
M
arius Lauvland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ne

rg
y

an
d

P
ro

ce
ss

 E
ng

in
ee

ri
ng

B
ac

he
lo

r’
s

pr
oj

ec
t

Marius Lauvland

Condition monitoring of a generator
cooling system in a hydropower plant

Bachelor’s project in Renewable Energy Engineering
Supervisor: Felix Kelberlau

July 2019

Faculty of Engineering

Department of Energy and Process Engineering

Bachelor’s thesis

Thesis title
Condition monitoring of a generator
cooling system in a hydropower plant

Norwegian title
Tilstandsoverv̊aking av eit
generatorkjølesystem i eit vasskraftverk

Start date
01.04.2019

Date of submission
10.07.2019

Number of pages report / appendix
65 / 28

Student Supervisor
Marius Lauvland Felix Kelberlau

PhD Candidate, NTNU
felix.kelberlau@ntnu.no

Course of study Project number
Renewable Energy Engineering FEN1914

Assignment owner Representative and external supervisor
Voith Hydro AS Øyvind Holm

oeyvind.holm@voith.com

Free publication X

Delayed publication X

Free publication after 10.07.2022

Preface

This thesis marks the conclusion of a bachelor’s degree in Renewable Energy Engineering

at the Department of Energy and Process Engineering at the Norwegian University of

Science and Technology(NTNU) in Trondheim.

The scope of the assignment has been compiled in a cooperation between Øyvind Holm at

Voith Hydro, Felix Kelberlau at NTNU and me.

The help I have received throughout the project has been indispensable. There are many

to be thanked for their help and support, but I would like to particularly mention Øyvind

Holm at Voith Hydro, who has willingly shared his hydropower and engineering insight. I

have gained much knowledge thanks to his outstanding pedagogical skills.

Next, I would like to thank Felix Kelberlau who has been available ever since September,

and who even spent his holiday supervising me. His advice is always analytic and well-

founded.

This project would not have been possible to complete without help from others, thanks are

extended to Geir Småøien, Martin Fald Gaarden, Trond Sliper, Jostein Kjærnes Fossum

and Felix Lippold at Voith for helping with everything, big and small, and for conducting

the visit to Brattset hydropower plant. Furthermore, NTNU has shown great flexibility by

allowing the work to continue throughout the summer holiday, so that it was possible to

go on exchange and finish the studies on time. This was more than one could expect, and

H̊avard Karoliussen, Tor Hennum, and, once again, Felix Kelberlau, must be thanked for

making this process easy. Oddvar Bjerk̊as at TrønderEnergi is thanked for his great tour of

Brattset hydropower plant and for providing insight into the maintenance routines of the

hydropower plant. Greatly appreciated is also advice and guidance from Thomas Welte at

SINTEF and Viggo Pedersen at NTNU. Gratitude is extended to a special someone, who

is thanked for her proofreading and valuable support.

This work has truly been rewarding and educational, and I have been looking forward to

every single day.

Trondheim, July 10th 2019

Marius Lauvland

i

ii

Abstract

This project thesis has investigated the potential for condition monitoring of a generator

cooling system in a hydropower plant, using physical models on data from a SCADA

system. The work has been supervised by Voith Hydro AS.

SCADA data from Brattset hydropower plant, made available by Voith Hydro, was used

throughout the work with the project. The scope of the project focused in the generator

cooling system, with a particular focus on the generator air coolers. Several approaches to

condition monitoring have been investigated during the project. The data that was used

were mostly analogue air temperature measurements, but measurement of power output

were also used. The temperatures for the cold air of the coolers and the measurements of

the warm air from the generator, were used to determine the condition of the coolers. The

difference in the air temperature over the air coolers were believed to be influenced by the

condition of the coolers. The coolers of both generators were investigated individually and

collectively.

Several analyses were conducted, using Python and associated libraries, to develop three

condition monitoring concepts. One concept monitors the cold air of the air coolers in-

dividually, and may function as an early warning system following a leakage of the water

pipes in the cooler. The second concept may monitor the cooling effect of each cooler

individually or all the coolers belonging to one generator at the same time by monitoring

the difference in air temperature over time. The last concept predicts the temperature

given a specific power output of the generator.

The developed concepts show that SCADA data has the necessary sampling frequency

and accuracy to be used for condition monitoring. The concepts also show that the air

coolers in a hydropower plant may be suited for condition monitoring provided that you

have enough data.

iii

iv

Contents

Preface i

Abstract iii

1 Introduction 1
1.1 Background . 1
1.2 Scope . 2
1.3 Limitations . 2
1.4 Structure of the report . 2

2 Background theory 5
2.1 Hydropower plants . 5

2.1.1 Turbines . 6
2.1.2 Generators . 6
2.1.3 Cooling systems . 8
2.1.4 SCADA systems . 10
2.1.5 Brattset hydropower plant . 12

2.2 Maintenance . 15
2.2.1 Preventive maintenance . 15
2.2.2 Condition Monitoring . 15
2.2.3 Hydropower plant maintenance . 16
2.2.4 Maintenance of Brattset hydropower plant 16

3 Method and approach 19
3.1 Project progress . 19
3.2 Data export . 19
3.3 Pre-processing . 20

3.3.1 Proof of Concept . 22
3.3.2 Change in air temperature over the coolers 23
3.3.3 Quantitative vs qualitative approach 23

3.4 Time span . 25
3.5 Analysis . 26

3.5.1 Scenario 1 . 27
3.5.2 Scenario 2 . 29

4 Results 31
4.1 Proof of Concept . 31
4.2 Scenario 1 . 32
4.3 Scenario 2 . 40

5 Discussion 43
5.1 Pre-processing . 43
5.2 Data . 43
5.3 Uncertainties . 44
5.4 Scripting . 44
5.5 Methods and tools . 44
5.6 Proof of concept . 44
5.7 Scenario 1 . 45

v

5.8 Scenario 2 . 46
5.9 Is it worth it? . 46
5.10 Why condition monitoring . 46

6 Conclusion and further work 49
6.1 Conclusion . 49
6.2 Further work . 49

References 51

Appendix A Piping and instrumentation diagrams I

Appendix B Script for the Proof of Concept plot II

Appendix C Scenario 1 script XII

Appendix D Scenario 2 script XXI

vi

List of Figures

2.1 Cross section of Brattset hydropower plant. Received from TrønderEnergi . 5

2.2 Spiral casing with stay vanes, wicket gates and runner blades, modified

from[16, p. 838] . 6

2.3 Toothed stator segment and salient rotor pole[16, p. 356] 7

2.4 Generator air cooling loop, received from Voith Hydro 8

2.5 Generator air cooler at Brattset hydropower plant, received from TrønderEnergi 9

2.6 Operation, warning and alarm zones for a measurement in a SCADA system,

inspired by [37] . 12

2.7 Piping and instrumentation diagram for Brattset’s cooling system, received

from TrønderEnergi . 13

2.8 Maintenance strategy hierarchy, inspired by [46] 16

3.1 The progress towards Condition Monitoring, inspired by [34, p. 6] 20

3.2 Screenshot from Voith’s Analyzer . 21

3.3 Screenshot from the analyzer’s export function 21

3.4 Minute and second sampling over 30 minute periode for power output . . . 22

3.5 Comparison of different sampling techniques 23

3.6 Proof of Concept using cold air measurements from turbine 1, legend in plot

1 and 2 apply to plot 3 . 24

3.7 Effect of cooler illustrated as the change in temperature 24

3.8 Sample frequencies with plots for different time spans over a 30 minute time

period for power measurements on generator 1 on the 22nd of June 2019 . . 26

3.9 Difference in temperature over cooler 1 on the 25th of March 2017 28

3.10 Difference in temperature over cooler 1 on the 11th of December 2017 . . . 28

3.11 Difference in temperature over cooler 1 on the 8th of June 2019 29

4.1 Proof of Concept for each individual cooler for generator 1 31

4.2 Difference in temperature over air cooler 1 for generator 1, linear regression,

and color according to the output power 33

4.3 Difference in temperature over air cooler 2 for generator 1 and linear regres-

sion, and color according to the output power 34

4.4 Difference in temperature over air cooler 3 for generator 1 and linear regres-

sion, and color according to the output power 34

4.5 Difference in temperature over air cooler 4 for generator 1 and linear regres-

sion, and color according to the output power 35

4.6 Difference in temperature over the air coolers for generator 1, with the mean

temperature of the coolers, linear regression and setpoint of the power . . . 35

4.7 Difference in temperature over the air coolers for generator 1, without the

two extreme values, with the mean temperature of the coolers, linear regres-

sion and setpoint of the power . 36

4.8 Difference in temperature over air cooler 1 for generator 2, linear regression,

and color according to the output power 37

4.9 Difference in temperature over air cooler 2 for generator 2, linear regression,

and color according to the output power 38

vii

4.10 Difference in temperature over air cooler 3 for generator 2, linear regression,

and color according to the output power 38

4.11 Difference in temperature over air cooler 4 for generator 2, linear regression,

and color according to the output power 39

4.12 Difference in temperature over the air coolers for generator 2, with the mean

temperature of the coolers, linear regression and setpoint of the power . . . 39

4.13 Difference in temperature over the air coolers for generator 2, without the

two extreme values, with the mean temperature of the coolers, linear regres-

sion and setpoint of the power . 40

4.14 Temperature differences at various power outputs for generator 1 41

4.15 Temperature differences at various power outputs for generator 2 41

List of Tables

3.1 Inexplicable power output values . 25

3.2 Returned values for different time spans over a 30 minute time period for

power output on generator 1 on the 22nd of June 2019 26

3.3 Time series exported from Analyzer that fulfill the requirements set for

analysis . 27

viii

1. Introduction

1 Introduction

This chapter will introduce the background and motivation of the thesis. The scope and

the problem formulation are given, and the limitations will be accounted for, before the

structure of the report is described.

1.1 Background

Data and their applications are becoming increasingly accessible and profitable. The

world’s most valuable companies either have data as their business concept or actively

use it in the development of their business[1]. We have entered the data age, or the Fourth

Industrial Revolution, as some call it[2, 3].

Surrounded by services generated by data or data-generating services, concepts and ex-

pressions like Cyber Physical Systems, Digital Twins, Internet of Things and Internet of

Services have become customary. The application of new technology lead to advanced ser-

vices and systems, where some are almost as advanced as a human beings. In some cases

human-like behavior is even being targeted. Just imagine the benefits of an automated

system that can think for itself, or the potential savings related to a system that never

breaks down, because it notifies the operator if something is on the verge of going wrong.[4]

In 2017 Norway’s hydropower plants accounted for 95,8% of the country’s produced elec-

tricity[5]. The hydropower plants are undoubtedly the country’s most important source

of electricity, which at times even provide an electricity surplus. As Norway is gradually

becoming more integrated in the European power market – through the construction of

several oversea power cables – the access to a market that largely consists of power from

fossil fuels or inflexible, intermittent sources, can bring social-economic growth by offering

flexible, renewable hydropower.[6, 7]

The downside of exploiting this opportunity of income, is that most hydropower plants are

not designed for this modern usage pattern with rapid load regulation, called hydro peak-

ing. Although they may handle it in the short term, it could incur additional maintenance

and repair costs in the long run. Only some of the effects and the additional wear it causes

are known, like increased sediments in the turbine, accelerated aging and problems with

the cooling, others are yet to be discovered[8, 9].[7, 10]

To get a better understanding of the strain a modern usage pattern causes, and possibly

avoid costly downtime, one can use the tools and analysis methods made available through

the Fourth Industrial Revolution. These tools make it possible to continuously monitor

the health of the hydropower plant by gathering data from key components. Of course,

this does not only apply to hydropower plants used for hydro peaking, but all hydropower

plants. Thus, money can be saved by increasing the lifetime of the production equipment,

scheduling its maintenance and avoiding downtime. It can also supply value which is not

as easy to quantify, like information on the condition and health of a specific component

or the entire hydropower plant.

1

1. Introduction

1.2 Scope

The scope and specification of the assignment was developed in a cooperation between

Voith Hydro, NTNU, and the student. Voith Hydro, who is the assignment owner, wanted

some sort of analysis of the cooling system in a hydropower plant using physical models.

They wanted the products or results to be easy to reuse in another setting, which implies

that no – or at least as little as possible – power plant specific details should be included.

The products or results should also be robust enough to ensure that random errors do not

have significant effect. Beyond those points, there were no strict guidelines.

The work in the initial phase of the project was therefore concentrated on finding a good

problem formulation that potentially could bring some benefit to Voith Hydro. In order

to achieve this, the behaviour of the cooling system and all its components was studied

in detail and relevant literature was reviewed. Subsequently, the list of signals, containing

almost 1200 signals, was analyzed carefully to identify possible objectives.

This was a strenuous process, that kept on for a while. At the time the preliminary project

for the bachelor’s thesis was delivered, it had been narrowed down to be a topic related to

Condition Monitoring and the working title at that time was: ”Condition Monitoring of a

hydropower plant cooling system”.

Further, various theories and concepts were examined, and based on the signals that were

available, it was determined that the project’s focus would be the generator cooling. The

project will investigate the potential for Condition monitoring of a generator cooling system

in a hydropower plant using physical models on data from the SCADA system. The

definition of the problem for this project is:

Condition monitoring of a hydropower plant cooling system

1.3 Limitations

The project will only have access to data from one hydropower plant. Available data

stretches from the end of March 2017 until today. The data is historical SCADA data,

which means that the resolution and sampling frequency are given and there can be no

real-time analysis. The format of the data is set, and the thesis will mainly focus on the

cooling system of the generators. The data, its results and analyses will not be verified in

any way. Errors or systematic faults may be present.

1.4 Structure of the report

Section 1, the introduction of the report, highlights the background of the project, its scope

and limitations. The background theory in section 2, will focus on the theory and back-

ground of hydropower plants and their SCADA systems, with particular emphasis on the

generator cooling system. Maintenance strategies, Condition Monitoring and hydropower

maintenance will also be evaluated. Section 3, method and approach, will present the

methods and tools that have been used. It will also explain the data that was analyzed

2

1. Introduction

and how the work progressed. Then, in section 4, the final results are presented. They

are discussed in the following section, section 5. Next, the conclusions for the project are

drawn and the outlook is presented in section 6. The appendices include piping and in-

strumentation diagrams in a larger format than what is present in the report, in appendix

A, and some selected Python scripts are presented in appendices B, C and D.

Many of the references for the report are online, and an IEEE-style reference system is

therefore applied. The reference method that is used separates between a reference used

for a section or a single sentence. If the reference is given in the sentence, before the period,

it is applicable for the current sentence only. This is often applied where specific numbers

from a reference are reproduced. Direct quotes and figures are marked with their exact

page reference. If the reference is given after the sentence, often at the end of a paragraph,

it applies to all foregoing sentences of the paragraph.

SI-units are used in most cases, but there are some exceptions from the base SI-units.

These exceptions are applied when the author considers another unit to be more suitable,

or more commonly used, than the corresponding base SI-unit. The exceptions are where

minutes, hours and days are used in place of seconds.[11] Numbers, dates, and expressions

of time are formatted according to the guidelines of The Language Council of Norway[12].

3

1. Introduction

4

2. Background theory

2 Background theory

This chapter will introduce the theoretical background of the thesis. The operation and

behaviour of the most common type of hydropower turbine and generator will be examined.

Hydropower SCADA systems and other auxiliary systems will be reviewed. Cooling sys-

tems, with a particular focus on hydropower generator cooling are detailed, before different

types of maintenance and strategies, as well as hydropower maintenance, are evaluated.

2.1 Hydropower plants

Hydropower plants are complex constructions that consist of several subsystems. Figure

2.1 shows an edited cross section illustration of Brattset hydropower plant. On the left, in

the red box, one can see the penstock. The penstock is the waterway that leads the water

from a reservoir into the power plant and the turbine’s spiral casing. The turbine’s spiral

casing, green box, is visible close to the center of the drawinf. High pressured water from

the penstock enters the turbine’s spiral casing tangentially and moves along the casing,

before it is turned towards the runner at the center of the casing, by the wicket gates and

stay vanes. The water’s momentum is transferred to the runner, which will rotate, and

as the water passes through it there is a large drop in pressure, before the water axially

exits the runner and is led to the draft tube, yellow box, upon which it will exit the power

station. The shaft transfers the rotation of the runner to the generator. The generator,

orange box, is located on the same axis as the runner and the two are connected through

a shaft, blue box.[13, 14]

Figure 2.1: Cross section of Brattset hydropower plant. Received from TrønderEnergi

5

2. Background theory

2.1.1 Turbines

In order to achieve a high efficiency, the choice of turbine plays an important role. In

hydropower there are mainly three types of turbines to choose from, Kaplan, Francis and

Pelton. The turbines come in several variations and have many customization options.

