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Abstract

The overexpression of colony stimulating factor 1 receptor (CSF1R) tyrosine kinase has
been linked to numerous diseases, including cancers, bone osteolysis and inflammatory
disorders. An emerging treatment strategy for these conditions is the inhibition of the
Colony Stimulating Factor 1 Receptor (CSF1R) tyrosine kinase. The aim of this master
thesis was to investigate the synthetic strategies towards substituted pyrrolopyridines,
as possible CSF1R inhibitor structures.

SEM-protection EM
N H lodination N S Selective Suzuki Buchwald amination N
SN R N Cross- coupllng OH R N
Cl cl N

4-Chloro-7-azaindole

Protection of hydroxyl
~SEM Buchwald amination

H
N N OH N\ OR Deprotectlon N\ N
I Y Z P,

Cl N

/,

Target compound

The initial reactions included synthesis of a building block containing a SEM-protecting
group and an iodide leaving group. These syntheses proceeded in overall good yields. A
selectivity study of the Suzuki-Miyaura cross-coupling reaction was performed,
employing various catalysts, ligands and reaction conditions. The most chemoselective
catalyst was found to be Pd(PPhs)4. The selective mono-cross-coupling in C-2 position was
conducted giving an isolated yield of 83%.

Several Buchwald-Hartwig aminations were then performed on the mono-cross-coupled
product. Various conditions were investigated, yet the amination of a substrate containing
a free hydroxyl group remained unsuccessful. The protected substrate analogues gave
good results in Buchwald aminations, and the most rewarding reactions provided yields
0f 89% and 92% of the aminated products.

Removal of the protecting groups was challenging. Two methods of protecting group
removal were attempted, providing yields between 3-74% of the target compound.
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Sammendrag

Overuttrykk av colony stimulating factor 1 receptor (CSF1R) tyrosin kinase er blitt linket
til flere sykdommer, blant annet kreft, benosteolyse og betennelseslidelser. En lovende
behandlingsstrategi for disse sykdommene er hemming av Colony Stimulating Factor 1
Receptor (CSF1R) tyrosin kinase. Malet for denne masteroppgaven har veert a undersgke
syntetiske strategier mot substituerte pyrrolopyridiner som mulige CSF1R hemmere.
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De fgrste reaksjonene var syntese av en byggestein som inneholdt en SEM-
beskyttelsesgruppe og jod som utgaende gruppe. Disse reaksjonene ble utfgrt med gode
utbytter. En selektivitetsstudie av Suzuki-Miyaura-krysskoblinger ble gjennomfgrt, hvor
ulike katalysatorer, ligander og reaksjonsbetingelser ble testet. Den mest kjemoselektive
katalysatoren viste seg a veere Pd(PPhs)4. Selektiv mono-krysskobling i C-2-posisjon ble
utfert, og ga et utbytte pa 83%.

Flere Buchwald-Hartwig-amineringer ble deretter utfgrt pa det mono-krysskoblede
produktet. Ulike reaksjonsbetingelser ble utforsket, men aminering av substratet som
inneholdt en fri hydroksylgryppe forble mislykket. De beskyttede substratanalogene ga
gode resultater i Buchwald amineringer, hvor de mest vellykkede reaksjonene gav
utbytter pa 89% og 92% av de aminerte produktene.

Avbeskytting av beskyttelsesgruppene var utfordrende. To metoder for fjerning av
beskyttelsesgrupper ble utprgvd, og gav utbytter mellom 3-74% av malmolekylet.
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1. Background and aim

A total of 12 million people are diagnosed with cancer every year.! The search for drugs
is vitally important, as this disease is becoming one of the foremost sources of death in
developed countries. A promising strategy for developing a treatment is researching the
activity of protein kinases in the regulation of cellular processes.?

Protein kinases are enzymes that catalyze the phosphorylation of proteins, thereby
regulating and controlling their activities.? Thus, protein kinases play key roles in
controlling cell division, metabolism, survival and differentiation.? Mutation or
malfunction of the protein kinases has been shown to give rise to several diseases,
including various types of cancer, diabetes and inflammatory disorders.# Cellular
processes and signal transduction in cells are dependent on the functionality of protein
kinases, making them attractive drug targets.> >-¢ Great amounts of research have been
undertaken to investigate the role of the protein kinases in cell regulation.

Colony Stimulating Factor 1 Receptor (CSF1R) is a receptor protein kinase. The
overexpression of CSF1R has been linked to several diseases such as cancers and bone
osteolysis.” Inhibition of CSF1R may therefore be a valuable target for treatment of these
diseases, as there are no drugs on the market today.”-°

The research group has generated multiple protein kinase inhibitors with pyrrolo-,
thieno- and furopyrimidine structures. The main focus has been inhibition of the
epidermal growth factor receptor (EGFR) tyrosine kinase.l® Some of the
pyrrolopyrimidine compounds have been found to have inhibitory activity towards
CSF1R, see Figure 1.1.10-11

(N) : OH oY) OH
; O N O

H N
92% 92% ~ 96%

Figure 1.1: Pyrrolopyrimidines possessing activity towards CSF1R, with their respective
percent of inhibition at a 500 nM test concentration.1%-11 The encircled nitrogen atoms are
believed to be involved in hinge interactions with the CSF1R active site.

It is believed that the nitrogen atoms encircled in Figure 1.1 play a role in interactions
with the ATP binding site of CSF1R. The structure-activity relationship (SAR) could be
investigated further by replacing the pyrrolopyrimidine scaffold with pyrrolopyridine.



A water-mediated interaction has also been observed between the N-2 nitrogen of the
pyrrolopyrimidine inhibitors and a threonine residue of the protein. Investigation of
inhibitors with a pyrrolopyridine scaffold, lacking this nitrogen atom, would provide
further insight into this interaction and its importance for binding,.

This project aims to explore the pyrrolopyridine structure in developing CSF1R inhibitors,
and to further investigate the synthetic routes towards 2-aryl-4-aminopyrrolopyridines.
The main target molecule is shown in Figure 1.2.

N H Synthetic steps N« H OH

Target structure
Figure 1.2: Structure of the target (4-(4-(benzyl(methyl)amino)-1H-pyrrolo[2,3-b]pyridin-2-
yl)phenyl)methanol (14).



2. Introduction and theory

2.1 Tyrosine kinase

Protein kinases (PKs) are a type of enzymes which catalyze protein phosphorylation.
Protein phosphorylation is a highly important process in cell life, as it is a major
mechanism through which a protein or enzyme function is regulated.?2 Regulation is
important in intracellular processes such as proliferation, apoptosis, angiogenesis and
cell replication.?-3 Mutation or malfunction of the PKs may give rise to multiple diseases
including cancer, diabetes and inflammatory disorders.> For this reason, the PKs have
become important drug targets for medicinal chemists.2 4 ¢

PKs are named by the amino acid they phosphorylate in the protein. Protein tyrosine
kinases (PTKs) are the enzymes that catalyze the transfer of y—-phosphate from ATP to the
hydroxyl group of a tyrosine unit in proteins, leading to a cellular response.'? The tyrosine
kinase activity is illustrated in Figure 2.1.

Tyrosine kinase
Tyrosine moiety of protein ﬁ Tyrosine moiety of protein =~ ———> Cellular response

“on ATP  ADP \Q
P P P
P P
P

Figure 2. 1: [llustration of the tyrosine kinase activity. Protein tyrosine kinase facilitates the y-
phosphate group transfer from ATP to a tyrosine unit of the protein.

Small molecular inhibitors for the PKs have been classified according to their mechanism
of binding to the enzyme. The inhibitors may bind directly in the ATP-binding pocket, next
to the ATP-binding site, and they may also bind to either an active or inactive confirmation
of the enzyme. Three different types of inhibitors have been distinguished. Type I and type
[l inhibitors bind in the ATP-pocket. Type I binds to the active conformation, while type II
bind to the inactive conformation. Type III binds to an adjacent position to the ATP-
pocket, and therefore does not compete with ATP.#

One of the primary ways that cells communicate with one another is through binding
polypeptide ligands to receptors that possess tyrosine kinase activity.1> There are two
classes of PTKs. The receptor tyrosine kinases (RTKs) cause activation of signaling
pathways within the cells, and the non-receptor tyrosine kinases (NRTKs) are
components of the signaling pathways instigated by receptors.12

The RTKs structure consists of two domains, one extracellular and one intracellular
domain which are connected by a transmembrane domain.!3 The activation of the enzyme
happens when an extracellular signal ligand (growth factor for cytokine) binds to the
extracellular domain.#1> The activated enzyme can then catalyze phosphorylation,
recruitment and activation of multiple downstream signaling proteins. Overexpression of



RTKs may lead to inflammatory responses and multiple diseases including cancer,
psoriasis and diabetes.16-17

2.2 CSF1R

Colony Stimulating Factor 1 Receptor (CSF1R) is a type III receptor tyrosine kinase. It is
activated by two ligands, the Colony Stimulating Factor 1 (CSF-1) and IL-34.7- 18
Overexpression of CSF-1 and CSF1R may cause several diseases and disorders, for
example inflammatory diseases, bone osteolysis and cancers. CSF1R is significant in
microglia differentiation and activation processes, and this indicates that the receptor can
be an important target for treating neuroinflammatory and neurodegenerative diseases.1?
It has also been reported to promote growth and metastasis of certain cancer types.”

Signal transduction of the CSF1R cascade has been shown to result in survival,
proliferation and differentiation of monocyte/macrophage linage.t-7- 20 Macrophages are
a cell type found in every tissue of the body, involved in the immune defense and
development of tissue.2! They can operate as both positive and negative facilitators for
the immune system, and promote growth factors, angiogenic factors and proteases to aid
tissue repair.2% 22 If a tumor has been established in the body, macrophages may become
pro-tumeral and help to grow and spread the tumor.23-24 These are often called tumor
associated macrophages (TAM).

Thus, CSF1R inhibition may be a promising strategy for treating the above-mentioned
diseases.8-? Previously, two different courses of inhibition have been described. The first
method involves small molecules inhibiting the CSF1R tyrosine kinase activity, while in
the second method the binding between the receptor and its stimulating factor CSF-1 is
hindered.®

Multiple concerns arise from the inhibition of the CSF1R inhibitors, due to the fact that
CSF1R is a member of a larger group of similar receptors.?5 Inhibition of CSF1R may
therefore offer an effect on the other receptors in the group, if the inhibitor shows low
selectivity.26 Accumulation of CSF-1 in the cells could also be a complication from
inhibition.®

2.2.1 Previously identified inhibitors

There has already been identified multiple potent CSF1R inhibitors. Ki20227 is an
inhibitor reported to be an especially useful agent in treatment of osteolytic diseases and
bone diseases.?” GW2580 is another, more selective inhibitor.® 28 PLX3397 is a highly
selective inhibitor, reported to slow tumor growth and delay the metastasis of tumor
models of mice.29-30, [t is a derivative of PLX647, where some structural alterations have
been made, including changing the phenyl group into a pyridine, and adding a chlorine
atom in the 5-position of the 7-azaindole moiety. With these alterations, PLX3397 showed
an increased potency towards inhibiting CSF1R and a lower cross-reactivity with other
kinases.31 All four inhibitors are shown in Figure 2.2 with their respective 1Cso-values.



0] N
H H \
NTrNj/Q} NH;
0 N™N
@ A
0 H,N N O
< N O -’
- (0]

2,
~o N
Ki20227 GW2580
ICsO =2nM IC50 =30 nM
N\_N
= \—NH = N\—NH
N\_N N\_-N
Cl
| TN | TN
NZ N NI N
H  pLxea7 H' pLx3397
|C50 - 28 nM |C50 1 13 nM

Figure 2.2: CSF1R inhibitors Ki2022727, GW258028, PLX64732 and PLX33973! with their
respective ICsq values.

2.2.3 Structure of CSF1R

The crystal structure of a kinase inhibitor in complex with the unphosphorylated CSF1R
has been reported by Schubert et al, and is shown in Figure 2.3.33 The binding between
the CSF1R backbone and the relevant ligand stimulates the autophosphorylation,
dimerization and phosphorylation of the kinase target molecules. In the binding, one or
more hydrogen bonds usually arise between the two units.



Figure 2.3: The crystal structure of CSF1R with the bound inhibitor on the right. The structural
element in blue is the nucleotide binding lobe, red is the activation loop, pink is the hinge region,
cyan is the kinase insert domain and yellow is the juxtamembrane domain.33

There exists a two-lobe structure in the protein. The N-lobe, on top in Figure 2.3, consists
of five twisted B—sheets and one a-helix. The C-lobe, on the bottom of Figure 2.3, consists
mostly of a—helix structures. The two lobes are connected to each other by a hinge region.
The binding of nucleotide or inhibitor is facilitated by the hinge and the N-lobe, while the
C-lobe is responsible for substrate binding. The binding of ATP or inhibitor takes place in
a cleft between the N-lobe and the C-lobe.33

The activation loop, typically around 22 amino acids long for RTKSs, is an essential region
for the regulation of kinase activity.3* Stimulation of RTK activity is dependent on the
autophosphorylation of tyrosine residues in the activation loop. When inhibitor
structures are introduced, the binding of ATP or substrate is hindered, and the
phosphorylation of tyrosine residues is inhibited.33



2.3 Substituted pyrrolopyridines

The syntheses in this project are based upon pyrrolopyridines, also named azaindoles.
These are fused heterocycles which consist of a pyrrole ring and a pyridine ring. The
pyrrole unit is electron rich, and the pyridine ring electron deficient. There are four
possible isomers of azaindoles. The isomers are shown in Figure 2.4, as is the atom-
numbering of pyrrolo[2,3-b]pyridine or 7-azaindole.
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Figure 2.4: The four isomers of azaindoles, with the atom numbering of 7-azaindole.

The azaindoles structures are rare in nature, but the commercial availability has
increased in later years.35-3¢ One reason for their relevance in drug optimization strategies
is that the pKa, lipophilicity, target binding and ADME-tox (Absorption, Distribution,
Metabolism, Excretion, Toxicity) properties of the compounds can be finely adjusted and
tuned.37-3% The 7-azaindole is the azaindole isomer that has generated the largest amount
of commercially available molecules, in addition to over 100.000 structures described.*0

2.3.1 Previous synthesis on 7-azaindoles

Multiple methods have been described for the synthesis of 7-azaindoles. A two-step
synthesis of 2-substituted 7-azaindoles was reported by de Mattos et al. 41 The first step
was a palladium catalyzed Sonogashira coupling, followed by a cyclization with the use of
18-crown-6. Whelligan et al. have reported the syntheses of a broad range of aza- and
diazaindoles, starting from various chloroamino-N-heterocycles.#2 The two-step
synthesis of 7-azaindole involved a Suzuki cross-coupling reaction with (2-
ethoxyvinyl)borolane, followed by a cyclization catalyzed by acetic acid. Both mentioned
syntheses are shown in Scheme 2.1.
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MeCN/H,0 (3:2), reflux, 18 h

Scheme 2.1: The synthesis of 2-substituted 7-azaindoles as described by de Mattos et al.41, and
the synthesis of 7-azaindole as described by Whelligan et al.#2



Many biological targets have been found for 7-azaindoles, amongst them are the
kinases.*% 43 Some examples of kinases that have been reported to be inhibited by 7-
azaindole structures are Anaplasmic Lymphoma Kinase (ALK)*4, Aurora kinases*> and
Janus kinases (JAK)%¢. Huang et al. reported a synthesis which involved introducing a
benzenesulfonyl protecting group to the 7-azaindole, performing a Suzuki cross-coupling
reaction and a displacement of chloride to afford an inhibitor of CDK1 (Cyclin-dependent
kinase 1).#” Zhang et al. report the synthesis of the KIT/CSF1R dual kinase inhibitor
PLX647, by a condensation reaction between 7-azaindole in C-3-position and an aldehyde,
followed by a reduction of the secondary alcohol.32 Farmer et al. performed a short
synthesis starting with a Suzuki cross-coupling reaction between the 7-azaindole
boronate ester and a chloropyrimidine derivative, followed by an amide bond formation
which resulted in the JAK inhibitor Decernotinib.#¢ The syntheses mentioned are shown
in Scheme 2.2.
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Scheme 2.2: Examples of syntheses of kinase inhibitors from 7-azaindole structures, as
described by Huang et al.,*” Zhang et al.32 and Farmer et al.46

2.3.2 Amination of 7-azaindoles

Different synthetic approaches may be considered when attempting to form 4-amino-7-
azaindoles. The corresponding halide may be used in a SnAr displacement reaction to
obtain the aminated product. High temperatures are often necessary, as well as long
reaction times and a large excess of amine.*® Caldwell et al. reported a yield of 53% for
the thermal amination of an unprotected 4-chloro-7-azaindole substrate.*8 Gehringer et
al. reported a yield of 63% in the amination reaction of a toluenesulfonyl-protected 5-
bromo-4-chloro-7-azaindole substrate.*® The two examples are shown in Scheme 2.3.
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Scheme 2.3: Examples of thermal aminations on 4-chloro-7-azaindole structures, as described
by Caldwell et al. and Gehringer et al.48-49

N 2.

Another synthetic approach utilizes palladium catalysis for the amination reactions.
Palladium catalyzed cross-coupling reactions between unprotected halo-azaindoles and
amines have been reported by Henderson et al, providing high yields of reactions with
both primary and secondary amines.>® An example is shown in Scheme 2.4. It should be
mentioned that Johansen in her master thesis was not able to reproduce this reaction, and
that the 1H NMR by Henderson does not match the proposed structure.>0-51

H H RuPhos, N H
N\ N N RuPhos Pd precat. SN
> ||
P P
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Scheme 2.4: A palladium catalyzed amination reaction on a unprotected 4-chloro-7-azaindole
with a secondary amine, as reported by Henderson et al.5°

2.4 Protecting groups

Pyrrolopyridines contain a reactive lone pair on the pyrrole nitrogen. A protecting group
in this position causes the reactivity on the pyrrole nitrogen to be reduced and the
regioselectivity of subsequent reactions on the pyrrole moiety may be altered.>2 Multiple
factors should be contemplated when choosing a protecting group. Some important
considerations are the nature of the substrate and the stability of the protecting group
under the preferred reaction conditions. The chosen strategy should also allow for
protecting group removal without degradation.>3

Nitrogen protection with an electron withdrawing group will provide the desired effect
of decreasing the nucleophilicity and the accessibility of the lone pair of 7-azaindoles.
Sulfonyl protecting groups are commonly used for pyrroles and show a great electron



withdrawing ability.>> 54 Other commonly used protecting groups are silyl groups,
including the 2-(trimethylsilyl)ethoxymethyl group (SEM) and the tert-butyl-
dimethylsilyl group (TBDMS), shown in Figure 2.5.

. J
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Figure 2.5: The structures of the two protecting groups SEM and TBDMS.

2.4.1 SEM protecting group

The SEM group is useful in settings where a stable protecting group is needed. In Suzuki
cross-coupling reactions with pyrrolopyridazinones, a structure which has structural
similarities to pyrrolopyridine, the use of SEM protection has resulted in excellent
yields.55 The SEM group has several advantages, amongst others in not being too sterically
demanding and being more resistant to decomposing than other common protecting
groups. The ability to direct lithiation towards the 2-position of 7-azaindoles is also an
attractive feature of the SEM group.55-56

The removal strategies of the SEM group may be harsh, as a consequence of its stability
under various reaction conditions, and the deprotection often involves fluoride sources.53
Several papers have reported difficulties with removal of the SEM group.57-59

Both one-step and two-step deprotections have been reported. A one-step deprotection
by treatment with tetra-n-butylammonium fluoride (TBAF) in THF, or aqueous HCl in
EtOH, was described by Luo et al.>¢ In the two-step SEM-removal reactions, the first step
has been reported to involve cleaving off Si(CH3)3F and formation of a hydroxymethyl
protected intermediate. The intermediate is then cleaved under basic conditions in the
second step, and formaldehyde is formed.t9-61 Zhou et al. reported a two-step
deprotection method employing boron trifluoride diethyl etherate (BF3-OEt:), followed
by aqueous ammonium hydroxide.®® Hatcher et al. have reported deprotection by TFA in
CH2Cly, followed by treatment with NaHCO3 in THF for completing the second step.6! The
suggested mechanisms for one-step deprotection and two-step deprotection are shown
in Scheme 2.5. If only Si(CH3)3F is cleaved off and deprotection is incomplete, the
substrate remains protected and this may cause low yields.
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Scheme 2.5: Suggested mechanisms for SEM deprotection: One-step deprotection (I), two-step

deprotection (II) and incomplete deprotection (III).60.62-63

2.4.2 TBDMS protecting group

The TBDMS, or TBS, group is known for its ease of removal, as it can be cleaved under
conditions that typically do not disturb other groups that are unstable towards acid or
base.* Its bulkiness provides a selectivity towards primary alcohols. The group is stable
towards aqueous base, but can be transformed back to the alcohol if treated with acid. As
for the SEM group, fluoride sources are useful in the deprotection. Corey et al. suggested
in 1972 a deprotection mechanism with TBAF as the fluoride source, as shown in Scheme
2.6.55 Formation of the strong Si-F bond is the driving force of the deprotection reaction.
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Scheme 2.6: Mechanism suggested by Corey et al. for TBDMS protecting group removal.65
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2.5 Suzuki-Miyaura cross-coupling reaction

The Suzuki-Miyaura cross-coupling reaction (hereafter referred to as the Suzuki cross-
coupling) is the palladium cross-coupling of an organoboronic acid and an aryl halide. The
reaction forms new sp2-sp? carbon-carbon bonds in good yields.

As a variety of boronic acids and halogenated compounds have become commercially
available, the scope of the possible reactant structures has been widely broadened.®® The
Suzuki cross-coupling is catalyzed by palladium, which is often ligated to improve the
reactivity and catalytic properties. In many cases, the reaction needs tuning due to low
reactivity, formation of by-products or to improve chemo- or regioselectivity.

The removal of inorganic residues and byproducts is made easy as the reaction allows for
water being present.6” Organoboronic acids are generally thermally stable and inert to
oxygen and water, and this makes the Suzuki cross-coupling more beneficial than other
coupling reactions such as the Grignard reaction.®® The reaction only requires a catalytic
amount of palladium catalyst, together with a suitable base.®® Enhanced selectivity of
coupling organoborons and organic halides is provided when a negatively charged base
is used, such as K>COs. This arises from coordination between the negatively charged base
and the organoboron, increasing the nucleophilicity of the organoboron.¢8

2.5.1 Mechanism

The mechanism of the Suzuki cross-coupling is suggested to take place in four steps as
seen in the catalytic cycle shown in Scheme 2.7.67-68 Firstly, the aryl/alkenyl/alkyl/alkynyl
halide reacts with the Pd(0) catalyst in an oxidative addition step, forming the
organopalladium species. The rate of the oxidative addition step is increased with the
leaving group ability, in the order I>Br>CI>F.70 The metathesis step displaces the halide
in the organopalladium complex, forming the more reactive organopalladium alkoxide or
hydroxide, depending on the base.”’-73 A reaction with the base is also required for
activating the boronic acid reactant, producing the more reactive and nucleophilic
boronate anion.®® The boronate anion is coupled to the organopalladium species in the
transmetalation step.”’3 The final cross-coupled product is formed in the reductive
elimination step, where the Pd(II) returns to its Pd(0) oxidation state.
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Scheme 2.7: The suggested mechanism of the Suzuki cross-coupling reaction.67-68

Which step is rate determining will depend on the reaction system. Schmidt et al.
suggested that the transmetalation step was the rate determining step in the catalytic
cycle, as no change in the rate of reaction was observed when switching from an aryl
iodide to an aryl bromide.”* Smith et al. found the rate determining step to change from
oxidative addition to transmetalation when the substrate halide was switched from
bromide to iodide.”> The transmetalation step has been reported to proceed faster when
the phenylboronic acid contains an electron donating substituent in 4-position.® Higher
yields, better solubility and more selective reactions were also observed when electron
rich boron acids were used.%¢

2.5.2 Byproducts and side reactions

Several side reactions of the Suzuki cross-coupling have been identified. Firstly, side
reactions involving the boronic acid moiety will be presented, and they are shown in
Scheme 2.8. Oxidative homocoupling of the boronic acid is a consequence of aerobic
oxidation, where the boronic acid R-B(OH)2 couples with another boronic acid unit to
form R-R.7¢ This side reaction is palladium catalyzed and therefore exists as a competing
reaction to the Suzuki cross-coupling. In the presence of a base, the oxidation of the
boronic acid R-B(OH); to RO-B(OH); may be catalyzed, and R-OH is formed through
hydrolysis.”” Peroxyboronic acid formed may also oxidize R-B(OH): to ROH.
Protodeboronation is another side reaction involving the boronic acid moiety, and several
pathways of mechanism have been proposed.””

13



H B(OH), OH

H50, H* ROOH or
~—— —_—
OH-, M+ cat B(OH),O0H

Protodeboronation Oxidation
l 0O,, H,0, Pd

Oxidative homocoupling

Scheme 2.8: Side reaction of the Suzuki cross-coupling reaction involving the boronic acid.”6-77

Dehalogenation of the aryl halide is also observed in many Suzuki cross-coupling
reactions, shown in Scheme 2.9. As proposed by Navarro et al. the dehalogenation and the
Suzuki cross-coupling are competing reactions as they share many of the same catalytic
steps.”8 They reported that when the substrates are sterically crowded, the rate of
transmetalation is decreased and dehalogenation is favored. They observed that the
dehalogenated byproduct was formed in the beginning of the reaction, without increasing
over time.” Jedindk et al. proposed that the dehalogenation side reaction of pyrazole
halide substrates was promoted by the base.”® The amount of dehalogenated byproduct
has also been reported to decrease with slow addition of the substrate when aryl
chlorides are used.80

Cl Cat. conditions H
—_— I

N\ /

Scheme 2.9: Dehalogenation of the aryl chloride.80

2.5.3 Catalysts and ligands

Multiple catalysts for the Suzuki cross-coupling reaction have been developed. An
effective ligand should combine steric bulkiness and fitting electronics. The electronics of
the ligand are important, as electron rich ligands promote the oxidative addition step, but
slow down the reductive elimination step.8! Optimization of the catalyst and ligand
system can be crucial in work to identify the most suitable conditions for a reaction. A
selection of common Suzuki cross-coupling catalysts and ligands are shown in Figure 2.6.
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Figure 2.6: The structures of palladium catalysts Pd(PPh3)s, PEPPSI™-SIPr, XPhos Pd G2,
(dppf)PdCl; and Pdz(dba)s.

