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Abstract

Spin-based electronics—spintronics—is a candidate technology for com-
plementing or replacing traditional semiconductor electronics at the end
ofMoore’s law. We consider different spin carriers—electrons, magnons,
and Cooper pairs—and their potential for providing energy-efficient spin
currents and spin torques.

In two papers we consider spin–orbit torques in synthetic antiferro-
magnets and van der Waals magnets. Using a collective coordinate model,
we are able to explain a switching anomaly in synthetic antiferromagnets
which may mitigate the dependence on an in-plane field to switch reliably
using spin-Hall torques. We also find that spin–orbit torques in van der
Waals magnets with trigonal prismatic symmetry may provide an accessi-
ble platform for studying the Berezinskiĭ–Kosterlitz–Thouless transition.

Joule heating is inherent to all resistive spin currents, but can be cir-
cumvented using magnons. In two further papers we consider magnonic
spin-transfer in ferromagnets andmultiferroics. By deriving collective co-
ordinate equations, we clear up some of the confusion over the frequency-
dependence of the domain wall velocity. In a multiferroic, we show that
the domain wall velocity can be controlled using an applied electric field.

Joule heating can also be avoided by spin polarizing a supercurrent.
In the two final papers we consider a superconducting spin Hall effect:
the superspin Hall effect. We demonstrate and explain the occurrence of a
transverse spin current in a ferromagnetic Josephson junctionwithRashba
interlayers, and consider experimental signatures of the effect. Wefind that
the inverse superspin Hall effect can give rise to an anomalous Josephson
current, and suggest that the resulting φ₀ junction can be used to directly
detect the spin-polarization of a supercurrent.
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Errata

After the publication of paper vi on September 13, 2017, small but sig-
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scientific conclusions remain unchanged, these errors affected the read-
ability of the paper. The errors were announced in a Publisher’s Note on
May 3, 2018 (Phys. Rev. B 97, 179901(e); 2018), and are corrected in the
online version.

• The transpose has been removed in Eq. (4) as B†
ik is a row vector.

• A sentence has been inserted after Eq. (5), indicating that the matri-
ces ̂τi that appear in Eq. (5) are the usual Paulimatrices (i = 0, 1, 2, 3,
where ̂τ0 refers to the identity).

• A sentence has been inserted after Eq. (10), indicating that β is β =
1/T, where T is temperature.

• References to Fig. 1(a) in the captions of Fig. 2 and 4 have been
changed to Fig. 1.

• In the discussion following Eq. (25) on page 5, the word “imaginary”
has been changed to “real”.

• In the last paragraph of the same column, the word “real” has been
changed to “imaginary”.

• On page 6, “band structure to” has been changed to “band structure
due to”.
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Shotgun sequencing:

finished sequence

assembly

sequencing

random reads

chromosomal dna

Introduction

1.1 The computer and the human genome

The availability of large amounts of computing power is an enabling tech-
nology in the sense that it permits radical advances in unrelated derivative
technologies. One example is the large amount of genetic information
that has become available over the last two decades due to advances in
dna sequencing.

The joint announcement by the HumanGenome Project and Celera
Genomics in June 2000 of the first working draft of the entire sequence of
the human genome [1–3] is undoubtedly one of the great achievements of
modernbiotechnology. Although themethodsof the twopartnersdiffered
in several aspects, they both relied at the most basic level on a sequencing
technique known as shotgun sequencing [4]. Because sequencing long
stretches of dna remains a difficult task, shotgun sequencing proceeds by
copying many short random fragments from the original string of dna.
Each of the fragments is then sequenced. By identifying overlaps between
the fragments, they can be lined up to reveal the sequence of the original
piece of, say, chromosomal dna [5].

Each of these steps could in principle be performed by a human. How-
ever, in practice whole-genome sequencing is impossible without assis-
tance from computers. In this and countless other ways the rapid increase
in computing power over the last half century has a daily impact on our
lives.
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Transistors are the basic
building blocks of modern
electronics. They function as
amplifiers and switches.

Simply put, the reduction in
gate capacitance reduces the
time it takes to charge the gate
and switch the transistor.

1.2 Exaflops, zetabytes, and Moore’s law

Unlike previous enabling technologies such as the printing press or the
steam engine, electronic computers based on integrated circuits have
pulled off an exponential increase in performance. Consequently, they
have spawned several waves of derivative technologies based on, for in-
stance, the personal computer, internet, and big data.

The exponential increase in computing power that we have seen over
the last five decades comes down to larger and larger numbers of transis-
tors working at a faster and faster pace. GordonMoore, then director of
research and development at Fairchild Semiconductor, predicted in 1965
that the number of components in an integrated circuit would double ev-
ery year for the next decade [6]. In 1975, he revised his estimate, forecasting
a doubling of components every two years [7]. This trend became known
asMoore’s law, see Fig. 1.1.

The reduction in transistor size has also allowed for an increase in oper-
ation frequency at the same power density because of the reduced capaci-
tance and reduction in threshold voltage. So-calledDennard scaling [8, 9]
thus gave an effective doubling of computing power every 18 months. At
the same time, it provided an opportunity to avoid the heat problem—that

Figure 1.1 Moore’s law pre-
dicts an exponential increase
in components per die. Over
the last five decades both
processors and memory chips
have roughly upheld Moore’s
1975 prediction. Redrawn after
Ref. 7. 1960 1975 1995 2010
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1975 projection
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memory
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China’s Sunway TaihuLight
clocks in at 93 pflops and
15MW [13].

%
Consumer devices 4.4
Networks 2.3
Production of ict 2.2
Data centers 1.6
% of global demand 10.5

Other well-known candidate
technologies include optical
interconnects, integration
with iii–iv semiconductors,
three-dimensional integration,
beyond-Boltzmann transistors,
memory-in-logic architectures,
superconducting computers,
carbon electronics, and
memristors [15, 16].

is, the problem of removing from the chip all the heat dissipated by its
integrated components.

Dennard scaling broke down in the early 2000s [10], bringing an end to
increasing clock frequencies. The heat problem—initially dismissed by
Moore—is now putting an end toMoore’s law itself [11, 12]. This gives rea-
son to be concerned, not only because it heralds the end of a golden age for
the semiconductor industry, but more importantly because a stagnation
in computing power spells the end of the unlimited growth of derivative
technologies.

Not only does the breakdown of Moore’s law challenge a continued
increase in computing power. All that heat that threatens to melt the
chips also represents energy that must be supplied. To reach the next
step in computing power, so-called exascale computing, would require
a power consumption of hundreds of megawatts. This is 10–30 times
more than the worlds fastest supercomputers consume today [13]. The
world’s information and communication technology already accounts
for an appreciable amount of the global electricity demand [14]. Hence,
developing energy-efficient computing technologies is not only a matter
of technological development, but also an economical and environmental
issue.

To keep up the increase in computing power, chip manufacturers today
try to circumvent the heat problem by keeping part of the chip ‘dark’ at
any time—with an obvious cost in cpu performance—and by dividing
the load overmultiple parallel cores. Yet these tricks can only take us so far.
Although computer performance can still be improved by a factor of 105

before we reach the Landauer limit [17–19], it is becoming increasingly
clear that traditional semiconductor technology cannot take us all the way
there. Several candidate technologies have been proposed to replace or
complement traditional cmos technology [15, 16]. In this thesis, we will
focus mainly on spin-based technologies, so-called spintronics [20–22].
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A useful classical analogy to
the electron spin is a spinning
charged sphere. A circulating

𝐒
charge gives rise
to a magnetic
moment, which
explains the
connection

between spin and magnetism.
However, this analogy should
not be taken literally. To
achieve an angular momen-
tum of ℏ/2 the equatorial
velocity of a “classical electron”
would have to be larger than
the speed of light! (See Ref. 23.)

1.3 Spintronics

Spin is a fundamental propertyof the electron, just likemassor charge. The
charge e of the electron gives rise to electrical phenomena, like lightning
or household electricity. The spin ℏ/2, on the other hand, gives rise to
magnetism, such as in fridge magnets or compass needles.

Amagnet that points either ‘up’ or ‘down’ can be used to store a bit of
information (‘0’ or ‘1’). Examplesof suchmagneticmemories includemag-
netic tape recorders, hard drives, andmagnetic random-access memories
(mram) [24, 25]. To read and write the magnetic memory the direction
of the magnetization must be addressed electrically. Magnetoresistance,
whereby changing the magnetization changes the material’s electrical re-
sistivity [26], has long been used as an efficient way to read magnetic
memories [24].

The memory is written using magnetic fields [24]. The magnetic field
is created by passing a current through a wire or coil in, say, the write head
of the hard disk. However, because of the resistance in the wires, passing
a large current implies a large energy expenditure. Magnetic-field-based
solutions are also poorly scalable [27].

Better scalability and energy efficiency can be obtained by sending the
current through the magnetic bit itself [28]. As we will see in Chap. 3, spin
transferred from the current can act with a torque on the magnetization,
thereby rotating the magnetization from ‘up’ (‘0’) to ‘down’ (‘1’) or vice
versa. Several manufacturers have already commercialized mrams based
on such spin-transfer torques (stt-mram) [29–31].

An inherent limitation of this technology is that each conduction elec-
tron can transfer nomore thanℏ angularmomentum to themagnetization.
This limit can be circumvented using so-called spin–orbit torques [32]. As
we will see in Chap. 3, the properties of heavy metals such as platinum
makes it possible for each electron to transfer its angular momentum mul-
tiple times, thereby achieving the same torque with a smaller applied cur-

4



Everyday magnets are known
as ferromagnets—that is, mag-
nets resembling magnetic
iron. Ferroelectricmaterials are
materials with a spontaneous
electric polarization. Amag-
netoelectric coupling [40] is a
coupling between the magne-
tization and the polarization
in a material that has both
magnetic and electric order (a
multiferroic [41, 42]).

Low-temperature elemental
superconductors:

rent. In papers i and ii we consider the effect of spin–orbit torques on the
motion of magnetic domain walls (the boundaries of domains with mag-
netization ‘up’ and ‘down’) and spin–orbit torques in the two-dimensional
magnet Fe3GeTe2.

Although spin–orbit torques represent a considerable advance, so-
called Joule heating due to the electrical resistance is inherent to all current-
induced spin torques. The elementary spin excitations of magnets—spin
waves (or magnons)—represent an alternative to charge-based spin cur-
rents [33]. Magnons can propagate through both electrically conducting
magnets and magnetic insulators [34]. In fact, magnon propagation is
evenmore efficient in magnetic insulators because the absence of charge
excitations represents one less channel through which energy can be dis-
sipated from the magnetic system. Similarly to electrons, magnons can
transfer spin to the magnetization and thereby act with a torque (Chap. 4
and Refs. 35–39). In paper iii we consider such spin transfer from spin
waves in an ordinary ferromagnet. In paper iv we consider additional
effects that are present in materials with a magnetoelectric coupling.

1.4 Superconducting spintronics

When cooled to within a few kelvin of the absolute zero, many metals
exhibit vanishing electrical resistance [43] and expel applied magnetic
fields [44]. This phenomenon is known as superconductivity [45–48]. Dis-
covered by H. Kamerlingh Onnes in 1911 [49], these so-called conventional
superconductors defied a microscopic theoretical understanding until 1957,
when Bardeen, Cooper, and Schrieffer published the so-called bcs theory
of superconductivity [50, 51].

Without any electrical resistance there is no Joule heating. Conse-
quently, if these materials can somehow be integrated with the spin-based
functionality of spintronics, the resulting devices might be very energy
efficient. However, at first glance superconductivity and magnetism seem

5



The Meissner effect:

B ≠ 0

T > Tc

cool
B = 0

H

T < Tc

Critical field:

B ≠ 0

H

H > Hc

ramp
upB = 0

H < Hc

Graphene:
A honey-
comb of
carbon
atoms.

Dispersion of the
graphene π electrons:

M K Γ M

EF

to bemutually incompatible phenomena [52, 53]. Not only does supercon-
ductors expelmagnetic fields (known as theMeissner effect [44]), but large
magnetic fields destroy superconductivity and push the superconductor
over the phase boundary into the normal state [45–48].

At the microscopic scale, the story is different. Superconductivity is
an intrinsically quantum-mechanical phenomenon. On a phenomeno-
logical level, the superconducting material can be described by a wave
function [54]. When the superconductor is placed next to another ma-
terial, the evanescent tail of this wave function will reach into the other
material and endow it with superconducting properties. As we will see in
Chap. 6, this proximity effect [55–60] can give rise to new forms of super-
conductivity at the interface with properties that are different from those
of either bulk material [61–63]. Superconducting spintronics aims to harness
such exotic forms of superconductivity to obtain new device functional-
ity [64]. In papers vi and vii we consider one such effect, namely the
superspin Hall effect.

1.5 Two-dimensional materials

Graphene is a sheet of graphite, only one atomic layer thick. The isolation
of graphene in 2004 [65–67] marked the start of the exploration of two-
dimensional crystalline materials. By exfoliation from bulk crystals, or
otherwise by chemical vapor deposition (cvd) or similar techniques,
dozens of two-dimensional crystals have been produced [68].

Graphene has a linear dispersion close to the Fermi level [69, 70].
Consequently, low-energy quasiparticles behave similarly to massless
electrons or holes (also known as massless Dirac fermions). Other two-
dimensional crystals exhibit similarly exciting properties, such as super-
conductivity, semiconductivity, insulating behavior, large spin–orbit cou-
pling, ferroelectricity, and magnetism [68, 71, 72]. A unique feature of
the two-dimensional crystals is that their Fermi level can be shifted a rel-
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Crystal structure of Fe3GeTe2 :

z x

y

y x

z

FeIII FeII Ge Te

Redrawn after Ref. 73.

atively large amount by gating, whichmakes their properties electrically
tunable. Thismakes it interesting to incorporate thesematerials in devices
by combining themwith three-dimensional materials or by stacking two-
dimensional crystals to form a so-called van derWaals heterostructure [68,
71].

Two-dimensionalmagneticmaterials were discovered only in 2016 [72].
In paper ii we consider spin–orbit torques in one suchmaterial, Fe3GeTe2.
Before the discovery of two-dimensional magnets, attempts were made at
makingmagnetic graphene [74]. These efforts include vacancies, adatoms,
and nanoribbon edges. In paper v we consider a fourth approach, namely
themagnetic proximity effect [75] A disadvantage of introducing vacancies
or adatoms to graphene is that it degrades the interesting electronic prop-
erties. Proximitizing graphene to a magnetic insulator has the advantage
that most of the transport properties of graphene remain unchanged.

The discovery of other two-dimensional magnets has mademagnetic
graphene less technologically relevant. Magnetic graphene is, however,
still an interesting material. As a magnet it is unusual because it has no d
or f electrons. An applied magnetic field can induce dissipationless, spin-
polarized edge states (paper v), and it could possibly realize the quantum
anomalous Hall effect, the quantum spin Hall effect, and the quantum
valley Hall effect [76].

•

In the following chapters I will present some of the most important con-
cepts for understanding papers i–vii. Themain results of the papers are
described in the sections marked with an asterisk in the table of contents.
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Some common diamagnets
include [77]:
silver χ = −2 ⋅ 10−6

α-quartz −1 ⋅ 10−6

graphite −1 ⋅ 10−6

copper −8 ⋅ 10−7

water −7 ⋅ 10−7

Magnetism

2.1 Classifying magnetic materials

The susceptibility χ of amaterial to bemagnetized by an appliedmagnetic
field𝐇 can be defined as

χ = (∂M
∂H )

T
, (2.1)

whereM is the magnetization,H is the magnitude of the applied field, and
the parentheses indicate that the derivative is taken at constant temper-
ature. This simplified expression assumes that the magnetization 𝐌 is
parallel to the applied magnetic field𝐇. As we will see later in this chapter,
this is not always the case for finite-sized or crystalline samples.

The susceptibility is a dimensionless material parameter. For magnetic
applications, it has proven useful to classify materials according to the sign
andmagnitude of their magnetic susceptibility.

A negative magnetic susceptibility (χ < 0) means that the induced
magnetization points in the opposite direction of the applied magnetic
field. Consequently, the magnetic flux density𝐁 = μ0(𝐇 + 𝐌) inside the
material is smaller than its vacuum value𝐁 = μ0𝐇. (Here, μ0 is the mag-
netic permeability of vacuum μ0 = 4π ⋅ 10−7 T/(A/m).) Materials with a
negative susceptibility are known as diamagnets. Althoughmany common
materials exhibit a diamagnetic response, the response is typically quite
weak. The exceptions to this rule are superconducting materials. Because
of theMeissner effect, superconductors are perfect diamagnets (χ = −1).

9



Some common paramagnets
include [77]:
manganese χ = 7 ⋅ 10−5

platinum 2 ⋅ 10−5

aluminum 2 ⋅ 10−6

sodium 7 ⋅ 10−7

The formation of flux-closure
domainsmay produce a
a ferromagnet
with zero net
magnetization:

Yet another type of order is
ferrimagnetism. Ferrimagnets
are antiferromagnets in which
magnetic dipoles of different
magnitude partially cancel.

Spin-flop transition:

collinear:

H < H∗

ramp
up

flopped:

H > H∗

𝐇

A small and positive magnetic susceptibility (χ ≳ 0) means that the
induced magnetization adds to the applied magnetic field, producing a
larger magnetic flux density inside than outside the material. Materials
with small positive susceptibilities are known as paramagnets. A paramag-
netic response indicates that the applied field aligns thermally disordered
magnetic dipoles in the material.

A large and positive magnetic susceptibility indicates that the material
is ferromagnetic. Ferromagnetic materials exhibit a spontaneous magneti-
zation𝐌 due to the alignment of magnetic dipoles in the material. Even
so, the net magnetization of a ferromagnetic sample may be zero due to
domain formation. Ferromagneticmaterials are the subject of this chapter,
and we will consider domain formation in Sect. 2.6.

The spontaneous alignment of magnetic dipoles in a ferromagnetic
material is not the only possible magnetically ordered phase. In antiferro-
magneticmaterials the magnetic moments of the material dipoles cancel
eachother on the level of the unit cell. Still, neutron scattering experiments
show that thesematerials exhibit a high degree of order [78]. Evidence of a
phase transition can also be seen in the specific heat and in the temperature
dependence of the magnetic susceptibility. Yet, under the simple classifi-
cation scheme we considered above, these materials would be classified as
paramagnets.

However, whereas the inducedmagnetization of a paramagnet saturates
smoothly at large applied magnetic fields, antiferromagnets are are prone
to exhibit discontinuous magnetization curves. One particular example is
the spin-flop transition of a collinear antiferromagnet [26]. In a collinear an-
tiferromagnet the microscopic magnetic dipoles are oriented antiparallel
to each other. If a magnetic field is applied parallel to this axis, the induced
magnetization will initially be very small. However, at some critical field
H∗ the antiferromagnet will flop, orienting the microscopic dipoles almost
perpendicular to the applied field. In this way the material can satisfy its
preference for an almost antiparallel arrangement of dipoles and lower its
energy by partially aligning the dipoles with the magnetic field.

10



This important theorem in
classical statistical mechan-
ics is called the Bohr–van
Leeuwen theorem [79, 80].
Independently discovered by
N. Bohr and J. H. van Leeuwen
in 1911 and 1919, it became
widely known only after J. H.
Van Vleck promoted it [81].

2.2 Magnetism is quantum

Themagnetic susceptibility is a well-defined quantity in classical electro-
magnetism. However, catastrophe strikeswhenwe attempt to calculate the
magnetizationof a classical systemmicroscopically [79]. Consider a collec-
tionof chargedparticles. This couldbe the conductionelectronsof ametal,
say, or a gas of ionized atoms. We apply a magnetic field𝐇 = ∇ × 𝐀/μ0 to
this system and calculate the resulting magnetization. (𝐀 is the magnetic
vector potential.)

Biot–Savart’s law gives the magnetic field from a collection of charges
as

𝐁(𝐫) = ∑
i

μ0
4π

qi𝐯i × 𝐫′

r′3 , (2.2)

where 𝐫′ = 𝐫 − 𝐫i, 𝐫i is the position of charge i, 𝐯i is the velocity of charge
i, and qi is the charge of charge i. The velocities of the particles are distrib-
uted according to theMaxwell–Boltzmann thermal distribution. It gives
the probability of finding particle n at position 𝐫n with momentum 𝐩n as

dP = exp[−βℋ(𝐩1, … ,𝐩N, 𝐫1, … , 𝐫N)]d𝐩1 ⋯d𝐩Nd𝐫1 ⋯d𝐫N, (2.3)

where β = 1/kBT, kB is Boltzmann’s constant, and T is temperature. ℋ is
the Hamiltonian of the system,

ℋ = ∑
i

(𝐩i − qi𝐀)2
2mi

+ qiφ + V, (2.4)

whereφ is the scalar potential and V is, say, the crystal potential.
If we now attempt to calculate the thermally averagedmagnetic field,

⟨𝐁⟩ = 1
Z ∫dP𝐁, Z = ∫dP, (2.5)

we discover that, because 𝐁i(𝐫) from Eq. (2.2) is odd in momentum,
the net field is zero. Classical systems are not magnetized by an applied
field—their magnetic susceptibility is identically zero, χ = 0.

11



The hydrogen molecule
was first treated by Refs. 82
and 83. It is also treated in
many books. Two particularly
readable treatments are
those by Refs. 84 and 85. A
nontechnical treatment can
be found in Ref. 86.

Quantum chemists call this
linear combination of atomic
orbitals, or lcao for short [88].

Consequently, we must turn to quantum mechanics to explain diamag-
netism, paramagnetism, ferromagnetism, andall theothermagneticorders.
Our classical calculation fails at two counts in explaining ferromagnetism
in particular. First, it fails to account for the quantum-mechanical spin
of electrons and other fundamental particles. The spin contributes with
a magnetic dipole moment that is independent of the orbital moment.
Second, it fails to account for the interaction that allows the spins in a
ferromagnet to spontaneously align. Magnetostatic dipole–dipole inter-
actions are much to weak (∼10−2 meV) to provide the experimentally
observed transition temperatures (∼101 meV).

2.3 Exchange interactions

To illustrate how quantummechanics can give rise to spin interactions, we
consider the hydrogenmolecule, H2. The hydrogenmolecule consists of
two electrons and two protons. The Hamiltonian of the electrons is

ℋ = ℋa + ℋb + Vab, (2.6)

with

ℋi = − ℏ2

2m∇2
i − e2

4πϵ0
( 1

|𝐫i − 𝐑1| + 1
|𝐫i − 𝐑2| ) ,

Vab = e2

4πϵ0
1

|𝐫a − 𝐫b| .

Here, e is the electron charge,m is the electronmass, ϵ0 is the permittivity
of vacuum, 𝐫i is the position of electron i, and𝐑j is the position of proton j.

To find the exact solution of this Hamiltonian is very hard, but the
properties of the exact solution can be captured using the variational
method [87]. As a trial wave function we choose a linear combination of
the 1s states of the hydrogen atom,

ψ(𝐫a, 𝐫b) = αφ1(𝐫a)φ2(𝐫b) + βφ2(𝐫a)φ1(𝐫b), (2.7)
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where,φ1 is the 1s state of proton 1 andφ2 is the 1s state of proton 2. By
combining states where the electrons reside at different atoms, we avoid
the large on-site repulsion that comes with having two electrons in the
same orbital. The energy E of this state is

E = ∫d𝐫ad𝐫bψ∗ℋψ
∫d𝐫ad𝐫bψ∗ψ . (2.8)

We calculate the normalization integral first,

∫d𝐫ad𝐫bψ∗ψ = α2 + β2 + 2αβλ2,

where λ is the overlap integral, λ = ∫d𝐫φ∗
1(𝐫)φ2(𝐫) = λ∗. Second, the

energy expectation value is

∫d𝐫ad𝐫bψ∗ℋψ = (E1 + E2)∫d𝐫ad𝐫bψ∗ψ + ∫d𝐫ad𝐫bψ∗Vabψ.

Here, we assumed that |𝐫i−𝐑2| ≫ |𝐫i−𝐑1| forφ1(𝐫i) and vice versa,which
givesℋiψj = Ejψj. Sinceφ1 andφ2 are both 1s states, E1 = E2 = ϵ. The
expectation value of the Coulomb interaction is

∫d𝐫ad𝐫bψ∗Vabψ = (α2 + β2)U + 2αβW

with

U = ∫d𝐫ad𝐫b Vab|ψ1(𝐫a)|2|ψ2(𝐫b)|2,

W = ∫d𝐫ad𝐫b Vabψ∗
1(𝐫a)ψ2(𝐫a)ψ∗

2(𝐫b)ψ1(𝐫b). (2.9)

U and W are both real. W is known as the exchange term because it ex-
changes electron a and b. Assembling all this we have

(E − 2ϵ)(α2 + β22αβλ2) = (α2 + β2)U + 2αβW. (2.10)

13



The spatially symmetric and
antisymmetric wave functions
of the H2molecule:

ψ+

↑ ↓

𝐑1 𝐑2

ψ−

↑

↑

To find the values ofα andβwhichmakes Eminimal, we differentiate with
respect to α and β, and set the derivatives equal to zero. The result is a set
of two linear equations. Writing them onmatrix form we find

⎡⎢
⎣
⎛⎜
⎝

U W
W U

⎞⎟
⎠

+ (2ϵ − E) ⎛⎜
⎝

1 λ2

λ2 1
⎞⎟
⎠

⎤⎥
⎦

⎛⎜
⎝

α
β

⎞⎟
⎠

= 0

This homogeneous set of equations has a solution only if the determi-
nant vanishes. That condition gives us an equation for E, which has the
solutions

E± = 2ϵ + U ± W
1 ± λ2

. (2.11)

Substituting each of these energies back into the matrix, we find the so-
lutions (α±,β±) = (1, ±1)/√2, which correspond to the wave functions

ψ± = √1
2[φ1(𝐫a)φ2(𝐫b) ± φ2(𝐫a)φ1(𝐫b)]. (2.12)

The wave functionψ+ is symmetric under particle interchange and the
wave functionψ− is antisymmetric under particle interchange. However,
the Pauli principle requires the total wave function to be antisymmetric.
Consequently, the spin part ofψ+ must be the singlet state, and the spin
part ofψ− must be one of the triplet states. The integralsU andW have
been evaluated and W is negative, W < 0 [84]. The energy is therefore
minimized by the spatially symmetric wave function,ψ+. Hence, the spins
are in the singlet state.

