
Error Detection and Correction for
Low-Cost Nano Satellites

Kjell Arne Ødegaard

Master of Science in Engineering Cybernetics

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: July 2013

Norwegian University of Science and Technology

Error Detection and Correction for Low-Cost Nano
Satellites

Kjell Arne Ødegaard

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERING CYBERNETICS

July 11, 2013

There are two ways of constructing a software design. One way is to make it so

simple that there are obviously no deficiencies. And the other way is to make it so

complicated that there are no obvious deficiencies.

— C.A.R. Hoare

Problem Description

The objective of the paper is to examine and evaluate the NTNU Test Satellite

and propose reliability solutions for a low-cost system based on consumer grade

components for the satellite. In order to find suitable solutions, a study of the

satellite and its operational environment has been conducted. Based on this study

a number of measures are proposed and a subset of the these solutions are imple-

mented. The intention is to lay a solid foundation for future implementation of a

dependable system on the NTNU Test Satellite.

Supervisor: Associate Professor Amund Skavhaug, Department of Engineering

Cybernetics, NTNU.

ii

Abstract

The objective of this paper is to suggest low-cost measures for dependability and

robust Error Detection and Correction for use in applications such as nano satel-

lites, where price is a primary concern. Different methods have been evaluated,

with the main result mitigation Single Event Effects causing bit-flips in system

memory utilizing BCH codes. The general implementation is resource intensive

and the algorithm has been adapted to the embedded platform. The codes have

been implemented on a low-cost microcontroller with a real time operating system

and faults have been injected during run-time to emulate a radiation environment.

The performance impact and dynamic behavior of the algorithms are studied with

third party tools. The Error Correction and Detection should prevent the expected

hundreds of errors per day from accumulating in memory and affect the system.

The resulting design is expected to be able to mask even frequent resets and errors

from the system’s operation. Parts of this thesis have been accepted for publica-

tion and the papers are included in the appendices.

iii

Sammendrag

Målet med denne oppgaven er å foreslå økonomiske tiltak for pålitelighet og ro-

bust feildeteksjon og korrigering for bruk i applikasjoner som nanosatelliter hvor

kostnad er svært viktig. Forskjellige metoder har blitt vurdert og hovedresultatet

motvirker strålingseffekter som forårsaker feil i minnet ved hjelp av BCH koder.

Den generelle implementasjonen til kodene er ineffektiv og den har derfor blitt

tilpasset den integrerte datamaskinen. BCH kodene har blitt implementert på en

kostnadseffektiv mikrokontroller med et sanntids operativsystem og feil har blitt

injisert under systemets operasjon for å emulere strålingen i verdensrommet. In-

nvirkningen dette har på ytelsen til systemet har blitt studert ved hjelp av tred-

jeparts verktøy. Feildeteksjonen og korrigeringen er ventet å motvirke de for-

ventede feilene fra å akkumulere i systemminnet og påvirke systemet. Det resul-

terende designet er ventet å maskere selv hyppige feil og omstarter fra systemets

operasjon. Deler at denne rapporten har blitt akseptert for publikasjon og artiklene

er inkludert i vedleggene.

iv

Contents

Problem Description ii

Abstract iii

Sammendrag iv

List of Abbreviations x

1 Overview 1
1.1 Introduction . 1

1.2 Problem . 3

1.3 Scope and Disposition . 5

1.3.1 Scope . 5

1.3.2 Report Disposition . 6

1.4 Theory . 7

1.4.1 Fault Detection and Manifestation 7

1.4.2 Reliability and Availability 9

1.4.3 Single Event Phenomena, SEP 10

1.4.4 Total Radiation Dose . 13

v

2 NUTS 15
2.1 Limitations and Challenges in the NUTS project 15

2.2 Requirements . 16

2.3 Reliability vs. Availability . 19

2.4 Current Design . 20

2.4.1 Backplane . 21

2.4.2 On Board Computer, OBC 22

2.4.3 Radio . 22

2.4.4 Payload . 22

2.4.5 Operating System . 23

2.4.6 Cubesat Space Protocol, CSP 24

3 Evaluated Solutions 25
3.1 Error Detection and Correction, EDAC 26

3.2 Checkpointing . 26

3.3 Master-Slave . 27

3.4 Watch Dog Timer, WDT . 28

3.5 Periodic Reset . 29

3.6 Disabling Faulty Modules . 29

3.7 Program Integrity Check . 30

3.8 Testing . 31

4 Implemented Solutions and Test Environment 32
4.1 EDAC on Other Satellites . 32

4.2 Design Justification . 33

4.2.1 Software Based approach 33

4.2.2 Critical Communication Between Modules 35

4.3 Functional Overview of Implemented Solutions 36

vi

4.3.1 Master-Slave . 36

4.3.2 CRC . 38

4.3.3 Checkpointing and EDAC with BCH 39

4.4 Tools . 39

4.4.1 Atmel Studio . 39

4.4.2 Atmel Xplained UC3-A3 41

4.4.3 Atmel EVK1104 . 41

4.4.4 Logic Analyzer . 41

4.5 Test Environment . 42

4.6 Results and Observations . 46

4.7 Encountered Problems . 47

4.8 Future Work . 49

5 Discussion and Conclusion 51

A Plots and Data 58
A.1 Code Analysis . 58

A.2 Plots . 59

B The 2nd IAA Conference 62

C The 5th European CubeSat Symposium 70

D SAFECOMP 2013 75

E System Analysis of CSP with FSP and LTSA 87

vii

List of Figures

1.1 NUTS - NTNU Test Satellite . 3

1.2 Sources of Errors and Service Faults [12] 9

1.3 Mechanisms for Heavy Ion and Proton SEU effects [6] 12

4.1 Master-Slave Description . 37

4.2 Master-Slave Connection Diagram 38

4.3 CRC Functinal Overview . 39

4.4 Test Environment . 40

4.5 Functionality Description . 40

4.6 UC3-A3 Xplained and JTAG ICE3 43

4.7 Test Setup with Satellite Hardware 44

A.1 Timeout and Reset of Master . 60

A.2 Timeout and Reset of Slave . 61

C.1 Poster Overview . 71

C.2 Poster Column 1 . 72

C.3 Poster Column 2 . 73

C.4 Poster Column 3 . 74

viii

List of Tables

1.1 Single Event Phenomena . 11

1.2 Typical Total Dose Failures Levels for Various Technologies . . . 14

2.1 General Requirements . 17

2.2 Reliability Requirements . 17

2.3 Autonomous Requirements . 18

2.4 Design Requirements and Drawbacks 20

4.1 Error Correction . 45

4.2 Error Correction for Ideal Case 46

ix

List of abbreviations

ADCS Attitude Determination and Control System

ASF Atmel Software Framework

BCH Bose-Chaudhuri-Hocquenghem

CRC Cyclic Redundancy Check

CSP Cubesat Space Protocol

EDAC Error Detection And Correction

ELDR Enhanced Low Dose Radiation

EPS Electrical Power System

ESA European Space Agency

GCR Galactic Cosmic Ray

GPIO General Purpouse Input Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

x

JTAG Joint Test Action Group

LEO Low Earth Orbit

LET Linear Energy Transfer

MRAM Magnetoresistive Random-Access Memory

NUTS NTNU Test Satellite

OBC On Board Computer

RS Reed-Solomon

RTC Real Time Clock

SEB Single Event Burnout

SEE Single Event Effect

SEGR Single Event Gate Rupture

SEL Single Event Latchup

SEP Single Event Phenomena

SET Single Event Transient

SEU Single Event Upset

SoPC System on Programmable Chip

WDT Watch Dog Timer

xi

Chapter 1

Overview

1.1 Introduction

The gateway to space for research institutions and commercial actors has tradi-

tionally been associated with a very high cost. Recent year’s development of

small, inexpensive satellites known as pico and nano satellites can change this by

considerably lowering both the price point of satellite construction and launch.

An interesting development along these lines has been the introduction of

the CubeSat platform. To help universities worldwide perform space research

the CubeSat platform was developed in 1999 by, among others, California Poly-

technic State University and Stanford University. The goal of the CubeSat pro-

gram is to provide practical, cost-effective and reliable launch opportunities for

small satellites and their payloads through a standardized platform measuring

from 10∗10∗10cm to 10∗10∗30cm [1] [2] [3]. In addition, the community main-

tains an overview of available launch providers, including contact information, a

service that simplifies launch tremendously.

The small standardized form factor makes it more feasible to combine the

1

CubeSats with other payloads, keeping the launch costs low. The co-launch with

other payloads is facilitated in the CubeSat standard by providing pre-authorized

specifications for materials, physical launch stress and separation of satellite and

launch vehicle in orbit. In addition, the satellites often use Commercial of the

shelf (COTS) electronic components, further decreasing satellite costs.

This paper aims to investigate low-cost methods to increase mission lifetime

of small COTS based satellites. The theory and methods that are used are well

known, but the application is novel. The CubeSat community is composed of

a large number of universities, private firms and even high schools [2]. One of

the primary goals with CubeSats is to provide an educational platform. A con-

sequence of this is that the teams working on the satellites have varying degrees

of competence, and a robust design becomes even more important. The StudSat

project at NTNU started as far back as the early 2000s [4] and have launched

two satellites. The first exploded during launch and communication was never

achieved with the second satellite. This history clearly illustrates the concern both

for low cost and dependability for the current satellite.

The use of COTS-based solutions allows for fast development with modern

tools and enables the designers to get full advantage of the economy of scale

with cheap and plentiful components and development tools. Due to the typically

shorter lifespan of these satellites compared to traditional endeavors, it is possible

to use newer, more innovative and even unproven components and designs without

running unacceptable financial risks. This is interesting as it allows for rapid

development and advancement in an otherwise conservative industry.

The majority of the work in this paper has been to study the satellite and

its systems, as well as suggesting solutions to the problems that are likely to be

encountered. Due to cost concerns, availability and needed simplicity due to stu-

dents, CubesSats [2] [3] are usually based on the use of COTS components. A

number of different factors, that will be detailed later in this paper, make these

2

components vulnerable to the environment in space. In this paper we explore

measures to alleviate the impact of these factors to the reliability, availability and

survivability of the satellite.

Figure 1.1: NUTS - NTNU Test Satellite

1.2 Problem

One of the main challenges for space applications is the hard radiation operating

conditions [5] [6]. Radiation hardened electronic components and fault tolerant

hardware have been used in space systems for a number of years to either ensure

error free operation or to mask the occurrence of errors from the operation of the

system. In the context of a CubeSat, however, the main challenges of high reliabil-

ity system design are slightly different. It is still desirable with a high reliability

system, but the budgetary constraints are much stricter than for commercial or

government satellites.

In addition to being considerably more expensive, radiation hardened com-

3

ponents traditionally lag behind their non-hardened equivalents in performance.

This means that one gets a less capable system at a higher price point. At the

same time it is usually not as important with a high availability design for Cube-

Sats since the system does not control critical applications, but rather performs

data collection tasks of an exploratory nature. It is important to receive correct

data and to recognize if the satellite has suffered a malfunction, but the timeliness

is of less importance. This means that on-line redundant backup components can

be omitted as long as we ensure that the system does not malfunction critically

(i.e. fail without coming back up again). By using software methods, combined

with some simple measures of redundancy for the most important subsystems, it is

therefore possible to get higher performance, more flexibility and lower price, all

without hot standby redundant backup components. The reason for this software

approach is twofold. The most important systems in NTNU Test Satellite (NUTS)

has already been realized in hardware, and a redesign at such a late stage is not

desired by the project management. The second reason is that we want the pro-

posed solutions to be relevant for projects that do not have the resources to build

a conventional high reliability system.

When considering the different reliability measurements it is important not to

impact the performance of the rest of the system to an unacceptable degree. If

we can accept restarts and possible data loss when mitigating the effects of Single

Event Phenomena (SEP), it is possible to mask the errors from the operation of the

system by power cycling, checkpointing and EDAC. Power cycling implemented

in the power supply and backplane logic clears Single Event Latchups (SEL) from

components while checkpointing and EDAC clears faults from Single Event Up-

sets (SEU) in memory. This further promotes safe operation and increases the

likelihood of not losing mission critical or payload data. Student satellites do not

have access to the established solutions because of budget constraints, and have to

rely on ingenious solutions and COTS hardware to have a usable system even in

4

extreme conditions.

The problems with COTS components in space are numerous, as detailed by

NASA [5]. In brief, radiation effects known as SEP can occur when cosmic radi-

ation strikes certain parts of the semiconductor material, as outlined in Fig. 1.3. If

the cosmic ray has enough energy it can alter the electrical charge and thereby al-

ter the digital value in the component. This is known as a bit-flip and can corrupt

saved data in addition to causing instability in the system. The expected num-

ber of errors estimated by NASA is 10−5 errors/bit − day [5]. For the NTNU

Test Satellite (NUTS) [7] [8] this results in hundreds of errors per day in RAM and

and up to a thousand errors per day in the flash data-banks. The expected radiation

level is 10-100 Gy per gram of silicon per year with an orbital inclination between

20 and 85 degrees [5]. The large variance stems from the fluctuations in the so-

lar cycle which determines the flux of both solar and galactic radiation. NUTS

will have an even higher inclination and therefore even higher worst case radia-

tion levels can be expected. With the total dose failure level of flash memories

from 50-150 Gy and microprocessors from 150-700 Gy [5] of radiation, both can

experience failure of a permanent nature during the satellite’s mission lifetime.

1.3 Scope and Disposition

1.3.1 Scope

The NUTS project was started in September 2010 with the goal to manufacture

and launch a double CubeSat by the end of 2014. There have been a number

of published articles and papers concerning the reliability of the system as the

project has evolved. The most noticeable ones are the work done on the backplane

by Dewald [9], the Electrical Power System (EPS) by Jacobsen [10] and the On

Board Computer (OBC) by Holmstrøm [11].

5

The purpose of this work is to study useful techniques for implementing a

reliable system by using the modules that have previously been developed. The

approach has been to study reliability theory and find methods that can be used

to mitigate the specific problems encountered by the use of COTS components

in a space environment. The previous work has focused on reliability for certain

aspects of the system, but has not provided software and methods to incorporate

this into a dependable system.

The scope of this work is limited to soft and transient faults. If the components

malfunction due to effects such as charge distribution, SELs or Single Event Gate

Ruptures (SEGR) , the power system and backplane is designed to cycle the power

of the components. If components are damaged there are backups for the most

important ones, for others the system will operate with reduced functionality.

This paper aims to investigate how to achieve high dependability in a simple

system with the use of software methods only. The reason for this approach is

twofold: The hardware for the most important systems has already been com-

pleted, and a redesign at such a late stage is not desired by the project manage-

ment. Additionally we want the proposed solutions to be relevant for projects

that do not have the resources to build a system with high dependability through

conventional means.

