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Abstract

The focus of this work is a systematic study of the passive gait of
a compass-like, planar, biped robot on inclined slopes. The robot
is kinematically equivalent to a double pendulum, possessing two
kneeless legs with point masses and a third point mass at the “hip”
joint. Three parameters, namely, the ground-slope angle and the
normalized mass and length of the robot describe its gait. We show
that in response to a continuous change in any one of its parame-
ters, the symmetric and steady stable gait of the unpowered robot
gradually evolves through a regime of bifurcations characterized by
progressively complicated asymmetric gaits, eventually arriving at
an apparently chaotic gait where no two steps are identical. The
robot can maintain this gait indefinitely.

A necessary (but not sufficient) condition for the stability of
such gaits is the contraction of the “phase-fluid” volume. For this
Jrictionless robot, the volume contraction, which we compute, is
caused by the dissipative effects of the ground-impact model. In the
chaotic regime, the fractal dimension of the robot’s strange attractor
(2.07) compared to its state-space dimension (4) also reveals strong
contraction.

We present a novel graphical technique based on the first return
map that compactly captures the entire evolution of the gait, from
symmetry to chaos. Additional passive dissipative elements in the
robot joint result in a significant improvement in the stability and
the versatility of the gait, and provide a rich repertoire for simple
control laws.

1. Motivation

Biped robots and other legged robots are potentially better
suited than wheeled vehicles to the maintenance of hazardous
environments (such as nuclear and chemical reactors), ex-
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ploration of unstructured and unpaved terrains (for example,
ocean floors, polar regions, lunar and Martian surfaces), deep-
forest logging, fruit harvesting, and so on. At present, one of
the main obstacles to a wider application of legged robots
is their lack of energy efficiency. In comparison, their bi-
ological analogues demonstrate impressive energy economy
during a normal walking gait; in fact, EMG studies (McMa-
hon 1984; Rose and Gamble 1994) have shown that relative
muscle inactivity during the swing phase of the human walk
makes it almost passive. This illustrates the superiority of the
biological control strategy, which functions in harmony with
the natural inertial dynamics of the body in the gravitational
field.

The long-term motivation behind the current study is to for-
mulate a simple, biologically inspired active-control law for
a 17-DOF biped robot (Espiau 1997) being built for Project
BIP, which is coordinated by the INRIA laboratory in Greno-
ble, France. The control of such a highly nonlinear dynamic
system coupled with the well-known stability issues common
to all bipeds represents a major challenge. Experience shows
that control strategies unconcerned with the system dynamics
fail to take advantage of the benevolent dynamics inherent in
the controlled system, and risk being a control overkill. To
gain a better understanding of the dynamics of biped locomo-
tion, we find it instructive to first explore the behavior of a
simple walker model.

Physical models McGeer 1990; Coleman and Ruina 1998)
and theoretical and simulated results (Goswami, Espiau, and
Keramane 1997; Garcia, Chatterjee, Ruina, and Coleman
1998) have demonstrated that even passive biped robots with
simple kinematics can successfully walk down an inclined
slope in a steady gait. The motive power of such robots
comes from the conversion of the robot’s gravitational poten-
tial energy as it descends down the slope. A delicate balance
between the kinetic energy available from the conversion of
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potential energy and that absorbed due to ground impact en-
sures the maintenance of the steady gait. The particular gait
adopted by the robot depends on the ground slope, as well as
its geometric and inertial parameters.

The existence of natural-locomotion regimes in such sim-
ple machines suggests the possibility that an attentive but
minimal control system based on a tuned dynamic system
might represent the most judicious choice for controlling
biped robots in complex environments.

1.1. What Is a Compass Gait?

The biped robot model studied in this paper is the so-called
compass-gait model. The gait is so named because the loco-
motion produced with this model is analogous to the move-
ment of a pair of compasses or dividers. The Cartesian hip
trajectory consists of a series of circular arcs centered around
the support leg’s point of contact with the ground, and having
a radius equal to the leg length. A particularly useful analy-
sis of the human gait (Rose and Gamble 1994) decomposes
the entire gait mechanism into six elementary “determinants,”
each involving a single degree of freedom in one of the joints.
The compass gait is the first determinant of the gait, and it
is the simplest kinematics that may exhibit a bipedal walk-
ing gait. Despite its simplicity, on a descending slope a pas-
sive compass-gait robot may exhibit “dynamic gait” (McGeer
1990), which means that its center of mass is not constrained
to stay atop its foot-support point. This feature is normally
associated with the anthropomorphic gait, and is attributed to
a superior control performance.

The robot model, discussed in greater detail in Section 2.1,
consists of two kneeless legs, each having a point mass, and
a third point mass coincident with the hip joint. The Acrobot
(Berkemeier and Fearing 1992; Spong 1995) and the Pen-
dubot (Block and Spong 1995) are also based on the same
double-pendulum kinematics, although they do not possess
the hip mass. Hurmuzlu and Moskowitz (1986) and Yang
(1994) present studies of other kneeless bipeds with an ad-
ditional body mass connected to the hip through a pelvic
joint. In Hurmuzlu and Moskowitz’s (1986) work, particu-
lar attention was paid to the effect of the robot’s impact with
the ground, and the impact conditions were justifiably con-
sidered as an integral part of the governing equations. Bipeds
with very simple dynamics were also constructed (Katoh and
Mori 1984; Grishin, Formal’sky, Lensky, and Zhitomirsky
1994; Formal’sky 1997). These models have telescopically
retractable legs. The former of this is a 3-DOF model with
independently adjustable leg lengths, whereas in the latter
two, the sum of the leg lengths is mechanically constrained
to be constant. Each of the robot models mentioned in this
paragraph has some form of actuation.

The literature on passive bipedal walk is relatively limited.
Inspired by the research on ballistic walking (Mochon and
McMahon 1981), McGeer (1990) studied and built passive-
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dynamic robots with and without knees. The physical models
of these robots demonstrate the remarkable elegance and sim-
plicity of unpowered walking on inclined slopes. A linearized
dynamic model of the robot was considered for the analysis
of the gait. The effect of variation of few design parame-
ters on the walking performance was studied, including the
height of the leg’s center of mass, the hip mass fraction, and
the leg-length mismatch. A leg-length mismatch caused, ex-
pectedly, a two-period gait. Curiously, for a larger mismatch,
a four-period gait was found.

More recently, a systematic study of the full nonlinear
equations of a simple compass-like, passive, biped robot was
considered (Goswami, Espiau, and Keramane 1996, 1997;
Goswami, Thuilot, and Espiau 1996; Thuilot, Goswami, and
Espiau 1997). Goswami, Espiau, and Keramane (1996) as-
sociated the steady motion of the robot with a phase-plane
limit cycle (following Katoh and Mori [1984] and Hurmu-
zlu and Moskowitz [1986]); this group was the first to report
the occurrence of a period-doubling bifurcation for this robot.
Precursors to the current paper, Goswami, Thuilot, and Es-
piau (1996) and Thuilot, Goswami, and Espiau (1997) studied
the effects of a parameter change on the gait of the robot. In
response to a parameter change, the robot gait was found to
exhibit a period-doubling cascade, finally leading to chaotic
motion. The fractal dimension of the chaotic attractor was
measured.

In other recent work, Garcia et al. (1998) considered an
even simpler biped model, the “point-foot walker,” which is
also based on the same double-pendulum kinematics. As ex-
plained later, their model can be obtained as a simpler special
case of the compass-gait model that is considered here. The
significant reduction in the complexity of the model permits
an analytical computation of initial conditions and the stabil-
ity estimates of one-period gaits. The authors independently
found the occurrence of period doubling, and were the first to
find a chaotic gait in this model. Coleman and Ruina (1998)
developed a simple 3-D passive-dynamic Tinkertoy device
that walks,

1.2. Summary of Results

This paper presents a systematic study of the passive bipedal
gait of a compass-like robot in response to continuous changes
in its motion-determining parameters. Three parameters,
namely, the ground-slope angle and the normalized mass and
length describe the robot’s dynamic behavior.

As afirst guess for the initial states of the robot that will lead
it to a stable limit-cycle gait, we use the prediction based on
the linear model. Once a phase space-limit cycle is found, we
can numerically prove its stability by calculating the Jacobian
matrix of the Poincaré map of the limit cycle, as was done for
the “stride function” (McGeer 1990). Contraction of phase-
space volumes is known as a necessary (but not sufficient)
condition for the asymptotic stability of dynamic systems.
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For our otherwise frictionless robot, the volume contraction
is caused by the foot-ground collisions. We quantify the dis-
sipative effects of the ground-impact model by measuring the
phase-fluid volume contraction.

