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Abstract—A planar compass-like biped on a shallow slope is one of the
simplest models of a passive walker. It is a 2-degree-of-freedom (DOF)
impulsive mechanical system that is known to possess periodic solutions
reminiscent of human walking. Finding such solutions is a challenging
computational task that has attracted many researchers who are motivated
by various aspects of passive and active dynamic walking. We propose a new
approach to find stable as well as unstable hybrid limit cycles without inte-
grating the full set of differential equations and, at the same time, without
approximating the dynamics. The procedure exploits a time-independent
representation of a possible periodic solution via a virtual holonomic con-
straint. The description of the limit cycle obtained in this way is useful for
the analysis and characterization of passive gaits as well as for design of
regulators to achieve gaits with the smallest required control efforts. Some
insights into the notion of hybrid zero dynamics, which are related to such
a description, are presented as well.

Index Terms—Limit cycles, underactuated mechanical systems, virtual
holonomic constraints, walking robots.

I. INTRODUCTION

The study of passive walking devices is a fascinating field. It has
especially attracted the attention of researchers in the robotics and
control communities after McGeer’s seminal paper [19], which was
published in 1990. After that, there was a series of publications (see,
e.g., [4], [8], [9], [13], [16], [17], and [24]) that proposed and reported
how to find and analyze passive gaits for various walking devices. The
main difficulty in searching for stable limit cycles is that they usually
have comparably small regions of attraction in the state space. Com-
monly, the search for initial conditions that yield cycles is carried out
by numerical computation routines, sometimes using approximations
of the dynamics in order to obtain good initial guesses.

The main contribution of this paper is a new approach to find
and characterize hybrid limit cycles, which results in a numeri-
cal procedure that allows reduction of the computational burden
without involving any approximation of the dynamical model. Our
arguments can be equally applied to find both stable and unstable
cycles.

The key idea of the paper is to explore a special but generic change
of coordinates that can always be used to parameterize any nontrivial
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hybrid periodic solution of the walker dynamics. We avoid looking for
explicit dependence on time but instead search for relations between
the generalized coordinates [1], [10] that should be valid along a cy-
cle. Such relations are called virtual holonomic constraints [22], [26]
and are rapidly becoming increasingly broadly used for periodic mo-
tion planning and orbital feedback stabilization for mechanical sys-
tems with and without impacts (see, e.g., [21] and [26] and references
therein).

In this paper, we demonstrate the usefulness of the concept on a
standard benchmark example: a planar two-link walker that is com-
monly known as a compass-gait biped. Finding stable gaits for this
particular system has attracted many researchers who have been moti-
vated by various aspects of passive and active dynamic walking (see,
e.g., [6], [7], [11], [14], [18] and [20] and references therein). Here, we
show how to use virtual holonomic constraints for analysis of a passive
system with multiple degrees of freedom (DOFs).

II. PROBLEM FORMULATION

A search for a stable walking gait consists of first finding initial
conditions in the state space that yield hybrid limit cycles for the hy-
brid and nonlinear dynamics of the walking robot for a given slope
of the ground surface and, second, verifying its stability. Both tasks
are nontrivial and are related to the more or less classical problem of
analytical mechanics: how to integrate nonlinear dynamical equations.
A typical approach for solving both problems is to proceed with heavy
numerical simulations of the system dynamics rather than attempt an-
alytical arguments. In support of this opinion more than a decade ago,
Goswami et al. wrote in their seminal paper [9], “[...] the analytical
demonstration of the existence of a limit cycle, its local orbital stability,
and the analytical procedure to find it still remains a challenge.” Since
then, there has been a little if any progress in deriving such analytical
arguments.

In this paper, we suggest analytical and constructive steps that allow
the reduction of the number of parameters to be found in the search
for suitable initial conditions and the number of differential equations
that must be integrated numerically. However, the main contribution
is not the reduction of the computational burden but in a new way of
characterizing limit cycles. The core of the paper is an almost triv-
ial observation that a periodic gait of a walking machine, if it exists,
can be characterized by a certain synchronization between its gener-
alized coordinates. Basically, we suggest searching for such relations
rather than attempting to identify a periodic trajectory directly. It is
worth noting that finding such a relation among the generalized coordi-
nates for a numerically computed cycle is a highly nontrivial task [26,
Ch. 6] and that knowledge of such a function allows not only verifying
stability of the cycle analytically but obtaining an analytical expression
for the Poincaré first-return map as well [5].

Such arguments, which are elaborated for computing hybrid limit
cycles of the planar compass-gait biped, are presented as follows. For
simplicity, we search only for symmetric walking gaits, i.e., the gaits
of interest are characterized by a periodic sequence of two identical
steps of the respective legs. Given a walking gait, if 7; is the time
interval between two consecutive impacts with indexes ¢ and (7 + 1),
and T}, is the period of the gait cycle, then for a symmetric gait cycle,’!
T, =T, + Ty with T, = T,y = T, /2.

UIf a walking gait is not symmetric and shaped by k consecutive intervals
of continuous dynamics (i.e., of periodicity k), then the period of the gait
is Ty, =T; +Tiy1 + -+ Tj4 . It turns out that for the proposed method,
searching for walking gaits of periodicity £ > 2 and for symmetric gaits are
problems of the same complexity that can be solved by similar arguments.

