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Transverse Linearization for Impulsive Mechanical
Systems With One Passive Link

Anton S. Shiriaev, Member, IEEE, and
Leonid B. Freidovich, Member, IEEE

Abstract—A general method for planning and orbitally stabilizing peri-
odic motions for impulsive mechanical systems with underactuation one is
proposed. For each such trajectory, we suggest a constructive procedure
for defining a sufficient number of nontrivial quantities that vanish on the
orbit. After that, we prove that these quantities constitute a possible set of
transverse coordinates. Finally, we present analytical steps for computing
linearization of dynamics of these coordinates along the motion. As a result,
for each such planned periodic trajectory, a hybrid transverse lineariza-
tion for dynamics of the system is computed in closed form. The derived
impulsive linear system can be used for stability analysis and for design of
exponentially orbitally stabilizing feedback controllers. A geometrical in-
terpretation of the method is given in terms of a novel concept of a moving
Poincaré section. The technique is illustrated on a devil stick example.

Index Terms—Impulsive mechanical systems, moving Poincaré section,
orbital stability, transverse linearization, underactuation one, virtual holo-
nomic constraints.

I. INTRODUCTION

Finding feasible motions in nonlinear dynamical systems with
switchings, exploring their properties, and designing for them orbitally
stabilizing feedback controllers are challenging important in appli-
cations problems, see e.g. [1]–[3] and references therein. However,
despite the complexity, it is clear that any nontrivial periodic solution
of an impulsive dynamical system [4] should consist of interchanged
sub-arcs of continuous-in-time parts and jumps due to instantaneous
updates of the states. Here we consider controlled impulsive mechan-
ical systems, i.e. we assume that the continuous dynamics can be
described by Euler-Lagrange equations

������ � ���� ��� �� ����� � ���� ���� (1)

where � � � and �� � � are vectors of generalized coordinates and
velocities, � � ��� is a vector of control inputs, ���� ��� is a matrix
function of constant rank �� � ��. Instantaneous jumps along a solu-
tion are defined by a discrete-in-time part of the system dynamics. It

consists of a collection of pairs of hypersurfaces �����
�
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state space of the mechanical system (1) and instantaneous mappings
	 ���, so that the update law is defined by the set of triples
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where 
� denotes the number of possible jumps and can be arbitrarily
large but finite. Finding a periodic solution of the hybrid system (1),
(2) is not easy. The common approach is to use one of the switching
surfaces, e.g. ����� , as a hypersurface, where the Poincaré first-return
map can be defined and computed [3], [5]. Parameterizing somehow
a set of control inputs, a cycle is typically found via an extensive nu-
merical search. If a periodic motion and an associated control input are
obtained, then the orbital (in-)stability can be also verified numerically.

We propose below a new approach for planning periodic motions and
for analyzing their orbital stability as well as stabilizability. In partic-
ular, we derive new necessary conditions for presence of a cycle in the
dynamics of (1), (2) and show how to use them. Furthermore, we argue
that for each hybrid periodic motion there is a natural candidate for a
Poincaré section different from the standard choice, which is one of the
hypersurfaces of (2) [5]. As another important contribution, we com-
pute analytically a linearization of transverse dynamics of the impul-
sive system prior to design of a controller. As a result, the challenging
task of feedback stabilization of a cycle is reformulated as a simpler
and tractable problem of stabilization of a hybrid linear control system
with a linear update law that is regularly activated over a constant time,
which is equal to the period of the planned motion. The ideas are il-
lustrated on a devil stick example; an application to a walking robot
example is presented in [6].

Due to lack of space, we elaborate in detail only the simplest case
when the hybrid cycle of (1), (2) consists of one continuous-in-time
sub-arc and one jump. The constructive procedure for planning such a
cycle is described in Section II. The method for computing a transverse
linearization for a periodic motion of (1), (2) is given in Section III;
the key here is a constructive choice of the change of coordinates in
a vicinity of the motion. The example and conclusions are put in Sec-
tions IV and V respectively.

