impulse forces affecting each coordinate

in x integrated over the duration of the impact and Mx(q) ∈ R
4×4 is the

inertia matrix of the excessive coordinate dynamics. Finding these dynamics
is identical to the procedure described previously with the exception that
z1, z2 must be included in the transformation matrices yielding

H0
1 =

⎡
⎢⎢⎣

cos(−q1) − sin(−q1) 0 z1 − b sin(−q1)
− sin(−q1) cos(−q1) 0 z2 + b cos(−q1)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

H1
H =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 a
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

H0
H = H0

1H
1
H

H0
2 =

⎡
⎢⎢⎣
cos(q2) − sin(q2) 0 z1 + l sin(−q1) + a sin(q2)
sin(q2) cos(q2) 0 z2 + l cos(−q1)− a cos(q2)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

(3.21)

The calculation then proceeds as normal with the new state vector x, result-
ing in the inertia matrix

Mx(q) =

⎡
⎢⎢⎣

(mH l
2 +m1b

2 +m2l
2) −m2al cos(q1 − q2)

−m2al cos(q1 − q2) m2a
2

− cos(q1) (mH l +m1b+m2l) m2a cos(q2)
− sin(q1) (mH l +m1b+m2l) m2a sin(q2)

. . .

. . .

− cos(q1) (mH l +m1b+m2l) − sin(q1) (mH l +m1b+m2l)
m2a cos(q2) m2a sin(q2)

m1 +m2 +mH 0
0 m1 +m2 +mH

⎤
⎥⎥⎦

(3.22)

The linear system (3.20) has eight unknowns ẋ+, F ext and four equations, and
must therefore be augmented with equations that describe what happens to
each contact end of the biped during impact. It is assumed that the stance
leg detaches from the ground without interaction after the collision, and thus
F ext need only consider external forces at the end of the swing leg. This point
has the Cartesian coordinates

Υ =

[
z1 + l sin(−q1) + l sin(q2)
z2 + l cos(−q1)− l cos(q2)

]
(3.23)
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measured in a global frame with the same orientation as the z1, z2 frame. The
external forces F ext affecting the end of the swing leg can then be described
in terms of the horizontal Fx and vertical Fy components of the impact force
F as

F ext = ET

[
Fx
Fy

]
(3.24)

where

E =
∂Υ

∂x
=

[−l cos(q1) l cos(q2) 1 0
−l sin(q1) l sin(q2) 0 1

]
(3.25)

The stance leg is assumed to act as a pivot before impact, meaning that
ż−1 = ż−2 = 0. Right after impact the former swing leg becomes the new
stance leg, and assuming no slipping or rebounding of this new pivot we
have the relation

dΥ

dt
=
∂Υ

∂x
ẋ+ = Eẋ+ = 0 (3.26)

Combining equations (3.20), (3.24) and (3.26) results in a system linear in
ẋ+ and F , with six equations and six unknowns which can be stated as[

Mx −ET

E 02×2

] [
ẋ+

F

]
=

[
Mxẋ

−

02×1

]
(3.27)

It is verified in [9] that an unique solution of the system always exist, and
can be written [

ẋ+

F

]
=

[
Mx −ET

E 02×2

]−1 [
Mxẋ

−

02×1

]
(3.28)

By extracting the updated velocities q̇+1 , q̇
+
2 from ẋ+, the system reduces to

the previously found impact map using conservation of angular momentum.

3.5 Hybrid System Formulation

After calculating both the continuous and the discrete dynamics of the compass-
gait biped, the full hybrid dynamic system can be formulated.

Defining impact surface

The previously found impact maps calculated the change in angular veloc-
ities that occur when the biped impacts with the ground. In order for this
update to correctly be applied when the swing foot strikes the slope, the
configurations of the robot that results in an impact must be determined.
These configurations correspond to the hypersurface S known as the impact
surface or switching surface. Referring to Figure 3.4, a configuration of the
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Figure 3.4: Illustration showing the different quantities used when defining the
impact surface of the biped.

biped that leads to impact with the slope must satisfy the relation

H(q) = h1(q) + hψ(q)− h2(q) = 0 (3.29)

where

h1 = l cos(−q1)
h2 = l cos(q2)

hψ = L tan (ψ)

L = l sin (−q1) + l sin (q2)

(3.30)

are found by simple trigonometry. Substituting these expressions and sim-
plifying using trigonometric identities leads to the following derivation

H(q) = l cos(−q1) + [l sin (−q1) + l sin (q2)]
sin(ψ)

cos(ψ)
− l cos(q2) = 0

H(q) = cos(q1) cos(ψ)− sin(q1) sin(ψ)︸ ︷︷ ︸− [cos(q2) cos(ψ)− sin(q2) sin(ψ)]︸ ︷︷ ︸ = 0

H(q) = cos(q1 + ψ) − cos(q2 + ψ) = 0

The switching surface S is defined as all configurations q of the biped that
satisfies the above relation and can be stated in set notation as

S =
{
q ∈ R

2 : H(q) = cos(q1 + ψ)− cos(q2 + ψ) = 0
}

(3.31)
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Transition during impact

When the foot of the swing leg hits the switching surface S an instantaneous
transition occurs where the stance and swing leg switch. After this transition
the biped will be in the exact same configuration as shown in Figure 3.1 with
the exception that the generalized coordinates q1 and q2 has switched places.
Instead of calculating new continuous dynamics for the case where the stance
leg is parameterized by q2 instead of q1, a trivial permutation of the position
variable can be performed[

q+1
q+2

]
=

[
0 1
1 0

] [
q−1
q−2

]
= P

[
q−1
q−2

]
(3.32)

such that (3.7) is still valid after impact. The permutation of the gener-
alized coordinates means that the impact map must reflect this switch as
well. Applying the change in coordinates to the impact map derived using
conservation of angular momentum yields the new mapping[

q̇+1
q̇+2

]
= Pq(q)

[
q̇−1
q̇−2

]
(3.33)

where

Pq(q) =

[
0 1
1 0

]
Q−1

+ Q−

Pq(q) =

([
0 1
1 0

]−1
)−1

Q−1
+ Q−

Pq(q) =

(
Q+

[
0 1
1 0

])−1

Q−

Pq(q) =

[−p7c12 + p6 p8 − p7c12
−p7c12 p8

]−1 [
p10c12 −p11
−p9 0

]
(3.34)

The update of the impact model obtained by integrating the dynamics is
similarly trivial and will not be stated here.

Hybrid dynamics

Using the continuous dynamics (3.7), together with the switching surface
defined by (3.31) and the algebraic transition equations (3.32) and (3.33),
the full hybrid dynamics of the compass-gait biped can be stated as

M(q)q̈ + C(q, q̇)q̇ +G(q) = 0, as long as q /∈ S
q+ = Pq− and q̇+ = Pq(q)q̇

− whenever q− ∈ S (3.35)
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3.6 MATLAB Simulation Script

The dynamics associated with the periodic gait of the planar biped are dif-
ficult to visualize based on the equations of motion alone, or plots of their
respective trajectory through state space. When investigating properties of
different gaits, an animation that shows the corresponding motion of the
biped is extremely helpful. Using the hybrid mechanical system derived
in (3.35), a simulation script was written in matlab to give visual feedback
during the simulation studies. The relevant parts of the main simulation loop
are reproduced below.

1 %% Simulate periodic gait
2

3 x0 = [q0;Dq0];
4

5 MAP SELECTOR = 1;
6 % 1 = Conservation of angular momentum
7 % 2 = Integration of dynamics
8

9 SIMULATION TIME = 30;
10 DRAW INTERVAL = 0.05; % Interval in seconds
11 % between state space plotting
12

13 REPEATS = 0; % Animation repeats
14 FPS = 24; % Animation playback fps
15

16 T0 = 0;
17 tspan = [T0 SIMULATION TIME];
18

19 state space = [];
20 time = [];
21 impacts = [];
22 last impact = 0;
23 gait period = [];
24

25 current time = T0;
26

27 while(current time < SIMULATION TIME)
28

29 options = odeset('Events', @impact event);
30 [tout, xout, event time, event state, event id] = ode45(...
31 @equations of motion, tspan, x0, options);
32

33 if ˜isempty(event id) && event time(end) == tout(end)
34 impact time = tout(end);
35 impact index = length(time)+length(tout);
36
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37 impacts = [impacts; impact time, impact index];
38 gait period = [gait period; impact time − last impact];
39 last impact = impact time;
40 x0 = impact map(xout(end,:), MAP SELECTOR);
41

42 fprintf('*************************************************\n');
43 fprintf('Impact surface hit at time = %0.2f\n', impact time);
44 fprintf('Index = %d\n', impact index);
45 fprintf('q1 = %0.2f\n', xout(end,1)*180/pi);
46 fprintf('q2 = %0.2f\n', xout(end,2)*180/pi);
47 fprintf('*************************************************\n');
48 end
49

50 time = [time; tout];
51 state space = [state space; xout];
52

53 tspan = [time(end) max(SIMULATION TIME, time(end))];
54 current time = time(end);
55 end

Implementation

After the hybrid dynamic system (3.35) is derived using Maple, a conversion
to matlab syntax is performed to simplify implementation. The continuous
dynamics (3.7) are then implemented in state space form as the matlab
function equations_of_motion(t,x):

1 function [Dx] = equations of motion(t,x)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 q1 = x(1);
5 q2 = x(2);
6 Dq1 = x(3);
7 Dq2 = x(4);
8 Dq = [Dq1;Dq2];
9

10 m11 = p1;
11 m12 = −p2 * cos(q1 − q2);
12 m21 = −p2 * cos(q1 − q2);
13 m22 = p3;
14 c11 = 0;
15 c12 = −Dq2 * sin(q1 − q2) * p2;
16 c21 = Dq1 * sin(q1 − q2) * p2;
17 c22 = 0;
18 g1 = −sin(q1) * p4;
19 g2 = sin(q2) * p5;
20
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21 M = [m11, m12; m21, m22];
22 C = [c11, c12; c21, c22];
23 G = [g1; g2];
24

25 DDq = M\(−C*Dq−G);
26 Dx = [Dq; DDq];
27 end

The state space representation is employed in order to utilize the numerical
differential solvers included in matlab, where the most widely used is the
default solver ode45(). The following code excerpt shows an implementation
for numerical simulating the previous mentioned equations_of_motion.m:

[t,x,te,ye,ie] = ode45(@equations_of_motion,tspan,x0,options);

The code instructs matlab to simulate equations_of_motion.m over the
time horizon tspan with initial condition q0. The output from the function is
the time vector t, state vector q and three parameters related to the options
parameter. The problem with this implementation is that it only simulates
the equations of motion over a predefined time period and without detecting
crossings of the switching surface S. The solution to these problems can be
found in the ode45 parameter options.

options = odeset(’Events’, @impact_event);

The important parameter here is the event function impact_event.m, which
is an implementation of (3.31) for the numerical solver.

1 function [value, isterminal, direction] = impact event(t,x)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 q1 = x(1);
5 q2 = x(2);
6

7 Dq2 = x(4);
8

9 value = cos(q1+psi)−cos(q2+psi);
10 direction = −1;
11

12 if Dq2 < 0
13 isterminal = 1;
14 else
15 isterminal = 0;
16 end
17 end
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Event functions are used to detect zero-crossings of certain algebraic ex-
pressions in the solver, in this case it notifies when H(q) in (3.29) crosses
zero and q̇2 < 0 which signifies a heel-strike. When ode45 receives this
notification, the integration is stopped and relevant data is returned.

The state space data from ode_45 is then used to calculate the updated
positions and velocities of the biped according to (3.33) implemented in the
impact_map(x,MAP_SELECTOR) function.

1 function [x plus] = impact map(x minus, map selector)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 q1 = x minus(1);
5 q2 = x minus(2);
6 Dq1 = x minus(3);
7 Dq2 = x minus(4);
8

9 switch map selector
10 case 1
11 %% Impulse map using conservation of angular momentum
12

13 Qp = [−cos(q1 − q2) * p7 + p6 p8 − cos(q1 − q2) * p7; ...
14 −cos(q1 − q2) * p7 p8;];
15 Qn = [cos(q1 − q2) * p10 − p9 −p11; −p9 0;];
16

17 Dq plus = Qp\Qn*[Dq1; Dq2];
18

19 case 2
20 %% Impulse map using method from Grizzle, Abba, Plestan 2001
21

22 [mH, m1, m2, a, b, l, g] = physical parameters;
23

24 A = [mH * l ˆ 2 + b ˆ 2 * m1 + l ˆ 2 * m2 −a * l * m2 ...
25 * cos(q1 − q2) −cos(q1) * (mH * l + b * m1 + l * m2)...
26 −sin(q1) * (mH * l + b * m1 + l * m2) l * cos(q1) l ...
27 * sin(q1); −a * l * m2 * cos(q1 − q2) a ˆ 2 * m2 a ...
28 * m2 * cos(q2) a * m2 * sin(q2) −l * cos(q2) −l ...
29 * sin(q2); −cos(q1) * (mH * l + b * m1 + l * m2) a ...
30 * m2 * cos(q2) m1 + m2 + mH 0 −1 0; −sin(q1) ...
31 * (mH * l + b * m1 + l * m2) a * m2 * sin(q2) 0 m1...
32 + m2 + mH 0 −1; −l * cos(q1) l * cos(q2) 1 0 0 0; ...
33 −l * sin(q1) l * sin(q2) 0 1 0 0;];
34 B = [(mH * l ˆ 2 + b ˆ 2 * m1 + l ˆ 2 * m2) * Dq1 ...
35 − m2 * l * a * cos(q1 − q2) * Dq2 −m2 * l * Dq1 ...
36 * a * cos(q1 − q2) + a ˆ 2 * m2 * Dq2 −cos(q1) ...
37 * (mH * l + b * m1 + l * m2) * Dq1 + a ...
38 * m2 * cos(q2) * Dq2 −sin(q1) ...
39 * (mH * l + b * m1 + l * m2) * Dq1 ...



44 3 MODELING THE COMPASS-GAIT BIPED

40 + a * m2 * sin(q2) * Dq2 0 0];
41

42 z = A\B';
43 Dq plus=[z(2);z(1)];
44 end
45

46 %% Updated state vector
47

48 q plus = [q2; q1];
49 x plus = [q plus; Dq plus];
50

51 end

This function returns q+, q̇+ which are set as new initial conditions for the
numerical solver and the simulation continues.

The loop iterates as long as the time returned from the solver is less
than the specified simulation time, at which point the simulation termi-
nates and returns a matrix containing the complete state space of the system
(state_space), a vector containing information about the time interval be-
tween each step (gait_period), a matrix containing the impact times and
indexes (impacts) and the simulation time (time). The simulation data are
then utilized to plot relevant data and display an animation of the compass-
gait biped traveling down the slope, see Figure 3.5.
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Figure 3.5: Screenshot of output from matlab simulation script. The three plots
show convergence of gait period, phase portrait of swing and stance leg, and time-
evolution of swing and stance leg. The largest figure window plays an animation
of the biped traveling down the slope based on the time-evolution of q1 and q2.
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4 Reduced Dynamics Formulation

In this chapter the reduced dynamics of (3.7) will be derived using the notion
of virtual holonomic constraints. The reduced dynamics of the biped is an
useful tool when searching for periodic gaits and will be used extensively
throughout the thesis.

4.1 Virtual Holonomic Constraints

The virtual holonomic constraints of the biped can be stated as

q1(t) = φ1(θ(t)), q2(t) = φ2(θ(t)) (4.1)

where θ(t) is a scalar variable that uniquely defines a particular point on the
continuous sub-arc of the periodic trajectory of (3.7), and φi(θ(t)) are smooth
functions which shape depends on the choice of θ. There are many possible
choices for the parameterization θ(t), which serves as a measure of progress
throughout the periodic motion. For the compass-gait biped there exists a
natural choice for θ(t) which simplifies the reduced dynamics considerably.