1552-3098/$26.00 © 2009 IEEE
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Fig. 1. Schematic of the compass-gait biped on a shallow slope 1. Here, ¢;
and g2 describe the absolute angular positions of the stance leg and the swing
leg, respectively. On the right, physical parameters of the compass-gait robot
are listed.

III. HYBRID DYNAMICS OF THE COMPASS-GAIT BIPED

Let us consider a two-link passive compass-gait biped robot, which
is schematically shown in Fig. 1.

Under certain conditions [9], the dynamics of the robot can be de-
scribed [9], [13], [25] by the following system of Euler-Lagrange
equations with impulse effects [3], [10], [26]:

PLii — pa cos(q1 —q2)Go — pasin(qr —q2) g5 — pasing; =0
P — pa cos(q1 —q2)G1 + pa sin(qr —qa2)g; + ps singy =0
aslongas g ¢S €
@ =¢. 0 =q¢ and ¢ =Pq)q
whenever ¢~ € S

where ¢ = [q1, q2]T is the vector of generalized coordinates. Here,
the coefficients are defined by the physical parameters of the robot
as follows: p; = (my + m)I*> + ma?, py = mlb, p3 = mb?, py; =
(mpgl+ mb+ ml)g, ps = mbg; for the slope ¢ of the walking sur-
face, the impact surface is

S = {q €R?: H(q) = cos(q; + 1) — cos(qz +9) = 0} )

The impulse effects’ are described by the reset map

_ 91 .

P, = b1 —p27012 b3 _p2012] [p7012 — P _p6:| 3)
—P2Cq9 D3 —Ps 0

with pg = mab, p; = my1* + 2mal,and ¢, = cos(q; — g5 ), which

is attributed to the jump in velocities due to impact [10], [15], [25];
here and before, the abbreviations

and = lim ¢(7)

T—=t+

= lim ¢(7)
T—t—
are used for the states right before and right after the impact time ¢.
Our goal is to find symmetric walking gaits of the hybrid system (1)
with (2) and (3), respectively.

IV. FINDING HYBRID LIMIT CYCLES

In the following, we introduce some notation and formulate the com-
mon procedure to find limit cycles and present an alternative approach.
The latter is the main contribution of the paper and will be discussed
later on.

Note that the swing leg of a rigid two-link walker trespasses this surface
during one complete step. For our considerations, the compass-gait robot (1)
shall experience impact only when a heel strike occurs.
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A. Notation for the Parameters of a Cycle

Given a shallow slope %, a nontrivial symmetric periodic solu-
tion of (1) is uniquely defined by the vector of parameters® p, =
[a, b, ¢, d, e, f, g, h, T]" €R® whichconsisted of the
half-period T' = T, /2 > 0 and the following eight constants, which
denote the initial and final states:

3. (0+) = [q1.(0+), (+)]T:[a7 el’
G (0+) = [d1. (0+), G2 (0H)]"= [b, "
0.(T=) = [ (T =), g2 (T-)]"= [c, g]"
4. (T=) = [0 (T =), Go. (T—)]" = [d, h]". ©)

Five algebraic relations among these eight parameters can be ob-
tained using the fact that the jump of the states due to impact is de-
scribed by algebraic relations (2) and (3); the derivations are shown in
the Appendix.

B. Procedures to Find Hybrid Limit Cycles

Solving the continuous-time dynamics described by the differential
equations in (1), i.e., the four first-order differential equations, on the
time interval 0 < ¢ < T, one can obtain the four missing relations to
define the parameters a, b, d, and T of the cycle. The period T can also
be identified during the numerical integration by the first time a solution
hits the surface .S given in (2). Therefore, the search for a hybrid cycle
is converted into finding a solution (the vector of parameters p,) for
the following problem that can be treated as a standard optimization
routine.

Problem 1: Find a,b,d,and T such that ¢ (T) = ¢, ¢(T) = g,
¢, (T) = d, and G,(T) = h, with algebraic relations (13) from the
Appendix satisfied and g(t) being the solution of the differential equa-
tions in (1) initiated at g (0) = a, @ (0) = e, ¢, (0) = b, as well as
0 0)=r.

Standard optimization Problem 1 is typically solved through numer-
ical integration of the system dynamics.

The following observations allow a different way of proceeding. The
continuous subarc of a nontrivial periodic trajectory g, (¢) for (1), if
it exists, is a solution of the differential equations in (1) defined on a
finite interval of time. Therefore, the repetitive evolution of the gener-
alized coordinates along the cycle can be specified not only as periodic
functions of time ¢, (t) = . (t + T},) = [q1 (), g2« (t)]" V1 but also
as functions of a scalar variable that uniquely defines a particular point
on the continuous subarc of the cycle i, (t) = @1 (04 (t)), qa (t) =
@9 (0, (1)) ,for0 < t < T = T, /2. The shape of functions ¢ (-) ¢2 (+)
depends on the way we parameterize points on the trajectory of the cy-
cle in the state space of the walker, but these functions are clearly
unique for each parameterization.