The catalytic cycle for the Suzuki cross-coupling reaction starts with formation of the
active Pd(0)-ligand complex, as can be seen in Scheme 2.7. The formation of this complex
has been observed to be slow in some cases.?? To overcome this challenge, pre-ligated
Pd(II) compounds, called precatalysts, have been developed.83-8¢ These precatalysts are
stable towards air and moisture. They are deprotonated in basic conditions and rapidly
undergo reductive elimination to form the active Pd(0) catalytic species. An example is
the XPhos Pd G2 precatalyst, which is shown together with the XPhos ligand in Figure 2.7.

H.NPd ~cl
Cy=P=Cy Cy=P=Cy
i-Pr i-Pr
0 O
I-Pr i-Pr
XPhos XPhos Pd G2

Figure 2.7: The structures of the ligand XPhos and the XPhos Pd G2 precatalyst.85

Additionally, the choices of base and solvent are important considerations for a successful
reaction. The most suitable solvents for room temperature reactions are THF and 1,4-
dioxane.8! 1,4-Dioxane has been reported to be the best solvent for couplings between
arylboronic acids and aryl chlorides.86
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2.5.4 Regioselectivity and chemoselectivity

In the oxidative addition step, the reactivity is regulated by the nature of the halogen on
the aryl halide. The order of reactivity of the halogens are I>Br>Cl>F, providing a
difference in selectivity called chemoselectivity.87 If the substrate is di- or poly-
halogenated, the selectivity between the halogens, called regioselectivity or site-
selectivity, may be difficult to achieve.8” The electronic properties of the substrate may be
exploited, as the less electron rich position will react first.

The electron density, the chelating effect and the steric bulkiness of the ligand systems
have been reported to play key roles for selectivity in reactions with hetereoaryl
polyhalide substrates.88-91 The choice of catalyst system can therefore be important when
multiple halides are present in the substrate and a site-selective reaction is required.
Especially electron rich ligands with steric bulk have been reported to promote unusual
selectivities.88-90

Dai et al. investigated the site-selectivity of various phosphine ligands in Suzuki cross-
coupling reactions with 3,5-dichloropyridazine as substrate.”? Electron deficient
bidentate ligands, such as dppf, favored reaction in the C-3 position, while electron rich
monodentate ligands favored C-5. These results are shown in Scheme 2.10.
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Scheme 2.10: Site-selective Suzuki cross-coupling reactions of 3,5-dichloropyridazine, as
reported by Dai et al.?2 The bidentate electron deficient ligand dppf favored reaction in C-3
position, and monodentate electron rich ligands such as Q-phos favored reaction in C-5 position.
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2.6 Buchwald-Hartwig amination

There are multiple ways of forming new C-N bonds. One strategy is a thermal amination,
where a nucleophilic aromatic substitution (NAS) occurs through an SyNAr mechanism. In
this mechanism, the aromatic ring needs to be adequately activated (electron deficient)
for the reaction to take place.?3-°4 When the substrate is not sufficiently activated, the
reaction may face several drawbacks, including long reaction times and high
temperatures.* An alternative to the thermal amination is catalytic amination. Catalytic
amination has in several cases been reported to be superior to a thermal amination.?>-96
Aryl halides which are not activated by electron withdrawing groups are best aminated
by copper or palladium catalysis. Palladium catalyzed amination of aryl halides are
referred to as Buchwald-Hartwig couplings or Buchwald aminations.

2.6.1 Mechanism

The mechanism of the Buchwald amination resembles the Suzuki cross-coupling reaction
mechanism. However, the order of some of the catalytic steps may differ for different
catalyst systems, ligands and bases. The generalized catalytic cycle, as suggested by
Guram and Buchwald in 1994, is shown in Scheme 2.11.97 This catalytic cycle starts with
the reduction of Pd(II) to the active species Pd(0). This oxidative addition step involves
the aryl halide connecting to the palladium species. The halide is displaced by the base in
the metathesis. The amine is then deprotonated and replaces the hydroxy/alkoxy group
in the palladium complex. The coupled product is released in a reductive elimination step,
as the Pd(II) returns to the active Pd(0) oxidation state. The C-N bond is formed in this
step, as proposed by Paul, Bratt and Hartwig in 1994.98
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Scheme 2.11: The mechanism of the Buchwald-Hartwig amination, as suggested by Guram and
Buchwald in 1994.97
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Which mechanistic step is rate determining can vary for different substrates, and the
reaction conditions can therefore be challenging to optimize.®® For aryl chlorides, the rate
determining step is usually the oxidative addition. Electron rich ligands may improve the
rate of the oxidative addition as well as reduce the rate of the reductive elimination step.8!
The rate of the reductive elimination step can be greatly influenced by the introduction of
electron withdrawing groups and electron donating groups in certain positions of the
ligand. An illustration of this effect is shown in Figure 2.8.100

] Slowing the Rate of Reductive Elimination
R Electron Donating

R? Electron Withdrawing
R3 Electron Donating
R4 Methoxy Substituent Slows Reductive Elimination

Figure 2.8: The effect of the electronic properties of ligand substituent on the reductive
elimination step.100

Heteroaryl halides can be especially challenging reactants in Buchwald aminations, as
they may show great varieties of electronic properties. This makes it difficult to predict
suitable conditions for the Buchwald aminations of such substrates, and the performance
of the oxidative addition and reductive elimination steps may vary with different
substrates.??

2.6.2 Catalysts and ligands

Generating the active Pd(0) complex is a process that can differ greatly in efficiency, and
a variety of ligands may be considered when choosing the most suitable conditions for a
successful amination. The ligand RuPhos has been suggested to be most advantageous for
secondary amines, while BrettPhos is selective for primary amines.?® Both ligands are also
available in precatalyst form, and they are shown in Figure 2.9.

OMe
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Figure 2.9: The structures of ligands RuPhos and BrettPhos.%?
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Kaspersen et al. synthesized 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-
amine structures for inhibition of EGFR (Epidermal Growth Factor Receptor) tyrosine
kinase, where one synthesis route involved a Buchwald amination step using primary
amines and the Pd(OAc):/XPhos catalyst system.101 Yields between 47-71% were
obtained of the aminated products, as shown in Scheme 2.12.
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Scheme 2.12: Palladium catalyzed amination reactions between 4-chloro-6-(4-methoxyphenyl)-
7H-pyrrolo[2,3-d]pyrimidine substrates and primary amines using the Pd(0Ac)./XPhos catalyst
system, as reported by Kaspersen et al.101

Guillard et al. performed successful Buchwald aminations on 7-azaindoles with secondary
amines, using a catalyst system with Pd2dbas and the ligand XantPhos.102 XantPhos was
originally created for regioselective rhodium catalyzed hydroformylation, but has also
become a valued ligand in C-N bond forming reactions.103-194 XantPhos is a bidentate
phosphine ligand, providing two coordination sites for palladium, a feature which has
been reported to produce less of the reduced arene byproducts.1% Driver et al. reported
the use of another bidentate ligand, (dppf)PdCl;, in an amination reaction between 4-
bromobenzophenone and a secondary amine.1%¢ The two reactions are shown in Scheme
2.13, with the structures of the two bidentate ligands on the right.
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v 87% 5 @— P
100 °C, 3h

Scheme 2.13: Two examples palladium catalyzed amination reactions using secondary amines
and bidentate ligands, as described by Guillard et al. for a 1-methyl-4-halo-7-azaindole
substratel02, and Driver et al. for a 4-bromobenzophenone substrate.196 The structures of the
ligands XantPhos and (dppf)PdCl; are shown on the right.
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2.6.3 Byproducts and side reactions

Poor nucleophilicity of the amine coupling partners, either as a consequence of steric
hindrance or electronic properties, can give slower rates of amine transmetalation. This
may cause a side reaction between the alkoxide base and the substrate leading to the
formation of an aryl ether (ArOt-Bu in the case of NaOt-Bu base).197 Furthermore, 3-
hydride elimination is a side reaction that may arise from the intermediate Pd(II)-amido-
complex. The proposed mechanism for B-hydride elimination is shown in Scheme 2.14.108
This causes the formation of the reduced arene.l®” The B-hydride elimination is a
competitive reaction to the reductive elimination step, and the reaction conditions and
catalyst system should be carefully optimized to minimize this side reaction.

X
| =-R2
/ Oxidative Lnlpd(u) M+OR!-
H addition M+X-
| ™
I \_R2 L,Pd(0 \ Metathesis L,Pd(ll)
s R2
“\
Reductive H \\
elimination X R2
L IF’d (1)
d [ H
R .N vR
B-hydride
elimination H+OR'-
Amine binding
Deprotonation

Scheme 2.14: The suggested mechanism of the B-hydride elimination side reaction.108
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3. Results and discussion

The aim of this master thesis was to develop synthetic protocols towards 4-amino-2-aryl-
1H-pyrrolo[2,3-b]pyridines to be used for CSF1R inhibition. An overview of the synthetic
routes to the main target compound is shown in Scheme 3.1.

Protection of the pyrrole nitrogen with a SEM-protecting group and a following iodination
offered a route to the first building blocks. A selectivity study of the Suzuki cross-coupling
reaction resulted in a chemoselective reaction in the 2-position. The palladium catalyzed
Buchwald-Hartwig amination was unsuccessful when the acidic proton of the hydroxyl
group was unprotected. This issue was solved by attaching two different protecting
groups in this position, and Buchwald aminations were then studied and performed for
these protected compounds. The challenging final step was the removal of the protecting
groups, yielding the target compound. The syntheses resulted in 15 new compounds,
including the identified byproducts.

H SEM SEM SEM
NN NN NN OH NN OH
| Jp =1 1) —1_] —> [,
cl a2 a5 N, 8
Building block Ph

SEM SEM SEM
NN OH NN 0-R NN 0-R N
~ ~ ~ ~
-0~ Co-0~" —~ L — |
cl 5 cl 6 M rN\ 9 13 (N\ 14
R| -TBDMS -SEM Ph R|-TBDMS -SEM Ph

Target structure
Scheme 3.1: The main synthetic routes leading to the target structure, starting from
commercially available 4-chloro-1H-pyrrolo[2,3-b]pyridine.

ZT
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OH

This section consists of five main parts. The first part describes the syntheses of the key
buildings blocks. The second part covers the Suzuki cross-coupling reactions and findings
from the selectivity study. The third part provides an overview of the Buchwald
aminations performed in this project, where the encountered problems and synthetic
solutions are discussed. The fourth part describes the removal of the protecting groups,
the final synthetic step forming the target compound. In the last section, characterizations
of the synthesized compounds and byproducts are discussed.
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3.1 Building blocks

3.1.1 Synthesis of compound 1 by SEM protection

The first synthesis step was protecting the pyrrole nitrogen with an SEM protecting group.
This synthesis has been reported by Nakajima et al. and has been successfully executed
within the research group.109

Compound 1 was synthesized from 4-chloro-1H-pyrrolo[2,3-b]pyridine in a 3.90 g scale.
The starting material was dissolved in dry DMF at 0 °C, NaH was added and the mixture
was stirred for 30 minutes. Thereafter followed the dropwise addition of SEM-CI, before
the mixture was left to stir for 2 hours. The mixture had a bright yellow color after
addition of the SEM-chloride, and reached a conversion of 84%. After purification with
silica gel column chromatography, compound 1 was obtained as a light yellow oil with a
yield of 82% (5.45 g). An oil was expected as the SEM group makes it difficult for the
molecule to crystallize. The yield corresponds well to the 84% conversion.

The synthesis was later repeated in a 5.43 g scale. The reaction reached full conversion as
indicated by TLC and 'H NMR after 3 hours and 45 minutes. Purification with silica gel
column chromatography gave compound 1 as a light yellow oil in 90% yield (9.11 g). The
synthesis of compound 1 is shown in Scheme 3.2.

N/
/ji’
o)
N H 1. NaH, DMF N r
[ N 0°C,30min (7S N
—_
2. SEM-CI, DMF ]
Cl 0 °C, 3h 45min Cl

Scheme 3.2: Synthesis of compound 1 by SEM-protection of
4-chloro-1H-pyrrolo[2,3-b]pyridine.

3.1.2 Synthesis of compound 2 by iodination

Compound 2 had previously been reported in a patent by Kim et al.ll® The same
procedure was used in this project. The synthesis of compound 2 is shown in Scheme 3.3.
The starting material 1 (7.87 g) was dissolved in dry THF and cooled to -78 °C. LDA (2 M
in THF) was added dropwise over a period of 45 minutes using a syringe pump. The
mixture was left to stir for 1 hour before the dropwise addition of I dissolved in THF. The
reaction mixture was stirred for 2 hours after completed addition of I, until TH NMR
analysis showed that full conversion had been reached. Solubility issues were
encountered during the extraction, leading to the product being partially soluble in the
water phase. After a tedious workup including 14 extractions with CH2Clz and salting out
with NaCl, the crude product yield was 82%. The product was purified by silica gel column
chromatography, giving compound 2 as a beige powder with a yield of 69% (10.2 g). The
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moderate yield can be ascribed to the problems that were encountered during the
extraction.

\ SEM 4 DA THF \ SEM
[ N 78 °C. 1h [ N |
i R
P P
; 2.1, THF )

Cl -78 °C, 2h Cl

Scheme 3.3: Synthesis of compound 2 by iodination of compound 1.

The reaction was performed a second time, in a 3.2 g scale. The reaction reached 84%
conversion after stirring at -78 °C for 1 hour. The solvent was removed in vacuo and
extraction was conducted with CH2Cl2. After 3 rounds of extraction, no product 2
remained in the water phase. Compound 2 was isolated in a 50% yield after purification
with silica gel column chromatography. The low yield was most likely due to the moderate
conversion, and losses during purification. The previously described workup issues were
not observed in the second reaction. Possibly, the removal of solvent and amine was more
carefully performed, as residues of THF and LDA could have caused the problems in the
extraction of the first reaction.

Sufficient amounts of building block 2 had been produced for proceeding to the next

synthetic step. The planned synthesis route involved a Suzuki cross-coupling reaction
followed by a Buchwald amination.
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3.2 Suzuki-Miyaura cross-coupling reactions

The next goal was to develop a chemoselective Suzuki cross-coupling reaction in 2-
position of substrate 2. Multiple side reactions were possible, as shown in Scheme 3.4.
Reduction of the aryl halide would give the dehalogenated byproduct 1. There was also a
possibility for di-coupling, where both halides in positions 2 and 4 would couple with the
boronic acid, forming compound 3. The hydroxyl groups of the product 5 and compound
3 could also undergo oxidation to the corresponding aldehydes.

Chemoselective
.SEM MonNo-Cross N .SEM Oxidation of ,SEM
NN coupling at C-2 &N OH| hydroxyl group NN /0
| )— — |l / — || /
Z Z s
5
Cl 2 Cl Cl
Oxidation of
NSEM OH one or both
hydroxyl groups
, O Y yl group
3
OH

Scheme 3.4: Overview of byproducts formed during synthesis of compound 5 from substrate 3
in a Suzuki cross-coupling reaction. The shown byproducts are results of di-cross-coupling (3),
reduction of the aryl halide (1), and oxidations of the hydroxyl groups of compound 5 and 3.

To study the chemoselective Suzuki cross-coupling reaction, some reference material was
needed. Therefore, the investigation started with synthesis of the di-cross-coupled
compound 3, to obtain the NMR data for reference.

3.2.1 Di-cross-coupling reactions

The XPhos catalyst system was chosen for the di-cross-coupling reactions as it has been
reported to be an efficient ligand. The di-arylated compounds 3 and 4 were both
successfully synthesized using precatalyst XPhos Pd G2 and XPhos as ligand in a Suzuki
cross-coupling reaction, as depicted in Scheme 3.5.

24



OH
SEM
N N (HO).B

—_—
XPhos/XPhos Pd G2
1,4-Dioxane:H50 (1:1)

90 °C
19 min

PEM @\/
NN (HO).8 on

| e — >
XPhos/XPhos Pd G2
Cl K>CO4
1,4-Dioxane:H,0 (1:1)
90 °C
19 min

Scheme 3.5: Synthesis of compounds 3 and 4 by Suzuki di-cross-coupling reactions of
compound 2.

Together with base, boronic acid, catalyst and ligand, the starting material was dissolved
in degassed 1,4-dioxane and water (1:1) under an Nz atmosphere. Full conversion had
been reached for both reactions after 19 minutes stirring at 90 °C. 'TH NMR analysis of the
crude materials showed that oxidation of the hydroxyl groups had taken place. Multiple
aldehyde signals were observed in both crude materials, indicating that both hydroxyl
groups of the products had undergone oxidation, and several different oxidized
byproducts were formed. 1H NMR analysis showed that the crude materials of compound
3 and 4 contained 16% and 14% of oxidation byproducts, respectively. After purification
with silica gel column chromatography, compound 3 was obtained as an off-white solid
in 79% yield (246 mg), and compound 4 as an off-white solid in 80% yield (227 mg).

3.2.2 Selective cross-coupling at C-2

For the synthesis of mono-cross-coupled compound 5, multiple catalysts and conditions
were tested. The general reaction is shown in Scheme 3.6, and the specific results and
conditions for each reaction are shown in Table 3.1. The goal was to identify conditions
for the Suzuki cross-coupling reaction which allowed a selective mono-cross-coupling in
the 2-position, while minimizing formation of the byproducts as shown in Scheme 3.4.

A method using Pdz(dba)s, which has previously been found useful for an analogous
pyrrolopyridine molecule, was initially tested.5! Reactions with Pdz(dba)s are reported in
entries 1-3 in Table 3.1. Reactions at different temperatures ranging from 60-100 °C all
produced the target compound 5, the di-cross-coupled byproduct 3 and an unknown
byproduct. No oxidation of the hydroxyl groups was seen with the Pd;(dba)s reactions.
The unknown byproducts proved difficult to remove from product 5 using silica gel
column chromatography. Several eluent systems were tested, with both dry loading
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application with celite and direct application. Still, the product was not isolated from the
impurities.

OH

B.
SEM \/@’ OH sem
HO .
NN OH
I ] ,>—< >—/
/
gg/\)_ Pd cat., Ilgand = 5

K2003 Cl
1,4-Dioxane:H,0 (1:1)
Byproducts:
SEM
| 5o
P/
c !

Scheme 3.6: Overview of the synthesis of compound 5. Multiple Suzuki cross-coupling reactions
at various temperatures and with multiple palladium catalyst systems were performed.

In the search of a catalyst system with less formation of byproducts and an easier
purification process, the following other catalysts were then evaluated: XPhos, Pd(0Ac),
PEPPSI™-SIPr and (dppf)PdClz.. The specific conditions and amounts of byproducts
identified are found in entries 4-7 in Table 3.1. Crude products were retrieved from these
reactions in mostly high yields. Byproducts observed by 1H NMR analysis were: aldehydes
from oxidation, reduced compound 1, di-cross-coupled byproduct 3 and other unknown
impurities. With catalysts Pdz(dba)s and XPhos/XPhos Pd G2 the formation of the reduced
byproduct 1 was avoided, yet other unknown impurities were formed in these reactions.
Reactions with certain catalysts gave large amounts of aldehyde impurities from
oxidation. This was particularly true for XPhos/XPhos Pd G2 and PEPPSI™-SIPr,
indicating that these catalysts were too reactive for this system. Oxidation had already
been observed using XPhos in the di-cross-coupling reactions, as mentioned in the
previous section. The 49% of oxidation products formed in the XPhos reaction might be
ascribed to the reaction time being 2.75 hours, and the high activity of the XPhos catalyst.

The most selective catalyst for this substrate was found to be Pd(PPhs)s. Reactions using
Pd(PPhs)4 had a significantly longer conversion time than the other catalysts, as seen in
entries 8-10 in Table 3.1. However, this catalyst showed a greatly enhanced selectivity
towards the desired product 5. In the 50 mg scale reaction, the crude material consisted
solely of the desired product 5 and a minor amount of dehalogenated byproduct 1 (8%).
The purification process for the Pd(PPhs)s reactions was considerably easier than the
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Pdz(dba)s reactions, as no other unknown byproducts were formed and a sufficient
difference in retention was obtained using silica gel column chromatography for
purification. Thus, this catalyst was chosen to move forward with, because of the high
selectivity for the mono-cross-coupled product.

The reaction using Pd(PPh3s)s was scaled up to a 2 g scale which gave an isolated yield of
83% as orange oil, see entry 9 in Table 3.1. A small amount of the reduced byproduct 1
was found from this reaction. A noticeable amount of the di-coupled compound 3 had also
been formed, because the reaction was left overnight to stir, allowing time for continued
cross-coupling. Another larger scale reaction was then performed, with 1233 mg of
starting material 2, where the reaction was ended right before full conversion had taken
place, to minimize the chance of di-coupling. The reaction is shown in entry 10 of Table
3.1, and only gave a minor amount of the dehalogenated impurity 1 (5%), but no other
byproducts. Compound 5 was isolated in an 83% yield (972 mg) after purification with
silica gel chromatography.

Table 3.1: Results from the selectivity study and optimization of the Suzuki cross-coupling
reactions synthesizing compound 5 from compound 2.

Cat.
Catalyst Temp @ Scale load @ Time Crude product content?

[°C1 = [mg] [%Pd] [h] 5 3 UnkP| 1 | Ox
[%]  [%] [%]  [%]  [%]

1 Pd;(dba)s 100 100 7.3 1.75 92 4 4 0 0
2 Pd;(dba)s 80 100 7.2 1.75 89 5 5 0 0
3 Pd(dba)s 60 50 7.5 2.5 87 6 7 0 0
4 XPhos/ 80 50 6.9 2.75 15 23 13 0 49
XPhos Pd
G2
5 Pd(OAc): 80 50 11 2.75 63 12 8 5 12
6 PEPPSIT™- 87 50 15.9 0.3 43 15 10 7 25
SIPr
7 | (dppf)PdCl; 87 50 12.8 0.3 69 10 6 7 8
8 Pd(PPhs3)4 80 50 8.1 5 92 0 0 8 0
9 Pd(PPhs3)4 90 2087 5.5 22 85 9 0 6 0
10 Pd(PPh3)s 80 1233 5.1 9 95 0 0 5 0

aAnalysis by 1H NMR
bUnidentified byproducts
cProducts of oxidations of hydroxyl groups of compounds 5 and 3
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In conclusion for the optimization of the Suzuki cross-coupling reactions for this system,
the Pd(PPhs)4 catalyst was certainly the most selective of the systems that were tested.
The purification process was significantly easier than for the other reactions, considering
that lower amounts of byproducts were formed. Small impurities of the reduced
byproduct 1 are to be expected, but in contrast to reactions with the other catalyst
systems, significant formation of the di-cross-coupled compound 3 was not observed
before full conversion was reached. Ending the reaction at the right time is therefore
crucial, as the di-cross-coupling reaction becomes significant once full conversion is
reached if there is an excess of boronic acid present.

3.2.3 Synthesis of compound 6

The chemoselective Suzuki cross-coupling conditions described in Section 3.2.2 were
applied to synthesize the TBDMS-protected compound 6 from compound 2. The reaction
was performed in a 901 mg scale, and is shown in Scheme 3.7. A minor amount of reduced
byproduct 1 (6%) was observed in the crude mixture. After purification with silica gel
column chromatography, 991 mg (90%) of compound 6 was obtained as a white powder.

OTBDMS
SEM SEM
| N\ N I(Ho) OTBDMS N\ N
/
Z Pd(PPhy) 2
2
85 °C
2h

Cl chos
1,4-Dioxane:H,0 (1:1)
Scheme 3.7: The synthesis of compound 6 by Suzuki cross-coupling reaction of

compound 2.

At a later time, compound 6 was synthesized by TBDMS protection of the hydroxyl group
of compound 5. This reaction is described in Section 3.3.3.1.

3.3 Buchwald-Hartwig amination

Buchwald aminations have been performed previously in the research group on
substituted 7-azaindoles, with varying results. Poor results were reported when the
pyrrole nitrogen was unprotected. Different protecting groups have been introduced in
this position, and the best results were found with the SEM-group protecting the pyrrole
nitrogen.5! The most successful Buchwald aminations were conducted with the substrate
shown in Figure 3.1. For this project, the initial goal of this synthesis step was to aminate
compound 5, containing a hydroxymethyl group in place of the methoxy group of the
compound shown in Figure 3.1.
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Cl

Figure 3.1: Substrate structure for a previously successful Buchwald amination of 2-substituted
7-azaindole.5!

3.3.1 Test of palladium sources and reaction conditions

One of the most frequently reported ligands used in Buchwald aminations with secondary
amines is RuPhos.50 111-112 For the palladium source, various options are reported,
including a RuPhos precatalyst, RuPhos Pd G2, and Pd(0OAc)..

Two test reactions were conducted, shown in Scheme 3.8. The goal of these model
reactions was to investigate which catalyst system was best suited for a Buchwald
amination on a pyrrolopyridine substrate. The experiments would also show whether the
reaction conditions and dryness of the system were sufficient for a successful amination.
Compound 1 was the starting material for these test reactions, as it is a simple
pyrrolopyridine molecule.

'SEM ,SEM ,SEM
N\ N a,b | N\ N s i N\ N
I _ / —_— - V/ — /
Cl1 N\ 7 7b

Ph
Scheme 3.8: Test reactions A and B synthesizing compound 7 and the assumed byproduct 7b.

(a) N-Benzylmethylamine, RuPhos, Pd(OAc);, NaOt-Bu, t-BuOH, 85 °C, 5 min;
(b) N-Benzylmethylamine, RuPhos, RuPhos Pd G2, NaOt-Bu, t-BuOH, 85 °C, 2 h.

Starting material 1, NaOt-Bu, palladium catalyst, RuPhos and 5-6 eq. of amine were
dissolved in degassed and anhydrous t-BuOH and stirred at 85 °C in an oven dried Schlenk
tube. Test reaction A was performed in an 80 mg scale, with Pd(OAc): as a palladium
source and the ligand RuPhos. Test reaction B was performed in a 110 mg scale, using
RuPhos Pd G2 precatalyst as the palladium source and the ligand RuPhos. As precatalysts
are often thought to be a more efficient and active catalyst species than Pd(0Ac), this
reaction would show if the precatalyst was a more fitting palladium source for this
amination.