Consider one complete step of the biped as illustrated in Figure 4.1. The
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Figure 4.1: Illustration of a complete step of a periodic gait. The values q1, q2 are
the angles in degrees of the stance leg (red) and swing leg (green) respectively.

stance leg experiences a monotonic decrease in angle q1 throughout the com-
plete step. This means that there exist an one-to-one correspondence between
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q1 and the distance the system has traveled along its periodic orbit. The co-
ordinate of the stance leg can therefore be chosen as the progress variable
θ(t) resulting in the reparameterization of the orbit as

q1 = θ, q2 = φ(θ) (4.2)

where the dependence on time has been dropped for convenience and the
derivatives are calculated as

q̇1 = θ̇, q̈1 = θ̈

q̇2 = φ′(θ)θ̇, q̈2 = φ′′(θ)θ̇2 + φ′(θ)θ̈
(4.3)

4.2 Reduced Dynamics

Substituting the expressions for the virtual holonomic constraints from (4.2)
- (4.3) into the equations of motion (3.7) and collecting similar terms, yields
two new differential equations for the variable θ on the form

α1(θ)θ̈ + β1(θ)θ̇
2 + γ1(θ) = 0 (4.4)

α2(θ)θ̈ + β2(θ)θ̇
2 + γ2(θ) = 0 (4.5)

where

α1(θ) = −p2 cos(θ − φ(θ))φ′(θ) + p1

β1(θ) = −p2 sin(θ − φ(θ)) (φ′(θ))2 − p2 cos(θ − φ(θ))φ′′(θ)

γ1(θ) = −p4 sin(θ)
α2(θ) = −p2 cos(θ − φ(θ)) + p3φ

′(θ)

β2(θ) = p2 sin(θ − φ(θ)) + p3φ
′′(θ)

γ2(θ) = p5 sin(φ(θ))

(4.6)

These differential equations are known as the reduced dynamics of the system
and describe the synchronization between the generalized coordinates q1, q2
along a periodic trajectory. They both possess the common solution θ = θ(t)
and are integrable with conserved quantities described by the equations (2.52)
and (2.62).

Solving for the conserved quantities analytically is a difficult, if not im-
possible task, for some systems due to the nested integrals in the expressions.
The planar biped is no exception, but due to the fact that it is a mechanical
system, an analytic expression for the first integral exist in the form of the
total energy

E = q̇T
1

2
M(q, q̇)q̇ + P(q) (4.7)
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which restated in virtual holonomic constraints can be written

E =
1

2
Mθ(θ)θ̇

2 + P(θ) (4.8)

whereMθ(θ) is a scalar representation of the inertia matrixM(q, q̇). Looking
at the derivation of (2.62) it is clear that (4.8) must be the conserved quantity
for some equation on the form

α0(θ)θ̈ + β0(θ)θ̇
2 + γ0(θ) = 0 (4.9)

where

α0 = ω1(θ)α1(θ) + ω2(θ)α2(θ)

β0 = ω1(θ)β1(θ) + ω2(θ)β2(θ)

γ0 = ω1(θ)γ1(θ) + ω2(θ)γ2(θ)
(4.10)

are linear combinations of the coefficients of (4.4) and (4.5) using θ-dependent
weights ωi(θ). The challenge now is to find such weights that it is possible
to restore the original energy of the Euler-Lagrange system as a conserved
quantity of (4.9).

4.3 Finding Weights to Restore Energy

Deriving integral formula

The energy expression (4.8) can be differentiated to yield

d

dt
E =

∂E

∂θ
θ̇ +

∂E

∂θ̇
θ̈ = θ̇

(
1

2

∂Mθ

∂θ
θ̇2 +

∂P
∂θ

+Mθθ̈

)
(4.11)

where the fact that E is a conserved quantity and θ̇ = 0 on the periodic orbit
means that the expression in parenthesis can be stated as

Mθθ̈ +
1

2

∂Mθ

∂θ
θ̇2 +

∂P
∂θ

= 0 (4.12)

Comparing this equation to the generic reduced dynamics system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (4.13)

motivates the following equalities among the parameters

Mθ = α(θ)

1

2

∂Mθ

∂θ
= β(θ)

∂P
∂θ

= γ(θ)

(4.14)
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The α, β and γ parameters can be represented as weighted combinations of
(4.4) and (4.5) on the form (4.10). These expressions contain the two un-
knowns ω1, ω2, which can be reduced to a single unknown using normalization

ω2(θ)

ω1(θ)
= μ(θ) (4.15)

without loss of generality due to the fact that (4.9) is identically equal to zero
along the periodic orbit. This normalization leads to the system of equations

Mθ = α1(θ) + μ(θ)α2(θ)

1

2

∂Mθ

∂θ
= β1(θ) + μ(θ)β2(θ)

(4.16)

where Mθ and μ are unknowns. In further computations the explicit depen-
dence on θ will be dropped from the equations for readability. The system
(4.16) can easily be reduced to a single equation in the unknown μ by differ-
entiating the first expressions with respect to θ resulting in

∂Mθ

∂θ
=
∂α1

∂θ
+
∂μ

∂θ
α2 + μ

∂α2

∂θ
(4.17)

which can be equated with the expression for ∂Mθ

∂θ
with respect to β1, β2

giving the single differential equation

∂α1

∂θ
+
∂μ

∂θ
α2 + μ

∂α2

∂θ
= 2 [β1 + μβ2] (4.18)

Rearranging the equation by collecting μ-terms on the left-hand side and
generic parameters on the right-hand side yields a first-order non-homogeneous
differential equation in μ on the form

∂μ

∂θ
+

(
∂α2

∂θ
− 2β2

α2

)
μ =

2β1 − ∂α1

∂θ

α2

∂μ

∂θ
+ f(θ)μ = g(θ)

(4.19)

where the functions f(θ), g(θ) are introduced to clearly illustrate the compo-
sition of the differential equation. Straightforward computations using the

integrating factor e

(∫ θ
θ0
f(τ)dτ

)
yields

μ(θ) = Ψ(θ, θ0)μ(θ0) + Ψ(θ, θ0)

∫ θ

θ0

Ψ(θ0, τ)
2β1 − ∂α1

∂τ

α2

dτ (4.20)
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where

Ψ(θ, θ0) = exp

(
−

∫ θ

θ0

∂α2

∂τ
− 2β2

α2

dτ

)
(4.21)

Unfortunately, (4.20) is difficult to solve analytically since the last term once
again contains nested integrals of highly nonlinear functions. On the other
hand, this last term does not contain any expressions for μ. This means that
if it is possible to find a weight that restores the Euler-Lagrange energy of
the original system without solving the integrals, this solution can be used in
linear combination with (4.20) to obtain a simpler expressions for the weight
μ(θ).

Deriving weight by inspection

The fact that the compass-gait biped is a mechanical system means that the
kinetic energy of the robot is readily available, and in fact already calculated
when the Euler-Lagrange equations of motion for the system was derived. In-
serting the virtual holonomic constraints (4.2) into the expression for kinetic
energy (3.5) gives the expression

K =
(p1
2

− p2 cos(θ − φ(θ))φ′(θ) +
p3
2
(φ′(θ))2

)
θ̇2

K =
1

2
Mθ(θ, θ̇)θ̇

2
(4.22)

Utilizing the equation for Mθ and μ in terms of α1, α2 from (4.16), μ can
easily be solved for by exploiting the knowledge of the kinetic energy

μ(θ) =
2K
θ̇2

− α1

α2

(4.23)

which after substitution of the appropriate expressions and simplifying re-
duces to

μ(θ) = φ′(θ) (4.24)

Finding family of weights

Substituting the equality μ(θ) = φ′(θ) into the integral formula (4.20) gives
a new relation for φ′(θ)

φ′(θ) = Ψ(θ, θ0)φ
′(θ0) + Ψ(θ, θ0)

∫ θ

θ0

Ψ(θ0, τ)
2β1 − ∂α1

∂τ

α2

dτ (4.25)

where φ′(θ0) is a constant that satisfies the equality, and the second term
of the equation is identical to the expression in (4.20). Creating a linear
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combination of (4.20) and (4.25) allows for a simplification of the generic
weight μ(θ) as

μ(θ)− φ′(θ) = Ψ(θ, θ0)(μ(θ0)− φ′(θ0))

μ(θ)− φ′(θ) = exp

(
−

∫ θ

θ0

∂α2

∂τ
− 2β2

α2

dτ

)
(μ(θ0)− φ′(θ0))

(4.26)

where the integral can be further simplified by the relation

exp

(
−

∫ θ

θ0

∂α2

∂τ
− 2β2

α2

dτ

)
=
α2(θ0)

α2(θ)
exp

(
2

∫ θ

θ0

β2
α2

dτ

)
(4.27)

The weights μ(θ) that restore the Euler-Lagrange energy conserved quantity
for the reduced dynamics (4.9) of the compass-gait biped are solutions of the
equation

μ(θ) =
α2(θ0)

α2

exp

(
2

∫ θ

θ0

β2
α2

dτ

)
(μ(θ0)− φ′(θ0)) + φ′(θ) (4.28)

where θ0 is an arbitrarily chosen initial condition that describes the zero point
of motion along the desired periodic trajectory. This expression shows that it
is possible to find weights such that second-order differential equation (4.9)
conserves an important property of the full dynamics of the biped (3.7),
namely the total energy of the system. The conserved quantity (4.8) will
prove to be an important tool when searching for a differential equation for
the unknown function q2 = φ(θ).
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5 Searching for Periodic Gaits

In this chapter a general procedure for finding periodic gaits of the compass-
gait biped will be presented.

5.1 Parameters of the Periodic Gait

The nontrivial symmetric gaits of the compass-gait biped can be uniquely
defined by the parameter vector

p� = [a, b, c, d, e, f, g, h, T ]T ∈ R
9 (5.1)

where T is the time between consecutive impacts of the swing foot and the
other parameters5 are defined by

q�(0+) = [q1�(0+), q2�)0+)]T = [a, e]T

q̇�(0+) = [q̇1�(0+), q̇2�(0+)]T = [b, f ]T

q�(T−) = [q1�(T−), q2�(T−)]T = [c, g]T

q̇�(T−) = [q̇1�(T−), q̇2�(T−)]T = [d, h]T

(5.2)

The eight parameters listed in (5.2) are not independent quantities due to
the fact that they are connected by the switching law (3.32) and (3.33). This
mapping between the parameters is valid at the switching surface defined
by (3.31), and will be exploited to reduce the number of parameters in the
search procure.

Relations among position parameters

The switching surface is hit whenever the equality

cos(c+ ψ)− cos(g + ψ) = 0 (5.3)

is satisfied, where c, g are given by (5.2) and ψ is the angle of the shallow
slope the biped is traveling along. The trivial solution to this equation is
c = g which corresponds to a configuration of the robot where the legs are
in the exact same position. This is a static configuration meaning that the
biped is about to fall if switching occurs at this point and is therefore not of
interest.

The impact of interest should occur when c and g have opposite signs,
indicating a compass-like configuration of the biped as shown in Figure 3.3.

5The parameters a, b, g are not related to the physical parameters defining the leg
length of the biped or the gravitational constant presented in Chapter 3, but are simply a
convenient notation for use in the rest of the text.
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Exploiting the fact that cos(x) = cos(−x) means that a nontrivial solution
of (5.3) can be stated as

c = −g − 2ψ + 2kπ, k ∈ Z (5.4)

where k = 0 since a feasible configuration of the biped must have c ∈ (−π, 0)
for the range of slopes ψ ∈ (0, π

2
). The relation between the angles at impact

can therefore be simply stated as

c = −g − 2ψ (5.5)

There also exists an explicit relation between the position variables just be-
fore and just after impact, which is given by the mapping (3.32) as[

a
e

]
︸ ︷︷ ︸ =

[
0 1
1 0

] [
c
g

]
︸ ︷︷ ︸ =

[
g
c

]
q�(0+) q�(T−)

(5.6)

Using the relations (5.5) and (5.6) reduces the number of independent param-
eters of the periodic gait to six, and further reduction is possible by defining
relations between the generalized velocities.

Relations among velocity parameters

The impact map (3.33) derived using conservation of energy maps the gen-
eralized velocities just before impact to the generalized velocities just after
impact on the form

[
b

f

]
︸ ︷︷ ︸ = P

⎛
⎜⎝
[
c

g

]
︸ ︷︷ ︸

⎞
⎟⎠

[
d

h

]
︸ ︷︷ ︸

q̇�(0+) q�(T−) q̇�(T−)

(5.7)

Making the substitutions g = a and c = −a − 2ψ from (5.5) - (5.6) and
writing out the expressions yields

b =
[(p8p10 − p7p9) cos(2a+ 2ψ)] d− p8p11 h

p6p8 − p27 cos
2(2a+ 2ψ)

f =
[p7p10 cos

2(2a+ 2ψ)− p6p9] d− [p7p11 cos(2a+ 2ψ)]h

p6p8 − p27 cos
2(2a+ 2ψ)

(5.8)

which are functions of the parameters a, d, h.
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The virtual holonomic constraints (4.2) express q2 = φ(θ) in terms of
q1 = θ. It is therefore convenient to express the gait parameters e, f, g, h as
functions of a, b, c, d, which is already the case for the position parameters.
By solving the first equation of (5.8) for h and substituting into the second
equation gives two new relations for f, h as

f =
p7 cos(2a+ 2ψ) b− p9 d

p8

h =
[p27 cos

2(2a+ 2ψ)− p6p8] b+ [(p8p10 − p7p9) cos(2a+ 2ψ)] d

p8p11

(5.9)

which are functions of a, b, d and the physical parameters p7, p8, p9, p10, p11
are given by (3.17).

Describing all relations in terms of a, b

The linear combination of (4.4) and (4.5) with the weights μ1(θ) = 1 and
μ2(θ) = φ′(θ) possesses the conserved quantity

E(θ, θ̇) = E0 =
(p1
2

− p2 cos(θ − φ(θ))φ′(θ) +
p3
2
(φ′(θ))2

)
θ̇2

+ p4 [cos(θ)− 1] + p5 [1− cos(φ(θ))]
(5.10)

where E0 = E(θ(0+), θ̇(0+)) due to the fact that E is a conserved quantity
along the periodic trajectory defined by (4.4) and (4.5).

Assuming that the velocities of q1 before and after impact is nonzero,
meaning b = 0 and d = 0, the parameters of the gait can be rewritten in the
terms of the virtual holonomic constraints as

θ�(0) = a, θ̇�(0) = b, θ�(T ) = c, θ̇�(T ) = d
φ(a) = e, φ′(a) = f/b, φ(c) = g, φ′(c) = h/d

(5.11)

Substituting these expressions into the function (5.10) yields two equivalent
representations of the conserved energy

E(a, b) =
p1b

2

2
− p2 cos(a− e)fb+

p3f
2

2
+ p4 [cos(a)− 1] + p5 [1− cos(e)]

E(c, d) =
p1d

2

2
− p2 cos(c− g)hd+

p3h
2

2
+ p4 [cos(c)− 1] + p5 [1− cos(g)]

(5.12)
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where both functions equal E0 on the periodic orbit. Equating the two
functions and substituting the parameters c, e, f, g, h for the expressions (5.5),
(5.6) and (5.9), and collecting terms involving d yields

A(a, b)d2 +B(a, b)d+ C(a, b) = 0 (5.13)

where

A(a, b) =− (p8 p10 − p7 p9) (cos (2 a+ 2ψ))2 p2
p8 p11

+
1

2

(p8 p10 − p7 p9)
2 (cos (2 a+ 2ψ))2 p3
p82p112

+
1

2
p1 − 1

2

p9
2p3
p82

B(a, b) =−
(
−p7 cos (2 a+ 2ψ) p9 p3

bp82
+
p9 cos (2 a+ 2ψ) p2

p8 b

)
b2

−
(
(cos (2 a+ 2ψ))2 p7

2

p8 p11
− p6
p11

)
b cos (2 a+ 2ψ) p2

+
1

p8p11

(
(cos (2 a+ 2ψ))2 p7

2

p8 p11
− p6
p11

)
b (p8 p10 − p7 p9) cos (2 a+ 2ψ) p3

C(a, b) =
1

2

(
(cos (2 a+ 2ψ))2 p7

2

p8 p11
− p6
p11

)2

b2p3

−
(
−p7 (cos (2 a+ 2ψ))2 p2

p8
+

1

2
p1 +

1

2

p7
2 (cos (2 a+ 2ψ))2 p3

p82

)
b2

+ cos (a+ 2ψ) p4 − cos (a) p5 + cos (a+ 2ψ) p5 − cos (a) p4
(5.14)

This is a quadratic equation with respect to d, and at best it has two real
solutions for a given values of a and b.

