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Abstract

Triple-spin quantum dots in GaAs have been proposed as a candidate quantum
bit. The limitations of these systems are the coherence times of quantum states
which are heavily affected by hyperfine interaction with nuclei in the GaAs host
material. These nuclear fields oscillate in a random fashion causing dephasing
of the quantum state and loss of information. In this thesis we explore the
possibility of reducing these random oscillations through Landau-Zener sweeps
between the logical state |0〉 and the |Q3/2〉 state, causing spin-flips in the nuclear
spin bath.

A Hubbard Hamiltonian is assumed which leads to the charge stability di-
agram of the system. This diagram shows the possible transitions between
electron charge configuration across the three dots as a function of the applied
voltages on each dot. Making using of these diagram we can determine where
to tune the system to restrict the configurations to (1, 0, 2), (1, 1, 1) and (2, 0, 1)
which in turn gives the possible states of the system. These states can be sorted
in different spin-subspaces, and we make the choice of using the Sz = 1/2 sub-
space with addition of |Q3/2〉 which resides in the Sz = 3/2 sub-space. This will
then amount to a total of six states in our basis.

The eigenstates of the system can be calculated numerically and the logical
basis of our quantum bit {|0〉 , |1〉} will be the lowest lying states of the Sz = 1/2
subspace. Due to the different Zeeman-energies of |0〉 and |Q3/2〉 these states
can have an energy crossing depending on an external magnetic field applied
over the system. Making use of this energy crossing Landau-Zener transitions
between the corresponding states are possible, changing the electron spin in
exchange for a spin-flip in one of the surrounding nuclei.

The effective magnetic field affects the crossing point of the two states, and
will depend on the spin-flips. This crossing point again determines the proba-
bility of transition and a feedback mechanism is created. We make use of the
numerical solution to |0〉 when calculating the transition probabilities and ex-
ploit smart sweep procedures to show that the nuclear field fluctuations can be
suppressed in this way. This invites for a method of increasing the coherence
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time of the system which ultimately determines the usability of the quantum
bit.

We were also able to approximate the logical state |0〉 with an analytic
expression through perturbation theory in the absence of nuclear field gradients.
The resulting expression is valid for all ε, showing promise as a first step toward
analytic understanding of the time dynamics of the polarisation due to the
Landau-Zener sweeps.
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Sammendrag

Trippel-spin kvanteprikker i GaAs har tidligere blitt foresl̊att som kandidat til
kvante bit. Begrensningene til slike systemer følger av den hyperfine interaksjo-
nen mellom elektronene og atomkjernene i vertsmaterialet, som for̊arsaker tap
av fasen til elektronenes kvantetilstand og dermed tap av informasjon. Det ef-
fektive feltet atomkjernene utøver p̊a elektronene vil svinge tilfeldig som gjør det
vanskelige å kompensere for. I denne avhandlingen vil vi se p̊a muligheten for
å begrense størrelsen p̊a disse svingningene gjennom Landau-Zener overganger
mellom tilstanden |0〉 og |Q3/2〉, som vil for̊arsake forandring av spin-retningen
til atomkjernene.

En Hubbard Hamilton-funksjon vil bli brukt og leder til stabilitets-diagram
for ladning over de tre prikkene. Dette diagrammet viser de mulige overgangene
mellom elektron konfigurasjoner p̊a prikkene som funksjon av det elektroniske
potensialet man setter over hver av dem. Ved hjelp av dette diagrammet kan
man begrense de mulige tilstandene til systemet ved å tilpasse potensialene.
Vi vil bruke konfigurasjonene (2, 0, 1),(1, 1, 1) og (1, 0, 2) som deretter angir de
mulige tilstandene. Disse tilstandene kan deles inn i forskjellige grupper med
forskjellige spin-tall Sz og vi vil bruke tilstandene som tilhører Sz = 1/2 og
Sz = 3/2. Dette vil utgjøre totalt seks tilstander.

Egentilstandene til systemet kan bli funnet ved hjelp av numeriske metoder
og v̊art valg av logiske tilstander {|0〉 , |1〉} vil utgjøre de to laveste tilstandene
med Sz = 1/2. P̊a grunn av forskjellen i Zeeman-energi mellom |0〉 og |Q3/2〉
kan man oppn̊a et krysningspunkt i energiene deres ved å justere et ytre mag-
netisk felt. Dette krysningspunktet kan brukes i Landau-Zener overganger for
å endre orientering til elektronets spin, som igjen vil resultere i en endring i
atomkjernenes spin.

The effektive magnetiske feltet som utøves p̊a elektronene vil p̊avirke krys-
ningspunktet til energiene. Dette feltet er igjen p̊avirket av spin-tilstanden
til atomkjernene og dette fører sammen til en tilbakekoblingsprosess. For å
simulere effecten av denne prosessen anvender vi den numerisk beregnede |0〉 og
drar nytte av smarte metoder for å sveipe gjennom krysningspunktet. Dette vil
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vi vise har en effekt p̊a svingningene til det effektive feltet fra atomkjernenes
spin som indikerer at en slik metode kan anvendes for å minske effekten av den
hyperfine interaksjonen. Slik redusering er fundamentalt for å anvende slike
systemer som kvante bit.

Vi presenterer ogs̊a et analytisk uttrykk for |0〉 funnet gjennom perturbasjon-
steori som gjelder for alle ε, hvis man antar fravær av hyperfin interaksjon. Dette
er et første steg i analytisk forst̊aelse av tids dynamikken til polariseringen som
følge av Landau-Zener overganger.
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Chapter 1
Introduction

Towards the end of the 19th century classical physics was still believed suffi-
cient to answer the mysteries of nature. In 1803 Thomas Young had shown
the wavelike nature of light through interference in his double slit experiment,
contradicting Isaac Newtons corpuscular (particle) theory. In 1873 James Clerk
Maxwell published ”A Treatise on Electricity and Magnetism” including the
now famous Maxwell’s equations. These equations would be proven experimen-
tally by Heinrich Hertz in the 1880s. These things combined solidified the view
of light as waves, and not particles.

The apparent strong foundation would however start to crack. Hydrogen
gas would give off light with very specific wavelengths (spectrum lines) when
heated. Heinrich Hertz had through his experiments [1] observed that metal
would emit electrons when hit with light having sufficient frequency. Phillip
Lenard would follow up on Hertz’s work and discover that the kinetic energy
of such emitted electrons would solely depend on the frequency, independent of
the intensity. Another issue was the radiation from a black-body. The closest
classical considerations had gotten was Wien’s approximation which would shy
away from experimental results for small frequencies. The solution to black-
body radiation would mark the birth of quantum mechanics.

Of many scientists trying to figure out the discrepancy between theory and
experiments, Max Planck introduced in 1900 a formula which was in accordance
with the experimental results. The problem was however that he initially had
no justification for it, it just seemed to fit. This formula is perhaps what Planck
is most known for today, and called simply Planck’s law

I(ν, T ) =
2hν3

c2
1

e
hν
kT − 1

(1.1)

It includes three constants of nature. Boltzmann’s constant k, the velocity of
light c (not known to be constant at the time) and Planck’s constant h which
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he introduced. The equation describes the intensity of light as a function of
frequency ν and temperature T. Planck would continue work on the problem and
by the end of 1900 he would present the results with a revolutionary assumption.
The formula could be derived by assuming the radiation could only change its
energy by incremental steps given by E = hν, where h is known as Planck’s
constant and ν is the frequency of light, and thus quantum mechanics had made
its first steps despite Planck considering this a mere mathematical trick.

Albert Einstein would in the same period look into the discoveries of Hertz
and Lenard regarding light and metallic surfaces, the photoelectric effect. Ein-
stein proposed a solution[2] to the problem by postulating that electromagnetic
radiation is dividable into a finite number of ’light quanta’ (the term photon
would in 1926 be coined by Gilbert Newton Lewis[3]). The light quanta would
carry energy E = hν, in accordances to Planck’s ’mathematical trick’. Further
Einstein stated that each electron would be hit by only one such quanta of light
such that the intensity of the light beam would make no difference for the in-
dividual electrons. It was for this work Einstein received his Nobel’s price in
physics in 1921.

The idea of quantisation also allowed Niels Bohr to develop his model for
electrons orbiting a small dense nucleus. The structure of the atom was already
known due to Ernest Rutherfords gold foil experiment in 1911, and a formula of
the hydrogen emission lines had been formulated by Johannes Rydberg back in
1888. The Bohr model of the atom however introduced a theoretical explanation
of these phenomenons. A key point was that electrons could only occupy specific
orbits, and it was impossible for the electron to be inbetween two such orbits.
Further would electrons in the innermost orbit remain stable there and emit no
radiation.

By 1926 large leaps had been made in understanding quantum mechanics.
Werner Heisenberg, Max Born and Pascual Jordan had published papers in-
troducing matrix mechanics [4], and Erwin Schrödinger had invented his wave
mechanics [5]. Schrödinger would later prove the equivalence of these two for-
malisms. Following these breakthroughs Paul Dirac proposed the Dirac equa-
tion[6] for the electron which gave a relativistic wave equation for the electron,
predicting its spin property. Work also began on applying quantum mechanics
to fields which would result in today’s quantum field theories.

The further understanding of quantum mechanics also made it possible for
new technology to emerge. Medical scanning devices are built upon princi-
ples like nuclear magnetic resonance, requiring understanding of electrons and
atoms. Similarly have microscopes using the properties of electrons been able
to give images of objects much smaller than the wavelength of visible light,
such as the transmission electron microscope. In addition have research into
semi-conductor materials enabled production of increasingly small diodes and
transistors, resulting in rapid evolution of our electronics. The properties of
quantum mechanics have also inspired to technological proposal of quantum
computers.
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Chapter 2
Quantum computing

A quantum computer makes use of quantum mechanical phenomenons which
gives it different properties compared to our classical computer. By making use
of these properties in a smart manner the quantum computer has the potential
to solve tasks more effectively than our present day computer.

A quantum computer is also in many ways similar to a classical computer
in terms of framework. It requires similar logical gates for computation and it
needs quantum bits (qubits) in the same way classical computers need bits. The
differences comes from the difference between quantum mechanics and classical
physics. One advocate of quantum computers was Richard Feynman. in his
1982 paper[7] he argues; nature is quantum mechanical, so simulating it would
require a quantum mechanical system.

2.1 The quantum bit

To understand the strengths of a quantum computer we must introduce a con-
cept of quantum bits which utilises superposition of states. When performing
measurements on a classical system one would always get the same result, given
that the system was prepared in the exact same way each time. For a quantum
mechanical system this will not be the case. If we have an imagined system
of possible states {|1〉 , |2〉}, each of these corresponding to different values of
some physical quantity A. When performing measurements on the system the
result would always be either A1 or A2, and the system would be in one of
the corresponding states. For a classical system one could with certainty claim
that if the measurement resulted in A1, the system was in state |1〉 before the
measurement. This is due to the limitations of the classical system; it can be
in either |1〉 or |2〉.

However a quantum mechanical system will in general be in a superposition
of the available states, of the form c1 |1〉 + c2 |2〉. Here |ci|2 is the probability
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1〉+ c2 2〉c1

Â
2〉

1〉
|c1|

2

|c2|
2

Initial state Measurement
Result

Figure 2.1: Illustration of measuring a superposition. The system if before each
measurement prepared in the superposition c1 |1〉 + c2 |2〉. The result of the
measurement will then correspond to state |i〉 with probability |ci|2 for i = 1, 2

of measuring the system in state |i〉. These coefficients will be normalised such

that
∑2
i=1|ci|2= 1. From this follows scenarios where you can prepare the

system in the same superposition and measure it several times, resulting in |1〉
|c1|2 of the times and |2〉 |c2|2 of the times. This idea is illustrated in Fig.2.1.
Superposition is not limited to systems of only two states, but apply for any
quantum mechanical system.

Two different systems might also be quantum mechanically entangled. Say
there is a system made up of two, two-level systems. Each of the systems
separate might be measured and found to be in either |1〉 or |2〉. By combining
these systems the space of available states of the system as a whole will expand.
This means that a general state of the combined system will be in a superposition
c1,1 |1〉1 |1〉2 + c1,2 |1〉1 |2〉2 + c2,1 |2〉1 |1〉2 + c2,2 |2〉1 |2〉2. As more systems are
added the available states will increase as 2N where N is the number of combined
systems.

Two-level systems are important for quantum computing as they are used
as quantum bits (qubits), the quantum mechanical equivalent to classical bits.
Considering the points made about available states for many entangled two-
level systems, its is evident that the amount of information stored in coefficients
ci,j increases exponentially as the number of two-level systems increases. This
prospect is one of the appealing factors of quantum computing.

Entanglement also proposes ideas for communications. Entangled states
might be sent from a transmitter to a receiver in such a manner that if any
third party is eavesdropping this will be detected as a change in the state, im-
mediately telling the intended receiver that the information has been tampered
with. To give an inkling of how entanglement is relevant for communication
consider Fig.2.2. Two two-level systems are entangled and prepared in the state
|1〉1 |1〉2+|2〉1 |2〉2. Each of the two-level systems are then separated in a manner
which does not affect the quantum state. By measuring either of the subsys-
tems, which might result in |1〉 or |2〉, the state of the other subsystem is also
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System 1 & 2
System 1

System 2

Measure

Separate 1〉
1

1〉
2

2〉
1

2〉
2

1〉
1 1〉

2
2〉

1 2〉
2

+

Figure 2.2: A system made up of two two-level subsystems is prepared in the
superposition |1〉1 |1〉2+|2〉1 |2〉2 (coefficients are here omitted). The subsystems
are then separated (in a way that does not affects its state). By measuring the
state of either subsystem, the state of the other subsystem is automatically
given.

given by the initial state. The range of this effect has no limit.

Following the conceptual birth of quantum computers people started investi-
gating algorithms that could run on these devices. In 1994 Peter Williston Shor
proposed Shor’s algorithm[8] for factorisation of integers, solving such problems
much faster compared to classical algorithms for large integers. The implica-
tions of this is large due to the fact that much of the current cryptography
is based on integer factorisation. Shor’s algorithm have already been applied
in small scale quantum computers to factorise small primes. 15 was factorised
using nuclear magnetic resonance in 2001 [9] and using a photonic chip in 2009
[10] for instance.