The results of both test reactions are shown in Table 3.2. TH NMR analysis showed that
reaction A reached full conversion after 5 minutes. 1H NMR analysis of the crude product
proved that the substrate had undergone amination with 94% of the crude mixture
consisting of product 7. A minor byproduct was observed in the crude material (6%). This
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was suggested to be the reduced aryl chloride 7b, after observing the crude 'H NMR
spectrum. After purification by silica gel column chromatography, the product 7 was
obtained as a light yellow oil in a 68% yield.

For test reaction B with RuPhos Pd G2 precatalyst, only 50% conversion had been reached
after 20 minutes. 'H NMR analysis showed that full conversion had been reached after 2
hours, when the reaction was stopped. This observation contrasted with the initial
suspicion that the precatalyst species would be a more reactive palladium source. As
reported in Table 3.2, 81% of the crude product consisted of the desired aminated target
7. Byproducts observed were the suggested reduced aryl chloride 7b (11%) and an
unidentified impurity (8%).

Table 3.2. Results of the two test reactions forming compound 7.

Pd source Time Crude material content?2
[min] 7 [%] 7b [%] Unknown
byproduct
[%0]
Test Pd(OAc): 20 94 6 0
reaction A
Test RuPhos Pd G2 120 81 11 8
reaction B

aAnalysis of crude product by tH NMR

After these test reactions, it could be concluded that Pd(OAc); was a satisfactorily active
palladium source in these reactions. There was a significant difference in reactivity
between the catalysts, as the reaction B with RuPhos Pd G2 precatalyst took almost 2
hours to reach full conversion, in contrast to the conversion time of 5 minutes for
Pd(OAc)z. There had also been formed lower amounts of byproducts in reaction A than in
reaction B. The reaction temperature and dryness of the system showed to be sufficient
for a successful Buchwald coupling of compound 1.

3.3.2 Aminations of compound 5 with the unprotected -OH group

The initial goal was to perform a Buchwald amination on compound 5, which contained
an acidic proton in the form of an unprotected hydroxyl group. The identified conditions
found most ideal from the previous section were applied, however, the amination of
compound 5 was not successful. An overview of the reaction is shown in Scheme 3.9.
Several attempts were made using the Pd(OAc)z/RuPhos catalyst system, where the
conversions were all below 40%, and the desired aminated target 8 was not observed
even after 24 hours. According to 'TH NMR analysis after workup, the crude product
mixtures consisted mostly of starting material 5 and multiple unknown byproducts.
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A variety of ligands and catalyst systems were tested using the same reaction conditions.
These included XantPhos/Pd(OAc)2, PEPPSI™-SIPr precatalyst, tri(o-tolyl)phosphine and
(dppf)PdCl.. All of these catalyst systems gave similarly low conversions (<40%) and
complex mixtures were formed with no observation of product 8.

H
SEM NS SEM

' r N H

I NN Ph s N
/ —X > P/
“ OH  Pd. cat, ligand OH

5 NaOt-Bu N 8
Cl +-BuOH oS
Ph

Scheme 3.9: An illustration of the attempted amination of compound 5, which remained
unsuccessful after testing a variety of catalyst systems and reaction conditions.

A reaction was also conducted at a 65 °C, to investigate whether a lower reaction
temperature would enhance the selectivity and performance of the reaction. '1H NMR
analysis showed that the rate of reaction had dramatically decreased. After 28 hours, the
reaction had reached 39% conversion, creating a complex mixture of unidentified
byproducts, and again product 8 was not observed.

As the amination of this substrate 5 was unsuccessful with all the different
catalysts/ligand systems, and at a lower temperature, it was concluded that compound 5
was unfit as a substrate in the Buchwald aminations under these conditions. The substrate
5 contained an acidic proton in the form of an unprotected hydroxyl group, which could
possibly be the source of the problem. It was therefore decided to approach the Buchwald
amination using other substrates, where the acidic proton of this hydroxyl group was
protected.

3.3.3 Synthesis and aminations of compounds 6 and 11

As the amination of compound 5 was unsuccessful, two alternative routes were explored.
This entailed protecting the hydroxyl group of compound 5 with two different groups,
TBDMS and SEM. The protection reactions are discussed in Section 3.3.3.1. An overview
of the amination reactions is seen in Scheme 3.10, and the Buchwald amination studies
are discussed in Sections 3.3.3.2 and 3.3.3.3.
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Scheme 3.10: Overview of Buchwald aminations.

3.3.3.1 Protection of the hydroxyl group

A SEM protection reaction was performed to protect the hydroxyl group of compound 5.
The reaction was conducted in a 1 gram scale, and is shown in Scheme 3.11. The substrate
5 was dissolved in DMF and added NaH, before stirring for 30 minutes at 0 °C. After
dropwise addition of SEM-chloride, the reaction mixture was stirred at 0 °C for 4 hours
and 45 minutes. The course of the reaction was monitored using TLC, and the reaction
was quenched when no more changes could be observed. From 'H NMR analysis of the
crude product, 87% conversion had been reached at this point.

SEM SEM SEM (0]
N 1. NaH, DMF N h W
N\ N OH g3g min, 0 °C N\ N O-SEM N\ N O
[ P / e | _ / + | P /
2. SEM-CI, DMF
’ 1 12
Cl 5 4 h 45 min, 0 °C (¢]] Cl

Scheme 3.11: The SEM-protection reaction forming compound 11 and byproduct 12.

After purification with silica gel column chromatography, compound 11 was obtained in
a 51% yield (717 mg) as a clear oil. The low yield was a result of the incomplete
conversion, and the formation of a byproduct, compound 12. 'H NMR analysis showed
that the crude product contained 18% of byproduct 12, but due to losses during
purification, only 15 mg (2%) was collected after purification by silica gel column
chromatography. NMR, IR and MS analyses of compound 12 confirmed the identity of the
byproduct, most likely resulting from the substrate reacting with the solvent, DMF. The
formation of byproduct 12 is shown in Scheme 3.12.
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Scheme 3.12: Formation of byproduct 12.

The formation of byproduct 12 could have been avoided by using another solvent. This
was attempted in the analogous protection reaction, where the hydroxyl group of
compound 5 was protected with a TBDMS group to produce compound 6. The reaction
was performed using the same procedure as described for the synthesis of compound 11,
but THF replaced DMF as solvent. The reaction is shown in Scheme 3.13. After 4 hours of
stirring at 0 °C, 1TH NMR showed only 7% conversion into compound 6, and no further
changes were observed when monitoring the reaction using TLC and 'H NMR analysis.
The mixture was then warmed to 50 °C and stirred for 10 minutes. After workup and
extraction, 1H NMR analysis was conducted on the crude product, and showed that full
conversion had been reached and product 6 had been formed. After purification with
silica gel column chromatography, compound 6 was obtained as a white solid in a 75%
yield (888 mg).

SEM 1. NaH, THF, SEM
| NN OH 0 °C, 20 min N N OTBDMS
—_—
/ |
= 5 2. TBDMS-CI, THF, %@_/
Cl 0°C, 4n cl
3.50°C, 10 min

Scheme 3.13: The TBDMS-protection reaction forming compound 6, performed in THF as
solvent. A 7% conversion was reached after 4 hours of stirring at 0 °C, and the reaction was
completed to 100% conversion after heating to 50 °C for 10 minutes.

Patchinski et al. report the protection reaction to be catalyzed by DMF, which can explain
the poor result of the reaction conducted in THF at 0 °C.113 The reaction proceeded rapidly
to completion when the temperature was increased. In conclusion, both compounds 6 and
11 were successfully synthesized from compound 5 in moderate yields. The side reaction
forming byproduct 12 was avoided when THF was used as solvent instead of DMF, but
this reaction was not successful at 0 °C. Heat was necessary to complete the reaction.

3.3.3.2 Aminations of compound 6 with the -OTBDMS group
Multiple Buchwald aminations on the TBDMS-protected substrate 6 were performed. The

starting material 6, NaOt-Bu, amine, catalyst and ligand were stirred in anhydrous and
degassed t-BuOH at 85 °C until 1H NMR analysis showed full conversion. The solvent was
removed in vacuo, before workup and purification by silica gel column chromatography.
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The reaction conditions are shown in Scheme 3.14, as are the structures of the observed
byproducts 8 and 10.
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Scheme 3.14: The synthesis of compound 9 and the structures of byproducts 8 and 10, formed
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by loss of the TBDMS group and B—hydride elimination, respectively.

The Buchwald amination with substrate 6 was successfully reproduced several times, and
the results are reported in Table 3.3, entries 1-4. The yields after isolation of compound 9
varied from 34-89%. The product was obtained as a clear oil. Low yields in the initial
reactions were primarily due the formation of several byproducts and overlap on the
column. Side reactions occurring were —hydride elimination of the palladium complex,
resulting in byproduct 10, and cleavage of the TBDMS group, giving compound 8 with an
unprotected hydroxyl group. The loss in yield due to byproduct 8 shows that the TBDMS
protecting group was evidently not sufficiently stable under the reaction conditions.
There was a significant reduction in amounts of byproducts formed when the reaction
time was shortened. Entry 4 in Table 3.3 shows that the largest scale reaction with the
shortest reaction time gave the most selective amination and highest isolated yield of
compound 9.
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Table 3.3: Results from the Buchwald amination synthesis of compound 9.

Reaction Scale Conversion Crude product content? Yieldb
time[h] | [mg] [%] Product Byproduct Byproduct [%]
9 [%] 8 [%] 10 [%)]
1 1.3 104 >99 74 18 8 34
2 2.2 42 >99 80 8 12 55
3 0.7 156 >99 86 6 8 69
4 0.5 816 >99 90 6 4 89
5¢ 2.5 53 35 12 12 11 -
6¢ 24 393 33 0 0 23 -

aAnalysis by 1H NMR
b[solated yield of 9
cReaction performed with non-anhydrous solvent and non-dried glass equipment

Several problematic issues were encountered in dealing with the Buchwald reactions,
such as the reactions sensitivity to water. The Buchwald aminations were performed with
all glass equipment properly oven-dried, and anhydrous degassed solvent was used.
Buchwald aminations were also attempted on compound 6 using non-anhydrous ¢t-BuOH,
and without properly drying the glass equipment. These reactions resulted in conversions
below 35%, and 0-12% formation of the aminated product 9, as shown in entries 5-6 of
Table 3.3. These observations indicated that the Buchwald aminations of these
compounds are highly sensitive to water and other impurity residues.

In an attempt to increase the selectivity of the reaction, and reduce the amounts of
byproducts formed, a test reaction with substrate 6 was also conducted at 65 °C. After 28
hours, the TBDMS-group had been completely cleaved off. Only trace amounts of the
aminated target 9 was formed. It therefore appears that below a certain temperature, the
amination reaction rate will be slower than the rate of removal of the TBDMS-group,
giving an unsuccessful amination.

The results from the deprotection of the SEM- and TBDMS-groups are discussed in Section
3.4.1.

3.3.3.3 Amination of compound 11 with the -OSEM group
The initial substrate 5 contained an acidic proton in the form of a hydroxyl group, which

gave an unsuccessful amination. The TBDMS-protected substrate 6 provided a route to
the desired product, but an issue was encountered where the TBDMS group was not
sufficiently stable and would fall off during the course of the reaction. To investigate an
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alternative approach to the target structure, a SEM protecting group was installed in this
position. The hypothesis was that as the SEM group has higher stability, it would not
cleave off as easily as TBDMS, so that higher yields would be reached in the Buchwald
amination.

Compound 11 was aminated using the same conditions as described for the synthesis of
compound 9. The results of these reactions are reported in Table 3.4, and the reaction is
shown in Scheme 3.15.

H
SEM N< SEM
IN\ N OSEM  ph IN\ N OSEM
—_—
Y RuPhos, Pd(OAc), Y
1 NaOt-Bu 13
Cl N
t-BuOH r ~
85 °C Ph

Scheme 3.15: The synthesis of compound 13 by amination of compound 11.

The first amination was performed in a 111 mg scale. The reaction mixture was stirred at
85 oC for 5 hours. TH NMR analysis of the crude material showed that >99% conversion
had been reached, and that around 95% of the crude mixture consisted of the product
compound 13. After purification with silica gel column chromatography, the target 13
was obtained as a clear oil, 118 mg (92%).

This amination reaction was also performed in a larger scale, starting with 455 mg of
compound 11. The reaction mixture was stirred at 85 °C for a total of 20 minutes before
solvent removal. After purification with silica gel column chromatography, compound 13
was obtained as a clear oil, 471 mg (89%).

Table 3.4: Results from synthesis of compound 13 by Buchwald amination of compound 11.
Entry Scale [mg] Reaction time [min] Isolated yield of
compound 13 [%]

1 111 300 92
2 455 20 89

As mentioned in Sections 3.3.2 and 3.3.3, compound 5, with its unprotected hydroxyl
group, would not undergo a Buchwald amination under the applied conditions.
Compound 6 was adequate as a substrate in the Buchwald aminations, though the TBDMS
group would cleave off during the reaction and expose the hydroxyl group. Neither of the
reactions with substrates 5 or 6 provided the high selectivity that the reactions with the
SEM-protected substrate 11 showed. In conclusion, compound 11 proved to be the most
robust substrate in Buchwald aminations. The absence of acidic protons in the substrate,
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as well as the stability of the SEM group, ensured a high yield of the reaction and
minimized the formation of byproducts. In addition, the Buchwald amination reactions
proved to be exceptionally sensitive to water residues, as the presence of water in the
reaction gave low conversions or simply no reaction.

3.4 Removal of protecting groups
3.4.1 Synthesis of target compound 14
Two methods were tested for the deprotection of compounds 9 and 13. Both methods

were performed on both substrates 9 and 13, and the results are summarized in Table
3.5.

The first procedure involved dissolving the starting material in dry acetonitrile at 0 °C,
before BF3-OEt, was added dropwise to the solution. After stirring at room temperature,
water and later NHsz (12.5% in H20) was added, before further stirring at room
temperature overnight. This has previously been reported to be an efficient SEM-removal
procedure.®? 114 [n general, these conditions produced low amounts of product 14, and
multiple unidentified byproducts were formed, resulting in low yields. The low yields
were also the result of a difficult purification process, with poor separation and large
losses during purification. The specific reactions employing this method are discussed in
Section 3.4.1.1.

The second procedure entailed dissolving the starting material in dry CH:Cl; before
adding 2,2,2-trifluoroacetic acid (TFA). After stirring, the volatiles were removed, the
mixture was dissolved in THF and added sat. ag. NaHCOs before stirring at room
temperature overnight. This method generally gave fewer byproducts, and the crude
products showed clearly the formation of compound 14 as the major product. The
purification process was still problematic, as a very polar eluent system was required, and
tailing of trace impurities made isolation of pure product challenging. Low yields of
product 14 were therefore obtained in some cases. The specific reactions using this
method are discussed in Sections 3.4.1.1. and 3.4.1.2.
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Table 3.5: Results from the deprotections of compound 9 and 13.

Conditions A:
SEM 1. BF3'OEt2, ACN, rt H
N _N % i N
Q N 2. HQO, NH3 (125 Yo iN HQO), rt N N
| P > || P/
O-R Conditions B: OH
.o 1. TFA, CH,Cly, rt 14
(N\ 91'3F§ R I%%“,(IAS 2. NaHCOg (sat. aq.), THF, rt (N\
Ph Ph
Entry = Conditions | Substrate @ Scale [mg] Isolated yield of compound 14
[%]
1 A 9 119 22
2 13 158 3
3 B 9 430 74
4a 13 182 13

aFirst reaction step performed at 50 °oC

3.4.1.1 Deprotection of compounds 9 and 13 using BF3-0Et:
The first deprotection reaction of compound 9 (Table 3.5, entry 1) was performed using

BF3-OEt;. The starting material 9 was dissolved in dry acetonitrile at 0 °C and BF3-OEt;
was added dropwise, before the reaction was left to stir at room temperature for 1 hour
and 30 minutes. When 'H NMR analysis showed full conversion of the starting material,
water and later ammonia (12.5% in water) was added at 0 °C, before the mixture was left
to stir at room temperature for 36 hours. After workup and purification with silica gel
column chromatography, compound 14 was obtained in a 22% yield (15.1 mg) as an off-
white solid. The low yield was a result of the challenging purification process, as
purification required three rounds of column chromatography. Multiple side-reactions
had also taken place. The reaction is shown in Scheme 3.16.

SEM 1. BF4-OEt,, ACN Y
No-~N r,1.5h No—~N
I ] />—< >—\ —— (] />_< >_\
=~ OTBDMS 2. H,0, Z OH
N 9 NH3 (1 2.5% in HQO) N 14
~ t, 36 h ~

Scheme 3.16: Synthesis of compound 14 by deprotection of compound 9 using BF3-OEt..
The BF3-0Et, deprotection of compound 13 (Table 3.5, entry 3) is shown in Scheme 3.17.

The reaction was conducted using the same conditions as described above for the
deprotection of compound 9. During the addition of NH3, a light yellow solid precipitated.
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The mixture was stirred overnight, before 53 mg of the light yellow solid was isolated by

filtration.
SEM 1. BF3-OEt,, ACN N H
NN rt, 2.5h N
OSEM 2.H,0, OH
N 13 NH; (12.5% in H,0) N 14
~ rt, 20 h 30 min

Scheme 3.17: Synthesis of compound 14 by deprotection of compound 13 using BF3-OEt..

1H NMR and TLC analysis of this crude compound showed that many impurities and
byproducts were present. The mixture was attempted purified by silica gel column
chromatography, and a fraction containing only 3 mg (3%) of compound 14 was collected
from the column. Impurities were still present in this sample, but as only a small amount
was obtained, no further purification was done. Another fraction collected from the
column contained 27 mg of a yellow powder. TLC analysis showed that multiple
byproducts were present in this sample. Characterization of the byproducts was
problematic as 'TH NMR analysis showed over 10 different signals in the region between
4.1-4.9 ppm, where only the benzylic protons were typically seen.

It was evident that the SEM group protecting the hydroxyl group in compound 13 was
more challenging to remove than the TBDMS group of compound 9 in the same position.
It was clear from the NMR spectra of the BF3-OEt; mediated reactions that many side
reactions had taken place, making purification difficult. This strategy offered low yields of
the target 14 for the reactions of both substrates.

3.4.1.2 Deprotection of compounds 9 and 13 using TFA
The deprotection reaction of compound 9 with TFA (Table 3.5, entry 2) is shown in

Scheme 3.18. Compound 9 was dissolved in dry CH2Cl; before TFA was added dropwise
under an N2 atmosphere. The mixture was stirred for 4 hours and 30 minutes at room
temperature, before the solvent was removed. The product was dissolved in THF and
added sat. ag. NaHCO3 dropwise over a period of 10 minutes. A light yellow powder
precipitated from the solution when sat. ag. NaHCO3 was added. After stirring overnight
at room temperature, the solvent was removed, and the mixture was dissolved in CH2Cl
and MeOH (2:1). The mixture was stirred at room temperature for 1 hour and 30 minutes
before filtration and concentration in vacuo to give the crude product as a light yellow
powder.
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SEM 1. TFA, CH,Cly, N SEM

; H ;
N N
[ S N rt, 4 h 30 min [ N . [0 N
/ > / /
2 < 2
OTBDMS 5 NaHCO, (sat. ag.), THF, OH OH
N 9 rt, 19 h 30 min N 14 N 8
> ’ > >
Ph Ph Ph

Scheme 3.18: Synthesis of compound 14 by deprotection of compound 9 using TFA. Byproduct
8 was also collected from the column, as a result of incomplete SEM-deprotection.

1H NMR analysis of the crude product showed that the TBDMS group had been completely
removed, and no starting material 9 was observed. This was expected, as the TBDMS
group had previously shown to be more easily cleaved off than the SEM group. The crude
product contained mostly target 14 (94% by 'H NMR analysis). A small impurity of
compound 8 (6% by 1H NMR analysis) was also observed, where the TBDMS group had
been cleaved off and the SEM group was still present. The crude mixture was purified by
silica gel column chromatography, giving the target 14 as an off-white powder, 186 mg
(74%).

As described in the previous section, using the BF3-OEt; strategy for the deprotection of
compound 13 gave poor results and a low 3% yield of compound 14. The TFA procedure
for the deprotection of compound 13 (entry 4, Table 3.5) is shown in Scheme 3.19.
Compound 13 was dissolved in dry CHzCl> and TFA was added dropwise. After 2 hours of
stirring at 50 °C, the solvent was removed and the mixture was dissolved in THF for the
second step. NaHCO3 (sat. aq.) was added dropwise over the course of 10 minutes, and
the mixture was stirred overnight. The product was then dissolved in CH2Cl; and MeOH,
and stirred at room temperature for 2 hours before filtration and concentration in vacuo.
A prominent byproduct was observed in the TH NMR spectrum, and it was suspected that
the second step of the deprotection had not been completed at this point. The material
was therefore dissolved in MeOH, added NH3z (12.5% in water) and stirred at room
temperature for 18 hours and 30 minutes. No change in the composition was observed
after treatment with NHs, neither with TLC or 1H NMR analysis. The volatiles were then
removed, and the crude product (219 mg, 211%) was collected as a yellow powder.

SEM
No_N 1. TFA, CH.Cl,, N__N
[ ) 50°C, 2h [ S )
Z OSEM - 2 0
13 2. NaHCOg (sat. aq.), THF, 14
N N
N rt, 22 h ~
3. NHj3 (12.5 % in H,0), MeOH
rn, 22 h

Scheme 3.19: Synthesis of compound 14 and byproduct 15 by deprotection of compound 9
using TFA. The structure for compound 15 was deduced using NMR and MS analysis.

1H NMR analysis showed full conversion of the starting material, and the desired target

14 had been formed as the main product. The crude mixture contained the target 14 and
the byproduct 15 in a 2:1 ratio. After isolation, the structure of byproduct 15 was deduced
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from NMR and MS analysis, and is shown in Scheme 3.19. The rare eight-membered ring
system might have been formed in a side-reaction between product 14 and formaldehyde,
which is formed during the SEM group removal. This byproduct was not observed in any
of the other deprotection reactions, which could indicate that the reaction temperature of
50 °C was necessary for the formation of byproduct 15. The byproduct was first observed
after the second reaction step, when sat. ag. NaHCO3 was added. No changes in the crude
material were observed after treatment with NH3. The byproduct 15 was therefore most
likely formed in one of the first two steps, either after the addition of TFA or base.

The crude mixture was purified by silica gel column chromatography, giving the target 14
in a 13% yield (13 mg). Byproduct 15 was collected from the column in a 11% yield (12
mg). The low yields obtained of both compounds after purification are the results of
overlap on the column, and losses during purification.

In conclusion, the TFA method proved superior to the BF3-OEt; method, due to the lower
amounts of byproducts formed and the more selective formation of target 14. The TFA
reactions both gave compound 14 as the major product. A high yield of 74% was obtained
for the deprotection of compound 9 using TFA, and this reaction was the most successful
of the performed deprotection reactions. The large scale was beneficial in making the
purification process easier, so a higher yield could be reached. For the deprotection of the
twice SEM-protected compound 13, the TFA method also proved superior to BF3-OEty,
again forming target 14 as the major product. However, the formation of byproduct 15
lowered the end yield of the target 14 to 13%. It is possible that the formation of
compound 15 could have been avoided by lowering the reaction temperature, as it was
not observed in the room temperature reactions.

3.4.2 Deprotection of compound 3 and 4

The diarylated compounds 16 and 17 were synthesized by deprotection of compound 3
and 4, respectively. The deprotection reactions were performed using the BF3-OEt;
method, with substrate 3 in a 150 mg scale, and substrate 4 in a 148 mg scale.

Both starting materials 3 and 4 showed poor solubility in dry acetonitrile at 0 °C. After
the mixtures were warmed to room temperature and BF3-OEt; was added, all material
dissolved. During the course of the reaction, some material had solidified in the reaction
flasks. When 1H NMR analysis showed that no starting material remained, water was
added and later NHz (12.5% in water). The mixtures were left to stir for 19 hours. Scheme
3.20 shows the deprotections of 3 and 4.
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1. BF3-OFEt,, ACN

rt, 2h 40 min
—>
OH 2. HQO,

NH3 (12.5% in H,0)
rt, 19 h

1. BF3-OEt,, ACN
rt, 2h 40 min
2. H,0,
NH3 (12.5% in H,0)
rt, 19 h

Scheme 3.20: Synthesis of compounds 16 and 17 from deprotection of compounds 3 and 4,
respectively.

After purification with silica gel column chromatography, product 17 was obtained as a
yellow solid in a 32% yield (34 mg) with a purity of 97% as judged by HPLC analysis. A
lot of product was lost during purification, as the compound showed low solubility in the
mobile phase.

Product 16 showed many of the same solubility issues as described for compound 17.
After purification by silica gel column chromatography and drying, there were still
impurities present. To remove more of the impurities, acetonitrile was added to the
product and the mixture was stirred at room temperature for 2 hours. After filtering and
drying, 35 mg compound 16 was obtained as a light yellow powder in a 33% yield, with a
purity of 91% by HPLC.
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3.5 Structural elucidation

Ofthe 17 compounds synthesized in this master thesis, 15 were not reported in literature.
NMR, HRMS and IR analysis have been used to verify the structures of these compounds.
Chemical shifts have been assigned using the 1D 'H NMR and 13C NMR, 2D 1H-1H COSY,
1H-13C HSQC and 'H-13C HMBC experiments. MS was used to verify the identities of the
compounds. All NMR, IR and MS spectra are given in Appendix A-Q. The assigned chemical
shifts are presented for the new compounds 3-17 in Sections 3.5.2-3.5.16. All NMR
spectra were conducted using DMSO-ds as solvent, and all spectra were calibrated relative
to DMSO-ds (2.50 ppm in 'H NMR and 39.52 ppm in 13C NMR). Some NMR spectra contains
signals corresponding to solvent residues and grease. An overview of the chemical shifts
of these trace impurities can be seen in Table 3.6.

Table 3.6: NMR chemical shifts of common solvents and trace impurities in DMSO-de.

