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Transverse linearization for an underactuated compass-lile=l bipgbot and
analysis of the closed-loop system

Leonid B. Freidovich and Anton S. Shiriaev

Abstract—\We consider an impulsive 2-DOF mechanical sys- [40] and are rapidly becoming more and more broadly used
tem modeling dynamics of a planar two-link walker commonly  for periodic motion planning and orbital feedback staliiz
known as a compass-gait biped. It is assumed that there is {jnn for mechanical systems with and without impacts, see

actuation in the hip but that the desired periodic trajectory .
describes an unstable passive walking gait. We recall and apply e.g. [33], [40] and references therein. Knowledge of these

a recently developed technique for design of orbitally stabilizing relations allows introducing a moving Poinéasection [39],
feedback controllers. After that, we illustrate on the particular ~ [14], [23], computing the Poincér first-return map [29],
example how to assess various properties of the closed-loop[26], [20], as well as analytically deriving equations for a
system. In particular, sensitivity to perturbations of the slope transverse linearization [16], [3], [36], [27], [31], [32]

of the walking surface is analyzed and possible deviations from S .
the nominal trajectory are estimated analytically. We must remark that finding stable gaits for the compass-

Index Terms— Walking Robots; Underactuated Mechanical —dait system has attracted many researchers motivated by
Systems; Periodic solutions; Orbital stabilization; Transverse various aspects of passive and active dynamic walking, see

Linearization; Virtual Holonomic Constraints e.g. [8], [17], [15], [9], [19], [30], [2], [4Q], [24], [28] ad
references therein. However, to the best of our knowledge,
|. INTRODUCTION there are no reported successful supplements for the other

The study of simple walking devices is a fascinatingPrOposed stabilization or stability-verification techuég that
field that has attracted considerable attention of reseasch allow systematic analytical or semi-analytical assesssnei
in the robotics and control communities. After McGeer'sSensitivity to various perturbations and uncertaintieslo®
seminal paper [25], published in 1990, there was a seridé provide an illustration of such analysis based on the
of publications, see e.g. [10], [11], [21], [18], [37], [AR2], a@PProach using virtual holonomic constraints and anaytic
proposing and reporting how to find and analyze passive gag§mputation of transverse linearization. More preciselg,
for various low-dimensional walking devices. go one step further showing how to compute various charac-
These gaits are also of interest to consider in the cad@ristics of a periodic gait such as the rate of convergeme,
when some actuation is available since the correspondif§timate of the region of attraction, and sensitivity wieh r
desired trajectory is obviously efficient from the point ofSPecCt to parameters exploiting some analytical (and thezef
view of required nominal control efforts. The goal of thedimension independent) arguments.
control design then is to stabilize an appropriate opep-loo
unstable limit cycle or to enlarge the regions of attracthoat

is typically very small when control is absent. We illuserat  pynamics of a two-link compass-gait biped robot with a
below how it can be done using a recently developegontrol torquew applied at the hip, schematically shown in

technique on a standard benchmark example: a planar twog. 1, can be described by the impulsive system [11], [18],
link walker commonly known as a compass-gait biped. [38]

The key idea of the approach is exploring a special but

generic change of coordinates that can always be used fpr@1 =22, pi@2 — pacos(w1—x3)is—posin(z; —a3)r]
a parameterization of any nontrivial hybrid periodic smint —pasinz, =u

of the walker dynamics. In essence, we avoid looking fo}
explicit dependence on time but instead search for geotnetr
relations among the time evolutions of the generalized cd
ordinates [1], [12], [13] that should be valid along a cycle @slong as cos(z1 + ) — cos(zs +v) #0
Such relations are calledrtual holonomic constraint§34],

II. DYNAMICS

d3=mx4, pais—pacos(zy—x3)ia+pesin(z;—z3)w3

+ ps sinxs=—u

af =3, Ty =y, ¢ = cos(zy —x3),
L. Freidovich is with the Department of Applied Physics anddilonics, + B a1
Umea University, SE-901 87 Und Sweden. A. Shiriaev is with the De- Ty | _ | P1 —P2¢  Pp3—p2C
partment of Engineering Cybernetics, Norwegian Universftgcience and [ 5‘72_ ] o { —pac” P3 }