Examining the relations (5.5), (5.6), (5.9) and (5.13) it can easily be
seen that the original nine parameters given by (5.2) only contain three
independent quantities, namely a, b and T . The period of the gait is not
relevant since the reparameterization of the gait in terms of virtual holonomic
constraints have removed the explicit dependence of time. This means that
the only parameters which must be determined through a numerical search
is the initial conditions for the stance leg q1�(0+) = θ1�(0+) and q̇1�(0+) =
θ̇1�(0+).
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5.2 Deriving a Differential Equation for φ(θ)

The reduced dynamics (4.4) and (4.5) can be considered as linear algebraic
equations in the variables θ̈� and θ̇2�. Restating these equations on matrix
form yields the system[

α1(θ�) β1(θ�)
α2(θ�) β2(θ�)

] [
θ̈�

θ̇2�

]
=

[ −γ1(θ�)
−γ2(θ�)

]
(5.15)

which is solvable assuming that the determinant α1(θ�)β2(θ�)− α2(θ�)β1(θ�)
is separated from zero on a sub-arc of the periodic cycle6. This assumption
guarantees that the matrix is invertible and the system can be solved with
respect to θ̈� and θ̇

2
� as follows

θ̈� =
β1(θ�)γ2(θ�)− β2(θ�)γ1(θ�)

α1(θ�)β2(θ�)− α2(θ�)β1(θ�)
(5.16)

θ̇2� =
α2(θ�)γ1(θ�)− α1(θ�)γ2(θ�)

α1(θ�)β2(θ�)− α2(θ�)β1(θ�)
(5.17)

Another equation for the unknown θ̇2� can be found by rewriting the relation
on energy (5.10) as

θ̇2 =
E0 − p4 [cos(θ)− 1]− p5 [1− cos(φ(θ))]
p1
2
− p2 cos(θ − φ(θ))φ′(θ) + p3

2
(φ′(θ))2

(5.18)

where E0 is the initial total energy of the system which is kept constant along
the target trajectory. Using this relation in conjunction with (5.17) and then
collecting terms involving φ′′(θ�) results in a second order differential equation
for the unknown function φ(·) given by

φ′′(θ�) = f0(a, b, θ�, φ(θ�), φ
′(θ�)) (5.19)

where

f0(a, b, θ, φ(θ), φ
′(θ)) = [ − 2(− sin(θ − φ(θ))p2(− cos(θ − φ(θ))p2φ

′(θ)− p2 cos(θ − φ(θ))φ′(θ)2+

p3φ
′(θ)3 + p1))(E0 − p4 cos(θ)− p5 + p5 cos(φ(θ)) + p4)− (− sin(θ)p4p3φ

′(θ)+

sin(θ)p4p2 cos(θ − φ(θ)) + sin(φ(θ))p5 cos(θ − φ(θ))p2φ
′(θ)− sin(φ(θ))p5p1)(p1 + p3φ

′(θ)2−
2 cos(θ − φ(θ))p2φ

′(θ)) ] /
[
2 (−p1p3 + p2

2 cos2(θ − φ(θ)))(E0 − p4 cos(θ)− p5 + p5 cos(φ(θ)) + p4)
]

with E0 = E(a, b) from (5.12).

6An argument proving α1(θ�)β2(θ�) − α2(θ�)β1(θ�) is always separated from zero on
the periodic orbit of the compass-gait biped is presented in [5], and will not be discussed
here.
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Examining (5.19) it is clear that φ(·) is uniquely defined by a nonau-
tonomous differential equation with explicit dependence on the independent
variable θ. Finding an analytic expression for φ(θ) using (5.19) is a difficult
task, but the possibility of solving for the unknown synchronization function
numerically is an important tool when searching for periodic gaits of the
biped.

5.3 Description of Search Procedure

Having defined the explicit relations among the parameters of the periodic
gait and formulated a differential equation describing the evolution of the
virtual holonomic constraints along the target trajectory, the problem of
finding a periodic cycle for the compass-gait biped can be stated.

Problem 1. Find a, b such that φ̄(c) = g and φ̄′(c) = h/d with the algebraic
relations (5.5), (5.6), (5.9) and (5.13) satisfied and φ̄(θ) being the solution
to the differential equation (5.19) initiated at φ̄(a) = e and φ̄′(a) = f/b.

Finding a solution to the above problem requires searching for only two
independent parameters a, b and solving a single second-order differential
equation with the proposed initial conditions. This reduction in problem
scope is one of the advantages of utilizing virtual holonomic constraints when
formulating a search procedure.

The first step in deriving a structured procedure for solving Problem 1 is
to redefine it as an optimization criteria. A reasonable choice is to minimize
the value of the objective function

F =
(
φ̄(c)− g

)2
+

(
φ̄′(c)− h

d

)2

+
(
θ̄(T )− c

)2
(5.20)

where φ̄(c), φ̄′(c) are the solutions of (5.19) at impact, θ̄(T ) is the value of
the explicit time-like variable θ used in (5.19) at time t = T , and c, d, g, h
are defined by the algebraic relations (5.5), (5.6), (5.9) and (5.13). It is
straightforward to verify that (5.20) achieves it’s minimum value F = 0 when
Problem 1 is solved. Applying a nonlinear optimization algorithm, such as
fminsearch in matlab, to the objective function (5.20) with optimization
variables a, b results in the following procedure for finding periodic gaits of
the compass-gait biped.

Step 1 Specify an initial guess for the optimization variables a, b, such that
the dynamics of the biped is in vicinity of a periodic gait.
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Step 2 Compute the parameter d by solving the quadratic equation (5.13)
and choosing either of the real solutions. If no real solutions exist, set
F = C where C is an arbitrarily large number and go to Step 7.

Step 3 Solve for the remaining parameters c, e, f, g, h using the algebraic
relations (5.5), (5.6), (5.9) and (5.13).

Step 4 Compute the initial energy of the biped E0 using either of the ex-
pressions from (5.12).

Step 5 Solve the differential equation (5.19) numerically over the interval
θ ∈ [a, c] yielding the boundary values φ̄(c), φ̄′(c) and θ̄(T ).

Step 6 Calculate the value of the objective function (5.20).

Step 7 If the value of O is greater than some specified tolerance, generate
a new set of initial parameters a, b with the nonlinear optimization
algorithm and return to Step 2. Otherwise, the search procedure is
finished and the parameters a, b, c, d, e, f, g, h describes a periodic gait
for the compass-gait biped.

The procedure above outlines a systematic approach to searching for pe-
riodic gaits of the biped and can be easily implemented in e.g. matlab.

5.4 MATLAB Implementation of Search Procedure

The following matlab function shows a possible implementation of the
search procedure defined by Problem 1 by calculating the value of (5.20)
based on a, b.

1 function value = objective function(x, quad solution selector)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 a = x(1);
5 b = x(2);
6

7 %% Solving for d, return large number if solution is imaginary
8 [d, error flag] = solving E0 for d(a,b,quad solution selector);
9 if error flag == 1

10 value = Inf;
11 return;
12 end
13

14 %% Solving for remaining parameters and assigning new names
15 c = −a − 2 * psi;
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16 e = c;
17 f = (b * p7 * cos((2 * a + 2 * psi)) − d * p9) / p8;
18 g = a;
19 h = (p7 ˆ 2 / p8 / p11 * cos((2 * a + 2 * psi)) ˆ 2 ...
20 − p6 / p11) * b + (p8 * p10 − p9 * p7)...
21 / p8 / p11 * cos((2 * a + 2 * psi)) * d;
22

23 theta0 = a;
24 thetaT = c;
25 Dtheta0 = b;
26 DthetaT = d;
27

28 phi0 = e;
29 phiT = g;
30 Dphi0 = f/b;
31 DphiT = h/d;
32

33 %% Solving phi'' = f0 for inital conditions
34 E0 = −f * cos(a − e) * p2 * b + f ˆ 2 * p3 / 0.2e1 + ...
35 p1 * b ˆ 2 / 0.2e1 + cos(a) * p4 + p5 − cos(e) * p5 − p4;
36

37 options = odeset('reltol',1e−9,'abstol',1e−6);
38 [thetaout, yout] = ode45(@(theta,y) f0(theta,y,E0), ...
39 [theta0; thetaT], ...
40 [phi0; Dphi0], options);
41

42 %% Returning objective function value
43 value = (thetaout(end) − thetaT)ˆ2 ...
44 + (yout(end,1) − phiT)ˆ2 + (yout(end,2) − DphiT)ˆ2;
45 end

Implementation

The function objective_function(x,quad_solution_selector) calculates
the value of the objective function F defined by (5.20), using x = [a, b]T as
an input. The additional parameter quad_solution_selector ∈ {1, 2} de-
termines which real solution of the quadratic equation (5.13) is utilized in
the search. This calculation is performed by the following function call

[d, error_flag] = solving_E0_for_d(a,b,quad_solution_selector);

where error_flag = 1 if the solution to
√
B2 − 4AC is imaginary. If that

is the case, F = value is assigned an arbitrarily large number and further
computations are aborted. This ensures that values of a, b that are not
feasible for the motion is quickly discarded, and the optimization algorithm
continues the search in another direction. Having solved for d, all other
parameters can be found using the previously defined algebraic relations.
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The numerical integration of (5.19) is performed using ode45 (see Chapter
3.6) by utilizing θ as the time parameter in the function call. This integration
yields the vector thetaout and yout which respectively contain the values
of θ and the corresponding φ(θ), φ′(θ) for each iteration of the solver. The
objective function value can then easily be calculated and returned to the
optimization algorithm for evaluation.

A reasonable choice of optimization algorithm is the predefined matlab
function fminsearch which has the following argument list:

xout = fminsearch(@(x) objective_function(x, quad_...),x0)

The optimization algorithm attempts to find the local minimizer xout of
objective_function with the specified quad_solution_selector, starting
the search at x0. An implementation of the complete search procedure is
listed below for reference. The parameters c, d, e, f, g, h and E0 are recalcu-
lated for convenience.

1 function [a,b,c,d,e,f,g,h,E0] = run gait search(...
2 a0,b0,quad solution selector)
3

4 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
5

6 run physical parameters;
7 fprintf('*********************************************\n');
8 fprintf('SEARCHING FOR PERIODIC GAIT OF PASSIVE WALKER\n');
9 fprintf('*********************************************\n');

10 fprintf('Starting search with initial guess:\n');
11 fprintf('q10 = %f\nDq10 = %f\n', a0,b0);
12 fprintf('***********************************\n');
13

14 x0 = [a0; b0];
15

16 % Searching for intitial values q10 = a, Dq10 = b
17 xout = fminsearch(@(x) objective function(x, ...
18 quad solution selector),...
19 x0, optimset('Display','iter','TolFun',1e−10));
20

21 a = xout(1);
22 b = xout(2);
23

24 % Finding corresponding values dq20 = e, Dq20 = f
25 c = −a − 2 * psi;
26 e = c;
27

28 d = solving E0 for d(a,b,quad solution selector);
29 f = (b * p7 * cos((2 * a + 2 * psi)) − d * p9) / p8;
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30

31 g = a;
32 h = (p7 ˆ 2 / p8 / p11 * cos((2 * a + 2 * psi)) ˆ 2 − p6 / p11)...
33 * b + (p8 * p10 − p9 * p7) / p8 / p11...
34 * cos((2 * a + 2 * psi)) * d;
35

36 E0 = −f * cos(a − e) * p2 * b + f ˆ 2 * p3 / 0.2e1 + p1 *...
37 b ˆ 2 / 0.2e1 + cos(a) * p4 + p5 − cos(e) * p5 − p4;
38

39 % Complete initial conditions for gait
40 fprintf('*********************\n');
41 fprintf('Optimization results:\n');
42 fprintf('*********************\n');
43 fprintf('a = %f\nb = %f\nc = %f\nd = %f\ne = %f\n',a, b, c, d, e);
44 fprintf('f = %f\ng = %f\nh = %f\nE0 = %f\n', f, g, h, E0);
45 fprintf('******************\n');
46 fprintf('q10 = %f\nq20 = %f\nDq10 = %f\nDq20 = %f\n', a,e,b,f);
47 fprintf('******************\n\n');
48

49 end
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6 Stability of Periodic Gaits

This chapter will introduce a method for deriving an analytic expression for
the Poincaré first return map for the hybrid dynamic system (3.35). Central
to this formulation is the notion of transverse linearization of the dynamics
of the system along its periodic orbit. A comprehensive treatment of this
subject is given in [4, 6, 13, 17, 18, 19], and presented in this thesis by
applying the theory to the specific case of the compass-gait biped.

6.1 Transverse Linearization

Transverse linearization is short-hand for the linearization of the transverse
dynamics of a system. The essence of the method is to substitute the state
vector x(t) = [q, q̇]T ∈ R

2n with a new set of coordinates [ϕ(t), x⊥(t)]T where
x⊥(t) ∈ R

2n−1 are coordinates transverse to the periodic trajectory, and ϕ(t)
is a scalar variable that travels along the orbit.

The transverse coordinates are defined such that x⊥(t) = 0 corresponds
to the periodic orbit x�(t), meaning that x⊥(t) can be regarded as a measure
of the deviation of x(t) from the target orbit x�(t). This can be exploited to
define a family of Poincaré sections {S(t)}t∈[0,T ] that move along the target
orbit, such that for every point ϕ(t) there is an associated member of the
family present. A visualization of the family of hypersurfaces S(t) is shown in
Figure 6.1. Each Poincaré section S(t) is a (2n−1)-dimensional hypersurface
transversal to the orbit x�(t) at each point, and the transverse coordinates
x⊥(t) are coordinates defined on the section with origin in x�(t). Due to the
periodic nature of the target orbit, S(0) = S(T ) and the union of all the
surfaces S(t) cover a neighborhood in the vicinity of the orbit. This means
that the transverse coordinates x⊥(t) are defined along the entire periodic
orbit x�(t), and the dynamics of x⊥(t) in a vicinity of the desired trajectory
give rise to an auxiliary linear system on the form

ż(t) = A(t)z(t), A(t+ T ) = A(t) (6.1)

where z(t) ∈ R
2n−1 is the vector from the tangent space TS(t). The diffi-

cult problem of determining orbital stability of the periodic motion is thus
reduced to the much simpler problem of determining asymptotic stability of
the auxiliary linear system since z(t) → 0 ⇒ x⊥(t) → 0 which is equivalent
to x(t) = x�(t).

The problem of computing such an auxiliary linear system for the compass-
gait biped will be treated in detail in this chapter, starting with the transverse
linearization of the continuous-time dynamics.
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Figure 6.1: Visualization of moving Poincaré surfaces S(·) and transverse lin-
earization TS(·) of periodic orbit (grey) and another solution converging to the
orbit (black). Illustration � 2008 Elsevier. Reproduced, with permission, from
Annual Reviews in Control, vol. 32, no. 2, A. Shiriaev, L. Freidovich, and I.
Manchester, “Can we make a robot ballerina perform a pirouette? Orbital stabi-
lization of periodic motions of underactuated mechanical systems,” pp. 200 211,
2008.

6.2 Computing Linearization of Continuous Dynamics

Periodic gaits of the compass-gait biped are defined by the relation between
the generalized coordinates q1, q2 imposed by the virtual holonomic constraint
φ(θ). Deviations from the periodic orbit

x�(t) =

⎡
⎢⎢⎣
q1�
q2�
q̇1�
q̇2�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

θ�
φ(θ�)

θ̇�
φ′(θ�)θ̇�

⎤
⎥⎥⎦ (6.2)

can therefore be described by the error y between q2 and φ(θ) as

y = q2 − φ(θ), θ = q1 (6.3)

with time derivatives

ẏ = q̇2 − φ′(θ)θ̇, θ̇ = q̇1
ÿ = q̈2 − φ′′(θ)θ̇2 − φ′(θ)θ̈, θ̈ = q̈1

(6.4)

Expressing θ̈, ÿ on matrix form gives the following relation[
θ̈
ÿ

]
=

[
1 0

−φ′(θ) 1

] [
q̈1
q̈2

]
−

[
0

φ′′(θ)θ̇2

]
(6.5)
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where q̈1, q̈2 are defined by (3.7). Substituting for the equations of motion
yields two new differential equations for θ and y on the form[
θ̈
ÿ

]
=

[
1 0

−φ′(θ) 1

] (−M−1 (C(q, q̇)q̇ +G(q))
)∣∣
q1=θ, q2=y+φ(θ)

q̇1=θ̇, q̇2=ẏ+φ′(θ)θ̇
−

[
0

φ′′(θ)θ̇2

]
(6.6)

which can be restated as

θ̈ = ĝ(θ, θ̇, y, ẏ) (6.7)

ÿ = h(θ, θ̇, y, ẏ) (6.8)

The differential equation (6.7) describes the time evolution of θ as a function
of the error coordinate y, but does not take into account the already defined
dynamics of the θ variable from (4.4) and (4.5). One way of incorporat-
ing these dynamics are by first forming an arbitrary linear combination of
equations (4.4) and (4.5) with the weights

μ1(θ) = p3

μ2(θ) = p2 cos(θ − φ(θ))
(6.9)

resulting in the new reduced dynamics of (3.7) on the form

α0(θ)θ̈ + β0(θ)θ̇
2 + γ0(θ) = 0 (6.10)

where

α0(θ) = p1p3 − p2 cos
2(θ − φ(θ))

β0(θ) = p2 sin(θ − φ(θ))
(
p2 cos(θ − φ(θ))− p3(φ

′(θ))2
)

γ0(θ) = p2p5 cos(θ − φ(θ)) sin(φ(θ))− p3p4 sin(θ)

(6.11)

The choice of weights μ1(θ), μ2(θ) made in (6.9) has the benefit of removing
the implicit dependence on φ′′(θ) from the parameters α0(θ), β0(θ), γ0(θ) and
at the same time obtaining the shortest expressions. The dynamics (6.7) and
(6.10) can be easily combined using simple multiplication and addition of the
parameters (6.11), resulting in the system

α0(θ)θ̈ + β0(θ)θ̇
2 + γ0(θ) = g(θ, θ̇, y, ẏ)

ÿ = h(θ, θ̇, y, ẏ)
(6.12)

where

g(θ, θ̇, y, ẏ) = α0(θ)ĝ(θ, θ̇, y, ẏ) + β0(θ)θ̇
2 + γ0(θ) (6.13)
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The right-hand sides of (6.12) have the important property that they simul-
taneously vanish on the periodic orbit θ(t) = θ�(t) ⇒ y = 0 meaning

g(θ, θ̇, 0, 0) = h(θ, θ̇, 0, 0) = 0 (6.14)

The mechanical system (3.7) can therefore be rewritten as (6.12) in a vicinity
of the periodic orbit. The transverse coordinates of the system is then natural
chosen as

x⊥ =

⎡
⎣ I(θ, θ̇, θ0, θ̇0)

y
ẏ

⎤
⎦ (6.15)

where I(θ, θ̇, θ0, θ̇0) is defined by (2.52). I(·) is added to the vector of trans-
verse coordinates to ensure that x⊥ ∈ R

3 span the Poincaré sections that are
transversal to the periodic orbit x�(t) ∈ R

4. The integral function qualifies
as a transverse coordinate since, first, it preserves its zero value along the
period orbit and, second, quantifies the distance orthogonal to the vector
field along the orbit from any point in its vicinity (see [19, Property 2 p.
206]).

