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Asymptotically Stable Walking for Biped Robots:
Analysis via Systems with Impulse Effects

Jesse W. Grizzle, Gabriel Abba, and Franck Plestan

Abstract—Biped robots form a subclass of legged or walking
robots. The study of mechanical legged motion has been motivated
by its potential use as a means of locomotion in rough terrain, as
well as its potential benefits to prothesis development and testing.
This paper concentrates on issues related to the automatic control
of biped robots. More precisely, its primary goal is to contribute a
means to prove asymptotically-stable walking in planar, under ac-
tuated biped robot models. Since normal walking can be viewed as
a periodic solution of the robot model, the method of Poincaré sec-
tions is the natural means to study asymptotic stability of a walking
cycle. However, due to the complexity of the associated dynamic
models, this approach has had limited success. The principal con-
tribution of the present work is to show that the control strategy
can be designed in a way that greatly simplifies the application of
the method of Poincaré to a class of biped models, and, in fact,
to reduce the stability assessment problem to the calculation of a
continuous map from a subinterval ofIR to itself. The mapping in
question is directly computable from a simulation model. The sta-
bility analysis is based on a careful formulation of the robot model
as a system with impulse effects and the extension of the method of
Poincaré sections to this class of models.

Index Terms—Control systems, limit cycles, mechanical systems,
nonlinear systems, robot dynamics.

I. INTRODUCTION

M ECHANICAL biped locomotion has been studied for
well over 30 years. A broad overview of the state of the

art, until 1990, can be found in [46], [58], and [19], along with
motivation for studying this class of electro-mechanical sys-
tems. The available literature addresses a wide range of topics,
from model formulation, efficient means of computing the dy-
namical equations, relations between mechanical legged loco-
motion and biological legged locomotion, methods of synthe-
sizing gaits, the mechanical realization of biped robots, and con-
trol.

One can distinguish several control design approaches from
the literature. By far, the most common approach to control
is through the tracking of precomputed reference trajectories.
The trajectories may be determined via analogy, either with
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biological systems [58], [1], or with simpler, passive,1 mechan-
ical-biped systems [38], [56], [57]. They can be generated by
an oscillator, such as van der Pol’s oscillator [33], or computed
through optimization of various cost criteria, such as minimum
expended control energy over a walking cycle [10], [11],
[14], [48],[49]. Within the context of tracking, many different
control methods have been explored, including continuous-time
methods based on PID controllers, [18], [19], [42] computed
torque and sliding mode control [42], [13], [39], [47], [36], or
essentially discrete-time methods, based on impulse control
[14]. Other control methods have been investigated that do not
rely on precomputed reference trajectories for the angular po-
sitions. These include controlling energy, angular momentum,
and others [46], [50], [35], [26], [27], [20], [36], [45], [16].
The control design proposed here will not rely on precomputed
reference trajectories.

To date, for the case of an under actuated biped robot with a
torso, none of the various control approaches have produced a
closed-loop system with provable stability properties. Proving
stability is the primary goal of this paper. Since regular walking
can be viewed as a periodic solution of the robot model, the
method of Poincaré sections is the natural means to study
asymptotic stability of a walking cycle. However, due to the
complexity of the associated dynamic models, this approach
has only been applied successfully to Raibert’s one-legged
hopper [35], [12], [16], a biped robot without a torso [56], [20],
[53], and to a fully actuated biped (walking) model in [26],
[27]. One of the principal contributions of the present work is
to show that the control strategy can be designed in a way that
greatly simplifies the application of the method of Poincaré to
a class of under actuated biped models.

The stability analysis is built up in several steps. Section II
presents the dynamic model of an underactuated biped robot
with a torso, walking on a level surface. The model includes
two important parts: a mechanical model that is valid when one
leg is touching the ground (supporting the robot) and the other
is free (i.e., not touching the walking surface), and an impulse
model of the contact event (the swing leg touching the ground).
The model used here is representative of many biped models
found in the literature [56], [15], [25], [57], [29], [21]. The main
contribution of this section is the formulation of the biped model
as a nonlinear system with impulse effects [3], [59], which will
be the basis for all of the analysis that follows.

The main contribution of Section III is the extension of the
method of Poincaré sections to systems with impulse effects.
The extension will be done in sufficient generality that it is ap-

1Here, passive is used in the sense that the system is not actuated, but can
walk down an inclined plane.
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plicable to more complex robots than the one treated in Sec-
tion II. Roughly speaking, the method of Poincaré sections en-
tails finding a (local) hyper-plane that is transversal to a can-
didate periodic motion of a continuous-time system, and then
inducing a discrete-time mapping form the plane to itself [43],
[34]. The mapping, called the Poincaré return map, is defined by
following the evolution of a trajectory of the continuous-time
system from a point on the plane to its next intersection with
the plane. Periodic motions of the continuous-time system cor-
respond to fixed points of the induced map. In the case of a biped
robot, there is a natural plane to use in the analysis, namely, the
constraints corresponding to an impact with the walking surface.
The principal result of Section IV is to show that the freedom in
the control design can be used to reduce the stability assessment
problem via the method of Poincaré to the (numerical) calcula-
tion of a continuous map from a subinterval ofto itself. This
will be achieved with the use of finite-time stabilizing feedback
controllers [23], [4]–[6]. The mapping in question, which is a
restriction of the Poincaré return map, is directly computable
from a simulation model of the closed-loop system. This re-
sults in a sufficiently tractable characterization of asymptotic
stability that it can be efficiently incorporated into a (numer-
ical) feedback design scheme for computing an asymptotically
stabilizing feedback controller with low peak torque demands
and good efficiency with respect to average energy consump-
tion over a cycle [22], or to optimize the mechanical parameters
of the robot itself.