If we assume that the new variable 6, is one of the generalized co-
ordinates, say the coordinate of stance leg, then the reparameterization
results in a new representation

Q1 (t) = 0. (1), quu(t) = @ (0.(1)), for

of the continuous subarc of the cycle between two consecutive impacts.
The scalar functions 6, () and ¢(+) are unknown. To derive equations
with respect to these variables, we can use the dynamics of the robot,
i.e., substitute

0<t<T (5

o =9, g =@ (0) (6)

3The parameters a, b, and g here are not related to the notation for the physical
lengths and the gravitational constant given in Fig. 1. The physical parameters
are not to be used anywhere in the rest of the paper.
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into the Euler-Lagrange equations in (1), and collect similar terms.
The next two second-order differential equations for the variable  are
obtained from straightforward computations

2

d? d

a1 (0) ﬁe + B1(9) {dte +m(0)=0 @)
& d ]’

a2 (0) EO + B2(0) [dte +72(0) =0 (®)

where ay(0) = —pa cos(8 — (0))'(0) + p1, 1 (6) = —p2 sin
(6 — 2(0))((6))? — 2 cos(8 — (0))"(9), 71 (6) = —py sin(9),
a2 (0) = —pa cos(6 — p(0)) + p3'(0), B2 (0) = p2 sin(6 — ¢ (0)) +
P3¢ (), and 72 (0) = ps sin(p(9)).

In a similar way, for a system withn > 2DOFand 0 < m <n — 2
control inputs, modeling continuous-in-time dynamics of an under-
actuated walker, one would obtain exactly (n —m) second-order
differential equations with the same structure, coefficients of which
would depend on (n — 1) unknown functions and their two deriva-
tives. These functions describe synchronization among the general-
ized coordinates along a periodic trajectory and are known as virtual
holonomic constraint; see, e.g., [21] and [26]. The fact that each of
these second-order differential equations is integrable [23] and that
they possess a common solution allows set of new differential equa-
tions for the unknown functions to be obtained. This is exactly what is
done in the Appendix for the 2-DOF system with O control inputs at
hand.

Searching for a limit cycle in terms of 6, (¢) and ¢(0, ), instead of
q1+ (t) and go, (), results in some numerical simplifications and in the
following alternative procedure, which is developed in the Appendix.

Problem 2: Find a and b such that ¢(c) = g and ¢'(¢) = h/d with
algebraic relations (13) and (18) from the Appendix satisfied and @ (6)
being the solution of the differential equation

¢"(0.) = fo (a,b,0.,0(0.),¢'(6.)) ©)

which is initiated at $(a) = e and ¢'(a) = f/b, where the expression
for the right-hand side is given in the Appendix.

Solving Problem 2 is computationally simpler than solving Problem
1 since the number of differential equations is reduced, as is the number
of free parameters.

Proposition 1: The set of solutions for Problem 2 contains all the
solutions of Problem 1.

The proof of sufficiency to solve Problem 2 trivially follows from
inspecting the derivations in the Appendix. The lack of necessity is,
roughly speaking, due to the fact that synchronization relations do not
take into account the fact that the negative velocities imply decreasing
positions. In fact, half of the solutions for Problem 2 have been found
to be extraneous in our numerical search, the results of which being
reported shortly.

V. DISCUSSION ON VIRTUAL HOLONOMIC CONSTRAINTS

Prior to presenting a description of the numerical results, let us make
a few comments.

Itis seen that passing from Problem 1 to Problem 2, we have achieved
reduction in the computational burden in half for our model for the
compass-gait walker. What is the trick? Eliminating one differential
equation and one parameter is the result of searching for a solution in
the form without explicit dependence on time. Additionally, it allows
the exploitation of the fact that the total energy [cf., the conserved
quantity (16)] depends on the synchronization function ¢ (6) and its
two derivatives point-wise and not in a functional way through inte-
gration. Both the number of parameters and the order of the system of
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the differential equations needed to be solved are further reduced by
one. Note that reduction of the order for a mechanical system using a
conserved quantity is, in general, an unsolved problem. The difficulty
here is the fact that if one wants to use the energy as one of the states
for a mechanical system, a nontrivial computation of the appropriate
complete coordinate transformation is needed.

However, the main contribution is not simplifying the search pro-
cedure but obtaining a useful characterization of the limit cycle. It is
important to keep in mind that, for instance, gait stability can be analyt-
ically verified using the knowledge of the computed virtual holonomic
constraint. Namely, knowledge of the function ¢ (6, ) allows the an-
alytical derivation of coefficients of a linear time-periodic impulsive
system, known as transverse linearization, the asymptotic stability of
which implies exponential orbital stability of the limit cycle (see [5]
for details).

Note that finding such a constraint using polynomial approxima-
tions from a numerically computed limit cycle is a nontrivial challenge
[26, Ch. 6]. Here, for the first time, such a function is computed as a
solution of a differential equation, and therefore, it can be easily and
accurately calculated.

Other approaches for the analysis of gait stability for the compass-
gait biped with and without actuation has been suggested by many
researchers (see, e.g., [2], [12], and [26]).

It seems that the most promising application of virtual holonomic
constraints approach is using them for stabilization and planning of
periodic trajectories by shaping control inputs. Typically, the passive
gaits have very small regions of attraction* but clearly require no control
efforts following the trajectory. Hence, it is an attractive and natural
idea to use feedback control for stabilizing a passive unstable gait or for
enlarging the region of attraction for a stable one. A recent breakthrough
strategy in walking robot control, which is summarized and detailed
in [26], uses virtual holonomic constraints together with the notion of
invariant hybrid zero dynamics, which has been introduced in [27].
Invariance of hybrid zero dynamics allows significant simplification in
the computation of the Poincaré map that can be used to verify stability.
We show below that in the absence of shaping control signals, such a
simplification of stability assessment is impossible.