A small change in a parameter normally results in small
changes in the robot’s gait, while its global qualitative behav-
iorremains intact. We find that both the robot’s step period and
step length increase with an increase in any of the three param-
eters. The robot’s translational velocity, however, increases
with increased slope and normalized mass, but decreases with
the normalized length. Also, most of the quantities describing
the robot gait are monotonic functions of the three parameters.

However, there are situations when as one of the parame-
ters exceeds a certain limiting value, a so-called structural in-
stability sets in. This is manifested by a large-scale qualitative
change in the gait. These structural instabilities are associated
with period-doubling bifurcations in the solution of the robot’s
governing equations. As the parameter continues to change,
the system may undergo a cascade of repeated bifurcations,
and may, in the long run, exhibit chaotic behavior. Many of
the tell-tale signs of chaos, such as a “broad-band frequency,”
similar but nonidentical cycles, and a densely packed attractor
are all exhibited by these latter gaits.

We present a novel graphical technique based on the first
return map that compactly captures the entire evolution of
the gait, from symmetry to chaos. The fractal dimension
of the attractor is computed to be 2.07. For a system with
a four-dimensional state space, this indicates strong phase-
space volume contraction.

Additional passive dissipative elements in the robot joint
result in a significant improvement in the stability and ver-
satility of the gait, and provide a rich repertoire for simple
control laws.

2. Modeling

2.1. Robot Model and Modeling Assumptions

Figure 1 shows a sketch of a compass-like biped robot. The
details of the model and the underlying assumptions are listed
below:

Mass: Concentrated at three points:

* mass my at the hip, and
» masses m on each leg, located at distances a and

b from the leg tip and the hip, respectively.

The total mass of the robot m¢c = 2m + my, is constant
and equal to 20 kg, whereas the mass ratio u = 4
varies from 0.1 to 10 during the simulation trials.

Leg: The legs are identical. The leg length ! = a + b is
constant and equal to 1 m, whereas the length ratio
B = g varies from 0.1 to 10 during the simulation
trials.

Actuation: The robot is unactuated.

Ground: The robot walks down on a plane surface inclined
at a constant angle ¢ with the horizontal.

Gait: The motion is constrained in the sagittal plane, and
consists of the following two stages:

* Swing: during this stage, the robot hip pivots
around the point of support on the ground of its
support leg. The other leg, called the nonsupport
leg or the swing leg swings forward (the compass
robot in Fig. 1 is in the swing stage).

» Transition: this occurs instantaneously when the
swing leg touches the ground and the previous
support leg leaves the ground.

Ground impact: The impact of the swing leg with the
ground is assumed to be slipless plastic. This implies
that during the instantaneous transition stage (see, for
instance, the work of Hurmuzlu and Chang [1992]):

« the robot configuration remains unchanged, and

* the angular momentum of the robot about the im-
pacting foot as well as the angular momentum
of the pre-impact support leg about the hip are
conserved. These conservation laws lead to a dis-
continuous change in robot velocity.

Prismatic-joint knee: This is a purely imaginary concoc-
tion, meant to address the conceptual problem of foot-
clearance common to all kneeless planar bipeds. The
prismatic joint is assumed to retract the lower leg to
clear the ground. The retraction of the lower leg, which
is assumed massless, does not affect the robot dynam-
ics. The swing leg returns to its original length / at
transition. Qur emphasis here is on the simplicity of
the model, rather than its physical realizability. Note,
however, that physical models of robots of this type
were developed and studied by Katoh and Mori (1984)
and Grishin et al. (1994).

Nominal model: Although we study the passive gait of the
robot for a range of parameters specified earlier, certain
results in this paper are centered around a nominal robot
model that corresponds to 4 = 2and 8 = 1. Forresults
involving other models, the parameters of the robot will
be specified.

During swing, the robot configuration can be described
by 0 = [6s, 6517, where 6,5 and 6, are the angles made,
respectively, by the nonsupport (swing) leg and the support
leg with the vertical (counterclockwise positive). The state
vector g associated with the robot is

q = [ea O]T = [Ops, O, éns, és]T- (1)
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Fig. 1. Sketch of a compass-like biped robot on a slope. The
robot consists of two kneeless legs, each having a point mass,
and a third point mass coincides with the hip joint. The
prismatic-joint knee shown in the picture is an imaginary con-
coction meant to avoid the conceptual foot-clearance problem.
See Section 2.1 for details.

During transition, since both legs are in contact with the
ground, the robot configuration can be completely described
by the half interleg angle «, or equivalently by the step length
L, defined as the distance between robot feet; o and L are
related by L = 2l sina.

Before leaving this section, let us provide the definitions
of certain terms that we frequently use in this paper. A gait
is symmetric if any two consecutive steps are indistinguish-
able, that is, all the spatiotemporal variables exactly repeat
themselves in each step. When a gait does not possess this
property, it is said to be asymmetric. A gait is periodic if all
the spatiotemporal variables repeat themselves after every p
step. The integer p is called the gait period. For symmetric
gaits, p = 1. Incase of a p-period gait, the gait cycle consists
of p successive steps. The term steady gait is loosely used
to mean that the robot can walk indefinitely without falling
down. The step period is the time required to take a step, that
is, the time between the takeoff of one foot from the ground
and its subsequent landing.

As the robot walks, the forward component of velocity of
its center of mass changes continuously (as in human loco-
motion). Therefore, we introduce the term average speed of
progression of the robot, denoted as v, to quantify its forward
movement averaged over a cycle. In case of a 2"-period gait,
v is a constant. When n = 0 (i.e., symmetric gait), v is ex-
pressed as %, where T is the step period. For larger values of

n, visthe value of % (where k is a step counter) averaged over
2" consecutive steps. For a chaotic gait, the average speed of
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progression can be calculated over a certain number of steps,
and its exact value will be bounded but varying.

2.2. Governing Equations

The governing equations of the robot consist of nonlinear dif-
ferential equations for the swing stage, and algebraic equa-
tions for the transition. The equations are well known (see,
for example, work by Goswami, Thuilot, and Espiau [1996]).
Here we simply present the symbolic form of the equations
expressed in terms of the normalized parameters p and B.
As is true in general, the study of governing equations of the
robot in terms of normalized parameters brings in significant
advantages. The swing-stage robot equations, similar to that
of a frictionless double pendulum, can be written as

M(©)0 + N, 6)6 + alg(()) =0, )

where M (0), N (0, é), and g(0) depend only on w and 8, and
notonm, myg, a, and b:

— B? — (14 B) Bcos2a
M(e)"(—(1+ﬂ)ﬂcos2a (1+ﬂ)2(u+1)+1)’
3)
. . 0 6
1\/(9,9)=(1+I3)/35m(49s—6’ns)(_‘9-"s 0), (C))]
_ 2P sin O,
g(o)_(—((u+1)(1+ﬂ)+1)gsin6s)' ®

The algebraic transition equations relate the robot’s states
Jjust before and just after its collision with the ground. The
support and the nonsupport legs switch during transition. The
pre-impact and the post-impact configurations of the robot
can be simply related by 8% = J0~, where J is a 2 x 2
antisymmetric matrix with unit elements. The — and the +
signs denote the state variables, respectively, before and after
the collision. The conservation of angular momentum prin-
ciple applied to the robot gives us @~ ()0 = Q+(@)d”,
from which we can write the joint-velocity relationship é+ =
(0T @) 'Q~ (@) = H(@)8 , where

Q_(a)=< _Oﬂ
=B+ (1 (1+ B)2+2(1 + B)) cos 2

—B
B (B — (1+ B)cos2a)

), 6

0t =
ﬂZ
1+ B8) (1 + B) — Bcos2a)
+14+p(1+ B)?
—B (14 B)cos2a

@)
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The complete state vector g before and after impact can
thus be written as

=W(@q, ®

J 0
0 H( /)

It can be shown that the gait characteristics of a robot with
arbitrary masses m’ and m'H can always be deduced from
those of a robot whose masses are in the same proportion u
(Goswami, Thuilot, and Espiau 1996). More precisely, the
gait characteristics of two dlfferent robots with masses (m R

with matrix W(a) =

m H) and (m, my), such that '” = % = k,, are described
in the table below.

Robot with Robot with
Masses m and my Masses m and m'H
q,a, L, T,v q,a,L, T,v

E, AE kmE, kmAE

Here, E refers to the total mechanical energy of the robot,
and A E is the absorption of energy during the ground impact.