Section V analyzes the internal behavior of the robot model
in closed loop with a finite-time stabilizing controller, as the
gain of the controller tends to infinity. Under bounded control
gains, the classical zero dynamics of the mechanical part of the
robot model are not invariant under the impact model, and hence
cannot be used to analyze any of the asymptotic properties of
the closed-loop system. However, in the high gain limit, the in-
variance of the zero dynamics is recovered. This can be used to
explain certain properties of the Poincaré map.

It is emphasized that all of the above will be illustrated on one
of the simplest biped robot models possible. The robot consists
of a torso, hips, and two legs of equal length, with no ankles
and no knees. The two legs are actuated. The reason for this
choice of model is two fold. First, asymptotically stable walking
has never been proved for such a model, and thus this simplest
problem is still open [15]. Second, from a pragmatic standpoint,
it did not seem advantageous to obscure the main elements of the
control approach with the computational complexity of a more
complete biped model.

II. A SIMPLE BIPED MODEL

This section introduces the dynamic model of a simple, planar
biped robot. The robot consists of a torso, hips, and two legs of
equal length, with no ankles and no knees. Thus, it has five de-
grees of freedom. Two torques are applied between the legs and
the torso, so the system is under actuated. It is assumed that the
walking cycle takes place in the sagittal plane and on a level
surface. It is further assumed that the walking cycle consists of
successive phases of single support (meaning only one leg is
touching the ground), with the transition from one leg to an-

other taking place in an infinitesimal length of time [49], [52],
[15]. This assumption entails the use of a rigid model to describe
the impact of the swing leg with the ground. The model of the
biped robot thus consists of two parts: the differential equations
describing the dynamics of the robot during the swing phase,
and an impulse model of the contact event. Such models are
very common in the field of biped locomotion. The only con-
tribution made here will be the formulation of the model as a
nonlinear system with impulse effects [3], [59], which will set
up the model for the analysis to follow.

During the swing phase, the stance leg is modeled as a pivot.2

In order to avoid the swing leg scuffing the ground until the
desired moment of contact, the idea of [38] is adopted here: the
swing leg is assumed to move out of the plane of forward mo-
tion, and into the frontal (coronal) plane. This allows the swing
leg to clear the ground and be posed in front of the stance leg
(think of a person with a cast over their knee). It will be fur-
ther assumed that the swing leg is designed to renter the plane
of motion when the angle of the stance leg attains a given value,

. Alternate means of achieving leg clearance in stiff legged
robots are discussed in [38], [15].

A. Mechanical (Swing Phase) Model

During the swing phase of the motion, the stance leg is acting
as a pivot, and thus there are only three degrees of freedom.
The definition of the angular coordinates and the disposition of
the masses of the legs, hips and torso are indicated in Fig. 1. In
particular, note that all masses are lumped, and positive angles
are computed clockwise with respect to the indicated vertical
lines. Two torques, and , are applied between the torso
and the stance leg, and the torso and the swing leg, respectively.
The dynamic model of the robot between successive impacts is
easily derived using the method of Lagrange [54]. This results
in a standard second order system

(1)

where , and : parameterizes
the stance leg, the swing leg and the torso. The matrices

, , , and are given in Appendix A.
The second-order system (1) can be written in state-space

form by defining

(2)

The state space for the system is taken as
, where . Of course,

not all points in correspond to physically reasonable
configurations of the robot (e.g., the robot being above the
walking surface). One possibility, therefore, is to further restrict
the admissible solutions throughviability constraints [2],
[8]. This would be an important additional consideration for
kneed-bipeds, but for the simple stiff-legged model analyzed
here, it is enough to initialize the model in a physically rea-

2Reference [17] shows how to compute the forces acting on the stance leg,
and how to verify that the leg does not slip.
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Fig. 1. Schematic indicating the defintion of the generalized coordinates and
the mechanical data of the biped robot. All masses are lumped. The legs are
symmetric, with lengthr equal to the length of the line segmentA�O (also,
B�O ). The mass of each leg is lumped atr=2. The distance from the center
of gravity of the hips to the center of gravity of the torso, denoted byl, is the
distance fromO to O .

sonable configuration and allow the impact model (see later)
to maintain the trajectory of the robot on the upper side of the
walking surface.

B. Impact Model

In the case of a stiff-legged robot on a flat surface, the no-
tion of the contact point of the swing leg with the walking sur-
face would appear to be physically ambiguous, since, without a
knee, and with equal length legs, the swing leg must scuff along
the ground if it remains in the saggital plane. McGeer [38] has
shown with his ballistic walkers, both theoretically and exper-
imentally, that one can basically ignore the leg clearance issue
for stiff-legged models. He has done this in two ways: in one re-
alization, he puts additional small motors on the legs that allow
him to push the swing leg just slightly out of the saggital plane
during the swing phase and to pull the leg back into the saggital
plane whenever he wishes to initiate contact. The second way he
has done this is to put small (essentially massless) flaps on the
ends of the legs, and to fold up the flap of the swing leg during
the swing phase, and to unfold it whenever he wants to initiate
contact. With McGeer’s first method in mind, it is hereafter as-
sumed that contact is initiated when the angle of the stance leg
attains a desired value, . In order for the lengths of the legs to
be equal at contact, it must be the case that at contact.
This will be taken care of in the control design of Section IV.

The impact between the swing leg and the ground is modeled
as a contact between two rigid bodies. There are many rigid
impact models in the literature [2], [7], [8], [28], and [44], and
under reasonable hypotheses all of them can be used to obtain an
expression for the velocity of the generalized coordinates after
the impact of the swing leg with the walking surface in terms
of the velocity and position before the impact. The model from
[28] is used here. The motion of the robot is only analyzed for
the case that the contact of the swing leg with the ground results

in no rebound and no slipping of the swing leg, and the stance leg
naturally lifting from the ground without interaction [28]. The
conditions for these assumptions to be valid will be indicated.