The goal of quantum computers is to solve problems requiring computational
power beyond what classical computers can offer. As the power of quantum com-
puting comes from superposition of entangled states, it is expected to shine in
problems where it can use the parallelism that stems from these superpositions.
This prospect is encouraged by smart algorithms such as Shor’s algorithm. A
quantum computer beating classical computers in a computation is known as
quantum supremacy[11]. Researchers at IBM where in 2017 able to simulate
a 56-qubit quantum computer using a classical supercomputer[12], setting a
provisional goal for the scales needed in order to obtain said supremacy.

2.2 Fundamental requirements to quantum bits

In order to build a quantum computer it is necessary to have qubits meeting
certain criteria. David DiVincenzo summarised these in his paper ‘The Physical
Implementation of Quantum Computation’[13], five for computation and two for
communication, and they have since been known as DiVincenzo’s criteria. In
this thesis only the five for computation will be considered, which are in short

1. scalability

2. initialisation
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3. long coherence times

4. quantum logic gates

5. readout

These criteria are similar to what you would require from a classical bit. The
strength and weaknesses of a particular two-level system will be measured by
these criteria, and ultimately determine the validity of said system as a quantum
bit. We will come back to these requirements when discussing two-level systems.

2.3 Physical description of two level systems

In general the Hamiltonian of a two level system can be expressed in matrix
form like

H = a01 +

3∑
i=1

aiσ̂i (2.1)

where 1 is the two-dimensional identity matrix and σ̂i are the Pauli matrices.
ai are system dependent real coefficients. The units of these coefficients will
be energy. This is a general representation due to the identity matrix and the
Pauli matrices

σ̂1 =

(
0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
(2.2)

with real coefficients can form any Hermitian two-dimensional matrix.

Consider a general state of the two-level system |ψ〉 = α |1〉 + β |0〉 where
{α, β} are two complex numbers and {|1〉 , |0〉} are two arbitrary basis states,
for instance the eigenstates of σ3, (1,0) and (0,1).

|ψ〉 = rαe
iφα |1〉+ rβe

iφβ |0〉 = eiφα
(
rα |1〉+ rβe

i(φβ−φα) |0〉
)

(2.3)

Any physical measurement corresponding to this state will be of the form
〈ψ|Â|ψ〉, where Â is the operator corresponding to some observable quantity
A, which will cancel out any global phase of the state. It can therefore be
neglected. Substitute φ = φβ − φα

|ψ〉 = rα |1〉+ rβe
iφ |0〉 = rα |1〉+ (x+ iy) |0〉 (2.4)

where Cartesian representation of complex numbers are used. Using the nor-
malisation constraint we obtain

〈ψ|ψ〉 = r2
α + x2 + y2 = 1 (2.5)

which can be identified as a unit sphere by renaming rα = z. Representing
x, y, z in polar coordinates

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(2.6)
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z

y

x

θ

φ

〉ψ

〉1

〉0
Figure 2.3: A general state |ψ〉 on the Bloch sphere with {σ1, σ2, σ03} →
{σx, σy, σz}

the general quantum states may be expressed

|ψ〉 = cos θ |1〉+ eiφ sin θ |0〉 (2.7)

Looking at this expression it is evident that any state can be expressed with
angles ∈ [0, π2 ]. In spherical coordinates θ ∈ [0, π] so let θ → θ

2 and the general
state is finally

|ψ〉 = cos
θ

2
|1〉+ eiφ sin

θ

2
|0〉 (2.8)

This way to represent the states is known as the Bloch sphere Fig.2.3. Here
the mapping {1, 2, 3} → {x, y, z} is used for the Pauli matrices (Eq.(2.2)) and
|1〉 , |0〉 are eigenstates of σz. Notice how |1〉 and |0〉 are anti-parallel in their
Bloch sphere representation (θ = 0 and θ = π) while they are orthogonal in
Hilbert space (〈1|2〉 = 0).

The Pauli matrices can also be related to rotations in the Bloch sphere. It
can be shown that

eiφ
′σ̂1 =

(
cosφ′ −i sinφ′

i sinφ′ cosφ′

)
eiφ
′σ̂2 =

(
cosφ′ − sinφ′

sinφ′ cosφ′

)
eiφ
′σ̂3 =

(
e−iφ

′
0

0 eiφ
′

) (2.9)

where each of these expressions will rotate the two-level state along its respective
axis in its Bloch sphere representation. By using two of these rotations one can
take a state from one point on the Bloch sphere to any other point.
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Following Eq.(2.9), a Hamiltonian on the form H ∝ n̂·σ̂ = n1σ1+n2σ2+n3σ3

will cause a rotation along the n̂ direction. This can be seen by solving the
Schrödinger equation

ih
∂

∂t
|ψ〉 = H |ψ〉 (2.10)

Since the Hamiltonian is time independent this is trivial and yields

|ψ(t)〉 = eiαn̂σ̂t |ψ〉0 (2.11)

Where |ψ〉0 is the initial state and α is a coefficient with terms from the Hamil-
tonian. The Hamiltonian will thus make the state precess along the n̂-axis. This
implies that if the Hamiltonian can be controlled, it offers rotation of the state
on the Bloch sphere. This is a crucial property that will be looked closer on
when considering candidate two-level systems for quantum bits.

This framework of two-level systems are applicable to any physical systems,
such as electron spin, polarisation of photons and ground state and first excited
state of an atom. Another point is that most physical systems have more degrees
of freedom than simply two states, however if such two states are sufficiently
separated from any other states they can be approximated to a two-level system.

The meaning of DiVincenzo’s criteria can now be looked more into. For suf-
ficient computational power it is necessary that the candidate two-level system
can scale up by adding more and more qubits. One quantum bit working alone
will not suffice. The two-level system must also have some reliable state it can
be initialised into before computations are carried out, this means that for some
controllable parameters the system will naturally enter this initial state. The
quantum logical gates will take form as operators doing the necessary rotations
on the two-level state, taking it for instance from |0〉 → 1√

2
(|0〉 + |1〉). These

rotations can then be done sequentially to work as quantum gates correspond-
ing to the classical logical gates. Readout methods will be based on measurable
properties of the system such as energy, charge or angular momentum to deter-
mine which state the system is in.

The last criteria left is then the coherence time of states of the two-level
system. The coherence time is how long an initialised state will remain well
defined, and is affected by external noise. Such noise is typically related to
random fluctuations in the environment of the two-level system, and will add
to the system Hamiltonian, affecting the phase φ of the initialised state. These
effects can be generalised into relaxation of the state and randomisation of the
phase, both which causes loss of information, illustrated in Fig.2.4.

8



z

y

x

θ

φ

〉ψ

〉1

〉0

z

y

x

θ

φ

〉ψ

〉1

〉0
Figure 2.4: Illustration of state relaxation (left) and phase randomisation
(right). Net result is loss of original quantum states and thus loss of infor-
mation.
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Chapter 3
Spin qubits in quantum dots

In this thesis the electron spin will be considered as a candidate quantum bit.
The electron will be trapped on a quantum dot in a semi-conductor. Such
systems show promise due to means of readout, initialisation, quantum logical
gates and scalability, leaving the challenge of sufficient coherence times. We will
look into how a quantum dot can be built and how spin qubits trapped on the
dot relates to the DiVincenzo’s criteria.

3.1 Quantum dots in semi-conductors

The quantum dot a region where particles trapped have practically zero degrees
of spatial freedom. Particles that are sufficiently isolated from the environment
will remain confined on the dot (Fig.3.1). The quantum dot that will be ex-
plored here is created in a solid, or more specifically a semi-conductor, and are
used to trap electrons. The number of electrons necessary will be at most two
per quantum dot for the coming considerations. It is thus sufficient to have a
theoretical model for the behaviour of this number of electrons on the dot in
addition to the possibility of creating said dots.

3.1.1 2-dimensional electron gas

The first directional confinement is obtained by considering electrons in the
two dimensional electron gas (2DEG) created in the heterojunction between
two semi-conductor materials. The 2DEG is when the energy discretisation of
the electron is substantially larger in one direction opposed to the other two.
The electron movement along this direction is then effectively prohibited, and
the electron is confined to move in the plane spanned by remaining directions.
There are several ways of realising a 2DEG such as in liquid helium [14] or if a
material is inherently two-dimensional and conducting such as graphene. Here
we will look closer at the high electron mobility transistor (HEMT) [15].
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Epotential

Eescape

Eparticle

Figure 3.1: Illustration of a one-dimensional quantum dot where a particle is
trapped in a harmonic like potential. The particles energy Eparticle is lower than
the confining energy Epotential. If the particle on the dot is isolated from any
energy sources the particle will remain confined.

The HEMT is created with a heterojunction structure of gallium-arsenide
and gallium-aluminium-arsenide (GaAs/GaAlAs) semi-conductors. It is made
up of Silicone (Si) doped GaAs cap layer to protect the second Si-doped GaAlAs
layer from oxidation. The third layer is undoped GaAlAs which is in junction
with undoped GaAs of layer 4. This is grown on a GaAs substrate (layer 5)
using for instance molecular beam epitaxy [16], to form layer by layer. The
structure is illustrated, along with each layers depth, in Fig.3.2. The depths are
taken from [15].

By doing this process the energy band of the HEMT will be such that in the
heterojunction of GaAs/GaAlAs (layer 3 and 4) any electrons are free to move
along the interface, but would require considerable energy to cross it (Fig.3.3).

GaAs : Si

AlGaAs : Si

1

2

4

5

GaAs
3 AlGaAs

GaAs

~200Å

~500Å

~50Å

~1µm

Figure 3.2: Cross section of a HEMT. The Si-doped layers are marked with :
Si. This figure is the same as Figure 1 from [15]
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AlGaAs GaAs
interface

Ec

Ef

Ev

2DEG

Energy

Position

Figure 3.3: The resulting energy band of the HEMT device as a function of
position in the device along the growth direction. Note the triangular well in
the interface where the 2DEG foRMS. These energy bands can also be seen in
Figure 5(a) in [15]

This is then effectively a 2DEG.

3.1.2 Nanolithograpy

Electron confined in the 2DEG are further confined through etching gates on
top of the heterostructure through nanolithography [17]. These gates can be
made in any geometrical form which creates a potential landscape in the 2DEG
accordingly. In Fig.3.4 three sets of gates have been etched on top of the het-
erostructure. Pair 1 and 3 determine the tunnelling of electrons to and from the
dot while pair 2 determine the electrostatic energy of electrons on the dot.

These quantum dots where initially used as artificial atoms [18], and efforts
where put into creating a transport theory for electrons on them. Electrons
on the dot where shown to behave similarly to electron orbiting the nucleus in
atoms, and filling schemes for the quantum dots for large number of electrons
was worked out. For the purpose of using the quantum dots as qubits it is
however enough to consider just one or two electrons on a given quantum dot.

To use the spin of electrons as the quantum bit it is necessary to trap the
exact needed number of electrons on the dot through adjusting the voltage
over the gates in Fig.3.4. In order to achieve this there must be a theoretical
framework which describes when and how electrons may enter and leave the
dot, taking into account the number of electrons already on the dot. Since we
only need a small number of electrons the constant-interaction model (CI) is
sufficient to describe electron transport through the dot [18].
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GaAs
AlGaAs

Substrate

1
1

3
3

2

2

Quantum dot

2DEG layer

Figure 3.4: Three pairs of gates are made through nanolithography on top of the
heterostructure to produce a confining potential landscape within the 2DEG.
Pair 1 and 3 control the tunnelling to and from the dot. Pair 2 control the
electrostatic energy of electrons on the dot.

q,V
Cs Cd

Cg

Vg

µs µd

Figure 3.5: Diagram representing the capacitance which relates to the gates on
the heterostructure Fig.3.4.
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3.1.3 Quantum dot electron transport

The constant-interaction model (CI) assumes that the quantum levels and the
number of electrons are independent. Further it is assumed that the Coulomb
interaction between electrons on the dot and between dot electrons and electrons
in the environment is parameterised by a capacitance C, which is independent of
the number of electrons on the dot. This capacitance is then C = Cs +Cd +Cg
where Cs (Cd) represents the capacitance between dot and source (drain) and
Cg between dot and the gate potential (Fig.3.5). With these approximations
the energy of an N electron dot is

U(N) = [e(N −N0)− CgVg]2/2C +
∑
N

En,l(B) (3.1)

N0 is the number of electrons on the dot for Vg = 0. CgVg is the induced charge
on the dot from the gate voltage Vg through the gate capacitance Cg. The last
term sums the energy contribution En,l from the orbital states occupied by the
electrons.

The electrochemical potential µ is defined as the energy associated with
adding another electron to the dot and given by

µ(N) = U(N)− U(N − 1)

µ(N) = (N −N0 − 1/2)e2/C − e(Cg/C)Vg + EN
(3.2)

Where EN is the orbital energy of electron number N . Adding another electron
comes with a higher electrochemical potential. This change is known as the
addition energy

∆µ(N) = µ(N + 1)− µ(N) = e2/C + ∆E (3.3)

Where ∆E = EN+1 − EN . If they both occupy the same orbital ∆E = 0 and
only the Coloumb energy EC = e2/C will contribute. For our applications any
excited orbital states will be assumed out of reach, as they will be much larger
in energy compared to what is available in the system.

