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Constructive Tool for Orbital Stabilization of
Underactuated Nonlinear Systems: Virtual

Constraints Approach
Anton Shiriaev, John W. Perram, and Carlos Canudas-de-Wit

Abstract—We present a constructive tool for generation and
orbital stabilization of periodic solutions for underactuated non-
linear systems. Our method can be applied to any mechanical
system with a number of independent actuators smaller than the
number of degrees of freedom by one. The synthesized feedback
control law is nonlinear and time-dependent. It is derived from a
feedback structure that explicitly uses the general or full integral
of the systems zero dynamics. The control law generates a periodic
solution and makes it exponentially orbitally stable.

Index Terms—Constructive control procedures, nonlinear and
time-varying controllers, orbital stabilization.

I. INTRODUCTION

THE problem of orbital stabilization arises from applica-
tions, where the desired operation mode is oscillatory. In

many cases, the oscillations, however, are not present in the
open-loop dynamics. Therefore, it is relevant to study new con-
trol design methods forcing the system dynamics to exhibit a
limit cycle. Walking mechanisms, inverted pendulums (the full
system state should behave periodically), rotating machines (the
internal states, i.e., current and flux, are oscillatory if a torque
output is kept constant), vertically landing aircraft on an oscil-
lating platform (e.g., an aircraft carrier) are examples of such
systems. The goal of the feedback design is either to render an
existing periodic motion orbitally stable or to generate a new
periodic motion and to ensure its orbital stability.

A. Literature Review

Forcing orbitally stable oscillations via feedback and anal-
ysis of such oscillations in nonlinear fully actuated mechanical
systems is an old area of research; several well-known methods
are available in the literature; see, for example, [1] and [3]. The
problem of forcing oscillations via feedback in underactuated
systems has a more recent origin. Hauser and Choo (see [10])
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have developed an analysis framework for the computation of
Lyapunov functions, allowing to determine if the present limit
cycle is exponentially stable. They have applied their approach
to the cart-pendulum system, however, no procedure to ensure
the existence of the limit cycle has been proposed. In [2], the
authors also investigate induced oscillations for the cart-pen-
dulum system as well as for the Furuta pendulum. They propose
to match a desired closed-loop oscillatory structure by a suitable
control design precedent by partial feedback linearization. Al-
though the method ensures the existence of an orbit in a subset
of the state variables, it does not, however, assess the stability
of the other state variables. The approach of [19] is to compute
suboptimal controllers for orbital stabilization. A drawback of
this method, as well as for the one of [2], is that for the needed
attenuation properties to hold, it is necessary to make a priori
hypothesis on bounds of the internal states of the system.
Feedback linearization with warranted stability of the zero-dy-
namics is another approach that can be applied for a restricted
class of underactuated systems (systems with cyclic underactu-
ated joint) (see [7] for details). Recently, the classical methods
of absolute stability [23], [25] have been applied in [11], [12],
[14] to generate oscillations. The problem of periodic stabiliza-
tion of walking mechanism has been studied in [5], [6], and [22].
A class of particular orbits for underactuated mechanical sys-
tems has been recently investigated in [16] and [17]. An original
method to match a particular oscillatory exo-system or a given
closed-curve has been proposed in [4]. The solution presented
below extends this idea. However, unlike [4], we present a con-
structive method for control design to stabilize a prespecified
orbit.

B. Main Idea

We consider an underactuated controlled Euler–Lagrange
system

(1)

Here, , are vectors of generalized coordinates and velocities;
is a vector of independent control inputs, the function

(2)

is a Lagrangian of (1), is a positive–definite matrix of
inertia, is a potential energy of the systems, and is a
full rank matrix function of appropriate dimensions.
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The underactuation in (1) means that

(3)

i.e., the number of actuators in (1) is less than the number of its
degrees of freedom.

Our goal is to derive a constructive method to generate an
exponentially orbitally stable periodic solution of (1).