1.3.2 Report Disposition

This paper will start with a basic introduction on the topics of space, radiation,

electronics and redundancy. The reason for this is that the paper is meant to be an

introduction for the multidisciplinary project team which might not all be equally

versed in the previously mentioned subjects.

The paper continues with a presentation of the current design in NUTS. It

touches on the limitations, challenges, requirements and the balancing of reliabil-

6

ity versus availability before continuing with the current design and its possibili-

ties and limitations with regards to the use of COTS components in space.

The paper concludes with suggested solutions for the presented problems and

presents the work done to implement some of these solutions and study the relia-

bility of the system.

Parts of this paper have been accepted for presentation at the 2nd IAA Con-

ference and the 5th European Cubesat Symposium. The paper and presentation is

included inn App. B and C. In addition, parts of the paper have been accepted for

publication at the SAFECOMP 2013 Dependable Embedded and Cyber-physical

Systems (DESC) workshop. This paper is included in App. D.

1.4 Theory

Before we examine the satellite and the suggested dependability solutions, some

relevant theory is presented. First some terms from reliability theory, followed by

the problems encountered by electronic components in a Low Earth Orbit (LEO)

environment and their expected lifetime.

1.4.1 Fault Detection and Manifestation

There are many kinds of problems that can manifest in a system. In reliability

theory one differentiates between fault, failure and error. The definitions below

are from [12, p. 22]. In figure 1.2, the cause and consequence of different faults

are further detailed.

Failure occurs when the delivered service deviates from the specified service,

failures are caused by errors.

Error is the manifestation of a fault within a program or data structure; errors

can occur some distance from the fault sites.

7

Fault is an incorrect state of hardware or software resulting from failures of com-

ponents, physical interference from the environment, operator error, or in-

correct design.

Permanent describes a failure or fault that is continuous and stable; in hardware,

permanent failures reflect an irreversible physical change. (The word hard

is used interchangeably with permanent.)

Intermittent describes a fault that is only occasionally present due to unstable

hardware or varying hardware or software states (for example, as a function

of load or activity).

Transient describes a fault resulting from temporary environmental conditions.

(The word soft is used interchangeably with transient.)

8

Figure 1.2: Sources of Errors and Service Faults [12]

1.4.2 Reliability and Availability

Reliability and availability have precise definitions in literature. The following

definitions are from [12]:

The reliability of a system as a function of time, R(t), is the conditional prob-

ability that the system has survived the interval [0, t], given that the system was

operational at time t = 0. Reliability is used to describe systems in which re-

pair cannot take place (as in satellite computers), systems in which the computer

9

is serving a critical function and cannot be lost even for the duration of a repair

(as in flight computers on aircraft), or systems in which the repair is prohibitively

expensive. In general, it is more difficult to build a highly reliable computing

system than a highly available system because of the more stringent requirements

imposed by the reliability definition. An even more stringent definition than R(t),

sometimes used in aerospace applications, is the maximum number of failures

anywhere in the system that the system can tolerate and still function correctly

[12, p. 4].

The availability of a system as a function of time, A(t), is the probability

that the system is operational at the instant of time, t. If the limit of this func-

tion exists as t goes to infinity, it expresses the expected fraction of time that the

system is available to perform useful computations. Activities such as preventive

maintenance and repair reduce the time that the system is available to the user.

Availability is typically used as a figure of merit in systems in which service can

be delayed or denied for short periods without serious consequences [12, p. 4].

1.4.3 Single Event Phenomena, SEP

Electronic components are vulnerable to a number of effects when exposed to cos-

mic rays. The collective term for the different failure mode occurrences is Single

Event Phenomena (SEP) or Single Event Effects (SEE). Cosmic radiation, or cos-

mic rays, applies to electrons, protons and the nuclei of all elements. The source

of cosmic radiation is either galactic or solar. Galactic Cosmic Rays (GCRs) orig-

inate outside the solar system and permeate our galaxy. Solar particle events, in

contrast, originate in the Sun and are produced in solar flares. They are lower in

energy than GCRs and are mostly protons and alpha particles [13, p. 1-28]. Cos-

mic radiation is the cause of several types of SEP with different levels of severity,

as detailed by Tab. 1.1, that have to be understood when working on a space

10

mission.

Table 1.1: Single Event Phenomena
Name Effect
Single Event Transient, SET Soft intermittent fault

Propagating through circuit

Single Event Upset, SEU Soft transient fault

State change on latch or memory

Single Event Latchup, SEL Apparent short circuit

Can be mitigated with power cycling

Can cause destructive thermal runaway

Single Event Gate Rupture, SEGR Permanent failure

Single Event Burnout, SEB Permanent failure

When a charged cosmic particle hits the component, the resulting collision

deposits energy in the material. This is known as a Linear Energy Transfer (LET)

and is defined as the linear density of energy deposited in material by a charged

particle or ionizing radiation traveling through it. The SEU threshold LET is

described at the energy level per amount of material of the radiation that will

trigger SEU events. For COTS components this is typically 5MeV/mg/cm2 [5].

The expected SEU error rate for COTS in LEO is 10−5 error/bit− day [5]. This

might appear to be a minuscule number, but with 128kB of RAM it amounts to

over 10 errors accumulating per day in orbit.

The energy deposited when a particle hits a component can alter the electrical

charge in the n-doped material sections of its internal transistors and capacitors.

If the charge is altered sufficiently, the voltage level of the transistor or capacitor

can change, and this results in change of the stored digital value. This is known

as a SEU and is often referred to as a soft error or bit-flip.

11

The physical effects of cosmic rays in the form of heavy ions and protons on

the electronic components are shown in Fig. 1.3. In spite of their small number,

the heavy elements are very important due to their densely ionizing tracks. They

are responsible for a large portion of the effects in detectors and microelectronics.

Particle flux is also larger over the polar regions where ”open” geomagnetic field

lines allow easier access [13, p. 1-28]. This means that heavy ions are more dam-

aging to the components, as they can transfer more charge and often have higher

energy than than the protons.

Figure 1.3: Mechanisms for Heavy Ion and Proton SEU effects [6]

If the cosmic ray hits specific parts of the electronic components with enough

energy, more severe failures may occur. There are several types of failures that

require physical intervention. The SEL manifests as an apparent short circuit that

12

may cause catastrophic thermal runaway [6], and is triggered when heavy ions,

protons or neutrons hit a susceptible point in the component structure. It is only

recoverable through power cycle and is strongly temperature dependent with the

threshold for SEL decreasing at higher temperatures. Modern devices may have

many different SEL paths and a proper characterization of a latchup is a difficult

problem. It is also worth noting that modern devices may have both high and low

current SELs, something that complicates the characterization further [6]. There

are also destructive SEE such as the SEGR and the Single Event Burnout (SEB),

but these are permanent and outside the scope of this work.

In this paper the main focus is on the most common, namely SET and SEU,

both of which are considered soft errors [14], and the less likely SEL. These three

failure modes are the only ones that can be fixed without a component replace-

ment, something that is outside the scope of this work. More severe conditions

such as strong electromagnetic pulse (EMP) (which could disable the entire sys-

tem) or sun storms which would effectively overwhelm the COTS components in

the student satellite are not considered.

1.4.4 Total Radiation Dose

The total ionizing dose is the combined damage of the semiconductor lattice that

is caused in electronic components exposed to ionizing radiation over time.

The total radiation dose of the system in not a major concern as it will mostly

affect mission lifetime. There is some concern, however, due to new effects such

as Enhanced Low Dose Radiation (ELDR) sensitivity and subtle failure modes

in complex parts. Another concern is that NUTS uses some sensitive technolo-

gies with internal charge pumps such as flash memories [6]. The effects of total

radiation dose should therefore be kept in mind.

For satellites in inclinations between 20 and 85 degrees in LEO, both in the

13

northern and southern hemisphere, the typical dose rates are 10-100 Gy per gram

of silicon per year [5]. As NUTS will have an even higher orbital inclination,

a conservative assumption would be at least 100 Gy per year due to the higher

radiation levels close to the Earth’s magnetic poles. In combination with the in-

formation presented in Tab. 1.2 and [6] we see that some components may fail

within the stipulated mission lifetime of 3 to 6 months. Linear Integrated Circuits

(IC) , mixed signal IC’s and flash memories are the most sensitive components

and this should be kept in mind if there are any unexplained failures two to five

months into the mission.

Table 1.2: Typical Total Dose Failures Levels for Various Technologies
Technology Failure level

[Gy/gram Si /year]
Worst Case

Lifetime [Month]
Linear IC’s 20-500 2.4

Mixed-signal IC’s 20-300 2.4

Flash Memories 50-150 6

DRAMs 150-500 18

Microprocessors 150-700 18

14

Chapter 2

NUTS

NTNU has for a number of years had a student satellite. The main challenge

for such small and low-budget systems is to accommodate a certain amount of

features while working with a limited budget. In this chapter the limitations and

current challenges in the NUTS project will be presented first, followed by the

system requirements. The reliability and availability demands for the system, will

be presented before the current design is described.

2.1 Limitations and Challenges in the NUTS project

As previously mentioned, some of the main challenges with NUTS are the design

constraints in the form of a limited budget. In addition, there are standard satellite

constraints such as weight, volume and power use [2]. In the scope of this work,

the most relevant limitations are regarding the power usage and to what extent the

dependability measures affect the performance of the satellite.

The available power is limited by the relatively small surface area of the solar

panels. As there are subsystems that will have to be duty cycled because of their

15

high power use, it is important to limit the power use as much as possible in the

data handling and control systems. The less power that is used continuously, the

more the camera, ADCS and radio can be utilized.

The satellite will have various housekeeping routines and will need a certain

amount of processing for the payload. When analyzing the satellite’s systems

and implementing dependability measures, it is important to keep the resource

requirements as low as possible. Another factor is that the satellite should be

responsive, even when executing error correcting routines.

In the scope of this work the main challenge is one of budgeting. We will have

to budget the available resources in the most responsible manner and the more we

can reuse available resources the better. The theory and methods presented to

solve these problems are not new in themselves [12] [15] [16], but when applied

to the relatively new CubeSat platform, the different focus and design challenges

of the project makes for demanding work. How can we implement the required

dependability and error handling while at the same time providing a responsive

and robust satellite?

2.2 Requirements

This section presents the requirements that are relevant in a reliability context.

There is no exhaustive system specification at this point, but a complete overview

of the specified requirements to date can be reviewed at [11].

16

Table 2.1: General Requirements
Description
The satellite must execute a one-time initialization se-

quence on first boot up

The satellite must be able to create and store commands

programmatically

It must be possible to initiate a full or partial satellite sys-

tem reset from the ground station

It must be able to set the current time in the satellite, from

the ground station

Table 2.2: Reliability Requirements
Description
Only uncorrupted commands shall be executed

A failing program must not affect the core functionality of

the system

Execution of less-important tasks shall not affect the time-

liness of higher-prioritized tasks

A frozen system program shall not render the satellite use-

less

It is desirable to have a highly reliable system. In order to operate correctly

the satellite needs rules of conduct for when communication to the ground station

malfunctions.

17

Table 2.3: Autonomous Requirements
Description
Self-repairing to the greatest possible degree

Absolute measurement of time in order to initiate self-

repairing correctly

Correctness determination algorithms in order to initiate

self-repairing correctly

In this context, the self repairing is primarily regarding the radio. If the ra-

dio malfunctions in orbit the satellite is unable to fulfill its mission requirements.

There are many possible measures to increase the dependability of the satellite, as

will be detailed in another chapter.

The satellite modules should have measure of real time in order to facilitate

timeouts on critical systems. To understand the need for time awareness we can

review a possible use case in the ADCS module. When the satellite ejects from the

launch vehicle it can spin in such a way that the antennas are unable to commu-

nicate with the ground station. Therefore the satellite needs to be able to initiate

detumbling autonomously after a predetermined time period, especially consider-

ing the likely antennae problems on NCUBE-2. The detumbling is the process of

stabilizing the angular rate of the satellite after orbital insertion. Another relevant

use case is that problems in the EPS causes the satellite to reset periodically or in-

termittently. This period could be shorter than the timeout to initialize automatic

detumbling in the ADCS. Therefore the satellite needs to measure the total time

since orbital deployment and initial boot.

Another important requirement is to be able to maintain proper operation dur-

ing sporadic resets. As some of the dependability measures mitigate errors via

power cycling a reset could occur at any time. Therefore, the satellite should stay

18

in a consistent state and protect its stored data.

The satellite should have measures to counteract radiation effects. As ex-

plained in Sec. 1.3.1, the faults considered are soft and recoverable. In case of

SEU or SEL the satellite needs to be able to detect the faults reliably and initiate

countermeasures.

In addition, the satellite should have some autonomous capacity. If communi-

cation to the ground station is lost or delayed because of some unforeseen event,

the satellite should behave in a predetermined manner to reduce potential malfunc-

tion and inaccessibility. Some appropriate measures include maintaining a power

budget, execution of self tests and to activate the beacon for status messages.

2.3 Reliability vs. Availability

In the NUTS’ scope of operation it is not necessary with a highly available system.

Availability, as described in Sec. 1.4.2, is the proportion of a time a system is in

functioning condition. The payload, however, is not dependent on being available

at all times. The satellite will have to duty cycle the payload to save power, and as

long as it is able to complete and transmit a series of pictures to the ground station,

the mission requirements are fulfilled. Therefore the availability requirement of

the satellite can be relaxed to an adequate average availability.

The same argument can be used with regard to the radio communication. The

satellite is normally in eclipse from the ground station and can therefore be un-

available for considerable fractions of time before it interferes with operations.

Even if the satellite should malfunction during communication there are multiple

passes each day. As long at the satellite’s communication is not degraded to an

inoperable degree, it is acceptable that it is unavailable in a window of minutes to

hours.

19

Table 2.4: Design Requirements and Drawbacks

Problem Solution
Reliability Availability

Freeze/crash Low power watchdog Online backup module

Result check Recalculation Result checking logic circuits

Continuity of operation Saving of current state Seamless switchover

SEP Checkpointing Replication of logic circuits

Drawbacks Must be very robust Higher power consumption

Extra circuitry

As can be seen from the assessment in Tab. 2.4, the design of a highly avail-

able system adds a number of strict requirements for the architecture of the sys-

tem. The design effort could therefore favorably be shifted towards a system with

high reliability and survivability, without the extra overhead of a highly available

system.

2.4 Current Design

In the design of the satellite to date, a number of systems have already been spec-

ified and built. In order to integrate the solutions for dependability efficiently, we

need to study the relevant satellite software and subsystems in the current design.