The contact model requires the full five degrees of freedom of
the robot. Add Cartesian coordinates to the end of the
stance leg, as indicated in Fig. 1. This gives once again a model
of the form

(3)

where is the set of generalized coor-
dinates and represents the external forces acting on the
robot at the contact point(s). The basic premises in [28] are that:
1) the impact takes place over an infinitesimally small period of
time; 2) the external forces during the impact can be represented
by impulses; 3) impulsive forces may result in an instantaneous
change in the velocities of the generalized coordinates, but the
positions remain continuous; and 4) the torques supplied by the
actuators are not impulsional. With these assumptions, (3) is “in-
tegrated” over the “duration” of the impact to obtain [28]

(4)

where is the result of integrating the
contact impulse over the impact duration, is the velocity just
after the impact and is the velocity just before the impact (a
more rigorous treatment of this can be found in [8]). Since the
positions do not change during the impact, .

In order to be able to solve for all of the unknowns, the above
equations must be augmented with additional equations that
proscribe what happens at the two contact ends. According to
[28], since the stance leg is assumed to detach from the ground
without interaction, the external forces acting at the pivot point
are zero. Thus need only consider the external forces at
the end of the swing leg. To compute it, letdenote the Carte-
sian-coordinates of the end of the swing leg:

(5)

Then,

(6)

where

(7)

and , are the tangent and normal forces, respectively,
applied at the end of the swing leg.

Equation (4) thus represents five equations and seven un-
knowns. The unknowns are and ; is known since it
equals , where and since
the stance leg acts as a pivot before impact. An additional set of
two equations is obtained from the condition that the swing leg
does not rebound nor slip at impact, namely,

; that is,

(8)
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Equations (4) and (8) are linear in the unknowns and can be
solved for , and . In Appendix A, it is verified that a
unique solution always exists. The result of solving (4) and (8)
yields an expression for in term of , which should then be
used to re-initialize the model (2). In order to do this, a change
of coordinates is necessary since the former swing leg is now
in contact with the ground, while (1) and (2) assume that
parameterizes the stance leg. The final result is an expression
for in terms of , which is
written as

(9)

The function is given in Appendix A. It is also proven in
Appendix A that is continuous.

C. Overall Model: System with Impulse Effects

The overall biped model can now be expressed as a system
with impulse effects. Assume that the system trajectories
possess finite left and right limits, and denote them by

and , respec-
tively. The model is, then,

(10)

where . The mathematical meaning
of a solution of the model will be made precise in Section III. In
simple words, a trajectory of the robot is specified by the me-
chanical model until an impact occurs. Impact occurs when the
state “attains” the set , which represents the walking surface.
At this point, the impact with the surface results in a very rapid
change in the velocity components of the state vector. The im-
pulse model of the impact compresses the impact event into an
instantaneous moment in time, resulting in a discontinuity in the
velocities. The ultimate result of the impact model is a new ini-
tial condition from which the mechanical model evolves until
the next impact. In order for the state not to be obliged to take
on two values at the “impact time,” the impact event is, roughly
speaking, described in terms of the values of the state “just prior
to impact” at time “ ,” and “just after impact” at time “ .”
These values are represented by the left and right limits,and

, respectively.
For later use, note that can be expressed as the level set

of a function . Define , so that
. Moreover, it can be easily

checked that for each point , This
implies that is a smooth embedded submanifold of[30].

III. M ETHOD OF POINCARÉ SECTIONS FOR

SYSTEMS WITH IMPULSE EFFECTS

Nonlinear systems with impulse effects have not been exten-
sively studied. A stability analysis for equilibrium points can
be found in [3] and [59], using Lyapunov methods. However, a
walking cycle clearly corresponds to a nontrivial periodic orbit,
and not to an equilibrium solution of the model, and thus the
analysis of [3] and [59] is not applicable. This section contains
the definition of a solution of a system with impulse effects,

the definition of a periodic orbit, and Lyapunov stability notions
for periodic orbits. With these notions in place, the method of
Poincaré sections, an important tool for analyzing the stability
properties of periodic orbits in ordinary differential equations,
is extended to systems with impulse effects. While the basic
method carries over nicely to this new setting, the proof dif-
fers considerably from the standard one in [43] and [34], for
example. In particular, Section IV will need a version3 of the
Poincaré method that is applicable to continuous, but not Lip-
schitz continuous, systems. The development will be kept as
compact as possible, with all proofs and several lemmas rele-
gated to Appendix B.

A. Basic Definitions

A function , , , is a
solution4 of (10) if: 1) isright continuous on , 2) left
limits exist at each point of , and 3) there exists a closed
discrete subset such that: a) for every ,
is differentiable and and b)
for , and . The condition
that the set of impact times is closed and discrete simply means
that there is no “chattering” about an impact point. A solution

of (10) isperiodic if there exists a finite such that
for all . A set is aperiodic

orbit of (10) if for some periodic solution
. An orbit isnontrivial if it contains more than one point.

In the following, it is assumed that in (10) is identically
zero, so that one may refer to (10) as being time-invariant. It
is further assumed that solutions to (10), when they exist, are
unique.

A periodic orbit is stable in the sense of Lyapunovif for
every , there exists an open neighborhoodof such
that for every , there exists a solution of
(10) satisfying and dist for all .

is {\it attractive} if there exists an open neighborhoodof
such that for every , there exists a solution
of (10) satisfying and dist .
is asymptotically stable in the sense of Lyapunovif it is both
stable and attractive. From here on, the qualifier, “in the sense
of Lyapunov,” will be systematically assumed if it is not made
explicit.

Finally, assume that in (10), , where
is continuously differentiable. A periodic orbit

is transversalto if its closure intersects in exactly one
point, and for ,

(in words, at the intersection, is not tangent to , where
is the set closure of ). In the case of the biped robot, a

nontrivial periodic orbit transversal to will also be referred
to as aperiodic walking cycle.