II. PLANNING A CYCLE FOR IMPULSIVE MECHANICAL

SYSTEM (1), (2) WITH ONE JUMP

The procedure for planning periodic motions for the impul-
sive mechanical system (1), (2) is based on the important ob-
servation: The continuous-in-time sub-arc of any hybrid cycle
����� � 
������� � � � � ������� � �, � � 

� ��� can be always
re-parameterized using virtual holonomic constraints [3], [7], [8] as

��� � 
����� � � � � ��� � 
����� � � ������ � � 

� ��� (3)

where � is a scalar variable representing one of the (old or new)
generalized coordinates for (1). There are many choices for such
re-parametrization; the obvious one is using the distance of travel
along the orbit of the motion

����� 	� 
�� ��� � �� 	 � � ������ �� � ������� � � 

� ��� � (4)

Due to the presence of one passive link, the evolution of � � �����

cannot be any, but should comply with the constraints imposed by the
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dynamics of (1). As shown in [9], see also [7], [8], ����� must be a
solution of the system

������ � ���� ��� � ���� � � (5)

where the functions ����, ����, and ���� are computed from (1) and
(3). So that (5) naturally appears knowing just one solution of (1)—the
continuous-in-time sub-arc of the hybrid cycle. If by some reasons the
geometrical relations (3) are valid not only for the choice � � �����,
but for any ����, then these functions are solutions of (5), and their
phase curves �����	 �����
 fill out a 2-D manifold � in the ��-dimen-
sional state-space of (1)

�� ��	 ��
 � � � 	���
 �� � 	
���� ��
 ���� 
� � �����
�� �� ��� � (6)

The closure of this manifold can be invariant with respect to the update
laws (2) as assumed in [3] or not. The system (5) is integrable [9]: The
function � � ������
 �����
 ����
 ������ defined by

�� ������� 
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(7)
keeps its zero value for any solution ���� of (5) for all � � �, for which
���� is well-defined. Correspondingly, the phase curves of (5) can be
found from (7) avoiding numerical solutions of the differential equa-
tion. Altogether these facts allow us to formulate necessary conditions
for existence of a hybrid cycle.

Theorem 1: Given the controlled impulsive mechanical system,
where the continuous-time dynamics (1) is with � degrees of freedom
and is of underactuation one, and where the hypersurfaces �� and
�� and the mapping � � �� � �� define the discrete dynamics.
Suppose that for some control signal � � ����� � ���� � ���, the
impulsive mechanical system has a periodic solution

� � ����� � ����� ���
 ��
 �� � � (8)

with only one jump, i.e. �������	 �������
 � ��,
��������	 ��������
 � ��, � ���������	 ��������
� �

�������	 �������
. Suppose the continuous-in-time arc of (8) admits a
re-parametrization ����� � �������� defined by (3) with ��-functions
�����
 � � � 
 �����. Compute the dynamics of (1), when these relations
are kept invariant, i.e. compute the coefficients of the second order
system (5). Then, by necessity, the algebraic equations

� �����
 ������
 ������
 ������� � �

�
��

��� � �

� �

�
��

���
(9)

hold. Here ���� is an integral of (5) and can be taken as (7).
Proof: The function ����� by construction is the solution of the

system (5) and the first relation of (9) is valid because the function ����
keeps the zero value on it [9]. The second relation of (9) is the mapping
� ��� on the cycle written in terms of the variable �.

Planning cycles of an impulsive mechanical systems can be based
on Theorem 1 following the next steps.1

1A more restrictive motion planning procedure for a class of models for planar
biped robots is described in [3]; we do not require ��� � � � .