Computing the transverse linearization of the dynamics of (6.15) requires
linearization of (6.12) in terms of the transverse coordinates. Using the fact
that g(·), h(·) are zero on the periodic orbit, as shown in (6.14), the first-
order Taylor approximation in the transverse coordinates of the expressions
around x�(t) can be calculated as

g(θ, θ̇, y, ẏ) = gI(θ�, θ̇�)ΔI + gy(θ�, θ̇�)Δy + gẏ(θ�, θ̇�)Δẏ (6.16)

where

gy(θ�, θ̇�) =
∂g(θ, θ̇, y, ẏ)

∂y

∣∣∣∣∣
θ=θ�, θ̇=θ̇�
y=0, ẏ=0

gẏ(θ�, θ̇�) =
∂g(θ, θ̇, y, ẏ)

∂ẏ

∣∣∣∣∣
θ=θ�, θ̇=θ̇�
y=0, ẏ=0

(6.17)

and gI(θ�, θ̇�) is the directional derivative of g with respect to I taken in a di-
rection n that is orthogonal to the trajectory given by (6.10). The directional
derivative can be calculated as

gI(θ, θ̇) =
∂g(θ, θ̇, 0, 0)/∂n

∂I(θ, θ̇, θ0, θ̇0)/∂n
=

∇g(θ, θ̇, 0, 0) · n
∇I(θ, θ̇, θ0, θ̇0) · n

gI(θ�, θ̇�) =

(
−∂g(θ,θ̇,0,0)

∂θ
θ̈� +

∂g(θ,θ̇,0,0)

∂θ̇
θ̇�

)∣∣∣
θ=θ�, θ̇=θ̇�

2
(
θ̇2� + θ̈2�

) (6.18)
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where the last equality is due to the fact that n = [−θ̈�, θ̇�]T is orthogonal
to the flow ϕ(θ0, θ̇0, t0, T ) = [θ̇�, θ̈�]

T of (6.10) at each point, and the partial
derivatives of I(θ, θ̇, θ0, θ̇0) (see (2.59)) evaluated on the orbit are given by

∂I(θ, θ̇, θ0, θ̇0)

∂θ

∣∣∣∣∣θ=θ�
θ̇=θ̇�

= −2θ̈�

∂I(θ, θ̇, θ0, θ̇0)

∂θ̇

∣∣∣∣∣θ=θ�
θ̇=θ̇�

= 2θ̇�

(6.19)

Analogous expressions are easily obtained for h(θ, θ̇, y, ẏ) giving the lineariza-
tion of ÿ transverse to the periodic orbit as

h(θ, θ̇, y, ẏ) = hI(θ�, θ̇�)ΔI + hy(θ�, θ̇�)Δy + hẏ(θ�, θ̇�)Δẏ (6.20)

The validity of rewriting (6.12) as (6.16) and (6.20) follows from Hadamard’s
Lemma as discussed in [18, Appendix I-C].

The time derivative of the conserved quantity I(θ, θ̇, θ0, θ̇0) away from
the periodic trajectory is stated in (2.55) where W = g(θ, θ̇, y, ẏ) follows
from (6.12). Since expressions for the time deriviatives of all the transverse
coordinates in terms of perturbations transverse to the orbit are found, the
transverse linearized dynamics can be stated as

ζ̇ = A(t)ζ, A(t) =

⎡
⎢⎣

2θ̇�(gI(θ�,θ̇�)−β0(θ�))
α0(θ�)

2θ̇�gy(θ�,θ̇�))

α0(θ�)

2θ̇�gẏ(θ�,θ̇�))

α0(θ�)

0 0 1

hI(θ�, θ̇�)) hy(θ�, θ̇�)) hẏ(θ�, θ̇�))

⎤
⎥⎦ (6.21)

where α0(θ�), β0(θ�), γ0(θ�) are given by (6.10), and ζ = [ΔI(·),Δy,Δẏ]T
gives the linear parts of the deviations from zero for the components of
x⊥ = [I(·), y, ẏ]T . All the elements of A(t) from (6.21) can be computed
analytically in a straightforward way, yielding an accurate description of the
transverse dynamics without using numerical approximations. The rather
long expressions are not presented explicit in this text in order to not waste
space, but a Maple worksheet showing all the calculations can be found in
Appendix B.5.

6.3 Computing Linearization of Discrete Dynamics

The discrete dynamics of the compass-gait biped consists of the update laws
(3.32) and (3.33), which can be restated as a nonlinear update map[

q+

q̇+

]
= F (q−, q̇−) =

[
Pq−

Pq(q
−)q̇−

]
(6.22)
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where F (q−, q̇−) ∈ R
4, and the −,+ superscripts indicate the time just before

and just after impact, respectively. The first step in finding a transverse
linearization of the discrete dynamics is computing the Jacobian dF of this
mapping for the periodic orbit x�(t) under study.

dF(x�(t=T )) =
∂F (q−, q̇−)
∂ [q−, q̇−]

=

[
P 02×2

∂Pq(q−)

∂q− q̇− Pq(q
−)

]∣∣∣∣∣q−=q−�
q̇−=q̇−�

δx+ = dF(x�(t=T )) δx
−

(6.23)

The subscript (x�(t = T )) indicates that the Jacobian is computed using the
states x� at time of impact t = T . The transformation (6.23) acts on the
vectors from the plane tangent to Γ− ⊂ R

4, the embedding of the impact
surface S ⊂ R

2, defined by (3.31), into R
4. This tangential plane is given by

TΓ− = {δx− ∈ R
4 : (n−)T δx− = 0} (6.24)

where n− is the gradient of the switching surface S just before impact

n− =

⎡
⎢⎢⎣
− sin

(
q−1 + ψ

)
sin

(
q−2 + ψ

)
0
0

⎤
⎥⎥⎦ (6.25)

The transformation (6.23) maps vectors δx− ∈ TΓ− into the plane

TΓ+ = {δx+ ∈ R
4 : (n+)T δx+ = 0} (6.26)

where n+ is the gradient of the switching surface S just after impact, which
can easily be computed by making the substitution q = q+ = Pq− into
H(q) defined in (3.31) and then calculating the gradient as in the case of n−,
leading to

n+ =

⎡
⎢⎢⎣

sin
(
q−1 + ψ

)
− sin

(
q−2 + ψ

)
0
0

⎤
⎥⎥⎦ (6.27)

The linear operator dF : TΓ− → TΓ+ relates the state of the biped just
before impact δx− to the state right after impact δx+, but the linearized
continuous-time dynamics is described in terms of ζ(t) = [ΔI,Δy,Δẏ].
Hence, a linerization of the relations

y = q2 − φ(q1)
ẏ = q̇2 − φ′(q1)q̇1

(6.28)
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and I = I(q1, q̇1) must be obtained in a vicinity of the desired trajectory.
This linearization can be regarded as a mapping between the linear parts
of increment of the transversed coordinates in R

3 and the linear parts of
generalized coordinates in R

4 on the form

⎡
⎣ΔIΔy
Δẏ

⎤
⎦ = L(t)

[
Δq
Δq̇

]
(6.29)

where L(t) is computed as

L(t) =

⎡
⎢⎣

∂I
∂[q,q̇]
∂y
∂[q,q̇]
∂ẏ
∂[q,q̇]

⎤
⎥⎦
∣∣∣∣∣∣∣q1=θ�(t)
q̇1=θ̇�(t)

=

⎡
⎣ −2θ̈�(t) 0 2θ̇�(t) 0

−φ′(θ�(t)) 1 0 0

−φ′′(θ�(t))θ̇�(t) 0 −φ′(θ�(t)) 1

⎤
⎦ (6.30)

using the result from (6.19) to calculate ∂I
∂[q,q̇]

. In order to derive an inverse

transformation from Δx⊥ to Δx, the matrix L(t) ∈ R
3×4 must be augmented

to make it invertible. An important property of the moving Poincaré sections
S(t) shown in Figure 6.1 is that they are transverse to the periodic orbit x�(t)
at each point, this also applies to the planes TS(t) which are tangent to S(t)
at the intersection with x�(t). Since ζ(t) ∈ TS(t), the transverse coordinates
are always orthogonal to the flow of the periodic solution x�(t) which can be
represented by the vector

m(t) =

⎡
⎢⎢⎣
q̇1�(t)
q̇2�(t)
q̈1�(t)
q̈2�(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

θ̇�(t)

φ′(θ�)θ̇�(t)
θ̈�(t)

φ′′(θ�)θ̇2�(t) + φ′(θ�)θ̈�(t)

⎤
⎥⎥⎦ (6.31)

The orthogonality of m(t) and x⊥ is preserved by the transformation (6.30)
such that the relation

m(t)T ·Δx(t) = 0 (6.32)

always hold along the orbit. The complete transformation between the lin-
earized transverse coordinates ζ(t) and the linearized generalized coordinates
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Δx(t) can then be stated as

R
3 ∼= TS(t) � ζ(t) =

⎡
⎣ΔI(t)Δy(t)
Δẏ(t)

⎤
⎦ = L(t)

⎡
⎢⎢⎣
Δq1(t)
Δq2(t)
Δq̇1(t)
Δq̇2(t)

⎤
⎥⎥⎦

R
4 ⊃ TS(t) � Δx(t) =

⎡
⎢⎢⎣
Δq1(t)
Δq2(t)
Δq̇1(t)
Δq̇2(t)

⎤
⎥⎥⎦ =

[
L(t)
m(t)T

]−1

⎡
⎢⎢⎣
ΔI(t)
Δy(t)
Δẏ(t)
0

⎤
⎥⎥⎦

(6.33)

Unfortunately, the tangent planes TS(t) defined as

TS(t) = {Δx(t) ∈ R
4 : m(t)TΔx(t) = 0} (6.34)

at t = T− and t = T+ are different from the tangent planes TΓ− and TΓ+

defined by (6.24) and (6.26). This means that a nontrivial projection of TS(t)
onto the appropriate surface TΓ is needed in order to compute the updated
coordinates ζ+ using the mapping (6.23), which acts on δx− and not Δx−.
Deriving these projection operators are beyond the scope of this text, and
the expressions will be stated without proof7. The projection operator that
maps the transverse coordinates before impacts ζ− ∈ TS(T−) to the state
vector δx− ∈ TΓ− is given by

δx− = P−
n−ζ

−

P−
n− =

(
I4 − m(T−)(n−)T

(m(T−))Tn−

)[
L(T−)
m(T−)T

]−1 [
I3
01×3

]
(6.35)

where Ii is the identity matrix of dimension (i × i). The corresponding
mapping from the updated state vector δx+ ∈ Γ+ back to the transverse
coordinates after impact ζ+ ∈ TS(T+) is defined by the simpler expression

δx+ = P+
n+ζ

+

P+
n+ = L(T+)

(
I4 − m(T+)(n+)T

(m(T+))Tn+

)
(6.36)

7An approach for deriving expressions for the projection operators for a more complex
hybrid system is outlined in [4, p. 10170]
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In the case of the compass-gait biped the projection operators P−
n− , P

+
n+ are

calculated as

P−
n− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
q̇1�(T−) sin(q2�(T−)+ψ)

q̇1�(T−) sin(q1�(T−)+ψ)−q̇2�(T−) sin(q2�(T−)+ψ)
0

0
q̇1�(T−) sin(q1�(T−)+ψ)

q̇1�(T−) sin(q1�(T−)+ψ)−q̇2�(T−) sin(q2�(T−)+ψ)
0

1
2q̇1�(T−)

q̈1�(T−) sin(q2�(T−)+ψ)
q̇1�(T−) sin(q1�(T−)+ψ)−q̇2�(T−) sin(q2�(T−)+ψ)

0

q̇2�(T−)
2q̇1�(T−)2

q̈2�(T−) sin(q2�(T−)+ψ)
q̇1�(T−) sin(q1�(T−)+ψ)−q̇2�(T−) sin(q2�(T−)+ψ)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P+
n+ =

⎡
⎢⎢⎢⎢⎣

−2q̈1�(T
+) 0 2q̇1�(T

+) 0

− q̇2�(T+)
q̇1�(T+)

1 0 0

q̇2�(T+)q̈1�(T+)−q̇1�(T+)q̈2�(T+)
q̇1�(T+)2

0 − q̇2�(T+)
q̇1�(T+)

1

⎤
⎥⎥⎥⎥⎦

(6.37)

where t = T− and t = T+ refer to the time instances just before and just
after impact, respectively, with the switching surface S.

Defining the projected linearized update law
(
dTSF

)
: TS(T−) → TS(T+)

using (6.23), (6.35) and (6.36) as(
dTSF

)
(x�(t=T ))

= P+
n+ dF(x�(t=T )) P

−
n− (6.38)

allows for stating the transverse linearized discrete dynamics that maps the
linearized transverse coordinates just before and just after impact on the
convenient form

ζ+ =
(
dTSF

)
(x�(t=T ))

ζ− (6.39)

The expressions for dF and
(
dTSF

)
are rather long and are therefore not

presented in this text for convenience, but a Maple worksheet showing all
the calculations involved can be found in Appendix B.6.

6.4 Verifying Stability Using Auxiliary Linear System

The transverse linearization for the system (3.35) is a T -periodic linear aux-
iliary hybrid system defined by the continuous and discrete dynamics given
by (6.21) and (6.39) which can be stated as

ζ̇(t) = A(t mod T )ζ(t) for 0 < t < T
ζ+ =

(
dTSF

)
(x�(t=T ))

ζ− for t = T
(6.40)
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where ζ(0) = ζ+ after each impact at time t = T . The solution of the
auxiliary linear system (6.40) at the end of a cycle t = T , initiated at ζ(0) is
given by the solutions of the discrete-time system

ζ+ = Ξ(x−� , x
+
� )ζ(0) (6.41)

where
Ξ(x−� , x

+
� ) =

(
P+
n+ dF(x�(t=T )) P

−
n−

)
Φ(T )

Φ̇(t) = A(t)Φ(t), Φ(0) = I3
(6.42)

The matrix Φ(t) is called the state transition matrix of (6.21) (see [2, Defi-
nition 4.28]) with the important property

Φ(T )ζ(0) = ζ(T ) (6.43)

where ζ(T ) is the deflection of the linear parts of the transverse coordinates
at impact. Interestingly, the eigenvalues of the transition matrix Ξ(x−� , x

+
� )

are equal to the eigenvalues of the 3-dimensional first return Poincaré map for
the impulsive system (3.35). Determining orbital asymptotically stability for
the periodic orbit x�(t) is therefore reduced to checking if the system (6.40) is
exponentially stable, which is the case when the eigenvalues of Ξ(x−� , x

+
� ) are

strictly inside the unit circle. The procedure for computing the eigenvalues
can be summarized as follows:

Step 1 Determine the parameters [a, b, c, d, e, f, g, h, T ] of the periodic gait
using the approach described in Chapter 5.

Step 2 Find the values for φ(θ�), φ
′(θ�) for θ� ∈ [a, c] by solving (5.19) with

initial conditions e, f/b.

Step 3 Find the values for θ�(t), θ̇�(t) for t ∈ [0, T ] by solving (6.10) with
initial conditions a, b.