1) Remark: Note that a periodic orbit of a system with im-
pulse effects may not be a closed set, since, for ,

(if solutions were assumed to be left continuous, instead of
right continuous, then ). Indeed, a periodic orbit is

3The standard development assumes that the flow is a local diffeomorphism,
while, here, it will not even be a homeomorphism.

4The definition is based on [59], except that solutions are taken to be right
continuous instead of left continuous. For a careful study of the existence of
solutions of mechanical systems with shocks, see [8] and [55].
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closed if, and only if, . For a biped robot, a closed peri-
odic orbit would not correspond to walking because there would
be no impact with the walking surface.

B. Poincaré’s Method

The method of Poincaré sections is extended to systems with
impulse effects (10), for the case of nontrivial periodic orbits
that are transversal to. This will be done in a certain amount
of generality so that a wide class of biped robot models and con-
trollers can be treated. In particular, the finite-time stabilizing
controllers of Section IV will require the use of feedbacks that
are continuous, but not Lipschitz continuous.

Consider a time-invariant system with impulse effects

(11)

where the state spaceis an open subset of . The hypotheses
that will be used in its analysis are listed below. As a point of
notation, will be used to denote a solution of the system (11),
as defined in Section III-A, and will denote a solution of the
associated ordinary differential equation,

(12)

The point of introducing is that, firstly, a lot is known
about solutions of ordinary differential equations with contin-
uous right-hand sides [24]. Secondly, in view of the first point,
it is convenient to prove properties of (11) in term of properties
of (12). Finally, at times in the proofs, it is necessary to extend a
solution of (12) “through” , while this does not make sense for
(11) (that is, for the robot, it does not make sense for its “foot to
be stuck in the ground”).

1) Hypotheses:

H1) is continuous on .
H2) A solution of (12) from a given initial condition is

unique and depends continuously on the initial condi-
tion.

H3) There exists a differentiable function such
that . Moreover, for every

, .
H4) is continuous, where is given the subset

topology from .
Hypothesis H1implies that at any point , a solution to

(12) will exist over a sufficiently small interval of time [24]. This
solution may not be unique, and may not depend continuously
on the initial condition, as inH2. Hypothesis H3implies that is
an embedded submanifold [30], when given the subset topology.
Hypothesis H4assures that the result of an impact varies con-
tinuously with respect to where it occurs on.

The first goal is to define the Poincaré return map. Define the
time to impactfunction, , by

if such that

otherwise
(13)

FromLemma 3in Appendix B, Hypotheses H1–H3 imply that
is continuous at points where and

. Hence, under H1–H3,
and is open.

If H4 also holds, then is an open subset of.
It immediately follows that under H1–H4, thePoincaré return
map, by

(14)

is well-defined and continuous. In the case of the robot, the re-
turn map represents the evolution of the robot just before an
impact with the walking surface, to just before the next impact,
assuming that next impact does occur. If it does not, that is, the
robot falls due to the preceeding impact, the point being ana-
lyzed is not in the domain of definition of the return map.

Next, note that under H1–H4, if is any periodic orbit of
(11) that is transversal to, then . This is essentially
by definition. Thus, there exists that generates in the
sense that ; indeed, . It thus makes
sense to denote the orbit by .

Theorem 1(Method of Poincaré Sections for Systems with Im-
pulse Effects):Under H1–H4, the following statements hold.

a) If is a periodic orbit of (11) that is transversal to, then
there exists a point that generates .

b) is a fixed point of if, and only if, gener-
ates a periodic orbit that is transversal to.

c) is a stable equilibrium point of if,
and only if, the orbit is stable in the sense of
Lyapunov.

d) is an asymptotically stable equilibrium point of
if, and only if, the orbit is

asymptotically stable in the sense of Lyapunov.
The proof of the theorem is given in Appendix B.

IV. A SYMPTOTICALLY STABLE WALKING

This section develops a feedback controller for the system
with impulse effects, (10), in the particular case of the biped
robot given by the differential equation (2) and the impact model
(9). The goal of the control design is to induce an asymptotically
stable walking cycle, and to facilitate the verification of its ex-
istence and stability properties. The verification will be done
using the method of Poincaré.

A. Encoding a Walking Pattern

At its most basic level, walking consists of two things [45]:
posture control, that is, maintaining the torso in a semi-erect po-
sition, and swing leg advancement, that is, causing the swing
leg to come from behind the stance leg, pass it by a certain
amount, and prepare for contact with the ground. This moti-
vates the direct control of the angles (describing the torso)
and (describing the swing leg). As discussed in Section I, the
most common approach to control in the multi-ped literature
is through the tracking of precomputed reference trajectories.
That is, in the context of the robot model investigated here, the
first step of the control design would be to determine functions
of time and that express a desired behavior of the
robot. Then, standard control techniques would be employed to
induce “asymptotic” tracking of these trajectories. The resulting
closed-loop system is nonlinear, hybrid (due to the impact map),
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time-varying (due to the time-dependent reference trajectories)
and very difficult to analyze.

On a periodic orbit corresponding to a normal walking mo-
tion, it is clear that the horizontal motion of the hips is monoton-
ically strictly increasing. For the biped of Fig. 1, this is equiv-
alent to strictly increasing over each step of the walking
cycle. Thus, for any desired trajectories and that ex-
press (encode) a desired walking pattern for the biped, it is there-
fore reasonable to assume that the corresponding trajectory for

has the property that is strictly monotonic. It follows
that and can each be re-parameterized in terms of

. That is, without loss of generality, it can be supposed that
and , for some functions

.
The simplest version of posture control is to maintain the

angle of the torso at some constant value, say, while the
simplest version of swing leg advancement is to command the
swing leg to behave as the mirror image of the stance leg, that is,

. Thus the “behavior” of walking will be “encoded”
into the dynamics of the robot by defining outputs

(15)

with the control objective being to drive the outputs to zero.
Driving to zero will force and to converge to known
functions of (here, , being a constant, should be viewed
as a trivial function of ). This will be one of the key steps in
reducing the stability analysis problem to that of a map from
to .

