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T
his article is an overview of our recent results in pas-
sivity-based control in biped locomotion. The arti-
cle represents a synthesis of ideas from [13],
[27]–[32] into a set of cohesive results that exploits
the notion of passive walking within the context of

hybrid passivity-based control to achieve regulated walking on
varying slopes, robustness to uncertainties and disturbances, as
well as to regulate walking speed and gait transitions. 

The idea of passive dynamic walking, pioneered by
McGeer more than a decade ago [20], has been well studied
by several researchers [6]–[8], [20] and will not be discussed
here. We are interested primarily in active control methods
that exploit the existence of passive gaits in two-dimensional
(2-D) and three-dimensional (3-D) bipeds. While passive
dynamic walking is appealing for its elegance and simplicity,
active feedback control is necessary to achieve walking on
level ground and varying slopes, robustness to uncertainties
and disturbances, and to regulate walking speed. In this article,
we show how to achieve these properties within the context
of passivity-based control. 

The first results in active feedback control that exploit pas-
sive walking appeared in [7], [22], [27], [28] for planar bipeds.
Passive walking in three dimensions was studied in [17] and
[4]. Later, the results in [28] were extended to the general
case of 3-D walking in [31]. An interesting and elegant
extension of these ideas appears in [1] where geometric
reduction methods are used to generate stable 3-D walking
from 2-D gaits. Robustness issues were addressed in [32] using
total energy as a storage function in the hybrid passivity
framework. In [13] it was shown how speed regulation,

including gait transitions can be achieved within the context
of passivity-based control. 

The article is organized as follows. In the following section,
we give the general background on hybrid Lagrangian models
that are typically used to study bipedal locomotion and con-
trol. Then we discuss three central ideas in energy and passivi-
ty-based control of bipeds, namely, controlled symmetry [31],
energy shaping [32], and trajectory time scaling [13]. Using
these concepts we are able to show the following:

◆ how to generate stable gaits, i.e., limit cycle trajectories,
on arbitrary ground slopes given a passive limit cycle on
one particular slope

◆ how to increase both the size of the basin of attraction
of the stable limit cycles and the speed of convergence
to the limit cycles

◆ how to increase robustness of the closed-loop system to
disturbances

◆ how to regulate forward walking speed and gait 
transitions.

To illustrate the performance of these controllers, we present
simulation results for the so-called compass-gait biped. Finally,
we give some suggestions for further research.

Dynamics of Bipedal Locomotion
In this section, we discuss the dynamics of bipedal locomo-
tion. Our treatment will be necessarily brief as the hybrid
Lagrangian model treated here has been developed and used
extensively by numerous other researchers [1], [9], [14], [21].
See, for example, [34] for a detailed derivation of a general
model in the planar case.
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Configuration Space and Shape Variables
The act of walking involves both a swing phase and a stance
phase for each leg as well as impacts between the swing leg
and ground, and possibly internal impacts, such as knee strikes
due to mechanical constraints on the joints. Consider an n
degree-of-freedom (DoF) biped during the single-support
phase as shown in Figure 1. Each joint of the robot is assumed
to be revolute and to allow a single DoF rotation. The stance
leg, which is in contact with the ground, has three DoF rela-
tive to an inertial frame (assuming no slipping). We can there-
fore use Q = SO(3) × T

n−3 to represent the configuration
space of the biped, where SO(3) is the rotation group in R3

and Tn−3 is the (n − 3)-torus. A configuration is then charac-
terized by an ordered pair q = (R, r), where R ∈ SO(3) is
the orientation of the first link and r ∈ T

n−3 is the shape of
the multibody chain, for example, the angle of each joint ref-
erenced to the previous joint. Given a configuration,
q = (R, r) ∈ SO(3) × T

n−3 , we represent a velocity vector
in TqQ via the pair (R−1Ṙ, ṙ) ∈ so(3)× R3 , where so(3) is
the Lie Algebra of 3 × 3 skew-symmetric matrices.