Below follows a brief overview of the most relevant systems and their capabilities

and limitations

20

2.4.1 Backplane

The backplane design includes control logic for submodules, power distribution

and control and redundant power and communication buses. In addition, a lot of

work has been done to ensure that the functionality of the backplane is realized

exclusively with discrete logic. This allows for a more complete state space analy-

sis and ensures that is it possible to account for all of the backplane’s states. When

all states are accounted for it is possible to guarantee that the backplane does not

enter a deadlock, given that all the logic gates remain functional.

Each module slot in the backplane has redundant power supply and system

bus connection. In addition, it is possible for one of the two master modules to

power cycle or shut down individual modules in the system. In the event of a high

current SEL, the chips in the power distribution network will limit the module’s

current without intervention from the control boards. Another automatic control

feature is an integrated WDT for the entire backplane. This enables the satellite

to reset in case of a malfunction of both control boards.

The two master modules have access to the programming pins of the MCUs.

This means that they have the possibility to reprogram each other in the case of a

critical malfunction. This measure should, however, only be used as a last resort

due to the possibility of corruption while programming.

The master modules of the backplane have the possibility to communicate

independent of the satellite’s Inter-Integrated Circuit (I2C) bus. This is useful

because the bus and the overlying protocol are complex. As a result of this it could

prove difficult to guarantee schedulability of the prioritized messages between the

master modules in the event of a bus malfunction. The use of a separate bus with

no contention for heartbeat and other status messages is a valuable feature.

The backplane contains a lot of useful functionality for configuring the satel-

lite in a system reliability context, and will be central as the work progresses. For

21

further information on the capabilities of the backplane please refer to Dewald’s

master thesis [9].

2.4.2 On Board Computer, OBC

The MCU on the OBC is an AT32UC3-A3256 [17] with 16Mb additional SRAM

and 16GB NAND flash for image processing and storage [11]. The MCU itself

has a WDT and a Real-Time Clock (RTC) timer which will both be useful in a

reliability context. In addition there is a lot of flash that can be used for storage

when implementing checkpointing. The OBC will be placed in a master slot on

the backplane with full access to the backplane logic and resources.

2.4.3 Radio

The chosen MCU for the radio module is AT32UC3-A3256 [17]. In addition to

the MCU, the radio module have two VHF radios, one for regular communication

in full-duplex and one that will function as a beacon with simpler messages in

half-duplex. The most interesting component concerning reliability is the MCU,

as it is the same that is used in the OBC. This means that it will have the same

capabilities with respect to reliability, such as WDTs etc., as the OBC. Like the

OBC, the radio will be placed in a master slot on the backplane.

2.4.4 Payload

The primary payload is a camera for atmospheric studies. The Department of

Physics wishes to study gravity waves in the upper atmosphere [18]. For further

information on the payload please refer to Rønning’s master thesis [19]. The pay-

load’s signal processing will require a great deal of computational power as de-

tailed in Bakken’s thesis [20]. This is arguably the most resource intensive system

22

on the satellite and it is important to have available computational capacity when

necessary. The payload and its processing is the most limiting factor in terms of

available processing power and availability in the satellite, as it is important for

the mission’s success.

A secondary payload in the form of a wireless bus is under construction. The

design and implementation is detailed in Frances’ thesis [21]. The bus adds redun-

dant means of communication within the satellite without adding much in terms

of weight or wiring, and it is therefore beneficial to a CubeSat. Even though the

wireless bus may not have the high availability or reliability required for critical

subsystems, its high bandwidth can be beneficial for the scientific instruments,

and for NUTS the redundant bus is a valuable reliability feature.

2.4.5 Operating System

The satellite uses the FreeRTOS operating system on the OBC and Radio, and

potentially on the ADCS and Payload as well. FreeRTOS is an open source real

time OS that is module based and easy to customize to different configurations.

It is very light weight, support threads and tasks and can be configured to have

a POSIX simulator. The addition of an OS is positive in a reliability context

because it facilitates increased focus on module based design. There are several

advantages:

Scheduling ensures the proper execution of high priority system tasks. This is

useful to counteract resource intensive tasks from obstructing the rest of the

satellite’s systems.

Memory protection is very useful for a system with many different tasks. It

ensures that it is not damaging for the system if a task should run out of

memory or if there is some faulty memory management in one of the pro-

23

cesses. In NUTS there are some very memory intensive applications such

as video processing.

Communication stack allows for the lower level inter process and inter module

communication to be abstracted away from the rest of the development.

File system stack allows for easy storage and retrieval of data. By using an OS it

is possible to port the well tested and well performing YAFFS2 file system

for flash storage.

The reasons detailed above allow the teams working on the specific applica-

tions to abstract away the system level programming and should supply a better

developing environment.

2.4.6 Cubesat Space Protocol, CSP

Development on CSP started at Aalborg University in 2008. It is a small network-

layer delivery protocol designed for CubeSat missions [22]. This is an important

addition to the project as it allows the use of an advanced protocol for module and

ground station communication, without incurring much of a development burden.

The CSP protocol implements drivers (layer 1), MAC interfaces (layer 2), network

router (layer 3) and a reliable datagram protocol (RDP) in the transport layer (layer

4) [22]. It is planned to be used at both the ground and space segment.

In the context of system wide reliability, CSP plays a significant role. The pro-

tocol is the fundament for communication between the satellite’s different mod-

ules and subsystems, and will be used to determine the correct operation of said

modules. The work that has been done regarding the reliability of CSP can be

found in Sec. 4.2.2.

24

Chapter 3

Evaluated Solutions

As preparatory work to this paper a number of possible additions were evaluated

with the intention of increasing the dependability of NUTS. Some of the solutions

have been implemented while the rest are suggested as future work. The Error

Detection And Correction (EDAC) module will make it possible to detect and

correct the SEPs occurring in memory. Checkpointing is a proven technique to

make the system resistant to losing data or operational context while recovering

from failures. Master-Slave functionality allows for a spare control computer in

case the main one malfunctions. The Watch Dog Timer (WDT) ensures that the

system does not deadlock while interfacing with other system components. A

periodic reset protects against any undetected failures that linger in the system.

The ability to disable faulty modules safeguards against a malfunctioning module

affecting the rest of the system. Finally, the ability to perform an integrity check

on the program memory ensures that possible errors can be detected and restored.

25

3.1 Error Detection and Correction, EDAC

Due to the random nature of the expected faults it is difficult to determine if the

data variables are safe to use. To counteract faults we could store the variables

multiple times and do a majority voting on the correctness or have an error cor-

recting algorithm such as BCH [23, p. 155] codes to correct the faults at run-time.

Since executing BCH codes in individual tasks would add a layer of complex-

ity, a system task that manages the secure storage and recovery of protected data

should be considered. A specialized EDAC system task with practical interface

functions makes the system development more comprehensible by removing the

sometimes complex algorithms from the scope of the developer. A module based

design is favorable in programming because of the increased ease of maintaining

and ensuring the correctness of smaller modules. This point applies even more for

reliable systems [12, p. 202].

Last, but not least, the number of detected radiation induced errors should be

logged. It is useful both for this and future designs to have a numerical value on

how well the satellite performs with respect to dependability and reliability.

3.2 Checkpointing

Checkpointing is a proven solution in software system redundancy. Checkpointing

stores the system state that is necessary for continued execution and completion of

the process at specific points during process execution [12, p. 214]. This enables

the system to roll back in the case of an error or initialize quickly and without los-

ing critical data in the event of a system restart [15]. It is important to ensure that

the system is able to roll back multiple instances in case there is some unforeseen

fault present that could compromise any single checkpointing instance.

Power cycling of faulty modules is implemented in the backplane. The mod-

26

ules of the satellite must therefore tolerate a sudden reset without losing any sig-

nificant amount of progress or data (i.e. at least the loss of data must be known).

It must be known that the reset is due to an error in operation as there are some

events such as antennae deployment and detumbling that should only be executed

once. Including these events in the saved system state will provide a simple mea-

sure of ensuring operational progress for the satellite.

3.3 Master-Slave

The design of the backplane allows for two master modules that can control

the backplane logic and communicate independently of the system bus, allowing

master-slave functionality in the control of the system. This enables one module

to take over operations if the other one should fail. With the assumption that it is

unlikely for both modules to fail at the same time, this increases the likelihood of

the satellite being continuously operational.

An added complexity to the traditional master-slave setup is that the modules

do not have the same capabilities. The radio module, for instance, is the only

module that can communicate with the ground segment and the OBC is the only

module with sufficient RAM and storage to perform image processing from the

payload. The system would therefore operate with reduced functionality as long

as the radio or OBC is offline. The backup module should therefore power cycle

the main module in addition to managing the rest of the satellite.

When master-slave is implemented as tasks running on the subsequent mod-

ules there are a number of things to keep in mind.

Simple code is more analyzable since it has fewer states. A small amount of code

is also less likely to experience SEE.

Independent software should be developed to interact as little as possible with

27

the rest of the system. By limiting the interaction with the rest of the sys-

tem’s software, the possibility of being trapped in a deadlock or waiting for

an unavailable resource decreases.

Independent communication from the system bus should be possible. A high

level reliable transmit protocol is complex to analyze and also has numerous

points of failure. It can also be difficult to ensure its real time capabilities

(see Sec. 4.2.2).

3.4 Watch Dog Timer, WDT

A very useful and often employed concept in reliable computing is the WDT. The

basic functionality of the watchdog timer is fairly simple. The running program

must periodically reset the WDT and if this fails the system will restart. The WDT

should be activated every time the system performs and input, output or waits for

an internal module. It is also possible that the system enters an unrecoverable

state in other sections of the code, if a SEP occurs, as described in Sec. 1.4.3.

In addition, a WDT protects against weaknesses in the system design and ensures

that the system will not malfunction in the event of an untested software bug [12,

p. 130].

All of the MCUs used in NUTS have internal WDT modules that should be

used. In addition, it is possible to use an external IC with WDT functionality.

This IC is located on the backplane and will provide a full system reset. Given

the use of WDTs on each module and the possibility of losing data in the entire

satellite, the WDT on the backplane should only be activated if both of the control

computers fail to respond.

28

3.5 Periodic Reset

When designing the EDAC service it is difficult to guarantee full coverage of

the error detection. Some errors may be left undetected and the EDAC service

might be overwhelmed in periods with high radiation intensity (e.g. when passing

through the South Atlantic Anomaly). Another consideration is that the EDAC

service is not meant to be on a system-wide level due to the overhead of the im-

plementation, especially for multiple-error-correcting codes [12, p. 147].

In modern components it may also be difficult to properly detect SEL events,

since both high and low current SELs can occur (see Sec. 1.4.3). The high current

SEL is caught by the backplane which triggers an automatic reset on excessive

current consumption, but no such mechanisms exist for low current SELs is the

design.

The possibility of undetected memory corruption and low current SELs is a

real concern as they are both difficult to determine properly. To solve this problem

a periodic power cycle of all the modules is suggested.

3.6 Disabling Faulty Modules

Due to the possibility of permanent failures in the satellite’s modules it should be

possible to execute a controlled shutdown of the different subsystems. The main

difficulty with this is to construct algorithms to determine which modules are not

operating correctly. Generally speaking the modules can fail in two ways, either

a silent failure where the module becomes unresponsive, or what is known as a

babbling-idiot failure [24]. A babbling-idiot fault typically occurs when a node

occupies the bus and transmits high-priority messages at erroneous time instances

so frequently to cause additional delay in the communication of properly operating

nodes. The worst-case scenario happens when a node keeps the bus continuously

29

busy, thus inhibiting every communication between the other nodes [24].

Fault determination measures can also fail themselves. This is mitigated with

the presence of two control modules and the assumption that only one will crit-

ically fail at a time. This is the same number of control computers that NASA

originally had on the space shuttle engine control [25]. It is considered safe be-

cause of the low probability of radiation hitting the same part of the logic in two

separate modules. Once the faulty module is determined it can be disabled via the

backplane logic.

3.7 Program Integrity Check

In addition to secure storage there should be a periodic subroutine that performs

a Cyclic Redundancy Check (CRC) on system flash in order to determine if there

has been corruption of the program flash. This can be done alternately by two

or more different but identical functions placed in different parts of the flash to

mitigate the risk of an error in the CRC function itself. The CRC is possible

to implement with a small amount of code and it should therefore be a feasible

solution.

It should be possible to store copies of the main program in the large flash

data-bank available. If this data is maintained by an error-checking subroutine

and checked before flashing other modules it should be reasonably safe. In case

of failure of part of the flash-bank, the programs could be stored multiple times

on different parts of the flash.

In addition, one could implement a testing routing to be performed by an-

other microcontroller. This routine would invoke a critical subset of software and

hardware modules and check their result against answers calculated in advance.

30

3.8 Testing

The most realistic test would be to expose the system to a radiation environment

and measure how the system holds up under real stress. While this might be desir-

able for the finished system it is not very useful when testing specific algorithms

or sub modules in the system. The reason for this is that it is very difficult to

control which module that is to be tested and next to impossible to replicate the

exact error conditions in order to determine the severity of the fault.

Another alternative is to simulate random error occurrence via Joint Test Ac-

tion Group (JTAG) port in the software running on the CPU boards [26] This

is somewhat better because the efficiency, e.g. of the error correcting code, can

be determined directly since the number of inserted faults is known. Arguments

against this testing regime is the lack of some realistic errors. Latchup, for in-

stance, is hard to simulate in software.

With these considerations in mind, the preferred testing method is to simulate

errors with JTAG injection of faults during runtime. This is the most economically

viable option for us, while at the same time allowing for repeatable test runs and

allowing us to focus on specific parts of the system.

31

Chapter 4

Implemented Solutions and Test
Environment

This part presents an overview of the solutions that have been implemented for

NUTS as well as a detailed description of the test environment, setup and tools

used. First we will present a summary of other projects’ solutions for EDAC and

increased fault tolerance.

4.1 EDAC on Other Satellites

A number of other other CubeSat and NanoSatellite projects focuses on deploying

robust EDAC to counteract SEP during satellite missions. At the 5th European

Cubesat Symposium in Brussels a number of different solutions were presented.

In his presentation, X. Yu [27] solved these problems by using a System on

Programmable Chip (SoPC) approach on a commercially available FPGA. This

chip comes with anti-SEU technology internally and a system-level backup hot

redundancy.

32

The presentation by B. Osbourne [28] deals with the inclusion of an FPGA

in the payload board called RUSH. This computer board will demonstrate and

validate new approaches for rapidly recovering from radiation induced errors in

reconfigurable hardware.

V. Broun [29] addresses the effectiveness of shielding analog and digital com-

ponents and measures radiation received by the components. Different areas of

the satellite have different types and thicknesses of shielding and the result of the

identical components are compared to determine the effectiveness of the different

shielding configurations.

