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The Simplest Walking Model: 
Stability, Complexity, 
and Scaling 
We demonstrate that an irreducibly simple, uncontrolled, two-dimensional, two-link 
model, vaguely resembling human legs, can walk down a shallow slope, powered 
only by gravity. This model is the simplest special case of the passive-dynamic models 
pioneered by McGeer (1990a). It has two rigid mass less legs hinged at the hip, a 
point-mass at the hip, and infinitesimal point-masses at the feet. The feet have plastic 
(no-slip, no-bounce) collisions with the slope surface, except during forward swing­
ing, when geometric interference (foot scuffing) is ignored. After nondimensionalizing 
the governing equations, the model has only one free parameter, the ramp slope y. 
This model shows stable walking modes similar to more elaborate models, but allows 
some use of analytic methods to study its dynamics. The analytic calculations find 
initial conditions and stability estimates for period-one gait limit cycles. The model 
exhibits two period-one gait cycles, one of which is stable when 0 < y < 0.015 rad. 
With increasing y, stable cycles of higher periods appear, and the walking-like 
motions apparently become chaotic through a sequence of period doublings. Scaling 
laws for the model predict that walking speed is proportional to stance angle, stance 
angle is proportional to y"'\ and that the gravitational power used is proportional 
to v"* where v is the velocity along the slope. 

1 Introduction 
How much of coordination is purely mechanics? Human mo­

tion is controlled by the neuromuscular system. But bipedal 
walking, an example of a basic human motion, might be largely 
understood as a passive mechanical process, as shown for part 
of a stride by Mochon and McMahon (1980). McGeer (1990a) 
demonstrated, by both computer simulation and physical-model 
construction, that some anthropomorphic legged mechanisms 
can exhibit stable, human like walking on a range of .shallow 
slopes with no actuation and no control (energy lost in friction 
and collisions is recovered from gravity). Unlike control-based 
models of animal locomotion, where the controller tries to force 
a motion on the system, McGeer's models' gait cycles (se­
quences of exactly repeated steps) are inherent products of the 
models' dynamics for the given parameters. 

McGeer's results with passive dynamic walking machines 
suggest that the mechanical parameters of the human body (e.g., 
lengths, mass distributions) have a greater effect on the exis­
tence and quality of gait than is generally recognized. That is, 
one needs to study mechanics, not just activation and control, 
to fully understand walking. 

To get a better sense of the role of passive dynamics, it is 
interesting, following McGeer, to study simple, purely mechani­
cal models. Here, we study what we believe is the simplest 
model that is capable of mimicking bipedal gait. This model is 
a limiting case of the straight-legged walker of McGeer 
(1990a), and also of the double-pendulum ("compass-gait") 
point-foot models being studied by Goswami et al. (1997). Our 
model has a special mass distribution that further simplifies the 
underlying mechanics and mathematics. 

Inverted double pendulum models have previously been pro­
posed as simple models of bipedal locomotion. Katoh and Mori 
(1984) used a controlled double-pendulum model to build a 
walking robot. Their controller was based on the idea of finding 
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and operating at a stable limit cycle. Hurmuzlu and Moskowitz 
(1986) found that in a similar, controlled double-pendulum 
model, ground impacts were a major contributor to dynamic 
walking stability, presumably because of the sudden reduction 
of volume in phase space they cause. 

Alexander (1995) reviews several cases where simple models 
give greater insight into human motion than more complicated 
models. In the spirit of Alexander, we study the simplest walker 
with the hope that it adds some insight into bipedal locomotion. 

2 The Model 
A drawing of our point-foot model is shown in Fig. 1. It has 

two rigid legs connected by a frictionless hinge at the hip. The 
only mass is at the hip and the feet. The hip mass M is much 
larger than the foot mass m (M > m) so that the motion of a 
swinging foot does not affect the motion of the hip. This linked 
mechanism moves on a rigid ramp of slope y. When a foot hits 
the ground (ramp surface) at heelstrike, it has a plastic (no-
slip, no-bounce) collision and its velocity jumps to zero. That 
foot remains on the ground, acting like a hinge, until the swing­
ing foot reaches heelstrike. During walking, only one foot is in 
contact with the ground at any time; double support occurs 
instantaneously. Our model is a simplified version of the two-
dimensional straight-legged walker with more general mass dis­
tribution of McGeer (1990a), which has round feet, and of 
Goswami et al. (1996a), which, hke ours, has point-feet. Our 
model is also closely related to Alexander's "minimal biped" 
(Alexander, 1995), which has strictly massless, and thus nonde-
terministic, swing legs. By adding miniscule feet, we make the 
minimal biped deterministic. 