This effective spin interaction originates ultimately in the Pauli exclu-
sion principle and the Coulomb interaction. The electrostatic repulsion
between the electrons connects the two 1s states—they are no longer sta-
tionary states. The electrons can gain kinetic energy by hopping between
the states, but due to the Pauli principle that is only possible as long as they
do not have the same spin. This favors an ‘antiferromagnetic’ state [89].
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Heisenberg was the first to
suggest that ferromagnetism
could be understood in terms
of minimizing the electrons’
electrostatic repulsion [90, 91].
Whereas Heisenberg’s intuition
was—in this case—guided by
his earlier studies of the ortho
and para states of helium, this
explanation also makes sense
in light of our discussion of
H2. In the spin-triplet state,
the spatial part of the two-
electron wave function is
ψ−. This wave function has a
node at |𝐫a − 𝐫b| = 0, where
the electrostatic repulsion is
maximal.

We can see this more clearly by writing out the exchange interaction in
creation and annihilation operators. The ‘exchange operator’ is

V =1
2 ∑
µ≠ν

∑
σ1,σ2

∫d𝐫ad𝐫bφ∗
µ(𝐫a)φ∗

ν(𝐫b)Vabφµ(𝐫b)φν(𝐫a)

× c†
µ,σ1c†

ν,σ2cµ,σ2cν,σ1

= − W ∑
σ1,σ2
µ≠ν

c†
µ,σ1cµ,σ2c†

ν,σ2cν,σ1 ,

where μ and ν run over μ,ν = 1, 2 and σi runs over σi =↑,↓. Performing
the sum over spins we obtain

V = −W ∑
µ≠ν

(1
2nµnν + 2𝐒µ ⋅ 𝐒ν) , (2.13)

using 𝐒µ = 1
2 ∑γ,η 𝛔γηc†

µ,γcµ,η and 𝐒µ ⋅ 𝐒ν = SzµSzν + 1
2 (S+

µS−
ν + S−

µS+
ν),

where S±
µ = Sxµ ± iSyµ and 𝛔 is the vector of Pauli matrices. SinceW < 0,

the classical state that minimizes the expectation value of this operator is
that the spins point in opposite direction—that is, an ‘antiferromagnetic’
spin coupling.

There is no such simple two-electronmodel that illustrates a ground-
state ‘ferromagnetic’ coupling between the electrons. In fact, it can be
proven that the ground state of a two-electron system is always the spin
singlet state [79]. However, ferromagnetic exchange is possible in the
ground state of systems with three or more electrons. As a rule of thumb,
ferromagnetism is usually the result of many-particle physics. When fer-
romagnetic exchange does occur, the resulting symmetric spin state is
accompanied by an antisymmetric orbital state. That maximizes the av-
erage distance between the electrons, thus minimizing their Coulomb
repulsion. Ferromagnetism is therefore often the result of minimizing the
system’s potential energy [89].
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2.4 Spin-wave theory

In Eq. (2.13) we saw that the exchange interaction can be expressed as
a dot product of spins. We can use this as a phenomenological model
for exchange in many-electron systems. This is known as theHeisenberg
model [89, 90]. On a lattice with only nearest-neighbor interactions, the
Heisenberg model takes the form

ℋ = J ∑
⟨i,j⟩

𝐒i ⋅ 𝐒j , (2.14)

where the angle brackets indicate that we sum over each nearest-neighbor
pair once. For J < 0 the spin–spin interaction is ferromagnetic.

In the classical ground state of this model, all spins are aligned in the
same direction. This is also the quantum-mechanical ground state. To see
this, we rewrite the Heisenberg Hamiltonian as

ℋ = J ∑
⟨i,j⟩

[1
2 (S+

i S−
j + S−

i S+
j ) + SziSzj ]. (2.15)

Applying this Hamiltonian to a state where all spins are aligned, the first
two terms give zero because the z components of spins i and j are already
maximal and cannot be increased further by S+

i and S+
j . The last termgives

E = JS2Nn/2, whereS is the spinat each site,N is the total numberof lattice
sites, and n is the number of nearest neighbors at each site. Consequently,
the classical ground state is a quantum-mechanical eigenstate. Since E =
JS2Nn/2 is the smallest energy possible, it is also the ground state.

To study the eigenexcitations and the spectrum of the Heisenberg
Hamiltonian, we need to diagonalize it. For that we use the Holstein–Pri-
makoff representation [92],

S+
i = √2S − a†

iai ai , S−
i = a†

i√2S − a†
iai , Szi = S − a†

iai , (2.16)

where thea-operators fulfill bosonic commutation relations. In theground
state, ⟨a†

iai⟩ = 0, and all the spins point in the z direction. Thus the
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Holstein–Primakoff representation singles out the z direction as the ori-
entation of the magnet in the ground state. However, the Heisenberg
Hamiltonian itself has global spin-rotation symmetry (the generator of
global spin rotations, 𝐒tot ⋅ 𝐧, commutes with the Hamiltonian). Hence,
the ground state breaks the symmetry of the Hamiltonian. This is known
as spontaneous symmetry breaking [89].

For large spins Swe can expand the square roots in the Holstein–Pri-
makoff representation in 1/S. Truncating the expansion at zeroth order
gives the approximate relations

S+
i ≈ √2Sai , S−

i ≈ √2Sa†
i , Szi = S − a†

iai . (2.17)

Substituting these relations into theHamiltonian andkeepingonly bilinear
terms we obtain

ℋ = JS2Nn + JS ∑
⟨i,j⟩

(a†
jai + a†

iaj − a†
iai − a†

jaj).

This Hamiltonian is still not diagonal, but it can be diagonalized by a
Fourier transformation,

ai = √ 1
N ∑

𝐤
a𝐤 e+i𝐤⋅𝐫i , a†

i = √ 1
N ∑

𝐤
a†
𝐤 e−i𝐤⋅𝐫i . (2.18)

The resulting Hamiltonian is

ℋ = E0 + ∑
𝐤

ω𝐤a†
𝐤a𝐤 , (2.19)

ω𝐤 = −JS∑
𝛅

(1 − cos𝐤 ⋅ 𝛅), E0 = JS2Nn,

where 𝛅 is the nearest-neighbor vectors. (Thus for a square lattice we have
𝛅 = ±𝐞x, ±𝐞y.)

The eigenexcitations of the Heisenberg Hamiltonian are known as
magnons. As we will see in Chap. 4, their classical interpretation is spin
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Spin waves:

This result is known as Bloch’s
three-halves power law [96].

waves—wave solutions to themagnetization’s classical equationofmotion.
For small wave vectors, their spectrum is quadratic,

ω𝐤 = −JSk2. (2.20)

Themagnetization can be calculated as the thermal expectation value
of the spin,

M = 1
N ∑

i
⟨Szi ⟩ = 1

N ∑
𝐤

⟨S − a†
𝐤a𝐤⟩ = S − ΔM. (2.21)

Since themagnons are noninteracting bosons, at least to bilinear order, the
thermal expectation value of the number operator is the Bose–Einstein
distribution function [93]

⟨a†
kak⟩ = 1

exp(βω𝐤) − 1 . (2.22)

If we consider temperatures for which |J|Sk2 ≫ kBT, we can use the k → 0
limit of the magnon dispersion. That gives the thermal correction

ΔM = 1
N ( L

2π)
3
∫d𝐤 1

exp(β|J|Sk2) − 1

in the continuum limit. This integral diverges as 1/k for k → 0 in one
dimension and as − log k for k → 0 in two dimensions [89]. Consequently,
in one and two dimensions the Heisenberg ferromagnet is not ordered
at finite temperatures. However, in in three dimensions we can use the
substitution x = β|J|Sk2 to evaluate the integral as [94, 95]

ΔM = 1
2N ( L

2π)
3

(kBT
|J|S )

3/2
∫
2π

0
dφ ∫

π

0
dϑ sin ϑ ∫

∞

0
dx √x

ex − 1

= 1
4π2

L3

N (kBT
|J|S )

3/2
Γ(3

2) ζ(3
2) , (2.23)
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The perhaps most famous
model that orders magneti-
cally in two-dimensions is the
Ising model [99]. Onsager’s
exact solution of the two-
dimensional Ising model has a
phase transition at [100]

Tc = 2|J|S2

kBln(1 + √2)
.

where L3 is the sample volume, Γ is the gamma function, Γ(3/2) = √π/2,
and ζ is Riemann’s zeta function, ζ(3/2) ≈ 2.61.

The divergence of ΔM in one and two dimensions is not incidental. In
fact, theHohenberg–Mermin–Wagner theoremstates, under quite general
conditions, that no continuous symmetry can be spontaneously broken
in one or two dimensions at finite temperature [89, 97, 98]. Since the
Heisenberg Hamiltonian has continuous O(3) symmetry, this theorem
prevents it from ordering at finite temperature in d ≤ 2.

Nonetheless, truly two-dimensionalmagneticmaterials exist [72]. Their
existencedependson anisotropic terms in themagneticHamiltonian, such
as

ℋ = J ∑
⟨i,j⟩

𝐒i ⋅ 𝐒j + D∑
i

(Szi )2.

This Hamiltonian has only discrete z → −z symmetry, so the Hohen-
berg–Mermin–Wagner theorem does not apply.

2.5 Magnetic anisotropy

Whereas two-dimensionalmaterials require anisotropic terms in theHamil-
tonian to order magnetically, three-dimensional materials can do without
them. Even so, most magnetic materials have an anisotropic magnetic
susceptibility. As we will see in Sect. 2.6, magnetostatic dipole–dipole
interactions can give rise to shape anisotropies,which depend on the shape
of the magnetic sample. In this section, we consider magnetocrystalline
anisotropies,which are due to the crystal lattice.

Themagnetization curves of iron, nickel, and cobalt in Fig. 2.1 demon-
strate that the magnetic susceptibility of these materials depends on the
direction of the appliedmagnetic field with respect to the crystal lattice.
The shapes of these curves can be understood by analyzing the symmetry
of the crystal lattices.
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Figure 2.1 Magnetization
curves for single crystals of
α-iron, nickel, and ε-cobalt. The
easy axis of α-iron is [100] and
the hard axis is [111]. Redrawn
after Refs. 101–103. 0 48
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[0001]
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Although named for F. Neu-
mann [104], this principle has
perhaps been stated most
eloquently by P. Curie [105]:
c’est la dissymétrie, qui crée le
phénomène. In terms of assym-
metry Neumann’s principle
states that a property tensor
cannot exhibit an asymmetry
that is not present in the crys-
tal. The lower the symmetry
of the crystal, the more inde-
pendent elements exist in the
property tensors.

Any type of symmetry which is exhibited by the point group of the crys-
tal is possessed by every physical property of the crystal. This is known
as Neumann’s principle [106]. Thus, to identify the magnetocrystalline
anisotropies, we expand themagnetic energy density in the normalized
magnetization components mi = Mi/M, and identify the terms of the
expansion that are invariant under the symmetries of the lattice. Because
the energy must be time-reversal invariant, only even orders of the magne-
tization components can appear in the series expansion,

u = u0 + Λijmimj + Γijklmimjmkml + ⋯ (2.24)

(Summation over repeated indices is implied.) The magnetic energy den-
sity u is a scalar and is invariant under coordinate transformations. The
magnetization mi is an axial vector, and consequently Λij and Γijkl are
polar tensors.

We consider α-iron as an example. The bcc lattice has point-group
symmetrym3m(Oh). Anypolar second-rank tensor that is invariantunder
the symmetry operations of m3m is proportional to the identity [106]:

Λii = Λ0; Λij = 0 ∀ i ≠ j.

Consequently, the second-order term does not contribute to the mag-
netocrystalline anisotropy: Λ0(m2

x + m2
y + m2

z) = Λ0. A polar fourth-
rank tensor that is invariant under the symmetry operations of m3m has
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The magnetic energy density
as a function of magnetization
direction:

[100]

[0 ̄10]

[001]

−φ

ϑ

Redrawn after Ref. 85.

bcc (110) plane:

(110) disk:

[ ̄1 ̄1 ̄1]

[110]
[100][111]

21 nonzero compoents, but depends on only two independent parame-
ters [106]:

Γiiii = Γ1 ,

Γxxyy(6) = Γxxzz(6) = Γyyzz(6) = Γ2 ,

Γijkl = 0 for all other ijkl

(xxyy(6) indicates the six tensor elements that areobtainedbyunrestricted
permutation of the indices xxyy). Thus, the fourth-order terms evaluate
to

Γ1(m4
x + m4

y + m4
z) + 6Γ2(m2

xm2
y + m2

xm2
z + m2

ym2
z).

Because we have normalized the magnetization vector to 1,

1 = (m2
x+m2

y+m2
z)2 = m4

x+m4
y+m4

z +2(m2
xm2

y+m2
xm2

z +m2
ym2

z),

these terms describe the samemagnetocrystalline anisotropies,

Γ1 + (6Γ2 − 2Γ1)(m2
xm2

y + m2
xm2

z + m2
ym2

z).

We conclude that the magnetic energy density can be written as

u = K0 + K1(m2
xm2

y + m2
xm2

z + m2
ym2

z) + K2m2
xm2

ym2
z + ⋯ , (2.25)

where K0 = u0 + Λ0 + Γ1, K1 = 6Γ2 − 2Γ1, and the sixth-order term has
been obtained in the same fashion as the fourth-order terms.

The coefficients K1 and K2 can be obtained by comparing this expres-
sion to experimental data. The plane of a circular disk with a (110) ori-
entation contains all the three major symmetry directions of the bcc lat-
tice ([100], [110], and [111]). By applying a magnetic field of constant
magnitude in the plane of this disk, we can map out a cut through the
magnetization energy density atφ = π/4. The magnetization curve we
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In-plane magnetization curve:
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Redrawn after Ref. 85.

The rest frame of the electron
is not an inertial system—it
accelerates. In Eq. (2.28) we
have made the appropriate
kinematic correction, known
as the Thomas precession,
which gives rise to an extra
factor of ½ [107, 108]

obtain is a representation of the negative of the magnetic energy density
of the system: u = −𝐌 ⋅ 𝐁. Its two minima correspond to the corners
of the cube at [111] and [11 ̄1], and its three maxima correspond to [001],
[110], and [00 ̄1], respectively. Careful comparison of the experimental
data and the theoretical prediction shows that the values of K1 and K2 are
K1 = 48 kJ/m3 and K2 = −10 kJ/m3 [85].

The magnetization of a solid is (mostly) due to the spin magnetic mo-
ments. The presence of magnetocrystalline anisotropies must therefore
be a result of a coupling between the spin-space and real-space properties.
Such a coupling is known as spin–orbit coupling.

From the point of view of an atomic electron, the nucleus orbits around
it. This circulating charge (the nucleus) generates a magnetic field. The
electron will tend to align its spin along the field, thus coupling its spin to
its orbital moment. We consider for simplicity the hydrogen atom. Using
the Biot–Savart law, the magnetic field of the proton is

B = μ0I
2r ,

where I = e/T is the effective current and T is the period of the orbit. The
field points along the angular momentum 𝐋 of the electron, L = rmv =
2πmr2/T, so

𝐁 = 1
4πϵ0

e
mc2r3

𝐋, (2.26)

where c = 1/√(ϵ0μ0) is the velocity of light. The magnetic moment of
the electron is

𝛍e = − e
m𝐒. (2.27)

Consequently, the spin–orbit interaction of the hydrogen atom is [87]

ℋ = e2

8πϵ0
𝐒 ⋅ 𝐋

m2c2r3
. (2.28)
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The dipole𝐁 field:

up–up:

(unstable)

head-to-tail:
(stable)

The atomic spin–orbit interaction couples the electron’s spin to its
orbital moment—or, if you like, to the orientation of the atom. If, in
addition, there is a preferred orientation of the atomic orbitals because of a
low-symmetry crystal-field environment, the result is amagnetocrystalline
anisotropy. As an example of this rule, we consider gadolinium (Gd) and
terbium (Tb). Both crystallize in the hexagonal close-packed structure.
Themagnetic state of gadolinium, 4f7, is ⟨Lz⟩ = 0, whereas that of terbium,
4f8, is ⟨Lz⟩ = 3. This is reflected in their uniaxial anisotropy coefficients,
which differ by two orders of magnitude at liquid helium temperatures,
Ku1(Gd) = −0.12MJ/m3 and Ku1(Tb) = −57MJ/m3 [85].

2.6 Magnetostatics

As mentioned at the beginning of the previous section, the magnetostatic
dipole–dipole interactions can also contribute to the anisotropy of a sam-
ple’s magnetic susceptibility. A magnetic dipole moment 𝛍 gives rise to
a magnetic field 𝐁. Far away from the magnetic dipole, this field can be
written as [26]

𝐁(𝐫) = μ0
4π (3(𝛍 ⋅ 𝐫)𝐫

r5 − 𝛍
r3

) . (2.29)

The interaction energy of two magnetic dipoles that interact solely via
their magnetic fields is thus

U = −𝛍1 ⋅ 𝐁2 − 𝛍2 ⋅ 𝐁1 = μ0
2π (𝛍1 ⋅ 𝛍2

r3
− 3(𝛍1 ⋅ 𝐫)(𝛍2 ⋅ 𝐫)

r5 ) .

Depending on the dipoles’ relative position and orientation, the inter-
action energy varies between +(μ0/2π)(μ1μ2/r3) in the unstable up–up
state and −(μ0/π)(μ1μ2/r3) in the stable head-to-tail state. As we will
see below, it is exactly this anisotropy that gives rise to the anisotropy
of the dipole–dipole interactions’ contribution to the sample’s magnetic
susceptibility.
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The dipole–dipole interactions in a ferromagnet—that is, an ensemble
of magnetic dipoles—can be found by generalizing from the two-dipole
case. The interaction energy is given by

U = − 1
2 ∑

i
∑
j≠i

𝛍i ⋅ 𝐁ij

= − 1
2 ∑

i
𝛍i ⋅ ∑

j≠i

μ0
4π

⎛⎜
⎝

3(𝛍j ⋅ 𝐫ij)𝐫ij
r5ij

−
𝛍j

r3ij
⎞⎟
⎠

, (2.30)

where 𝐫ij is the vector from 𝛍j to 𝛍i. In principle, we can evaluate this sum
directly. This has in fact been done analytically for some particular lattices
for arrays of equal and parallel dipoles [109]. However, for most practical
purposes, evaluating the sum directly is impractical, even using numerical
methods. As the size of the sample increases, the number of terms in the
sum grows as r3ij, but the summand falls off only as 1/r3ij. Consequently,
the contributions of distant dipoles never cease to be important. Since the
interaction of each dipole with every other dipole must be taken into ac-
count, the computational complexity grows asN2, whereN is the number
of dipoles.

We can avoid evaluating the sum directly by considering the corre-
sponding integral instead. In the continuum limit, we replace each dipole
𝛍i with the dipole𝐌(𝐫)d𝐫, where d𝐫 is a volume element. The resulting
dipole–dipole interaction reads

U = −1
2 ∫d𝐫𝐌(𝐫) ⋅ ∫d𝐫′ 𝐁(𝐫, 𝐫′),

with

𝐁(𝐫, 𝐫′) = μ0
4π (3[𝐌(𝐫′) ⋅ (𝐫 − 𝐫′)](𝐫 − 𝐫′)

|𝐫 − 𝐫′|5 − 𝐌(𝐫′)
|𝐫 − 𝐫′|3 ) .

The integrals run over the sample volume. However,we run into trouble as
soon as we try to evaluate them. The integral over d𝐫′ of themagnetic field
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The Lorentz cavity:

R

sum

integral

𝛍i

Redrawn after Ref. 26.

The characteristic length scale
of magnetization variations
due to dipolar interactions
is the exchange length, ℓ =
√(A/μ0M2

s). Here,A is the
exchange stiffness andMs is
the saturation magnetization.
Typical exchange lengths are
ℓ = 3–9 nm. Since typical
lattice spacings a are on the
order of ångströms, finding a
radius a ≪ R < ℓ is physically
feasible.

𝐁(𝐫, 𝐫′) is well-defined only as long as we evaluate it at positions 𝐫 outside
the magnet, but the integral of𝐌 ⋅ 𝐁 runs over the magnet itself. Provided
that none of the dipoles 𝛍j overlap with the dipole 𝛍i, this divergence is
absent in Eq. (2.30). We introduced it upon taking the continuum limit.

Lorentz gave an argument to remove this divergence [110]. Since the
divergence is absent in the sum, we separate the dipoles𝛍j into two groups.
For the dipoles inside a sphere of radiusR around the dipole𝛍i we evaluate
the sum over j ≠ i directly, and for the dipoles outside the sphere we
evaluate the integral over d𝐫′ instead,

𝐁L(𝐫) = ∫
Ω
d𝐫′ 𝐁(𝐫, 𝐫′) + ∑

j∈ω
𝐁ij , (2.31)

whereω is the volume of the Lorentz cavity andΩ is the volume of the
sample minus ω. The radius R must be large compared to the lattice
spacing, but small enough for the dipoles inside the sphere to be almost
parallel.

We start by considering an equivalent form of the integral over d𝐫′. The
𝐁 field, the𝐇 field, and themagnetization𝐌 are related by the constitutive
relation 𝐁 = μ0(𝐇 + 𝐌). Since 𝐁 is solenoidal, the divergence of 𝐇 is
entirely due to𝐌:

∇ ⋅ 𝐇 = −∇ ⋅ 𝐌.

Comparing this equation to Coulomb’s law,

∇ ⋅ 𝐃 = ρ,

it is apparent that the divergence of the magnetization,

ρM = −∇ ⋅ 𝐌, (2.32)

can be interpreted as a magnetic charge ρM for 𝐇. Furthermore, in the
static limit and in the absence of currents𝐇 is irrotational,

∇ × 𝐇 = 𝐉 + ∂𝐃
∂t = 0. (2.33)
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The𝐇 and𝐁 fields inside a
uniformly magnetized sphere
are

𝐇 = −1
3𝐌, 𝐁 = 2

3𝐌,

respectively [111]. The fields
outside the sphere are those of
a dipole of dipole moment

𝛍 = 4πR3

3 𝐌.

𝐇 field:

The𝐇 field is generated by the
free surface poles, where

∇ ⋅ 𝐌 = 𝐌 ⋅ 𝐞n ≠ 0.

Consequently, the field inside
a spherical hole in a uniformly
magnetized body is
𝐇 = 𝐌/3.

Finding𝐇 given the magnetic charge ρM = −∇ ⋅ 𝐌 is therefore formally
equivalent to the electrostatic problem of finding 𝐃 given the electric
charge ρ. Using the existing formal solution for𝐃, we can thus write down
𝐇 as [111]

𝐇(𝐫) = − 1
4π ∫

Ω
d𝐫′ [∇′ ⋅ 𝐌(𝐫′)](𝐫 − 𝐫′)

|𝐫 − 𝐫′|3 . (2.34)

This integral depends on the shape and the size of the sample. However,
by dividing the integration volume into two pieces we can separate out
a contribution that is independent of these particularities, namely that
from a thin spherical shell around the Lorentz cavity. Since we assumed
that the magnetization close to the Lorentz cavity is almost uniform, the
contribution from this shell is𝐌/3. Hence, the integral over d𝐫′ evaluates
to

𝐇(𝐫) = − 1
4π ∫

Ω′
d𝐫′ [∇′ ⋅ 𝐌(𝐫′)](𝐫 − 𝐫′)

|𝐫 − 𝐫′|3 + 𝐌(𝐫)
3 = 𝐇′ + 1

3𝐌 (2.35)

inside the Lorentz cavity. Here, Ω′ denotes the volume remaining after
separating out the thin spherical shell.

Next, we consider the sum over j ≠ i inside the Lorentz cavity. As it
turns out, the sum vanishes for a cubic lattice [112]. This can be seen by
noting that the x component of𝐁ij is

μ0
4π

3(μxx2ij + μyyijxij + μzzijxij) − μxr2ij
r5ij

.

In the sum over dipoles at a given distance rij from dipole i

∑
j
xijyij = ∑

j
xijzij = ∑

j
yijzij = 0

and

∑
j
x2ij = ∑

j
y2
ij = ∑

j
z2ij = 1

3 ∑
j
r2ij
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Using𝐁 = ∇ × 𝐀 the integral
of𝐁 ⋅ 𝐇 over space is

∫d𝐫𝐁 ⋅ 𝐇 = ∫d𝐫 [∇ ⋅ (𝐀 × 𝐇)

+ 𝐀 ⋅ (∇ × 𝐇)].

The second term is zero by
Eq. (2.33), and by the diver-
gence theorem the first term
is

∫d2r 𝐞n ⋅ (𝐀 × 𝐇).

The volume integral was taken
over all of space, so the surface
integral is over a sphere of
infinite radius. Since𝐀 and
𝐇 vanish asA ∼ r−2 and
H ∼ r−3 far from the magnet,
this term is also zero.

The formation of flux-closure
domainsmay produce a
a ferromagnet
with zero net
magnetization:

if the lattice is cubic. Consequently, the contribution from each such
group of dipoles to 𝐁ij vanishes. If the crystal is not cubic, 𝐁ij does not
vanish, however the resulting contribution to the dipole–dipole interac-
tion is local and proportional toΛijmimj and can be incorporated in the
magnetocrystalline anisotropy [112].

We conclude that the dipole–dipole interaction energy for a cubic crys-
tal is

U = −μ0
2 ∫d𝐫𝐌 ⋅ (𝐇′ + 1

3𝐌),

where the integral is taken over themagnet. The term −(μ0/6)M2(Ω+ω)
is simply a constant, and is customarily ignored, giving

U = −μ0
2 ∫d𝐫𝐌 ⋅ 𝐇′. (2.36)

Using the constitutive relation𝐌 = 𝐁/μ0−𝐇, and the fact that the integral
of𝐁 ⋅ 𝐇 over all of space vanishes [26, 112], this integral over the magnet
can also be written on the form

U = μ0
2 ∫d𝐫H′2, (2.37)

where the integral is taken over all of space.
Written on this form, we observe that the dipole–dipole interaction

energy is always positive, and attains its minimum value if ∇ ⋅ 𝐌 = 0
so that𝐇′ is zero. Left to its own devices, a ferromagnet with negligible
magnetocrystalline anisotropy will therefore tend to divide into domains
that reduce the net magnetization. Themost favorable form of domains
are so-called flux-closure domains, as pointed out at the beginning of this
chapter.

We saw on the facing page that the magnetic field inside a uniformly
magnetized sphere is𝐇 = −𝐌/3. Since the magnetic field opposes the
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Demagnetization factorNzz:

10−2 10−1 1

10−1

⅓
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Nzz

aspect ratio p = c/a

Redrawn after Ref. 26.

(stable) (stable)

magnetization that creates it, it is often called the demagnetization field. It
is true in general for all ellipsoids that are magnetized along one of their
principal axes that the magnetic field inside the ellipsoid can be written as

Hi = −NijMj ,

where the demagnetization tensorNij is diagonal [85]. (Summation over
repeated indices is implied.) The trace of the demagnetization tensor is
equal to one,Nii = 1. For ellipsoids of revolution,Nxx = Nyy, and [85]

Nzz =

⎧{{{
⎨{{{⎩

1
1 − p2 (1 − p arccosp

√1 − p2
) , p < 1 (oblate),

1
p2 − 1

(p arcoshp
√p2 − 1

− 1) , p > 1 (prolate),
(2.38)

where p = c/a is the aspect ratio of the semimajor axis c to the semiminor
axis a. For a sphere, p = 1, we recoverNxx = Nyy = Nzz = 1/3.

