
Transverse linearization for an underactuated compass-like biped robot and
analysis of the closed-loop system

Leonid B. Freidovich and Anton S. Shiriaev

Abstract— We consider an impulsive 2-DOF mechanical sys-
tem modeling dynamics of a planar two-link walker commonly
known as a compass-gait biped. It is assumed that there is
actuation in the hip but that the desired periodic trajectory
describes an unstable passive walking gait. We recall and apply
a recently developed technique for design of orbitally stabilizing
feedback controllers. After that, we illustrate on the particular
example how to assess various properties of the closed-loop
system. In particular, sensitivity to perturbations of the slope
of the walking surface is analyzed and possible deviations from
the nominal trajectory are estimated analytically.

Index Terms— Walking Robots; Underactuated Mechanical
Systems; Periodic solutions; Orbital stabilization; Transverse
Linearization; Virtual Holonomic Constraints

I. I NTRODUCTION

The study of simple walking devices is a fascinating
field that has attracted considerable attention of researchers
in the robotics and control communities. After McGeer’s
seminal paper [25], published in 1990, there was a series
of publications, see e.g. [10], [11], [21], [18], [37], [5],[22],
proposing and reporting how to find and analyze passive gaits
for various low-dimensional walking devices.

These gaits are also of interest to consider in the case
when some actuation is available since the corresponding
desired trajectory is obviously efficient from the point of
view of required nominal control efforts. The goal of the
control design then is to stabilize an appropriate open-loop
unstable limit cycle or to enlarge the regions of attractionthat
is typically very small when control is absent. We illustrate
below how it can be done using a recently developed
technique on a standard benchmark example: a planar two-
link walker commonly known as a compass-gait biped.

The key idea of the approach is exploring a special but
generic change of coordinates that can always be used for
a parameterization of any nontrivial hybrid periodic solution
of the walker dynamics. In essence, we avoid looking for
explicit dependence on time but instead search for geometric
relations among the time evolutions of the generalized co-
ordinates [1], [12], [13] that should be valid along a cycle.
Such relations are calledvirtual holonomic constraints[34],
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This work has been partly supported by the Swedish Research Coun-
cil (grant 2008-5243), Kempe foundation, Young Researcher Award
(Karriärbidrag) from Ume̊a University, and Russian Federal Agency for
Science and Innovation (grant 02.740.11.5056).

[40] and are rapidly becoming more and more broadly used
for periodic motion planning and orbital feedback stabiliza-
tion for mechanical systems with and without impacts, see
e.g. [33], [40] and references therein. Knowledge of these
relations allows introducing a moving Poincaré section [39],
[14], [23], computing the Poincaré first-return map [29],
[26], [20], as well as analytically deriving equations for a
transverse linearization [16], [3], [36], [27], [31], [32].

We must remark that finding stable gaits for the compass-
gait system has attracted many researchers motivated by
various aspects of passive and active dynamic walking, see
e.g. [8], [17], [15], [9], [19], [30], [2], [40], [24], [28] and
references therein. However, to the best of our knowledge,
there are no reported successful supplements for the other
proposed stabilization or stability-verification techniques that
allow systematic analytical or semi-analytical assessments of
sensitivity to various perturbations and uncertainties. Below
we provide an illustration of such analysis based on the
approach using virtual holonomic constraints and analytical
computation of transverse linearization. More precisely,we
go one step further showing how to compute various charac-
teristics of a periodic gait such as the rate of convergence,an
estimate of the region of attraction, and sensitivity with re-
spect to parameters exploiting some analytical (and therefore
dimension independent) arguments.

II. DYNAMICS

Dynamics of a two-link compass-gait biped robot with a
control torqueu applied at the hip, schematically shown in
Fig. 1, can be described by the impulsive system [11], [18],
[38]

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

ẋ1=x2, p1ẋ2 − p2 cos(x1−x3)ẋ4−p2 sin(x1−x3)x
2
4

− p4 sinx1=u

ẋ3=x4, p3ẋ4−p2 cos(x1−x3)ẋ2+p2 sin(x1−x3)x
2
2

+ p5 sinx3=−u

as long as cos
(

x1 + ψ
)

− cos
(

x3 + ψ
)

6= 0







































x+1 = x−3 , x+3 = x−1 , c− = cos(x−1 − x
−
3 ),

[

x+2
x+4

]

=

[

p1 − p2c
− p3 − p2c

−

−p2c
− p3

]−1

×

[

p7c
− − p6 −p6
−p6 0

] [

x−2
x−4

]

whenever cos
(

x−1 + ψ
)

− cos
(

x−3 + ψ
)

= 0
(1)
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Fig. 1. Schematic of the compass-gait biped on a shallow slopeψ . Here,
q1 = x1 and q2 = x3 describe the absolute angular positions of the stance
leg and of the swing leg respectively. On the right, physicalparameters of
the compass-gait robot are listed.