The type of turbine one ends up installing is often given, due to local conditions like

the amount of water available, volume flow rate, and the height difference, head. But

the chosen turbine will most times be adapted to the local conditions and is specifically

designed for that exact power plant, to achieve the highest efficiency possible. The Kaplan

turbine is best suited for river power plants, where there is a lot of water available, whereas

the Pelton turbine is better suited for locations that offer high heads, but less water. The

Francis turbine, which is an intermediary of the two, is the turbine which is most commonly

used.[13, 14]

Francis turbines The Francis turbine is the oldest design still used today. The turbine’s

casing is completely filled with water as the Francis turbine extracts the kinetic and pres-

sure energy of the water. Although the turbine’s stay vanes are stationary, the flow rate

through the runner can be controlled by adjusting the angle of the wicket gates, shown in

figure 2.2.[13, 15]

Figure 2.2: Spiral casing with stay vanes, wicket gates and runner blades, modified from[16,
p. 838]

2.1.2 Generators

The generator is a reversed motor that transforms the mechanical energy applied through

the rotating shaft into electrical energy. The generator has a rotating part, the rotor and

6

2. Background theory

a stationary part, the stator, and the energy transformation is achieved through electro-

magnetic induction. There are a variety of generators, each with its application, but for

hydropower plants, synchronous generators are the predominant choice.[17]

Synchronous generators A synchronous generator is usually constructed with three

phases, a revolving magnetic field in salient poles and a stationary armature. The elec-

tromagnetic field on the rotor has a positive and a negative pole. When this magnetic

field rotates its flux will vary which will induce a current in the armature windings of the

stator. Since the magnetic field has positive and negative poles, the induced current will

be alternating.[16, 17]

The stator is composed of silicon-iron-steel laminations that are from 0,35-0,5 mm thick

and which are covered by an insulating varnish. The laminations have slots that carry the

armature windings, shown in figure 2.3, and the laminations are tightly stacked in a frame

that clamps them together to avoid vibrations. The windings are insulated according to

specifications of temperature classes. The salient poles of the rotor are constructed of

much thicker iron laminations. The holes in the salient pole shown in figure 2.3 are for

the windings that set up the electromagnetic field. The field on the rotor is excited by a

DC generator, which is usually mounted on the same shaft. The air-gap between the rotor

and stator pole is usually about 30 mm.[16, 17]

Figure 2.3: Toothed stator segment and salient rotor pole[16, p. 356]

The process of transforming the water’s kinetic and pressure energy to electricity is very

efficient, but as Wildi states: ”Whenever a machine transforms energy from one form to

another, there is always a certain loss”[16, p. 122]. The loss Wildi mentions, can not

simply disappear, so what happens in reality, is that most of this energy is transformed

into thermal energy, instead of electric energy. The losses in a generator depend on its load

and can be separated into three main groups, mechanical, due to friction and windage, iron

losses, due to induced currents in the conducting parts of the generator, and copper losses,

caused by heat-loss in the conductors. The ”lost” energy is dissipated as heat, and that

heat must be transported away to avoid a drop in generator performance or life expectancy.

The temperature rise, which is the temperature difference between a machine’s warmest

accessible part and its ambient temperature, have a great impact on its service life, and

according to Wildi[16, p. 128]: ”Tests made on many insulating materials have shown that

the service life of electrical apparatus diminishes approximately by half every time the

7

2. Background theory

temperature increases by 10°C.” This means that a generator in hydropower plant with a

life expectancy of 40 years at a rated temperature of 30°C, will have a service life of only

20 years at 40°C. [16, 17]

2.1.3 Cooling systems

Every hydropower plant must to a large extent be adapted to the local conditions and

there is an almost infinite number of compositions of turbines, generators and methods

of construction. This also applies to the cooling systems of the hydropower plants, which

are uniquely adapted to each plant. There may therefore be large variations in how the

cooling systems are designed from one plant to another. There are, however, some common

features.

Figure 2.4: Generator air cooling loop, received

from Voith Hydro

Machines in most hydropower plants are

water cooled, given the fact that water is an

effective coolant and an abundant resource

in a hydropower plant. This will, how-

ever, require piping and other types of in-

frastructure, in addition to maintenance of

the associated equipment. The machine’s

losses, and thereby the heat it dissipates,

are directly linked to its size. Smaller hy-

dropower plants may therefore use simpler,

less effective, types of air cooling, or a com-

bination of air and water cooling. On the

other side, direct water cooling may not

be sufficient for very large machines. In

those situations it may become necessary to

use more effective coolants, such as pressur-

ized hydrogen, to further improve the cool-

ing.[16]

The cooling system plays a crucial part in

any hydropower plant, and if it ceases to

work, production will quickly stop. The

system will ordinarily supply several of

the hydropower plants subsystems. Even

though there are more than one turbine in

the power plant, there is usually just one,

joint, cooling system. The subsystems it

supplies may include the turbine bearings

and the transformer(s), the turbine regula-

tor, and of course the generator(s).

8

2. Background theory

Generator cooling systems The generator accounts for the biggest losses of the hy-

dropower plant’s subsystems and for that reason it is the cooling system’s largest con-

sumer. For a water cooling system this becomes apparent by inspecting the dimensions of

the pipes that supply the generator cooling system.

The generator itself is normally cooled down by air, but the air it uses as coolant, is

refrigerated by a water fed heat exchanger. The blue markers in figure 2.4 illustrate the

loop of the cooling air for a generator cooling system. The space in which the air circulates

is closed and if one looks closely at the figure, one can recognize the rotor, marked by the

arrow with a red 1, and the stator, marked by a green 2, and the very narrow air gap

between them. The heat exchanger is marked by an orange number 3. The heated air

is transported through the stator laminations and the heat exchanger radially by forced

convection. The pressure needed for forced convection is created by the rotation of the

rotor and the small fan blades that are attached to the top and bottom of the rotor, marked

by two purple number 4’s in figure 2.4.[16, 17, 18, 19]

As stated, the air is cooled when it moves through the heat exchanger, and the heat

exchanger is refrigerated by circulating water from the hydropower plant cooling system.

The heat exchanger is equipped with a water inlet and outlet for circulation, and plugs for

venting and draining the cooler. Its frame is usually made of stainless steel, and the body

is made out of a metal with high thermal conductivity – usually copper – that is finned to

create an area that is as large as possible, for efficient heat transfer. A generator air cooler

is shown in figure 2.5.[19, 20, 21]

Figure 2.5: Generator air cooler at Brattset hydropower plant, received from TrønderEnergi

The most common types of damage for generator air coolers are leakage, fouling – which is

algaes and other organisms that start to grow on the water side of pipes – and smudging of

the coolers on the air side. Leakage of cooling water into the generator can cause it to break

down. Small leakages and the other types off damages share the same symptom, where at

9

2. Background theory

first the difference in temperature between the cold water and the cooled air rises a little,

up to 10°C. Untreated, this temperature increase will continue as the damage worsens,

until the temperature increases so much that the generator shuts down automatically. An

increase in the temperature of the cooling air can also damage other components in the

generator. Where the most prominent and serious are degradation of the insulation in

both the stator and rotor. The elevated temperature degrades the epoxy in the insulation

which makes the materials brittle and may lead to cracks in the material which reduce its

insulating abilities.[21, 19]

Some hydropower plants may require additional cooling, which is possible to achieve by

direct water cooling. This is somewhat more advanced, because pipes for the cooling water

must be added to the rotor and stator. The rotor must also have a contraption that can

circulate its cooling water while it rotates, which is fairly advanced and not as reliable,

and therefore rarely chosen.[17, 19]

2.1.4 SCADA systems

All modern industrial systems, like wind turbines, hydropower plants and oil rigs, are

controlled by PLCs. PLC is short for programmable logic controller, and PLC equipment

is electronic equipment specialized for control, measuring, communication and governing

of a system. Any industrial system constructed today is too complex to be handled by

one PLC, so there are usually a whole group of different PLCs, controllers and displays

with graphical user interfaces connected in a system, called a control system. The system

communicates and interacts on different levels to control the industrial system from a

control room or a remote location. The term SCADA is an acronym for Supervisory

Control And Data Acquisition, and it is the name of the architecture most control systems

use. It is common to refer to control systems as SCADA systems.[22, 23, 24]

Most SCADA systems are modular and will usually have a large number of sensors to

measure and monitor process values and outputs in a system. It can measure everything

from temperature and pressure to current and water levels, depending on what you need

and want. The measured values can be used for automatic control, which will give the sys-

tem high reliability. In some cases there are also integrated control circuits that control a

process without communicating with the SCADA system. Besides the electronic SCADA

system, there are usually other protective measures like mechanical or electromechani-

cal switches and governors that protect the often highly specialized and very expensive

industrial equipment.[16, 25, 26]

As stated, the SCADA system collects data from various sensors, and this data is either

collected as digital signals or measurements. We know that an electronic system, like a

computer or a PLC, only understand binary data; bits. This means that a PLC easily

understands digital signals, – which are on or off – the signal is simply translated to a bit.

A real process value, like pressure, temperature or flow, on the other hand, is continuous,

and a continuous value cannot be represented as a discrete value of 0’s and 1’s directly. The

continuous process value is therefore approximated by taking a sample of the process value,

and transforming this sample into a discrete value. This process is called discretization,

10

2. Background theory

or more easily understandable, Analog to Digital Conversion. Once a value has been

discretized it can be represented in binary digits, making it readable by the PLC and any

other computer.[27, 28]

Information loss, priority and resolution Sampling is a widely known technique, that

is frequently used in sound and image processing and compressing. Any sampled value will

only represent the value of the process it was sampled from, at the very instant the sample

was taken. The value the process has between two samples, will not be measured, and this

information will therefore be lost. For most processes, however, the sample frequency is

adapted to the rate of change of the process value, to ensure that as little information as

possible is lost. Completely loss-less sampling would make it possible to perfectly represent

an analogue process value based on its discretized, digital values.[29, 30, 31]

In a SCADA system there is an internal hierarchy. A signal or a measurement will be

given priority according to their rank in this hierarchy. A high priority measurement may

therefore be sampled at a higher rate than other measurements.[32]

Another factor that will affect the accuracy of the digitized value is the resolution of the

sample, sometimes called the measurements granularity. The smallest change in the process

value that is perceivable by a sensor, is referred to as the sensor’s resolution. Although this

is an important feature of any sensor, it may be other features that limit the resolution of

a measurement in a SCADA system. There may be limitations in the system’s properties,

such as its processor or system architecture.

We assume that a system communicates using data words with a size of two bytes, 16

bits. Some bits are reserved for transfer and one bit is reserved for the sign, so there

are eleven bits available for any measurement. These eleven bits provide a data range of

211 = 2048 possibilities for number representation, or an accuracy of 1
2048

· 100 ≈ 0, 05%.

For a temperature measurement that has a measuring range of ±261°C, its resolution will

be:

Measuring range

Data range
=

±261°C
2048bits

≈ 0, 13°C/bit (2.1)

SCADA system application In reality a SCADA system will sample data at irregular

intervals. The sampling algorithm, or the rules that determine when a sample of a mea-

surement or a signal is to be taken, can be influenced by a variety of factors. To keep the

rate of transfers low, most measurements will be updated upon change. A measurement

may be transferred only when the change since last transfer is, as an example, 1%, but

this will vary from one measurement to another. The importance of the measurement or

signal is a key factor. Other influences may be the rate of change in the measured value

and the time since the last sample was taken. Each signal or measurement may have a

different set of rules and underlying factors that affect its interval. The irregular sampling

interval of each signal, and the possible variations in the factors that determine the sam-

pling, contribute to the large variation of sampling frequencies within the system.[33, 34,

11

2. Background theory

35, 36]

Figure 2.6: Operation, warning and alarm zones

for a measurement in a SCADA system, inspired

by [37]

The SCADA system is meant to control and

protect the plant, automatically or semi-

automatically. That means that it will ei-

ther notify the operator or act on itself –

according to a pre-defined pattern – should

an anomalous situation arise. An anoma-

lous situation is a transient event, where

something is not going according to plan,

and may come as result of a whole range of

issues. An anomalous situation will most

likely carry some symptoms, such as an

increase in temperature or pressure, and

a well configured SCADA system will act

or react on this symptom, to prevent fur-

ther damage. To trigger a reaction in the

SCADA system it may be configured with

predetermined thresholds, like temperature

thresholds. For a generator the first thresh-

old may be set to a value 10°C above the

normal operating temperature. If the tem-

perature rises above this threshold, a warning may be triggered. Should the temperature

go 20°C above normal operating temperature, this could damage its material and shorten

the expected lifetime, as stated in subsection 2.1.2. The SCADA system might in that

situation be configured to go into stop mode to prevent further damage. The concept of

operating, warning and alarm zones of a signal is shown in figure 2.6.[34, 38, 39]

2.1.5 Brattset hydropower plant

The Brattset hydropower plant is located in Rennebu kommune in Trøndelag fylke, Nor-

way, and was commissioned in 1982. The plant is owned by Kraftverkene i Orkla, and

operated by TrønderEnergi Kraft. The hydropower plant has two identical Francis tur-

bines rated to 40 Mega Watt(MW). The gross head is 273 m and it produces 400 Giga

Watt hours(GWh) annualy. The generators have a rating of 46 Mega Volt Ampere(MVA).

Like in most hydropower plants the generators are synchronous, and the generator is de-

signed for temperature class F, but it is operated as class B, according to the NEK IEC

60034-1:2017 standard[40]. [41, 42, 43]

Brattset hydropower plant’s current SCADA system is engineered by Voith Hydro and

was commissioned in 2014. The power plant is a part of a Voith Hydro pilot program

and it is equipped with a data diode that extracts messages, temperatures, alarms and

measurement values from the SCADA system. This data is stored in a database and made

available for off-site access.[32]

12

2. Background theory

Figure 2.7: Piping and instrumentation diagram for Brattset’s cooling system, received from
TrønderEnergi

Brattset’s cooling system Like most hydropower plants Brattset relies on water as

coolant for the cooling system. The cooling water is stored in the cooling water sump

at the highest point of the hydropower plant, and the water in the sump is supplied by

intakes close to the turbines, with a reserve intake in the penstock of turbine 2. The

cooling water sump is marked with a purple box in figure 2.1. From the sump the cooling

water is fed through a system of insulated stainless steel pipes to its consumers. The flow

of cooling water, from the sump through the system, is forced by the potential from the

height difference between the cooling water sump and the outlet of the cooling water.

The piping and instrumentation diagram(P&ID) in figure 2.7 illustrates the cooling system.

This diagram is also given in full size in appendix A. The cooling system’s consumers are

transformer 1 and 2, the upper and lower bearings of turbine 1 and 2 and the cooling for

generator 1 and 2, illustrated by the four air coolers at the center of each generator. The

largest consumers are by far the generators. In recent years there have been some updates

to the cooling system, which have not been included in the P&IDs. The cooling of turbine

regulators are no longer a part of the cooling system.

13

2. Background theory

Brattset’s generator cooling system The flow of cooling water to the generator air

coolers is monitored by electronic flow meters. The flow meter will notify if the flow

deviates from set limits. The amount of water that enters the air coolers is governed by

a directly controlled mechanical valve with temperature feedback. This means that this

valve is controlled by an additional controller, separate from the SCADA system. One of

the reasons there is a separate controller is that generator air coolers are considered so

important that they will have to uphold their function, should the SCADA system break

down. How this controller is parameterized is not known. It may have been set when the

system was commissioned, if it has not been replaced or changed since then. In addition,

there are two mechanical contact thermometers for the cold air, and two for the hot air.

They provide additional security, and will if they are triggered give warning in the SCADA

system, and if necessary they will initiate a shutdown to prevent further damage.

The cold air temperature is measured using four PT100 elements, one for each air cooler.

The element that measures the temperature of the cold air is shown in center of the air

cooler in figure 2.5. PT100 elements, PT is an acronym for platinum, can measure temper-

ature by utilizing that one of the properties of platinum is that its resistance changes with

temperature, 100 means that the element has a resistance of 100 Ω at 0°C.[44] The increase

in resistance with temperature is almost perfectly linear and the element is considered very

reliable, according to IEC 60751:2008[45].

The hot air in the generator is considered to be uniform and its temperature is measured by

two PT100 elements close to the backside of the air coolers, indicated by the brown arrow

in figure 2.4. The velocity of the air is not known, and is considered difficult to calculate

due to thermal time constants and the fact that Brattset was designed and commissioned

at a time when the progress and possibilities in computational fluid dynamics was not as

good as today.[17]

The air coolers on one of the generators have recently been replaced, the replacement for

the other generator is scheduled this fall. The only information on the oldest air coolers

are that they have a weight of 385 kg. The model that will replace them have a weight 170

kg, an inner volume of 32 l, a max operating temp 99°C. It operates at a working pressure

of 0,6 MPa. The new coolers that have been replaced have a weight of 170 kg, an inner

volume of 31 l, and a max operating temp 99°C. It also operates at a pressure of 0,6 MPa.

All specified weights apply to an empty cooler.

14

2. Background theory

2.2 Maintenance

All industrial processes require some kind of maintenance, and the maintenance may in-

volve lubricating a valve or replacing a damaged part. It is no coincidence that these

two examples are mentioned, as they represent the two main strategies of maintenance.