Given a direction of the applied field with respect to the ellipsoid, the
smaller the demagnetization factor (Nxx, Nyy, or Nzz), the smaller the
demagnetization field. The smaller the demagnetization field, the easier
it is to magnetize the ellipsoid. For instance, it is easier to magnetize a
cylinder along its axis than perpendicular to it, or to magnetize a thin film
in the plane than out of it. In other words, the dipole–dipole interaction
gives rise to an anisotropic magnetic susceptibility that depends on the
sample’s shape.

Samples that have shapes other than ellipsoids, and that have magneti-
zations that are not solenoidal (∇ ⋅ 𝐌 ≠ 0) will in general have internal
magnetic fields that are nonuniform. Still, it is common to define approxi-
mate demagnetization factors for such samples to get a rough idea of the
demagnetizationfield. Such approximatedemagnetization factors for right
rectangular prisms are extensively used by codes such as oommf [113] and
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Magnetostatic spin waves are
classified based on the angle
φ between 𝐤 and𝐌 [116].
Backward-volume waves have
φ = 0 and Damon–Eshbach
waves haveφ = π/2.

L𝐡 𝐤
𝐌φ

n=0 1 2

Dispersion relation of
backward-volume waves:
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5
9n = 13

kL

ωn

ωM

𝐁

free
precession

𝛍𝛍 × 𝐁

MuMax3 [114] because it gives an analytical expression for the demagneti-
zation field of each cell. Combined with fft acceleration of the volume
integral, thismakes it possible for these codes to reduce the computational
complexity of the dipole–dipole interaction fromN2 toN logN [115].

The dipole–dipole interactions do not only affect the static magnetiza-
tion, but also its dynamics properties. For instance, Refs. 117 and 118 have
shown that in the thin-film geometry, dipole–dipole interactions signifi-
cantly alter the long-wavelength spin-wave dispersion relation. For large
wave numbers (small wavelengths) the dispersion relation is still parabolic
as in Eq. (2.20), however, for small wave numbers (large wavelengths) the
dipole–dipole interactions introduce a minimum at k ≠ 0. Exploiting this
property of the thin-film dispersion and the boson nature of magnons,
Refs. 119–121 have realized Bose–Einstein condensates of magnons.

2.7 Magnetization dynamics

The equation of motion for a free magnetic dipole can be obtained from
Newton’s second law for rotation,

∂𝐉
∂t = 𝛕, (2.39)

where 𝐉 is the angularmomentum and 𝛕 is the torque. Substituting𝛍 = γ𝐉
(where γ is the gyromagnetic ratio) and 𝛕 = 𝛍 × 𝐁we obtain

∂𝛍
∂t = γ𝛍 × 𝐁. (2.40)

Like a spinning top in a gravitational field, the magnetic dipole precesses
about the magnetic field. If any form of dissipation is present, the free
dipole will eventually align with the applied magnetic field to minimize its
energy.
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In si units, the effective field
has units of tesla. Nonetheless,
it is customarily assigned to
the symbol𝐇.

This equation of motion
for the magnetization was
first derived by Landau and
Lifshitz [122].

There exist damping mecha-
nisms that are not captured
by local Gilbert damping, such
as radiative damping [129],
exchange-mediated damp-
ing [130–133], and texture-
induced damping [134, 135].

Magnetic dipoles in solids are not free, but are constrained by, for in-
stance, exchange interactions,magnetocrystalline anisotropies, anddipole–
dipole interactions. However, just as the free dipole, magnetic dipoles in
a solid (𝐌 = 𝛍/V) will minimize their energy U = ∫d𝐫u in equilib-
rium [122],

∫d𝐫 (− ∂u
∂Mi

+ ∇ ⋅ ∂u
∂(∇Mi)

) ⋅ δMi = 0. (2.41)

They do this by aligning with the effective field

Hi = − δU
δMi

= − ∂u
∂Mi

+ ∇ ⋅ ∂u
∂(∇Mi)

. (2.42)

Outside equilibrium(nonsteady state), the effectivefieldwill exert a torque
𝛕 = 𝐌 × 𝐇 on themagnetization. Using again𝐌 = γ𝐉/V, this gives the
equation of motion

∂𝐌
∂t = γ𝐌 × 𝐇. (2.43)

Since the magnetization is usually dominated by the electron spins, the
gyromagnetic ratio is usually negative, γ < 0.

The macroscopic dynamics of the magnetization is directly coupled to
the microscopic thermal motion of spin waves (magnon–magnon scatter-
ing), and also to the conduction electrons (eddy currents, magnon–elec-
tron scattering) and phonons (magnetostriction, magnon–phonon scat-
tering). By ways of coupling to these thermal baths, the macroscopic
dynamics of the magnetization will be damped out and loose kinetic en-
ergy to random thermal motion. To derive the appropriate damping term
in the magnetization’s equation of motion from first principles is generally
quite challenging, although theories for magnetic damping [123, 124] have
improved to the point where they have predictive power [125–127]

We can circumvent the problem of identifying the exact mechanism
of energy loss by constructing a phenomenological damping term. The

30



The functional R is known
as Rayleigh’s dissipation
function [136].

The kinetic term is considered
in more detail by Refs. 137–139.

𝐇

damped
precession

𝐌𝐌 × 𝐇

most commonly usedmodel isGilbert damping [128]. Gilbert damping
is viscous damping , in which the damping force is proportional to the rate
of change of the magnetization, η∂𝐌/∂t. Here, η is an unknown, positive
parameter. Such a damping force can be derived from the functional

R = 1
2η∫d𝐫�̇� ⋅ �̇�, (2.44)

where thedotdenotes a timederivative. This gives theLagrangeequations

d
dt

δL
δṀi

− δL
δMi

+ δR
δṀi

= 0. (2.45)

The Lagrangian L is in general L = T − U. Since δU/δ𝐌 = −𝐇 and
δU/δ�̇� = 0, the Lagrange equations can be written

d
dt

δT
δ�̇�

− δT
δ𝐌 − [𝐇 − η�̇�] = 0.

The kinetic term T = (M/γ)(1 ± cos ϑ)∂φ/∂t in the Lagrangian of a fer-
romagnet originates from the spin Berry phase. A rigorous discussion of
this term is rather involved, but can be avoided by the following observa-
tion: When there is no damping, η = 0, the Lagrange equations must be
equivalent to Eq. (2.43). Consequently, the effect of introducing damping
is to reduce the effective field,𝐇 → 𝐇 − η�̇�. In the presence of damping,
the equation of motion of the magnetizationmust therefore be

∂𝐌
∂t = γ𝐌 × (𝐇 − η∂𝐌∂t ) = γ𝐌 × 𝐇 − α

M𝐌 × ∂𝐌
∂t . (2.46)

This equation is known as theLandau–Lifshitz–Gilbert (llg) equation, and
the parameter α = γMη < 0 is known as theGilbert damping parameter.
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Current-induced spin torques

3.1 Metallic ferromagnets

The Heisenberg model we considered in Chap. 2 is not a realistic descrip-
tion of magnetism in the transitionmetals [26, 85]. In solids, the atomic
states hybridize to form bands. Band formation is in general detrimental
to the spin polarization of a solid because of the kinetic-energy cost related
to moving electrons from lower-energy filled states to higher-energy un-
occupied states. Iron, cobalt, and nickel are exceptions to this rule. These
metals have both strong hybridization and strong exchange splitting.

The Stoner model is a simple model for magnetism in the conduction
band [26]. In materials that fulfill the Stoner criterion,

𝒥D(EF) > 1, (3.1)

the conductions bands are spontaneously spin polarized. Here,D(EF) is
the density of states at the Fermi level and 𝒥 is the exchange. Among the
elemental metals, only iron, cobalt, and nickel satisfy the Stoner criterion.

However, the fact that magnetism in iron, cobalt, and nickel and their
alloys depends strongly on the position of the Fermi level in the 3d band
(Slater–Pauling curve) [85], and that the magnetic moments in these met-
als retains features of the 3d electrons [85], are indications that the Stoner
model is too simple to fully capture their magnetic properties. The so-
called s–d exchange is frequently used tomodel the interaction between
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Spin-transfer torques:

I

e−,↑

𝐌1

𝐌2

I

e−,↑

e−,↓

𝐌1

𝐌2

the partially localized 3d electrons and the itinerant 4s electrons [26],

ℋ = D∑
i,j

𝐒i ⋅ 𝐬j. (3.2)

Here, D < 0 is the s–d exchange integral, 𝐒i is the spin operator of a
localized d electron, and 𝐬j is the spin operator of an itinerant s electron.
The s electrons can mediate an indirect exchange interaction between the
d electrons, but the localized magnetic moments will also spin polarize
the itinerant electrons.

3.2 Spin-transfer torques

The spin polarization of the conduction electrons is not only important for
explaining the origin of magnetism in the transitionmetals, but can also
be exploited to manipulate the magnetic state. Consider a spin-polarized
current flowing perpendicular to a stack consisting of two ferromagnets
separated by a nonmagnetic (normal) metal. If there is a misalignment
between the twomagnetizations𝐌1 (polarizer) and𝐌2 (free layer), some
of the electrons traversing the stack will have their spins flipped. Assuming
that spin angularmomentum is separately conserved, this process transfers
spin from the conduction electrons to the magnetization of the free layer.
The transferred spin will eventually reorient 𝐌2 to point in the same
direction as𝐌1.

The process can be reversed by reversing the direction of the current.
We assume that the free layer is too small to impart any appreciable spin po-
larization on the unpolarized current that enters it from the right reservoir.
Upon reaching the fixed layer, the spin-down electrons are more likely to
be backscattered than the spin-up electrons. The spin transfer from the
resulting accumulation of spin-down electrons will eventually reorient
𝐌2 in the direction opposite to𝐌1.

Looking at the numbers, one electron can transfer a maximum of ℏ of
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Berger was the first to consider
the possibility of spin transfer
in 1978 [140–143]. However,
because of the large current
densities required, the phe-
nomenon did not receive
widespread attention until
the discovery of interlayer ex-
change coupling (1986) [144–
146] and giant magnetore-
sistance (1988) [147, 148]
had attracted attention to
magnetic nanostructures. In
1996, Berger [149] and Slon-
czewski [150] independently
predicted that an electric
current could excite dynam-
ics in a magnetic multilayer
system, which was experi-
mentally confirmed shortly
thereafter [151].

Orientation of 𝛕S and 𝛕β:

𝐇, 𝐌1

𝐌2𝐌2 × 𝐌1

𝐌2 × (𝐌1 × 𝐌2)

angular momentum to the magnetization. Themagnetic moment corre-
sponding to this amount of spin is 2μB = eℏ/m, where e is the electron
charge and m is the electron mass. Since 2μb = 2 ⋅ 10−23 Am2 is such
a small number, and the magnetic moment per area of a thin film is so
large (typicallyM ⋅ t = 6 ⋅ 105 A/m ⋅ 2nm = 1mA, whereM is the mag-
netization and t is the film thickness), the number of electrons required
to deposit the right amount of angular momentum is about 5 ⋅ 1019/m2.
Given that the magnetization dynamics in a ferromagnet is typically on
the gigahertz time scale, this corresponds to a current density of roughly
1010 A/m2. The sheer magnitude of this current density was one of the
principal reasons why spin-transfer-induced magnetization dynamics did
not receive widespread attention until the advent of magnetic nanostruc-
tures.

In symmetric f/n/f stacks the torque on the free-layer magnetization
𝐌2 due to spin transfer is [152]

𝛕S = γℏPI
2eMV

1
M2 𝐌2 × (𝐌2 × 𝐌1), (3.3)

where I is the applied charge current, P is the current’s spin polarization,
and V is the volume of the free layer. To accurately describe the dynamics
of the free-layer magnetization, this torque must be added to the right-
hand side of the llg equation. The torque in Eq. (3.3) is known as the
Slonczewski torque or the antidamping torque because—depending on the
directionof the current—it acts in theopposite (same)directionof (as) the
Gilbert-damping torque. The Slonczewski torque is usually accompanied
by a small correction

𝛕β = γℏPI
2eMV

1
M β𝐌2 × 𝐌1, (3.4)

where β is a small number on the order of 0.1. This torque is known as
the field-like torque because it acts in the same (opposite) direction as (of)
the torque from the effective field.
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Thequalitative typesofdynamics that canbeexcitedby the spin-transfer
torques can be understood using using linear stability analysis [153, 154].
The three panels in Fig. 3.1 show solutions for𝐌2 of the Landau–Lifshitz–
Gilbert–Slonczewski (llgs) equation [28],

∂𝐌
∂t = γ𝐌 × 𝐇 − α

M𝐌 × ∂𝐌
∂t + 𝛕S + 𝛕β , (3.5)

with𝐇 = Hkmz𝐞z and𝐌1 = M𝐞z, for different values of the current I.
In all three cases,𝐌2 is displaced from the fixed point at ϑ = 0 to ϑ = π/4.
For currents below the threshold value, I < Ic, the damping is stronger
than the Slonczewski torque, and the magnetization spirals back to the
fixed point at ϑ = 0. For currents above the threshold value, I > Ic, the
Slonczewski torque is stronger than thedamping, and thefixedpoint atϑ =
0 is no longer stable. Instead of spiralling back to ϑ = 0, the magnetization
switches, spiralling all the way down to ϑ = π. If the current is exactly
equal to the threshold value, I = Ic, the damping and the Slonczewski
torques are equally strong, resulting in stable precession.

The case of I < Ic (net damping) corresponds to the first case we
considered on page 34, in which spin transfer from the polarizer to the
free layer aligns the free layer with the polarizer. The case of I > Ic (net
antidamping) corresponds to the second casewe consideredonpage 34, in
which spin transfer to the free layer fromelectrons reflectedby thepolarizer
aligns the free layer antiparallel to the polarizer. This kind of current-

Figure 3.1 Solutions of the
llgs equation for different
currents, I < Ic, I = Ic, and
I > Ic. Redrawn after Ref. 154.

I < Ic I = Ic I > Ic
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Current-induced dwmotion:

𝐯

𝐯

induced magnetization switching has been implemented in commercially
available mram chips, known as stt-mram [29–31]. In addition to these
two cases, I = Ic affords the possibility to achieve stable precession, which
can be used to make a spin-torque oscillator [155–157].

Thus far we have only considered spin transfer between two uniformly
magnetized layers, which is known as themacrospin approximation. How-
ever, spin transfer will also take place as the current traverses a slowly vary-
ing magnetization texture in a single ferromagnet. In the long-wavelength
limit, the spin-transfer torques inEqs. (3.3) and(3.4) canbewrittenas [158–
160]

𝛕 = u(𝐉 ⋅ ∇)𝐌 − βu
M 𝐌 × (𝐉 ⋅ ∇)𝐌, (3.6)

where u = μBP/eM(1 + β2) and 𝐉 is the current density. The first term
is known as the adiabatic torque because it is a result of the spin-current
divergence that arises when the conduction-electron spin polarization
follows the magnetization adiabatically [160]. The second term is known
as the nonadiabatic torque or the β torque. Its physical origin is spin relax-
ation processes due to spin–orbit coupling or impurities that leads the
conduction-electron spin polarization to locally deviate from the magne-
tization [158]. This is similar to the antidamping and field-like torques:
If the spin current is completely absorbed by the free layer, only the anti-
damping torque is expected to be significant, but if the spin current is not
completely absorbed, the field-like torque can also be strong [161].

One particular example of a slowly varying magnetization texture is a
domain wall. The result of the transfer of spin from the itinerant electrons
to the magnetization is domain wall motion: the spin-polarized current
will drag the domain wall along with it. In the limit of an atomically sharp
domain wall, domain wall motion by spin transfer can be understood as a
null-sum process whereby the flipping of an electron spin results in the
flipping of an atomic spin.
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Redrawn after Ref. 166.

Using this simple picture of domain wall motion, we expect the domain
wall velocity to scale linearlywith theamountof spin that canbe transferred
from the current. Since the spin carriers and the charge carriers are one
and the same, that implies that the domain wall velocity scales linearly
with the current.

Domain-wall-motion experiments are usually carried out in rectangu-
lar strips [162, 163]. In a strip with an out-of-plane easy axis it is harder to
magnetize the strip in the in-plane transverse direction than in the in-plane
logitudinal direction because of the shape anisotropy. Consequently, the
spins of an up–down domain wall lie in the xz plane. A detailed calcula-
tion reveals that it is the β torque that is most important for domain wall
motion [164]. The β torque tilts the spins out of the xz plane. This gives
rise to a torque in the z direction due to the hard y axis, which drives the
domain wall. However, increasing the current density tilts the wall farther
and farther out of the xz plane. When the tilt φ increases beyond π/4
the wall slips past the hard axis and begins to rotate. This event is known
asWalker breakdown [165], and results in a reduction of the domain wall
velocity.

The racetrack memory is a proposal for a memory cell in which infor-
mation is encoded in a train of magnetic domains [166–168]. As opposed
to mram based onmagnetic bilayers, eachmemory cell can hold several
bits. The bits are read and written by shifting the train of domains back
and forth using current-induced domain wall motion [167]. Although the
racetrack memory has not seen commercialization, it has inspired a lot of
research on domain wall dynamics.

Even though racetrack memories are not yet for sale, current-driven
domain wall motion is more than an academic curiosity. Injection of a
large spin current into a uniform magnet can destabilize the uniformly
magnetized state [160, 169, 170], and break the magnet into domains [171].
Thus, even switching of a uniformmagnet may proceed by domain wall
motion. In particular, this is often the case for spin-Hall torques [172–174],
which we consider next.
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3.3* Spin-Hall torques

In the previous section we saw that one way to spin polarize a current is to
use a conducting ferromagnet as a polarizer or spin filter. Another way to
obtain a spin current is the spin Hall effect [175–178].

The ordinary Hall effect is the deflection of a charge current in a mag-
netic field due to the Lorentz force. TheHall effect is usually studied in
nonmagnetic materials such as copper or various doped semiconductors.
Consider what would happen if the material was magnetic: experiments
show that in addition to the usual contribution to the transverse resistivity
ρxy due to the applied magnetic fieldHz, there is an anomalous term that
is proportional to the z component of the magnetization [180],

ρxy = R0Hz + R1Mz . (3.7)

The increase in transverse resistivity cannot simply be explained as the
Lorentz force due to the additional contribution to the magnetic field Bz

fromMz because R1 ≫ R0. Furthermore, whereas R0 depends chiefly on
the density of charge carriers, R1 depends subtly on a variety of material
parameters.

Theoriginof the anomalous term is spin–orbit coupling [180]. Itinerant
electrons that scatter of spin–orbit-coupled impurities will experience
spin-dependent skew scattering and side jumps (extrinsic mechanisms).
Moreover, a spin–orbit-coupled band structure can give rise to an intrinsic
spin-dependent deflection of the itinerant electrons,

d𝐫
dt = 1

ℏ
∂E
∂𝐤 − e

ℏ𝐄 × 𝛀(𝐤). (3.8)

Here, the first term is the ordinary semiclassical velocity of the electron
(energy E and wave vector 𝐤), and the second term is the so-called anoma-
lous velocity [181–183]. It is perpendicular both to the applied electric field
𝐄 and to the Berry curvature𝛀(𝐤) = i⟨∇𝐤u𝐤| × |∇𝐤u𝐤⟩ of the band (u𝐤
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are the Bloch functions). The Berry curvature is often proportional to the
electron spin 𝛔. Combined with the spin polarization of the itinerant elec-
trons in a ferromagnet, the spin-dependent skew scattering, side jumps,
and the anomalous velocity give rise to a transverse charge current that
adds to the ordinary Hall effect.

The anomalous Hall effect is relatively easy to detect because it gives
rise to a charge current. However, if the bands have a finite Berry curvature,
the itinerant electrons will be deflected in a spin-dependent manner even
if they are not spin polarized. The result is a transverse spin current, but
no net transverse charge current.

This spinHall effect [175] is now routinely detected in heavymetals such
as platinum and tantalum. Since the anomalous velocity is perpendicular
both to the electron spin 𝛔 and the applied electric field 𝐄 = ρ𝐉, the
resulting spin current 𝐉s, its spin polarization 𝛔, and the applied charge
current 𝐉 are all at right angles to each other.

Just as a current that is spin-polarized by a ferromagnet, a spin current
injected into a ferromagnet from a heavy metal due to the spin Hall effect
will relax by transferring spin to the magnetization. The result is a spin-
transfer torque [184]

𝛕 = γℏϑJ
2eMt

1
M 𝐌 × (𝐌 × 𝛔) + γℏϑJ

2eMt β𝐌 × 𝛔, (3.9)

where J is the applied charge-current density, ϑ is the so-called spin-Hall
angle, ϑ = (2e/ℏ)(Js/J), and t is the thickness of the ferromagnetic layer.

The spin-Hall spin-transfer torque can induce both switching and uni-
form precession in a uniformly magnetized sample just as the ordinary
spin-transfer torque [25, 157]. However, there are significant differences
between the domain wall dynamics induced by the spin-Hall torque and
the spin-transfer torques. For instance, there is no Walker breakdown
when a domain wall is driven by a pure spin-Hall torque [i], because the
spin-Hall torque 𝐌 × 𝛔 vanishes when the wall reaches a tilt angle of
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φ = π/2 (𝐌 ∥ 𝛔). In paper i we consider the different types of do-
main wall dynamics that can be induced by spin-Hall torques and so-
called Rashba spin–orbit torques. (Rashba spin–orbit torques will be
discussed in the next section.) In particular, we consider the range of
different current–velocity characteristics that are possible.

The sign of the velocity of a domain wall driven by spin-Hall torques
depends on the chirality of the wall. Homochiral walls move in the same
direction whereas heterochiral walls move in different directions. We
mentioned on page 38 that even switching of uniform magnets by spin-
Hall torques usually proceeds by domain wall motion [172–174]. However,
due to the Dzyaloshinskii–Moriya interaction (dmi) [186–189] that is
usually present in these systems, the domains that nucleate are separated
by walls of the same chirality. Since homochiral walls move in the same
direction there is no domain expansion or contraction, and consequently
no deterministic switching.

Application of an in-plane field that is stronger than the Dzyaloshin-
skii–Moriya interaction leads to the formation of heterochiral walls. If the
magnetic field is applied parallel to the applied current, ‘down’ domains
expand and ‘up’ domains contract, and if the magnetic field is antiparallel
to the applied current, ‘up’ domains are favored over ‘down’ domains.

The dependence on an applied magnetic field to switch the magnet
deterministically is an obstacle to the adoption of devices using spin-Hall
torques. In paper i we point out that in a synthetic antiferromagnet (two
ferromagnets coupled by an antiferromagnetic interlayer exchange) de-
terministic switching can be achieved both by toggling the polarity of
the applied field, and by toggling the magnitude of the field between two
judiciously chosen large and small values. This explained an observed
switching anomaly [190] andmight, depending on the device geometry,
be more favorable than changing the polarity of an applied field. However,
several field-free approaches have also been suggested, such as structural
engineering [191, 192], tilted anisotropy [193], exchange bias [194–196],
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ferromagnetic/ferroelectric hybrids [197], and combining spin-Hall and
spin-transfer torques [198].

The reason for the prominence spin-Hall torques have achieved in the
field of spintronics is the very high efficiencies of these torques [161]. By
efficiencies in this context we mean the amount of torque that can be
obtained for a given current. In the spin-transfer-torque geometry we
considered on page 34, the current flows perpendicular to the layers. The
efficiency of the torque is

η = γℏPI
2eV

1
I = γℏP

2etA ,

where t is the thickness of the free layer andA is the cross-sectional area of
the stack. Each electron in the spin-polarized current can only transfer ℏ
of angular momentum to the free layer. In the spin-Hall geometry we con-
sidered on page 40, the current flows parallel to the layers. The efficiency
of the torque is

η′ = γℏϑJ
2et

1
Ja = γℏϑ

2eta ,

where t is the thickness of the magnet and a is the cross-sectional area of
the normal metal. The ratioA/a can be 30 ormore for a typical geometry,
giving the spin-Hall torques a vastly improved efficiency over spin-transfer
torques. Microscopically, this can be understood by considering a particu-
lar electron in the normal metal that is deflected towards the n/f interface.
The electron may be scattered off the ferromagnet multiple times, each
time transferring ℏ of angular momentum to the magnetization [161].

The spin Hall effect has also found applications in spintronics besides
spin torques. In the direct spin Hall effect, injection of a charge current
gives rise to a transverse spin current. In the Onsager reciprocal pro-
cess [199–201], injection of a spin current gives rise to a transverse charge
current. This effect is known as the inverse spin Hall effect [175, 202–204],
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and has turned out to be an indispensable tool formeasuring spin currents
due to phenomena such as spin pumping [205, 206] or the spin Seebeck
effect [207]. Through an ingenious combination of the direct and inverse
effects, the spin Hall effect can also be used to detect the magnetization
direction of a ferromagnet using the spin-Hall magnetoresistance [208, 209].

3.4 The Rashba spin–orbit torque

A two-dimensional free electron gas in the xyplanewith broken symmetry
in the z direction will exhibit Rashba spin–orbit coupling [210–213]. The
Hamiltonian of these electrons is

ℋ = 𝐩2

2m + λ
ℏ (𝐩 × 𝐞z) ⋅ 𝛔, (3.10)

where λ is the Rashba parameter. In equilibrium the Rashba term couples
the electron’s momentum and spin so that an electron with momentum
𝐩 = p𝐞x will minimize its energy by aligning its spin with the y axis.
However, the net spin polarization of the electron gas is zero. On the
other hand, if a current 𝐉 = ne⟨𝐩⟩/m runs through the system (n is the
electron density), the electrons will experience an effective magnetic field
𝐁 = (λm2/nℏe2)(𝐉 × 𝐞z), which will spin polarize the electron gas. This
effect is known as the Edelstein effect [175, 214–216].

If the two-dimensional electron gas lies at the interface between a nor-
mal metal and a ferromagnet, the electrons will also experience the s–d
exchange,

ℋ = 𝐩2

2m + λ
ℏ (𝐩 × 𝐞z) ⋅ 𝛔 + D𝐌 ⋅ 𝛔. (3.11)

Through the s–d exchange, the current-induced spin polarization will
then exert a torque [217, 218]

𝛕 = γλP
2μBM

𝐌 × (𝐉 × 𝐞z) (3.12)

43



Linear Dresselhaus soc :

kx

ky

Dresselhaus noted that close
to the Γ point [223–225], the
zinc-blende structure of the
iii–v semiconductors permits
a cubic spin–orbit coupling

ℋ = λ
ℏ [(p2

y − p2
z)pxσx

+(p2
z − p2

x)pyσy

+(p2
x − p2

y)pzσz].