Here the coefficients are defined by the physical parame-
ters of the robot as follows:

p1 = (mH +m)l2 +ma2, p2 = mlb, p3 = mb2,
p4 = (mH l +mb+ml)g, p5 = mbg,
p6 = mab, p7 = mH l

2 + 2mal,

the constantψ denotes the slope of the walking surface and
the standard abbreviations

x− = x(t−) = lim
ε→0

x(t−|ε|), x+ = x(t+) = lim
ε→0

x(t+|ε|)

are used for the values before and after the jumps.

III. D ESCRIPTION OF A NOMINAL PERIODIC SOLUTION

A. Definition of a periodic solution

The dynamical system (1) can in short be rewritten as

ẋ(t)=f
(

x(t), u
)

for x− 6∈ Γψ−,

Γψ+∋x
+=F

(

x−
)

for x−∈ Γψ−
(2)

with the state vectorx = [x1, x2, x3, x4]
T , the surfaceΓψ−

defined bycos
(

x−1 + ψ
)

− cos
(

x−3 + ψ
)

= 0 , and f(·) and
F (·) computed from the right-hand sides of the differential
and algebraic equations respectively.

If there exist a numberT > 0 , a continuous scalar
function u = u⋆(t), and a continuous vector-functionx =
x⋆(t) defined for0 ≤ t ≤ T such that:

1) x⋆(0) ∈ Γψ0

+ ,
2) For 0 < t < T : x = x⋆(t) is continuously

differentiable, does not cross1 Γψ0

− , and satisfies the
differential equationẋ⋆(t) = f

(

x⋆(t), u⋆(t)
)

,

3) x⋆(T ) ∈ Γψ0

− and F
(

x⋆(T )
)

= x⋆(0),

then, the solutionx⋆(t) is referred to as anominal periodic
solution of the hybrid system (2) describing dynamics of a
compass-gait walking on a surface with the slopeψ = ψ0 .

1Crossings that are not heel strike related will be ignored here avoiding
scuffing and impossibility for walking with fixed lengths of legs without
knees and without passing through the surface.

B. Example of a periodic solution

For instance, ifψ0 = 2.87π/180 and u⋆(t) ≡ 0 , then
there are two nontrivial periodic solutions [6]—passive gaits
of the walker (1). One of them is defined by the following
initial conditions:

x1⋆(0) ≈ 0.203177786690625,

x2⋆(0) ≈ −1.196561416996205,

x3⋆(0) ≈ −0.303359681764206,

x4⋆(0) ≈ −0.720513934734346.

(3)

It is possible to verify that the initial conditions (3) with
u = u⋆(t) ≡ 0 define an unstable periodic solutionx =
x⋆(t) = x⋆(t + T ) of the walker dynamics (1) with the
period T ≈ 0.583723 [sec].

This periodic solution, as well as any other one, can be
also described differently.

C. Geometric description of a periodic solution

Suppose that for the nominal periodic solutionx = x⋆(t) ,
such as the one with the initial conditions at (3), the
componentx1⋆(t) is monotone on0 ≤ t ≤ T . Then, there
exists a twice continuously differentiable functionϕ(θ),
describing the synchronization between the joint angles along
the periodic trajectory, such that

x1⋆(t) = θ⋆(t), x3⋆(t) = ϕ
(

θ⋆(t)
)

. (4)

Furthermore, the functionθ = θ⋆(t) for 0 ≤ t ≤ T can be
computed by solving the following second order differential
equation [35]

α(θ) θ̈ + β(θ) θ̇2 + γ(θ) = 0, (5)

where the coefficients are defined by the physical parameters
of the walker:

α(θ) = −p2
(

ϕ′(θ) + 1
)

cos
(

θ − ϕ(θ)
)

+ p3ϕ
′(θ) + p1,

β(θ) = p2

(

1−
(

ϕ′(θ)
)2
)

sin
(

θ − ϕ(θ)
)

−ϕ′′(θ)
(

p2 cos
(

θ − ϕ(θ)
)

− p3
)

,

γ(θ) = −p4 sin(θ) + p5 sin
(

ϕ(θ)
)

(6)
The functionϕ(θ) that defines synchronization between the
position coordinates along the periodic solution is known as
a virtual holonomic constraint[34], [40]. The equation (5)
is obtained substituting relations defined by (4) into a linear
combination of the two differential equations in (1) that is
independent on the control inputu . It is sometimes called
reduced dynamicsor dynamics projected onto the manifold
defined by the virtual constraint:x3 ≡ ϕ(x1) .