The hybrid zero dynamic Z associated with the synchronization
functions ¢, (#), which is induced by a periodic solution, is defined as
the following subset of the state space of the walker dynamics:

. . d .
Z = {[Q1,Q2»Q17Q2]3 q2 :99*(%)7 q2 = |:dqlt,9*(€h)] lh}

10)
and in the vicinity of the cycle, it is a 2-D smooth submanifold of the
state space.

Lemma 1: For any nontrivial symmetric gait of the compass gait
walker (1), the associated hybrid zero dynamics are invariant with
respect to the update law due to an impact.

The proof is straightforward and uses the following two facts: The
switching surface is invariant with respect to the generalized velocities,
and the update law is linear in them. It can be readily generalized to
the case with arbitrary number of DOFs. Such a generalization of this
lemma has been implicitly used in [26], where the property is called
impact invariance. The following statement shows that the whole hybrid
zero dynamic for a passive gait cycle is generically not invariant.

Proposition 2: For any nontrivial symmetric gait of the compass-
gait walker (1), the associated zero dynamics (10) are not invariant

4For the example at hand, it can be deduced from the simulation results of
Section VI since the stable and unstable limit cycles are close.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 5, OCTOBER 2009

022
02

0.18

) [rad

0.16

1(0

01(0) [rad/s]

[
o
=

o
R

01

¢2(0) [rad]

¥ [deg]

(© (d)

Fig. 2. Initial conditions for the two symmetric gait cycles obtained from
analysis. Cycle #2 represented by the dashed line is unstable, while cycle #1
represented by the solid line is exponentially orbitally stable within the interval
1 € (0, ~ 4.4)° and unstable otherwise. (a) Initial position g, 1 (0+) for the
stance leg. (b) Initial velocity ¢, 1 (0+) for the stance leg. (c) Initial position
G« ,2(0+) for the swing leg. (d) Initial velocity ¢, 2 (04) for the swing leg.

with respect to the vector field of the continuous-time dynamics of the
walker.

The proof is not tightened to the low-dimension dynamics at hand.
The statement immediately follows from the definition of generalized
coordinates, since invariance of a reduced-order manifold implies re-
duction of the number of DOFs. Hence, the property called forward
invariance in [26, Ch. 6] is generically violated for passive walking
gaits.

The conclusion is that the stability of a passive limit cycle cannot
be verified using the technique introduced in [27]. It is remarkable
to note that even one control input allows the passive hybrid zero-
dynamics invariant to be made, as demonstrated in [26, Ch. 6] and [28].
Interestingly enough, forcing the invariance results in a large region of
attraction for the example considered here, which, however, does not
cover the original one. This leads us to the conjecture that feedback
control laws for passive gaits that keep a hybrid zero-dynamic invariant
may, at some systems, fail to enlarging the region of attraction.

VI. NUMERICAL RESULTS OF SOLVING PROBLEM 2

Here, we demonstrate the results of solving Problem 2 for finding
gaits of the passive walker for the case of the parameters listed in Fig. 1.
The shallow slope for the compass-gait biped is chosen in the range of
¥ € (0, 6]°, which is about the same interval as discussed in [9]. The
initial conditions ¢, (0+) and ¢, (0+), as well as the half-period T" and
the total energy F of the found symmetric gaits for this range of the
slope angle, are shown in Figs. 2 and 3 as functions of ¥. As seen, two
hybrid limit cycles are found following the proposed arguments. It turns
out that these cycles can be distinguished by two different solutions for
d, which we expected according to the new procedure developed in the
Appendix. For simplicity, the cycles corresponding to the first solution
for d will be denoted as cycle #1; the other ones corresponding to the
second solution for d will be denoted as cycle #2.
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Fig. 3. Half-period and total energy of the two symmetric gait cycles obtained

from analysis. The cycle #2 represented by the dashed line is unstable, while
the cycle #1 represented by the solid line is exponentially orbitally stable within
the interval ¢ € (0, ~ 4.4)° and unstable otherwise. (a) Resulting half-period
T'. (b) Required total energy Ej.
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Fig. 4. Simulation results for particular hybrid limit cycles. (a) Convergence
to a stable limit cycle #1. (b) Divergence from an unstable limit cycle #2 and
convergence to a stable one.