In the presence of strain
along the [001] direction the
cubic Dresselhaus coupling
reduces to linear Dresselhaus
coupling [213, 226],

ℋ = β
ℏ (pxσx − pyσy).

on themagnetization of the ferromagnet. This torque is a pure interface
effect—that is, the torque from the two-dimensional electron gas acts
exclusively on the surface spins of the ferromagnet. However, if the ferro-
magnet is very thin we can define an average torque that can be thought of
as acting throughout the magnet. The efficiency of the Rashba spin–orbit
torque is

η″ = γλPJ
2μB

1
Ja = γλP

2μBa
,

and can be as high as the efficiency η′ of the spin-Hall torque, λ/μB ≈
105 Tm ≈ ℏ/et.

Since the spin-Hall and Rashba spin–orbit torques can be of similar
magnitude in f/n bilayer systems, the effects of the two torques can be
difficult to disentangle [161]. This difficulty is compounded by the fact that
the Rashba spin–orbit torque can be accompanied by an antidamping-like
correction [219, 220].

Pure spin–orbit torques generated by the Edelstein mechanism can
however be observed in high-quality bulk crystals with spin–orbit cou-
pling [221, 222]. Experiments showthat these torques are sufficiently strong
to switch the magnetization. Whereas the spin–orbit coupling at a f/n
interface is predominantly of the Rashba type, the spin–orbit coupling in
the Ga1–xMnxAs and NiMnSb crystals employed in these experiments is
predominantly of the Dresselhaus type [227, 228].

Just like for the spin Hall effect, there is also anOnsager reciprocal of
the Edelstein effect [229]. This reciprocal process is known as the inverse
Edelstein effect or the spin-galvanic effect. Whereas the Edelstein effect gives
rise to a spin polarization as a response to an applied current, the spin-
galvanic effect gives rise to a current as a response to an induced spin
polarization. The spin-galvanic effect was first demonstrated in GaAs by
an optically induced spin polarization [230, 231].

In a ferromagnetic material the Edelstein effect and the s–d exchange
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together produce spin–orbit torques. Similarly, the spin-galvanic effect
and the s–d exchange together producemagnonic charge pumping [232],
which is thereby theOnsager reciprocal process of spin–orbit torques. For
a generic spin–orbit coupling, the Hamiltonian in Eq. (3.11) can be written
as

ℋ = 𝐩2

2m + 𝐠(𝐩) ⋅ 𝛔 + D𝐌 ⋅ 𝛔. (3.13)

The velocity operator corresponding to this Hamiltonian is

𝐯 = ∂ℋ
∂𝐩 = 𝐩

m + 𝐠′(𝐩) ⋅ 𝛔. (3.14)

From this velocity operator we can see that a nonequilibrium magnon
accumulation δ𝛍 gives rise to a velocity response δ𝐯 = 𝐠′(𝐩) ⋅ δ𝛍 among
the conduction electrons—or, in other words, to a current 𝐉 = ne⟨δ𝐯⟩ =
ne⟨𝐠′(𝐩) ⋅ δ𝛍⟩. Magnonic charge pumping has been demonstrated in
Ga1–xMnxAs by ferromagnetic resonance [233].

3.5 Phenomenology of current-induced spin torques

The Edelstein mechanism can be used to generate spin–orbit torques for
all symmetries of the underlying spin–orbit coupling [32]. In the previ-
ous section, we saw examples of both Rashba and Dresselhaus spin–orbit
torques. The Rashba torque is typically found at interfaces, whereas the
Dresselhaus torque is an example of a so-called bulk spin–orbit torque. Bulk
spin–orbit torques are generated in crystals where global or local struc-
tural inversion asymmetry generates a spin polarization that torques the
magnetization or the antiferromagnetic Néel order parameter. However,
the crystallographic and magnetic point groups host a wide variety of
spin–orbit symmetries [183]. A systematic investigation of the possible
spin–orbit torques requires a framework that efficiently deals with these
symmetries.
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Fortunately, we have already encountered such a framework in Sect. 2.5
in the context of magnetocrystalline anisotropies. As long as the current-
induced torque at (𝐫, t) only depends on the magnetization at (𝐫, t), we
can write it as [235, 236]

𝛕(𝐫, t) = γ𝐦(𝐫, t) × 𝐇(𝐫, t), Hi = ηijJj , (3.15)

where𝐦 = 𝐌/M is the normalizedmagnetization, 𝐉 is the current density
and ηij is a second-rank tensor. Just as we did for the magnetocrystalline
anisotropies, we can expand the tensor ηij in the magnetization compo-
nentsmi and their derivatives ∂imj. To lowest order we get

ηij = Λij + Γijkmk + βijkl∂kml + Pijklnmk∂lmn + ⋯ (3.16)

Experience from themagnetocrystalline anisotropy shows that the first
few terms in the expansion usually captures the experimentally observed
behavior [85]. Such an expansion for the current-induced torques was
first proposed by Refs. 235 and 236. The effective magnetic field𝐇 and the
magnetization𝐦 are axial vectors. Since the current density 𝐉 is a polar
vector, ηij is an axial tensor, and the tensorsΛij, Γijk, βijkl, and Pijkln are
respectively axial (Λij), polar (Γijk), polar (βijkl), and axial (Pijkln).

Dependingon the relevantpoint-groupsymmetry,wecanuseEqs. (3.15)
and (3.16) to write down any possible current-induced torque. We con-
sider sputtered permalloy and strained Ga1–xMnxAs as examples.

Permalloy (Ni80Fe20) is a disordered magnetic alloy [26]. When de-
posited by sputtering, permalloy can have relatively low crystallinity. Sput-
tered permalloy is therefore an approximately isotropic material with neg-
ligible spin–orbit coupling.

The only isotropic second-rank tensor is the Kronecker delta, δij [237].
SinceΛij is an axial tensor and δij is a polar tensor

Λij = 0∀ i, j.
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The only isotropic third-rank tensor is the Levi–Civita symbol, ϵijk [237].
Since Γijk is a polar tensor and ϵijk is an axial tensor

Γijk = 0∀ i, j, k.

There are three fourth-rank isotropic tensors, namely [237]

δijδkl , δikδjl , and δilδjk .

These are all polar tensors, like βijkl. However, whereas δijδkl and δikδjl
describe simultaneous spin-spaceand real-space rotations, δilδjk describes
separate spin-space and real-space rotations. (For βijkl, the indices j and
k are real-space indices and the indices i and l are spin-space indices.)
Consequently, if spin–orbit coupling can be neglected, βijkl is on the
form

βijkl = β0δilδjk .

Similarly, there are six fifth-rank isotropic tensors, namely [237]

ϵijkδln , ϵijlδkn , ϵijnδkl ,

ϵiklδjn , ϵiknδjl , and ϵilnδjk .

These are all axial fifth-rank tensors, like Pijkln. However, only ϵiknδjl
describes separate spin-space and real-space rotations. (For Pijkln, the
indices j and l are real-space indices and the indices i, k, and n are spin-
space indices.) Consequently, Pijkln is on the form

Pijkln = P0ϵiknδjl .

Using these expressions for the tensors Λij, Γijk, βijkl, and Pijkln, the
possible current-induced torques in sputtered permalloy are

𝛕 = γβ0𝐦 × (𝐉 ⋅ ∇)𝐦 − γP0(𝐉 ⋅ ∇)𝐦. (3.17)
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We recognize these torques as the spin-transfer torques from Eq. (3.6).
Consequently, we can identify the coefficients P0 and β0 as P0 = −uM/γ
and β0 = −βuM/γ.

Strained Ga1–xMnxAs grown epitaxially on a GaAs (001) substrate
has point-group symmetry mm2 (C2v) [238]. The epilayer has linear
Dresselhaus spin–orbit coupling in the bulk (note onpage 44) andRashba
spin–orbit coupling due to the broken symmetry at the interface between
the Ga1–xMnxAs film and the GaAs substrate. Due to shape anisotropy,
the magnetization of the epilayer will lie predominantly in the plane,𝐦 =
mx𝐞x + my𝐞y. For simplicity, we consider only the case of a uniform
magnetization and currents applied in the plane, 𝐉 = Jx𝐞x + Jy𝐞y.

Any axial second-rank tensor that is invariant under the symmetry op-
erations of mm2 has only two nonzero components [106],

Λxy = Λ1 ,

Λyx = Λ2 ,

Λij = 0 for all other ij.

Any polar third-rank tensor that is invariant under the symmetry opera-
tions of mm2 has seven nonzero components, but depends on only three
independent parameters [106]:

Γxxz(3) = Γ1 ,

Γyyz(3) = Γ2 ,

Γzzz = Γ3 ,

Γijk = 0 for all other ijk

(xxz(3) indicates the three tensor elements that are obtained by unre-
stricted permutation of the indices xxz). Consequently, the possible cur-
rent-induced torques can be written as

𝐇 = Λ1Jy𝐞x + Λ2Jx𝐞y + (Γ1Jxmx + Γ2Jymy)𝐞z . (3.18)
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Alternatively, we can introduce the Rashba coefficientsΛR = 1
2 (Λ1 −Λ2),

and ΓR = 1
2 (Γ1 + Γ2), and the Dresselhaus coefficientsΛD = 1

2 (Λ1 + Λ2),
and ΓD = 1

2 (Γ1 − Γ2), to write

𝐇 = ΛR(Jy𝐞x − Jx𝐞y) + ΛD(Jy𝐞x + Jx𝐞y)

+ [ΓR(Jxmx + Jymy) + ΓD(Jxmx − Jymy)]𝐞z . (3.19)

We recognize the first term fromEq. (3.12). The remaining terms have also
been derived frommicroscopic models by respectively Ref. 239, Refs. 219
and 220, and Ref. 228.

3.6* Spin–orbit torques in Fe₃GeTe₂

In Sect. 2.4 we saw that a continuous symmetry in spin space cannot be
broken by exchange interactions with a finite range in two dimensions.
This is a statement of the Hohenberg–Mermin–Wagner theorem [89, 97,
98]. A two-dimensional material must therefore exhibit a strong easy-axis
anisotropy to order magnetically. Although theoretical models with long-
range magnetic order—such as the Ising model [99, 100]—have been
known for a long time, it was not until 2016 that truly two-dimensional
materials with sufficiently strong anisotropy were discovered [72]. The
discovery of these materials has inspired efforts to characterize them, to
gain an understanding of their large anisotropies, and to find technological
applications for them in, for instance, van derWaals heterostructures [72].

The compound Fe3GeTe2 was among the first two-dimensional mag-
netic materials to be discovered [73, 240]. It is metallic, and the bulk van
der Waals crystal can be exfoliated down to the monolayer limit. As a
metallic magnet without inversion symmetry, Fe3GeTe2 is a candidate
material for hosting interesting bulk spin–orbit torques. The strongmag-
netocrystalline anisotropy as well as the presence of the heavy element
telluriummakes it plausible that the spin–orbit torques in Fe3GeTe2 may
be relatively strong.
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In paper ii we consider the bulk spin–orbit torques in Fe3GeTe2. We
find that despite the low symmetry of its point group 6̄m2, the spin–orbit
torque can be described by a single parameter Γ0,

𝐇 = Γ0[(Jxmx − Jymy)𝐞x − (Jxmy + Jymx)𝐞y]. (3.20)

This effective field is the derivative of the functional

U = + ∫d𝐫 Γ0
M[JyMxMy − 1

2 Jx(M2
x − M2

y)]

= − ∫d𝐫 1
2 Γ0JM sin2 ϑ cos(2φ + φJ). (3.21)

Here, ϑ is the polar angle of themagnetization andφ is the azimuthal angle
of the magnetization, (mx,my,mz) = (cosφ sin ϑ, sinφ sin ϑ, cos ϑ), J is
the magnitude of the current, and φJ = arctan(Jy/Jx) is the angle the
current makes with the x axis. Comparing this functional to the magnetic
energy density of the out-of-plane easy axis,

u = −1
2Kz cos2 ϑ,

(Kz > 0) we see that the spin–orbit torque in Fe3GeTe2 acts as a pair of
in-plane anisotropy axes, one easy axis atφ = nπ−φJ/2 and one hard axis
atφ = (n + 1

2 )π − φJ/2 (assuming Γ0 > 0). In particular, by applying the
current along, say, the x axis and varying its magnitude J, the spin–orbit
torque can be used to tune Fe3GeTe2 from an easy-z-axis magnet to an
easy-xz-plane magnet to an easy-x-axis magnet.

In paper ii we demonstrate that by using the spin–orbit torque to con-
trol the anisotropy of Fe3GeTe2, it is possible to explore phenomena that
are unique for two-dimensional magnetic systems. In particular, at the
critical current density Jc = Kz/|Γ0|M, Fe3GeTe2 becomes an easy-plane
magnet with a continuous O(2) symmetry. Consequently, the long-range
magnetic order disappears at this point. By tuning the applied current
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through the critical current density it is therefore possible to tune theCurie
temperature TC.

Although there is no long-range order at the critical current density,
this is still an interesting region for studying the magnetic properties. The
easy-plane magnet at J = Jc is a physical realization of the universality
class of the two-dimensional XY model. As a function of temperature,
the two-dimensional XY model features a topological phase transition
known as the Berezinskiĭ–Kosterlitz–Thouless transition [242–245]. This
phase transition cannot be associated with a local order parameter, but is
nonetheless a genuine phase transition [245].

The best-known physical realization of the two-dimensional XYmodel
is the superfluidity of thin films of 4He. However, easy-plane Fe3GeTe2
offers several advantages over superfluid 4He in terms of tunability, tem-
perature, and accessibility of the physical observables. For instance, in the
low-temperature phase of the XYmodel the spin–spin correlation func-
tion ⟨𝐒𝐫 ⋅ 𝐒𝐫′⟩ features a temperature-dependent anomalous dimension
η, ⟨𝐒𝐫 ⋅ 𝐒𝐫′⟩ ∼ 1/|𝐫 − 𝐫′|η [244, 245]. At the critical current density Jc in
Fe3GeTe2, this nonuniversal anomalous dimension can be mapped out by
measuring the spin–spin correlation function as a function of temperature
using for instance polarized small-angle neutron scattering. In contrast, the
anomalous dimension η is not experimentally accessible in superfluid 4He.
Ameasurement of η in Fe3GeTe2 would be the first test of the prediction
η = kBT/4πJ of the XYmodel [244]. (Here, J is the exchange coupling.)

We also expect easy-plane Fe3GeTe2 to exhibit a universal jump in the
spin stiffness [245], similar to the universal jump in the superfluid den-
sity of 4He [246, 247]. The spin stiffness may bemeasured in spin-wave
resonance experiments. However, in contrast to 4He, in which the bkt
transition occurs at 1.2K [247], the Curie temperature of Fe3GeTe2 in-
dicates that the jump in spin stiffness would occur at liquid nitrogen or
oxygen temperatures.
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4

Uniform precession:

𝐇

𝐌

γ𝐌 × 𝐇

Magnon-induced spin torques

4.1 Magnons as spin waves

The classical interpretation of magnons is spin waves, which are wave
solutions to the magnetization’s classical equation of motion, namely the
Landau–Lifshitz–Gilbert equation [116]. We are now going to consider
spin waves in more detail.

We consider a uniaxial ferromagnet with magnetic energy density

u = A∂mi
∂xj

∂mi
∂xj

− Kzm2
z . (4.1)

In the ground state the magnetization aligns with the easy z axis. If the
magnetization deviates slightly from𝐌 = M𝐞z, the magnet will precess
about the easy axis. In the presence of magnetic damping the precessing
magnetization will relax towards the minimum-energy configuration, but
in the absence of damping the precession will persist indefinitely. This
precession is known as the uniform mode or the Kittel mode [26]. If the
magnetization is nonuniform, for instance if the magnetization points
along the z axis in most of the sample, but deviates slightly in a small
region, the ensuing dynamics is more complicated. The local precession
of the magnetization will then spread to the rest of the sample as wavelike
ripples—spin waves. We parameterize the smallness of the deviation from
the z axis using the small parameter λ,

𝐌(𝐫, t) = λMx(𝐫, t)𝐞x + λMy(𝐫, t)𝐞y + M𝐞z . (4.2)
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Ferromagnetic spin waves:

For simplicity, we consider only variations in the magnetization along
one spatial direction, x. To first order in λ, the llg equation gives two
nontrivial equations,

∂Mx
∂t = −2γ

M (A ∂2

∂x2
− Kz)My ,

∂My
∂t = +2γ

M (A ∂2

∂x2
− Kz)Mx .

(Here, we have neglected damping,α = 0, for simplicity.) These equations
cannot be separated. Consequently, ferromagnetic spin waves cannot be
linearlypolarized. However, we cancombine the equations forMx andMy

into a single equation by introducing the auxiliary variableψ = Mx − iMy.
The factor of i signifies that there is a phase shift of π/2 between the x and
the y component of the magnetization. In other words, the spin waves
are circularly polarized. Physically, this can be understood as the circular
precession of the individual spins. The resulting equation,

i∂ψ∂t = 2γ
M (A ∂2

∂x2
− Kz)ψ,

admits, as anticipated, solutions that are waves, ψ = ρ exp i(kx − ωt).
Here, ρ is the spin-wave amplitude, k is the spin-wave wave number, and
ω is the spin-wave angular frequency. Substituting this ansatz into the
equation of motion gives the spin-wave dispersion

ω = −2γ
M (Ak2 + Kz), γ < 0. (4.3)

We recognize this as the long-wavelength magnon spectrum in Eq. (2.20).
However, unlike themagnon spectrum of the isotropicHeisenbergmodel,
the spin-wave spectrum of a uniaxial ferromagnet has a gap that is pro-
portional to the uniaxial anisotropy. Oscillations with frequency less than
ω0 = −2γKz/M have an imaginary wave number and do not propagate,
but fall off exponentially.
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In more complicated systems
than the isotropic Heisenberg
model, the magnon spin
can deviate from ℏ [ii, 250].
Nonetheless, as long as the
magnons carry some spin,
transfer of spin from the
magnons to the magnetization
is a viable concept.

4.2* Spin-wave spin current and spin transfer

An individual magnon carries a spin ℏ [78]. Since magnons carry spin, a
net flow of magnons is a pure spin current. The classical analog of such a
magnon-mediated spin current can be derived from the llg equation.

The effective field of a uniaxial ferromagnet is

𝐇 = 2A
M2

∂2𝐌
∂x2

+ 2K
M2Mz𝐞z . (4.4)

Consequently, if we neglect magnetic damping the llg equation can be
written as

∂𝐌
∂t = 2γA

M2 𝐌 × ∂2𝐌
∂x2

+ 2γK
M2 Mz(𝐌 × 𝐞z).

The z component of this equation contains no contributions from the
magnetic anisotropy, and can be written as

∂Mz
∂t = ∂Jzs

∂x , (4.5)

where

𝐉s = 2γA
M2 𝐌 × ∂𝐌

∂x . (4.6)

Equation (4.5) is a continuity equation, and 𝐉s is known as the spin-wave
spin current. Using Eq. (4.2) and Mx = Reψ and My = − Imψ, the
spin-wave spin current can be written as

Jzs = 2γAkρ2

M2 (4.7)

in terms of the spin-wave amplitude ρ and the spin-wave wave number k.
Just like a spin current carried by electrons, the spin-wave spin current

can transfer spin to themagnetization. The resulting torque on themagne-
tization is known as themagnonic spin-transfer torque [35, 37]. Spin transfer
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from spin waves can for instance be used to move a domain wall. As an
example, we consider an up–down wall in a uniaxial ferromagnet. The
handedness of the circularly polarized spin waves changes as they pass
through the domain wall. This is the classical analog of the fact that the
magnon spin flips as a magnon propagates through a domain wall. Chang-
ing the handedness of the spin waves (My → + Imψ) changes the sign of
the spin-wave spin current, Jzs → −Jzs. To absorb this transfer of spin, the
domain wall must move towards the spin-wave source with a velocity

v = |Js|
M = −2γAkρ2

M3 = −
vgρ2

2M2 , (4.8)

where vg is the spin-wave group velocity vg = dω/dk = −4γAk/M.
Spin-wave-induced domainwallmotionwas first considered byRef. 251.

Several numerical studies considereddifferent aspects of the interactionbe-
tween spin waves and domain walls [252–257] before the results of Ref. 251
were independently reproduced analytically [35, 36] and numerically [37].
The numerical studies of spin-wave-induced domainwall motion revealed
that the domain wall velocity was very sensitive to the frequency of the
locally applied magnetic field acting as a spin-wave source [256–263].

Experimental studies of magnon-induced domain wall motion have
mainly focused on thermal magnons [38, 39]. However, a domain wall
in a temperature gradient can experience additional torques besides the
purely magnonic ones, for instance, the exchange stiffness can vary with
temperature [37, 264–269]. Characteristically, these torques can induce a
Walker breakdown.

In paper iii we considerWalker breakdown and the frequency-depen-
dence of the wall velocity both analytically and numerically. By deriving
the equations of motion for a domain wall driven by spin transfer from
magnons we show that the magnonic torque does not induce Walker
breakdown. Furthermore, we show that much of the frequency depen-
dence of the domain wall velocity found numerically [256–258, 260] can
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be attributed to the frequency dependence of the spin-wave-generation
efficiency of the spin-wave source, and not to the magnonic spin-transfer
torque. Simplisticmodels for the spin-wave source can therefore introduce
spurious frequency dependence that will not be observed experimentally.

4.3 Classifying multiferroic materials

Multiferroic materials are materials with multiple ferroic orders, such as fer-
romagnetism (spontaneousmagnetization), ferroelectricity (spontaneous
electric polarization), or ferroelasticity (spontaneousmechanical defor-
mation) [41, 42]. The term is most often used for materials that combine
ferromagnetism and ferroelectricity, with a preference for materials that
exhibit amagnetoelectric coupling between the two orders [42].

Multiferroic materials are often classified as type-i or type-ii multifer-
roics [270]. Type-i multiferroics are usually good ferroelectrics, and order
magnetically at low temperatures (T ≪ T∗, where T∗ is the ferroelectric
Curie temperature). Because the origins ofmagnetism and ferroelectricity
in these materials are usually unrelated, there is a weak coupling between
the two orders. A case in point are the multiferroic perovskites, such as
BaTiO3 and Pb(ZrxTi1–x)O3. The ferroelectricity of these materials is the
result of an off-center shift of the transition-metal ion [270, 271], which
forms strong covalent bonds to the oxygen ions using its empty d orbitals.
This process is suppressed if the d orbitals are partially filled, as is the case
for the magnetic transition metals. This antagonism of magnetism and
ferroelectricity is why there are so fewmagnetic ferroelectrics [272].

Type-ii multiferroics are magnets in which the magnetic order gives
rise to charge order and a spontaneous electric polarization (so-called
improper ferroelectricity [273]). This gives rise to a strong coupling be-
tween the two orders, but the electric polarization is usually much smaller
than in type-i multiferroics. Most of the type-ii multiferroics are so-called
spiral multiferroics, such as TbMnO3, Ni3V2O6, andMnWO4. Terbium
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manganite provides a good illustration of this mode of multiferroicity.
Due tomagnetic frustration in the low-temperature magnetic phase, the
manganese spins form a spin cycloid in the xy planewhich is incommensu-
rate with the crystal lattice [274–276]. Due to the Dzyaloshinskii–Moriya
interaction, the spin cycloid can lower its energy by slightly displacing the
oxygen atoms from the manganese chain, which can be seen as a form
of exchange striction [273, 277]. This intimate connection between the
electric polarization andmagnetic order gives rise to largemagnetoelectric
effects. Applying a strongmagnetic field𝐇 perpendicular to the hard z axis
will for instance flop the spin rotation axis 𝐞3, which is initially parallel to z,
to point parallel to the applied field, 𝐞3 ∥ 𝐇 [278]. Depending on whether
the field is applied parallel (x) or perpendicular (y) to the cycloid wave
vector 𝐪, the resulting polarization is either zero (𝐇 ∥ 𝐪) or flops with the
magnetization to point along the z direction (𝐇 ⟂ 𝐪) [278].

Similar mechanisms can operate independent of crystal symmetry. If
the crystal has cubic symmetry (m3m, Oh), the expression for the electric
polarization is particularly simple [278]. Due to the essential role of the
spin cycloid in the case of TbMnO3, we look for terms that couple the
polarization to the gradient of the magnetization. Expanding the energy
density u in powers of the polarization Pi, the normalized magnetization
mi = Mi/M, and gradients of the magnetization ∂imj, there are only two
terms that contain gradients of themagnetization and respect time-reversal
symmetry up to third order,

u = ηijkmi∂jmk + ξijklmiPj∂kml .

Assuming that the system does not have an instability towards ferroelec-
tricity in the absence of magnetism, we include only the term ϵijPiPj in
the electric part of the expansion. Thus we consider

u = ϵijPiPj + ηijkmi∂jmk + ξijklmiPj∂kml . (4.9)

The energy density is a proper scalar, the gradient and the polarization are
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polar vectors, whereas the magnetization is an axial vector. Consequently,
all the tensors ϵij, ηijk, and ξijkl are polar tensors.

There are no nonzero polar tensors of odd rank that are invariant under
m3m symmetry. Thus ηijk = 0 for all i, j, and k. The only invariant polar
second-rank tensor is the Kronecker delta [106]. Thus

ϵii = 1/2ϵ0,

ϵij = 0∀ i ≠ j.

The polar fourth-rank tensor that is invariant under m3m has 21 nonzero
elements, but only two free parameters [106],

ξiiii = ξ1,

ξxxyy(6) = ξxxzz(6) = ξyyzz(6) = ξ2,

ξijkl = 0 for all other ijkl.

Together, the tensors

δiiδjj, δijδij, and δijδji

generate all these elements. With i ≠ j, they give the elements ξxxyy(6),
ξxxzz(6), andξyyzz(6), andwith i = j, they all give the elementsξiiii. Thus,
assuming that ξ1 = ξ2 = ξ, the tensor ξijkl can be written as

ξ(δiiδjj − δijδij + δijδji).

Since

δijδjimiPj∂jmi = 𝐦 ⋅ (𝐏 ⋅ ∇)𝐦 = 0

because𝐦2 = 1, the energy density can be written as

u = 𝐏2

2ϵ0
+ ξ𝐏 ⋅ [𝐦(∇ ⋅ 𝐦) − (𝐦 ⋅ ∇)𝐦]. (4.10)
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The induced polarization must be such that the energyU is minimal. The
condition δU/δ𝐏 = 0 gives

𝐏 = γ0[(𝐌 ⋅ ∇)𝐌 − 𝐌(∇ ⋅ 𝐌)], (4.11)

where we introduced γ0 = 2ϵ0ξ/M2.
This coupling between the electric polarization and the magnetization

gradient is known as the inhomogeneous magnetoelectric coupling or a flexo-
electric coupling [279]. Figure 4.1 shows a selection of spin structures and
the resulting polarization. We recognize the cycloid and the longitudinal
and transverse helices from our discussion of TbMnO3.