Of course, the idea of building in a dynamic behavior of a
system through the judicious definition of a set of outputs, which
when nulled yields a desirable internal behavior, is not novel
in control [30] nor walking robots [32], [26], [9], [31], [40],
[51], [16]. However, it is interesting to note that this idea, which
seems to be an essential step forprovinganything about the tra-
jectories of the closed-loop system, has been best used to an-
alytical advantage in the monoped (one-legged hopper) litera-
ture. This seems to be due to the fact that accurate, approxi-
mate, analytically tractable models of the hopper exist, and the
associated Poincaré return map can be analyzed in considerable
detail [9], [51], [16]. This has led to the determination ofsam-
pled-datacontrol laws (sampling is done synchronously with
impact events) that lead toexplicit, low-dimensionaltests for
asymptotic stability of a periodic orbit.

B. Controller Design

Since the system (2) comes from the second order model (1),
and the outputs (15) only depend upon, it follows that the rel-
ative degree of each output component is either two or infinite.
Direct computation gives that [41]

(16)

and that the determinant of the decoupling matrix, , is
[see Appendix A, (51)] is zero if, and only if,

Thus, the decoupling matrix is invertible for all as long
as , which imposes a very mild
constraint on the position of the center of gravity of the upper
body of the robot in relation to the length of its legs. This leads
to the following hypothesis.

1) Hypothesis:

CH1) The decoupling matrix is globally invertible.

From now on, it is supposed that CH1 is met. Therefore, due
to the global invertibility of the decoupling matrix, stabilizing
dynamics for the output of system (2) can be assigned. The eas-
iest way to do this is to first decouple the system, [30], [41], [37]
and then impose a desired dynamic response. In preparation for
doing this, note that by

(17)

is a diffeomorphism onto its range. With this coordinate trans-
formation, and upon defining

(18)

the system can be written in the decoupled form

(19)

The next step is to impose a continuous feedback
on (19), and thus on (10), so that the pair of double integrators

is globally finite-time stabilized [23], [4]–[6]. This will
collapse the image of the Poincaré return map to a one-dimen-
sional set.

2) Hypotheses:The closed-loop pair of double integrators,
, satisfies the following conditions.

CH2) Solutions globally exist on , and are unique.
CH3) Solutions depend continuously on the initial condi-

tions.
CH4) The origin is globally asymptotically stable, and con-

vergence is achieved in finite time.
CH5) The settling time function,5 by

depends continuously on the initial condition, .

Hypotheses CH2–CH4 correspond to the definition of
finite-time stability [23], [4]; CH5 will also be needed, but is
not implied by CH2–CH4 [5]. These requirements rule out
traditional sliding mode control, with its well-known discon-
tinuous action. A means of meeting these four objectives can
be found in [4], [5]. The first two parts of the following lemma
are proven in [4]. The continuity of the settling time function
is proven in [5] (a continuous upper bound on the settling time
function is given in [4], along with a Lyapunov function).

5That is, the time it takes for a solution initialized at(y ; _y ) to converge to
the origin. The terminology is taken from [4].



GRIZZLE et al.: ASYMPTOTICALLY STABLE WALKING FOR BIPED ROBOTS 57

Lemma 1: [Bhat and Bernstein] Consider the double inte-
grator on

(20)

with scalar input . Then, for all , the feedback

sign sign

(21)

where sign , satisfies
the following.

P1) is continuous.
P2) The origin of (20) in closed loop with (21) is globally

finite-time stable.
P3) The settling time function, , depends continuously

on the initial condition.
Let , , be any feedbacks for (20) meeting

P1–P3 ofLemma 1. To each double integrator of (19), apply the
feedback , so that, with

(22)

CH2–CH5 are satisfied for . Define a feedback on (2), and
hence on (10) as well, by

(23)

and denote the right-hand side of the closed loop by

(24)

Finally, define

(25)

in the obvious way. It follows that is a continuous func-
tion of .

The model of the biped robot in closed loop with the con-
troller is

(26)

In the next section, the method of Poincaré sections will be
applied to analyze the existence and stability of periodic or-
bits. The finite-time convergence property of the controller will
be exploited to deduce properties of the solutions of (26) by
studying the solutions of

(27)

corresponding to a one-dimensional subset of initial conditions.

C. Analysis à la Poincaré

The first step in the analysis is to verify that Hypotheses
H1–H4 hold for the closed-loop system (26).Lemma 5of Ap-
pendix B shows that continuity of the feedback (22) plus Hy-
potheses CH1–CH3 imply H1 and H2. Hypotheses H3 and H4

were verified in Section II-C and Section II-B, respectively.
Thus Theorem 1 is applicable. The second step in the analysis is
to simplify the application of the theorem. This is achieved by
studying the image of the Poincaré return map in the case that
the controller has had sufficient time to converge. Convergence
of the controller is equivalent to the outputs (15) being identi-
cally zero over an interval of time.

The internal dynamics of the system (2) compatible with the
output (15) being identically zero is called the zero dynamics
[30], and the state space on which the zero dynamics evolves is
called the zero dynamics manifold. For the biped model under
study, the zero dynamics manifold is computed from (19) to be

(28)

Note that the feedback (23) makesan invariant manifold of
(2), while the same feedback does not renderinvariant for (10)
since does not map into . The zero dynamics itself
will not be computed here since it is not needed directly in the
stability analysis; the zero-dynamics will be studied in Section
V (see also Appendix A).

Lemma 2: Under Hypotheses CH1–CH5, and H3–H4, the
following apply.

1) The set

(29)

is an open subset of.
2) Let be the Poincaré return map. Then

.
The straightforward proof is skipped. Note that in terms of

the original coordinates of the robot,

a one-dimensional (embedded) submanifold of. Define

by (30)

For , . Thus, by the definition of ,
if, and only if, and .

