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Asymptotically Stable Walking for Biped Robots:
Analysis via Systems with Impulse Effects

Jesse W. Grizzle, Gabriel Abba, and Franck Plestan

Abstract—Biped robots form a subclass of legged or walking biological systems [58], [1], or with simpler, passivejechan-
robots. The study of mechanical legged motion has been motivated jcal-biped systems [38], [56], [57]. They can be generated by
by its potential use as a means of locomotion in rough terrain, as an oscillator, such as van der Pol's oscillator [33], or computed

well as its potential benefits to prothesis development and testing. th h optimizati fvari t criteri h .
This paper concentrates on issues related to the automatic control rough opumization of various cost criteria, such as minimum

of biped robots. More precisely, its primary goal is to contribute a €Xpended control energy over a walking cycle [10], [11],
means to prove asymptotically-stable walking in planar, under ac- [14], [48],[49]. Within the context of tracking, many different

tuated biped robot models. Since normal walking can be viewed as control methods have been explored, including continuous-time
a periodic solution of the robot model, the method of Poincaré sec- methods based on PID controllers, [18], [19], [42] computed

tions is the natural means to study asymptotic stability of a walking -
cycle. However, due to the complexity of the associated dynamic torque and sliding mode control [42], [13], [39], [47], [36], or

models, this approach has had limited success. The principal con- €ssentially discrete-time methods, based on impulse control
tribution of the present work is to show that the control strategy [14]. Other control methods have been investigated that do not

can be designed in a way that greatly simplifies the application of rely on precomputed reference trajectories for the angular po-
the method of Poincaré to a class of biped models, and, in fact, jjions These include controlling energy, angular momentum,

to reduce the stability assessment problem to the calculation of a
continuous map from a subinterval of R to itself. The mapping in and others [46], [50], [35], [26], [27], [20], [36], [45], [16]-

question is directly computable from a simulation model. The sta- The control design proposed here will not rely on precomputed
bility analysis is based on a careful formulation of the robot model reference trajectories.

as a system with impulse effects and the extension of the method of  To date, for the case of an under actuated biped robot with a
Poincaré sections to this class of models. torso, none of the various control approaches have produced a
Index Terms—Control systems, limit cycles, mechanical systems, closed-loop system with provable stability properties. Proving

nonlinear systems, robot dynamics. stability is the primary goal of this paper. Since regular walking
can be viewed as a periodic solution of the robot model, the
method of Poincaré sections is the natural means to study
) ) . asymptotic stability of a walking cycle. However, due to the
M ECHANICAL biped locomotion has been studied foomplexity of the associated dynamic models, this approach
well over 30 years. A broad overview of the state of thgas only been applied successfully to Raibert's one-legged
art, until 1990, can be found in [46], [58], and [19], along W'”hopper [35], [12], [16], a biped robot without a torso [56], [20],
motivation for studying this class of electro-mechanical SY$53], and to a fully actuated biped (walking) model in [26],
tems. The available literature addresses a wide range of top[e%]. One of the principal contributions of the present work is
from model formulation, efficient means of computing the dyry show that the control strategy can be designed in a way that
namical equations, relations between mechanical legged |0§?eatly simplifies the application of the method of Poincaré to
motion and biological legged locomotion, methods of synthg-¢|ass of under actuated biped models.
sizing gaits, the mechanical realization of biped robots, and con-The stability analysis is built up in several steps. Section I
trol. presents the dynamic model of an underactuated biped robot
One can distinguish several control design approaches froffin a torso, walking on a level surface. The model includes
the literature. By far, the most common approach to contrgl, important parts: a mechanical model that is valid when one
is through the tracking of precomputed reference trajectoriqzég is touching the ground (supporting the robot) and the other
The trajectories may be determined via analogy, either wilfifree (j.e., not touching the walking surface), and an impulse
model of the contact event (the swing leg touching the ground).
The model used here is representative of many biped models
found in the literature [56], [15], [25], [57], [29], [21]. The main
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plicable to more complex robots than the one treated in Seather taking place in an infinitesimal length of time [49], [52],
tion Il. Roughly speaking, the method of Poincaré sections €i-5]. This assumption entails the use of a rigid model to describe
tails finding a (local) hyper-plane that is transversal to a cathe impact of the swing leg with the ground. The model of the
didate periodic motion of a continuous-time system, and théiped robot thus consists of two parts: the differential equations
inducing a discrete-time mapping form the plane to itself [43flescribing the dynamics of the robot during the swing phase,
[34]. The mapping, called the Poincaré return map, is defined bgd an impulse model of the contact event. Such models are
following the evolution of a trajectory of the continuous-timerery common in the field of biped locomotion. The only con-
system from a point on the plane to its next intersection withibution made here will be the formulation of the model as a
the plane. Periodic motions of the continuous-time system comenlinear system with impulse effects [3], [59], which will set
respond to fixed points of the induced map. In the case of a bipa the model for the analysis to follow.

robot, there is a natural plane to use in the analysis, namely, th®uring the swing phase, the stance leg is modeled as ajivot.
constraints corresponding to an impact with the walking surfacén order to avoid the swing leg scuffing the ground until the
The principal result of Section IV is to show that the freedom idesired moment of contact, the idea of [38] is adopted here: the
the control design can be used to reduce the stability assessnsaring leg is assumed to move out of the plane of forward mo-
problem via the method of Poincaré to the (numerical) calculdaen, and into the frontal (coronal) plane. This allows the swing
tion of a continuous map from a subintervallRfto itself. This leg to clear the ground and be posed in front of the stance leg
will be achieved with the use of finite-time stabilizing feedbackthink of a person with a cast over their knee). It will be fur-
controllers [23], [4]-[6]. The mapping in question, which is dher assumed that the swing leg is designed to renter the plane
restriction of the Poincaré return map, is directly computabt# motion when the angle of the stance leg attains a given value,
from a simulation model of the closed-loop system. This ré¢. Alternate means of achieving leg clearance in stiff legged
sults in a sufficiently tractable characterization of asymptotiobots are discussed in [38], [15].

stability that it can be efficiently incorporated into a (numer-

ical) feedback design scheme for computing an asymptoticaly Mechanical (Swing Phase) Model

stabilizing feedback controller with low peak torque demands During the swing phase of the motion, the stance leg is acting

and good efficiency with respect to average energy consumps 5 nivot, and thus there are only three degrees of freedom.
tion over a cycle [22], or to optimize the mechanical parameteffe definition of the angular coordinates and the disposition of
of the robot itself. _ . the masses of the legs, hips and torso are indicated in Fig. 1. In
~ Section V analyzes the internal behavior of the robot modglticylar, note that all masses are lumped, and positive angles
in closed loop with a finite-time stabilizing controller, as the,e computed clockwise with respect to the indicated vertical
gain of the controller tends to infinity. Under bounded contrq},es. Two torquesy, andus, are applied between the torso
gains, the classical zero dynamics of the mechanical part of th&q the stance leg, and the torso and the swing leg, respectively.
robot model are notinvariant under the impact model, and hengge gynamic model of the robot between successive impacts is

cannot be used to analyze any of the asymptotic propertiesggfily derived using the method of Lagrange [54]. This results
the closed-loop system. However, in the high gain limit, the ing 5 standard second order system

variance of the zero dynamics is recovered. This can be used to
explain certain properties of the Poincaré map. D(e)é + 0(9)9' +G(6) = B(H)u (1)
Itis emphasized that all of the above will be illustrated on one
of the simplest biped robot models possible. The robot consistherew = (u1,u2), andd = (81, 6,,65): 6, parameterizes
of a torso, hips, and two legs of equal length, with no ankleke stance leg}, the swing leg ands the torso. The matrices
and no knees. The two legs are actuated. The reason for thisC, &, andB are given in Appendix A.
choice of model is two fold. First, asymptotically stable walking The second-order system (1) can be written in state-space
has never been proved for such a model, and thus this simpfesin by defining
problem is still open [15]. Second, from a pragmatic standpoint,

it did not seem advantageous to obscure the main elements of the, . _ a4 [ 6 } _ [ w
control approach with the computational complexity of a more dt |w D=H0)(~C(8, w)w — G(8) + Bu)
complete biped model. =: f(z) + g(z)u. (2