In a similar manner we can show (Goswami, Thuilot, and
Espiau 1996) that the gait characteristics of a robot with arbi-
trary lengths a and b can always be deduced from those of
a robot whose lengths are in the same proportion, 8. More
precisely, the gait characteristics of two different robots, with

lengths (a, b) and (a’, b'), such that “ = -’;,— = k, are de-
scribed in the table below.

Robot with
Lengths a and b
0
¢
Vs
o
koL
vk T

k,v
ke E

Robot with
Lengths a and b

B> .
TS NNR @@

The dynamic model of the robot can therefore be param-
eterized by 1 and 8. Note here that the ground slope ¢,
which does not explicitly enter into the governing equations,
completes our set of parameters. The effects of these three pa-
rameters on the gait characteristics of the passive biped robot
are analyzed subsequently.

3. Stable Passive Gait and Limit Cycle

Typically, the governing equations for these robots are hy-
brid in the sense that they consist of nonlinear differential

equations describing the swing stage and algebraic relation-
ships characterizing the switch between two successive swing
stages. The ground slope can be imagined to impose an ex-
ternal geometric constraint in the configuration space of the
robot, and the switching conditions can be viewed as the re-
sult of the robot touching the constraint. The physical model
on which the switching conditions are based determines the
physical nature of the robot’s interaction with the constraint.
Changing the ground slope modifies the geometric constraint,
thereby fundamentally influencing the robot gait. The rich
dynamics exhibited by the robot is the result of an interplay
between the continuous and the algebraic parts of its govern-
ing equations.

3.1. Analytical Approach versus Simulation

Although the robot has a simple kinematics, the hybrid na-
ture of the governing equations makes it impossible to utilize
the traditional tools (such as the automatic detection of limit
cycles [Parker and Chua 1989]) developed to aid the study of
nonlinear systems.

There are several approaches that we can adopt in this sit-
uation. One approach, which was taken by McGeer (1990)
among others, is to linearize the swing-stage equations of the
robot about an equilibrium state, making it possible to explic-
itly integrate these equations. Next, the transition equations
are concatenated and the conditions for the existence of a
periodic solution of this coupled system is found. To study
the stability of this periodic solution, a second linearization
about the periodic solution is necessary. The problem with
this approach is that the linear solution is valid only within a
narrow region around the point of linearization, which is typ-
ically the stationary vertical configuration of the robot. For
any real gait, and especially for higher values of the parame-
ters, the robot significantly deviates from this point. We will
show that this makes the prediction of the long-term system
behavior impossible.

A second approach, adopted in the recent work of Garcia
et al. (1998) and in a few studies of monopod robots (Vakakis
and Burdick 1990; Ostrowski and Burdick 1993; Frangois
1996), is to simplify the model of the robot so that some
analytical insight into the simplified nonlinear model is avail-
able. For example, the point-foot walker model considered by
Garcia et al. (1998) may be obtained as a special case of
our more general model by setting "'l”—H = % — 0 and
5= % — 0. Because of this simplification, the number
of robot parameters is reduced from three to one (only the
ground slope ¢), which is useful for graphical visualization
and analytical probing. Also it is sometimes possible to ob-
tain an explicit expression for the Poincaré map of the robot.
Although this is an attractive approach, the extension of the
results to more complex models is not obvious.

In this study, we have thus decided to preserve the full
nonlinear equations of the robot. The disadvantage in this
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approach is that our exploration must rely to a large extent on
numerical simulations. However, the computational burden
is manageable, as the robot model has a relatively small state-
space dimension and we can focus our study on only one
leg of the robot (since the legs are identical, they will have
qualitatively identical dynamics). Furthermore, our results
can be used to characterize the domain of applicability of
linear and simplified nonlinear models.

3.2. A Typical Limit Cycle

To visualize the entire dynamics of the robot over a gait cycle,
itis useful to represent the dynamics by means of phase-space
trajectories. In phase space, steady robot gaits are seen as
stable limit cycles, and the geometric features of the cycles
are characteristic of the particular gait (Goswami, Espiau, and
Keramane 1997; Thuilot, Goswami, and Espiau 1997).
Figure 2 presents the sketch of a phase-space-limit cycle
of a symmetric gait of the robot on a 3° slope. The sketch is
obtained by plotting the angular position and velocity of only
one leg. Thus, this is a 2-D projection of the limit cycle of
the entire robot, which is in a 4-D space. For ease of compre-
hension, we have indicated in the figure the time instants of
some of the important events during the cycle along with the
corresponding stick diagrams of the robot. Let us follow the
phase trajectory at the instant marked I, corresponding to time
t = 0%, when the rear leg just loses contact with the ground
(i.e., it becomes the swing leg). The corresponding stick di-
agram shows a black dot on the front foot to imply ground
contact. The phase trajectory evolves in the clockwise sense
in this diagram, as shown by the arrowheads. While crossing
the velocity axis (at a positive velocity), the biped is in the
vertical configuration. Instant II correspondstotimet =T,
when the swing leg is about to touch the ground. The impact
between the swing foot and the ground occurs at ¢t = T. We
observe a velocity jump from II—III due to this impact. The
upper half of the cycle (I—II) depicts the swing leg suspended
as asimple pendulum from a moving point (hip). Atinstant III
(t = T), the swing leg becomes the support leg and executes
the lower half of the phase-plane diagram (III—1IV). This half
of the phase portrait corresponds to the motion of the support
leg “hinged” at the point of support as an inverted simple pen-
dulum. The velocity jump of the current leg (the nonsupport
leg of instant I) observed between instants IV and I is due
to the impact of the other leg with the ground. The cyclic
trajectory is a limit cycle, and for stable gaits it attracts and
absorbs all nearby trajectories that enter its attraction basin.

3.3. Orbital Stability of the Bipedal Gait

Since we often refer to “stability” of the bipedal gait, it is
helpful to have a precise definition of the term. We consider
the notion of orbital stability to be the most appropriate in
the context of biped robot dynamics. Qualitatively speaking,
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Ooted leg

A

Fig. 2. A phase portrait of a symmetric walk. This figure
corresponds to only one leg of the biped robot, its actual phase
space being of a higher dimension. One cycle in the figure
corresponds to two steps of the robot. In the figure, we have
indicated some of the time stamps that are important in the
dynamic evolution of the biped. On the outside of the cyclic
portrait, the configuration of the biped has been shown with
small stick diagrams. In these diagrams, one leg is dotted,
the other leg is solid; a black dot at the foot indicates the
supporting leg.

a system is orbitally stable if, starting from a steady closed-
phase trajectory, any finite disturbance leads to another nearby
trajectory of similar shape (Hurmuzlu and Moskowitz 1987).
Adapting from Hayashi (1985), we can present this definition
in a more mathematical framework. In the phase space of
an autonomous system, the phase trajectory C is said to be
orbitally stable if given ¢ > 0, there is § > 0 such that, if
R’ is a representative point (on another trajectory C') that is
within a distance 8 of C at time ty, then R’ remains within a
distance € of C for t > 0. If no such § exists, C is orbitally
unstable. Analogous to the definition of asymptotic stability
in the sense of Lyapunov, we may say that if the trajectory C
is orbitally stable, and in addition, the distance between R’
and C tends to zero as time goes to infinity, the trajectory C
is asymptotically orbitally stable.

The concept of orbital stability is less common in the
robotics literature. Orbital stability requires that the trajec-
tories C and C’ remain near each other, whereas Lyapunov
stability of the solution ¢(¢) requires that, in addition, the
representative points R and R’ (on C and C’, respectively)
should remain close to each other, if they were close to each
other initially. Orbital stability does not require that perturbed
trajectories “remain in step.”

For a general nonlinear system, the analytical demonstra-
tion of the existence of a limit cycle, its local orbital stability,
and the analytical procedure to find it still remain a challenge.
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However, it is possible to test the local stability of a limit
cycle, once it is found. One method to determine the sta-
bility of the robot gait is through the numerical computation
of its Poincaré map McGeer 1990; Goswami, Espiau, and
Keramane 1996). Limit cycles are fixed points of this map,
which in the context of biped locomotion, was named the
“stride function” (McGeer 1990). Essentially, the procedure
consists of injecting small perturbations to the robot states
around the limit cycle and calculating the eigenvalues of the
sensitivity matrix. For an orbitally stable cycle, the eigenval-
ues lie within the unit circle; that is, their moduli are strictly
less than one.