These consideration are then enough to discuss the transport of electrons
through the dot. Electrons residing in each part of the 2DEG will have a
different electrochemical potential. These parts are the source, drain and the dot
itself. Lets assumed the dot is initially empty and denote the electrochemical
potential of the dot as µ. The condition for current through the dot is then
µsource > µ > µdrain, and current will not flow if µ > µsource, µdrain. The last
part is known as the Coulomb blockade. These conditions can be seen in Fig.3.6

Since it is the spin of electrons that are the candidate two-level system let us
make some remarks relating it to the electrochemical potential. In the absence
of any magnetic field the electrochemical potential of an electron with spin-up is
equal to an electron with spin-down and thus if one electron enters the dot it can
have any orientation of its spin. This is due to the Zeeman energy EZ related
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µ
µsource

µdrain

No current

µ
µsource

µdrain

Current

eVSD

Figure 3.6: Two different cases of the electrochemical potential µ. On the left
the the system is in Coulomb blockade. On the right the condition for current
to flow is met, µsource > µ > µdrain. The source and drain are related by the
external voltage µsource − µsource = eVSD

μ↑

µsource
µdrain

µsource µdrain

μ↓

BWeak field
B

μ↑

μ↓

Strong field

Figure 3.7: Difference between µ↑ and µ↓ for strong and weak magnetic fields

to the spin is ∝ B. Adding an external magnetic field across the dot will then
separate the electrochemical potential of spin-up and spin-down. This effect
might be small such that µ↑ ' µ↓ and both might be within the condition for
electron entering the dot. If however the magnetic field is of sufficient strength
the splitting can be large enough so that only one of the spin-orientation is
eligible for entering the dot (Fig.3.7).

3.2 Single-spin quantum bit

The single-spin quantum bit uses the different spin-states, {|↑〉 , |↓〉}, of an elec-
tron as logical states. The single electron will be trapped on the dot, and the
dot will subsequently be in the Coulomb blockade such that no flow of electrons
are possible. A magnetic field can then be applied over the dot, lifting the
degeneracy of the |↑〉 and |↓〉 states, with resulting spin Hamiltonian

H = gµB ~B · ~S =
gµBh̄

2

∑
i

Biσi (3.4)

with σi being the Pauli matrices (Eq.(2.2)), g is the g-factor of the material,
µB is the Bohr magneton and h̄ is Planck’s reduced constant. Let us do the

15



+

BX

Bz
Ĥ

Figure 3.8: The Bloch sphere of the single-spin system. The effective field of
the Hamiltonian is given by Ĥ, here taken without any y-component to the
magnetic field.

mapping {1, 2, 3} → {x, y, z} and assume that the spin is quantised in the z-
direction, such that {|↑〉 , |↓〉} are eigenstates of σz. Writing out the sum of the
Hamiltonian gives

H =
gµBh̄

2

(
Bz Bx − iBy

Bx + iBy −Bz

)
=
gµBh̄

2

(
Bz B−
B+ −Bz

)
(3.5)

Where (B+, B−) relates to the spin raising/lowering operators S± = Sx ± iSy.
These operators connects the two spin states, S+ |↓〉 ∝ |↑〉 and S− |↑〉 ∝ |↓〉.

The Bloch sphere of this system is shown in Fig.3.8. Applying a magnetic
field along the logical axis (z-direction) will cause precession of the spin-state
along this axis, and similarly for applying a magnetic field along the |↑〉 + |↓〉
axis (x-direction).

Using single-spin quantum bits was originally proposed by Daniel Loss and
David P. DiVincenzo in 1998 [19]. The idea of using quantum dots in semi-
conductors was motivated by the inherent scalability of such devices. Their
proposal included two coupled single-spin dots where the additional dot was
needed to implement the necessary quantum logical gates. One of the dots
would also be coupled to an auxiliary ferromagnetic dot to allow for single-
qubit operations. Note that each dot still only would hold one electron, which
separates this setup from the double-spin quantum dot.

Qubit-qubit interaction could be implemented in nearby quantum dots, such
as the two in the double-dot device shown in Fig.3.9. The gate pairs 2,4 and
6 sets up a barrier potential between each region, determining the tunnelling,
and the voltages set the Coulomb energy of electrons on the dots. If each dot
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Figure 3.9: Schematic of the double dot device. Gate pair 1 and 7 creates two
quantum point contacts which are used as electrometers to detect charge. Pair
2 determines tunnelling between source and dot 1, pair 4 tunnelling between
the dots and pair 6 tunnelling between dot 2 and drain. Pair 3 and 5 determine
the electrostatic energy of electrons on the dots.

contains exactly one electron and if the tunnel coupling is small compared to
the charging energy on the dots the interaction can be expressed

HS(t) = J ~S1 · ~S2 (3.6)

with J = 4t2/u where u is the charging energy and t is the tunnelling coefficient.
The dots are tuned such that u is equal for both dots and is the energy that
must be overcome for one electron to tunnel to the other dot. This interaction
would then lead to implementation of the exclusive OR gate (XOR) which along
with single-qubit operations can be made to do any quantum computation [20].

Initialisation of the system is possible applying a sufficiently strong magnetic
field such that the electrochemical potential of electrons with spin up and down
are split, where one is above the electrochemical potential of the source and one
is below. This is similar to the situation outlined in Fig.3.7. By doing this only
one of the spin-states will be allowed to enter the dot.

Readout can be performed by measuring the charge on the dot through a
quantum point contact. The method relies on the Zeeman-energy of the two
spin states to sufficiently split the electrochemical potentials µ↑ and µ↓, such
that µ↓ > µsource > µ↑. If the electron have spin-down it will tunnel out of the
dot and another electron with spin-up will tunnel into the dot. In the opposite
case where the electron have spin-up it will remain on the dot. See Fig.3.10.
These two cases will cause different response from the quantum point contact
(gate 1).
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µsource

µdrain

B = 0

µsource

µdrain

B > 0

µ↑ = µ↓

µ↑ < µ↓

µsource

µdrain

Figure 3.10: Readout of the quantum dot. The magnetic field is set to B = 0
initially and the spin of the electron on the dot can be either up or down.
Applying a magnetic field will cause µ↓ > µsource, µsource > µ↑. If the electron
have spin-down it will tunnel out of the dot and an electron with spin-up will
tunnel into the dot.

As the spins are controlled through magnetic fields (Eq.(3.5)) the system is
vulnerable to noise in the magnetic fields. Any sources of noise will enter into the
Hamiltonian and start rotating the state in a random manner, causing dephasing
and loss of information. This decoherence is a result of the electrons interaction
with the environment as it travels through the semi-conductor. There are two
particular interactions that is important for the coherence times of the electron
spin in semi-conductors, namely spin-orbit interaction and hyperfine interaction,
both which are relativistic corrections to the Hamiltonian. Before summarising
the single-spin quantum dot we will look into these two effects.

3.2.1 Spin-orbit interaction

The spin-orbit interaction (SOI) has its name from the magnetic field experi-
enced by an electron orbiting a nucleus. This internal magnetic field is propor-
tional to the electric field from the positively charges nucleus and the momentum
of the electron. An electron travelling through a solid will experience the elec-
tric field from the atoms on the lattice. There are primarily two sources of net
contribution to the SOI.

One of these contributions come from bulk inversion asymmetry present in
the zinc-blende structure of GaAs. This effect is known as the Dresselhaus
contribution [21]. The strong confinement in the growth direction, here taken
as the z-direction, leads to the effective expression in leading order of p

HD = β[−pxσx + pyσy] (3.7)
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where β depends on material properties and 〈p2
z〉, which is much larger than the

corresponding terms in x- and y-direction. {σx, σy} correspond to the previously
mentioned Pauli matrices {σ1, σ2} (Eq.(2.2)).

The other source of SOI contribution is electric fields originating from asym-
metric confining potentials, which is present in the GaAs/AlGaAs interface.
This effect is knows as the Rashba term [22] and is of the form

HR = α(−pyσx + pxσy) (3.8)

with α is material specific and also includes the effect of the confining potential.

This spin-orbit Hamiltonian HSO = HD + HR will cause a net rotation of
the electron spin as it travels through the 2DEG. A quantity corresponding
to a rotation of π is called the spin-orbit length lSO. For electrons travelling
through the 2DEG in GaAs experiments have measured lSO to the order ∼ µm
[23]. Since a quantum dot is typically of size ∼ 100nm, much smaller than lSO,
the effect of SOI is expected to be relatively slow working. The the inverse
relaxation time have been shown to vary T−1

1 ∈ [1, 1000]s−1 for magnetic fields
B ∈ [1, 7]T [24]. These effects are dominated by the SOI, but relaxation is also
in principled affected by the hyperfine interaction (Sec 3.2.2).

The time scale for phase randomisation T2 will always be less than the re-
laxation time T1. This is due to a relaxation of the state will inevitably include
a loss of the phase. However to leading order of in SOI there is no pure phase
randomisation, and T1 = T2 [25].

3.2.2 Hyperfine interaction

Hyperfine interaction (HI) follows from the electron spin interacting with the
spin of a nucleus through the hyperfine coupling. For an electron in a semi-
conductor the spin will interact with many nuclear spins in the material. This
many nuclei interaction can be expressed [26]

HHF =

N∑
k

Ak ÎkŜ (3.9)

where the sum is over all the nuclei the electron interacts with. Îk is the spin
operator of nucleus k and Ŝ the spin operator of the electron. The coupling
strength Ak will in generally vary as it is proportional to the overlap between
their respective wave functions.

If we neglect any quantum mechanical effects, such as entanglements between
nuclear and electron spin, HI may be treated semi-classically. The main notion of
this being a valid approach is the electron-spin dynamics being rapid compared
to the nuclear-spin dynamics. The HI then takes the form

HHF = gµB ~BN Ŝ (3.10)
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where

gµB ~BN =

N∑
k

Ak 〈Îk〉 (3.11)

Which treats the nuclear spins as a contribution to some net magnetic field
affecting the electron.

For GaAs the nuclear field will have a maximum value, corresponding to
parallel alignment of all nuclei, of 5T [27]. This number is independent of how
many nuclei the electron overlaps with. If the number of nuclei N increases, the
contribution from each nucleus to the nuclear field will be smaller. The typical
coupling strength goes as AK ∝ 1/N .

In the absence of external field the net nuclear field will on average be zero,
with fluctuations around the average value. This is due the nuclear magnetic
moment is so small, such that even for very small temperature the nuclear Zee-
man splitting is below the thermal energy of the system. As a result the nuclear
spins will have no preferred direction and orient randomly. These fluctuations
will be of order 1√

N
[28] corresponding to field of the order mT for quantum dots

with N ≈ 106, resulting in both the direction and magnitude of the magnetic
field evolving randomly in time. Assuming that that these random field values
are drawn from a Gaussian distribution the dephasing time T2 is given by [29]

T2 =
h̄
√

2

gµB

√
〈(BZN 〉)2

(3.12)

with results of order 10ns for
√
〈(BZN 〉)2 ∼mT.

Relaxation of a single-spin qubit requires finite coupling to the Ŝ± by the
environment. For the case of HI, we see that this corresponds to having non-
zero Bx,yN . However, it turns out that hyperfine-induced relaxation rates are
typically much lower than the rates caused by SOI. The main effect from HI is
therefore qubit dephasing.

There are some additional factors regarding HI worth mentioning. Since it
depends on overlap between nuclear and electron wave functions, only s orbitals
electrons will have substantial contribution. p orbitals have very little overlap
with the nuclei. In our considerations all electrons will however be s orbitals.
Another aspect is that the semi-conductor material might have components of
zero nuclear spin nuclei. Thus BN → BN (1− x) where x is the fraction of zero
nuclear spin nuclei. Silicone for instance have an abundance of 28Si (92.2%)
where this isotope have no nuclear spin. Thus a semi-conductor made out of
Silicone and further purified can achieve x ' 1.

3.2.3 Summary of the single-spin quantum bit

Having briefly discussed interactions between the electron spin and the semi-
conductor environment it is evident that coherence times will be a large chal-
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Figure 3.11: Schematic of the double dot. Any excited orbital states are out of
reach for the electrons. The local voltages {VL, VR} can be tuned to affect the
Coulomb energy on the dot. The spin-states are separated by some external
magnetic field.

lenge due to HI. To overcome this, qubit operations must happen at timescales
well below T2. Operating the single-spin qubit in itself relies on using highly
localised magnetic fields. Tuning these magnetic fields on such low timescales
and localised on individual dots is practically very difficult.

The first step in improving this is to devise a system where the magnetic op-
eration of the qubit states can be exchanged with electric operation. Managing
this would solve one of the issues present to the single-spin qubit. Proposals in
this direction involve systems with multiple spins and dots

3.3 Double-spin quantum bit

The qubit is here made out of two electrons and two quantum dots. The elec-
trons can either be on separate dots or doubly occupy one of the dots through
tunnelling from one dot to the other. It is assumed that the energy scale of the
system is such that any excited orbitals are out of reach for the electrons. This
is illustrated in Fig.3.11. The double dot gate patterns are similar to the ones
in Fig.3.9.

Assuming each dot is limited to a maximum number of N = 2 electrons the
Coulomb part of the Hamiltonian can be expressed

HC =
1

2

∑
i

UiNi(Ni − 1)− eViNi + U ′N1N2 (3.13)

Here Ui is the charging energy of dot i and U ′ is the nearest neighbour charging
energy. Additionally there is some energy related to the local potentials Vi for
each of the dot. This model, when adding the tunnel coupling, is known as the
Hubbard model and used to describe the transport through the double dot [30].

Eq.(3.13) gives rise to a two dimensional charge stability diagram (Fig.3.12).
The diagram shows the energetically favoured electron configurations for differ-
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Figure 3.12: Charge stability diagram for the double dot as a functions of
{VL, VR}. The maximum number of electrons on each dot is limited to two.

ent applied voltages and which configurations it is possible to transitions be-
tween. These transitions can happen along the black lines between the different
regions where the Coulomb energy of each configuration is degenerate. This is
the equivalent to the occupancy numbers discussed for the single-spin quantum
dot with the constant interaction model. Since the total number of electrons is
set to N = 2 the regions of interest are (2, 0) ↔ (1, 1) ↔ (0, 2). By choice the
system will be tuned at the crossing (1, 1)↔ (0, 2).