The state space for the system is takendas:= {z :=
II. A SIMPLE BIPED MODEL #,')]6 € M,w € R?}, whereM = (—=,n)3. Of course,

This section introduces the dynamic model of a simple, plan@@t all points in M correspond to physically reasonable
biped robot. The robot consists of a torso, hips, and two legs@nfigurations of the robot (e.g., the robot being above the
equal length, with no ankles and no knees. Thus, it has five qélking surface). One possibility, therefore, is to further restrict
grees of freedom. Two torques are applied between the legs 4@ admissible solutions througiability constraints [2],
the torso, so the system is under actuated. It is assumed tha{8e This would be an important additional consideration for
walking cycle takes place in the sagittal plane and on a leJgleed-bipeds, but for the simple stiff-legged model analyzed
surface. It is further assumed that the walking cycle consistsire. it is enough to initialize the model in a physically rea-

succgssive phases of siﬂgle SuPporF _(meaning only one leg ifflleference [17] shows how to compute the forces acting on the stance leg,
touching the ground), with the transition from one leg to arand how to verify that the leg does not slip.
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in no rebound and no slipping of the swing leg, and the stance leg
naturally lifting from the ground without interaction [28]. The
conditions for these assumptions to be valid will be indicated.

The contact model requires the full five degrees of freedom of
the robot. Add Cartesian coordinates, »;)’ to the end of the
stance leg, as indicated in Fig. 1. This gives once again a model
of the form

De(Qe)q.e + Ce(Qev QG)Qe + Ge(Q) = Be(Qe)U/ + OF exs (3)

whereq. = (61,605,063, 21, 22)" is the set of generalized coor-
dinates and <! represents the external forces acting on the
robot at the contact point(s). The basic premises in [28] are that:
1) the impact takes place over an infinitesimally small period of
time; 2) the external forces during the impact can be represented
by impulses; 3) impulsive forces may result in an instantaneous
change in the velocities of the generalized coordinates, but the
positions remain continuous; and 4) the torques supplied by the

Fig. 1. Schematic indicating the defintion of the generalized coordinates sagtuators are notimpulsional. With these assumptions, (3) is “in-
the mechanical data of the biped robot. All masses are lumped. The legs teégrated” over the “duration” of the impact to obtain [28]
symmetric, with lengthr equal to the length of the line segmeht- O 4 (also,

B — Og). The mass of each leg is lumpedrg®. The distance from the center D ( )( + ‘7) — frext (4)

of gravity of the hips to the center of gravity of the torso, denoted, by the elde )\ e %)=
distance fromO g to O.

A B

whereFext .= i1 §Fest(7) dr is the result of integrating the
sonable configuration and allow the impact model (see Iaté:rzntactlmpulse over}he |mpactd_ura_t|qgr, is the VeIO.C'WJUSt
er the impact and_ is the velocity just before the impact (a

L X ) a
to mf';untaln the trajectory of the robot on the upper side of thrr(?ore rigorous treatment of this can be found in [8]). Since the
walking surface. o ; . _
positions do not change during the impagt,= ¢_.
In order to be able to solve for all of the unknowns, the above
equations must be augmented with additional equations that
In the case of a stiff-legged robot on a flat surface, the ngroscribe what happens at the two contact ends. According to
tion of the contact point of the swing leg with the walking surg2g], since the stance leg is assumed to detach from the ground
face would appear to be physically ambiguous, since, withoufathout interaction, the external forces acting at the pivot point
knee, and with equal length legs, the swing leg must scuff alogge zero. Thug™* need only consider the external forces at

the ground if it remains in the saggital plane. McGeer [38] hage end of the swing leg. To compute it, ftdenote the Carte-
shown with his ballistic walkers, both theoretically and expekjan-coordinates of the end of the swing leg:

imentally, that one can basically ignore the leg clearance issue

for stiff-legged models. He has done this in two ways: in one re- T(g) = [ 21+ rsin(61) — rsin(f) } ®)

alization, he puts additional small motors on the legs that allow 7 |zt rcos(f1) —rcos(f2) |

him to push the swing leg just slightly out of the saggital plane

during the swing phase and to pull the leg back into the saggi?a{'ien’

plane whenever he wishes to initiate contact. The second way he . [ Fp

has done this is to put small (essentially massless) flaps on the F* =F |:F]\:| (6)

ends of the legs, and to fold up the flap of the swing leg during

the swing phase, and to unfold it whenever he wants to initiatéhere

contact. With McGeer’s first method in mind, it is hereafter as- T ) )
A rcos(61) —rcos(fy) 0 1 0O

sumed that contact is initiated when the angle of the stance leg F := = {_ - sin(d - sin(d 0 0 1} @)

attains a desired valué{. In order for the lengths of the legs to 9. rsin() - rsin(6)

be equal at contact, it must be the casethat —6, atcontact. and £, Fy are the tangent and normal forces, respectively,

This will be taken care of in the control design of Section IV. gpplied at the end of the swing leg.

The impact between the swing leg and the ground is modeledEquation (4) thus represents five equations and seven un-
as a contact between two rigid bodies. There are many rigiflowns. The unknowns arg™ and I'***; - is known since it
impact models in the literature [2], [7], [8], [28], and [44], antequalgw] ,wy , w3, 5], 75 ), wherei~ = 0Oandz~ = 0 since
under reasonable hypotheses all of them can be used to obtaithaistance leg acts as a pivot before impact. An additional set of
expression for the velocity of the generalized coordinates aftgjo equations is obtained from the condition that the swing leg

the impact of the swing leg with the walking surface in termgoes not rebound nor slip at impact, naméty/dt)Y (¢.) =
of the velocity and position before the impact. The model fror@py/aqe)q‘j = 0: that is,

[28] is used here. The motion of the robot is only analyzed for
the case that the contact of the swing leg with the ground results Eqr =0. (8)

B. Impact Model
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Equations (4) and (8) are linear in the unknowns and can thee definition of a periodic orbit, and Lyapunov stability notions
solved forgt, Fr and . In Appendix A, it is verified that a for periodic orbits. With these notions in place, the method of
unique solution always exists. The result of solving (4) and (Soincaré sections, an important tool for analyzing the stability
yields an expression fai" in term of g, which should then be properties of periodic orbits in ordinary differential equations,
used to re-initialize the model (2). In order to do this, a chandg® extended to systems with impulse effects. While the basic
of coordinates is necessary since the former swing leg is novethod carries over nicely to this new setting, the proof dif-
in contact with the ground, while (1) and (2) assume that fers considerably from the standard one in [43] and [34], for
parameterizes the stance leg. The final result is an expresssxample. In particular, Section IV will need a versioof the

for z+ = (#%,w™) in terms ofz~ := (#~,w™), which is Poincaré method that is applicable to continuous, but not Lip-
written as schitz continuous, systems. The development will be kept as
compact as possible, with all proofs and several lemmas rele-

et = A7) (9) gated to Appendix B.