It has already been demonstrated theoretically (McGeer
1990; Garcia et al. 1998) that a passive biped robot walking
on an inclined slope can exhibit stable limit cycles. A vi-
sual inspection of the gaits of the physical models constructed
by McGeer (1990) appeared to have the quality of stability.
Based on the results of their numerical simulations, Goswami,
Espiau, and Keramane (1996) reported that a given robot ap-
pears, interestingly, to exhibit one and only one stable gait on
a given slope. Depending on the values of the robot parame-
ters ¢, B, and u, the gait is symmetric or asymmetric. Garcia
and colleagues (1998) analytically showed the existence of
one stable and one unstable cycle for their point-foot walker
walking on small slopes. The current paper focuses on the
stable cycles only, which represent viable passive gaits.

3.4. Orbital Stability Implies Contraction of “Phase Fluid”

A necessary condition for the existence of a stable limit cycle
can be obtained by studying the evolution of a small phase-
space volume element. The complete state of a dynamic sys-
tem at a certain instant is represented by a point in the phase
space of the system. The effect of the perturbations on the
system at this state is closely related to the behavior of the so-
called phase fluid (Lanczos 1986) around that point. As the
dynamic system evolves in the course of time, a small-volume
element around the system state, representing the possible per-
turbed states, can be imagined to move around it in the phase
space. An elegant mathematical treatment culminating in Li-
ouville’s theorem finds that a small-volume element! of the
phase space of a Hamiltonian system behaves like an incom-
pressible fluid. Since the Hamiltonian of a frictionless system
is constant, it can be shown that the divergence of its phase
fluid is zero (Hilborn 1994). In other words, the phase-space
volume element may change its shape depending on the dy-
namics of the particular system, keeping its volume constant
all along.

A dissipative system, however, does not obey Liouville’s
theorem, and for such systems the phase-space volume el-
ement gradually contracts as it moves. The existence of a
stable limit cycle in a dynamical system is associated with

1. A “hyper” volume element in higher-dimensional systems.

such volume contraction. This makes intuitive sense, as we
know that a volume element in the attraction basin eventually
converges to the limit cycle which, being a one-dimensional
entity, has zero volume. The presence of dissipative elements
in a system favors the existence of a stable limit cycle, but
does not guarantee it in any way. However, the presence of a
limit cycle in a system attests to some form of dissipation.

Since the existence of stable limit cycles for the compass-
gait biped has already been demonstrated, the system must
be dissipating energy. As the swing stage of the robot is
a Hamiltonian system, the dissipation must come from the
impact equations. The phase-space volume contraction and
the strong stabilizing effect of the transition equations was
pointed out by Hurmuzlu and Moskowitz (1987), and was
confirmed by Goswami, Espiau, and Keramane (1996) and
Garcia et al. (1998). In the following, we focus on the char-
acteristics of the impact equations, and compute the volume
contraction effected by this.

Letg* be the state vector of the robot just before the tran-
sition. We consider a parallelepiped $~ based at the vertex
g* (with edge vectors &;ij, je(1,... 4}, With £; small scalars
and i ; the jth column of identity matrix I4). We would like
to calculate the change in volume of this parallelepiped (i.e.,
the “volume” of the ensemble of states just before collision)
due to transition. When ¢*  is perturbed by an amount 8¢,
a first-order approximation of the state vector just after tran-
sition is

—
¢t +8qT =Wt g* +8¢7) + W@e™ Sa.
o a=a*

)]

Equation (9) can be written in a compact form as
sgt =Wi(g*)sq™, (10)

with
J 0
Wi(g*) = aH(zl (9,,}—9;))6*_ H(a*)
29 00"

11

In view of equation (11), a first-order approximation to the
“image” of &~ through the transition matrix is the polyhe-
dra P*, whose edge vectors starting from q*+ are £;wy, j,
jell.... .4, where wy j is the jth column of matrix W1(g*™).
Since the volume of an n-dimensional parallelepiped is given
by the determinant of the matrix whose columns are its n-
edge vectors (Koditschek and Biihler 1991; Heckbert 1994),
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the volumes of #~ and Pt are, respectively,

4
volume(#P ™) = l—[ £
= (12)
4
volume(PT) = ]—[sj .det(Wi(g* " ))|.
j=1

Therefore, a first-order approximation to the change in phase-
space volume during the transition stage of a steady gait is,
using egs. (11) and (12),

volumet

— = |det(H(a"))I. (13)
volume
The determinant can be computed as
| det(H ()] = |det((@* (@*))™") det(@~ (@*))
1 (14)

1+ A+ B)2u + 1 — cos2a®)]’

Since u, B, and 1 — cos?(2a*) are always positive,
| det(H (e*))| < 1, which indicates that phase-space volumes
are always contracted.

It is important to recall that contraction does not imply
stability. For example, the volume of a parallelepiped all
of whose sides except one are contracted by a factor of two
during each transition, while the last side is doubled, will
vanish eventually. However the parallelepiped consists of
diverging points, and will not represent a stable gait.

For a stable limit cycle, the rate of contraction describes
how fast the neighboring trajectories converge. For the
robot model with 4 = 2, 8 = 1, and &* = 15°, we get
det(H (a*)) = 0.1. Thus, we can say that locally, the phase-
space volumes are contracted by a factor of 10, indicating that
the limit cycle is strongly attractive.

Finally, let us present two graphical visualizations show-
ing the effect of H(x) as a mapping between the pre-impact
and post-impact joint velocities. In Figure 3, we show
this mapping in the three-dimensional space of joint veloc-
ities 05, 0,5, and the interleg angle 2«r. The wire frame par-
allelepiped region shown in the figure represents the ensemble
of pre-impact robot states with both joint velocities varying
from —100°/sec to + 100°/sec, and the interleg angle varying
from 0° to 80°. We took horizontal (constant interleg angle)
slices of this parallelepiped and mapped them through H («).
The mapped quadrilateral regions were stacked one above
another, and the stack was superposed on the pre-impact par-
allelepiped for direct comparison. By comparing the size of
a cross-section of the parallelepiped and the size of any of
the mapped quadrilaterals in the figure, we can clearly see
the contraction of the space. Also the figure shows the twist
produced in the space by the mapping.

1289

20+

half-interleg angle, af®)

o
L

-100

Fig. 3. The characteristics of the mapping through the ma-
trix H (o), demonstrated graphically. The wire-frame paral-
lelepiped represents an ensemble of pre-impact robot states
(joint velocities é; ,6":;, and interleg angle 2«¢). We have
taken horizontal (constant interleg angle) slices of this par-
allelepiped and mapped these square regions through H (&)
to obtain quadrilateral regions of post-impact robot states
6;+, 6;5. The quadrilaterals at their respective horizontal po-
sitions (their 2« values) were then stacked one above another
and the entire stack was superposed on the pre-impact par-
allelepiped for direct comparison of their sizes. The corre-
sponding vertices of the quadrilaterals for each horizontal po-
sition are connected by a line (four lines for four vertices)
to show the twist produced by the mapping. A pre-impact
square cross section is mapped to a post-impact quadrilateral
of much smaller area, illustrating the phase-fluid contraction.

Another way to investigate the behavior of the matrix H (o)
is to observe the evolution of its eigenvalues as the robot pa-
rameters continuously change. In Figure 4a, we show the
moduli of the two eigenvalues of H («) as functions of the in-
terleg angle 2« (varying from 0° to 80°) and B8 (varying from
0.8 to 10). Figure 4b is identical to Figure 4a, except that
here 2« and p are the variables, with y varying between 0.3
to 10. In both of the figures, a typical curve has three separate
zones. In the first zone, corresponding to small values 2a,
the eigenvalues are real and distinct and their evolution with
respect to 2« is given by two separate lines. As the eigenval-
ues become complex conjugates, these two lines merge and
begin the second zone. At the end of the second zone, the
lines separate out, reflecting that the eigenvalues have again
become real and distinct. This is the third zone. The relative
sizes of the zones depend on the parameters p and .

Recalling that the determinant of a matrix is equal to the
product of its eigenvalues, we can immediately notice the
phase-fluid contraction caused by H (r) by reading from the
plots the moduli of the two eigenvalues for any given 2. One
curious thing happens for small values of 8; as the value of o
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Fig. 4. The moduli of the eigenvalues of the transition matrix
H(«) are shown as functions of the parameters 8 (a) and
i (b). In both the figures, the vertical axis represents the
eigenvalue moduli, and the horizontal axis is the interleg angle
2a. The volume contraction of phase fluid is proportional to
the determinant of H (x), which is equal to the product of
its two eigenvalues. For any 2«, we can visually infer the
contraction by reading the moduli of the two eigenvalues from
the plots.

is increased, the modulus of the larger of the two eigenvalues
increases rapidly. When g = 0.8 and 2« = 80, the larger
eigenvalue modulus reaches 1.2, and continues to increase if
we go on decreasing B8; for instance, when 8 = 0.01 and
2« = 80, it reaches 97.69. However, the determinant of the
matrix is always less than unity, thereby guaranteeing volume
contraction.