In his presentation, T. Rajkowski [30] deploys an FPGA in combination with

a low-power MCU. They use CRC and modular redundancy of functional blocks

in addition to NOR flash working in triple redundancy to store FPGA configura-

tion. In order to provide latch-up protection they monitor current consumption

and intervenes if it exceeds safe levels. Watchdogs and coupled watchdogs are

applied to recover from functional interrupts. In most sensitive points of design

an analogue voting mechanism is used.

4.2 Design Justification

4.2.1 Software Based approach

What are the reasons for choosing software based approach in this thesis? This

section presents the positive properties of a software approach to dependability

and EDAC and in which cases it is applicable.

A software approach can have very low overhead in the system design phase.

The requirement for including software in a project is very low, essentially only

a compiler and some processing time is required. Compared to developing hard-

ware features, especially if we consider prototyping and production lead time, a

33

software approach could decrease development time. In addition, this approach

can increase dependability (as we will show) while having a good cost to benefit

ratio, making it ideal for low-cost CubeSats.

Microprocessor control is becoming more common, and with this increase,

the number of critical or important applications that are controlled by microcon-

trollers increases as well. As process technology continues to decrease in size, all

computer systems face an increasing risk of experiencing faults caused by cosmic

rays.This infers that resistance to and consideration of these effects is becoming

more important.

We want our designs to be useful for other projects than NUTS. The software

approach is useful for many small designs, for instance RF sensor networks. They

are often battery powered and constricted to a small form factor. A redundant

hardware design would use valuable space and power on these systems, result-

ing in a bulkier, shorter lived and ultimately less useful sensor network. These

networks have other features that make them particularly suitable for a software

dependability approach. The protocols are already resistant to temporary loss of

connection and varying response times, both of which are a requirement for using

the soft dependability approach proposed in this thesis.

The software approach adds dependability with low extra cost in applications

were it would not otherwise be practical. It is important to remember that an

increased software load results in more executable code which reduces sleep time

and thus increases power use as well. Nevertheless this impact should be smaller

than duplication of functionality for most systems. It is also worth noting that

while a software based dependability approach is useful in some applications they

are still limited. In critical applications with a high reliability requirement, such as

safety features in modern cars, the temporary downtime while the system performs

error correction could be catastrophic.

34

4.2.2 Critical Communication Between Modules

The communication between the modules in NUTS is based on I2C and CSP.

In order to understand the ramifications of this decision for the reliability of the

satellite we refer to the previous work [31]. The text is adopted for this paper and

the entirety can be found in Appendix E or the electronic attachments.

CSP is a message based communication protocol that allows the creation of

sockets for inter process and network communication. In order to determine if

CSP is fit for communication between critical modules a formal verification of

the protocol was attempted. A process algebraic model of CSP was constructed

and analyzed as a Finite State Process (FSP) in the Labeled Transition System

Analyzer (LTSA) tool. The chosen error model was a standard implementation of

a unreliable medium as the one in [32].

The Cubesat Space Protocol implements a Reliable Datagram Protocol (RDP)

in accordance with RFC-908 [22]. A large portion of the work was to translate

the protocol from documentation and source code to an accurate FSP model. The

implemented model of CSP was deadlock and livelock free with the provided

error model. However, due to the possibility of implementation of changes to

the protocol, it is difficult to ensure that the implemented model is an accurate

representation of the source code. In order to ensure an updated model one would

need to devise and employ an automatic translation tool, otherwise it would be too

time consuming.

Given the difficulty of verifying the correctness of the transfer protocol and

the possibility of compromised operation due to radiation effects, a simple com-

munication form was chosen for the critical systems. A heartbeat and a boolean

test is easily implemented as a very low level protocol by toggling the General

Purpose Input Output (GPIO) lines of the microcontrollers. This form of commu-

nication has a low information content but should be considerably more reliable

35

than a bus protocol.

4.3 Functional Overview of Implemented Solutions

In addition to the literary study and review of possible solutions for the satellite,

there have been conducted more detailed studies on a couple of subjects. A pre-

sentation of this work is given in this chapter.

4.3.1 Master-Slave

The Master-Slave setup is presented in Fig. 4.1 and 4.2. The setup is realized

with two Xplained boards [33] representing the OBC and the radio modules in the

satellite. The master and the slave each have access to a GPIO line (used as a heart

beat) and the reset line of the other. In this setup both the master and the slave

emits a periodic heartbeat in state SHB . In SM the slave monitors the master’s

heartbeat and vice versa. If no heartbeat is received a timeout occurs switching

the state to STO and then to SRe, resetting the other processor, as can be seen in

Fig. A.1 and Fig. A.2. If the master sends the reset signal it switches to SM and

resumes normal operation. On the other hand, if the slave sends the reset signal

it assumes the role of master in SAM . If a heartbeat is received, the slave goes

back to SM . This variation to the traditional setup is necessary since the master

and slave do not posses the same capabilities. The intention is that a reset and/or

power cycle will clear any SEU or SEL present in the other processor and restore

normal functionality. The timeout duration is increased on consecutive resets to

combat a reset cycle where the master does not have sufficient time to assume

normal operation before the next reset. A logic analyzer was was used to tap the

communication lines and monitor the operation of the master and the slave.

We use a GPIO connection because it is one of the simplest information trans-

36

SM SHB

STOSRe

Master

timer

timer

HBS HBM

ResetS

SM SHB

STO

SReSAM

Slave

timer

timer

HB

HBM HBS

ResetMHBM

SM : State monitor
SHR: State heart beat
STO: State timeout
SRe: State reset
SAM : State assume master

Figure 4.1: Master-Slave Description

fers that is possible between two MCUs. The only required action of the program

code is to write to an I/O register. Compared to a bus interface such as I2C it has

far less likelihood to fail, especially when a network protocol such as CSP runs

on top of said interface [31]. In addition, guaranteeing prioritized communication

on a multi-master I2C bus is difficult. It is possible that the bus will be polluted

with messages from other malfunctioning modules [24]. If an external interrupt

pin can be spared on the master and slave it is requires less resources to wake up

from sleep to register the heartbeat. Considering all this we advocate for this form

of communication to be used in the final revision of the satellite.

37

Figure 4.2: Master-Slave Connection Diagram

4.3.2 CRC

The CRC is implemented with code borrowed from Atmel Software Framework

(ASF) and is the first routine that executes after boot. The same development en-

vironment with two Xplained boards were used and the functionality is described

in Fig 4.3. GPIO lines were used for direct communication between the master

and the slave. At this point there is no action taken if a CRC error is detected.

In order to correct faults in the program memory of the MCU one would need

to reprogram the whole or part of the system flash, and this is a risky operation,

especially if it is to be done automatically. At this time the NUTS project has not

included reprogramming because of these risks, but the CRC routine would still

provide valuable information regarding the health of the system.

38

SB SCRC SNO

SE SDO

timer

CRC errorSB: State boot
SCRC : State CRC
SNO: State normal operation
SE : State error
SDO: State degraded operation

Figure 4.3: CRC Functinal Overview

4.3.3 Checkpointing and EDAC with BCH

The EDAC and checkpointing is implemented as an integrated system. Figure 4.4

shows the components of the EDAC system and a brief presentation of functional-

ity is provided in Fig. 4.5. This is the principal design: The system is assumed to

start in a normal state. The system does not, however, assume correct operation,

and the first action after startup is to perform a CRC of program memory. If a

fault is discovered the EDAC attempts to correct the data. If the error cannot be

recovered the system enters the checkpoint stages (c1, c2, ... , cn). If the rollback

is successful the system continues, if not it resets.

4.4 Tools

4.4.1 Atmel Studio

Atmel studio is a free to use IDE for AVR ICs developed by Atmel. It is the chosen

development environment in the satellite project and its repositories. The software

39

Host computer:
Generates fault

distribution

JTAG:
Access

memory and
inject faults

UC3:
Executing satellite
SW with EDAC

and checkpointing

Generated faults

Inject faults

Read results

Figure 4.4: Test Environment

normal EDAC

recover

fault

c2

resume

c1

error

rollback

...

rollback

resume

cn

rollback

resume

reset

resume

reset

host

emulated radiation
EDAC results

Figure 4.5: Functionality Description

40

for the Xplained and EVK1104 have been developed on Atmel Studio 6.0.1996

with the AVRGCC 3.4.1.95 tool chain. We use the ASF to provide drivers for

external components and a protocol stack for communication between the host

computer and the Xplained board.

4.4.2 Atmel Xplained UC3-A3

The Xplained is a small development board from Atmel with the same microcon-

troller (AT32UC3-A3256 [17]) that NUTS uses. It is conveniently powered by

USB and have most of the necessary pinouts for development. It has a number of

common functionalities and drivers provided by ASF which eases development.

4.4.3 Atmel EVK1104

The EVK 1104 is a larger development board from Atmel with the same micro-

controller (AT32UC3-A3256 [17]) that NUTS uses. It has a larger package mi-

crocontroller and therefore more pinouts. It is used mainly because of its included

flash memory which is similar to the flash memory of the satellite. A number of

drivers and common functionalities is provided by ASF which eases the develop-

ment.

4.4.4 Logic Analyzer

When developing solutions that rely on multiple microprocessors and the com-

munication between them a logic analyzer is an invaluable tool. Besides the ad-

vantageous overview of the bus communication the logic analyzer has several

advantageous features. Compared to the USB communication stack available in

Atmel Studio it has lower overhead in memory when used to communicate with a

computer, as no additional code needs to execute. By using the logic analyzer both

41

for communication with the computer and debugging the bus it is easy to have the

correct context between messages, bus communication and state changes. Unlike

the USB stack and the accompanying drivers, it is robust with respect to restarts.

We could achieve this with RS232 serial communication but we would lose the

context to the bus communication. In addition, the development boards does not

have a RS232 IC. The particular logic analyzer used was the Logic16 from Saleae

that is provided by the project.

4.5 Test Environment

The experimental systems consists of a host computer and an Xplained devel-

opment board [33] from Atmel. The development board uses the AT32UC3-

A3256 microcontroller [17], the same microcontroller as the NTNU satellite. The

Xplained executes the EDAC and checkpointing system and two tasks that re-

quests protected memory from the EDAC system. The operating system used is

FreeRTOS 7.0.0. The host computer generates errors in a certain distribution to

emulate radiation and injects these through a JTAG interface while monitoring the

EDAC results. In addition, the developed code was tested on the actual satellite

hardware, as can be seen in Fig. 4.7.

In order to have more control of the results we have configured a representa-

tive test system. The representative code only includes the necessary components

(FreeRTOS, ASF and BCH codes) . This way we have the desired control of the

execution environment. One reason for the necessity of this is that the code for the

full satellite system is written by many individuals and due to its size it is difficult

to maintain a comprehensive overview of all occurring events.

The main satellite repositories have 23405 lines of C and assembly code. The

development environment for the representative test system have 18036 lines of

code consisting mainly of operating system and drivers. The difference between

42

Figure 4.6: UC3-A3 Xplained and JTAG ICE3

the satellite repositories and the representative system is approximately 5400 lines

of code. The implementation of EDAC and checkpointing adds approximately

2700 lines. It is significantly easier to control the representative system, since

the omitted lines are continuously changing and perhaps not structured optimally

having been written by students and not professional programmers.

The microcontroller has limited RAM to store the protected data. To com-

pensate for this, and leave a bigger portion of system memory to tasks such as

image compression, we store most of the protected data in flash memory. When

the variables are requested they are loaded from flash to RAM. The protected data

in the flash is corrected periodically. To communicate between tasks on the mi-

crocontroller we use the built in queues in FreeRTOS. In the representative test

system we protect a smaller amount of data compared to the requirements of the

finished satellite. To compensate for this we increase the intensity of the emulated

radiation. The emulated error distribution of the protected data is generated and

transferred to the microcontroller.

43

Figure 4.7: Test Setup with Satellite Hardware

The result from use of the error correcting code is in Tab. 4.1. The protected

memory is divided in blocks of 1008 bytes as this is the best fit between an even

number of 9 byte BCH codes and the flash page size of 1024 bytes. Table 4.1

presents the results from the correction of three blocks of memory. The faults

are generated as a normal distribution and injected. The faults that can not be

corrected leads to errors. In Tab. 4.2 the number of faults per BCH code en-

try is bounded to the maximum correctional capability of the code. When the

number of faults increase past 224 we cross this threshold. Table 4.2 is included

to demonstrate the maximum effectiveness of the correctional codes under ideal

circumstances.

44

Ta
bl

e
4.

1:
E

rr
or

C
or

re
ct

io
n

B
lo

ck
1

B
lo

ck
2

B
lo

ck
3

E
rr

or
C

om
pa

ri
so

n
Fa

ul
tG

en
er

at
or

Fa
ul

ts
E

rr
or

s
Fa

ul
ts

E
rr

or
s

Fa
ul

ts
E

rr
or

s
M

ea
n

St
d.

D
ev

µ
σ

se
ed

32
0

28
0

36
0

0
0

0.
3

0.
5

13
58

5
69

0
63

0
65

0
0

0
0.

6
0.

5
13

58
5

98
0

10
3

0
90

0
0

0
0.

9
0.

5
13

58
5

13
2

0
12

8
0

12
8

0
0

0
1.

2
0.

5
13

58
5

16
3

0
15

2
0

15
6

0
0

0
1.

4
0.

5
13

58
5

16
9

0
16

1
1

16
5

0
0.

33
0.

47
1.

5
0.

5
13

58
5

18
1

0
17

5
3

17
7

0
1

1.
41

1.
6

0.
5

13
58

5
19

1
4

19
5

5
18

8
3

4
0.

82
1.

7
0.

5
13

58
5

20
4

8
20

4
9

20
0

7
8

0.
82

1.
8

0.
5

13
58

5
21

0
9

21
5

11
21

3
11

10
.3

3
0.

94
1.

9
0.

5
13

58
5

22
2

13
22

3
15

22
9

20
16

2.
94

2.
0

0.
5

13
58

5
23

5
18

23
0

30
23

5
24

24
4.

90
2.

1
0.

5
13

58
5

24
4

26
24

0
27

24
3

27
26

.6
7

0.
47

2.
2

0.
5

13
58

5

45

Table 4.2: Error Correction for Ideal Case
Injected faults Errors

128 0
224 0
256 32

4.6 Results and Observations

The preliminary results are encouraging. The chosen parameters can detect and

correct up to 2 randomly occurring errors per stored variable, and if the faults

are located favorably, up to 224 errors per protected data block. Upon a closer

examination of the injected errors we observe that the system runs to completion

if the number of errors per message block is lower or equal to the number of errors

the BCH codes can correct. Reed-Solomon (RS) error correction might have been

a better choice since they perform better than BCH codes in burst error cases [23,

p. 113]. Nevertheless, with the expected fault intensity of 10−5errors/bit− day

it is very unlikely that the number of errors in a message block will exceed the

codes’ capacity. The decoding of RS and BCH has similar performance and as

part of future work we could change the implementation to get better results in

those cases.