Figure 4.1 Spiral spin struc-
tures and the resulting electric
polarization, 𝐏, due to the
inhomogeneous magneto-
electric interaction. In the
low-temperature phase, the
Mn spins in TbMnO3 order in a
spin cycloid, but application of
a magnetic field𝐇 ⟂ 𝐞3 flops
the spiral into the longitudinal
helix (𝐇 ∥ 𝐪) or the transverse
helix (𝐇 ⟂ 𝐪). Redrawn after
Ref. 277.

Proper screw
𝐏 = 0

Cycloid

𝐏 ≠ 0

Longitudinal
helix 𝐏 = 0

Transverse
helix 𝐏 ≠ 0
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Néel wall:

Bloch wall:

Forward-volume waves:

Backward-volume waves:

4.4* Magnetization dynamics in type-ii multiferroics

The spin structures in Fig. 4.1 are also familiar from our discussion of do-
main walls in Chap. 3 and spin waves in the previous sections. A so-called
Néel domain wall can be seen as part of a spin cycloid. Thus, even in the
uniformly magnetized state, materials with an inhomogeneous magne-
toelectric interaction will exhibit an electric polarization at the magnetic
domain walls if the walls are of the Néel type [280–282]. Spin waves in the
forward-volume geometry (out-of-plane magnetization) will also exhibit
an electric polarization [270, 283–286].

Inspired by these results, we consider in paper iv both spin waves in the
backward-volume geometry and spin-wave-induced domain wall motion
in a ferromagnet with inhomogeneous magnetoelectric coupling. We
find that in the presence of magnetic damping, even backward-volume
waves give rise to an electric polarization. By applying an electric field,
we can use this effect to apply a torque on a homogeneously magnetized
sample. However, because the polarization is proportional to the Gilbert
damping, this effect is rather small. On the other hand, we find that the
magnetoelectric torque can be the dominant factor in spin-wave-induced
domain wall motion. By applying an electric field, we are able to control
the domain wall velocity as well as its direction of motion (towards or
away from the spin-wave source).

0 6

0

1

spin-wave source

domain wall

position, µm

my

0.0V/cm
1.5V/cm

Figure 4.2 Electric-field-
controlled domain wall motion
in (BiLu)3(FeGa)5O12.
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5Superconductivity

5.1 The Cooper problem

Superconductivity in conventional superconductors is understood in terms
of the bcs theory developed by Bardeen, Cooper, and Schrieffer [51]. The
bcs superconductor is a momentum-space condensate of pairs of elec-
trons. To better understand this pairing mechanism, we start by consider-
ing the one-pair problem, which was first considered by Cooper [50].

TheCooperproblemconsists of aFermi seaof noninteracting electrons,
to which we add a pair of electrons that interact only with each other. The
interaction is described by a potential V(𝐫), where 𝐫 = 𝐫2 − 𝐫1 is the
distance between the two electrons. The two interacting electrons must
necessarily occupy states above the Fermi level. Their wave function ψ
can be written as a product of the plane-wave states that diagonalize the
kinetic part of their Hamiltonian,

ψ = ∑
𝐤1>𝐤F

a𝐤1ei𝐤1⋅𝐫1 ∑
𝐤2>𝐤F

b𝐤2ei𝐤2⋅𝐫2 = ∑
𝐤

c𝐤ei𝐤⋅𝐫 ∑
𝐐

d𝐐ei𝐐⋅𝐑. (5.1)

Here, we introduced the center-of-mass and relative coordinates andmo-
menta, 𝐫 = 𝐫2 − 𝐫1, 𝐤 = 𝐤1 + 𝐤2, 𝐑 = 1

2 (𝐫1 + 𝐫2), and𝐐 = 1
2 (𝐤2 − 𝐤1).

We assume that the system is translation invariant, in which case the two-
particle wave function ψ cannot depend on the center-of-mass coordi-
nate 𝐑. Thus d𝐐 = 0 for all 𝐐 ≠ 0. For convenience of notation, we
take d0 = 1.
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Isolating the potential term, the Schrödinger equation of the two inter-
acting electrons can be written as

(E − T)ψ = V(𝐫)ψ, (5.2)

where T is T = −(∇2
1 + ∇2

2)/2m. To determine ψ, we need to find ex-
pressions for the coefficients c𝐤. We are also interested in finding the
eigenenergy E. To accomplish this, we multiply the Schrödinger equation
from the left withψ∗ and integrate over 𝐫. Using the orthogonality of the
plane-wave states the Schrödinger equation simplifies to

∑
𝐤

|c𝐤|2(E − 2ϵ𝐤) = ∑
𝐤,𝐤′

V𝐤,𝐤′c∗
𝐤c𝐤′ ,

where

V𝐤,𝐤′ = 1
Ω ∫d𝐫 e−i𝐤⋅𝐫V(𝐫)ei𝐤′⋅𝐫.

and ϵ𝐤 = k2/2m, withm being the electron mass. Setting the two sum-
mands equal we obtain

c𝐤(E − 2ϵ𝐤) = ∑
𝐤′

V𝐤,𝐤′c𝐤′ . (5.3)

We now assume that the matrix element V𝐤,𝐤′ is

V𝐤,𝐤′ =
⎧{
⎨{⎩

−V, |ϵ𝐤 − ϵF| < ω0 and |ϵ𝐤′ − ϵF| < ω0

0, otherwise.
(5.4)

Converting the sum over 𝐤′ to an integral over ϵwe then obtain

c(ϵ)(2ϵ − E) = V
ϵF+ω0

∫
ϵF

dϵ′N(ϵ′)c(ϵ′) = W,
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where we wrote ϵ = ϵ𝐤 and introduced the density of statesN(ϵ). Since
W is independent of ϵ, this equation gives the expression

c(ϵ) = W
2ϵ − E , (5.5)

for the coefficients c(ϵ). Seeing that the coefficients c only depend on the
wave vector 𝐤 through the energy ϵ𝐤 = k2/2m, we have c𝐤 = c−𝐤. The
two-particlewave function is therefore symmetric in the spatial coordinate.
Thus, to preserve overall antisymmetry wemust choose an antisymmetric
spin state, the singlet state.

Inserting the expression for c(ϵ) into the definition ofW, we obtain the
self-consistency relation

1 = V
ϵF+ω0

∫
ϵF

dϵ′ N(ϵ′)
2ϵ − E = λ ln 2(ϵF + ω0) − E

2ϵF − E = λ ln(1 + 2ω0
Δ ) , (5.6)

which determines E. Here we made the approximation N(ϵ′) ≈ N(ϵF)
and introduced λ = VN(ϵF) and the binding energy of the pair, Δ =
2ϵF − E. When V is positive, so that the interaction between the two
additional electrons is attractive,Δmust bepositive for the self-consistency
relation to have a solution. But a positive Δmeans that the eigenenergy
E is smaller than twice the Fermi energy, E < 2ϵF. In other words, for
an arbitrarily weak attractive interaction the two electrons occupy a state
below the Fermi surface, seemingly in violation of the Pauli principle.
It would appear that under such an attractive interaction the Fermi sea
somehow collapses [287].

5.2 Fermi-liquid theory

Conventional superconductivity arises out of a real metal where the elec-
trons interact with each other through the Coulomb interaction. Since
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Typical critical temperatures
for the elemental metals and
their alloys are 1–10K [48].

the Coulomb interactions are finite, we would expect the arbitrarily weak
interaction from the Cooper problem to be inconsequential in the real
world.

This expectation turns out to be wrong. Fermi-liquid theory [288, 289]
has proven to be a good description of the normal-metal state. Because of
the effective screening of the Coulomb interaction by the electron liquid,
the quasiparticle excitations of Fermi-liquid theory behave as free electron-
like fermions except for, for instance, a renormalized mass. Therefore, the
free-electron states we used in the Cooper problem turn out to be good
states to start fromwhen constructing the superconducting state [45].

The wave functionψ that we used in the Cooper problem is a product
state. It can be written out as

ψ = ∑
𝐤

c𝐤ei𝐤⋅𝐫 = ∑
𝐤

c𝐤ei𝐤⋅𝐫2e−i𝐤⋅𝐫1 .

Since the factors ei𝐤⋅𝐫2 and e−i𝐤⋅𝐫1 can be thought of as single-particle
states ofmomentum 𝐤 and −𝐤, the wave function of the pair is a superposi-
tionofproduct states inwhich theelectronsmove indiametricallyopposite
directions. As a result, different pairs will soon overlap. The concept of
bound pairs would be destroyed if the quasiparticles of different overlap-
ping pairs interacted strongly. The bcs theory of superconductivity works
because the Fermi-liquid quasiparticles are essentially noninteracting.

5.3 Phonon-mediated attractive interactions

Themechanism that gives rise to the attractive interaction between the
electrons is an exchangeof phonons. Such aphonon-mediatedmechanism
is supported by the observation of the so-called isotope effect: the critical
temperature Tc at which the normalmetal passes into the superconducting
phase varies with the isotope massM as [290–293]

MαTc = const. (5.7)
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The observation of the isotope effect can only be explained if supercon-
ductivity depends critically on the electron–phonon interactions [294–
296].

The attractive electron–electron interaction mediated by phonons can
beunderstoodbyaclassical analogy [297]. Whenanegatively chargedelec-
tron travels through a lattice of positively charged ions, the electron–ion
attraction will move the ions out of their equilibrium positions, and bring
them closer to the path of the electron. However, the large ratio of the ion
to the electron mass implies that the electron and ion dynamics take place
on different time scales. The light electron moves much faster than the
heavy ions. As a result, the disturbance of the lattice remains for much
longer than the passage of the electron, thus creating a positively charged
wake behind it. This wake can attract a second electron. Consequently, by
interacting with the same phonon, the electrons experience an attractive
interaction that is nonlocal in time, a so-called retarded interaction.

The phonon-mediated interaction is maximized if the second electron
travels in the opposite direction of the first. Following the trail of the other
electron, each of the two electrons is also protected from scattering by
an energy barrier. This protection from scattering makes dissipationless
conduction in the superconducting state possible.

The retardation of the interaction, that is, the time it takes for the ions
to relax back into their equilibrium positions, determines the range of the
interaction in energy space,ω0. Mutual interaction with a phonon cannot
give rise to an attraction between electrons separated by an energy larger
than the maximal phonon frequency.

The phonon-based mechanism also explains why superconductivity is
a low-temperature phenomenon. At high temperatures the presence of
thermal phonons disturbs the phonon exchange between the electrons.
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5.4 The effective Hamiltonian

In the Cooper problem we considered a system of N free electrons, to
which we added two interacting electrons. In a real superconductor all
the electrons interact attractively. Consequently, the Hamiltonian of the
system is

ℋ = ∑
𝐤,σ

ϵ𝐤 c†
𝐤,σc𝐤,σ + ∑

𝐤1,𝐤2,𝐪
σ1,σ2

V𝐤1,𝐤2,𝐪 c†
𝐤1+𝐪,σ1

c†
𝐤2−𝐪,σ2

c𝐤2,σ2
c𝐤1,σ1

,

where 𝐪 is the momentum exchange between the electrons and ϵ𝐤 =
k2/2m − μ, with μ being the chemical potential. This Hamiltonian can be
considerably simplified bymaking the same approximation for the matrix
element V𝐤1,𝐤2,𝐪 as we did for the one-pair problem, namely

V𝐤1,𝐤2,𝐪 =
⎧{
⎨{⎩

−V, |ϵ𝐤 − ϵF| < ω0, for 𝐤 = 𝐤1, 𝐤2, 𝐤1 + 𝐪, 𝐤2 − 𝐪

0, otherwise.

Provided thatω0 ≪ ϵF, this approximation implies that the phase space
of scattering vectors 𝐪 is negligible unless 𝐤1 = −𝐤2 = 𝐤. Looking back
at the Cooper problem, we also see that since V𝐤1,𝐤2,𝐪 only depends on
themomenta through the energy, the two electrons must have opposite
spins, σ1 = −σ2 = σ. The result is the so-called pairing Hamiltonian or
bcs Hamiltonian:

ℋ = ∑
𝐤,σ

ϵ𝐤c†
𝐤,σc𝐤,σ + ∑

𝐤,𝐤′
V𝐤,𝐤′ c†

𝐤,↑c†
−𝐤,↓c−k′,↓c𝐤′,↑ , (5.8)

where we renamed 𝐤 + 𝐪 → 𝐤 and 𝐤 → 𝐤′ and absorbed the factor of 2
from the sum over σ into V𝐤,𝐤′ .

The kinetic term of the bcs Hamiltonian can be rewritten as

∑
𝐤,σ

ϵ𝐤c†
𝐤,σc𝐤,σ = − ∑

𝐤
ϵ𝐤(1 − n𝐤,↑ − n−𝐤,↓),
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where n𝐤,↑ = c†
𝐤,↑c𝐤,↑ and n−𝐤,↓ = c†

−𝐤,↓c−𝐤,↓. Here, we used ϵ𝐤 = ϵ−𝐤
and the fact that the additive constant − ∑𝐤 ϵ𝐤 does not affect the dy-
namics. In order to identify the ordered state that solves this Hamilto-
nian, we make the following useful observation [94, 299]: Acting with
(1 − n𝐤,↑ − n−𝐤,↓) on the state

| ⋯ , 1𝐤,↑, 1−𝐤,↓, ⋯⟩ = |1⟩

gives

(1 − n𝐤,↑ − n−𝐤,↓)|1⟩ = −|1⟩,

whereas acting on the state

| ⋯ , 0𝐤,↑, 0−𝐤,↓, ⋯⟩ = |0⟩

gives

(1 − n𝐤,↑ − n−𝐤,↓)|0⟩ = |0⟩.

Thus, if we represent |0⟩ by (1, 0) and |1⟩ by (0, 1), we may write

1 − n𝐤,↑ − n−𝐤,↓ = ⎛⎜
⎝

1
−1

⎞⎟
⎠

= τz𝐤 .

We can treat the interaction term in the same fashion. Since

c†
𝐤,↑c†

−𝐤,↓|1⟩ = 0 and c†
𝐤,↑c†

−𝐤,↓|0⟩ = |1⟩

we get

c†
𝐤,↑c†

−𝐤,↓ = 1
2τ

−
𝐤 = τx𝐤 − iτy𝐤 .

ByHermitian conjugation,

c−𝐤,↓c𝐤,↑ = 1
2τ

+
𝐤 = τx𝐤 + iτy𝐤 .
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Here, τx𝐤, τ
y
𝐤, and τz𝐤 are the Pauli matrices. We can then conclude that the

Hamiltonian can be written as

ℋ = − ∑
𝐤

ϵ𝐤τz𝐤 + 1
4 ∑

𝐤,𝐤′
V𝐤,𝐤′(τx𝐤τx𝐤′ + τy𝐤τ

y
𝐤′). (5.9)

On this form, which is known as the pseudospin model,we recognize the
Hamiltonian as anXYmodel with an applied field in the z direction. An im-
portant difference between the pseudospinmodel and the usualXYmodel
is that the real-space lattice indices have been replaced by 𝐤-space indices.
This points to the fact that we alluded to at the beginning of this chapter,
namely that superconductivity is a momentum-space phenomenon.

TheXYmodel has global O(2) symmetry, but in the ordered phase this
symmetry is spontaneously broken. Consequently, we can expect to solve
this model using a mean-field approach with the order parameter

⟨τx𝐤⟩ = ⟨c†
𝐤,↑c†

−𝐤,↓⟩ + ⟨c−𝐤,↓c𝐤,↑⟩.

With this in mind, we write

c−𝐤,↓c𝐤,↑ = b𝐤 + δb𝐤 and c†
𝐤,↑c†

−𝐤,↓ = b†
𝐤 + δb†

𝐤 ,

whereb𝐤 = ⟨c−𝐤,↓c𝐤,↑⟩ andδb𝐤 = c−𝐤,↓c𝐤,↑−⟨c−𝐤,↓c𝐤,↑⟩, andb†
𝐤 andδb†

𝐤
can be obtained byHermitian conjugation. Substituting these expressions
for c−𝐤,↓c𝐤,↑ and c†

𝐤,↑c†
−𝐤,↓ into the bcs Hamiltonian, we obtain

ℋ = ∑
𝐤,σ

ϵ𝐤c†
𝐤,σc𝐤,σ + ∑

𝐤,𝐤′
V𝐤,𝐤′(b†

𝐤c−𝐤′,↓c𝐤′,↑+b𝐤′c†
𝐤,↑c†

−𝐤,↓−b†
𝐤b𝐤′)

to first order in δb𝐤. By defining the parameters

Δ𝐤 = − ∑
𝐤′

V𝐤,𝐤′b𝐤′ and Δ†
𝐤 = − ∑

𝐤′
V𝐤,𝐤′b†

𝐤′ (5.10)

this mean-field single-particle Hamiltonian can be written as

ℋ = ∑
𝐤,σ

ϵ𝐤c†
𝐤,σc𝐤,σ −∑

𝐤
(Δ†

𝐤c−𝐤,↓c𝐤,↑ +Δ𝐤c†
𝐤,↑c†

−𝐤,↓ −b†
𝐤Δ𝐤). (5.11)
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The Landau free energy of the
XYmodel:

Mx

My

F

𝐌 = M𝐞x

Transverse spin fluctuations
are gapless for 𝐪 → 0.

The effective action for the
gap Δ𝐤 :

ReΔ𝐤

ImΔ𝐤

S

φ = 0

Transverse phase fluctuations
are gapless for 𝐪 → 0.

The parameterΔ𝐤 is called the superconducting gap because it, as we will
see below, introduces a gap Eg = 2|Δ𝐤| in the spectrum.

The bcs Hamiltonian in Eq. (5.8) has global U(1) symmetry—that is,
it is unchanged by a transformation c𝐪,σ → c𝐪,σeiϑ and c†

𝐪,σ → c†
𝐪,σe−iϑ

because there is an equal number of creation and annihilationoperators. In
the mean-field Hamiltonian in Eq. (5.11), this symmetry is spontaneously
broken. So is quasiparticle conservation—Eq. (5.11) contains the terms
c†
𝐤,↑c†

−𝐤,↓ and c−𝐤,↓c𝐤,↑. Both these results are a consequence of the forma-
tion of a phase-coherent condensate of Cooper pairs parameterized by the
gapΔ𝐤. The choice of phase for the gap breaks the global U(1) symmetry.
The existence of a condensate also enables quasiparticle nonconservation.
Two quasiparticles can be annihilated by forming aCooper pair, or created
by breaking an existing pair.

The spontaneously broken global O(3) symmetry of the Heisenberg
model in Sect. 2.4 gave rise to gapless excitations—the magnons. The
gaplessness of the magnon spectrum is not incidental. The Goldstone
theorem states, under quite general general conditions, that if the ground
state spontaneously breaks a global continuous symmetry of the Hamilto-
nian, there exist gapless Goldstonemodes [89, 300]. Consequently, the
spontaneously broken global U(1) symmetry of the bcs Hamiltonian
should also give rise to Goldstone modes.

To identify the nature of the Goldstonemodes in a superconductor, we
canmake use of the analogy with the XYmodel. The Goldstonemodes
of the XYmodel are transverse spin fluctuations, magnons. Similarly, the
Goldstonemodes of a superconductor must be transverse phase fluctu-
ations. However, unlike the XY model, the Cooper pair condensate is
charged and couples to the vector potential𝐀. The gauge freedom of elec-
tromagnetism, which is a localU(1) symmetry,makes it possible to choose
a gauge where there are no phase fluctuations, contingent that the𝐀 field
acquires a mass term [301–303]. This finite photon mass is responsible
for theMeissner effect, which we identified in Sect. 1.4 as one of defining
characteristics of a superconductor.
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If Δ𝐤 is not real, it can always
be made so by a transforma-
tion c𝐪,σ = eiχ/2c𝐪,σ and
c†
𝐪,σ = e−iχ/2c†

𝐪,σ.

u2
𝐤v2𝐤

ϵ𝐤

5.5 The bcs gap equation

To identify the spectrum and the equation for the gap, the mean-field
Hamiltonian must be diagonalized. For this purpose, we introduce the
so-called Nambu spinors

φ†
𝐤 = ( c†

𝐤,↑ c−𝐤,↓ ) and φ𝐤 = ⎛⎜
⎝

c𝐤,↑
c†

−𝐤,↓

⎞⎟
⎠

to get

ℋ = ∑
𝐤

φ†
𝐤

⎛⎜
⎝

+ϵ𝐤 −Δ𝐤
−Δ†

𝐤 −ϵ𝐤
⎞⎟
⎠
φ𝐤 + ∑

𝐤
(ϵ𝐤 + b†

𝐤Δ𝐤). (5.12)

Thematrix isHermitian and canbediagonalized asU𝐤D𝐤U−1
𝐤 whereD𝐤 is

diagonal and real andU𝐤 is unitary,U−1
𝐤 = U†

𝐤. Such a similarity transform
is known as a Bogoliubov transform [304]. We choose

U𝐤 = ⎛⎜
⎝

u𝐤 v𝐤eiχ

−v𝐤e−iχ u𝐤
⎞⎟
⎠

where u𝐤 = cos ϑ𝐤 ,
v𝐤 = sin ϑ𝐤 .

Here, χ is the phase of the gap, Δ𝐤 = |Δ𝐤|eiχ. To simplify the remain-
ing calculation, we choose the gap to be real. For U𝐤 to diagonalize the
Hamiltonian, wemust demand that the off-diagonal elements ofD𝐤 vanish
identically,

2u𝐤v𝐤ϵ𝐤 − (u2
𝐤 − v2𝐤)Δ𝐤

!= 0.

Using the trigonometric identities 2u𝐤v𝐤 = sin 2ϑ𝐤 andu2
𝐤−v2𝐤 = cos 2ϑ𝐤,

this determines ϑ𝐤:

tan 2ϑ𝐤 = Δ𝐤
ϵ𝐤

. (5.13)

In turn, ϑ𝐤 determines u𝐤 and v𝐤. Since cos(arctanα) = 1/√1 + α2 and
cos 2ϑ𝐤 = 2u2

𝐤 − 1we have

u2
𝐤 = 1

2 (1 + ϵ𝐤
E𝐤

) = 1 − v2𝐤 , (5.14)
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+E𝐤

−E𝐤

𝐤
2|Δ𝐤|

where we defined E𝐤 = √(ϵ2𝐤 + Δ2
𝐤). The factors u𝐤 and v𝐤 are known

as coherence factors. Their existence has experimentally observable conse-
quences in ultrasound attenuation, nuclear magnetic resonance (nmr),
and electromagnetic absorption in superconductors [45]. Using the values
of the coherence factors, we can calculate the spectrum ofℋ by writing
out the diagonal elements ofD𝐤 = diag(E1,E2):

E1,2 = ±(u2
𝐤 − v2𝐤)ϵ𝐤 ± 2u𝐤v𝐤Δ𝐤 = ±E𝐤 , E𝐤 = √ϵ2𝐤 + Δ2

𝐤 .

Using the definition

γ𝐤 = ⎛⎜
⎝

γ1,𝐤
γ†
2,𝐤

⎞⎟
⎠

= ⎛⎜
⎝

u𝐤 −v𝐤
v𝐤 u𝐤

⎞⎟
⎠

⎛⎜
⎝

c𝐤,↑
c†

−𝐤,↓

⎞⎟
⎠

This gives the diagonal Hamiltonian

ℋ = ∑
𝐤

E𝐤(γ†
1,𝐤γ1,𝐤 + γ†

2,𝐤γ2,𝐤) + ∑
𝐤

(ϵ𝐤 − E𝐤 + b†
𝐤Δ𝐤) (5.15)

on the form of a free fermion gas. The new fermions created by γ†
1,𝐤 and

γ†
2,𝐤 are known as Bogoliubov quasiparticles.
The superconducting gap is defined using the mean-field parameter

b𝐤 = ⟨c−𝐤,↓c𝐤,↑⟩. By inverting the definition of γ𝐤 we obtain expressions
for the electron operators c−𝐤,↓ and c𝐤,↑ in terms of the Bogoliubov quasi-
particles. Inserting these into the definition of the gap we get

Δ𝐤 = − ∑
𝐤′

V𝐤,𝐤′u𝐤′v𝐤′⟨1 − γ†
1,𝐤′γ1,𝐤′ − γ†

2,𝐤′γ2,𝐤′⟩.

Since theBogoliubovquasiparticles are free fermions, combinedquantum-
mechanical and thermal averaging gives

⟨γ†
1,𝐤γ1,𝐤⟩ = ⟨γ†

2,𝐤γ2,𝐤⟩ = f(E𝐤),
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Typical critical tempera-
tures for the high-Tc su-
perconductors are are
30–120K [48]. The world
record at ambient pressure
belongs to HgBa2Ca2Cu3O8 at
133K [307].

where f(E𝐤) is the Fermi function. Together with 2u𝐤v𝐤 = sin 2ϑ𝐤 =
Δ𝐤/E𝐤 this gives the bcs gap equation,

Δ𝐤 = − ∑
𝐤′

V𝐤,𝐤′
Δ𝐤′

2E𝐤′
tanh 1

2βE𝐤′ , (5.16)

where β = 1/kBT. Since Δ𝐤′ appears on the right-hand side, this is a self-
consistency relation for the gap.

5.6 Pairing symmetries

As it is written in Eq. (5.16), the gap equation takes into account the possi-
bility that the attractive interaction may vary over the Fermi surface since
we carried V𝐤,𝐤′ through the calculation. If wemake use of the approxima-
tion that V𝐤,𝐤′ is a constant over the Fermi surface, V𝐤,𝐤′ = −V, the gap is
independent of 𝐤, Δ𝐤 = Δ, which gives

1 = V∑
𝐤

tanh 1
2β√ϵ2𝐤 + Δ2

2√ϵ2𝐤 + Δ2
. (5.17)

When the gap is independent of 𝐤, it is spherically symmetric. In other
words, it has s-wave symmetry. The conventional superconductors are
therefore referred to as s-wave superconductors.

In unconventional superconductors [305, 306] where the interaction
V𝐤,𝐤′ varies significantly with momentum, the gap can take on other sym-
metries. Copper oxides, cuprates, can be superconducting with very high
transition temperatures. They are therefore referred to as high-Tc super-
conductors [46, 48, 308]. The high-Tc cuprates are believed to be d-wave
superconductors [309–314].

Both s-wave and d-wave superconductors are symmetric in the spa-
tial coordinates. To preserve overall antisymmetry, we therefore chose
an antisymmetric spin state, the singlet state. Although we did not take
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Superconductivity with spatial
symmetries other than swave
(pwave and dwave) are very
sensitive to disorder because
impurity scattering can easily
break up the Cooper pair:

××

Impurity concentrations as
small as 1% can be detrimen-
tal [315–319].