If there exists a periodic trajectory for a particular function
ϕ(θ) , it gives rise to a family of possible control inputs
consistent with it, that include the ones that make the
constraint invariant, see e.g. [42].
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D. Control law for a periodic solution

Having known a nontrivial periodic solutionx = x⋆(t) of
(2), one can compute the corresponding control inputu =
u⋆(t) and, visa verse, for a given initial conditionx⋆(0)
and a control inputu⋆(t), the solutionx⋆(t) is uniquely
determined by (2). However, if one is interested in defining
the control input in the form of a state feedback

u = U(x)

that satisfies the interpolation condition

u⋆(t) = U(x)|x=x⋆(t) , (7)

then, there are many choices for the functionU(x) . One of
them can be found as follows: Given a functionϕ(θ) that
describes the time-evolution synchronization (4) betweenthe
degrees of freedom along the solution, substitute the relations

q1 = θ, q̇1 = θ̇, q̈1 = θ̈

q2 = ϕ(θ), q̇2 = ϕ′(θ) θ̇, q̈2 = ϕ′′(θ) θ̇2 + ϕ′(θ) θ̈
(8)

into the two differential equations in (1) and solve the
obtained system with respect töθ andu , see also [42], [40].
Then, one obtains

u = (p22 cos
2
(

θ − ϕ(θ)
)

ϕ′′(θ)θ̇2 + (p2θ̇
2ϕ′(θ)(ϕ′(θ) + 1)

× sin
(

θ − ϕ(θ)
)

+ p4 sin(θ) + (p5 sin
(

ϕ(θ)
)

ϕ′(θ)))

× p2 cos
(

θ − ϕ(θ)
)

− p2θ̇
2(ϕ′(θ)3p3 + p1 sin

(

θ − ϕ(θ)
)

− p3ϕ
′(θ)p4 sin(θ)− p1((p5 sin

(

ϕ(θ)
)

) + p3ϕ
′′(θ)θ̇2))

/(−p2(ϕ
′(θ) + 1) cos

(

θ − ϕ(θ)
)

+ (p3ϕ
′(θ)) + p1)

≡ U
(

θ, θ̇
)

(9)
and defines the operatorU .

Note that for a passive gait, such as the one with the
initial conditions (3), the functionU

(

θ⋆(t), θ̇⋆(t)
)

in (9) is
identically equal to zero.

E. Hybrid zero-dynamics

The feedback control lawu = U(θ, θ̇) , defined by (9),
makes the zero-dynamics manifold

Z =
{

[x1, x2, x3, x4] : x3 = ϕ(x1), x4 = ϕ′(x1)x2
}

invariant along the solutions of the continuous-in-time part
of the dynamics of the closed-loop system (2), (9). In
addition, it can be shown that the restriction of the discrete
mapping F (·) to the curveγ− = Γψ0

−

⋂

Z maps it into
γ+ = Γψ0

+

⋂

Z , i.e. thehybrid zero-dynamics[41]

x(0) ∈ Γψ0

+

⋂

Z,

ẋ(t) = f |Z

(

x(t), U
(

x1(t), x2(t)
)

)

for x− 6∈ Γψ0

− ,

Γψ0

+ ∋ x
+ = F |

Γ
ψ0

−

⋂
Z

(

x−
)

for x− ∈ Γψ0

−

(10)
is well-defined. However, the hybrid zero-dynamics in the
considered case is not stable, i.e., the defined above periodic
solution of the closed-loop system (10) is unstable.

If the zero-dynamics (10) was stable, a simpler feedback
control design procedure for (1) than the one to be described
shortly would be applicable. As an example, we refer to
the technique recently developed and successfully tested on
several walking-robot examples [41], [4], [40]. The idea there
is to design a finite-time convergent or high-gain control
input that forces the trajectory to the zero-dynamics man-
ifold. Obviously, this approach cannot work in the situation
with unstable hybrid zero-dynamics that we do have for the
periodic solution described above.

Below we review an alternative transverse-linearization-
based design that does not even require such dynamics to
be well-defined, see also [13]. It is worth keeping in mind
that the family of the feedback controllers to be presented
includes all the controllers that can be designed using the
notion of hybrid zero-dynamics.

IV. ORBITAL STABILIZATION OF THE NOMINAL CYCLE

USING TRANSVERSE LINEARIZATION

A generic approach for orbital stabilization of a periodic
solution is to design a control input that stabilizes dynamics
transversal to the trajectory of the solution.