While the general implementation of BCH(N,K) codes is costly and very

inefficient [23, p. 161], by taking advantage of specific aspects of the BCH codes

and using look-up tables, we have optimized the implementation for our micro-

controller. By choosing constant values for N and K we do the heavy computa-

tion of the generator polynomial coefficients in advance. With these techniques in

place, the number of required cycles can be reduced by up to 51% [23, p. 164],

but the precise computational cost may vary with the chosen embedded processor.

The typical features that affect performance is word length (32, 16 or 8-bit) and if

46

the processor uses soft float or has floating point processing implemented in hard-

ware. Other factors such as the ability to use specific processor capabilities such

as special instructions for digital signal processing can also increase performance.

For testing purposes, optimized BCH(67, 53) codes have been implemented.

This code length is used in the European Digital Video Broadcasting standard

[34] and it is therefore easier to find hardware implementations if increased per-

formance is required. However, the final parameters should be adjusted based

on how much computational power that is available after the payload and radio

systems have been fully integrated and tested. This is due to the energy budget.

The codes should not run a significant amount of time since the available battery

power is limited.

4.7 Encountered Problems

In this section a number of encountered problems are collected to be helpful for

future development. The collection of these in a section is meant to be used as a

reference for further development in the project.

How do we test for correctness of the error correction when we do not have

a reference that is guaranteed to be correct? When we develop in a laboratory

environment we can always keep a reference of the data that is used in the EDAC

system. Once the satellite is deployed we do not have the possibility to do this

as the storage is compromised. This is a difficult problem and we have some

possible solutions. We can store the data multiple times and do a majority vote, but

this increases computational time threefold. Checkpointing can be used to keep

multiple temporal copies and would not add the same continuous overhead. It is

also possible to add an extra CRC after the correction to determine if the recovered

data is equal to the stored data. All of these schemes can mitigate the possibility of

unrecoverable faults. However, we still have the problem of correctly determining

47

the present of an unrecoverable error, as they are all vulnerable to an extra error

in the added protection. At this time it is left as future work as no satisfactory

solution could be devised.

The implemented solutions for dependability and EDAC can also fail them-

selves. The presence of errors in the CRC code can result in constant reporting of

failure even though the rest of the system code is functional. This can be mitigated

with the inclusion of two or more CRC routines checking and storing individual

results. If this is done it must be ensured that compiler optimization does not

combine this code in the same place. The EDAC code can also fail to correct data

or store erroneous data in the flash. Some protection against this is provided by

checkpointing and an algorithm to determine correct functionality is left as future

work.

The simulated serial over USB have caused some problems. The CDC driver

for Windows does not function properly when the device is reset and the se-

rial connection malfunctions. Another problem is that the serial implementation

buffers the output and halts the microcontroller when the buffer becomes full. For

larger amounts of data and proper formatting the serial connection is useful but

otherwise we used a logic analyser for lower level access. RS232 would be useful

but the development board does not have a RS232 IC.

While it is easy to create a random distribution of faults it is harder to deter-

mine if it is realistic for the particular IC. How does the cosmic ray affect the area

of the chip that is hit and how are the neighboring transistors affected? A fault

pattern from a cosmic ray in RAM could affect several memory bits depending

on the angle of attack and the energy of the cosmic ray but it is difficult to know

exactly how without testing or using components with flight heritage. Because of

this we have to make assumptions that may or may not be correct for the com-

ponents we are using. Considering this it seems prudent to make a conservative

assumption of how many faults that will occur and adjust the EDAC accordingly.

48

4.8 Future Work

There are many possible directions for the future work on reliability and depend-

ability that could be interesting for the NUTS project.

If a continued low overhead approach is desirable one could focus on the soft-

ware methods proposed in this paper. For the EDAC codes RS could be used in

stead of BCH. RS codes have better performance in burst error cases and use sim-

liar computational power when decoding [23]. In addition, further development

on a safe periodic reset and proper categorization and shutdown of faulty modules

could be worked on. The checkpointing scheme implemented in this thesis needs

more work. In its present form it stores some steps with data from system tasks,

but not lower level system information such as memory content and status regis-

ters. Additionally, in order for the mechanisms to function reliably, a robust error

determination algorithm needs to be implemented.

Reprogramming between the radio and the OBC from a secure storage could

add more advanced error recovery to NUTS. This is a hazardous operation in a

remote environment with cosmic rays, but could be implemented as a last resort

alternative.

If the satellite project requires stricter guarantees on reliability and depend-

ability one could integrate the protection in hardware. Memory protection with

dual memory blocks and FPGA is an approach used by other CubeSat projects

(see Sec. 4.1). The FPGA could the be reconfigured to mitigate SEU [35] and one

could use Magnetoresistive Random-Access Memory (MRAM) which stores data

as magnetic values rather than as electric charge, and is therefore more resistant to

SEUs [36]. Accompanying this with a robust boot loader would be an interesting

addition to this or the next satellite.

Alternatively, by using the ideas of reconfiguration of a FPGA from [35], one

could implement a soft microprocessor as the system computer in the satellite.

49

By using this approach it should be possible to mitigate effects such as SEU and

SEL without the use of spare components. Notable issues include being able to

reconfigure the soft core in safe way (relative to the rest of the satellite), power

consumption and performance.

50

Chapter 5

Discussion and Conclusion

The main focus of this work has been to study the NTNU satellite to date and

present possible solutions to some of the problems. The work aims to implement

a more reliable overall system. The bulk of the work has been to understand

the satellite’s systems and reason which solutions are most fitting to solve the

expected problems.

The different problems are presented together with suggested solutions. Fur-

ther, it details how these problems can be solved with the constraint of using the

already developed satellite systems.

One important consideration is that the correctness of the error correcting

codes are hard to determine once in orbit. In the test setup the initial and corrected

data are compared to determine the number of uncorrected errors. However, once

the satellite is operational, this is no longer possible. It is therefore important to

make sure that the codes have high enough correctional capabilities. The same

ting can be achieved by having a sufficiently high frequency on the correctional

subroutine.

Some of the strategy for low-cost components can be questioned. Why use

51

a low-cost component when the launch cost is very high? But then again these

components have the low complexity required to be included in student designs.

Even with these low-cost solutions one should remember that a processor that

costs $1 today can be more powerful and uses much less power than the processors

in the $100-$1000 from 25 years ago. When this is combined with the wide

availability of inexpensive sensors, the result is that it is possible to collect much

more data at a lower cost than before. For the same reasons it is also possible to

deploy redundant sensors, and as with the processors, the inexpensive cameras of

today can have far greater capability than those used by NASA in the 1970s.

The future work will focus on implementation of the solutions discussed in

this paper. As more of the subsystems reaches completion they have to be inte-

grated in the scheduling and fault recovery schemes of the satellite. The available

processing power will be determined by the system’s operating parameters and the

load of other tasks such as the compression algorithms. Because of this it is not

advantageous to provide a finely tuned system at this point, but rather to focus on

a useful module for the satellite being built now. An exhaustive fault injection test

to determine how the full system performs under stress is planned as the system

reaches completion. With the chosen strategy for protecting code and data in the

presence of cosmic rays, using simple methods in software have the possibility of

enhancing the dependability significantly.

52

Bibliography

[1] K. A. Ødegaard and A. Skavhaug, “IAA-CU-13-13-01 Survey of correction

methods for faults and errors induced by cosmic radiation on operating sys-

tem level in CubeSats,” Proceedings, 2nd IAA conference, 2013.

[2] Specification, CubeSat Design, “Rev. 12,” Cal Poly, August, 2009.

[3] J. Puig-Suari, C. Turner, and W. Ahlgren, “Development of the standard

cubesat deployer and a cubesat class picosatellite,” in Aerospace Conference,

2001, IEEE Proceedings., vol. 1, pp. 1–347, IEEE, 2001.

[4] J. T. Gravdahl, E. Eide, A. Skavhaug, K. Svartveit, K. Fauske, and F. M.

Indergaard, “Three axis attitude determination and control system for a pi-

cosatellite: Design and implementation,” in Proceedings of the 54th Inter-

national Astronautical Congress, 2003.

[5] JPL NASA, “Space radiation effects on electronic components in low-earth

orbit,” Practice no. PD-ED-1258, vol. 1, 1996.

[6] A. Johnston, G. Swift, L. Scheick, and J. Conley Jr, “Space radiation effects

on microelectronics,” Jet Propulsion Laboratory, Electronic Parts Engineer-

ing Office, Section, vol. 514, 2002.

53

[7] R. Birkeland and O. Gutteberg, “Overview of nuts,” tech. rep., Technical

report, NTNU, 2013.

[8] R. Birkeland, “Nuts-1 mission statement,” tech. rep., Technical report,

NTNU, 2011.

[9] D. De Bruyn, “Power distribution and conditioning for a small student satel-

lite,” Master’s thesis, Norwegian University of Science and Technology,

2011.

[10] L. E. Jacobsen, “Power system of the ntnu test satellite,” Master’s thesis,

Norwegian University of Science and Technology, 2011.

[11] D. E. Holmstrøm, “Software and software architecture for a student satel-

lite,” Master’s thesis, Norwegian University of Science and Technology,

2012.

[12] D. P. Siewiorek and R. S. Swarz, Reliable computer systems: design and

evaluation. Digital Press, 1992.

[13] E. M. Silverman, “Space environmental effects on spacecraft: Leo materials

selection guide, part 2,” Progress Report, Apr. 1993-Mar. 1995 TRW, Inc.,

Redondo Beach, CA. Space and Electronics Group., vol. 1, 1995.

[14] R. W. James and J. L. Wiley, Space mission analysis and design. Kluwer

Academic Publishers, London, USA, 3rd ed., 1999.

[15] S. Skavhaug and O. Pettersen, “Microfaulttolerant (µft)-a system for achiev-

ing cost effective fault tolerance in microcontroller based equipment,” in

Real-Time Systems, 1995. Proceedings., Seventh Euromicro Workshop on,

pp. 344–351, IEEE, 1995.

54

[16] A. Skavhaug, A holistic approach to development of dependable industrial

SCADA systems. PhD thesis, Norwegian University of Science and Technol-

ogy, 1997.

[17] Atmel, “At32uc3a3.” http://www.atmel.com/Images/

doc32072.pdf, 2013.

[18] N. McFarlane, “The effect of orographically excited gravity wave drag on

the general circulation of the lower stratosphere and troposphere,” Journal

of the atmospheric sciences, vol. 44, no. 14, pp. 1775–1800, 1987.

[19] S. S. Rønning, “Optimizing an Infrared Camera for Observing Atmospheric

Gravity Waves from a CubeSat Platform,” Master’s thesis, Norwegian Uni-

versity of Science and Technology, 2012.

[20] M. Bakken, “Signal processing for communicating gravity wave images

from the NTNU Test Satellite,” Master’s thesis, Norwegian University of

Science and Technology, 2012.

[21] J. Frances, “Internal Wireless Bus for a CubeSat,” Master’s thesis to be pub-

lished, Norwegian University of Science and Technology, 2013.

[22] GOMSpace, “Cubesat space protocol (csp) network-layer delivery protocol

for cubesats and embedded systems.,” GS-CSP-1.1, 2011.

[23] H. Malepati, Digital media processing: DSP algorithms using C. Newnes,

2010.

[24] G. Buja, J. R. Pimentel, and A. Zuccollo, “Overcoming babbling-idiot fail-

ures in can networks: A simple and effective bus guardian solution for the

flexcan architecture,” Industrial Informatics, IEEE Transactions on, vol. 3,

no. 3, pp. 225–233, 2007.

55

http://www.atmel.com/Images/doc32072.pdf
http://www.atmel.com/Images/doc32072.pdf

[25] J. E. Tomayko, “Computers in spaceflight the nasa experience,” Computers

in Spaceflight The NASA Experience, vol. 1, 1988.

[26] O. Hannius and J. Karlsson, “Impact of soft errors in a jet engine controller,”

in Computer Safety, Reliability, and Security, pp. 223–234, Springer, 2012.

[27] X. Yu et al., “Research on the on-board computer subsystem of cubesats

based on sopc technology,” in 5th European Cubesat Symposium, 2013,

Book of Abstracts., vol. 1, pp. 1–135, Von Karman Institute for Fluid Dy-

namics, 2013.

[28] B. Osborne et al., “UNSW EC0 CubeSat Design: Experiments in Radia-

tion Tolerance Critical Systems, GNSS Remote Observation and 3-D Printed

Satellite Structures,” in 5th European Cubesat Symposium, 2013, Book of

Abstracts., vol. 1, pp. 1–135, Von Karman Institute for Fluid Dynamics,

2013.

[29] P. V. V. Broun, P. Camus and J.-M. Gillis, “Comparison of the effectiveness

of different kinds of radiation shields on a cubesat,” in 5th European Cube-

sat Symposium, 2013, Book of Abstracts., vol. 1, pp. 1–135, Von Karman

Institute for Fluid Dynamics, 2013.

[30] T. Rajkowski and R. Graczyk, “Picard, an on-board computer for future

cubesat missions,” in 5th European Cubesat Symposium, 2013, Book of Ab-

stracts., vol. 1, pp. 1–135, Von Karman Institute for Fluid Dynamics, 2013.

[31] K. A. Ødegaard, “Correction of faults and errors induced by cosmic radi-

ation on operating system level in the nuts studsat project,” Project report,

Norwegian University of Science and Technology, 2012.

[32] J. Magee and J. Kramer, Concurrency: State Models & Java Progamming.

Wiley, 2006.

56

[33] Atmel, “Uc3-a3 xplained.” http://www.atmel.com/Images/

doc32159.pdf, 2013.

[34] ETSI, EN300744, “300 744 digital video broadcasting (dvb); framing struc-

ture, channel coding and modulation for digital terrestrial television,” 2004.

[35] J. Alme, Firmware Development and Integration for ALICE TPC and PHOS

Front-end Electroncis. PhD thesis, PhD thesis, Universitetet i Bergen,

Bergen, Norway, 2008.

[36] D. Nguyen and F. Irom, “Radiation effects on mram,” in Radiation and Its

Effects on Components and Systems, 2007. RADECS 2007. 9th European

Conference on, pp. 1–4, IEEE, 2007.

57

http://www.atmel.com/Images/doc32159.pdf
http://www.atmel.com/Images/doc32159.pdf

Appendix A

Plots and Data

A.1 Code Analysis

In order to measure the relative complexity of various branches of source code the

number of lines have been counted.