We considers only the simplest case of underactuation

Under this simplifying assumption, we show that if feedback
stabilization of an arbitrarily chosen set, defined by a system
of independent geometric relations 1 (or by the sliding
surface determined by them)

is achieved, then zero-dynamics2 of the mechanical system (1)
can be written as

(4)

Moreover, it turns out that (4) has a general integral of motion
. The function preserves its values along the so-

lutions of (4) , provided the initial conditions
are chosen appropriately. We derive the explicit form of and
analyze some of its properties. Existence of the conserved quan-
tity implies that the zero-dynamics (4) has no asymptotically
stable solutions. We present some examples where (4) has un-
bounded solutions and solutions with finite escape time.

In the case when (4) has at least one periodic solution,3 and
under certain technical assumptions the dynamics of the system
(1) can be transformed into an almost linear form of a new kind.
This transformation allows us to reduce the complexity of the
stability analysis for a high-dimension nonlinear system to sta-
bility analysis for an auxiliary linear periodic in time controlled
system of lower dimension.4 We show that if this auxiliary linear
system is controllable over a period, then one can proceed with a
modified LQR design in order to derive a nonlinear time-varying
feedback control law that locally exponentially orbitally stabi-
lizes the chosen periodic motion.

The rest of the paper is organized as follows. In Section II,
we introduce the concept of virtual holonomic constraint and
explore some properties of the resulting zero dynamics, i.e., of
the virtual limit system. In Section III, we describe a control de-
sign for orbital stabilization of a chosen periodic motion. An il-
lustrative example is presented in Section IV. We conclude with
some remarks in Section V.

1These geometrical relations are named later in the text as virtual holonomic
constraints. Indeed, the adjective holonomic refers from one side to the class of
nonlinear systems (1) considered, and from other side to the fact that these are
only constraints on generalized coordinates. The adjective virtual refers to the
fact that these constraint are not physical, and are to be reproduced by feedback
control action.

2This dynamical system (4) is named later in the text as a virtual limit system.
3Sufficient (and almost necessary) conditions for this are given in [18].
4It is worth to mention that this linear system is not derived via linearization

of (1) around the periodic solution.

Fig. 1. Cart pendulum system.

II. VIRTUAL CONSTRAINTS AS A TOOL FOR ORBITAL

STABILIZATION

Letusstartwiththecart-pendulummotivatingexample.Forthis
system, we show the main idea of our design and illustrate how to
useavirtualconstrainttogenerateamotion.Inaddition,wediscuss
differences between virtually and physically constrained systems
and describe some general properties of the virtually constrained
Lagrangian systems (1) with one-degree of underactuation.

A. Illustrating Example

In order to illustrate some elements of the proposed control
design and motivate the further theoretical development we in-
vestigate the following control problem. Consider the cart-pen-
dulum system shown on Fig. 1.

Our goal is to design a control law that ensures the presence
of the pendulum oscillations around the upright equilibrium.5

For simplicity, we assume that the mass of the pendulum,
the mass of the cart, and the distance between the center of
mass of the pendulum and the suspension point are all equal to
1. The dynamics of the system can be described by

(5)

(6)

where is the horizontal displacement of the cart; is the angle
between the pendulum rod and the vertical, which is zero at the
upright position; and is the force applied to the cart in the
horizontal direction, which is generated by the controller.

In order to solve the control problem posted above, we con-
sider a virtual constraint. Suppose the following geometrical re-
lation between the position of the cart and the angle of the pen-
dulum is imposed:

(7)

where and are given constants, the parameters of the con-
straint. The relation (7) means that a particular point of the pen-
dulum’s rod (on the distance of from the suspension point) is
preserved on the vertical line .

Suppose there exists a static feedback control law, which en-
sures that the constraint (7) is invariant. Then, the closed-loop
system under this control law can be rewritten as

(8)

(9)

5In Section IV, we show how to render this newly generated oscillation or-
bitally stable.
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Here, (8) is derived by differentiating (7) twice. One can elimi-
nate from the system (8) and (9) and obtain the equation

(10)

We observe the following.

• If a controller stabilizes the relation (7), then solutions
of the closed-loop system converge to some solutions
of (10).

• For any value , the function

(11)

is constant along each solution of (10), provided it is
well-defined.6

• Existence of the conserved quantity (11) qualitatively
defines behavior of the solutions of (7). Clearly, there
are no asymptotically stable motions and, moreover,
some (or almost all) solutions are unbounded and some
escape to infinity in finite time dependent on a value of
the parameter .

