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Abstract

The goal of this bachelor project was to study the correlation between life stage, lipid composition
and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in early life stages (ELS) of the
fish species lumpsucker (Cyclopterus Lumpus) exposed to produced water (PW). The current work
is a part of the PW-Exposed project, lead by SINTEF Ocean, which will investigate and provide a
detailed understanding of the chemical composition and toxicological impacts of PW discharges
from oil producing platforms along the Norwegian continental shelf (NCS). As a part of the bigger
project, this bachelor thesis is based on experiments of PW and ELS of lumpsuckers, with the
purpose of identifying the most sensitive life stage in the development of the lumpsucker embryo.

Offshore oil and gas industry annually contribute to massive discharges of PW on NCS. PW
contains polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, which are known to be
toxic to early life stages (ELS) of fish. The study was performed on lumpsucker embryos exposed
at different live stages during the embryo stage and monitored until hatching. Three exposure
experiments, where accumulation and depuration (dep) of PAHs and alkyl PAHs were observed,
was performed at three potentially sensitive stages; during fertilization ("depl"), 36 hours post
fertilization (hpf) ("dep2") and 10 days post fertilization (dpf) ("dep3"). Embryos were sampled
at seven timepoints after exposure (0, 6, 12, 24, 48, 96 and 192 hours after exposure (hpe)).

In order to evaluate the bioaccumulation of PAHs, egg samples from the different sampling points
were homogenized, extracted with solvent and the extracts purified by solid-phase extraction
(SPE). The PAHs were analysed by gas chromatography coupled to tandem mass spectrometry
(GC-MS/MS). It is not enough research of ELS of fish in this area, this due to development of
techniques and methods for studies of PAH body burden concentration in ELS of fish that
recently became sensitive enough for small biotic samples (100 mg) exposed to low concentration
of contaminants. The total lipid content (by mass) of egg samples was determined by preforming
a modified Folch extraction.

The project revealed that lumpsucker embryos exposed to PW displayed increased internal body
burden concentration of PAHs and alkyl PAHs. This thesis focuses on three compounds
accumulated in the embryos; naphthalene (2-ring PAH), Cl-phenanthrene (3-ring alkyl PAH) and
dibenzothiophene (3-ring PAH). The highest accumulation of PAHs was observed in the embryos
exposed during the earliest life stage (0 hpf), with decreased body burden observed in embryos
exposed at later life stages (36 hpf and 10 dpf). After transfer to clean water, the body burden
decreased as expected in all exposure scenarios. Naphthalene had the highest body burden,
followed by dibenzothiophene and lastly Cl-phenanthrene, this applies to all of the exposures.
Total extractable lipid content remained more or less constant throughout the development of
ELS lumpsucker, for this reason normalizing the body burden concentrations to lipid content
revealed the same results as the body burden concentration for the depurations. The
bioconcentration factor (BCF) calculated for the ’compounds at focus’ revealed that
dibenzothiphene was the most bioaccumulated compound in embryos exposed at 0 hpf, for
embryos exposed at 36 hpf and 10 dpf, naphthalene accumulated the most. The biotransformation
and the development of embryos affected the results. Video analysis performed on embryos after
17 dpf by Drs’ Bjgrn Henrik Hansen and Julia Farkas revealed that embryos exposed during the
earliest life stages (36 hpf and 10 dpf) had a significantly reduced heart rate.
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The current project was beneficial the PW-Exposed project and the field of science due to
improvement of techniques and methods for studiying PAH body burden concentration in a new
species of fish ELS exposed to low concentration of PW. Furthermore, the study conducted has
revealed new information regarding bioaccumulation and sensitivity at different life stages of
lumpsucker embryos. The PW-Exposed project is not finished and will be further investigated by
SINTEF Ocean along with partners.
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Sammendrag

Hensikten med denne bacheloroppgaven var & studere korrelasjonen mellom livsstadier,
lipidsammensetning og bioakkumulering av polysykliske aromatiske hydrokarboner (PAH) i
fiskearten rognkjeks (Cyclopterus lumpus). Arbeidet er en del av et prosjekt ledet av SINTEF
Ocean kalt "PW-Exposed". "PW-Exposed"-prosjektet forsker pa a fa en detaljert forstéelse av
den kjemiske sammensetningen og den toksikologiske innvirkningen utslippet av produsert vann
har pa norsk kontinentalsokkel. Som en del av et stgrre arbeid er denne bacheloroppgaven basert
pa eksperimenter med produsert vann og tidlige livsstadier av rognkjeks, med det formal &
identifisere det mest sensitive livsstadiet i utviklingen av rognkjeks-emrbyo.

Offshore olje- og gassindustri bidrar arlig til et stort utslipp av produsert vann péa norsk
kontinentalsokkel. Produsert vann inneholder polysykliske aromatiske hydrokarboner (PAH-er) og
alkyl PAH-er, som er kjente for & veere toksiske mot fisk i tidlig livsstadium. Det ble studert
rognkjeks embryoer eksponert for produsert vann pa tre forskjellige livsstadier i
embryonalutviklingen og overvaket til klekking. Eksponeringsforsgk, hvor opptak og utskilling av
PAH-er og alkyl PAH-er ble observert, ble utfgrt ved tre potensielt sensitive stadier; under
fertilisering ("depl"), 36 timer etter fertilisering ("dep2") og 10 dager etter fertilisering ("dep3").
Prgvetakning av embryoer ble gjort ved sju tidspunkt etter endt eksponering (0, 6, 12, 24, 48, 96
og 192 timer etter endt eksponering).

For & kunne evaluere bioakkumulasjonen av PAH, ble prgver med egg fra forskjellige
provetaknings-tidspunkt homogenisert, ekstrahert med lgsemiddel og ekstraktet ble renset ved
hjelp av en fastfase ekstraksjon (SPE). PAH-er ble analysert ved hjelp av en gass kromatograf
koblet med et tandem massespektrometri (GC-MS/MS). Fiskeembryo er lite forsket pa innenfor
dette feltet pa grunn av at teknikker og metoder for studering av PAH body burden konsentrasjon
i fisk i tidlig livsstadium nylig har blitt sensitive nok for sméa biotiske prgver (100 mg) eksponert
for kontaminanter i lave konsentrasjoner. Det totale lipidinnhold i prgvene ble funnet ved & utfgre
en modifisert Folch ekstraksjon.

I dette prosjektet s& man at rognkjeks-embryoene eksponert for produsert vann far en gkt
innvendig "body burden" konsentrasjon av PAH-er og alkyl PAH-er. I tillegg til & se pa total PAH
(tPAH) i embryo, hadde oppgaven fokus pé tre komponenter; naftalen (2-ring PAH), Cl-fenantren
(3-ring alkyl PAH) og dibenzotiofen (3-ring PAH). Den hgyeste akkumuleringen av PAH-er ble
observert i embryoer eksponert under det tidligste livsstadiet (0 timer etter fertilisering), med en
synkende body burden observert i embryoer i senere livsstadier (36 timer etter fertilisering og 10
dager etter fertilisering). Som forventet sank body burden i alle eksponerings scenarioene etter
overfgring til rent vann. Av komponentene i fokus hadde naftalen hgyeste body burden, etterfulgt
av dibenzotiofen og til slutt Cl-fenantren i alle eksponeringsforsgkene. Totalt ekstraherbart
lipidinnhold holdte seg jevt gjennom hele utviklingen av rognkjeks-embryoene, dette forte til at
normalisering av body burden konsentrasjoner til lipidinnhold ga samme resultater som body
burden konsentrasjonene for tPAH i hvert eksponeringsforsgk. Biokonsentrasjons-faktoren viste at
dibenzotiofen hadde den hgyeste bioakkumuleringen hos emrbyoer eksponert 0 timer etter
fertilisering blandt komponentene i fokus, hos embryoer eksponert ved 36 timer etter fertilisering
og 10 dager etter fetilisering er det naftalen som er den mest akkumulerte komponenten.
Biotransformasjon og utvikling av embryoet pavirket resultatet. Videoanalyser pa
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rognkjeks-embryo gjennomfgrt 17 dager etter fertilisering av Dr. Bjgrn Henrik Hansen og Julia
Farkas viste at embryoer eksponert under de tidligste livsstadiene (36 timer etter fertilisering og
10 dager etter fertilisereing) hadde en betydelig redusert hjertefrekvens.

Denne oppgaven har veert gunstig for "PW-Exposed"-prosjektet og dets forskningsomrade pa
grunn av forbedringene av benyttede teknikker og metoder brukt for & studere PAH body burden
konsentrasjoner i en ny type fiskeart eksponert for lave konsentrasjoner av produsert vann. Videre
har studiet i oppgaven avduket ny informasjon angiaende bioakkumulering og sensitivitet ved
forskjellige livsstadier hos rognkjeksembryoer. "PW-Exposed"-prosjektet er enda ikke fullfgrt, og
videre forskning vil bli gjort pa dette feltet av SINTEF Ocean i sammarbeid med partnere.
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2 Introduction

2.1 Background

Since the discovery of Ekofisk in 1969, the Norwegian economy have been highly dependent on the
oil and gas industry. It is considered to be the main reason for the development of the current
welfare system we have. World-wide, Norway is one of the largest provider of oil and gas. Norway
is also a major provider of fish, due to the large coast which are well suited for fisheries activities

3.

The offshore oil and gas industry affect the marine environment by discharges of oil and produced
water (PW). Annually PW contributes to a discharge of 130-150 million standard cubic metres
(scm) in the Norwegian continental shelf (NCS) [4]. Discharges of oil and PW causes a release of
compounds, for instance polycyclic aromatic hydrocarbons (PAHs) and alkyl PAHs. These
compounds are known to be toxic to early life stages (ELS) of fish, such as lumpsucker
(Cyclopterus Lumpus) embryos. The toxicological impact of PW on lumpsuckers are yet to be
fully investigated. Recent studies shows that lumpsuckers uses the offshore oil and gas platforms
as a habitat and spawning site [5]. This makes the lumpsucker appropriate for toxicity testing and
environmental monitoring related to PW.

2.2 The current work

This current work is a part of the PW-Exposed project, lead by SINTEF Ocean. The
PW-Exposed project investigates the chemical and toxicological impact of PW discharges from
platforms along NCS. The purpose of this bachelor thesis is to identify the most sensitive life
stage in the development of the lumpsucker embryo.

The toxicological impact PAHs have on lumpsuckers have not been fully investigated. The current
work will look at the difference the impact PAHs have on lumpsuckers at three potentially
sensitive stages. Looking at the difference of the affection PAHs and alkyl PAHs has at different
time points through the development of the fish embryo is something that have never been done
before. In addition to disclose the experiment, description of theory of produced water, polycyclic
aromatic hydrocarbons, bioaccumulation, biotransformation and analytical techniques is
embodied in the thesis. The report is compiled by the main purpose of this thesis, listed under:

e Investigation of the correlation between different life stages of PW-exposed lumpsucker
embryos, (0 hours post fertilization (hpf), 36 hpf and 10 days post fertilization (dpf)).

e Investigation of PAH bioaccumulation and elimination in different life stages of PW-exposed
lumpsucker embryos (0 hpf, 36 hpf, 10 dpf).

e Investigation of lipid composition in the different life stages of PW-exposed lumpsucker
embryos (0 hpf, 36 hpf and 10 dpf).



3 Theory

3.1 Lumpsucker

The fish specie studied in this thesis, lumpsucker, is a semipelagic fish specie which is wildly
distributed throughout the boreal region of the North Atlantic Ocean and the Barents Sea [6] [7].
The specie has been an important resource in the Norwegian salmon farming industry, being
utilized as a "cleaning fish" [6]. Further, the lumpsucker is considered an ideal candidate for
toxicity testing and environmental monitoring due to its characteristic [7]. Their robust egg shells
is at interest as it can withstand mechanical stress. Another characteristic of the egg is its
lipid-rich content, meaning the embryo has a high potential for accumulation of lipofilic
pollutants, such as PAHs [7].

Several studies have shown that the lumpsucker spend much of its life far from land, but most
workers have assumed that its distribution is inshore. The breeding occurs in the distributions
area in the Norwegian sea, the Barent sea, the White sea and in the Greenland sea [§]. The
spawning areas for lumpsucker are considered especially vulnerable to oil discharges as larvae and
juvenile lumpsuckers are poor swimmers, having limited possibilities to escape potential oil spill
and PW discharges [6] [5]. Lumpsuckers are harvested in winter/spring, and their availability is
3-4 times per year [9] [7].

Spawning occurs at 0-40 m depth [8]. After spawning, larvae and juvenile lumpsuckers remains in
the costal area in shallow water, where they have access to seaweed. After a year they descend to
deeper water - offshore. Furthermore, recent studies show that fish and invertebrate, such as the
lumpsucker, also uses the offshore oil and gas platforms for a habitat and spawning site. The fact
that the spawning finds place around oil spills, the lumpsucker is appropriate for toxicity testing
and environmental monitoring [5].

Figure 2: Lumpsucker fish caught in Blyth in the North Sea [1].



3.2 Produced water

Worldwide, the NCS is probably the most studied area considering the environmental impacts of
offshore oil and gas production. Discharges from oily water, primarily from the PW, are known to
affect the marine environment negatively. As the biggest contribution, PW amounted 134 million
sem in 2018 [4]. In 2007, annual discharge PW had a peak at 162 million scm. In the following
years, the amount has varied between 130-150 million scm [4] [10].

PW refers to the water that accompanies the crude oil up to the platform. It contains an aqueous
mix of formation water, injected water, oil and/or gas from the well. The formation water is the
natural sea water that has been trapped in geologic formations holding oil and gas. Injected water
is production chemicals, freshwater and brine water that sometimes are injected into the
formations to increase the safety of operations and the recovery rates [I1]. Various treatment
technologies decrease the oil content in the PW before being discharged to the sea, but still, PW
is one of the major sources of contaminants entering the sea [12]. The regulatory threshold allows
up to 30 mg/L oil content in PW discharged to the sea from Norwegian installations. In 2017, the
oil content averaged 12,1 mg/L across the NCS [4] [13].

PW discharges have been reduced over the years, thereof the quantity of oil spilled into the sea.
Due to lack of knowledge of possible long term impact of PW, PW discharge have been a target
for concern and ascendance considering the large overall discharge volumes [11] [I3]. To monitor
the ecological effects of PW discharges, several studies and experiment have been compiled [13].

The chemical composition of PW is complex, and contains a mixture of dissolved and particulate,
organic and inorganic compounds [II]. The physical and chemical composition of PW varies
widely from field to field, depending on the composition of the reservoir oil and gas phases,
geochemistry of the hydrocarbon bearing formation, dept of the well, in addition to geologic age.
To address the environmental risk from discharge from a specific well, a region study is needed
[12]. Inorganic compounds reported in PW include salt and inorganic ions like sodium and
chloride, magnesium, sulfate, iodide, potassium, bromide and bicarbonate [II]. The focus in this
thesis will be on the organic compounds, more specifically, the PAHs. Other organic compounds
reported in PW are saturated hydrocarbons, monocyclic aromatic hydrocarbons, in addition to
oxygenated compounds, like ketones, acids and phenols.