The strategies are preventive and corrective maintenance. Preventive maintenance takes

aim of preventing faults, and the maintenance activity is performed before a component

breaks down. The goal is to extend the life expectancy of the component by scheduling

maintenance according to certain time intervals or other criteria. Corrective maintenance

is performed after the component has broken down. And the goal of a corrective mainte-

nance activity is to bring the component to a condition where it can perform a required

function.[3, 46]

Whether the preventive or corrective strategy is applied, depend on several factors, and

the approach may vary from one business to another. As mentioned in section 2.1.4, will

industrial processes often require highly specialized and very expensive equipment. If a

key component breaks down, it can cause a long halt in production, due to low availability

and long delivery times for specially crafted parts. Special parts or equipment is usually

also very expensive. Preventive maintenance is without a doubt more expensive than

corrective, but it may often be required and it will probably pay off in the long term.

2.2.1 Preventive maintenance

Preventive maintenance is traditionally conducted as predetermined maintenance, where

the maintenance activity is carried out in accordance with established time intervals. When

one follows this maintenance strategy it is common to schedule the maintenance accord-

ing to recommendations given by the manufacturers of the components in the system.

Another type of preventive maintenance is condition based maintenance. According to

the European committee for standardization, condition based maintenance is ”preventive

maintenance which include assessment of physical conditions, analysis and the possible

ensuing maintenance actions”[47, p. 35]. In other words, this maintenance strategy says

that maintenance activities should be carried out when there is reason to believe that it

is needed. To ensure high system reliability, it is fair to assume that an operator car-

ries out more maintenance than what is needed, in line with the saying: ”better safe than

sorry”. Maintenance carried out on the basis of the condition of a component, will therefore

probably save the operator money and may also offer better reliability. But to carry out

maintenance based on a component’s condition, one must have a method for determining

its condition. [47, 48]

2.2.2 Condition Monitoring

Condition Monitoring is an ”activity, performed either manually or automatically, intended

to measure at predetermined intervals the characteristics and parameters of the physical

actual state of an item”[47, p. 41]. Condition monitoring is a broad term that can include

15

2. Background theory

Figure 2.8: Maintenance strategy hierarchy, inspired by [46]

a variety of techniques and methods for monitoring the actual condition of a component. It

is not the same as an inspection, it is a more thorough, continuous analysis that takes place

over time to give an educated estimate of the components actual physical state. Condition

Monitoring is usually carried out in the operating state.[3, 47]

2.2.3 Hydropower plant maintenance

Hydropower plant maintenance is usually carried out according to the preventive, predeter-

mined maintenance strategy. The maintenance work is often planned months or even years

ahead, as not to interfere with production. Larger maintenance operations for hydropower

plants are often scheduled in what is called revisions. Regular revisions are conducted

when they are needed, and a large revision may be conducted every thirtieth year. A

revision is planned years ahead and it will often include maintenance of all the important

components of a power plant, such as the transformer, generator and turbine. A revision

is conducted at an optimal time – usually when production is low.

Traditionally, a lot of hydropower plants have been manned by specialists, and these spe-

cialists have carried out preventive maintenance activities on a daily basis. Today, this is

not as common, and the operator usually has a group of people who are responsible for

the maintenance of several hydropower plants.

2.2.4 Maintenance of Brattset hydropower plant

The maintenance of Brattset hydropower plant is conducted by its operator, TrønderEnergi.

The information following is provided by them. TrønderEnergi use a maintenance program,

IFS, to schedule maintenance. They conduct monthly inspections, and use a system where

they give the most important components a score according to their condition. This score

16

2. Background theory

is monitored over time. Large revisions of the hydropower are conducted very infrequent,

once every 20-30 years.

Maintenance of the generator cooling system The generator air coolers are visually

inspected once a month and they are cleaned once a year, both on the air and water side.

They are cleaned with a specialized cleaning instrument and chemicals. TrønderEnergi

expects generator air coolers to have a life expectancy of 40 years.

Older cooler models have parts that are constructed of steel. They are prone to corrosion

that could cause leakages with severe water damage. This damage may cause generator

breakdown. The downtime following such an event is unknown, and will rely on the type

of fault that has occurred. Repairs will probably take a few days, whereas new coolers will

take months to provide. New coolers cost around 700 000 NOK.

17

2. Background theory

18

3. Method and approach

3 Method and approach

This chapter will describe how data were retrieved from Voith’s Cloud solution, and how

this data were pre-processed, analyzed and visualized using Python. Further, will it high-

light the methods and approaches that were used. Partial results will be presented where

they are needed, to clarify how and why the work progressed.

3.1 Project progress

The progress towards condition monitoring follows the outline of figure 3.1. The gener-

ator air coolers are the chosen components, their failure modes which are lower cooling

capacity, and their symptoms of failure modes which are increased temperature differences

between the cold cooling water and the cold air from the cooler are known. There are no

measurements of the temperature of the cold cooling water that could be used, but there

are measurements of the warm air, checked close to the inlet of the air coolers, and the cold

air, measured close to the outlet of the air coolers. The development of the difference in

air temperature between those measurements may indicate the condition and performance

of a cooler.

We know that the amount of cooling water to the generator air coolers at Brattset is

regulated by a controller that has a feedback loop. Which temperature this controller uses

for regulation is not known, but it is assumed that the controller will increase the amount

of water to the coolers when there is a temperature rise.

There are two measurements for the temperature of the warm air, and both measurements

were included. As stated in section 2.1.5 is the temperature of the air on the warm side

assumed to be uniform, and therefore has the mean of the two measurements been used.

There are four cold air measurements, one for each air cooler, which were all included. As

mentioned in section 2.1.2, will the temperature of the generator increase with its load,

and the power was therefore included. The actual output power is a regulated variable

that will depend on other conditions and may fluctuate, for that reason has the setpoint

of the power also been included[36].

3.2 Data export

Brattset’s SCADA data is accessible through the Analyzer on Voith’s cloud solution. The

Analyzer allows the user to select any of the around 1200 signals and displays them graph-

ically. Around 15% are analogue measurements. The user can select a combination of

signals and set the time span for which they are displayed. Figure 3.2 shows a screenshot

of Voith’s Analyzer with the aforementioned variables for generator 1. The two lines, green

and blue, highest in the line chart, are the warm air measurements. Their y-axis is the

leftmost, with Kelvin scale. The two lines below, in the middle of the chart belong to the

MW-axis. The pink line indicates the actual output power in MW, and the brown just

below is its setpoint. At the bottom of the chart one will see the four cold air tempera-

19

3. Method and approach

Figure 3.1: The progress towards Condition Monitoring, inspired by [34, p. 6]

ture measurements. The Analyzer does not offer any analysis functionality, but it offers

possibilities of visual inspection of the data before it is exported for further analysis.

The data is exported as a file with comma separated values(CSV), illustrated by figure 3.3.

The analyzer allows the user to export a maximum of 10 000 rows, and data is available

from the end of March 2017 until today. The user is allowed to specify the time span for

the values that are plotted in the analyzer, and at the same time this will specify the time

span of the exported values. The specified time span has a large influence on the number

of measurements in the exported files and their accuracy.

3.3 Pre-processing

The Python script that pre-processes the CSV-files was designed to be as general as pos-

sible, so that it would be capable of analyzing any file exported from the analyzer without

any special precautions, to uphold the integrity of the data.

The script imports the data to a Pandas DataFrame. Pandas is a popular OpenSource

framework for Python, and the DataFrame is a flexible data-type that can store large

quantities of data. The data in a DataFrame is stored in columns and can be addressed

and altered almost like data manipulation in a database. The data from the Analyzer was

stored in reverse chronological order, so the first manipulation of the data was to reverse

it, to chronological order.

20

3. Method and approach

Figure 3.2: Screenshot from Voith’s Analyzer

Figure 3.3: Screenshot from the analyzer’s export function

21

3. Method and approach

Figure 3.4: Minute and second sampling over 30 minute periode for power output

To do the work of analyzing the data as convenient as possible, all the signals belonging

to one analysis were combined in one plot in the analyzer and was then exported as one

file. This also means that one file will contain many measurements, and the number of

measurements may vary from one file to another. The script takes the dynamic number of

signals into account. The number of measurements for each signal may also vary, meaning

that the same timespan may yield a different number of measurements. To overcome this

challenge, each signal is processed, one by one, to set the sampling of each signal to the

same frequency. The values are then forward filled, where the last value is filled forwards

to the next value, according to the sampling rate. Several resampling techniques were

compared, as shown in figure 3.5. The figure shows that the resampling techniques may

yield approximately the same result, but the end result will depend heavily on the sampling

frequency and the selected time span. Interpolation techniques will construct values for

the resampling. It was decided that the forwardfill produced the most credible and real

results. Different sampling frequencies were also considered, see figure 3.4.

Next, the script combines the signals in a DataFrame where the first common timestamp

is found. This is set as the joint starting point for every signal. Subsequently, the last

common timestamp is found, and set as the common end point. Given that the signals

now have the same starting and end point, and sampling rate, they have the same number

of values and the same dimension. Any duplicates present are dropped, and the data is

ready for further analysis.

3.3.1 Proof of Concept

First a proof of concept was developed. All cold air measurements for turbine 1 were

combined in a plot over a wide time span, of approximately 16 days. Next, the average

22

3. Method and approach

Figure 3.5: Comparison of different sampling techniques

temperature was calculated. Then, some imagined thresholds, at the average temperature

plus and minus 1%, were calculated and plotted, as shown in figure 3.6. The next iteration

used the two standard deviations of the calculated mean to establish the thresholds.

3.3.2 Change in air temperature over the coolers

Following, a plot was developed to uncover whether it was possible to determine the cooling

effect of an air cooler based on the mean of the warm air and its cold air temperature.

Data covering a large time span, of around 32 hours, that also included a change in output

power of approximately 5 MW, from around 16:00 on the 28th of August to 00:00 on the

30th of August 2018 was used, as shown in figure 3.7. This analysis gave results that was

used later in the project.

3.3.3 Quantitative vs qualitative approach

Initially the pre-processing of the data was done using data sets with large time spans. It

was assumed that a quantitative approach set to wide time spans would have a greater

chance of revealing the trends and tendencies one was looking for. When the script that

pre-processes the quantitative data was finished it turned out that it was not directly

reusable by another file set to an equivalent time span, but for another period in time.

It was uncovered that some values outside the specified time span were included in the

exported files. There were no consistencies in the number of values that were added,

and values were added both before and after the specified time span. For this reason

it would have been difficult to automate the process of pre-precessing. The quantitative

data also had some inexplicable values, that after thorough analysis were deemed unlikely

23

3. Method and approach

Figure 3.6: Proof of Concept using cold air measurements from turbine 1, legend in plot 1 and 2
apply to plot 3

Figure 3.7: Effect of cooler illustrated as the change in temperature

24

3. Method and approach

and consequently false. The false values indicate a disproportionately large change in the

measurement value over a short period of time. In table 3.1, on row four, one can see

that there is a highly unlikely change in the power output of approximately 5 MW over

the course of a second. The fault has the same failure mode every time, for all types

of measurements. Even though the time span, its size, and the actual timestamp of the

unlikely, system constructed, value differed every time, it always occurred close to what

is perceived a real value. An example illustrating values from outside the specified span

is also present in the table. The specified time span for export is on the 30th of May, but

some values from the 21st of June are also included.

It was ruled that the inexplicable values were the result of some sort of aggregation done by

the Analyzer to compress the data, for faster visualization, transfer and download. This

is probably implemented for performance reasons, but ended up giving false data with

bogus measurement values. Given that the system is in a trial phase and has not yet been

commercialized, there is no available documentation supporting this feature.

Table 3.1: Inexplicable power output values

Timestamp Value Unit

6/21/2019, 11:47:26 AM 30,154 MW
6/21/2019, 11:47:26 AM 30,154 MW
5/30/2019, 11:58:00 PM 22,297 MW
5/30/2019, 11:57:59 PM 17,707 MW
5/30/2019, 8:58:00 PM 24,368 MW
5/30/2019, 7:57:59 PM 11,606 MW

Since it was not possible to avoid or remove the source of the false data, it was decided

to use qualitative data, believed to not include the constructed values. Consequently,

investigations to uncover a fitting time span for export were conducted.

By means of manual inspection it was uncovered that data set to a time span of about 12

hours, or less, did not contain data that involved large changes in measurement value over

a very short time period. 12 hours was therefore considered the largest time span that

could be used for export.

3.4 Time span

As specified in section 2.1.4, there is trade-off between the number of samples over a given

time period and the accuracy of the samples. For a given amount of samples, will the time

period it is spread over highly influence their accuracy.

It was not known how many values the Analyzer returned for given time spans, so to

find an appropriate time span and its associated accuracy within the 12 hour limit, data

with various time spans were exported, plotted in Python and analyzed in Excel. All the

timeseries are from the 22nd of June, and the starting time is 00:00. The time spans that

were examined were 30 minutes, 60 minutes, 360 minutes and 720 minutes. One can note

the high number of returned values, compared to the number of returned values within the

25

3. Method and approach

interval, for the 30 minute time span in table 3.2. The values outside the interval, which

refers to the issue mentioned section 3.3.3, make up a large part of the total returned

values.

Table 3.2: Returned values for different time spans over a 30 minute time period for power output
on generator 1 on the 22nd of June 2019

No. of returned
values

No. of returned
values 00:00-00:30

Values
per minute

00:00-00:30 783 255 8,50
00:00-01:00 420 41 1,37
00:00-06:00 1043 28 0,93
00:00-12:00 922 13 0,43

Figure 3.8: Sample frequencies with plots for different time spans over a 30 minute time period
for power measurements on generator 1 on the 22nd of June 2019

3.5 Analysis

As stated in section 2.2.2, Condition Monitoring is carried out in operating state. The

operating state for the generator air coolers is considered to be when the generator is

running. In section 2.1.2 it is said that the temperature of the generator will vary with its

load, so to be able to compare data on the condition of the air coolers over time, the data

had to represent approximately the same generator load. We also know that the thermal

time constant of the air, implies that it will take some time for the air temperature to reach

steady state, following a change in generator load. It was therefore necessary to export

qualitative data that represented a stable or nearly constand load over time.

A curve that represents the efficiency of a turbine is quite steep, and it is usually most

26

3. Method and approach

efficient at full load. This means that if a turbine is run outside its best efficiency point, its

efficiency will be significantly lower. The hydropower plant operators will therefore usually

run the hydropower turbine at full load, or close to full load, when it is running.

Taking all this into consideration, it was decided that the generator should run at an even

load for three hours for the temperatures to be categorized as stationary. To increase the

probability of finding representative data for the whole time period, it was decided that

the generator load – or rather the setpoint of the load, since the actual delivered load will

fluctuate – should be full load, 40 MW, or close to full load. The time span of the data

was set to 30 minutes, to include as much information as possible.

Next, data covering the whole time period was examined for both generator 1 and 2, to

find data that fulfilled the requirements. Effort was put into finding data that represented

the whole time period.

For generator 1 nine timeseries were exported, and for generator 2 eight. Information

regarding the timeseries are given in table 3.3.

Table 3.3: Time series exported from Analyzer that fulfill the requirements set for analysis
Generator 1 Generator 2

Date MW(setpoint) Time Date MW(setpoint) Time
25.03.2017 39,5 22:00-22:30 14.05.2017 40,0 11:00-11:30
31.03.2017 40,0 10:00-10:30 09.07.2017 40,0 12:00-12:30
28.06.2017 40,0 11:30-12:00 04.10.2017 40,0 15:00-15:30
13.10.2017 40,0 15:00-15:30 27.02.2018 39,0 22:30-23:00
11.12.2017 39,0 13:00-13:30 27.06.2018 40,0 03:00-03:30
28.04.2018 41,0 11:00-11:30 28.02.2019 39,7 17:30-18:00
25.08.2018 41,0 10:30-11:00 27.04.2019 40,0 11:30-12:00
27.02.2019 40,0 19:00-19:30 23.06.2019 40,0 03:30-04:00
08.06.2019 40,0 12:00-12:30

3.5.1 Scenario 1

Scenario 1 concentrates on the difference in temperature between the warm and the cold

air of the generator air coolers, for a given power output. Monitored over time, this value

can be used for characterization of normal behaviour, anomaly detection and as a condition

indicator, which are all steps towards Condition Monitoring, as outlined in figure 3.1.

Pre-scenario 1 Based on the results shown in figure 3.7. It was decided to further

improve this analysis by investigating the change in temperature over a 30 minute time

span for each cooler. Since the power output may fluctuate, and probably will affect the

temperature if it does so, it was included as a third variable, to explain any differences in

the changing temperature over the cooler(∆ Temperature).

These plots are given for cooler 1 of generator 1 in figures 3.9, 3.10 and 3.11.