The model's motion is governed by the laws of classical rigid-
body mechanics. Following McGeer, we make the nonphysical 
assumption that the swing foot can briefly pass through the ramp 
surface when the stance leg is near vertical. This concession is 
made to avoid the inevitable scuffing problems of straight-
legged walkers. In physical models, one can attempt to avoid 
foot-scuffing by adding some combination of complications 
such as powered ankles, as done by McGeer (1990a), passive 
knees, as done by McGeer (1990b) and Garcia et al. (1997), 
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Fig. 1 A typical passive wailting step. Tlie new stance leg (lighter line) 
has just made contact with the ramp in the upper left picture. The swing 
leg (heavier line) swings until the next heelstrike (bottom right picture). 
The top-center picture gives a description of the variables and parame­
ters that we use. e Is the angle of the stance leg with respect to the 
slope normal. 4> is the angle between the stance leg and the swing leg. 
M Is the hip mass, and m is the foot mass. / is the leg length, y is the 
ramp slope, and g is the acceleration due to gravity. Leg lines are drawn 
with different weights to match the plot of Fig. 2. 

or side-to-side rocking, as done by various walking toys, for 
example those of Mahan (US Patent Nos. RE13696, 1007218), 
Fallis (US Patent No. 376588), and Coleman and Ruina 
(1997), or the hip-cam walker of Lattanzio et al. (1992). 

3 The Walking Map 

3.1 Outline of Procedure. The general procedure for the 
design and study of these models is based on interpreting a step 
as a Poincare map, or, as McGeer termed it, a ' 'stride function." 
Gait limit cycles are fixed points of this function. In this nonlin­
ear-dynamics approach, one way to evaluate the stability of a 
gait cycle is to use the eigenvalues of the linearized map at the 
fixed point. Readers not familiar with this approach can refer 
to Appendix A.l for a summary of the necessary dynamics 
language. 

3.2 Equations of Motion for the Swing Phase. The 
two coupled second-order differential equations of motion 
are given below for the swing phase of the motion, where P 
= mIM and 6, </> are functions of time t. These two equations 
represent angular momentum balance about the foot (for the 
whole mechanism) and about the hip (for the swing leg), 
respectively. 

+ 2^(1 - cos<^) 

^{1 - cos(j>) 

-/3(1 - cos<^) 

-/3sin0(<^' - 1&4>) 

i/3gl l)[sm(9-<l>-y)-sm(9-y)]- g/l sin (6 - y) 

(0g/l)sm(ie-<t>-y) 

These are the equations of motion for a simple double pendu­
lum. We will study the special case where the ' 'foot'' is much 
smaller than the "body," because of its conceptual simplicity, 
and because human feet are small compared to the rest of the 
body. Setting /? = 0 (the limit as hip mass dominates foot mass) 
in the first equation of motion and dividing through by /3 in the 

second yields the two simpler equations we use (Eq. (1) and 
a trig identity are used to simplify Eq. (2) also): 

e(t) - sin (9(t) - y) = 0 (1) 

d{t) - 4){t) + 6»(f)'sin <^(0 

- cos (e(t) - y) sin (/>(0 = 0 (2) 

In Eqs. (1) and (2), we have rescaled time by yl/g. Equation 
(1) describes an inverted simple pendulum (the stance leg), 
which is not affected by the motion of the swing leg. Equation 
(2) describes the swing leg as a simple pendulum whose support 
(at the hip) moves through an arc. Note that there is only one 
free parameter in Eqs. (1) and (2): the ramp slope y. (This 
parameter could also be removed from Eqs. (1) and (2) by 
replacing 6 — y with 6, but only at the expense of including y 
in the heelstrike equations below.) 

3.3 Transition Rule at Heelstrike Collision. Simulating 
the walker's motion consists of integrating equations of motion, 
Eqs. (1) and (2), and applying a transition rule when the swing 
foot hits the ground at heelstrike. The collision occurs when 
the geometric collision condition 

<^(0 - 26(1) = 0 (3) 

is met. Equation (3) describes the values of cj) and 9 for which 
the swing foot is coincident with the ramp surface. We also 
impose the additional condition that the stance leg be suffi­
ciently past vertical (Eq. (3) is also true at least once when the 
legs are nearly parallel, but we ignore scuffing and let the swing 
leg swing through without collision). 

At heelstrike, there is an impulse at the swing foot contact 
point. We assume, self-consistently, that the former stance leg 
(the new swing leg) has no impulsive reaction with the ground 
it is leaving. Neglecting non-impulsive forces at heelstrike, an­
gular momentum is conserved through the collision for, (a) the 
whole mechanism about the swing foot contact point, and (b) 
the former stance leg (as it becomes the new swing leg) about 
the hip. The heelstrike angular momentum conservation rela­
tions give the following "jump" equation (for /3 = 0) , where 
the "-I-" superscript means "just after heelstrike," and the 
" - " superscript means "just before heelstrike." 

- 1 0 0 0 
0 cos 28 0 0 

- 2 0 0 0 
0 cos 2(9(1 - cos26») 0 0 

4> 
i4>. 

(4) 

Equation (4) also reflects a change of names for the two legs. 
The swing leg becomes the stance leg, and vice versa. 