PAH is given high priority due to its potential carcinogen effects, among several toxic and
mutagenic effects [I4]. It is therefore of high priority to environmental discharge regulation [I3].

3.2.1 PAH in produced water

PAHs are aromatic hydrocarbons containing two or more benzene rings fused together in various
configurations, and are considered hydrophobic molecules [I5]. In PW, PAHs are of one of the
compound groups of greatest environmental concern because of their known toxic effects to
marine organisms. Alkyl PAH remains less studied than its unsubstituted congeners, although
evidence suggest that they are even more toxic [I1]. Studies shows a good correlation between
toxicity to ELS of fish and the measured aqueous concentration of total PAH (tPAH) [16] [17].



Some studies have proven that PAHs cause mutagenic, carcinogenic and teratogenic effects on a
wide range of organisms [I8] [19].

PAHs containing up to four benzene rings are called light PAHs, while heavy PAHs contains more
than four rings. Heavy PAHs are more stable then light, and are considered to be more toxic. The
only two components in PAHs, hydrogen and carbon, are arranged in both complex and simple
ring systems. The characteristics of different PAHs varies chemical, toxicological and physical
depending on the arrangement of the rings. They can occur as a ring linkage pattern, however,
most PAHs will occur as a hybrid comprising various structural components, naphthalene, pyrene,
phenanthrene and dibenz(a,h)anthracene for instance [20]. Some PAHs are heteroaromatic
compounds. This occurs when one of the ring carbons is replaced by a nitrogen, sulfur or oxygen
atom (for instance pyridine, dibenzothiophene or dibenzofuran) [3].

The concentration of tPAH in PW will vary from field to field, but typically it ranges from 0,040
to 3 mg/L [1I]. Even though heavy PAHs are considered the most toxic, lighter PAHs, such as the
2-rings and 3-rings PAH like naphthalene, phenanthrene and their substituted homologues, are
more water soluble, hence tPAH concentration in PW primarily consist of them. Heavier PAHs, 4-
6-rings, are rarely found in treated PW, and they are often associated with dispersed oil droplets
because of their low aqueous solubilities [11]. For this reason, the thesis will focus on light PAHs,
in which naphthalene (2-ring), dibenzothiophene (3-ring) and Cl-phenanthrene (alkylated 3-ring)
will be at focus. See Figure [3| for the structure of naphthalene and dibenzothiophene, and Figure
[] for the structures of C1l-phenanthrene.

Naphthalene

S

Dibenzothiophene

Phenanthrene

Figure 3: Structure of naphthalene, phenanthrene and dibenzothiophene. Picture is made in
paint.
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Figure 4: Illustration of the different Cl-phenanthrenes (1-metylphenanthrene, 2-
metylphenanthrene, 3-metyl phenanthrene, 4-metylphenanthrene and 9-metylphenanthrene).
Picture is made in paint.
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3.2.2 Toxicity effects of PAHs on fish embryos

The effects of PAH in PW on the environment has been reported in a high number of reviews and
scientific papers, and many investigations conclude with PAH being of concern due to it’s
ecotoxicological effects to ELS of marine species [16] [17] [18] [19]. Fish embryos exposed to PAHs
may show a characteristic suite of malformations, such as edema, spinal curvature, cardiac
dysfunction and reduction in the size of craniofacial structures, the jaw for instance. Figure
shows a healthy lumpsucker compared to a PW exposed lumpsucker with this characteristic suite
of deformities. In addition to the malformations, PAH exposed fish ELS may also display DNA
damage, oxidative stress, embryotoxicity or cardiac function defects, reduction of the heart rate
(bradycardia) and an irregular heartbeat (cardiac arrhytmia) [2I]. Some PAHs are in a high
priority class of contaminants because they are known to be potent carcinogens [13].

Figure 5: Upper picture shows a healthy lumpsucker, bottom picture shows a PW exposed
lumpsucker with jaw deformations, spine deformations, deformed suction cup and circulatory
blockage of tail vein. The pictures are from another experiment preformed by SINTEF Ocean.
(Photo: Bjgrn Henrik Hansen, SINTEF Ocean.)



Blue sac disease (BDS) is a disease related to PAH exposed fish ELS. BSD is associated with a lot
of the malformitations mentioned above (e.g. craniofacial and spinal malformation, neuronal cell
death, reduced growth, hemorrhaging, yolk sac edema, impaired swimming and early mortality)
[22]. it is also often referred to as “dioxin-like” toxicity, as it often is seen in fish exposed to
dioxins, polychlorinated biphenyls and PAHs [3] [23]. BSD is also associated with Cypla
(cytochrome P4501A) induction.

The Cypla plays an important role in the metabolic activation of carcinogenic PAH [3]. PAHs are
known to be an Aryl hydrocarbon receptor (AhR) agonists, meaning that they have high affinity
to the receptor and activates it by binding themselves to it [I3]. This binding initiates
transcription of the Cypla gene, respectively leading to toxicity and cancer [I5] [3]. For a more
detailed description of the metabolism, see chapter [3.4]

Many teleosts have two AhR genes, AhR1 and AhR2, due to genome duplication. Mammals only
have one AhR. The AhR1 in fish is the ortholog of the mammalian AhR, which has been shown
by gene mapping and phylogenetic analysis. The AhR2 is the divergent, and appears to be the
predominant form in fish. Mammalian AhR and fish AhR1 have some similarities, for instance
their structure, high-affinity dioxin-binding, transcriptional activation of target genes and
properties, such as binding to AhR response elements [24] [25].

Former studies have demonstrated that size and structural differences in PAH have different
toxicity effect on ELS of zebrafish [2I] [26]. Accordingly, the effects of the individual compounds
of PAHs have been difficult to separate [3]. Incardona et al. [2I] revealed that the three-ring
PAHs, phenanthrene and dibenzothiophene, were adequate to cause the characteristic suite of
malformations and genetic ablation of cardiac function. These defects have secondary
consequences for late stages of kidney development, cardiac morphogenesis, formation of the
craniofacial skeleton and neural tube structure. This toxicity were directly proportional to the
amount of phenanthrene or dibenzothiophene in the mixture the fish embryos were exposed to.
The study also showed that smaller petrogenic PAHs toxicity is often caused by an AhR
independent pathway (see chapter for a detailed description). [2I]. Cardiac ion channels are
critical for cardiac functions, such as rhythmicity and contractility [27]. If targeted by three-ring
PAHs, embryonic cardiac defects might be caused in Cypla- and Ahr-independent ways,
demonstrated by another study of Incardona et al. [24].

Incardona et al. [21] also described that the 4-ring PAH pyrene induced a different syndrome of
anemia, neuronal cell death and peripheral vascular defects. A mild bradycardia was induced by
naphthalene (2-ring), a 5-6 % reduction at 39 or 78 nM. Thus, different compounds of PAH have
specific and distinct effects on ELS of fish [21].

3.3 Bioaccumulation of organic compounds in marine species

The term bioaccumulation is describing the uptake of a certain compound, or groups of
compounds, in an organism or specified tissues, where the uptake is in relation to the exposure
concentration and relative to inherent clearance rates [3] [28]. Direct uptake through water



(through the gills or the skin) is found to be the predominant bioaccumulation process for fish,
uptake through ingestion of particles or food is also common [29] [28]. In embryos the uptake
through ingestion is not present, though.

Bioaccumulation of organic compounds in an organism depends on environmental factors such as
temperature, oxygen content, pH of the water and salinity [3] [28]. To the specific organism,
factors like organism size, membrane permeability, ingestion rate, extraction efficiency and
osmoregulation must be taken into account [3]. Passive diffusion across membranes is the main
accumulation of dissolved fraction in the lipid phase of marine organisms. Hence, uptake and
elimination in the organism might also be affected by its behavior, external stressors, nutrition
ete. [3].

The hydrophobicity of organic compounds is expressed by the octanol-water coefficient K., [10].
The definition of log K., is the ratio of the concentration of a compound in n-octanol and water
at equilibrium, whereof compounds with a high log K,,, have low affinity for water, and is directly
proportional to molecular weight [30]. It is established that all compounds with a log K,,, above 3
have the potential to bioaccumulate. It is difficult to detect compounds with log K,,, > 6-7, due
to their restricted water solubility [I0] [3]. A high K, indicates a high tendency to partition into
the organic phase [31]. See Appendix 1 for the values of PAH compounds.

Is is suggested that the lipid in biological membranes in marine organisms is linked to the uptake
of hydrophobic contaminants [3]. A study performed by @verjordet et al. [3I] where one lipid-rich
and one lipid-poor stage of the arctic copepod (Calanus hyperboreus) were exposed to crude oil
water-soluble fraction (WSF), found that the estimated steady-state bioconcentration factor
(BCF) for the lipid-rich stage was much higher than for the lipid-poor, meaning that the
bioconcentration potential was clearly higher for the lipid-rich stage [31].

3.3.1 Bioaccumulation of PAHs in fish embryos and larvae

Studies of PAHs and alkyl PAHs in fish embryos and other marine organisms have observed that
bioaccumulation are directly linked to lipid content in biological membranes. For this reason it is
by interest to find the concentration of tPAH in the lipid content. It is also observed that alkyl
PAHs have an higher BCF than the parent PAHs in adult fish [3]. The toxicity of organic
compounds is yet to be fully understood. Using the internal body residues have been suggested as
a more effective admission than external surrounding concentration, when determine the
environmental hazard of PAH [28]. By internal body residues means the accumulation fraction
found through body burden [10].

In order to find the concentration of body burden in lipid content, the content of lipid in the body
burden (BB) samples must be found through calculation (Equation 1).

- ) lipid weight
Lipid content in BB sample = ——""97_x eggps sample
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Further, the lipid content in the body burden sample can be used to find the concentration of
tPAH in lipid content (Equation 2).

_ CipaH
Lipid content in BB sample

CB B

(Equation 2)

Cpp = Body burden concentration of tPAH in lipid content.
Cipan = Body burden concentration of PAH in given sample (ng/sample).

In PW, the majority of PAHs present are light PAHs, as they are the most water-soluble
compounds [32]. Being highly water-soluble means the compounds accumulate less than the more
hydrophobic PAHs (the heavier PAHS) since the uptake of PAH is related to the hydrophobicity
of the PAH [33] [10]. Furthermore, the light PAHs are expected to metabolize to a great extent
compared to more hydrophobic compounds [33]. Importantly, the more readily a compound is
metabolized, the less it bioaccumulates [28]. A study preformed by Baussant et al. [I0] found that
naphthalene and its alkylated congeners represented the major fraction of tPAH in PW exposed
fish tissue, followed by dibenzothiophene. Together they represented approximately 90 % of tPAH
[10]. The content of PAH compounds depends on the type of PW, however, the the major
concentration of PAH in marine organism consists of light PAHs as PW mostly consists of light
PAHSs.

Studies of PAH body burden concentration in ELS of fish have been unreported until recently due
to the absence of techniques sensitive enough to handle such low concentrations and small samples
like fish eggs. Consequently, ELS metabolism is yet to be fully investigated in which it affects the
accumulation to the individual fish species differently. The correlation between increased
development and increased metabolism is already noticed [3]. However, when previously not
considering the ELS metabolism as a bioaccumulation factor, studies have shown Cypla induction
has occurred as early as three days post fertilization (dpf) in haddock embryos [34]. The Cypla
induction is reviewed in chapter

3.3.2 Bioconcentration factor

The BCF is generally referred to as the relationship between the concentration of a compound in
the organism (Cpp) and the surrounding medium, for instance water (Cy), when these are at
equilibrium or so-called "steady-state". The BCF allows comparison of the accumulation of PAH
in different organisms [3]. There are many ways to calculate the BCF, but in this thesis, the BCF
will be calculated by Equation 3.
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(Equation 3)

Cw = Concentration of PAH in sea water solution.

When comparing literature data based on the BCF, considering the diversity of exposure designs,
analytical methods and reporting methods applied is necessary information. While handling fish
eggs, some studies choose to normalize the body burden concentration normalized to lipid weight,
while others normalize it to dry weight or wet weight of the whole sample or per individual (per
egg) [3]. The current study has normalized the body burden concentrations to lipid weight before
calculating BCF.

3.3.3 Estimating bioaccumulation

Log K, is found to correlate well with BCF, meaning the coefficient express to which extent a
compound bioaccumulates [3]. Devillers et al. [35] used seven linear and non linear models in
order to calculate BCF based on log K,,. The study found that smaller compounds (log K, <
6) obtained with different models was equivalent, and that for log K,, > 6, the bilinear models
was superior to the other studied models [35]. A difficulty with the study by Devillers et al. [35] is
that the study disregarded any influenced by the biotransformation in the species [35]. Franke et
al. [36] proposes that basing the bioaccumulation on log K,,, alone is inadequate. This is
supported by others, because some processes are not included in these models, such as uptake-
and elimination kinetics, uptake process, cell membrane diffusion and metabolism rate.
Additionally, a linear relationship between lipid uptake and log K., is not a describing model for
PAH bioaccumulation [3]. The models do not simulate the bioconcentration of the contaminants
in the marine biota, as they ignore the biotransformation of PAHs and other chemicals.

However, the plot of BCF based on K, is currently the most competent. Devillers et al. [35]
found that the correlation between log K,,, and BCF for compounds with a log K,,, below 6 have
been established as successful. The study have compared seven models calculating BCF based on
log K, with the same results, where the BCF values calculated by the linear models are
equivalent to those experimentally observed [35]. Though, the exact relationship is not known [3].
As the elimination process is the most challenging factor to model, a suggestion is assumed; by
measuring the net elimination rate and the levels of metabolites in an organism one might be able
infer this factor. Although there are currently no tools available to differ between the different
elimination processes [3].

3.4 Biotransformation of PAH

Biotransformation is a metabolism where xenobiotics get detoxified and transformed into more
easily excreted compounds in organisms [3]. Xenobiotics is another word for chemicals foreign to
the normal metabolism of an organism. Without the biotransformation, several xenobiotics would
reach toxic levels in an organism [37]. Further, the biotransformation depends on the organism



and the compound type. While some organic compounds are resistant to metabolism, some
compounds are more easily metabolized - PAHs and alkyl PAHs belong to the latter [3].

The PAH biotransformation of parent compounds influence the elimination of PAHs, as well as
driven diffusion or rate of excretion [I0] [38]. Parent PAHs are more able to diffuse through the
gill membrane than polar PAH metabolites transformed during the metabolism, hence parent
PAHs is favored for this elimination and elimination by excretion is favored for the polar PAH
metabolites [38]. The metabolism of PAHs involves several reactions, like oxy-reduction,
hydrolysis and conjugation - primarily to increase the polarity, the water solubility and facilitating
the excretion of the oxygenated products [39]. More detailed description of the enzymatic
reactions further down in this chapter.