The advantage of this formalism is that only the orientation
of the first link (actuated by the stance ankle) is referenced to
an absolute or world frame. The remaining n − 3 joint vari-
ables, called the shape variables, are then invariant under a
change of basis of the world frame. Configuration spaces that
can be written as the Cartesian product of a Lie group and a
shape space are referred to as principal bundles; see [19].

Lagrangian Dynamics
To write the equations of motion for the walking biped dur-
ing the single-support phase, it is common to introduce a
parametrization of the configuration space SO(3) × T

n−3 ,
which is equivalent to q = (R, r) but minimal, in the sense
that only n coordinates are required. For example, we shall let
(q1, . . . , qn) be a coordinate chart where (q1, q2, q3) are
Euler angles for SO(3) and (q4, . . . , qn) are angles in [0, 2π)

for Tn−3 . Accordingly, we can write the Euler-Lagrange
equations of motion as

d
dt

∂L
∂ q̇ i

− ∂L
∂ qi

=
n∑

j =1

Bi, j (q)u j, i = 1, . . . , n, (1)

where L(q, q̇) = K(q, q̇) − V(q) is the difference of the kinet-
ic energy K : TQ → R and the potential energy due to gravity,
V : Q → R, Bi, j is the i-th component of the j-th force,
which has magnitude u j. If we express the kinetic energy in the
usual fashion as K(q, q̇) = 1

2 q̇M (q) q̇, where M (q) is the sym-
metric, positive definite n × n inertia matrix, the controlled
Euler-Lagrange equations can be written in matrix form as [33]

M (q) q̈ + C(q, q̇) q̇ + G (q) = B(q)u , (2)

where Ṁ − 2C is skew symmetric and G (q) = dVT(q) is
the vector of gravitational torques. We assume the walking
biped is fully actuated so that the n × n matrix B in (2) is full
rank for all q.

Impact Dynamics
Impacts arise in two ways: from the foot/ground contact and
from internal constraints such as mechanical stops designed to
prevent hyperextension of the knees. For space reasons, we
analyze here only the impacts resulting from the foot/ground
contact and we make some standard assumptions.

◆ Impacts are perfectly inelastic (no bounce).
◆ Transfer of support between swing and stance legs is

instantaneous, i.e. the double support phase is negligible.
◆ There is no slipping at the foot/ground contact.

Under these assumptions, each impact results in an instanta-
neous jump in velocities, hence a discontinuity in kinetic
energy, whereas the position variables are continuous through
the impact (see [14]).

As a consequence of the second assumption, we also
assume that the walking gait is flat-footed. In other words, we
can define unambiguously a height function H : Q → R

defining the height of the swing leg above the ground. The
foot/ground impact occurs, therefore, when H = 0 and
dH · q̇ < 0, the latter inequality guaranteeing that the foot
velocity is directed toward the ground. In this way we avoid
the case of heel strike–double support–toe off phases, which
introduce subtleties beyond the scope of this article.

We denote by t− and t+ the times just prior to impact and
just after impact, respectively. By instantaneous transfer of sup-
port, we mean not only that the swing leg and stance leg
interchange roles at the moment of impact but also that the
new stance leg lifts off the ground instantaneously, which can
be expressed as dH(q −) · q̇ + > 0. Following [34], we take
solutions of the system to be right continuous and we define
the set S as

S = {(q, q̇) | H(q −) = 0, dH(q −) · q̇− < 0} .