Physics and Electronics, UadJniversity, SE-901 87 Unde Sweden.
This work has been partly supported by the Swedish Reseaocim-C

cil (grant 2008-5243), Kempe foundation, Young Researcherard _ _

(Karriarbidrag) from Um& University, and Russian Federal Agency for | Whenever COS(% + ¢) - 005(373 + ¢) =0

Science and Innovation (grant 02.740.11.5056). (1)

Technology, NO-7491 Trondheim, Norway and the Department li&d - —
e $ B m « | P7¢ —Ps —Ps Lo
—De 0 Ty

Preprint submitted to 8th IFAC Symposium on Nonlinear Control Systems.
Received January 21, 2010.



CONFIDENTIAL. Limited circulation. For review only.

B. Example of a periodic solution

For instance, ifyy = 2.877/180 and u,(t) = 0, then
there are two nontrivial periodic solutions [6]—passivetgai
of the walker (1). One of them is defined by the following
initial conditions:

714(0) =~ 0.203177786690625,

72,(0) ~ —1.196561416996205,

73,(0) =~ —0.303359681764206,
(0) ~ —0.720513934734346.

3)

Q

T4, (0
Fig. 1. Schematic of the compass-gait biped on a shallow slopklere, A

q1 = x1 and g2 = x3 describe the absolute angular positions of the stance
leg and of the swing leg respectively. On the right, physizalameters of It iS possible to verify that the initial conditions (3) with

the compass-gait robot are listed. u = u,(t) = 0 define an unstable periodic solution =
2.(t) = x(t +T) of the walker dynamics (1) with the
period T = 0.583723 [sec].
Here the coefficients are defined by the physical parame-Thjs periodic solution, as well as any other one, can be

ters of the robot as follows: also described differently.
p1 = (mg +m)l2 +ma?, py=milb, p3=mb?,
pa = (mpl+mb+ml)g,  ps=mbg, C. Geometric description of a periodic solution
P = mab, pr = mpgl? + 2mal,

Suppose that for the nominal periodic solution= x(t),
the constant) denotes the slope of the walking surface anduch as the one with the initial conditions at (3), the
the standard abbreviations componentzy,(t) is monotone or) < ¢ < T'. Then, there

exists a twice continuously differentiable functiop(9),
T =uz(t-) = lim z(t—le|), 2T =z(+)= lim z(t+[e])  describing the synchronization between the joint anglesgal
the periodic trajectory, such that
are used for the values before and after the jumps.
r14(t) = 0.(1), w3, (t) = @(G*(t))~ (4)
I1l. DESCRIPTION OF A NOMINAL PERIODIC SOLUTION
o o ] Furthermore, the functiod = 6, (¢) for 0 < ¢ < T can be
A. Definition of a periodic solution computed by solving the following second order differentia

The dynamical system (1) can in short be rewritten as €quation [35]

@(t)=f(x(t),u) for z= ¢TI, @ a(0) 0+ B(0) 6% + () =0, (5)
IYsat=F(z") for o= el . _ .
where the coefficients are defined by the physical parameters

with the state vector: = [z1, @, x5, 24]7, the surfacer® ~ Of the walker:

defined bycos(z] + ) —cos(z; +1) =0, and f(-) and p
F() Comgutegj flromthe righ(t-ﬁandws)ides of theffji)fferential o(6) = ( 0)+ 1) COb(e 90(9)) +ps¢'(0) + 1,
and algebraic equations respectively. B(0) = ( (¢'(0)) ) sin (6 — ¢(6))
If there exist a numberl” > 0, a continuous scalar ©"(6) (p2 Cos(a ¢(9)) _p3),
function v = w4 (t), and a continuous vector-function = _
x4 (t) defined fo(r()) <t < T such that: 70 = =ps Sm(e) +p5sin(4(6)) (6)
1) z,(0) eI, The functiony () that defines synchronization between the
2) For 0 < t < T : = = x,(t) is continuously position coordinates along the periodic solution is known a
differentiable, does not cros<™Y°, and satisfies the @ virtual holonomic constrain{34], [40]. The equation (5)
differential equationi, (t) = f (2. (t), u.(t)), is obtained substituting relations defined by (4) into adine
3) z,(T) e e and F(x*(T)) = 2,(0), combination of the two differential equations in (1) that is