• Equation (10) describes, in fact, not one system but
rather a family of systems parameterized by the con-
straint parameter .

• In order to generate oscillations, we need to identify
the values of , such that the system (10) has a limit
cycle around its equilibrium .

• It could be shown that for , the linearization of
(10) around has a saddle. Hence, existence of the
conserved quantity (11) does not guarantee a periodic
orbit in a vicinity of the equilibrium .

Here, we describe those values of the parameter , for which
(10) has a family of periodic solutions around the upright equi-
librium.

Proposition 1: If , then the virtual limit system (10)
has a center at the upright equilibrium

(12)

Proof: is based on the Lagrange–Dirichlet stability crite-
rion. We check whether the Hessian

of the first integral ; see (11), at the equilibrium (12) is
sign definite. The direct calculations

show that the Hessian is negative definite when . Hence,
the equilibrium (12) is stable in the sense of Lyapunov. In turn,
the level sets of the function are closed curves around (12).
They define the periodic orbits of the system (10).

6The solution may fail to exist; for example, if L = 1, then for any initial
conditions [� ; _� ] with � = 0 the solution is not well defined.

Conclusions from Proposition 1 are as follows. The con-
straint (7) can be used for generating oscillation of the pendulum
around the upright equilibrium. All possible oscillations, based
on the constraint (7), are solutions of the system (10). Finally,
the constraint (7) ensures that the position of the cart remains
bounded and periodic with the same period independent of a
chosen oscillation of .

B. Physical Constraints Versus Virtual Ones

It might be thought that an existence of the first integral (11)
of (10) is either the consequence of particular choice of the con-
straint (7) and something exceptional or the consequence of the
well-known reduction procedure of classical mechanics due to
D’Alembert. In the next section, we show that the observed in-
tegrability in the example is a general fact, valid for any con-
trolled degrees of freedom Lagrangian system (1) subject to

holonomic virtual constraints. Note, however, that this
property cannot deducted from the classical reduction principle
due to D’Alembert. To illustrate this point, let us show that the
derived dynamical system (10) differs from the system (5), (6)
when the constraint (7) is present physically.

As well known from classical mechanics, the two-degrees of
freedom Lagrangian system (5) and (6) with the holonomic con-
straint

is equivalent to a one-degree-of-freedom unconstrained La-
grangian system, which can be found via D’Alembert reduction
principle. According to this principle, the dynamics of the
physically constrained system with is

(13)

(14)

where is the Lagrangian multiplier. Eliminating and from
(13), (14), and (8), we obtain the following 1-degree of freedom
Lagrangian system:

(15)
To compute the energy of the reduced system (15), one could
use the energy of the original cart-pendulum system (5) and (6).
Namely, the energy of (15) is

(16)

It is readily seen that the systems (10) and (15) are different
since their energies (11) and (16) are different.

C. Properties of Virtual Limit System

Given a controlled Lagrangian system (1) of -degrees of
freedom and with actuators (i.e., ),
consider the following geometrical relations:

(17)
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imposed among the generalized coordinates , and the
new independent scalar variable . Here, are smooth
functions of , parametrized by a constant vector7 .

Proposition 2: Suppose that there exists a control law for
(1) that makes the relations (17) invariant along solutions of the
closed-loop system. Then, is a solution of the system

(18)

where , and are scalar functions.8

Proof: The invariance of the relations (17) implies that

(19)

where . The controlled Lagrangian system (1) can
be rewritten as

(20)

where the matrix depends on linearly. Substituting
(17) and (19) into (20) with , we obtain the following
system of second-order differential equations:

(21)

where , and are the vectors

(22)

Since the rank of the smooth matrix function
is equal to , there exists a raw function
such that . It is not hard to check that the
functions , , and in (18) can be computed as follows9:

This completes the proof.
It is important to investigate properties of (18) because it

is clear that if a feedback controller renders the relations (17)
asymptotically invariant, then the solutions of the system with
such a controller in the loop asymptotically tend to solutions of
(18). The next properties of (18), derived in [13], are of special
interest.