The functionA is given in Appendix A. It is also proven in o pasic Definitions
Appendix A thatA is continuous. ] )
Afunctiong: [tg,t;) — X, t; € R U {0}, t; > tp,isa

C. Overall Model: System with Impulse Effects solutiort of (10) if: 1) ¢(¢) is right continuous offty, £ ), 2) left
limits exist at each point ofto,t ), and 3) there exists a closed

_Thg overall biped model can now be expressed as a Sys_t(?i'gbrete subseF C [to, t;) such that: a) for every & T, o(t)
with |mpu!sg effects. As;ume .th_at the system trajectories jigarentiable andde(?) /dt) = fo(t)]+ gle()]u(t) and b)
possess f|r1|te left and rlgrlt limits, .and denote them hy . € T, (t) € S andy™ () = Alp~(£)]. The condition
v7(t) = lim, ~x(r) anda™(t) = lime; 2(7), rESPEC- a1 the set of impact times is closed and discrete simply means
tively. The model is, then, that there is no “chattering” about an impact point. A solution
. _ . ©(t) of (10) isperiodicif there exists a finitd” > 0 such that
2% {iggt) _ i((xx(f)()t;)r gla(t)ult). 2—8 z g (10)  (t+T) = (t) forall t € [to,oc). AsetO C X is aperiodic
’ orbit of (10) if O = {e(t)|t > to} for some periodic solution
where$ := {(6,w) € X|6; = 62}. The mathematical meaning#(t). An orbit i_snor_wtrivial if it contains more tha_m one point.
of a solution of the model will be made precise in Section I1l. In I the following, it is assumed thad(t) in (10) is identically
simple words, a trajectory of the robot is specified by the mgero, so that one may refer to (10) as being time-invariant. It
chanical model until an impact occurs. Impact occurs when tifefurther assumed that solutions to (10), when they exist, are
state “attains” the sef, which represents the walking surfaceUnique.
At this point, the impact with the surface results in a very rapid A periodic orbit( is stable in the sense of Lyapunié\for
change in the velocity components of the state vector. The ifi€rye > 0, there exists an open neighborhodaf © such
pulse model of the impact compresses the impact event intotBat for everyp € V, there exists a solutiog: [0, c0) — &' of
instantaneous moment in time, resulting in a discontinuity in t#&0) satisfyingo(0) = p and disty(f), 0) < eforallt > 0.
velocities. The ultimate result of the impact model is a new inf? is {\it attractive} if there exists an open neighborhogaf O
tial condition from which the mechanical model evolves unt#uch thatforevery € V', there exists a solutiop: [0,00) — &
the next impact. In order for the state not to be obliged to také (10) Sattif'fyirl}gp(to)blz p a{r‘]dhmtaoo d]jst(w(t% I?GZI = g- fr)]
on two values at the “impact time,” the impact event is, roughly asymptotically stable in the sense oOr Lyapunav 1s bo
speaking, described in terms of the values of the state “just prigPle and attractive. From here on, the qualifier, “in the sense
to impact” at time 4~,” and “just after impact” at time #+.” of Lyapunov,” will be systematically assumed if it is not made

These values are represented by the left and right limitsnd ~ €xplicit. _
=+, respectively. Finally, assume that in (10, = {x € X'|H(z) = 0}, where

of a functionH: X — IR. Define H(z) = #¢ — §;, so that © is transversalto 5 if its closure intersects' in exactly one
S := {(6,w) € X|H(z) = 0}. Moreover, it can be easily Point, and forz := O N S, Ly H(T) := (0H/0x)(%) f(T) #
checked that for each poist € S, (0H/dxz)(s) # 0 This 0 (in words, at the intersectior) is not tangent t5, where

implies thatS is a smooth embedded submanifoldf30]. ~ © is the set closure oD). In the case of the biped robot, a
nontrivial periodic orbit transversal t8 will also be referred

to as aperiodic walking cycle
1) Remark: Note that a periodic orbit of a system with im-
_ o pulse effects may not be a closed set, sincet for7, ¢~ (t) &
Nonlinear systems with impulse effects have not been exted~(if solutions were assumed to be left continuous, instead of
sively studied. A stability analysis for equilibrium points capjght continuous, thep* (¢) ¢ ©). Indeed, a periodic orbit is
be found in [3] and [59], using Lyapunov methods. However, a
walking cycle clearly corresponds to a nontrivial periodic orbit, 3The standard development assumes that the flow is a local diffeomorphism,

and not to an equilibrium solution of the model, and thus tH4!e: here, it will not even be a homeomorphism. _
4The definition is based on [59], except that solutions are taken to be right

analySi_S Of (3] and [59] i_s not applicable. This lseCtion contaiNSntinuous instead of left continuous. For a careful study of the existence of
the definition of a solution of a system with impulse effectssolutions of mechanical systems with shocks, see [8] and [55].

I1l. M ETHOD OF POINCARE SECTIONS FOR
SYSTEMS WITH IMPULSE EFFECTS
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closed if, and only if 7 = . For a biped robot, a closed peri-L ; H(of (Tr(x0), z0)) # 0. Hence, under H1I-H3Y := {z €
odic orbit would not correspond to walking because there would|0 < T7(z) < oo andLH (¢! (T1(z),x)) # 0} is open.
be no impact with the walking surface. If H4 also holds, thers := A*l(i’) is an open subset df.
It immediately follows that under H1-H4, tHeoincaré return
B. Poincaré’s Method map P: S — S by
The method of Poincaré sections is extended to systems with
impulse effects (10), for the case of nontrivial periodic orbits P(x) = ¢! (T1(A2)), Al)) (14)

that are transversal t8. This will be done in a certain amount;g \ye||-defined and continuous. In the case of the robot, the re-

of generality so that a wide class of biped robot models and cqjty map represents the evolution of the robot just before an
trollers can be treated. In particular, the finite-time stablllzmgnpact with the walking surface, to just before the next impact
controllers of Section IV will require the use of feedbacks th%Issuming that next impact does occur. If it does not, that is, the

are continuous, but not Lipschitz continuous. robot falls due to the preceeding impact, the point being ana-
Consider a time-invariant system with impulse effects  |yzed is not in the domain of definition of the return map.
it) = fla®), 2~ (@)€S Next, note that under H1-H4, @ is any periodic orbit of
X {x+(t) = AG(t), == (€S (11) (11) that is transversal t§, then® C . This is essentially

by definition. Thus, there exists, € S that generate® in the
where the state spadeis an open subset dit”. The hypotheses sense that\(z) € ©; indeed,zp = @ N S. It thus makes
that will be used in its analysis are listed below. As a point &ense to denote the orbit 6 A(xo)).

notation,y will be used to denote a solution of the system (11), Theorem 1(Method of Poincaré Sections for Systems with Im-
as defined in Section I1l-A, angd/ will denote a solution of the pulse Effects):Under H1-H4, the following statements hold.

associated ordinary differential equation, a) If 0 is a periodic orbit of (11) that is transversal¥othen

& = f(x) (12) there exists a point, € S that generate®.
’ b) z¢ € S is afixed point ofP if, and only if, A(xq) gener-
The point of introducinge” is that, firstly, a lot is known ates a periodic orbit that is transversal%o

about solutions of ordinary differential equations with contin- ¢) zo € S is a stable equilibrium point af;; = P(z3) if,
uous right-hand sides [24]. Secondly, in view of the first point, and only if, the orbitO(A(z)) is stable in the sense of
it is convenient to prove properties of (11) in term of properties ~ Lyapunov.

of (12). Finally, at times in the proofs, it is necessary to extend ad) zo € S is an asymptotically stable equilibrium point of

solution of (12) “through’s, while this does not make sense for 2111 = P(xy) if, and only if, the orbitO(A(xq)) is
(11) (that is, for the robot, it does not make sense for its “footto  asymptotically stable in the sense of Lyapunov.
be stuck in the ground”). The proof of the theorem is given in Appendix B.