A consequence of adding another dot is increasing the number of states
available in the system. One way to express the states, with the given restric-
tions, is {|↑1↑2〉 , |↑1↓2〉 , |↓1↑2〉 , |↓1↓2〉 , |02〉}. Electrons are fermions and must
therefore obey the Pauli exclusion principle, that is the wave function must be
anti-symmetric with respect to particle exchange. Since any excited orbitals are
outside of reach for the system energy, this implies that for the |02〉 state the
anti-symmetry must lie in the spin part of the wave function. The two-particle
state meeting this requirement is the singlet state |S〉 = 1√

2
(|↑↓〉 − |↓↑〉)

22



This invites for a convenient choice of basis

|S〉 =
1√
2

(|↑1↓2〉 − |↓1↑2〉)

|T 〉0 =
1√
2

(|↑1↓2〉+ |↓1↑2〉)

|T 〉+ = |↑1↑2〉
|T 〉− = |↓1↓2〉
|02〉 = |0S〉

(3.14)

with the subscript denoting which dot. T here stands for triplet. From this it is
clear that the tunnelling between the dots only connects the |S〉 and |0S〉 states.

Assuming that there is an external magnetic field ~B = B0ẑ and any interaction
with the environment can be neglected, the total Hamiltonian of the system can
be expressed on matrix form

H =


−EZ 0 0 0 0

0 EZ 0 0 0
0 0 0 0 0
0 0 0 0 t
0 0 0 t u− ε

 (3.15)

where the Coulomb energy of the (1,1) states are shifted out. ε = −VL +
VR and u = U − U ′ which will for simplicity be neglected. The energies and
corresponding states of this Hamiltonian is then

E±S = − ε
2
±
√( ε

2

)2

+ t2

|E+
S 〉 = cos

θ

2
|S〉+ sin

θ

2
|0S〉

|E−S 〉 = sin
θ

2
|S〉 − cos

θ

2
|0S〉

tan θ =
t

(ε/2)

(3.16)

These energies are plotted in Fig.3.13

Consider the {|S〉 , |T 〉0} states in Fig.3.13. As the external field is increased,
these states will be further separated from {|T 〉+ , |T 〉−}. If the system is tuned
in the regime ε� 0, the doubly occupied singlet state |0S〉 will also be largely
separated in energy from the the mentioned states. In this regime the system
can then be considered as a two-level system with basis {|S〉 , |T 〉0} where the
effects from the remaining three states are considered perturbations.

The Hamiltonian of this two-level system can then be written

H = −J(ε)

2
1− J(ε)

2
σz + ∆Bzσx =

(
−J(ε) ∆Bz
∆Bz 0

)
(3.17)
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Figure 3.13: The energy spectrum of the double-spin quantum dot in the absence
of spin-interaction. ε ∝ −VL+VR, EZ is the Zeeman splitting due to an external
magnetic field. For this plot EZ

t = 0.8

Where J(ε) ≈ t2

|ε| and ∆Bz = B1
z − B2

z is the gradient field between the dots

caused by effective nuclear fields.

Let these two states define a qubit. Rotations along the logical axis can
then be controlled by tuning ε in the regime where J(ε) � ∆Bz. Similarly if
J(ε)� ∆Bz the Hamiltonian will cause rotations along the 1√

2
(|S〉+ |T 〉0) axis.

This is then called a ST-qubit and the axes are illustrated in Fig.3.14

The ST-qubit have been demonstrated experimentally with logic operation
with a gating time of order 180ps [31], well below the dephasing time caused
by hyperfine interaction. The system can be initialised in the |0S〉 state and
swept adiabatically to the limit J(ε) � ∆Bz. Here the state will assume the
ground state of |↑↓〉 , |↓↑〉. From here on operations can be performed to rotate
the qubit along the directions needed by rapidly tuning ε.

The challenge with this setup are the random nuclear fields affecting the dot.
As the system will relax into on of the |↑↓〉 , |↓↑〉 states, which of them is the
ground state will be random depending on positive or negative ∆Bz. Seeing
however that there is established electrical control over one of the axes progress
has been made from the single-spin qubit. The next step is then to add yet
another spin along with an additional dot.
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Figure 3.14: Bloch sphere for the ST-qubit. The effective field from the Hamilto-
nian Ĥ is indicated. Note that the signs of J(ε) and ∆Bz are chosen arbitrarily
for this illustration.

3.4 Triple-spin quantum bit

The triple-spin quantum bit is a natural continuation of the double-spin quan-
tum bit and similar considerations will be made as before. As the name suggests
the number of electrons in the system is increased to three with equal amounts
of quantum dots. Electrons may tunnel between each of the dots 1 ↔ 2 ↔ 3
generally with different tunnelling strengths. For the following discussions the
tunnelling strengths will be assumed equal t12 = t23 = t and only nearest neigh-
bour tunnelling is possible, t13 ' 0. Further are any excited orbital states out
of reach for the system energy such that the maximum number of electrons
N = 2 for each dot. This is illustrated in Fig.3.15 and a sample gate pattern is
provided in Fig.3.16.

The Hubbard model will again be used [32] which provides the Coulomb
part of the Hamiltonian

HC =
U

2

∑
i

Ni(Ni − 1)− eViNi + U ′
∑
〈i,j〉

NiNj (3.18)

with Ni being the number of electrons on dot i, Vi is the associated potential,
U’ is the charging energy and 〈i, j〉 denotes a sum over nearest neighbours.

Eq.(3.18) provides the charge stability diagram of the triple-spin quantum
dot, provided in Fig.3.17. Along the axes are Vm = eV1+eV3

2 − eV2 and ε =
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Figure 3.15: The triple-spin quantum bit. Electrons can tunnel between each
of the dots. The energy related to any excited orbital states are larger than
the energy scale of the system. Each dot has an associated voltage gate which
determines the Coulomb energy of the dot.
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Figure 3.16: Schematic of the triple dot device. Gate pair 1 and 9 creates
two quantum point contacts which are used as electrometers to detect charge.
Pair 2 determines tunnelling between source and dot 1, pair 4 and 6 tunnelling
between the dots and pair 8 tunnelling between dot 3 and drain. Pair 3, 5 and
7 determine the electrostatic energy of electrons on the dots.

26



Vm

ε

(1,1,1)

(2,0,1) (1,0,2)

(0,1,2)

(2,1,0)

(1,2,0) (0,2,1)

Figure 3.17: Charge stability diagram of the triple-spin quantum dot. Vm =
V1+V3

2 − V2 and ε = V3−V1

2 . Vtot =
∑
i Vi is held constant.

eV3−eV1

2 . In the following expressions the electron charge e = 1 for brevity. This
diagram is with the restriction of total number of electrons in the system N = 3.
The system will be tuned in the region (2, 0, 1)↔ (1, 1, 1)↔ (1, 0, 2) indicated
by the dashed box.

Adding the third electron and dot comes along with yet more complex states
for the system. In the assigned region of tuning the number of states available
are now twelve. Four of them comes from the double occupied states. These
states will with the same reasoning as for the double-spin quantum dot be of
the form (1,0,S) and (S,0,1), where the single electron can have either spin-up
or spin-down. The spin-orientation of the single electron thus determines which
spin-subspace the doubly occupied states reside in, which can be Sz = ± 1

2 .

In the absence of any spin-flip terms in the Hamiltonian, interaction can
only happen between states in their respective spin-subspace. With a strong
external magnetic field these sub-spaces will be split up in energy due to the
Zeeman-splitting. Let us for now then focus on the Sz = 1

2 sub-space. By
choosing the basis

|Q1/2〉 =
1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)

|DT 〉 =
1√
6

(|↑↑↓〉 − 2 |↑↓↑〉+ |↓↑↑〉)

|DS〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉)

|↑ 0S〉 , |S0 ↑〉

(3.19)
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(1,1,1) (1,0,2)(2,0,1)

ε = -Δ ε = Δ

|Q1/2〉

|DS〉

|DT〉

(2,0,1) (1,0,2)

Figure 3.18: Energy spectrum of the triple dot Hamiltonian (3.20). E′ = E
∆ .

ε′ = ε
∆ . The regions are marked to show which electron distribution is

favourable. For these plots t
∆ = 0.2

the Hamiltonian can be expressed in matrix form as

H =


0 0 0 0 0
0 0 0 t

2
t
2

0 0 0 −
√

3t
2

√
3t
2

0 t
2 −

√
3t
2 ∆ + ε 0

0 t
2

√
3t
2 0 ∆− ε

 (3.20)

where the Coulomb energy EC = −Vtot + 2U ′ of the (1,1,1) states are shifted
out. ∆ = U − U ′ − Vm and ε = V3−V1

2 .

The Hamiltonian (3.20) can be solved numerically to get the energy spectrum
of the system, which is given in Fig.3.18. The right part shows a zoom in around
ε = 0 where the states is to a good approximation equal to |DS〉 and |DT 〉. This
can be understood based on the large energy differences to the coupled doubly
occupied states |↑ 0S〉 , |S0 ↑〉, and the numerically solved states coefficients in
Fig.3.19 confiRMS this.

Considering the rightmost part of Fig.3.18 a candidate for the logical basis
{|0〉 , |1〉} is {|DT 〉 , |DS〉}. Performing a Schrieffer-Wolf transformation to first
order (see also Sec 4.1) in t

∆ , the effective two-level Hamiltonian can be written
[33]

H = −1

2

(
3J(ε)

√
3j(ε)√

3j(ε) J(ε)

)
= −

(
2J(ε)1 + J(ε)σz +

√
3j(ε)σx

)
(3.21)

with

J(ε) =
t2

2

(
1

∆ + ε
+

1

∆− ε

)
j(ε) =

t2

2

(
1

∆− ε
− 1

∆ + ε

) (3.22)
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ε' = -Δ ε' = Δ

Figure 3.19: State coefficients squared for the two lowest lying energy states in
Fig.3.18. The upper plot is for the lowest energy and the lower plot is for the
second lowest energy level.

and σz, σx being the Pauli matrices, Eq.(2.2), used previously.

The direction of the effective field from the Hamiltonian is given by

tan θ =

√
3j(ε)

J(ε)
(3.23)

which have maximum angle for the limits

lim
ε→±∆

θ(ε) = ±π
3

= ±60◦ (3.24)

shown in Fig.3.20. With these two axes of control the Hamiltonian can be used
to apply any set of rotations on the Bloch sphere. The problem of magnetic
control from the single-spin and double-spin quantum dot is then resolved. Ex-
periments have shown that is form of control is indeed achievable [34][33].

The limits in these experiments are the short coherence times in relation to
the HI. This is caused by the gradient fields between the dots, which can be
seen by looking at Hnuc [33]

− 1
3 (∆B12 −∆B23) −

√
1
3 (∆B12 + ∆B23) −

√
2
3 (∆B12 + ∆B23)

−
√

1
3 (∆B12 + ∆B23) 1

3 (∆B12 −∆B23) −
√

2
3 (∆B12 −∆B23)

−
√

2
3 (∆B12 + ∆B23) −

√
2

3 (∆B12 −∆B23) 0


(3.25)

In the {|0〉 , |1〉 , |Q1/2〉} basis. ∆Bij = Bzi − Bzj . So the HI can cause both
leakage into the |Q3/2〉 state and add fluctuations to the two-level Hamiltonian.

29



+

Dt

Ds

Dt Ds
6060
J(Δ)J(-Δ)

√3j(Δ)√3j(-Δ)

Figure 3.20: The Bloch sphere for the triple-spin quantum dot. The effective
fields from the Hamiltonian is shown in the case of lim ε→ ±∆.

The energy spacing between |Q3/2〉 and the logical basis can be controlled
through the tunnelling coupling and such be made sufficiently large compared
to the HI between them. The problem remaining is to suppress the effect from
these random fluctuations and by doing so increase the coherence time of the
system.

There are a few proposals for solving this issue. One is to use a semi-condutor
of purified silicone (Si) such that the zero nuclear spin isotope 28Si makes out
> 99% of the material [35][36]. Another proposal is to make use of the spin
from four electrons in a quadruple dot where there exists a two-level subspace
insensitive to the nuclear field gradients [37].

A third way is to devise a procedure for controlling these nuclear fields in the
three dots, and find a way to actively suppress the fluctuations. In this thesis
will attempt this by inducing spin-flips in such a way to reduce or otherwise
remove the randomness of ∆Bij . The goal is to perform such a procedure
on time scales much lower than the natural relaxation time nuclear spin such
that computations might be performed while the system is in a ‘controlled’
configuration.

The plan is to use Landau-Zener transitions (See Sec 4.2) that force spin-
flips in one of the dots, depending on the precise electron wave function. Thus
a feedback mechanism is created, hopefully making the nuclear field gradients
control themselves.
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Chapter 4
Theoretical basics

Before discussing the model for nuclear field dynamics in Section 5 we will
introduce theoretical concepts which are necessary for later use.

4.1 First order Schrieffer-Wolff transformation

Consider a Hamiltonian
H = H0 + V (4.1)

where H0 have known eigenstates |m〉 with corresponding energy Em, and V
is considered a small perturbation causing a coupling t between the eigenstates
|m〉. Further it is also assumed V only have off-diagonal entries. This last
assumption can always be made true by having H0 absorb potential diagonal
elements 〈m|V |m〉 from V .

The idea is then to find a unitary transformation H̃ = eSHe−S such that
H̃ is diagonal to first order in t. The generator S of this transformation will be
of same order as V . Expand the expression and make use of V being a small
perturbation

H̃ ≈ [1 + S +
1

2
S2](H0 + V )[1− S +

1

2
S2] (4.2)

By collecting all the terms and neglecting all terms ∼ t3 and using the commu-
tator [A,B] = AB −BA the expression can be rewritten

H̃ ≈ H0 + V + [S,H0] + [S, V ] +
1

2
[S, [S,H0]] (4.3)

Since we want an expression for the Hamiltonian that is diagonal up to
order t any first order terms must cancel out. This is obtained by putting
[S,H0] = −V . The resulting expression becomes

H̃ = H0 +
1

2
[S, V ] +O(t3) (4.4)
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Make use of the assumption that H0 only contains diagonal terms H0,ii = Ei,
which results in the following component form of the commutator [S, V ]

[S,H0]ij = SikH0,kj −H0,ikSkj = SijEj − EiSij = −Vij (4.5)

solving this for Sij then gives

Sij =
Vij

Ei − Ej
(4.6)

Inserting this into Eq.(4.4) gives the final expression on component form to
order t2

H̃ij = H0,ij +
1

2
VikVkj

(
1

∆Eik
+

1

∆Ejk

)
(4.7)

with ∆Eij being the energy difference between unperturbed states |i〉 and |j〉

4.2 Landau-Zener transition

The Landau-Zener transition attempts to describe the linear sweeping of one
energy level through another in the presence of a coupling between the levels.
This scenario can be described by the Hamiltonian

H =

(
0 q
q E(t)

)
(4.8)

in the basis |ψ〉1 , |ψ〉2 which are the eigenstates of H for q → 0. Here E1 the
energy of |ψ〉1 is set as zero and E2 = E(t) is the energy of |ψ〉2.