A. Transverse coordinates

To introduce the transverse dynamics, consider the change
of coordinates:









x1
x2
x3
x4









←→









θ = x1
θ̇ = x2
y = x3 − ϕ(x1)
ẏ = x4 − ϕ

′(x1)x2









←→









s = Ψ(x1)
I = I(x1, x2)
y = x3 − ϕ(x1)
ẏ = x4 − ϕ

′(x1)x2









(11)

whereΨ(x1) is defined as an inverse function2 for x1⋆(t),
that can be computed as a solutionθ = θ⋆(t) of (5), i.e.

θ⋆(s) = x1 ⇔ s = Ψ(x1), (12)

the scalar functionI
(

θ(t), θ̇(t)
)

is the conserved quantity3

[35] for the equation (5)

I = θ̇2(t) +
2
(

∫ θ(t)

θ⋆(0)
α(s) γ(s) ds

)

− α2
(

θ⋆(0)
)

θ̇2⋆(0)

α2
(

θ(t)
)

(13)
with the functionsα(·) and γ(·) defined by (6).

The new coordinates are instrumental for design of or-
bitally stabilizing feedback controllers.

With the following feedback transformation

u = U
(

θ, θ̇
)

+ u⊥, (14)

2Here the monotonicity ofx1⋆(t) = θ⋆(t) is exploited.
3The general expression proposed in [35] is simplified here using the fact

that in (6) β(θ) is proportional toα′(θ) .
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where U(·) is defined by (9), the dynamics (1) written in
the variables

{

θ, θ̇, y, ẏ
}

, see (11), becomes

α(θ) θ̈ + β(θ) θ̇2 + γ(θ) = g(θ, θ̇, y, ẏ, u⊥),

ÿ = h(θ, θ̇, y, ẏ, u⊥)
(15)

Assuming thatu⊥(θ, θ̇, y, ẏ) for (1) with (14) and (9) is
chosen so that

{

y ≡ x3 − ϕ(x1) = 0, ẏ ≡ x4 − ϕ(x1)x2 = 0,

I(x1, x2) = 0
}

=⇒ u⊥ = 0

it can be shown that

x⊥ =





I
y
ẏ



 =





I(x1, x2)
x3 − ϕ(x1)

x4 − ϕ
′(x1)x2



 (16)

is a vector of transverse coordinates, i.e. coordinates that
define deviations from the nominal periodic trajectory, while
the variable s introduced in (11) defines location along
it. Keeping s fixed and varyingx⊥ , we obtain a surface
transverse (in fact, orthogonal) to the nominal trajectory. The
whole family of these surfaces is called amoving Poincaŕe
section [23], [32]. In fact, it is possible to prove [32] that
‖x⊥‖ is equivalent to the distance between a point and the
periodic trajectory in the first approximation.

B. Transverse linearization

Linearization along the periodic trajectory for the dynam-
ics of the transverse coordinates (16) is a linear control
system, whose solutions are determined by the rule [7]:

1) On the intervals(i−1)T ≤ τ < i T , i = 1, 2, . . . , the
solution x̂⊥ = x̂⊥(τ) is defined by the linear control
system

d
dτ
x̂⊥ = A

(

τ − (i− 1)T
)

x̂⊥ +B
(

τ − (i− 1)T
)

û⊥
(17)

2) At the end of each interval, i.e. atτ = i T , i =
1, 2, . . . , the solution x̂⊥(i T−) experiences an in-
stantaneous update defined by a linear transform

x̂⊥(i T+) = L x̂⊥(i T−) (18)

If control variablesu⊥ and û⊥ for the systems (15) and
(17) are chosen small enough and related as

u⊥ = û⊥ + “small higher-order terms with respect to
the distance to the target orbit ofx⋆(·)”

then solutions of the linear system (17)–(18) initiated at
x̂⊥(0) = [I(0), y(0), ẏ(0)]

T are such that the transverse
coordinates satisfy an approximation

x⊥(t) = x̂⊥(s) + “small higher-order terms”, s = Ψ
(

x1(t)
)

provided τ is sufficiently distant from the time moments
(i− 1)T, i ∈ N .