Further numerical studies revealed that the limit cycles #2, repre-
sented by the dashed line in Fig. 2, are always unstable.’ The limit
cycles #1, represented by the solid line in Fig. 2, are exponentially
orbitally stable within the interval ¢) € (0, ~4.4)° and unstable other-
wise. For slopes 1) > ~4.4°, one can notice a change in the stability
properties caused by bifurcation, which makes the limit cycle unstable.
This phenomenon has been already reported in [9] for the compass-gait
biped robot. As a result of the bifurcation, the robot exhibits asymmet-
ric gait cycles with ¢ = 2" steps, where n = {1,2,3,...} grows with
increasing v, ¥ > ~4.4°. Note that the initial conditions for the two
obtained cycles are comparably close to each other, which indicates a
small region of attraction for stable limit cycles. Fig. 4 shows some
representative simulation results for the following gait cycles:

1) convergence to a stable limit cycle #1 with (this is the
same cycle as studied in [25]) ¢ = 2.87°, ¢(0+) = ¢, (0+) +
[0.01, 0.01]" rad ~ [0.22689, —0.30708]" rad, ¢(0+) = ¢.(0+) +
[0.01,0.01]" rad/s ~ [—1.07428, —0.38728]" rad/s, T; = 0.73249s
for i € N after 19 steps;®

2) divergence from an unstable limit cycle #2 with
P =2.87°,q(0+) = ¢, (0+) = [0.20318, —0.30336]" rad, ¢(0+) =
G« (0+) ~ [-1.19656, —0.72051]" rad/s, T; = 0.58373s fori € N
and convergence to the stable cycle #1 from 1) after 24 steps.

VII. CONCLUSION

We have studied the problem of finding hybrid periodic trajecto-
ries for a model of the compass-gait biped robot, which consisted of a

5To the best of our knowledge, we are the first to find the second set of limit
cycles. We have failed to find them using the standard procedure.

60f course, by “convergence,” here, we mean that the simulated trajectory
becomes close to the cycle with a certain accuracy.



1206

2-DOF continuous-time Euler-Lagrange dynamic and an impact mod-
eled by an instantaneous reset map.

Our approach exploits existence of a geometric relation between the
two generalized coordinates along the continuous-time subarc of any
periodic trajectory. Our computations lead to a minimization problem,
which requires finding two parameters and is based on solving the
found second-order differential equation for computation of the target
functional. Since there are four first-order differential equations in the
description of the dynamics, the burden of numerical computations is
reduced by half.

However, the main contribution is the obtained differential equation
for the virtual holonomic constraint. Motivated by recent advances in
exploiting such constraints for feedback control design, we have also
studied applicability of the concept of invariant hybrid zero dynamics.
It has been verified that, in general, the corresponding 2-D manifold
induced by the periodic trajectory is not invariant.

Finally, we have verified that the proposed computational procedure
does work and allows stable as well as unstable limit cycles to be found
for a reasonable range of the slopes of the walking surfaces. Some
numerical results have been presented.

APPENDIX
RELATIONS AMONG THE PARAMETERS OF A CYCLE
After each step, the robot experiences an impact if it hits the ground,
i.e., condition (2) is satisfied. It follows from ¢, (T_) € S that

cos(c+ ) —cos(g + ) = 0. (11)

Lemma 2 (Feasible solutions for the impact surface): The impact
surface (2) defines the condition for impulse effects on the hybrid dy-
namics of the passive compass-like biped robot (1). The parameterized
condition (11) gives the following solutions for the parameter ¢ as
function of g and v, where ¢, (T—) = [c, g]* -

1) The solution ¢ = g is extraneous since, in this case, with ¢ = 0,
first, the relation ¢ = —¢ must hold, and second, the configuration of
the robot would be static anyway.

2) Multiple solutions exist in the formc¢ = —g — 2 + 2k7w, k € Z,
where, for the range of the slopes ¢ € (0, 7/2), we have feasible
configuration angles only in the case when ¢ € (—m, 0), for k =0,
and unfeasible ones otherwise, i.e., ¢ ¢ (—m, 0), for k # 0.

Note that the swing leg of a rigid two-link walker trespasses the
impact surface (2) during one complete step. We assume for our con-
siderations that the compass-gait robot experiences an impact only
when a heel strike occurs.

The impulse effect (instantaneous change of the states), which is
described by the second equation in (1) together with (3), gives the
following expressions for the reset states after impact:

(-0 3 [)-[

g+ (0+) ¢+ (T )
and
b c d
1 -=(]) [
~—~—
G+ (0+) o (T=) G (T-)

Solving the system of five algebraic equations (11) and (12) in terms
of a, b, and d, one obtains

bcos (2a+21) ps —ped
p3

g=a, c=e=—a—27¢, f=
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d(psp7 —psp2) —b(psps —p§ cos(2a+21))
P3P6

h = cos(2a+21).

13)

APPENDIX
HUNTING FOR CYCLES USING VIRTUAL HOLONOMIC CONSTRAINTS

A useful observation is that the second-order nonlinear differential
equations (7) and (8) can be integrated, independent of the coefficient
functions, as long as «(6) # 0.

Lemma 3 (Reduced energy): Along any solution 6 (¢) of the nonlinear
system

()6 + 3(0)0° +~(0) =0 (14)
the energy function, if well defined for some constant x
j_ 1 "0 N [ )
E,(0,0) = 3 exp {/L a(T)dT} 0 +/x (1(7)\I’I(T)d7 (15)

Ue (6) I (0)

preserves its value E, (0(t),0(t)) = E,(6(0),6(0)). In particular,
E,(0(0+),0(0+)) = E, (§(T—), 6(T—)) for the time moments right
after an impact and right before the next impact.

See the next section of the Appendix for derivation of (15).