Satellite repositories

h t t p : / / c l o c . s o u r c e f o r g e . n e t v 1 . 5 8 T=0 .5 s
−−−
Language f i l e s b l a n k comment code
−−−
C 87 4300 5625 14876
C / C++ Header 102 3103 12819 8287
Assembly 4 117 293 242
−−−
SUM: 193 7520 18737 23405
−−−

58

Minimal representative test system with OS and drivers

h t t p : / / c l o c . s o u r c e f o r g e . n e t v 1 . 5 8 T=0 .5 s
−−−
Language f i l e s b l a n k comment code
−−−
C 49 3809 6995 11645
C / C++ Header 89 2767 13890 6149
Assembly 4 117 293 242
−−−
SUM: 142 6693 21178 18036
−−−

EDAC and checkpointing

h t t p : / / c l o c . s o u r c e f o r g e . n e t v 1 . 5 8 T=0 .5 s
−−−
Language f i l e s b l a n k comment code
−−−
C 55 4373 8538 13488
C / C++ Header 102 3115 15757 6994
Assembly 4 117 293 242
−−−
SUM: 161 7605 24588 20724
−−−

A.2 Plots

These plots show the behavior of the master and slave in relation to each other.

59

Fi
gu

re
A

.1
:T

im
eo

ut
an

d
R

es
et

of
M

as
te

r

60

Fi
gu

re
A

.2
:T

im
eo

ut
an

d
R

es
et

of
Sl

av
e

61

Appendix B

The 2nd IAA Conference

Part of the work in this thesis have been presented on two conferences thanks to

NUTS and our sponsor NAROM. The contacts and new ideas obtained from the

CubeSat community proved invaluable both as inspiration and feedback on the

chosen solutions. I would like to thank my co-supervisor Roger Birkeland, head

of the NUTS project for suggesting the conference, assistance and opportunity.

The paper is included in its entirety the electronic attachment.

The conference was in Rome in February of 2013 and had attendances from

academia, industry and and ESA . The conference’s web page can be found at

http://www.gaussteam.com/2nd-iaa-conference/.

62

http://www.gaussteam.com/2nd-iaa-conference/

IAA-CU-13-13-01
Survey of correction methods for faults and

errors induced by cosmic radiation on
operating system level in CubeSats

Kjell Arne Ødegaard∗, Amund Skavhaug†

Abstract

The NTNU Test Satellite (NUTS) project aims to build and launch a double Cube-
Sat within 2014. The Cubesat is increasingly used as a low-cost platform for research
and even commercial use. By investigating what is possible to accomplished with low
cost components in terms of reliability, two important things can be achieved. The cost
of using space platforms for research can be reduced while maintaining the required
level of reliability and at the same time the number of non-functional satellites (i.e.
problematic space junk) can be reduced.

The focus of this work has been to explore the use of consumer components in space
and the impact of the harsh vacuum and radiation environment on these components.
Although some approximations regarding long term radiation effects are investigated,
the main focus have been intermediate radiation faults in processors and memory and
how to best mitigate them.

This paper provides an overview of significant problems with consumer electronic
components in a space environment and investigates these problems. It also presents a
brief summery of the effects that causes these problems and how they are most likely to
affect the finished system. Data from NASA is used in order to find an approximation
of the expected fault intensity in the satellite’s components.

A number of possible low-cost solutions to the presented problems are evaluated
according to the assumptions in the error model. Checkpointing provides the system
with a restorable safe state in the event of a restart. Error detection and correction
in storage in storage systems provides safe storage of critical runtime variables. In
addition, two levels of watch dog timers, program memory integrity check and a periodic
full reset with power cycle to clear remaining errors.

Our design shall be able to mask the system’s operation from even frequent resets
while the Error Detection And Correction system prevent the expected hundreds of
errors per day from accumulating in memory, at some point resulting in failures. To
emulate the space environment for repeatable test runs on specific parts of the system
a fault injection rig using JTAG is being constructed.

∗Master Student, Department of Engineering Cybernetics, Norwegian University of Technology and Sci-
ence, Norway, kjellaod@stud.ntnu.no
†Associate Professor, Department of Engineering Cybernetics, Norway, Norwegian University of Technol-

ogy and Science, amund.skavhaug@itk.ntnu.no

1

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

Introduction

The gateway to space for research institutions and commercial actors has traditionally been
associated with a very high cost. Recent year’s development of small, inexpensive satel-
lites known as pico and nano satellites can change this by considerably lowering both the
price point of satellite construction and launch. The small standardized form factor where
many satellites can be packed together an piggybacked to other launches keeps the launch
costs low, and the satellites themselves often use Consumer Of The Shelf (COTS) electronic
components.

The use of consumer solutions allows for fast development with modern tools and en-
ables the designers to get full advantage of the economy of scale with cheap and plentiful
components and development tools. Due to the typically shorter lifespan of these satellites
compared to traditional endeavors, it is possible to use newer, more innovative and even
unproven components and design without running big financial risks. This is interesting as
it allows for development and advancement in an otherwise conservative industry.

Due to both cost concerns, availability and simplicity, CubesSats commonly use Consumer
Of The Shelf, or COTS, components. A number of different factors that will be detailed
further on in this paper make these components vulnerable to the environment in space and
in this paper we explore measures to alleviate the impact of these factors to the reliability,
availability and survivability of the design.

Problem

One of the main challenges for space applications is the hard radiation operating conditions
[3] [4]. To solve these challenges, radiation hardened electronic components and fault tolerant
hardware has been used is space systems for a number of years to either ensure error free
operation or to mask the errors from the system. In the context of a CubeSat, however, the
challenges of high reliability system design shifts. It is still desirable with a high reliability
system but the budgetary constraints are much stricter than for commercial or government
designs.

In addition to being considerably more expensive, radiation hardened components tradi-
tionally lag behind their non-hardened equivalents in performance. This means that one gets
a less capable system at a higher price point. At the same time it is not very important with
a high availability design since the system does not control critical applications, but rather
performs data collection tasks. This means that the on line redundant backup components
can be omitted as long as we ensure that the system does not malfunction critically (i.e. fail).
By using software methods, combined with redundancy for the most important subsystems,
it is therefore possible to get higher performance, more flexibility and lower price, all without
hot standby redundant backup components.

This paper aims to investigate low-cost methods to increase mission lifetime of small
COTS based satellites. When considering the different reliability measurements it is impor-
tant not to impact the performance of the rest of the system to an unacceptable degree. By
mitigating the effects of Single Event Phenomena (SEP) occurrences in non-hardened com-
ponents, it is possible to ensure higher up-time and increased mission lifespan. This further
promotes safe operation and increases the likelihood of not loosing mission critical or payload

IAA-CU-13-13-01 2

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

data. Student satellites do not have access to the established solutions because of budget
constraints, and have to rely on smart solutions and COTS hardware to have a usable system
in extreme conditions.

The problems with COTS components in space is numerous, as detailed by NASA [3]. In
brief, radiation effects known as SEP can occurs when cosmic radiation strikes certain parts
of the semiconductor material as outlined by figure 1. If the cosmic ray has enough energy
this can alter the electrical charge and thereby alter the digital value in the component. This
is known as a bit-flip and can corrupt saved data in addition to causing instability in the
system. The expected number of errors estimated by NASA [3] is 10−5 errors/bit−day. For
NUTS this results in hundreds of errors per day in RAM and and up to a thousand errors per
day in the flash data-banks. The expected radiation level is 1000-10000 rad(Si)/year with an
orbital inclination between 20 and 85 degrees [3]. NUTS will have an even higher inclination
and thus even higher radiation levels can be expected. With the total dose failure level of
flash memories from 5-15 krad(Si) and microprocessors for 15-70 krad(Si) [3] of radiation,
both can during the satellite’s mission lifetime.

Figure 1: Mechanisms for Heavy Ion and Proton SEU effects [4]

Methods

The majority of the work in this paper has been to study the satellite and its systems and
suggest solutions to the problems that are likely to be encountered.

IAA-CU-13-13-01 3

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

Error Detection and Correction, EDAC

It would be advisable to have a system task that is in charge of secure storage of variables.
Due to the random nature of the expected faults it would be difficult to determine if the
data variables are safe to operate on. To guard against this it would be advisable to store
the variables multiple times in order to be able to do a majority voting on the correctness or
have an error correcting algorithm such as Bose-Chaudhuri-Hocquenghem (BHC) [2, p. 155]
codes to correct the faults in run-time. This would add a large amount of complexity to
the individual tasks running on the satellite. At the same time it is something that would
be advisable for most of the tasks, due to the expected number of SEUs that will affect the
system memory and accumulate over time.

A specialized secure storage system task could ease the programming burden for the rest
of the designers by removing the sometimes complex algorithms from the smaller programs.
A module based design is also favorable in programming because of the increased ease of
maintaining and ensuring the correctness of smaller modules. This point applies even more
for reliable systems [1, p. 202].

Checkpointing

Checkpointing is a proven solution in software system redundancy. It works by storing the
system state that is necessary for continued execution and completion of the process, at
specific points during process execution [1, p. 214]. This enables the system to roll back in
the case of an error or initialize quickly and without losing critical data in the event of a
system restart. An important feature to ensure is the ability to roll back multiple instances
in the case of some unforeseen fault being present in the restored system.

Power cycling of faulty modules is already implemented in the backplane. The modules of
the satellite must therefore tolerate a sudden reset without losing any significant amount of
work. There are also some events such as antennae deployment and detumbling that should
only be executed once and including these events in the saved system state will provide a
simple measure of ensuring operational progress for the satellite.

Testing

The most realistic test would be to expose the system to a radiation environment and measure
how the system holds up under real stress. While this might be desirable for the finished
system it is not very useful when testing specific algorithms or sub modules in the system.
The reason for this is that it is very difficult to control which module is to be tested and next
to impossible to replicate the exact error conditions in order to determine the severity of the
fault.

Another alternative is to simulate random error occurrence via JTAG in the software
running on the board. This is somewhat better because the efficiency of the error correcting
code can be determined directly since the number of inserted faults is known. Arguments
against this testing regime are the lack of realistic errors. Latchup, for instance, is hard to
simulate in software.

With these considerations in mind, the preferred testing method is to simulate errors with

IAA-CU-13-13-01 4

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

JTAG injection of faults during runtime. This is the most economically viable option while
at the same time allowing for repeatable test runs and focus on specific parts of the system.

Other methods

In addition to EDAC and Checkpoint, a number of other features are being implemented.
Master-Slave functionality allows for a spare control computer in case the main crashes. The
Watch Dog Timer (WDT) ensures that the system does not deadlock while interfacing with
other system components. A periodic reset protects against any undetected failures that
linger in the system. The ability to disable faulty modules safeguards against a malfunction-
ing module affecting the rest of the system. Finally, the ability to perform an integrity check
on the program memory makes it possible to detect and possibly restore errors.

Figure 2: System overview [5]

IAA-CU-13-13-01 5

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

Results and Observations

The preliminary results are encouraging. The chosen parameters for the BCH(N,K) codes
can detect and correct up to two randomly occurring errors per message block.

While the general implementations of BCH(N,K) codes is costly and very inefficient [2,
p. 161]. By taking advantage of specific aspects of the BCH codes and using look-up tables,
the BCH codes can be optimized for embedded hardware. By choosing constant values for
N and K the heavy computation of the generator polynomial coefficients can be done in
advance. With the optimization techniques in place, the number of required cycles can be
reduced by up to 51% [2, p. 164], but the precise computational cost may vary with the
chosen embedded processor.

For testing purposes, optimized BCH(67, 53) codes have been implemented. However,
the final parameters have to be adjusted based on how much computational power that is
available in the finished system.

Discussion and Conclusion

The main focus of the work has been to study the satellite to date and present possible
solutions in order to implement a reliable overall system. The bulk of the work has been to
understand the satellite’s systems and reason which solutions that are most fitting to solve
the expected problems.

The different problems expected to affect the satellite is presented together with suggested
solutions. Further, it details how these problems can be solved with the constraint of using
the already developed satellite systems.

Some of the strategy for low-cost components can be questioned. Why use a low-cost
component when the launch cost is very high. But then again these components have the
low complexity required to be included in student designs. Even with these low-cost solutions
one should remember that a processor that costs $1 today is more powerful and uses much
less power than the expensive processors from 25 years ago. When this is combined with the
wide availability of inexpensive sensors the result is that it is possible to collect much more
data at a lower cost than before.

The future work will focus on implementation of the solutions discussed in this paper. As
more of the subsystems reaches completion they have to be integrated in the scheduling and
fault recovery schemes of the satellite. The available processing power will be determined
by the system’s operating parameters and the load of other tasks such as the compressing
algorithms. Because of this it is not advantageous to provide a finely tuned system at
this point, but rather focus on a useful module for the future satellite. An exhaustive fault
injection test to determine how the full system performs under stress is planned as the system
reaches completion.

References

[1] Daniel P. Siewiorek and Robert S. Swarz, Reliable Computer Systems, Design and Eval-
uation. Digital Press, Burlington, 2nd Edition, 1992.

IAA-CU-13-13-01 6

2nd IAA Conference On University Satellite Missions And Cubesat Workshop

[2] Hazarathaiah Malepati, Digital Media Processing, DSP Algorithms Using C. Newnes,
Burlington, 2010.

[3] Space Radiation Effects on Electronic Components in Low-Earth Orbit, PRACTICE NO.
PD-ED-1258, JPL NASA, APRIL 1996.

[4] Sammy Kayali, Space Radiation Effects on Microelectronics, JPL NASA

[5] Emma Litzier, System Overview - Space Segment, http://nuts.cubesat.no/the-satellite,
2013.

IAA-CU-13-13-01 7

Appendix C

The 5th European CubeSat
Symposium

Part of the work in this thesis have been presented on two conferences thanks to

NUTS and our sponsor NAROM. The contacts and new ideas obtained from the

CubeSat community proved invaluable both as inspiration and feedback on the

chosen solutions. I would like to thank my co-supervisor Roger Birkeland, head

of the NUTS project for suggesting the conference, assistance and opportunity.

The paper is included in its entirety the electronic attachment.

The conference took place in Brussels and had over 80 presentations, a poster

session and multiple attendances from the industry as well as ESA. The confer-

ence’s web page can be found at https://www.cubesatsymposium.eu/.

70

https://www.cubesatsymposium.eu/

Fi
gu

re
C

.1
:P

os
te

rO
ve

rv
ie

w

71

Figure C.2: Poster Column 1

Figure C.3: Poster Column 2

Figure C.4: Poster Column 3

Appendix D

SAFECOMP 2013

Part of the work in this thesis have been accepted for publication at the SAFEC-

MOP 2013 Dependable Embedded and Cyber-physical Systems (DESC) work-

shop. The work done for and the reviews received during the process of writing

the paper have been very beneficial. I wold like to thank my supervisor Amund

Skavhaug for suggesting the conference and the advice and assistance that was

provided during the process. The paper is included in its entirety in the electronic

attachment.