Step 4 Solve (6.21) using the three different initial conditions ζ1(0) = [1, 0, 0]T ,
ζ2(0) = [0, 1, 0]T , ζ3(0) = [0, 0, 1]T resulting in the three vectors ζ1(T ),
ζ2(T ) and ζ3(T ).

Step 5 Form the state transition matrix at impact Φ(T ) = [ζ1(T ), ζ2(T ), ζ3(T )]
and then calculate the numerical value of Ξ(x−� , x

+
� ) by substituting in

the appropriate parameters.

Step 6 Determine the eigenvalues of Ξ(x−� , x
+
� ) ∈ R

3 using any method (e.g
eig function in matlab) and check stability.
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A straightforward matlab implementation of this procedure can be found
in Appendix C.4 and will not be discussed in detail here. One important
detail is the use of the numerical solver ode45 to yield numerical values for
Step 2 and Step 3, which are then employed when solving Step 4 and Step
5 by interpolating between the data in the appropriate vectors. The eigen-
values are determined by calling the matlab function eig on the resulting
transition matrix Ξ(x−� , x

+
� ).
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7 Numerical Results of Gait Search

The procedure outlined in Chapter 5 for finding periodic gaits of the compass-
gait biped, can be implemented in matlab to yield numeric values for the
gait parameters a, b, c, d, e, f, g, h given a predefined slope angle ψ. In this
chapter, results from such a search is presented and discussed. In addition,
the stability of the periodic gaits are assessed using the notion of transverse
linearization presented in Chapter 6.

7.1 Physical Parameters of the Compass-gait Biped

The physical parameters of the compass-gait biped can be freely defined,
since the robot under study in this thesis is not based on a physical machine.
However, for comparison purposes, the parameters assigned to the biped
are similar to those found in e.g. [5, 8, 21], and are given in Table 1. All
parameter values are provided in appropriate SI-units. The parameters a, b, g
are not associated with the parameters of the periodic gait that are to be
determined by the search procedure, and will not be used anywhere in the
rest of the chapter.

Mass Leg length Gravity
m1 = 5.0 a = 0.5
m2 = 5.0 b = 0.5 g = 9.81
mH = 10.0 l = a+ b = 1.0

Table 1: Physical parameters of the compass-gait biped used in the search for peri-
odic gaits.

7.2 Stable Periodic Gait for ψ = 3.00 deg

The existence of symmetric gaits of the compass-gait biped for slopes with
angles ψ ∈ [0,≈ 4.4] degrees is demonstrated in [8] using conventional search
techniques. The incline angle ψ = 3.00 degrees was chosen in this thesis to
exploit the knowledge that periodic gaits exist for this slope, allowing for
verification that the search procedure presented in Chapter 5 yields correct
results.

The search procedure requires three additional choices in addition to the
value of ψ; the initial guesses a = q1(0), b = q̇1(0), and the choice of real
solution for the quadratic equation (5.13) yielding the parameter d = q̇1(T

−).
Choosing a reasonable initial guess for the gait parameters a, b is a difficult
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task without prior knowledge of the dynamics of the biped, but the paper [5]
gives the following initial values for a stable periodic gait

q1�(0) = 0.21689, q2�(0) = −0.31708
q̇1�(0) = −1.08428, q̇2�(0) = −0.39728

(7.1)

where the slope angle was set to ψ = 2.87 degrees. The initial guess for the
periodic gait parameters a, b in the search procedure was therefore set at

a0 = 0.20, b0 = −1.0 (7.2)

since it is reasonable to assume that a small variation in ψ results in corre-
sponding small variations in the initial values of the gait. The choice of real
solution of d was made as

d =
−B(a, b)−√

B(a, b)2 − 4A(a, b)C(a, b))

2A(a, b)
(7.3)

where the coefficients A,B,C are given in (5.14), this corresponds to the pa-
rameter value quad_solution_selector=2 in the matlab-script described
in Chapter 5.4.

Initiating the search procedure with these parameters yielded convergence
of the fminsearch algorithm after 48 iterations, resulting in the following gait
parameter values.

a = 0.218669, e = −0.323389
b = −1.092386, f = −0.377377
c = −0.323389, g = 0.218669
d = −1.494206, h = −1.805654

(7.4)

where the initial configuration of the biped is given by

q1�(0) = 0.218669, q2�(0) = −0.323389
q̇1�(0) = −1.092386, q̇2�(0) = −0.377377

(7.5)

The stability of the periodic gait defined by (7.4) can be assessed by calcu-
lating the eigenvalues of the Poincaré first-return map by using transverse
linearization as shown in Chapter 6. The corresponding eigenvalues of the
transition matrix Ξ(x−� , x

+
� ) are computed using the matlab-script in Ap-

pendix C.4, yielding
λ1 = 0.123
λ2 = 0.127− 0.586i
λ3 = 0.127 + 0.586i

(7.6)

where λ2, λ3 are complex conjugates. These eigenvalues are plotted in the
complex plane in Figure 7.1, and can be seen to all lie inside the unit circle
indicating that the periodic gait is asymptotically orbitally stable.



7 NUMERICAL RESULTS OF GAIT SEARCH 75

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues of transition matrix

Re

Im

Eigenvalues
Unit circle

Figure 7.1: Eigenvalues of the transition matrix Ξ(x−� , x+� ) for the stable periodic
gait with ψ = 3.00 degrees.

Simulating stable gait without perturbation

Simulating the compass-gait biped using the matlab-script shown in Chap-
ter 3.6 with initial conditions given by (7.5) results in the time evolution of
q, q̇ shown in Figure 7.2. The generalized coordinates q1, q2 describing the
angles of the stance and swing leg, respectively, are seen to be continuous
during impact with ground. This is in agreement with the assumption that
the impact forces are impulsive, made when modeling the biped in Chap-
ter 3. The velocities q̇1, q̇2 however are discontinuous at impact due to the
non-trivial impact map describing the relationship between q̇− and q̇+. The
discontinuities are a direct consequence of the impact forces the biped expe-
riences during heel-strike with the slope, and without such forces the biped
would simplify fall through the floor during the motion. Another interesting
feature of Figure 7.2 is the switch between stance leg and swing leg during
impact. The switch can easily be seen in the q(t) - plot where the angles
q1, q2 switch value during impact, giving rise to the discontinuous coloring of
the plot.

Figure 7.3 depicts the passive limit cycle that describe the periodic gait in
the phase plane. The actual trajectory evolves in a four-dimensional space,
so the phase portrait shown only depicts one of the legs as it switches from
stance leg (red) to swing leg (green). Note the two points of discontinuity
resulting from the ground impacts, causing a jump in velocities q̇. Another
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Figure 7.2: Time evolution of q, q̇ for unperturbed stable gait at ψ = 3.00.
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Figure 7.3: Phase portrait of the unperturbed stable gait at ψ = 3.00.
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indication of the stability of the gait is shown in Figure 7.4, which depicts the
time between consecutive steps of the gait after each step of the cycle. The
half-step period can be seen to be stable with T ≈ 0.735 seconds between
each impact.
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Figure 7.4: Time between consecutive steps for the unperturbed stable gait at ψ =
3.00.

Simulating stable gait with perturbation

The stable properties of the gait described by (7.4) can be directly observed
by introducing a small perturbation ε to the initial conditions of the gait
(7.5), giving the new initial conditions

q(0) = q�(0) + ε = [0.218669,−0.323389]T + [0.01, 0.01]T

q̇(0) = q̇�(0) + ε = [−1.092386,−0.377377]T + [0.01, 0.01]T

q1(0) = 0.228669, q2(0) = −0.313389
q̇1(0) = −1.082386, q̇2(0) = −0.367377

(7.7)

The phase portrait for the perturbed gait is shown in Figure 7.5, where the
outermost cycle corresponds to the initial conditions q(0), q̇(0). Looking at
the time evolution of q, q̇ in Figure 7.6 it is clear that the swing leg is most
affected by the perturbation to the initial conditions, and the amplitude of
the swing can be seen oscillating around the stable value that is observed in
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Figure 7.5: Phase portrait of the stable gait with perturbation ε = [0.01, 0.01]T in
initial conditions at ψ = 3.00.

Figure 7.2 for the unperturbed gait. After approximately 7 seconds the per-
turbed gait has converged8 to the steady gait described by (5.2). Examining
the time between consecutive steps in Figure 7.7, the convergence to a stable
limit cycle occurs after approximately 10 steps.

7.3 Unstable Periodic Gait for ψ = 3.00 deg

Initiating the search procedure with the initial guess (7.2), but choosing the
other real solution for d given by

d =
−B(a, b) +

√
B(a, b)2 − 4A(a, b)C(a, b))

2A(a, b)
, (7.8)

which corresponds to the parameter quad_solution_selector=1 in the
matlab-script, yields convergence of the fminserach algorithm after 55 it-
erations. The resulting periodic gait is described by the gait parameters

a = 0.204676, e = −0.309396
b = −1.210571, f = −0.712484
c = −0.309396, g = 0.204676
d = −1.395725, h = −0.087282

(7.9)

8Convergence should be understood to mean that the simulated trajectory have become
close to the steady gait with a certain accuracy.
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Figure 7.6: Time evolution of q, q̇ for stable gait with perturbation ε = [0.01, 0.01]T

in initial conditions at ψ = 3.00.
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Figure 7.7: Time between consecutive steps for stable gait with perturbation ε =
[0.01, 0.01]T in initial conditions at ψ = 3.00.
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where the initial conditions are given by

q1�(0) = 0.204676, q2�(0) = −0.309396
q̇1�(0) = −1.210571, q̇2�(0) = −0.712484

(7.10)

The stability of the gait is assessed, as in the previous case, by calculat-
ing the eigenvalues of the new transition matrix Ξ(x−� , x

+
� ) using transverse

linearization, which yields the eigenvalues

λ1 = 0.066
λ2 = 0.408
λ3 = 4.857

(7.11)

By examining the numerical values of λ1, λ2, λ3, as well as checking the com-
plex plot of the eigenvalues in Figure 7.8, it is clear that λ3 lies outside the
unit circle. This means that the periodic gait described by the parameters
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Figure 7.8: Eigenvalues of the transition matrix Ξ(x−� , x+� ) for the unstable periodic
gait with ψ = 3.00 degrees.

(7.9) is an unstable limit cycle, and all trajectories initiated in a neighbor-
hood of the periodic orbit will tend away from it as t→ ∞.

Simulating the gait in matlab with initial conditions (7.10) demonstrates
the unstable nature of the limit cycle. The phase portrait in Figure 7.9
shows divergence from the unstable limit cycle (innermost cycle) and the
convergence to the stable limit cycle described by (7.4). The divergence
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Figure 7.9: Phase portrait of the unstable gait at ψ = 3.00.

from the cycle occurs even without any explicitly defined perturbation of
the initial values (7.10) due to the inaccuracies in the numeric solver ode45.
These small numerical errors are unnoticed in stable periodic gaits due to
the simple fact that the stable nature of the cycle causes all trajectories close
to the orbit to tend to it, this is of course not the case for unstable orbits
which consequently causes the observed divergence.

Examining the time between consecutive steps of the gait shown in Figure
7.10 reveals an exponential divergence from the gait from step 2 to step 7, at
which point the convergence to the stable limit cycle begins. The divergence
of the gait followed by convergence to a stable gait is also clearly visible in
the time evolution of q, q̇ depicted in Figure 7.11, where convergence occurs
after approximately 8 seconds.

7.4 Bifurcation Affecting Periodic Gait for ψ = 5.00 deg

The stable and unstable periodic gaits described by (7.4) and (7.9), respec-
tively, are both examples of symmetric gait cycles. A symmetric gait cycle
has the property that the time intervals between two consecutive impacts are
identical, such that the relation

Tp = Ti + Ti+1, Ti = Ti+1 =
Tp
2

(7.12)
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Figure 7.10: Time between consecutive steps for the unstable gait at ψ = 3.00.
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Figure 7.11: Time evolution of q, q̇ for unstable gait at ψ = 3.00.



7 NUMERICAL RESULTS OF GAIT SEARCH 83

holds at the steady gait, where Tp is the period of the gait, and Ti, Ti+1 are
the time interval between two consecutive impacts. The period of the gait
is defined as the time between two consecutive impacts, since a complete
cycle requires that the configuration of the biped at the end of the cycle is
identical to the initial configuration. The leg designated the stance leg at
the beginning of the cycle must therefore also be the stance leg just after the
end of the cycle, a property that requires two consecutive impacts with the
ground in order to switch legs twice.

The paper [8] demonstrates the existence of symmetric gaits only for the
interval of angles ψ ∈ [0,≈ 4.4], indicating that asymmetric gait cycles should
exist for ψ > 4.4 degrees. Choosing ψ = 5.00 degrees and keeping the initial
guess (7.2) with real solutions of d (7.3), the search procedure returns the
following gait parameters

a = 0.235356, e = −0.409888
b = −1.168938, f = −0.047946
c = −0.409888, g = 0.235356
d = −1.819906, h = −2.328662

(7.13)

where the initial conditions are given by

q1�(0) = 0.235356, q2�(0) = −0.409888
q̇1�(0) = −1.168938, q̇2�(0) = −0.047946

(7.14)

This is a four-period asymmetric steady gait cycle, meaning that the gait is
shaped by 4 consecutive intervals of continuous dynamics and the period of
the gait can be written as

Tp = Ti + Ti+1 + Ti+2 + Ti+3 (7.15)

where i is the step number. To complete a full gait cycle the biped have to
experience four consecutive ground impacts in order to return to its initial
configuration. This special periodicity can easily be observed in Figure 7.12,
where there are four distinct values for the step period at steady gait, which
occurs after approximately 17 steps. Each step period correspond to a dis-
tinct cycle in the phase portrait as shown in Figure 7.13, where the difference
in amplitude is clearly visible in the time evolution of q shown in Figure 7.14.
Examining the time plot, it can be seen that steady gait is achieved after
approximately 10 seconds.

Assessing the stability of the post-bifurcated gait is more difficult than
the case for the symmetric gaits. Looking at Figures 7.12 and 7.14, there
are indications of the presence of a symmetric gait that diverges towards the
asymmetric gait after approximately three impacts with the ground. This
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Figure 7.12: Time between consecutive steps for asymmetric gait at ψ = 5.00.
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Figure 7.13: Phase portrait of the asymmetric gait at ψ = 5.00.
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Figure 7.14: Time evolution of q, q̇ for asymmetric gait at ψ = 5.00.

symmetric gait is clearly unstable, but the asymmetric gait itself appears
asymptotically orbitally stable. Computing the eigenvalues of the transition
matrix Ξ(x−� , x

+
� ) yields

λ1 = 0.092
λ2 = −0.346− 0.429i
λ3 = −0.346 + 0.429i

(7.16)

which are inside the unit circle as indicated by Figure 7.15, confirming that
the asymmetric gait is indeed asymptotically orbitally stable even though
the pre-bifurcation gait is unstable. The initial parameters (7.14) describing
the unstable symmetric gait can therefore be regarded as a perturbation of
the initial parameters describing the four-periodic stable gait.

The four-period gait is not the only asymmetric gait cycle the compass-
gait biped exhibits, in fact there exist a number of asymmetric gaits with
periodicity 2k, k ∈ N. This is known as period-doubling bifurcation and k
increases with increasing ψ, starting at ψ ≈ 4.4. For a threshold value of
ψ, the biped starts to exhibit chaotic gaits which is an extreme case of the
asymmetric gait. During a chaotic gait the step periods of the biped never
completely repeat themselves, leading to apparently random patterns in the
gait. The concept of bifurcation and chaos for dynamic systems is a vast
field of study, and the details are beyond the scope of this thesis. For a
more detailed description of the phenomenon for the compass-gait biped, the
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Figure 7.15: Eigenvalues of the transition matrix Ξ(x−� , x+� ) for asymmetric gait
at ψ = 5.00.

interested reader is referred to [8] for an extensive treatment of the subject.

7.5 Remarks on Search Procedure

The search procedure presented in this thesis yields periodic gaits for the
compass-gait biped that are in agreement with the other literature (see e.g.
[8, 12, 21]) on the subject. In addition, the procedure has some useful prop-
erties that are remarked upon below.

Conventional search procedure

The conventional search procedure for finding periodic gaits for the compass-
gait biped can be summarized (see [5]) as

Problem 2. Find a, b, d, T such that q̄1(T ) = c, q̄2(T ) = g, ˙̄q1(T ) = d, ˙̄q2(T ) =
h, with algebraic relations (5.5), (5.6) and (5.9) satisfied and q̄(t) being the
solution of the differential equations (3.7) initiated at q̄1(0) = a, q̄2(0) =
e, ˙̄q1(0) = b, ˙̄q2(0) = f .