C. Continuous-in-time part of the transverse linearization

The matrix-functionA(τ) in (17) is defined as [33], [31]

A =





µ(τ)
(

gI(τ)− β(θ⋆(τ))
)

µ(τ) gy(τ) µ(τ) gẏ(τ)
0 0 1

hI(τ) hy(τ) hẏ(τ)





(19)
whereµ(τ) = 2 θ̇⋆(τ)/α

(

θ⋆(τ)
)

.
Here the functionsg(·) and h(·) are taken from (15),

subindicesy and ẏ denote the partial derivative with re-
spect toy and ẏ , respectively, evaluated along the desired
trajectory, and subindexI denotes the following directional
derivative forh(·)

hI(τ) =

(

−
∂h(θ, θ̇, 0, 0)

∂θ
θ̈ +

∂h(θ, θ̇, 0, 0)

∂θ̇
θ̇

)

2
(

θ̇2 + θ̈2
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ≡θ⋆(τ)
(20)

with an analogous expression forgI(·) . It can be shown
that our transformation (14) and (9) withϕ(·) defined by a
passive gait implies4 hI(·) ≡ 0 and gI(·) ≡ 0 . The matrix-
function B in (17) is defined as follows

B(τ) =

[

2 θ̇⋆(τ) gu⊥
(τ)

α
(

θ⋆(t)
) 0 hu⊥

(τ)

]

(21)

where gu⊥
and hu⊥

denote the partial derivatives with
respect tou⊥ evaluated along the desired trajectory.

D. Linearization of the update law

The update law in (18) is defined from the Jacobian of the
nonlinear update lawdF computed atx⋆(T ) as [7]

L = P+
n(0) (dF )(x⋆(T )) P

−
n(T ), (22)

with two matrices

P−
n(T )=

(

I4 −
n(T ) ~mT

−

nT (T ) ~m−

)

(

[

P (T )
nT (T )

]−1[
I3

01×3

]

)

,

P+
n(0)=P (0)

(

I4 −
n(0)nT (0)

nT (0)n(0)

)

combining appropriate orthogonal projections alongn(T )
andn(0) and linearization of the change of coordinates (11),
defined by the following block of the Jacobian matrix

P (t) =





−2 θ̈⋆(t) 2 θ̇⋆(t) 0 0
−ϕ′(θ⋆(t)) 0 1 0

−ϕ′′(θ⋆(t)) θ̇⋆(t) −ϕ′(θ⋆(t)) 0 1



 (23)

with n(t) denoting the flow along the nominal trajectory

n(t) =









ẋ1⋆(t)
ẋ2⋆(t)
ẋ3⋆(t)
ẋ4⋆(t)









=









θ̇⋆(t)

θ̈⋆(t)

ϕ′(θ⋆(t)) θ̇⋆(t)

ϕ′′(θ⋆(t)) θ̇
2
⋆(t) + ϕ′(θ⋆(t)) θ̈⋆(t)









,

(24)

4These functions are not trivial with a possible alternativechoice of (14)
and U(x1, x2) ≡ 0 for a target passive gait.
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and ~m− being the normal vectors toΓψ0

− :

~m− =
[

sin
(

x1⋆(T ) + ψ0

)

, − sin
(

x1⋆(T ) + ψ0

)

, 0, 0
]T

(25)
respectively. We skip the indexψ0 here since it is easy to
see that the operatorL does not depend on the angleψ .

E. Orbital stabilization

An orbitally stabilizing feedback control law for the non-
linear system (1), (14), (9) can be design based on successful
stabilization of transverse linearization (17)–(18) as follows:

• Design a stabilizing controller

û⊥ = K
(

τ−(i−1)T
)

x̂⊥ for (i−1)T ≤ τ < i T

for the linearization (17)–(18).
• Take

u⊥ = K(s) x⊥(t), s = Ψ
(

x1(t)
)

(26)

with x⊥ from (16).

In fact, orbital exponential stability of the nominal periodic
solution for the closed-loop system follows from exponential
stability of the linearization5 [31].

Evolution of the states of (17)–(18) over the period is given
by solutions of the discrete-time system

x̂k+1
⊥ = LΦK(T ) x̂k⊥. (27)

Hence, the stability is ensured whenever the eigenvalues of
the transition matrixLΦK(T ) are strictly inside the unite
circle. Here the matrixΦ(T ) is computed solving the initial
value problem

d
dτ

ΦK =
(

A(τ)+B(τ)K(τ)
)

ΦK , ΦK(0) = I3×3 (28)

To design a stabilizing feedback control law for (17)–(18),
for instance, one may search for the constant feedback gain
taking a few steps towards solving the auxiliary optimization
problem [7]

K(τ) ≡ Kopt = arg min
K(τ)=const

∣

∣

∣
eig
{

LΦK(T )
}∣

∣

∣
.

For the target trajectory defined by the passive hybrid cycle
with the initial conditions (3), the gain

Ko = [−2, 14, 7] (29)

ensures

max
∣

∣

∣
eig
{

LΦK(T )
}∣

∣

∣

K=Ko
≈ 0.459254

indicating stability with the corresponding worst-case-
scenario contraction rate. Note that having foundK(τ)
constant allows us to define the control law (14), (9), (26)
without computing the functionΨ(x1) from (12).