1) Hypotheses:

H1) f(z)is continuous ony. IV. ASYMPTOTICALLY STABLE WALKING

H2) A solution of (12) from a given initial condition is  Thjs section develops a feedback controller for the system
unique and depends continuously on the initial condjgith impulse effects, (10), in the particular case of the biped
tion. _ _ _ robot given by the differential equation (2) and the impact model

H3) There exists a differentiable functidh: A — R such (9 The goal of the control design is to induce an asymptotically
thatS = {x € X|H(x) = 0}. Moreover, for every giaple walking cycle, and to facilitate the verification of its ex-

5 €5, (8H'/8a:)(s.) 7 0. o istence and stability properties. The verification will be done
H4) A: S — & is continuous, wheré§ is given the subset using the method of Poincaré.
topology from&'.

Hypothesis Himplies that at any point, € &X', asolutionto A. Encoding a Walking Pattern
(12) will exist over a sufficiently small interval of time [24]. This At its most basic level, walking consists of two things [45]:

squtlop may not .b.e unique, and may n.ot depeljd Com'n,uoufﬁlgsture control, that is, maintaining the torso in a semi-erect po-
onthe initial condition, as irl2. Hypothesis Hdmplies thatS is sition, and swing leg advancement, that is, causing the swing

an embed_ded submanifold [30], when given Fhe subsetf[opolo% to come from behind the stance leg, pass it by a certain
Hypothesis H4assures that the result of an impact varies Cog'mount, and prepare for contact with the ground. This moti-

tinuﬁus%!y with rlgspecczjt tf(_) whﬁre it occurs 6n i yates the direct control of the anglés (describing the torso)
. The !rst go? IS t9 eTln.e/‘tv e Poincare retutr)n map. Define ﬂ?ﬁd% (describing the swing leg). As discussed in Section |, the
time to impacfunction,T7: & — IR U {oo}, by most common approach to control in the multi-ped literature

inf{t > 0|/ (t,20) € S}, if 3t such that is through the tracking of precomputed reference trajectories.
Tr(zo) := - ' of(t,z0) € §  Thatis, in the context of the robot model investigated here, the
0, otherwise first step of the control design would be to determine functions

(13) of time 6,(¢) and #3(t) that express a desired behavior of the
robot. Then, standard control techniques would be employed to

FromLemma 3n Appendix B, Hypotheses H1-H3 imply thatinduce “asymptotic” tracking of these trajectories. The resulting
Ty is continuous at pointsg where0 < Tj(z¢) < oo and closed-loop system is nonlinear, hybrid (due to the impact map),
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time-varying (due to the time-dependent reference trajectoridd)us, the decoupling matrix is invertible for alle A" as long

and very difficult to analyze. as0 < M7y < r(m+Mr+Mg), whichimposes a very mild
On a periodic orbit corresponding to a normal walking mazonstraint on the paosition of the center of gravity of the upper

tion, it is clear that the horizontal motion of the hips is monotorbody of the robot in relation to the length of its legs. This leads

ically strictly increasing. For the biped of Fig. 1, this is equivto the following hypothesis.

alent tof; (¢) strictly increasing over each step of the walking 1) Hypothesis:

cycle. Thus, for any desired trajectoriég?) andés () thatex-  CH1) The decoupling matrix is globally invertible.
press (encode) a desired walking pattern for the biped, itis therer,om now on, it is supposed that CH1 is met. Therefore, due

fore reasonable to assume that the corresponding trajectoryyfpfne global invertibility of the decoupling matrix, stabilizing

6, has the property tha () is strictly monotonic. It follows (iynamics for the output of system (2) can be assigned. The eas-

that65(#) andé(t) can each be re-parameterized in terms ¢is; way to do this is to first decouple the system, [30], [41], [37]
0,. That is, without loss of generality, it can be supposed that,q then impose a desired dynamic response. In preparation for
03(t) = m(61(t)) andb(t) = n2(61(¢)), for some functions doing this, note tha®: M — IR by

i
The simplest version of posture control is to maintain the n 05 — 63

angle of the torso at some constant value, &aywhile the B(f) := [y2] — [91 + 92] (17)
simplest version of swing leg advancement is to command the 6, 6,

swing leg to behave as the mirror image of the stance leg, that s,

2 = —6,. Thus the “behavior” of walking will be “encoded” is a diffeomorphism onto its range. With this coordinate trans-
into the dynamics of the robot by defining outputs formation, and upon defining
Y1 hl(e):| [93—771(91)} [93—95} v:=L3h
= = = = = + L,L rhu 18
Y [UJ [h2(9) 62 — n2(61) b2 + 61 ! 9 (18)

(15)  the system can be written in the decoupled form

Driving y to zero will force, and#s to converge to known X (19)

7, 61,0 7,601,00)v |
functions ofé; (here,64, being a constant, should be viewed Gy, 9,01, 61) + Gy, §,61,61)v

asa trivial functio_n o#,). Th_is will be one of the key steps in The next step is to impose a continuous feedbaek (v, 7)
reducing the stability analysis problem to that of a map flBm (19), and thus on (10), so that the pair of double integrators
to R. ) o . _ iy = w is globally finite-time stabilized [23], [4]-[6]. This will

Of course, the idea of building in a dynamic behavior of g,|japse the image of the Poincaré return map to a one-dimen-
system through the judicious definition of a set of outputs, whichynar set.
when nulled yields a desirable internal behavior, is not novelz) Hypotheses:The closed-loop pair of double integrators
in control [30] nor walking robots [32], [26], [9], [31], [40], ,; _ v(y, 7). satisfies the following conditions.
[51], [16]. However, it is interesting to note that this idea, WhiCF‘IJ CH2) Solutions globally exist ofit*, and are unique
seems to be an essential stepmvinganything about the tra- CH3) Solutions depend continuomyjsly on the initiél condi-
jectories of the closed-loop system, has been best used to an- tions
alytical advantage in the monoped (one-legged hopper) Iitera-CH4) The 6rigin is globally asymptotically stable, and con-
ture. This seems to be due to the fact that accurate, approxi- veraence is achieved in finite time ’
mate, analytically tractable models of the hopper exist, and the H5) Thg settling time function ... - ]R4. ~Rb
associated Poincaré return map can be analyzed in considerable 9 roset y
detail [9], [51], [16]. This has led to the determinationsafim- N . _
pled-datacontrol laws (sampling is done synchronously with Teer(yo, 90) = Inf{? > 0|(y(t)’y(?)) =(0,0),
impact events) that lead txplicit, low-dimensionatests for (¥(0),9(0)) = (yo,%0)
asymptotic stability of a periodic orbit.

with the control objective being to drive the outputs to zero. { i
-]

depends continuously on the initial conditidne, 7o).
B. Controller Design Hypotheses CH2-CH4 correspond to the definition of
Since the system (2) comes from the second order model (1jite-time stability [23], [4]; CHS will also be needed, but is

and the outputs (15) only depend upyit follows that the rel- NOt implied by CH2-CH4 [5]. These requirements rule out
ative degree of each output component is either two or infinidgaditional sliding mode control, with its well-known discon-

Direct computation gives that [41] tinuous action. A means of meeting these four objectives can
be found in [4], [5]. The first two parts of the following lemma
i = Ljh(x) + LyLyh(z)u (16) are proven in [4]. The continuity of the settling time function

. _ ~isproven in [5] (a continuous upper bound on the settling time
and that the determinant of the decoupling matfiyL¢h, is  function is given in [4], along with a Lyapunov function).
[see Appendix A, (51)] is zero if, and only if,

SThat is, the time it takes for a solution initialized(at, 7 ) to converge to
—r(rMpg 4+ rm + rMr + M7 cos(61 — 63)) = 0. the origin. The terminology is taken from [4].
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Lemma 1:[Bhat and Bernstein] Consider the double intewere verified in Section II-C and Section 1I-B, respectively.