Studies of metabolism of PAH in fish embryos have been underreported so far. Both small
samples and use of radiolabeled chemicals in the uptake studies have been an issue, in which
radiolabeled chemicals lead to co-determination of PAHs and their metabolites [3]. Studies of
crude oil exposed pink salmon and pacific herring ELS, studied by Mathew et al. [40], observed
the decline in PAH body burden over time. As the larvae develop (the metabolism included) some
adult fish is reported to have eliminated up to 99 % of parent PAH during a day being exposed
[3]. When determining exposure doses the biotransformation of xenobiotic compounds is the most
perplex and confusing factor [3].

Barron et al. [4I] found that alkyl PAHs turned out to be better AhR agonists than
non-alkylated, and that heavier PAHs (5-6 ring) were more active agonists than lighter [41]. The
AhR initiates transcription of many genes, such as Cyp and Cypla, once it is activated. The
Cypla genes activity often causes oxidative stress and cellular damage, this leads to acute toxicity
[3]. The process of the activating of Cypla gene produces hydrophilic PAH metabolites by
degradation, and is controlled by enzymatic systems [10]. These hydrophilic metabolites is
eliminated by excretion as they are less able to diffuse through membranes [3]. The products from
PAH metabolism might be more reactive and develop to products with toxicity effects [39].

Some studies show that specific toxicity mechanisms can be divided into two groups: 1. Toxicity
induced by activation of the AhR, and 2. Toxicity induced by pathway circumventing the AhR [3].
Frohlish et al. [39] shows that mechanisms for metabolism by enzymatic activation of PAHs,
consist of three pathways: 1. CYP1A1/1B1 and epoxide hydrolase pathway (pathway 1) 2. CYP
peroxidase pathway (pathway 2) 3. aldo-keto reductase pathway (pathway 3) (see Figure [6]) [39].
The figure has taken benzo(a)pyrene as an indicator of PAHs, a commonly used indicator when
studying the toxicity of PAH [39].

Adduction of DNA, that might lead to DNA mutations, is caused by pathway 1. This process of
PAH metabolism occurs in both invertebrates and vertebrates, in which it occurs in three
enzymatic reactions [39].
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Figure 6: Illustration of the major pathways for PAH metabolism and potentially harmful

mechanisms [39]

The enzymatic reactions

In the first reaction of the metabolism of PAHs, functionalization with hydroxy or epoxy groups
are used to form hydroxylated PAHs, also known as reactive oxygen species (ROS). Cyp
monooxygenase may catalyze this transformation, depending on the species. In Figure[6] Cyp
catalyze double bond oxidation resulting in unstable aromatic oxides [39]. Reacting functional
groups, -OH, -NH2, -COOH for instance, is added to the PAH molecule, resulting in unstable
aromatic oxides. ROS are known to damage DNA, proteins and membranes [3].

Secondly, the hydroxylated PAHs are then transformed further by conjugation reactions. In
Figure [6] the conjugation presented is hydrolysis by the microsomal epoxide hydrolase, formating
the hydroxylated PAHs to trans-dihydrodiol. The PAH conjugates formed are highly
water-soluble, sulphates for instance. From here most PAHs, like trans-dihydrodiol, will be
excreted after conjugation. The rest of them will be further transformed by a double bond
oxidation, catalyzed by Cyp. This process generates the diol-epoxide, leading to adduction of
DNA as the diol-epoxide covalently binds to DNA [3] [39].

In biotransformation of xenobiotics the liver is accordingly the main organ involved in almost all
organisms [3]. Hence, studies of PAH metabolites in fish bile have proven that some metabolites
can be directly excreted in bile (via the gallbladder) as unconjugated hydrophobic metabolites [42].
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3.5 Analytical techniques
3.5.1 Pre-treatment and sample storage of lumpsucker

To achieve successful results, the treatment of biological samples is important. The most
important factors are sampling strategy, preservation and storage conditions. Small biota samples
are sensitive to issues like contamination, decomposition and loss of analytes. Following, biological
samples should be kept in temperature controlled and cleaned containers and prior to treatment,
minimal handling of samples should occur [43].

3.5.2 Exposure experiment

Based on earlier lumpsucker experiments performed at SINTEF Ocean, the importance of a
continuous flow of sea water has turned out to be a determining factor of hatching success.
Henceforth, a flow-through system is necessary for such experiments [44]. The exposure solution
utilized in the experiment is another factor affecting the results and hatching success. By choosing
an exposure concentration of PW low enough low enough to gain hatching success, the experiment
is able to investigate the sensitivity of the fish embryos. Earlier lumpsucker experiments
performed by SINTEF Ocean have already investigated the hatching success of lumpsucker
embryos were exposed to PW of different concentrations, where a concentration of 20 pg/L
achieved hatching success [44].

The times of exposure are selected in order to evaluate potentially sensitivity in different ELS of
the lumpsucker. The first exposure at 0 hpf (depl) gives the opportunity to evaluate the
sensitivity during fertilization, while the exposure at 36 hpf (dep2) gives the opportunity to
evaluate the sensitivity once the eggs become hard. The last exposure is at 10 dpf (dep3), with
regard to the heart beat, whereof predicted start will be around day 9 or 10 [44]. The figure below
(Figure display potentially sensitive stages.
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(b) Embryo 36 hpf.

(¢) Embryo 10 dpf.

Figure 7: Potentially sensitive stages. hpf = hours post fertilization, dpf = days post fer-
tilization. (Photo: Dag Altin, BioTrix (a), Bjgrn Henrik Hansen, SINTEF Ocean (b and
c)).

3.5.3 Body burden

The definition of body burden is an organism’s internal time-varying exposure concentration of a
pollutant, and it is determined by the uptake and elimination balance. The dynamic balance
between uptake and elimination is influenced by factors like type of species, type of compound,
metabolism, temperature and ventilation rates [45].

Considering the environmental risk of chronic discharge, a realistic approach would be to look at
estimated effects based on body burden in marine organisms ex situ, rather than looking at the
external sediment or water concentration. The internal body concentration is used to study toxic
effects of PW and crude oil [45]. Sensitive and precise analysis of low concentration of PAHs and
alkyl PAHs accumulated in the lumpsucker eggs is necessary to fully understand the toxicity. [40]
In many cases, the only way for the chemicals to exert their toxic effect, are if they enter the body.
The uptake rates and bioaccumulation levels of substances in the tissues can relate to toxicity,
and therefore the body burden and toxicity relationship can be used to estimate the impact [45].

Currently there are several existing methods established for extraction and analysis of
accumulated organic pollutants in larger biota samples (sample size >1g). Downscaling of the
method to be suitable for smaller samples (< 0,1g) seems to be a challenge. In ecotoxicity
experiments the sample size is normally limited because the target organism is small (for instance

13



fish embryos). Economy and environmental perspectives, in addition to limited sample size, makes
techniques on micro-extraction for biotic samples desirable, the consumption of solvents and
chemicals needed for sample preparation will be reduced [43].

The method used in this project consist of extraction and clean-up of PAH in lumpsucker egg
samples, a method for quantitatively results. A challenge associated with analysis of lipid rich
biota samples are co-extraction of naturally occurring, non-target biological compounds. These
compounds can cause negatively impact on the GC separation and resolution of target analytes
and must be removed. Hence, a clean-up step is added. Though it is a challenge to develop an
efficient clean-up method, due to the matrix components, especially for organic compounds in
lipid rich matrices. They are in many cases chemically similar to the desired analyte, regarding
molecular size, polarity and functional groups [43]. In this project, a SPE column comprising
silica (5 g) were used for the extraction clean-up. SPE columns are time and cost efficient, in
addition to a being a reproducible method and provides a clean extract and trueness [47]. Prior to
analysis there is a need for solvent concentration, and this is obtained by evaporation approaches.
This includes a heat block and/or a stream of inert gas (typically No). This evaporation can cause
a loss of volatile compounds, such as naphthalenes [43].

Traditionally, crude oil and PW analysis is performed by a gas chromatograph coupled to a
universal detector (for instance a flame ionization detector) or a mass spectrometer. For known
target molecules analysis, and low concentration samples with challenging matrices, it have
become more common with GC coupled with tandem mass spectrometry [3].

3.5.4 GC-MS/MS

A variety of techniques have been used for determination of alkyl PAH and their unsubstituted
homologous, and GC-MS (gas chromatography coupled with a mass spectrometry) has been one
of the most common techniques [48]. Recently, GC-MS/MS has become more common due to its
sensitivity. Tandem mass spectrometry is an analytical technique that is well suited to detect
contaminants at trace levels in challenging matrices [3]. Compared to the GC-MS method, which
needs several grams of biotic sample, the GC-MS/MS method allows analysis of very small biotic
sample sizes (100mg) to obtain the same sensitivity using low levels of analyte. GC-MS/MS has
been clearly proven as the most applicable method as it is able to analyze tPAH body burden
below 0,5 pg/g [48]. Segrensen et al. [46] reveals that GC-MS/MS is suitable detecting PAHs in
crude oil exposed fish eggs [46]. As well as crude oil, PW contains petrogenetic compounds, and
therefore this method is suitable for detecting PAH and alkyl PAH in PW exposed eggs [33].

GC-MS/MS is a gas chromatograph coupled with a tandem mass spectrometer (quadrupole mass
spectrometer). The tandem mass spectrometry consist of two mass analyzers coupled in series (see
Figure . The ion source ionize the analyte molecule. In the first mass analyzer, the molecular
fragmentation ions from the ionizing are separated, and these molecules are in the collision cell
bombared with an inert gas (commonly used are Ny and Ar; in this project No was used) to
subject to further fragmentation. In the second mass analyzer, the fragments are separated prior
to detection. Every compounds show a specific fragmentation pattern throughout the analysis,
which leads to a selective detection. In recent years, the GC-MS/MS method have been developed.
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The detection limits GC-MS/MS offers are considerably improved over GC-MS instruments.
Other advantages with GC-MS/MS are increased signal-to-noise ratio and the possibility to filter
out background noise. Several improvements have been accomplished the last two decades, such
as increased sensitivity of analytical instrumentation; mass detectors are more efficient and by
higher resolutions, volume injectors are larger (for instance the programmable temperature
vaporizer) and back-flushing by post-column to remove unwanted matrix components. The limit
of detection (LOD) for trace analytes have been significantly lowered, due to these improvements.
The quantification in GC-MS/MS is based on fragmentations from the molecular ions [3] [49].

Detector

lon passes through
quadrupole

mass filter

lon beam

Rt lon cannot reach
detector

~—

lonization chamber

Figure 8: Quadrupole mass spectrometry [2].
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As there is not enough available analytical standards to quantify each alkyl PAH in body burden
of PW exposed organisms, one have to consider a wider range of analytes. These are commonly
referred to as alkyl PAH clusters. As the GC-MS/MS method has been developed, it can
determine several alkyl PAH clusters by multiple reaction monitoring (MRM). This method take
advantage of the individual homologues’ specific MRM transitions to identify them. Currently,
this method gives the most precisely quantification of an alkyl cluster as the sum of all the
integrals is based on the MRM transitions for the fragmentation of the molecular ion (|M]") in
order to form the dominating product for different types of Cx-PAHs; [M-X]|" [48].

In the current study 22 alkyl PAH clusters, whom are commonly analyzed in PW and crude oil
derived samples, were looked at. The alkyl clusters are as following: C1-C4 naphthalenes, C1-C3
fluorenes, C1-C4 phenanthrenes, C1-C4 dibenzothiophenes, C1-C3 pyrenes and C1-C4 chrysenes.

The definition of LOD is the average concentration in blanks + three times standard deviation
(STD) [3]. LOQ (limit of quantification) is defined as the lowest level in calibration curve where
signal to noice ratio was >10. LOQ = 3 x LOD [46]. The values of LOD and LOQ are given in
table S2, Appendix 2, given in concentration (ng/sample). In order to compare the LOD/LOQ
values to the concentrations of PAHs and alkyl PAHs in depl (Table S3, Appendix 3), dep2
(Table S4, Appendix 4), dep3 (Table S5, Appendix 5) and ctrl (Table S6, Appendix 6), one have
to divide the concentration (ng/sample) with the number of eggs. See Equation 4:

ng
C ng\ _ ( /sample)
PAH/egg egg #egg

(Equation 4)

3.5.5 Lipid extraction

The method for lipid extraction used in this project is called the Folch extraction, and was
established in 1957 [50]. Since then it has been one of the most popular method for isolating lipid
from biological samples, by taking advantage of the biphasic solvent system of
chloroform/methanol/water [5I]. It is a simple method for isolation and purification of total
lipides from lumpsucker tissues. This technique involve homogenizing the lumpsucker tissue with
a mixture of 2:1 chloroform-methanol, and the extract being washed by addition of 0,2 times its
volume and 0,9 % NaCl in Milli-Q water. In the washing procedure, the proportions between
chloroform, methanol and water are 8:4:3 by volume, considering that the extract contains all the
water from the tissue. It is important that this proportion is kept constant. After the washing the
resulting mixture is allowed to separate into two phases, and the lower phase is the total pure
lipid extract [50].
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4 Experimental section

The work described in chapter and [£:4) is performed by SINTEF staff, while the work in
chapter [£.2] and [£.3 is performed by the students.

4.1 Exposure experiment

The principle of the current experiment is based on earlier experiments of lumpsucker. The
exposure lasted for 48 hours, and after the exposure the eggs was placed in a recovery rig for
depuration. The recovery rig had a flow-though system. Lumpsucker eggs and sperm ("milk") was
obtained from Marine Harvest. The eggs was transported on ice to the Sealab, where the
fertilization of the eggs occured on the same day as the arrival. The exposure concentration
contained nominally 20 ng/L for all of the exposure experiments, excluding C0-C3-naphthalene
[44].

The selected time points of sampling was 0, 6, 12, 24, 48, 96 and 192 hpe. The last sampling was
720 hpf, being the tentatively hatching day, and the possibility that the eggs hatched before was
present. Still, sampling right ahead hatching would come to benefit when analyzing the
accumulation and elimination of PAH.

4.1.1 Preparation of exposure solutions

The preparation of PW extract exposure solutions was performed the day before each exposure
experiment. Before each exposure the total extract was reconstructed and diluted.

DCM extract (7 mL of 250 mL total) was spiked in the bottom of a glass bottle (2 L). The glass
bottle was pre-rinsed with MilliQ-water (three times), dried (50 °C) and autoclaved. The bottle
was placed in a wather bath (40 °C) and an inert gas of No was blown into the bottle for 30
minutes.

Further, the bottle was filled with the appropriate volume (1,4 L) of sterile filtered seawater and
placed on an ultrasonic bath (most powerful, filled maximally with water) for 30 minutes. During
the re-construction, the bottle was shaken gently 3 times.

Following, dilutions (2 pg/L) was made in 7 x 1 L bottles. This was done by mixing 200 mL stock
and 800 mL sterile filtered seawater. The seawater used for the dilutions was pre-aerated (with
sterile air by bubbling trough a glass pipette for 5 minutes). To transfer the amount of stock to
each bottle, pre-cleaned cylinders was used.

Chemical characterization of the stock solution was done by removing a sample (200 mL) from
one bottle - this sample was acidified and extracted in according to SINTEF standard operation
procedures.