27

3. Method and approach

Figure 3.9: Difference in temperature over cooler 1 on the 25th of March 2017

Figure 3.10: Difference in temperature over cooler 1 on the 11th of December 2017

28

3. Method and approach

Figure 3.11: Difference in temperature over cooler 1 on the 8th of June 2019

Scenario 1 To give a better understanding of the trend in the condition of all coolers,

the mean of the temperature change for all the coolers were plotted. The data that was

gathered, 9 time series for generator 1 and 8 for generator 2, was combined in plots for

each generator to uncover the condition of the coolers for the whole time period. A linear

regression was added, based on the plotted time series, in order to determine the rate of

any possible changes in the temperature difference over the coolers.

3.5.2 Scenario 2

It is believed that the temperature of the machine will have an approximately linear re-

lationship with the power output, with some wiggle room, of course. In theory, it should

therefore be possible to predict the temperature of the air, and thereby the change in tem-

perature given a certain power output. If the temperature is far from the expected value

at a given output power, this could be characterized as an anomaly.

A plot illustrating this idea was realized. It illustrates the difference in temperature(∆

Temperature) as a function of the power output. It could serve as a combined condi-

tion monitoring and anomaly detection feature, where the change in temperature for a

given power output is predicted using a linear regression, which was included. Thresholds

produced by the double standard deviation of the linear regression, are also plotted.

As stated, was it set as a condition that the generator had to run at even load for three

hours to consider the temperatures stationary. This condition is seldom met, apart from

when the generator is running at full load, or close to full load. For that reason, will

Scenario 2 only include data full load, or close to full load.

29

3. Method and approach

30

4. Results

4 Results

Some of the partial results were introduced in the previous section, section 3, to demon-

strate the progress of the project work. The project progressed incrementally, and it was

a conscious decision to present the partial results this way. The main results, however, are

presented below. First the initial results, the Proof of Concept that displays the use of

SCADA data for monitoring, are presented. Next, the final results for the monitoring of

the difference in air temperature over the coolers, for each cooler and their mean, known

as Scenario 1, are presented. Third, and last, will the results illustrating the expected

temperature given output power, Scenario 2, be shown.

4.1 Proof of Concept

The result is shown in figure 4.1. The upper and lower thresholds are calculated from

the double standard deviation of the mean for all the coolers. These thresholds are then

applied to each cold air measurement of generator 1. The plots share the same x- and

y-axes. The variation in cooling effect between the coolers are apparent. Where cooler 1

has the lowest temperature, and cooler 3 has the highest temperature. Cooler 2 and 4 are

quite similar. The data used for the Proof of Concept are qualitative, and will therefore

most likely include the errors mentioned in section 3.3.3. The focus of the Proof of Concept

was to demonstrate the use of temperature values from a SCADA system for immediate

detection of anomalies. The time on the x-axis was seen as irrelevant, and has therefore

been removed.

Figure 4.1: Proof of Concept for each individual cooler for generator 1

31

4. Results

4.2 Scenario 1

The same analyses have been performed on the data from generator 1 and 2. The results

for generator 1 are given first, and the results for generator 2 will follow. A walkthrough

of the results will be presented to clarify in which order they are presented. Next will each

result be described, after the result has been presented.

The results of scenario 1 for generator 1 for each individual cooler are shown in figures 4.2,

4.3, 4.4 and 4.5. The mean of the temperature for the air coolers for generator 1 is shown

in figure 4.6. The mean of the temperature for the air coolers for generator 1, without the

extreme values – which here are defined as the highest and lowest setpoint for the output

power – is shown in figure 4.7.

The results of scenario 1 for generator 2 for each individual cooler are shown in figures

4.8, 4.9, 4.10 and 4.11. The mean of the temperature for the air coolers for generator 2

is shown in figure 4.12. The mean of the temperature for the air coolers for generator 2,

without the extreme values – which here are defined as the highest and lowest setpoint for

the output power – is shown in figure 4.13.

As stated in section 3, has data from the entire available period been used. All plots

will therefore roughly share the same x-axis, but the exact dates are given in the table

of exported data, table 3.3. The plots for the coolers of generator 1 and 2, and their

mean, will share y-axis respectively. The scale for the y-axis has intentionally been kept,

according to which generator the results belong, to make comparison of the coolers easier.

For all the plots, except for those of the mean, figure 4.6 and 4.12 and those of the mean

without the extreme values, figure 4.7 and 4.13, has the difference in temperature for the

air coolers been calculated and plotted as a scatter for each time series. The scatters are

colored according to the value of the output power, and the colorbar on their right indicate

the value. A regression has also been calculated and included for all coolers.

Figures 4.6, 4.12, and figure 4.7, 4.13 have the mean of the change in temperature for the

coolers plotted as a scatter. They too, are colored according to the output power value.

The setpoint of the power has also been included. Note that figures 4.6 and 4.7 share

y-axes, the same does figures 4.12 and 4.13.

Generator 1 Figure 4.2 show that the temperature difference over air cooler 1 of gener-

ator 1, is systematically larger then the other coolers. It is about 1,5 K higher than the

lowest, which is figure 4.5. Figure 4.3, which represent cooler 2, is almost 1 K below cooler

1, but higher than the other two. Figure 4.4, for cooler 3, is slightly lower than cooler 2,

but higher than cooler 4. There are some differences in change in temperature over the

coolers, but seems to be fairly similar for all the coolers.

The figure representing the mean of all the coolers, figure 4.6, is placed in between the plots

for cooler 2 and 3, and it has about the same slope as the plots for the coolers. According

to the color of the scatters we can determine that most of the time series that have been

used are fairly stationary. The first scatters, at the setpoint of 39,5 MW are a bit unstable,

the same goes for the last scatters, all the way to the right. Figure 4.7, which is a plot of

32

4. Results

the mean without the two extreme values at a setpoint of 39,0 and 41,0 MW, presents a

leaner slope than the others.

Figure 4.2: Difference in temperature over air cooler 1 for generator 1, linear regression, and
color according to the output power

33

4. Results

Figure 4.3: Difference in temperature over air cooler 2 for generator 1 and linear regression, and
color according to the output power

Figure 4.4: Difference in temperature over air cooler 3 for generator 1 and linear regression, and
color according to the output power

34

4. Results

Figure 4.5: Difference in temperature over air cooler 4 for generator 1 and linear regression, and
color according to the output power

Figure 4.6: Difference in temperature over the air coolers for generator 1, with the mean tem-
perature of the coolers, linear regression and setpoint of the power

35

4. Results

Figure 4.7: Difference in temperature over the air coolers for generator 1, without the two extreme
values, with the mean temperature of the coolers, linear regression and setpoint of the power

36

4. Results

Generator 2 Figure 4.8 illustrates the temperature difference for air cooler 1 of generator

2. Compared to the other coolers of generator 2, is the change over time quite steep.

Whereas linear regressions for the other coolers are almost horizontal, is there a clear slope

here. Figure 4.9 has some slope on the regression line, but not as steep as cooler 1. Figure

4.10, which represent cooler 3, has a significantly lower starting point than the others,

and it regression is almost horizontal. Figure 4.11, start at the same point temperature

difference as the cooler 1 and 2, but separates from the other by having a horizontal linear

regression.

The figure representing the mean of all the coolers for generator 2, figure 4.12, is clearly

influenced by all the coolers. Its regression line is not horizontal, neither is as steep as

the one for cooler 1. The colors of the scatter reveal that the values that have been used

are quite stationary, except for the time series from the end of June 2019, where there

might have been some fluctuations. Figure 4.13, which represents the mean without the

two extreme values, have a negative slope, which was not expected.

Figure 4.8: Difference in temperature over air cooler 1 for generator 2, linear regression, and
color according to the output power

37

4. Results

Figure 4.9: Difference in temperature over air cooler 2 for generator 2, linear regression, and
color according to the output power

Figure 4.10: Difference in temperature over air cooler 3 for generator 2, linear regression, and
color according to the output power

38

4. Results

Figure 4.11: Difference in temperature over air cooler 4 for generator 2, linear regression, and
color according to the output power

Figure 4.12: Difference in temperature over the air coolers for generator 2, with the mean tem-
perature of the coolers, linear regression and setpoint of the power

39

4. Results

Figure 4.13: Difference in temperature over the air coolers for generator 2, without the two
extreme values, with the mean temperature of the coolers, linear regression and setpoint of the
power

4.3 Scenario 2

Scenario 2’s results are given in figure 4.14 and 4.15. The difference in temperature for the

air over the coolers has been calculated, and the mean of those calculations are plotted as

a scatter for the power output. Their linear regression has been calculated, and an upper

and lower threshold, at double standard deviation, have been included. Note also that

both the y- and x-axes differ from one figure to another. Time series mentioned in table

3.3, are used for both generators.

There is a clear clustering at between 39,0 and 40,5 MW in figure 4.14. Here, the ∆

temperature is around 18,5-19,5 K. We can see that most values are within the double

standard deviation threshold. In figure 4.15 there is also a cluster, but it is not dense as

the one in the previous figure. It is also located at around 39,5-40,0 MW. There are some

values located outside the thresholds.

At first sight the slope of the regressions might look similar, but by closer examination of

the y-axes it can be determined that figure 4.15 has a steeper inclination than figure 4.14.

40

4. Results

Figure 4.14: Temperature differences at various power outputs for generator 1

Figure 4.15: Temperature differences at various power outputs for generator 2

41

4. Results

42

5. Discussion

5 Discussion

5.1 Pre-processing

The pre-processing of the data require some data manipulation. Since the SCADA system

often samples the measurements upon change, will there most likely be a large number

of different sampling frequencies. To be able to compare the data it must have the same

sampling frequencies, but to achieve the same frequency must the data be manipulated. It

was decided to sample the data in minute intervals and forward-fill the values in between.

Minute intervals were chosen for most analyses. The change in air temperature is a fairly

slow process, due to the time constants of the air, and it was assumed that no information

would be lost. The forward-fill method was chosen because it resembles the behaviour of

the control system, where most values are sampled upon update. Interpolation techniques

were also investigated, but gave results that were quite similar. It could however, give

other results and potentially fabricate values in between two measurements.

There is a method in the pre-processing that drops any duplicates. The first duplicate is

kept, as a real value. It was not uncovered if it is most correct to keep the first or last of

the duplicates for the data it was applied to.

5.2 Data

After an appropriate time span for export was found, has the quality of the data been very

high. Not a single error or outlier has been identified. This indicates that SCADA data is

very well suited for analysis. The data used in the analyses were inside, or very close, the

double standard deviation of the mean of four measurements. This testifies to good data.

The source of the errors in the quantitative data, should be located and repaired. The

errors seemingly had valid time stamps, which made them even harder to identify, but

there is a very low chance for the measurements to be correct. The system and the export

function is in a trail period, and Voith is aware of the problem with the synthesized data.

The analysis is only performed on historic data. The analyses would have to be re-written

to be used on live-data.

A clear weakness is that only data at full load, or close to full load, has been analyzed.

The sensors that measure the temperature of the air may be place at different distances

from the outlet of the air coolers, which may introduce systematic faults.

Eidsiva Kraft AS[49] monitors temperatures in hydropower plants. The use data from

their operations center, which has a much lower sampling frequency then what is available

in the SCADA system. Despite this, they have been able to produce models for condition

monitoring.

Analysis of SCADA data is probably quite common, but little information is given online.

It is assumed that a lot of companies do it, but that they want to protect their work from

43

5. Discussion

competing businesses. The only code available on GitHub was partly in Chinese.

5.3 Uncertainties

The sampling of the data will introduce some uncertainties. The available data gives an

accuracy of 0,05%, as stated in section 2.1.4.

The resampling and forward-filling will of course introduces some uncertainties as well.

Other uncertainties may be the seasonal change in the temperature of the cooling water.

The ambient temperature in the hydropower plant may also change slightly, but since it

is placed into the mountain, it is not very likely.

5.4 Scripting

In the Python script is the iloc-method used for dynamic and static referencing of the

columns and rows in the DataFrames. This method is very convenient, but demands a lot

of resources. The run-time of the code, which on average was 1 second, could have been

vastly improved by changing referencing method. The largest data set that was assembled

used around 17 minutes for the pre-processing. It would therefore be worth to look into

other methods of referencing for larger data sets.

5.5 Methods and tools

The methods and tools that have been applied are well suited for the tasks analyzing

and plotting data. Scripting, and scripts, takes some time to set up and get used to,

but for repetitive tasks that involve large quantities of data it is much better suited,

than a graphical method like Excel. The analysis and plots that have been developed

could surely have been developed in Excel as well, and the two or three iterations would

probably finished sooner, but when several analysis are scheduled, scripting is regarded a

superior option. The scripting does not require any direct interaction with the data, and

the risk of introducing random errors is regarded lower. There can by all means occur

errors in a script as well, but the possibility of random errors are lower in a script. The

choice of Python as scripting language was a deliberate choice. There are range of other

languages that could have been used, where MATLAB is perhaps the strongest contender.

It too, offers very good options for plotting and data science. But since Voith was the

project owner it was considered easier for them to build on code that is Open source, if

they would wish to do so. Many of the great libraries offered by MATLAB are proprietary

and requires that the businesses buy access.

5.6 Proof of concept

The Proof of Concept illustrates that SCADA data can be used for Condition Monitoring

of a generator air cooler. Should there be a rapid change in temperature, due to leakage or

44

5. Discussion

some other unlikely event, there will be a rapid change in the temperature measurement

for one of the coolers. For this change to ”picked up” by the system it has to be larger

than the double standard deviation. Which will give the system some robustness.

It can also be refined, in a way that it requires a particular number of measurements within

a specified time to be outside the thresholds, or that it must be outside the thresholds for

a specific amount of time or something like that. It is not smart analysis at all, but it

could prove useful either way.

It does not handle small changes like growing, which would cause a small(up to 10 K)

change in temperature over a long time period. Which does make it as good for condition

monitoring as scenario 1, but it could be useful for anomaly detection.

5.7 Scenario 1

One important assumption in this scenario is that an increase in temperature difference

over a cooler for a given load indicates that the condition of of cooler is declining. The idea

behind this theory is that the feedback-controlled controller that handles the adjustable

valve that controls the flow to the generator air cooler, will increase the flow of cooling

water, if the temperature rises. As algaes grow on the water side the of the pipes of the

air cooler over time, the the thermal conductivity in the air cooler will decrease. The

controller will then increase the flow of cooling water to sustain the same temperatures in

the generator. Where the temperature that is fed to the controller is situated is unknown.

But the assumption perfectly explain why the air coolers, who are thoroughly rinsed once

a year experience an increase in the temperature difference over time. Since we do not have

the temperature of the water going in or out of the generator air coolers, the assumption

is applied to this scenario.

The plot for the individual coolers clearly show that there are differences between them.

If they are compared to the plot of the mean for the coolers it is apparent for generator

1, that cooler 1 is the most effective cooler. Cooler 2 and 3 have somewhat the same

efficiency, and 4 has the lowest.

It could have been interesting to compare the coolers with the absolute temperature, not

only the temperature difference. It could then function as an additional anomaly system,

where deviations for the mean could trigger an alarm.

The mean for generator 1, when it is corrected be removing the extreme values, have almost

the exact same slope which could indicate the time series that have been used are quite

representative.

For generator 2, are the slopes of the regressions not so steep, some of them are even almost

horizontal, which may indicate that their condition is good. It is not clear to say, based

on only 8 time series. There are, however, some differences between the coolers. Cooler 1

looks to be the most effective here as well, 2 and 4 are in the middle and 3 is the worst

performing. The mean shows that the temperature rises slightly over the period. When

it corrected for the extreme values, it has a slightly negative slope, but again, it is only

based on eighth time series, and should not be given to much weight.

45

5. Discussion

It looks as though the trend is that the temperature difference over the coolers is that is

increasing. Which in that case will confirm the hypothesis given in this section.

5.8 Scenario 2

This scenario, or concept is maybe a more fitting term for it, could be useful for anomaly

detecting. The results clearly show that there is a nearly linear relationship between the

difference in the mean of the temperature difference over the coolers and the power output.

Which is to be expected, from the theory on electrical machines. Either way, it proves that

the data is fairly consistent, and it could have been used to categorize a value as within

what is considered normal or it is an anomaly.

From the plots it is clear that temperature rises more quickly in generator 2, as the power

output increases. This may be because the coolers in generator 1 has a higher efficiency.

Reactive power has not been included, and the reactive power may cause the temperature

in the machine to rise. Some days were checked for reactive load, and the reactive power

was then zero, or very close to zero. But it is not specifically checked on the dates of the

exported time series. There is not much data available that give stationary temperatures

for lower power outputs. More data could have strengthened the hypotheses and results

for this concept. The regressions are only based on 9 time series for generator 1 and 8 for

generator 2, which gives the results high uncertainty.

5.9 Is it worth it?

Hydropower plants have a very high availability. Eidsiva kraft has an availability of

98,9%[49] on some of their hydropower plants. This indicates that companies are not

willing to spend a lot of money on highly specialized solutions for condition monitoring

to increase their availability by, perhaps, 0,1%. Any developed solutions can not be to

expensive. Given that hydropower plants have a very high reliability it may be better to

focus on anomaly detection. It is when the production must be stopped, it gets expensive.