Both (7) and (8) are in the form (14); therefore, they have two ener-
gies (15), irrespective of the particular form of the unknown function
©(+). Keeping in mind that dynamics of the walker is not completely
integrable, the presence of two conserved quantities for (7) and (8) is
indeed surprising. The explanation for this apparent contradiction is
that the conserved quantities are not true first integrals of the system
and are solution-dependent.

It is worth observing that any linear combination of (7) and (8)
with ¢-dependent weights 1, (¢) and 1i5(0) has the form of (14):
(11 (0)1 (0) + pa(0)aa () 0 + (11(0)B1(0) + 12 (0)52(0)) 6% +
(11 (8)71(0) 4 p2(0)¥2(0)) = 0 and is integrable, while the integral
of the last equation is not the sum of integrals of the summands (7)
and (8). For instance, with the weights 1 (8) = 6, us(8) = ¢(6),
one restores the true energy of the Euler—Lagrange system (1), i.e.,
E(q, ¢), when the generalized coordinates satisfy the relations (6), i.e.,

E(q,4q) il = Eq(0,0)

{(Il:9412:@9(9),!1'1:9‘-!1’2:@’

— (B 2 cos(8 — p(0)¢(0) + (¢ (0))7 ) 8

+ Py [cos(@) - 1] + D5 [1 - COS(@(O))} .

Here, the function Ey (+) is E, (-) from (15) with z = 0.

If the velocities before and after each impact are nonzero, such that
b # 0 and d # 0, then the boundary conditions (4) can be rewritten in
terms of the virtual holonomic constraint (5) as follows:

16)

6,00)=a, 6,000=b, 0.(T)=c, 6.(T)=d
sy =e d@=1, w@=g FO=1 a1

As E, (-) keeps its value (see Lemma 3), one can substitute the
relations (17) into the function (16) in order to obtain another identity
among the parameters of the cycle (4)
psf’

2

. 2
B (e.d) = Ey(a,5) 2222

+ pa(cos(a) — 1) + ps (1 — cos(e)).

—pacos(a—e)fb+

18)
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As seen, it is a quadratic equation with respect to d; at best, it has two
real solutions for given values of a and b.

Reducing the number of parameters to search for in (1) is not the
only benefit of using virtual constraints. Let us now reduce the number
of differential equations needed to be solved during the search: One
can look at the system of differential equations (7) and (8) as a system
of algebraic equations for the two unknown functions of time 62 (¢) and
6, (). To derive a differential equation for the function () used for
reparameterization of the desired evolution of generalized coordinates
g« (t) along the cycle, consider the following two cases.

Case 1: The function D(0) := (1 (8)as(6) — B2(0) a1 () is sep-
arated from zero on a subarc of the cycle, ie., D(0,(t)) # 0 for
0<ty <t<t; <T. For this time interval [ty,¢;], the differential
equations (7) and (8) can be solved as algebraic ones’ w.r.t. 0, (t) and
0, (t) as follows:

jo Qo (9*)71 (9*) — (‘9*)’72 (‘9*)
O = 0.)5(0.) — (0.5 (0.) 1
noo_ 61 (9*)')/2 (9*) B ﬂQ (0*)71 (0*)
b = 05 (60) — s (605, (0.) 20

The equation (19), in conjunction with the relation on the energy
(18), can be rewritten as
Ey(a,b) — pa(cos(f) —1) — ps (1 — cos(p(6)))

B pa cos(0— () 7 (0) + 5 (7 (0))
Combining (20) with time derivative of (21) results in the second-order
equation for unknown function ¢(+) given by (9).

Case 2: The function D(0) := 31 (0) a2 (8) — B2(0) v (0) is zero on
a subarc of the cycle, i.e., D(0, (t)) = 0for0 <ty <t <t <T.For
this time interval, the identity D (0, (¢)) = 0 can be used and rewritten
as the next differential equation for ¢
©"(0) = —p2 sin(0 — ¢(0))

(¢')° ps

9? = @n

—p2 (¢)? cos( — o)

b3 1

—p2 cos(0 — @) ' +p

X
—p5 cos’ (0 — )

(22)
Moreover, multiplying (7) by 3; (6) and subtracting (8) multiplied by
(1 (), one can observe that for this particular interval [¢, ¢], the fur-

ther identity should hold 3, (0, (£))v2 (0« (t)) — B2 (04 (£)) 71 (0« (t)) =
0. It gives the following differential equation for ¢:

©"(0) = —p, sin(f — ©(0))
y ps sin(p(0)) (¢'(0))* — p4 sin(6)
ps sin(p(6)) p2 cos(0 — p(0)) — py sin(0) ps

Similarly, the identity oy (6, (¢))v2 (04 (t)) — a2 (604 ()71 (64 (t)) = 0
is valid for ¢ € [ty, 1], which gives the first-order equation

S(0) = ps sin(p(0)) p1 — pa sin(f) ps cos(0 — p(0))
ps sin(p(0)) p2 cos(8 — ¢(0)) — ps sin(6) ps

It can also be deduced directly combining (22) and (23).

It can be verified that under the assumption that 1/ and the initial
conditions for the limit cycle are sufficiently small, the right-hand side
of (24) is positive, which is in contradiction with the obvious physical
intuition fact that ¢’ should be negative at the time of impact. Hence,
Case 2 is impossible for our system and will be dropped from the
consideration.

The earlier arguments can be summarized as a new procedure to find
limit cycles for symmetric gaits of the passive compass-gait biped as
described in Problem 2.