This system can be solved analytically to yield

E± =
E(t)

2
±

√(
E(t)

2

)2

+ q2

|E+〉 = cos
θ

2
|S〉+ sin

θ

2
|0S〉

|E−〉 = sin
θ

2
|S〉 − cos

θ

2
|0S〉

tan θ =
t

(E(t)/2)

(4.9)

which shows that the coupling q between the states lead to admixture of them
and an anti-crossing at E(t) = 0.

Looking at limiting values where |E(t)|� 0 we can see how the admixture
state behaves compared to the uncoupled system. Let us consider |E+〉

E(t) > 0 : E(t) < 0 :

E+ ' E(t) E+ '
q2

|E(t|
' 0

|E+〉 ' |ψ〉2 |E+〉 ' |ψ〉1
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E1

E2

E2

E1~t0

0

E

t

|ΔE12| 

Strong Admixture

q |ΔE12| q

Figure 4.1: The energies of Eq.(4.9). The dashed line show energy without any
coupling.

and opposite for |E−〉. So far away from the crossing the system will act equiv-
alent to an uncoupled system. The minimum separation is at the anti-crossing
where ∆E+− = E+ − E− ∼ q. Close to the crossing the admixture between
|ψ〉1 and |ψ〉2 is large. This is illustrated in Fig.4.1 where a linear E(t) is used.

If the system is initialised in the |ψ〉1 at a time far away from the crossing
point, what is the probability that we will end up in |ψ〉2 at a later time also
far away from the crossing point by slowly sweeping through the crossing. ‘Far
away’ means that the energy separation is large compared to the coupling |E1−
E2|� q and ‘slowly’ compares to the slope | ∂∂t (E1 − E2)|.

By assuming that the energy crossing |E1 −E2|∝ t and that the coupling q
is independent of time ∂q

∂t = q̇ = 0 this probability is given by

P = 1− e−2πγ

γ =
t2

h̄v

(4.10)

where v = | ∂∂t (E1(t)−E2(t)| is the effective sweeping speed through the crossing.
Eq.(4.10) is known as the Landau-Zener transition probability [38].
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Chapter 5
Landau-Zener transitions in the
TQD

The main goal of this thesis is to control the nuclear gradient fields of the TQD.
This is proposed to do with |Q3/2〉 ↔ |0〉 Landau-Zener transitions since the
crossing between these states can be controlled by applying an external magnetic
field. Such processes are expected to increase the coherence time of the system,
specifically the time related to dephasing of the quantum state. By controlling
the fields the contribution from Hnuc Eq.(3.25) can be considered a constant
effect instead of randomly fluctuating. Improvement of the coherence times can
also be obtained by reducing the magnitude of the nuclear field fluctuations,
which can be considered an alternative goal.

5.1 Q3/2-Dt crossing without hyperfine interac-
tion

The system in consideration is the triple-spin quantum dot with Hubbard Hamil-
tonian [32]

H =

3∑
i=1

U

2
ni(ni − 1)− Vini + EzS

z
i +

∑
<i,j>

Ucninj +
(
tijc
†
i,σcj,σ + t∗ijc

†
j,σci,σ

)
(5.1)

U is the charging energy of a single dot, Uc is the charging energy between dots,
Vi is the potential over dot i, tij = t is the coupling between dot i and j. c†j,σ
(cj,σ) creates (destroy) an electron on dot j with spin σ.

By including the |Q3/2〉 = |↑↑↑〉 state with Sz = 3
2 and ignoring for now the
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nuclear fields, the Hamiltonian can be expressed on matrix form

H =



EZ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 t

2
t
2

0 0 0 0 −
√

3t
2

√
3t
2

0 0 t
2 −

√
3t
2 ∆ + ε 0

0 0 t
2

√
3t
2 0 ∆− ε


(5.2)

The energy have been shifted such that |Q1/2〉 is defined as zero energy and
where EZ = gµBBz is the Zeeman energy. This is expressed in the basis

|Q3/2〉 = |↑↑↑〉

|Q1/2〉 =
1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)

|DT 〉 =
1√
6

(|↑↑↓〉 − 2 |↑↓↑〉+ |↓↑↑〉)

|DS〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉)

|↑ 0S〉, |S0 ↑〉

(5.3)

The energy spectrum is similar to before with the addition of |Q3/2〉, Fig.5.1.
The crossing points between |Q3/2〉 and |0〉 can be changed by tuning the mag-
netic field. The method applied will be to initialise in the ground state ‘far
away’ from the crossing point, and sweep ε through the crossing. ‘Far away’
here means that the energy difference between the states are much larger than
the minimal separation at the crossing.

|0〉 ↔ |Q3/2〉 can happen through Landau-Zener transitions, which are in

different spin sub-spaces Sz = 1
2 and Sz = 3

2 . We assume then that a nuclei
have flipped in a opposite manner. Sweeping these states through their crossing
many times will effect on the nuclei polarisation and can be compared to how
the polarisation behaves without these forced transitions. As the polarisation
changes so will the crossing point between the states, and subsequently the form
of the electron wave function. This will in turn affect the transition probability
of each sweep and a feedback cycle is established.

The mechanism behind these spin-flips is the hyperfine interaction between
electron spin and the nuclear spin. The detailed explanation for the TQD is
given in Sec 5.2, here we will write the final expression for the TQD coupling in
{|Q3/2〉 , |0〉} subspace

HHF = H+
HF +H−HF =

(
0 q+

q∗+ 0

)
+

(
0 q−
q∗− 0

)
q2
± =

A2

N

(
1± P1

2
|γ0|2+

1± P2

2
|β0|2+

1± P3

2
|α0|2

) (5.4)
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ε = -Δ ε = Δ

(2,0,1) (1,0,2)
(1,1,1)

Q3/2

Q1/2

1
0

Figure 5.1: Energy spectrum where |Q3/2〉 is added in. The axes are scaled with
∆. The crossing point between |0〉 and |Q3/2〉 depends on the Zeeman energy,
illustrated by the dashed line above and below |Q3/2〉

where q+ relates to |0〉 → |Q3/2〉 and q− to |Q3/2〉 → |0〉. The coefficients
{α0, β0, γ0} = {α(εc), β(εc), γ(εc)} comes from the form of |0〉

|0〉 ∼ α(ε) |↑↑↓〉+ β(ε) |↑↓↑〉+ γ(ε) |↓↑↑〉 (5.5)

where ε = εc is the crossing point between the energies, which changes as the
polarisation changes.

Keeping this feedback mechanism in mind we will start by investigating nu-
merically different sweep procedures and look at the response in the polarisation.
These procedures are illustrated in Fig.5.2-5.5

As we shall see some of the sweep procedures investigated turns out to
suppress the nuclear gradient field fluctuations. With this in mind we wish
to get a more detailed understanding of the dynamics by deriving an analytic
expression for all spin-flip rates. In Sec 5.4 we take the first steps towards this
by deriving an expression for all wave functions included, valid for any ε.

5.2 Hyperfine interaction in TQD

We have previously looked at the general mechanism behind the hyperfine in-
teraction (HI) in Eq.(3.9). Here we seek to find the explicit expression of HI
for the {|Q3/2〉 , |0〉} subsystem. The resulting coefficients can be applied in the
Landau-Zener formula Eq.(4.10) to determine the transition probabilities.
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E0

EQ3/2

ε0

Left crossing Right Crossing
Relaxation

Start

Figure 5.2: Begin at ε = 0 in the |Q3/2〉 state. Relaxation into ground state
after each crossing. Alternate between right and left crossing.

E0

EQ3/2

ε0

Left crossing Right Crossing

Relaxation

Start Start

Figure 5.3: Begin at |ε|> ∆ in the |0〉 state. Go through the crossing. Alternate
between beginning at left and right side.

E0

EQ3/2

ε0

Left crossing Right Crossing
Relaxation

Start

Figure 5.4: Begin at ε = 0 in the |Q3/2〉 state. Relaxation into ground state
only in the regime |ε|< ∆. Alternate between right and left crossing.
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E0

EQ3/2

ε0

Left crossing Right Crossing
Start

Figure 5.5: Begin at ε = 0 in the |Q3/2〉 state. Alternate between sweeping left
and right.

Begin with the initial expression

HHF =
∑
i,n

AinÎnŜi =
∑
i,n

Ain

(
Î+
n Ŝ
−
i

2
+
Î−n Ŝ

+
i

2
+ ÎznŜ

z
i

)
(5.6)

where lowering and raising operators have been used in the last expression (see
Eq.(3.5)). The sum goes over all N nuclei on each dot i. Let us focus on the Ŝ+

i

and restrict ourselves to one dot for brevity. Further we will assume spin-1/2
nuclei.

H+
HF =

∑
n

An
Î−n Ŝ

+

2
(5.7)

where An = Aν|ψ(~rn)|2. A ∼ (10−5 − 10−4)eV [39] being a material property,
ν is the size of the unit cell and ψ(~r) is the electron spatial wave function at
position ~r. ~rn is the position of nuclei n. Assuming for simplicity that the ψ(~r)
is constant over the dot volume, Fig.5.6. This gives

An = Aν|ψ(~rn)|2= Aν
1

V
=
A

N
(5.8)

and inserted into the operator

H+
HF =

A

N

∑
n

Î−n Ŝ
+

2
(5.9)

From here on will the quantum mechanical properties of the nuclei be ne-
glected, and the effect from the nuclear spins considered merely an effective field
acting on the electron spin. In doing so each single nuclei is not so interesting,
but rather how many of them can join in a spin-flip process. This number is
equal to the amount of nuclei with spin oriented up, denoted by N+.
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Dot i ψe(r)
nuclei

Figure 5.6: Illustration of the constant electron spatial wave function over a
dot. The electron will only interact with the N nuclei on the dot.

Consider then initial states |i〉 and final states |f〉 of the form

|i〉 = |0〉e |N
+〉n

|f〉 = |Q3/2〉e |. . . ↓j . . .〉n
(5.10)

such that all N+ different final states connects to the same initial state. e
denotes electron part and n denotes the nuclear part. Each of these couplings
will be of the form

〈f |H+
HF |i〉 =

A

N
〈Q3/2|Ŝ+|0〉 (5.11)

or in matrix form
Ei

A
Ni
〈Q3/2| Ŝ+

i |0〉 A
Ni
〈Q3/2| Ŝ+

i |0〉 . . .
A
Ni
〈Q3/2| Ŝ+

i |0〉
∗

E1
f 0 . . .

A
Ni
〈Q3/2| Ŝ+

i |0〉
∗

0
. . . . . .

...
...

...
. . .

 (5.12)

We assume that all final states energy are the same Ejf = Ef .

These contributions can be put together into one effective coupling corre-
sponding to spin-flip in the dot. Disregarding the exact final spin configuration
of the nuclear spin ensemble, we can write the ‘total’ matrix element as

〈f |H+
HF |i〉 =

A

N

√
N+ 〈Q3/2|Ŝ+|0〉 (5.13)

Let us introduce the total number of nuclei N = N+ +N− and the polari-

sation P = N+−N−
N . N+ can then be expressed

N+ = N
1 + P

2
(5.14)
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Insert into the effective coupling Eq.(5.13) and obtain

〈f |H+
HF |i〉 =

A√
N

√
1 + P

2
〈Q3/2|Ŝ+|0〉 (5.15)

with corresponding final state

|f〉 = |Q3/2〉e |N
+ − 1〉n (5.16)

This procedure was for one of the three dots. The different nuclear states
of he dots do not overlap, causing them to be fully uncoupled. This leads to
three effective states, one for each dot, coupling to the final state. These three
states can again be combined in a similar fashion as done for the N+ different
states for one dot. This results in the effective coupling between final state and
spin-flip in any dot, and takes the form

〈f̃ |H+
HF |i〉 =

A√
N

√∑
i

1 + Pi
2
|〈Q3/2|Ŝ+

i |0〉 |2 (5.17)

Where it is assumed that all dots have the same number of nuclei N . This is
then the necessary matrix element for Landau-Zener transitions Eq.(4.10). The
corresponding final state is

|f̃〉 = N
∑
i

√
1 + Pi

2
(|〈Q3/2|Ŝ+

i |0〉 |) |Q3/2〉e |N
+
i − 1〉 (5.18)

with N a normalisation constant

The probability pj for the spin-flip to have happened in dot j is then given
by

pj =

1+Pj
2 |〈Q3/2|Ŝ+

j |0〉 |2∑
i

1+Pi
2 |〈Q3/2|Ŝ+

i |0〉 |2
(5.19)

Similar derivation follows for Ŝ−i . The corresponding expressions become

〈f̃ |H−HF |i〉 =
A√
N

√∑
i

1− Pi
2
|〈0〉 |Ŝ−i |Q3/2|2 (5.20)

and for Ŝzi there will be an effective field with energy contribution

Hz
HF = A

∑
i

PiŜ
z
i (5.21)

The form of |0〉 also enters into the transitions. Let us focus on the (1,1,1)
part

|0〉 ' α(ε) |↑↑↓〉+ β(ε) |↑↓↑〉+ γ(ε) |↓↑↑〉 (5.22)
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The coefficients will depend on ε. More specifically in terms of the HI they
will depend on the crossing between |Q3/2〉 and |0〉 which happens at ε = εc.
As the polarisation is changed this crossing will also change εc = εc(P ). The
coefficients enter into the coupling through

α0 = 〈Q3/2|S+
3 |0〉 = 〈0|S−3 |Q3/2〉

∗

β0 = 〈Q3/2|S+
2 |0〉 = 〈0|S−2 |Q3/2〉

∗

γ0 = 〈Q3/2|S+
1 |0〉 = 〈0|S−1 |Q3/2〉

∗
(5.23)

where α0 = α(εc) and so on.