Suppose that for some , the sequence is
well-defined for , and remains in some open neighborhood
of . Then for all , . It follows that
is a stable (resp., asymptotically stable) equilibrium point of
if, and only if, it is a stable (resp., asymptotically stable) equi-
librium point of . Thus, the determination of the existence and
stability properties of periodic orbits that are transversal to
can be reduced to the analysis of a one-dimensional map. These
results are summarized in the following theorem. A numerical
example to the biped robot is given immediately in the next sub-
section.

Theorem 2(Method of Poincaré for Finite-Time Control):
Consider the biped robot model of Section II, written in the form
of a system with impulse effects, (10). Define outputs such that
Hypothesis CH1is met. Suppose that a continuous, finite-time
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stabilizing feedback is applied, and thatHypotheses CH2–CH4
are met. Define , , and as in (28), (29) and (30), respec-
tively. Then,

1) a periodic orbit is transversal to if, and only if, it is
transversal to ;

2) gives rise to a periodic orbit of (26) if, and
only if, ;

3) gives rise to a stable (resp., asymptotically
stable) periodic orbit of (26) if, and only if, is a stable
(resp., asymptotically stable) equilibrium point of.

D. Numerical Example

Consider the model (10), with the following values of the
parameters:

corresponding to the mass of the legs, the mass of the hips, the
mass of the torso, the length of the legs and the distance between
the center of mass of the hips and the center of mass of the torso.
The units are kilograms and meters. With the outputs defined
as in (15),Hypothesis CH1is met. Suppose that the desired
inclination angle of the torso is and that the swing leg
has been designed to re-enter the saggital plane when .
In the feedback (23), suppose that

(31)

is used, with and , where is given
by (21). The parameter allows the settling time of the
controller to be adjusted. With this feedback, CH2–CH5 hold. In
the impact model (9), it is supposed that the friction coefficient

(see Appendix A). In the course of the simulations,
it has been verified that the impact model is valid, so this point
will not be discussed further.

To determine if this choice of parameters results in an asymp-
totically stable walking cycle that is transversal to, that is, the
orbit is transversal to and the finite-time stabilizing feedback
has had enough time to converge over the walking cycle, the
function of Theorem 2 must evaluated. This is conveniently
done as follows. Define by

, where denotes the angular ve-
locity of the stance leg just before impact. Define

. A straightforward procedure for evaluatingon the basis
of a simulation model6 of the closed-loop system is now given.

1) Numerical Procedure to Test for Walking Cycles via the
Method of Poincaré:

1) For a point , compute , the position
of the robot just before impact (the restriction to positive
velocities corresponds to the robot walking from left to
right).

6The existence and continuity of� has been assured by the theoretical de-
velopments of the paper. A numerical simulator is being used to compute an
approximationof this function. Since the feedback in (22) can be uniformly ap-
proximated by a Lipschitz continuous function, a standard numerical integrator
can be used to approximately compute� to any desired degree of accuracy.

Fig. 2. The top graph presents the function� (bold line) and, for visualization
purposes, the identity function (thin line); the bottom graph presents the function
�� (bold line) and the zero line (thin line). From either graph, it is seen that there
exists a periodic orbit and that it is asymptotically stable.

2) Apply the impact model to , that is, compute
.

3) Use as the initial condition in (27), the robot in closed
loop with the controller, and simulate until one of the
following happens:

a) there exists a time where ; then,
if is greater than the settling time of the controller
(in other words, the output is identically zero),
then , and ; else,

, and is undefined at this
point.

b) there does not exist a such that
(which is normally detected by one of the an-

gles exceeding during the simulation); in this
case, it is also true that , and
is undefined at this point.

Fig. 2 displays the function; it also displays the related func-
tion , which represents the change in
velocity over successive cycles, from just before an impact to
just before the next one. It is seen thatis undefined for
less than approximately 1.32 rad/s (for initial less than this
value, the robot fell backward). The plot was truncated at 2 rad/s
because nothing interesting occurs beyond this point (except an
upper bound on its domain of existence will eventually occur
due to the controller not having enough time to settle over one
walking cycle). A fixed point occurs at approximately 1.6 ra-
dians/second, and, from the graph of, it clearly corresponds
to an asymptotically stable walking cycle, whose projection is
shown in Fig. 3.

To illustrate the role played by the inclination of the torso,
suppose that is reduced by half to . Fig. 4 displays
and for this case. It is seen that there is no fixed point, and
hence no periodic orbit that is transversal to. Simulations also
support this conclusion, but are not reported here for reasons of
space. For a robot without knees or ankles, the driving force for
walking comes from the inclination of the torso, which couples
in the force of gravity.
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Fig. 3. Projection onto(� ; ! ; ! ) of a trajectory asymptotically converging
to an orbit. Note that the “flat” portion of the curve is really an instantaneous
transition due to the impact of the swing leg with the ground. The dot is the
initial point.

Fig. 4. The top graph presents the function� (bold line) and, for visualization
purposes, the identity function (thin line); the bottom graph presents the function
�� (bold line) and the zero line (thin line). From either graph, it is seen that there
does not exist a periodic orbit transversal toŜ.

In [22], it is shown that the stability characterization devel-
oped in this paper is sufficiently tractable that it can be effi-
ciently incorporated into a (numerical) feedback design scheme
for computing an asymptotically stabilizing feedback controller
with low peak torque demands and good efficiency with respect
to average energy consumption over a cycle, or to optimize the
mechanical parameters of the robot itself.