(23)

(24)

"Multiply (7) by a2 () and subtract (8) multiplied by 1 (f) to obtain (19);
for (20), multiply (7) by 32 (), and subtract (8) multiplied by 3; (6).
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APPENDIX
ENERGY-LIKE FUNCTION

Multiplying (14) by the scalar integrating factor p(f) yields
(0)a(0) 0 + 1(0)53(0) 0 + p(0)7(0) = 0.

Let us rewrite it in the form of Lagrangian dynamics as

d [0oL(0,0)] 0L£(0,6) 0

dt 90 a0
with the Lagrangian given by L(6), 0) 1/2(M(6) 6%) — V() and
the total energy being E, (6 6) = %)+ V (), where

7<M<e>9>
M(6) = p(0)a(6) and V(0) = [ p(r)x(
It follows that

and
(0)a(0)8 + (u(6)a' (6) + ' (6)(6)) 6” + p(6)7(6) = 0

which defines the equation for the coefficient 1(8)5(6) = u(6)a’(9) +
1 (0)a(0). After separating the variables and integrating over 6, we

get
(o) =~ { e}

Substituting 1(0) (with p(w)
yields (15).

= 1) into the energy expression

APPENDIX

RIGHT-HAND SIDE FOR THE MAIN PROCEDURE

"(6) + 1) cos(6 — ¢(0))
ps + ps cos(p(9))

(=p2 (ps sin(p(0))¢'(0)

@(6)) + ps sin((6))ps

0)) sin(0))(p1 — 2pa cos(0 — (0))¢'(0)

fola,b,0,0(0),¢'(0)) = (—2(—p2(£'(0)) (¢
+p1+ps(¢(0))*) (ps + Eo —
—py cos(0))p2 sin(0 — ¢(0)) —
+ py sin(0)) cos(f —
(

+p3pa(p

+p3(£'(0))*))/ (2(pspr — p2* (cos(0 — ¢(6)))?)
X (ps + Ey — ps + ps cos(p(0)) — ps cos(d)))
with Ey = Fy(a,b) given in (18).
REFERENCES

[1] Y. Aoustin and A. Formal’sky, “Design of reference trajectory to stabilize
desired nominal cyclic gait of a biped,” in Proc. the Int. Workshop Robot
Motion Control, Kiekrz, Poland, Jun. 1999, pp. 159-165.

[2] F. Asano and Z.-W. Luo, “Asymptotically stable gait generation for biped
robot based on mechanical energy balance,” presented at the IEEE/RSJ
Int. Conf. Intell. Robots Syst., San Diego, CA, Nov. 2007.

[3] D. Bainov and P. Simeonov, Systems With Impulse Effects: Stability, The-
ory and Application (Mathematics and Its Applications). Chichester, U.K.:
Ellis Horwood, 1989.

[4] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots
based on passive dynamic walkers,” Sci. Mag., vol. 307, pp. 1082-1085,
2005.

[5] L. Freidovich, A. Shiriaev, and I. Manchester, “Stability analysis and
control design for an underactuated walking robot via computation of
a transverse linearization,” in Proc. the 17th IFAC World Congr., Seoul,
Korea, Jul. 2008, pp. 10 166-10 171.



1208

[6] M. Garcia, A. Chatterjee, A. Ruina, and M. Colenman, “The simplest
walking model: Stability, complexity, and scaling,” ASME J. Biomed.
Eng., vol. 120, no. 2, pp. 281-288, 1998.

[7]1 D. Gates, J. Su, and J. Dingweil, “Possible biomedical origins of the
long-range correlations in stride intervals of walking,” Phys. A, vol. 380,
pp. 259-270, 2007.

[8] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in a passive
compass gait biped and passivity-mimicking control laws,” J. Auton.
Robots, vol. 4, no. 3, pp. 273-286, 1997.

[9] A. Goswami, B. Thuilot, and B. Espiau, “A study of the passive gait of a
compass-like biped robot,” Int. J. Robot. Res., vol. 17, no. 12, pp. 1282—
1301, 1998.

[10] J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for
biped robots: Analysis via systems with impulse effects,” IEEE Trans.
Autom. Control, vol. 46, no. 1, pp. 51-64, Jan. 2001.

[11] J. Hass, J. Herrmann, and T. Geisel, “Optimal mass distirbution for

passivity-based bipedal robots,” Int. J. Robot. Res., vol. 25, no. 11, pp.

1087-1098, 2006.

K. Hirata and H. Kokame, “Stability analysis of linear systems with

state jump—Motivated by periodic motion control of passive walker,”

in Proc. IEEE Conf. Control Appl., Istanbul, Turkey, Jun. 2003, pp. 949—

953.

[13] I. Hiskens, “Stability of hybrid system limit cycles: Application to the
compass gait biped robot,” in Proc. 40th IEEE Conf. Decision Control,
Orlando, FL, Dec. 4-7, 2001, pp. 774-779.

[14] D. Hobbelen and M. Wisse, “A disturbance rejection measure for limit

cycle walking: The gait sensitivity norm,” [EEE Trans. Robot., vol. 23,

no. 6, pp. 1213-1224, Dec. 2007.