1) Let � � ���
 � � � 
 ��� be a vector of parameters and � be a
scalar variable; choose a set of ��-smooth functions: ���
 � � �

�����
 � �
 ����
 � �
 � � � 
 ����
 � ��;
2) Simplify the dynamics of (1) under the assumption that the rela-

tions �� � ����
 � �
 � � � 
 �� � ����
 � � are all kept invariant.
This results in the family of 2-D manifolds ��� � 	 � 
 �,
defined by (6), and systems

���
 � ��� � ���
 � � ��� � ���
 � � � � (10)

phase curves of which fill out ��� �. For each choice of � , (10) is
integrable; i.e. for any solution � � ���
 � � of (10) well-defined
for � � �� � �, the function ���� computed as in (7), satisfies

� ����
 � �
 �����
 � �
 ���
 � �
 ����
 � � � �

3) Define the curves ��, �� and the mapping � � �� � ��

�� ��� � ��� �
 �� � �� � ��� �


� ��	 ��

��� 	�
�	

� � ���	 ��
�


�����
 �� 	
�� ���
 � 	� (11)

4) Search for parameters � � �� such that the following algebraic
equations have a non-trivial solution

���
 �
 �
 �� � �
 � ���	 �
� � ��	 �



��	 �
 � ��
 ��	 �
 � ��
 �
 �
 �
 � � �
� (12)

If the search is successful and � � ����
 ��� is the solution of
(10) with � � �� initiated at ����
 ��� � �, �����
 ��� � � such
that �����
 ��� � � ������
 ��� � � for some �� � �, then the
hybrid mechanical system has the hybrid cycle defined by

�� � �� �����
 ���
 ��� 
 � � � 
 �� � �� �����
 ���
 ��� �

III. TRANSVERSE LINEARIZATION OF (1), (2) AROUND

ITS PERIODIC SOLUTION WITH ONE JUMP

Given a one-jump cycle � � ����� � ���� � ��� of the impulsive
mechanical system (1), (2) with � degrees of freedom and under-ac-
tuation one, computing a transverse linearization, an impulsive linear
control system of dimension ���� ��, for the system dynamics along
this motion consists of three steps:
Step 1) Linearizing the update law ���
��
 � ���� around

��������	 ��������
 � ��;
Step 2) Linearizing the transverse dynamics of (1) along the contin-

uous-in-time sub-arc of �����;
Step 3) Merging the linearizations of the continuous and discrete

parts of the dynamics.

A. Step 1: Linearizing the Discrete-in-Time Dynamics

Linearization of ���
��
 � ���� is the Jacobian of � ��� calculated
at ��������	 ��������
 � ��

�� ��
��

���	 ��

� ���
 � ���


(13)
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Fig. 1. (a) Tangent planes�� and�� to the switching surfaces� and �
at two points, where the periodic trajectory � ��� hits and originates from the
switching surfaces. The linearization of � ��� in a vicinity of the hybrid cycle is
the linear mapping �� � �� � �� , see (13). �� and �� denote vectors
normal to �� and �� respectively; (b) the moving Poincaré section is a
family of ������-dimensional surfaces 	��� transversal to the continuous-in-
time sub-arc of the hybrid cycle. The linearization of transverse dynamics is a
linear control system defined on �	���, the tangent planes to 	���. ����� denote
vectors normal to �	���.

here ��
�

and ��� are tangent planes to the��-smooth hypersurfaces
�
�

and �� at two points, where the periodic trajectory ����� hits and
originates from the switching surfaces, see Fig. 1(a).

B. Step 2: Linearizing the Continuous-in-Time Dynamics

Linearizing the transverse dynamics of (1) along the continuous-in-
time sub-arc of ����� is based on the concepts of moving Poincaré sec-
tions [10] and transverse dynamics [11]–[13] defined next.

Definition 1: Let �����, � � ��� ���, be a solution of the�-degree-of-
freedom mechanical system (1) with the initial conditions at ����� �

��, ������ � ���, driven by the control signal ����� � ������ ���� such
that �� ��������	�
������

�� � � for all � � ��� ���. Let us define an 	-tube
around its orbit �����, see (4), as

������ � 
 � ��� ��� � �� � 
��� �
������� � 	 �


��� �
������� � ���
������ �

�
� ����� �� �������� � (14)

1) A family of ������-dimensional��-smooth surfaces �
���� � �
��� ���� is called a moving Poincaré section associated with the
solution �����, � � ��� ���, if there exists 	 � � such that:
• The surfaces
��� are disjoint, i.e.
����	
����	������ � 
,
���, �� � ��� ���, �� �� ��;