The solutions (20 pg/L) were placed at 10 °C over night to acclimatize.
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4.1.2 Preservation and recovery system

The experiments were conducted in a temperature-controlled room (10°C) using a hatching tank,
also referred to as a recovery rig, that contained 112 separate chambers. The tank had a
continuous flow of sea water (5L/min, 10°C). The flow of sea water went through a filter (1 pm
filtered) before flowing into the rig.

The recovery system consisted of a tank with 16 rows and 7 columns of holes. See Figure [J] below.
Each hole held a recovery chamber, which meant a tube where both ends had a plankton mesh.
For this reason, the recovery chambers could be submerged into the water, and vice versa. The
recovery chamber suited 60 eggs (1 unit).

Figure 9: Photo of the recovery rig. After exposure, the samples were placed in the recovery
rig for depuration. (Photo: Bjgrn Henrik Hansen).

4.1.3 Fertilization and exposure

All eggs were fertilized the day they arrived. The total amount of eggs was 60 eggs x 128 units,
comprising four replicates to each sampling timepoint. The selected time points for the three
exposure experiments were at 0 hpf, 36 hpf and 10 dpf. Each exposure lasted 48 hours with
replenishing of exposure solution after 24 hours.

The procedure below applies to the exposure experiment 36 hpf (dep2), 10 days post fertilization
(dpf) (dep3) and the controll samples. The first exposure experiment, 0 hpf (depl), was
performed during fertilization and the amount of eggs required were 60 eggs x 28 units. The
exposure experiment 0 hpf (depl) has its own procedure where the exposure of PW is performed
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during fertilization (see next paragraph).

The fertilization procedure involved placing the eggs in a separate jar and fill it with filtered
seawater (100 mL) and spermia (100 pL), then gently mix the solution for two minutes. Next, the
eggs were spread across a plate holding circle templates whereof desired amount of eggs fitted. In
short time, the eggs would stick to each other and form firm circles. After 30 minutes the egg
circles were placed in individual recovery chambers in the recovery rig until the exposure.

Exposure during fertilization

The eggs were placed into a separate glass jar, in which the exposure solution (100 ml) and
spermia (100 pL) were added. The solution was gently mixed for two minutes, then the eggs were
spread across a premade plate holding circle templates whereof desired amount of eggs fitted. In
short time, the eggs would stick to each other and form firm circles. As the exposure would last
for 48 hours, 32 premade caviar glasses consisting fresh exposure solutions were already placed in
a box filled with filtered sea water. After 30 minutes, the eggs had sticked together and a circle of
eggs were placed in each glass to continue the exposure. 24 hours after the fertilization, the
solution was replenished by gently pouring out the solution and refill the glass with the same
exposure concentration of PW (semi-static regime).

Figure 10: Photos of the fertilization of lumpsucker eggs. (Photo: Bjgrn Henrik Hansen,
SINTEF Ocean)

Exposure 36 hours post fertilization

36 hours post fertilization (hpe), the second exposure started, referred to as dep2. Eggs from the
second row of the recovery rig (see Figure E[) were placed in caviar glasses holding fresh exposure
solution. Like depl, they were kept in the solution for 48 hours with replenishing of the solution
after 24 hours in the same manner as for depl (semi-static regime).

Exposure 10 days post fertilization

10 days post fertilization (dpf), the third exposure started, referred to as dep3. Eggs from the
third row of the recovery rig were placed in caviar glasses holding fresh exposure solution. Like
depl and dep2, they were kept in the solution for 48 hours with replenishing of the solution after

19



24 hours in the same manner.

Control samples

The control samples, being unexposed to the exposure solution of PW, were fertilized the same
day as the the rest of the samples along with dep2 and dep3. The samples were placed in the
recovery rig right away, staying in the recovery rig the entire period. The sampling timepoints
were in relation to the sampling timepoints of the samples exposed to PW.

4.1.4 Sampling procedure

After 48 hours of exposure, the first sampling found place. This sampling was called ‘O hpe’. The
rest of the samples were transferred to the recovery rig for depuration. The other samples were
taken after 6, 12, 24, 48, 96, 192 hpe, and 720 hpf. The control samples were taken 0, 48, 96, 240,
288 and 720 hpf.

When sampling, triplicate samples were taken from the specific row, including triplicate controls.
The fourth replicate was left behind in the recovery rig for the investigation of the effects on
survival (16 dpf) and the hatching success. The sample was placed in a petri dish, where the
sample was divided in three; 1. Body burden analysis (tentatively 25 eggs), 2. lipid analysis
(tentatively 10 eggs), 3. The rest of the sample (to another analysis going to be performed by
another student). Dead and unfertilized eggs was removed.

Prior to transferring into sterile vials, a photo was taken of the selected eggs and the tube next to
each other, with the sample name visible. The photo was taken with regard to be able to count
the eggs in each sample. The tube was flash-freezed in liquid nitrogen once the sample had been
put into it. After the sampling was completed, the tubes were transported to a freezer and stored
at - 80°C prior to extraction.

4.2 Body Burden extraction and clean up-SPE
4.2.1 Reagents, solvents and equipment

All reagents used during the experiments in this project was purchased from Teknolab,
Sigma-Aldrich and VWR. The glassware and Nay;SO4 were baked at 450 °C for 3 hours to remove
any organic residue. Volumetric equipment, glass tops, teflon inserts, spatulas and other
equipment which cannot be baked, were washed thoroughly three times with DCM before usage.
Chemicals

e 10 %DCM in n-hexane (Suprasolv)

50 % DCM in n-hexane (Suprasolv)
e DCM

NayS04 (baked)

SIS PAH A703 (see Appendix 7 for content)

RIS-standard A705 (see Appendix 7 for content)
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Equipments
e IKA T10 basic homogenizer workcenter

e Vortexer (e.g. Labinco or Lab dancer)

Centrifuge with fittings

Chromabond SPE columns (SiOH, 3 mL, 500 mg, glass column)
e Vacuum manifold for SPE
e Equipment for evaporation with heat block/bath and N blow down

Body Burden extraction

The entire sample, tentatively consisting of 25 lumpsucker eggs, was weighted in a glass vial (4
mL), then the weight was zeroed. The sample was transferred to a kimax tube (12 mL), the glass
vial was weighted again and the weight loss was noted. The weight loss equals the weight of the
sample. 50% DCM in n-hexane solvent (4 mL) was then added to the sample using a pipette. A
surrogate internal standard (SIS) (SIS-ID: A703, 100 uL) was added using an injector. NasSOy
(0,1-0,2g) was added to the mixture, and then the eggs were crushed using a glass rod. The glass
rod was cleaned with DCM within every new tube. After this, the sample was mixed with a
vortexer for 30 sec, and then centrifuged (2 min, 2000 rpm). The supernatant was transferred into
a new glass tube (12 mL). 50 % DCM in n-hexane solvent (2 mL) was added to the sample tube
using a pipette. The sample was mixed on a vortexer and then centrifuged again (2 min, 2000
rpm). This step was repeated two more times to make sure the salt pellet had been washed of.
The supernatant was transferred to a new kimax tube (12 mL) between every centrifugation. The
combined extract was evaporated to ~ 0,5 mL under a gentle flow of an inert gas (N2) before the
next step.

Clean-up-SPE

Chromabond solid phase extraction (SPE) columns (SiOH, 3 mL, 500 mg) was conditioned with
n-hexane (6 mL) under vacuum. Importantly, the column could not run dry. The sample was
transferred to the column and cleansed out of the sample tube with n-hexane (2-3 mL). Then the
sample was eluted with additionally 10 % DCM in n-hexane (3 x 2 mL), and then evaporated to
approximately 0,2 mL. The sample, including wash volume, was transferred to a GC-vial. Next
step, immediately prior to analysis, the volume was adjusted to 400 nL through evaporation and a
recovery internal standard (RIS) was added (RIS-ID: A705, 100 pL ).

4.2.2 PAH and alkyl PAH analysis

An Agilent 7890B gas chromatograph coupled with an Agilent 7010B triple quadrupole mass
spectrometer fitted with an electron ionization source and a collision cell (GC-MS/MS) was used
for the analysis of PAH and alkyl PAH (Agilent Technologies, Santa Clara, CA, USA). The
technique consist of two mass analyzers, whereof two Agilent J&W HP-5MS UI GC-columns

(30 m x 0,25 mm x 0,25 pm) coupled in series through a purged ultimate union.
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Figure 11: The pictures show the gas chromatography—tandem mass spectrometry analysis
instrument, placed in the laboratory at SINTEF Ocean (Photo: Kaja Skarpnord 30.04.19).

Helium was used as a carrier gas. The gas was of high purity (6,0) and at constant flow (1,2
mL/min). At 310 °C, samples (1 nL) were injected splitless. A temperature grading program was
set, the oven was kept at 40 °C for 1 min, then the temperature increased by 40 °C/min until it
reached 110 °C, and then it increased by 6 °C/min to 220 °C, and finally by 4 °C/min to 325 °C.
For 5 min the temperature was held at 330 °C, and the first column was back-flushed. The ion
transfer line temperature was kept at 300 °C, the ion source temperature was 230 °C and the
quadrupole temperature was 150 °C. The electron ionization ran at 70 eV.
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As a collision gas, Ny was used at a flow of 1,5 mL/min. As a quench gas, helium was used at a
flow of 2,25 mL/min. To identify the target analyte (PAH/alkyl PAH) two unique MRM
transitions were used, and quantified by the most intense peak. MRM was used to determine alkyl
PAH clusters, using transitions from the molecular ion (as described in chapter . To monitor
the system performance, standards were run for each 12 sample injections, a variation of 25 % was
accepted, and no more. [4§]

To quantify parent PAH, a quadratic regression of a 12-level calibration curve (0,01-250 ng/mL)
was used. Alkyl substituted PAH homologue groups were quantified by the response factor
calculated for a methyl-substituted PAH reference compound [48]. When quantifying the
Cl-phenanthrene cluster, the integrals of the five different C1-phenanthrenes are summarized [7].

Further, Agilent MassHunter Quantitative analysis b.08.00 were used to calculate the integrals of
the chromatograms. The program provided the concentrations of PAHs and alkyl PAHs in the
samples. The compounds analyzed are listed in Table
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Figure 12: Illustration of a Cl-phenanthrene chromatogram from MassHunter Quantitative
analysis. The picture is a screenshot from the program.
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Table 1: The table shows all the compounds analyzed with the GC-MS/MS in this bach-
elor project. NAP = naphthalene, FLU = Fluorene, PHE = phenanthrene, FLA/PYR =

fluoranthene/Pyrene, CHR = chrysene.

Parent PAH Alkylated PAH
- Benzothiophene - CL-NAP
. - C2-NAP
2-ring | - Naphthalene _ C3.NAP
- Biphenyl _ C4 NAP
- C1-FLU
- C2-FLU
- Acenaphthylene - C3-FLU
- Acenaphthene - C1-PHE
- Dibenzofuran - C2-PHE
3-ring | - Fluorene - C3-PHE
- Phenanthrene - C4-PHE
- Anthracene - C1-DBT
- Dibenzothiophene - C2-DBT
- C3-DBT
- C4-DBT
- C1-FLA/PYR
- C2-FLA/PYR
| pooranthene - C3-FLA/PYR
dring | Bano[a]anthracene - CL1-CHR
- Chrysene - C2-CHR
- C3-CHR
- C4-CHR
- Benzo|b]fluoranthene
- Benzo[k]|fluoranthene
. - Benzole|pyrene
S-ring | _ Benzo{a]]pyrene
- Perylene
- Dibenz[ah]anthracene
. - Indeno[1,2,3-cd|pyrene
6-ring | _ Benzo|ghi|perylene
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4.3 Lipid extraction by Folch method
4.3.1 Reagents, solvents and equipment

All reagents used during the experiments in this project was purchased from Teknolab,
Sigma-Aldrich and VWR. The glassware were baked at 450 °C for 3 hours to remove any organic
residue. Volumetric equipment, glass tops, teflon inserts, spatulas and other equipment which
cannot be baked, were washed thoroughly three times with DCM before usage.

Chemicals

e 2:1 chloroform-methanol solution
e 0,9 % NaCl in MilliQ water
e Isopropanol
Equipment
e IKA T10 basic Ultra Turrax with IKA S1I0N-5G stainless steel knife (0,5 cm diameter)
e Vortex
e Eppendorf pipettes
e Heat block with Ny evaporator

e Centrifuge with inserts for 12 mL kimax tubes

4.3.2 Lipid extraction

The entire sample, tentatively consisting of approximately 10 lumpsucker eggs, was weighted in a
glass vial (4 mL). The weight was zeroed, and the sample was transferred to a kimax tube (12
mL). The glass vial was weighted again, and the weight loss was noted. The weight loss equals the
weight of the sample. 2:1 chloroform-methanol solution (4 mL) was added using a graded glass
pipette. The sample was homogenized using a homogenizator knife (1 minute, 20 000 rpm). The
homogenizator knife was cleansed with 2:1 chloroform-methanol solution between every
homoganizations.

After the homogenization, the sample was centrifuged (10 minutes, 2 000 rpm), followed by
transmission of the supernatant to a new kimax tube (12 mL). It was important that the
precipitate did not follow. According to the Folch extraction, this step was done once.
Premeditatedly this step was done twice after some testing, for a better result.

Using an Eppendorf pipette, 0,9 % NaCl in MilliQ solution (1 mL) was added to the organic
extract. Then the sample was centrifuged (5 minutes, 2 000 rpm). The upper aqueous phase,
including potentially remaining precipitate, was then removed. The organic phase was transferred
into a new kimax tube, and then evaporated to dryness in a heat block under a gentle flow of Ns.
The tube with lipid was weighted after reaching room temperature. The lipid were washed out
from the kimax tube with isopropanol, and transferred to GC-vial glasses for storing. A freezer
holding -20 degrees was a suitable place.
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Figure 13: Originally Folch extract method resulted in a dirty kimax tube (to the left) V.S. the
result after adding an extra step (to the right) (Photo: Hannah Marie Knutsen 08/03-2019).

4.4 Larvae endpoint analysis/ Image analysis

In addition to the experiment described in the report, the samples incubating until hatching was a
part of another experiment performed as a part of the PW-Exposed project. After hatching,
macroscope images and video filming was performed for the deformation, biometric and
cardiotoxicity analyses.
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5 Results

The results presented in this chapter will contain the concentration, uptake and elimination of
tPAHs and of the compounds at focus; naphthalene, sum of Cl-phenanthrene and
dibenzothiophene. The results of the lipid content from the Folch extraction, the body burden
concentrations normalized to lipid content and the bioconcentration factors are also represented.
These dataes were collected during two months with laboratory experiments performed by the
students. In addition to the lipid content and PAH body burden in lumpsucker, several toxicity
endpoints was measured during the experiments. These measurements are not a part of the
bachelor project. However, to put the chemical results in light of the overall project and discuss
the impacts, a selection of endpoint measurements by Drs’ Julia Farkas and Bjgrn Henrik Hansen
will be presented.