4. The Influence of Robot Parameters on the Gait

This section presents the effects of continuous change of the
parameters ¢, i, and 8 on the gait of our compass-like biped
robot. First, we discuss the limitations of a linear model in
predicting the robot’s long-term behavior. Next, we point out
the general features of the symmetric gaits of the robot—this
section mainly consists of a graphical presentation. When one
of the parameters exceeds a certain limiting value, we observe
bifurcation of the dynamics, which we discuss subsequently.
Finally, we focus on the features of chaotic behavior of the
robot gait, and calculate the fractal dimension of the strange
attractor to which the phase-space trajectory collapses. Since,
to our knowledge, there is no analytical method of studying
the long-term global behavior of such full-fledged nonlinear
and hybrid systems, we adopt numerical techniques for this
purpose.

Let us provide certain specifications for the numerical
tools that we use. All the simulations presented in this ar-
ticle have been performed using the software Scilab 2.2 de-
veloped by INRIA (1997). We have used the routine ode,
the initial-value problem solver with a dedicated stopping-
time algorithm. In the background, ode uses the routine
lsodar, the well-known Livermore solver for ordinary dif-
ferential equations, with automatic method switching for stiff
and nonstiff problems, and with root finding. The algorithm
is guided by two error-threshold parameters called rtol and
atol, the relative and absolute estimated error parameters,
respectively. The estimated error in each state is bounded by
rtol xabs(state_variable (i))+0.01 xatol. For our simula-
tions, we set rtol = 1.d-5and atol = 1.d-7. The
particular advantage of this algorithm is that the user is not
required to determine if the problem is stiff or nonstiff, as the
algorithm decides it automatically and switches to the correct
mode. The arithmetic precision of the algorithm is 1.d-18.

The stopping-time algorithm plays an important role in our
simulation. It is employed to precisely detect the contact of
the swing leg with the ground. The algorithm is a nonlinear
root finder that finds only those roots for which some func-
tion, which in our case is the distance between the robot leg
and the ground, changes sign in the interval of integration.
When a root is found, it is located only to within an error
of hmin = 100*uround*max (abs (x0),abs(xl)),
where uround is the unit roundoff of the machine, and x0
and x1 are the endpoints of the interval where roots are sought.
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The contact between the robot and the ground is detected with
a typical precision of 1.d-17 m.

4.1. Limitations of the Linear Model

One of the most important pieces of information necessary for
such numerical techniques is the size of the basin of attraction
of the stable limit cycle. If the initial states of the robot are
within the basin of attraction, they will eventually converge to
the limit cycle. To guess such initial conditions, we have tried
using the initial states calculated from the analytical solution
of the linearized robot model (Goswami, Thuilot, and Espiau
1996). Similar to the method proposed by McGeer (1990), we
linearized the swing-stage equations around the equilibrium
g = 0, which represents a motionless vertical configuration
of the robot. The transition equations were added and a pe-
riodicity condition of the gait was employed to analytically
obtain initial states that lie precisely on a periodic solution of
the linear model.

If nonlinearities in the equations are not too influential,
these initial states will perhaps belong to the attraction basin of
the limit cycle of the actual nonlinear model, and the solution
will eventually converge to it after the transients die down.
Our simulations showed that this approach is successful for
small ¢ and small 8. Specifically, for any p € [0.1, 10], this
method leads us to a limit cycle

for B < 4.8 when ¢ = 0.25°,
for B < 2.9 when ¢ = 1.5°,

for B < 1.5 when ¢ = 3°,
for § < 1 when ¢ = 4°.
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Interestingly enough,  does not affect the success or fail-
ure of this method.

In situations where prediction based on the linear model
failed, we chose as the initial states a state vector ¢ on the
known nonlinear limit cycle of a robot whose parameters
(¢, 1, B) were close to those of the robot under study. Given
the relatively small dimension of the state space, this method
worked satisfactorily.

4.2, Symmetric Gaits

This section is an album of plots (Figs. 5, 6, and 7) present-
ing the evolution of pertinent gait descriptors as functions of
the three parameters during the symmetric gait regime of the
robot. As opposed to a parameter that can be directly altered,
a gait descriptor is an observed (measurable or computable)
quantity that cannot be modified directly, but is indirectly in-
fluenced by the parameters. The gait descriptors that appear
the most meaningful to us for this study are the state variables
g, the half-interleg angle at touchdown «, the step period T,
the average speed of progression v, the total mechanical en-
ergy of the robot E, and the loss of mechanical energy AE
due to impact.

The evolution of the gait descriptors is presented in the
form of so-called bifurcation diagrams (Guckenheimer and

(e) (£)
Angular velocity (6, rad/s)

-0400 0279 0157 003 008 0207 0323 04%
.- =025deg, - - =15deg.  Anguls ion {8, rad|
=PIk - g=liden  Angilrposon (o )

(g}

Fig. 5. Bifurcation diagrams showing the variation of the gait
descriptors, with respect to ground slope ¢: (a) step period T';
(b) half-interleg angle &; (c) angular velocity of the supportleg
6s; (d) average speed of progression v; (¢) mechanical energy
E; (f) ratio A—EE; (g) phase-plane limit cycles for ¢ = 0.25°,
1.5°, 3°, and 4°.
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Fig. 6. Bifurcation diagrams showing the variation of the gait
descriptors with respect to mass ratio w: (a) step period T'; (b)
half-interleg angle «; (c) angular velocity of the support leg
bs; (d) average speed of progression v; (e) mechanical energy
E; (f) ratio %; (g) phase-plane limit cycles for 4 =10, 1,
and 0.1 (B8 = 1, ¢ = 3°). For (a) through (f), 8 = 1,¢ =
0.25°, 1.5°, 3°, and 4°.
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Fig. 7. Bifurcation diagrams showing the variation of the gait
descriptors with respect to the length ratio 8: (a) step pe-
riod T'; (b) half-interleg angle «; (c) angular velocity of the
support leg 6;; (d) average speed of progression v; (e) me-
chanical energy E; (f) ratio —A—EE; (g) phase-plane limit cycles
for 8 =0.1,0.7, and 1.6 (u = 2, ¢ = 3°). For (a) through to
H, p=1,¢ =0.25°1.5°3° and 4°.
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Holmes 1983; Bergé, Pomeau, and Vidal 1984; Hilborn
1994).2 Figures 5a—5f, 6a—6f, and 7a—7f present the evolution
of the gait descriptors T, «, 6; (at the beginning of a step),
v, E, and AE—E as functions, respectively, of the parameters
¢, i, and B. The results show that both the step period and
the step length of the robot increase with an increase in any
of the three parameters. The robot’s translational velocity,
however, increases with ¢ and p, but decreases with 8. The
overall behavior of the robot can be summarized qualitatively
as follows:

T L E v
When ¢ / / 7 / 7
When 1 / / / / /
When g 7 / / N N

Some interpretations are in order here. Let us consider
the evolution of total mechanical energy E of the robot in
response to parameter changes. As the ground slope ¢ in-
creases, the potential energy P E of the robot that is available
per step slightly increases. The kinetic energy K E, being
roughly proportional to |8]|2, also increases; see Figure 5c.
As a consequence, the total energy E increases, as shown in
Figure Se. An increase in 8, however, causes a net decrease
in E—see Figure 7e—and can be explained as follows. An
increase in B results in a lowering of the center of mass of
the robot, which lowers P E available per step and increases
the step period. The latter results in a decrease in the average
velocity of the robot (Fig. 7d). The increase in K E caused by
the small increase in 6; cannot compensate for the decrease
in PE, and consequently lowers E. Conversely, an increase
in u, which results in raising the center of mass of the robot,
increases E.

It is interesting to look at the effect of a parameter change
on the evolution of entire limit cycles, as shown in Figures
Sg, 6g, and 7g. In response to an increase in ¢, the limit
cycle expands along both the axes (see Fig. 5g), implying
an increase in the range of joint angle and joint velocity. The
limit cycles are compressed along the joint-velocity axis for an
increase in the parameters 1 and g (Figs. 6g and 7g). A shorter
reach of the limit cycle along the joint-velocity axis means
a smaller maximum-joint velocity, but does not necessarily
mean a slower robot. We see in Figure 6d that an increase
in u is associated with an increase in the average speed of
progression v.