Pairing symmetries, examples:

Ref. S P T tot.
51 bcs − + + −
309 high-Tc − + + −
322 Sr2RuO4 + − + −
328 MgB2 + + − −
329 s/f + + − −
330 s/n − − − −

S : spin; P : parity; T: time

The physical origin of the
scattering-matrix elements
that link s-wave to p-wave
pairing is in this case the
broken translation symmetry
at the interface [330].

the possibility of the symmetric spin-triplet states into account in the
derivation of the gap equation, there exist superconductors which are be-
lieved to host spin-triplet superconductivity, such as strontium ruthanate,
Sr2RuO4 [320–323]. To preserve antisymmetry, the superconducting state
must be antisymmetric in the spatial coordinates. The simplest antisym-
metric orbital state is the p-wave state, and indeed Sr2RuO4 is believed to
be a p-wave superconductor [319, 322, 323].

Our discussion of the pairing symmetry tacitly assumes that the corre-
lation between the two quasiparticles in the Cooper pair is even in time
(or frequency). Another way to fulfill the constraints of Fermi statistics
is for the correlation to be odd in frequency [324, 325]. Odd-frequency
correlations can be induced by explicitly breaking the time-reversal sym-
metry, for instance by applying amagnetic field. It has been suggested that
magnesium diboride, MgB2—which is a conventional s-wave spin-singlet
superconductor [326, 327]—hosts an s-wave spin-triplet odd-frequency
phase in an applied magnetic field [328].

Instead of applying a magnetic field, the time-reversal symmetry can
also be broken by a ferromagnet. Superconducting correlations will be
induced in a material that is proximitized to a superconductor due to the
superconducting proximity effect [55, 59, 60]. (The proximity effect will
be discussed in the next chapter.) In a s/f heterostructure with a conven-
tional s-wave spin-singlet superconductor and a ferromagnet, there will be
induced odd-frequency s-wave spin-triplet correlations in the ferromag-
net [61–63, 329, 331–335].

However, breaking the time-reversal symmetry is not a requirement for
odd-frequency superconductivity [325]. Odd-frequency correlations can
appear even in a s/n heterostructure provided that two of the parities of
the even-frequency s-wave spin-singlet pairs change simultaneously. For
instance, changing both the orbital and frequency parities can give rise to
odd-frequency p-wave spin-singlet correlations in the normal metal [330].
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6Superconducting spintronics

6.1 Andreev reflection and the proximity effect

The bcs Hamiltonian in the mean-field approximation is an effective
single-particle description of a superconductor. In other words, it is a
Hamiltonian for the quasiparticles in the superconductor. The effects of
the condensate of Cooper pairs enters the problem through the gap pa-
rameter, Δ𝐤. Many of the properties of the normal phase—such as simple
band structures and metallic/insulating behavior—can be understood
in terms of the Schrödinger equation [78]. Similarly, many of the proper-
ties of superconductors can be understood in terms of the first-quantized
wave equation for the quasiparticles [47, 336, 337]. The wave equation that
corresponds to the mean-field Hamiltonian in Eq. (5.11) is [336]

i∂f∂t = − 1
2m

∂2f
∂x2

− μf − Δ g,

i∂g∂t = + 1
2m

∂2g
∂x2

+ μg − Δ∗f,
(6.1)

as can be checked by the usual procedure T2 = ∑µ,ν⟨μ|T1|ν⟩a†
µaν, where

T1 is a first-quantized and T2 is a second-quantized single-particle operator.
This equation is known as the Bogoliubov–de Gennes equation [47]. In
the normal state the gap vanishes, Δ = 0, and the two components of
the Nambu spinor uncouple. In that case, the equation for g is the time-
reversed partner of the equation for f andwe call f the electron component
and g the hole component. In the presence of a gap, the time-independent
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Scattering in a n/s bilayer:

d
+q

c −q
−e

1

+e a
−e b

q = e(u2 − v2)

n s

Bogoliubov–de Gennes equation is solved by

⎛⎜
⎝

u
−ve−iχ

⎞⎟
⎠
eik+x and ⎛⎜

⎝
veiχ

u
⎞⎟
⎠
eik−x

where

k± = √2m[μ ± √(E2 − Δ2)]

andwedropped the subscripts𝐤. Thefirst of these solutions is knownas an
electronlike quasiparticle and the second is known as a holelike quasipar-
ticle because their charges are, respectively, −e(u2 − v2) and +e(u2 − v2),
which reduce to −e and +ewhen Δ → 0, giving u2 → 1 and v2 → 0.

In a n/s bilayer we must match the wave functions from the normal-
metal and superconducting sides at the interface. We consider the case
of an electron coming in from the normal side, f = eiq+x, where q± =
√(2m[μ ± ϵ]). In general, the wave function on the normal-metal side is
then

ψN = ⎛⎜
⎝

1
0

⎞⎟
⎠
eiq+x + ⎛⎜

⎝
0
a

⎞⎟
⎠
eiq−x + ⎛⎜

⎝
b
0

⎞⎟
⎠
e−iq+x

and the wave function on the superconducting side is

ψS = c⎛⎜
⎝

u
−ve−iχ

⎞⎟
⎠
eik+x + d⎛⎜

⎝
veiχ

u
⎞⎟
⎠
e−ik−x.

Matching the wave function and its derivative at x = 0 gives

a = − v
ue−iχ, b = 0, c = 1

u , and d = 0

in the approximation where q+ = q− = k+ = k− = k. We see that the
incoming electron can be transmitted to the superconductor as an elec-
tronlike quasiparticle, or be reflected as a hole. Such a reflection process is
known as Andreev reflection [338–342].
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Typical coherence lengths
for the elemental metals are
101–103 nm [78].

Andreev reflection:

Coop
er pair

electr
on

hole

n s

Redrawn after Ref. 298.

If the energy of the incoming quasiparticle is smaller than the gap, the
wave number k+ of the electronlike quasiparticle will have a small imagi-
nary component, which gives rise to a decay on the length scale λ,

1
λ = Δ

ℏvF
√1 − E2

Δ2 .

The characteristic length ξ = ℏvF/πΔ is known as the superconducting
coherence length, and is a roughmeasure of the size of a Cooper pair and
a typical length scale for spatial variations in the gap. Beyond about one
coherence length, the current carried by a quasiparticle with an energy
smaller than the gap is converted to a supercurrent carried by the conden-
sate [336]. Taking this conversion into account, we can gain an intuitive
understanding of Andreev reflection: In a typical Andreev process, the
incident electron picks up another electron at the interface and forms a
Cooper pair. The hole that is left by the second electron is reflected into
the normal metal.

The Andreev-reflected hole picks up a phase −χ, where χ is the phase
of the superconductor at the interface. Hence, Andreev processes carry
phase information about the superconductor into the normal metal. In
the zero-temperature limit, such as in the calculation above, the phase
information is carried infinitely far into the normal metal [343]. At finite
temperature the Andreev-reflected particle will scatter off, say, phonons
and loose the phase information beyond the phase-relaxation length [59,
343–345].

The phase information carried into the normal metal by Andreev-re-
flected particles induces superconducting correlations ⟨c−𝐤,↓c𝐤,↑⟩ inside
the normalmetal. This is the proximity effect thatwe alluded to in Sect. 5.6.
Depending on the scattering matrix at the interface, most of the induced
Cooper pairsmay have the same symmetry as those of the superconductor
itself, or theremightbe induceda significant amountof, say, odd-frequency
p-wave correlations.
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Josephson effect:

s n s

Redrawn after Ref. 298.

This assumption is the basis
for the phenomenological
Ginzburg–Landau theory
of superconductivity [46,
54]. The phenomenological
theory can be derived from
bcs theory [349, 350], in which
caseψ is proportional to the
gap Δ.

In a s/n/s trilayer a hole that impinges on one of the superconduc-
tors may be Andreev reflected as an electron. This process destroys one
Cooper pair in the first superconductor. The electronmay then propagate
all the way to the other superconductor and be Andreev reflected as a hole.
This process creates one Cooper pair in the second superconductor. Con-
sequently, the overall result is that a Cooper pair is transferred from the
first superconductor to the second superconductor. Since the processes
are phase-coherent, they will also transfer phase information between the
two superconductors. Depending on the phase difference δχ = χ1 − χ2
between the superconductors there might be an equal number of Cooper
pairs transferred from left to right and from right to left (δχ = 0), or the
Andreev processes may carry a net current between the two superconduc-
tors. This effect is known as the Josephson effect, and the s/n/s trilayer is
an example of a Josephson junction [346–348].

6.2 Josephson junctions

The junction originally considered by Josephson was a s/i/s junction
where i is an insulator, or in other words, a tunneling barrier. If we assume
that the Cooper-pair condensate in each superconductor can be described
by awave functionψ, then tunneling across such a barrier can be described
by the coupled equations [80]

iℏ∂ψ1
∂t = H1ψ1 + Tψ2 ,

iℏ∂ψ2
∂t = Tψ1 + H2ψ2 ,

whereHi is the Hamiltonian of superconductor i and T is a scalar. Writing
out

ψ1 = √ρ1eiχ1 and ψ2 = √ρ2eiχ2 ,
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−π 0 +π
−1

0

+1

phase difference δχ

I
I0

−π 0 +π
0

2

phase difference δχ

E
E0

substitutingψ1 andψ2 back into the set of coupled equations, and taking
the real and imaginary part of each equation we get

ℏ∂ρ1
∂t = +2T√ρ1ρ2 sin δχ, ℏ∂χ1

∂t = −T√
ρ2
ρ1

cos δχ − E1 ,

ℏ∂ρ2
∂t = −2T√ρ1ρ2 sin δχ, ℏ∂χ2

∂t = −T√
ρ1
ρ2

cos δχ − E2 ,

where the energyEi is definedbyHiψi = Eiψi. The amplitudes ρi are pro-
portional to the superfluid density, consequently ∂ρi/∂t is proportional
to the current density. The current through the s/i/s Josephson junction
is thus

I(δχ) = I0 sin δχ. (6.2)

Themaximal current supported by this current–phase relation is I0. At-
tempts to push a larger current through the junction result in a resistive
component as well as the dissipationless supercurrent. The current I0 is
therefore known as the critical current of the junction.

By subtracting the equations of motion of χ1 and χ2, we find

ℏ∂δχ
∂t = −(E1 − E2). (6.3)

If the superconductors are identical except for a voltageV appliedacross the
junction this energy difference is 2eV, where 2e is the charge of a Cooper
pair. Integrating up the electrical work of done by the applied voltage
∫dt IV = ∫dδχℏI/2e, we see that the energy stored in the junction is [46]

E(δφ) = E0(1 − cos δχ), (6.4)

where we chose the zero on the energy axis to be such that the integration
constant equals E0 = ℏI0/2e.
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The s/i/s junction is called a 0 junction because its energy is minimal
at δχ = 0 (modulo 2π) [62, 63, 351, 352]. More complicated Josephson
junctions can havemore complicated current–phase relations [348, 353,
354]. In ballistic systems, higher harmonics can for instance occur at low
termperatures. These higher harmonics are a result of Andreev-reflected
electrons or holes that bounce several times back and forth between the
superconductors. Consider the s/n/s trilayer we discussed on page 80.
When the hole that impinges on the left superconductor is Andreev re-
flected as an electron, it picks up a phase χ1. The Andreev-reflected elec-
tron propagates to the right superconductor, and picks up a phase −χ2
when it is Andreev reflected as a hole. When this hole has completed
the round trip and reaches the first superconductor it has accumulated a
dynamic phase q+L − q−L ≈ 0, where L is the length of the normal metal,
and a scattering phase δχ. Multiple round trips give rise to phases of 2δχ,
3δχ, and so on and so forth. The result is a current–phase relation on the
form [351, 355]

I = I1 sin δχ + I2 sin 2δχ + I3 sin 3δχ + ⋯

In the next sections we will see that ferromagnetic interlayers can also
modify the current–phase relation of a Josephson junction. This gives rise
to exotic junction such as π junctions and φ₀ junctions.

6.3 Spin mixing and π junctions

In itinerant ferromagnets the majority andminority bands are spin split.
Consequently, the Fermi wave number is smaller the for minority elec-
trons (↓) than for the majority electrons (↑). Let kF be the Fermi wave
number in absence of magnetism. With a finite exchange splitting the ma-
jority andminority Fermi wave numbers are, respectively, kF↑ = kF +Q/2
and kF↓ = kF − Q/2. A Cooper pair formed from two electrons with
opposite spins will therefore acquire a center-of-mass momentumQ. In
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a s/f proximity structure a singlet Cooper pair entering the ferromagnet
will oscillate into a spin-0 triplet pair because of the interference between
its ↑↓ and ↓↑ constituents [352, 356–358].

(↑↓ − ↓↑) → (↑↓ eiQ− ↓↑ e−iQ)

= (↑↓ − ↓↑) cosQ + i(↑↓ + ↓↑) sinQ. (6.5)

This process is known as spin mixing [359]. In principle, the triplet compo-
nent of the Cooper pair can become either an even-frequency p-wave pair,
or an odd-frequency s-wave pair. In practice, p-wave correlations can often
be neglected because the relevant experimental samples are disordered.

Thewavelengthof the singlet–triplet oscillations is 2π/Q, anddecreases
with increasing exchange splitting. In a s/f/s Josephson junction the
number of wavelengths that fit inside the ferromagnet will depend on
its length L. If the length of the ferromagnet equals an even number of
half wavelengths, L = 2nπ/Q, the singlet components on each side will
have the same sign at equilibrium. On the other hand, if the length of
the ferromagnet equals an odd number of half wavelengths, L = (2n +
1)π/Q, the singlet components will have opposite signs at equilibrium,
corresponding to a phase shift by δχ = π [360–362] Such a junction is
therefore known as a π junction. By changing the length of the junction or
its temperature (thus changing effective center-of-mass momentumQ), it
is possible to create 0–πoscillations, going froma0 to a π ground state [363,
364].

6.4 Spin rotation and spin supercurrents

Due to the pair-breaking effect of the magnetic exchange, both the singlet
and spin-0-triplet correlations decay rapidly into the magnet, evenmore
so than in a disordered s/n bilayer [62]. The critical currents of such
junctions are therefore relatively small, and decrease with larger exchange
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splittings. The equal-spin triplets, ↑↑ and ↓↓, are however not affected by
the magnetic exchange. Josephson junctions based on these correlations
thus promise higher critical currents. A supercurrent carried by equal-spin
triplets will also be spin polarized. Besides the fundamental interest in
dissipationless spin currents [365], spin-polarized supercurrents also have
potential applications in spintronics [366].

The simplest way—conceptually—to make equal-spin triplets is to
use a magnetic inhomogeneity [61, 329, 331, 333, 334]. Using the z axis as
quantization axis, we have expressed the spin-0 triplet as (↑↓ + ↓↑)z. The
same spin state can be expressed as i(↑↑ + ↓↓)y by quantizing the spin
along the y axis. To see this we consider the quantum-mechanical rotation
operator. Spin-1/2 is rotated by [367]

R(ϑ) = exp( − i
2ϑ𝛔 ⋅ 𝐧),

where ϑ is the rotation angle, 𝐧 is the rotation axis, and 𝛔 is the vector of
Pauli matrices. Since the square of a Pauli matrix is the identity, odd and
even powers of (𝛔 ⋅ 𝐧) separate:

(𝛔 ⋅ 𝐧)ℓ =
⎧{
⎨{⎩

I, ℓ even,
𝛔 ⋅ 𝐧, ℓ odd.

Hence, by Taylor-expanding the exponential the rotation operator can be
written as

R(ϑ) = I cos 1
2ϑ − i(𝛔 ⋅ 𝐧) sin 1

2ϑ

and the rotation operator that takes the quantization axis from z to y is

R(z → y) =
√2
2

⎛⎜
⎝

1 i
i 1

⎞⎟
⎠

.

Consequently, the state (↑↓ + ↓↑)z can be written as

R1R2(↑↓ + ↓↑)z = i(↑↑ + ↓↓)y .
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Whereas the (↑↓ + ↓↑)z pair is short-ranged in a z-polarized magnet, the
i(↑↑)y part of the pair is long-ranged in a y-polarized magnet. Using a
magnet where the magnetization rotates from z to y at the s/f interface,
the short-ranged (↑↓ + ↓↑)z pair generated by singlet–triplet mixing
can therefore be converted to a long-ranged (↑↑)y pair in the bulk of
the magnet. This process is known as spin rotation. Equal-spin triplets
have been generated experimentally using both intrinsic [331, 368] and
engineered [369–371] magnetic inhomogeneities.

Spin–orbit coupling mixes spin up and spin down, just like the spin-
rotation operator. Spin–orbit coupling in combinationwith a homogeneous
magnet can therefore be an alternative way to generate long-ranged equal-
spin triplets [372, 373]. The advantage of using spin–orbit coupling would
be to reduce the experimental complexity related to magnetic control in
multilayer structures [370, 371]. It comes, however, with its own set of
challenges. With pure Rashba spin–orbit coupling the magnet is required
to have both an in-plane (ip) and an out-of-plane (oop) component for
equal-spin triplets to appear [374, 375]. Repeated experimental efforts to
realize a long-ranged supercurrent in such systemshave yet to succeed [376,
377].

6.5 φ₀ junctions

For long-range triplet generation in a s/f₁/f₂/f₃/s junction, a coplanar
magnetization texture will suffice [369]. Depending on the exact pa-
rameters of the junction, its ground state may be either the 0 or π state.
However, if the magnetizations of the three magnets are not coplanar,
𝐌1 ⋅ (𝐌2 × 𝐌3) ≠ 0, the ground state of the junction is found at a phase
difference of δχ = φ0, whereφ0 is not an integer multiple of π [378]. Such
a junction is known as a φ₀ junction.

The origin of the anomalous phaseφ0 can be understood in terms of
Andreev processes [378]. We consider a trilayer junction with magnetiza-
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A φ₀ junction:

s f₁ f₂ f₃ s

0 L1 L2 L3

x
y

z

tions along the x, y, and z axes,𝐌1 = M𝐞x,𝐌2 = M𝐞y, and𝐌3 = M𝐞z.
The spin-resolved Bogoliubov–de Gennes equation is

i∂f∂t = − 1
2m

∂2f
∂x2

− μf + D𝐌 ⋅ 𝛔 f + Δ g,

i∂g∂t = + 1
2m

∂2g
∂x2

+ μg − D𝐌 ⋅ 𝛔∗g + Δ†f,
(6.6)

where f and g are two-component spinors and Δ = antidiag(+Δ, −Δ).
Since σy has eigenvectors

⎛⎜
⎝

−i
1

⎞⎟
⎠

(eigenvalue +1); ⎛⎜
⎝

+i
1

⎞⎟
⎠

(eigenvalue −1),

a spin-up electron at x = L1 + 0+ can be written as

(1 i 0 0)
T

.

If the electronmoves to the right it has accumulated a phase k↑L2 upon
reaching x = L1 + L2,

(1 i 0 0)
T
eik↑L2 .

Here, k↑ = k + Q/2 and k↓ = k − Q/2 are the wave numbers of up and
down electrons, respectively. Since σz has eigenvectors

⎛⎜
⎝

1
0

⎞⎟
⎠

(eigenvalue +1); ⎛⎜
⎝

0
1

⎞⎟
⎠

(eigenvalue −1),

the electron is in a superpositionof the up anddown states once it enters f₃.
The two components pick up different phases k↑L3 and k↓L3 in f₃, giving

[(1 0 0 0)
T
eik↑L3 + (0 i 0 0)

T
eik↓L3] eik↑L2 .

We can interpret this as the y-up electron precessing about the z axis.
When the electron is Andreev reflected at the right superconductor, its
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spin flips and it picks up a phase −χ2, thus the Andreev-reflected hole has
the wave function

v
ue−iχ2 [(0 0 i 0)

T
eik↓L3 + (0 0 0 −1)

T
eik↑L3] eik↑L2 .

This superposition of a spin-up and a spin-down hole propagates back to
x = L1+L2, accumulating phases−k↑L3 and−ik↓L3. Thus, at x = L1+L2
we have the state

v
ue−iχ2 [(0 0 i 0)

T
e−iQL3 + (0 0 0 −1)

T
eiQL3] eik↑L2 .

Assuming that the total precession angle isQL3 = π/2, we can rewrite this
state as a spin-up hole quantized along the y axis,

v
ue−iχ2 (0 0 1 −i)

T
eik↑L2 .

The hole propagates through f₂ accumulating a phase −k↑L2, giving
v
ue−iχ2 (0 0 1 −i)

T

at x = L1. Since σx has eigenvectors

⎛⎜
⎝

+1
1

⎞⎟
⎠

(eigenvalue +1); ⎛⎜
⎝

−1
1

⎞⎟
⎠

(eigenvalue −1),

this state corresponds to a superposition of a spin up and a spin down hole.
Upon propagating through f₁, the up component picks up a phase −k↑L1
and the down component picks up a phase −k↓L1. This gives the wave
function

v
ue−iχ2 [1 − i

2 (0 0 1 1)
T
e−ik↑L1 + 1 + i

2 (0 0 1 −1)
T
e−ik↓L1]

at x = 0. The Andreev-reflected electron has its spin flipped and picks up
a scattering phase χ1. Using δχ = χ1 − χ2, the outgoing wave function is

( v
u)

2
eiδχ [1 − i

2 (−1 1 0 0)
T
e−ik↑L1 + 1 + i

2 (1 1 0 0)
T
e−ik↓L1] .
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Completing the round trip, we obtain the state

( v
u)

2
eiδχ [1 − i

2 (−1 1 0 0)
T
e−iQL1 + 1 + i

2 (1 1 0 0)
T
eiQL1] .

If the total precession angle accumulated to and fro through f₁ is also
QL1 = π/2, the result is

( v
u)

2
eiδχeiπ/2 (1 i 0 0)

T

at x = L1. This is precisely the spin-up electron we started with, except for
a phase δχ+π/2. Comparing this result with our discussion in Sect. 6.2, we
see that they-up electron carries a current I↑ = I↑0 sin(δχ+π/2). A similar
treatment of the y-down electron gives a current I↓ = I↓0 sin(δχ − π/2).
In a junction with perfectly transparent f/f interfaces, the two contribu-
tions to the current cancel, I↑ + I↓ = 0, leaving only the current from the
second-harmonic contribution. However, in a real junctionmore of the
spin-up component than the spin-down component will be transmitted
through each f/f interface. Hence, I↑0 ≠ I↓0 and the junction exhibits an
anomalous phase shiftφ0. This is known as the anomalous Josephson effect.

The anomalous Josephson effect has also been predicted to exist in
Josephson junctions made from unconventional superconductors [379–
382], in ordinary s/n/s junctions with spin–orbit coupling and a suitably
oriented Zeeman field [383–385], and in s/f/s junctions on a topological
insulator [386]. Furthermore, it has been predicted [387–389] as well
as experimentally confirmed [390] for the Josephson current through a
quantumdot. The exactmechanism that gives rise to the anomalous phase
φ0 in each of these cases is different from the one we described above, but
in each case time-reversal symmetry and chiral symmetry is broken [383,
391, 392].

Time-reversal symmetry requires that I(−δχ) = −I(δχ), forcing the
current at δχ = 0 to zero. Broken time-reversal symmetry is therefore a
requirement for the anomalous Josephson effect, but not in itself enough.
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In, say, the ferromagnetic 0 and π junctions we considered in Sect. 6.3,
time-reversal symmetry is broken, but I(0) = 0. However, combined with
a broken chiral symmetry, broken time-reversal symmetry allows for an
anomalous phaseφ0. Above, the chiral symmetry is broken by the triple
product 𝐌1 ⋅ (𝐌2 × 𝐌3) ≠ 0. In, say, the s/n/s junction, the chiral
symmetry is broken by the triple product 𝐧 ⋅ (𝐁 × 𝐉) [385]. Here, 𝐧 is the
direction of broken inversion symmetry,𝐁 is the appliedmagnetic field,
and 𝐉 is the current density.

In paper vii we consider a slightly different φ₀ junction. In and of itself,
this junction does not exhibit any anomalous phase. However, using a
superconducting spinHall effect and a transverse spin current, wemanage
to generate a charge current in the weak link and inverse proximity regions.
In the absence of external leads the current through the junction must be
zero, thus a phase differenceφ0 accumulates over the junction, setting up
an oppositely directed supercurrent that exactly cancels the charge current
injected from the weak link.

6.6* The superspin Hall effect

The ordinary spin Hall effect, which we considered in Chap. 3, is a phe-
nomenon that occurs out of equilibrium. The ordinary spin Hall effect in
superconducting materials is a quasiparticle effect, and has been consid-
ered both theoretically [393–399] and experimentally [400]. Experimen-
tally, it has been found that the spin Hall effect can be enhanced by several
orders of magnitude below the critical temperature [400].

In addition to the ordinary spin Hall effect, superconductors can also
host magnetoelectric effects in which an equilibrium supercurrent carried
by the condensate can give rise to a spin polarization or a transverse spin
current, or vice versa [401–406]. In paper vi, we consider a transverse
equilibrium spin current that is induced by the Josephson current in a
s/n/f/n/s junction where the normal metals exhibit Rashba spin–orbit
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coupling. In paper vii, we identify the inverse effect: a Josephson current
induced by a transverse spin current in the same junction. We refer to this
as the superspin Hall effect.

The superspin Hall effect is found in clean systems where there are
p-wave correlations in addition to the s-wave correlations emanating from
the proximitized superconductors [vi]. Even-frequency p-wave correla-
tions must be in one of the triplet states. The interaction between the s-
and p-wave correlations can be described in terms of the order parame-
ters Δ+ and Δ−, which are the sum and difference of the original s-wave
and p-wave order parameters, Δs and Δk, respectively. Here, k refers to
themomentum in the direction transverse to the junction. The relative
magnitude of Δ+ and Δ− depends on the relative phase of Δs and Δk:

|Δ±|2 = |Δs|2 + Δ2
k ± 2Re(ΔsΔ∗

k).

Whennophase difference is applied over the junction,Δs is purely real and
Δk is purely imaginary, see Fig. 6.1. Consequently, |Δ+| = |Δ−|, and asmany
Cooper pairs condense in the |k ↑, −k ↓⟩ state as in the |k ↓, −k ↑⟩ state.
However, when a phase difference is applied over the junction,Δs acquires
an imaginary component and Δk acquires a real component and |Δ+| ≠
|Δ−|. Due to the resulting difference in condensation energy, Cooper
pairs condense preferentially in |k ↑, −k ↓⟩ or |k ↓, −k ↑⟩. The result is
an antisymmetric momentum-resolved spin magnetization, or in other
words, a transverse equilibrium spin current.