5.1 Body burden

Each exposure lasted for 48 hours, from 0-48 hpf (depl), 36-84 hpf (dep2) and 10-12 dpf (dep3).
A wide range of alkyl PAHs and parent PAHs was detected, identified and quantified in the
GC-MS/MS analysis of lumpsucker eggs exposed to PW. The exposure concentration was set to
20 pg/L for all of the exposure experiments. The actual water concentration for all of the
exposure experiments was measured, see Appendix 13. The results from the analysis is presented
by various graphic representations. Other graphic representations of body burden concentrations
of compounds at focus, including all the parallels, are displayed in Appendix 15. The
concentrations of the compounds in embryos exposed at 0 hpf (depl), 36 hpf (dep2) and 10 dpf
(dep3) are listed in Appendix 3-5 Table S3-S5.

During the laboratory work, triplicate sets of samples were sampled, extracted and analyzed for
each timepoint in each exposure experiment, as explained in chapter [£.1.4] The average
concentrations of the parallels were calculated and presented in this chapter with standard
derivation (see Appendix 8).

5.1.1 Body burden concentration of total PAHs

The body burden of tPAH in the three exposure experiments (0 hpf (depl), 36 hpf (dep2), and 10
dpf (dep3)) at 0 hpe is compared to each other and to the control group at 0 hpf in Figure
Parent, and alkyl, PAH concentrations in the studied depurations are summarized in Table S8 in
Appendix 8.
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As seen in Figure the embryos exposed at the earliest life stage (0 hpf, depl) have the highest
body burden of tPAH at 0 hpe. The body burden of embryos exposed at 0 hpe is 1,9 4+ 0,3
ng/egg, the body burden of embryos exposed at 36 hpf is 1,3 + 0,2 ng/egg, and 0,36 + 0,07
ng/egg for the embryos exposed at 10 dpf. The body burden in the control samples is almost not
present, with the concentration of 0,01 £+ 0,01 ng/egg .

tPAH

Figure 14: Graphic illustration of concentration of accumulated tPAH at 0 hpe in embryos
exposed at 0 hpf (depl), embryos exposed at 36 hpf (dep2) and embryos exposed at 36 dpf
(dep3) and after ended exposure and corresponding control samples (ctrl). hpe = hours post
exposure, dpf = days post exposure.

In addition, the body burden concentration and the elimination of tPAH in the three exposure
experiments, 0 hpf (depl), 36 hpf (dep2) and 10 dpf (dep3) was compared to each other at each of
the 7 sampling timeponts (0, 6, 12, 24, 48, 96 and 192 hpe) in Figure
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Figure 15: The figure illustrate the average uptake of tPAH in lumpsucker eggs exposed at
0 hpf (depl), 36 hpf (dep2) and 10 dpf (dep3), and the elimination after the samples were
placed in the recovery tank after exposure ended. The values of the graph is from Table S8
in Appendix 8. hpe = hours post exposure, hpf =hours post fertilization, dpf = days post
fertilization.

Figure accentuates that the greatest elimination in embryos exposed at 0 hpf (depl) is from
time point 0 to 6 hpe as the curve descends. From 6 to 24 hpe there is as good as no elimination,
however the curve shows a low increase. From 24 to 192 hpe the curve is also nearly linear,
meaning from the concentration of 0,9 &+ 0,2 ng/egg to 0,08 + 0,02 ng/egg.

There is a low decrease in tPAH in embryos exposed at 36 hpf (dep2) from timepoint 0 to 6 hpe
(see Figure . As the curve decline the most from 6 to 12 hpe, accordingly the elimination rate
is highest from 6 to 12 hpe. From 12 hpe the concentration decrease slowly to 0,16 + 0,02 ng/egg
at 192 hpe.

The elimination of tPAH for embryos exposed at 10 dpf (dep3) differs from the embryos exposed
at 0 hpf and 36 hpf, due to the increasing and decreasing of the concentrations (see Figure [15)).
The curve increases to 6 hpe, then declines to 12 hpe, followed by increase until 24 hpe. From this
timepoint on the concentration only decreases, with a final concentration of 0,066 + 0,005 ng/egg
at 192 hpe.
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5.1.2 Compounds at focus

This thesis focuses at the compounds naphthalene, Cl-phenanthrene and dibenzothiophene.
Naphthalene is the compound of highest body burden concentration in the PW exposed
lumpsucker. Cl-phenanthrene and dibenzothiophene have a high concentration compared to many
other compounds, as seen in Appendix 3-5, in Table S3-S5. These compounds will be referred to
as ‘compounds at focus‘.

Naphthalene

The body burden concentration of naphthalene in the three exposure experiments, 0 hpf (depl),
36 hpf (dep2) and 10 dpf (dep3) is compared to each other for each of the 7 timeponts of
sampeling (0, 6, 12, 24, 48, 96 and 192 hpe) in Figure

Naphthalene

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

Sample time (hpe)

Figure 16: The figure illustrates the average uptake of naphthalene in lumpsucker embryos
after exposure, and the elimination after the sample were placed in the recovery tank for each
exposure experiment. The concentration of naphthalene in embryos exposed at 0 hpf (depl),
embryos exposed at 36 hpf (dep2) and embryos exposed at 10 dpf (dep3) is represented in
Table S9 in Appendix 8. hpe = hours post exposure, hpf = hours post fertilization, dpf =
days post fertilization.

Figure 16| shows that the body burden of naphthalene decreases for each exposure experiment,
where embryos exposed at 0 hpf (depl) holds the greatest concentration of 1,68 + 0,06 ng/egg,
and constitutes 87 % of tPAH. Embryos exposed at 36 hpf (dep2) holds a concentration of 1,1 +
0,3 ng/egg, and contributes to 83 % of tPAH, while embryos exposed at 10 dpf (dep3) comprises
of 0,31 + 0,03 ng/egg and constitutes 88 % of tPAH at 0 hpe (see Appendix 8, Table S9 for
naphthalene body burden concentrations, and Table S8 for tPAH body burden concentrations).
Embryos exposed at 0 hpf has the steepest curve of elimination from timepoint 0 to 6 hpe, and a
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gradually decreasing curve from 24 to 192 hpe. The curve of embryos exposed at 36 hpf is more
even and linear than for 0 hpf, and the steepest time point is from 6 to 12 hpe. There is a
difference in the concentration of 0 hpf (depl) and 36 hpf (dep2) against 10 dpf (dep3). The curve
of the eggs exposed at 10 dpf is almost completely linear, readily apparent holding an even
elimination, with a little increase at 6 hpe. All of the exposure experiments is virtually holding
the same concentration at 192 hpe, where the body burden of embryos exposed at 0 hpfis 0,07 £
0,02 ng/egg, the embryos exposed at 36 hpf holds the body burden of 0,10 + 0,01 ng/egg, and the
concentration of 0,008 + 0,002 ng/egg for the eggs exposed at 10 dpf.

Cl-phenanthrene

The body burden concentration of sum of Cl-phenanthrene in the three exposure experiments, 0
hpf (depl), 36 hpf (dep2) and 10 dpf (dep3), was compared to each other at each of the 7
timeponts of sampeling (0, 6, 12, 24, 48, 96 and 192 hpe) in Figure
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Figure 17: The figure illustrates the average uptake of the sum of Cl-phenanthrene in lump-
sucker embryos after exposure, and the elimination after the sample were placed in the
recovery tank for each exposure experiment. The concentration of Cl-phenanthrene in em-
bryos exposed at 0 hpf (depl), embryos exposed at 36 hpf (dep2) and embryos exposed at
10 dpf (dep3) is represented in Table S10 in Appendix 8. hpe = hours post exposure, hpf =
hours post fertilization, dpf = days post fertilization.

Embryos exposed at 0 hpf has the greatest body burden concentration of sum of Cl-phenanthrene
at 0 hpe (Figure , 0,00081 + 0,00009 ng/egg and comprise 0,00052 % of tPAH. Embryos
exposed at 36 hpf holds a body burden of 0,0007 &+ 0,0001 ng/egg and constitutes 0,0011 % of
tPAH, while embryos exposed at 10 dpf consists of 0,000336 + 0,000008 ng/egg and constitutes
0,001 % of tPAH at 0 hpe (see Appendix 8, Table S10 for body burden concentrations of sum of
Cl-phenanthrene, and Table S8 for tPAH body burden concentrations).

The curve of 0 hpf (depl) shows a great elimination from 0 to 12 hpe by the decline of the curve,
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then the curve peaks until 48 hpe, followed by another decline in the curve. 36 hpf (dep2) also
shows a great elimination from 0 to 12 hpe, but thenceforth has a variable uptake process that
constitute ups and downs until it steadily decreases from 96 to 192 hpe. 10 dpf (dep3), on the
other hand, shows a more gradually decreasing curve the whole time.

Dibenzothiophene

The body burden concentration of dibenzothiophene in the three exposure experiments, 0 hpf
(depl), 36 hpf (dep2) and 10 dpf (dep3) was compared to each other for each of the 7 timepoints
of sampling (0, 6, 12, 24, 48, 96 and 192 hpe) in Figure
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Figure 18: The figure illustrates the average uptake of dibenzothiophene in lumpsucker em-
bryos after exposure, and the elimination after the sample were placed in the recovery tank
for each exposure experiments. The concentration of dibenzothiophene in embryos exposed
at 0 hpf (depl), embryos exposed at 36 hpf (dep2) and embryos exposed at 10 dpf (dep3)
is represented in Table S11 in Appendix 8. hpe = hours post exposure, hpf = hours post
fertilization, dpf = days post fertilization.

By studying the change in body burden of dibenzothiophene as presented in Figure [I8]it is readily
apparent that all of the curves are characterized by increase and declines, still having an overall
decrease for each exposure experiment. In addition, the elimination of dibenzothiophene is lower
than for the already mentioned compounds. The concentration at timepoint 0 hpe is the highest
for embryos exposed at 0 hpf (depl) in this compound as well. With a concentration of 0,018 +
0,002 ng/egg, the embryos constitutes 0,09 % of tPAH. 0 hpf is followed by embryos exposed at 36
hpf (dep2), containing 0,011 + 0,004 ng/egg, and comprises 0,012 % of tPAH, and embryos
exposed at 36 hpf (dep3) has the concentration 0,002 + 0,00 ng/egg, constituting 0,005 % of
tPAH (see Appendix 8, Table S11 for dibenzothiophene body burden concentrations, and Table
S8 for tPAH body burden concentrations).

Control samples
The control samples were below LOQ for all of the compounds above. For this reason, no graphic
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illustration was made. See Appendix 2, Table S2 for LOQ values, see Appendix 6, Table S6 for
control body burden concentrations for each compound analyzed.

5.2 Lipid content

The lipid content in the three exposure experiments (0 hpf (depl), 36 hpf (dep2 and 10 dpf
(dep3)) was measured and compared to each other and to the control (ctrl) from timepoint 0 hpf
and to the end of each exposure, given as a function of time (hpf) in Figure

Lipid content (%) over time
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Figure 19: Graphic illustration of lipid content (mg/egg) in embryos exposed at 0 hpf (dep1l),
36 hpf (dep2), 10 dpf (dep3) and control samples (ctrl) as function of hpf. hpf = hours post
fertilization, dpf = days post fertilization.

The lipid content in the three exposure experiments (0 hpf (depl), 36 hpf (dep2) and 10 dpf
(dep3)) are compared to each other, given as a function of time (hpe) in Figure
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Figure 20: Graphic illustration of the lipid content (mg/egg) in embryos exposed at 0 hpf
(depl), 36 hpf (dep2) and 10 dpf (dep3) in each exposure experiment as function of hpe. hpe
= hours post exposure, hpf = hours post fertilization, dpf = days post fertilization.

By conducting and comparing lipid profiles for the three different life stages for embryos exposed
at 0 hpf, 36 hpf, 10 dpf and control (see Figure [19] and , the values indicate that total
extractable lipid content maintains quite the same throughout the development of ELS
lumpsucker. The average extractable lipid content supports this as the content is 4,8 + 0,6 %
mg/egg for embryos exposed at 0 hpf, 4,9 + 0,3 % mg/egg for embryos exposed at 3 hpf, and 5,0
+ 0,5 % mg/egg for embryos exposed at 10 dpf. Lipid extraction (Folch) for embryos exposed at 0
hpf, 36 hpf, 10 dpf and control samples is to be found in Appendix 9-12, Table S13-S16.
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5.3 Body burden concentration normalized to lipid content

The concentration of PAHs and alkyl PAHs are measured in the embryos, whereof the normalized
value of body burden concentration to lipid content is calculated from Equation 1 and 2 in
chapter 3:3.1] The three exposure experiments show a significant different pattern of PAH and
alkyl PAH uptake. Notably, the last exposure (10 dpf (dep3)) showed a distinct reduction. Figure
shows a graphic illustration of the body burden concentration normalized to lipid content over
time is compared for the three potentially sensitive life stages (0 hpf (depl), 36 hpf (dep2) and 10
dpf (dep3)).
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Figure 21: Graphic illustration of body burden concentration of tPAH normalized to the lipid
content for embryos exposed at 0 hpf (depl), 36 hpf (dep2) and 10 dpf (dep3). hpe = hours
post exposure, hpf = hours post fertilization, dpf —=days post fertilization.

From the calculations and graphic illustrations (Figure , the tPAH body burden in enbryos
exposed at 0 hpe is clearly the highest at 0 hpe among the exposure experiments, with the
concentration of 0,27 + 0,03 tPAH in lipid content (ng/mg). Embryos exposed at 36 hpf holds the
concentration of 0.10 + 0,005 ng/mg, while embryos exposed at 10 dpf represents the lowest
concentration; 0,05 £ 0,01 ng/mg (see Table S12 in Appendix 8).

The concentrations in embryos exposed at 0 hpf indicate great elimination of tPAHs after being
placed in the recovery rig. Already at 6 hpe the concentration decrease to 0,103 £+ 0,008 tPAH in
lipid content (ng/mg), then steadily decreasing to 0.011 + 0,008 ng/mg at 192 hpe.
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In embryos exposed at 36 hpf, the concentration increase at 6 hpe (0,156 + 0,01 ng/mg), followed
by decrease. Prior hatching, the last concentration measured is 0,021 + 0,002 ng/mg.

In the beginning of embryos exposed at 10 dpf the body burden concentration of tPAH is low
compared to embryos exposed at 0 and 36 hpf. At 6 hpe the concentration measured is 0,053 +
0,005 ng/mg, an increase of the concentration at 0 hpe. From 6 hpe to 192 hpe the concentration
decreases to 0,009 £+ 0,002 ng/mg tPAH in lipid content. This concentration is the lowest
measured for all of the exposure experiments.

5.4 Bioaccumulation of compounds at focus

The BCFs are calculated using Equation 3, the values used for this equation are found in
Appendix 3-5and 9-11, Table S3-S5 and S13-S15. BCFs for the ’compounds at focus’ are given in
Table 2

Table 2: Bioconcentration factor (BCF) of compounds at focus for embryos exposed at 0 hpf
(depl), 36 hpf (dep2) and 10 dpf (dep3), given with standard deviation, at 0 hpe. hpe =
hours post exposure. hpf = hours post fertilization. dpf = days post fertilization.