Nonetheless, can millions of kroner be saved in maintenance costs from better planning

and targeted maintenance[50]. It is also worth mentioning that there is already software

available that facilitates for condition monitoring available, like OSI soft Pi.

5.10 Why condition monitoring

Condition monitoring may save the hydropower plant operator money, by allowing a com-

ponent be fixed before it breaks down entirely. Given that it is correctly configured, of

course. This also makes sense from an environmental point of view, where fixing always is

better than replacing.

Condition monitoring will probably become more popular in the times that, as 5G allows

low latency communication wirelessly. The economies of scale will probably also give better

and cheaper sensors and supporting systems.

46

5. Discussion

During a data breach, or any other event where outsiders try to influence or affect a

system, the intruder’s goal may be to physically destroy the target, by sending abnormal

parameters that causes it to break down. This was what happened when the Stuxnet virus

targeted an Iranian Nuclear Facility, and via its SCADA system successfully accomplished

its goal[51]. Condition Monitoring of a system may help it increase its Cyber Security, by

detecting and acting on such an anomaly before it takes full effect.[52]

Earlier, it was common to have someone present in the hydropower plant at all times.

Today, when most hydropower plants can be remote controlled this is not as common.

Thereby, one loses the added security of having someone who knows the plant well present

in the plant. Condition monitoring can function as the hydropower plants representative,

and if it is given enough data, and is trained well, it will know everything worth knowing

about the plant.

47

5. Discussion

48

6. Conclusion and further work

6 Conclusion and further work

This section will follow up on what was discussed in the previous chapter. It will then

draw the conclusions for the project. Ultimately will the outlook and further work of the

project be presented.

6.1 Conclusion

The project’s goal was to investigate the potential for condition monitoring of a generator

cooling system in a hydropower plant using physical models on data from a SCADA system.

The project succeeded in investigating the potential for condition monitoring, it also found

concepts that could be used for condition monitoring of the generator air coolers in a

hydropower plant. It does not monitor the whole cooling system, only what was regarded

the most important components were selected and using the analyses that were developed

the expected degradation patterns could be proven, to some extent.

More data should be gathered to verify trends and patterns that were uncovered, but

SCADA data has beyond a doubt been proven useful in the work towards condition mon-

itoring of a generator cooling system in a hydropower plant

The hydropower industry is known for their conservatism, but implementation of digital

services like data collection and analysis, might push hydropower plant operators towards

investing in more efficient and profitable solutions. To develop more modern and profitable

solutions, historic data is needed to predict what will happen in the future, it is there

temping to end with a quote from the famous Danish philosopher Søren Kierkegaard that

says: ”Life can only be understood backwards; but it must be lived forwards”[53]

6.2 Further work

The first thing that would have been addressed in the future work with the project, would

be the format of the exported data. Today, the there are inconsistencies in the data that

is exported, and the format vary a lot. This is not optimal, when one wishes to automate

as much of the work as possible.

Further work should also include adding more data to analyses. Especially data at sta-

tionary conditions for lower power outputs. More data could improve the accuracy and

possibly provide information on the cooling at lower temperatures. If this information were

to be combined with the existing data, this could reveal information on the behaviour of

the feedback controlled supply of cooling water to the generator air coolers. It could also

improve the second scenario that was investigated, where the temperature was predicted

based on the power output for high outputs only. Lower output temperature predictions

would nuance the data and the predictions making them more robust.

An extension of the work with the thesis could also include investigating the possibility of

including some kind of analysis functionality in the SCADA system itself. For example by

comparing the temperatures of the cold air from the generator air coolers, or some other

49

6. Conclusion and further work

kind of analysis. It could provide some low latency analyses, that have the benefit of being

available in the SCADA system itself.

Further more, it should include some verification of the analyses that have been developed.

For example by conducting some control measures at the plant, or by verifying that the

temperatures will change following the scheduled replacement of the air coolers this fall.

Now that data has been collected for a period of over two years, it might be fruitful to

include some Machine learning methods as well. They could prove valuable, especially for

anomaly detection, where a Machine Learning model can process a lot of data simultane-

ously and categorize variables as normal or as anomalies.

Economies of scale are beginning to take effect in the IoT and sensor market. This means

that sensors and equipment for monitoring purposes are cheap, and will only get cheaper

and become more accessible in the future. This will allow the use Condition Monitoring

techniques for vibration and acoustic monitoring, as well. Some experience with Condition

Monitoring will probably come in handy, once more types of monitoring is included. The

forthcoming introduction of 5G networks, where latency and bandwidth is no issue will

probably help pave the way for the fourth industrial revolution, where even generator air

coolers are connected to the Internet.[54]

50

References

References

[1] Lauren Feiner. Amazon passes Microsoft in market value, becomes largest. https://www.

cnbc.com/2019/01/07/amazon-passes-microsoft-market-value-becomes-largest.

html. (Accessed on 07/01/2019).

[2] Industri 4.0 - digitalisering av tradisjonell industri - IKT-Norge. https://www.ikt-norge.

no/tema/industri-4-0-digitalisering-av-tradisjonell-industri/. (Accessed on

07/03/2019). IKT-Norge,

[3] Ruben Ravn̊a and Per Schjølberg. Industry 4.0 and Maintenance. Tech. rep. Brussels: Eu-

ropean Committee for Standardization, July 2017.

[4] Darius Hedgebeth. “Data-driven decision making for the enterprise: an overview of business

intelligence applications”. In: Vine 37.4 (2007), pp. 414–420.

[5] Elektrisitet - årlig - SSB. https://www.ssb.no/energi-og-industri/statistikker/

elektrisitet/aar. (Accessed on 07/01/2019). Statistisk sentralbyr̊a,

[6] Tilknytning til Europa - kjøp og salg av kraft - NVE. https://www.nve.no/reguleringsmyndigheten-

for-energi-rme-marked-og-monopol/engrosmarkedet/tilknytning-til-europa-

kjop-og-salg-av-kraft/. (Accessed on 07/01/2019). Norges vassdrags- og energidirek-

torat,

[7] Knut A. Rosvold. Effektkjøring - kraftverk. I Store norske leksikon. https://snl.no/

effektkj%C3%B8ring_- _kraftverk. (Accessed on 07/01/2019). Store norske leksikon,

Dec. 2017.

[8] Forskning skal løse sandfangproblem – Siste nytt fra HydroCen. https://hydrocen.blog/

2018 / 04 / 04 / forskning - skal - lose - sandfangproblem/. (Accessed on 07/01/2019).

HydroCen,

[9] Lars Søreide. “Hva betyr endret kjøremønster for maskinparkens levetid?” https : / /

docplayer.me/16299466- Hva- betyr- endret- kjoremonster- for- maskinparkens-

levetid-forum-for-generatorer-18-19-09-2007-lars-soreide-bkk-produksjon.

html. 2007.

[10] Mette Eltvik. “Sediment erosion in Francis turbines”. PhD thesis. Norwegian University of

Science and Technology, 2013.

[11] Trygve Holtebekk. SI-systemet – Store norske leksikon. https://snl.no/SI-systemet.

(Accessed on 05/10/2019). Store norske leksikon, May 2019.

[12] Tall, tid og dato. https://www.sprakradet.no/sprakhjelp/Skriveregler/Dato/.

(Accessed on 05/07/2019). Spr̊akr̊adet,

[13] Y. A. Çengel and J. M. Cimbala. Fluid Mechanics: Fundamentals and Applications, Third

Edition. McGraw-Hill, 2014. isbn: 9781259011221.

[14] Hermod Brekke. Pumper og turbiner. Trondheim: NTNU Vannkraftlaboratoriet, 199. isbn:

9781259011221.

[15] Eirik Øgaard. Francis-turbin - Vasskrafta. http : / / www . vasskrafta . no / turbinar /

francis- turbin- article214- 479.html. (Accessed on 02/04/2019). Norsk Vasskraft-

og Industristadmuseum,

51

https://www.cnbc.com/2019/01/07/amazon-passes-microsoft-market-value-becomes-largest.html
https://www.cnbc.com/2019/01/07/amazon-passes-microsoft-market-value-becomes-largest.html
https://www.cnbc.com/2019/01/07/amazon-passes-microsoft-market-value-becomes-largest.html
https://www.ikt-norge.no/tema/industri-4-0-digitalisering-av-tradisjonell-industri/
https://www.ikt-norge.no/tema/industri-4-0-digitalisering-av-tradisjonell-industri/
https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar
https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar
https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/engrosmarkedet/tilknytning-til-europa-kjop-og-salg-av-kraft/
https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/engrosmarkedet/tilknytning-til-europa-kjop-og-salg-av-kraft/
https://www.nve.no/reguleringsmyndigheten-for-energi-rme-marked-og-monopol/engrosmarkedet/tilknytning-til-europa-kjop-og-salg-av-kraft/
https://snl.no/effektkj%C3%B8ring_-_kraftverk
https://snl.no/effektkj%C3%B8ring_-_kraftverk
https://hydrocen.blog/2018/04/04/forskning-skal-lose-sandfangproblem/
https://hydrocen.blog/2018/04/04/forskning-skal-lose-sandfangproblem/
https://docplayer.me/16299466-Hva-betyr-endret-kjoremonster-for-maskinparkens-levetid-forum-for-generatorer-18-19-09-2007-lars-soreide-bkk-produksjon.html
https://docplayer.me/16299466-Hva-betyr-endret-kjoremonster-for-maskinparkens-levetid-forum-for-generatorer-18-19-09-2007-lars-soreide-bkk-produksjon.html
https://docplayer.me/16299466-Hva-betyr-endret-kjoremonster-for-maskinparkens-levetid-forum-for-generatorer-18-19-09-2007-lars-soreide-bkk-produksjon.html
https://docplayer.me/16299466-Hva-betyr-endret-kjoremonster-for-maskinparkens-levetid-forum-for-generatorer-18-19-09-2007-lars-soreide-bkk-produksjon.html
https://snl.no/SI-systemet
https://www.sprakradet.no/sprakhjelp/Skriveregler/Dato/
http://www.vasskrafta.no/turbinar/francis-turbin-article214-479.html
http://www.vasskrafta.no/turbinar/francis-turbin-article214-479.html

References

[16] Theodore Wildi. Electrical Machines, Drives and Power Systems: Pearson New Interna-

tional Edition. 6th. Essex: Pearson Education Limited, 2014. isbn: 9781292024585.

[17] Svein Bua, Magnus Dalva, and Olav Vaag Thorsen. Roterende elektriske maskiner. 3rd.

Universitetsforlaget AS, 1980. isbn: 82-00-03306-6.

[18] Bjørn Pedersen. Varmeveksler – Store norske leksikon. https://snl.no/varmeveksler.

(Accessed on 07/04/2019). Store norske leksikon, Oct. 2017.

[19] H̊andbok i Tilstanddsstyrt Vedlikehold, bok nr. 246. ABB Energi AS, May 1993.

[20] Instruction manual for Generator/Motor Cooler QLKE, QDKE, QDKR8. Modine.

[21] Jørn Heggset. Arbeidsnotat: Generator: Skadetyper, kriterier for tilstandsfastlegging, kon-

struksjonsløsning. Versjon 2. SINTEF Energiforskning AS, Feb. 2011.

[22] Programmable Logic Controllers PLCs — ABB. https://new.abb.com/plc/programmable-

logic-controllers-plcs. (Accessed on 07/04/2019). ABB,

[23] Knut A. Rosvold. Kontrollanlegg – i kraftforsyningen – Store norske leksikon. https://snl.

no/kontrollanlegg_- _i_kraftforsyningen. (Accessed on 07/05/2019). Store norske

leksikon, Feb. 2017.

[24] Paul Bjørn Andersen. automatisering – Store norske leksikon. https://snl.no/automatisering.

(Accessed on 07/06/2019). Store norske leksikon, Aug. 2018.

[25] John Codrington. The Hydro Turbine Governor and Why it is Important to Understand it.

/http://www.ieee.ca/epec10/codringtonl.pdf. (Accessed on 07/05/2019). Hatch Inc,

[26] Ivar Gunvaldsen. Bryter – elektrisitetslære – Store norske leksikon. https://snl.no/

bryter_-_elektrisitetsl%C3%A6re. (Accessed on 07/05/2019). Feb. 2019.

[27] Paul Bjørn Andersen. Analog-digital-omformer – Store norske leksikon. https://snl.no/

analog-digital-omformer. (Accessed on 07/05/2019). Store norske leksikon, Dec. 2012.

[28] Ragnar Johnsen. Digital signalbehandling – Store norske leksikon. https : / / snl . no /

digital_signalbehandling. (Accessed on 07/05/2019). Store norske leksikon, Jan. 2018.

[29] Basics of Data Acquisition - eDAQ Wiki. https://www.edaq.com/wiki/Basics_of_

Data_Acquisition. (Accessed on 07/05/2019). eDAQ,

[30] K. Kim et al. Use of SCADA Data for Failure Detection in Wind Turbines - 51653.pdf.

https://www.nrel.gov/docs/fy12osti/51653.pdf. (Accessed on 07/05/2019). Aug. 11.

[31] Ragnar Johnsen. sampling – Store norske leksikon. https://snl.no/sampling. (Accessed

on 07/05/2019). Store norske leksikon, Feb. 2018.

[32] Øyvind Holm. Praktisk erfaring med uthenting av data fra kontrollanlegg – erfaringer fra

Brattset. /https://www.energiforsk.se/media/26336/voith_brattset_holm.pdf.

(Accessed on 07/05/2019). Voith Hydro, May 2019.

[33] M. Ghosal and V. Rao. “Fusion of Multirate Measurements for Nonlinear Dynamic State

Estimation of the Power Systems”. In: IEEE Transactions on Smart Grid 10.1 (Jan. 2019),

pp. 216–226. issn: 1949-3053. doi: 10.1109/TSG.2017.2737359.

[34] Miguel A. Sanz-Bobi. “Review of analytics methods supporting Anomaly detection and

Condition Based Maintenance”. Dec. 2019.

52

https://snl.no/varmeveksler
https://new.abb.com/plc/programmable-logic-controllers-plcs
https://new.abb.com/plc/programmable-logic-controllers-plcs
https://snl.no/kontrollanlegg_-_i_kraftforsyningen
https://snl.no/kontrollanlegg_-_i_kraftforsyningen
https://snl.no/automatisering
/http://www.ieee.ca/epec10/codringtonl.pdf
https://snl.no/bryter_-_elektrisitetsl%C3%A6re
https://snl.no/bryter_-_elektrisitetsl%C3%A6re
https://snl.no/analog-digital-omformer
https://snl.no/analog-digital-omformer
https://snl.no/digital_signalbehandling
https://snl.no/digital_signalbehandling
https://www.edaq.com/wiki/Basics_of_Data_Acquisition
https://www.edaq.com/wiki/Basics_of_Data_Acquisition
https://www.nrel.gov/docs/fy12osti/51653.pdf
https://snl.no/sampling
/https://www.energiforsk.se/media/26336/voith_brattset_holm.pdf
https://doi.org/10.1109/TSG.2017.2737359

References

[35] Jasmina Obradovic et al. “USING BPMN AND INTOUCH HMI SOFTWARE FOR MOD-

ELING OF SAMPLING SYSTEM IN REFINERIES”. English. In: Metalurgia Interna-

tional 17.11 (2012). Copyright - Copyright Fundatia Metalurgia Romana F.M.R 2012;

Last updated - 2012-10-24, pp. 72–79. url: https://search.proquest.com/docview/

1114884388?accountid=12870.

[36] K̊are Bjørvik and Per Hveem. Reguleringsteknikk. 3rd. Trondheim: Kybernetets forlag, 2014.

isbn: 978-82-92986-21-9.

[37] James Northcote-Green. Control and automation of electrical power distribution systems.

eng. Boca Raton, Fla, 2007.

[38] “Preface”. In: Practical Electrical Network Automation and Communication Systems. Ed.

by Cobus Strauss. Oxford: Newnes, 2003, pp. viii–ix. isbn: 978-0-7506-5801-0. doi: https:

//doi.org/10.1016/B978-075065801-0/50000-0. url: http://www.sciencedirect.

com/science/article/pii/B9780750658010500000.

[39] In: Industrial Process Automation Systems. Ed. by B.R. Mehta and Y.J. Reddy. Oxford:

Butterworth-Heinemann, 2015, p. iii. isbn: 978-0-12-800939-0. doi: https://doi.org/10.

1016/B978-0-12-800939-0.00027-9. url: http://www.sciencedirect.com/science/

article/pii/B9780128009390000279.

[40] Rotating electrical machines, Part 1: Rating and performance, NEK IEC 60034-1:2017.

https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/

?ProductID=916243. (Accessed on 07/06/2019). INTERNATIONAL ELECTROTECHNI-

CAL COMMISSION, May 2017.