The procedure above requires solving four first-order differential equations
per iteration of the optimization algorithm, in order to search for the four
free parameters a, b, d, T . Compare this to the search procedure described by
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Problem 1 in Chapter 5, which only requires determining the two independent
parameters a, b and is based on solving two first-order differential equations
(5.19) instead of the full biped dynamics (3.7). The computational burden
of solving this problem is reduced by half compared to the conventional
approach described by Problem 2 that is widely utilized in the literature (see
e.g. [8] for results).

This reduction in complexity is due to the introduction of the synchroniza-
tion function φ(θ) between the generalized coordinates q1, q2, that removes
the explicit dependence on time. The resulting second-order differential equa-
tion (5.19) describing the evolution of φ(θ) along the periodic orbit, has the
added benefit that the occurrence of the ground impact is described by the
known geometric relation (3.29) instead of the unknown time parameter T .
The solution interval of the dynamics can therefore be explicitly determined
using the known boundary conditions for the scalar variable θ(t) describing
the motion along the target trajectory.

Non-feasible gaits

Considering that the periodic gaits found by solving Problem 1 are consistent
with results obtained using the conventional search algorithm described by
Problem 2 (see e.g. [8]), the following proposition is motivated

Proposition 1. [5, Proposition 1] The set of solutions for Problem 1 con-
tains all the solutions of Problem 2.

Examining the derivations of the search procedure in Chapter 5.4 it triv-
ially follows that any solution to Problem 2 is also a solution to Problem 1.
The reverse, however, is not generally true, since the virtual holonomic con-
straint approach may yields non-feasible periodic gaits. Initiating the search
procedure with

a0 = 0.20, b0 = 1.0, ψ = 3.00 (7.17)

and choosing the minus sign in the solution to the quadratic equations for d,
yields a gait with the following initial conditions

q1�(0) = 0.204676, q2�(0) = −0.309396
q̇1�(0) = 1.210571, q̇2�(0) = 0.712484

(7.18)

The parameters follow after 55 iterations of fminsearch converging to an
objective function value F ≈ 9.4 · 10−12 ≈ 0, and are clearly a valid solution
to Problem 1. However, this is a non-feasible gait since it requires that the
compass-gait biped exhibits a walking motion moving upward the slope (from
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right to left in Figure 3.1), as can be seen by the fact that the velocities q̇�(0)
are positive.

This rather bizarre result is due to the removal of the explicit dependence
of time from the full dynamics of the system. Whereas time has a defined
one-way direction that corresponds to observation of physical phenomena,
such as gravity causing objects to fall downwards not upwards, the new
parameterization of the gait using the geometric quantity θ has no such
distinction. Traversing a typical limit cycle describing a periodic gait (such
as Figure 7.3) using time as the measure of progress yields a definite sense
of direction, either clockwise or counter-clockwise, that is lost when utilizing
the parameter θ instead. The search procedure might therefore yield periodic
gaits that correspond to solutions of the dynamics (3.7) in negative time, and
thus give the impression that the biped is defying gravity and traveling back
up the slope.

These non-feasible gaits are extraneous for the passive walker discussed
in this thesis, but the existence of them as solutions of Problem 1 might be
of interest when actuation of the biped is available.

Unstable limit cycles

There are indications [5] that the unstable limit cycle described by the initial
conditions (7.10) can not be found using the conventional search procedure
defined by Problem 2. This limit cycle is part of a family of periodic orbits
for ψ ∈ (0, 6] deg that are all unstable, and can easily be found by choosing
the plus sign in the solution to the quadratic equations for d when solving
Problem 1.

There are few mentions of this limit cycle outside the literature discussing
virtual holonomic constraints, although the paper [7] showed the existence of
an unstable cycle for their compass-gait biped on small slopes. The approach
described consisted of computing the first and second order approximations of
the hybrid dynamics (3.35), and then using a perturbation method to derive
analytic expressions for the step period and initial angles and velocities.
Due to the approximation in the dynamics, these expressions are only valid
for small values of ψ and can not be used to find all the unstable cycles
for the full range ψ ∈ (0, 6] deg. The advantage of the virtual holonomic
constraint approach is that no such approximation must be performed, and
the dynamics used in the search procedure are exact.

These limit cycles are of limited use for the passive walker due to their
unstable nature. However, if actuation is available, these periodic gaits can be
stabilized and used to generate new walking motions for the actuated biped.
A stabilizing controller for this purpose can be designed using transverse
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linearization of the reduced dynamics as detailed in e.g. [4, 6, 17].
An interesting property of the limit cycles is that the initial conditions for

the stable (7.5) and the unstable (7.10) periodic gaits are comparably close
to each other. This indicates that the region of attraction for the stable gait
is quite small, and makes it difficult to obtain numeric estimates for its size.
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8 Conclusion

The aim of this thesis was to study the passive gaits of a 2-DOF planar
walking device, commonly referred to as the compass-gait biped, on a down-
wards slope. The passive gaits are of special interest in the field of legged
robotics since the motive force driving the locomotion comes solely from the
conversion of the robots gravitational potential energy as is travels down the
slope.

The passive gaits studied are limit cycle solutions of the hybrid dynamics
of the compass-gait biped, consisting of 2-DOF continuous-time equations of
motion and an update map that models the instantaneous update of states
after impact with the ground. The equations of motion were modeled using
standard Euler-Lagrange dynamics with generalized coordinates chosen as
the absolute angles of the legs. Two different approaches for deriving the
impact map were considered. The first derivation was based on conservation
of angular momentum during the collision, and resulted in a simple map be-
tween the velocities just before and just after impact. The second approach
exploited the continuous-time dynamics to yield a map that in addition to
the velocities also gave an expression for the impact forces the biped experi-
ences during the collision. Both update maps were verified through numer-
ical simulations and yielded identical results for the velocity updates. The
combination of the Euler-Lagrange dynamics and the update map constitute
the hybrid dynamics of the compass-gait biped and a matlab script was
developed to visualize the motion of the robot as it travels down the slope.

Finding passive gaits for hybrid systems is a difficult task due to the com-
bination of continuous and discrete elements in the dynamics. In this thesis
an approach for finding limit cycles for an unactuated 2-DOF hybrid sys-
tem is presented. The approach exploits geometric relations that must hold
between the two generalized coordinates during the continuous-time sub-arc
of the periodic trajectory. These relations are called virtual holonomic con-
straints and lead to the formulation of a minimization problem for searching
for periodic gaits of the biped. This optimization problem requires finding
two parameters and is based on solving a second-order differential equation
for the computation of the introduced constraints. Implementation of the
search procedure in matlab has verified that the proposed approach does
work, and has yielded both stable and unstable limit cycles for the compass-
gait biped. Numerical results of the search have been presented and are
found to be consistent with other literature on the subject.

The introduction of virtual holonomic constraints allows for the compu-
tation of an auxiliary linear system that describes the dynamics of the biped
away from the target periodic trajectory. This linear system is the result of
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computing the transverse linearization of the reduced dynamics of the hy-
brid system orthogonal to the periodic orbit, and in that way automatically
generating a family of moving Poincaré sections. Verifying the stability of
the limit cycle is therefore reduced to the simple problem of computing the
eigenvalues of the discrete auxiliary linear system, where exponential stabil-
ity ensures that the periodic orbit is a fixed point of each Poincaré map.
Computation of the transverse linearization and the resulting linear system
is carried out in Maple, and a matlab script for determining orbital sta-
bility of passive gaits has been implemented. Some numerical results of this
algorithm is presented in the text along with full derivations of the procedure.

The main contribution of this thesis is presenting a structured procedure
for finding passive gaits and assessing their stability for a simple walking ma-
chine such as the compass-gait biped. The introduction of virtual holonomic
constraints is a powerful tool that enables the use of analytical arguments
when analyzing the properties of different gait cycles. The preliminary re-
sults obtained for the stability assessment of the periodic orbits are important
foundations for further research into topics such as region of attraction, and
the sensitivity of the gait to external forces and perturbations of parameters.
These are fascinating areas of study that are central to further research into
legged locomotion, and passive gaits may prove to be the most efficient choice
for controlling biped robots in complex environments.
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A Contents of CD

The following folders are included on the CD accompanying this master the-
sis:

Report Contains all the required LATEXsource files and graphics required to
successfully compile the thesis report into a pdf-file.

Maple Contains all the Maple worksheets created to solve analytic problems
in the thesis, including the worksheets posted in the appendix below.
Files are written in Maple 16.

Matlab Contains all the needed matlab scripts and functions to simu-
late the compass-gait biped (main_simulation_script.m), search for
periodic gaits (run_gait_search.m) and assess the stability of the dis-
covered gaits (main_stability_script.m). Files are written using the
editor in matlab 2013a.

Papers Contains all cited articles that are available digitally through NTNU
as pdf-files. Filenames are identical to article titles for convenience.
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B Maple Worksheets

The following appendix contains the relevant Maple worksheets used to derive
the hybrid dynamic system describing the compass-gait biped, the relations
used in formulating the gait search procedure and the computations for the
transverse linearization of the dynamics.



#Initialize linear algebra
 

#Vector of generalized coordinates

#Homogenous transformation matrices

#Coordinate frame origins
#Center of mass first link:

#Center of mass hip:

#Center of mass second link:

#End of swing leg:

#Linear velocities of centers of mass:
#First link:

#Hip:
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B.1 Finding Euler-Lagrange Equations of Motion



#Second link:

#Kinetic energy of system
#First link:

#Hip:

#Second link:

#Total kinetic energy T(q,Dq):

#Computing inertia matrix
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#Potential energy of system
#First link:

#Hip:

#Second link:

#Total potential energy:

#Lagrangian of the dynamical system:
#First link:

#Second link:

#Coriolis and centrifugal torque matrix C(q,Dq):
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#Gravitational torque vector G(q):

#Conversion to Matlab Code:

#Storing matrices for other worksheets:
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# Coordinate system origins
A - Origin at inital pivot point at the end of Link 1
B - Origin at Hip
C - Origin at  impact point at the end of Link 2

# Distance and velocities for Link 1 about Hip

#Distance and velocities for complete biped about Impact

#Angular momentum

#Simplify expressions
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B.2 Computing Impact Map Pq(q
−)



#Simplify
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#Initialize linear algebra

#Import expressions from other worksheets:

#Solve for relations:

#Insert into energy:

#Reducing energy parameters:
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B.3 Deriving Algebraic Relations for a, b, c, d, e, f, g, h
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#Initialize linear algebra

 

#Import expressions from other worksheets:

#Inserting for virtual holonomic constraint
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B.4 Finding the Differential Equation for φ(θ)
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#Initialize linear algebra

#Import expressions from other worksheets:

#Inserting for virtual holonomic constraint:
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B.5 Transverse Linearization of Continuous Dynamics



#Inserting for error coordinates:

#Inserting phi''=f0:

#Simplifying aby with weights:

#Defining right-hand side of perturbated aby equation:
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#Creating linearized system matrix for transverse coordinates:
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#Initialize linear algebra

#Import expressions from other worksheets:

#Compute Jacobian of impact map:

#Define impact surface gradients:

#Define transformation matrix L:
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B.6 Transverse Linearization of Discrete Dynamics



#Define flow vector m:

#Compute projection matrices:

#Complete linearization of impact map:
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C MATLAB Code

The following matlab functions are not included in the main text due to
their length, or trivial nature. They’re included in this appendix to demon-
strate generic methods for solving certain mathematical problems inmatlab,
as well as a reference for understanding the procedure employed for finding
periodic gaits and assessing their stability.

C.1 Physical Parameters

1 function [mH, m1, m2, a, b, l, g] = physical parameters
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 mH = 10; % Mass of hip [kg]
5 m1 = 5; % Mass of first link [kg]
6 m2 = 5; % Mass of second link [kg]
7 a = 0.5; % Length of lower leg [m]
8 b = 0.5; % Length of upper leg [m]
9 l = a + b; % Leg length [m]

10 g = 9.81; % Gravity [m/sˆ2]
11

12 p1 = mH * l ˆ 2 + m1 * b ˆ 2 + m2 * l ˆ 2;
13 p2 = m2 * l * a;
14 p3 = m2 * a ˆ 2;
15 p4 = (m1 * b + m2 * l + mH * l) * g;
16 p5 = m2 * a * g;
17

18 p6 = m1 * l ˆ 2 + l ˆ 2 * mH + b ˆ 2 * m2;
19 p7 = a * m1 * l;
20 p8 = a ˆ 2 * m1;
21 p9 = a * m1 * b;
22 p10 = b * m2 * l + l ˆ 2 * mH + m1 * b * l;
23 p11 = b * m2 * a;
24

25 psi = 3*pi/180; % Incline of slope [radians]
26 % psi = 5*pi/180; % Incline of slope [radians]

C.2 Animation of Compass-gait Biped

Plotting animation

1 function [movie storage,winsize] = animate walker(time,...
2 impacts,draw interval,q,fig)
3 global psi;
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4

5 q1 = q(:,1);
6 q2 = q(:,2);
7

8 % Calculate origins of walker frames
9 static origins = walker origins(q1,q2);

10 offset origins = travel offset(impacts, static origins);
11

12 o1x = offset origins(:,1);
13 o1y = offset origins(:,2);
14 ohx = offset origins(:,3);
15 ohy = offset origins(:,4);
16 o2x = offset origins(:,5);
17 o2y = offset origins(:,6);
18 oex = offset origins(:,7);
19 oey = offset origins(:,8);
20 ocx = offset origins(:,9);
21 ocy = offset origins(:,10);
22

23 % Select which points to draw based on time vector
24 if draw interval == 0
25 time indexes = 1:length(time);
26 else
27 time indexes(1) = 1;
28 index = find(time > 0,1);
29 i = 1;
30

31 while ˜isempty(index)
32 time indexes(i) = index;
33 index = find(time >= i*draw interval,1);
34

35 i = i+1;
36 end
37 end
38

39 max x = max(max([ocx, oex, o1x, ohx, o2x]));
40 max y = max(max([ocy, oey, o1y, ohy, o2y]));
41 min x = min(min([ocx, oex, o1x, ohx, o2x]));
42 min y = min(min([ocy, oey, o1y, ohy, o2y]));
43

44 axis scale = [min x, max x min y max y];
45

46 winsize = get(fig, 'Position');
47 winsize(1:2) = [0 0];
48 numframes = length(time indexes);
49 movie storage = moviein(numframes,fig,winsize);
50 set(fig,'NextPlot','replacechildren')
51

52 set(0,'defaulttextinterpreter','Tex')
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53

54 for j=1:numframes
55 index = time indexes(j);
56

57 clf;
58

59 hold on;
60 axis(axis scale);
61 axis manual;
62

63 % Frame origins
64 plot(o1x(index), o1y(index), 'or');
65 plot(ohx(index), ohy(index), 'or');
66 plot(o2x(index), o2y(index), 'og');
67

68 % Link indicators
69 line([ocx(index) ohx(index)],[ocy(index) ohy(index)],...
70 'LineWidth',3, 'Color', 'r');
71 line([ohx(index) oex(index)],[ohy(index) oey(index)],...
72 'LineWidth',3, 'Color', 'g');
73

74 % Slope indicator
75 line([axis scale(1); axis scale(2)], ...
76 [−axis scale(1)*tan(psi) −axis scale(2)*tan(psi)],...
77 'LineWidth',3, 'Color', 'k');
78

79 % Time instants
80 time instant = ['\ittime \rm= ' num2str(time(index), '%.2f') 's'];
81 text(axis scale(2),axis scale(4), time instant,...
82 'VerticalAlignment','top',...
83 'HorizontalAlignment','right',...
84 'FontSize',16)
85

86 % Angles
87 model data = {sprintf('\\itq 1 \\rm= %.2f',q(index,1)*180/pi);...
88 sprintf('\\itq 2 \\rm= %.2f', q(index,2)*180/pi)};
89 text(axis scale(1),axis scale(3), model data,...
90 'VerticalAlignment','bottom',...
91 'HorizontalAlignment','left',...
92 'FontSize',16)
93

94 grid on;
95 hold off;
96

97 movie storage(:,j) = getframe(fig,winsize);
98 end
99 end



116 C MATLAB CODE

Computing frame origins in Cartesian coordinates

1 function origins = walker origins(q1,q2)
2 [mH, m1, m2, a, b, l, g] = physical parameters;
3

4 o1x = −sin(q1) * b;
5 o1y = cos(q1) * b;
6 ohx = −sin(q1) * a − sin(q1) * b;
7 ohy = cos(q1) * a + cos(q1) * b;
8 o2x = −l * sin(q1) + a * sin(q2);
9 o2y = l * cos(q1) − a * cos(q2);

10 oex = sin(q2) * b − l * sin(q1) + a * sin(q2);
11 oey = −cos(q2) * b + l * cos(q1) − a * cos(q2);
12

13 o1 = [o1x, o1y];
14 oh = [ohx, ohy];
15 o2 = [o2x, o2y];
16 oe = [oex, oey];
17

18 origins = [o1, oh, o2, oe];
19 end

Adjusting frame origins for travel along slope

1 function offset origins = travel offset(impacts, static origins)
2

3 % Adding contact point for stance leg
4 offset origins = [static origins, zeros(size(static origins,1),2)];
5

6 for index = 1:size(impacts,1)
7 impact index = impacts(index,2);
8

9 offset origins(impact index+1:end,1:2:end) = ...
10 offset origins(impact index+1:end,1:2:end) ...
11 + static origins(impact index,7);
12

13 offset origins(impact index+1:end,2:2:end) = ...
14 offset origins(impact index+1:end,2:2:end) ...
15 + static origins(impact index,8);
16 end
17

18 end
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C.3 Searching for Periodic Gaits

Implementation of φ′′(θ) = f0(E0, θ, φ(θ), φ
′(θ))

1 function Dx = f0(theta, x, E0)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 phi = x(1);
5 Dphi = x(2);
6

7 DDphi = −0.1e1 / (−p1 * p3 + cos(−theta + phi) ˆ 2 ...
8 * p2 ˆ 2) * (−cos(−theta + phi) * p2 ˆ 2 ...
9 * sin(−theta + phi) * Dphi + p3 * sin(−theta + phi) ...