BCF (L /kg)
Compounds Log Kow Depl (0 hpf) Dep2 (36 hpf) Dep3 (10 dpf)
Naphthalene 3.17 864 + 136 498 + 126 296 + 57
C1-Phenanthrene 4.89 50+ 0,9 40+ 04 1,8 £ 0,3
Dibenzothiophene 4.17 879 £ 157 467 £ 147 82 £+ 64

The compound with the highest bioconcentration factor (BCF) among embryos exposed at 0 hpf
(depl) is dibenzothiophene, with a concentration of 879 + 157 L /kg, meaning that
dibenzothiophene bioaccumulates the most at 0 hpe. Naphthalene follows with a concentration of
864 + 136 L/kg, and lastly Cl-phenanthrene bioaccumulates the least with a concentration of 5,0
+ 0,9 L/kg.

Naphthalene bioaccumulates the most for 36 hpf (dep2), with a BCF of 498 + 126 L/kg.
Dibenzothiophene follows with a BCF of 467 + 147 L /kg. Cl-phenanthrene has the lowest BCF,
4,0 + 0,4 L/kg, meaning it bioaccumulates the least. Compared to the embryos exposed at 0 hpf
(depl), the bioaccumulation in embryos exposed at 36 hpf (dep2) is more or less halved for
naphthalene and dibenzothiophene.

For embryos exposed at 10 dpf (dep3), naphthalene bioaccumulates the most with a BCF of 296
+ 57 L/kg. The BCF of dibenzothiophene here has decreased by five times of the BCF in embryos
exposed at 36 hpf, with a concentration of 82 + 64 L/kg in embryos exposed at 10 dpf. Also here,
Cl-phenanthrene has the lowest BCF and accumulates the least 10 hpf, with a concentration of
1,8 £ 0,3 L/kg.

36



5.5 Effects of PW toxicity

This section of the results is based on work accomplished by Drs’ Bjgrn Henrik Hansen and Julia
Farkas and the results are preliminary.

5.5.1 Effects on survival

Preliminary (16 dpf) results show no impact on fertilization rates or on embryonic survival (see
Figure . This is the given timepoint for the investigation of effects on embryonic survival.
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100
T
£
2 5
g
=
w
0 .
ctrl DEF1  DEP2  DEP3

Group

Figure 22: Illustrates survival of embryos exposed at 0 hpf (depl), 36 hpf (dep2) and 10 dpf
(dep3) at 16 dpf. hpf = hours post exposure, dpf = days post fertilization.
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5.5.2 Heart activity - bradycardia

Heart rate (HR) analyses after 17 dpf were accomplished (see Figure . For embryos exposed
during fertilization (depl) and 36 hpf (dep2) the HR are significantly reduced. For embryos
exposed 10 dpf (dep3) no significant differences are observed compared to the control group. After
hatching new HR analyses were performed, but no significant differences between the groups are

spotted in HR for larvae.
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Figure 23: Illustrations of HR analyses for embryos exposed at 0 hpf (depl), 36 hpf (dep2),
10 dpf (dep3) and control samples (ctrl) at 17 dpf (a) and after hatching (b). hpf = hours
post fetilization, dpf = days post fertilization.
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6 Discussion

6.1 Methods used in the current work
6.1.1 Body burden extraction and clean-up SPE

To fully understand the toxicity, it is necessary with a sensitive and precise analysis of low
concentration of alkyl PAH and parent PAH accumulated in lumpsucker embryos [46]. The
toxicity can be related to uptake rates and bioaccumulation levels of substances in the tissues. To
estimate the impact of PAHs, the relationship between body burden and toxicity is utilized [45].

The method used for the body burden consists of a homogenization, an extraction and a clean-up
step [43]. The extraction step brought some difficulties regarding the crushing of the lumpsucker
eggs. Although the method is well established for other fish eggs, the homogenizing knife could
not manage to crush the lumpsucker eggs due to their robust egg shells. Experiencing that the
homogenizing step was very time consuming and inefficiently, the knife was replaced with a glass
rod. The glass rod did not contaminate the samples as it was cleansed with DCM and dried
within every new sample. This adjustment resulted in a more efficient egg crushing. Despite the
usage of a glass rod, a few eggs would still not break. The number of uncrushed eggs were noted.
Although, some uncrushed eggs may have been unnoticed and unlisted. This may have lead to a
lower concentration of PAH in the current samples, although the uncrushed eggs still are expected
to contribute in some amounts to the concentration. Samples containing uncrushed eggs are
marked with a (c¢) in Appendix 3-6, Table S3-S6.

The usage of the evaporator was experienced as time consuming. This step allowed the students
to handle other tasks in the meanwhile while the samples evaporated. This resulted in some
samples being to much evaporated, or worse, completely evaporated. The samples regarding are
marked with (e) in Appendix 3-6, Table S3-S6. This may have caused a loss of light compounds,
such as the naphthalenes. Still, naphthalene is the most accumulated compound due to its
presence in PW.

6.1.2 GC-MS/MS

The GC-MS/MS is more ideal than the previous analysis method, GC-MS, due to its sensitivity
[3]. This current work demonstrates that the GC-MS/MS is sensitive enough to detect the PAH
concentrations (20 pg) in this experiments, although some concentrations fell outside the LOQ.

To describe the accumulation of alkyl PAH in PW exposed lumpsuckers precisely, one have to
look at the body burden, and count on a wider range of analytes (alkyl PAH clusters) than
accessible as analytical standards. The quantification of the group of alkyl PAH clusters is made
based on chromatographic patterns of the molecular ion of these compound groups. It is not
possible to determine accurate response factor for each alkyl PAH cluster, with this lack of
analytical standards for most of them. A solution to this problem is to use the parent PAH as a
“representative” for the alkyl homologous for each group, or to use several fragment ions for each

group [3].
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6.1.3 Lipid extraction

A technique that allows small sample sizes is desirable, because of the small sample size of
lumpsucker embryos. In addition, smaller sample sizes reduces the consumption of solvents and
chemical needed for the preparation of the micro-extraction. This is both economical and more
sustainable [43] The miniaturized Folch extraction protocols fulfills these requirement by allowing
a sample size < 200 mg [50]. The method takes advantage of the biphasic system of
chloroform:methanol:water with the proportion of 8:4:3 by volume, considering the extract
contains all the water from the tissue [51]. As a result of this, the extract embodied in the lower is
pure lipid [50].

In order to find the lipid content, the lipid extraction must be what is left in the preweighted
tube, thus the water phase and the precipitate must to be thoroughly removed. The distinction
between the water- and lipid phase became clearer after adding 0,9 % NaCl-MilliQ-solution and
centrifuging, which made it easier to remove the water phase.

To produce a good result, the sample has to be as clean as possible before the evaporation, due to
the extra weight the dirt and precipitate will bring to the lipid weight. During the laboratory
work, it was experienced a difficulty regarding producing samples clean enough, and for that
reason, an extra step was added to the procedure. The extra step consisted of transferring the
lipid supernatant to a new kimax tube and centrifuge twice, while originally this was done once
only. The extra step resulted in a significantly cleaner sample with less dirt and precipitate, which
led to a more accurate and reliable result (see Figure . Samples regarding precipitate are
marked with (d) in Appendix 9-12, Table S13-S16.

As for the homogenizing step, the egg crushed easily in the chloroform/methanol solvent. The
step by Folch method was appropriate for the lumpsucker eggs, unlike in the homogenizing step
for the body burden analysis.

6.2 Body burden and lipid content

The data presented in chapter [5| confirms that the three potentially sensitivity stages (embryos
exposed at 0 hpf, 36 hpf and 10 dpf) were affected by the PW exposure differently. The embryos
exposed during fertilization accumulated significantly more PAHs from the PW than those
exposed later in the development.

6.2.1 Body Burden concentration of PAHs

Body burden of total PAHs

In the current study, Body burden concentrations of tPAH and of the compounds at focus were
studied. The elimination process increases with the development of the fish embryo, due to the
biotransformation of xenobiotic compounds. Because the biotransformation is not fully developed
in the lumpsucker embryos exposed at at 0 hpf or 36 hpf, 10 dpf (dep3) helds the greatest
elimination rate. This is readily apparent in the graphic illustrations of the average uptake of
tPAH (see Figure 7 since embryos exposed at 0 hpf (depl) and 36 hpf (dep2) have a greater
concentration from the beginning - one of the reasons embryos exposed at 10 dpf (dep3) starts
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with a lower concentration is that the elimination process already had started before the eggs
were exposed to PW. Consequently, the lower uptake of PAHs is due to the elimination.

Depl was exposed during fertilization. At this point the eggs shells were soft compared to the the
shell at 36 hpf (dep2) and 10 dpf (dep3). As the hypothesis claims, the eggs accumulate more
PAHs and alkyl PAHs in their early stages as the concentration is higher for embryos exposed at 0
hpf compared to 36 hpf and 10 dpf. Hence, the results matches the hypothesis. Analyzing the
results and figure embryos exposed at 0 hpf (depl) accumulates significantly more tPAH than
the other depurations. Studying figure embryos exposed at 36 hpf (dep2) have a lower
concentration of tPAH than 0 hpf, and 10 dpf a lower concentration than embryos exposed at 36
hpf. During the development of the embryos, the egg shells hardened, presumable 36-38 hpf [7].
Due to this, embryos exposed at 36 hpf presumably decreased its accumulation. Embryos exposed
at 10 dpf is explained in the same manner, with egg shells robust enough to withstand mechanical
stress.

Body burden of compounds at focus

The lab results revealed that the body burden concentration of naphthalene was the highest.
Though it is established that heavier PAHs bioaccumulates more than lighter PAHs, light PAHs is
significantly more present in produced water due to the water solubility. Thereof, naphthalene
with the lowest molecular weight of the studied compounds had the highest body burden of all the
‘dep’s’. Cl-phenanthrene has the highest molecular weight of the compounds at focus, and was
the least present in the PW. Thereby, the body burden of Cl-phenanthrene was the lowest.
Dibenzothiophene is a lighter compound than Cl-phenanthrene. However, it has three rings, while
naphthalene consist of two rings only, which makes it a lot heavier than naphthalene. Hence, the
body burden of dibenzothiophene was higher than Cl-phenanthrene, but far less than the
concentration of naphthalene.

Elimination of PAHs

Studies show some adult fish have metabolized up to 99 % of parent PAH during a day being
exposed [3]. Elimination of PAHs can be both passive and active (biotransformation). It is
expected that after ended exposure, the concentration of tPAHs will decrease, also in organisms
with reduced metabolism [3I]. Experiments done on fish embryos shows that the metabolism is a
way of eliminating PAHs [3]. When determining exposure doses, the biotransformation of
xenobiotic compounds is the most perplex and confusing factor. The proposed cause of
elimination is biotransformation, which is a metabolism where xenobiotics gets detoxified and
transformed into more easily excreted compounds in the lumpsucker [3]. The elimination started
once the exposure ended; 2 dpf.

6.2.2 Lipid content

Some studies reveal that the lipid content in the biological membrane in the fish is directly linked
to the uptake of hydrophobic compounds, such as PAHs and alkyl PAHs [38]. The lumpsucker
embryos and larvae did not vary much in the content of lipid, neither over time nor in comparison
of the exposure experiments. Some variations occurred in the samples that were prepared in the
beginning by the students. A reason for the variation could be that the method was not optimized
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at first, as described in chapter In the first samples prepared, the homogenizing and
transmission to a new kimax tube was done once. This lead to a dirty sample containing
precipitate and particles. The dirt impacted the weight, leading to an inaccurate result. The
samples regarding are listed in Table S9-S12 in Appendix 13-16.

The three life stages analyzed (0 hpf, 36 hpf and 10 dpf) in chapter shows that there is no
significant difference in the lipid content. Due to this, nothing certain can be said about the
correlation between the three life stages, the correlation between exposure and lipid content, or
the correlation between life stages and the lipid content. Although the lipid content did not vary
much, the composition of the lipid may vary both over time or in the different exposure
experiments performed, although, this was not tested in the bachelor project.

6.2.3 Bioconcentration of PAHs

It is of interest to look at the BCF because it allows comparison of the bioconcentration of
compounds in different samples or organisms [3]. In order to find the BCF, the the body burden
concentration was normalized to the lipid weight, using Equation 2. It is established that all
compounds with a log K,,, above 3 have the potential to bioaccumulate [I0], as all the compounds
analyzed do have. Because the embryos did not have any uptake of compounds via dietary
exposure, the bioaccumulation is a result of diffusion only [33].

The BCF should be calculated at steady-state [3], but in this case it was not possible, due to
short exposure time, the presumably metabolism in the embryos and the exposure experiment was
performed with a semi-static renewal regime. Still, the BCF was estimated in order to give an
impression and to compare the accumulation of the different PAHs and alkyl PAHs in the all of
the exposure experiments.

Due to the water-solubility of light PAHs, the composition of tPAH mainly consists of PAHs and
alkyl PAHs with a log K,,, below 4. While all the exposure experiments have a significant high
body burden concentration of naphthalene, it is not the most bioaccumulated compound for
embryos exposed at 0 hpf. The BCF is a little higher for dibenzothiophene than for naphthalene.
Dibenzothiophene is a heavier PAH than naphthalene, heavier compounds are less water-soluble
and more soluble in lipid. Heavy PAHs will accumulate more in lipid rich organisms, such as the
lumpsucker. Cl-phenanthrene is a heavier compound than naphthalene and dibenzothiophene,
still it the least bioaccumulated compound in all of the exposure experiments. Sgrensen et al. [52]
suggests that different compounds have different metabolisms in ELS of fish [52]. The low BCF of
Cl-phenanthrene can be explained by this hypothesis, as the reason the bioaccumulation is so low
compared to naphthalene and dibenzothiophene may be due to the metabolism of this compound
starting earlier. Researchers are still trying to figure this out, and nothing certain can be said.

Log K, is found to correlate well with BCF [3]. When estimating the bioaccumulation, a plot of
BCF based on log K, is currently the most competent [3]. This model have some weaknesses,
due to the exclusion of some processes (e.g. uptake- and elimination kinetics, uptake process, cell
membrane diffusion and metabolism rate). Devillers et al. [35] found that the correlation between
log K, and BCF for compounds with a log K,,, below 6 have been established as successful. As
seen in the Table S1 in Appendix 1, naphthalene has a log K, of 3,17, dibenzothiophene has a
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log K, value of 4,17, and Cl-phenanthrene has the log K, value of 4,85. As all these
compounds has a log K, below 6, a plot of BCF based on log K, could be a way of estimating
the bioaccumulation. Although in this thesis, the BCF is calculated in order to compare the
bioaccumulation of ’compounds at focus’ to each other and to other studies. No plot of BCF
based on log K, is made, due to the lack of time.