Itis also interesting to note that for a given triplet (¢, 1, 8),
we have never identified more than one stable steady gait.
Moreover, except in Figures 6¢ and 6f, all the gait descrip-
tors evolve monotonically in the symmetric gait regime. This
reinforces our suspicion that for a given robot with specified

2. Discussion of bifurcation and asymmetric gaits, represented by the regions
beyond the branched sections in the bifurcation diagrams of Figures 5, 6, and
7, is postponed until the next section.
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parameters ¢ and B, the ground slope ¢ uniquely defines all
gait variables. Although we cannot claim this as a proof, the
property of monotonic evolution of the variables is neverthe-
less exploited by Goswami, Espiau, and Keramane (Espiau
and Goswami 1994; Goswami, Espiau, and Keramane 1996,
1997) in formulating control strategies for the compass. It
was observed that a scalar control law that seeks to converge
the mechanical energy of the “actively controlled” compass
to that corresponding to a known passive gait ensures, in fact,
the convergence of all the state variables of the robot.

For our nominal robot model, we have found symmetric
gaits until ¢ = 4.37°, at which point the gait bifurcates to a
two-period gait. The model studied by Garcia et al. (1998)
exhibited symmetric gaits until ¢ = 0.865°.

4.3. Period-Doubling Bifurcation

We noticed in Figures 5 and 6 that for the range of variations
of the parameters considered in this study, an increase in ¢ and
P cause a bifurcation in all the gait descriptors. Bifurcation
was also observed for higher values of u, especially when
coupled with higher values of ¢ (Fig. 7).

The occurrence of period-doubling bifurcation can be stud-
ied by means of the Poincar€ first-return map (Bergé, Pomeau,
and Vidal 1984; Hilborn 1994) constructed in the neighbor-
hood of a stable limit cycle. The eigenvalues of the Jacobian
matrix of this map are indicators of the bifurcation, For a
stable symmetric gait, the eigenvalues are within the unit cir-
cle. Modification of a parameter alters the eigenvalues, and
at the bifurcation point, at least one crosses the unit circle.
Recalling that the unit-circle crossing of the eigenvalues is
also an indication of instability in the symmetric gait, we may
say that at the bifurcation point the symmetric gait becomes
unstable. In fact, the eigenvalues of the first return map of the
stable post-bifurcation gait, which correspond to those of the
“second” return map of the pre-bifurcation symmetric gait,
will remain inside the unit circle.

The particular fashion in which an eigenvalue crosses the
unit circle determines the type of structural instability that
the system undergoes. Flip bifurcation (Troger and Steindl
1991), which is the case here, corresponds to an eigenvalue
leaving the unit circle along the real axis, with a negative real
part. Figure 8 presents the evolution of the eigenvalues of the
Jacobian of the biped’s Poincaré map as a function of ¢. All
are real, and one of them actually reaches the value —1 when
the first bifurcation point is reached at ¢ = 4.37°.

As a consequence of the period-doubling bifurcation, the
limit cycle becomes two-periodic and the robot gait becomes
asymmetric with a shorter step and a longer step. The oc-
currence of bifurcation is shown in Figures 5, 6, and 7 by
the emergence of two branches in the curves, each associated
with one of the two dissimilar steps and describing its charac-
teristic variables. Since bifurcation involves the state of the
system and since all the gait descriptors, in turn, depend on the
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125 The four real eigenvalues of first return map Jacobian
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Fig. 8. Transition from a one-period to a two-period steady
gait: behavior of the eigenvalues of the Jacobian matrix of the
robot’s Poincaré map.

robot states, the occurrence of bifurcation is simultaneously
manifested in all the gait descriptors.3

On further increasing the parameters, the robot gait may ex-
perience further period doubling, giving rise to a four-period
limit cycle. This phenomenon, repeated ad infinitum, is called
a period-doubling cascade, and is recognized as one of the
possible routes leading to chaos. Regardless of the parameter
considered, we observe that the successive period doublings
occur after progressively smaller intervals of parameter vari-
ation. This is expected in view of general results on period-
doubling cascades (Bergé, Pomeau, and Vidal 1984).

Period-doubling cascades leading to chaotic behavior have
already been observed for passive, planar, hopping robots that
possess a smaller dimension than that of the compass. “Limp-
ing gaits” (the term given to 2"-period gaits) were observed
and analyzed for hopping robots (Raibert 1986; Vakakis and
Burdick 1990; Koditschek and Biihler 1991; McCloskey and
Burdick 1991; Ostrowski and Burdick 1993; Francois 1996).

In Figure 9, we introduce a novel way of capturing the be-
havior of the biped during a period-doubling cascade ensuing
from the parameter ¢ (other parameters are kept constant at
@ = 2,8 = 1). The figure plots the first return map of 6.
For a one-period robot gait, 8, is the same in every step. This
gait is therefore represented by a point on the 45° line. As
we change the ground slope, this point moves along the 45°
line from the right-hand top corner of Figure 9, as indicated
by the arrow.

The first-period doubling occurs at ¢ = 4.37° when the
gait turns two-periodic, and is therefore represented by two
points. Just after the first bifurcation, the two representative

3. The occurrence of bifurcation may not, however, be equally prominent in all
the bifurcation diagrams, because of the effect of scaling. Thus, whereas we
can clearly see a bifurcation of the step period in Figure 5a, the corresponding
bifurcation of the mechanical energy is much less prominent in Figure 5Se.
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Fig. 9. First-return map of 2"-period steady gaits, where
n € {0,1,2,3}. In response to a variation of the ground
slope from ¢ = 4.37° to 5.03°, the robot gait undergoes three
successive bifurcations. Here we show the Poincaré map of
the nonsupport leg angle 6,,;. Until the first bifurcation occurs
at 4.37°, the map is a point on the 45° line.

points differ only slightly from that of the one-period gait from
which they originate. The two steps are therefore very similar
to the steps of the symmetric gait. On further changes in the
parameter, the two representative points move away from the
45° line along the two branches shown by dotted lines in
Figure 9. It follows that one step length is slightly longer and
the other is slightly shorter than those of the corresponding
symmetric gait. As we increase the slope, the longer step is
further elongated and the shorter step is further shortened.

This continues until a second period doubling occurs at
¢ = 4.9°, when each branch gives rise to two subbranches.
In this four-period gait, the four different steps are visited in
the same order with a long step always followed by a short
step. The last clearly identifiable bifurcation occurs when
¢ = 5.01°, as the robot gait becomes eight-periodic.

The period-doubling cascade may also be observed using
phase-plane diagrams. The phase-plane diagram for a sym-
metric gait is shown in Figure 2, which is a single-loop closed
trajectory repeated after two robot steps. During one step, the
considered leg is in the swing stage, and during the following
step, it is in the support stage. Since the gait is symmetric, the
robot legs are indistinguishable and the phase-plane cycles of
the two legs are identical.

In the case of a two-period gait, since all state variables
are identical after every two steps, the phase-plane limit cycle
associated with one leg is still a single-loop closed trajectory
repeated after two robot steps (see Fig. 10a). However, since
the gait is asymmetric, the limit cycles associated with the
legs are no longer identical.

In the case of 2"-period gaits, all the state variables repeat
themselves after every 2" steps. The phase-plane diagram as-
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Fig. 10. Phase-plane limit cycles: (a) a two-period steady gait
(¢ = 4.75°); (b) a four-period steady gait (¢ = 5°); (c) an
eight-period steady gait (¢ = 5.02°); and (d) a chaotic gait
associated with one leg, in 100 robot steps (¢ = 5.2°). For
all four plots, u =2and 8 = 1.

sociated with one leg is therefore a 2"~ 1-loop closed trajectory
repeated every 2" steps, distinguishable from the phase-plane
diagram of the other leg. A visual inspection of the phase-
plane diagrams of the four-period and the eight-period gaits
(Figs. 10b and 10c) correctly indicates that they result from
the bifurcation of the preceding two-period and four-period
gaits, respectively.

4.4. Chaotic Gaits

The chaotic gait is an extreme case of the asymmetric gait,
and is characterized by a complete disappearance of gait or-
der. During a chaotic gait on a given slope, the states, and
consequently the gait descriptors, of the biped robot never
completely repeat themselves. Chaotic gaits are represented
in the bifurcation diagrams by a continuous distribution of
points. We explicitly show them in Figures 5a and 5b, and
omit them in the other bifurcation diagrams for the sake of
clarity.