5The new feature here with respect to the result of [31] is a constructive
choice of the functionΨ(θ) instead of taking it as a generic identifier of
the appropriate surface of the Poincaré section.

F. Region of attraction

It is important to realize that the discrete-time approxima-
tion system (27) can be used for a numerical-optimization
based feedback control design but is useless for obtaining an
approximation for the region of attraction for the nonlinear
closed-loop system.

Here the computed linearization (17)–(18) might be useful.
Let us sketch a possible approach to estimate a tube around
the periodic trajectory where the solutions are trapped:
(1) Choose a matrix-functionQ(τ) > δ I3×3 and solve the
matrix differential Lyapunov inequality

d
dτ
P (τ) +AT

cl(τ)P (τ) + P (τ)Acl(τ) ≤ −Q(τ)

for 0 ≤ τ ≤ T , where

Acl(τ) = A(τ) +B(τ)K(τ) (30)

such thatP (τ) = P T (τ) > 0 and the next strict inclusion
of sets is valid
{

ζT :
(

L−1ζT
)T

P (T )
(

L−1ζT
)

≤ 1
}

⊂
{

ζ0 : ζ
T

0 P (0)ζ0 ≤ 1
}

(2) Use the quadratic Lyapunov function candidate

V (t) = xT⊥(t)P (s)x⊥(t), s = Ψ
(

x1(t)
)

with x⊥ defined in (16), to obtain an estimate for the tube
in the following form

Ω =
{

x : x1 = θ⋆(τ), x
T

⊥(τ)P (τ)x⊥(τ) ≤ ε
2, 0 ≤ τ < T

}

with someε > 0 . Note that the derivative of the Lyapunov
function can be computed analytically and, since it is based
on the linearization, it is negative for sufficiently smallε2 .

The conservativeness of this approach is currently under
study. It is of interest to notice that the thinest places
on this tube should indicate the possibly most sensible to
perturbations locations along the periodic trajectory.

V. SENSITIVITY TO PERTURBATIONS OF THE SLOPE

In the case when the slope of the walking surfaceψ has its
nominal valueψ0 , the nominal open-loop unstable periodic
trajectory—the passive walking cycle of (1) with the initial
conditions at (3)—becomes an exponentially orbitally stable
solution of the closed-loop system (1), (14), (9), (26), (29).

However, if ψ 6= ψ0 , then the nominal periodic trajectory
is not a solution of the closed-loop system, and the deviation
from it is not characterized by solutions of the linear system
(17)–(18). Below we suggest an appropriate modification for
the transverse linearization (17)–(18) that can be used for
approximating solutions of perturbed walker dynamics and
that allows us to predict whether the trajectories stay in a tube
around the nominal solution despite the slightly perturbed
slope. Although we only consider sensitivity with respect
to only one particular physical parameter, the procedure is
straightforward to generalize.
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A. Classification of perturbations

Suppose that the true slopeψ(t) satisfies the inequality

|ψ(t)−ψ0| ≤ |h̄| with |h̄| being sufficiently small

and such that a solution exists and moreover, it has jumps due
to impact att = {Tk}k≥1 . The value ofψ(t) is important
only at the time momentst = Tk , k ≥ 1 ; so, the following
notation is useful

ψ(Tk) = ψ0 + hk with max
k
|hk| ≤ |h̄|.

The following cases of perturbations are of interest:

• impulse: h1 = h̄, h2 = h3 = · · · = 0
• step: hk = h̄ ∀k,
• cyclic: hk = hk+N ∀k, N ≥ 2,
• stochastic:{hk}k≥1 is a stochastic process.

In the following, for simplicity, we will concentrate on the
step perturbation.

B. Perturbed transverse dynamics

Whenever the switching surfaces are shifted by perturba-
tions, i.e.

Γψ0

± 6= Γψ0+hk
±

the nominal transverse linearization (17)–(18) is of no use.
So, for a given sequence of perturbations{hk} to the

slopeψ0 , let us introduce the following hybrid system6

1) On the intervals(k − 1)T − δk−1
i ≤ τ < k T + δkf ,

k = 1, 2, . . . , the solutionx̂⊥ = x̂⊥(τ) is defined by
the linear control system

d
dτ
x̂⊥ = A

(

τ − (k−1)T
)

x̂⊥+B
(

τ − (k−1)T
)

û⊥
(31)

2) At the end of each interval, i.e. atτ = k T + δkf ,
k = 1, 2, . . . , there is an instantaneous update

x̂⊥(k T+δ
k
f ) =

[

L+△L0(hk)
]

x̂⊥(k T+δ
k
f−)+△L1(hk)

(32)

Here δk−1
i and δkf are time distances needed for a trajectory

to travel betweenΓψ0

− andΓ
ψ0+hk−1

− and betweenΓψ0

+ and
Γψ0+hk
+ respectively, while the changes in the linearization

for the update law are due to the fact that the jump due to
update happens at a value shifted from the nominal one.