[41] Kjell Dahle. Kraftverkene i Orkla – Sølv i 25 år. 3rd. Trondheim, 2008. isbn: 978-82-303-

1105-9.

[42] Brattset - TrønderEnergi. https://tronderenergi.no/produksjon/kraftverk/brattset.

(Accessed on 04/23/2019). TrønderEnergi,

[43] Norconsult/NVE. Veileder i planlegging, bygging og drift av sm̊a kraftverk. Tech. rep. (Ac-

cessed on 07/07/2019). 2003.

[44] Rune Mathisen. Teknikk og industriell produksjon - Temperaturm̊alinger - NDLA. https:

//ndla.no/subjects/subject:28/topic:1:105763/topic:1:54000/resource:1:

117437. (Accessed on 07/06/2019). Oct. 2018.

[45] Industrial platinum resistance thermometers and platinum temperature sensors, IEC 60751:2008.

https://www.standard.no/en/PDF/FileDownload/?redir=true&filetype=Pdf&

preview=true&item=339942&category=5. (Accessed on 07/06/2019). INTERNATIONAL

ELECTROTECHNICAL COMMISSION,

[46] Jørn Vatn. eLæring - PK6021 - Vedlikeholdsoptimalisering. Tech. rep. (Accessed on 07/07/2019).

NTNU, Apr. 2018.

[47] Maintenance –Maintenance terminology. European Standard. Brussels: European Commit-

tee for Standardization, July 2017.

[48] T. M. Welte et al. MonitorX – Experience from a Norwegian-Swedish research project on

industry 4.0 and digitalization applied to fault detection and maintenance of hydropower

plants. Tech. rep. (Accessed on 07/07/2019).

53

https://search.proquest.com/docview/1114884388?accountid=12870
https://search.proquest.com/docview/1114884388?accountid=12870
https://doi.org/https://doi.org/10.1016/B978-075065801-0/50000-0
https://doi.org/https://doi.org/10.1016/B978-075065801-0/50000-0
http://www.sciencedirect.com/science/article/pii/B9780750658010500000
http://www.sciencedirect.com/science/article/pii/B9780750658010500000
https://doi.org/https://doi.org/10.1016/B978-0-12-800939-0.00027-9
https://doi.org/https://doi.org/10.1016/B978-0-12-800939-0.00027-9
http://www.sciencedirect.com/science/article/pii/B9780128009390000279
http://www.sciencedirect.com/science/article/pii/B9780128009390000279
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=916243
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=916243
https://tronderenergi.no/produksjon/kraftverk/brattset
https://ndla.no/subjects/subject:28/topic:1:105763/topic:1:54000/resource:1:117437
https://ndla.no/subjects/subject:28/topic:1:105763/topic:1:54000/resource:1:117437
https://ndla.no/subjects/subject:28/topic:1:105763/topic:1:54000/resource:1:117437
https://www.standard.no/en/PDF/FileDownload/?redir=true&filetype=Pdf&preview=true&item=339942&category=5
https://www.standard.no/en/PDF/FileDownload/?redir=true&filetype=Pdf&preview=true&item=339942&category=5

References

[49] Joakim Gundersen. Elektronisk tilstandsoverv̊akning - Digitalisering av teknisk kompetanse

og erfaring. Presentation at Produksjonsteknisk konferanse. (Accessed on 07/09/2019). Ei-

dsiva Vannkraft AS, Mar. 2019.

[50] Thomas Welte. Digitalisation can save millions in hydropower maintenance costs - #SIN-

TEFblog. https://blog.sintef.com/sintefenergy/electric-power-components/

digitalisation-can-save-millions-in-hydropower-maintenance-costs/. (Accessed

on 07/10/2019). May 2017.

[51] Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon”. In: IEEE Security & Privacy

9.3 (2011), pp. 49–51.

[52] Anders Strangstad and Vegard Guttormsen. 213: Cyber.Sec: Anders Strangstad: Cyber-

sikkerhet. https://player.fm/series/lorntech/ep-213-cybersec-anders-strangstad-

cybersikkerhet5. LØRN.TECH, Feb. 2019.

[53] Søren Kierkegaard. “Søren Kierkegaards Skrifter”. In: Journalen JJ:167 18 (1843), p. 306.

[54] Odd Richard Valmot. 5G er en teknologirevolusjon som vil tilby en enorm datahastighet

- Tu.no. https://www.tu.no/artikler/5g-er-en-teknologirevolusjon-som-vil-

tilby-en-enorm-datahastighet/452083. (Accessed on 07/09/2019). Dec. 2019.

54

https://blog.sintef.com/sintefenergy/electric-power-components/digitalisation-can-save-millions-in-hydropower-maintenance-costs/
https://blog.sintef.com/sintefenergy/electric-power-components/digitalisation-can-save-millions-in-hydropower-maintenance-costs/
https://player.fm/series/lorntech/ep-213-cybersec-anders-strangstad-cybersikkerhet5
https://player.fm/series/lorntech/ep-213-cybersec-anders-strangstad-cybersikkerhet5
https://www.tu.no/artikler/5g-er-en-teknologirevolusjon-som-vil-tilby-en-enorm-datahastighet/452083
https://www.tu.no/artikler/5g-er-en-teknologirevolusjon-som-vil-tilby-en-enorm-datahastighet/452083

A. Piping and instrumentation diagrams

Appendix A Piping and instrumentation diagrams

Below are two piping and instrumentation diagrams for Brattset’s cooling system given.

Both are received from TrønderEnergi, who operates the plant. Minor updates and ad-

justments, as mentioned in a paragraph in section 2.1.5, have been made to the cooling

system, without updating the diagrams.

I

B. Script for the Proof of Concept plot

Appendix B Script for the Proof of Concept plot

This appendix include a Python script that pre-process the CSV-files exported from Voith’s

Analyzer. Some calculations are performed, and the difference in temperature over the

generator air cooler is plotted.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Fri May 24 10:13:17 2019

4

5 @author: lauvlandm

6

7 PREREQUISITES:

8 The CSV files that are exported from the analyzer tool must use ; as

(field) separator and , as decimal separatator↪→

9

10 NOTES:

11 The values in the exported CSV are stored in reversed chronological

order,↪→

12 meaning that the last valid value is placed first.

13

14 SPECIFICS:

15 This script is designed to handle the four cold air measurements that

belong to each generator↪→

16 """

17 import numpy as np

18 import matplotlib.pyplot as plt

19 import matplotlib.dates as mdates

20 import time

21 import pandas as pd

22 import warnings

23 from IPython import get_ipython

24 get_ipython().run_line_magic('matplotlib', 'qt') #Shows plots in

separate window↪→

25 #get_ipython().run_line_magic('matplotlib', 'inline') #Gives inline

plots↪→

26

27 #Cold air

28 homePath = 'C:/path/'

29

30 #start time

31 t1 = time.perf_counter()

32 #print('Processing started '+ time.asctime())

33

34 ######import data#############################

II

B. Script for the Proof of Concept plot

III

B. Script for the Proof of Concept plot

IV

B. Script for the Proof of Concept plot

35

36 filename = 'Cold air unit 1_05-23-2019_16-17' #Cropped for better view

37

38 filetype = '.csv'

39 path = homePath + filename + filetype #Seprated into an extra

variable to allow re-use of filename↪→

40

41 df = pd.read_csv(path, sep=';', skiprows=1) #Skips first row, because

of meta- data(separator)↪→

42 #df = pd.read_csv(path, sep=';') #Kun for test, må bruke

import over pga meta-data↪→

43

44 df = df.iloc[::-1].reset_index(drop=True) #Reverses the order of the

data to make it chronological and resets the index accordingly↪→

45

46 #### Resampling and combining measurements in one Data Frame

################↪→

47 """

48 The method creates a large resampled dataframe that consists of the

49 timestamps and measurements for each signal/measurement in the exported

CSV-file↪→

50

51 Prerequisites

52 ----------

53 CSV-file with one, or more, measurements.

54 The CSV must be separated by a (;), and the delimitor must be(,).

55

56 Parameters

57 ----------

58 Dataframe containing imported data.

59

60 Returns

61 ----------

62 Pandas Dataframe

63 """

64

65 noColumns = len(df.columns)

#Finds the number of columns in the imported data stored in df↪→

66 noMeasurements = int(noColumns/7)

#Finds the number of measurements. Each measurement contains 7

columns

↪→

↪→

67

68 appended_data = []

#Empty list to store list of dataframes↪→

69

V

B. Script for the Proof of Concept plot

70 j=0

#Counter for column access↪→

71 for i in range(noMeasurements):

72 datetime=pd.to_datetime(df.iloc[:,j]).dropna()

#Collects timestamp and converts it to python datetime-format and

removes NaTs

↪→

↪→

73 measure_nan = df.iloc[:,j+5].dropna()

#Drops NaNs from the data frame↪→

74 measurement = measure_nan.apply(lambda x: x.replace(',',

'.')).astype('float') #Collects measurement, replaces , with

., in order to be able to convert it to a float

↪→

↪→

75 ts = pd.concat([datetime, measurement], axis=1)

#Concatenate corresponding timestamp and measurement↪→

76 remove_duplicates = ts.drop_duplicates(subset=['Date ' + str(i+1)],

keep='first') #Drops value when there are duplicate timestamps.

Keeps the first value

↪→

↪→

77 drop_first_row = remove_duplicates.drop(remove_duplicates.index[[0]])

#The first value often has a very large gap, to ensure that it is

not given too much weight it is dropped

↪→

↪→

78 reindex = drop_first_row.set_index('Date ' + str(i+1))

#Re-index to get datetime as index, necessary as index for

resampling-method

↪→

↪→

79 #S is seconds, T is minute. '3T' is 3 minutes, H is hour, D is day

80 # resample = reindex.resample('S').pad()

#Second-sampling with forwardfill(resample)↪→

81 resample = reindex.resample('T').pad()

#Minute-sampling with forwardfill(resample)↪→

82 # resample = reindex.resample('H').pad()

#Hour-sampling with forwardfill(resample)↪→

83 # resample = reindex.resample('D').pad()

#Day-sampling with forwardfill(resample)↪→

84 resample_drop_first_row = resample.drop(resample.index[[0]])

#If the value provided to the resampling method is second-sampled

it will give a NaN on the first value, and be reflected on the

second, now minute-sampled value

↪→

↪→

↪→

85 df_index = resample_drop_first_row.reset_index()

#Reindexes the dataframe to get it zero-indexed. This is

necessary in order to have the same index for all dataframes,

which is a requirement for appending

↪→

↪→

↪→

86 appended_data.append(df_index)

#Appends the dataframe to a list of dataframes↪→

87 j+=7

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

VI

B. Script for the Proof of Concept plot

88 appended_data = pd.concat(appended_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

89 resampled_df = appended_data

#Renames the large dataframe by assigning it to a new variable that

better explains how the data has been preprocessed

↪→

↪→

90

91 #### Method for finding the first common timestamp in a dynamic dataframe

#####↪→

92 noColumns_complete = len(resampled_df.columns)

#Finds the number of columns in the imported data stored in df↪→

93 noMeasurements_complete = int(noColumns_complete/2)

#Finds the number of measurements. Each measurement(now) contains 2

columns; timestamp and measurement

↪→

↪→

94

95 ###Method below finds the first common date in the first row, ergo the

last starting date↪→

96 k=0

97 dt1 = resampled_df.iloc[0,0]

#First timestamp in first column↪→

98 for i in range(noMeasurements_complete-1):

#Does the operation for every measurement↪→

99 dt2 = resampled_df.iloc[0, (k+2)]

#Second timestamp, located in the third column↪→

100 if dt1 < dt2:

#Compares the first and last timestamp to find the largest(most

recent)

↪→

↪→

101 mostRecent = dt2

#If dt2 is the largest, it is assigned to the mostRecent

variable

↪→

↪→

102 dt1 = dt2

#dt2 is also assigned to the dt1 vairable to compare this

value to the timestamp of the next measurement

↪→

↪→

103 else:

#if dt1 is more recent than dt2, the value of dt1 is kept as

mostRecent timestamp

↪→

↪→

104 mostRecent = dt1

105 k += 2

#Iterate the K-variable to go to next datetime-column↪→

106

107 ##Method below crops the dataframe

108 cropped_data = []

#Empty list to store cropped dataframes↪→

109 m=0

110 for l in range(noMeasurements_complete):

Will perform an iteration for every measurement↪→

VII

B. Script for the Proof of Concept plot

111 res_index = next((i for i, j in enumerate(resampled_df.iloc[:, m]) if

j == mostRecent), None) #"Search" each column to find the index

for the datetime stored in mostRecent-variable from previous

method

↪→

↪→

↪→

112 #Method above is inspired by SilenGhost's reply on Stackoverflow, last

visited

12.06.19(https://stackoverflow.com/questions/3229626/python-finding-index-of-first-non-empty-item-in-a-list/3229644)

↪→

↪→

113 datetime_crop = resampled_df.iloc[res_index:, m]

Crops every datetime-column from the top down to the index

provided by previous value which is the most recent common date

↪→

↪→

114 measurement_crop = resampled_df.iloc[res_index:, m+1]

Crops every measurement-column from the top down to the index

provided by previous value

↪→

↪→

115 ts_crop = pd.concat([datetime_crop, measurement_crop], axis=1)

#Concatenates the cropped datetime and measurement columns to a

timeseries

↪→

↪→

116 ts_crop = ts_crop.reset_index(drop=True)

#Resets the index for the timeseries, since it has been cropped

top-down, since last index reset

↪→

↪→

117 cropped_data.append(ts_crop)

#Appends the cropped dataframe to a list of dataframes(together

with the ones already cropped)

↪→

↪→

118 m+=2

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

119 cropped_data = pd.concat(cropped_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

120 cropped_resampled_data = cropped_data.dropna()

#Drops any row that contains a NaN(at end of the complete

dataframe(due to uneven number of samples for each measurement/uneven

length of timeseries))

↪→

↪→

↪→

121

122 ################# Method for removing duplicate timestap columns

#############↪→

123 reindexed_cropped_resampled_data =

cropped_resampled_data.set_index(cropped_resampled_data.columns[0])

#Set one common index for all measurement values

↪→

↪→

124 reindexed_cropped_resampled_data.index.names = ['Timestamp']

#Renames the common index column↪→

125

126 #Finds the number of columns and timestamps for drop of dynamic number of

columns↪→

127 noColumns_prd = len(reindexed_cropped_resampled_data.columns)

#Finds the number of columns in the imported data stored in df↪→

VIII

B. Script for the Proof of Concept plot

128 noTimestamps_prd = int(noColumns_prd/2)

#Finds the number of measurements↪→

129

130 #o = noTimestamps_prd+1

#For addressing coloumn name in method below↪→

131 o = noColumns_prd-2

#For addressing coloumn index in method below↪→

132 for n in range(noTimestamps_prd):

133 # preprocessed_reindexed_data.drop(columns=["Date " + str(o)], axis =

1, inplace=True) #For addressing coloumn name↪→

134

reindexed_cropped_resampled_data.drop(reindexed_cropped_resampled_data.columns[o],

axis = 1, inplace=True) #For addressing coloumn index

↪→

↪→

135 # o -= 1 #For addressing coloumn name in method above

136 o -= 2 #For addressing coloumn index in method below

137 df_preprocessed = reindexed_cropped_resampled_data #The preprocessed

dataframe, renamed to emphasize that this is the finished dataframe↪→

138 #df_preprocessed.to_excel(filename + 'seconds_preprocessed.xlsx')

#Writes the (often very) large dataframe to an Excel-file(Very time

consuming)

↪→

↪→

139

140 ########Analysis####################

141

142 #Mean for all temperatures by row

143 df_preprocessed['Mean'] = df_preprocessed.mean(axis=1)

144 df_preprocessed['Mean+1%'] = df_preprocessed.iloc[:,4]*1.01

145 df_preprocessed['Mean-1%'] = df_preprocessed.iloc[:,4]*0.99

146 df_preprocessed['St.dev.'] = df_preprocessed.iloc[:,4].std(axis=0)

147 df_preprocessed['St.dev.-'] = df_preprocessed.iloc[:,4] -

(df_preprocessed.iloc[:,7]*2)↪→

148 df_preprocessed['St.dev.+'] = df_preprocessed.iloc[:,4] +

(df_preprocessed.iloc[:,7]*2)↪→

149

150 print('df_preprocessed[St.dev.]')

151 print(df_preprocessed['St.dev.'])

152

153

154 #df_preprocessed.to_excel(filename + 'med bånd.xlsx')

155

156 ########### Plot #########################

157 #plt.plot(df_preprocessed)

158

159 ############ Fire plott i "vindu" for å illustrere alarmgrenser??