Our Poincare section is at the start of a step, just after heel­
strike. The Poincare map f is from one section to the next 
section. That is, given the state of the system just after a heel­
strike, the map f determines the state just after the next heel­
strike, as defined by the solutions of governing ODEs (1) and 
(2) followed by the jump condition (4), denoted by h. Note 
that the rank of h in Eq. (4) is only 2, so the transition rule 
reduces this problem in four-dimensional state space to a two-
dimensional map f. The swing leg angle and rate after heel­
strike, (f) ^ and ^ ^, are determined by 6* * and 9 ̂  . The physical 
reasons for this dimension-reduction are twofold: (1) The sec­
tion is lower in dimension than the phase space; in this case 9 
and (j) are coupled by the definition of the section (Eq. (3)) . 
(2) Since the swing leg has only a point mass at the foot, it 
makes no contribution to the angular momentum of the system 
about the new contact point just before heelstrike; thus, the 
angular velocity of the swing leg before heelstrike does not 
affect the state just after heelstrike. Also, at the instant after 
heelstrike, the velocity of the newly swinging foot must point 
straight toward the hip (as a consequence of the transition rule). 
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This dimension reduction only depends on mass being concen­
trated at the hip and foot, not on the limit as mIM -> 0. 

So, while the system can have four independent initial condi­
tions, we need only to specify { ^, ^ } ^ at the start of walking 
step (' to determine fully the subsequent motion at steps ; -I- 1, 
i -I- 2, . . . so that [6,9] t+^ = f ( ( 6i, (9 } +). This reduction 
of order was a primary motivation for concentrating mass at 
the hip and feet. 

4 Analysis of the Model 

4.1 Numerical and Analytic Tools. Our primary investi­
gation tool is numerical simulation. We have checked the accu­
racy of our numerical results by verifying that calculated quanti­
ties (especially eigenvalues) do not change substantially when 
numerical tolerances are halved or doubled. Retaining numeri­
cal accuracy takes some care at very small slopes. Using a 
modified version of ODE45 in MATLAB, we specify a toler­
ance of le-12 in our numerical simulations. Collision configu­
ration converges to machine accuracy. The Jacobian J of the 
linearized map (see Appendix A.l) is calculated with perturba­
tions of size le-6. So, we expect our numeric eigenvalues to 
be accurate to at least three decimal places (this is a worst-case 
estimate). Whether or not our numerical root-finding method 
locates all gait cycles (i.e., fixed points of f ) is an issue; see 
Appendix A.l. 

We also develop an asymptotic solution for the model's be­
havior at small slopes to understand how the dynamic variables 
and the step period scale with the slope. Asymptotic methods, 
which use the "smallness" of one or more parameters or vari­
ables, are useful in the regions where numerical methods are 
troublesome. Although in practice, the analytic approach in­
volves complicated symbolic manipulation at higher orders, the 
lowest-order approximation to the map gives an equation which 
governs the existence of gait cycles, as explained below and in 
Appendix A.2. This equation from Appendix A.2, and similar 
results from McGeer (1990a), give us some confidence that we 
have not missed any period-one gait cycles. Our analytic results 
also provide reasonably accurate initial guesses for our numeri­
cal gait-cycle searches (described below), which can then be 
extended to virtually any slope using path-following techniques. 
Agreement between the asymptotic-expansion approach and the 
numerical integration at small slopes gives some evidence of 
the validity of both techniques. 

4.2 Finding Period-One Gait Cycles and Step Periods. 
To simulate the motion of the walker, we need to specify initial 
conditions { ^, 9, (̂ , <̂  ) * at the start of the step. As mentioned 
previously, only { 6, ^ } * are independent, so to locate period-
n gait cycles (fixed points of the map), we need to find initial 
conditions { 9, 9 ]* such that after n steps, the system returns 
to the same initial conditions at the start of the nth step. We 
look for a step period that corresponds to a motion where the 
two legs pivot and swing, change angular velocities at heel-
strike, and return to the same state after one or more heel strikes. 

In the analytic search for period-one gait cycles, we only deal 
with approximations of the first and second order. The main 
analytical result, derived as Eq. (19) in Appendix A.2, is that 
a period-one gait cycle is represented by zeros of the following 
function z(ro), where TQ is a first-order approximation of the 
swing period T. A similar function was derived by McGeer 
(1990a) in his analysis of a "synthetic wheel": 

Z(TO) = (1 + exp To) sin To 

+ 3(expTo - 1)(1 + cos To) = 0 (5) 

Following McGeer, we refer to the first two nonzero solutions 
to this equation as "short period" (TO = TT) and "long period" 
(TO f» 3.8121) gait cycles, respectively; these values are consis­
tent with the numerical observations of McGeer (1990a) (our 

values are the limiting cases of the step period as y -^ 0) . 
Since we can only solve for the long-period roots of Eq. (5) 
numerically, we will express our analytic solutions in decimal 
form. More complicated models may have parameters in their 
version of Eq. (5), and thus even the existence of gait cycles 
for other models may depend on parameter values. Note that 
to lowest order (in -y), the step period is constant, for small y. 
That is, the step period T does not change substantially with y. 

There are, in fact, infinitely many solution pairs to Eq. (5) 
at 2w TT -f- To, « = 1, 2, . . . . These larger-period roots of Eq. 
(5) are probably not of much practical interest in studies of 
sober walking, since they correspond to multiple oscillations of 
the swing leg between heelstrikes. Because we are only inter­
ested in reasonably anthropomorphic gaits (within the limita­
tions of our model), we will restrict our attention to solutions 
that have TO < Iv. 