• 
���	�������� �������� ���� � � 	�	������ ��������� ��������

for each � � ��� ���;

• The surfaces 
��� are locally smoothly parametrized by evolu-
tion along the trajectory, i.e. 
�� � ��� �� �� � � 
��� 	

������ ����� ��� �
� � � � ����� ��� �� � �� 	 �������

2) Given a moving Poincaré section �
���� � � ��� ����, in a tube
������ around the trajectory ������� �������, � � ��� ���, the state
vector ��� ��� of (1) can be changed into: a scalar variable ����

that parameterizes a position along the trajectory and a ��� �

��-dimensional vector 
���� that defines location on the surface

���. 
� is known as a vector of transverse coordinates, while

�-dynamics are called transverse.

3) The dynamics of (1) rewritten in ��� 
��-coordinates and lin-
earized along the solution �����, � � ��� ��� give rise to a linear
time-varying control system of dimension �� defined on ��� ���.
Its subsystem corresponding to a linearization of the 
�-dy-
namics is called a transverse linearization.

Fig. 1(b) illustrates the concept of a moving Poincaré section for the
continuous-in-time sub-arc of a hybrid cycle. Note that
��� and
����
might not coincide with the switching surfaces �� and ��.

The transverse linearization is not uniquely defined and depends on
the choice of a moving Poincaré section �
����	����� � or, in other
words, on the choice of transverse coordinates 
�. Let us show that
for any non-trivial motion of (1), there is one generic choice of trans-
verse coordinates. Indeed, given the scalar functions ������ � � � � �����
defined by the relations (3), let us consider the quantities

�� �� � �� � ������ � � � � �� � �� � ����� (15)

as excessive coordinates for the �-DOF mechanical system (1). Lo-
cally, one of them can be always expressed as a function of the others.
Assuming that this can be done globally for ��, we can take

� � ���� � � � � �����
� ��
 � (16)

as the new generalized coordinates, see [7], [8] for details.
In these coordinates, a possible choices for the transverse coordi-

nates for the dynamics of (1) along �����, � � ��� ��� is


� � � �� ��� ������ ������ � �� �� (17)

where ���� and ���� are defined by (7), (15), and (16). To define a
moving Poincaré section �
����	����� � associated with the contin-
uous-in-time sub-arc of solution ����� of (1), theoretically one can pro-
ceed as follows.

1) Change in a vicinity of the target motion the state vector ��� ��� of
the system (1) into ��� ��� �� ���.

2) Make another change from ��� ��� �� ��� into ��� �� �� ���, where
� is defined by (7). This step introduces the scalar variable
� � ���� ��� such that ����� �� �������� ������� monotonically
changes with time along the target trajectory2 that can be written
as �� � ������ � � �� � � �� �� � ��. These coordinates are
the ones that were known to exist [11] and that were assumed
to be somehow given for analysis and stabilization of smooth
cycles of smooth nonlinear systems in [12] and other papers.
The key novelty here is the systematic and explicit procedure for
computation of transversal states (17) and their linearization for
controlled mechanical systems. These steps were impossible to
accomplish for general nonlinear systems considered e.g. in [10],
[14].

2This is due to the assumption that � �� ���� � �	� ���� 
 
 for � � �
� � �.
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3) After that, the moving Poincaré section is defined by

���� �� ���� ��� � ���� ���� ����� � 	� � � � �	� ���� (18)

Rewriting dynamics of (1) in terms of the new variables
��� �� 	� �	� and computing ���� in (18) is often a nontrivial
task. Fortunately, the tangent planes ����� can be readily
found without introducing the variable �. Indeed, if the dy-
namics of (1) are expressed in ��� �� 	� �	�-coordinates, then
at any point of the cycle the vector 
���� normal to ����� is:

���� � �
� 	� � � � � 	�� � ��. At the same time, the direction
of the vector field of (1) at this point is proportional to the same
vector. Therefore, in the original coordinates


���� � � ������� ������� � � �������
� 
 ��������

�� (19)

So, by construction, surfaces ���� and hyperplanes ����� are or-
thogonal to the orbit of the target motion, and hence are transversal
to it. This makes the choice of transverse coordinates (17) to be
the most natural.