grator onlR? Thus Theorem 1 is applicable. The second step in the analysis is
) to simplify the application of the theorem. This is achieved by
T1 =22 studying the image of the Poincaré return map in the case that
Zo =1 (20) the controller has had sufficient time to converge. Convergence

of the controller is equivalent to the outputs (15) being identi-
cally zero over an interval of time.
The internal dynamics of the system (2) compatible with the
) o /7o output (15) being identically zero is called the zero dynamics
= —sign(za)|z2|* — SIgN( Py (21, 22))|Pulz1, 22)]| 2 [30], and the state space on which the zero dynamics evolves is
(21) called the zero dynamics manifold. For the biped model under
study, the zero dynamics manifold is computed from (19) to be

with scalar input. Then, for alld < « < 1, the feedback

v =va(x1,22)

wherep,, (z1, x2) = o1 +(1/2—) sign (z2)|z2 >, satisfies

the following. Z ={(6,w) € X|03 = 63,6, 4 62 = 0,w3 = 0,
P1) w»is continuous. _ _ witwr=0,—7 < 6 < mw €R} (28)
P2) The origin of (20) in closed loop with (21) is globally
finite-time stable. Note that the feedback (23) mak&san invariant manifold of
P3) The settling time functiorf.;, depends continuously (2), while the same feedback does not rerid@variant for (10)
on the initial condition. sinceA does not mafZ N S into Z. The zero dynamics itself

Let 9 (x1,22), ¢ = 1,2, be any feedbacks for (20) meetingwill not be computed here since it is not needed directly in the
P1-P3 olL,emma 1To each double integrator of (19), apply thetability analysis; the zero-dynamics will be studied in Section

feedbacky; = W(yi, %), SO that, with V (see also Appendix A).
. Lemma 2: Under Hypotheses CH1-CH5, and H3-H4, the
v = U(y, ) = g(yl,?{l) (22) following apply.
P (y2,92) 1) The set
CH2-CHS5 are satisfied faj = v. Define a feedback on (2), and S = {zg € S|Taet(0) < Ti{zo) < o0,

hence on (10) as well, by

u(@) = (LyLyh()) ™ (R (h(x), Lh(x)) — Lh(z)) (23)

LyH(¢ (Tr(zo), z0)) # 0} (29)

is an open subset f.

and denote the right-hand side of the closed loop by 2) LetP: S — S be the Poincaré return map. Then S —
S n Z.
fal@) = fz) + g(z)u(z). (24) The straightforward proof is skipped. Note that in terms of

Finally, define the original coordinate§, w) of the robot,

_ g, — pd _ —

Tscelt(a:) = InaX{Tset(hl, thl)7Tset(h27th2)} (25) S NZ= {(e’w) €a |93 - 93’ 91 + 92 - 0’ w3 ; 0’
) ) w1 +wr =0,0; =67, w; € R},
in the obvious way. It follows thaf!

set,

(z) is a continuous func-

tion of x. a one-dimensional (embedded) submanifoldtoDefine
The model of the biped robot in closed loop with the con- N
troller is p:S N Z—Sn Zbypz):=Px). (30)
s {20 = Jalz®), (B ES e Fors €5, Pa") €5 N Z. Thus, by the definition o,
Clat@t) = A @), = (t)es. P(z*) = «*if,and only if, z* € S N Z andp(z*) = z*.

In the next section, the method of Poincaré sections will pauppose that for some, € 5, the sequencey.y = P(wy) is
. . - .. well-defined fork > 0, and remains in some open neighborhood
applied to analyze the existence and stability of periodic or . &
; R of xo. Then for allk > 1, 2541 = p(ay). It follows thatz™ € S
bits. The finite-time convergence property of the controller wil? ; o :
. . . IS a stable (resp., asymptotically stable) equilibrium poinPof
be exploited to deduce properties of the solutions of (26) bfy P . .
studying the solutions of if a}nd only if, it is a stable (resp., gsymptotlcally sFabIe) equi-
librium point of p. Thus, the determination of the existence and
i(t) = fulz(t)) (27) stability properties of periodic orbits that are transversat to
can be reduced to the analysis of a one-dimensional map. These
corresponding to a one-dimensional subset of initial conditiongsults are summarized in the following theorem. A numerical
example to the biped robot is given immediately in the next sub-
section.
The first step in the analysis is to verify that Hypotheses Theorem 2(Method of Poincaré for Finite-Time Control):
H1-H4 hold for the closed-loop system (26gmma 5of Ap-  Consider the biped robot model of Section Il, written in the form
pendix B shows that continuity of the feedback (22) plus Hysf a system with impulse effects, (10). Define outputs such that

potheses CH1-CH3 imply H1 and H2. Hypotheses H3 and HHyypothesis CH1s met. Suppose that a continuous, finite-time

C. Analysis a la Poincaré



58 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 1, JANUARY 2001

stabilizing feedback is applied, and th#¢potheses CH2—-CH4 2

are met. DefineZ, S, andp as in (28), (29) and (30), respec- 18
tively. Then, '
1) a periodic orbit is transversal 8 if, and only if, it is &1'4
transversal t N Z; . . . . . . .
2) z* € § N Z gives rise to a periodic orbit of (26) if, and 3 1.4 15 1.6 1.7 1.8 1.9 2
only if, p(z*) = z*; “’1
3) =* € Snz gives rise to a stable (resp., asymptotically
stable) periodic orbit of (26) if, and only if* is a stable 02‘
3

»

1.2
1

(resp., asymptotically stable) equilibrium pointmof _ o

0

8 Mo

D. Numerical Example 04

Consider the model (10), with the following values of the
parameters:

0.2 L L L L L L ;
1. 1.4 1.5 1.6 1.7 1.8 1.9 2

@,

— R J— > J— o — =
m=5 Myg=15 Mr=10 r=1 [=05 Fig. 2. The top graph presents the functiotbold line) and, for visualization
purposes, the identity function (thin line); the bottom graph presents the function

corresponding to the mass of the legs, the mass of the hips, 4Rébold line) and the zero line (thin line). From either graph, itis seen that there
mass of the torso, the length of the legs and the distance betw®dfs a periodic orbit and that it is asymptotically stable.

the center of mass of the hips and the center of mass of the torso.

The units are kilograms and meters. With the outputs defined ) apply the impact model ta:—, that is, computer+ :=

as in (15),Hypothesis CHls met. Suppose that the desired Az7).

inclination angle of the torso # = « /6 and thatthe swingleg  3) Uses as the initial condition in (27), the robot in closed

has been designed to re-enter the saggital plane #henr /8. loop with the controller, and simulate until one of the
In the feedback (23), suppose that following happens:

1 . a) there exists a tim& > 0whered; (T) = 6¢; then,
W) = 6—21/Ja (y1, emn) (31) if 7" is greater than the settling time of the controller
) 1 (in other words, the outpuj is identically zero),
thenzt € § N Z, andA(w]) = wi(T); else,
zt ¢ § N Z, and\(w7) is undefined at this
point.
b) there does not exist’& > 0 such thatt,(T) =
6¢ (which is normally detected by one of the an-
gles exceeding-w /2 during the simulation); in this
case, itis also true thatt ¢ 5 N Z, andA(w])
is undefined at this point.
_Fig. 2 displays the functio; it also displays the related func-

F—Qi/Ja (Y2, €i2)

is used, withe = 0.1 anda = 0.9, wherey,, (x1, z2) is given

by (21). The parameter > 0 allows the settling time of the
controller to be adjusted. With this feedback, CH2—CH5 hold. In
the impact model (9), it is supposed that the friction coefficient
> 2/3 (see Appendix A). In the course of the simulations,
it has been verified that the impact model is valid, so this point
will not be discussed further.