V. ANALYSIS OF THE ZERO DYNAMICS IN RELATION

TO HIGH GAIN CONTROL

The previous sections have provided an effective method for
determining the existence of a periodic orbit, and for analyzing
its stability properties. The goal of this section is to analyze more
deeply the internal behavior of the robot model in closed loop
with a finite-time stabilizing controller. As pointed out in Sec-
tion IV-C, the classical zero dynamics of the mechanical part of
the robot model are not invariant under the impact model, when
bounded control gains are used. It is shown here that in the limit
as the gain tends to infinity, the invariance of the zero dynamics
is recovered, independent of the impact model. This can be used
to explain certain properties of the Poincaré map,, such as its
observed strict monotonicity. For reasons of space, the exposi-
tion will be more terse than that of the previous sections.

A. Zero Dynamics

It is easy to verify that the input vector fields of (2) com-
mute; that is, their Lie bracket is zero. This, in combination with
the decoupling matrix being globally invertible, implies that the
dynamic (2), with outputs (15), can be transformed into a par-
ticularly simple normal form [30]. An appropriate coordinate
transformation can be found by applying [30, Proposition 1.3,
p. 237], plus the constructive proof of the [30, Frobenius The-
orem, p. 26], in this same reference. The result is the following
change of coordinates, which is a global diffeomorphism under
Hypothesis CH1:

(32)

where,

(33)

The constructive proof of the Frobenius Theorem shows, in fact,
that the function is the last row of the matrix

Note that = .
In the -coordinates, the state-space model of the robot (2)

with the decoupling feedback (18) becomes

(34)

where

The zero dynamics is obtained by imposing . Setting
= (0, 0, 0, 0) in (34), and relabeling and

by and , respectively, yields

(35)
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In order to establish the relation between (34) and (35), some
properties of a double integrator in feedback with a finite-time
converging controller are needed.

B. Aside on the Double Integrator

Consider a scalar double integrator, , and let
be any feedback so that Properties P1–P3 ofLemma

1 hold. Let be the settling time function and let
denote the solution of the closed-loop system corresponding to
the initial condition . By continuity of the dependence
of the solution on the initial conditions, and the fact thathas
bounded support,7

(36)

(37)

Since is a continuous function of, and has bounded support,
exists and is finite. Hence, using (37) and the

bounded support property, it follows that

(38)

Consider again the scalar double integrator, let , and
apply the high gain feedback . Let
denote the solution for the initial condition . Then it is
straightforward to verify that , and thus
that . Hence, by (36),

(39)

and by (38) and a simple substitution of variables

(40)

C. High-Gain Control and the Zero Dynamics

Once again, let , , be any feedbacks for
the double integrator so that Properties P1–P3 hold. For any
, a simple time scale argument shows that the high gain feed-

back still results in Properties P1–P3
being met, and, furthermore, results in the closed-loop settling
time function, (25), becoming = . With
this in mind, apply the feedback

(41)

to (34).
The relationship between the solutions of the closed-loop

robot model, (34), and the zero dynamics, (35), is established as

7Indeed, the support is[0; T (0; � _� )].

follows. Take a point . Let , where
is the representation of in the coordinates (32). It follows

that and , because (15) is identically zero on
. Hence, the analysis of Section V-B is applicable. Letting

denote the solution of (34) for the initial condition
, (39) and (40) imply, respectively,

(42)

and

(43)

for = 3, 4. From these two equations, and the fact thatand
appear affinely in , and not at all in , a simple bounding

argument8 shows that, for

(44)

where , , denotes the solution of the zero
dynamics, (35), for the initial condition .

D. under High-Gain Control

It follows that in the high gain limit, that is, as tends to
zero in (41), the function from the Poincaré method can be
evaluated on the basis of a two-dimensional subsystem, namely,
the zero dynamics. Denote the result by . This reduction is
interesting for several reasons.

1) It brings out the structure of the closed-loop system,
and shows that the zero dynamics must encode the no-
tion of a walking cycle.

2) The uniqueness of the solutions of the zero dynamics
implies that is strictly monotonic, which partly
explains the observed monotonicity in.

3) is as smooth as the data in the problem (for the
biped, it is analytic), whereasis only continuous.

4) The evaluation of is independent of the particular
finite-time stabilizing feedback used. Moreover, it can
also be computed by replacing in (41) with a glob-
ally exponentially stabilizing feedback, and taking the
limit as tends to zero; in the limit, the Poincaré re-
turn map, , when restricted to , takes again its
values in . The consequences of this observation
for the study of periodic orbits under nonfinite-time sta-
bilizing feedback control remain to be clarified.

VI. CONCLUSION

This paper has addressed the problem of establishing the exis-
tence of a periodic orbit in a simple biped model, and analyzing
its stability properties. The biped model was first formulated as
a nonlinear system with impulse effects, evolving in a subset of

8Express the solutions in integral form, compute the norm of their difference,
and apply the triangle inequality.
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. Poincaré’s method was then extended to this class of sys-
tems. For the biped model considered here, a straightforward ap-
plication of Poincaré’s method would require the computation
of a discrete-time map from to , which would be difficult
to analyze. It was then shown that finite-time converging feed-
backs could be used to drive the torso and the swing leg to known
functions of the stance leg, and thereby collapse the dimension
of the image of the Poincaré map to a one-dimensional set. This
leads to an effective analysis tool, which can then be used in de-
sign [22]. In the course of the development of these results, it
was observed that the zero dynamics of the biped was not in-
variant under the impact model. It was subsequently shown that
its invariance could be recovered under high gain control.

The analysis method developed in the paper is quite general.
The next step is to apply it to a more general biped model with
knees [42], [21], [18], [19], yielding a seven degree of freedom,
under actuated system. It is conjectured that supplementing out-
puts (15) with hip height and swing foot height objectives will
lead to a viable control design with provable stability properties;
the horizontal hip position will play the role of in parameter-
izing the outputs to be used in the feedback design. It also seems
likely that the methods developed here can be applied to other
under actuated mechanical systems [40].