With the transverse coordinates (17) and the associated moving
Poincaré section (18), the transverse linearization of the �-DOF
controlled mechanical system (1) with �� � 
� independent control
variables 
 � �
�� � � � � 
����

� around the motion � � ����� can be
found analytically. Expressed in the particular coordinates on ���� �,
this linear control system has the form [8], [13]

�

��
���� ���� ����� 
����������

���� �

�����
������

������

� ���� �

�����

������������

������������

�

��� � �

������ ������ ������

�������� ������������ ������������

�������� ������������ ������������

�

(20)

Here ���� � ���� is a vector approximating a behavior of trans-
verse coordinates ����� defined by (17); �� � ��� is a control input,
which approximates new control variable ���� for (1) introduced by a
feedback transformation in the form [8]


 � ���� ��� 
 ���� ���� (21)

linearizing the dynamics of 	-variables (16) to obtain �	 � �; ������,
������, ������, and ����� are functions on �	� ��� of appropriate di-
mensions. Explicit formulas for coefficients of (20) can be found in
[8, Eqns. (33), (34)]; they are computed knowing (1) and the solution
����� as a function of time.

C. Step 3: Merging the Two Parts of Linearized Dynamics

Combining the linear mapping (13), i.e. the linearization of the
update law, with the transverse linearization (20) requires certain
care. Indeed, the linear mapping (13) acts between the hyperplanes
��� and ���, defined by the switching surfaces, while the linear
differential equation (20) maps a vector on ���	� into a vector on
������. Clearly, the hyperplanes ��� and ������, as well as ���

and ���	�, might not coincide. Therefore, to define a transverse
linearization for our impulsive system around its hybrid periodic

motion �����, we have either to introduce a transverse linearization
corresponding to another choice of a moving Poincaré section such that
���	� � ��� and ������ � ��� or to transform the linearization
of the update law �� ��� in such a way that it acts from ������ onto
���	� with the choice of ���������� 	 given on Step 2. Difficulties
associated with computing alternative to (20) transverse linearizations
analytically3 motivate the second choice.

Definition 2: Suppose the following are given:
1) The hyperplanes ���	�, ������, the normal vectors 
��	�,


�����, see Fig. 1(b), defined by a moving Poincaré section
������������ 	 associated with the continuous-in-time sub-arc of
�����.

2) The tangent planes ��� and ��� to the switching surfaces ��

and ��, see Fig. 1(a), that are transversal to the hybrid periodic
motion defined at the end-points of the continuous-in-time sub-arc

� ����	��� ����	��� �� ��� ��� � ��������� ��������� �� ���� (22)

3) The linear mapping �� � ��� � ��� defined by (13).
Let us denote by ��

����� � ��� � ���	� the projection along 
��	�.
This operator can be introduced by the following geometric rule. For
a given �� � ��� consider the line �� parallel to 
��	� that passes
through ��. Denote by 	� the point of intersection of ���	� and this
line ��. Then, 	� is the image of �� under the map ��

�����. Similarly, let
��
���� � � ������ � ��� be the projection along 
�����. From the

conditions (22) both projection operators are well-defined and linear.4

The linear operator

���	� � � ������ 	 � 
�  �� ��
����� �� ������ � � � ���	�

(23)
is called a linearization of � ��� associated with the moving Poincaré
section ������������ 	.

The next statement relates behaviors of the linear system (20), (23)
and the nonlinear system (1), (21), (2).