The conference is held in Toulouse, the center for European aerospace indus-

try, in September of 2013 and have attendances from academia and a special focus

on industry and industrial applications. The conference’s web page can be found

at http://conf.laas.fr/SAFECOMP2013/ and http://safecomp.

org/.

75

http://conf.laas.fr/SAFECOMP2013/
http://safecomp.org/
http://safecomp.org/

Simple Methods for Error Detection and Correction for
Low-Cost Nano Satellites

Kjell Arne Ødegaard and Amund Skavhaug

Department of Engineering Cybernetics,
Norwegian University of Science and Technology,

Trondheim, Norway
kjell.arne@odegaard.net, amund.skavhaug@itk.ntnu.no

Abstract. The objective of this paper is to propose a low-cost, robust Error De-
tection And Correction (EDAC) solution for use in applications such as nano
satellites, where price is a primary concern. Different methods have been eval-
uated, with the main result mitigation Single Event Effects causing bit-flips in
system memory utilizing Bose-Chaudhuri-Hocquenghem (BCH) codes. The gen-
eral implementation is resource intensive and the algorithm has been adapted to
the embedded platform. The codes have been implemented on a low-cost micro-
controller with a real time operating system and faults have been injected during
run-time to emulate a radiation environment. The performance impact and dy-
namic behavior of the algorithms is studied with third party trace analysis tools.

1 Introduction

The gateway to space for research institutions and commercial actors has traditionally
been associated with a very high cost. Recent year’s development of small, inexpensive
satellites known as pico and nano satellites can change this by considerably lowering
both the price point of satellite construction and launch.

An interesting development along these lines has been the introduction of the Cube-
Sat platform. To help universities worldwide perform space research the CubeSat plat-
form was developed in 1999 by, among others, California Polytechnic State Univer-
sity and Stanford University. The CubeSat programs goal is to provide practical, cost-
effective and reliable launch opportunities for small satellites and their payloads through
a standardized platform measuring form 10 ∗ 10 ∗ 10 cm to 10 ∗ 10 ∗ 30 cm [10] [13]
[14]. The community also maintains an overview of available launch providers, includ-
ing contact information, a service that simplifies launch tremendously.

The small standardized form factor makes it more feasible to combine the CubeSats
with other payloads, keeping the launch costs low. The co-launch with other payloads
is facilitated in the CubeSat standard by providing pre-authorized specifications for ma-
terials, physical launch stress and separation of satellite and launch vehicle in orbit.In
addition, the satellites often use Commercial of-the-shelf (COTS) electronic compo-
nents, further decreasing satellite costs.

This paper aims to investigate low-cost methods to increase mission lifetime of
small COTS based satellites. The theory and methods that are used are well known,
but the application is novel. The CubeSat community is composed of a large number

2 K. A. Ødegaard and A. Skavhaug

of universities, private firms and even high schools [13]. One of the primary goals with
CubeSats is to provide an educational platform. A consequence of this is that the teams
working on the satellites have varying degrees of competence, and a robust design be-
comes even more important. The StudSat project at NTNU started as far back as the
early 2000s [9] and have launched two satellites. The first exploded during launch and
communication was never achieved with the second satellite. This history clearly states
the concern both for low cost and dependability for the current satellite.

The use of COTS based solutions allows for fast development with modern tools
and enables the designers to get full advantage of the economy of scale with cheap
and plentiful components and development tools. Due to the typically shorter lifespan
of these satellites compared to traditional endeavors, it is possible to use newer, more
innovative and even unproven components and designs without running unacceptable
financial risks. This is interesting as it allows for rapid development and advancement
in an otherwise conservative industry.

The majority of the reported work in this paper has been to study the satellite and
its systems, as well as suggesting solutions to the problems that are likely to be en-
countered. Due to cost concerns, availability and needed simplicity due to students,
CubesSats [13] [14] are usually based on the use of COTS components. A number of
different factors, that will be detailed later in this paper make these components vul-
nerable to the environment in space. In this paper we explore measures to alleviate the
impact of these factors to the reliability, availability and survivability of the satellite.

Fig. 1. NUTS - NTNU Test Satellite

1.1 Problem

One of the main challenges for space applications is the hard radiation operating con-
ditions [3] [5]. Radiation hardened electronic components and fault tolerant hardware
have been used in space systems for a number of years to either ensure error free opera-
tion or to mask the occurrence of errors from the operation of the system. In the context

Error Detection and Correction for Low-Cost Nano Satellites 3

of a CubeSat, however, the main challenges of high reliability system design are slightly
different. It is still desirable with a high reliability system, but the budgetary constraints
are much stricter than for commercial or government satellites.

In addition to being considerably more expensive, radiation hardened components
traditionally lag behind their non-hardened equivalents in performance. This means that
one gets a less capable system at a higher price point. At he same time, high availability
design for CubeSats is usually not so important since the system does not control crit-
ical applications, but rather performs data collection tasks of an exploratory nature. It
is important to receive correct data and to know if the satellite has suffered a malfunc-
tion, but the timeliness is of less importance. This means that on line redundant backup
components can be omitted as long as we ensure that the system does not malfunction
critically (i.e. fail without coming back up again). By using software methods, com-
bined with some simple measures of redundancy for the most important subsystems,
it is therefore possible to get higher performance, more flexibility and lower price, all
without hot standby redundant backup components. The reason for this software ap-
proach is twofold. The most important systems in the NTNU Test Satellite (NUTS)
have already been realized in hardware, and a redesign at such a late stage is not desired
by the project management. The second reason is that we want the proposed solutions
to be relevant for projects that do not have the resources to build a conventional high
reliability system.

When considering the different reliability measurements it is important not to im-
pact the performance of the rest of the system to an unacceptable degree. If we can ac-
cept restarts and possible data loss when mitigating the effects of Single Event Phenom-
ena (SEP), it is possible to mask the errors from the operation of the system by power
cycling, checkpointing and Error Detection and Correction (EDAC). Power cycling im-
plemented in the power supply and backplane logic clears Single Event Latchups (SEL)
form components while checkpointing and EDAC clears faults from Single Event Up-
sets (SEU) in memory. This further promotes safe operation and increases the likelihood
of not loosing mission critical or payload data. Student satellites do not have access to
the established solutions because of budget constraints, and have to rely on ingenious
solutions and COTS hardware to have a usable system even in extreme conditions.

The problems with COTS components in space are numerous, as detailed by NASA
[3]. In brief, radiation effects known as SEP, can occur when cosmic radiation strikes
certain parts of the semiconductor material, as outlined by Fig. 2. If the cosmic ray has
enough energy it can alter the electrical charge and thereby alter the digital value in
the component. This is known as a bit-flip and can corrupt saved data in addition to
causing instability in the system. The expected number of errors estimated by NASA is
10−5 errors/bit−day [3]. For NUTS [11] [12] this results in hundreds of errors per day
in RAM and and up to a thousand errors per day in the flash data-banks. The expected
radiation level is 10-100 Gy per gram of silicon per year with an orbital inclination
between 20 and 85 degrees [3]. The large variance stems from the fluctuations in the
solar cycle which determines the flux of both solar and galactic radiation. NUTS will
have an even higher inclination and therefore even higher worst case radiation levels
can be expected. With the total dose failure level of flash memories from 50-150 Gy

4 K. A. Ødegaard and A. Skavhaug

and microprocessors from 150-700 Gy [3] of radiation, both can experience failure of a
permanent nature during the satellite’s mission lifetime.

Fig. 2. Mechanisms for Heavy Ion and Proton SEU effects [5]

2 Error Detection and Correction, EDAC

Due to the random nature of the expected fault it is difficult to determine if the data
variables are safe to use. To counteract faults we could store the variables multiple
times and do a majority voting on the correctness or have an error correcting algorithm
such as BCH [2, p. 155] codes to correct the faults at run-time. Since executing BCH
codes in an individual task adds a layer of complexity, we have implemented a system
task in order to manage the secure storage and recovery of protected data.

A specialized EDAC system task with practical interface functions eases the de-
velopment by removing the sometimes complex algorithms from the other modules. A
module based design is also favorable in programming because of the increased ease of
maintaining and ensuring the correctness of smaller modules. This point applies even
more for reliable systems [1, p. 202].

3 Checkpointing

Checkpointing is a proven solution in software system redundancy. This enables the
system to roll back in the case of an error or initialize quickly and without losing critical

Error Detection and Correction for Low-Cost Nano Satellites 5

data in the event of a system restart [7]. It is important to ensure that the system is able
to roll back multiple instances in case there is some unforeseen fault present.

Power cycling of faulty modules is implemented in the backplane. The modules of
the satellite must therefore tolerate a sudden reset without losing any significant amount
of progress or data (i.e. at least the loss of data must be known). It must be known that
the reset is due to an error in operation as there are some events such as antennae
deployment and detumbling that should only be executed once. Including these events
in the saved system state will provide a simple measure of ensuring operational progress
for the satellite.

4 Testing

The most realistic test would be to expose the system to a radiation environment and
measure how the system holds up under real stress. While this might be desirable for
the finished system it is not very useful when testing specific algorithms or sub modules
in the system. The reason for this is that it is very difficult to control which modules
is to be tested and next to impossible to replicate the exact error conditions in order to
determine the severity of the fault.

Another alternative is to simulate random error occurrence via Joint Test Action
Group (JTAG) port in the software running on the CPU boards [8]. This is somewhat
better because the efficiency, e.g. of the error correcting code, can be determined di-
rectly since the number of inserted faults is known. Arguments against this testing
regime is the lack of some realistic errors. Latchup, for instance, is hard to simulate
in software.

With these considerations in mind, the preferred testing method is to simulate errors
with JTAG injection of faults during runtime. This is the most economically viable
option for us, while at the same time allowing for repeatable test runs and allowing us
to focus on specific parts of the system.

5 Other Methods

In addition to EDAC and Checkpointing, a number of other features are being imple-
mented. Master-Slave functionality allows for a spare control computer in case the main
crashes. The Watch Dog Timer (WDT) ensures that the system does not deadlock for-
ever, e.g. while interfacing with other system components. A periodic reset protects
against any undetected failures that linger in the system. The ability to disable faulty
modules completely (i.e. power down) safeguards against a malfunctioning module af-
fecting the rest of the system. Finally, the ability to perform an integrity check on the
program memory makes it possible to detect and possibly restore errors.

6 Scope

The scope of this work is limited to soft and transient faults. If the components malfunc-
tion due to effects such as charge distribution, Single Event Latchups or Single Event

6 K. A. Ødegaard and A. Skavhaug

Gate Ruptures, the power system and backplane is designed to cycle the power of the
components. If components are damaged there are backups for the most important ones,
for others the system will operate with reduced functionality.

This paper aims to investigate how to achieve high dependability in a simple system
with the use of software methods only. The reason for this approach is twofold: The
hardware for the most important systems have already been completed, and a redesign
at such a late stage is not desired by the project management. Additionally we want the
proposed solutions to be relevant for projects that do not have the resources to build a
system with high dependability through conventional means.

7 Experiments

7.1 Functional Overview

Figure 3 shows the components of the system and a brief presentation of functionality
is provided in Fig. 4. This is the principal design: The system is assumed to start in
a normal state. The system does not, however, assume correct operation, and the first
action after startup is to perform a CRC of program memory. If a fault is discovered the
EDAC attempts to correct the data. If the error can not be recovered the system enters
the checkpoint stages (c1, c2, ... , cn). If the rollback is successful the system continues,
if not it resets.

Host computer:
Generates fault

distribution

JTAG:
Access

memory and
inject faults

UC3:
Executing satellite
SW with EDAC

and checkpointing

Generated faults

Inject faults

Read results

Fig. 3. Test Environment

7.2 Test Environment

The experimental systems consists of a host computer and an Xplained development
board [15] from Atmel. The development board uses the AT32UC3-A3256 microcon-
troller [16], the same microcontroller as the NTNU satellite. The Xplained executes the
EDAC and checkpointing system and two tasks that requests protected memory from
the EDAC system. The software for the Xplained have been developed on Atmel Studio

Error Detection and Correction for Low-Cost Nano Satellites 7

normal EDAC

recover

fault

c2

resume

c1

error

rollback

...

rollback

resume

cn

rollback

resume

reset

resume

reset

host

emulated radiation
EDAC results

Fig. 4. Functionality Description

6.0.1996 with the AVRGCC 3.4.1.95 tool chain. We use the Atmel Software Framework
(ASF) to provide drivers for external components and a protocol stack for communica-
tion between the host computer and the Xplained board. The operating system used is
FreeRTOS 7.0.0. The host computer generates errors in a certain distribution to emu-
late radiation and injects these through a JTAG interface while monitoring the EDAC
results.

In order to have more control of the results we have configured a representative test
system. The representative code only includes the necessary components (FreeRTOS,
ASF and BCH codes). This way we have the desired control of the execution environ-
ment. One reason for the necessity of this is that the code for the full satellite system is
written by many individuals and due to its size it is difficult to maintain a comprehensive
overview of all occurring events.

The main satellite repositories have 23405 lines of C and assembly code. The de-
velopment environment for the representative test system have 18036 lines of code
consisting mainly of operating system and drivers. The difference between the satel-
lite repositories and the representative system is approximately 5400 lines of code. The
implementation of EDAC and checkpointing adds approximately 2700 lines. It is sig-
nificantly easier to control the representative system, since the omitted lines are contin-
uously changing and perhaps not structured optimally having been written by students
and not professional programmers.

The microcontroller has limited RAM to store the protected data. To compensate for
this, and leave a bigger portion of system memory to tasks such as image compression,
we store most of the protected data in flash memory. When the variables are requested
they are loaded from flash to RAM. The protected data in the flash is corrected pe-

8 K. A. Ødegaard and A. Skavhaug

riodically. To communicate between tasks on the microcontroller we use the built in
queues in FreeRTOS. In the representative test system we protect a smaller amount of
data compared to the requirements of the finished satellite. To compensate for this we
increase the intensity of the emulated radiation. The emulated error distribution of the
protected data is generated and transferred to the microcontroller.

The result from use of the error correcting code is in Tab. 1. The protected memory
is divided in blocks of 1008 bytes as this is the best fit between an even number of 9 byte
BCH codes and the flash page size of 1024 bytes. Table 1 presents the results from the
correction of three blocks of memory. The faults are generated as a normal distribution
and injected. The faults that can not be corrected leads to errors. In Tab. 2 the number
of faults per BCH code entry is bounded to the maximum correctional capability of
the code. When the number of faults increase past 224 we cross this threshold. Table 2
is included to demonstrate the maximum effectiveness of the correctional codes under
ideal circumstances.