4.3 Gait Cycle Stability. Once we find a gait cycle (spe­
cifically, a period-one gait cycle), we would like to characterize 
it as stable or unstable. The eigenvalues of the Jacobian J of 
the step-to-step map f govern the stability of the cycle. If all 
eigenvalues are within the unit circle, then the gait cycle is 
(asymptotically) stable. If one or more eigenvalues are outside 
the unit circle, then the gait is unstable. 

In the numerical approach, we find the Jacobian by perturbing 
the initial conditions in a small neighborhood of the fixed point. 
We then numerically calculate the eigenvalues for that Jacobian. 
We also used an analytic procedure to find an asymptotic ap­
proximation to period-one gait cycle eigenvalues, retaining 
terms up to ©(y^'-*). This procedure is described by Coleman 
et al. (1997) in their analysis of a rimless spoked wheel; a brief 
summary is given in Appendix A.3. 

5 Results and Discussion 

5.1 Typical Period-One Gait Cycles. We can find stable 
period-one gait cycles for slopes of 0 < 7 < 0.0151. A typical 
plot of 9 and </> over one step is shown in Fig. 2 for 7 = 0.009. 

Figure 3 shows a comparison between analytically approxi­
mated (to ('){y)) and numerically found stance angles at the 
short and long period-one gaits, plotted as a function of y. We 
expect, and find, that for this model, the fixed point must ap-

Y= 0.009 rad 

heelstrike 

Fig. 2 Leg angles versus time over one step at a long-period gait cycle. 
At a gait cycle, heelstrike returns the system to its initial conditions. A 
perturbation analysis (Appendix A.2) predicts 0* «̂  C,y"' + C2y, where 
0* is the stance angle at a fixed point. The first term of the perturbation 
solution also predicts that i|> = 0 just before and after heelstrike, and 
that the graph should have the time reversal symmetry (the graph looks 
the same when rotated 180 deg). 
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CD 

I 0,2 

"0 .05 

Stable period-1 gait; 
by numerical prediction 
(heavy line) 

long period 
solutions ^ ^ 

stable higher-period 
solutions (inset box, figure 6) 

— analytic approx. 
X numerical points 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.036 0.04 0.045 
slope Y rad 

Fig. 3 Comparison of numerical and analytic predictions for point-foot 
stance angle at fixed point as a function of slope. The short-period ana­
lytic solution Is 0* w 0.943976y" - 0.264561 r- The long-period analytic 
solution is 0* » 0.970956-y"' - 0.270837'y, where 6* is the stance angle 
at a fixed point. The inset box Is shown expanded In Fig. 6. 

proach the inverted static solution as -y ^ 0. The key scaling 
result, verified by numerical and analytical approaches, is that 
(to first order in y"^ ) at a fixed point, the stance angle 9 is 
proportional to the one-third power of the slope y, and that the 
step period is approximately constant: 

y 

To 

(6) 

(7) 

This scaling result can also be argued as follows. The period 
of motion r is approximately independent of -y, for small y. 
Speeds thus scale with the stance angle 6*. The angle by which 
the hip mass is deflected at heelstrike is 2d*. Angular momen­
tum balance results in a heelstrike energy loss proportional to 
0*^(1 — cos^{6*)). Expanding cos (6*) gives an energy loss 
per step proportional to ^**. The available gravitational poten­
tial energy per step is proportional to y6*. Equating available 
potential energy with lost kinetic energy yields y « 6*^, or 
0* oc y " \ Similar arguments are made by Alexander (1991, 
1995). 

A careful numerical analysis predicts a region of stable pe­
riod-one gait for slopes less than about y = 0.0151. The analytic 
approach is inaccurate in estimating the critical slope as about 
0.024. In contrast, the agreement between numerical and pertur­
bation-analysis approaches is much better for the short-period 
gait. Analytic and numerical eigenvalue estimates are shown in 
Fig. 4. 

Presumably, a higher-order perturbation analysis would yield 
results that matched the numerics for both gaits more closely 
at higher slopes. Note that the eigenvalues of the long-period 

Short Period Gait Long Period Gait 

•5 - n 
i 

0.005 0.01 0.015 0.02 0.025 0,03 0,035 0,04 
slope Y, rad 

0.9 
0,8 

. 0-7 
0.6 
0.5 

"\ 

Enlarged Detail x 

'"•--. 
^---^ > - H 

^.--'-•^ _ - « - - " 
1e,4 2e 

. . . . . , . » > . 

^̂ ^ 
" K 

" 
-4 

0,005 0,01 0,015 0,02 0,025 OOI 
GlopeY, rad 

Fig. 4 Comparison of analytic and numerical stability predictions for 
long and short period-one gait. The inset shows an expanded view of 
the numerical verification of the analytically-predicted split at y » 
0.00014 (upper left corner) for the long-period gait. 

gait merge and split within the range of slopes studied; this 
appears to affect the accuracy of the analytic eigenvalue esti­
mates adversely. 

5.2 Passive Dynamic Limping. Note the region of stable 
period-one gait in Fig. 3; this motion bifurcates into a stable 
period-two gait as the period-one eigenvalue passes through — 1 
(the other eigenvalue is small and seems to have little effect 
on the walking motions). This "limping" bifurcation was also 
found independently by Goswami et al. (1996a) for a similar 
model. 