Proton Carbon 1H 13C
DMSO0-de DMSO0-de
DMSO residue - - 2.50 (quin) 39.52 (sep)
H20 - - 3.33 (s) -
EtOAc CH3CH: CH3CH> 4.03 (q) 59.74
CH3CH> CH3CH: 1.17 (t) 14.40
CH3CO CHs3CO 1.99 (s) 20.68
- CO - 170.31
CHzCl2 CHz CHz 5.76 (s) 54.84
MeOH CH3z CH3z 3.17 (d) 48.59
OH - 4.10 (q) -
Grease - - 1.24 (br, s) -
- - 0.88-0.82 (m) -
Acetone - (0(0) - 206.31
CH3z CH3z 2.09 (s) 30.56

3.5.1 General remarks

The assignments of quaternary carbons were done using 'H-13C long range coupling
observed in the HMBC spectra. Long range couplings were in most cases detected
between H-6/C-8, H-6/C-4, H-5/C-9, H-5/C-6, H-5/C-3 and H-3/C-9. The concentration of
the NMR-samples varied, and for some of the compounds it was therefore difficult to
distinguish the mentioned carbon signals from noise in the 13C NMR spectra. In these
cases, the 2D spectra signals were used to determine the shifts of these signals. For the N-
CH3 group present in compounds 7-9, 14 and 15, the 1H signal (3.19-3.40 ppm) could
overlap with the H20 residue signal, and the 13C signal (39.6-40.2 ppm) was usually
hidden behind the DMSO-ds residue signal. In the cases where these signals were
concealed in the spectra, the 2D spectra were used for assigning the chemical shifts. In a
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few of the HSQC spectra, flipping was observed. Signals corresponding to carbon signals
below 0 ppm appeared above 200 ppm in these cases.

3.5.2 Compound 3
A detailed demonstration of the structural elucidation of compound 3 will be given in this
section. The structures of the other compounds synthesized in this project were

confirmed using the same method, and will be presented in a less detailed manner in
Sections 3.5.3-3.5.16.

Compound 3 is presented in Figure 3.2, with atom numbering. HRMS gave m/z 461.2259
[M+H*] for compound 3. With a calculated value of 461.2260, thus the molecular formula
C27H33N203Si was confirmed. From IR analysis, some signals were useful in confirming the
correct structure. Examples were: 3404 cm! (w, br, O-H stretch), 2919 cm! (w, CH>
asymmetrical stretch), 2858 cm! (w, CHz symmetrical stretch), 1585 cm! (m, aromatic
C=C stretch), 1082 cm (s, C-O hydroxyl stretch) and 833 cm! (s, =C-H out-of-plane-
bending, para substitution). All spectra for compound 3 can be found in Appendix C.

% OH 27

Figure 3.2: The structure of compound 3 with atom numbering.

The 1H NMR spectrum showed a doublet at 8.36 ppm (J = 5.0 Hz) with an integral of 1.
This signal must represent H-6, due to the high chemical shift and the multiplicity. The
corresponding carbon C-6 was found from the HSQC spectrum as shown in Figure 3.3,
with a 13C shift at 143.2 ppm. One 'H-1H coupling was observed for H-6 in the COSY
spectrum, see Figure 3.4. This was a doublet at 7.32 ppm (J = 5.0 Hz) with the integral of
1, and this signal was assigned to originate from H-5. The corresponding carbon C-5 was
found to be at 115.7 ppm from the HSQC spectrum, also visible in Figure 3.3. All following
corresponding carbon and proton signal pairs were assigned using the HSQC spectrum in
the same manner.
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Figure 3.3: Part of the HSQC spectrum of compound 3, used to determine the chemical shift of C-
6 from the proton shift of H-6. The 1H-13C coupling is shown by the pink arrow on the right.

A signal of chemical shift -0.07 ppm with the integral of 9 was observed in the TH NMR
spectrum. This was assigned to H-15, due to the multiplicity, integral and the fact that the
silicon atom has a shielding effect on neighboring atoms. The corresponding carbon C-15
signal was found at -1.4 ppm. 'H-13C long range coupling was seen in the HMBC spectrum
between C-15 and a triplet signal at 0.88 ppm (J = 8.1 Hz) with integral 2. This signal was
assigned to H-13, and the 3C chemical shift from the HSQC spectrum was found to be at
17.4 ppm. Selected examples of 1H-13C long range couplings can be found in Figure 3.5.

Furthermore, H-H coupling was seen in the COSY spectrum between H-13 and a triplet
signal with integral 2 at 3.67 ppm (J = 8.1 Hz), as shown in Figure 3.4. This signal was
assigned to H-12, with the corresponding carbon signal at 65.8 ppm. The signal C-12
showed 1H-13C long range coupling to a singlet peak at 5.68 ppm with integral 2, which
was assigned as H-10, corresponding to C-10 at 70.5 ppm. All signals of the SEM protecting
group moiety had at this point been assigned.
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Figure 3.4: COSY spectrum of compound 3, showing 1H-1H coupling between neighboring
protons. The red arrows on the right represent 'H-1H-coupling as shown in the spectrum.

The signal H-10 displayed 1H-13C long range coupling to two other carbon atoms, which
showed to be quaternary due to the lack of coupling in the HSQC spectrum. These signals
were at 150.1 ppm and 141.9 ppm, and should belong to C-8 and C-2. As C-8 is located
between two nitrogen atoms, it must have the highest chemical shift. The H-6 signal also
showed long range coupling to 150.1 ppm. The signal at 150.1 ppm was therefore
assigned to C-8, and 141.9 ppm to C-2. The C-8 signal showed 'H-13C coupling to the
singlet at 6.86 ppm with integral 1, which also coupled to C-2. The multiplicity, integral
and long range coupling supported the assignment of 6.86 ppm to H-3. The corresponding
carbon 13C shift was found to be 99.7 ppm. The signal H-3 coupled to another quaternary
carbon with 13C shift at 117.5 ppm. As the signal at 117.5 ppm also showed coupling to H-
5 and weak coupling to H-6, it was assigned to C-9.
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Figure 3.5: Part of the HMBC spectrum of compound 3, showing 1H-13C long range coupling
between protons and carbon atoms 2, 3 and 4 bonds away. The bottom structure illustrates the
1H-13C long range coupling observed for H-3, C-8 and C-9.

On the SEM-protected pyrrolopyridine skeleton, only one carbon signal remained to be
assigned at this point. The H-6 doublet showed long range coupling to the carbon at 140.3
ppm, and this signal was assigned to C-4. The remaining signals would at this point belong
to the two para-hydroxymethylphenyl substituents. H-5 showed 1H-13C long range
coupling to 136.2 ppm. This carbon shift is situated in the aromatic region, and as it is a
quaternary carbon, it is assigned to C-22. H-3 showed weak 'H-13C long range coupling to
a quaternary carbon at 129.8 ppm, which in turn was assigned to C-16.

As the solvent was DMSO0-ds, the hydroxyl protons signals would be expected to appear
as triplets in the 'H spectrum. The hydroxyl groups neighboring environments are quite
similar and the triplets would be expected to appear close to one another, if not
completely overlapping. A triplet signal with the integral of 2 was found in the H
spectrum at 5.29 ppm (J = 5.7 Hz). This signal had no carbon atom coupling in the HSQC
spectrum, and was assigned to H-21/H-27. The signal showed 'H-'H coupling with to
overlapping doublet at 4.59 ppm with integral 4 (J = 6.0 Hz), as seen in the COSY spectrum
in Figure 3.4. The signals were assigned to H-20 and H-26. The corresponding carbon
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signals for C-20 and C-26 were found in the HSQC spectrum at 62.5 and 62.6 ppm. As the
doublets overlapped in the 1H spectrum and the 13C signals were close, the shifts were
interchangeable.

The carbon signal at 143.1 ppm showed 1H-13C long range coupling to H-20, H-21, H-26
and H-27, and was therefore assigned to both quaternary carbons C-19 and C-25.

For the phenyl group protons, the remaining signals were 7.81-7.78 ppm (4H, m), 7.51
ppm (2H, J = 8.2 Hz, d) and 7.46 ppm (2H, J = 8.2 Hz, d). Due to the structure of the
molecule, and resonance arguments, it was suspected that the phenyl protons closer to
the pyrrolopyridine ring (H-17 and H-23), would have higher proton shifts than H-18 and
H-24. The 7.81-7.78 ppm signal showed 1H-13C long range coupling to both C-4 and C-2,
as well as to C-19 and C-25, and it was therefore assigned to belong to both proton groups
at H-17 and H-23. These proton signals are interchangeable as they appeared so close
together in the spectrum. The corresponding 13C signals were found to be at 128.1 and
128.6 ppm, though it was not possible to distinguish the C-17 and C-23 signals. Long range
couplings between meta-positions of the phenyl rings were observed in the HMBC
spectrum. The 7.51 ppm doublet showed 'H-13C long range coupling to C-22, and was
therefore assigned H-24. The corresponding C-22 was found at 127.1 ppm. The 7.46 ppm
doublet coupled to C-16, and was assigned to H-18 along with the corresponding C-18
found at 126.7 ppm.

Assigned 'H and 13C NMR shifts for compound 3 are summarized in Table 3.7.

48



Table 3.7: 1H and 13C NMR for compound 3 (DMSO-ds, 400 MHz).

Position 1H [ppm]
2 -
3 6.86 (s, 1H)
4 -
5 7.32 (d,/=5.0 Hz, 1H)
6 8.36 (d,/ = 5.0 Hz,1H)
8 -
9 -
10 5.68 (s, 2H)
12 3.67 (t,/=8.1 Hz, 2H)
13 0.88 (t,/=8.1 Hz, 2H)
15 -0.07 (s, 9H)
16 -
17 7.81-7.78 (m, 4H)
18 7.46 (d, ] = 8.2 Hz, 2H)
19 -
20 4.59 (t,]/ = 6.0 Hz, 4H)
21 5.29 (t,/=5.7 Hz, 2H)
22 -
23 7.81-7.78 (m, 4H)
24 7.51 (d, /= 8.2 Hz, 2H)
25 -
26 4.59 (t,] = 6.0 Hz, 4H)
27 5.29 (t,/=5.7 Hz, 2H)

abMight be interchanged
cOverlapping signals

13C [ppm]
141.9
99.7
140.3
115.7
143.2
150.1
117.5
70.5
65.8
17.4
-1.4
129.8
128.6/128.12
126.7
143.1¢
62.5/62.6b
136.2
128.6/128.12
127.1

143.1¢
62.5/62.6

COSY

13
12

18
17

18, 21
20

24
23

23,27
26

HMBC
3,10,17
2,8,9,16
1,11
6,9, 22
4,5,8,9
3,6,10
3,56
2,8,12
10, 13
12,15
13,15
3,18
8,19
16, 18, 20
17, 20,21
18,19
19, 20
5,24
4,24,25
22,24,26

23,26,27
24,25
25,26
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3.5.3 Compound 4

The structure of compound 4 with numbered positions is given in Figure 3.6. Assigned 'H
and 13C NMR shifts are given in Table 3.8. HRMS gave m/z 461.2256 [M+H]*]. With

a calculated value of 461.2260, the molecular formula C27H33N203Si was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 4 can be found in Appendix D.

Figure 3.6: The structure of compound 4 with atom numbering.
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10
12
13
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31

Table 3.8: 1H and 13C NMR for compound 4 (DMSO-ds, 400 MHz).

H [ppm]
6.86 (s, 1H)
7.32 (d,] = 4.9 Hz, 1H)
8.39 (d, ] = 4.9 Hz, 1H)

5.69 (s, 2H)

3.63 (t,] = 8.2 Hz, 2H)
0.87 (t,] = 8.2 Hz, 2H)
-0.08 (s, 9H)
7.70-7.68 (m, 2H)
7.48 (t,] = 7.5 Hz, 1H)
7.44-7.42 (m, 2H)
7.72 (s, 1H)
4.58 (d,] = 5.8 Hz, 2H)
5.27 (t,J = 5.9 Hz, 1H)

7.70-7.68 (m, 2H)
7.53 (t,/ = 7.7 Hz, 1H)
7.44-7.42 (m, 2H)
7.77 (s, 1H)
4.62 (d,] = 5.9 Hz, 2H)
5.30 (t,/ = 5.9 Hz, 1H)

aQverlapping signals
b.cMight be interchanged

13C [ppm]
142.1
99.9
140.7
115.8
143.32
150.0
117.5

70.5
65.7
17.4
1.4
131.2
126.9
127.1
128.5
1433
126.69/126.67/126.64¢
62.7/62.8
137.7

126.69/126.67/126.64¢
128.9
126.69/126.67/126.64¢
1435
126.2
62.7/62.8

COSY HMBC
3,17,21
2,8,9,16
6,25,29

6 3,6,9,24
4,5,6,9
3,6,10
3,5,6
6,8,12
13 10, 13
12 12,15
13,15
3,18
2,19,21/25/27
16,17, 20
22 21/25/27,22
18,22, 23
22 2,17,22
19,21, 23 20,17
22 20, 22
5,26
30 4,21/25/27
24, 28,29
30 21/25/27,30
26, 30,31
30 4,21/25/27,30
27,29,31 28, 29
30 28,30
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3.5.4 Compound 5

The structure of compound 5 with numbered positions is given in Figure 3.7. Assigned 'H
and 13C NMR shifts are given in Table 3.9. HRMS gave m/z 389.1445 [M+H]*]. With

a calculated value of 389.1452, the molecular formula C20H26N20,SiCl was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 5 can be found in Appendix E.

Figure 3.7: The structure of compound 5 with atom numbering.
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Table 3.9: 1H and 13C NMR for compound 5 (DMSO-ds, 400 MHz).

'H [ppm]

6.75 (s, 1H)

7.33 (d,] = 5.2 Hz, 1H)
8.27 (d,] = 5.2 Hz, 1H)

5.63 (s, 2H)

3.61 (t,] = 8.0 Hz, 2H)
0.84 (t,] = 8.0 Hz, 2H)
-0.11 (s, 9H);
7.77 (d,] = 8.3 Hz, 2H)
7.47 (d,] = 8.3 Hz, 2H)

4.58 (d,] = 5.7 Hz, 2H)
5.31 (t,] = 5.7 Hz, 1H)

13C [ppm]

142.5
98.2
133.8

116.9
143.6

149.8
118.9
70.8
65.9
17.3
-1.4
129.2
128.7
126.7

143.4
62.5

COSY

13
12

18
17

21
20

HMBC

3,10,17
2,4,8,9,16
3,56
3,5,6,9
4,5,8,9
3,6
3,5,6,8
9,12,16
10, 13
12,15
13
3,18
2,17,18, 19, 20
17,18, 20
17,20, 21
17,18,19
19, 20
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3.5.5 Compound 6

The structure of compound 6 with numbered positions is given in Figure 3.8. Assigned 'H
and 3C NMR shifts are given in Table 3.10. HRMS gave m/z 503.2315 [M+H]*]. With

a calculated value of 503.2317, the molecular formula C26H40N202Si2Cl was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 6 can be found in Appendix F.

Figure 3.8: The structure of compound 6 with atom numbering.
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Table 3.10: 'H and 13C NMR for compound 6 (DMSO-ds, 400 MHz).
13C [ppm]

'H [ppm]

6.76 (s, 1H)
7.33 (d,] = 5.2 Hz, 1H)
8.27 (d,] = 5.2 Hz, 1H)

5.64 (s, 2H)

3.59 (t, ] = 8.0 Hz, 2H)
0.82 (t, ] = 8.0 Hz, 2H)
-0.11 (s, 9H)
7.79 (d,] = 8.3 Hz, 2H)
7.46 (d, ] = 8.3 Hz, 2H)
4.80 (s, 2H)

0.11 (s, 6H)

0.93 (s, 9H)

142.4
98.3
133.9
117.0
143.5
149.8
118.9
70.8
65.9
17.3
-1.5
129.4
128.8
126.3
142.2
63.9
-5.3
18.0
25.8

COSY

13
12

18, 20
17,20

17,18

HMBC
3,10

2,4,8,9,10

3,5,6
4,6,9
4,5,8,9
3,6,10
3,5,6
2,8,12
10, 13
12,15
13,15
18, 20
17,18,19
16, 18, 20
17,20
16, 18,19
24,25
23,25
24,25
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3.5.6 Compound 7

The structure of compound 7 with numbered positions is given in Figure 3.9. Assigned 'H
and 13C NMR shifts are given in Table 3.11. HRMS gave m/z 368.2157 [M+H]*]. With

a calculated value of 368.2158, the molecular formula C21H3oN30Si was confirmed. 1H and
13C NMR, MS and IR spectra for compound 7 can be found in Appendix G.

21 21
22
Figure 3.9: The structure of compound 7 with atom numbering.
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Z

10
12
13
15
17
18
19
20
21
22

Table 3.11: 'H and 13C NMR for compound 7 (DMSO-ds, 400 MHz).

1H [ppm]
7.25 (m, 4H)?
6.49 (d, ] = 3.8 Hz, 1H)

6.28 (d,] = 5.7 Hz, 1H)

7.88 (d, ] = 5.7 Hz, 1H)

5.52 (s, 2H)

3.49 (t,] = 8.1 Hz, 2H)
0.81 (t,/ = 8.1 Hz, 2H)
-0.09 (s, 9H)
3.19 (s, 3H)

4.81 (s, 2H)
7.26-7.23 (m, 4H)?
7.34-7.31 (m, 2H)
7.26-7.23 (m, 4H)?

aQverlapping signals
bOverlapping with solvent signal

13C [ppm]

124.3
101.1

149.7
99.8

143.9
149.4
107.3
72.3
65.1
17.2
-1.4
39.6P
56.1
138.4
126.5
128.5
126.9

COSY
3

2

13
12

18
17

21
20,22
21

HMBC
3,8,9,10
2,8,9,10

5,6,17,18
3,4,6,9
4,5,8,9
2,3,6,10
2,3,56

2,8,12

10,13

12,15

13,15

4,5,18

4,17,19, 20, 21
18, 20, 21
18, 19, 22

19, 20, 21, 22
20,21
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3.5.7 Compound 8

The structure of compound 8 with numbered positions is given in Figure 3.10. Assigned
1H and 13C NMR shifts are given in Table 3.12. HRMS gave m/z 474.2571 [M+H]*]. With

a calculated value of 474.2577, the molecular formula C2gH3sN302Si was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 8 can be found in Appendix H.

28
Figure 3.10: The structure of compound 8 with atom numbering.
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Position

2
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12
13
15
16
17
18
19
20
21
23
24
25
26
27
28

Table 3.12: 'H and 13C NMR for compound 8 (DMSO-ds, 400 MHz).

'H [ppm]

6.68 (s, 1H)
6.34 (d, ] = 5.7 Hz, 1H)
7.91 (d, ] = 5.7 Hz, 1H)

5.55 (s, 2H)

3.63 (t,/ = 8.2 Hz, 2H)
0.85 (t,/ = 8.2 Hz, 2H)
-0.08 (s, 9H)
7.64 (d,] = 8.2 Hz, 2H)
7.39 (d,] = 8.2 Hz, 2H)
4.54 (d,] = 5.7 Hz, 2H)
5.24 (t,/ = 5.7 Hz, 1H)
3.25 (s, 3H)

4.85 (s, 2H)
7.27-7.24 (m, 3H)?
7.35-7.31 (m, 2H)
7.27-7.24 (m, 3H)?

aQverlapping signals
bMight be interchanged
cOverlapping with solvent signal

13C [ppm]

136.6
101.3
149.4
100.5
143.9
151.1
107.4
70.4
65.5
17.4
-1.4
130.3
128.2

126.6/126.5b

142.3
62.6
39.8¢
56.1
138.4

126.6/126.5b

128.6
126.9

COSY

13
12

18

17,20

27,21
20

26

24,27

26,28
27

HMBC
3,10,17
2,8,9,16
6,23, 24

6,9
4,5,8
3,6,10
3,5

2,8,12

10, 13

12,15

13,15

3,18

2,17,19
16, 18, 20
17, 20,21

18,19

20,19

4,24
4,23,25,26

24,27

24,28

25,27
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3.5.8 Compound 9

The structure of compound 9 with numbered positions is given in Figure 3.11. Assigned
1H and 13C NMR shifts are given in Table 3.13. HRMS gave m/z 588.3446 [M+H]*]. With

a calculated value of 588.3442, the molecular formula C34Hs0N30,Si> was confirmed. 1H
and 3C NMR, MS and IR spectra for compound 9 can be found in Appendix I.

Figure 3.11: The structure of compound 9 with atom numbering.
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Table 3.13: 'H and 13C NMR for compound 9 (DMSO-ds, 400 MHz).

Position 1H [ppm]
2 -
3 6.69 (s, 1H)
4 -
5 6.33 (d,/ = 5.8 Hz, 1H)
6 791 (d, /= 5.8 Hz, 1H)
8 -
9 -
10 5.55 (s, 2H)
12 3.60 (t,/=8.1 Hz, 2H)
13 0.83 (t,/=8.0 Hz, 2H)
15 -0.09 (s, 9H)
16 -
17 7.65 (d, /= 8.3 Hz, 2H)
18 7.39-35 (m, 2H)
19 -
20 4.75 (s, 2H)
23 0.09 (s, 6H)
24 -
25 0.92 (s, 9H)
27 3.25 (s, 3H)
28 4.85 (s, 2H)
29 -
30 7.24-7.27 (m, 3H)?
31 7.33-31 (m, 2H)
32 7.24-7.27 (m, 3H)?

aQverlapping signals
bOverlapping with solvent signal

13C [ppm]

136.4
101.5
149.4
100.5
144.0
151.1
107.4
70.4
65.5
17.4
-1.4
130.6
128.3
126.1
140.9
63.9
-5.3
18.0
25.8
39.9b
56.1
138.4
126.6
128.6
126.9

COSsY HMBC
3,10,17
2,8,9,16
6,27,28

6 6,9
5 4,5,8
3,6,10
3,5
2,8,10
13 10, 13
12 12,15
13,15
3,18
18 2,17,19
17 16,17,18, 20
17,20
18,19
23,24
23,25
24,25
4,28
4,27,29, 30
28,31
31 28,32
30,32 29,31
31 30
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3.5.9 Compound 10

The structure of compound 10 with numbered positions is given in Figure 3.12. Assigned
1H and 13C NMR shifts are given in Table 3.14. HRMS gave m/z 469.2704 [M+H]*]. With

a calculated value of 469.2707, the molecular formula C26H41N20,Si> was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 10 can be found in Appendix J.

62
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Figure 3.12: The structure of compound 10 with atom numbering.
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Position

Table 3.14: 'H and 3C NMR for compound 10 (DMSO-ds, 400 MHz).

H [ppm]

6.70 (s, 1H)
8.00 (dd, 1.54 Hz/7.8 Hz, 1H)
7.18 (dd, ] = 4.7/7.8 Hz, 1H)

8.30 (dd, / = 1.54 Hz/4.7 Hz, 1H)

5.63 (s, 2H)

3.59 (t,] = 8.0 Hz, 2H)
0.83 (t,J = 8.0 Hz, 2H)
-0.11 (s, 9H)
7.76 (d, ] = 8.3 Hz, 2H)
7.45 (d, ] = 8.3 Hz, 2H)
4.79 (s, 2H)

0.11 (s, 6H)

0.93 (s, 9H)

13C

[ppm]
141.3

100.5
128.2
117.0
142.7
149.3
119.9
70.3
65.6
17.3
-1.5
130.1
128.6
126.2
141.7
63.9
-5.3
18.0
25.8

COSY

4,6

13
12

18
17,20

18

HMBC

3,10
2,8,9,16,17
6,8
6,9
4,5,8
3,4,6,10
3,5
2,8,12
10, 13
12,15
13,15
3,18
17,19
16, 18, 20
17,20
18,19
23,24
23,25
24,25
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3.5.10 Compound 11

The structure of compound 11 with numbered positions is given in Figure 3.13. Assigned
1H and 13C NMR shifts are given in Table 3.15. HRMS gave m/z 519.2262 [M+H]*]. With

a calculated value of 519.2266, the molecular formula C26H40N203Si2Cl was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 11 can be found in Appendix K.

24 27
26 /
j— 27
28 o8 SI\
27

Figure 3.13: The structure of compound 11 with atom numbering.
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Position

/2

3
4
5
6
8
9

10
12
13
15
16
17
18
19
20
22
24
25
27

Table 3.15: 'H and 3C NMR for compound 11 (DMSO-ds, 400 MHz).

1H [ppm] 13C [ppm] COSY HMBC
- 142.2 3,10,17
6.77 (s, 1H) 98.5 2,4,8,9,16
- 133.9 3,56
7.34 (d,J=5.2 Hz, 1H) 117.0 6 3,4,6,9
8.28 (d, /= 5.2 Hz, 1H) 143.6 5 4,5,8,9
- 149.8 3,6,10
- 118.8 3,56
5.65 (s, 2H) 70.8 2,8,12
3.60 (t,/=8.0 Hz, 2H) 65.9 13 10,13
0.83 (t,/ = 8.0 Hz, 2H) 17.3 12 12,15
-0.11 (s, 9H) -1.5 13,15
- 129.9 3,18
7.80 (d, /= 8.2 Hz, 2H) 128.9 2,17,19
7.48 (d, ] = 8.2 Hz, 2H) 127.9 20 16, 18, 20
- 139.3 17,20
4.62 (s, 2H) 68.2 18 18, 19, 22
4.73 (s, 2H) 93.9 20, 24
3.62 (t,] = 8.2 Hz, 2H) 64.4 25 22,25
0.90 (t,J = 8.2 Hz, 2H) 17.6 24 24,27
0.01 (s, 9H) -1.3 25,27
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3.5.11 Compound 12

The structure of compound 12 with numbered positions is given in Figure 3.14. Assigned
1H and 13C NMR shifts are given in Table 3.16. HRMS gave m/z 417.1398 [M+H]*]. With

a calculated value of 417.1401, the molecular formula C21H26N203SiCl was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 12 can be found in Appendix L.

24 12

Figure 3.14: The structure of compound 12 with atom numbering.
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Position

Table 3.16: 'H and 3C NMR for compound 12 (DMSO0-ds, 400 MHz).

'H [ppm]

6.81 (s, 1H)
7.34 (d,] = 5.2 Hz, 1H)

8.28 (d,] = 5.2 Hz, 1H)

5.65 (s, 2H)

3.60 (t, ] = 8.1 Hz, 2H)
0.83 (t, ] = 8.0 Hz, 2H)
-0.11 (s, 9H)
7.83 (d,] = 8.3 Hz, 2H)
7.55 (d, ] = 8.3 Hz, 2H)
5.26 (s, 2H)

8.37 (s, 1H)

13C [ppm]

142.0
98.7
134.0
117.0
143.7
149.9
118.8
70.8
65.9
17.3
-1.5
130.7
129.0
128.5
136.5
64.4

162.0

COSY

13
12

18

17

22

20

HMBC

3,10,17

2,4,8,10, 16

3,56
4,6,9
4,5,8,9
3,6,10
56
2,8,12
10,13
12,15
13,15
3,18
2,16,18
16, 18, 20
17,20
18, 19, 22

20
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3.5.12 Compound 13

The structure of compound 13 with numbered positions is given in Figure 3.15. Assigned
1H and 13C NMR shifts are given in Table 3.17. HRMS gave m/z 604.3390 [M+H]*]. With

a calculated value of 604.3391, the molecular formula C34Hs0N303Si2 was confirmed. 1H
and 13C NMR, MS and IR spectra for compound 13 can be found in Appendix M.