Since the impact condition from (1)

cos
(

x−1 + ψ0 + hk
)

− cos
(

x−3 + ψ0 + hk
)

= 0

can be (locally) rewritten asx−1 +x−3 + = −2 (ψ0+hk) and
using the linear approximations

x⋆(T + δkf ) = x⋆(T ) + n(T ) δkf +O
(

(δkf )
2
)

,

x⋆(−δ
k−1
i ) = x⋆(0)− n(0) δ

k−1
i +O

(

(δk−1
i )2

)

,

6Of course, this system reduces to (17)–(18) ifh̄ = 0. Note that we
naturally assume that the definition of the solution for the continuous-in-
time part of the dynamics can be extended to a slightly bigger interval
whenever this is needed.

with n(t) given in (25), it is not hard to see that

δk−1
i ≈ 2hk−1

θ̇⋆(0)

(

1+ϕ′

(

θ⋆(0)
)

) , δkf ≈
−2hk

θ̇⋆(T )

(

1+ϕ′

(

θ⋆(T )
)

)

(33)
up to small higher-order terms.

Now, we have

△L0(hk) = P+

n(−δk−1

i
)
(dF )(x⋆(T+δk

f
)) P

−

n(T+δk
f
)

−P+
n(0) (dF )(x⋆(T )) P

−
n(T ),

△L1(hk) = P+

n(−δk−1

i
)

(

F
(

x⋆(T + δkf )
)

− x⋆(−δ
k−1
i )

)

(34)
Therefore, the discrete-time system (27) transforms into

x̂k+1
⊥ = Ak x̂

k
⊥ +△L1(hk), (35)

with

Ak = (L+△L0(hk))
(

I3×3 + δkf Acl(T )
)

Φ(T )

×
(

I3×3 − δ
k−1
i Acl(0)

)

+ O
(

(δkf )
2 + (δk−1

i )2
)

,

where Acl is from (30), Φ is defined by (28),L is from
(25), the matricesA andB are defined in (19) and (21).

The obtained system allows quantifying response to pos-
sible perturbations in the slope for various scenarios. Letus
see what can be done in the case when the slope is constant
but different from nominal.

C. Sensitivity to step perturbations

In the case of step perturbation, i.e.hk = h̄ for k ≥ 1,
the system (35) can be rewritten as7

x̂k+1
⊥ =

(

LΦ(T ) + h̄ P⋆
)

x̂k⊥ + h̄ x̂⋆⊥ +O(h̄2), (36)

up to the small higher-order terms.
Clearly, for the trajectories to stay in a small tube around

the nominal motion it is necessary to haveh̄ so small that
the eigenvalues of the matrix

(

LΦ(T )+ h̄ P⋆
)

are inside the
unite circle. An estimate for a bound on̄h can be obtained
using the Lyapunov function candidateVk = (x̂k⊥)

T P x̂k⊥,
whereP = P T > 0 being a solution for

(

LΦK(T )
)T

P LΦK(T )− P = −δ I3×3

Along the solutions of (36) one obtains

Vk+1 − Vk = −(x̂k⊥)
T
(

δ I3×3 − 2 h̄ P T

⋆ P LΦ(T )
)

x̂k⊥
+2 h̄ (x̂⋆⊥)

TP LΦ(T ) x̂k⊥ +O(h̄2)

and therefore we must have

|h̄| <
δ

2 ‖P T
⋆ P LΦ(T )‖

.

Moreover, an asymptotic steady-state value forx⊥(t) after
each impact can be estimated from (36) as follows

x⊥(k T+) ≈ x̂k⊥ → h̄
(

I3×3−LΦ(T )
)−1

x̂⋆⊥+O(h̄2) (37)

7In [19], it is suggested to compute an approximation for this system via
numerical simulations assuming thatP⋆ ≈ 0 . It is not clear to us how to
introduce sensitivity gains analogous to the ones proposedin [19] rigorously
taking into account the fact thatP⋆ 6= 0 .
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as k →∞ , where

x̂⋆⊥ = −2P+
n(0)





(dF )(x⋆(T )) n(T )

θ̇⋆(T )
(

1+ϕ′
(

θ⋆(T )
)

) +
n(0)

θ̇⋆(0)
(

1+ϕ′
(

θ⋆(0)
)

)





is defined only by the target trajectory and is independent on
the choice of the control law.