independent on the control input. It is sometimes called
reduced dynamicer dynamics projected onto the manifold
%efined by the virtual constraint:s = p(21).

If there exists a periodic trajectory for a particular fuont
it gives ri family of ibl ntrol in

1Crossings that are not heel strike related will be ignoree laoiding 90(9)’. tg esf h S.e t% a .a | )c/i 0 hpOSS ble C;) tro kpUti
scuffing and impossibility for walking with fixed lengths ofgke without C0n5|5t?nt_wn _ It, that include the ones that make the
knees and without passing through the surface. constraint invariant, see e.g. [42].

then, the solutionz, (¢) is referred to as aominal periodic
solution of the hybrid system (2) describing dynamics of
compass-gait walking on a surface with the slape= .
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D. Control law for a periodic solution If the zero-dynamics (10) was stable, a simpler feedback
control design procedure for (1) than the one to be described
shortly would be applicable. As an example, we refer to

u.(t) and, visa verse, for a given initial condition, (0) the techniqu_e recently developed and successfull_y tested o
and a control inputu,(t), the solutionz,(t) is uniquely ~Several walking-robot examples [41], [4], [40]. The idearth
determined by (2). However, if one is interested in defining® ©© design a finite-time convergent or high-gain control

the control input in the form of a state feedback input that forces the trajectory to the zero-dynamics man-
ifold. Obviously, this approach cannot work in the situatio

u=U(x) with unstable hybrid zero-dynamics that we do have for the
periodic solution described above.
Below we review an alternative transverse-linearization-
u,(t) = U(z)],_, 0 7) based design that does not even require such dynamics to
o be well-defined, see also [13]. It is worth keeping in mind
then, there are many choices for the functiGiiz). One of that the family of the feedback controllers to be presented
them can be found as follows: Given a functigr{d) that includes all the controllers that can be designed using the
describes the time-evolution synchronization (4) betwtden notion of hybrid zero-dynamics.
degrees of freedom along the solution, substitute theioakat

Having known a nontrivial periodic solution = x,(t) of
(2), one can compute the corresponding control input

that satisfies the interpolation condition

0 . 9 . i IV. ORBITAL STABILIZATION OF THE NOMINAL CYCLE
n =", n="9 = USING TRANSVERSE LINEARIZATION

=0(0), G=¢0)0, G=¢"(0)0>+(0)0
2 =0 2=¢'() @ =¢"0) A ()8) A generic approach for orbital stabilization of a periodic
into the two differential equations in (1) and solve thesolution is to design a control input that stabilizes dyresmi

obtained system with respect foand «, see also [42], [40]. transversal to the trajectory of the solution.
Then, one obtains

u = (p} cos? (6 — (6)) 9" (0)0% + (p26%¢'(6) (' (6) + 1)
x sin (0 — (0)) + pasin(9) + (ps sin(p(9))¢'(9)))
X po cos(@ — @(9)) — p292(<p’(9)3p3 + 1 sin(9 — @(9))

A. Transverse coordinates

To introduce the transverse dynamics, consider the change
of coordinates:

) ) o x 0=z
— P3¢/ (O)pasin(6) — pr((ps sin((0))) + pa”(0)6%)) 6= o
/(=p2(¢'(0) + 1) cos(0 — @(8)) + (3¢’ (6)) + p1) v | T | y=as— )
EU(G,H) Ty ?J:x4_90/(331)552 11
9) s=U(x1) (11)
and defines the operatdr. I=1(xy,229)
Note that for a passive gait, such as the one with the — y=ax3— (1)
initial conditions (3), the functionl/ (6..(t), 6.(t)) in (9) is U =x4 — ¢ (11) T2

identically equal to zero.
where ¥(z,) is defined as an inverse functfofor z,(t),