160 fig, axes = plt.subplots(2,2, sharex=True, sharey=True)

161

IX

B. Script for the Proof of Concept plot

162 x = df_preprocessed.index

163 y1 = df_preprocessed[['Measurement 1']]

164 y2 = df_preprocessed[['Measurement 2']]

165 y3 = df_preprocessed[['Measurement 3']]

166 y4 = df_preprocessed[['Measurement 4']]

167 y5 = df_preprocessed['St.dev.-']

168 y6 = df_preprocessed['St.dev.+']

169 y7 = df_preprocessed['Mean+1%']

170 y8 = df_preprocessed['Mean-1%']

171

172

173 # one plot on each subplot

174 Cold_air_1, = axes[0][0].plot(x,y1, 'C1', label='Cold air 1')

175 axes[0][0].plot(x,y5, 'k:', label='Lower threshold value', linewidth=3)

176 axes[0][0].plot(x,y6, 'C3:', label='Upper threshold value',linewidth=3)

177

178 Cold_air_2, = axes[0][1].plot(x,y2, 'C2', label='Cold air 2')

179 axes[0][1].plot(x,y5, 'k:', label='Lower threshold value', linewidth=3)

180 axes[0][1].plot(x,y6, 'C3:', label='Upper threshold value',linewidth=3)

181

182 Cold_air_3, = axes[1][0].plot(x,y3, 'C4', label='Cold air 3')

183 axes[1][0].plot(x,y5, 'k:', label='Lower threshold value', linewidth=3)

184 axes[1][0].plot(x,y6, 'C3:', label='Upper threshold value',linewidth=3)

185 axes[1][0].set_xlabel('Time')

186

187 Cold_air_4, = axes[1][1].plot(x,y4, 'C5', label='Cold air 4')

188 threshold_1, = axes[1][1].plot(x,y5, 'k:', label='Lower threshold value',

linewidth=3)↪→

189 threshold_2, = axes[1][1].plot(x,y6, 'C3:', label='Upper threshold

value',linewidth=3)↪→

190 axes[1][1].set_xlabel('Time')

191

192 plt.xticks([])

193 axes[0][0].legend(handles=[Cold_air_1], loc=1)

194 axes[0][1].legend(handles=[Cold_air_2], loc=2)

195 axes[1][0].legend(handles=[Cold_air_3], loc=1)

196 axes[1][1].legend(handles=[Cold_air_4], loc=2)

197

198 fig.legend(handles=[threshold_1, threshold_2], loc=1)

199 plt.rcParams.update({'font.size': 20})

200

201

202 plt.show()

203 plt.rcParams.update({'font.size': 20})

204

X

B. Script for the Proof of Concept plot

205

206 ################################ stop time

####################################↪→

207 t2 = time.perf_counter()

208 dt = t2-t1

209

210 #print('Processing ended '+ time.asctime())

211 print('Calculating time: ' + str(dt) +' s')

212

213 warnings.simplefilter('error')

XI

C. Scenario 1 script

Appendix C Scenario 1 script

This appendix does also include a Python script that pre-process the CSV-files exported

from Voith’s Analyzer. It presents the same pre-processing as the previous script. Some

calculations are performed, mean change in temperatur for 9 time series is plotted with the

power output indicated by a rainbow-colored color bar. The set point is added manually.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Jun 27 17:03:14 2019

4

5 PREREQUISITES:

6 The CSV files that are exported from the analyzer tool must use ; as

(field) separator and , as decimal separatator↪→

7 The exported files must include following signals:

8 Generator_cold_air_1-4

9 Generator_warm_air_1 and 2

10 Power

11 Setpoint_active_power

12

13

14 NOTES:

15 The values in the exported CSV are stored in reversed chronological

order,↪→

16 meaning that the last valid value is placed first.

17 If the file is inspected in Excel it must then be edited to include

the separator↪→

18

19 SPECIFICS:

20 This script is designed to handle the four cold air values

21 combined with the two hot air measurements, as well as the power

22 for each of the generators

23 """

24 import numpy as np

25 import matplotlib.pyplot as plt

26 import matplotlib.dates as mdates

27 import time

28 import pandas as pd

29 from sklearn.linear_model import LinearRegression

30 import datetime as dt

31 import warnings

32 from IPython import get_ipython

33 get_ipython().run_line_magic('matplotlib', 'qt') #Shows plots in

separate window↪→

XII

C. Scenario 1 script

34 #get_ipython().run_line_magic('matplotlib', 'inline') #Gives inline

plots↪→

35

36 #Cold and warm air

37 #homePath = 'C:/path/Unit 1/'

38 homePath = 'C:/path/Unit 2/'

39

40 #start time

41 t1 = time.perf_counter()

42 #print('Processing started '+ time.asctime())

43

44 ###########import data############

45 ########################### UNIT 1

46 #filelist = ['Unit 1 scenario 1_25032017', 'Unit 1 scenario 1_31032017',

'Unit 1 scenario 1_05052017',↪→

47 # 'Unit 1 scenario 1_28062017', 'Unit 1 scenario 1_13102017',

'Unit 1 scenario 1_11122017',↪→

48 # 'Unit 1 scenario 1_28042018', 'Unit 1 scenario 1_25082018',

49 # 'Unit 1 scenario 1_27022019','Unit 1 scenario

1_08062019']#Dynamic list of input files↪→

50

51 ########################### UNIT 2

52 filelist = ['Unit 2 scenario 1_14052017','Unit 2 scenario 1_09072017',

53 'Unit 2 scenario 1_04102017','Unit 2 scenario 1_27022018',

54 'Unit 2 scenario 1_27062018','Unit 2 scenario 1_28022019',

55 'Unit 2 scenario 1_27042019','Unit 2 scenario 1_23062019']

56

57 appended_data_dates = []

#Empty list to store list of dataframes↪→

58

59 for i in range(len(filelist)):

60 filetype = '.csv'

61

62 path = homePath + filelist[i] + filetype #Seprated into an

extra variable to allow re-use of filename↪→

63 print('\n'+filelist[i])

64

65 df = pd.read_csv(path, sep=';', skiprows=1) #Skips first row,

because of meta- data(separator)↪→

66

67 df = df.iloc[::-1].reset_index(drop=True) #Reverses the order of

the data to make it chronological and resets the index

accordingly

↪→

↪→

68

XIII

C. Scenario 1 script

69 #### Resampling and combining measurements in one Data Frame

################↪→

70 """

71 The method creates a large resampled dataframe that consists of the

72 timestamps and measurements for each signal/measurement in the

exported CSV-file↪→

73

74 Prerequisites

75 ----------

76 CSV-file with one, or more, measurements.

77 The CSV must be separated by a (;), and the delimitor must be(,).

78

79 Parameters

80 ----------

81 Dataframe containing imported data.

82

83 Returns

84 ----------

85 Pandas Dataframe

86 """

87

88 noColumns = len(df.columns)

#Finds the number of columns in the imported data stored in df↪→

89 noMeasurements = int(noColumns/7)

#Finds the number of measurements. Each measurement contains 7

columns

↪→

↪→

90

91 appended_data = []

#Empty list to store list of dataframes↪→

92

93 j=0

#Counter for column access↪→

94 #noMeasurements=1#FJERNES

95 for i in range(noMeasurements):

96 datetime=pd.to_datetime(df.iloc[:,j]).dropna()

#Collects timestamp and converts it to python datetime-format

and removes NaTs

↪→

↪→

97 measure_nan = df.iloc[:,j+5].dropna()

#Drops NaNs from the data frame↪→

98 measurement = measure_nan.apply(lambda x: x.replace(',',

'.')).astype('float') #Collects measurement, replaces ,

with ., in order to be able to convert it to a float

↪→

↪→

99 ts = pd.concat([datetime, measurement], axis=1)

#Concatenate corresponding timestamp and measurement↪→

XIV

C. Scenario 1 script

100 remove_duplicates = ts.drop_duplicates(subset=['Date ' +

str(i+1)], keep='first') #Drops value when there are duplicate

timestamps. Keeps the first value

↪→

↪→

101 #

remove_duplicates.drop(remove_duplicates.head(2).index,inplace=True)

#The first TWO values often have a very large gap, to ensure that

it is not given too much weight, it is dropped

↪→

↪→

↪→

102 #

remove_duplicates.drop(remove_duplicates.tail(1).index,inplace=True)

#The last values often has a very large gap, to ensure that it is

not given too much weight, it is dropped

↪→

↪→

↪→

103 reindex = remove_duplicates.set_index('Date ' + str(i+1))

#Re-index to get datetime as index, necessary as index for

resampling-method

↪→

↪→

104 # print('reindex')

105 # print(reindex)

106 #S is seconds, T is minute. '3T' is 3 minutes, H is hour, D is

day↪→

107 # resample = reindex.resample('S').pad()

#Second-sampling with forwardfill(resample)↪→

108 resample = reindex.resample('T').pad()

#Minute-sampling with forwardfill(resample)

#Day-sampling with forwardfill(resample)

↪→

↪→

109 resample_drop_first_row = resample.drop(resample.index[[0]])

#If the value provided to the resampling method is

second-sampled it will give a NaN on the first value, and be

reflected on the second, now minute-sampled value

↪→

↪→

↪→

110 df_index = resample_drop_first_row.reset_index()

#Reindexes the dataframe to get it zero-indexed. This is

necessary in order to have the same index for all dataframes,

which is a requirement for appending

↪→

↪→

↪→

111 appended_data.append(df_index)

#Appends the dataframe to a list of dataframes↪→

112 j+=7

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

113 appended_data = pd.concat(appended_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

114 resampled_df = appended_data

#Renames the large dataframe by assigning it to a new variable

that better explains how the data has been preprocessed

↪→

↪→

115 #print(resampled_df)

116

117

XV

C. Scenario 1 script

118 #### Method for finding the first common timestamp in a dynamic

dataframe #####↪→

119 noColumns_complete = len(resampled_df.columns)

#Finds the number of columns in the imported data stored in df↪→

120 noMeasurements_complete = int(noColumns_complete/2)

#Finds the number of measurements. Each measurement(now) contains

2 columns; timestamp and measurement

↪→

↪→

121

122 ###Method below finds the first common date in the first row, ergo

the last starting date↪→

123 k=0

124 dt1 = resampled_df.iloc[0,0]

#First timestamp in first column↪→

125 for i in range(noMeasurements_complete-1):

#Does the operation for every measurement↪→

126 dt2 = resampled_df.iloc[0, (k+2)]

#Second timestamp, located in the third column↪→

127 if dt1 < dt2:

#Compares the first and last timestamp to find the

largest(most recent)

↪→

↪→

128 mostRecent = dt2

#If dt2 is the largest, it is assigned to the mostRecent

variable

↪→

↪→

129 dt1 = dt2

#dt2 is also assigned to the dt1 vairable to compare this

value to the timestamp of the next measurement

↪→

↪→

130 else:

#if dt1 is more recent than dt2, the value of dt1 is kept as

mostRecent timestamp

↪→

↪→

131 mostRecent = dt1

132 k += 2

#Iterate the K-variable to go to next datetime-column↪→

133 print('Most recent common date: '+ str(mostRecent))

134

135 ##Method below crops the dataframe

136 cropped_data = []

#Empty list to store cropped dataframes↪→

137 m=0

138 for l in range(noMeasurements_complete):

Will perform an iteration for every measurement↪→

139 res_index = next((i for i, j in enumerate(resampled_df.iloc[:, m])

if j == mostRecent), None) #"Search" each column to find the

index for the datetime stored in mostRecent-variable from

previous method

↪→

↪→

↪→

XVI

C. Scenario 1 script

140 #Method above is inspired by SilenGhost's reply on Stackoverflow,

last visited

12.06.19(https://stackoverflow.com/questions/3229626/python-

finding-index-of-first-non-empty-item-in-a-list/3229644)

↪→

↪→

↪→

141 datetime_crop = resampled_df.iloc[res_index:, m]

Crops every datetime-column from the top down to the index

provided by previous value which is the most recent common

date

↪→

↪→

↪→

142 measurement_crop = resampled_df.iloc[res_index:, m+1]

Crops every measurement-column from the top down to the

index provided by previous value

↪→

↪→

143 ts_crop = pd.concat([datetime_crop, measurement_crop], axis=1)

#Concatenates the cropped datetime and measurement columns to

a timeseries

↪→

↪→

144 ts_crop = ts_crop.reset_index(drop=True)

#Resets the index for the timeseries, since it has been

cropped top-down, since last index reset

↪→

↪→

145 cropped_data.append(ts_crop)

#Appends the cropped dataframe to a list of

dataframes(together with the ones already cropped)

↪→

↪→

146 m+=2

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

147 cropped_data = pd.concat(cropped_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

148 cropped_resampled_data = cropped_data.dropna()

#Drops any row that contains a NaN(at end of the complete

dataframe(due to uneven number of samples for each

measurement/uneven length of timeseries))

↪→

↪→

↪→

149

150 ### Method for removing duplicate timestap columns #####

151 reindexed_cropped_resampled_data =

cropped_resampled_data.set_index(cropped_resampled_data.columns[0])

#Set one common index for all measurement values

↪→

↪→

152 reindexed_cropped_resampled_data.index.names = ['Timestamp']

#Renames the common index column↪→

153

154 #Finds the number of columns and timestamps for drop of dynamic

number of columns↪→

155 noColumns_prd = len(reindexed_cropped_resampled_data.columns)

#Finds the number of columns in the imported data stored in df↪→

156 noTimestamps_prd = int(noColumns_prd/2)

#Finds the number of measurements↪→

157

XVII

C. Scenario 1 script

158 #o = noTimestamps_prd+1

#For addressing coloumn name in method below↪→

159 o = noColumns_prd-2

#For addressing coloumn index in method below↪→

160 for n in range(noTimestamps_prd):

161 # preprocessed_reindexed_data.drop(columns=["Date " + str(o)],

axis = 1, inplace=True) #For addressing coloumn

name

↪→

↪→

162 reindexed_cropped_resampled_data.

drop(reindexed_cropped_resampled_data.columns[o], axis = 1,

inplace=True) #For addressing coloumn index

↪→

↪→

163 # o -= 1 #For addressing coloumn name in method above

164 o -= 2 #For addressing coloumn index in method below

165 df_preprocessed = reindexed_cropped_resampled_data #The preprocessed

dataframe, renamed to emphasize that this is the finished

dataframe

↪→

↪→

166

167 #########Analysis #############

168

169 #Lage ein gjennomsnitt av alle verdier på ein rad

170 df_preprocessed['Mean cold air'] =

df_preprocessed.iloc[:,0:4].mean(axis=1)↪→

171 df_preprocessed['Mean warm air'] =

df_preprocessed.iloc[:,4:6].mean(axis=1)↪→

172 df_preprocessed['Diff. mean'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,8]↪→

173 df_preprocessed['Cooler 1'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,0]↪→

174 df_preprocessed['Cooler 2'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,1]↪→

175 df_preprocessed['Cooler 3'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,2]↪→

176 df_preprocessed['Cooler 4'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,3]↪→

177 df_preprocessed['Mean, coolers'] =

df_preprocessed.iloc[:,11:15].mean(axis=1)↪→

178

179 # print(df_preprocessed.dtypes)

180 print('First valid index: '+ str(df_preprocessed.first_valid_index()))

181 print('Last valid index: '+ str(df_preprocessed.last_valid_index()))

182 # appended_data_dates = []

183 appended_data_dates.append(df_preprocessed)

184 scenario_1 = pd.concat(appended_data_dates, axis=0)

#Concatenate the dataframes to one large dataframe↪→

185

XVIII

C. Scenario 1 script

186 #print(scenario_1.dtypes)

187 #scenario_1.to_excel('Scenario_1.xlsx') # Output to Excel-file

188

189 ######## Scatter plot ##########

190 plt.rcParams.update({'font.size': 20})

191 #fig, sctr = plt.subplots()

192 #sctr2 = sctr.twinx()

193

194 x1 = scenario_1.index

195 y1 = scenario_1['Mean, coolers']

196 #y1 = scenario_1['Cooler 1']

197 #y1 = scenario_1['Cooler 2']

198 #y1 = scenario_1['Cooler 3']

199 #y1 = scenario_1['Cooler 4']

200 y2 = scenario_1['Measurement 7']

201

202 #plt.set_ylabel('Temperature [K]')

203 plt.ylabel(r'Δ Temperature[K]')

204 plt.xlabel('Time')

205

206 plt.plot([],[]) #Has to be present to "correct" the plot

207

208 sctr = plt.scatter(x1, y1, c = y2, cmap='gist_rainbow')

209 plt.colorbar(sctr, format='%d MW')

210 plt.clim(36.5,41.5) #Limits for colorbar UNIT 1

211

212 ##Regression

213 x2=x1.map(dt.datetime.toordinal)#converts datetime datatype into a

numerical value that can be applied in the regression↪→

214

215 X = x2.values.reshape(-1, 1) # values converts it into a numpy array

216 Y = y1.values.reshape(-1, 1) # -1 means that calculate the dimension of

rows, but have 1 column↪→

217

218 linear_regressor = LinearRegression() # create object for the class

219 linear_regressor.fit(X, Y) # perform linear regression

220 Y_pred = linear_regressor.predict(X) # make predictions

221 #print(Y_pred)

222

223 plt.plot(X, Y_pred, 'k-.', label='Linear regression')

224 #plt.ylim(bottom=18, top=21.5) #Limits for y-axis UNIT 1

225 #plt.ylim(bottom=21, top=29.5) #Limits for y-axis UNIT 1

226 plt.legend()

227

228 plt.show()

XIX

C. Scenario 1 script

229 ################################ stop time

####################################↪→

230 t2 = time.perf_counter()

231 dt = t2-t1

232

233 #print('Processing ended '+ time.asctime())

234 print('Calculating time: ' + str(dt) +' s')

235

236 warnings.simplefilter('error')

XX

D. Scenario 2 script

Appendix D Scenario 2 script

This appendix also include a Python script that pre-process the CSV-files exported from

Voith’s Analyzer. Some calculations are performed, and the difference in temperature over

the generator air cooler is plotted as a function of its power output.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Jun 27 17:03:14 2019

4

5 PREREQUISITES:

6 The CSV files that are exported from the analyzer tool must use ; as

(field) separator and , as decimal separatator↪→

7 The exported files must include following signals:

8 Generator_cold_air_1-4

9 Generator_warm_air_1 and 2

10 Power

11 Setpoint_active_power

12

13 NOTES:

14 The values in the exported CSV are stored in reversed chronological

order,↪→

15 meaning that the last valid value is placed first.