The work presented here has assumed a rigid impact model.
Non-rigid models have been developed [49] in the context of
biped motion. It seems possible that some of the results of the
paper can be extended to include such models, though this is
more speculative than the previous extension. Finally, many
challenging issues exist in running (which has a fly phase)
and three dimensional aspects of modeling and control of
mechanical biped motion.

APPENDIX A
MODEL DETAILS

This appendix completes the equations of the biped model,
(1). In the following:

A. Mechanical Model

(45)

(46)

(47)

(48)

B. Impact Model

The impact equations (4) and (8), taken together, become

(49)

where and the positive-definite symmetric ma-
trix has entries

The solvability of (49) is equivalent to the invertibility of the
matrix on the left hand side. The invertibility of this matrix fol-
lows from the fact that is positive definite and has full
rank; indeed, the determinant of the left-hand side of (49) can
be computed to be

which is nonzero everywhere.
The mapping is then evaluated by the following steps.

Step 1) Solve (49) for , and pick-off ; since only
depends on (recall that ), and since
the positions do not change during the impact (i.e,

, the result is expressed as a function
of .

Step 2) Transform the coordinates so thatcorresponds to
the stance leg and to the swing leg; this means
swapping the first two position coordinates, and the
first two velocity coordinates, respectively.

The final result is

(50)

The implicit function theorem implies that is as smooth as the
data in (49) and, thus, is analytic in .

1) Remarks:a) is computed in closed form in [22]. b) The
no-rebound, no-slip condition of the impact, (8), ensures that
the impact results in the end of the swing leg being at rest, and
hence, after doing the coordinate transformation, the end of the
stance leg will be at rest. c) For the impact model to be valid,
it must be verifieda posteriorithat no-slipping was a valid as-
sumption (that is, ), and that the stance leg lifts
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from the ground without interaction (that is, before the coordi-
nate transformation, . This was done for all simulations
reported in this paper.

C. Decoupling matrix

The Lie derivative notation is defined in [30], [37], and [41]

(51)

where

and

D. Zero Dynamics

In the coordinates used in (19), the zero dynamics is given by

(52)

where

(53)

APPENDIX B
PROOFS ANDTECHNICAL DETAILS

This appendix collects some of the technical development, in
the hope of improving the readability of the main body of the
paper.

A. Continuity of

Lemma 3: Suppose that H1–H3 hold. Then is con-
tinuous at points where and

.
Proof: Let be given. Define ,

and without loss of generality, suppose that .

Then, from the definition of and H3,
for all . This in turn implies that, for any

,

dist (54)

since: a) is continuous in ; b) the interval is
compact; and c), by H3, is closed and equals the zero level
set of . By H1, there exists such that can be con-
tinued on , [24]. Moreover, since ,
for sufficiently small, and

, result in . From , it fol-
lows that dist . If necessary, reduceso that

, and define and
. From (54), . From H2, the solutions de-

pend continuously on the initial conditions. Thus, there exists
, such that, for all ,

dist . Therefore, for
, , which implies that

, establishing the continuity of at .

Distance of a Trajectory to a Periodic Orbit

Recall that if is any periodic orbit that is transversal
to , then . For , define

dist . Note that vanishes on
. Note also that for , .
Lemma 4: Under H1–H3, is well-defined and is

continuous on .
Proof: For any , is finite, and

is defined on . This and the conti-
nuity of with respect to t imply that is finite.
Next, let and be given. By definition of

, . Without loss of generality,
suppose that . Let be such that for all

, and .
Such an exists because: (1) H1 implies there exists
such that can be continued on , [24];
(2) ; and (3) depends continuously
on . Define and .
By H2 andLemma 3, there exists such that for all

, and
. By the triangle inequality, dist

dist + dist . Hence, for
, dist

dist dist
, which shows that , and thereby the

continuity of at .

B. Proof of Theorem 1

Proof: The first and second statements are immediate.
Since the sufficiency portions of the statement c) and d) are
straightforward, only necessity is proven here. Suppose that

, and let be the periodic orbit of (11) corre-
sponding to . By b), the orbit is transversal to. Let

be given. Since is stable in the sense of Lyapunov,
for any , there exists such that, for all ,

, implies , where
is composed with itself -times. In particular, this implies
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that for all , there exists a solution of
(11) defined on , such that . Moreover, an
upper bound on how far the solutionwanders from the orbit

is given by

dist (55)

By Lemma 4, since is transversal to , and since ,
is continuous at . Since , it fol-

lows that there exists such that
. This bound is valid for all initial conditions in

. It remains to produce an open neighborhood
of for which such a bound holds. But this is easily done by
taking , which completes the proof of c). As-
sume in addition that was chosen sufficiently small
so that . Then by continuity of and ,

, from which it
easily follows that dist , proving d).

C. Sufficient Conditions for H1–H2

The goal is to show that the continuity of the feedback (22)
plus Hypotheses CH1–CH3 imply that Hypotheses H1 and H2
hold for (24). H1 is immediate. Due to the subgroup property of
the flow of a differential equation, it is enough to establish H2 in
a local coordinate chart. Since (2) comes from the second order
model, (1), where the matrix is constant, the input vector
fields of (2) commute and the dimension of their span is con-
stant. These two facts plus the invertibility of the decoupling
matrix (Hypothesis CH1) imply that, about any point ,
the system (24) can be locally transformed into [30], [37], [41]

(56)

where , , is given by (22) and is an analytic
function of its arguments (the analyticity comes from that of
(1)). In particular, is locally Lipschitz continuous.

Thus, in these coordinates, the system is expressed as a cas-
cade of a system that satisfies H2 feeding forward into a system
that is locally Lipschitz. The Gronwal inequality [34] can there-
fore be used to establish that H2 holds for the cascade. This is
summarized in the lemma below.

Lemma 5: For the closed-loop system (24), Hypotheses
CH1–CH3 and the continuity of (22) imply Hypotheses H1
and H2.
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