24 27
2 /
j— 27
o8 SI\
27
33 33
34

Figure 3.15: The structure of compound 13 with atom numbering.
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Table 3.17: 'H and 3C NMR for compound 13 (DMSO-ds, 400 MHz).

Position 1H [ppm] 13C [ppm] COSY HMBC
2 - 136.3 3,10,17
3 6.70 (s, 1H) 101.6 2,8,9,16
4 - 149.4 30, 33
5 6.35 (d,/ = 5.8 Hz, 1H) 100.5 6 3,6,9
6 791 (d,J = 5.7 Hz, 1H) 144.1 5 58,931
8 - 151.1 3,6,10
9 - 107.3 3,56
10 5.55 (s, 2H) 70.4 2,8,12
12 3.62 (t,/=3.9 Hz, 2H) 65.5 13 10,13
13 0.84 (t,/=7.9 Hz, 2H) 17.4 12 12,15
15 -0.09 (s, 9H) -1.4 13,15
16 - 131.1 3,18
17 7.66 (d, ] = 8.2 Hz, 2H) 128.3 18 2,17,19
18 7.39 (d,J = 8.2 Hz, 2H) 127.8 17,20 16, 18, 20
19 - 137.9 17, 20
20 4.57 (s, 2H) 68.2 20 18,19, 22
Rz 4.71 (s, 2H) 93.8 20, 24
24 3.59 (t,/=4.4 Hz, 2H) 64.4 25 22,25
25 0.88 (t,/ = 8.2 Hz, 2H) 17.5 24 24,27
27 0.00 (s, 9H) -1.3 25,27
29 3.25 (s, 3H) 39.92 30 5,30,31
30 4.86 (s, 2H) 56.1 29,33 4,29,31, 32
31 - 138.4 6,29, 30
32 7.27-7.24 (m, 3H)P 126.6 30,33 30, 34
33 7.35-7.31 (m, 2H) 128.6 32,34 31,33
34 7.27-7.24 (m, 3H)P 126.9 33 32

aQverlapping with solvent signal
bOverlapping signals



3.5.13 Compound 14

The structure of compound 14 with numbered positions is given in Figure 3.16. Assigned
1H and 13C NMR shifts are given in Table 3.18. HRMS gave m/z 344.1757 [M+H]*]. With

a calculated value of 344.1763, the molecular formula C22H22N30 was confirmed. H and
13C NMR, MS and IR spectra for compound 14 can be found in Appendix N.

21 21
22
Figure 3.16: The structure of compound 14 with atom numbering.
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Position

22

Table 3.18: tH and 3C NMR for compound 14 (DMSO0-ds, 600 MHz).

1H [ppm]
11.84 (s, 1H)

6.97 (s, 1H)
6.24 (d,] = 5.8 Hz, 1H)
7.83 (d,] = 5.8 Hz, 1H)

7.77 (d,] = 8.2 Hz, 2H)
7.36-7.32 (m, 4H)P
4.50 (d, ] = 5.7 Hz, 2H)
5.17 (t,/ = 5.7 Hz, 1H)
3.27 (s, 3H)

4.87 (s, 2H)
7.28-7.25 (m, 3H)d
7.36-7.32 (m, 4H)P
7.28-7.25 (m, 3H)d

aNot visible in 13C NMR spectrum
bdQverlapping signals
cOverlapping with solvent signal

13C [ppm]

133.5

98.0
149.6

99.5
143.02
150.52
108.6
130.3
124.4
126.8
141.5

62.6

40.1¢

56.1

138.4
126.7
128.6
126.9

COSY

12
11

15
14

21
20, 22
21

HMBC

3,11
2,8,9,10
17,18
3,6,9
58,9
3,6
3,56
3,12
2,11,12,13
10,11, 14
11,14, 15
12,13
13,14
4,18
4,17,19, 21
18, 20, 21, 22
18, 19, 22
19, 21
20
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3.5.14 Compound 15

The structure of compound 15 with numbered positions is given in Figure 3.17. HRMS
gave m/z 356.1759 [M+H]*]. With a calculated value of 356.1763, the molecular formula
C23H22N30 was confirmed. 1H and 13C NMR, MS and IR spectra for compound 15 can be
found in Appendix O.

Figure 3.17: The suggested structure of compound 15 with atom numbering.

As compound 15 contained a rare eight-membered ring, the details of the structural
elucidation of this structure will be presented in this section.

Firstly, the broad singlet with integral 1 at 11.65 ppm was assigned to the H-1 amine
proton. A signal at 5.30 ppm with integral 1 showed no coupling in the HSQC spectrum,
and was therefore assigned to the hydroxyl group H-15. This hydroxyl signal showed
coupling in the COSY spectrum to a doublet at 4.61 ppm (J = 4.2 Hz, 2H) which was
assigned to H-14, and the corresponding C-14 signal was found at 62.7 ppm. This benzylic
CHz-group showed 1H-13C long range coupling in the HMBC spectrum to a quaternary
carbon at 142.0 ppm, which was assigned to C-13. Long range coupling was also seen
between H-14 and a carbon signal at 126.6 ppm. This signal corresponded to the doublet
signal with integral 2 at 7.50 ppm (J = 8.1 Hz), and was assigned to H-12. The COSY
spectrum revealed coupling between H-12 and a multiplet signal with integral 3 at 7.60-
7.56 ppm. This multiplet contained two doublet signals overlapping, and one of these
doublets was assigned to H-11. The corresponding C-11 signal was found at 129.5 ppm.
1H-13C long range coupling was observed between H-12 and 131.0 ppm, a quaternary
carbon which was assigned to C-10. A quaternary carbon signal at 131.6 ppm showed long
range coupling to H-11, and was assigned to C-2.

A broad doublet at 7.81 ppm with integral 1 was assigned to H-6 because of the high
chemical shift, and because the signal at H-6 was typically observed in this region. The
corresponding C-6 signal was found from the HSQC spectrum at 142.1 ppm, though this
signal was too weak to be observed in the 13C NMR spectrum. Weak long range coupling
was seen between H-6 and a carbon signal at 150.3 ppm, which was assigned to C-8. The
H-6 peak showed 1H-1H coupling in the COSY spectrum to a doublet at 6.20 ppm (J = 5.8
Hz). This signal was in turn assigned to H-5, and the corresponding C-5 was found at 99.0
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ppm. H-5 showed 1H-13C long range coupling to two carbon signals at 41.0 and 106.4 ppm.
The signal at 106.4 ppm was assigned to C-9.

The HSQC spectrum revealed that the signal at 41.0 ppm corresponded to a proton
signal overlapping with the water residue signal in the proton spectra, at 3.25 ppm. The
chemical shifts of these signals indicated that they corresponded to the methyl group in
position 17. Long range coupling was seen between H-17 and carbon signals at 149.7
and 54.0 ppm. The signal at 149.7 ppm was assigned to C-4, and the signal at 54.0 ppm
was assigned to C-18. The HSQC spectrum showed that the singlet at 4.71 ppm with
integral 2 belonged to H-18.

The C-9 signal showed long range coupling to a singlet at 4.16 ppm containing two
protons. Such a peak in this region had not been observed in any of the spectra in this
thesis. The corresponding carbon was found from the HSQC spectrum at 31.7 ppm. This
peak showed coupling to several aromatic signals, as well as C-9, C-2 and 110.9. The
signal at 110.9 ppm was assigned to C-3. In the other compounds identified this thesis,
the 3-position had contained a proton signal between 6.7-7.0 ppm. In compound 15, the
C-3 signal appeared as a quaternary carbon. The mentioned signals at 4.16 ppm/31.7
ppm were therefore assumed to be connected in this position, and were assigned to
position 25.

The CH2-group at position 25 showed long range coupling to two quaternary carbons at
136.9 and 140.4 ppm, which also showed coupling to H-18. The CHz-group was
therefore clearly connected to the pyrrole-unit in position 3, and the amine benzyl
group. The splitting and coupling pattern of the remaining signals in the aromatic region
indicated that an ortho-substitution had taken place in the amine phenyl group. This
confirmed the suspicion of an eight-membered-ring formation. A part of the HMBC
spectrum is shown in Figure 3.18, depicting the long-range couplings observed for H-25.

J\_,\ ppm

H-25
105
c-9 oo
c-3 0o 110
115
120
125
c-23 Oe
130
c-2 (@)
135
c-19 6
c-24 140
T T T T T

4.30 4.25 4.20 4.15 4.10 4.05 ppm

Figure 3.18: Part of the HMBC spectrum showing the 1H-13C long range couplings of the singlet
at 4.16 ppm, assigned to position 25.
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Remaining signals in the aromatic region were at this point two triplets at 7.24 ppm (J =
7.4 Hz) and 7.14 ppm (J = 7.3 Hz), one doublet at 7.00 ppm (J = 7.3 Hz), as well as the
remaining doublet overlapping in the multiplet at 7.60-7.56 ppm (1H). Long range
coupling was detected between C-18 and the multiplet at 7.60-7.56 ppm, which was
assigned to H-20. The corresponding C-20 signal was found at 128.6 ppm. Long range
coupling was also observed between C-25 and the doublet at 7.00 ppm, which was
assigned to H-23. The corresponding carbon signal was found at 128.4 ppm. From 1H-1H
couplings observed in the COSY spectrum, the signals at 7.24 ppm/127.1 ppm and 7.14
ppm/127.9 ppm were assigned to positions 21 and 22, respectively. Long range coupling
between all meta-positions of the phenyl ring was observed in the HMBC spectrum. This
observation provided the basis for assigning the signal at 140.4 ppm to C-24, and 136.9
ppm to C-19. A part of the HMBC spectrum showing long range couplings in the aromatic
region is shown in Figure 3.19. A selection of significant couplings that helped identify the
structure is shown in Figure 3.20.

ppm

0/H H-12 H-21 H H-23 124
P 126
o5 00 00
c-22 00 o @e 90 128
C-23/C
c-11 @@D @ L130
C q
e Gy 00
~134
— %19 S 00 [13
2 ~138
F |c-24 000 00 140
C-13 @@@ 142
144
146
148

T T T T T T T T T T T T T T
770 765 7.60 755 750 745 740 735 730 725 720 715 7.0 7.05 7.00 ppm

Figure 3.19: Part of the HMBC spectrum showing 1H-13C long range couplings of the aromatic
region.

Figure 3.20: Left: The 'H-13C long range coupling observed in the HMBC spectra for H-18 (blue
arrows) and H-25 (red arrows). Right: 1H-1H couplings observed in the COSY spectrum (pink
arrows), and tH-13C long range coupling of H-5 (black arrows).

All assigned 1H and 13C NMR shifts of compound 15 are given in Table 3.19.
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Position

25

Table 3.19: 'H and 3C NMR for compound 15 (DMSO0-ds, 400 MHz).

1H [ppm]
11.65 (s, 1H)

6.20 (d, ] = 5.8 Hz, 1H)
7.81 (m, 1H)

7.60-7.56 (m, 3H)P
7.50 (d, ] = 8.1 Hz, 2H)
4.61 (d,] = 4.2 Hz, 2H)
5.30 (m, 1H)
3.25 (s, 3H)°
4.71 (s, 2H)
7.60-7.56 (m, 3H)P
7.24 (t,] = 7.4 Hz, 1H)
7.14 (t,] = 7.3 Hz, 1H)
7.00 (d,] = 7.3 Hz, 1H)

4.16 (s, 2H)

aNot visible in 13C NMR spectrum
bOverlapping signals
cOverlapping with water residue signal

13C [ppm]

131.6

110.8
149.72

99.0
142.12
150.32
106.4
131.0

129.5

126.6

142.0
62.7

41.0
54.0
136.9
128.6
127.1
127.9
128.4
140.4
31.7

COSY

12
11,14

12,15
14

21
20, 22
21,23

22

HMBC

11, 25
25
17,18

9,17

5,25
12
2,11,13
10, 12,14
11,14
12,13
4,5,18
4,17,19, 20, 24
18, 21, 23, 25
18, 22, 24
19, 23
20, 24
19, 21, 25
18, 20, 22, 25
2,3,9,19, 23,24
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3.5.15 Compound 16

The structure of compound 16 with numbered positions is given in Figure 3.21. Assigned
1H and 13C NMR shifts are given in Table 3.20. HRMS gave m/z 331.1446 [M+H]*]. With

a calculated value of 331.1447, the molecular formula C21H19N202 was confirmed. 1H and
13C NMR, MS and IR spectra for compound 16 can be found in Appendix P.

Figure 3.21: The structure of compound 16 with atom numbering.
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Position

Table 3.20: 'H and 3C NMR for compound 16 (DMSO-ds, 400 MHz).

IH [ppm]
12.25 (s, 1H)

7.09 (s, 1H)

7.18 (d,] = 5.0 Hz, 1H)
8.26 (d, ] = 5.0 Hz, 1H)

7.94 (d,] = 8.3 Hz, 2H)
7.39 (d, ] = 8.3 Hz, 2H)
4.54 (s, 1H)

5.25 (m, 1H)
7.79 (d,] = 8.2 Hz, 2H)
7.52 (d,] = 8.2 Hz, 2H)
4.60 (s, 2H)

5.31 (m, 1H)

13C [ppm]

138.8
96.1
139.7

114.7
143.1
150.4
118.7
129.9
125.2
126.9
142.9
62.60

136.7
128.0
127.0
142.6
62.64

COSY
3

12
11,14

12,15
14

18
17,20

18, 21
20

HMBC

3,11
2,8,9
6,17
6,9, 16
4,5,8
6
3,5
12
2,11,13
10,12, 14
11,14
12,13
5,18
3,4,19
16, 18, 20
17,20
18,19
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3.5.16 Compound 17

The structure of compound 17 with numbered positions is given in Figure 3.22. Assigned
1H and 13C NMR shifts are given in Table 3.21. HRMS gave m/z 331.1441 [M+H]*]. With

a calculated value of 331.1447, the molecular formula C21H19N202 was confirmed. 1H and
13C NMR, MS and IR spectra for compound 17 can be found in Appendix Q.

Figure 3.22: The structure of compound 17 with atom numbering.
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Position

1

© 0O O U1 & W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table 3.21: 'H and 3C NMR for compound 17 (DMSO-ds, 400 MHz).

H [ppm]
12.29 (s, 1H)

7.08 (s, 1H)

7.18 (d, ] = 5.0 Hz, 1H)
8.28 (d, ] = 5.0 Hz, 1H)

7.85 (d,] = 7.8 Hz, 1H)
7.44-7.41 (m, 2H)?
7.32(d,] = 7.6 Hz, 1H)
7.92 (s, 1H)
4.56 (d,] = 5.8 Hz, 1H)
5.26 (t, ] = 5.8 Hz, 1H)
7.69 (d,] = 7.8 Hz, 1H)
7.54 (t,] = 7.6 Hz, 1H)
7.44-741 (m, 2H)?
7.77 (s, 1H)
4.64 (d,] = 5.8 Hz, 2H)
5.31 (t,] = 5.8 Hz, 1H)

aQverlapping signals
bMight be interchanged

13C [ppm]

138.9

96.3
140.1

114.7

143.19
150.4

118.6
131.2
123.8
128.8
126.3

143.24
123.6
62.9/62.8
138.2
126.6
128.7
126.5
143.4
126.2
62.9/62.8

COSY

3

12,13

11
12

17
16

20
19
20

25
24

HMBC

3,11, 15
2,8,9
6,19,23
6,9 18
4,5,8,9
3,6
3,5,6
12
2,13, 15
10,11, 14, 16/24
11,16/24
12,16,17
2,11,13,16/24
13,14, 15
14,16/24
5, 20
4,21
18,22
19,22,16/24
20,21, 24, 25
4,19,16/24
21,22
22,16/24
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4. Conclusion

The aim of this thesis was to develop the synthetic strategies towards 2-aryl-4-
aminopyrrolopyridines, and synthesize the target molecule 14 as seen in Scheme 4.1.

SEM
N i N .
5N Suzuki cross- coupllng Buchwal mination R N
| ] p—i 4@» /
Z ~
cl 2 N
Ph
SEM  Suzuki cross-coupling S H
NN

NN Protection of hydroxyl N N R
| ! Buchwald amination Deprotection > W
= =
N

Ph R | -TBDMS -SEM Ph

Z\,
N
\

Scheme 4.1: Synthetic pathways leading to the target compound 14.

The two initial synthetic steps were SEM-protection of the pyrrole nitrogen and
iodination in 2-position, both reactions giving satisfactory yields and forming building
block 2. Although the iodination chemistry proceeded with excellent regioselectivity and
conversion, work should be done on improving the work-up.

A selectivity study was performed for optimizing the chemoselective Suzuki cross-
coupling of compound 2, leading to compound 5. Multiple catalysts and conditions were
tested, and a selective mono-cross-coupling in 2-position was developed by the use of
Pd(PPhs)s. This catalyst gave a longer reaction time, but offered a highly selective cross-
coupling, with minimal formation of byproducts.

The Buchwald amination of compound 5 proved unsuccessful. Several catalyst systems
and conditions were tested, yet no aminated product was observed. Other routes were
therefore explored with the aim of achieving amination in 4-position. Compound 5
contained an acidic proton in the form of a hydroxyl group. This hydroxyl group was
protected with TBDMS and SEM groups, both protection reactions giving moderate yields.
The TBDMS group of substrate 6 proved unstable under the amination conditions, and
was partly cleaved off during the course of reaction. This was avoided by the use of the
more stable SEM group in substrate 11, providing minimal amounts of byproducts and
higher yields in the aminations. The Buchwald aminations with TBDMS-protected
compound 6 gave at most an 89% yield of the aminated product, while the SEM-protected
compound 11 proved most valuable as substrate with a 92% yield obtained. A significant
observation was that the Buchwald aminations are very sensitive to water. The presence
of water or impurity residues in either the solvent, substrate or glass equipment gave
conversions below 35%, and 0-12% formation of the aminated product.
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The most challenging step was the deprotection reactions of the aminated compounds 9
and 13. Two methods were tested, where the best result was obtained using TFA and sat.
aq. NaHCOs. In these reactions, the target 14 was formed as the major product in
deprotections of both compounds 9 and 13. As expected, the TBDMS group of compound
9 proved easier to remove than the SEM groups. The best result was obtained in a larger
scale deprotection of compound 9, which gave a 74% yield of the target 14. Low yields
were obtained from many of the deprotection reactions, as scales were low and multiple
byproducts were formed, making the purification process difficult. Poor separation and
large losses were observed using silica gel column chromatography.

Overall, 15 new compounds have been synthesized in this master project. The main target
14 was synthesized with the most beneficial route giving an overall yield of 37%.
Hopefully, evaluation of compound 14 as an inhibitor towards CSF1R might aid further
structure-activity understanding of this kinase.
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5. Future work

The work described in this master project has produced 15 new compounds, including
one new potential CSF1R inhibitor. Many of the syntheses have been performed in good
yields, yet there is room for improvement in several of the reactions and synthetic steps.

Problems were encountered with the workup in the iodination reaction producing the
SEM-protected 4-chloro-2-iodo-7-azaindole building block, where the product was
partially soluble in the water phase. Further optimizations of the workup and extraction
procedures should be made.

A selectivity study of Suzuki cross-coupling reactions in C-2 position was performed, and
while good yields were obtained for the Pd(PPhs)s catalyst system, the reaction
conditions can be optimized further. A minor amount of the dehalogenated byproduct was
observed in these reactions. Slow addition of the substrate to the reaction mixture has
been reported to mend this issue.80

The Buchwald amination in C-4 position proved successful when no acidic protons were
present in the substrate. If acidic aryl groups are desired in the C-2 position, the reaction
conditions should be carefully tested to allow for the presence of these groups. The
introduction of protecting groups was a successful solution in this project. This strategy
could be explored further with other protecting groups. An alternative could be the use of
a benzoic ester, which may be reduced to the benzyl alcohol in the final step. Further
insights into this reaction could be gained by testing other reaction conditions and
catalysts. Bidentate ligands such as dppf and XantPhos have been reported to give good
results in Buchwald aminations of pyrrolopyridines.192 106 A methodical investigation of
the water sensitivity could also be beneficial. The introduction of the amine in C-4 prior
to the aryl group in C-2 has been attempted previously in the research group, and is a
possibility that could be explored further.

The deprotection reaction was the most challenging synthetic step. To further this
investigation, optimizations can be made to the procedure with TFA and sat aq. NaHCO:s.
A screening of other procedures could also be performed to find a better method of
deprotecting the SEM-group on the pyrrole nitrogen. The use of LiBF4 has given high
yields in SEM deprotection reactions of pyrrolopyrimidines.®® Luo et al. utilized TBAF in
the SEM deprotections of indazoles in good yields.>¢ Another solution would be to replace
the SEM protecting group all together, if a suitable displacement group could be found
that allows an easier and more selective deprotection. Using the methoxymethyl (MOM)
protecting group with pyrrolopyridines has been reported with good results by several
papers.115-116 [t is quite stable, yet can easily be removed with acid. The formation of
formaldehyde and byproducts as is observed in the SEM deprotection, may be avoided
when using the MOM group. Poor results from the deprotection reactions were also due
to the suboptimal purification process. Recrystallization could be a good alternative.
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Synthesizing key building blocks using other methods could also be beneficial. de Mattos
et al. have reported a method for synthesizing various 2-aryl-7-azaindole structures.*!
Scheme 5.1 shows a suggested pathway to the 2-aryl-4-chloro-7-azaindole building block
employing this method.

Cul +-BuOK

| N\ NHf — PdCIz(PPh 18 —Crown-6 N\
Z | - EtSN THF Toluene Z
Cl rt, over night 65 °C, over night

Scheme 5.1: A suggested synthesis route to a 4-chloro-2-aryl-7-azaindole building block,
employing the method as reported by de Mattos et al.4!

2T

N

The introduction of various other aryl groups and amines in positions C-4 and C-2 can
give further insight into the chemistry and CSF1R activity of the pyrrolopyridine scaffold.
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6. Experimental

6.1 General information

All reagents and solvents used in the experiments were commercially available, and were
used without further purification. All reagents were purchased from Sigma Aldrich,
except for 4-chloro-7-azaindole, which was purchased from 1Click Chemistry. When
reactions were conducted above room temperature (22 °C), an oil bath was used for
heating. Ice and water were used for cooling to 0 °C, and dry ice and acetone were used
for cooling to -78 °C. A Teflon coated magnetic stir bar was used in all reactions. Dry
solvents were collected from a Braun MB SPS-800 Solvent Purification System, and
filtered and deionized water was used. All reactions were monitored using thin layer
chromatography (TLC, silica gel on aluminum plates, Fzss, Merck). The plates were
visualized using UV-light (wave length 254 nm and 365 nm). Column chromatography
was performed using silica gel (40-63 mesh, 60 A) as the stationary phase, and eluent
systems are specified for each separation.

Spectroscopic analysis:

1H NMR and 13C NMR spectra were recorded on a Bruker Avance III HD instrument
operating at 400 or 600 MHz for proton and 100 MHz or 150 MHz for carbon. Deuterated
DMSO-ds was used as solvent. Chemical shifts are reported in & (ppm), calibrated to the
solvent signal in DMSO-ds (2.50 ppm in 'H and 39.52 in 13C). Coupling constants, J, are
expressed in Hz. Signals are defined according to their multiplicity: s (singlet), d (doublet),
dd (doublet of doublets), t (triplet), br is used when peak broadening is seen. Multiplets
(m) are defined as an interval. Missing signals in the 13C spectra are marked by *.
Accurate mass determination in positive and negative mode was performed on a "Synapt
G2-S" Q-TOF instrument from Water™. Samples were ionized by the use of ASAP probe
(APCI) or ESI probe. No chromatographic separation was used previous to the mass
analysis. Calculated exact mass and spectra processing was done by Waters™ Software
Masslynx V4.1 SCN871.
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6.2 Synthesis of compound 1109

\S( __ 4-Chloro-1H-pyrrolo[2,3-b]pyridine (5.43 g, 35.6 mmol) was
! dissolved in dry DMF (47 mL). Then NaH (1.24 g, 51.8 mmol)

/) was added to the reaction flask under an N2 atmosphere at 0

oC. After stirring for 30 minutes at 0 ©°C, 2-

// O (trimethylsilyl)ethoxymethyl chloride (7.1 mL, 40.7 mmol)

N N was added dropwise over a period of 10 minutes. The
= reaction mixture was stirred at 0 °C for 3 hours and 45
= / minutes, before being allowed to warm to room

temperature. The mixture then was quenched with sat. aq.

Cl 1 NH4Cl (100 mL) and extracted with EtOAc (3x100 mL). The

combined organic phases were washed with brine (100 mL),

dried over anhydrous NazSO,, filtered and concentrated in vacuo. The product was

purified by silica gel column chromatography (n-pentane:EtOAc, 96:4, Ry = 0.38) to give
compound 1 as a light-yellow oil, 9.11 g (32.2 mmol, 90%).