A plot of one of these limping (period-two) solutions is 
shown in Fig. 5. Note that limping gaits arise here from symmet­
ric legs. This suggests, perhaps, that limping is a readily avail­
able natural mode of motion in human legs, even when they 
have symmetric mass distribution. Also, even slight asymmetry 
in otherwise symmetric legs would result in the loss of normal 
(period-1) gait and might introduce unexpectedly severe limp­
ing (period-2) gait. 

5.3 Period Doubling and Passive Dynamic Staggering. 
As y is varied from 0.017 to 0.019, the stable two-cycle bifur­
cates into a stable four-cycle, and so on until the stable attractor 
appears chaotic. Some period doublings were also discovered 
independently in a slightly more complicated model by Thuilot 
et al. (1997) and Goswami et al. (1996b). This "period dou­
bling route to chaos'' is shown expanded in Fig. 6. We did not 
perform any formal checks of this "chaos," except to observe 
that ratio of the distances between successive bifurcation values 
on the slope axis decreased roughly as follows: 5.9, 5.2, 4.6, 
. . . . (As discovered by Feigenbaum, the sequence of ratios is 
expected to converge to 4.669 . . . (Strogatz, 1994).) At slopes 
higher than y = 0.019, the walker falls down; we could no 
longer find persistent walking motions. The box on Fig. 3 shows 
the region where stable gaits of higher order appear. 

A plot of the chaotic attractor is shown in Fig. 7 for y = 
0.0189. In this Poincare section, each point represents the state 
of the system at the start of a step. The attractor evolves from 
gait cycles of increasingly higher period. (Following Goswami 
et al. (1996b) and Thuilot et al. (1997), and using 30,000 
points, we estimated the attractor's box-counting dimension 
(see e.g., Strogatz, 1995) to be about 1.25.) 

The chaotic attractor of the walking mechanism brings up 
some interesting ideas. One usually thinks of periodic motions 
as being somehow more desirable and beneficial, but in fact the 
primary objectives in walking are usually to move quickly, 
efficiently, and not to fall down. Simple numerical experiments 

Y= 0.017 rad: "limping" 

10 

time, {l/gY" 

Fig. 5 Several walker steps during a limping (period-two) gait. The walk­
er's legs are symmetric, but the gait is not. 
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ra 0.25 

•stable period-4 gait 

stable period-: 

stable 
period-1 
gait 

\ 

0.014 0.015 0.016 0.017 0.018 
slope Y, rad 

Fig. 6 Period doubling of stable walking motions, inset from Fig. 3. 
Unstable period-one cycles are shown for reference. Note that the line 
weights are opposite to the usual convention; dotted lines represent 
stable cycles while solid lines represent unstable ones. No persistent 
walking was found at slopes much steeper than 0.019 rads. 

seem to imply that the basin of attraction for stable chaotic 
walking is, in some ways, bigger than the basins of the periodic 
fixed points, and therefore the chaotic walking motion might 
be more robust. It also may prove useful, if control is added, 
to keep the system in a chaotic region where many different step 
length combinations are readily available for the mechanism. 

5.4 Energetic Cost of Locomotion. The simplest measure 
of passive walking efficiency is the minimum walking slope. If 
the walker could walk on level ground, it would be perfectly 
efficient, since it would require no energy for locomotion. For 
the point-foot walker, the stable gait cycles persist as the slope 
approaches level, although the gait velocity for these solutions 
also vanishes. In some sense, the dynamic solution approaches 
the static, parallel-leg solution as the ramp becomes flat. If the 
hip-mass were offset fore-aft from the legs, the gait cycles would 
approach a static solution at some nonzero slope, which depended 
on this offset, and ' 'near perfectly efficient'' walking would not be 
possible. So, for this model, and presumably for more complicated 
models, the existence of near-perfectly efficient gait depends on 
the details of the mass distribution. 

If we use the first-order scaling laws (Eqs. (6) and (7)) , 
expanding and retaining appropriate terms to redimensionalize 
the result, we find that the power used in locomotion for this 
model is approximately 

P = Mgv sin y 
-iMv* 

8 0 o ( O ) ' / ' " g " ' 
= C 

Mv* 
3/2 1/2 (8) 

where M is the mass of the walker, g is the acceleration due to 
gravity, v is the velocity down the slope, / is the leg length. To 
is the approximate nondimensional step period, and 0o(O), 
which is about 1, is the first-order constant in the series expan­
sion for 9 (see Appendix A.2). For the short period gait, C !« 
•K'/ 8 « 3.8758, and for the long-period gait, C ^̂  3.8121 V 8 
=* 6.9247. 

For a 50 kg, 1 m legged person walking at one meter per 
second, this predicts a somewhat high 60 W and 110 W for the 
short and long period gaits, respectively. The power required 
for this model to walk is a strong function of velocity and 
decreases with increasing g. This scaling rule (8) follows from 
the scaling rules in Alexander (1995) and Alexander (1991) if 
we further assume that his minimal biped has a period indepen­
dent of amplitude. 