Completing the expression for the coupling between them and inserting it
into the Landau-Zener expression we get the transition probability

PLZ = 1− exp

[
−2π

q2
±
h̄v

]
q2
± =

A2

N

(
1± P1

2
|γ0|2+

1± P2

2
|β0|2+

1± P3

2
|α0|2

)
v =

∂E

∂ε

∂ε

∂t

(5.24)

where the ± refers to which electron spin-flip is occurring. The coefficients can
also be included into Eq.(5.19) to give

p1 =
(1± P1)|γ0|2

(1± P1)|γ0|2+(1± P2)|β0|2+(1± P3)|α0|2

p2 =
(1± P2)|β0|2

(1± P1)|γ0|2+(1± P2)|β0|2+(1± P3)|α0|2

p3 =
(1± P3)|α0|2

(1± P1)|γ0|2+(1± P2)|β0|2+(1± P3)|α0|2

(5.25)

for a given spin-flip happening in one of the dots.
∑
i pi = 1 as it should be.

These forced and controlled spin-flips will compete against the natural re-
laxation of the nuclear spin polarisation. Let us make a short summary of this
relaxation next.

5.2.1 Nuclear spin relaxation

The nuclear Zeeman-splitting is a very small energy splitting and will behave
randomly even for small temperatures. This random behaviour will cause spin-
flips of the nuclear spins and can be qualitatively investigated defining two
spin-flip frequencies

γ+ = AN− = AN 1− P
2

γ− = AN+ = AN 1 + P

2

(5.26)
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where A is a parameter governing the efficiency of these spin-flip processes. γ±
is the frequency of ± spin-flips.

Eq.(5.26) can be understood by noting that N∓ are the available nuclei for
± spin-flips. Consider then the overall effect on the polarisation by one spin-flip

∆P = P (N+ ± 1)− P (N+) =
(N+ ± 1)− (N− ∓ 1)

N
− (N+ −N−)

N
= ± 2

N
(5.27)

This means that the change in polarisation due to γ± can be expressed

dP

dt
=

2

N
(γ+ − γ−) = −2AP (5.28)

The quantity 2A = 1/τ is knows as the relaxation constant and depends on the
material. Solving this differential equation yields

P (t) = P0e
−t/τ (5.29)

Where P0 is the initial polarisation. This shows that on average the polarisation
will relax down to zero.

At P = 0 we have N+ = N− = N
2 which means that on average γ+ =

γ−. However these processes are random and will still cause the polarisation
fluctuate around zero, but if polarisation starts to build up the relaxation will
begin to force it back towards zero. The relaxation constant τ ∼ 10s for GaAs
[40].

5.3 Numerical simulations

In this section we will consider the effect Landau-Zener transitions on the TQD
have on the polarisation of nuclei on each dot. The general approach will be
described as well as the result for specific sweeping procedures. The simulations
was performed in Python using the packages scipy, pyplot, time and random.
The code is added in the appendix.

5.3.1 Algorithm

In the numerical approach the system is initialised with different system param-
eters. Some of these, such as ∆, t, will be the same for all numerical procedures
and determine the energies of the Sz = 1

2 sub-space. Others can be varied
to affect the probability of transitions such as initial polarisation P , external
magnetic field B and the sweep speed ∂ε

∂τ .

The effect of sweeping through a crossing will be different in the left crossing
and the right crossing, Fig.5.7 a). The effective field will determine where the
crossing happens, εc, which in turn will determine what the coefficients are for
the |0〉 state

|0〉 = α(ε) |↑↑↓〉+ β(ε) |↑↓↑〉+ γ(ε) |↓↑↑〉 (5.30)
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Crossing point
ffεc(Be )

0 1

Q3/2

(2,0,1) (1,0,2)

(1,1,1)
a)

b)

Figure 5.7: a) Energies of the system and crossing points ε = εc. Dashed lines
illustrate the change of εc as the field varies. b) squared coefficients of the |0〉
state in basis |↑↑↓〉 , |↑↓↑〉 , |↓↑↑〉. ε′ = ε

∆ and E′ = E
∆ . t = 0.2∆ was used to

enhance the splitting between |0〉 and |1〉

By going through the right crossing this will affect dot 1 and 2. While the left
crossing will affect dot 2 and 3. This can be seen from the values of the coef-
ficients at the crossing, Fig.5.7 b). Further we see that in the doubly occupied
areas the coefficients are small as expected, and if the energy crossing happens
here the probability of transition would be small.

Once a LZ-transition happens the polarisation, and as a consequence the
effective field, changes. This leads to change in the system energies and change
of the crossing points. Since some of the parameters of the system is changed so
is the Hamiltonian, and it will need be solved again for each change of the system
parameters. This leads to a routine illustrated in Fig.5.8. The Hamiltonian is
solved to obtain the energy spectrum and the coefficients. A sweep through one
of the crossings is performed with the possibility of a LZ-transition in one of
the dots. This sweep will require some interval of time, and as this time goes
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Update values

LZ-transition

Random flips

Figure 5.8: Order of the algorithm. The Hamiltonian is solved for the system
parameters. Second comes a calculation to determine if a Landau-Zener tran-
sition (LZ) occurs and update of values accordingly. After LZ it checks for the
effect of random spin-flips and updates values accordingly. These three steps
are then repeated.

there is a chance that the nuclei will perform random spin-flips. If any changes
occur the system parameters are updated. This cycle is then continued for the
necessary number of sweeps n while looking at the evolution of the polarisation.

The random flips mentioned are the random fluctuations of the nuclear spin
bath with typical value of the effective field A√

N
[39]. The goal is for this proce-

dure to reduce these random effects and therefore increase the coherence time of
the system. The random flips have a characteristic relaxation time τr. The num-
ber of random flips happening during a sweep will depend on the ratio

τsweep
τr

,
implying that the sweeps must happen with a sufficiently high frequency to
outperform the random flips. In the algorithm the amount of random flips are
determined by a Poisson distribution with expected value depending on the ratio
between relaxation and sweep time and the system polarisation.

5.3.2 Results and discussion

Here we present the results from the different sweep procedures. We must
stress that the values chosen are not necessarily physical, but chosen to elicit
the overall effect of each procedure. All plots share the common parameters:
∆ = 1, t = 0.1∆, A = ∆,

tsweep
τr

= 10−5 and Pinit = [0.00, 0.00, 0.00]. The
remaining parameters are varied slightly: Initial Zeeman-energy E0Z , sweeping
speed v0 = h̄∂ε∂t , number of nuclei on the dot N . The number of sweeps was of
order n ∼ 106, sufficiently large to see any tendencies of the method.

We will be comparing the root-mean-square (RMS) values of the fluctu-
ations over each dot, both for only random flips and for random flips with
Landau-Zener transitions, denoted RMSi and RMSiLZ respectively with i in-
dicating which dot. The goal is for Landau-Zener transitions to reduce the
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magnitude of the fluctuations.

E0

EQ3/2

ε0

Left crossing Right Crossing
Relaxation

Start

Figure 5.9: Begin at ε = 0 in the |Q3/2〉 state. Relaxation into ground state
after each crossing.
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LZ with random flipsOnly random flipsLZ with random flipsOnly random flips

P1 P2 P3

Figure 5.10: N = 105, E0Z = 0.15∆, v0 = 10−6∆2. RMS values: RMS1
LZ =

0.003, RMS1 = 0.003, RMS2
LZ = 0.003, RMS2 = 0.003, RMS3

LZ = 0.003,
RMS3 = 0.003.

From the results we can see that mainly two procedures looks interesting to
explore further, namely Fig.5.11 and Fig.5.15. The change in RMS value is not
dramatic, but they are improved. Fig.5.11 seems to reduce the magnitude of
fluctuations for each dot, which is in the end necessary to increase the coherence
time of the system.
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E0

EQ3/2

ε0

Left crossing Right Crossing
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Start Start

Figure 5.11: Begin at |ε|> ∆ in the |0〉 state. Go through the crossing. Alternate
between beginning at left and right side.
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Figure 5.12: N = 104, E0Z = 0.025∆, v0 = 10−5∆2. RMS values: RMS1
LZ =

0.007, RMS1 = 0.009, RMS2
LZ = 0.007, RMS2 = 0.010, RMS3

LZ = 0.007,
RMS3 = 0.010.
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ε0

Left crossing Right Crossing
Relaxation

Start

Figure 5.13: Begin at ε = 0 in the |Q3/2〉 state. Relaxation into ground state
only in the regime |ε|< ∆.
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Figure 5.14: Here the pure Landau-Zener transition is also added to emphasise
the ‘pushing’ it exerts towards the random flips. N = 104, E0Z = 0.025∆,
v0 = 10−5∆2. RMS values: RMS1

LZ = 0.012, RMS1 = 0.001, RMS2
LZ = 0.006,

RMS2 = 0.009, RMS3
LZ = 0.011, RMS3 = 0.009.
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Figure 5.15: Begin at ε < −∆ in the |Q3/2〉 state. Sweep through the crossings
without any relaxation.
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Figure 5.16: Here the pure Landau-Zener transition is also added to emphasise
the ‘pushing’ it exerts towards the random flips. N = 104, E0Z = 0.1∆, v0 =
10−5∆2. RMS values: RMS1

LZ = 0.011, RMS1 = 0.010, RMS2
LZ = 0.003,

RMS2 = 0.010, RMS3
LZ = 0.010, RMS3 = 0.010.

5.4 Analytic approximation

In order to better understand the coupled electron-nuclear spin dynamics re-
sulting from the different sweep procedures investigated above, we would like
to develop an analytic framework to describe the time-dependence of the po-
larisations in the three dots. The first step will be made using perturbation
theory.
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Figure 5.17: Squared coefficients of the |0〉 state found by numerical solution of
the Hamiltonian (5.32). ε = ε

∆ . t = 0.2∆

5.4.1 Perturbation theory for logical states

We will consider the basis

|DT 〉 =
1√
6

(|↑↑↓〉 − 2 |↑↓↑〉+ |↓↑↑〉)

|DS〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉)

|↑ 0S〉, |S0 ↑〉

(5.31)

in which the Hamiltonian can be written as a four dimensional matrix

H =


0 0 t

2
t
2

0 0
√

3t
2 −

√
3t
2

t
2

√
3t
2 ∆+ 0

t
2 −

√
3t
2 0 ∆−

 (5.32)

with ∆± = ∆±ε. Here both the Zeeman-energy and the Coulomb energy of the
(1,1,1) configuration is shifted out. Any contribution from the nuclear gradient
fields are also omitted for now.

Eigenstates of the Hamiltonian (5.32) is not straightforward to find through
a process of diagonalisation. Therefore it is needed with some approximations.
Looking at Fig.5.17 it is clear that |S0 ↑〉 only have a small contribution for
ε > 0 and |↑ 0S〉 only have a small contribution for ε < 0. So for each regime
of ε the coupling to one of the doubly occupied states might be considered a
perturbation, and will hopefully to a good approximation recreate the energy
spectrum found numerically.

Let us consider the regime ε < 0 and consider the coupling to |↑ 0S〉 as a
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perturbation. The Hamiltonian can then be expressed

H = H0 + V ′ =


0 0 t

2 0

0 0 −
√

3t
2 0

t
2 −

√
3t
2 ∆′+ 0

0 0 0 ∆′−

+


0 0 0 t

2

0 0 0
√

3t
2

0 0 0 0
t
2

√
3t
2 0 0

 (5.33)

The H0 part can be diagonalised, which is clear by doing a change of basis

|α〉 =
1

2
(
√

3 |DS〉+ |DT 〉)

|β〉 =
1

2
(|DS〉 −

√
3 |DT 〉)

(5.34)

This leads to

H0 =


0 0 0 0
0 0 t 0
0 t ∆+ 0
0 0 0 ∆−

 (5.35)

with eigenstates and eigenenergies

E± =
∆+

2
±

√(
∆+

2

)2

+ t2

|E+〉 = cos
θ

2
|β〉+ sin

θ

2
|S0 ↑〉

|E−〉 = sin
θ

2
|β〉 − cos

θ

2
|S0 ↑〉

tan θ =
2t

∆+

(5.36)

In the basis {|α〉 , |E−〉 , |E+〉 , |↑ 0S〉} the Hamiltonian becomes

H = H0 + V ′ =


0 0 0 0
0 E− 0 0
0 0 E+ 0
0 0 0 ∆′−

+


0 0 0 tα
0 0 0 t−
0 0 0 t+
tα t− t+ 0

 (5.37)

with tα =
√

3t
2 , t+ = − t

2 cos θ2 , t− = − t
2 sin θ

2 . Since we are using the crossing
between |0〉 and |Q3/2〉 for our Landau-Zener transitions it is here only necessary
to find an expression for this |0〉 state.

The state with lowest energy is |E−〉 so we only need the effect of the
perturbation on this state. Additionally let us assume that min(∆E−+) =
min(E+−E−) = 2t is much larger than the perturbation, such that these states
are always sufficiently far apart. Then it is enough to consider only how |α〉 and
|E−〉 is affected by V ′.
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2t

Figure 5.18: The energy spectrum of H0. The energies ∆′− corresponding to

|↑ 0S〉 will be higher up from these again. ε′ = ε
∆ , E′ = E′

∆ .