Theorem 2: Given the impulsive mechanical system (1), (2) and
its ��-periodic solution (8) with one jump such that the relations (22)
hold. Consider the impulsive linear control system, a solution of which
� � ���� � ���� is defined by the next inductive rule:

• On the time intervals ��! � 
���� !���, ! � the solution is
defined by the linear control system

�

��
���� � ��� ��� ������� 
��� ��� ������� � (24)

where matrices ��� � and ���� are from (20), and ���� � � ���

is a vector of control inputs.
• At each of the time moments �
 � !��, ! � the state ���
�

of the linear system (24) is instantaneously changed to the new
vector, defined by the linear transformation

���
�� 
�� ���
�� �� ��	� ���
�� (25)

where the operator ���	� � is from (23). After the update, the
solution is defined by (24) until � � �
 
 ��, where the next
instantaneous update (25) occurs and so on.

3A computational procedure, based on a concept of orthogonalizing trans-
form, has been proposed in [15].

4The explicit formulae for the projection operators are given in [6].
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Fig. 2. (a) Model of the devil stick adopted from [16]. The system consists of
one (rotating) center stick (CS) driven by the force from the hand stick (HS),
which rolls along the CS without sliding. (b) Phase portrait of system (33). The
shaded area of the phase portrait possesses no solution that satisfies ��� � �
�������. Meanwhile, the trajectories indicated by bold red arrows satisfy this
and ���� � � �����, so they can be sub-arcs of the desired hybrid cycle.

Then, the origin � � � of the linear system (24), (25) is exponentially
stabilized by

����� � ��� ��� �������� ���� � ����� ��	 (26)

if and only if the feedback controller (21) with

��	� � ����
��	� (27)

and � defined at every 	 by one of the following two relations

����	�
 ���	�	 � ����� �������� ��

����	�
 ���	�	 � ���� � ������� (28)

makes the hybrid periodic motion of the impulsive mechanical
system (1), (2) orbitally exponentially stable. Here 
���� and
������ � ������ are defined in (17) and (14), and 
 � � is small.

Proof of Theorem 2 is given in Appendix A.

IV. EXAMPLE: STABLE ROTATIONS FOR A DEVIL STICK

To illustrate our technique, consider the task of planning stable per-
petual rotations of the mechanical system resembling the behavior of
a ‘devil stick’—an entertainment juggling device. It consists of two
parts: a hand stick (HS) and a center stick (CS) which is floating in the
air and rolls along the HS without sliding, see Fig. 2(a). The dynamics5

of the CS, in polar coordinates, is [16]

�
� ��� ��� ��� ��� � � ����� � ���� � ����� � ����

��
� � � �� �� �� ��� ��� � � ����� � ���� � ����� � ����

� 
� � ��	��� � ��� � ������ (29)

Here � � ��
 �
�	 with �, � being the polar coordinates for the center
of mass of the CS, � being the angle that the CS makes with the hori-
zontal; �, � are the mass and the moment of inertia of the CS; ��, ��
are the tangential and normal components of the force applied to the CS
by the HS at the point of contact; ��	� is the resettable instantaneous

5The hand-stick dynamics is neglected and several other simplifying assump-
tions are made. It is assumed that � can be only positive so that there is no
problem with singularity of dynamics at � � �.

position at which the CS and the HS are in contact. Let us make the
following assumptions: The normal force �� can change sign without
breaking the contact between the sticks, so that dragging is possible.
Furthermore, assume that there is no sliding even if the normal and
tangential projections of the force violate a certain cone-like friction
condition. The ‘no-sliding’ assumption results in a relation valid at the
contact point: �� � �� �� with ��	�� � ��, where �� is the contact po-
sition when ��	�� � � and � is the radius of the HS. Integrating this
relation over time, we obtain the right-hand side of the third equation
in (29).

If someone manage to achieve a counterclockwise propeller motion,
����	���	� must be kept positive. Since the length of the CS is finite,
one cannot keep ����	���	� negative forever and must instantaneously
change ��	� via an infinitely fast motion of the CS. This makes any
cycle of (29) hybrid.