We next define an impact map that determines the change
in velocity that occurs at the impact event. We let
h : Q → R

ν be a smooth function defining the foot/ground
contact constraint. For bipeds with point foot contact, the
dimension, ν, is two in the planar 2-D case and three in the
general 3-D case. For bipeds with extended feet, ν is three for
planar bipeds and six in the most general case. The function h
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Figure 1. A general 3-D biped in the single-support phase
showing the stance leg (right leg) and swing leg (left leg).



can be computed using the forward kinematic equations of
the robot. Then, as shown in [31], the impact map may be
represented as

q̇( t+) = Pq(q( t−)) q̇( t−) (3)

and is computed as the M (q)-orthogonal projection of q̇( t−)

onto {v ∈ TqQ | dh i(q) · v = 0, i = 1, . . . , ν}. 
Putting these previous notions together leads to a hybrid

dynamical system

d
dt

∂L
∂ q̇

− ∂L
∂ q

= B(q)u, for (q( t−), q̇( t−)) /∈ S (4)

q( t+) = q( t−)

q̇( t+) = Pq(q( t−)) q̇( t−)

}

for (q( t−), q̇( t−)) ∈ S. (5)

Example 2.1: For space reasons we will illustrate our
results only for the so-called Compass-Gait Biped [7], [8]
shown in Figure 2. More complex bipeds are considered in
the references, for example [13], [16], [18]. The compass-
gait biped is a planar biped with two straight legs, i.e. no
knees or torso. As such, it is the simplest biped that can be
used to study both passive walking and active control. The
configuration variables for the compass-gait biped are taken
to be the angles of the stance leg θ1 and the swing leg θ2

both with respect to the vertical. The dynamic equations of
the compass-gait biped are descr ibed by (2), where
q(t) = [q1(t), q2(t)]T = [θ1(t), θ2(t)]T ,

M (q) =
[

(mH + m)�2 + ma2 −m�b cos(q1 − q2)

−m�b cos(q1 − q2) mb2

]

C(q, q̇) =
[

0 −m�b sin(q1 − q2) q̇2

m�b sin(q1 − q2) q̇1 0

]

G (q) =
[−(mH� + ma + m�)g sin(q1)

mbg sin(q2)

]

B =
[

1 0
1 −1

]
.

Impacts occur when the tip of the swing leg contacts the
walking surface, i.e. when 

H(q) = �[cos(q1 + ψ) − cos(q2 + ψ)] = 0, (6)

where ψ is the slope of the walking surface. Under the stan-
dard assumptions mentioned above, the impact map is given
by [8]

P(q( t−)) q̇( t−) =
[

p +
11 p +

12
p +

21 p +
22

]−1 [
p −

11 p −
12

p −
21 p −

22

]
q̇( t−), (7)

where

p +
11 = m�(� − b cos(q −

1 − q −
2 )) + ma2 + mH�2

p +
12 = mb(b − � cos(q −

1 − q −
2 ))

p +
21 = −mb� cos(q −

1 − q −
2 ), p +

22 = mb2

p −
11 = −mab + (mH�2 + 2ma�) cos(q −

1 − q −
2 )

p −
12 = p −

21 = −mab, p −
22 = 0 .

Figure 3 shows a typical passive limit cycle for the compass-gait
biped. As the actual trajectory evolves in a four-dimensional
space, we show only the phase plot for one leg as it switches
from swing phase to stance phase and back to swing phase.
Note the two points of discontinuity resulting from the
foot/ground impacts.

Control
In this section, we present our main results on control of
bipeds described by the hybrid system (4)–(5).
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Figure 3. A typical limit cycle for the compass-gait biped. The
circle in this and subsequent figures represents the initial con-
ditions for these variables.
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Figure 2. The compass-gait biped and the parameter values
used in our simulations.

−θ1

θ2

mH

a

Ψ

m

m

mH

a

b

l

5 kg

10 kg

0.5 m

0.5 m

a + b

9.8 m/s2g0

m

b



Controlled Symmetries
We first consider the effect of symmetries on Lagrangian
dynamics. Let G be a group and let Q be the configuration
space of the biped as before. Suppose � : G × Q → Q is a
group action [31] such that, for all g ∈ G ,

L(q, q̇) = L(�g(q),Tq�g( q̇)) . (8)

Equation (8) says that the Lagrangian is invariant under the
group action �. As a result, the solutions of the Euler-
Lagrange equations of motion are also invariant under �. Such
a Lagrangian system is said to possess a symmetry with respect
to the group action �. We are interested in deriving control
laws that create symmetries with respect to group actions for
the hybrid Lagrangian system (4)–(5). For this reason we intro-
duce the notion of controlled symmetry [30], [31] as