For our compass-gait robot, the eight-period gait is exhib-
ited until ¢ = 5.03°. If ¢ is further increased, several period
doublings take place very quickly; starting from ¢ = 5.04°,
we are unable to detect any periodicity in the motion of the
robot. What we mean becomes clearer from Figure 11a,
which shows 50 consecutive step periods. Although none of
these periods are exactly equal, a histogram, that is, the fre-
quency of occurrence of a small range of step periods versus
the range, reveals four major clusters; see Figure 11b. This
indicates the remnants of some order in the system.

Beyond ¢ = 5.04°, all indicators of order continue to dis-
appear. Figure 11c shows the step periods for 50 consecutive
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Fig. 11. The top two plots illustrate the 2”-period steady gait,
where n large: (a) periods of 50 consecutive steps; and b) a
histogram of the periods of 2,000 consecutive steps for ¢ =
5.04°. The bottom two plots show the chaotic gait: (c) periods
of 50 consecutive steps; and (d) a histogram of the periods of
2,000 consecutive steps for ¢ = 5.2°. For all four plots,
p=2andB=1.

steps, and Figure 11d shows a frequency histogram of 2,000
steps for ¢ = 5.2°, which is the steepest slope for which
the nominal model showed a steady gait. No order in any of
the gait descriptors can be detected at this slope. The latter
figure shows the presence of “broad-band frequency,” a key
feature of chaos. Figure 10d shows the associated phase-plane
diagram. The robot does not exhibit limit-cycle behavior any-
more, but the trajectories stay on a strange attractor, which is
a manifold of a lower dimension in the phase space.

Following Garcia et al. (1998), we show a Poincaré section
of the strange attractor in Figure 12. The hyperplane in the
phase space on which the points of repeated crossings of the
phase trajectory forms the Poincaré map is described by 8; =
—2¢ — Ons. Physically, this hyperplane corresponds to the
beginning of the swing stage. Strange attractors of dynamic
systems are generally known to possess a fractal or noninteger
dimension. We can observe that the Poincaré section consists
of multiple closed packed lines separated by empty spaces.
The attractor is therefore neither a line nor a surface, and
should have a dimension between one and two.

A numerical procedure (Bergé, Pomeau, and Vidal 1984)
was employed to compute the fractal (Hausdorff-Besicovitch)
dimension of the strange attractor* whose Poincaré section is
depicted in Figure 12. For the robot with a four-dimensional
state space, the fractal dimension of the strange attractor was
found to be 2.07. The attractor is thus dimensionally close to

4. The fractal dimension calculated by this numerical algorithm provides a
lower bound for the Hausdorff-Besicovitch dimension. It is an approximate,
but close, estimation of it.
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Fig. 12. The 3-D Poincaré section of the chaotic gait. This
section was taken along 6,; + 6; = —2¢, that is, at the begin-
ning of a swing stage (where ¢ =5.2°, u =2,and § = 1).

a Euclidean plane. This is a consequence of the strong phase-
space volume contraction, which is discussed in Section 3.4.

The gradual progression of the robot gait to the chaotic
regime is well depicted in the first return maps of G5 k41 =
S (6ns k), shown in Figure 13. When ¢ = 5.03°, the gait is
eight-periodic, and its first return map consists of eight points
(as was shown in Fig. 13a). At ¢ = 5.04°, the first return
map still consists of eight distinguishable clusters of points
(Fig. 13a). Through multiple period-doubling bifurcations,
this eight-period gait gives rise to a 2"-period gait with a
large n. This gait still preserves some similarity with the
eight-period gait from which it originates. For example, step
order is still preserved, and 6,5 always visits the eight clusters,
as shown in Figure 13a, in the same order. In this order, a large
Oy (i.e., |Bns] > .4rad)is always followed by a small 6, (i.e.,
[6ns} < .4 rad).

When ¢ = 5.08°, the eight clusters of points merge into
two larger packs; see Figure 13b. Some order is still pre-
served, since a large Oy, is still always followed by a small one.
The same property continues to hold for ¢ = 5.12°, but in
this case the first return map appears as a continuum of points
(Fig. 13c). We are therefore very close to the broad-band
frequency characteristic typical of chaotic behavior. Finally,
when ¢ = 5.2, we observe that predictability and periodic-
ity have been completely destroyed, since a large 6,5 can be
followed by another large one. The layered structure of the
strange attractor can also be guessed from the first return map.

It is extremely interesting to note that the first return maps
of all of the robot-gait descriptors look remarkably simi-
lar. For instance, the first return map of the step period T
(Fig. 14) looks like a scaled and rotated first return map of 6,5
(Fig. 13d). With this we can suggest that all of the charac-
teristics of the passive chaotic gait of our robot are somehow

© Angular positon Bndrad) at step k @ Angular posilion Bglrad) 2t siep k

Fig. 13. The first return map of 6,;: (a) the 2"-period gait,
where n is large (¢ = 5.04°); (b) 2"-period gait, where n
is very large (¢ = 5.08°); (c) the approaching chaotic gait
(¢ = 5.12°); and (d) the chaotic gait (¢ = 5.2°). For all four
plots, u =2 and 8 = 1.
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Fig. 14. The first return map of T'; a steady chaotic gait where
$=52°u=2,and g =1

ensconced in the shape of its first return map, which can be
viewed as a signature of the chaotic gait.

An important characteristic of chaotic motion is the expo-
nential divergence of nearby trajectories (Hilborn 1994). The
phase-space trajectories of our biped robot exhibit this be-
havior, and this section ends with a presentation of this fact.
Figures 15a and 15b show the divergence of trajectories initi-
ating from nearby phase-space points and continuing for 2 and
12 steps, respectively. The initial states of the two trajectories
are

g=[ —03829 02039 -0.1635 —1.1622]",

corresponding to the dashed line, and

g=[ —03819 02039 -0.1635 -1.1622 ],
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corresponding to the solid line. After just 2 steps, the differ-
ence in the trajectories is clearly identifiable; after 12 steps,
the trajectories bear no semblance to each other although they
lie on the same attractor.

5. Dampers Improve Gait Stability

Taking a cue from the connection between gait stability and
energy dissipation, we studied the effect of placing passive
damping elements in the robot’s hip joint. A significant im-
provement of the gait stability and overall gait versatility was
achieved by this without violating the “passive” status of the
robot. The damper affects a continuous dissipation of energy
in the robot in addition to the energy dissipated intermittently
during ground impact. Although even a linear damper may
increase the range of slopes on which steady gaits exist, we
obtained more encouraging results with quadratic dampers.
It is possible to consider the damper coefficient as another pa-
rameter affecting the robot gait; however, we give it a special
status here because of its obvious connection to control laws.
Indeed, the passive quadratic damper placed in the robot’s
hip joint can be easily replaced by a motor implementing the
same physical law. The damper generates a hip-joint torque
Upg X _é%[Sign(éH) = —(Ons — 9:)25ign(9n.\' = 65). )

The presence of a damper profoundly alters the passive
gait of the robot on a given slope. In Figure 16 we show
three different limit cycles of the robot on a 4° slope—one for
the damperless gait (the solid line) and the other two corre-
sponding to two different quadratic dampers (the dashed line
for 0.08 Nm/(rad/sec)?, and the innermost dotted-line cycle
for 0.15 Nm/(rad/sec)?).

A robot equipped with a damper may exhibit steady gaits
for a larger range of slopes. Fig 17 shows the steady stable
gait (asymmetric) for a 10° slope obtained with a quadratic
hip damper with a coefficient of 0.23 Nm/(rad/sec)?. For
a damperless robot, no gait cycle was found beyond a 5.2°
slope.