The update law is a part of a controller, so there is a certain freedom
in its definition. However, the following choices for the switching sur-
faces and the update mapping

��
�
� ��
 ��	 � �� � �������

��

�
� � �

��

�
�

��
�
� ��
 ��	 � �� � ��������

�

�
� � �

�

�
� (30)

� � ��� �� �� ��� ��� ��� � �� 	
��� �� �� ��� ��� ��� ��� � �� (31)

can be motivated from the analysis of motions performed by human
artists and are simple for implementation. Here ������ is some chosen
value of the angular velocity. Planning a hybrid cycle for (29), (30),
(31) can be done using arguments of Section II. Two relations from
[16]

� � ��� � � �� �� (32)

parameterize behavior of the polar coordinates of the center of mass of
the CS as functions of the other coordinate �. The class of systems (10)
parameterized by � � ���� ��� looks as

������ ��� ������	 
����� ��� ������ ��
� ������� ������

(33)
and the 2-D manifolds (6) are ��� � � ���
 ��	 � � � ��� �� � �� � �

�� ��� �� � ���. In turn, the curves �� and �� defined in (11) become
intervals of straight lines, e.g.

��� ����� ����� ������� ��� ��� �������
��

�
���

��

�
�

The four equations in (12) can be rewritten as one with respect to  �

�����, the angle in the beginning of the cycle

���

����

�

���� ��� ��������

� ���� ��� ������
� � �������

�

����

�

���

�

����

����� ��� ��������

����� ��� ������

�����!� ��� !�!

����� ��� ����!��

Depending on physical parameters and the initial velocity ������, this
equation might have solutions or not. The phase portrait of (33) with
�� � ����, �� � ��� and � � ��� ���	, � � ���� �����	, � �
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Fig. 3. (a) Phase portrait of system (33). The particular trajectory representing
the boundary of shaded area has the zero velocity at the beginning and the end
of sub-arc: �� �� � � �� ��� � �. (b) Evolution of � versus �� along the solution
of the closed-loop system with initial conditions outside the desired cycle and
added measurement noise.

���� ���, � � ���	 �
�����, �� � �� is depicted in Figs. 2(b) and
3(a). The shaded area of the phase portrait possesses no solution that
satisfies �
� � � �
�� � ��. Meanwhile, the trajectories indicated by
bold red arrows satisfy also ��
� � � ��
��, so they can be sub-arcs of a
desired hybrid cycle.

Orbital stabilization of the hybrid cycle generated by the relations
(32) and the motion of ��
�� depicted on Fig. 3(a), can be achieved
via stabilization of a transverse linearization and the modification of
the controller proposed6 in Theorem 2. This motion is of period �� �

����� �, coefficients of (20) for (29) along this motion are 	�

 � �

����
��

�� ���

���
 ��, ���

� � �� � � � �
��

�� � ���

��� ,
���

� � 
� � �
��

�� � ���

����� ��

�
�

�
 �� � ���
���, and ���

� �

��
 ��� � � � �
��

�� � ���
�

����. To compute ���� for this cycle,

we observe that the linearization of � 
�� in (31) is the identity, and
the hyperplanes ��� and ��
��� as well as ��� and ��
�� are
different, their normals are

��
�� � ��
 �
 �
 �
 	
 	�� 
 ��� � ��
 �
 �
 �
 �
 	�� 


��
��� � � ��
��
 ��� � ����

However, the operators ��
����� and ��

���� � are inverse of each other, so
that ���� is the identity as well, see (23). The stabilizing controller

6The restriction of the dynamics (29) and (31) to � does not have this cycle
orbitally asymptotically stable.

for this linear hybrid system has been found and modified as in The-
orem 2. A representative solution of the closed-loop system with added
measurement noise is depicted in Fig. 3(b).

V. CONCLUSION

We have considered the class of impulsive mechanical system with
underactuation degree one. Motion planning problem for systems in
the class that are not feedback linearizable and non-minimum phase is
challenging since the lack of control inputs does not allow assigning
trajectories for each degree of freedom independently. Necessary con-
ditions for existence of a hybrid periodic motions with one jump in the
form of a set of algebraic equations are obtained. As shown, they pro-
vide basis for a new algorithm for motion planning.