10 * p2 * Dphi ˆ 3 − cos(−theta + phi) * p2 ˆ 2 ...
11 * sin(−theta + phi) * Dphi ˆ 2 + p1 * sin(−theta + phi) * p2)...
12 − 0.1e1 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2)...
13 / (E0 − cos(theta) * p4 − p5 + cos(phi) * p5 + p4) ...
14 * (−sin(theta) * p4 * p3 * Dphi + sin(theta) * p4 * p2 ...
15 * cos(−theta + phi) + sin(phi) * p5 ...
16 *cos(−theta + phi) * p2 * Dphi − sin(phi) * p5 * p1)...
17 * (p1 + p3 * Dphi ˆ 2 − 0.2e1 * p2 ...
18 * cos(−theta + phi) * Dphi) / 0.2e1;
19

20 Dx = [Dphi, DDphi]';
21

22 end

Quadratic equation solver for finding d using E0

1 function [d, error flag] = solving E0 for d(a,b,quad solution selector)
2 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
3

4 error flag = 0;
5

6 %% Solving for d = Dq1T using the quadratic formula
7 % E0d = A2*dˆ2 + B2*d + C2
8

9 A2 = (p8 * p10 − p9 * p7) ˆ 2 / p8 ˆ 2 / p11 ˆ 2 *...
10 cos((2 * a + 2 * psi)) ˆ 2 * p3 / 0.2e1 − p9 ˆ 2 ...
11 / p8 ˆ 2 * p3 / 0.2e1 + p1 / 0.2e1 − (p8 * p10 − p9 * p7)...
12 / p8 / p11 * cos((2 * a + 2 * psi)) ˆ 2 * p2;
13 B2 = −p9 / p8 * cos((2 * a + 2 * psi)) * p2 * b ...
14 − (p7 ˆ 2 / p8 / p11 * cos((2 * a + 2 * psi)) ˆ 2 ...
15 − p6 / p11) * b * cos((2 * a + 2 * psi)) * p2 ...
16 + (p7 ˆ 2 / p8 / p11 * cos((2 * a + 2 * psi)) ˆ 2 ...
17 − p6 / p11) * b * (p8 * p10 − p9 * p7) / p8 / p11 ...
18 * cos((2 * a + 2 * psi)) * p3 +...
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19 b * p7 * cos((2 * a + 2 * psi)) * p9 / p8 ˆ 2 * p3;
20 C2 = −p1 * b ˆ 2 / 0.2e1 − cos(a) * p4 + ...
21 (p7 ˆ 2 / p8 / p11 * cos(0.2e1 * a + ...
22 (2 * psi)) ˆ 2 − p6 / p11) ˆ 2 * b ˆ 2 ...
23 * p3 / 0.2e1 − cos(a) * p5 + b ˆ 2 * p7 ...
24 * cos(0.2e1 * a + (2 * psi)) ˆ 2 / p8 * p2...
25 + cos(a + (2 * psi)) * p4 + cos(a + (2 * psi)) ...
26 * p5 − b ˆ 2 * p7 ˆ 2 * cos(0.2e1 * a ...
27 + (2 * psi)) ˆ 2 / p8 ˆ 2 * p3 / 0.2e1;
28

29

30 % Standard solution of the quadratic equation
31 % d = (−B2 +− sqrt(B2ˆ2−4*A2*C2))/(2*A2)
32 D2 = B2ˆ2−4*A2*C2;
33

34 if D2 < 0 % Imaginary solution
35 error flag = 1;
36 d = NaN;
37 return;
38 end
39

40 % Switching between the 2 possible solutions of the
41 % quadratic equation
42 switch quad solution selector
43 case 1
44 d = (−B2 + sqrt(D2))/(2*A2);
45 case 2
46 d = (−B2 − sqrt(D2))/(2*A2);
47 otherwise
48 d = NaN;
49 error flag = 1;
50 end
51 end

C.4 Checking Stability Using Transverse Linearization

Main function that returns the eigenvalues of Ξ(x−� , x
+
� )

1 function eigenvalues = run stability check(a,b,c,d,e,f,g,h,E0)
2 run physical parameters;
3

4 fprintf('***********************************\n');
5 fprintf('CHECKING STABILITY OF PERIODIC GAIT\n');
6

7 %% Solving DDphi = f0 and alpha*DDtheta + beta*Dthetaˆ2 + gamma = 0
8 % for variable values along target trajectory
9

10 fprintf('****************************************************\n');
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11 fprintf('Computing required parameter values along trajectory: ');
12

13 options = odeset('reltol',1e−9,'abstol',1e−9);
14 step size = 0.0001;
15

16 % Finding phi and associated values
17 [time phi, xout] = ode45(@(theta,x) f0(theta,x,E0),...
18 a:−step size:c, [e; f/b], options);
19 phi = xout(:,1);
20 Dphi= xout(:,2);
21

22 % Removing possible NaN results
23 for i=1:length(time phi),
24 if (˜isnan(phi(i))) && (˜isnan(Dphi(i))),
25 theta inputs to phi(i) = time phi(i);
26 phi evaluated at theta(i) = phi(i);
27 Dphi evaluated at theta(i) = Dphi(i);
28 else
29 break
30 end
31 end
32

33 theta inputs to phi(1) = a;
34 theta inputs to phi(end) = c;
35

36 phi evaluated at theta(1) = e;
37 phi evaluated at theta(end) = g;
38

39 Dphi evaluated at theta(1) = f/b;
40 Dphi evaluated at theta(end) = h/d;
41

42 % Finding period of gait, theta and associated values using aby −
43 % equation
44 liberal period estimate = 2;
45 options = odeset('reltol',1e−9,'abstol',1e−9,'Events',...
46 @(t,x) aby weighted event(t,x,c));
47

48 [time aby, xout] = ode45(@(t,x) aby weighted(t,x, ...
49 theta inputs to phi, phi evaluated at theta, ...
50 Dphi evaluated at theta), ...
51 0:step size:liberal period estimate, [a; b], options);
52 theta = xout(:,1);
53 Dtheta = xout(:,2);
54

55 % Removing possible NaN results
56 for i=1:length(time aby),
57 if (˜isnan(theta(i))) && (˜isnan(Dtheta(i)))
58 time inputs to theta(i) = time aby(i);
59 theta evaluated at time(i) = theta(i);
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60 Dtheta evaluated at time(i) = Dtheta(i);
61 else
62 break
63 end
64 end
65

66 gait period = time aby(end);
67

68 time inputs to theta(1) = 0;
69 time inputs to theta(end) = gait period;
70

71 theta evaluated at time(1) = a;
72 theta evaluated at time(end) = c;
73

74 Dtheta evaluated at time(1) = b;
75 Dtheta evaluated at time(end) = d;
76

77 fprintf('DONE!\n');
78 fprintf('********************************************************\n');
79

80 %% Calculating eigenvalues of transition matrix
81 % and assessing stability of perioid gait
82

83 % Integrating linearized transversal dynamics until impact
84 transverse dynamics shortened = @(t, zeta) ...
85 transverse linearization continuous(t, zeta, ...
86 theta inputs to phi, phi evaluated at theta, ...
87 Dphi evaluated at theta, time inputs to theta, ...
88 theta evaluated at time, Dtheta evaluated at time, E0);
89

90 options = odeset('reltol',1e−9,'abstol',1e−9);
91 fprintf('Integrating linearized transverse coordinates\n');
92 fprintf('First integration: ');
93

94 [t,zeta n] = ode45(transverse dynamics shortened,...
95 [0 gait period],[1,0,0]',options);
96 zeta n 1 = zeta n(end,:)';
97

98 fprintf(' DONE!\n');
99 fprintf('Second integration: ');

100

101 [t,zeta n] = ode45(transverse dynamics shortened,...
102 [0 gait period],[0,1,0]',options);
103 zeta n 2 = zeta n(end,:)';
104

105 fprintf('DONE!\n');
106 fprintf('Third integration: ');
107

108 [t,zeta n] = ode45(transverse dynamics shortened,...
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109 [0 gait period],[0,0,1]',options);
110 zeta n 3 = zeta n(end,:)';
111

112 fprintf(' DONE!\n');
113

114 % Calculating update matrix
115 transverse update shortened = @(zeta n) ...
116 transverse linearization discrete(zeta n, theta inputs to phi,...
117 phi evaluated at theta, Dphi evaluated at theta,...
118 time inputs to theta, theta evaluated at time,...
119 Dtheta evaluated at time, gait period, E0);
120

121 update matrix = [transverse update shortened(zeta n 1), ...
122 transverse update shortened(zeta n 2), ...
123 transverse update shortened(zeta n 3)];
124

125 % Checking eigenvalues of update matrix
126 eigenvalues = sort(eig(update matrix));
127

128 fprintf('*****************************************************\n');
129 fprintf('The found periodic gait is ');
130 if max(abs(eigenvalues)) < 1
131 fprintf('STABLE');
132 else
133 fprintf('UNSTABLE');
134 end
135 fprintf(' with eigenvalues\n');
136

137 for i=1:3
138 fprintf('%d. Eigenvalue = ',i);
139

140 if real(eigenvalues(i)) >= 0
141 fprintf(' ');
142 end
143

144 fprintf('%0.3f',real(eigenvalues(i)));
145 if imag(eigenvalues(i)) < 0
146 fprintf(' − ');
147 else
148 fprintf(' + ');
149 end
150 fprintf('%0.3fi', abs(imag(eigenvalues(i))));
151

152 if abs(eigenvalues(i)) < 1
153 fprintf(' OK!\n');
154 else
155 fprintf(' Outside unit circle!\n');
156 end
157 end
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158 fprintf('*****************************************************\n');
159 end

Implementation of α0(θ)θ̈ + β0(θ)θ̇
2 + γ0(θ) = 0

1 function Dx = aby weighted(t,x, theta inputs to phi,...
2 phi evaluated at theta, Dphi evaluated at theta)
3 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
4

5 theta = x(1);
6 Dtheta = x(2);
7 phi = interp1(theta inputs to phi,...
8 phi evaluated at theta,theta,'spline');
9 Dphi = interp1(theta inputs to phi,...

10 Dphi evaluated at theta,theta,'spline');
11

12 alpha0 = p1 * p3 − cos(−theta + phi) ˆ 2 * p2 ˆ 2;
13 beta0 = sin(−theta + phi) * p2 ...
14 * (Dphi ˆ 2 * p3 − p2 * cos(−theta + phi));
15 gamma0 = −sin(theta) * p4 * p3 ...
16 + p2 * cos(−theta + phi) * sin(phi) * p5;
17

18 Dx = [Dtheta; −(beta0*Dthetaˆ2 + gamma0)/alpha0];
19 end

Implementation of ζ̇(t) = A(t)ζ(t)

1 function Dzeta = transverse linearization continuous(t, zeta, ...
2 theta inputs to phi, phi evaluated at theta, ...
3 Dphi evaluated at theta, time inputs to theta, ...
4 theta evaluated at time, Dtheta evaluated at time, E0)
5

6 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
7

8 % Solving for virtual holonomic constraints
9 theta = interp1(time inputs to theta,theta evaluated at time, ...

10 t,'spline');
11 Dtheta = interp1(time inputs to theta,Dtheta evaluated at time, ...
12 t,'spline');
13 temp = aby weighted(t,[theta; Dtheta], theta inputs to phi, ...
14 phi evaluated at theta, Dphi evaluated at theta);
15 DDtheta = temp(2);
16

17 phi = interp1(theta inputs to phi,phi evaluated at theta,...
18 theta,'spline');
19 Dphi = interp1(theta inputs to phi,Dphi evaluated at theta,...
20 theta,'spline');
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21 temp = f0(theta, [phi; Dphi], E0);
22 DDphi = temp(2);
23

24 % Linearized transversal dynamics
25 a11 = −0.2e1 * Dtheta / (p1 * p3 − cos(−theta + phi) ˆ 2 * p2 ˆ 2)...
26 * sin(−theta + phi) * p2 * (Dphi ˆ 2 * p3 − p2 ...
27 * cos(−theta + phi));
28 a12 = 0.2e1 * Dtheta / (p1 * p3 − cos(−theta + phi) ˆ 2 * p2 ˆ 2) ...
29 * p2 * (−0.2e1 * Dtheta ˆ 2 * p2 ˆ 2 * cos(−theta + phi) ...
30 * Dphi ˆ 2 * p3 + Dtheta ˆ 2 * cos(−theta + phi) ˆ 3 * ...
31 p2 ˆ 2 * Dphi ˆ 2 * p3 + Dtheta ˆ 2 * p2 ˆ 3 *...
32 cos(−theta + phi) ˆ 2 + Dtheta ˆ 2 * p1 * p3 ˆ 2 ...
33 * cos(−theta + phi) * Dphi ˆ 2 + Dtheta ˆ 2 * p1 * p3 ...
34 * p2 − 0.2e1 * Dtheta ˆ 2 * p1 * p3 * p2 *...
35 cos(−theta + phi) ˆ 2 + 0.2e1 * p2 * cos(−theta + phi)...
36 * sin(−theta + phi) * sin(theta) * p4 * p3 − p2 ˆ 2 ...
37 * cos(−theta + phi) ˆ 2 * sin(−theta + phi) * sin(phi) ...
38 * p5 − p5 * p1 * p3 * sin(−theta + phi) * sin(phi) ...
39 + p5 * p1 * p3 * cos(−theta + phi) * cos(phi) − p5 ...
40 * cos(−theta + phi) ˆ 3 * p2 ˆ 2 * cos(phi)) ...
41 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2);
42 a13 = 0.4e1 * Dtheta ˆ 2 / ...
43 (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2)...
44 * sin(−theta + phi) * p2 * Dphi * p3;
45 a21 = 0;
46 a22 = 0;
47 a23 = 1;
48 a31 = (−((−cos(theta) * p4 * p3 * Dphi − sin(theta) * p4 * p3...
49 * DDphi + cos(theta) * p4 * p2 * cos(−theta + phi)...
50 + sin(theta) * p4 * p2 * sin(−theta + phi) + sin(phi)...
51 * p5 * DDphi * cos(−theta + phi) * p2 + sin(phi) ...
52 * p5 * Dphi * sin(−theta + phi) * p2) ...
53 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ...
54 / (E0 − cos(theta) * p4 − p5 + cos(phi) * p5 + p4) ...
55 * (−0.2e1 * Dphi * cos(−theta + phi) * p2 + Dphi ˆ 2 ...
56 * p3 + p1) * Dtheta ˆ 2 / 0.2e1 − (−sin(theta) * p4 ...
57 * p3 * Dphi + sin(theta) * p4 * p2 * cos(−theta + phi)...
58 + sin(phi) * p5 * Dphi * cos(−theta + phi)...
59 * p2 − sin(phi) * p5 * p1) / (−p1 * p3 ...
60 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ˆ 2 / (E0 − cos(theta)...
61 * p4 − p5 + cos(phi) * p5 + p4) * (−0.2e1 * Dphi ...
62 * cos(−theta + phi) * p2 + Dphi ˆ 2 * p3 + p1) ...
63 * Dtheta ˆ 2 * cos(−theta + phi) * p2 ˆ 2 ...
64 * sin(−theta + phi) − (−sin(theta) * p4 * p3 * Dphi ...
65 + sin(theta) * p4 * p2 * cos(−theta + phi) + sin(phi)...
66 * p5 * Dphi * cos(−theta + phi) * p2 − sin(phi) * p5 * p1)...
67 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ...
68 / (E0 − cos(theta) * p4 − p5 + cos(phi) * p5 + p4) ˆ 2 ...
69 * (−0.2e1 * Dphi * cos(−theta + phi) * p2...
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70 + Dphi ˆ 2 * p3 + p1) * Dtheta ˆ 2 * sin(theta) ...
71 * p4 / 0.2e1 + (−sin(theta) * p4 * p3 * Dphi ...
72 + sin(theta) * p4 * p2 * cos(−theta + phi) + sin(phi)...
73 * p5 * Dphi * cos(−theta + phi) * p2 − sin(phi) * p5 * p1)...
74 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ...
75 / (E0 − cos(theta) * p4 − p5 + cos(phi) * p5 + p4) ...
76 * (−0.2e1 * DDphi * cos(−theta + phi) * p2 − 0.2e1 ...
77 * Dphi * sin(−theta + phi) * p2 + 0.2e1 * Dphi * p3 ...
78 * DDphi) * Dtheta ˆ 2 / 0.2e1 − (−cos(theta) * p4 * p3 ...
79 * Dphi − sin(theta) * p4 * p3 * DDphi + cos(theta) * p4 ...
80 * p2 * cos(−theta + phi) + sin(theta) * p4 * p2 ...
81 * sin(−theta + phi) + sin(phi) * p5 * DDphi ...
82 * cos(−theta + phi) * p2 + sin(phi) * p5 * Dphi ...
83 * sin(−theta + phi) * p2) / (−p1 * p3 ...
84 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) + 0.2e1 * (−sin(theta)...
85 * p4 * p3 * Dphi + sin(theta) * p4 * p2 * cos(−theta + phi)...
86 + sin(phi) * p5 * Dphi * cos(−theta + phi) * p2 ...
87 − sin(phi) * p5 * p1) / (−p1 * p3 + cos(−theta + phi) ˆ 2 ...
88 * p2 ˆ 2) ˆ 2 * cos(−theta + phi) * p2 ˆ 2 ...
89 * sin(−theta + phi)) * DDtheta + (−sin(theta) * p4 * p3 ...
90 * Dphi + sin(theta) * p4 * p2 * cos(−theta + phi) + sin(phi)...
91 * p5 * Dphi * cos(−theta + phi) * p2 − sin(phi) * p5 * p1)...
92 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ...
93 / (E0 − cos(theta) * p4 − p5 + cos(phi) * p5 + p4) ...
94 * (−0.2e1 * Dphi * cos(−theta + phi) * p2 + Dphi ˆ 2 ...
95 * p3 + p1) * Dtheta ˆ 2) / (0.2e1 * DDtheta ˆ 2 ...
96 + 0.2e1 * Dtheta ˆ 2);
97 a32 = ((Dphi * p2 ˆ 4 + p2 ˆ 4 * Dphi ˆ 2) * Dtheta ˆ 2 ...
98 * cos(−theta + phi) ˆ 4 + (−p2 ˆ 3 * cos(phi) * Dphi * p5 ...
99 + (−p3 * Dphi ˆ 3 * p2 ˆ 3 − p2 ˆ 3 * p1) * Dtheta ˆ 2) ...