Spectroscopic data for compound 1 (Appendix A):

1H NMR (400 MHz, DMSO-ds) &: 8.25 (d, / = 5.2 Hz, 1H), 7.78 (d, ] = 3.6 Hz, 1H), 7.28 (d, ] =
5.2 Hz, 1H), 6.60 (d, ] = 3.6 Hz, 1H), 5.64 (s, 2H), 3.51 (t,/ = 7.9 Hz, 2H), 0.81 (t,/ = 7.9 Hz,
2H), -0.11 (s, 9H). The reported shifts correspond well with previously reported data.10°

6.3 Synthesis of compound 2110

AN
Si—  4-Chloro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo
[2,3-b]pyridine (1) (7.87 g, 27.8 mmol) was dissolved in dry
THF (120 mL) under an N2 atmosphere before cooling to -78

// O °C.  Lithium diisopropylamide (2M in  THF/n-

N N heptane/ethylbenzene) (20 mL, 40 mmol) was added

| ~ | dropwise over a period of 45 minutes using a syringe pump.
= / The reaction mixture was stirred at -78 °C for 1 hour. 12 (9.11

g, 35.9 mmol) was dissolved in dry THF (40 mL) and added

Cl 2 to the reaction mixture dropwise over a period of 45 minutes

using a syringe pump. The mixture was then stirred for 2
hours at -78 °C before being warmed to room temperature. The reaction was then
quenched with sat. aq. NH4Cl (2 mL). The solvent was removed in vacuo before addition
of CH2Clz (200 mL) and water (200 mL). The two layers were separated and the aqueous
phase was extracted with CH2Cl; (6x50 mL). The combined organic phases were washed
with brine (100 mL), dried over anhydrous NazSOy, filtered and concentrated in vacuo.
The crude product was dissolved in CH2Cl; (100 mL), and added aq. Na;S203 (10%, 50
mL). The water phase was extracted with CH2Cl2 (3x50 mL). The combined organic
phases were dried over anhydrous NazSOg, filtered and concentrated in vacuo. The
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product was purified by silica gel column chromatography (n-pentane:EtOAc, 97.5:2.5, R;
= 0.37 to give compound 2 as a beige powder, 10.2 g (24.5 mmol, 69%); mp 47.5-48.5 °C

Spectroscopic data for compound 2 (Appendix B):

1H NMR (400 MHz, DMSO-ds) &: 8.19 (d, ] = 5.2 Hz, 1H), 7.27 (d, ] = 5.2 Hz, 1H), 6.99 (s, 1
H), 5.63 (s, 1H), 3.52 (t,/ = 8.0 Hz, 2H), 0.81 (t, ] = 8.0 Hz, 2H), -0.12 (s, 9H); 13C NMR (100
MHz, DMSO-ds) 6: 149.4, 143.6,132.9,120.5,116.9, 109.0, 89.8, 73.3, 65.8, 17.1, -1.3 (3C).
IR (cm1, neat) v: 3129 (w), 2950 (w), 2908 (w), 1589 (m), 1556 (s), 1455 (s), 1381 (s),
1365 (s), 1074 (s, br), 850 (s, br), 755 (s), 740 (s), 676 (m), 530 (m). HRMS (APCI/ASAP,
m/z): detected 409.0000 (calcd. C13H19N20SiClI, 409.0000, [M+H]*). Spectrocopic data
have not been reported in the literature.110

6.4 Synthesis of compound 3

A  mixture of 4-chloro-2-iodo-1-((2-(trimethylsilyl)-
ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridine (2) (277 mg,
0.678 mmol), (4-(hydroxymethyl)phenyl)boronic acid
(227 mg, 1.50 mmol), XPhos (24.0 mg, 0.036 mmol), XPhos
Pd G2 precatalyst (24 mg, 0.030 mmol) and K>CO3 (349
mg, 2.56 mmol) was added degassed 1,4- dioxane:water
(1:1, 5 mL) under an Nz atmosphere. The reaction mixture
was stirred at 90 °C for 19 minutes before cooling to room
temperature. The solvent was removed in vacuo. CH2Cl;
(50 mL) and water (50 mL) was added to the flask and the
layers were separated. The water phase was extracted

with CH2Cl; (3x20 mL). The combined organic phases were washed with brine (20 mL),
dried over anhydrous Na;SO., filtered and concentrated in vacuo. The product was
purified by silica gel column chromatography (CH2Cl2:MeOH, 95:5, R= 0.45) to give
compound 3 as an off-white solid, 246 mg (0.534 mmol, 79%); mp 142.5-144 °C

Spectroscopic data for compound 3 (Appendix C):

1H NMR (400 MHz, DMSO-ds) &: 8.36 (d, ] = 5.0 Hz, 1H), 7.81-7.78 (m, 4H), 7.51 (d, ] = 8.2
Hz, 2H), 7.46 (d, ] = 8.2 Hz, 2H), 7.32 (d, ] = 5.0 Hz, 1H), 6.86 (s, 1H), 5.68 (s, 2H), 5.29 (t, ]
= 5.7 Hz, 2H), 4.59 (t, ] = 6.0 Hz, 4H), 3.67 (t,J = 8.1 Hz, 2H), 0.88 (t, / = 8.1 Hz, 2H), -0.07
(s, 9H); 13C NMR (100 MHz, DMSO-ds) &: 150.1, 143.2, 143.1 (2C), 141.9, 140.3, 136.2,
129.8, 128.6 (2C), 128.1 (2C), 127.1 (2C), 126.7 (2C), 117.5, 115.7, 99.7, 70.5, 65.8, 62.6,
62.5,17.4,-1.4 (3C). IR (cm, neat) v: 3404 (w, br), 2919 (w), 2858 (w), 1730 (w), 1585
(m), 1364 (m), 1245 (m), 1082 (s), 833 (s), 636 (m). HRMS (APCI/ASAP, m/z): detected
461.2259 (calcd. C27H33N203Si, 461.2260 [M+H]*).
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6.5 Synthesis of compound 4
N/

SIT A mixture of 4-chloro-2-iodo-1-((2-(trimethylsilyl)-
ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridine (2) (252 mg,
0.617 mmol), (4-(hydroxymethyl)phenyl)boronic acid (211
mg, 1.39 mmol), XPhos (23.0 mg, 0.034 mmol), XPhos Pd G2
precatalyst (25.0 mg, 0.031 mmol) and K2CO3 (298 mg, 2.16
mmol) was added degassed 1,4-dioxane:water (1:1, 5 mL)
under an N2 atmosphere. The reaction mixture was stirred at
90 °C for 19 minutes before cooling to room temperature. The
solvent was removed in vacuo. CH2Clz (50 mL) and water (50

mL) were added to the flask and the layers were separated.
The water phase was extracted with CH2Clz (3x20 mL). The
combined organic phases were washed with brine (20 mL), dried over anhydrous NazS04,
filtered and concentrated in vacuo. The product was purified by silica gel column
chromatography (CH2Cl2:MeOH, 97:3, R= 0.28) to give compound 4 as an off-white solid,
227 mg (0.493 mmol, 80%); mp 149-151 °C

Spectroscopic data for compound 4 (Appendix D):

1H NMR (400 MHz, DMSO-ds) &: 8.39 (d, J = 4.9 Hz, 1H), 7.77 (s, 1H), 7.72 (s, 1H), 7.70-
7.68 (m, 2H), 7.53 (t, ] = 7.7 Hz, 1H), 7.48 (t, ] = 7.5 Hz, 1H), 7.44-7.42 (m, 2H), 7.32 (d, ] =
4.9 Hz, 1H), 6.86 (s, 1H), 5.69 (s, 2H), 5.30 (t,/ = 5.9 Hz, 1H), 5.27 (t, ] = 5.9 Hz, 1H), 4.62
(d,] = 5.9 Hz, 2H), 4.58 (d, ] = 5.8 Hz, 2H), 3.63 (t, ] = 8.2 Hz, 2H), 0.87 (t,/ = 8.2 Hz, 2H), -
0.08 (s, 9H); 13C NMR (100 MHz, DMSO-ds) &: 150.0, 143.5,143.3 (2C), 142.1, 140.7, 137.7,
131.2,128.9, 128.5, 127.1, 126.9, 126.69, 126.67, 126.64, 126.2, 117.6, 115.8, 99.9, 70.5,
65.7,62.8,62.7,17.4,-1.4 (3C). IR (cm, neat) v: 3284 (w, br), 3055 (w), 2871 (m), 1583
(m), 1399 (m), 1325 (m), 1246 (s), 1066 (s, br), 1018 (s, br), 831 (s), 764 (m), 701 (s).
HRMS (APCI/ASAP, m/z): detected 461.2256 (calcd. C27H33N203Si, 461.2260 [M+H]").
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6.6 Synthesis of compound 5

N/
Si— Multiple screening reactions were performed which
/J led to compound 5. A general procedure is described
') below. The amounts of reagents, solvents and
N I products, and the specific reaction conditions, are
| N listed for each conducted reaction.
/
OH
Cl 5

General procedure:

A  mixture of 4-chloro-2-iodo-1-((2-trimethylsilyl)-ethoxy)methyl)-1H-pyrrolo[2,3-
blpyridine (2), (4-(hydroxymethyl)phenyl)boronic acid, K2COs, palladium source and
ligand was added degassed 1,4-dioxane:water (1:1) under an N2 atmosphere. The
reaction mixture was stirred at an elevated temperature before being cooled to room
temperature. The solvent was removed in vacuo.

For reactions with <150 mg of compound 2: EtOAc (10 mL) and water (10 mL) were added
to the flask and the layers were separated. The water phase was extracted with EtOAc
(3x10 mL). The combined organic phases were washed with brine (10 mL).

For reactions with >1 g of compound 2: EtOAc (100 mL) and water (100 mL) were added
to the flask and the layers were separated. The water phase was extracted with EtOAc
(3x75 mL). The combined organic phases were washed with brine (75 mL).

The combined organic phases were dried over anhydrous Na;SO., filtered and
concentrated in vacuo. After drying, the reaction gave a crude product of compound 5 as
a yellow oil.

Spectroscopic data for compound 5 (Appendix E):

1H NMR (400 MHz, DMSO-ds) &: 8.27 (d, ] = 5.2 Hz, 1H), 7.77 (d,] = 8.3 Hz, 2H), 7.47 (d, ] =
8.3 Hz, 2H), 7.33 (d, ] = 5.2 Hz, 1H), 6.75 (s, 1H), 5.63 (s, 2H), 5.31 (t, ] = 5.7 Hz, 1H), 4.58
(d, ] = 5.7 Hz, 2H), 3.61 (t, ] = 8.0 Hz, 2H), 0.84 (t, J = 8.0 Hz, 2H), -0.11 (s, 9H); 3C NMR
(100 MHz, DMSO-ds) &: 149.8, 143.6, 143.4, 142.5, 133.8, 129.2, 128.7 (2C), 126.7 (2C),
118.9, 116.9, 98.2, 70.8, 65.9, 62.5, 17.3, -1.4 (3C). IR (cm1, neat) v: 3330 (w, br), 2950
(m), 2893 (m), 1558 (m), 1368 (m), 1286 (s), 1120 (s), 930 (s, br), 909 (m, br), 831 (s, br),
791 (s), 694 (s), 581 (m). HRMS (APCI/ASAP, m/z): detected 389.1445 (calcd.
C20H26N202SiCl, 389.1452 [M+H]*).

Pd(PPhs),

Compound 2 (1.23 g, 3.02 mmol); (4-(hydroxymethyl)phenyl)boronic acid (539 mg, 3.55
mmol); Pd(PPhz)4 (180 mg, 0.156 mmol); K2C03 (1560 mg, 11.3 mmol); 1,4-dioxane:water
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(1:1,50 mL). 80 °C; 9 hours; crude 5 (1.47 g, 3.78 mmol, 125%). The product was purified
by silica gel column chromatography (n-pentane:EtOAc, 80:20, Rf = 0.27) to give
compound 5 as a light-yellow oil, 936 mg (2.50 mmol, 79%).

(dppf)PdCl:

Compound 2 (48.4 mg, 0.118 mmol); (4-(hydroxymethyl)phenyl)boronic acid (20.3 mg,
0.134 mmol); (dppf)PdCl> (11.1 mg, 0.015 mmol); K2CO3 (70.7 mg, 0.512 mmol); 1,4-
dioxane:water (1:1, 3 mL). 87 °C, 17 min; crude 5 (49.0 mg, 0.126 mmol, 107%). The
product was purified by silica gel column chromatography (n-pentane:EtOAc, 75:25, Ry
=0.52) to give compound 5 as a clear oil, 14.7 mg (0.054 mmol, 46%).

Pdz(dba)s

Compound 2 (104 mg, 0.253 mmol); (4-(hydroxymethyl)phenyl)boronic acid (51.4 mg,
0.338 mmol); Pdz(dba)s (7.2 mg, 0.008 mmol); K>CO3 (125 mg, 0.904 mmol); 1,4-
dioxane:water (1:1, 2.6 mL). 100 °C, 1 h 45 min; crude 5 (90.5 mg, 0.233 mmol, 92%).

Compound 2 (100 mg, 0.244 mmol); (4-(hydroxymethyl)phenyl)boronic acid (52.0 mg,
0.340 mmol); Pdz(dba)z (8.1 mg, 0.009 mmol); K;CO3 (151 mg, 1.09 mmol); 1,4-
dioxane:water (1:1, 2.6 mL). 80 °C, 1 h 45 min; crude 5 (86.0 mg, 0.221 mmol, 90%).

Compound 2 (53.1 mg, 0.130 mmol); (4-(hydroxymethyl)phenyl)boronic acid (29.3 mg,
0.193 mmol); Pdz(dba)s (4.5 mg, 0.005 mmol); K2CO3 (75.3 mg, 0.545 mmol); 1,4-
dioxane:water (1:1, 2.6 mL). 60 °C, 2 h 27 min; crude 5 (41.6 mg, 0.107 mmol, 82%).

XPhos/XPhos Pd G2 precatalyst

Compound 2 (55.5 mg, 0.136 mmol); (4-(hydroxymethyl)phenyl)boronic acid (24.3 mg,
0.160 mmol); XPhos (7.6 mg, 0.016 mmol); XPhos Pd G2 precatalyst (7.4 mg, 0.009 mmol);
K2C03(75.8 mg, 0.548 mmol); 1,4-dioxane:water (1:1, 2.6 mL). 60 °C, 2 h 27 min; crude 5
(46.6 mg, 0.120 mmol, 87%).

Pd(0Ac):

Compound 2 (52.4 mg, 0.128 mmol); (4-(hydroxymethyl)phenyl)boronic acid (24.7 mg,
0.163 mmol); Pd(OAc) (3.2 mg, 0.014 mmol); K2CO3 (75.7 mg, 0.548 mmol); 1,4-
dioxane:water (1:1, 3 mL). 100 °C, 2 h 45 min; crude 5 (21.7 mg, 0.056 mmol, 43%).

PEPPSI™.-SIPr precatalyst

Compound 2 (50.1 mg, 0.123 mmol); (4-(hydroxymethyl)phenyl)boronic acid (22.1 mg,
0.145 mmol); PEPPSI™-SIPr precatalyst (13.3 mg, 0.019 mmol); K2CO3 (76.0 mg, 0.550
mmol); 1,4-dioxane:water (1:1, 3 mL). 87 °C, 17 min; crude 5 (44.6 mg, 0.115 mmol, 93%).
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6.7 Synthesis of compound 6
6.7.1 Synthesis of compound 6 by Suzuki cross-coupling
</ A mixture of 4-chloro-2-iodo-1-((2-trimethylsilyl)-
Si— ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridine (2)
/J (901 mg, 2.2 mmol), (4-(((tert-butyldimethyl
0 silyl)oxy) methyl)phenyl)boronic acid (644 mg,
N N// 2.42 mmol), Pd(PPh3)4 (127 mg, 0.110 mmol), and
| p y K2C03 (1110 mg, 8.03 mmol) was added degassed
Z O-Si _é 1,4-dioxane:water (1:1, 70 mL) under an N:
Cl 6 \ atmosphere. The mixture was stirred at 85 °C for 2
hours before being cooled to room temperature.
The solvent was removed in vacuo. CH2Clz (100 ml) and water (100 mL) were added to
the flask and the layers were separated. The water phase was extracted with CH2Cl; (3x50
mL). The combined organic phases were washed with brine (75 mL), dried over
anhydrous NazSO0, filtered and concentrated in vacuo. After drying, the reaction gave a
crude material as a yellow oil, 1.43 mg (2.85 mmol, 130%). The product was purified by
silica gel column chromatography (n-pentane:EtOAc, 97:3, Rr=0.11) to give compound 6
as a white powder, 991 mg (1.97 mmol, 90%); mp 48.5-50 °C

Spectroscopic data for compound 6 (Appendix F):

1H NMR (400 MHz, DMSO-ds) &: 8.27 (d, ] = 5.2 Hz, 1H), 7.79 (d, ] = 8.3 Hz, 2H), 7.46 (d, ] =
8.3 Hz, 2H), 7.33 (d, ] = 5.2 Hz, 1H), 6.76 (s, 1H), 5.64 (s, 2H), 4.80 (s, 2H), 3.59 (t, ] = 8.0
Hz, 2H), 0.93 (s, 9H), 0.82 (t,]/ = 8.0 Hz, 2H), 0.11 (s, 6H), -0.11 (s, 9H); 13C NMR (100 MHz,
DMSO-ds) o: 149.8,143.5,142.4,142.2,133.9,129.4,128.8 (2C), 126.3 (2C),118.9,117.0,
98.3,70.8,65.9,63.9,25.8 (3C), 18.0,17.3,-1.5 (3C), -5.3 (2C). IR (cm1, neat) v: 2951 (m),
2926 (m), 2883 (w), 2853 (w), 1554 (m), 1471 (m), 1458 (m), 1375 (m), 1249 (s), 1074
(s),918 (m), 829 (s, br), 767 (s, br), 584 (m). HRMS (APCI/ASAP, m/z): detected 503.2315
(calcd. C26H40N202Si2Cl, 503.2317 [M+H]*).

6.7.2 Synthesis of compound 6 by TBDMS protection
(4-(4-Chloro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-2-
yl)phenyl)methanol (5) (914 mg, 2.35 mmol) was dissolved in dry DMF (40 mL). NaH
(128 mg, 5.34 mmol) was then added to the reaction flask under an Nz atmosphere at 0
°C, and the mixture was stirred for 20 minutes. tert-Butyldimethylsilyl chloride (593 mg,
3.93 mmol) was dissolved in dry THF (10 mL), and was added to reaction mixture
dropwise over a period of 10 minutes. The reaction mixture was stirred at 0 °C for 4 hours,
before stirring at 50 °C for 10 minutes. The solvent was removed in vacuo. The mixture
was added (NH4)2S04 (50 mL, 30% in water) and EtOAc (50 mL), and the layers were
separated. The water phase was extracted with EtOAc (3x50 mL). The combined organic
phases were washed with brine (50 mL), dried over anhydrous Na;SO,, filtered and
concentrated in vacuo. The product was purified by silica gel column chromatography (n-
pentane:EtOAc, 97:3, Rr = 0.11) to give compound 6 as a white powder, 888 mg (1.77
mmol, 75%); mp 48.5-50 °C
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6.8 Synthesis of compound 7

Si™ A mixture of 4-chloro-1-((2-(trimethylsilyl)ethoxy)methyl)-
/) 1H-pyrrolo[2,3-b]pyridine (1) (81.0 mg, 0.286 mmol), N-

//O methyl-1-phenylmethylamine (0.2 mL, 1.55 mmol), NaOt-Bu

N\ N (95.4 mg, 0.990 mmol), RuPhos (7.5 mg, 0.016 mmol) and
E(\I/\/) Pd(OAc); (7.0 mg, 0.031 mmol) was added degassed t-BuOH
Z (4 mL), under an N2 atmosphere. The reaction mixture was

N 7 stirred at 85 °C for 20 minutes before allowing to cool to room

temperature. The solvent was removed in vacuo. CH2Clz (15

mL) and water (15 mL) were added to the flask and the layers

were separated. The water phase was adjusted to pH 7 with

sat. aq. NH4Cl, and extracted with CH2Cl2 (3x15 mL). The
combined organic phases were washed with brine (15 mL), dried over anhydrous NazS04,
filtered and concentrated in vacuo. After drying, the reaction gave a crude product of
compound 7 as a dark green oil 111 mg, (0.302 mmol, 105%). The product was purified
by silica gel column chromatography (n-pentane:EtOAc, 7:3, Rr=0.47) to give compound
7 as a light-yellow oil, 71.0 mg (0.193 mmol, 68%).

Spectroscopic data for compound 7 (Appendix G):

1H NMR (400 MHz, DMSO-ds) &: 7.88 (d, ] = 5.7 Hz, 1H), 7.34-7.31 (m, 2H), 7.26-7.23 (m,
4H), 6.49 (d, ] = 3.8 Hz, 1H), 6.28 (d, ] = 5.7 Hz, 1H), 5.52 (s, 2H), 4.81 (s, 2H), 3.49 (t,] =
8.1 Hz, 2H), 3.19 (s, 3H), 0.81 (t, ] = 8.1 Hz, 2H), -0.09 (s, 9H); 13C NMR (100 MHz, DMSO-
ds) 0: 149.7, 149.4, 143.9, 138.4, 128.5 (2C), 126.9, 126.5 (2C), 124.3,107.3, 101.1, 99.8,
72.3,65.1,56.1,39.6,17.2, -1.4 (3C). IR (cm, neat) v: 2950 (w), 2893 (w, br), 1703 (w),
1574 (s), 1503 (m), 1373 (m), 1246 (s), 1072 (s, br), 832 (s), 696 (s). HRMS (APCI/ASAP,
m/z): detected 368.2157 (calcd. C21H30N30Si, 368.2158 [M+H]*).
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6.9 Isolation of compound 8

N/
/jl Compound 8 was isolated as a minor product of the
4 reaction described in Section 6.10. Purification by silica gel
N N// column chromatography (n-pentane:EtOAc, 9:1, Rr=0.01)
w_@_\ gave compound 8 as a brown wax, 45 mg (0.095 mmol,
Z OH 6%)
N, 8

Spectroscopic data for compound 8 (Appendix H):

1H NMR (400 MHz, DMSO-ds) §: 7.91 (d, ] = 5.7 Hz, 1H), 7.64 (d, ] = 8.2 Hz, 2H), 7.39 (d, ] =
8.2 Hz, 2H), 7.35-7.31 (m, 2H), 7.27-7.24 (m, 3H), 6.68 (s, 1H), 6.34 (d, ] = 5.7 Hz, 1H), 5.55
(s, 2H), 5.24 (t, ] = 5.7 Hz, 1H), 4.85 (s, 2H), 4.54 (d, ] = 5.7 Hz, 2H), 3.63 (t, ] = 8.2 Hz, 2H),
3.25 (s, 3H), 0.85 (t, ] = 8.2 Hz, 2H), -0.08 (s, 9H); 13C NMR (100 MHz, DMSO-ds) &: 151.1,
149.4, 143.9, 142.3, 138.4, 136.6, 130.3, 128.6 (2C), 128.2 (2C), 126.9, 126.6 (2C), 126.5
(2C),107.4,101.3,100.5,70.4,65.5,62.6,56.1,39.8,17.4,-1.4 (3C); IR (cm}, neat) v: 3400
(w, br), 2927 (w), 2853 (w), 1737 (w), 1578 (s), 1496 (m), 1354 (m), 1245 (s, sh), 1205
(m), 1064 (s, br), 832 (s, sh), 695 (s); HRMS (APCI/ASAP, m/z): detected 474.2571 (calcd.
C28H36N302Si, 474.2577 [M+H]*).

6.10 Synthesis of compound 9
Si—
A  mixture of 2-(4-(((tert-butyldimethylsilyl)oxy)
methyl)phenyl)-4-chloro-1-((2-(trimethylsilyl)ethoxy)
N methyl)1H-pyrrolo[2,3-b]pyridine (6) (816 mg, 1.62
w@_\o_&/‘é mmol), N-methyl-1-phenylmethylamine (1.5 mL, 11.6
\ mmol), NaO¢-Bu (470 mg, 4.89 mmol), RuPhos (51 mg,
A 0.109 mmol) and Pd(OAc): (24 mg, 0.107 mmol) was
added degassed t-BuOH (28 mL), under an N
atmosphere. The reaction mixture was stirred at 85 °C
for 30 minutes before being allowed to cool to room
temperature. The pH was adjusted to 6 with (NH4)2S04 (30% in H20). The solvent was
removed in vacuo. CHzCl> (50 mL) and water (50 mL) were added to the flask and the
layers were separated. The water phase was extracted with CHzCl> (3x50 mL). The
combined organic phases were washed with brine (50 mL), dried over anhydrous NazS04,
filtered and concentrated in vacuo. After drying, the reaction gave the crude material as a
dark yellow oil 1.47 gr (2.50 mmol, 154%). The product was purified by silica gel column
chromatography (n-pentane:EtOAc, 9:1, Rr= 0.27) to give compound 9 as a light-yellow
oil, 847 mg (1.44 mmol, 89%).
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Spectroscopic data for compound 9 (Appendix I):

1H NMR (400 MHz, DMSO0-ds) 6: 7.91 (d, ] = 5.8 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.39-35
(m, 2H), 7.33-31 (m, 2H), 7.27-7.24 (m, 3H), 6.69 (s, 1H), 6.33 (d, ] = 5.8 Hz, 1H), 5.55 (s,
2H), 4.85 (s, 2H), 4.75 (s, 2H), 3.60 (t, ] = 8.1 Hz, 2H), 3.25 (s, 3H), 0.92 (s, 9H), 0.83 (t, ] =
8.0 Hz, 2H), 0.09 (s, 6H), -0.09 (s, 9H); 13C NMR (100 MHz, DMSO-ds) &: 151.1, 149.4, 144.0,
140.9, 138.4, 136.4, 130.6, 128.6 (2C), 128.3 (2C), 126.9, 126.6 (2C), 126.1 (2C), 107.4,
101.5,100.5,70.4, 65.5, 63.9, 56.1, 39.9 25.8 (3C), 18.0, 17.4, -1.4 (3C), -5.3 (2C). IR (cm-},
neat) v: 2951 (m), 2928 (m), 2887 (w), 2855 (w), 1702 (w), 1577 (m), 1496 (m), 1248
(m), 1072 (s, br), 831 (s, br), 774 (s, br), 694 (m). HRMS (APCI/ASAP, m/z): detected
588.3446 (calcd. C34Hs50N302Si2, 588.3442 [M+H]*).

6.11 Isolation of compound 10
N
S Compound 10 was isolated as a minor product of
H the reaction described in Section 6.10. Purification
by silica gel column chromatography (n-

//O
N\ N pentane:EtOAc, 9:1, Rr= 0.51) gave compound 10
EJ;/)—@—\ / as a yellow oil, 29 mg (0.062 mmol, 4%)
Z O-Si %
10 \

Spectroscopic data for compound 10 (Appendix ]):

1H NMR (400 MHz, DMSO-ds) &: 8.30 (dd, / = 1.54 Hz/4.7 Hz, 1H), 8.00 (dd, ] = 1.54 Hz/7.8
Hz, 1H), 7.76 (d,] = 8.3 Hz, 2H), 7.45 (d, ] = 8.3 Hz, 2H), 7.18 (dd, ] = 4.7/7.8 Hz, 1H), 6.70
(s, 1H), 5.63 (s, 2H), 4.79 (s, 2H), 3.59 (t, J = 8.0 Hz, 2H), 0.93 (s, 9H), 0.83 (t,/ = 8.0 Hz,
2H), 0.11 (s, 6H),-0.11 (s, 9H); 13C NMR (100 MHz, DMSO-ds) o: 149.3,142.7,141.6, 141.3,
130.1, 128.6 (2C), 128.2, 126.2 (2C), 119.9, 117.0, 100.5, 70.3, 65.6, 63.9, 25.8 (3C), 18.0,
17.3,-1.5 (3C),-5.3 (2C); IR (cm'L, neat) v: 2951 (m), 2627 (m), 2893 (w), 2855 (m), 1725
(w), 1593 (w), 1500 (w), 1429 (w), 1248 (s), 1076 (s, br), 835 (s, br), 775 (s, sh); HRMS
(APCI/ASAP, m/z): detected 469.2704 (calcd. C26H41N202Si2, 469.2707 [M+H]*).