Fig. 5. UC3-A3 Xplained and JTAG ICE3

8 Results and Observations

The preliminary results are encouraging. The chosen parameters can detect and correct
up to 2 randomly occurring errors per stored variable, and if the faults are located fa-
vorably, up to 224 errors per protected data block. Upon a closer examination of the
injected errors we observe that the system runs to completion if the number of errors
per message block is lower or equal to the number of errors the BCH codes can correct.
Reed-Solomon (RS) error correction might have been a better choice since they perform
better than BCH codes in burst error cases [2, p. 113].Nevertheless, with the expected
fault intensity of 10−5errors/bit − day it is very unlikely that the number of errors
in a message block will exceed the codes’ capacity. The decoding of RS and BCH has

Error Detection and Correction for Low-Cost Nano Satellites 9

Table 1. Error correction

Block 1 Block 2 Block 3 Error Comparison Fault Generator
Faults Errors Faults Errors Faults Errors Mean Std.Dev µ σ seed

32 0 28 0 36 0 0 0 0.3 0.5 13585
69 0 63 0 65 0 0 0 0.6 0.5 13585

132 0 128 0 128 0 0 0 1.2 0.5 13585
163 0 152 0 156 0 0 0 1.4 0.5 13585
169 0 161 1 165 0 0.33 0.47 1.5 0.5 13585
181 0 175 3 177 0 1 1.41 1.6 0.5 13585
191 4 195 5 188 3 4 0.82 1.7 0.5 13585
204 8 204 9 200 7 8 0.82 1.8 0.5 13585
210 9 215 11 213 11 10.33 0.94 1.9 0.5 13585
222 13 223 15 229 20 16 2.94 2.0 0.5 13585
235 18 230 30 235 24 24 4.90 2.1 0.5 13585
244 26 240 27 243 27 26.67 0.47 2.2 0.5 13585

Table 2. Error correction for ideal case

Injected faults Errors

128 0
224 0
256 32

similar performance and as part of future work we could change the implementation to
get better results in those cases.

While the general implementation of BCH(N,K) codes is costly and very in-
efficient [2, p. 161], by taking advantage of specific aspects of the BCH codes and
using look-up tables, we have optimized the implementation for our microcontroller.
By choosing constant values for N and K we do the heavy computation of the gen-
erator polynomial coefficients in advance. With these techniques in place, the number
of required cycles can be reduced by up to 51% [2, p. 164], but the precise compu-
tational cost may vary with the chosen embedded processor. The typical features that
affect performance is word length (32, 16 or 8-bit) and if the processor uses soft float or
has floating point processing implemented in hardware. Other factors such as the abil-
ity to use specific processor capabilities such as special instructions for digital signal
processing can also increase performance.

For testing purposes, optimized BCH(67, 53) codes have been implemented. This
code length is used in the European Digital Video Broadcasting standard [17] and it is
therefore easier to find hardware implementations if increased performance is required.
However, the final parameters should be adjusted based on how much computational
power that is available after the payload and radio systems have been fully integrated
and tested. This is due to the energy budget. The codes should not run a significant
amount of time since the available battery power is limited.

10 K. A. Ødegaard and A. Skavhaug

9 Discussion and Conclusion

The main focus of this work has been to study the NTNU satellite to date and present
possible solutions to some of the problems. The work aims to implement a more reliable
overall system. The bulk of the work has been to understand the satellite’s systems and
reason which solutions that are most fitting to solve the expected problems.

The different problems are presented together with suggested solutions. Further,
it details how these problems can be solved with the constraint of using the already
developed satellite systems.

Some of the strategies for low-cost components can be questioned. Why use a low-
cost component when the launch cost is very high? But then again these components
have the low complexity required to be included in student designs. Even with these
low-cost solutions one should remember that a processor that costs $1 today can be
more powerful and uses much less power than the processors in the $100-$1000 from
25 years ago. When this is combined with the wide availability of inexpensive sensors,
the result is that it is possible to collect much more data at a lower cost than before.
For the same reasons it is also possible to deploy redundant sensors, and as with the
processors, the inexpensive cameras of today can have far greater capability than those
used by NASA in the 70s.

The future work will focus on implementation of the solutions discussed in this
paper. As more of the subsystems reach completion they have to be integrated in the
scheduling and fault recovery schemes of the satellite. The available processing power
will be determined by the system’s operating parameters and the load of other tasks such
as the compression algorithms. Because of this it is not advantageous to provide a finely
tuned system at this point, but rather to focus on a useful module for the satellite being
built now. An exhaustive fault injection test to determine how the full system performs
under stress is planned as the system reaches completion. With the chosen strategy
for protecting code and data in the presence of cosmic rays, using simple methods in
software have the possibility of enhancing the dependability significantly.

References

1. Daniel P. Siewiorek and Robert S. Swarz, Reliable Computer Systems, Design and Evaluation.
Digital Press, Burlington, 2nd Edition, 1992.

2. Hazarathaiah Malepati, Digital Media Processing, DSP Algorithms Using C. Newnes,
Burlington, 2010.

3. Space Radiation Effects on Electronic Components in Low-Earth Orbit, PRACTICE NO. PD-
ED-1258, JPL NASA, APRIL 1996.

4. Edward M. Silverman, Space Environmental Effects on Spacecraft: LOE Materials Selection
guide, NASA Contractor Report 4661 Part 1, 1995.

5. Sammy Kayali, Space Radiation Effects on Microelectronics, JPL NASA
6. Emma Litzier, System Overview - Space Segment, http://nuts.cubesat.no/the-satellite, 2013.
7. Amund Skavhaug and Odd Pettersen microFaultTolerant (µFT) - A system for achieving cost

effective fault tolerance in microcontroller based equipment, Real-Time Systems, 1995. Pro-
ceedings., Seventh Euromicro Workshop on, Conference Publication, 1995

Error Detection and Correction for Low-Cost Nano Satellites 11

8. Olof Hannius and Johan Karlsson, Impact of Soft Errors in a Jet Engine Controller, Computer
Safety, Reliability, and Security Lecture Notes in Computer Science, Volume 7612, Springer,
2012.

9. Jan Tommy Gravdahl, Egil Eide, Amund Skavhaug, K Svartveit, KM Fauske, Fredrik Mietle
Indergaard, Three axis Attitude Determination and Control System for a picosatellite: Design
and implementation, Proceedings of the 54th International Astronautical Congress, 2003.

10. Kjell Arne Ødegaard and Amund Skavhaug Survey of correction methods for faults and
errors induced by cosmic radiation on operating system level in CubeSats, IAA-CU-13-09-
09, 2013, http://nuts.cubesat.no/publications-and-reports.

11. Roger Birkeland and Odd Gutteberg, Overview of the NUTS CubeSat Project, IAA-CU-13-
09-09, 2013, http://nuts.cubesat.no/publications-and-reports.

12. NUTS - Publications and reports, http://nuts.cubesat.no/
publications-and-reports

13. Cubesat Specification, http://www.cubesat.org/images/developers/cds_
rev12.pdf

14. CubeSat mission statement, http://cubesat.org/index.php/about-us/
mission-statement

15. UC3-A3 Xplained, http://www.atmel.com/tools/UC3-A3XPLAINED.aspx
16. AT32UC3A3, http://www.atmel.com/Images/doc32072.pdf
17. Digital Video Broadcasting (DVB); Framing structure, channel coding and mod-

ulation for digital terrestrial television, European Broadcasting Union, 2004.
http://www.etsi.org/deliver/etsi_en/300700_300799/300744/01.
05.01_40/en_300744v010501o.pdf

Appendix E

System Analysis of CSP with FSP
and LTSA

This section is included from the previous work of the author regarding mathemat-

ical analysis of protocols. The work is also included in the electronic attachments.

87

4.2 System analysis of CSP with FSP and LTSA

4.2.1 Introduction

In order to determine to what degree it is possible to trust the Cubesat Space

Protocol (CSP) network it was planned to analyze the protocol formally.

CSP will be the main method of communication between the modules and

also to some extent for internal communication between tasks running on

the same module. CSP allows creating sockets for inter process and network

communication similar to the ones used on Linux. This message based

communication is preferable in a real time and reliability context due to the

reduction of complexity in the program.

The use of a message based communication between tasks would require

a reliable medium of communication. CSP is a relatively new protocol and

although it has been deployed on a satellite it cannot yet be considered

mature. In order to determine if this protocol is useful it is planned to

device a process algebraic model of CSP and test this representation. A

suitable approach for this is a Finite State Process (FSP) representation in

the Labelled Transition System Analyser (LTSA) Java tool.

4.2.2 Implications

If CSP turns out to be reliable this would be useful for the further reliability

design in the system. Barring failure in hardware the protocol itself could

be said to be reliable and could be used safely for inter task communication.

The bus could still malfunction, but since there are two physically sep-

arate buses with their own bus repeaters on the backplane, these failures

can be assumed to be quite rare. The expected number of SEUs in LEO are

10−5error/bit−day which translates to roughly 10 errors per day in internal

SRAM and 160 errors per day in external SRAM under normal conditions.

4.2.3 Documentation on CSP

The Cubesat Space Protocol implements a Reliable Datagram Protocol

(RDP) in accordance with RFC-908. Further documentation can be ob-

tained from [16].

33

4.2.4 Method

A process algebraic model of CSP was made with the LTSA tool and with

help from supporting literature [2] [5]. The bulk of this work was to ac-

curately translate the protocol from documentation and source code into a

viable FSP model.

In order to create a system model there has to be some assumptions on

which components will fail and how these failures will manifest themselves.

This is called the system’s error model. For the transmission line the error

model was fairly simple.

There can be an error at the most every third transmission, and if an

error occurs the two next transmissions will be error free. In Communicating

Sequential Processes (a superset of FSP) notation this translates to:

E0 = left?x→ (right!x→ E0 u right!(1− x)→ E2)

En+1 = left?x→ right!x→ En for n = 0, 1

The theory and rationale behind this choice is available in [5, Sec. 5.1].

This might seem a bit simplistic, especially since errors often comes in

bursts. A more complex error model could be constructed, but the solution

would still be to retransmit lost transmissions until contact in achieved.

The increased number of retransmits would require more power, something

which is a limited resource on the satellite. With this in mind is seems more

reasonable to limit the number of retransmits and wait until the ground

station initiates another transmission.

4.2.5 Model Code

//Bounded b u f f e r f o r CSP, l i m i t e d to 5 packages

// e r r o r i s b i t w i s e e r r o r in the message

BUFFER SEND(N=5) = COUNTS[0] ,

COUNTS[i : 0 . .N] =

(when (i<N) put send−>COUNTS[i +1]

|when (i >0) get send−>COUNTS[i −1]

) .

34

APPLICATION1 =

(put send −> send complete −> APPLICATION1

| put send −> s e n d f a i l −> APPLICATION1) .

SEND CALL = (get send −> send −> ack −> send −> ack

−>send −> ack −> send complete −> SEND CALL) .

BUS (N=2) = BUS[0] ,

BUS[i : 0 . . N] =

(when (i ==0) send −> recv −> BUS[0]

| e r r o r −> BUS[2]

|when (i >0) send −> recv −> BUS[i −1]

) .

BUFFER RECV(N=5) = COUNTR[0] ,

COUNTR[i : 0 . .N] =

(when (i<N) put recv−>COUNTR[i +1]

|when (i >0) ge t r ecv−>COUNTR[i −1]

) .

RECV CALL =

(recv −> ack −> put recv −> recv comple te −>
RECV CALL

| e r r o r −> recv −> ack −> put recv −>
recv complete −> RECV CALL) .

APPLICATION2 =

(recv comple te −> g e t r e c v −> APPLICATION2) .

| |CSP = (APPLICATION1 | | BUFFER SEND(5) | | SEND CALL | |
BUS | |
RECV CALL | | BUFFER RECV(5) | | APPLICATION2) .

4.2.6 Results

The result of this study of CSP shows that the implemented model of the

protocol is deadlock and livelock free. Beyond that, the LTSA tool does not

35

provide any insights or analysis of the system.

4.2.7 Discussion

The model was based on the system described in the documentation and on

the provided source code. In the process of building a model based on an

already implemented system it is difficult to make any guarantee that the

process algebra that have been created from the source code is an accurate

description of the system.

The protocol is also open source and this is why NUTS is able to use it

in the first place. In order to be able to make a definitive statement of the

reliability of the implemented code one would need to deploy some sort of

automatic translation tool. Otherwise it would prove very time consuming

to maintain a correct model of CSP.

The two other teams working with the implementation of CSP in the

project ran into some problems. They fixed these problems by making

changes to the code for the radio and the satellite bus in order to have

a functional system. The result of these changes is that the implemented

process model is no longer valid, and the drawn conclusions regarding the

validity and reliability of the protocol has to be re-evaluated.

4.2.8 Conclusion

The implemented model of CSP was deadlock and livelock free with the

provided error model, and the specification of the protocol seems to be

robust from this standpoint.

However, due to changes in the implemented protocol from various groups

in the project, the model used in the verification is no longer valid. It is

difficult to get an accurate representation of the implemented system in

the process model and the extra work needed is not deemed a reasonable

endeavor.

Formal verification methods are most useful in the specification phase

and the techniques used on CSP might prove useful in the specification of

the planned reliability measures for the satellite.

The final word on the conclusion is that the model that was used when

designing the specification for the protocol is valid.

36

	Problem Description
	Abstract
	Sammendrag
	List of Abbreviations
	Overview
	Introduction
	Problem
	Scope and Disposition
	Scope
	Report Disposition

	Theory
	Fault Detection and Manifestation
	Reliability and Availability
	Single Event Phenomena, SEP
	Total Radiation Dose

	NUTS
	Limitations and Challenges in the NUTS project
	Requirements
	Reliability vs. Availability
	Current Design
	Backplane
	On Board Computer, OBC
	Radio
	Payload
	Operating System
	Cubesat Space Protocol, CSP

	Evaluated Solutions
	Error Detection and Correction, EDAC
	Checkpointing
	Master-Slave
	Watch Dog Timer, WDT
	Periodic Reset
	Disabling Faulty Modules
	Program Integrity Check
	Testing

	Implemented Solutions and Test Environment
	EDAC on Other Satellites
	Design Justification
	Software Based approach
	Critical Communication Between Modules

	Functional Overview of Implemented Solutions
	Master-Slave
	CRC
	Checkpointing and EDAC with BCH

	Tools
	Atmel Studio
	Atmel Xplained UC3-A3
	Atmel EVK1104
	Logic Analyzer

	Test Environment
	Results and Observations
	Encountered Problems
	Future Work

	Discussion and Conclusion
	Plots and Data
	Code Analysis
	Plots

	The 2nd IAA Conference
	The 5th European CubeSat Symposium
	SAFECOMP 2013
	System Analysis of CSP with FSP and LTSA