100 * cos(−theta + phi) ˆ 3 + (cos(phi) * p5 * p1 * p2 ˆ 2 ...
101 − p2 ˆ 3 * sin(−theta + phi) * sin(theta) * p4 ...
102 + (Dphi * p2 ˆ 4 + p2 ˆ 4 * Dphi ˆ 2) * Dtheta ˆ 2 ...
103 * sin(−theta + phi) ˆ 2 − Dphi * p2 ˆ 3 * sin(−theta + phi) ...
104 * sin(phi) * p5 + (−Dphi * p2 ˆ 2 * p1 * p3 − p2 ˆ 2 ...
105 * Dphi ˆ 2 * p1 * p3) * Dtheta ˆ 2) * cos(−theta + phi) ˆ 2 ...
106 + (p2 * cos(phi) * Dphi * p5 * p1 * p3 + 0.2e1 * p2 ˆ 2 ...
107 * sin(−theta + phi) * sin(theta) * p4 * p3 * Dphi + (−0.2e1 ...
108 * p2 ˆ 3 * p1 − 0.2e1 * p3 * Dphi ˆ 3 * p2 ˆ 3) * Dtheta ˆ 2 ...
109 * sin(−theta + phi) ˆ 2 + 0.2e1 * p2 ˆ 2 * sin(−theta + phi) ...
110 * sin(phi) * p5 * p1 + (p2 * p1 ˆ 2 * p3 + p3 ˆ 2 * Dphi ˆ 3 ...
111 * p2 * p1) * Dtheta ˆ 2) * cos(−theta + phi) ...
112 − cos(phi) * p5 * p1 ˆ 2 * p3 − p2 * sin(−theta + phi) ...
113 * sin(theta) * p4 * p1 * p3 + (Dphi * p2 ˆ 2 * p1 * p3 ...
114 + p2 ˆ 2 * Dphi ˆ 2 * p1 * p3) * Dtheta ˆ 2 ...
115 * sin(−theta + phi) ˆ 2 − Dphi * p2 * sin(−theta + phi) ...
116 * sin(phi) * p5 * p1 * p3) / (−p1 * p3 ...
117 + cos(−theta + phi) ˆ 2 * p2 ˆ 2) ˆ 2;
118 a33 = −(0.2e1 * p3 * Dphi ˆ 2 * sin(−theta + phi) * p2 ...
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119 * Dtheta − 0.2e1 * Dphi * p2 ˆ 2 * cos(−theta + phi)...
120 * Dtheta * sin(−theta + phi)) ...
121 / (−p1 * p3 + cos(−theta + phi) ˆ 2 * p2 ˆ 2);
122

123 A = [a11 a12 a13; a21 a22 a23; a31 a32 a33];
124

125 Dzeta = A*zeta;
126 end

Implementation of
(
dTSF

)
(x�(t=T ))

= P+
n+ dF(x�(t=T )) P

−
n−

1 function zeta p = transverse linearization discrete(zeta n, ...
2 theta inputs to phi, phi evaluated at theta, ...
3 Dphi evaluated at theta, time inputs to theta, ...
4 theta evaluated at time, Dtheta evaluated at time, gait period,E0)
5

6 global p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 psi;
7

8 %% Right before impact t=T
9 thetaT = interp1(time inputs to theta, theta evaluated at time, ...

10 gait period, 'spline');
11 DthetaT = interp1(time inputs to theta, Dtheta evaluated at time, ...
12 gait period, 'spline');
13 temp = aby weighted(gait period, [thetaT,DthetaT], ...
14 theta inputs to phi, phi evaluated at theta, ...
15 Dphi evaluated at theta);
16 DDthetaT = temp(2);
17

18 phiT = interp1(theta inputs to phi, phi evaluated at theta, ...
19 thetaT, 'spline');
20 DphiT = interp1(theta inputs to phi, Dphi evaluated at theta, ...
21 thetaT, 'spline');
22 temp = f0(thetaT,[phiT,DphiT], E0);
23 DDphiT = temp(2);
24

25 %% Right after impact t=0
26 theta0 = interp1(time inputs to theta, theta evaluated at time, ...
27 0, 'spline');
28 Dtheta0 = interp1(time inputs to theta, Dtheta evaluated at time,...
29 0, 'spline');
30 temp = aby weighted(0, [theta0,Dtheta0], theta inputs to phi,...
31 phi evaluated at theta, Dphi evaluated at theta);
32 DDtheta0 = temp(2);
33

34 phi0 = interp1(theta inputs to phi, phi evaluated at theta,...
35 theta0, 'spline');
36 Dphi0 = interp1(theta inputs to phi, Dphi evaluated at theta,...
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37 theta0, 'spline');
38 temp = f0(theta0,[phi0,Dphi0], E0);
39 DDphi0 = temp(2);
40

41 %% Solving for generalized coordinates
42 q1p = theta0;
43 Dq1p = Dtheta0;
44 DDq1p = DDtheta0;
45

46 q2p = phi0;
47 Dq2p = Dphi0*Dtheta0;
48 DDq2p = DDphi0*Dtheta0ˆ2 + Dphi0*DDtheta0;
49

50 q1n = thetaT;
51 Dq1n = DthetaT;
52 DDq1n = DDthetaT;
53

54 q2n = phiT;
55 Dq2n = DphiT*DthetaT;
56 DDq2n = DDphiT*DthetaTˆ2 + DphiT*DDthetaT;
57

58 %% Linearized impact map
59 df ts11 = −Dq1p * cos(q1n − q2n) * (p8 * p10 − p7 * p9) ...
60 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) / Dq1n ...
61 + Dq1p * p8 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 ...
62 * p7 ˆ 2) * p11 * Dq2n / Dq1n ˆ 2;
63 df ts12 = −0.2e1 * Dq1p * sin(q1n − q2n) ...
64 * (Dq1n * p8 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 ...
65 * p10 + Dq1n * p8 ˆ 2 * p10 * p6 − Dq1n * p7 ...
66 * p9 * p8 * p6 − Dq1n * p7 ˆ 3 * p9 ...
67 * cos(q1n − q2n) ˆ 2 − 0.2e1 * p8 * p11 * Dq2n ...
68 * cos(q1n − q2n) * p7 ˆ 2) / (p8 ˆ 2 * p6 ˆ 2 ...
69 − 0.2e1 * p8 * p6 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 ...
70 + cos(q1n − q2n) ˆ 4 * p7 ˆ 4) * sin(q2n + psi) ...
71 * Dq1n / (Dq1n * sin(q1n + psi) − Dq2n ...
72 * sin(q2n + psi)) + (−(2 * DDq1p) + 0.2e1 ...
73 * Dq1p * sin(q1n − q2n) * (Dq1n * p8 ...
74 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 * p10 + Dq1n ...
75 * p8 ˆ 2 * p10 * p6 − Dq1n * p7 * p9 * p8 * p6 ...
76 − Dq1n * p7 ˆ 3 * p9 * cos(q1n − q2n) ˆ 2 ...
77 − 0.2e1 * p8 * p11 * Dq2n * cos(q1n − q2n) ...
78 * p7 ˆ 2) / (p8 ˆ 2 * p6 ˆ 2 − 0.2e1 * p8 * p6 ...
79 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 + cos(q1n − q2n) ˆ 4 ...
80 * p7 ˆ 4)) * Dq1n * sin(q1n + psi) / (Dq1n ...
81 * sin(q1n + psi) − Dq2n * sin(q2n + psi)) ...
82 − 0.2e1 * Dq1p * cos(q1n − q2n) * (p8 * p10 ...
83 − p7 * p9) / (−p8 * p6 + cos(q1n − q2n) ˆ 2 ...
84 * p7 ˆ 2) * sin(q2n + psi) * DDq1n / (Dq1n ...
85 * sin(q1n + psi) − Dq2n * sin(q2n + psi)) + 0.2e1 ...
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86 * Dq1p * p8 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 ...
87 * p7 ˆ 2) * p11 * sin(q2n + psi) * DDq2n / (Dq1n ...
88 * sin(q1n + psi) − Dq2n * sin(q2n + psi));
89 df ts13 = 0.2e1 * Dq1p * p8 ...
90 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) * p11;
91 df ts21 = 0;
92 df ts22 = sin(q2n + psi) * Dq1n ...
93 / (Dq1n * sin(q1n + psi) − Dq2n ...
94 * sin(q2n + psi)) − Dq2p / Dq1p * Dq1n ...
95 * sin(q1n + psi) / (Dq1n * sin(q1n + psi) ...
96 − Dq2n * sin(q2n + psi));
97 df ts23 = 0;
98 df ts31 = (Dq2p / Dq1p * cos(q1n − q2n)...
99 * (p8 * p10 − p7 * p9) / (−p8 * p6 ...

100 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) ...
101 − (cos(q1n − q2n) ˆ 2 * p7 * p10 − p9 * p6) ...
102 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2)) ...
103 / Dq1n / 0.2e1 + (−Dq2p / Dq1p * p8 ...
104 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) ...
105 * p11 + cos(q1n − q2n) * p7 / (−p8 * p6 ...
106 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) * p11) ...
107 * Dq2n / Dq1n ˆ 2 / 0.2e1;
108 df ts32 = (Dq2p / Dq1p * sin(q1n − q2n) ...
109 * (Dq1n * p8 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 ...
110 * p10 + Dq1n * p8 ˆ 2 * p10 * p6 − Dq1n * p7 ...
111 * p9 * p8 * p6 − Dq1n * p7 ˆ 3 * p9 ...
112 * cos(q1n − q2n) ˆ 2 − 0.2e1 * p8 * p11 ...
113 * Dq2n * cos(q1n − q2n) * p7 ˆ 2) / (p8 ˆ 2 ...
114 * p6 ˆ 2 − 0.2e1 * p8 * p6 * cos(q1n − q2n) ˆ 2 ...
115 * p7 ˆ 2 + cos(q1n − q2n) ˆ 4 * p7 ˆ 4) ...
116 − sin(q1n − q2n) * p7 * (0.2e1 * cos(q1n − q2n) ...
117 * p6 * Dq1n * p8 * p10 − 0.2e1 * cos(q1n − q2n) ...
118 * p6 * Dq1n * p7 * p9 − p11 * Dq2n * p8 * p6 ...
119 − cos(q1n − q2n) ˆ 2 * p7 ˆ 2 * p11 * Dq2n) ...
120 / (p8 ˆ 2 * p6 ˆ 2 − 0.2e1 * p8 * p6 ...
121 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 ...
122 + cos(q1n − q2n) ˆ 4 * p7 ˆ 4)) * sin(q2n + psi) ...
123 * Dq1n / (Dq1n * sin(q1n + psi) − Dq2n ...
124 * sin(q2n + psi)) + ((−DDq2p * Dq1p ...
125 + Dq2p * DDq1p) / Dq1p ˆ 2 − Dq2p / Dq1p ...
126 * sin(q1n − q2n) * (Dq1n * p8 * cos(q1n − q2n) ˆ 2 ...
127 * p7 ˆ 2 * p10 + Dq1n * p8 ˆ 2 * p10 * p6 ...
128 − Dq1n * p7 * p9 * p8 * p6 − Dq1n * p7 ˆ 3 ...
129 * p9 * cos(q1n − q2n) ˆ 2 − 0.2e1 * p8 * p11 ...
130 * Dq2n * cos(q1n − q2n) * p7 ˆ 2) / (p8 ˆ 2 ...
131 * p6 ˆ 2 − 0.2e1 * p8 * p6 * cos(q1n − q2n) ˆ 2 ...
132 * p7 ˆ 2 + cos(q1n − q2n) ˆ 4 * p7 ˆ 4) ...
133 + sin(q1n − q2n) * p7 * (0.2e1 * cos(q1n − q2n) ...
134 * p6 * Dq1n * p8 * p10 − 0.2e1 * cos(q1n − q2n) ...
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135 * p6 * Dq1n * p7 * p9 − p11 * Dq2n * p8 * p6 ...
136 − cos(q1n − q2n) ˆ 2 * p7 ˆ 2 * p11 * Dq2n) ...
137 / (p8 ˆ 2 * p6 ˆ 2 − 0.2e1 * p8 * p6 ...
138 * cos(q1n − q2n) ˆ 2 * p7 ˆ 2 + cos(q1n − q2n) ˆ 4 ...
139 * p7 ˆ 4)) * Dq1n * sin(q1n + psi) ...
140 / (Dq1n * sin(q1n + psi) − Dq2n * sin(q2n + psi)) ...
141 + (Dq2p / Dq1p * cos(q1n − q2n) * (p8 * p10 − p7 * p9) ...
142 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) ...
143 − (cos(q1n − q2n) ˆ 2 * p7 * p10 − p9 * p6) ...
144 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2)) ...
145 * sin(q2n + psi) * DDq1n / (Dq1n * sin(q1n + psi) ...
146 − Dq2n * sin(q2n + psi)) + (−Dq2p / Dq1p * p8 ...
147 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) * p11 ...
148 + cos(q1n − q2n) * p7 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 ...
149 * p7 ˆ 2) * p11) * sin(q2n + psi) * DDq2n ...
150 / (Dq1n * sin(q1n + psi) − Dq2n * sin(q2n + psi));
151 df ts33 = −Dq2p / Dq1p * p8 / (−p8 * p6 ...
152 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) * p11 ...
153 + cos(q1n − q2n) * p7 ...
154 / (−p8 * p6 + cos(q1n − q2n) ˆ 2 * p7 ˆ 2) * p11;
155

156

157 dF TS = [df ts11 df ts12 df ts13; df ts21 ...
158 df ts22 df ts23; df ts31 df ts32 df ts33];
159

160 zeta p = dF TS*zeta n;
161 end
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