The short-period gait, although unstable, is significantly more 
efficient than the long-period gait, for a given velocity (this 
would not necessarily be true if the model was changed to 

have nonnegligible foot masses, since there would also be a 
contribution to energy losses from foot collisions). 

5.5 Energy Dissipation and Stability. As is well known 
in dynamic systems theory, conservative holonomic (i.e., Ham-
iltonian) systems cannot have asymptotic stability, since volume 
is conserved in their phase spaces. This walker is not conserva­
tive, since energy is lost at every heelstrike. As discussed indi­
rectly by Hurmuzlu and Moskowitz (1986), these dissipative 
collisions allow the possibility of asymptotic stability, since at 
collisions, some regions in the model's phase space not only 
drop in volume, but also in dimension (the rank of h is 2, not 
3). However, there are also slopes for which dissipation exists 
and yet the walking motions are unstable, so dissipation by 
itself does not guarantee stability. Also, as we noted, the mo­
tions retain some slight stability, in that one eigenvalue ap­
proaches 1 from below, as the collision losses vanish (when 
the slope y and the stance angle 6* go to zero). 

Also, some smooth, conservative, nonholonomic systems can 
have asymptotically stable, steady motions, as discussed by 
Bloch et al. (1996) and Zenkov et al. (1997). Bicycles (Hand, 
1988), and skateboards (Hubbard, 1979) are two examples. A 
direct comparison between our walking mechanism and these 
other systems cannot be made, since walking is piecewise holo­
nomic and dissipative. However, bicycles, skateboards, and 
other nonholonomic gadgets share the following feature with 
walkers: The dimension of the accessible configuration space 
(for the walker, one translation plus two angles) is larger than 
the dimension of the instantaneously accessible velocity space 
(for the walker, two angular velocities). For smooth systems, 
this trait is equivalent to the usual definition of nonholonomicity 
in Goldstein (1980). Coleman et al. (1997) have shown another 
piecewise holonomic, but globally nonholonomic system (simi­
lar to ours) that may depend on its nonholonomicity for stability. 
The role of this type of nonholonomic behavior in the asymp­
totic stability of dissipative, piecewise holonomic systems with 
intermittent contact, is not well understood at present. See Ruina 
(1997) for another example and more discussion. 

6 Discussion and Conclusion 
Most good controllers take advantage of the natural dynamics 

of their respective systems, and the human nervous system is 
probably no exception to this rule. Human locomotion is a 
controlled and complicated process, but to learn more about 
human locomotion, it is interesting to observe how the simplest 
uncontrolled models can exhibit an array of complex and cha­
otic motions, both stable and unstable. The dynamics of these 
uncontrolled systems are based on mass distribution and length 

-0.235 

-0.245 

0.235 0.24 0.245 0.25 0.26 0.265 

Fig. 7 Poincare section during chaotic walking motions, y = 0.0189. 
Using 30,000 points, we calculate the box-counting dimension of the 
attractor to be about 1.25. 
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characteristics rather than on control strategy. Their stability 
mechanisms may also depend to some extent on their nonholo-
nomic nature. 

We have shown that the simplest uncontrolled walking model 
can walk stably. It can also limp and stagger. Its power con­
sumption is proportional to the fourth power of its velocity. 
These results buttress the claim that passive-dynamic models 
might be a natural starting point for understanding some aspects 
of animal (including human) motion. It may be that many ani­
mal motions are largely natural or quasi-passive and not heavily 
controlled. In the context of walking, such results might be 
useful to those studying the active control aspects of walking, 
to those trying to design anthropomorphic robots, and to those 
trying to improve prosthetic devices and rehabilitation 
procedures. 
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A P P E N D I C E S 

A.l Mathematical Tools and Dynamics Language 
A step can be thought of as an operator f (q) , the "stride 

function," which takes as input the list of values of the various 
angles and rates (the state variable vector q) at a definite point 
in the motion (just after ground-collision for our purposes), 
and returns the values of q after the next ground-collision. In 
the language of dynamical systems, McGeer's stride function 
is a Poincare map. Many questions about the dynamics of a 
given walking model are then reduced to questions about the 
function f (q) (also called a "map" or "mapping"). 

The function f (q) is found by first constructing governing 
differential equations and jump conditions for the model. The 
equations must then be solved, analytically if possible, but most 
often numerically. The solution of the equations for a period of 
time corresponding to one step, for a given set of initial condi­
tions, yields one evaluation of f (q) . 

A simple (' 'period-one'') gait cycle, if it exists, corresponds 
to a set of initial values for the angles and rates, which lead 
back to the same angles and rates after one step. This q* is a 
"fixed point" of the function f (q) , i.e., f (q*) = q*. This 
corresponds to a zero, or root, of the function g ( q ) = f ( q ) -
q. A period-two gait cycle returns the same variable values 
after two steps: f ( f ( q * ) ) = q*, and so on. (Of course, a 
period-one cycle is also a period-two cycle, since f (q*) = q* 
implies that f (f (q*)) = q*.) The term "gait cycle" by itself 
usually implies a period-one gait cycle. 