E. Hybrid zero-dynamics that can be computed as a solutiér= 6, (¢) of (5), i.e.

The feedback control law: = U(6,6), defined by (9), _ -

makes the zero-dynamics manifold 0.(s) = a1 = s = (1), (12)

z 9,3, Z4] : T3 = = (x the scalar function/ (4(t),(t)) is the conserved quantity
{[z1, 22, w3, 24] = 3 = (1), 24 = ¢ (21) 22} [35] for the equation (5)

invariant along the solutions of the continuous-in-timetpa

of the dynamics of the closed-loop system (2), (9). In , 2(f99*((2)04(8)7(8) dS) —a2(6,(0)) 62(0)
addition, it can be shown that the restriction of the diseret 1 = 0°(t) + 1)

mapping F() tp the curvey = rve ﬂ%’ maps it into (13)
7+ =T{" N Z, i.e. thehybrid zero-dynamic§41] with the functionsa(-) and ~(-) defined by (6).

) eronz The new coordinates are instrumental for design of or-
v + ’ bitally stabilizing feedback controllers.
i(t) = fls (x(t), U (z1(¢), ZQ(t))) for z— ¢, With the following feedback transformation

Yo + _ - — o .
r’>’su« *F|F”ﬁoﬂz(x) for == eI” w=U(6,6) +uy. (14)
(10)

'S ngl-deflned. However, the .hybnd zerq-dynam|cs n t.he 2Here the monotonicity ofc1. (t) = 0, () is exploited.
considered case is not stable, i.e., the defined above period st,e general expression proposed in [35] is simplified henagusie fact

solution of the closed-loop system (10) is unstable. that in (6) 8(6) is proportional toa’ (6) .
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where U(-) is defined by (9), the dynamics (1) written in C. Continuous-in-time part of the transverse linearizatio

the variables{d, 0, y, 5}, see (11), becomes The matrix-functionA(7) in (17) is defined as [33], [31]
?(0) 0+ B(®) éQ +7(0) = 9(8,0,y,9,uL), a5 A p(r) (91(7)0* B(0.(1))) u(T)ézy(T) u(T)i%(T)
§=h00v 0, u) ha(r) hy(r)  hy(r)

(19)

Assuming thatu, (6,6,y,y) for (1) with (14) and (9) is where () = 26'*(7)/0[(9*(7)).
chosen so that Here the functionsg(:) and h(-) are taken from (15),
subindicesy and y denote the partial derivative with re-
spect toy and g, respectively, evaluated along the desired
trajectory, and subindexX denotes the following directional

{y=as— (1) =0, §=z4—p(x1)m2 =0,
I(zy,22) =0} = wuyL=0

it can be shown that derivative for h(-)
I I(z1,22) _5h(9, 0,0,0) b Oh(0, 9.,0,0) p
.=yl = x3 — (1) (16) 00 00
Y T4 — ¢ (1) T2 hi(r) =

2 (92 + é2)

is a vector of transverse coordinates, i.e. coordinates tha 0=0, (r
define deviations from the nominal periodic trajectory, i&hi (20)
the variable s introduced in (11) defines location alongwith an analogous expression fgr (). It can be shown
it. Keeping s fixed and varyingz, , we obtain a surface that our transformation (14) and (9) with(-) defined by a
transverse (in fact, orthogonal) to the nominal trajectdhe  passive gait impli€sh;(-) =0 and g;(-) = 0. The matrix-
whole family of these surfaces is calledm@ving Poincag function B in (17) is defined as follows

section[23], [32]. In fact, it is possible to prove [32] that 94 (7) (7)

llz1 | is equivalent to the distance between a point and the B(r) = l*g“i 0 huL(T)l (21)

periodic trajectory in the first approximation. 0‘(‘9*(75))
where ¢g,,, and h,, denote the partial derivatives with
B. Transverse linearization respect tou, evaluated along the desired trajectory.