Sgrensen et al. [52] compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus
morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally
relevant concentrations (10-600 pg oil/L seawater) until hatching [52]. In Appendix 5, Table S11,
the BCF of cod and haddock is represented. The haddock and cod are less lipid rich than the
lumpsucker, and for this reason are expected to bioaccumulate less [7]. As the results provided,
the BCF results of lumpsucker embryos were significant lower than the BCF results of haddock
embryos and cod embryos. A suggested reason for the difference is that the lumpsucker embryos
was exposed to PW with a semi-static renewal regime, while the cod and haddock embryos was
exposed with a continuous flow-through exposure regime. The semi-static renewal regime involved
batchwise renewal of the test solution after 24 hours, resulting in the exposure values sinking
through the day. The continuous flow-trough exposure regime maintained the exposure values
throughout the whole exposure period, leading to a higher exposure than a semi-static renewal
regime [53].

6.3 Effects of produced water toxicity

The results achieved in this section are preliminary and not yet fully analyzed. Still, the observed
results can demonstrate the relation between body burden and toxicity. The results from the
body burden analysis displayed that the embryos exposed at 0 hpf holds the greatest body burden
of tPAHs, and it is expected that they are affected the most by the toxicity effects from the PAHs.
Embryos exposed at 36 hpf has the second highest body burden of tPAHs. They are expected to
be affected a little less than those exposed at 0 hpf, but more affected than the embryos exposed
at 10 dpf, as these has the lowest t PAH body burden concentration.

In the present study, it is difficult to separate the effects the individual compounds of PAH have.
The embryos were exposed to the same mixture of PAHs and alkylated PAHs, where naphthalene
had the significantly highest concentration in all of the exposed embryos. Accordingly, it may be
suggested that naphthalene is the main reason for the toxicity effects observed in the embryos,
however this not certain.

6.3.1 Effects on survival

Figure 22) reveals that 16 dpf preliminary there are no impacts on fertilization rates or on
embryonic survival in all of the exposure experiments and the control samples. The results
displayed that the exposure concentration of PW is low enough to gain successful survival at the
timepoint for the investigation of survival effects. At this timepoint, the biotransformation had
developed a lot, and the elimination process were efficient. The flow system developed to this
project also contributed to the survival [44].
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6.3.2 Heart rate

In the current study, the heartbeat occurred normally in the all of the lumpsucker larvae after
hatching, but 17 dpf the embryos exposed during fertilization (depl) and at 36 hpf (dep2)
displayed bradycardia.

Studying zebrafish embryos exposed to different mixtures of PAHs, Incardona et al. [21] found
that phenanthrene or dibenzothiophene produced dose-dependent reduction in heart rate, while
fluorene exposed zebrafish embryos showed significant bradycardia. Naphthalene induced a mild,
non-dose-dependent bradycardia. The study of zebrafish embryos cannot state the different
compound’s function in the lumpsucker, though, as fish species gets affected differently.
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7 Conclusion

This experiment investigated bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and
alkyl PAHs in early life stages (ELS) of the fish specie lumpsucker (Cyclopterus Lumpus). As the
results affirmed, the bioaccumulation did decrease with the developmental stages of the fish specie
lumpsucker. The more the embryo developed, the greater the metabolism and the elimination of
PAHs and alkyl PAHs. Accordingly, the overall bioaccumulation of PAHs and alkyl PAHs in the
lumpsucker embryo was at its highest in the first exposure experiment (embryos exposed during
fertilization, depl). The fact that the lumpsucker eggs become hard after approximately 36-38 hpf
is also a current hypothesis explaining why the PAH bioaccumulation decrease as the embryos
develop. Their robust egg will prevent uptake of compounds such as PAHs.

At 0 hours post exposure (hpe) the uptake in embryos exposed during fertilization held the
greatest concentration of total PAH (tPAH), 1,9 &+ 0,3 ng/egg, due to the eggs had not began to
hardened yet and the metabolism in the fish had not been fully develop. This hypothesis was
supported by the rest of the study, where embryos exposed 36 hours post fertilization (hpf) held
the second highest concentration of 1,3 £ 0,2 ng/egg at 0 hpe, as the metabolism still was
underdeveloped, but the eggs had become completely hard egg. Embryos exposed 10 days post
fertilization (dpf) had an increased metabolism which resulted in the lowest concentration at 0
hpe, 1,3 + 0,2 ng/egg. The body burden of naphthalene was the highest of all compounds in all
the exposure experiments, comprising 87 % of tPAH in embryos exposed at 0 hpf, 83 % in
embryos exposed at 36 hpf and 88 % in embryos exposed at 10 dpf. The most water-soluble
compounds will be the most present in the produced water, such as naphthalene.
Dibenzothiophene gained the second highest tPAH body burden among the ’compounds at focus’,
comprising 0,09 % of tPAH in embryos exposed at 0 hpf, 0,012 % in embryos exposed at 36 hpf
and 0,005 % in embryos exposed at 10 dpf. The tPAH body burden of sum of Cl-phenanthrene
was the lowest among the three compounds, constituting of 0,0005 % of tPAH in embryos exposed
at 0 hpf, 0,001 % in embryos exposed at 36 hpf and 0,001 % in embryos exposed at 10 dpf.

The greatest discovery in this thesis was the biotransformation in ELS of lumpsucker affecting the
bioaccumulation to a great extent as the elimination process increased with the growing
metabolism in the fish embryo. The suggested cause of elimination is biotransformation, likewise
the robust egg shell of lumpsucker embryos - completely hard after approximately 36-38 hours
post fertilization. Thus, the field is yet to be fully understood.

The lipid content has been proven directly linked to the uptake of hydrophobic compounds. The
lipid content most probably affected the bioaccumulation of tPAH, due to the less water-soluble
compounds, such as heavy PAHs, accumulate more in lipid-rich organisms. Because the lipid
content maintained quite the same throughout the development of the lumpsucker ELS there is no
proof of the hypothesis of correlation between lipid content and PAH accumulation.

The bioconcentration factor (BCF) calculated for the ’compounds at focus’ shows that in embryos
exposed at 0 hpf, dibenzothiophene accumulated the most, followed by naphthalene right below,
and Cl-phenanthrene lastly with a significantly lower BCF than the other two compounds. In
embryos exposed at 36 hpf and 10 dpf naphthalene was the most accumulated compound, followed
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by dibenzothiophene and lastly Cl-phenanthrene. This is comprehended by the presence of light
PAHs in produced water, because even though heavier PAHs accumulate to a greater extend in
lipid-rich organisms (e.g. lumpsuckers), light PAHs accumulated more.

To summarize the results in this thesis it is stated that the eggs accumulate PAHs and alkyl
PAHs, due to the log K, value. The investigation of the correlation between life stage, lipid
content and accumulation was the main purpose of the thesis, and the correlation between life
stage and accumulation was evident from the analyzes. The current work could not prove any
correlation with regard to lipid content, as the lipid content did not differ particularly throughout
the period. The results and founds in this thesis gives better insight of the influence produced
water (PW) has on lumpsucker ELS.

Recommendations for further research

The chemical analysis was at interest in this thesis, in which the body burden concentration of
tPAH and the bioaccumulation were at focus. Studying the results, the biotransformation was
suggested as a distinct factor affecting the concentration of tPAH in the embryos. When looking
at at BCF for the ’compounds at focus’, Cl-phenanthrene was the least accumulated compound,
which contradicts the hypothesis that heavier PAHs accumulates more than lighter PAHs. There
is no particular reason for this, the suggested cause is that the metabolism for Cl-phenanthrene
starts earlier than for naphthalene and dibenzothiophene.

As a recommendation for further research, in order to achieve a better understanding of PAHs
and alkyl PAHs influence of marine species, the investigation of metabolism in ELS of fish for
several species and distinct effects of PAHs and alkyl PAHs should be examined and compared.
Associated with the recommendations, studying various PAHs, the malformations as a result of
PW exposure, or studying the exposure for a longer time is suggested. Another suggestion is to
investigate several toxicity endpoints through measurements. By measuring the Cyp-induction
during the same period with the same exposure regime, the impact different exposure times has
on the Cyp-induction can be determined, for instance. PW discharges is of concern for the marine
environment, and this needs to be investigated more in the future.
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S1 Table. Properties of PAH analytes and their GC-MS/MS analytical conditions.

MRM CE MRM CE
Analyte Short Mw (g/mol) log Kow Quant | (V) Qual (V)
Biphenyl BIP 154.2 4.01 154-153 | 20 | 154-152 | 30
Benzothiophene BT 134.2 3.12 134-89 | 30 134-90 30
Dimethylbenzothiophene, 2,5- BT-2,5 162.3 4.08 162-161 | 15 | 161-128 | 20
Trimethylbenzothiophene, 2,5,7- BT-2,5,7 176.3 4.63 176-161 | 15 | 176-175 | 20
Naphthalene NAP 128.2 3.17 128-102 | 25 | 128-78 | 25
Methylnaphthalene, 2- NAP-2 142.2 3.72 142-141 | 20 | 142-115 | 40
Methylnaphthalene, 1- NAP-1 142.2 3.72 142-141 | 20 | 142-115 | 40
Dimethylnaphthalene, 2,6&2,7- NAP-2,6&2,7 156.2 4.26 156-141 | 20 | 141-115 | 25
Dimethylnaphthalene, 1,4- NAP-1,4 156.2 4.26 156-141 | 20 | 141-115 | 25
Dimethylnaphthalene, 1,3&2,3- NAP-1,3&2,3 156.2 4.26 156-141 | 20 | 141-115 | 25
Trimethylnaphthalene, 1,3,7- NAP-1,3,7 170.3 4.81 170-155 | 15 | 155-153 | 15
Trimethylnaphthalene, 2,3,5- NAP-2,3,5 170.3 4.81 170-155 | 15 | 155-153 | 15
Trimethylnaphthalene, 1,2,3- NAP-1,2,3 170.3 4.81 170-155 | 20 | 155-153 | 20
Tetramethylnaphthalene, 1,2,5,6- NAP-1,2,5,6 184.3 4.96 184-169 | 20 | 169-154 | 15
Tetramethylnaphthalene, 1,4,6,7- NAP-1,4,6,7 184.3 4,96 184-169 | 20 | 169-154 | 15
Acenaphthylene ACY 152.2 3,94 152-151 | 25 | 152-150 | 45
Acenaphthene ACE 154.2 4.15 154-153 | 25 | 153-152 | 25
Dibenzofuran DBF 168.2 4,12 168-139 | 30 | 139-89 | 45
Fluorene FLU 166.2 4.02 166-165 | 25 | 165-164 | 25
Ethylfluorene, 9- FLU-9et 194.3 5.09 180-165 | 25 | 165-164 | 20
Methylfluorene, 1- FLU-1 180.3 4.97 194-165 | 20 | 165-164 | 20
Propylfluorene, 9-n- FLU-9pro 208.3 5.13 208-165 | 30 | 165-164 | 30
Dibenzothiophene DBT 184.3 4.17 184-139 | 45 | 184-152 | 25
Methyldibenzothiophene, 4- DBT-4 198.3 471 198-197 | 20 | 197-165 | 25
Ethyldibenzothiophene, 4- DBT-4et 212.3 5.20 212-197 | 20 | 197-165 | 25
Propyldibenzothiophene, 4-n-, DBT-4pro 226.4 5.69 226-197 | 20 | 197-165 | 25
Butyldibenzothiophene, 4-n- DBT-4but 240.4 6.19 240-197 | 30 | 197-165 | 30
Phenanthrene PHE 178.2 4.35 178-176 | 45 | 178-177 | 30
Anthracene ANT 178.2 4.35 178-176 | 45 | 178-177 | 30
Methylphenanthrene, 3- PHE-3 192.3 4.89 192-191 | 25 | 191-189 | 25
Methylphenanthrene, 2- PHE-2 192.3 4.89 192-191 | 25 | 191-189 | 25
Methylphenanthrene, 9- PHE-9 192.3 4.89 192-191 | 25 | 191-189 | 25
Methylphenanthrene, 1- PHE-1 192.3 4.89 192-191 | 25 | 191-189 | 25
Dimethylphenanthrene, 3,6- PHE-3,6 206.3 5.44 206-189 | 45 | 206-191 | 20
Dimethylphenanthrene, 1,7- PHE-1,7 206.3 5.44 206-189 | 45 | 206-191 | 20
Dimethylphenanthrene, 1,2- PHE-1,2 206.3 5.44 206-191 | 20 | 206-189 | 45
Trimethylphenanthrene, 2,6,9- PHE-2,6,9 220.3 5.99 220-205 | 20 | 205-189 | 35




S1 Table continued

MRM CE MRM CE
Analyte Short Mw (g/mol) log Kow Quant (V) Qual (V)
Trimethylphenanthrene, 1,2,6- PHE-1,2,6 220.3 5.99 220-205 | 20 205-189 35
Trimethylphenanthrene, 1,2,7- PHE-1,2,7 220.3 5.99 220-205 | 20 | 205-189 | 35
Tetramethylphenanthrene, 1,2,6,9- PHE-1,2,6,9 234.3 6.53 234-219 | 20 | 234-203 | 35
Fluoranthene FLA 202.3 4.93 202-200 | 40 | 202-201 | 25
Pyrene PYR 202.1 4.93 202-200 | 45 202-201 | 25
Methylfluoranthene, 2- FLA-2 216.3 5.48 216-215 | 30 | 215-213 | 40
Methylpyrene, 1- PYR-1 216.3 5.48 216-215 | 30 | 215-189 | 30
Dimethylpyrene, 4,5- PYR-4,5 230.3 6.03 230-215 | 30 | 215-189 | 30
Propylpyrene, 1-n- PYR-1pro 244.3 6.46 215-189 | 40 | 230-215 | 30
Ethylpyrene, 1- PYR-1let 230.3 5.97 215-189 | 35 | 215-213 | 45
Butylpyrene, 1-n- PYR-1but 258.3 6.95 215-189 | 40 | 215-213 | 40
Benz[a]anthracene BAA 228.3 5.52 228-226 | 45 | 226-224 | 45
Chrysene CHR 228.3 5.52 228-226 | 45 | 228-227 | 25
Methylchrysene, 1- CHR-1 242.3 6.07 242-241 | 20 | 242-239 | 40
Ethylchrysene, 6- CHR-6et 256.3 6.56 256-241 | 15 | 256-239 | 45
Propylchrysene, 6-n- CHR-6pro 270.4 7.05 241-239 | 35 | 270-241 | 20
Butylchrysene, 6-n- CHR-6but 284.4 7.54 241-239 | 40 | 284-241 | 25
Benzo[b]fluoranthene BBF 252.3 6,11 252-250 | 45 | 250-248 | 45
Benzo[k]fluoranthene BKF 252.3 6,11 252-250 | 45 | 250-248 | 45
Benzo[e]pyrene BEP 252.3 6,11 252-250 | 45 | 250-248 | 45
Benzo[a]pyrene BAP 252.3 6,11 252-250 | 45 | 250-248 | 45
Perylene PER 2523 6,11 252-250 | 45 250-248 | 45
Indeno(1,2,3-cd]pyrene IND 276.3 6.70 276-274 | 45 | 274-272 | 45
Dibenz[a,h]anthracene DBA 278.3 6.70 278-276 | 45 | 276-274 | 45
Benzo[g,h,i]perylene BGP 276.3 6.70 276-274 | 45 | 274-272 | 45
Naphthalene-d8 136.2 136-108 | 25 | 136-131 | 25
Biphenyl-d10 164.3 164-122 | 40 | 164-131 | 30
Acenapthylene-d8 160.2 160-158 | 30 | 160-132 | 30
Anthracene-d10 188.3 188-161 | 35 | 188-181 | 40
Pyrene-d10 212.3 212-208 | 40 | 212-210 | 35
Perylene-d12 264.4 264-262 | 40
Indeno(1,2,3,cd]pyrene-d12 288.4 288-282 | 50 | 288-286 | 40