Figure 18 plots the robot’s kinetic energy (KE) versus
its potential energy (PE) during a few cycles on 4° slope;
Figure 18a corresponds to the damperless motion, and Fig-
ure 18b corresponds to the motion with a 0.15-Nm/rad/sec
damper. Let us concentrate on the first figure. As reported by
Goswami, Espiau, and Keramane (1996), the KE versus PE
plot of a damperless compass robot consists of two straight
lines: a constant-PE horizontal line representing the ground
impact, and an inclined line representing the swing stage. The
conservation of total mechanical energy of the robot during
the swing stage ensures that the inclined line makes a 135°
angle with the KE axis. In Figure 18a we see that the PE of
the robot decreases by a constant amount at every step. For

5. Dampers may increase the size of the limit cycle’s basin of attraction for
a given slope, but a better tool for estimating the size of the basin is needed
to prove it.
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Fig. 15. The divergence of nearby trajectories in the phase
plane of a biped robot, a phenomenon normally observed in
a system with chaotic dynamics. The initial 6,; between the
two trajectories differs by 0.001 rad, while the other three state
variables are exactly identical. Even after only two steps (a),
the difference between the trajectories (shown in solid and
dotted lines) is clearly identifiable. After 12 steps (b), the
trajectories bear no resemblance to each other although they
lie on the same attractor.
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Fig. 16. Three different limit cycles for gaits on a4° slope. The
largest (solid line) corresponds to damperless motion. The
other two cycles are obtained by placing quadratic dampers
of coefficients 0.08 Nm/(rad/sec)? (dashed line) and 0.15
Nm/(rad/sec)? (innermost dotted line) in the hip joint of the
robot.
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Fig. 17. The phase diagram of the compass robot with a passive
quadratic hip damper (with a coefficient 0.23 Nm/(rad/sec)?)
walking down a 10° slope with a steady gait.
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Fig. 18. The KE versus PE plots during steady robot gaits
on a 4° slope: (a) a damperless motion; and (b) the motion
of the robot having a 0.15-Nm/rad/sec quadratic hip damper.
The swing-stage dissipation of energy modifies the robot’s
behavior, as is visible from the second plot.

a steady gait, precisely this amount of KE is absorbed during
the ground impact.

In the presence of a damper, the situation is different. Since
the damper continuously dissipates energy during the swing
stage, the latter is no longer Hamiltonian, and is therefore
not represented by a single inclined line. It becomes a curve,
the exact nature of which depends on the robot dynamics and
the damper coefficient (see Fig. 18b). To exhibit a steady
gait, the PE lost by the robot during a step must be exactly
equal to the sum of the energy absorbed during the ground
impact and the energy absorbed by the damper during the
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Fig. 19. Three quantities are illustrated: KE, PE, and total me-
chanical energy (KE + PE) of the robot during a steady cycle
on a 4° slope. The straight line at the bottom corresponds to
a damperless robot for which (KE + PE) is constant. Intro-
ducing a damper causes a continuous dissipation of system
energy during motion, which results in a more complicated
energy diagram, given by the loop. The straight line joining
the extreme right-hand corner of the loop to its upper por-
tion represents the instantaneous energy absorption due to the
ground impact coupled with a simultaneous shift of the coor-
dinate frame to reinitialize potential energy.

swing stage. The ground-impact phase remains unchanged,
and is represented by a horizontal line.

In Figure 19, we visualize the differences in the energy
dynamics for the gaits of a robot with and without a damper.
The figure plots KE versus PE versus (KE + PE) during one
gait cycle. The value of the PE in this case is reinitialized at
each touchdown such that for a steady gait it is a cyclic quan-
tity and is not monotonically decreasing. For a robot without
any damper, the total energy (KE + PE) is constant during
the swing stage and is thus represented by the horizontal line
shown at the bottom of this figure. In a cyclic gait, the robot
repeatedly traces this line. With a damper dissipating energy,
the quantity (KE + PE) continuously changes during the mo-
tion of the robot, and is shown by the superposed closed curve.
The straight line joining the extreme right-hand corner of the
curve to its upper portion represents the instantaneous kinetic
energy absorption due to the ground impact coupled with a
simultaneous shift of the coordinate frame to reinitialize the
potential energy. In fact, one cycle of each of the plots in Fig-
ure 18 is the horizontal projection of Figure 19 (the straight
line and the loop).

We conclude this section with a few comments. It is useful
to recall that the addition of linear or quadratic dampers does
not alter the passive status of the robot. We can extend the
repertoire of passive elements by adding passive springs to
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the robot’s joints. Compared to natural human locomotion,
the passive elements may resemble the inherent damping and
compliance of human joints.

The passive elements can be easily imitated by a control
law in an active robot. It will be interesting to incorporate
control laws based on active physical elements (such as neg-
ative dampers and negative springs) and see if the robot can
climb uphill. A control law for the uphill walk of the robot
was presented by Goswami, Espiau, and Keramane (1997).

Our results apparently contradict the findings of McGeer
(1990), which reported that even a small amount of friction
(by which damping was meant) in the hip joint can destroy
the cycle. We have found that the original cycle is modified
to another cycle rather than being destroyed.

Finally, let us mention that the addition of a quadratic
damper (ns)? dramatically influences the robot’s behav-
ior. With this damper in action, the robot can possess ex-
tremely large limit-cycle attraction basins and can deal with
steep slopes (we have found steady gaits up to 20°) that are
impossible otherwise. The implications of this are unclear,
and the implementation of such a damper (either passively or
actively) is, at least, not straightforward.

6. Conclusions and Future Work

We have made a systematic study of the passive gait of a planar
biped robot with compass-like motion. We have shown that
any of the three parameters, namely, the ground slope and the
normalized mass and length of the robot, affect the robot gait
in the same qualitative manner. As we gradually increase one
of the parameters, the symmetric and steady stable gaits of
the unpowered robot evolve through a regime of bifurcations
characterized by progressively more complicated asymmetric
gaits, eventually arriving at an apparently chaotic gait where
no two steps are identical.

Although it could not predict the long-term behavior of
the robot, the linear model helped us make guesses about the
initial states of the robot that lie in the basin of attraction
of a limit cycle corresponding to the slope. We found that
the linear model was valid for small 8 and small w. It was
interesting to note that the validity of the linear solution was
not a function of the third parameter, u.

The asymptotic stability of a dynamic system must be ac-
companied by a reduction of the phase-fluid volume, and the
only source of volume contraction in this idealized friction-
less robot was the transition equations. We have measured the
phase-fluid volume contraction that quantifies the rate of con-
vergence of nearby trajectories. A typical contraction ratio
was calculated to be 0.1, showing strong contraction.

Presence of a passive damper in the hip joint (the only real
joint) of the robot significantly increases gait stability and
versatility. Although even a linear damper has a beneficial
influence, we chose to present the results based on quadratic
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dampers for their better performance. With the other three
parameters constant, different dampers produce different gait
cycles. Note that our results apparently contradict the findings
of McGeer (1990) who reported that a hip damper destroys a
stable limit cycle.

Before discussing the possible extensions of this work, let
us mention two interesting facts regarding the behavior of the
robot. First, we have found that the robot can accept, without
falling down, a much larger perturbation of the velocity states
than the position states. For example, for the gait on a 3° slope,
the state 6,,; could absorb a perturbation of more that 100°/sec,
whereas a perturbation of even 2° of the state 6, takes the
states out of the attraction basin. The same phenomenon was
noted by McGeer (1990). Interestingly, we have noticed sim-
ilar behavior for a different system with impacting elements
(Mata-Jimenez, Brogliato, and Goswami 1997) governed by
hybrid equations. Is this behavior common to all systems,
hybrid systems, and/or those involving impacts?

A second fact is that there is a strong indication that all the
motion descriptors of the gait of a given robot model are spec-
ified by only one parameter; namely, the ground-slope angle.
This hints toward a strong underlying organizing principle.

For the future, it is possible to place passive biped robots
in the larger perspective of passive machines, including not
only massive links, but also the other passive elements such as
springs and dampers. This will necessitate a systematic study
of the effect of these other elements on the purely inertial
dynamics of the robot. We can furnish three main reasons to
support this study. First, as we have already seen in this article,
additional passive elements are very promising in significantly
improving the gait stability and gait versatility. Second, we
obtain a rich source of simple active-control laws that may
mimic the physical behavior of passive elements. Third, a
better understanding of the gait itself may be obtained by
analyzing the role played by the passive elements.

The transition equations play a fundamental role in the
global dynamics of the robot. Our transition equations are
derived from the law of conservation of angular momentum,
which models the effect of ground impact on the robot. There
are other ways to address the issue. One can, for example,
create a physical spring-damper model of the ground and add
it to the robot model. In any case, the results will be reliable if
the gait features are qualitatively preserved for small changes
in the parameters of the model.

The difficulties in studying the behavior of this apparently
simple biped mechanism are, to a large part, due to its hybrid
algebro-differential governing equations. Better analytical
tools for dealing with such systems are needed. In particular,
an estimation, even numerical, of the size of the basin of
attraction of a limit cycle would be of immense value, both
from the theoretical and practical points of view.

Currently, it is difficult to extend the insights obtained with
a simple robot model to even a slightly more complex one.
Our final challenge lies in the judicious interpretation of the

results obtained for this simple biped so that we can progress
toward our objective of understanding human locomotion and
extend the results to higher degrees-of-freedom robots.
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