6.12 Synthesis of compound 11
N/

Si (4-(4-Chloro-1-((2-(trimethylsilyl)ethoxy)

/) methyl)-1H-pyrrolo[2,3-b]pyridin-2-yl)phenyl)
FO methanol (5) (1.05 g, 2.70 mmol) was dissolved
| S p in dry DMF (11 mL). NaH (114 mg, 4.75 mmol)
= 00— was added to the reaction flask under an N
Cl 11 O—\_ s atmosphere at 0 °C. After stirring for 30 minutes
S'\_ at 0 °C, 2-(trimethylsilyl)ethoxymethyl chloride
(0.7 mL, 3.96 mmol) was added dropwise over a
period of 10 minutes. The reaction mixture was stirred at 0 °C for 4 hours and 45 minutes,
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before being allowed to warm to room temperature. The mixture was quenched with sat.
aq. NH4CI (100 mL) and extracted with EtOAc (3x100 mL). The combined organic phases
were washed with brine (100 mL), dried over anhydrous Na»SOs, filtered and
concentrated in vacuo. The product was purified by silica gel column chromatography (n-
pentane:EtOAc, 96:4, Rr= 0.19) to give compound 11 as a clear oil, 717 mg (1.38 mmol,
51%).

Spectroscopic data for compound 11 (Appendix K):

1H NMR (400 MHz, DMSO-ds) §: 8.28 (d, ] = 5.2 Hz, 1H), 7.80 (d, ] = 8.2 Hz, 2H), 7.48 (d, ] =
8.2 Hz, 2H), 7.34 (d, ] = 5.2 Hz, 1H), 6.77 (s, 1H), 5.65 (s, 2H), 4.73 (s, 2H), 4.62 (s, 2H), 3.62
(t,J = 8.2 Hz, 2H), 3.60 (t,] = 8.0 Hz, 2H), 0.90 (t, ] = 8.2 Hz, 2H), 0.83 (t,] = 8.0 Hz, 2H), 0.01
(s, 9H), -0.11 (s, 9H); 13C NMR (100 MHz, DMSO-ds) &: 149.8, 143.6, 142.2, 139.3, 133.9,
129.9,128.9 (2C), 127.9 (2C), 118.8,117.0,98.5,93.9, 70.8, 68.2, 65.9, 64.4, 17.6, 17.3,
-1.3 (3C), -1.5 (3C) IR (cm, neat) v: 2951 (w), 2892 (w, br), 1557 (w), 1369 (m), 1248
(s), 1157 (m), 1055 (s, br), 1023 (s, br), 910 (m), 855 (s), 830 (s), 756 (m), 585 (w). HRMS
(APCI/ASAP, m/z): detected 519.2262 (calcd. C26H40N203Si2Cl, 519.2266 [M+H]*).

6.13 Isolation of compound 12

N/
S Compound 12 was isolated as a minor product of the
/) reaction described in Section 6.12. Purification by silica
//O gel column chromatography (n-pentane:EtOAc, 96:4, Ry
N\ N = 0.13) gave compound 12 as a clear oil, 25 mg (0.060
)
| P 5 N mmol, 2%)
Cl O

12

Spectroscopic data for compound 12 (Appendix L):

1H NMR (400 MHz, DMSO-ds) &: 8.37 (s, 1H), 8.28 (d, ] = 5.2 Hz, 1H), 7.83 (d, ] = 8.3 Hz,
2H), 7.55 (d, ] = 8.3 Hz, 2H), 7.34 (d, ] = 5.2 Hz, 1H), 6.81 (s, 1H), 5.65 (s, 2H), 5.26 (s, 2H),
3.60 (t,/ = 8.1 Hz, 2H), 0.83 (t,/ = 8.0 Hz, 2H), -0.11 (s, 9H); 13C NMR (100 MHz, DMSO-ds)
5:162.0, 149.9, 143.7, 142.0, 136.5, 134.0, 130.7, 129.0 (2C), 128.5 (2C), 118.8, 117.0,
98.7, 70.8, 65.9, 64.4, 17.3, -1.5 (3C). IR (cm}, neat) v: 2950 (w), 2983 (w, br), 1724 (s,
sh), 1557 (m), 1368 (m), 1248 (m), 1156 (s, br), 1075 (s, br), 856 (s), 833 (s). HRMS
(APCI/ASAP, m/z): detected 417.1398 (calcd. C21H26N203SiCl, 417.1401 [M+H]*).
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6.14 Synthesis of compound 13

/J A mixture of 4-chloro-2-(4-(((2-(trimethylsilyl)
ethoxy)methoxy)methyl)phenyl)-1-((2-(trimethyl-
NN silyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridine
W@_\O_\ (11) (111 mg 0.213 mmol), N-methyl-1-
N o—\_ / phenylmethylamine (0.2 mL, 1.55 mmol), NaOt-Bu
S'\_ (71 mg, 0.739 mmol), RuPhos (6 mg, 0.013 mmol)
and Pd(OAc): (4 mg, 0.018 mmol) was added
degassed t-BuOH (3 mL), under an N2 atmosphere.
The reaction mixture was stirred at 85 °C for 5 hours before being cooled to room
temperature. The solvent was removed in vacuo. CHzCl> (15 mL) and water (15 mL) were
added to the flask and the layers were separated. The water phase was then adjusted to
pH 7 with sat. aq. NH4Cl, and extracted with CH2Cl, (3x15 mL). The combined organic
phases were washed with brine (15 mL), dried over anhydrous Na;SO,, filtered and
concentrated in vacuo. After drying, the reaction gave a crude material of compound 13
as a dark green oil, 200 mg (0.331 mmol, 155%). The product was purified by silica gel
column chromatography (n-pentane:EtOAc, 9:1, Rr= 0.19) to give compound 13 as an off-
white oil, 118 mg (0.196 mmol, 92%).

Spectroscopic data for compound 13 (Appendix M):

1H NMR (400 MHz, DMSO-ds) &: 7.91 (d, ] = 5.7 Hz, 1H), 7.66 (d, ] = 8.2 Hz, 2H), 7.39 (d, ] =
8.2 Hz, 2H), 7.35-7.31 (m, 2H), 7.27-7.24 (m, 3H), 6.70 (s, 1H), 6.35 (d, ] = 5.8 Hz, 1H), 5.55
(s, 2H), 4.86 (s, 2H), 4.70 (s, 2H), 4.57 (s, 2H), 3.62 (t, ] = 3.9 Hz, 2H), 3.59 (t, ] = 4.4 Hz,
2H), 3.25 (s, 3H), 0.88 (t,/ = 8.2 Hz, 2H), 0.84 (t,/ = 7.9 Hz, 2H), 0.00 (s, 9H), -0.09 (s, 9H);
13C NMR (100 MHz, DMSO-ds) 6: 151.1, 149.4, 144.1, 138.4, 137.9, 136.3, 131.1, 128.6
(2C), 128.3 (2C), 127.8 (2C), 126.9, 126.6 (2C), 107.3, 101.6, 100.5, 93.8, 70.4, 68.2, 65.5,
64.4,56.1,39.9,17.5,17.4,-1.3 (3C), -1.4 (3C); IR (cm, neat) v: 2950 (w), 2883 (w, br),
1576 (s), 1495 (m), 1452 (m), 1245 (m), 1100 (s, br), 832 (s, br), 693 (m). HRMS
(APCI/ASAP, m/z): detected 604.3390 (calcd. C34H50N303Siz, 604.3391 [M+H]*).
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6.15 Synthesis of compound 14
6.15.1 Synthesis of compound 14 by deprotection of compound 9
6.15.1.1 Deprotection of compound 9 by BF3-OEt;

H N-benzyl-2-(4-(((tert-butyldimethylsilyl)oxy)

N ~—N methyl)phenyl)-N-methyl-1-((2-(trimethylsilyl)

| / ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-4-amine
Z OH (9) (119 mg, 0.202 mmol) was dissolved in dry

N acetonitrile (3 mL) and stirred at 0 °C for 5 minutes
~ 14 under an N; atmosphere. Boron trifluoride diethyl

etherate (0.15 mL, 1.22 mmol) was then added

dropwise over the course of 5 minutes. The mixture

was stirred at room temperature for 1 hour and 25
minutes. The reaction flask was lowered into an icebath holding 0 °C, and water (2 mL)
was then added dropwise over a period of 5 minutes. The mixture was then stirred at
room temperature for 35 minutes, before NHsz (6 mL, 12.5% in water, 40.1 mmol) was
added. The reaction mixture was stirred at room temperature for 36 hours. The solvent
was removed in vacuo, and the crude product was obtained as a yellow powder (205 mg,
0.597 mmol). The product was purified by silica gel column chromatography
(CH2Cl2:MeOH, 94:6, R= 0.10) to give compound 14 as an off white solid, 15.1 mg, (0.044
mmol, 22%); mp 199-200.5 °C

Spectroscopic data for compound 14 (Appendix N):

1H NMR (600 MHz, DMSO-ds) &: 11.84 (s, 1H), 7.83 (d, J = 5.8 Hz, 1H), 7.77 (d, ] = 8.2 Hz,
2H), 7.36-7.32 (m, 4H), 7.28-7.25 (m, 3H), 6.97 (s, 1H), 6.24 (d, ] = 5.8 Hz, 1H), 5.17 (t,] =
5.7 Hz, 1H), 4.87 (s, 2H), 4.50 (d, ] = 5.7 Hz, 2H), 3.27 (s, 3H); 3C NMR (150 MHz, DMSO-
ds) 0: 150.5*%,149.6,143.0*,141.5,138.4,133.5,130.3,128.6 (2C), 126.9,126.8 (2C), 126.7
(2C), 124.4 (2C), 108.6, 99.5, 98.0, 62.6, 56.1, 40.1; IR (cm'?, neat) v: 3204 (m, br), 3063
(m, br), 3023 (m, br), 2919 (m), 2852 (m), 1574 (s), 1518 (s), 1499 (m), 1371 (m), 1294
(m), 1199 (s), 1027 (s), 1013 (s), 1013 (s, sh), 767 (s, br), 723 (s, sh), 695 (s, sh). HRMS
(APCI/ASAP, m/z): detected 344.1757 (calcd. C22H22N30, 344.1763 [M+H]*).

6.15.1.2 Deprotection of compound 9 by TFA
N-benzyl-2-(4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)-N-methyl-1-((2-
(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-4-amine (9) (430 mg, 0.731
mmol) was dissolved in dry CH2Cl; (30 mL) and 2,2,2-trifluoroacetic acid (5 mL, 65.3
mmol) was added dropwise over a period of 5 minutes under an N2 atmosphere. The
reaction mixture was stirred at room temperature for 4 hours and 30 minutes. The
solvent was removed in vacuo. The mixture was dissolved in THF (30 mL) and added
NaHCOs (sat. aq., 40 mL) dropwise over the course of 10 minutes. The reaction mixture
was then stirred at room temperature for 19 hours and 30 minutes, before the solvent
was removed in vacuo. The product mixture was added CH2Cl2:MeOH (2:1, 75 mL) and
stirred at room temperature for 1 hour and 30 minutes, before filtration. The solvent was
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removed in vacuo to give the crude product as a light-yellow powder. The product 14 was
purified by silica gel column chromatography (CH:Cl2:MeOH, 9:1, R= 0.15) to give
compound 14 as an off-white powder, 186 mg, (0.542 mmol, 74%); mp 200.8 °C

6.15.2 Synthesis of compound 14 by deprotection of compound 13

6.15.2.1 Deprotection of compound 13 by BF3-OEt;
N-benzyl-N-methyl-2-(4-(((2-(trimethylsilyl)ethoxy)methoxy)methyl)phenyl)-1-((2-
(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-4-amine (13) (158 mg, 0.262
mmol) was dissolved in dry acetonitrile (6 mL) and stirred at 0 °C for 10 minutes under
an N2 atmosphere. Boron trifluoride diethyl etherate (0.1 mL, 0.810 mmol) was added
dropwise over a period of 10 minutes. The mixture was stirred at 0 °C for 5 minutes and
then at room temperature for 2 hours and 20 minutes. The reaction flask was lowered
into an icebath holding 0 °C and water (4 mL) was added dropwise over a period of 5
minutes. The mixture was stirred at room temperature for 1 hour and 30 minutes. NH3
(10 mL, 12.5% in water, 66.8 mmol) was added dropwise over the course of 5 minutes
and the mixture was stirred at room temperature for 20 hours. After filtration, the crude
product of compound 14 was obtained as a yellow powder (0.154 mmol, 59%). The
product was purified by silica gel column chromatography (CH2Cl2:MeOH:NH3(25% in
water), 95:5:0-90:9:1, Rr= 0.09 (90:10:0)) to give compound 14 as a beige oil, 3 mg (0.009
mmol, 3%)

6.15.2.2 Deprotection of compound 13 by TFA
N-benzyl-N-methyl-2-(4-(((2-(trimethylsilyl)ethoxy)methoxy)methyl)phenyl)-1-((2-
(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-4-amine (13) (182 mg, 0.301
mmol) was dissolved in dry CH2Cl> (40 mL) and added 2,2,2-trifluoroacetic acid (2 mL,
26.2 mmol) under an N; atmosphere. The reaction mixture was stirred at 50 °C for 2
hours, before it was cooled to room temperature and the solvent was removed in vacuo.
The mixture was dissolved in THF (20 mL), before NaHCO3 (sat. aq., 20 mL), was added
dropwise over the course of 10 minutes. The mixture was then stirred at room
temperature for 22 hours. The solvent was removed in vacuo, and the mixture was
dissolved in CH2Clz (40 mL) and MeOH (20 mL) and stirred at room temperature for 1
hour and 30 minutes. The reaction mixture was then filtered, and solvent was removed in
vacuo. The mixture was dissolved in MeOH (10 mL) before NH3 (12.5% in water, 20 mL,
133.6 mmol) was added dropwise over a period of 10 minutes. The mixture was stirred
at room temperature for 22 hours. The solvent was removed in vacuo, and the crude
product was obtained as a yellow powder, 218 mg (0.636 mmol, 211%). The product was
purified using silica gel column chromatography (CH:Clz, 9:1, Rr = 0.21) and gave
compound 14 as a white powder, 13 mg (0.038 mmol, 13%); mp 199-200.5 °C
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6.16 Isolation of compound 15

Compound 15 was isolated as a minor product of
the reaction described in Section 6.15.2.2.
Purification by silica gel column chromatography
(CH2ClI2, 9:1, Rr=0.08) gave compound 15 as a white
solid, 12 mg (0.034 mmol, 11%).

Spectroscopic data for compound 15 (Appendix O):

1H NMR (600 MHz, DMSO-ds) 6: 11.65 (s, 1H), 7.81 (m, 1H), 7.60-7.56 (m, 3H), 7.50 (d, ] =
8.1 Hz, 2H), 7.24 (t,] = 7.4 Hz, 1H), 7.14 (t, ] = 7.3 Hz, 1H), 7.00 (d, ] = 7.3 Hz, 1H), 6.20 (d,
J =5.8 Hz, 1H), 5.30 (m, 1H), 4.71 (s, 2H), 4.61 (d, ] = 4.2 Hz, 2H), 4.16 (s, 2H), 3.25 (s, 3H);
13C NMR (100 MHz, DMSO-dp) 6: 150.3* 149.7*, 142.1%, 142.0, 140.4, 136.9, 131.6, 131.0,
129.5(2C),128.6,128.4,127.9,127.1,126.6 (2C), 110.8,106.4, 99.0, 62.7, 54.0,41.0, 31.7;
IR (cm-1, neat) v: 3606 (w), 3460 (w, br), 3102 (w), 3024 (w), 3000 (w), 2947 (w), 2842
(m), 1596 (s), 1557 (s), 1540 (s), 1518 (s), 1460 (m), 1376 (m), 1342 (m), 1206 (m), 1097
(m), 1043 (s, br), 1015 (m), 917 (s, sh), 783 (s, sh), 756 (s, sh), 467 (m, br); HRMS
(APCI/ASAP, m/z): detected 356.1759 (calcd. C23H22N30, 356.1763 [M+H]*).

6.17 Synthesis of compound 16
N R

< ((1-((2-(Trimethylsilyl)ethoxy)methyl)-1pyrrolo[2,3-
| — / O OH b]pyridine-2,4-diyl)bis(4,1-phenylene))dimethanol(3)
(150 mg, 0.325 mmol) was added dry acetonitrile (4
16 mL) and stirred at 0 °C for 15 minutes under an N:
‘ atmosphere. Boron trifluoride diethyl etherate (0.15
mL, 1.22 mmol) was added dropwise over a period of 5
minutes. The mixture was stirred at room temperature
OH for 2 hours and 40 minutes. The reaction flask was
lowered into an icebath holding 0 °C. Water (2 mL) was then added dropwise over the
course of 5 minutes, before the mixture was stirred at room temperture for 30 minutes.
Then NH3 (6 mL, 12.5% in water, 40.1 mmol) was added and the reaction was stirred at
room temperature for 19 hours. The solvent was removed in vacuo, and the crude product
was obtained as a yellow powder. The product was purified by silica gel column
chromatography (CH2Cl2:MeOH, 90:10, Rr=0.24) to give compound 16 as a light yellow
powder, 35 mg (0.105 mmol, 32%, purity 91% by HPLC); mp 230-233 °C (decomposition)

Spectroscopic data for compound 16 (Appendix P):

1H NMR (400 MHz, DMSO-ds) 6: 12.25 (s, 1H), 8.26 (d, J = 5.0 Hz, 1H), 7.94 (d, / = 8.3 Hz,
2H), 7.79 (d,] = 8.2 Hz, 2H), 7.52 (d, ] = 8.2 Hz, 2H), 7.39 (d, ] = 8.3 Hz, 2H), 7.18 (d, ] = 5.0
Hz, 1H), 7.09 (s, 1H), 5.31 (m, 1H), 5.25 (m, 1H), 4.60 (s, 2H), 4.54 (s, 1H); 13C NMR (100
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MHz, DMSO-dg) 6: 150.4, 143.1, 142.9, 142.6, 139.7, 138.8, 136.7, 129.9, 128.0 (2C), 127.0
(2C), 126.9 (2C), 125.2 (2C), 118.7, 114.7, 96.1, 62.64, 62.60. IR (cmL, neat) v: 3206 (m,
br), 3133 (m, br), 2918 (m), 2850 (m), 1599 (m), 1439 (m), 1207 (m), 1034 (s, br), 1015
(s), 813 (s, sh), 793 (s, sh), 578 (w). HRMS (APCI/ASAP, m/z): detected 331.1446 (calcd.
C21H19N202, 331.1447 [M+H]*).

6.18 Synthesis of compound 17

((1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-
b]pyridine-2,4-diyl)bis(3,1-phenylene))dimethanol (4)
(148 mg, 0.320 mmol) was added 2 mL dry acetonitrile and
stirred at 0 °C for 15 minutes under an N2 atmosphere.
Boron trifluoride diethyl etherate (0.15 mL, 1.22 mmol) was
added dropwise over a period of 5 minutes. The mixture was

stirred at room temperature for 2 hours and 40 minutes.
The reaction flask was lowered into an icebath holding 0 °C. Water (2 mL) was added
dropwise over the course of 5 minutes, before the mixture was stirred at room temperture
for 30 minutes. NH3 (6 mL, 12.5% in water, 40.1 mmol) was added and the reaction was
stirred at room temperature for 19 hours. The solvent was removed in vacuo, and the
crude product was obtained as a yellow powder. The product was purified by silica gel
column chromatography (CH2Cl2:MeOH, 93:7, Rr=0.43) to give compound 17 as a yellow
powder, 34.3 mg (0.104 mmol, 32%, purity 97% by HPLC); mp 172.0-175.0 °C
(decomposition)

Spectroscopic data for compound 17 (Appendix Q):

1H NMR (400 MHz, DMSO-ds) &: 12.29 (s, 1H), 8.28 (d, ] = 5.0 Hz, 1H), 7.92 (s, 1H), 7.85 (d,
J=7.8Hz, 1H), 7.77 (s, 1H), 7.69 (d,] = 7.8 Hz, 1H), 7.54 (t, ] = 7.6 Hz, 1H), 7.44-7.41 (m,
2H), 7.32 (d, ] = 7.6 Hz, 1H), 7.18 (d, ] = 5.0 Hz, 1H), 7.08 (s, 1H), 5.31 (t,/ = 5.8 Hz, 1H),
5.26 (t,J] = 5.8 Hz, 1H), 4.64 (d, ] = 5.8 Hz, 2H), 4.56 (d, / = 5.8 Hz, 1H); 13C NMR (100 MHz,
DMSO-ds) 6: 150.4, 143.4, 143.24, 143.19, 140.1, 138.9, 138.2, 131.2, 128.8, 128.7, 126.6,
126.5,126.3,126.2,123.8,123.6,118.6,114.7,96.3,62.9, 62.8. IR (cm'1, neat) v: 3127 (m,
br), 3094 (m, br), 3062 (m, br), 2919 (m), 2851 (m), 1599 (m), 1477 (m), 1449 (m), 1326
(m), 1252 (m), 1051 (s), 1017 (s, br), 786 (s), 775 (s), 700 (s), 688 (s). HRMS (APCI/ASAP,
m/z): detected 331.1441 (calcd. C21H19N202, 331.1447 [M+H]").
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Elemental Composition Report Page 1

Single Mass Analysis
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Element prediction: Off

Number of isotope peaks used for i-FIT = 3
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Figure B.6: MS spectrum of compound 2.
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Figure B.7: IR spectrum of compound 2.
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Appendix C Compound 3
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

2363 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 0O:0-10 Si:0-3

2019-14 154 (3.016) AM2 (Ar,35000.0,0.00,0.00); Cm (154:155)

1: TOF MS ASAP+

9.49e+005
100— 461.2259
| 343.1446
OA)_
| 313.1334
1462.2286
1 312.1250 4632283
0 254'0%693111 L aah]]542:2704 8033627 9034355 1204.3317 14355070
et L L e e e e e L s L e S s
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
461.2259  461.2260 -0.1 -0.2 13.5 913.5 0.007 99.26 C27 H33 N2 03
si
461.2261 -0.2 -0.4 10.5 919.2 5.633 0.36 C20 H29 N8 05
461.2256 0.3 0.7 0.5 924.1  10.557 0.00 €10 H37 N10 05

Si3

Figurer C.6: MS spéétrufri of compound 3.
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Figure C.7: IR spectrum of compound 3.
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Appendix D Compound 4
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Figure D.1: TH NMR spectrum of compound 4.

XIX



~/
o T od
0 g9
ZH 0 a1
0 dass
ou Mam
ZHW 7LTI8CT9°00T 4s
89LCE Is
sisjswered bursssooid - zd
M 000€VEST 0 €IMTd
M 000T¥68T°0 ZIMTd
M 00000000 LT ZMTd
ossn 00706 zadoda
91z3Tem z199dadon
HT ZONN
ZHW S009TET 00F z0ds
======== ¢J TUNNVYHD ========
M 00000000°TL MTd
o9sn 0676 Td
o€t TONN
ZHW €6¢8¢29°00T T04s
======== T3 THUNNVYHD ========
T 0dr
©8s 000000€0°0 T1a
©9s (000000002 1a
M L786C aL
o9sn 0679 2a
o9sn 008°0¢ Ma
8°60¢ o9
O89S 88FTIE9E"T [e)4
ZH 86L99€°0 SHYAIA
ZH 197 8€0¥%C HMS
4 sa
fAane) SN
OSIWa LNIATOS
9€GG9 ar
0€bdbz 904d10d
/dd 0oddvd uur g aqudodd
10ads WNYISNI
veree SUTL
T0206T0C “e3eq
sIojsueIied COHUH@HSUU< - zd
T ONDO¥d
14 ONdXHd
SG-T0SS HNYN

sisjaweled eleQ JUSIIND

wdd

ol

0c

115

ot

0S

09

0.

08

06

00FL OKL OcCk O0€FL OvIE OSt
1 1 1 1 1 1

PoLT

%éazﬂé%

>~
LG9 —

L°29
8729
S'0L—

A7 AN

8°GTT
9" LTT
¢°9¢1
9°9¢C1
L°9¢CT
L°9CT
6°92T
¢ LCT
§°8¢CT
6°8CT
¢ 1eT
LTLET
L°OPT
| AL
€ EVT
STEPT
0°0GT

7

NN

13C NMR spectrum of compound 4.

Figure D.2

XX



ZH 0

ANISO

ZHW TF000ET 00F
a0
20T

szojswered buTrsse00Id - T4

v T
ZH 0
ANISO

ZHW LEO00ET 00F
20T

szojawered bursse00Id - zJ

J0
wdd ££0°0T
ZH ZEOK00" €9
ZHW 9TET 00¥
8zT

sasjswexred uoTlTsTnboy -

o9sn 00°000T
% 00°0T
00T 0TOSKWS

HAOWU g
MS
SHIATA
T0ds
an
T4

914

===== THNNVHO INIIQVYD ======

1666569¢C°¢C
00000000 LT
o9sn 00°005¢
o8sn 066
o8sn 066

HT
ZHW T8T9TET 00F
======== TJ TINNVYHD

©3s 008%2000°
©9s 00002000°
23S 00¥00000°
©3s 00020000°
©9s 000000€0°
089S POTYLLEG®
©9s 00€00000°
M L786C
ossn (0G6°9
29sn 000°¥ZT
¥E€°¥9
039S (0ZS6€£SC°0
ZH 9.8896° T
ZH 8GZ"ZEOR
8
T
OSHa
8%0¢
FbdddbAsoo
/949 0ggvd wu g
joads
szree
1020610C

oHdoocooco

SN
INIATOS
arn
20dd1Nd
aHgodd
WOYISNT
[uTl
Teaea

szojawered uoTlTsTnboy - z4

T
€
GG-TOSS

ONDOYd
ONdXd
HWAYN

sIsjaweied eled USIIND

wdd

wdd

Figure D.3

COSY spectrum of compound 4.
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Figure D.5: HMBC spectrum of compound 4.
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

5102 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 0O:0-10 Na:0-1 Si:0-2 Au:0-2

2019-41 152 (2.963) AM2 (Ar,35000.0,0.00,0.00); Cm (147:152)
1: TOF MS ASAP+

3.49e+006
100 461.2256
] 343.1447
0/0_
313.1337 462.2284
237.1026
463.2281
205075 | l 883.686
bll o] 0012436 803.3633 5836865 1177.2509 1385,3551
IO L Lt Loy e st e n s s L e AL R LA LR L s nALad LR LA LR LaRAn LA s e aaa ke aas Lanas nay 0114
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
461.2256  461.2252 0.4 0.9 4.5 1089.1 7.300 0.07 C18 H37 N4 06
5i2
461.2252 0.4 0.9 1.5 1088.6 6.735 0.12 C11 H33 N10 08
si
461.2260 -0.4 -0.9 13.5 1081.8 0.006 99.37 C27 H33 N2 03
si

Figure D.6: MS spectrum of compound 4.
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Figure D.7: IR spectrum of compound 4.
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Appendix E Compound 5
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TH NMR spectrum of compound 5.