It has been suggested that equilibrium spin currents have observable
consequences that can be detected via electrical [407, 408] or mechani-
cal [409]means, or through themagnetization dynamics they induce [410,
411]. Nonetheless, experimental detection schemes for equilibrium spin
currents have yet to be implemented. However, if we run the spin Hall
mechanism in reverse, injection of a transverse equilibrium spin current
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Figure 6.1 Superspin Hall
mechanism. At δχ = 0, the
order parameters Δs and
Δk are purely real and purely
imaginary, respectively. Thus
|Δ+| = |Δ−|. Since as many
pairs condense in |k ↑, −k ↓⟩
as in |k ↓, −k ↑⟩, 𝐒k is k-
symmetric. At δχ = π/2,
the order parameters Δs and
Δk are both complex. Thus
|Δ+| ≠ |Δ−|. Since different
number of pairs condense in
|k ↑, −k ↓⟩ and |k ↓, −k ↑⟩,
𝐒k is k-antisymmetric.

into the junction will give rise to an anomalous phase difference in the
junction’s current–phase relation. In paper vii we suggest that the in-
verse superspin Hall effect can be demonstrated using a spin-polarized
supercurrent.
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7Outlook

In this thesis I have consideredmagnetic and superconducting phenom-
ena that fall broadly within the scope of spin-based electronics. I have
highlighted some of the main results that I have obtained throughout my
graduate studies; these results are elaborated further in the enclosed pa-
pers. In retrospect, some of my projects have been more promising or
stimulating than others. In the present chapter I conclude the thesis by
discussing further projects I would have liked to do.

The low dimensionality of the van derWaals magnets opens for novel
ways to couple to their order parameters. Monolayers of the 2h polymorph
of the transition-metal dichalcogenides can for instance be both piezoelec-
tric [412–414] andmagnetic [415–417]. If the magnetoelastic coupling in
these materials is sufficiently strong, would it be possible to induce ferro-
magnetic resonance using an out-of-plane electric field? These materials
alsoharbor spin–orbit torqueswith the same symmetry asFe3GeTe2 [249].
Would it be possible for the nonequilibrium magnon accumulation in-
duced by ferromagnetic resonance to give rise to magnonic charge pump-
ing?

Spin-polarized supercurrents are a central theme in superconducting
spintronics. Although supercurrents carried by equal-spin Cooper pairs
undoubtedly exist [343], the evidence is mostly indirect, such as other-
wise inexplicably long-ranged supercurrents [418–421]. To the best of
my knowledge, the spin polarization of a supercurrent has yet to bemea-
sured directly. In paper vii we suggest that the inverse superspin Hall
effect can be used for this purpose. Magnetization dynamics induced by
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a supercurrent would be another telltale sign of the supercurrent spin-
polarization [410, 411]. Insofar none of these schemes have been imple-
mented experimentally, it is interesting to look for other—perhaps more
easily accessible—ways tomeasure the spin-polarization of a supercurrent
or an equilibrium spin current in general.

In Chap. 6 we considered the profound effect magnetism can have on
superconductivity. Other authors have also considered inwhatways super-
currents can affect the magnetization, for instance by inducing magnetiza-
tiondynamics [410, 411, 422]. The reciprocal action of the twophenomena
suggests that a complete theory for s/f proximity structures needs to take
into account their dynamic interplay in a coupled set of equations. Such a
grand synthesis seems tome to be one of themost outstanding theoretical
challenges in the field of superconducting spintronics.

•
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in coupled and single domain wall motion
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We consider theoretically domain wall motion driven by spin-orbit and spin Hall torques. We find that it
is possible to achieve universal absence of Walker breakdown for all spin-orbit torques using experimentally
relevant spin-orbit coupling strengths. For spin-orbit torques other than the pure Rashba spin-orbit torque, this
gives a linear current-velocity relation instead of a saturation of the velocity at high current densities. The
effect is very robust and is found in both soft and hard magnetic materials, as well as in the presence of the
Dzyaloshinskii-Moriya interaction and in coupled domain walls in synthetic antiferromagnets, where it leads
to very high domain wall velocities. Moreover, recent experiments have demonstrated that the switching of a
synthetic antiferromagnet does not obey the usual spin Hall angle dependence, but that domain expansion and
contraction can be selectively controlled toggling only the applied in-plane magnetic field magnitude and not its
sign. We show that the combination of spin Hall torques and interlayer exchange coupling produces the necessary
relative velocities for this switching to occur.

DOI: 10.1103/PhysRevB.95.134423

I. INTRODUCTION

Domain wall motion in ferromagnetic strips is a central
theme in magnetization dynamics and has recently been
instrumental to the discovery of several new current-induced
effects [1–6]. The attainable velocity of a domain wall driven
by conventional spin-transfer torques (STTs) [7–9] is limited
by the Walker breakdown [10], upon which the domain wall
deforms, resulting in a reduction of its velocity.

Current-induced torques derived from spin-orbit effects
(SOTs) such as the spin Hall effect [4–6,11] or an interfacial
Rashba spin-orbit coupling [12–14] have enabled large domain
wall velocities. We here consider the dependence of the domain
wall velocity on the current and find that regardless of the
relative importance of the reactive and dissipative components
of the torque it is possible to achieve universal absence of
Walker breakdown for all current densities for experimentally
relevant spin-orbit coupling strengths. For spin-orbit torques
other than the pure Rashba SOTs, such as the spin Hall torques,
the velocity will not saturate as a function of current, but will
increase linearly as long as a conventional spin-transfer torque
is present. This behavior is robust against the presence of an
interfacial Dzyaloshinskii-Moriya interaction [15–17] and is
found both in perpendicular anisotropy ferromagnets, in shape
anisotropy-dominated strips and in synthetic antiferromagnets
(SAFs) [18–22], where it enables very high domain wall
velocities for relatively small current densities. Moreover, the
combination of SOTs with the interlayer exchange torque was
recently shown experimentally to produce novel switching
behavior that circumvents the usual spin Hall angle depen-
dence [22]. We show that the combination of spin Hall torques
and interlayer exchange produces the required dependence
of the domain wall velocity on the topological charge to
qualitatively reproduce the experimental data.

*vetle.k.risinggard@ntnu.no

II. UNIVERSAL ABSENCE OF WALKER BREAKDOWN

We consider an ultrathin ferromagnet with a heavy-metal
underlayer as shown in Fig. 1. We describe the dynamics of
the magnetization m(r,t) using the Landau-Lifshitz-Gilbert
(LLG) equation [23],

∂t m = γ m × H − α

m
m × ∂t m + τ , (1)

where γ < 0 is the gyromagnetic ratio, m is the saturation
magnetization, α < 0 is the Gilbert damping, H = −δF/δm
is the effective field acting on the magnetization, and τ is the
current-induced torques. The free energy F of the ferromagnet
is a sum,

F =
∫

d r (fZ + fex + fDM + fa), (2)

of the Zeeman energy due to applied magnetic fields, the
isotropic exchange, the interfacial Dzyaloshinskii-Moriya
interaction, and the magnetic anisotropy.

The Zeeman energy and the isotropic exchange can be
written, respectively, as fZ = −H0 · m, where H0 is the ap-
plied magnetic field, and fex = (A/m2)[(∇mx)2 + (∇my)2 +
(∇mz)2], where A is the exchange stiffness [23]. Inversion
symmetry breaking at the interface between the heavy metal
and the ferromagnet gives rise to an anisotropic contribution to
the exchange known as the Dzyaloshinskii-Moriya interaction,
which favors a canting of the spins [15–17]. The resulting
contribution to the free energy is fDM = (D/m2)[mz(∇ · m) −
(m · ∇)mz], where D is the magnitude of the Dzyaloshinskii-
Moriya vector. Ultrathin magnetic films are prone to exhibit
perpendicular magnetization due to interface contributions
to the magnetic anisotropy [24]. Consequently, we write
the magnetic anisotropy energy as fa = −Kzm

2
z + Kym

2
y ,

corresponding to an easy axis in the z direction and a hard
axis in the y direction.

2469-9950/2017/95(13)/134423(7) 134423-1 ©2017 American Physical Society
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FIG. 1. Ultrathin ferromagnet with a heavy-metal underlayer. We
consider transverse domain wall motion along the x axis. r , σl, and
σ2 denote the three nontrivial operations of the symmetry group C2v .

A. Current-induced torques

The current-induced torques τ are conventionally divided
into spin-transfer torques and spin-orbit torques. The spin-
transfer torques can be written as [7–9]

τ STT = u∂xm − βu

m
m × ∂xm, (3)

where u = μBPj/[em(1 + β2)] and j is the electric current,
P is its spin polarization, μB is the Bohr magneton, e is the
electric charge, and β is the nonadiabacity parameter. The
spin-orbit torques can be written as [4–6,11–14]

τR = γ m × HRey − γ m ×
(

m × βHR

m
ey

)
, (4)

τ SH = γ m ×
(

m × HSH

m
ey

)
+ γ m × βSHHSHey, (5)

where HR = αRPj/[2μBm(1 + β2)] and αR is the Rashba
parameter and where HSH = h̄θSHj/(2emt) and θSH is the spin
Hall angle and t is the magnet thickness. Since the spin Hall
effect changes sign upon time reversal, the principal spin Hall
torque term is dissipative instead of reactive, in contrast to the
principal term of the STTs and the Rashba SOTs.

In fact, assuming that the stack can be described using the
C2v symmetry group (see Fig. 1) it can be shown that these
torques exhaust the number of possible torque components.
Hals and Brataas [25] describe spin-orbit torques and gener-
alized spin-transfer torques in terms of a tensor expansion.
Assuming the lowest orders are sufficient to describe the
essential dynamics, the reactive and dissipative spin-orbit
torques are described by, respectively, an axial second-rank
tensor and a polar third-rank tensor while the generalized
spin-transfer torques are described using a polar fourth-rank
tensor and an axial fifth-rank tensor. The torques that arise in a
given structure are limited by the requirement that the tensors
must be invariant under the symmetry operations fulfilled by
the structure. We have assumed that the physical systems we
consider are described by C2v symmetry. Combined with the
fact that the current is applied in the x direction only and
that ∂ym = 0 and ∂zm = 0, this implies that there is only one
relevant nonzero element in the axial second-rank tensor, two
elements in the polar third-rank tensor, three elements in the
polar fourth-rank tensor, and six elements in the axial fifth-rank
tensor [26].

The three relevant nonzero elements of the second- and
third-rank tensors give rise to three spin-orbit torques. A
detailed analysis shows that these torque components are
captured by the Rashba and spin Hall torques in Eqs. (4)

and (5). As an aside, we note that although the Rashba
and spin Hall effects may not necessarily capture all of the
relevant microscopic physics [27–29] these torques can still
be used to model the dynamics because they contain three free
parameters, αR, θSH, and βSH.

As has been shown in Ref. [25], the generalized spin-
transfer torques reduce to the ordinary STTs in the nonrel-
ativistic limit. Thus, by using the ordinary STTs we neglect
possible spin-orbit coupling corrections to these higher-order
terms.

B. Collective coordinate model

The magnetization is conveniently parametrized in spher-
ical coordinates as m/m = cos φ sin θex + sin φ sin θey +
cos θez. Using the assumption that there is no magnetic texture
along the y and the z axes, ∇ = ∂xex , we can find the domain
wall profile by minimizing the free energy. The resulting
Euler-Lagrange equations are

A(θ ′′ csc θ sec θ − φ′2) − Dφ′ sin φ tan θ = (Kz + Ky sin2 φ)

and

A(φ′′ + 2θ ′φ′ cot θ ) + Dθ ′ sin φ = Ky cos φ sin φ.

One solution of these differential equations is the Néel wall
solution φ = nπ and θ = 2 arctan exp[Q(x − X)/λ], where
Q is the topological charge of the wall [30], X is the wall
position, and λ = √

A/Kz is the domain wall width. n is even
if D < 0 and Q = +1, and n is odd if D < 0 and Q = −1.
This domain wall profile is known as the Walker profile [10].
To be sure that φ = nπ is really the global minimum, we solve
the full LLG equation (1) for a single magnetic layer and let the
solution relax without any applied currents or fields. The angle
φ(x) can then be calculated as φ(x) = arctan[my(x)/mx(x)].
However, φ(x) is ill defined in the domains where θ → 0 or π .
Consequently, we consider φ only inside the domain wall. As
shown in Fig. 2(a), the solution φ = 0 works very well.

Substitution of the Walker profile into the full LLG equa-
tion (1) using H0 = Hxex and Q = +1 gives the collective
coordinate equations for the wall position X and tilt φ

αẊ

λ
− φ̇ = +π

2
γ (HSH − βHR) cos φ + βu

λ
, (6)

(1 + α2)φ̇ = −αγKy

m
sin 2φ + παγ (D − Hxmλ)

2mλ
sin φ

− u(α + β)

λ
− π

2
γ [HSH(1 − αβSH)

−HR(α + β)] cos φ. (7)

By doing this substitution, we are assuming that the domain
wall moves as a rigid object described by two collective
coordinates X(t) and φ(t) (Ref. [30]). In particular, we are
neglecting any position dependence in the domain wall tilt φ.
The collective coordinate model, or one-dimensional model,
has been used previously to explain the qualitative behavior
of both spin-transfer and spin-orbit torques [4,5,7,10,18–
20,28,30,31]. However, it is important to remember that the
model will always be an approximation, and we cannot nec-
essarily expect quantitative agreement between experimental
results and model predictions nor can we completely exclude
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FIG. 2. Position dependence of the domain wall tilt φ. In each
panel, the orange curve mx(x) shows the extension of the domain wall
while the black solid curve shows the domain wall tilt φ(x) obtained
by solving the full LLG equation (1) and the black dashed line shows
the prediction of the collective coordinate model. (a) Equilibrium
solution. (b) Spin-transfer torque dynamics. (c) Spin Hall torque
dynamics. (d) Rashba spin-orbit torque dynamics. (a)–(d) We use
the material parameters supplied in the first column of Table I with
j = 5 MA cm−2 except that J = 0.

the possibility of dynamics that is not captured by the one-
dimensional model [31]. We can nevertheless test the adequacy
of the collective coordinate model by calculating φ(x) from
a solution of the full LLG equation for a single magnetic
layer, just as we did for the static case. As shown in Fig. 2(b)
the x dependence of φ is negligible for spin-transfer torques.
The x dependence of φ is larger for spin Hall [Fig. 2(c)] and
Rashba spin-orbit torques [Fig. 2(d)]. Nonetheless, the ability
of the collective coordinate model to consistently qualitatively
reproduce experimental behavior indicates that it captures the
generality, if not all, of the physics in the system.

Equations (6) and (7) can be simplified by introduc-
ing aj = π

2 γ (HSH − βHR), bj = βu/λ, c = −2αγKy/m,
d = παγ (D − Hxmλ)/(2mλ), ej = −π

2 γ [HSH(1 − αβSH) −
HR(α + β)], and fj = −u(α + β)/λ. Walker breakdown is
absent when the time derivative φ̇ vanishes, resulting in the
condition

0 = c sin φ cos φ + d sin φ + j (e cos φ + f ). (8)

Provided that the transverse domain wall is not transformed
into, for instance, a vortex wall [31], Walker breakdown will be
universally absent if e > f because this equation always has a
solution for φ regardless of the value of j . For increasing
j , φ will level off to a value cos φ = −f/e. For realistic
material values e > f corresponds to a Rashba parameter
αR > 4μ2

B/(πeγ λ) = 1–6 meV nm (pure Rashba SOTs) or a
spin Hall angle θSH > 4μBP t/(πh̄γ λ) = 0.05–0.09 (pure
spin Hall torques). To the best of our knowledge, the absence
of Walker breakdown for spin Hall torques has not been
noted previously, whereas absence of Walker breakdown for

sufficiently strong Rashba spin-orbit coupling was pointed out
in Ref. [32], and can also be noted in Refs. [13,33–35].

Let us write ξ = cos φ and η = sin φ, so that ξ 2 + η2 = 1.
Solving Eq. (8) for η to get η = −j (eξ + f )/(cξ + d), this
relation gives a quartic equation

c2ξ 4 + 2cdξ 3 + [(ej )2 + d2 − c2]ξ 2 + 2(efj 2 − cd)ξ

= d2 − (fj )2.

The exact solutions of the quartic are hopelessly complicated.
However, they all have the same series expansion around j = 0
and j → ∞. We consider first the asymptotic expansion,

ξ = −f

e
+ S1

j
+ O(j−2), (9)

where S1 represents the solutions of the quadratic equation
e6ζ 2 = d2e4 + c2f 4 + (c2 − d2)f 2e2 + 2cdef (f 2 − e2).
Using Eq. (6), the wall velocity is then

αẊ

λ
=

(
b − af

e

)
j + aS1 + aO(j−1). (10)

Back substitution of the abbreviations a, b, e, and f shows
that for pure Rashba SOTs the coefficient of the linear
term reduces to zero because the ratio of the reactive to the
dissipative torque is the same for the STTs and the Rashba
SOTs. Thus, for large j the domain wall velocity approaches
a constant. For pure spin Hall torques we get instead the
linear term −uα(1 + ββSH)/[λ(1 − αβSH)]. This means that
for large j the velocity is actually independent of the sign
of the spin Hall angle and increases linearly with j . Note
the importance of including the STTs—which are always
present—in these considerations: in the absence of STTs
(u → 0) both b and f go to zero and the velocity levels off to
a constant for large j for any combination of SOTs.

For completeness, we also consider the series expansion
about j = 0, which gives

ξ = −1 + (e − f )2

2(c − d)2
j 2 + O(j 4) (11)

and

αẊ

λ
= (b − a)j + a(e − f )2

2(c − d)2
j 3 + aO(j 5). (12)

The key observation here is that in this regime the velocity does
depend on the sign of the spin Hall angle (a ∝ θSH for pure
spin Hall torques) and increases with the cube of j . Combined
with the spin Hall angle independence of the velocity in
the j → ∞ limit, this implies that even in the absence of
Walker breakdown a nonmonotonic current-velocity relation is
possible. Figure 3(a) shows a numerical solution of the coupled
equations (6) and (7) as a function of j for pure Rashba SOTs
and for pure spin Hall torques both in the cases of θSH > 0 and
θSH < 0 together with the analytical solutions close to j = 0
and for large j for parameters that are typical for a standard
cobalt-nickel multilayer. We see that our analytical results
successfully approximate the full solution in the expected
ranges of validity indicating the absence of Walker breakdown
in the numerical solution.
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FIG. 3. Current-velocity relation for three different SOTs in the
absence of Walker breakdown. The Rashba SOTs level off to a
constant velocity at large currents, whereas the spin Hall torques
asymptotically approach a linear current-velocity relation. Dashed
lines show the asymptotic expansion and dotted curves show the
series about j = 0. We use the material parameters supplied in the
(a) first and (b) second column of Table I except that J = 0.

The in-plane hard axis included in the magnetic anisotropy
is appropriate for narrow ferromagnetic strips, which generally
host Néel walls. Wider strips give Bloch walls [24], and by
making the necessary modifications to the above calculations,
we find that in this case the domain wall velocity retains the
qualitative features elucidated above. This is also true for
shape anisotropy-dominated strips, which host head-to-head
walls. This shows that universal absence of Walker breakdown
is a robust effect that does not depend on the details of
the ferromagnetic material, unlike other SOT effects studied
previously [36]. This fact is also illustrated by the numerics.
In Fig. 3(b) we present numerical results obtained for a Néel
wall in a PMA ferromagnet with anisotropies weaker by an
order of magnitude, weaker magnetic damping, and much
larger Rashba spin-orbit coupling and spin Hall angle in the
adjacent heavy metal. The results are qualitatively similar to
those obtained in Fig. 3(a).

III. COUPLED DOMAIN WALLS IN A SAF STRUCTURE

We consider next an asymmetric stack of two ultrathin
ferromagnets separated by an insulating spacer as shown
in Fig. 4(a). We describe the dynamics of each of the
ferromagnets using separate LLG equations, but add to the

FIG. 4. (a) Two ultrathin ferromagnets separated by an insulating
spacer with heavy-metal over- and underlayers. The ferromagnets are
identical except for their thicknesses, but the different heavy metals
induce different DMIs and SOTs. (b) Dependence of the IEC terms
V (s), U (s), and W (s) on the wall separation.

free energy a coupling term,

FIEC =
∫

d r1

m(1)

∫
d r2

m(2)
J (r1 − r2)[m(1)(r1) · m(2)(r2)], (13)

representing the interlayer exchange (IEC). We assume that
the IEC is local in the plane, J (r1 − r2) = Jδ(x1 − x2)δ(y1 −
y2). Equation (13) then represent the lowest-order coupling
proposed by Bruno [37].

Following the same procedure as in the previous section we
may now derive four coupled collective coordinate equations.
With an antiferromagnetic coupling the walls will have
opposite topological charges, Q2 = −Q1. Since a local IEC
can only affect the chiralities, and not the profiles of the
walls, we can use the static solution derived previously, θ =
2 arctan exp[Q(x − X)/λ], where λ = √

A/Kz is the domain
wall width and Q is the topological charge. For a single wall
the azimuthal angle φ is given by φ = nπ . n is even if D < 0
and Q = +1, and n is odd if D < 0 and Q = −1. To limit
the scope of the treatment, we consider only the case where
D1 and D2 have the same sign, D1 < 0 and D2 < 0. Then the
DMI and the IEC cooperate to give the static solution φ1 = 0
(Q1 = +1) and φ2 = π (Q2 = −1).

Substituting this static solution into the LLG equations
using H0 = Hxex gives the collective coordinate equations

(1 + α2)
Ẋ1

λ
= −γKy

m
sin 2φ1 + πγ (D1 − Hxmλ)

2mλ
sin φ1 + γ J t2

2m
[αU (s) cos(φ1 − φ2) + αW (s) + V (s) sin(φ1 − φ2)]

− u(1 − αβ)

λ
+ π

2
γ
[
H

(1)
SH

(
α + β

(1)
SH

) + H
(1)
R (1 − αβ)

]
cos φ1, (14)

(1 + α2)
Ẋ2

λ
= +γKy

m
sin 2φ2 + πγ (D2 + Hxmλ)

2mλ
sin φ2 − γ J t1

2m
[αU (s) cos(φ1 − φ2) + αW (s) − V (s) sin(φ1 − φ2)]

− u(1 − αβ)

λ
+ π

2
γ
[
H

(2)
SH

(
α + β

(2)
SH

) + H
(2)
R (1 − αβ)

]
cos φ2, (15)
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(1 + α2)φ̇1 = −αγKy

m
sin 2φ1 + παγ (D1 − Hxmλ)

2mλ
sin φ1 − γ J t2

2m
[U (s) cos(φ1 − φ2) + W (s) − αV (s) sin(φ1 − φ2)]

− u(α + β)

λ
− π

2
αγ

[
H

(1)
SH

(
1 − αβ

(1)
SH

) − H
(1)
R (α + β)

]
cos φ1, (16)

(1 + α2)φ̇2 = −αγKy

m
sin 2φ2 − παγ (D2 + Hxmλ)

2mλ
sin φ2 − γ J t1

2m
[U (s) cos(φ1 − φ2) + W (s) + αV (s) sin(φ1 − φ2)]

+ u(α + β)

λ
+ π

2
αγ

[
H

(2)
SH

(
1 − αβ

(2)
SH

) − H
(2)
R (α + β)

]
cos φ2. (17)

where we have assumed that the bulk parameters of the two
ferromagnets are equal and where s is the separation between
the two walls, s = (X1 − X2)/λ. The IEC terms are expressed
using the three functions V (s), U (s), and W (s);

V (s) = 2s csch s,

U (s) = 2 csch s − 2s coth s csch s,

W (s) = 2 coth s − 2s csch2 s.

These functions are plotted in Fig. 4(b).
Equations (14) and (16) reduce to Eqs. (6) and (7) when

J → 0. To solve Eqs. (14)–(17) numerically, we rescale the
equations to obtain dimensionless variables. The dimension of
Eqs. (14)–(17) is Hz. A convenient scaling factor with the same
dimensions is μ0γm. By dividing Eqs. (14)–(17) by μ0γm

we get the rescaled variables t̃ = tμ0γm, X̃i = Xi/λ, H̃x =
Hx/μ0m, K̃y = Ky/μ0m

2, D̃i = Di/μ0m
2λ, t̃i = ti/λ, J̃ =

Jλ/μ0m
2, and ũ = u/μ0γmλ. We solve the equations using

an explicit fourth-order Runge-Kutta scheme with adaptive
step-size control, implemented as a Dormand-Prince pair [38].

A. Universal absence of Walker breakdown in SAF structures

For parameter values representative of a standard cobalt-
nickel multilayer we obtain the current-velocity and current-tilt
relations shown in Figs. 5(a) and 5(b) for t1/t2 = 1 in the case
where only STTs are present and in the case where spin Hall
torques are additionally present. We see that the presence of
the IEC delays Walker breakdown when the wall is driven by
ordinary STTs, but the subcritical differential velocity remains
unaffected. This can also be shown analytically by solving for
the tilt angle of the wall as a function of current. Such a
calculation shows that the tilt angle is suppressed by the IEC
(but the breakdown angle is still π/4). Back substitution of
this angle into the torque acting on the wall shows that this
torque is independent of J , explaining why there is no change
in the differential velocity.

When spin Hall torques are included, the domain wall tilt
levels off to a finite value and the current-velocity relation is
linear in the j → ∞ limit. This shows that universal absence
of Walker breakdown is also found in SAF structures. The
effect of the IEC can be understood simply as a rescaling of
the constant S1 and the higher-order constants S2,S3, . . . in
the expansion (9), making the tilt angle approach its limiting
value more slowly. Thus, the effect of the IEC on both the STT
and spin Hall results is to suppress the domain wall tilt, as
shown in Fig. 5(b). We note that the combination of spin Hall
torques and IEC produces much higher domain wall velocities

than in single ferromagnets for comparatively small current
densities [20].

In a single ferromagnet the velocity of a wall driven by
spin Hall torques decreases with t as 1/t . When changing t2
from t2 = t1/2 to t2 = 2t1 in a SAF structure, we find that
the velocity peaks close to t1/t2 ≈ 1, which maximizes the
IEC torque [see Fig. 5(c); the deviation from 1 is due to the
DMI]. This can be understood by considering Fig. 5(d); at
t1/t2 ≈ 1 the magnetizations in both layers are tilted in the
y direction. Increasing (decreasing) t2 to t2 = 2t1 (t2 = t1/2)
reduces (increases) H

(2)
SH and increases (reduces) H

(1)
IEC, thus

(φ2 − φ1) approaches π and the IEC torque is reduced.
Just as for the single ferromagnetic layer the results for the

coupled walls are robust against a change of parameters, as
shown in Figs. 5(e)–5(h).