Y. Hurmuzlu and D. Marghitu, “Rigid body collisions of planar kinematic

chains with multiple contact points,” Int. J. Robot. Res., vol. 13, no. 1,

pp. 82-92, 1994.

[16] A. Kuo, “Stabilization of lateral motion in passive dynamic walking,” Int.
J. Robot. Res., vol. 18, no. 9, pp. 917-930, 1999.

[17] A. Kuo, “Choosing your steps carefully: Trade offs between economy
and versatility in dynamic walking bipedal robots,” IEEE Robot. Autom.
Mag., vol. 14, no. 2, pp. 18-29, Jun. 2007.

[18] N. Liu, J. Li, and T. Wang, “Passive walking that can walk down steps:
Simulation and experiments,” Acta Mech. Sin., vol. 24, pp. 569-573,
2008.

[19] T. McGeer, “Passive dynamic walking,” Int. J. Robot. Res., vol. 9, no. 2,
pp. 62-82, 1990.

[20] A. Safa, M. Saadat, and M. Naraghi, “Passive dynamic of the simplest
walking model: Replacing ramps with stairs,” Mech. Mach. Theory,
vol. 42, pp. 1314-1325, 2007.

[21] A. Shiriaev, L. Freidovich, and 1. Manchester, “Can we make a robot
ballerina perform a pirouette? Orbital stabilization of periodic motions of
underactuated mechanical systems,” Annu. Rev. Control, vol. 32, no. 2,
pp. 200-211, 2008.

[22] A. Shiriaev, J. Perram, and C. Canudas-de Wit, “Constructive tool for or-
bital stabilization of underactuated nonlinear systems: Virtual constraints
approach,” [EEE Trans. Autom. Control, vol. 50, no. 8, pp. 1164-1176,
Aug. 2005.

[23] A. Shiriaev, J. Perram, A. Robertsson, and A. Sandberg, “Periodic motion
planning for virtually constrained Euler—Lagrange systems,” Syst. Control
Lett., vol. 55, pp. 900-907, 2006.

[24] M. Spong and F. Bullo, “Controlled symmetries and passive walking,”
IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 1025-1031, Jul. 2005.

[25] M. Spong, J. Holm, and D. Lee, “Passivity-based control of bipedal lo-
comotion,” IEEE Robot. Autom. Mag., vol. 14, no. 2, pp. 3040, Jun.
2007.

[26] E.Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris, Feedback
Control of Dynamic Bipedal Robot Locomotion. — Boca Raton, FL/New
York: CRC/Taylor & Francis, 2007.

[27] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics of
planar biped walkers,” IEEE Trans. Autom. Control, vol. 48, no. 1, pp. 42—
56, Jan. 2003.

[28] E. Westervelt, B. Morris, and K. Farrell, “Sample-based hzd control for
robustness and slope invariance of planar passive bipedal gaits,” Auton.
Robots, vol. 23, pp. 131-145, 2007.

[12]

[15]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 5, OCTOBER 2009

Improving the Human—Robot Interface Through Adaptive
Multispace Transformation

Luis M. Muiioz and Alicia Casals, Senior Member, IEEE

Abstract—Teleoperation is essential for applications in which, despite
the availability of a precise geometrical definition of the working area, a
task cannot be explicitly programmed. This paper describes a method of
assisted teleoperation that improves the execution of such tasks in terms of
ergonomics, precision, and reduction of execution time. The relationships
between the operating spaces corresponding to the human-robot interface
triangle are analyzed. The proposed teleoperation aid is based on applying
adaptive transformations between these spaces.

Index Terms—Human factors, human-robot interaction, teleoperation.

1. INTRODUCTION

Teleoperation relies on a suitable interface that enables a human to
provide robots with the level of intelligence needed to execute complex
tasks that cannot be performed by a robot alone or directly by a human.

Humans have inherent motor limitations (such as physiological
tremor) and perceptive limitations (mainly perception of distance and
time), which can prevent them from operating smoothly and precisely
enough for certain applications. Some studies have already tackled this
problem and its effect on the control of teleoperated systems. Psy-
chomotor models such as those defined in Fitts’ law [1] show that the
efficiency of human manipulation in the selection of an object depends
on its size and distance.

In teleoperation, a modification of the visual scale in the user’s
interface has a direct effect on the task execution time and on the
precision that can be achieved. The same occurs with a change in
the amplitude of the movement executed in the working space with
respect to that performed by the human operator. The introduction of
velocity scaling maps between the master and the slave is also efficient
in reducing the task execution time [2].

This paper describes a method conceived to improve the visual
and motor performances of teleoperation interfaces through progres-
sive changes of scale between the different working spaces. Operation
time, hand movements, and the need for visual attention can thus be
reduced. The changes of scale adapt to the application, which positively
affects the performance of a task in terms of precision and execution
time. Therefore, the proposed methodology aims to link the human
operator working space to the robot working space through an inter-
face that introduces two scaling processes. A first change of scale is
applied between the movement produced by the human operator and
the virtual position of the robot end-effector (EE) that is visualized on
the computer screen. A second change scales the robot movements up
or down. These changes of scale should be adjusted to the objects of
interest, which results in a modification of spatial resolution according
to the task to be performed and to the size and shape of the objects.
Such transformations modify the manipulator speed and, thus, improve
performance. Compared with other teleoperated systems, which either
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