Definition 3.1: The hybrid Lagrangian system (4)–(5) is said
to possess a controlled symmetry with respect to a group
action � if, for each g ∈ G , there exists a control input
u = ug(q, q̇), which depends on g, such that

d
dt

∂L
∂ q̇

− ∂L
∂ q

− B(q)ug = d
dt

∂Lg

∂ q̇
− ∂Lg

∂ q
(9)

T�g(Pq q̇) = P�g T�g( q̇), (10)

where Lg(q, q̇) = L(�g(q),Tq�g( q̇)).
The importance of a controlled symmetry is that solu-

tions of the hybrid dynamical system are preserved, in a way
that we make precise below, under the group action. For
our application we are interested in controlled symmetry
with G = SO(3) representing the orientation (slope) of the
ground relative to an inertial reference frame. Following
[31] we let � = {O, {e1, e2, e3}} be an inertial reference
frame, where the point O is fixed on the ground and we
assume the ground is defined by a plane in R3. Given the
coordinates x ∈ R

3 of a point on the ground, changing the
ground slope is an SO(3)-group action (g, x) �→ gx .
Assuming that the contact point for the stance leg is at the
origin O of � , we define a corresponding action � of
SO(3) on the configuration space Q = SO(3) × T

n−3 that
maps (g, q) = (g, (R, r)) ∈ SO(3) × Q into Q by

�(g, (R, r)) = �g(R, r) = (gR, r) . (11)

In [31] we showed that there exists a controlled symmetry for
the hybrid Lagrangian model (4)–(5) with respect to the
group action (11). Moreover, the control law ug for
g ∈ SO(3) defining the controlled symmetry is a function
only of the potential energy of the robot. Specifically, we have

Theorem 3.2: Let η : [0,T] → Q be a solution trajectory
of the hybrid system (4)–(5) corresponding to u = 0. Let
g ∈ SO(3) and define

ug(q) = B−1(q)
∂

∂ q
(V(q) − V(�g(q))) . (12)

Then the trajectory �g ◦ η : [0,T] → Q is a solution for the
closed-loop system, that is, for the controlled biped.

See [31] for details of the proof. In particular, Theorem 3.2
tells us that any limit cycle that exists for a passive walker for
one ground slope can be reproduced by the active control law
(12) on any other ground slope. Also, if (q0, q̇0) lies in the
basin of attraction of the passive limit cycle, then
(�g(q0),Tq0�g( q̇0)) lies in the basin of attraction of the
closed-loop system. Thus, we are able to determine the
appropriate initial conditions on any slope given one initial
condition that leads to a passive gait on one particular slope. 

Figure 4 shows the results of the controlled symmetry
applied to the compass-gait for three distinct ground slopes.
As implied by the theory, the hybrid limit cycles are mapped
identically from one slope to another.

Passivity-Based Control
In the previous section, we showed how the notion of con-
trolled symmetry led naturally to a potential energy shaping
control that renders any passive limit cycle slope invariant via
active feedback control. Although the limit cycles are pre-
served, the basin of attraction, since it is also preserved,
remains rather small. In this section we show how total energy
shaping can be used to enlarge the basin of attraction and pro-
vide additional robustness. The total energy shaping takes the
form of a so-called passivity-based control that we will define
below. To begin, we consider an additional control term ū for
the gravity compensation control of the previous section. In
other words, we let

u = ug + B−1ū, (13)

where ug is given by (12) and ū is an additional control term
to be designed. With this definition of u, the equations of
motion are, therefore,
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Figure 4. Three distinct limit cycles for the compass-gait biped
on three distinct ground slopes resulting from the application of
the control (12) based on the concept of controlled symmetry.
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M (q) q̈ + C(q, q̇) q̇ + G (�g(q)) = ū . (14)

The approach we use to design ū is based on passivity argu-
ments. We recall the following:

Definition3.3: A dynamical system with input u and output
y and state x is said to be passive if there exists a continuously
differentiable nonnegative definite scalar function S(x), called
a storage function such that

Ṡ = yTu. (15)

Equation (15) can also be written in integral form as

S(x( t )) − S(x(0)) =
∫ t

0
yT(σ )u(σ )dσ . (16)

Passivity is an important and useful property, as it is related to
energy/Lyapunov methods. Equation (16) says, in effect, that
the change in storage (energy) is due only to that supplied by
the external input u. 