All of these gait cycles are "periodic walking solutions," 
although other "nonperiodic" walking solutions exist. Longer-
term numerical simulations are used to analyze these cases: to 
see how the walker approaches a gait cycle, to map regions in 
state-space which approach gait cycles ("basins of at­
traction"), or to see how the walker falls down. 

Periodic gait cycles are found numerically by searching, using 
analytic estimates as guesses for initial conditions, with a multi­
dimensional Newton-Raphson method, for q* such that g(q*) 
= 0 (the function g is constructed numerically). Once found, 
the linearized stability of these cycles can be determined by 
finding the eigenvalues of the Jacobian J of the map f. Here J 
is the matrix dt/dq with components dfi/dqj. J is constructed 
by numerically evaluating f a number of times in a small neigh­
borhood of q* (i.e., numerically perturbing each component of 

q)-
Small perturbations q to the limit cycle state vector q * at the 

start of a step will grow or decay from the kth step to the (k 
-I- 1 )th step approximately according to q'^' « Jq*. If the map 
Jacobian J has all of its eigenvalues inside the unit circle, all 
sufficiently small perturbations will decay to 0, the system will 
return to its limit cycle, and the cycle is asymptotically stable. 
If the Jacobian has any eigenvalues outside the unit circle, any 
perturbation along the corresponding eigenvector will grow in 
time, steadily driving the system off the limit cycle, so the cycle 
is unstable. If an eigenvalue has magnitude of one, then the 
cycle is neutrally stable for infinitesimal perturbations along the 
corresponding eigenvector and such perturbations will neither 
shrink nor grow (to first order). 

A given mechanism can have different solutions, with differ­
ent stability, depending on its initial state vector and the slope 
of the ramp that it is on. Design of a successful physical passive-
dynamic walker depends on both finding fixed points of f and 
having the eigenvalues of the Jacobian J all inside the unit 
circle on the complex plane. 

A.2 Asymptotic Solution 

For this and more complex models, walking motions of inter­
est are at relatively small slopes, so explicitly assuming small 
slopes seems to be a reasonable approach. We employ a pertur­
bation method in order to study walking cycles as y -> 0. With 
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numerical results as a guide, we define the scaling parameter e 
and scaled variables 0 and $ by 

y = e\ e(t) = e&(t), bit) = e&U), 

,1,(1) = e$(f), 0 ( 0 = e^U) (9) 

Substituting these into Eqs. (1) and (2) and expanding in a 
power series gives two governing equations with no order zero 
coefficient in e, so we can divide both equations by e. Since 
we are left with only even powers of e, we can define 6 as 5 
= ê  = 7 ^ " and after substituting, we are left, to 0(6^), with 

0 - 0 + <5(1 + 1 © ' ) - fi'de" + ijo®') « 0 (10) 

© _ $ - $ + 6 (02$ + 102$ + ^$3) 

- 62(1$302 + 0 $ + ^ 0 4 ^ + ^ 0 2 $ 3 + ^ $ 5 ) ^ Q̂  ^ J J ^ 

where© = 0(f ) , $ = * ( 0 -

We assume power series solutions of the form 

@(t) = 0o(f) + 60i(O + 6-&2{t) + ..., 

$(;) = $o(f) + <5$i(0 + <5'$2(0 + . . . . (12) 
and initial conditions of the form 

0 (0 ) = 0o(O) + <50|(O) + 5^02(0) + . . . , 

0 ( 0 ) - 0o(O) + 60, (0) + <5'02 + . . . , (13) 

*(0) = *o(0) + <5$,(0) + 6^^2(0) + . . . , 

$ ( 0 ) = $o(0) + (5$,(0) + 6'$2(0) + . . . , (14) 

which are to be made consistent with the transition and collision 
conditions (4) to the appropriate order(s). 

To zero-order in 6", the system motions (solutions to Eqs. 
(10), (11), and (4) with 6 = 0) are: 

0 o ( f ) = | [ 0 o ( O ) + 0o(O)]expf 

+ i [ 0 o ( O ) - 0 o ( O ) ] e x p ( - r ) (15) 

$o(0 = |0o(O - |©o(0) sin t + |©o(0) cos t (16) 

©0, $0, and To are the first terms in the expansions of the 
state variables 0, cj>, and the step period T as functions of the 
slope y. 

with 

0„(O) = l ± ^ ^ ©0(0) 
expTo 

(20) 

Equation (19) is equivalent to Eq. (5) in the text. Equation 
(19) has roots To = TT, STT, . . . (2n + l)7r associated with the 
cosine term and another set of roots associated with the { } 
term that are To = 0, 3.812092, . . . that can be found numeri­
cally. Each root of Z(TO) corresponds to a unique solution for 
the period of a unique period-one gait cycle in the linearized 
(first-order) model. The roots associated with the { } term sat­
isfy the symmetry conditions that ©(TO/ 2) = 0 and # ( T O / 2) 
= 0, have <i>(To) = 0, and have no scuffing at heel-strike (to 
first order). 