S1 Table continued

Analyte Short Mw (g/mol) log Kow MRM | CE | MRM CE
y : g Quant | (V)| Qual (v)
148-133 | 15
Cl-benzothiophenes C1-BT 148.3 3.54
148-147 | 15
162-147 | 15
C2- benzothiophenes C2-BT 162.3 4.08
162-161 | 15
C3- benzothiophenes C3-BT 176.3 4,63 176-161 1 15
P ' ’ 176-175 | 20
C4- benzothiophenes C4-BT 190.4 5.18 190-161 1 15
P ' ' 190-175 | 15
C2-naphthalenes C2-NAP 156.2 4.26 156-141 | 20
170-141 | 20
C3- naphthalenes C3-NAP 170.3 4.81
170-155 | 15
184-141 | 20
C4- naphthalenes C4-NAP 184.3 4.96 184-155 | 20
184-169 | 20
30
Cl-fluorenes C1-FLU 180.3 4.97 180-179 30
194-1
C2- fluorenes C2-FLU 194.3 5.11 94-165 | 30
194-179 | 30
C3- fluorenes C3-FLU 208.3 5.66 208-179 1 30
208-193 | 30
C1- fluorenes C1-DBT 198.3 4.71 206-191 | 20
C2- fluorenes C2-DBT 212.3 5.26 220-191 ) 25
' ' 220-205 | 20
234-191 | 25
C3- fluorenes C3-DBT 226.4 5.81 234-205 | 25
234-219 | 20
C4- fluorenes C4-DBT 240.4 6.35 198-197 | 20
212-197 | 20
C2-ph th C2-PHE 206. A4
phenanthrenes 06.3 5 212-211 | 20
226-197 | 20
C3- phenanthrenes C3-PHE 220.3 5.99 226-211 | 20
240-197 | 30
C4- phenanthrenes C4-PHE 234.3 6.53 240-211 | 25
240-225 | 20
Cl-pyrenes C1-PYR 216.3 5.48 216-215 | 30
C2- pyrenes C2-PYR 230.3 6.03 230-215 | 30
244-215 | 30
C3- pyrenes C3-PYR 244.3 6.57 244-229 | 30
Cl-chrysenes C1-CHR 242.3 6.07 242-241 | 20




C2- chrysenes C2-CHR 256.3 6.62 | 256-241 | 15
C3- chrysenes C3-CHR 270.4 716 | 270241120
270-255 | 20
284-241 | 20
C4- chrysenes C4-CHR 284.4 7.71 | 284-255 | 20
284-269 | 20







Appendix 2

Table S2: LOD and LOQ in compounds. LOQ = 3*LOD

LOD LOQ
Analyte
(ng/sample)|(ng/sample)

Benzothiophene 1,746 5,239
Naphthalene 0,003 0,010
C1-NAP 0,027 0,080
C2-NAP 0,011 0,034
C3-NAP 0,015 0,044
C4-NAP 0,025 0,075
Biphenyl 0,003 0,010
Acenaphthylene 0,148 0,444
Acenapthene 0,186 0,558
Dibenzofuran 0,003 0,010
Fluorene 0,809 2,426
C1-FLU 0,004 0,011
C2-FLU 0,008 0,023
C3-FLU 0,012 0,037
Phenanthrene 2,648 7,943
Anthracene 3,697 11,090
C1-PHE 0,004 0,013
C2-PHE 0,017 0,050
C3-PHE 0,004 0,011
C4-PHE 0,028 0,083
Dibenzothiophene 0,003 0,010
C1-DBT 0,001 0,004
C2-DBT 0,002 0,005
C3-DBT 0,000 0,001
C4-DBT 0,002 0,005
Fluoranthene 0,512 1,536
Pyrene 0,257 0,770
C1-FLA/PYR 0,002 0,005
C2-FLA/PYR 0,001 0,003
C3-FLA/PYR 0,001 0,004
Benz[a]anthracene 0,300 0,900
Chrysene 0,188 0,564
C1-CHR 0,001 0,003
C2-CHR 0,001 0,004
C3-CHR 0,003 0,008
C4-CHR 0,003 0,009
Benzo[b]fluoranthene 0,311 0,933
Benzo[k]fluoranthene 0,548 1,645
Benzo[e]pyrene 0,388 1,164
Benzo[a]pyrene 0,505 1,514
Perylene 0,569 1,707
Indeno[1,2,3-cd]pyrene 0,009 0,026
Dibenz[ah]anthracene 0,504 1,511
Benzo[ghi]perylene 0,517 1,552
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Appendix 5
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Appendix 6
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Table S7: Internal standards used for quantification of PAHs and alkyl PAHs

Internal standards (IS):

IS concentration (ng/mL)

Recovery NAP-d8 250,8
Recovery ACE-d10 106,4
Recovery PHE-d10 50,00
Recovery CHR-d12 48,6
Recovery PER-d12 50,8

Appendix 7



Appendix 8

Table S8: Average concentration of tPAH from each depuration, given with standard deviation *.
hpe = hours post exposure.

tPAH
Sample time Depl Dep2 Dep3

(hpe) (ng/egg)  (ng/egg) (ng/egg)
0 1,9 + 0,3 1,34+0,2 0,36 + 0,07
6 0,9 + 0,2 1,2 + 0,2 0,44 + 0,07
12 0,9 + 0,2 0,9 +0,2 0,33 £ 0,06
24 0,9 +0,2 0,7 +0,1 0,36 + 0,06
48 0,7 £ 0,1 0,7 £ 0,1 0,24 + 0,05
96 0,44 £ 0,07 0,36 £0,06 0,12 £ 0,02
192 0,08 +£0,02 0,16 £0,02 0,066 £ 0,005

Table S9: Average concentration of naphthalene from each depuration, given with standard
deviation *. hpe = hours post exposure.

Naphthalene
Sample time Depl Dep2 Dep3

(hpe) (ng/egg) (ng/egg)  (ng/egg)
0 1,68 £ 0,06 1,1 +0,3 0,31 + 0,03
6 0,89 + 0,04 1,03 +0,08 0,36+ 0,05
12 08+03 079+0,04 0,29+ 0,01
24 09+01 062+0,06 0,25+ 0,03
48 0,73 + 0,08 0,57 +£ 0,08 0,20 + 0,02
96 0,35 +£0,04 0,29 +£ 0,02 0,081 + 0,007
192 0,07 +£ 0,02 0,10 £ 0,01 0,008 + 0,002

Table S10: Average concentration of C1-phenanthrene from each depuration, given with standard
deviation *. hpe = hours post exposure.

Cl-phenanthrene

Sample time Depl Dep2 Dep3
(hpe) (ng/egg) (ng/egg) (ng/egg)
0 0,00081 + 0,00009  0,0007 + 0,0001 0,000336 + 0,000008
6 0,0006 + 0,0002  0,00068 + 0,00009 0,0003167 + 0,0000006
12 0,0006 + 0,0002  0,00059 + 0,00002  0,000323 -+ 0,000007
24 0,00060 + 0,00006  0,0009 + 0,0004 0,000333 + 0,000006
48 0,00072 £ 0,00007  0,0007 £ 0,0002 0,000232 + 0,000006
96 0,0007 + 0,0002 0,0008 + 0,0001 0,000244 + 0,000001

192 0,0004 + 0,0001  0,00036 + 0,00003 0,00 £ 0,00



Appendix 8

Table S11: Average concentration of dibenzothiophene from each depuration, given with
standard deviation *. hpe = hours post exposure.

Dibenzothiophene
Sample time Depl Dep2 Dep3
(hpe) (ng/egg) (ng/egg) (ng/egg)

0 0,018 + 0,002 0,011 + 0,004 0,002 + 0,00

6 0,010 + 0,002 0,008 + 0,004 0,0066 + 0,0000
12 0,010 + 0,003 0,004 + 0,001  0,00183 + 0,00009
24 0,013 4+ 0,004 0,006 + 0,004 0,003 + 0,000
48 0,009 4+ 0,003 0,008 + 0,004 0,0010 + 0,0001
96 0,011 + 0,004 0,0075 4 0,0009 0,00 + 0,00
192 0,005 + 0,002 0,007 + 0,001 0,00 &+ 0,00

Table S12: Average BB concentration of tPAH* normalized to lipid content** from each
depuration, given with standard deviation. hpe = hours post exposure.

Body burden (ng tPAH,/mg lipid)

Sample time Depl Dep2 Dep3
(hpe) (ng tPAH/mg lipid) (ng tPAH/mg lipid) (ng tPAH/mg lipid)
0 0,27 + 0,03 0,10 £ 0,05 0,05 + 0,01
G 0,103 + 0,008 0,156 + 0,01 0,053 £ 0,005
12 0,11 £ 0,03 0,12 + 001 0,036 £+ 0,003
24 0,099 + 0,009 0,111 £ 0,006 0,038 £ 0,009
48 0,12 £ 0,03 0,086 £+ 0,008 0,026 £+ 0,005
i 0,06 £ 0.0 0,04 £ 0,01 0,022 £ 0,004
192 0,011 £+ 0,008 0021 £+ 0,002 0,009 £ 0,002

* Values calculated from appendix 3-6.

** Values calculated from appendix
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Table S17: Average concentration (ng/L) of compound in seawater solution

Compound Depl Dep2 Dep3

NAP 6411 6381 3128
C1-PHE 529 545 528
DBT 66 67 63

NAP = naphthalene
C1-PHE = Cl-phenanthrene
DBT = dibenzothiophene
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Table $18: Bioconcentration factor (BCF) values, given with standard deviation,
calculated by Lisbet Sgrensen, from research article “Qil droplet fouling and
differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of
Atlantic haddock and cod”. SD = standard deviation (STD)

BCF (LKG lipid) COD HADDOCK
Naphthalene 3406 2194
Dibenzothiophene 92 867 114 881
Methylphenanthrene, 3- 70134 72715
Methylphenanthrene, 2- 76 959 98 346
Methylphenanthrene, 9- 95 592 130771
Methylphenanthrene, 1- 78 882 81 888
Cl-phenanthrene (average) 80392 95930
SD (ng/L)

Naphthalene 295 308
Dibenzothiophene 10796 19 837
Methylphenanthrene, 3- 10753 10 829
Methylphenanthrene, 2- 12 215 23031
Methylphenanthrene, 9- 14 040 22 167
Methylphenanthrene, 1- 12 702 18 140
Cl-phenanthrene (average) 24 935 37 746




Body burden concentration [ng/egg] in dep 1, dep2 and dep3
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Dep2: Naphthalene
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Body burden concentration [ng/wet weight] in dep 1, dep2 and dep3

Depl: Naphthalene

03
025 | ®
[
02 g

0,15

ng/wet weight

0,1
0,05 ‘

0 [ ]
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

Hours post exposure (hpe)

Depl: C1-PHE

0,00014
[ ]

0,00012 ° [

0,0001 ;

0,00008 o e

0,00006

ng/wet weight
[ ]

°
0,00004 b
0,00002

0
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
Hours post exposure (hpe)

Depl: Dibenzothiophene
0,0025

0,002 b ®

ight
L
[ ]
[}

‘S 0,0015 PY

0,001

ng/wet we

0,0005

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
Hours post exposure (hpe)



ng/wet weight
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Dep3: Naphthalene
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Body burden concentration [ng/mg lipid] in dep 1, dep2 and dep3
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Dep2: Naphthalene
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Dep3: Naphthalene
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Populeaervitenskapelig artikkel - Appendix 16

Harmful discharges of produced water

Discharges from the oil and gas
platforms cause toxicity effects on
marine organisms!

The Norwegian continental shelf (NCS) is
considered especially vulnerable to oil
discharges due to the activity several fish
species have in the area. Several species, the
lumpsucker (Cyclopterus Lumpus) for instance,
use the the NCS for spawning areas [1].
Lumpsuckers are vulnerable for oil discharges,
as larvae and juvinile lumpsuckers are poor
swimmers, having limited possibilities to escape
potential oil spill and produced water discharges
[2] [3]. Produced water annually contributes to
a discharge of 130-150 million standard cubic
metres on the NCS [4]. The discharges consist
of compounds such as polycyclic aromatic
hydrocarbons (PAHs) and alkyl PAHs, which
are known to be toxic to early life stages of fish
- the impacts of produced water is up for
research [3]. Even though the regulatory
threshold allows up to 30 mg/L oil content in
produced water, studies have found that the
amount causes serious mutagenic and toxic
effects on marine organisms [4] [5].

The fish species lumpsucker and the toxicity
effects of PAHs on lumpsucker is not fully
investigated. It is at interests to study the
uptake and elimination of PAHs and alkyl
PAHs in the lumpsucker, especially in early life
stages. For this reason a study of lumpsucker
embryos exposed to produced water was
conducted, lead by SINTEF Ocean. The body
burden of total PAHs (tPAHs) in the
lumpsucker embryos was analyzed, as body
burden is a way to measure the amount of

pollutants in an organism over time [6].

Figure 1: Picture of a lumpsucker fish [7].

The investigation

Three potentially sensitive life stages of
lumpsucker embryos was exposed to produced
water for 48 hours, then placed in a hatching
tank with a flow of sea water until hatching.
Samples for body burden extraction was
analyzed at 7 timepoints. Uptake and
elimination of tPAHs was found by a body
burden extraction and a clean-up extraction,
followed by a tPAH analysis performed by a gas
chromatograph coupled with a mass
spectrometer.

The results reveal that embryos exposed at the
earliest life stage has the greatest body burden
of tPAHs while the tPAH body burden in
embryos exposed at the latest stage of the
development was the lowest. The body burden
concentration of tPAH in the all the embryos
decreased a lot before hatching.



Produced water in lumpsucker embryos

As the study states, the lumpsucker embryos
are more vulnerable to PAHs at the earliest life
stages. At this timepoint, the eggshells are soft
and the metabolism in the fish embryo is not
fully developed yet, resulting in a higher body
burden of tPAH. Even though the fish embryo
metabolism eliminates PAH compounds with
greater scope as the embryos develop, as the

concentration of tPAH decreases, the impacts of

PAH are still harmful to the lumpsucker.

@ NTNU

Department of Materials Science
and Engineering

The awareness of the harmful discharges from
produced water have resulted in many
investigations of the impacts. Some have found
that PAHs cause teratogenic, carcinogenic and
mutagenic effects in a variety of marine
organisms [3]. This study has displayed that
lumpsucker embryos achieve a body burden
concentration of the known toxic compound in
produced water, PAH.

() SINTEF
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