It is well known [33] that the robot dynamic model (14)
defines a passive system with input ū, output q̇ and total
energy (kinetic plus potential),

E = 1
2

q̇TM (q) q̇ + V(�g(q)) , (17)

as the storage function, since

Ė = ūT q̇

follows from the skew-symmetry of Ṁ − 2C by direct
calculation.

To utilize the passivity property of robot dynamics in
our application, it turns out to be most useful to take as a
storage function

S = 1
2
(E − E re f )

2 (18)

rather than the energy E alone, where E re f is a reference
value corresponding to the energy of the biped along the limit
cycle trajectory of the system corresponding to a fixed ground
slope. Note that S is identically zero on the limit cycle trajec-
tory and nonnegative away from the limit cycle. 

Suppose now that E re f is constant. Then, a simple calcula-
tion shows that

Ṡ = (E − E ref)Ė = (E − E ref) q̇T ū . (19)

With this storage function, the system is therefore passive with
respect to input ū and output y = (E − E re f ) q̇. This suggests
that we choose the control input as

ū = −ky = −k(E − E ref) q̇ , (20)

where k > 0 is a fixed gain. Substituting (20) into (19) yields

Ṡ = −k||y||2 = −2k|| q̇||2S ≤ 0 . (21)

Proposition 3.4: Suppose there is a constant α > 0 such that
|| q̇( t )||2 ≥ α for all 0 ≤ t < T1, where T1 is the time of first
impact of the swing foot with the ground. Then

S( t ) ≤ S(0)e−2kα t for 0 ≤ t < T1 . (22)

Proof: Under the above assumption

Ṡ( t ) ≤ −2k|| q̇||2S ≤ −2kαS, (23)

and so the result follows from the comparison principle ([15,
pg. 102]).

Proposition 3.4 implies that the total energy of the biped
will converge exponentially toward the reference energy
between impacts. At the impact, the storage function will
exhibit a jump discontinuity. Therefore, in order for the ener-
gy to converge to its reference value, the sequence of discrete
points defined by the jumps must also converge to zero. This
latter convergence can be investigated by computing a so-
called Poincaré map that maps the values of the joint angles
and joint velocities from one step to the next.

If we denote by x� := (qT
� ( t+), q̇T

� ( t+))T the joint angles
and velocities at the beginning of step �, i.e., just after the
foot/ground impact, then, the hybrid system (4)–(5) defines a
discrete map

x�+1 = P(x�) (24)
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Figure 5. Locus of the eigenvalues of the linearized Poincaré
map for the compass-gait biped with passivity-based control
law (20) as the gain k is varied from 0 to 2.
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known as a Poincaré map. Existence of a limit cycle trajectory
is then implied by a fixed point of this mapping, i.e. a vector
x∗ such that

x ∗ = P(x ∗) . (25)

Asymptotic stability of the Poincaré map then implies (local)
asymptotic orbital stability of the limit cycle and, hence, con-
vergence of the energy to the reference energy. To determine
asymptotic stability of the Poincaré map (24), we may calcu-
late the linearized approximation around the limit cycle using
the hybrid sensitivity analysis techniques described in [10].
Figure 5 shows a plot of the eigenvalues of the linearized
approximation of the Poincaré map (24) for the compass-gait
biped as a function of the gain k in the control law (20). Since
these eigenvalues are inside the unit disk, the Poincaré map is
indeed locally asymptotically stable. This is indeed confirmed
by Figure 6 showing the storage function for k = 1. 