Linearization along the periodic trajectory for the dynam®D. Linearization of the update law

ics of the transversg coordinates ('16) is a linear control the update law in (18) is defined from the Jacobian of the
system, whose solutions are determined by the rule [7]:  qnlinear update lawlF computed atz, (T) as [7]

1) Ontheintervalfi—1)T <7 <iT,i=1,2,...,the

— pt -
solution &, = @, (7) is defined by the linear control L = Py (dF)(, () Py (22)
system with two matrices
i , . ‘ X ~ n(T)m” P(T) T{ I }
T, =Alr—-0-1)T)2,+B(r—(i—1)T)aL P — S Sl
L L - (R
2) At the end of each interval, i.e. at = T, i = n(0) n™ (0)
1,2, ..., the solutioni, (i T—) experiences an in- P;r(o) =P(0) <I4 — nT(O)n(O))
stantaneous update defined by a linear transform
combining appropriate orthogonal projections alon¢l’)
T, (iT+)=La,(iT-) (18) andn(0) and linearization of the change of coordinates (11),

defined by the following block of the Jacobian matrix
If control variablesu; and @, for the systems (15) and .. .
—20,(t) 26,(t) 00
17 h Il h and related
(17) are chosen small enough and related as P(t) = [ —¢' (0.(1)) 0 1 0] (23

“small higher-order terms with respect to —"(0+(1)) 6:(t) —¢'(6.(t)) O 1

u, =u; + ; ; A
the distance to the target orbit of () with n(t) denoting the flow along the nominal trajectory

then solutions of the linear system (17)—(18) initiated at 10 (D) 9'*@)

#1(0) = [1(0), y(0), y(0)]" are such that the transverse d:;*(t) i, (t)

coordinates satisfy an approximation n(t)=|.7" = N 5

i isfy an approximati (t) igu(1) FO0)0(0)
/! /
z 1 (t) = &1 (s) + “small higher-order terms”s = W (x4 (t)) Tax (t) @"(0.(1)) 02(1) + ¢ (04(1)) 0. (1)

(24)

provided 7 is sufficiently distant from the time moments 4These functions are not trivial with a possible alternatiieice of (14)
(i—1)T, i € N, and U(z1,x2) = 0 for a target passive gait.
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and mm_ being the normal vectors t6": F. Region of attraction

m = [sin(xl*(T) + %) _ sin(:cl*(T) + %) 0 O}T It is important to realize that the discrete-time approxima
7 T (25) tion system (27) can be used for a numerical-optimization
respectively. We skip the index, here since it is easy to based feedback control design but is useless for obtaiming a

see that the operatal does not depend on the angle approximation for the region of attraction for the nonlinea
closed-loop system.
E. Orbital stabilization Here the computed linearization (17)—(18) might be useful.

Let us sketch a possible approach to estimate a tube around
e periodic trajectory where the solutions are trapped:

5 Choose a matrix-functio®(7) > § I3«3 and solve the

matrix differential Lyapunov inequality

An orbitally stabilizing feedback control law for the non-
linear system (1), (14), (9) can be design based on suctess
stabilization of transverse linearization (17)—(18) atofes:

« Design a stabilizing controller

i, =K(r—(i-1)T) &, for (i—1)T<7<iT ar P(7) + A(7) P(r) + P(7) Aa(r) < ~Q()

for the linearization (17)—(18). for 0 <7 <T, where

. Take A1) = A(T) + B(t) K(7) (30)

s = K(s) . (2), s=V(n(®)  (26) such thatP(r) = P"(7) > 0 and the next strict inclusion

with z, from (16). of sets is valid
In fact, orbital exponential stability of the nominal petio 7 —1,\T -1 < T <
solution for the closed-loop system follows from exponainti {CT' (L CT) P(T) (L CT) - 1} - {CO' G P(0)o = 1}
stability of the linearization [31].
Evolution of the states of (17)—(18) over the period is given
by solutions of the discrete-time system V(t) =27 (t) P(s)zL (1), s =V (z1(1))