To determine if this choice of parameters results in an asym - i - . .
totically stable walking cycle that is transversalpthat is, the 10N éA(wr) := Alwy) — wy', which represents the change in
orbit is transversal t& and the finite-time stabilizing feedbackyeloc'ty OVEr Successive cygles, from just befo_re an |m;1act to
has had enough time to converge over the walking cycle, t t before the ngxt one. It is seen that§ .u.ndeflned forwl.
function p of Theorem 2 must evaluated. This is convenientl ss than approximately 1.32 rad/s (for initia less than this
done as follows. Define: R — § n Z by o(wD) = alue, the rob(_)tfe_llbackvyard).The plotwastrgncafted at2rad/s
(69,926, ™, —wT,0), wherew. denotes the angular ve-Pecause nothing interesting occurs beyond this point (except an

e . upper bound on its domain of existence will eventually occur

locity of the stance leg just before impact. Defihe= o~ ! o . .
» o o. Astraightforward procedure for evaluatingn the basis due to the controller not having enough time to settle over one
walking cycle). A fixed point occurs at approximately 1.6 ra-

of a simulation modélof the closed-loop system is now given.

1) Numerical Procedure to Test for Walking Cycles via thgians/second, and, from the graphofit clearly corresponds
Method of Poincaré: to an asymptotically stable walking cycle, whose projection is

. - shown in Fig. 3.
1) Forapoints; > 0,computer™ := o(w; ), the position wn in Fig

of the robot just before impact (the restriction to positive To illustrate the role played by the inclination of the torso,

o ) .
velocities corresponds to the robot walking from left tguPPOse thafl; is reduced by half tar/12. Fig. 4 displays

right) andéA for this case. It is seen that there is no fixed point, and
gnb). hence no periodic orbit that is transversabtdSimulations also
6The existence and continuity of has been assured by the theoretical desupport this conclusion, but are not reported here for reasons of

velopments of the paper. A numerical simulator is being used to computeﬁgace_ For a robot without knees or ankles, the driving force for
approximationof this function. Since the feedback in (22) can be uniformly ap-

proximated by a Lipschitz continuous function, a standard numerical integranalkmg comes from the inclination of the torso, which couples
can be used to approximately compaitéo any desired degree of accuracy.  in the force of gravity.
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, Impact Event A. Zero Dynamics
o 1 / It is easy to verify that the input vector fields of (2) com-
’ , mute; that is, their Lie bracket is zero. This, in combination with
\ the decoupling matrix being globally invertible, implies that the

0. dynamic (2), with outputs (15), can be transformed into a par-
ticularly simple normal form [30]. An appropriate coordinate
transformation can be found by applying [30, Proposition 1.3,
Fig. 3. Projection ont¢6, , w1, ws) of a trajectory asymptotically converging p. 237], plus the constructive proof of the [30, Frobenius The-
to an orbit. Note that the “flat” portion of the curve is really an instantaneoudrem, p. 26], in this same reference. The result is the following
transition due to the impact of the swing leg with the ground. The dot is ”t?hange of coordinates, which is a global diffeomorphism under

©1 0 04 0,

initial point. Hypothesis CH1
» T = [93 — 9;(31 0 +0: w3 wi+wr 6 ’7(‘/17)]/7
18 (32)

Y~

Z16

< where,
1.4

v(z) = (Emr® + Myr® + Mpr® — $mr® cos(6; — 62)

2 + M rl COS(91 — 93))(4)1
+ (3mr? — mr? cos(61 — 62))wo
0
+ (MTZ + MT7lCOS(91 - 93)) (33)
-0.1
Sf_o.z The constructive proof of the Frobenius Theorem shows, in fact,
© 03 that the functiony is the last row of the matrix
0.4 L L L L L J —1
1.4 1.5 1.6 1.7 1.8 1.9 2 0 w1
(’)1- .B7 0 -D- W
1 w3

Fig. 4. The top graph presents the functiotbold line) and, for visualization

purposes, the identity function (thin line); the bottom graph presents the functi I
6 (bold line) and the zero line (thin line). From either graph, itis seen that the&bte that(_xl’ L2,13, 4) = (hi (@), ho(x), Lyl (2), Lpha()).
does not exist a periodic orbit transversatto In the Z-coordinates, the state-space model of the robot (2)

with the decoupling feedback (18) becomes

In [22], it is shown that the stability characterization devel- T = (7)) (34)
oped in this paper is sufficiently tractable that it can be effi-
ciently incorporated into a (numerical) feedback design schef@ere
for computing an asymptotically stabilizing feedback controller
with low peak torque demands and good efficiency with respect f1=T3,fr =4, fs =v1, fy = v
to average energy consumption over a cycle, or to optimize the
mechanical parameters of the robot itself.

4AMrl(r cos(T1 — T5 + 0%) — T3+

= mr?(2cos(Ta — 2T5) — 1)T4 + 4T6
V. ANALYSIS OF THE ZERO DYNAMICS IN RELATION = =
/s dr(mr + Myr + Mpr + Mrlcos(Z, — 75 + 64))

TO HIGH GAIN CONTROL )
fo= <MTlsin(fl +6%) — Smr sin(Zy — T5)

The previous sections have provided an effective method for
determining the existence of a periodic orbit, and for analyzing 3 _
its stability properties. The goal of this sectionis to analyze more + <§m7’ + Mg + MHT) Sln(%))
deeply the internal behavior of the robot model in closed loop
with a finite-time stabilizing controller. As pointed out in SecThe zero dynamics is obtained by imposing) = 0. Setting
tion IV-C, the classical zero dynamics of the mechanical part of, , 7, 73, 7,) = (0, 0, 0, 0) in (34), and relabelirg; andzg
the robot model are not invariant under the impact model, wheg ¢, andé¢,, respectively, yields
bounded control gains are used. It is shown here that in the limit
as the gain tends to infinity, the invariance of the zero dynamics_

is recovered, independent of the impact model. This can be usﬁﬂ &2
to explain certain properties of the Poincaré magsuch as its | &2 r(mr + Mgr + Mpr + Myl cos(—£1 + 69))
observed strict monotonicity. For reasons of space, the exposi- g(Mrlsin(03) + (mr + Mpr + Myr)sin(&1))

tion will be more terse than that of the previous sections. (35)
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In order to establish the relation between (34) and (35), sorftdlows. Take a poinE~— € SN Z Letzt = A(z™), where
properties of a double integrator in feedback with a finite-tima is the representation @k in the coordinates (32). It follows

converging controller are needed. thatz} = 0 andz] = 0, because (15) is identically zero on
_ S. Hence, the analysis of Section V-B is applicable. Letting
B. Aside on the Double Integrator #(t,z+) denote the solution of (34) for the initial condition
Consider a scalar double integratift) = v, and let := *, (39) and (40) imply, respectively,

¥(n,n) be any feedback so that Properties P1-P3erhma

1 hold. LetT.; be the settling time function and let(¢, /)

denote the solution of the closed-loop system corresponding to

the initial condition(0, 7). By continuity of the dependence@"

gf the solution on the initial conditions, and the fact thatas lim / (6, 74)] dt
ounded support, 0 o I

/eT;jt (0,0,ez] ,ez])

lim sup |Z(¢, )| =0, i1 =1,2 42
ty sup [7:(1, ) 42)

lim sup |¢(¢, en0)] =0 (36) = lim
eNO >0

lim |z;(t, 1) dt=0 (43)

0
for j = 3, 4. From these two equations, and the fact #and

o . . 74 appear affinely inf, and not at all inf;, a simple bounding
Sincey is a continuous function df and has bounded support,argumem shows that, fot > 0

I5° |¢(t, no)| dt exists and is finite. Hence, using (37) and the
bounded support property, it follows that lim #(t,7") = (0,0,0,0,&, (4,5, 7)), Lot 78, 78))

o 15
(44)

lim sup |@(t, eno)| = 0. 37
tim sup ()| (37)

to [ 160 cin)] de
0

0 Tset(0,c where¢;(t, 75,7 ), i = 1,2, denotes the solution of the zero
se 76770) i 4 L. .
— lim / o, eio)| dt dynamics, (35), for the initial conditio(ws, 7).
eNO o
_ 1 ) D. A under High-Gain Control
- 11{% /0 ¢t o)l dt = 0. (38) It follows that in the high gain limit, that is, astends to

zero in (41), the function from the Poincaré method can be
evaluated on the basis of a two-dimensional subsystem, namely,
the zero dynamics. Denote the resultty. This reduction is
interesting for several reasons.