Basin of Attraction and Rate of Convergence
The Basin of Attraction of the limit cycle is the set of ini-
tial conditions in state space such that trajectories starting
at these initial conditions converge asymptotically to the
limit cycle. Since the state space is four dimensional and
the equations of motion highly nonlinear, the basin of
attraction is difficult to characterize precisely. Typically, one
finds a narrow band of initial conditions around the limit
cycle where trajectories converge. One may consider the
relative stability of the limit cycle by looking at the eigen-
values of the linearized Poincaré map. Roughly speaking,
the smaller the modulus of eigenvalues are, the more robust
the limit cycle is to disturbances and unmodeled dynamics
and the quicker the trajectory will converge to the limit
cycle. Convergence to the limit cycle can also be charac-

terized by the number of steps required to converge to
within a given error band around the limit cycle.

Figures 7 and 8 show trajectories with and without the
passivity-based control (20). In Figure 7 a point previously
outside the basin of attraction is captured by the addition con-
trol term ū. While the precise change in the basin of attrac-
tion is difficult to characterize, the total energy control seems
to increase the basin for a range of gains, k. Figure 8 shows
that the rate of convergence of the trajectory to the limit cycle
is also greatly improved by the addition of the passivity-based
control term ū. 
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Figure 6. Value of the storage function versus time using the
passivity-based control (20) with k = 0.5. S decreases expo-
nentially between foot/ground impacts and the values at the
impacts also decrease to zero as a consequence of asymptotic
stability of the Poincaré map.
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Figure 7. Starting from the same initial conditions, the response in (a) without the passivity-based control law (20) is unstable;
the response in (b) with the passivity-based control law (20) converges to the limit cycle showing that the initial condition is now
contained within the basin of attraction.
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Slope Variation and External Disturbances
As a further illustration of the robustness enhancement of the
passivity-based control, we show the performance of the sys-
tem when the slope exhibits a sudden change and when the
robot is subject to a constant disturbance torque. The control
input is always determined by the so-called local slope, which
is the ground slope at the stance leg. The local slope can be
determined by the two-point contact condition, which occurs
at the moment of contact of the swing foot with the ground
as shown in Figure 9. Thus for a discrete slope change there
are generically two steps during which an error in the per-
ceived ground slope occurs. Figure 10(a) shows that without
the total energy control, the robot is not able to maintain a
stable gait. Figure 10(b) shows that, with the addition of the
total energy based control ū, the biped successfully makes the
transition between slopes.

Figure 11 shows the effect of a 1-Nm disturbance torque
added to each joint of the biped. This disturbance is sufficient

to cause the biped to fall without the total energy shaping
control whereas stability is maintained when the total energy
shaping control is used.

Trajectory Time Scaling
Trajectory time scaling in robot control has been used previ-
ously to address several problems in manipulator control, such
as time-optimal control along a given path [2], [25], [26],
actuator saturation [5], control of swimming robots [24], and
others [11]. In this section we consider the use of trajectory
time scaling for the problem of regulating walking speed in
bipedal locomotion. As in other problems involving walking,
the foot/ground impacts that introduce velocity discontinu-
ities between steps must be taken into account when time
scaling the biped trajectories. This distinguishes the results
here from the results in the above references. The results we
present here are taken from [13].

Consider again the n-DOF Lagrangian system (14). For
notational simplicity we will simply take g = I the identity
element of SO(3). Let φ : R

+ → R
+ be a continuously dif-

ferentiable and monotonic map such that φ(0) = 0 and
φ̇( t ) > 0 for t ∈ R

+. We refer to t′ = φ( t ) as scaled time
and we define scaled coordinates, qs c ( t ) as

qs c ( t ) = q(φ( t )) = q( t ′) . (26)

The scaled velocity and acceleration are then given by

q̇ s c ( t ) = ∂ q(φ)