(2) Use the quadratic Lyapunov function candidate

NI N
&1 = Lor(T)]. (27)  with =, defined in (16), to obtain an estimate for the tube

Hence, the stability is ensured whenever the eigenvalues 'Hfthe following form

the transition matrixL @ (T") are strictly inside the unite
circle. Here the matri>x®(7") is computed solving the initial

value problem with somees > 0. Note that the derivative of the Lyapunov
function can be computed analytically and, since it is based
d _ _
ar Ox = (A(T)+B(T) K(T)> Cr, Px(0)=1Isxs (28) o e linearization, it is negative for sufficiently smaf.
To design a stabilizing feedback control law for (17)—(18), The conservativeness of this approach is currently under

for instance, one may search for the constant feedback gaiff'dy: It is of interest to notice that the thinest places

taking a few steps towards solving the auxiliary optimizati ©n this tube should indicate the possibly most sensible to
problem [7] perturbations locations along the periodic trajectory.

Q={a: 2 = 0.(7), ] (N P(eL(r) <, 0< 7 < T}

K(t)=K,,; = ar min
(7) Pt gK(T):const

eig{L CDK(T)H . V. SENSITIVITY TO PERTURBATIONS OF THE SLOPE

In the case when the slope of the walking surfachas its
minal valuev,, the nominal open-loop unstable periodic
trajectory—the passive walking cycle of (1) with the initial

For the target trajectory defined by the passive hybrid cyclﬁ0
with the initial conditions (3), the gain

K, =[-2, 14, 7] (29) conditions at (3)—becomes an exponentially orbitally sabl

solution of the closed-loop system (1), (14), (9), (26),)(29

ensures However, if b # 1)g, then the nominal periodic trajectory
] is not a solution of the closed-loop system, and the dewatio

max elg{Lq’K(T)H _K, ~ 0.459254 from it is not characterized by solutions of the linear syste

indicat bil ith th di (17)—-(18). Below we suggest an appropriate modification for
Indicating _stability with t E corrhespcr)]n ng fworst-case;[he transverse linearization (17)—(18) that can be used for
scenariocontraction rate'. ote that having fouhdr) pproximating solutions of perturbed walker dynamics and
constant aIIows_ us to defln(_a the control law (14), (9). (2644t allows us to predict whether the trajectories stay ibe t
without computing the functionk(z,) from (12). around the nominal solution despite the slightly perturbed
5The new feature here with respect to the result of [31] is sstantive slope. Although we only consider sensitivity with respect

choice of the function®(¢) instead of taking it as a generic identifier of to qnly one particular PhYS'Ca| parameter, the procedure is
the appropriate surface of the Poineaection. straightforward to generalize.
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A. Classification of perturbations
Suppose that the true slopg(t) satisfies the inequality

[Y(t) —4po| < |h|  with |h| being sufficiently small

with n(t) given in (25), it is not hard to see that

and such that a solution exists and moreover, it has jumps dy@ to small higher-order terms.

to impact att = {T} }»>1. The value ofy(t) is important
only at the time moments = T}, k > 1; so, the following
notation is useful

P(Ty) = 1o + hi, With m]ilX|hk| < |n|.

The following cases of perturbations are of interest:

e impulse: hy=h, hy=hg=---=0
e step: h,=nh vk,
e cyclic: hi = hr+n vk, N >2,

stochastic: {hi}r>1 IS a stochastic process.

In the following, for simplicity, we will concentrate on the 4, — (L + ALg(hy))

step perturbation.