For a nontrivial hybrid periodic trajectory, a linearization of con-
trolled dynamics transversal to its orbit is computed in closed form. The
obtained linear control system is defined on the most natural choice of
a moving Poincaré section and allows not only analyzing stability for
the closed-loop system with a given control law but also designing an
exponential orbitally stabilizing controller.

The results are illustrated on a problem of stabilizing a permanent
rotation for a simplified model of the devil stick. Another example of
applying the presented ideas can be found in [6], where an impulsive
model for a three-link walking robot is successfully treated.

APPENDIX

A. Proof of Theorem 2

In a vicinity of the orbit (4) the dynamics (1) are [7], [8]

�
������
�� �����
�� � ��
�
 ��
 ��
 �
 ������ ��
�
 ��
 ��
 �
 ��� ��

� ��
�
 ��
 �
 ����


�� � � (34)

where the left-hand side of the first equation in (34) coincides with (5);
��
��, � ��
��, ��
�� are smooth vector functions of appropriate dimen-
sions. The system (34) makes an introduction of transverse coordinates
for (1) transparent. Indeed, the transverse coordinates (17) are a part of
the state vector ��� ��� � ��� �� �� ��� for (34) introduced instead of
��� ��� �� ���, see the arguments after (17). Rewriting the dynamics of (1)
in such coordinates might be difficult, however a linearization of the dy-
namics for ��� �� ��� along the motion ��
�� can be analytically found.

If, for instance, the vector of the initial conditions ��
�����
��� be-
longs to the hypersurface �
��, which is the first one from the moving
Poincaré section, defined as a family ��
���	�	�
� 
 associated with
the continuous-in-time arc of the cycle ��
��, then the solution of the
closed-loop system (1) with the controller (21), (27) can be approxi-
mated for the time interval from 0 to the first instant it reaches ��, as
follows:

�
�� ���

� �  
��
 �
�� � ��

� �  
��

�
�� �!��

� �  
��
 ��
�� � !��

� �  
��

 
�� �  
��
���� ��
���� � ��
���� � (35)

Here, ��

�, !��

�, and !��

� are components of the state "

� at

 � �� 
�� of the linear system (20) with the linear feedback controller
(26) and with the initial conditions on the hyperplane ��
�� defined
as: ��
�� � �
��, !��
�� � �
��, !��
�� � ��
��.
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The time moment � when the solution of the nonlinear closed-loop
system (1), (21), (27) hits the switching surface�

�

for the first time, i.e.
���� �� ��� �� ��� �� ���� �� � �

�

, is approximated by � � �� 	 ����
and can be larger or smaller than the period ��. However, the relations
(35) imply that if we consider the solution at time moment � � ��
(making if necessary the switching rule non-active), then the approxi-
mations

����� ������� 	 ����� ����� � ������ 	 ����

����� �������� 	 ����� ������ � ������� 	 ���� (36)

hold. Here the vector 	���� � �������� ����������������
belongs to the hyperplane �
���� and the state vector
������� ������ ������ ������� belongs to the hypersurface 
����.

To find a point, where the solution ������ ����� ����� ������ of the
closed-loop system hits ��, we can use the approximation for
������� ������ ������ ������� in (36) translated along the direction of
������ defined in (19) until it intersects �� (note that such a translation
is the first-order approximation for the trajectories of the nonlinear
system). Here the update law is activated and further maps this point
into the one on ��. To find where the solution of the closed-loop
system, originated from the point on ��, hits the hypersurface 
�
�,
we can translate it along ���
� until it intersects 
�
�. The same
procedure can be used for approximating the point on the hyperplane
���, mapping it by the linear operator 
� to a point on ���, and
translating the image along ���
� until hitting �
�
�, see [6].

These steps repeated for ��� � �� independent sets of initial con-
ditions on 
�
� allow us computing a linear approximation, the mon-
odromy matrix, for the first-return Poincaré map defined on this hyper-
surface, see [13]. As a result, asymptotic stability of the origin for the
linear impulsive system is equivalent to exponential orbital stability of
the periodic motion ����� for the nonlinear one.
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