Limiting ourselves to the subsystem {|α〉 , |E−〉} and looking at the effect
of the perturbation using Schrieffer-Wolff transformation Eq.(4.7), the effective
Hamiltonian becomes

H =

 − t2α
∆−

1
2 tαt−

(
− 1

∆−
+ 1

E−−∆−

)
1
2 tαt−

(
− 1

∆−
+ 1

E−−∆−

)
E− +

t2−
E−−∆−


=

(
Ea tab
tab Eb

) (5.38)

The corresponding |0〉 state will then be on the form

E0 =
Ea + Eb

2
−

√(
Ea − Eb

2

)2

+ t2ab

|0〉 = sin
θ′

2
|α〉 − cos

θ′

2
|E−〉

tan θ′ =
2tab

(Ea − Eb)

(5.39)

where the perturbation of the |α〉 , |E−〉 states are considered negligible. This is
then the approximated expressions for |0〉 state and its energy.
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We can write out the expression for |0〉 to get the coefficients

|0〉 ' sin
θ′

2
|α〉 − cos

θ′

2
|E−〉

= sin
θ′

2

(
1

2
(
√

3 |DS〉+ |DT 〉)
)
− cos

θ′

2
sin

θ

2

(
1

2
(|DS〉 −

√
3 |DT 〉

)
=

1

2

(√
3 sin

θ′

2
− cos

θ′

2
sin

θ

2

)
|DS〉+

1

2

(
sin

θ′

2
+
√

3 cos
θ′

2
sin

θ

2

)
|DT 〉

=

√
2

3
sin

θ′

2
|↑↑↓〉 −

√
1

6

(
sin

θ′

2
+
√

3 cos
θ′

2
sin

θ

2

)
|↑↓↑〉−√

1

6

(
sin

θ′

2
−
√

3 cos
θ′

2
sin

θ

2

)
|↓↑↑〉

(5.40)

from where we can identify {α, β, γ}.

Let us now consider the regime ε > 0. All the same approximations will be
assumed with |S0 ↑〉 and |↑ 0S〉 switching roles. Begin again with the Hamilto-
nian (5.32) and consider the |S0 ↑〉 as a perturbation

H = H0 + V ′ =


0 0 t

2 0

0 0
√

3t
2 0

t
2

√
3t
2 ∆− 0

0 0 0 ∆+

+


0 0 0 t

2

0 0 0 −
√

3t
2

0 0 0 0
t
2 −

√
3t
2 0 0

 (5.41)

Do a similar change of basis

|γ〉 =
1

2
(
√

3 |DS〉 − |DT 〉)

|δ〉 =
1

2
(|DS〉+

√
3 |DT 〉)

(5.42)

which in the basis {|γ〉 , |E−〉 , |E+〉 , |↑ 0S〉} results in

H = H0 + V ′ =


0 0 0 0
0 E− 0 0
0 0 E+ 0
0 0 0 ∆+

+


0 0 0 tγ
0 0 0 t−
0 0 0 t+
tγ t− t+ 0

 (5.43)
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where

E± =
∆−
2
±

√(
∆−
2

)2

+ t2

|E+〉 = cos
θ

2
|δ〉+ sin

θ

2
|↑ 0S〉

|E−〉 = sin
θ

2
|δ〉 − cos

θ

2
|↑ 0S〉

tan θ =
2t

∆−

(5.44)

with tγ =
√

3t
2 , t+ = − t

2 cos θ2 , t− = − t
2 sin θ

2 . We are still only interested in
the approximated |0〉 state, so we therefore focus on the |E−〉 , |γ〉 part of the
Hamiltonian.

H =

 − t2γ
∆+

1
2 tγt−

(
− 1

∆+ + 1
E−−∆+

)
1
2 tγt−

(
− 1

∆+
+ 1

E−−∆+

)
E− +

t2−
E−−∆+


=

(
Ec tcd
tcd Ed

) (5.45)

The corresponding |0〉 state will then be on the form

E0 =
Ec + Ed

2
−

√(
Ec − Ed

2

)2

+ t2cd

|0〉 = sin
θ

2
|γ〉 − cos

θ

2
|E−〉

tan θ =
2tcd

(Ec − Ed)

(5.46)

Let us again write out the expression for |0〉 to get the coefficients

|0〉 ' sin
θ′

2
|γ〉 − cos

θ′

2
|E−〉

= sin
θ′

2

(
1

2
(
√

3 |DS〉 − |DT 〉)
)
− cos

θ′

2
sin

θ

2

(
1

2
(|DS〉+

√
3 |DT 〉

)
=

1

2

(√
3 sin

θ′

2
− cos

θ′

2
sin

θ

2

)
|DS〉 −

1

2

(
sin

θ′

2
+
√

3 cos
θ′

2
sin

θ

2

)
|DT 〉

=

√
1

6

(
sin

θ′

2
−
√

3 cos
θ′

2
sin

θ

2

)
|↑↑↓〉+√

1

6

(
sin

θ′

2
+
√

3 cos
θ′

2
sin

θ

2

)
|↑↓↑〉 −

√
2

3
sin

θ′

2
|↓↑↑〉

(5.47)
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Figure 5.19: Comparison between analytic and numerical energies. E′ = E
∆ and

ε′ = ε
∆ . There is good accordance between numerical and analytic results even

for ε ' 0.

from where we can identify {α, β, γ} for ε > 0.

Comparing the energy expressions Eq.(5.46) and Eq.(5.39) they are sym-
metric and can be put together into one expression by ε→ −|ε| in Eq.(5.39) or
ε→ |ε| in Eq.(5.46). For the coefficients the following relation holds

α− ↔ −γ+

β− ↔ −β+

γ− ↔ −α+

(5.48)

5.4.2 Results and discussion

To see the validity of the analytic expressions we compare them to the numerical
exact solution. This is seen in Fig.5.19 and Fig.5.20. The analytic expressions
closely resembles the numerical solution even for ε ' 0 where it should be
weakest. Thus in the absence of nuclear gradient fields the |0〉 state can be
expressed in an analytic manner.

The next step in this direction is to include the effect of the nuclear field
gradients and see how this affects the solution. This will show up as both
addition to the energy and coupling between the states. The expressions found
here have a symmetry about ε = 0. This symmetry is in general expected to be
broken when gradient fields are included.
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Figure 5.20: Comparison between analytic and numerical state coefficients
squared. E′ = E

∆ and ε′ = ε
∆ . There is good accordance between numerical and

analytic results even for ε ' 0.
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Chapter 6
Conclusion

We have investigated how Landau-Zener transitions between |Q3/2〉 and |0〉
in the TQD can affect the magnitude of fluctuations of the nuclear gradient
fields. By using smart sweep procedures we were able to indeed reduce this
magnitude, see Fig.5.12 and Fig.5.16. Simulations show that it is choice of
procedure which determines if any suppression can be obtained, and parameters
chosen will determine the strength of the suppression. The parameters used in
this simulation where chosen to elicit the effect of the different procedures, and
further analysis must be conducted in order to quantify this effect. The main
question is how much such a procedure can increase the coherence time of the
system.

Motivated by the result of the numerical simulation the first steps toward an
analytic framework for the time dependence of the polarisation have also been
made. By applying perturbation theory to the Hamiltonian and treating the
regions of ε < 0 and ε > 0 we were able to produce an accurate solution for the
|0〉 state when nuclear field gradients is neglected.

The next step forward is to incorporate the nuclear field gradients into the
Hamiltonian expressed by the analytic expressions. If this can be done the
eigenstates of the system can be to a good approximation given by analytic
expressions, possibly taking another step towards a good understanding of the
time dependence of the polarisation in the system during the Landau-Zener
sweeps.

56



Appendix A
Code

1 import s c ipy as sc
2 import matp lo t l i b . pyplot as p l t
3 import s c ipy . l i n a l g as LA
4 import random as rnd
5 import time
6 from sc ipy . s t a t s import po i s son
7

8 de f i s F l i p (v , a , b , c ) :
9 ”””

10 Checks i f a LZ t r a n s i t i o n happens and which dot i t happens in
11

12 v = sweep speed
13

14 a , b , c = coup l ing c o e f f i c i e n t s from hype r f i n e i n t e r a c t i o n
15 ”””
16 Dot = sc . array ( [ 0 , 0 , 0 ] )
17 prob = 1 sc . exp ( ( 2 ∗ sc . p i ) ∗ ( a∗∗2 + b∗∗2 + c ∗∗2) / (4 ∗ v )

)
18 # pr in t ( ’ a = {} , b = {} , c = {} , prob = {} ’ . format (a , b , c , prob ) )
19 f l i p = Fal se
20 i f ( prob > rnd . random ( ) ) :
21 f l i p = True
22 N1 = (a ∗ a ) / ( a ∗ a + b ∗ b + c ∗ c )
23 N2 = (b ∗ b) / ( a ∗ a + b ∗ b + c ∗ c )
24 N3 = ( c ∗ c ) / ( a ∗ a + b ∗ b + c ∗ c )
25 r = rnd . random ( )
26 dot = 0
27 i f (N1 >= r ) :
28 Dot [ 2 ] = 1
29 e l i f (N1 + N2 >= r ) :
30 Dot [ 1 ] = 1
31 e l s e :
32 Dot [ 0 ] = 1
33

34 r e turn Dot , f l i p
35

36 de f customEigh (H, var , de l ta ,AP) :

A



37 ”””
38 Handle the s o r t i n g o f two lowest c r o s s i n g e i g e n s t a t e s
39 o f a Hamiltonian where one o f the va lue s i s known . The
40 e i g e n s t a t e s needs to be uncoupled .
41

42 This a l s o f i n d s where the en e r g i e s c r o s s
43

44

45 H i s the Hamiltonian
46

47 var i s the va r i ab l e
48

49 AP i s array o f e f f e c t i v e f i e l d over each dot
50

51 ”””
52 switch1 = False
53 switch2 = False
54 idx1 = 1
55 idx2 = 1
56

57 e igVal = sc . z e r o s ( ( l en ( var ) , l en (H) ) )
58 eigVec1 = sc . z e r o s ( ( l en ( var ) , l en (H) ) )
59 eigVec2 = sc . z e r o s ( ( l en ( var ) , l en (H) ) )
60

61 f o r idx , va lue in enumerate ( var ) :
62

63 H[4 , 4 ] = de l t a + value + AP[ 2 ]
64 H[5 , 5 ] = de l t a va lue + AP[ 0 ]
65

66 e i gva l , e i gve c = LA. e igh (H)
67 e igVal [ idx , : ] = e i g v a l
68 i f ( e i g v a l [ 0 ] == H[ 0 , 0 ] ) :
69

70 i f ( idx1 == 1 and idx2 == 1 ) :
71 idx1 = idx
72

73 e igVal [ idx , 0 ] = e i g v a l [ 1 ]
74 e igVal [ idx , 1 ] = e i g v a l [ 0 ]
75 eigVec1 [ idx , : ] = e i gve c [ : , 1 ]
76 eigVec2 [ idx , : ] = e i gve c [ : , 0 ]
77 e l s e :
78

79 i f ( not idx1 == 1 and idx2 == 1 ) :
80 idx2 = idx
81

82 e igVal [ idx , 0 ] = e i g v a l [ 0 ]
83 e igVal [ idx , 1 ] = e i g v a l [ 1 ]
84 eigVec1 [ idx , : ] = e i gve c [ : , 0 ]
85 eigVec2 [ idx , : ] = e i gve c [ : , 1 ]
86

87 r e turn [ e igVal , eigVec1 , eigVec2 , idx1 , idx2 ]
88

89 de f sweep ( v0 , idx ,B, evec , e i gva l , var , s t r i n g ) :
90 ”””
91 Genera l i zed sweep procedure
92

93 v0 = the constant v e l o c i t y

B



94 idx = index o f c ro s s ing , input must correspond to r i g h t
95 or l e f t c r o s s i n g
96 B = coup l ing f i e l d , input must correspond to r i g h t or
97 l e f t c r o s s i n g
98 evec = e i g enve c t o r o f groundstate from customEigh
99 e i g v a l = e i g enva lu e s from customEigh

100 var = va r i ab l e i t e r a t e d over
101 s t r i n g = which t r a n s i t i o n (E. g ’Q0 ’ or ’0Q ’ )
102 ”””
103 i f ( idx == 1 ) :
104 a = b = c = 0
105 v = 1
106 e l s e :
107 a = evec [ idx , 3 ] ∗ B[ 2 ]
108 b = evec [ idx , 2 ] ∗ B[ 1 ]
109 c = evec [ idx , 1 ] ∗ B[ 0 ]
110 v = v0 ∗ abs ( ( e i g v a l [ idx +1 , 0 ] e i g v a l [ idx 1 , 0 ] ) /(2∗ ( var [ idx

] var [ idx 1 ] ) ) )
111

112 Dot , f l i p = i s F l i p (v , a , b , c )
113 i f ( s t r i n g == ’ 0Q’ ) :
114 Dot ∗= 1
115

116 r e turn Dot , f l i p
117

118 de f sweepRoutine12 (m, ts , bool1 , bool2 ) :
119 ”””
120 Le f t c r o s s i n g with mid i n i t i a l i z a t i o n
121

122 m i s number o f sweeps
123

124 bool1 determines i f LZ t r a n s i t i o n s are inc luded
125

126 bool2 determines i f random spin f l i p s are inc luded
127

128 Sweep template :
129

130 | |
131 | Update va lue s | > i f ( change )
132 | |
133

134 | | > i f ( f l i p )
135 | LZ Trans i t i on | updates f l i p ac co rd ing ly
136 | |
137

138 | |
139 | Random f l i p s | > change = True
140 | |
141

142 ∗
143

144 ∗
145

146 ∗
147 ”””
148 r e s = 10∗∗2 #r e s o l u t i o n
149 de l t a = 1 #100 200E 6 eV

C



150 t = 0 .1 ∗ de l t a #tunne l ing coup l ing
151 eps = sc . l i n s p a c e ( 1 . 5 ∗ de l ta , 1 . 5 ∗ de l ta , r e s ) #tuning

parameter
152

153 f l i p = True
154 change = False
155

156 n = m #number o f sweeps
157 N = 1E+5 #number o f nu c l e i
158 dP = 2.0 / N #change in p o l a r i z a t i o n
159 E0z = 6∗ t ∗∗2/ de l t a # corresponds to B0 ˜ 370 mT
160 A = 1∗ de l t a #coup l ing f a c t o r between nu c l e i and dot
161 v0 = 1E 5
162 tsweep = t s#1E 4 #f a c t o r f o r random spin f l i p s based on sweep

f requency
163

164 P1storage = sc . z e r o s (n) #returned array
165 P2storage = sc . z e r o s (n)
166 P3storage = sc . z e r o s (n)
167