B. Perturbed transverse dynamics

6’_(?71 ~ 2hg—1 ~ —2hy
0.(0) (1+@/(9* (0))) 0,(T) (1—&-4,0/(9* (T)))
(33)

Now, we have

_ pt -
ALO(hk) == Pn(féf/_l) (dF)(z*(T+6’;)) Pn(T—',—é’;:)

+ —
- Pn(O) (dF)(w*(T)) Pn(T)’

ALah) =PI, (F(x*(T + o)) — x*(—éf_l))

(34)
Therefore, the discrete-time system (27) transforms into

= Ak + AL (), (35)
with
(Foxs + 0% Aa(T)) &(T)
X (Tsxs = 57 Aa(0)) + O ((05)2 + (05712,
where A.; is from (30), ¢ is defined by (28),L is from

Whenever the switching surfaces are shifted by perturbgzs), the matrices4 and B are defined in (19) and (21).

tions, i.e.
1—\1:/‘20 #I\io+hk

The obtained system allows quantifying response to pos-
sible perturbations in the slope for various scenarios.uset
see what can be done in the case when the slope is constant

the nominal transverse linearization (17)—(18) is of no. usey ;; different from nominal.

So, for a given sequence of perturbatiofis,} to the
slope ¢, let us introduce the following hybrid systém
1) On the intervals(k — 1)T — 0/ ' < 7 < kT + df,
k=1,2,...,the solutionz, = &, (7) is defined by
the linear control system

L =A(r—(k-1)T)e.+B(r—(k—1)T) a.

dr
(31)
2) At the end of each interval, i.e. at = kT + df,
k=1,2,...,there is an instantaneous update

&1 (kT+0%) = [L+ ALo(hi)] &1 (kT+85—)+ ALy (hy)
(32)

Here %! and 6’; are time distances needed for a trajector

to travel betweer?* and I'°™"*~* and betweer™}* and

C. Sensitivity to step perturbations

In the case of step perturbation, ik, = h for k > 1,
the system (35) can be rewritten’as

= (Le(T) +hP) ik +hit +O(R%),  (36)

up to the small higher-order terms.

Clearly, for the trajectories to stay in a small tube around
the nominal motion it is necessary to hakeso small that
the eigenvalues of the matri. ®(7")+h P,) are inside the
unite circle. An estimate for a bound dn can be obtained
using the Lyapunov function candidaté, = (2% )* P 2%,
where P = P > () being a solution for

(LOw(T)) " PLOK(T) — P = —5Izx3

Yy

""" respectively, while the changes in the linearizationong the solutions of (36) one obtains
for the update law are due to the fact that the jump due to

update happens at a value shifted from the nominal one.
Since the impact condition from (1)

cos(zy + o + hi) — cos(zy + 1o + hy) =0
can be (locally) rewritten as; + x5 + = —2 (¢o + hy,) and
using the linear approximations
2u(T + 65) = 2.(T) + n(T) 65 + O ((5*;)2) :
2 (=0 1) = 2,(0) = n(0) 5+ O ((6;71)%)
60f course, this system reduces to (17)—(18)hif= 0. Note that we
naturally assume that the definition of the solution for thetitwmous-in-

time part of the dynamics can be extended to a slightly biggemial
whenever this is needed.

Vigr = Vi = =(@5)7 (0 Isxs — 2h PT P L®(T)) &%
+2h(3%)"PLO(T) 2% + O(h?)
and therefore we must have
6
2||PrPLO(T)|

Moreover, an asymptotic steady-state valueifor(t) after
each impact can be estimated from (36) as follows

|nl <

21 (kT4) ~ &% — h (Isxs—LO(T)) ' &1 +0(h?) (37)

7In [19], it is suggested to compute an approximation for thisteay via
numerical simulations assuming that, ~ 0. It is not clear to us how to
introduce sensitivity gains analogous to the ones propimsEd®] rigorously
taking into account the fact tha®, # 0.
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as k — oo, where
it = —opt [ ey n(T) n(0) "\ |
n(0) é*(T) (1 +<p’(9*(T))) é*(o) (1 'HP/(Q*(O))) 002k N\ | |

is defined only by the target trajectory and is independent ¢
the choice of the control law.