For sufficiently small values of̄h existence of this estimate
imply boundedness ofx⊥(t) , existence of the solutions of
the closed-loop system initiated sufficiently close tox⋆(0)
on the infinite interval of time, and the fact that these
solutions stay in a small tube around the nominal trajectory,
radius of which is proportional tōh in the first approxima-
tion.

Note that the estimate (37) tells us that having the eigen-
values of the matrixLΦ(T ) too close to the boundary of
the unite circle would result in an enormous sensitivity to
perturbations from the nominal value of the slope. From the
other hand, we can see that even if the controller is very
aggressive, the possible deviations strongly depend on how
the planned periodic trajectory crosses the impact surfaces.

A positive conclusion is that despite the fact that there is
no guarantee that the obtained solutions are asymptotically
periodic, the motions will be very similar to the nominal one
provided perturbations of the slope are sufficiently small.

For our set of parameters, we have

x̂⋆⊥ ≈ [6.153393, − 1.777320, 4.638892]
T
,

which does not depend on the choice of the control law, and
the steady-state error after impacts

x̄⊥ = h̄
(

I3×3 − LΦ(T )
)−1

x̂⋆⊥ +O(h̄2)

≈ h̄ [9.462, − 2.817, 12.984]
T
+O(h̄2)

for the particular choiceK = Ko, while a direct search for
the values of̄h making the matrix

(

LΦ(T )+h̄ P⋆
)

unstable
results in the values outside the interval

−0.187 < h̄ < 0.388

and this estimate is clearly too rough since it is obtained
dropping all theO(h̄2) terms.

VI. RESULTS OF NUMERICAL SIMULATIONS

The first useful thing to verify is how close the trajectories
of (17)–(18) approximate the trajectories of (1), (9), (14),
(26) taking in both casesK(·) ≡ Ko = [−2, 14, 7] and
the nominal value of the slopeψ = ψ0.

The result of simulation with initial conditions obtained
by random perturbation from (3) are given in Fig. 2. Here
we plot x⊥(t) and x̂⊥(τ) and the qualitative similarity
is obvious; we observe the fact that the jumps are not
simultaneous.

Computing s according to (12) and plottingx⊥(t) as a
function of s allows to push the two systems into the same
time scale. This is shown below in Fig. 3.

To verify the estimate for the steady-state error after
impact, obtained from (36), we takehk = h̄ = 0.003 and run
the simulations with the same initial conditions expectingto

0 0.5 1 1.5 2 2.5 3 3.5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Fig. 2. The time evolution of the components ofx⊥(t) and x̂⊥(τ) in
the case of the nominal slopeψ = ψ0 .
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Fig. 3. The time evolution of the components ofx⊥(t) versus s =
Ψ
(

x1(t)
)

and x̂⊥(τ) versusτ in the case of the nominal slopeψ = ψ0 .

observe convergence tōx⊥ ≈ [0.028, − 0.0085, 0.039]
T .

The result confirming our expectations is shown in Fig. 4.

0 0.5 1 1.5 2 2.5 3 3.5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Fig. 4. The time evolution of the components ofx⊥(t) in the case of the
perturbed slopeψ = ψ0 + h̄ (solid) and the solution of the appropriately
initiated discrete-time system (36) with droppedO(h̄2) terms (dots).

VII. C ONCLUSION

We have considered a 2-DOF impulsive mechanical sys-
tem describing dynamics of the compass-gait biped walking
robot with actuation at the hip. The system admits an open-
loop-unstable periodic solution, which leads to unstable hy-
brid zero-dynamics. We apply a recently developed technique
for orbital stabilization of impulsive mechanical systemswith
arbitrary number of passive gaits: an exponentially orbitally
stabilizing feedback control law is designed using the notions
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of virtual holonomic constraints and transverse linearization.
The challenging nonlinear control problem is reduced to
regulation of a linear impulsive system of reduced dimension.
The latter is solved here through numerical optimization.

The contribution is showing how to analyze various prop-
erties of the closed-loop system. In particular, we have
studied response of the system to step perturbations in the
slope of the walking surface from the nominal value used
at the control design stage. A new linear system that can be
interpreted as a perturbation of the transverse linearization
is obtained analytically. The computations are generalizable
for analysis of sensitivity to various other parametric un-
certainties and may be computationally tractable for higher
dimensional models.
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