Theorem 1 [13]: Suppose the function has only isolated
zeros. If the solution of (18) with initial conditions

7For the cart-pendulum example these relations correspond to q = a� L �

sin �, q = �, and the vector c has two components L and a.
8The explicit expressions are given in the proof.
9Here and later the dependence on c is omitted.

, exists and is continuously differentiable,
then along this solution the function

(23)
with

(24)

preserves its zero value.
Proof: See Appendix I-A. It is worth to notice that even

the solution is unbounded the property stated in The-
orem 1 holds.

Theorem 2 [13]: With and being some constants, the
time derivative of the function defined by (23), cal-
culated along a solution of the system

(25)

can be computed as

(26)

Proof: See Appendix I-B.

III. CONTROLLER DESIGN

In this section, we present main results of this paper: A family
of feedback control laws and conditions ensuring exponential
orbital stabilization of periodic solutions of the virtual limit
system (18).

A. Choice of Periodic Solution

Given the virtual constraints (17), suppose that there exists a
vector of parameters such that the resulted virtual limit system
(18) has a -periodic solution, i.e.,

(27)

Here, existence of a periodic orbit of the dynamical system (18)
for a certain value of is postulated.10

The problem is to determine a feedback controller that guar-
antees invariance of the chosen virtual constraints (17) and an
orbital asymptotic stability of the chosen periodic solution (27)
for the closed-loop system.

B. Partial Feedback Linearization

Given the virtual constraints (17), introduce new coordinates
for (1) as follows:

(28)

10In general, it is a difficult problem since, as is well known, existence of
periodic solutions in nonlinear systems does not follow from stability of the
linearization. The problem is solved in [18].
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The scalar quantities and are excessive
coordinates for the controlled -degrees of freedom Euler–La-
grange system (1). Therefore, one of these coordinates
could be always locally expressed as a function of the others and
excluded from the consideration. Let us assume that this is the
case for , and new independent coordinates are

and

Thus, the last equality in (28) could be rewritten as

(29)

where is a scalar smooth function of its arguments. It is readily
seen that the first and second time derivatives of and are
related to the original coordinates and their time derivatives
as follows:

(30)

where is matrix function and

(31)

where and
the vector function is defined in (22).

In the newly introduced coordinates, the main problem of this
paper is to make the following periodic solution:

(32)

of the closed-loop system orbitally asymptotically stable.
Proposition 3: Suppose the matrix function ,

introduced in (31), and the matrix function
defined as follows:

(33)
with , are both nonsingular in a vicinity of the
orbit of (32). Then, the feedback transformation11

(34)

well defined in this vicinity, brings the dynamics of the con-
trolled Euler–Lagrange system (1) into the partly linear form

(35)

(36)

where the left-hand side of (35) matches the structure of the
virtual limit system (18) and , , are smooth functions
of appropriate dimensions.

Proof: See Appendix I-C.
Based on Theorem 2, one can introduce new differential re-

lations

(37)

(38)

It is important to notice that the systems (35), (36) and (37),
(38) are of different orders and are not equivalent. Moreover,

11For the explicit form of the matrix function R, see the proof.

the system (37), (38) cannot be solved unless the function of
time is given.12 Nevertheless, it will be shown here that this
incomplete nonlinear system (37), (38) plays an important role
in developing a stabilizing controller.

C. Feedback Stabilization of Auxiliary Linear Periodic in Time
System

As a step for controller design, let us consider the incomplete
nonlinear system (37), (38), where the functions

from the right-hand side of the (37) are evaluated along the
chosen periodic solution (32). This means that we consider the
following auxiliary linear system:

(39)

(40)

where the functions

are periodic in time. Let be defined as

The state–space representation of (39), (40) is

(41)

where is

is a matrix with zero elements, is an identity
matrix, is

and the -periodic functions and are given in Ap-
pendix II-A, so that and .

In the further development, we will be interested in situa-
tions when the auxiliary linear system (41) is completely con-
trollable on the time interval . This can be verified by
the well-known tests (see, for example, [15, Th. 9.2, p. 143]),
while the analytical computations for arbitrary functions ,

, might be tedious.
Controllability of the linear periodic system (39), (40) allows

to achieve its exponential stabilization (see, for example, [15,
Th. 14.7, p. 245]). The next statement, taken from [24, Th. 3],
describes one of the stabilizing controllers.