168 Dot = sc . z e r o s (3 )
169 P = sc . array ( [ . 0 , . 0 , . 0 ] )#sc . array ( [ . 0 1 , . 0 1 , . 0 1 ] )#i n i t a l

spin p o l a r i z a t i o n
170 Bp = [ 0 . 0 , 0 . 0 , 0 . 0 ] #e f f e c t i v e p o s i t i v e f i e l d
171 Bm = [ 0 . 0 , 0 . 0 , 0 . 0 ] #e f f e c t i v e negat ive f i e l d
172

173 H = sc . z e r o s ( ( 6 , 6) ) #i n i t i a l i z e matrix
174 e i g v a l = sc . z e r o s ( ( res , 6) ) #i n i t i a l i z e e i g enva lue
175 e i gvec1 = sc . z e r o s ( ( res , 6) ) #i n i t i a l i z e e i g enve c t o r f o r 0

s t a t e
176 e i gvec2 = sc . z e r o s ( ( res , 6) ) #i n i t i a l i z e e i g enve c t o r f o r Q

s t a t e ( not used )
177

178 #Tr ip l e dot i n t e r a c t i o n
179 #Same f o r a l l sweeps
180 H[1 , 5 ] = H[ 5 , 1 ] = H[ 2 , 4 ] = H[ 4 , 2 ] = t / sc . s q r t (2 )
181 H[2 , 5 ] = H[ 5 , 2 ] = H[ 3 , 4 ] = H[ 4 , 3 ] = H[ 1 , 5 ]
182

183 f o r i in range (n) : #loops f o r number o f sweeps
184

185 P1storage [ i ] = P [ 0 ] #update i va lue
186 P2storage [ i ] = P [ 1 ]
187 P3storage [ i ] = P [ 2 ]
188

189 i f ( ( change or f l i p ) and bool1 ) :
190 change = False
191 #update f i e l d s
192 #

################################################################

193 #Ef f e c t i v e f i e l d p o s i t i v e e l e c t r on f l i p
194 Bp = [A / sc . s q r t (N) ∗ sc . s q r t ( ( ( 1 + P[ i ] ) / 2) ) f o r i

in range (3 ) ]
195 #Ef f e c t i v e f i e l d negat ive e l e c t r on f l i p
196 Bm = [A / sc . s q r t (N) ∗ sc . s q r t ( ( ( 1 P[ i ] ) / 2) ) f o r i

in range (3 ) ]
197 #Updated Zeeman energy tak ing p o l a r i z a t i o n in to account

D



198 Ez = ( E0z sum(A ∗ P) )
199 #

################################################################

200

201 #update and ( re ) d i a g ona l i z e the matrix
202 #

################################################################

203 H[0 , 0 ] = Ez
204 H[1 , 1 ] = A ∗ P [ 0 ] + A ∗ P [ 1 ] + A ∗ P [ 2 ]
205 H[2 , 2 ] = +A ∗ P [ 0 ] A ∗ P [ 1 ] + A ∗ P [ 2 ]
206 H[3 , 3 ] = +A ∗ P [ 0 ] + A ∗ P [ 1 ] A ∗ P [ 2 ]
207

208 #ca l c u l a t e the e i g enva lu e s and e i g enve c t o r
209 e i gva l , e igvec1 , e igvec2 , idx1 , idx2 = customEigh (H, eps ,

de l ta ,A∗P)
210

211 #
################################################################

212

213 ####################
214 ###Fi r s t c r o s s i n g###
215 ####################
216

217 #################
218 ### Lef t s i d e ###
219 #################
220

221 #############
222 ###0 > Q###
223 #############
224 i f ( bool1 ) :
225 Dot , f l i p = sweep ( v0 , idx1 ,Bp , e igvec1 , e i gva l , eps , ’ 0Q’ )
226 P += Dot∗dP
227 #

################################################################

228

229 #random f l i p s
230 i f ( bool2 ) :
231

232 Np = N/2∗(1+P)
233 Nm = N/2 ∗ ( 1 P)
234

235 pFl ip = sc . array ( [ po i s son . rvs ( tsweep∗Np[ i ] , s i z e =1) [ 0 ]
f o r i in range (3 ) ] )

236 mFlip = sc . array ( [ po i s son . rvs ( tsweep∗Nm[ i ] , s i z e =1) [ 0 ]
f o r i in range (3 ) ] )

237

238 P += dP∗(mFlip pFl ip )
239 change = True
240

241 i f ( ( change or f l i p ) and bool1 ) :
242 change = False
243 #update f i e l d s

E



244 #
################################################################

245 #Ef f e c t i v e f i e l d p o s i t i v e e l e c t r on f l i p
246 Bp = [A / sc . s q r t (N) ∗ sc . s q r t ( ( ( 1 + P[ i ] ) / 2) ) f o r i

in range (3 ) ]
247 #Ef f e c t i v e f i e l d negat ive e l e c t r on f l i p
248 Bm = [A / sc . s q r t (N) ∗ sc . s q r t ( ( ( 1 P[ i ] ) / 2) ) f o r i

in range (3 ) ]
249 #Updated Zeeman energy tak ing p o l a r i z a t i o n in to account
250 Ez = ( E0z sum(A ∗ P) )
251 #

################################################################

252

253 #update and ( re ) d i a g ona l i z e the matrix
254 #

################################################################

255 H[0 , 0 ] = Ez
256 H[1 , 1 ] = A ∗ P [ 0 ] + A ∗ P [ 1 ] + A ∗ P [ 2 ]
257 H[2 , 2 ] = +A ∗ P [ 0 ] A ∗ P [ 1 ] + A ∗ P [ 2 ]
258 H[3 , 3 ] = +A ∗ P [ 0 ] + A ∗ P [ 1 ] A ∗ P [ 2 ]
259

260 #ca l c u l a t e the e i g enva lu e s and e i g enve c t o r
261 e i gva l , e igvec1 , e igvec2 , Index1 , Index2 = customEigh (H, eps

, de l ta ,A∗P)
262 #

################################################################

263

264 #################
265 ###Right s i d e ###
266 #################
267

268 i f ( bool1 ) :
269 #############
270 ###Q > 0###
271 #############
272 Dot , f l i p = sweep ( v0 , idx1 ,Bm, e igvec1 , e i gva l , eps , ’Q0 ’ )
273 P += Dot∗dP
274 #

################################################################

275

276

277 #random f l i p s
278 i f ( bool2 ) :
279

280 Np = N/2∗(1+P)
281 Nm = N/2 ∗ ( 1 P)
282

283 pFl ip = sc . array ( [ po i s son . rvs ( tsweep∗Np[ i ] , s i z e =1) [ 0 ]
f o r i in range (3 ) ] )

284 mFlip = sc . array ( [ po i s son . rvs ( tsweep∗Nm[ i ] , s i z e =1) [ 0 ]
f o r i in range (3 ) ] )

285

F



286 P += dP∗(mFlip pFl ip )
287 change = True
288

289 r e turn P1storage , P2storage , P3storage

G
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[23] D. M. Zumbühl et al. “Spin-Orbit Coupling, Antilocalization, and Parallel
Magnetic Fields in Quantum Dots”. In: Phys. Rev. Lett. 89.27 (2002),
p. 276803. doi: 10.1103/physrevlett.89.276803.

[24] S. Amasha et al. “Electrical Control of Spin Relaxation in a Quantum
Dot”. In: Phys. Rev. Lett. 100.4 (2008), p. 046803. doi: 10.1103/physrevlett.
100.046803.

[25] Vitaly N. Golovach, Alexander Khaetskii, and Daniel Loss. “Phonon-
Induced Decay of the Electron Spin in Quantum Dots”. In: Phys. Rev.
Lett. 93.1 (2004), p. 016601. doi: 10.1103/physrevlett.93.016601.

[26] R. Hanson et al. “Spins in few-electron quantum dots”. In: Rev. Mod.
Phys. 79.4 (2007), pp. 1217–1265. doi: 10.1103/revmodphys.79.1217.

https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.6100/ir423028
https://doi.org/10.6100/ir423028
https://doi.org/10.1007/bf02744866
https://doi.org/10.1016/0079-6786(75)90005-9
https://doi.org/10.1088/0034-4885/48/6/002
https://doi.org/10.1088/0034-4885/48/6/002
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1103/physreva.57.120
https://doi.org/10.1103/physreva.57.120
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physrev.100.580
https://doi.org/10.1103/physrev.100.580
https://doi.org/10.1103/physrevlett.89.276803
https://doi.org/10.1103/physrevlett.100.046803
https://doi.org/10.1103/physrevlett.100.046803
https://doi.org/10.1103/physrevlett.93.016601
https://doi.org/10.1103/revmodphys.79.1217


[27] D. Paget et al. “Low field electron-nuclear spin coupling in gallium ar-
senide under optical pumping conditions”. In: Phys. Rev. B 15.12 (1977),
pp. 5780–5796. doi: 10.1103/physrevb.15.5780.

[28] Alexander V. Khaetskii, Daniel Loss, and Leonid Glazman. “Electron Spin
Decoherence in Quantum Dots due to Interaction with Nuclei”. In: Phys.
Rev. Lett. 88.18 (2002), p. 186802. doi: 10 . 1103 / physrevlett . 88 .

186802.

[29] I. A. Merkulov, Al. L. Efros, and M. Rosen. “Electron spin relaxation by
nuclei in semiconductor quantum dots”. In: Phys. Rev. B 65.20 (2002),
p. 205309. doi: 10.1103/physrevb.65.205309.

[30] R. Ziegler, C. Bruder, and Herbert Schoeller. “Transport through double
quantum dots”. In: Phys. Rev. B 62.3 (2000), pp. 1961–1970. doi: 10.
1103/physrevb.62.1961.

[31] J. R. Petta. “Coherent Manipulation of Coupled Electron Spins in Semi-
conductor Quantum Dots”. In: Science 309.5744 (2005), pp. 2180–2184.
doi: 10.1126/science.1116955.

[32] Marek Korkusinski et al. “Topological Hunds rules and the electronic
properties of a triple lateral quantum dot molecule”. In: Phys. Rev. B
75.11 (2007), p. 115301. doi: 10.1103/physrevb.75.115301.

[33] J. M. Taylor, V. Srinivasa, and J. Medford. “Electrically Protected Res-
onant Exchange Qubits in Triple Quantum Dots”. In: Phys. Rev. Lett.
111.5 (2013), p. 050502. doi: 10.1103/physrevlett.111.050502.

[34] J. Medford et al. “Quantum-Dot-Based Resonant Exchange Qubit”. In:
Phys. Rev. Lett. 111.5 (2013), p. 050501. doi: 10.1103/physrevlett.
111.050501.

[35] R. Maurand et al. “A CMOS silicon spin qubit”. In: Nat. Commun. 7.1
(2016). doi: 10.1038/ncomms13575.

[36] Arnau Sala and Jeroen Danon. “Leakage and dephasing in Si28 -based
exchange-only spin qubits”. In: Phys. Rev. B 98.24 (2018), p. 245409.
doi: 10.1103/physrevb.98.245409.

[37] Arnau Sala and Jeroen Danon. “Exchange-only singlet-only spin qubit”.
In: Phys. Rev. B 95.24 (2017), p. 241303. doi: 10.1103/physrevb.95.
241303.

[38] C. Zener. “Non-Adiabatic Crossing of Energy Levels”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences
137.833 (1932), pp. 696–702. doi: 10.1098/rspa.1932.0165.

[39] John Schliemann, Alexander Khaetskii, and Daniel Loss. “Electron spin
dynamics in quantum dots and related nanostructures due to hyperfine in-
teraction with nuclei”. In: J. Phys. Condens. Matter 15.50 (2003), R1809–
R1833. doi: 10.1088/0953-8984/15/50/r01.

https://doi.org/10.1103/physrevb.15.5780
https://doi.org/10.1103/physrevlett.88.186802
https://doi.org/10.1103/physrevlett.88.186802
https://doi.org/10.1103/physrevb.65.205309
https://doi.org/10.1103/physrevb.62.1961
https://doi.org/10.1103/physrevb.62.1961
https://doi.org/10.1126/science.1116955
https://doi.org/10.1103/physrevb.75.115301
https://doi.org/10.1103/physrevlett.111.050502
https://doi.org/10.1103/physrevlett.111.050501
https://doi.org/10.1103/physrevlett.111.050501
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1103/physrevb.98.245409
https://doi.org/10.1103/physrevb.95.241303
https://doi.org/10.1103/physrevb.95.241303
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1088/0953-8984/15/50/r01


[40] M. Kotur et al. “Spin-lattice relaxation of optically polarized nuclei in p
-type GaAs”. In: Phys. Rev. B 97.16 (2018), p. 165206. doi: 10.1103/
physrevb.97.165206.

https://doi.org/10.1103/physrevb.97.165206
https://doi.org/10.1103/physrevb.97.165206


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s 
th

es
is

Ola Nielsen Estensen

Controlling nuclear field gradients in
triple quantum dot by Landau-Zener
sweeps

Master’s thesis in Ms.Phys.
Supervisor: Jeroen Danon

May 2019


	Abstract
	Sammendrag
	Preface
	Abbreviations
	Introduction
	Quantum computing
	The quantum bit
	Fundamental requirements to quantum bits
	Physical description of two level systems

	Spin qubits in quantum dots
	Quantum dots in semi-conductors
	2-dimensional electron gas
	Nanolithograpy
	Quantum dot electron transport

	Single-spin quantum bit
	Spin-orbit interaction
	Hyperfine interaction
	Summary of the single-spin quantum bit

	Double-spin quantum bit
	Triple-spin quantum bit

	Theoretical basics
	First order Schrieffer-Wolff transformation
	Landau-Zener transition

	Landau-Zener transitions in the TQD
	Q_3/2-D_t crossing without hyperfine interaction
	Hyperfine interaction in TQD
	Nuclear spin relaxation

	Numerical simulations
	Algorithm
	Results and discussion

	Analytic approximation
	Perturbation theory for logical states
	Results and discussion


	Conclusion
	Appendices
	Code
	References