Consider again the scalar double integratorglet 0, and
apply the high gain feedbacek= (1/¢?)1)(n, ). Letp(t, 7o)
denote the solution for the initial conditidi®, 70). Then it is
straightforward to verify thap. (¢, 70) = ¢(t/e, enp), and thus

> N . . 1) It brings out the structure of the closed-loop system,
that . (¢, = (1/e)¢(t/e, enp). Hence, by (36), :
Pe(t,7io) = (1/€)o(t/ <, o) y(36) and shows that the zero dynamics must encode the no-
lim sup |@.(t.70)| = 0 (39) tion of a walking cycle.
eNO >0

2) The uniqueness of the solutions of the zero dynamics
implies thatAg is strictly monotonic, which partly
explains the observed monotonicity in

3) Am¢ is as smooth as the data in the problem (for the
biped, it is analytic), whereasis only continuous.

4) The evaluation ok g is independent of the particular
finite-time stabilizing feedback used. Moreover, it can
also be computed by replacing in (41) with a glob-

and by (38) and a simple substitution of variables

lim / | (€, m0)| dt = 0. (40)
0

e\

C. High-Gain Control and the Zero Dynamics

Once again, let; = 1;(y;, i), = 1,2, be any feedbacks for ally exponentially stabilizing feedback, and taking the
the double integrator so that Properties P1-P3 hold. For any limit as ¢ tends to zero: in the limit, the Poincaré re-
0, a simple time scale argument shows that the high gain feed- turn map,P, when restricted t§ N Z, takes again its
backv; = (1/€*);(y;, i) still results in Properties P1-P3 valuesinS N Z. The consequences of this observation
being met, and, furthermore, results in the closed-loop settling  for the study of periodic orbits under nonfinite-time sta-
time function, (25), becomingZ, (v, ¢, €) = €15 (y, eg). With bilizing feedback control remain to be clarified.
this in mind, apply the feedback

1 (T, T)
- W1(X1,€T3
v = U(T) = 612 (41) VI. CONCLUSION
—2(T2, €T4) This paper has addressed the problem of establishing the exis-
¢ tence of a periodic orbit in a simple biped model, and analyzing
to (34). its stability properties. The biped model was first formulated as

The relationship between the solutions of the closed-logpnonlinear system with impulse effects, evolving in a subset of
robot model, (34), and the zero dynamics, (35), is established as
8Express the solutions in integral form, compute the norm of their difference,
“Indeed, the support {8, T... (0, ero)]. and apply the triangle inequality.
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IRS. Poincaré’s method was then extended to this class of sys- -1 0
tems. For the biped model considered here, a straightforwardapB = | 0 —1]. (48)
plication of Poincaré’s method would require the computation 1 1

of a discrete-time map frod® to R®, which would be difficult
to analyze. It was then shown that finite-time converging feed-
backs could be used to drive the torso and the swing leg to knofin IMmPact Model
functions of the stance leg, and thereby collapse the dimensioMhe impact equations (4) and (8), taken together, become
of the image of the Poincaré map to a one-dimensional set. This
leads to an effective analysis tool, which can then be used in de- |:De —E'} [Q’ﬂ _ |:D€qe_:| (49)
sign [22]. In the course of the development of these results, it E 0 F 0
was observed that the zero dynamics of the biped was not in- . . )
variant under the impact model. It was subsequently shown tidtereZ” = (£, Fiv)" and the positive-definite symmetric ma-
its invariance could be recovered under high gain control. X D has entries

The analysis method developed in the paper is quite general. 5
The next step is to apply it to a more general biped model with Det = (m+ My +Mp)r® Do = —gmrfers
knees [42], [21], [18], [19], yielding a seven degree of freedom, D:® = Mprlcis D = (3m + My + Mr)r cos(6;)

under actuated system. It is conjectured that supplementing out- D;}" = — (3m+ My + Mr)rsin(6;) D = tmr?
puts (15) with hip height and swing foot height objectives will ;23 _ D = _%mT cos(fy) D = ;m7 sin(6s)

lead to a viable control design with provable stability properties; ¢,
the horizontal hip position will play the role &f in parameter- e = MTF DZ* = Myl cos(6s)

izing the outputs to be used in the feedback design. It also seemsD — Mrlsin(f3) D;* =2m+ My + My

likely that the methods developed here can be applied to otherDjO =0 D =2m+ My + Mry.

under actuated mechanical systems [40].

The work presented here has assumed a rigid impact modéie solvability of (49) is equivalent to the invertibility of the
Non-rigid models have been developed [49] in the context ofatrix on the left hand side. The invertibility of this matrix fol-
biped motion. It seems possible that some of the results of tloevs from the fact thaD. is positive definite andz has full
paper can be extended to include such models, though thisask; indeed, the determinant of the left-hand side of (49) can
more speculative than the previous extension. Finally, mabg computed to be
challenging issues exist in running (which has a fly phase)
and three dimensional aspects of modeling and control GiMri*r* (3m + 2My + 4Myg — 2m cos(201 — 265)

mechanical biped motion. 16
—2MT COS(292 — 293))
APPENDIX A which is nonzero everywhere.
MODEL DETAILS The mappingA is then evaluated by the following steps.
This appendix completes the equations of the biped model Step 1) Solve (49) fogt, and pick-offw; sinceg. only
(2). In the following: depends on~ (recall thatz; = z; = 0), and since

the positions do not change during the impact (i.e,
6t = 67), the result isv™ expressed as a function

W 29 _ _7 _/
ofz= =0, w ).
s1; = sin(6h —6;).j € {2, 3} Step 2) Transform the coordinates so thatorresponds to
c1y = cos(f1 — 0;),j € {2,3}. the stance leg ané, to the swing leg; this means
swapping the first two position coordinates, and the
first two velocity coordinates, respectively.
A. Mechanical Model The final result is

Az7)=[0; 07 05 wi(z?) «f(z7) wi(@)]-

[ (%m + My + Mrp)r? —%m7’2612 Mrprles (50)
D= —%mTchg imTQ 0 The implici . T :
5 plicit function theorem implies that is as smooth as the
Myricys 0 Myl data in (49) and, thus\ is analytic inz—.
_ . (45) 1) Remarks:a)A is computed in closed formin[22]. b) The
. 20 —3mrisppwy  Mrrisizws no-rebound, no-slip condition of the impact, (8), ensures that
C= | gmrispw 0 0 (46)  the impact results in the end of the swing leg being at rest, and
| —Mrrisizw 0 0 hence, after doing the coordinate transformation, the end of the
[ —19(2My + 3m + 2Mz)rsin(6;) stance leg will be at rest. ¢) For the impact model to be valid,
G= % gmrsin(6s) (47) it must be verifieda posteriorithat no-slipping was a valid as-
—gMrlsin(63) sumption (that is|Fr/Fy| < p), and that the stance leg lifts
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from the ground without interaction (that is, before the coordiFhen, from the definition off; and H3,H(¢/(t,2¢)) > 0
natetransformation‘r;r > 0). Thiswas done for all simulationsfor all 0 < ¢ < Tj(xp). This in turn implies that, for any
reported in this paper. 0 < t1 < Tyr(zo),

C. Decoupling matrix p(ty) = oglgtl dist(¢’ (¢, 20),5) > 0 (54)

The Lie derivative notation is defined in [30], [37], and [4l]since: a)e/ (t,20) is continuous irt; b) the interval[0, #,] is