Proposition 4: Given an matrix
and a matrix , suppose
that the system (39), (40) is completely controllable on ,
then there exists a matrix function ,

12�(t) may be seen as an external signal to the system (37), (38).
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and for all , that
satisfies the Riccati equation

(42)
with and defined in (41), and such that the

feedback controller

(43)

renders the linear periodic system (41) exponentially stable.
Moreover, along any solution of the closed-loop system
(39), (40), (43), the following differential equality holds:

(44)

D. Constructive Procedure for Control Design

It is not hard to show that, in general, the original nonlinear
system (35), (36) cannot be stabilized by (43). However, the
following ad-hoc modification:

(45)

where is the stabilizing solution of the Riccati equation
(42) and

(46)

exponentially orbitally stabilizing for the periodic solution (32).
This is the main result of this paper.

Theorem 3: Given an underactuated controlled Euler–La-
grange system (1) with degrees of freedom
and with independent control inputs ;
assume that

1) there are a set of constraints ,
, and a value of the vector such that

the resulting virtual limit system (18) has a nontrivial
-periodic solution ;

2) the matrix functions and , defined by (31) and
(33), are nonsingular in some neighborhood of the orbit
(32);

3) the linear periodic in time system (41) is completely
controllable over the period .

Take the control law (34), (45), where and are from
Proposition 4, with and
defined as explained after (28), and the scalar function defined
by [see (23)]

(47)

where is defined in (24) and the functions ,
, , and are defined in (35).

Then, the chosen periodic solution (32) is exponentially or-
bitally stable for the closed-loop system (1), (34), (45).

Proof: By construction, the target periodic solution (32)
is one of solutions of the closed-loop system (35), (36), (45).
Note that the closed-loop system (35), (36), (45) is a smooth
time-varying nonlinear dynamical system, where the time de-
pendence is only due to the -periodic matrix factor in the
expression for the controller.

Since the closed-loop system is smooth, -periodic, and has
-periodic solution (32), the following consequence of the the-

orem of continuous dependence on initial conditions [9] holds
true.

Property 1: For any , there exists such
that if two vectors

are such that

(48)

where the set is the orbit of the chosen solution (32), i.e.,

(49)

then the solutions , of
the closed-loop system (35), (36), (45) initiated at and
at , correspondingly, satisfy the inequality

(50)

The inequality (50) holds irrespective of stability of the orbit
(32). Indeed, it holds only on the final time interval.

This property is instrumental for showing orbital stability
of the solution (32). Let us introduce a Lyapunov function
candidate

(51)

where , is the function defined in (47), and
is the stabilizing solution of the Riccati equation defined

in Statement 4. Choose a vector

(52)

of initial conditions and consider the solution
of the closed loop system (35), (36),

(45) initiated at this point. Let us introduce the following
notation:
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where . The time derivative of along the solution
takes the form [see also (37), (38)]

Let us add and subtract to this equation the expression

where , are as defined in (41). Then, one obtains

(53)

Here, we have used the differential Riccati equa-
tion (42), while the matrix function

is

(54)

where

The expression for the are given in Appendix II-B.
In the previous computations, no assumption about the initial

conditions [see (52)] of the closed-loop system solution has
been made and the initial point has been chosen arbitrarily.
Let us now consider only those initial conditions that belong to
some vicinity of the orbit , defined in (49). More precisely,
choose as half of the smallest eigenvalue of , i.e.,

(55)

Property 1 implies that for such a positive constant there
exists a positive constant such that if the vector
of the initial conditions (52) is chosen on a distance less than
from the orbit

(56)

then the corresponding solution initiated at
satisfies the inequality

(57)

In other words, the solution of the closed-loop system on the
period belongs to the open tube around the orbit of the radius

.
This, together with the observation that the functions ,

, , and are smooth and, therefore, bounded
around the orbit [see (49)] allows us to make the values of
functions , , as close to zero as we like, uni-
formly on the time interval , provided that the vector

of the initial conditions is chosen sufficiently close to .
The boundedness of the matrix function and the fact that

the function in (54) is linear in , imply
that could be made as small as we like, uniformly on
the time interval , provided that the vector of the
initial conditions is chosen sufficiently close to . That is, if
necessary, we can find such that and along
the solution the closed-loop system with

in addition to (57), the inequality

(58)

holds for .
Inequality (58) allows us to bound from above the time

derivative of [see (53)] as follows:

(59)

Here, we have used the choice of in (55). The differential
relation (59) holds only on the time interval . Inte-
grating (59) over this time interval, we obtain

(60)

The last inequality suggests that if we choose only those initial
conditions such that the implication

(61)

holds for some , then the set

the implication (61) holds (62)

around belongs to this orbit’s region of attraction13 and any
solution of the closed-loop system initiated inside this set14 at

exponentially converges to .

13Note that the initial time t is fixed.
14Employing the arguments presented in the proof of Theorem 1, see Ap-

pendix I-A, it could be shown that V (t ) is a nontrivial open set.
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It has been shown that if satisfies ,
then . Furthermore, the equality (60)
together with (61) imply that

(63)

that is, over the period the solution of the closed-loop
system comes back to the same neighborhood of the orbit
and the value of the Lyapunov function candidate satisfies
the relation (60) over the period.

Inequality (63) allows us to repeat the same arguments for
the solution over the next period, i.e., on the time interval

. Namely, if we choose new vector of
initial conditions with components

and repeat all the derivations done previously, then we obtain

Following inductive arguments, we obtain that for any

This implies that converges to the target orbit (32) expo-
nentially.

Finally, we need to show that the constant in the implication
(61) can be chosen independent of provided that is suffi-
ciently small.

Let

Since each of the sets is open and contains the orbit ,
therefore the set contains . Using the fact that

, it can be shown that is open.

IV. EXAMPLE

We have shown in Section II that if the virtual holonomic con-
straint (7) made invariant for the dynamics of the cart-pendulum
system (5), (6), then the virtual limit system (10) that has the
centre at the upright equilibrium of the pendulum, pro-
vided that . In Fig. 2 the phase portrait of (10) is shown for
the case when . It is clear that the system has the center
at the equilibrium and its neighborhood is filled
with cycles. In Fig. 3, the corresponding solutions are shown in
the time domain. The target orbit is given in bold. Let us denote

Fig. 2. Phase portrait of the virtual limit system (10) with L = 1:5. Here, the
solution chosen to be stabilized is shown in bold.

Fig. 3. Solutions of the virtual limit system (10) with L = 1:5 as a time
varying functions shown previously on the phase portrait of (10); see Fig. 2.
Here, the solution chosen to be stabilized is shown in bold.

the periodic solution of the differential equation (10), that cor-
responds to this orbit, as

Simulation shows that it is of a period , which is approximately
equal to 1.41 s.

The matrices and [see (31) and (33)] for this
example are

and are nonsingular . Then, Proposition 3 is applicable and
one can check that the transformed system (35), (36) is now

(64)

(65)
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with , , and
. The feedback transformation is

(66)

where

and the control variable to be defined. The auxiliary linear
system (41) now looks as

(67)

(68)

Controllability of this system is verified in Appendix I-D.
Hence, we can find a stabilizing controller in the form (45). The
key step is finding an stabilizing solution of the periodic
Riccati equation (42). This equation has been solved numeri-
cally for the following value of the weighting matrices:
and .

Finally, the stabilizing controller for the cart-pendulum
system (8), (9) is given by (66) and

where

, , and is the periodic
3 3 matrix function, computed numerically. In Figs. 4 and 5,
we show the behavior of the closed-loop system variables when
initial conditions are

V. CONCLUSION

In this paper, we have introduced a constructive method for
control design to produce stable oscillations for underactuated
Euler–Lagrange systems with the number of independent actu-
ators smaller than the number of degrees of freedom by one.

The method is based on the idea of introducing virtual holo-
nomic constraints that define a set of possible target periodic
motions for the closed-loop system.

Fig. 4.Behavior of [�(t); _�(t)] in the closed loop system with an added white
noise in measurements. The orbit chosen to be stabilized is shown in bold on
Fig. 2.

Fig. 5. Behavior of regulated output y(t) and control signalu (t) in the closed
loop system with a white noise in measurements.