For sufficiently small values of existence of this estimate
imply boundedness of (¢), existence of the solutions of
the closed-loop system initiated sufficiently closetp(0)
on the infinite interval of time, and the fact that these ‘ ‘ ‘ ‘ ‘ ‘
solutions stay in a small tube around the nominal trajegtor ~_ ~° = * E : & .
radius of which is proportional td in the first approxima- 19 = Z?fhgr?]%neq‘i'r?;ft;?gp;f:thzo‘fomponents oii(t) and 2, (7) in
tion.

Note that the estimate (37) tells us that having the eigel
values of the matrixL ®(T") too close to the boundary of
the unite circle would result in an enormous sensitivity tc
perturbations from the nominal value of the slope. From th
other hand, we can see that even if the controller is vel
aggressive, the possible deviations strongly depend on he
the planned periodic trajectory crosses the impact swsface

A positive conclusion is that despite the fact that there i
no guarantee that the obtained solutions are asymptgtica
periodic, the motions will be very similar to the nominal one ool 1
provided perturbations of the slope are sufficiently small. ‘ ‘ ‘ ‘ ‘

For our set of parameters, we have 0 os : 2 2 : 3
Fig. 3. The time evolution of the components of, (¢) versuss =

% ~[6.153393, — 1.777320, 4.638892}T, W (z1(t)) and & () versust in the case of the nominal slopg = 1y .
which does not depend on the choice of the control law, and
the steady-state error after impacts observe convergence te; ~ [0.028, — 0.0085, 0.039]".
21 = h (Isxs — L<I>(T))_1 i+ 0(h?) The result confirming our expectations is shown in Fig. 4.

~ h [9.462, —2.817, 12.984]" + O(h?)

for the particular choicek” = K, while a direct search for
the values of: making the matrix(L ®(7)+h P,) unstable
results in the values outside the interval

—0.187 < h < 0.388

and this estimate is clearly too rough since it is obtaine
dropping all theO(h?) terms.
VI. RESULTS OF NUMERICAL SIMULATIONS

The first useful thing to verify is how close the trajectories ) ‘ ‘ ‘ ‘ ‘ ‘ ‘
of (17)—(18) approximate the trajectories of (1), (9), (14) - o ' ’ ’

: . N — o Fig. 4. The time evolution of the componentsof (¢) in the case of the
(26) takl_ng in both cased((-) = K, = [-2, 14, 7] and perturbed slopep = vy + h (solid) and the solution of the appropriately
the nominal value of the slopg = . initiated discrete-time system (36) with droppet{z2) terms (dots).

The result of simulation with initial conditions obtained
by random perturbation from (3) are given in Fig. 2. Here
we plot z, (t) and &, (7) and the qualitative similarity VIl. ConcLusIoN
is obvious; we observe the fact that the jumps are not We have considered a 2-DOF impulsive mechanical sys-
simultaneous. tem describing dynamics of the compass-gait biped walking
Computing s according to (12) and plotting:, (¢) as a robot with actuation at the hip. The system admits an open-
function of s allows to push the two systems into the samédoop-unstable periodic solution, which leads to unstalyle h
time scale. This is shown below in Fig. 3. brid zero-dynamics. We apply a recently developed teclaiqu
To verify the estimate for the steady-state error aftefor orbital stabilization of impulsive mechanical systewith
impact, obtained from (36), we takg, = h = 0.003 and run arbitrary number of passive gaits: an exponentially oHita
the simulations with the same initial conditions expectiog stabilizing feedback control law is designed using theani
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of virtual holonomic constraints and transverse linediira  [18]
The challenging nonlinear control problem is reduced to
regulation of a linear impulsive system of reduced dimamsio [19]
The latter is solved here through numerical optimization.
The contribution is showing how to analyze various prop-
erties of the closed-loop system. In particular, we havi”
studied response of the system to step perturbations in the
slope of the walking surface from the nominal value uset?ll
at the control design stage. A new linear system that can be
interpreted as a perturbation of the transverse linedizat [22]
is obtained analytically. The computations are generaliza
for analysis of sensitivity to various other parametric unr,g
certainties and may be computationally tractable for highe
dimensional models. [24]
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