∂φ

dφ

d t
= q̇( t ′)φ̇ (27)

q̈ s c ( t ) = q̈( t ′)φ̇2 + q̇( t ′)φ̈ . (28)

In terms of the scaled trajectory qs c ( t ), we can express
(14) as
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Figure 8. Starting from the same initial conditions, the convergence to the limit cycle in (a) without the passivity-based control
law (20) is slower than the convergence to the limit cycle in (b) with the passivity-based control with (20).
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achieve robustness to the slope change.
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M (qs c ( t )) q̈ s c ( t ) + C(qs c ( t ), q̇ s c ( t )) q̇ s c ( t )

+ G (qs c ( t )) = ū s c ( t ) . (29)

Substituting (26)–(28) into (29) and using (14), we have

ū s c ( t ) = M (q( t ′))[ q̈( t ′)φ̇2 + q̇( t ′)φ̈]

+ C(q( t ′), q̇( t ′)φ̇) q̇( t ′)φ̇ + G (q( t ′))
= φ̇2[M (q( t ′)) q̈( t ′) + C(q( t ′), q̇( t ′)) q̇( t ′)]

+ M (q( t ′)) q̇( t ′)φ̈ + G (q( t ′))
= φ̇2ū( t ′) + (1 − φ̇2)G (q( t ′))

+ M (q( t ′)) q̇( t ′)φ̈ ,

where the second equality follows from the fact that C(q, �)�
is quadratic in �. We have thus shown the following.

Proposition 3.5: Suppose that control input ū0( t ) and initial
conditions (q0(0), q̇0(0)) yield the solution trajectory
(q0( t ), q̇0( t )) for 0 ≤ t ≤ T . Then the control input

ū s c ( t ) = φ̇2ū0( t ′) + (1 − φ̇2)G (q0( t ′))
+ M (q0( t ′)) q̇0( t ′)φ̈ (30)

yields the scaled solution trajectory (qs c ( t ), q̇ s c ( t )) for
0 ≤ t ≤ φ−1(T ).

Special Case: Constant Time Scaling
In the special case that t ′ = φ( t ) = λ t, i.e., the scaled time is
a constant multiple of real time, then the control law (30)
reduces to 

ū s c ( t ) = λ2ū0(λ t ) + (1 − λ2)G (q0(λ t )) (31)
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Figure 10. Closed loop trajectory on terrain with slope change from 3° down slope to 8° down slope. In (a) without the passivi-
ty-based control law (20), the abrupt change in slope causes the biped to fall. In (b) with the passivity-based control law (20), the
biped successfully negotiates the change in slope.
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Figure 11. Trajectories with a 1-Nm disturbance torque at each joint. In (a) without the passivity-based control law (20), the robot
falls. In (b) with the passivity-based control law (20), the trajectory remains close to the limit cycle despite the disturbance torque.
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and results in trajectories that scale the position, velocity, and
accelerations as 

qs c ( t ) = q0(λ t )

q̇ s c ( t ) = λ q̇0(λ t )

q̈ s c ( t ) = λ2 q̈0(λ t )

for 0 ≤ t ≤ φ−1(T ) = T/λ with initial condition
(qs c (0), q̇ s c (0)) = (q0(0), λ q̇0(0)).

N o t e  t h a t  t h e  a d d i t i o n a l  c o n t r o l  t e r m
(1 − λ2)G (q0(λ t )) is, once again, simply a potential energy
shaping control that cancels the effect of normal gravity
G (q0) on the system dynamics and substitutes the effect of
scaled gravity λ2G (q0).