16 If the file is inspected in Excel it must then be edited to include

the separator↪→

17

18 SPECIFICS:

19 This script is designed to handle the four cold air values

20 combined with the two hot air measurements, as well as the power

21 for each of the generators

22 """

23 import numpy as np

24 import matplotlib.pyplot as plt

25 import matplotlib.dates as mdates

26 import time

27 import pandas as pd

28 from sklearn import datasets, linear_model

29 from sklearn.metrics import mean_squared_error, r2_score

30 import datetime as dt

31 import warnings

32 from IPython import get_ipython

33 get_ipython().run_line_magic('matplotlib', 'qt') #Shows plots in

separate window↪→

34 #get_ipython().run_line_magic('matplotlib', 'inline') #Gives inline

plots↪→

XXI

D. Scenario 2 script

35

36 #Cold and warm air

37 homePath = 'C:/path/Unit 1/'

38 #homePath = 'C:/path/Unit 2/'

39

40 #start time

41 t1 = time.perf_counter()

42 #print('Processing started '+ time.asctime())

43

44 #########import data##############

45 ########################### UNIT 1

46 filelist = ['Unit 1 scenario 1_25032017', 'Unit 1 scenario 1_31032017', #

'Unit 1 scenario 1_05052017',↪→

47 'Unit 1 scenario 1_28062017', 'Unit 1 scenario 1_13102017',

'Unit 1 scenario 1_11122017',↪→

48 'Unit 1 scenario 1_28042018', 'Unit 1 scenario 1_25082018',

49 'Unit 1 scenario 1_27022019','Unit 1 scenario

1_08062019']#Dynamic list of input files↪→

50

51 ########################### UNIT 2

52 #filelist = ['Unit 2 scenario 1_14052017','Unit 2 scenario 1_09072017',

53 # 'Unit 2 scenario 1_04102017','Unit 2 scenario 1_27022018',

54 # 'Unit 2 scenario 1_27062018','Unit 2 scenario 1_28022019',

55 # 'Unit 2 scenario 1_27042019','Unit 2 scenario 1_23062019']

56

57 appended_data_dates = []

#Empty list to store list of dataframes↪→

58

59 for i in range(len(filelist)):

60 filetype = '.csv'

61

62 path = homePath + filelist[i] + filetype #Seprated into an

extra variable to allow re-use of filename↪→

63 print('\n'+filelist[i])

64

65 df = pd.read_csv(path, sep=';', skiprows=1) #Skips first row,

because of meta- data(separator)↪→

66

67 df = df.iloc[::-1].reset_index(drop=True) #Reverses the order of

the data to make it chronological and resets the index

accordingly

↪→

↪→

68

69 ## Resampling and combining measurements in one Data Frame ######

70 """

71 The method creates a large resampled dataframe that consists of the

XXII

D. Scenario 2 script

72 timestamps and measurements for each signal/measurement in the

exported CSV-file↪→

73

74 Prerequisites

75 ----------

76 CSV-file with one, or more, measurements.

77 The CSV must be separated by a (;), and the delimitor must be(,).

78

79 Parameters

80 ----------

81 Dataframe containing imported data.

82

83 Returns

84 ----------

85 Pandas Dataframe

86 """

87

88 noColumns = len(df.columns)

#Finds the number of columns in the imported data stored in df↪→

89 noMeasurements = int(noColumns/7)

#Finds the number of measurements. Each measurement contains 7

columns

↪→

↪→

90

91 appended_data = []

#Empty list to store list of dataframes↪→

92

93 j=0

#Counter for column access↪→

94 #noMeasurements=1#FJERNES

95 for i in range(noMeasurements):

96 datetime=pd.to_datetime(df.iloc[:,j]).dropna()

#Collects timestamp and converts it to python datetime-format

and removes NaTs

↪→

↪→

97 measure_nan = df.iloc[:,j+5].dropna()

#Drops NaNs from the data frame↪→

98 measurement = measure_nan.apply(lambda x: x.replace(',',

'.')).astype('float') #Collects measurement, replaces ,

with ., in order to be able to convert it to a float

↪→

↪→

99 ts = pd.concat([datetime, measurement], axis=1)

#Concatenate corresponding timestamp and measurement↪→

100 remove_duplicates = ts.drop_duplicates(subset=['Date ' +

str(i+1)], keep='first') #Drops value when there are duplicate

timestamps. Keeps the first value

↪→

↪→

XXIII

D. Scenario 2 script

101 reindex = remove_duplicates.set_index('Date ' + str(i+1))

#Re-index to get datetime as index, necessary as index for

resampling-method

↪→

↪→

102 #S is seconds, T is minute. '3T' is 3 minutes, H is hour, D is

day↪→

103 # resample = reindex.resample('S').pad()

#Second-sampling with forwardfill(resample)↪→

104 resample = reindex.resample('T').pad()

#Minute-sampling with forwardfill(resample)↪→

105 # resample = reindex.resample('H').pad()

#Hour-sampling with forwardfill(resample)↪→

106 # resample = reindex.resample('D').pad()

#Day-sampling with forwardfill(resample)↪→

107 resample_drop_first_row = resample.drop(resample.index[[0]])

#If the value provided to the resampling method is

second-sampled it will give a NaN on the first value, and be

reflected on the second, now minute-sampled value

↪→

↪→

↪→

108 df_index = resample_drop_first_row.reset_index()

#Reindexes the dataframe to get it zero-indexed. This is

necessary in order to have the same index for all dataframes,

which is a requirement for appending

↪→

↪→

↪→

109 appended_data.append(df_index)

#Appends the dataframe to a list of dataframes↪→

110 j+=7

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

111 appended_data = pd.concat(appended_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

112 resampled_df = appended_data

#Renames the large dataframe by assigning it to a new variable

that better explains how the data has been preprocessed

↪→

↪→

113 #print(resampled_df)

114

115

116 # Method for finding the first common timestamp in a dynamic dataframe

##↪→

117 noColumns_complete = len(resampled_df.columns)

#Finds the number of columns in the imported data stored in df↪→

118 noMeasurements_complete = int(noColumns_complete/2)

#Finds the number of measurements. Each measurement(now) contains

2 columns; timestamp and measurement

↪→

↪→

119

120 ###Method below finds the first common date in the first row, ergo

the last starting date↪→

121 k=0

XXIV

D. Scenario 2 script

122 dt1 = resampled_df.iloc[0,0]

#First timestamp in first column↪→

123 for i in range(noMeasurements_complete-1):

#Does the operation for every measurement↪→

124 dt2 = resampled_df.iloc[0, (k+2)]

#Second timestamp, located in the third column↪→

125 if dt1 < dt2:

#Compares the first and last timestamp to find the

largest(most recent)

↪→

↪→

126 mostRecent = dt2

#If dt2 is the largest, it is assigned to the mostRecent

variable

↪→

↪→

127 dt1 = dt2

#dt2 is also assigned to the dt1 vairable to compare this

value to the timestamp of the next measurement

↪→

↪→

128 else:

#if dt1 is more recent than dt2, the value of dt1 is kept as

mostRecent timestamp

↪→

↪→

129 mostRecent = dt1

130 k += 2

#Iterate the K-variable to go to next datetime-column↪→

131 print('Most recent common date: '+ str(mostRecent))

132

133 ##Method below crops the dataframe

134 cropped_data = []

#Empty list to store cropped dataframes↪→

135 m=0

136 for l in range(noMeasurements_complete):

Will perform an iteration for every measurement↪→

137 res_index = next((i for i, j in enumerate(resampled_df.iloc[:, m])

if j == mostRecent), None) #"Search" each column to find the

index for the datetime stored in mostRecent-variable from

previous method

↪→

↪→

↪→

138 #Method above is inspired by SilenGhost's reply on Stackoverflow,

last visited

12.06.19(https://stackoverflow.com/questions/3229626/python-finding-index-of-first-non-empty-item-in-a-list/3229644)

↪→

↪→

139 datetime_crop = resampled_df.iloc[res_index:, m]

Crops every datetime-column from the top down to the index

provided by previous value which is the most recent common

date

↪→

↪→

↪→

140 measurement_crop = resampled_df.iloc[res_index:, m+1]

Crops every measurement-column from the top down to the

index provided by previous value

↪→

↪→

XXV

D. Scenario 2 script

141 ts_crop = pd.concat([datetime_crop, measurement_crop], axis=1)

#Concatenates the cropped datetime and measurement columns to

a timeseries

↪→

↪→

142 ts_crop = ts_crop.reset_index(drop=True)

#Resets the index for the timeseries, since it has been

cropped top-down, since last index reset

↪→

↪→

143 cropped_data.append(ts_crop)

#Appends the cropped dataframe to a list of

dataframes(together with the ones already cropped)

↪→

↪→

144 m+=2

#Increments the counter with the number of colums per

measurement, to gather all the measurements

↪→

↪→

145 cropped_data = pd.concat(cropped_data, axis=1)

#Concatenate the dataframes to one large dataframe↪→

146 cropped_resampled_data = cropped_data.dropna()

#Drops any row that contains a NaN(at end of the complete

dataframe(due to uneven number of samples for each

measurement/uneven length of timeseries))

↪→

↪→

↪→

147

148 #print(cropped_resampled_data)

149

150 ################# Method for removing duplicate timestap columns

#############↪→

151 reindexed_cropped_resampled_data =

cropped_resampled_data.set_index(cropped_resampled_data.columns[0])

#Set one common index for all measurement values

↪→

↪→

152 reindexed_cropped_resampled_data.index.names = ['Timestamp']

#Renames the common index column↪→

153

154 #Finds the number of columns and timestamps for drop of dynamic

number of columns↪→

155 noColumns_prd = len(reindexed_cropped_resampled_data.columns)

#Finds the number of columns in the imported data stored in df↪→

156 noTimestamps_prd = int(noColumns_prd/2)

#Finds the number of measurements↪→

157

158 #o = noTimestamps_prd+1 For addressing coloumn name in method below

159 o = noColumns_prd-2 #For addressing coloumn index in method below

160 for n in range(noTimestamps_prd):

161 # preprocessed_reindexed_data.drop(columns=["Date " + str(o)],

axis = 1, inplace=True) #For addressing coloumn

name

↪→

↪→

162

reindexed_cropped_resampled_data.drop(reindexed_cropped_resampled_data.columns[o],

axis = 1, inplace=True) #For addressing coloumn index

↪→

↪→

XXVI

D. Scenario 2 script

163 # o -= 1 #For addressing coloumn name in method above

164 o -= 2 #For addressing coloumn index in method below

165 df_preprocessed = reindexed_cropped_resampled_data #The preprocessed

dataframe, renamed to emphasize that this is the finished

dataframe

↪→

↪→

166 #df_preprocessed.to_excel(filename + 'seconds_preprocessed.xlsx')

#Writes the (often very) large dataframe to an Excel-file(Very

time consuming)

↪→

↪→

167

168 ############Analysis ##

169

170 #Lage ein gjennomsnitt av alle verdier på ein rad

171 df_preprocessed['Mean cold air'] =

df_preprocessed.iloc[:,0:4].mean(axis=1)↪→

172 df_preprocessed['Mean warm air'] =

df_preprocessed.iloc[:,4:6].mean(axis=1)↪→

173 df_preprocessed['Diff. mean'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,8]↪→

174 df_preprocessed['Cooler 1'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,0]↪→

175 df_preprocessed['Cooler 2'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,1]↪→

176 df_preprocessed['Cooler 3'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,2]↪→

177 df_preprocessed['Cooler 4'] =

df_preprocessed.iloc[:,9]-df_preprocessed.iloc[:,3]↪→

178 df_preprocessed['Mean, coolers'] =

df_preprocessed.iloc[:,11:15].mean(axis=1)↪→

179 print('First valid index: '+ str(df_preprocessed.first_valid_index()))

180 print('Last valid index: '+ str(df_preprocessed.last_valid_index()))

181 #End here

182 # appended_data_dates = []

183 appended_data_dates.append(df_preprocessed)

184 scenario_1 = pd.concat(appended_data_dates, axis=0)

#Concatenate the dataframes to one large dataframe↪→

185

186 #print(scenario_1.dtypes)

187 #scenario_1.to_excel('Scenario_1.xlsx') # Output to Excel-file

188

189 ####################################### Scatter plot

##############################↪→

190 plt.rcParams.update({'font.size': 20})

191

192 #x1 = scenario_1.index

193 y = scenario_1['Mean, coolers']

XXVII

D. Scenario 2 script

194 #y = scenario_1['Mean cold air']

195 #y = scenario_1['Mean warm air']

196 x = scenario_1['Measurement 7']

197

198 #My regression, inspired by

https://www.edvancer.in/step-step-guide-to-execute-linear-regression-python/↪→

199 x_reg = np.array(x)

200 y_reg = np.array(y)

201

202 ax = (((np.mean(x_reg)*np.mean(y_reg))-np.mean(x_reg*y_reg))/

203 ((np.mean(x_reg)*np.mean(x_reg))-np.mean(x_reg*x_reg)))

204 ax = round(ax,2)

205 b = (np.mean(y_reg) - np.mean(x_reg)*ax)

206 b =round(b,2)

207 print(ax)

208 print(b)

209

210 reg_line = [(ax*x_reg)+b for x_reg in x]

211

212 regressionlabel =('Linear regression: ' + str(ax)+'x + '+ str(b))

213 std = np.std(reg_line)

214 #print('STD: ' + str(std))

215

216 plt.ylabel(r'Δ Temperature[K]')

217 plt.xlabel('Power[MW]')

218

219 plt.scatter(x, y)

220 plt.plot(x, reg_line, 'k-.', label ='Linear regression', linewidth=3)

221 plt.plot(x, (reg_line + (std*2)),'C3:', label = 'Upper threshold value',

linewidth=3)↪→

222 plt.plot(x, (reg_line - (std*2)), 'k:', label = 'Lower threshold value',

linewidth=3)↪→

223

224 plt.legend()

225 plt.show()

226

227 ######### stop time #########################

228 t2 = time.perf_counter()

229 dtime = t2-t1

230

231 #print('Processing ended '+ time.asctime())

232 print('Calculating time: ' + str(dtime) +' s')

233

234 warnings.simplefilter('error')

XXVIII

M
arius Lauvland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ne

rg
y

an
d

P
ro

ce
ss

 E
ng

in
ee

ri
ng

B
ac

he
lo

r’
s

pr
oj

ec
t

Marius Lauvland

Condition monitoring of a generator
cooling system in a hydropower plant

Bachelor’s project in Renewable Energy Engineering
Supervisor: Felix Kelberlau

July 2019

	Preface
	Abstract
	Introduction
	Background
	Scope
	Limitations
	Structure of the report

	Background theory
	Hydropower plants
	Turbines
	Generators
	Cooling systems
	SCADA systems
	Brattset hydropower plant

	Maintenance
	Preventive maintenance
	Condition Monitoring
	Hydropower plant maintenance
	Maintenance of Brattset hydropower plant

	Method and approach
	Project progress
	Data export
	Pre-processing
	Proof of Concept
	Change in air temperature over the coolers
	Quantitative vs qualitative approach

	Time span
	Analysis
	Scenario 1
	Scenario 2

	Results
	Proof of Concept
	Scenario 1
	Scenario 2

	Discussion
	Pre-processing
	Data
	Uncertainties
	Scripting
	Methods and tools
	Proof of concept
	Scenario 1
	Scenario 2
	Is it worth it?
	Why condition monitoring

	Conclusion and further work
	Conclusion
	Further work

	References
	Appendix Piping and instrumentation diagrams
	Appendix Script for the Proof of Concept plot
	Appendix Scenario 1 script
	Appendix Scenario 2 script