1 Ry Ry compact; and c), by H3$_is closed and equals the zero level
deo(D) {Rm RQJ (51) set of H. By H1, there exists > 0 such thatpf can be con-
tinued on[0, T7(xo) + €], [24]. Moreover, sincd ;H(Z) < 0,
where for e > 0 sufficiently small,ty := T7(zo) +€/2 andz; :=
, @/ (ta, z0), result inH(xzy) < 0. FromH(z2) < 0, it fol-
_mr (5 . R 2 lows that disfz2,S) > 0. If necessary, reduceso thatd <
= 4 <4m7 + My + Mor —mr(ciz)” + MTZCI?’) € < min{e, izgj(.’l'o)?}, and defing; := Ty(xg) —¢/2 andzy :=
3 /5 ©f (t1,20). From (54),u(t1) > 0. From H2, the solutions de-

_mr . . . . 2
Rip=— <Zm7 + Myr + Myr —mr(ei) pend continuously on the initial conditions. Thus, there exists

LyLsh =

§ > 0, such that, for all: € Bj(x0), supg<;<y, llof (t, ) —

+ 2MT1012013> o (t,z0)|| < min{dist(zo, S), 1(t1)/2}. Therefore, forr €

5 Bs(xg), t1 < Ti(xz) < t2, which implies that|T7(x) —

Ry = %(1 + 2¢12)(rers + 1) Tr(zo)| < ¢, establishing the continuity & atxo. [ |
Ryy = 4T U (5ml + 4Myl + 4Mpl + mrers Distance of a Trajectory to a Periodic Orbit

) Recall that if O is any periodic orbit that is transversal
+ 2mreszers — 4Myl(eis)” + 2mler) to S, then © < AX. Forz ¢ A&, define d(z) :=
SUPg<i<rr(x) ISt~ (¢,2),0). Note thatd vanishes on

and O. Note also that fob < t < T5(x), ¢~ (t,z) = @/ (¢, ).
m Myt Lemma 4: Under H1-H3d: X — R is well-defined and is
det(D) = — — continuous or®. )
5 ) ) Proof: For any o € X, Ti(zo) is finite, and
<Zm+MH+MT — m(c12)” — Mr(eis) ) ¢! (t,z9) is defined on|[0,77(x0)]. This and the conti-

nuity of ¢/ (¢, z¢) with respect to t imply thatl(z,) is finite.
Next, letzg € O ande > 0 be given. By definition of
D. Zero Dynamics Tr, T = ¢/ (Tr(x0),70) € S. Without loss of generality,
%}ppose thal ;H(Z) < 0.Letn > 0 be such that for all
<t < H!t7) < 0and||z — ¢/ (t,7)|| < ¢/2
5o i\ .7 = )2 Such any exists because: (1) H1 implies there exigts> 0
01 = (0(0,0,61,61) =: (,(61) + (,(61)07 2 Such thaty/ can be continued od0,77(zo) + 7], [24];
(2 L;H(z) < 0; and (3)¢’(t,z) depends continuously

In the coordinates used in (19), the zero dynamics is given §

where !
on t. Definetz = Ti(zo) + n andzz = ¢f(t3,10).
T (0) = g (2m + My + My)rsin(6;) + Mrlsin(63) By H2 andLemma 3 there existss > 0 such that for all
A — + Myr + Myr + Myl cos(6y — 65) & € Bs(wo), SuPo<i<t, o/ (t,z0) — @/ (t,2)]| < €/2and
3 Melsin(6, — 62) Tr(#) < ts. By the triangle inequality, digp”(t, %), 0) <
plU1 Istiw’ (t,2), ¢’ (T, 20 + dist{y’ (t,z0),0). Hence, for
Co(61) > (53) dist(p/ ! dist(o’ 0). H f

:mr—i—M 7 4+ Mpr + Myplcos(6, — 62)° - . -
" g g (6 3) T € Bs(wo), SUDo<t<T7(F) dist(¢/(¢,7),0) < SUPg<t<t,

dist(o/ (t, %), of (¢, 20)) + SUPg<t<t, dist(p/ (t,20),0) <
APPENDIX B e/2 + ¢/2, which shows thati(i) < ¢, and thereby the

PROOFS AND TECHNICAL DETAILS continuity ofd atzy. m
This appendix collects some of the technical development,in Proof of Theorem 1

the hope of improving the readability of the main body of the
paper.

Proof: The first and second statements are immediate.
Since the sufficiency portions of the statement c¢) and d) are
o straightforward, only necessity is proven here. Suppose that
A. Continuity ofZ7 P(zo) = zo, and let© be the periodic orbit of (11) corre-
Lemma 3: Suppose that H1-H3 hold. Thef; is con- sponding toA(zo). By b), the orbit is transversal t§. Let
tinuous at pointszy where0 < Tr(zg) < oo and e > 0 be given. Since is stable in the sense of Lyapunov,
LyH (¢! (T1(20),70)) # 0. foranyz > 0, there exist$(¢) > 0 such that, for alk > 0,
Proof: Lete > 0 be given. Definer := o/ (I7(x0),z0), T € Bsz)(zo) N S, impliesP*(z) € Bc(xo) N S, whereP*
and without loss of generality, suppose tHatH (7) 0. is P composed with itself-times. In particular, this implies
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that for allz € Bjs) (o) N S, there exists a solutiop(t) of 2]
(11) defined or0, o), such thatp(0) = A(z). Moreover, an 3
upper bound on how far the solutignwanders from the orbit 3]
O is given by [4]

sup dist{p(?),0) < sup  d o A(x). (55)

t>0 € B(x0)NS (5]
By Lemma 4sinceQ is transversal t&, and sinceA(zg) € O, (6]
d o Ais continuous atzg. Sinced o A(zo) = 0, it fol- 7
lows that there exists > 0 such thatsup,cp_z)nsd © Bl

A(z) < e This bound is valid for all initial conditions in
Bs@(zo) N S. Itremains to produce an open neighborhood [9]
of O for which such a bound holds. But this is easily done by
takingV := d=1([0, 6)), which completes the proof of c). As- [10]
sume in addition that(e) > 0 was chosen sufficiently small
so thatlimy, ., P¥(Z) = z¢. Then by continuity off and A,
limg .oo d o A(P¥®)) =d o A(xg) = 0, from which it
easily follows thalim; .., dist(¢(t),O) =0, provingd). =

(11]

[12]
C. Sufficient Conditions for H1-H2

The goal is to show that the continuity of the feedback (22)13]
plus Hypotheses CH1-CH3 imply that Hypotheses H1 and H2
hold for (24). H1 is immediate. Due to the subgroup property of
the flow of a differential equation, it is enough to establish H2 in[14]
a local coordinate chart. Since (2) comes from the second order
model, (1), where the matriB is constant, the input vector
fields of (2) commute and the dimension of their span is con{15]
stant. These two facts plus the invertibility of the decoupling[161
matrix (Hypothesis CHLLimply that, about any point, € &,

the system (24) can be locally transformed into [30], [37], [41] 7]

Q=06
G =T(¢1,C2) [18]
z :F(C17C27Z) (56)

(19]
where(; := y, (s := ¥, Vis given by (22) and’ is an analytic
function of its arguments (the analyticity comes from that of
(2)). In particular]I is locally Lipschitz continuous.

Thus, in these coordinates, the system is expressed as a c&d!
cade of a system that satisfies H2 feeding forward into a system
that is locally Lipschitz. The Gronwal inequality [34] can there- [22]
fore be used to establish that H2 holds for the cascade. This is
summarized in the lemma below.

Lemma 5: For the closed-loop system (24), Hypotheses23]
CH1-CH3 and the continuity of (22) imply Hypotheses H1
and H2.

[20]

[24]

(25]
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