To apply the above time-scaling result to regulate walking
speed in biped locomotion, we must take into account
impacts resulting from foot/ground contact. Under linear
time scaling φ( t ) = λ t, we have q̇ s c ( t ′) = λ q̇0( t ′). Conse-
quently,

q̇ s c ( t+) = λ · q̇0( t+) = λ · P(q0( t−)) q̇0( t−)

= P(q0( t−)) · λ q̇0( t−)

= P(qs c ( t−)) q̇ s c ( t−) (32)

and

qs c ( t+) = λq0( t+) = λq0( t−) = qs c ( t−) ,

so the impact event scales the impact velocities linearly by
the constant λ, matching the scaling of the rest of the tra-
jectory and effectively stretching or shrinking the entire
limit cycle. 
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Figure 12. Limit cycles for the compass-gait biped under con-
stant time-scaling control φ( t ) = λ t with various values of
parameter λ.
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Gait Transition
Under variable time scaling φ( t ), a similar expression for
the velocity change at impact holds as in the case of con-
stant scaling. However, since the scaling is nonuniform,
the post-impact final velocity q̇ s c ( t+) is not the same as
the initial velocity of the trajectory q̇ s c (0). Instead, the
final velocity serves as the initial condition of a new limit
cycle with a velocity different from the original. This
property enables us to transition between stable walking
gaits of different periods. In this section, we develop a
time-scaling function to transition between limit cycles in
a single step.

Consider the task of making a transition from a limit cycle
described by constant time-scaling function φ1( t ) = λ1 t and
another limit cycle descr ibed by φ2( t ) = λ2 t . Clearly,
φ̇ i( t ) = λ i for each of these limit cycles. To move from one
to the other, we construct a time-scaling function φ�( t )
whose derivative is equal to λ1 at the beginning of the step
and equal to λ2 at the end of the step. That is,

φ�(0) = 0 φ�( tF) = T

φ̇�(0) = λ1 φ̇�( tF) = λ2

where tF is the desired time (in seconds) of the end ground
impact, which we are free to choose provided
φ̇�( t ) > 0 for 0 ≤ t ≤ tF . These four conditions are satisfied
by the cubic polynomial given by 

φ�( t ) =λ1 t +
(

3T
t2F

− 2λ1 + λ2

tF

)
t2

+
(

−2T
t3F

+ λ1 + λ2

t2F

)
t3 .

Remark 3.6: We have shown that any path in configura-
tion space q0( t ), 0 ≤ t ≤ T , that represents the position por-
tion of a limit cycle of period T can be exactly followed at
any constant scaled velocity λ q̇0( t ) using the control law (31)
resulting in a limit cycle of period T/λ. Moreover, we have
shown how to transition between limit cycles of distinct peri-
ods in a single step using a cubic polynomial time-scaling
function. This is a general result, independent of the particu-
lar control generating the original limit cycle. 

Figure 12 shows limit cycles for the compass-gait biped for
various values of λ. We see from the figures that the initial and
final values of the configuration variables θ1, θ2 are identical
while the velocities θ̇1, θ̇2 vary with selection of the parameter
λ. Figure 13(a) is a phase portrait of the compass gait biped
under our time-scaling control transitioning from the passive
limit cycle described by λ1 = 1 to a limit cycle described by
λ2 = 2 with varying time scaling φ�( t ) and transition time
tF = 0.5 seconds. Figure 13(c) shows the trajectories of the
system as it moves from the passive limit cycle (λ1 = 1) to the
λ2 = 2 limit cycle. 

Conclusions
In this article, we have shown how to design energy-based
and passivity-based control laws that exploit the existence
of passive walking gaits to achieve walking on different
ground slopes, to increase the size of the basin of attraction
and robustness properties of stable limit cycles, and to regu-
late walking speed. Many of the results presented here for
the compass gait are equally applicable to bipeds with
knees and a torso. See [13], [29] for some examples. There
are several interesting ways to explore extensions to these
results. Practical considerations such as actuator saturation,
ground reaction forces, and ground friction need to be
addressed. The problem of foot rotation introduces an
underactuated phase into the walking gait, which greatly
challenges the application of energy shaping ideas. For
walking in 3-D, finding purely passive limit cycles, which is
the first step in applying our energy control results, may be
difficult. In [1] it was shown how ideas of geometric
reduction can be used to generate 3-D stable gaits given
only 2-D passive limit cycles. This work greatly expands
the applicability of the results presented here.
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