Note that 0o(O) and ©o(0) cannot be found at this order, 
but only at the next order. In general, at order k in 6, we are 
able to find the step period coefficient T^, and one condition 
on the coefficients ©* and 0^. At the same time, we are able 
to solve for ©t^i and @k-\- So, although the 0{8) equations 
are more complicated, the analysis is similar to the previous 
one. Because the equations become longer, however, we will 
omit some of the details. Using known solutions to the order 
zero equations, we first solve the 0{6) differential equations 
for ©i(f) and # i ( 0 . subject to initial conditions consistent 
with the jump conditions for 6 and 8 (obtained again by series 
expansion). 0i(O) and 0 | (O) are unknowns now. Together 
with the collision condition, this gives us three more equations 
in 0{6). 

$o(To)T, + $,(To) - 2a0o(O)T, - 20 i ( ro ) = 0 (21) 

0 , (0 ) -Fa0o(O)T, - f0 , (To) = 0 (22) 

0 , (0 ) + 0O(O)TI - © , ( T O ) + 2a®l(Q) = 0 (23) 

Numerically evaluating this set of equations and solving for 
the unknowns ( 0 , ( 0 ) , 0 , ( 0 ) , T , } results in a set of equations 
of the form 

0 , (0 ) 
0 , (0 ) 

T i 

= b, -F 0^(O)b2 (24) 

e{t) « 0o(Or' 0(0 « %{t)y' T « T o (17) 

A fixed point (gait limit cycle) of the walking map requires 
that once the collision condition is met, heelstrike is about to 
occur, and the transition formula (Eq. (4)) must produce the 
original initial conditions. Thus, we have three conditions for 
our zero-order ("linearized") solution: the double contact con­
dition and the jump conditions for 9 and 6. To first order, we 
can write these as follows, where TO is the step period of the 
linearized system: 

where the left-hand matrix A is singular. So, if a solution exists 
it must be true that v 'b , -I- v^i2@l(0) = 0 where v is the zero-
eigenvalue eigenvector of A^ (Fredholm alternative). Solution 
is straightforward; we now have a value for ©o(0) at the gait 
cycle in terms ofy.ln other words, we have a linear approxima­
tion to the values of the fixed point for small slopes. We can 
also solve for T, , since the null eigenvector of A has a zero in 
the T, place. Lastly, we can derive the relationship 0 , (0 ) = 
a©, (0) -I- c,, but, as expected, we need to go to the next-higher 
order to solve for 0 , ( 0 ) . 

So, at small y, we expect fixed point initial conditions to be, 
to C9(7), 

0o(O) = -0o(To) , 0o(O) = 0o(To), 

$O(TO) = 20O(TO) . (18) 

© o ( 0 ) 7 ' " + ©,(0)-y 
a©o(0)y"^ + ( a©i(0) - ( -c , )7 

26 •" 
e+ (\ ~ cos 26+ ) 

Substituting from the linearized system motions (Eqs. (15) and 
(16)), we rearrange terms to get the following equations for 
To and ©o: 

Z(TO) = cos (To/ 2) • {(1 -f- expTo) sin (TO/ 2) 

+ 3(expTo - l ) co s (TO/2) ) = 0 (19) 

and the swing period to be 

T = T„+ T,y"' + T2y^" + ©(rO 

(25) 

(26) 

The following table summarizes our analytic results for the 
first two period-one fixed points of the walking map. 
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gait 

short period 
long period 

To 

-K 

3.812092 

T i 

-4.562254 
0.932019 

Tl 

-4.56225 
1.488826 

0o(O) 

0.943976 
0.970956 

©i(0) 

-0.264561 
-0.270837 

a 

-1.090331 
-1.045203 

C | 

0.866610 
1.062895 

A.3 Analytic Stability Approximation 
Using our 0{6^) approximation to the fixed point, we can 

also find an approximation to J in order to predict the stability 
of the system to 0{8) by expanding perturbations to the limit 
cycle in a similar way. We followed the procedure in Coleman 
et al. (1997) for an analysis of a three-dimensional rimless 
wheel. 

A brief summary of the procedure followed in Coleman et 
al. (1997) is as follows: Just after one coUision, let's say we 
have a small perturbation to the limit cycle ^q. This perturba­
tion evolves in time until, at the limit cycle period r*, it is ^q*. 
However, heelstrike occurs at a slightly different time and at a 
slightly different configuration than the limit cycle value q*. 
These three effects (evolution of initial perturbation, change 
in step period, and change in collision configuration) can be 
described, for the purposes of linearized stability analysis, by 
the product of three matrices. The product of these is exactly 
equal to the Jacobian J . Each matrix can, in turn, be approxi­
mated by an asymptotic expansion in the small parameter 6. 

Using this procedure, we found approximate Jacobians for 
the long and short period gaits to be (to first order in 5): 

To = 7r: J 
7.2959766 

-5.7743697 

5.7743697 

-4.2959766 

17.2297481 17.8663823 

21.0696840 12.0844905 
(27) 

3.812092: J 
-5.0707519 

5.8082044 

-5.8082044 

6.5570116 

20.3741653 22.1941780 

13.2143569 15.7150640 
(28) 

For comparison, eigenvalues of these matrices and eigenval­
ues found by numerical integration of the full nonlinear equa­
tions are shown in Fig. 4. Results to 0{8) were in qualitative 
agreement with the numerics, but the quantitative agreement is 
only good at very small slopes (y < 0.005, or 8 < 0.03). 
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