Figure E.1

XXVII



wdd oL o0z o0¢ oy 05 09 0. 08 06 O00L O O0ZL OSL OvL OSI

4 z _ T T ey FTITI O TS RP TY ” TITETT TR T WA P TTRTTTY
HO N /z
o\\
—
/\
0% "1 od
0 E6)
ZH 00°T a1
0 dss
WA Mam
ZHW 99T18ZT9° 00T as
89Lz¢E IS
sazo3swexed Hurssso0rg - Zd
M 000€VEST 0 €IMId
M 000TF68T 0 ZIMTd
M 00000000 LT ZMTd
o9sn 0006 2adnd
9Tz3TeM 21944dadn
HT ZONN
ZHW G009TET 00¥ z0ds
======== ZJ TANNVHD ========
M 00000000 TL ™Td
o9sn 066 Td
o€T TOAN
ZHW €628229° 00T T0dS
======== TJ TANNVHD ========
T 0ar
29s 000000€0°0 11a
29s 00000000°¢C a
M 0°86¢C AL
o9sn 069 2a
o9sn 008°0¢ Ma
8°60¢C o
09s 88FIE9€" T ov
ZH 86L99€°0 SHIAT A
ZH T9% " 8€0¥%C HMS
14 sa
Z1S SN
OSWa INAATOS
. ] ] AN
0gbdbz 204d1nd
/49 0d9vd ww G gHIO¥d iR 5 Qo 3 © nEoRRken RRn g
J0ads WOMISNT ' ; R : e Emes 5558
mo.\..ﬁ @EH.H D w (61BN} (o) N . . . . . . . . . .
GTTI8I0Z —a3eq O O ~N 39N U oY
sIs]3swueaed EOHMH%ﬂﬂ@Ui - z4d
T ONDOYd
id ONdXd
GE-TOSS AAYN

sIojsueled evieg jusaan)

13C NMR spectrum of compound 5.
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Figure E.4

XXX



0 [:5]
ZH 0 a1
z ass
ANTSO mam
ZHW 2028219 00T as
ousSaTIUR-0YDS Zon
¥Z0T s
szojewered PuTssenord - T1d
07T
0
zH 0

£1°00F

1938ueIed BuTsSe00Id -

OUdSTIUY-OUDE  HAOWUL
udd g£8-122 15
ZH pST98E PLT SEWATI
ZHA 82297001 T0dS
952 ar
s1s3swered uoTaTSTAbOY - T4
9950 00°000T 91d
% 00°2 9239

% 007 §2d9

% 00°8- pZds

% 00701 €249

% 00708 1249
001" 0TOSHS 9]1W¥NID

001" 0TOSHS S1WENAD

001" 0TOSHS b1WYNaD

00T 0TOSHS £]WENdD

001" 0TOSHS TIWYNAD
wwwww TANNYHO INEIQYED ======
4 LEOOE06L'6 Luas

ZH 0 ($430dS

005°0 LTY0ds

- dwoog9dad LIWENdS
00000000 TL Zu1d
0070002 vzd

05°6 €d

O£T 200N

ZHW 8218229°00T 20ds
======== 2J TANNVHD ========
00000000 LT ™1d

za

1d

HT TONN

ZHW Z809TET 00F T0dS
wwwwwwww T3 TENNVHD ========
295 0$220000°0 ONT
295 000020000 91a
985 00005290°0 9a
035 16569T06° T 1a
228 00£00000°0 0a
TST1865°0 0£LSND
0000000°8 £TISND

oLt LISND

‘o0zt 9LSND

q ar
cesn aq
Sasn ma
o4

oss ‘0 ov
2H PLIEGE 0 SEWATI
ZH 0527 906€ HMS
9T sa

v SN

OSHa INSATOS

9607 ar

pug Tdb1e0quy 20¥dT0d

/99 ogEvd ww §  QHEOMd
303ds WONISNI
PETLT swTL
S1118102 “eara
sIs3sweIRg UOTITSTOBOY - 74
T ONOO¥A

L ONAXE
SE-TOSS YN

sIsjsweIeg ejeq JUSIIND

wdd

HO

wdd

T

HMBC spectrum of compound 5.

Figure E.5
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
7165 formula(e) evaluated with 10 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-10 0O:0-10 Si:0-3 CI:0-3 Au:0-2
2019-13 71 (1.395) AM2 (Ar,35000.0,0.00,0.00); Cm (67:72)
1: TOF MS ASAP+
1.13e+006
100+ 271.0634
241.0526
%] 389.1445
1 205.0759
1 391.1419
1 177.0570
N 392.1443
o bl bl ol [ 2039235 7612607955.7732098 2723401 10070
AR AR AARAS AL A DARAE BARA SARRE RAAAE RAREE BARAT VAR LAY RAREI RRRAN BARME RAAM MM
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
389.1445  389.1453 -0.8 -2.1 6.5 1073.1 0.685 50.41 C13 H22 N8 04
cl
389.1439 0.6 1.5 1.5 1073.6 1.178 30.80 Cl2 H26 N4 08
cl
389.1443 0.2 0.5 0.5 1074.7 2.303 9.99 C11 H30 N4 05
si2 cl
389.1452 -0.7 -1.8 9.5 1075.0 2.563 7.70 C20 H26 N2 02 Si
cl

Figure E.6: MS spectrum of compound 5.
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Figure E.7: IR spectrum of compound 5.
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Appendix F Compound 6
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IH NMR spectrum of compound 6.

Figure F.1
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Figure F.2
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Figure F.4
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HMBC spectrum of compound 6.

Figure F.5
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

8929 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 0©O:0-10 Si:0-3 CI: 0-3

2019-15 38 (0.758) AM2 (Ar,35000.0,0.00,0.00); Cm (35:38)

1: TOF MS ASAP+

9.63e+005
100— 503.2315
%_
3851498  [0022%8
506.2309
1 124.0868 507.2291
253.0524
I R L _e112816 /794029 9259089 1450 96061201,34941336.7394
T T T T T T T T T T T T T T T T T T T T T T T T T T r""""[m/Z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
503.2315  503.2317 -0.2 -0.4 1.5 968.2  9.676 0.01 C15 H39 N6 09
Si2
503.2317 -0.2 -0.4 9.5 959.9  1.366 25.51 C26 H40 N2 02
si2 c1
503.2313 0.2 0.4 10.5 960.9 2.376 9.29 C27 H36 N2 05
c1

Figure F.6: MS spectrum of compound 6.
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Figure F.7: IR spectrum of compound 6.
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Appendix G Compound 7
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Figure G.1: 'H NMR spectrum of compound 7.
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13C NMR spectrum of compound 7.

Figure G.2
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COSY spectrum of compound 7.

Figure G.3
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HSQC spectrum of compound 7.

Figure G.4
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HMBC spectrum of compound 7.

Figure G.5
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
3224 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-10 0O:0-10 Na:0-1 Au:0-2 Si:0-2
2019-43 43 (0.863) AM2 (Ar,35000.0,0.00,0.00); Cm (41:45)
1: TOF MS ASAP+
8.62e+006
100— 368.2157
%_
| 250.1343
A 369.2182
384.2102
158.0714
0 Ll 3852127 6473453 7834045 10322827
T T T T T T T T T T T T T T T T T T T T T T T T T T T m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
368.2157 368.2158 -0.1 -0.3 9.5 1489.8 0.000 99.97 C21 H30 N3 O Si

368.2159 -0.2 -0.5 6.5 1500.3 10.502 0.00 Cl4 H26 N9 03

368.2161 -0.4 -1.1 2.5 1500.9 11.047 0.00 Cl16 H31 N3 05

Na
368.2163 -0.6 -1.6 5.5 1498.0 8.187 0.03 Cl3 H30 N9 Si2

Figure G.6: MS spectrum of compound 7.
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Figure G.7: IR spectrum of compound 7.
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Appendix H Compound 8
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Figure H.1: 'H NMR spectrum of compound 8.
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13C NMR spectrum of compound 8.

Figure H.2
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Figure H.3

LIII



vZ0T s
sio3swered bursssooid - 14

(128

sxe3owered buTssed0rd

oYoSTIUY-0USE  AAOWUA
wdd §9€°00Z us
SEMATd

1°02°S"
M 9666TT00"
M 00000000°

SN
LNEATOS
ar
20¥dTnd
aHE0Nd
€
706102
sTejaWRIRg UOTIT
T onoo¥da
v ONaXa
S9L9-10SS SN
sIs3sweIRg BIEQ JUSIIND

wdd

081

091

(A%

021

001}

0

I 4

B =

HO

wdd

Figure H.4

HSQC spectrum of compound 8.
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Figure H.5: HMBC spectrum of compound 8.
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-50.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

2390 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-5 0:0-10 Si:0-2

2019-259 173 (3.378) AM2 (Ar,35000.0,0.00,0.00); Cm (171:176)

1: TOF MS ASAP+

5.39e+005
100— 4442467
%_
1 326.1650 445.2494
1 205.0760
3271711
234.1024 475.2593
192.0678 354.1998 443.2388
N|
t + miz

T T T T T T T T T T T T T T T T
150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575

Minimum: -50.0

Maximum: 5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula

474.2571 474.2568 0.3 0.6 4.5 701.1 3.548 2.88 Cl9 H40 N5 05
474.25717 -0.6 -1.3 13.5 698.9 1.328 26.49 (Sjgé H36 N3 02
474.2564 0.7 1.5 5.5 697.9 0.348 70.63 i;o H36 N5 08

Figure H.6: MS spectrum of compound 8.
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Figure H.7: IR spectrum of compound 8.
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Appendix I Compound 9
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Figure I.1: 'H NMR spectrum of compound 9.
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13C NMR spectrum of compound 9.

Figure 1.2
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COSY spectrum of compound 9.

Figure 1.3
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Figure 1.4: HSQC spectrum of compound 9.
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Figure L.5
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LXIV

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

9046 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-8 0:0-10 Si:0-3 CI:0-3

2019-16 139 (2.723) AM2 (Ar,35000.0,0.00,0.00); Cm (137:139)

1: TOF MS ASAP+

1.62e+006
100+ 588.3446
%_
589.3469
] 4702629
| 590.3462
] 380.21 _604.3386
2154 605.3418
205?759 5 boaor Al ay 983541110575980 1314584& 1418.1528
(O L Lt Loy e s n s e L e LA LA LR AL LA LR A e e Laats et s Laaa L ans Laan BN11 172
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula

588.3446 588.3442 0.4 0.7 13.5 829.2 0.004 99.58 C34 H50 N3 02

Siz

588.3437 0.9 1.5 14.5 835.4 6.142 0.22 C35 H46 N3 05

588.3451 -0.5 -0.8 19.5 835.4 6.225 0.20 C36 H42 N7 O

588.3456 -1.0 -1.7 9.5 840.5 11.291 0.00 C34 H51 N O5 C1

588.3447 -0.1 -0.2 0.5 841.0 11.827 0.00 C25 H55 N3 08 Si
Cl

588.3451 -0.5 -0.8 -0.5 841.1 11.845 0.00 C24 H59 N3 05
Si3 Cl1

588.3451 -0.5 -0.8 4.5 842.9 13.705 0.00 C28 H56 N5 si2
Cl2

588.3447 -0.1 -0.2 5.5 843.4 14.138 0.00 C29 H52 N5 03
Cl2

588.3438 0.8 1.4 -0.5 843.5 14.305 0.00 C27 H60 N 04 Si2
Cl2

Figure 1.6: MS spectrum of compound 9.
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Figure 1.7: IR spectrum of compound 9.
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Appendix ] Compound 10
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Figure J.1: 'H NMR spectrum of compound 10.
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13C NMR spectrum of compound 10.

Figure J.2
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HMBC spectrum of compound 10.

Figure J.5
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-50.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

4333 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 O:0-10 Si:0-2

2019-258 122 (2.396) AM2 (Ar,35000.0,0.00,0.00); Cm (112:125)
1: TOF MS ASAP+

6.78e+006
100 351.1890 4692704
%] 352.1938
] 470.2726
219.0913
| 218.0838 337.1731 4682624 714717
89.0418 : 220095255010 | 367.1836 550.3152581.3000 642.4075 704.3589
L e -
(O L o naa s L LA L a e L A e L e L A L R L A RN L A LALes st et et aaaas Lnas s nanas 1IN0
50 100 150 200 250 300 350 400 450 500 550 600 650 700
Minimum: -50.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
469.2704  469.2702 0.2 0.4 10.5 1286.4 8.963 0.01 €27 H37 N2 05
469.2707 0.3 -0.6 9.5 1282.5 5.106 0.61 €26 HAL N2 02
Si2
469.2707 -0.3  -0.6 6.5 1277.4 0.007 99.35 C19 H37 N8 04
si
469.2698 0.6 1.3 -2.5 1285.5 8.098 0.03 €10 H41 N10 07
Si2

Figure J.6: MS spectrum of compound 10.
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Figure ].7: IR spectrum of compound 10.
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Appendix K Compound 11
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'H NMR spectrum of compound 11.

Figure K.1
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13C NMR spectrum of compound 11.

Figure K.2
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COSY spectrum of compound 11.

Figure K.3
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HSQC spectrum of compound 11.

Figure K.4
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Figure K.5: HMBC spectrum of compound 11.
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

3359 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 ©O:0-5 Si:0-2 CI:0-2

2019-136 80 (1.567) AM2 (Ar,35000.0,0.00,0.00); Cm (76:80)

1: TOF MS ASAP+

3.47e+006
100 519.2262
%_
521.2242
401.1454 522.2258
] 269'02874170815 Fos.mez
253.0532. R 523.2244
. N 600.2720
o 1200878 T AL , . L/ 810.2034 9727861
LA AR RS ] R ] A L Lt L A M M MR Aad L) Ut Lt L LA U M M M W M s A L) ] R M s i a1 74
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
519.2262 519.2266 -0.4 -0.8 6.5 1063.3 2.030 13.13 C19 H36 N8 05 Si
Cl
519.2266 -0.4 -0.8 9.5 1061.4 0.144 86.57 C26 H40 N2 03
Si2 Cl1

Figure K.6: MS spectrum of compound 11.
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Figure K.7: IR spectrum of compound 11.
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Appendix L Compound 12
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Figure L.1: 'H NMR spectrum of compound 12.
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13C NMR spectrum of compound 12.

Figure L.2
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Figure L.3

COSY spectrum of compound 12.

LXXXV



ZHA 9TO00ET" 00% a
20T 1s
s1e3owered BuTsse001d - 74

oyosTIUY-OYDE  HAOWUA
us

2

s1330ueTed

995 08$Z0000°0 oNT
995 00068000° vza

6102 2320
ssjsuEIeg UOTITSTNBOY - 74
v ONaxa
¥-85-65-1085 N
s12j8weIed BIEQ FUSIIND

wdd

00¢

081

091

orl

02l

001}

wdd

HSQC spectrum of compound 12.

Figure L.4

LXXXVI



z
ANISO
ZHW 20282197001
oudsTIUR-_OYDS
pZ0T
sasjswesed bursseooid

0% T od

0 a9

ZH 0 a1

4 ass
ANIS Mam

ZHW 92000€T°00F a8
8v0Z IS
sisjswesed bursssooid - zd
OYd3TIUY-O HAOWud
wdd £€g°122 Mg
ZH PST9BE"bLT SEMALd
ZHH 8229°00T T0dS
952 ar
sxejewered uoT3TSTnbOoW T4

00°¥T

00°08

00T " 0TOSHS
00T " 0TOSHS
00T 0TOSHS
00T " 0TOSHS
00T 0TOSHS
===== TANNVHD INZIQVYD ======

Rt

M LEODEO6L 6
ZH 0 LS4

005°0 LTY0dS
b+ dwoogdan [LIWeNaS
00000000 TL Zw1a
0070002 vzd
0576 €d
2€T 200N

ZHW 8218229001 20ds

—mm===== 73 TANNVHD ========

285 07220000°0 ONI
285 00002000°0 91a
295 00005290°0 9a
995 [66L08T6" T 1a
995 00£00000°0 0a
TST1866" 0EISND
0000000° €TISND
0000000° LISND
00 00°0ZT 9LSND
30"
sssn o
2880 000" bZT
8
298 0706L05°0
2H 8EPF86°0
ZH 857°Z€0F
91 sa
3 SN
0sHa INEATOS
960¥ az

pug 1dbasoquy 20¥dINd

/88 Oggvd ww §

Josds
se°g1
T0£06102

sxojouEIRd UOTITSTIBOY - zd
T 0NDO¥d
S ONdX™
X-g5-65-T10SS FWYN

sisjsweIRg BIRQ IUSIIND

wdd

081

091

ovi

0cl

001

08

09

ot

0c

wdd

™ 'm Il

!

HMBC spectrum of compound 12.

Figure L.5
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

2488 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-5 0:0-10 Cl:0-2 Si:0-2

2019-151 140 (2.740) AM2 (Ar,35000.0,0.00,0.00); Cm (140:149)
1: TOF MS ASAP+

1.90e+006
100~ 253.0523
] 299.0582
%%
241.0524
| 301.0558 371.1344
| 2180834 519.2264.549.2370
190.0643.. M ) X 463.2164 L 5512352 6352729 789 2689
0 AAA AAAAE MARAL RARAL MARAE RABA ARA BARA RAGA RAA LARAY RAAL LARAS RAARE LARAN RAAAE MARAY RARL) RARES RAARS RAARI RARRI LAARS MAAMI RARAE RAALE RARAS MARLE RARM RARM RARM | m/z

T
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
417.1398 417.1401 -0.3 -0.7 5.5 932.0 7.053 0.09 Cl7 H29 08 Si2
417.1401 -0.3 -0.7 10.5 925.6 0.708 49.28 C21 H26 N2 03 Cl1
Si
417.1392 0.6 1.4 24.5 937.5 12.616 0.00 C31 H17 N2
417.1392 0.6 1.4 1.5 925.6 0.681 50.63 Cl2 H30 N4 06 Cl1
Si2

Figure L.6: MS spectrum of compound 12.
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Figure L.7: IR spectrum of compound 12.
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Appendix M Compound 13
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'H NMR spectrum of compound 13.

Figure M.1
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13C NMR spectrum of compound 13.

Figure M.2
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Figure M.3: COSY spectrum of compound 13.
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Figure M.4
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
1363 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-5 0:0-10 Si:0-2
2019-147 144 (2.808) AM2 (Ar,35000.0,0.00,0.00); Cm (136:144)
1: TOF MS ASAP+
1.70e+006
100 604.3390
%_

1 605.3412

1 486.2571

] 456.2459 600.3406

219.0903 :
o N L), ;t £620.3320 9305972 1073.5333 1336.2273
T T T T T T T T T T T T T T T T T T T T T T T T T T T 1 m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
604.3390  604.3391 -0.1 -0.2 13.5 869.7 0.652 52.11 €34 H50 N3 03
Si2
604.3387 0.3 0.5 14.5 869.8 0.746 47.42  C35 H46 N3 06
604.3400 -1.0 -1.7 22.5 874.5 5.376 0.46 C43 H46 N Si

Figure M.6: MS spectrum of compound 13.
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Figure M.7: IR spectrum of compound 13.

XCVII



XCVIII



Appendix N Compound 14
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'H NMR spectrum of compound 14.

Figure N.1
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13C NMR spectrum of compound 14.

Figure N.2
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COSY spectrum of compound 14.

Figure N.3
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HSQC spectrum of compound 14.

Figure N.4
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HMBC spectrum of compound 14.
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Elemental Composition Report Page 1
Tolerance = 5.0 PPM / DBE: min =-50.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
803 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-5 0O:0-5 Na:0-1
2019-205 155 (3.034) AM2 (Ar,35000.0,0.00,0.00); Cm (153:156)
1: TOF MS ASAP+
2.14e+005
100— 344.1757
%_
385.2025
1 343.1679.
386.2051
194.0841
bbb bbb b 3872009 3519020 g1 g3gn 8922227 1075 6063 19603304  1386.0078
T T T T T T T T T T T T T T T T T T T T T T T T T T T T m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Minimum: 80.00 -50.0
Maximum: 100.00 5.0 5.0 50.0
Mass RA Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
344.1757  100.00 344.1763 -0.6  -1. 13.5 823.5 n/a n/a C22 H22
N3 O

Figure N.6: MS spectrum of compound 14.
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Figure N.7: IR spectrum of compound 14.
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Appendix O Compound 15

§ BEYE © EE:E i

CVII

wdd g € 14 S 9 L 8 6 oL L
L | | | | | | | | | |
00T od
0 a9
ZH 0€°0 d7T
0 gss
ke Mam
ZHW 7€000€T 00% As
9€559 1s wdd L VoL 9°L 8L
szo3awered bursseooig - zd , | , | , | , | , |
M 00000000°LT TMTd
o9sn 0976 Td
HT TONN
ZHW OTLVPZET"00F TOds
======== TJ TANNVHD ========
1 0ar
©3s 00000000°T Ta
M 0°86¢ oAy
ossn 0679 aa
oesn 00% 29 ma
90°CTT o¥
BB NN N
ZH 992210 SHIAIA
ZH 02872108 HMS SNNNNNN TS99 99 ==
¢ sd I T SN S S SRS IS S I ©
v9 SN NNBE BN NDE B O oo O o
OSHa INIATOS
9€G669 ar
0ebz 904d1INd
/g9 oddvd ww G gHdoMd
3oads WOELSNI
6€°T SwTL
€TIP06T0C “e3eq
si®3swereq UOTITSTNLOY - 24 Ol I e e I I B I I I e B e e B I e B R o
A -
1 ONOOYd N OO AN WWENOO IR e 0NN S GG 0o ® 0 .
9 ONdXE GO ORROONWOWRONNNAMNGNANNEDDE®NWORG ©OOO K o
SG19-10SS ANYN o

sisjawered elRQ JUSIIND

H NMR spectrum of compound 15.

Figure 0.1
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Figure 0.2
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Figure 0.5

HMBC spectrum of compound 15.
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-50.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

3135 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 O:0-15 Na: 0-1

2019-261 188 (3.672) AM2 (Ar,35000.0,0.00,0.00); Cm (187:192)

1: TOF MS ASAP+

1.26e+005
100 356.1759
%_
] 397.2022
| 3551675
] 354.1600 398.2059
233.0956
ST L] 3002050 5495633 7129269 o4 6505 10877532 1818131 44103087
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Minimum: -50.0
Max imum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
356.1759  356.1757 0.2 0.6 -1.5 796.7 0.413 66.17 C9 H27 N5 08 Na

356.1763 -0.4 -1.1 14.5 797.4 1.084 33.83 C23 H22 N3 O

Figure 0.6: MS spectrum of compound 15.
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Figure 0.7: IR spectrum of compound 15.
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Appendix P Compound 16
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13C NMR spectrum of compound 16.

Figure P.2
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Figure P.5: HMBC spectrum of compound 16.
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Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
2013 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-10 ©:0-5 Si:0-2 CI:0-2
2019-137 238 (4.635) AM2 (Ar,35000.0,0.00,0.00); Cm (234:239)
1: TOF MS ASAP+
9.37e+005
1004 331.1446
% 313.1341
1 332.1478
1 254.0970 3721713
205.0765 281.1076 .
. 166.0658- 00 00 R AR T 4121910 5192283 5063999 5206316
150 DARAN ARASH RARSS AR RARRS RAALE LAMRS RARAN LAAAS LAAAN LARAS MAARY SARAY RAALE UMM RARAN LARAS RAMM SARAN MARAJ MARAS RARINLLES
100 150 200 250 300 350 400 450 500 550 600
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
331.1446  331.1447 -0.1 -0.3 -1.5 1142.5 19.499 0.00 C13 H33 0 si2
cl2
331.1447 -0.1 -0.3 13.5 1123.0 0.000 100.00 C21 H19 N2 02
331.1443 0.3 0.9 -0.5 1142.7 19.722 0.00 Cl4 H29 04 Cl2
331.1442 0.4 1.2 0.5 1138.0 14.964 0.00 C4 H23 N10 04
512
331.1451 -0.5 -1.5 9.5 1135.2 12.158 0.00 C13 H19 N8 O Si

Figure P.6: MS spectrum of compound 16.
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Figure P.7: IR spectrum of compound 16.
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Appendix Q Compound 17
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Figure Q.1
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13C NMR spectrum of compound 17.

Figure Q.2
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Figure Q.3

COSY spectrum of compound 17.
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Figure Q.5: HMBC spectrum of compound 17.
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CXXVIII

Elemental Composition Report

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min =-2.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

273 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 0:0-5

2019-138 179 (3.499) AM2 (Ar,35000.0,0.00,0.00); Cm (172:179)

1: TOF MS ASAP+

Page 1

6.10e+005

/z

100 331.1441
] 313.1339
%_
1 332.1474
1 311.1184.
402.1811
N A 601.5173 677.5867 819.6240 947.2239 1197.0293. 13627244
L s Ll Ly L A Lt Ry L) M L M) LA LA LAY LA AL RN LA LAY LAARI AL REALY LAY S M MRS AL LR A LY
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (%) Formula
331.1441 331.1447 -0.6 -1.8 13.5 1108.7 n/a n/a C21 H19 N2 02

Figure Q.6: MS spectrum of compound 17.
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Figure Q.7: IR spectrum of compound 17.
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