The main contribution of this paper is a step-by-step proce-
dure for design of a state feedback control law that ensures expo-
nential orbital stabilization of each feasible periodic target mo-
tion. The first step is a nonstandard partial feedback lineariza-
tion, where the remaining nonlinear dynamics is integrable. On
the next step, we construct an auxiliary linear periodic control
system of reduced order. Finally, the feedback control law for
the original nonlinear system is obtained by modification of the
LQR-based control law, designed for the auxiliary system.

The resulting nonlinear control law contains time-varying pe-
riodic components, which are fundamental for the stability of
the orbit in the closed-loop system. The proof of exponential
orbital stability is Lyapunov based. The Lyapunov function is
time-dependent and quadratic in special variables, that measure
a distance to the target orbit.

The proposed methodology is applied to the cart-pendulum
system. We have achieved stable oscillations of the pendulum
around its upright equilibrium while the position of the cart re-
mains bounded.
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APPENDIX I
APPENDICES: PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

Let us introduce the variable

It is easy to see that

and

Therefore, along any solution of the dynamical system (18) the
identity

holds. Then, one can rewrite (18) in the equivalent form

(69)

This differential equation for is linear with being (instead
of ) an independent variable.

Let us first consider the case where along the solution
the function is different from zero. Under

this assumption, one can rewrite (69) as

(70)

Its general solution has the following form:

(71)

with defined in (24). It follows that along any solution of
(18) the function

is identically equal to zero.
Suppose now that there exists finite moment of time

such that

a) : the solution of (18) is well defined
and remains continuous on ;

b) the function equals to zero at .

Since the function continuously depends on its argu-
ments and the solution is bounded on the time interval

the following limit relations hold:

Therefore

for all .

B. Proof of Theorem 2

The time derivative of the function
along a solution of (25) is

(72)

where

and is defined by (25). Therefore

(73)

C. Proof of Statement 3

System (1) can be equivalently rewritten as

(74)

and in the new coordinates , as

Therefore

(75)
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where a function is independent of the control input and
is defined in (33). By assumption, the

matrix function is nonsingular around the orbit (32).
Then, one can introduce the following feedback transformation:

(76)

to brings (75) into

(77)

One way to find the remaining dynamics for variable is to
consider the scalar equation

(78)

Here, is an annihilator for the matrix
function and is defined as follows:

while is as in (30). It is easy to see from the derivations in the
proof of Proposition 2 that the (78) coincides with the virtual
limit system (18) provided that . Using
the H’Adamard Lemma (see [9, Lemma 3.1, p. 122]), one can
rewrite (78) as (35).

D. Controllability of Auxiliary System for the Cart-Pendulum
Example

To verify controllability of the linear periodic system (67),
(68), we check the necessary and sufficient condition given in
the next statement.

Proposition 5: Suppose , and the func-
tion is independent on . The linear -periodic system (41)
is completely controllable over the period if and only if
the inequality

(79)

holds. Here

(80)

the functions and are defined in Appendix II-A.
Proof: The system (41) is completely controllable (see

[15, Th. 9.2, p. 143]) if and only if the matrix

(81)

is positive definite. Here, is defined by

The straightforward calculation shows that

where is defined in (80).
It follows from the inherent boundedness of the periodic de-

sired orbit that for . Therefore

and

Substituting these formulas into (81), one obtains

(82)

Let us check that

(83)

The function is of particular form,15 so that

This integral is equal to zero since the upper and lower limits of
integration, and , are the same due to periodicity of

.
Hence

15See Appendix II-A.
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and is positive definite if and only if its determinant is posi-
tive, since the other main minors

are positive definite. From the straightforward calculations
(Schur lemma), we see that

(84)

It is positive iff the inequality (79) is valid.
To verify controllability of the linear periodic system (67),

(68) for the cart-pendulum example, we check the necessary and
sufficient conditions (79) derived above.

We have s and

From the numerical integration

Thus, the inequality (79) is valid, and the system (67), (68) is
completely controllable over the period.

APPENDIX II
APPENDIX: DEFINITIONS

A. Expression for the Components of and in (41)

B. Expression for Functions in (54)
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