B. Novel switching behavior in SAF structures

Bi et al. [22] have very recently demonstrated completely
novel switching behavior in SAF structures. In single fer-
romagnets, domain walls with one topological charge will
travel faster than those with the opposite topological charge
if an in-plane magnetic field is applied [39]. If the relative
velocity is large enough the favored domains can overcome
the destabilizing action of the current (see Refs. [40–43])
and merge [44–46]. The favored magnetization direction is
uniquely determined by the spin Hall angle and the applied
magnetic field for a fixed direction of the current. Bi et al.

TABLE I. Parameters used for the numerical solution of
Eqs. (14)–(17) and for analytical estimates in the text.

Parameter Co-Ni Strong SOC Bi et al. Unit

gyromagnetic ratio γ − 0.19 − 0.19 − 0.19 THz/T
domain wall width λ 4 16 2 nm
hard axis anisotropy Ky 200 20 2 kJ/m3

saturation magn. m 1 1 1.1 MA/m
DM constant D − 1.4 − 1.0 − 0.1 mJ/m2

Gilbert damping α − 0.25 − 0.1 − 0.5
spin-polarization P 0.5 0.5 0.5
nonadiabacity param. β 0.5 0.4 2
Rashba parameter αR 6.3 75 meVnm
spin Hall angle θSH 0.1 0.2 0.12
spin Hall β-term βSH 0.02 0.02 0.02
interlayer exchange J t1t2 5 5 1.5 mJ/m2

thickness t1 1.2 1.2 0.6 nm
thickness t2 1.2 1.2 1.7 nm
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FIG. 5. Domain wall dynamics in interlayer exchange coupled
ferromagnets. (a) and (b) The IEC delays Walker breakdown for STT
driving, but the subcritical differential velocity remains unaffected.
With spin Hall torques the tilt angle stabilizes at a finite value,
indicating universal absence of Walker breakdown. The tilt angle
approaches its limiting value more slowly in the presence of IEC.
(c) and (d) The IEC gives the velocity a nonmonotonic thickness
dependence resulting in a peak close to t1/t2 = 1. [j = 3 GAcm−2,
corresponding to the dashed vertical line in (a).] We use the material
parameters supplied in the first column of Table I. (e)–(h) These
results are robust against a change in parameters to those in the
second column of Table I.

FIG. 6. Qualitative reproduction of the experimental results of Bi
et al. [22]. The sign of the relative velocity of walls with (Q1,Q2) =
(+1,−1) and (Q1,Q2) = (−1,+1) can be toggled only by changing
the magnitude of the applied field. We use the material parameters
supplied in the third column of Table I.

observed this behavior in SAF structures for small in-plane
fields, but by toggling between large and small values of the
in-plane field (same sign), they were able to toggle the sign
of the relative velocity of the walls and thereby the favored
magnetization direction. Using material parameters that ap-
proximate the samples of Bi et al., our model qualitatively
reproduces this behavior, as shown in Fig. 6. Under an in-plane
field in the range 0.3–1.4 T, walls with (Q1,Q2) = (+1,−1)
travel faster than walls with (Q1,Q2) = (−1,+1) and up
magnetization is favored. If the field is increased beyond 1.4 T,
the relative velocity changes sign, and down magnetization is
favored. (The offset from zero is due to the DMI.)

IV. CONCLUSION

We have shown that complete suppression of Walker
breakdown is possible in a wide range of domain wall
systems driven by spin-orbit torques, including head-to-head
walls in soft magnets, Bloch and Néel walls in perpendicular
anisotropy magnets, in the presence of the Dzyaloshinskii-
Moriya interaction, and in coupled domain walls in synthetic
antiferromagnets. For spin-orbit torques other than pure
Rashba spin-orbit torques this leads to a linear current-velocity
relation instead of a saturation of the velocity for large
currents. In combination with interlayer exchange coupling,
spin-orbit torque driven domain wall motion in synthetic
antiferromagnets gives rise to novel switching behavior and
very high domain wall velocities.
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The recent discovery of magnetism in two-dimensional van der Waals systems opens the door to
discovering exciting physics. We investigate how a current can control the ferromagnetic properties of
such materials. Using symmetry arguments, we identify a recently realized system in which the current-
induced spin torque is particularly simple and powerful. In Fe3GeTe2, a single parameter determines the
strength of the spin-orbit torque for a uniform magnetization. The spin-orbit torque acts as an effective
out-of-equilibrium free energy. The contribution of the spin-orbit torque to the effective free energy
introduces new in-plane magnetic anisotropies to the system. Therefore, we can tune the system from an
easy-axis ferromagnet via an easy-plane ferromagnet to another easy-axis ferromagnet with increasing
current density. This finding enables unprecedented control and provides the possibility to study the
Berezinskiı̌-Kosterlitz-Thouless phase transition in the 2D XY model and its associated critical
exponents.

DOI: 10.1103/PhysRevLett.122.217203

Introduction.—Magnetism in lower dimensions hosts
interesting physics that has been studied theoretically for
many decades. Examples include the intriguing physics of
the exactly solvable 2D Ising model [1] and the
Berezinskiı̌-Kosterlitz-Thouless (BKT) phase transition in
the 2D XY model [2–4]. However, experimentally realizing
the details of these theoretical predictions has proven
difficult. One reason for this difficulty is that fabricating
atomically thin films is challenging. The isolation of
graphene in 2004 provided a path for exploring two-
dimensional van der Waals materials [5]. Creating two-
dimensional films that have long-range magnetic order at
finite temperatures is more challenging because of the
Mermin-Wagner theorem [6]. This theorem states that long-
range magnetic order does not exist at finite temperatures
below three dimensions when the exchange interaction has
a finite range and the material has a continuous symmetry
in spin space. Consequently, realizing two-dimensional
magnetic materials requires breaking the continuous sym-
metry of the system, e.g., by a uniaxial magnetocrystalline
anisotropy. This provides an energy cost (also known as a
magnon gap) to suppress long-range fluctuations that can
destroy the magnetic order. The recent discovery of
magnetic order in two-dimensional van der Waals materials
has therefore led to a large number of studies of magnetism
in atomically thin films [7]. Magnetic order has been
reported in FePS3 [8], Cr2GeTe6 [9], CrI3 [10], VSe2
[11], MSex [12], and Fe3GeTe2 [13,14]. In addition,
multiferroicity has been identified in CuCrP2S6 [15].
These new two-dimensional magnets are amenable to
electrical control [14,16–18] and produce record-high
tunnel magnetoresistances [19].

Currents can induce torques in magnetic materials [20].
In ferromagnets with broken inversion symmetry, the spin-
orbit interaction leads to spin-orbit torques (SOTs) [21].
These torques can be present even in the bulk of the
materials without requiring additional spin-polarizing ele-
ments. The effects of SOTs are typically sufficiently large
to induce magnetization switching or motion of magnetic
textures [22]. With the rich physics that is known to exist in
two-dimensional magnetic systems, we explore how cur-
rents can provide additional control over the magnetic state
via SOTs.
Although many of the newly discovered two-

dimensional magnetic systems exhibit SOTs, we find that
in one material the torque is particularly simple and power-
ful. The form of the torque is simple because it is determined
by a single parameter. The torque is also influential in
determining the magnetic state of the system. In contrast to
many other systems, we can describe the current-induced
effects via an effective out-of-equilibrium free energy.
Therefore, the SOT enables unprecedented control over
the magnetic state via the current. We will demonstrate how
the current can drive the system from having easy-axis
anisotropy along one direction to anisotropy along a differ-
ent axis by proceeding via an intermediate state with easy-
plane anisotropy.
Interestingly, the current-induced easy-plane configura-

tion provides the possibility to study the BKT phase
transition in this system. The BKT transition is an example
of a so-called conformal phase transition in which the scale
invariance of a topologically ordered state, i.e., conformal
invariance, is lost at the (topological) phase transition [23].
When driven by a current, we realize a 2D conformal field
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theory in the low-temperature phase, with conformality
being lost [23] at the transition to the paramagnetic phase.
Additionally, it was recently discovered that an ionic gate
considerably increases the critical temperature [14].
Consequently, two-dimensional Fe3GeTe2 forms an ideal
and very rich laboratory for studying fundamental prob-
lems of broad current interest in condensed matter physics
and beyond at elevated temperatures.
System.—We consider a monolayer of Fe3GeTe2.

Figure 1 shows the crystal structure of this material.
Fe3GeTe2 crystallizes in the hexagonal system, space group
194, point group 6=m 2=m 2=m, known as D6h in the
Schönflies notation [24]. However, the basis reduces the
point group symmetry to 6̄m2 (D3h). Placing a Fe3GeTe2
monolayer on a substrate may reduce the symmetry even
further (point group 3m) if the bottom tellurium layer
hybridizes with the surface. Here, we assume that a
possible monolayer-substrate interaction is weak. In the
case of a strong monolayer-substrate interaction, we can
preserve the out-of-plane mirror symmetry by suspending
the monolayer between two electrodes [25] or encapsulat-
ing it in another van der Waals material, such as hexagonal
boron nitride.
The SOT can be written as [26]

τ ¼ −jγjm ×HSOT; ð1Þ

where γ is the gyromagnetic ratio and m is the magneti-
zation unit vector. For a spatially uniform magnetization,
the effective magnetic field HSOT due to the SOT in a
Fe3GeTe2 monolayer is [27]

HSOT ¼ Γ0½ðmxJx −myJyÞex − ðmyJx þmxJyÞey� ð2Þ

for current densities and magnetizations in any direction.
Here, mi are magnetization components, and Ji are
components of the current density. Γ0 is a free parameter
that is determined by the spin-orbit coupling.
We provide a rigorous derivation of the effective field

HSOT based on Neumann’s principle in the Supplemental
Material [27]. In Fe3GeTe2, we can understand the

dependence of the SOT on the magnetization and currents
in Eq. (2) as follows. The crystal structure in Fig. 1 is
invariant under a threefold rotation about the z axis (3z),
an inversion of the y axis (my), and an inversion of the
z axis (mz). These symmetry operations generate the point
group 6̄m2. Since HSOT only contains terms that are
quadratic in y, it is invariant under the operation my.
The operation 3z transforms ðmx;myÞ into

1

2

�
−1

ffiffiffi
3

p
−

ffiffiffi
3

p
−1

��
mx

my

�
¼ 1

2

�
−mx þ

ffiffiffi
3

p
my

−
ffiffiffi
3

p
mx −my

�
; ð3Þ

and similarly for ðJx; JyÞ and ðex; eyÞ. Backsubstitution of
the transformation in Eq. (3) into Eq. (2) shows thatHSOT is
also invariant under this operation. The effective fieldHSOT
is invariant under mz since neither mz nor ez appear
in Eq. (2).
Micromagnetics.—The magnetization dynamics can be

described by the semiclassical Landau-Lifshitz-Gilbert
equation

_m ¼ −jγjm ×Heff þ α m × _mþ τ: ð4Þ

Here, α > 0 is the dimensionless Gilbert damping param-
eter, Heff ¼ −M−1

s δf½m�=δm is an effective magnetic field
that describes the magnetization directionm that minimizes
the free energy density functional f½m�, and Ms is the
saturation magnetization. Interestingly, we note that a
functional exists that generates the effective SOT field in
Eq. (2), which is given by

fSOT½m� ¼ MsΓ0

�
Jymxmy −

1

2
Jxðm2

x −m2
yÞ
�
: ð5Þ

The out-of-equilibrium current-induced SOT can therefore
be absorbed into an effective field H̃eff that minimizes the
effective free energy density feff ½m� ¼ f½m� þ fSOT½m�.
The 2D ferromagnet Fe3GeTe2 is a uniaxial ferromagnet

with an out-of-plane easy axis [13,14,29]. The contribution
of the dipole-dipole interaction to the spin wave spectrum
can be neglected for a monolayer system [30–34]. If we
consider a spatially uniform magnetization and use a
spherical basis, ðmx;my;mzÞ¼ðsinθcosϕ;sinθsinϕ;cosθÞ,
the effective free energy becomes

feff ½θ;ϕ� ¼ −
Ms

2
½Kz cos2 θ þ Γ0jJj sin2 θ cos ð2ϕþ ϕJÞ�:

ð6Þ

Here,Kz > 0 is the out-of-plane anisotropy constant, and jJj
and ϕJ ¼ arctan ðJy=JxÞ are the magnitude and azimuthal
angle of the applied current, respectively. From this, we find
that the SOT effectively acts as in-plane magnetocrystalline
anisotropies. The anisotropy originating from the SOT
always comes in a pair of perpendicular easy and hard axes.

FIG. 1. Crystal structure of a Fe3GeTe2 monolayer. (Left) View
along ez. (Right) View along ey. a is the in-plane bond length
between FeIII and FeII. 2b is the out-of-plane distance between the
two FeIII sublattices. FeIII and FeII represent the two inequivalent
Fe sites in oxidation states þ3 and þ2, respectively. Redrawn
after Ref. [14].
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Thedirections of the anisotropy axes depend on the direction
of the applied current. For weak currents (jΓ0Jj < Kz), the
magnetization of Fe3GeTe2 remains out of plane (θ ¼ 0; π).
However, for sufficiently strong currents (jΓ0Jj > Kz), an
in-plane configuration of the magnetization becomes
more energetically favorable. Assuming that Γ0 > 0, the
effective free energy is then minimized by θ ¼ π=2 and
ϕ ¼ nπ − ϕJ=2 (n ¼ 0; 1; 2;…). When Γ0 < 0, the easy
and hard axes are interchanged, and the minima are
ϕ ¼ ðnþ 1=2Þπ − ϕJ=2. The easy and hard axes also
interchange upon reversal of the applied current.
Magnon gap.—Because the SOT can effectively be

considered a current-controlled magnetocrystalline
anisotropy, we can electrically control the magnon gap
in Fe3GeTe2. The magnon gap is governed by the energy
difference between the out-of-plane and in-plane magneti-
zation configurations, i.e., jKz − jΓ0Jjj. At the critical
current jJcj ¼ Kz=jΓ0j, the magnon gap vanishes as the
magnetic easy axis transitions from an out-of-plane axis to
an in-plane axis. Exactly at this transition point, we obtain a
magnetic easy plane. Below the critical current, the magnon
gap decreases monotonically with the applied current,
whereas it increases monotonically above the critical
current. The ability to electrically tune the magnon gap
in a 2D magnetic material opens the door for exploring a
wide variety of effects in magnetism in two dimensions.
Curie temperature.—The first effect that is characteristic

of a two-dimensional system that we will now illustrate is
the dependence of the Curie temperature on the magnon
gap. Because the Curie temperature in 2D is primarily
governed by the magnon gap, unlike in 3D [35], we will
study its behavior as we tune the SOT-controlled magnon
gap through the transition from an out-of-plane easy axis to
an in-plane easy axis. To illustrate the basic aspects of
current control of the Curie temperature, we make a few
simplifications to reduce the number of free parameters and
the complexity of the calculations. Fe3GeTe2 is an itinerant
ferromagnet, and its magnetic interactions are therefore
described by the Stoner model [29]. The Stoner model can
in our system be transformed into a Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange interaction between the
iron atoms [36]. We assume that the exchange interaction in
a Fe3GeTe2 monolayer has a finite range and therefore
obeys the Mermin-Wagner theorem. To simplify the cal-
culations, we replace the Stoner or RKKY exchange
interaction by a simple nearest-neighbor interaction
between the FeII and FeIII atoms (i.e., there is no exchange
interaction within each sublattice or between the two
different FeIII sublattices). This will also obey the
Mermin-Wagner theorem, and this system will conse-
quently also exhibit the same qualitative dependence on
the magnon gap as other finite-range interactions. We
also assume that the magnetic anisotropy constants are
identical at all sites. Consequently, we consider the model
Hamiltonian

H ¼ −
εJ
2ℏ2

X
r

X
δ

Sr · Srþδ −
εz
2ℏ2

X
r

ðSr;zÞ2

−
εx
2ℏ2

X
r

½ðSr;xÞ2 − ðSr;yÞ2�: ð7Þ

Here, εJ > 0 is an energy constant that describes the
nearest-neighbor exchange interactions of spins separated
by δ, εz > 0 is an energy constant that describes the out-of-
plane anisotropy, and εx ∝ Γ0Jx > 0 is an energy constant
that describes the effective in-plane anisotropies caused by
the SOT. Sr;i (i ¼ x, y, z) describes the ith component of the
spin operator located at position r. We split the Fe3GeTe2
monolayer into three distinct sublattices: one for the FeII

atoms, one for the FeIII atoms at z ¼ þb, and one for the
FeIII atoms at z ¼ −b.
We proceed by performing a Holstein-Primakoff trans-

formation of the spin operators around the equilibrium spin
direction. This is in the z direction below the critical current
Jc and along the x direction above the critical current.
Because of the anomalous Hall effect in Fe3GeTe2
[14,37,38], applying the current exactly along the x
direction can be experimentally challenging. However, as
can be deduced from Eq. (6), a scenario in which the
current is applied in a different direction can be achieved by
a rotation of the unit cell or Brillouin zone. Since it is the
magnons closest to the Γ point that dominate the calcu-
lation of the Curie temperature, we expect the results to be
very similar for an off-axis current.
In our calculations, we keep terms to the second order in

the Holstein-Primakoff magnon operators. We expect this
to be a good qualitative approximation, although it will not
be a very good quantitative approximation because the
magnon population diverges at the critical point. However,
keeping terms to, for instance, the fourth order in the
magnon operators to include magnon-magnon interactions
[9] would be complicated because Eq. (7) does not
conserve the magnon number for finite currents.
Following the Holstein-Primakoff transformation, we

perform a Fourier transformation of the magnon operators
to momentum space. We then diagonalize the Hamiltonian
by a Bogoliubov transformation such that it takes the
form [27]

H ¼
X
k;μ

εk;μα
†
k;μαk;μ: ð8Þ

Here, the operator αð†Þk;μ annihilates (creates) an eigenmag-
non with a momentum k and energy εk;μ. There are three
different modes (μ ¼ I; II; III) of the eigenmagnons. We
have imposed the constraint on the Bogoliubov trans-
formation that the new operators have to satisfy bosonic
commutation relations: ½αk;μ; α†k0;μ0 � ¼ δkk0δμμ0 .
From the energy spectrum of the eigenmagnons in

Fe3GeTe2, we can estimate the Curie temperature Tc. To
determine Tc, we use the fact that the magnetization along
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the equilibrium direction of the spins vanishes at this
temperature. Because we consider a monolayer system,
we only have magnons with in-plane momenta. Balancing
the magnetic moments, we find the constraint

X
ν

sν −
X
μ

1

ABZ

Z
ABZ

d2k
Sk;μ=ℏ

exp ðεk;μ=kBTcÞ − 1
¼ 0: ð9Þ

Here, sν is the dimensionless spin number of the magnetic
moments in sublattice ν (where ν ¼ 2 for the FeII atoms,
and ν ¼ 3� for the FeIII atoms located at z ¼ �b), and
ABZ ¼ ffiffiffi

3
p

π2=ð2a2Þ is the (reciprocal) area of the first
Brillouin zone. Sk;μ is the spin of the eigenmagnons, which
is not an integer for finite SOT because of magnon
squeezing [39]. The spin of the eigenmagnons depends
on the parameters of the Bogoliubov transformation and is
given in the Supplemental Material [27].
We can now calculate the Curie temperature numerically

based on Eq. (9). In our calculations, we set the out-of-
plane anisotropy constant to be εz ¼ 0.335 meV [29]. The
value of the nearest-neighbor exchange coupling is set to be
εJ ¼ 0.705 meV to reproduce the experimental Tc of a
monolayer of ∼130 K [13] (note, however, that a different
experiment determined the Tc of a monolayer to be ∼68 K
[14]). The real value of εJ is in all likelihood larger [14]
because the linear response method typically overestimates
Tc. The dimensionless spin numbers sν for the spins in
sublattice ν are s2 ¼ 2 and s3− , s3þ ¼ 5=2 [40]. We plot the
Curie temperature as a function of the applied current
in Fig. 2.
Because we only kept terms to the second order in the

magnon operators, we do not expect that our calculation of
Tc will be quantitatively correct. However, the qualitative
features of our result appear to be physically reasonable.
When we apply a SOT below the critical current jJcj, we

effectively reduce the magnon gap by creating a pair of easy
and hard axes perpendicular to the out-of-plane magneti-
zation. Because the Curie temperature in 2D materials is
governed by the magnon gap, this also reduces Tc. At the
critical current strength, we obtain a continuous symmetry
in the form of an easy plane when the in-plane easy axis
induced by the SOT becomes equal to the out-of-plane
magnetocrystalline anisotropy. Because of the Mermin-
Wagner theorem, there can be no long-range magnetic
order at finite temperatures in this scenario, and Tc drops to
zero. Above the critical current, we now increase the
magnon gap for an in-plane magnetization configuration,
and Tc increases accordingly. Tc will then saturate at the
Curie temperature of the Ising model for large currents,
which our model does not capture [41].
In addition to the current affecting the Curie temperature

through a SOT, the current will also increase the temper-
ature in the material due to joule heating, which needs to be
taken into account when measuring the Curie temperature
of the material. The joule heating increases quadratically
with the applied current. Conversely, the SOT is linear in
the applied current, but its effect on the Curie temperature
depends on whether we are above or below the critical
current. Consequently, if the critical current is sufficiently
small, then the effect of the SOT will dominate that of the
joule heating. In this case, the magnetic ordering exhibits
reentrant behavior as a function of the applied current.
Notably, above the critical current, when the magnetization
is in the plane, the easy and hard axes are interchanged
upon reversal of the current direction. A reversal of the
applied current would therefore lead to a 90° rotation of the
magnetization.
2D XY model.—Although the spontaneous magnetiza-

tion vanishes for finite temperatures at the critical current
density jJcj, this regime remains an interesting region for
studying the magnetic properties. At the critical current
density (jεxj ¼ εz), the model in Eq. (7) becomes, quite
remarkably, a 2D easy-plane ferromagnet, where the easy
plane is perpendicular to the plane of the monolayer.
Therefore, at this current density, the model features a
critical phenomenon in the universality class of the 2D XY
model. Consequently, the system has a topological phase
transition rather than the more conventional phase tran-
sition of the 2D Ising model [1]. The 2D Ising universality
class falls within the framework of the Landau-Ginzburg-
Wilson paradigm of phase transitions of an order-disorder
transition monitored by a local order parameter [42,43].
The spin-spin correlation length diverges from above
and below Tc as ξ ∼ jT − Tcj−ν, where ν is a universal
critical exponent. There is true long-range order in the
low-temperature phase, short-range order in the high-
temperature phase, and power-law spin-spin correlations
precisely at the critical point. In contrast, the 2D XY model
features a genuine phase transition with no local order
parameter. At this phase transition, the spin-spin correlation

FIG. 2. Numerical calculation of Tc for a spontaneous mag-
netization based on a simple linear response model of the magnon
spectrum. The result is identical for any direction of the applied
current J. Below jJcj, the magnetization is along the z axis,
whereas above jJcj, the magnetization is along an in-plane axis
determined by the direction of the applied current.
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length diverges as ξ ∼ expðconst= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TBKT

p Þ from the
high-temperature side only [4], where TBKT is the critical
temperature of the BKT transition. The high-temperature
phase has short-range order, and the entire low-temperature
phase is critical with a spin-spin correlation function
featuring a nonuniversal temperature-dependent anomalous
dimension η, hSr · Sr0 i ∼ 1=jr − r0jη [4].
In 2D Fe3GeTe2, we may realize this type of highly

nontrivial behavior by tuning the electric current to the
critical value and then drive the system through the phase
transition by varying the temperature. Moreover, below the
BKT transition, the temperature dependence of the non-
universal anomalous dimension η of the 2D XY model can
be mapped by varying the temperature and measuring the
spin-spin correlation function by polarized small-angle
neutron scattering, which is particularly well suited for
ultrathin films [44]. The present system is also amenable to
studying the universal anomalous dimension of the 2D
Ising model at T ¼ Tc, η ¼ 1=4 [45]. The prediction for the
2D XY model, η ¼ kBT=4πJ [4], where J is the effective
exchange coupling and kB is Boltzmann’s constant, has not
been tested in real 2D magnetic systems to our knowledge.
Examples of real physical systems with this level of

control over such phenomena are very rare, particularly for
systems where the phenomena are accessible at relatively
elevated temperatures. The most well-known example is
superfluidity in thin films of 4He, where the BKT transition
occurs below 1.2 K [46]. In that context, the remarkable
prediction and experimental verification of a universal
jump in the superfluid density of the system [46,47] is
also worth noting. We expect the corresponding physics of
a universal jump in the spin stiffness of the system to occur
at liquid nitrogen or oxygen temperatures in the system
studied here. The spin stiffness may be measured in spin
wave resonance experiments [48]. Furthermore, and in
contrast to our present case, η is not experimentally
accessible in superfluid thin films of 4He.
The parameter Γ0 determines the magnitude of the

critical current and thus the accessibility of the effects that
we discuss. This value cannot be obtained purely from
symmetry considerations but rather needs to be determined
experimentally or by ab initio calculations. In light of the
exciting physics that can be realized and the flexibility of
the system, determining its value would be very interesting.
Based on the strong magnetic anisotropy of the material,
we believe that the spin-orbit coupling is sufficiently
strong. Paired with the observation that SOTs are typically
sufficiently large to induce magnetization switching in
other materials [22], we have reason to believe that
reentrant magnetism and topological phase transitions
can be experimentally observed in Fe3GeTe2.
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I. DERIVATION OF SPIN–ORBIT TORQUES IN Fe3GeTe2

Ref. [1] has shown that in the linear response regime under
the local approximation, the current-induced torques can be
written as

τ(r, t) = −|γ |m(r, t) × HSOT, HSOT,i = ηi j Jj , (1)

where m is the magnetization unit vector, J is the current
density applied to the system, and η is a second-rank tensor.
(Summation over repeated indices is implied.) Which elements
of ηi j that are nonzero is determined by the symmetry of the
system. The tensor η can be expanded in the magnetization
components mi and their derivatives ∂imj . If we only consider
a uniform magnetization, one obtains to lowest order

ηi j = Λi j + Γi jkmk + . . . (2)

where Λi j is an axial second-rank tensor, and Γi jk is a polar
third-rank tensor.

To determine which contributions to the tensors Λi j and Γi jk
that are allowed by symmetry, Ref. [1] imposes the criterion
that these tensors must be invariant under all transformations
R in the point group G of the structure. This amounts to
demanding that the relations

Λi j = |R|Rii′Rj j′Λi′ j′, (3)
Γi jk = Rii′Rj j′Rkk′Γi′ j′k′, (4)

are fulfilled for all R ∈ G.
Monolayer Fe3GeTe2 crystallizes in point group 6̄m2

(D3h) [2]. Since this group is generated by the elements
6̄z , my , and 2x , it is sufficient to impose that ηi j should be
invariant under these operations [3]. The representing matrices
of these symmetry operations are

my =
©­«
1
−1

1

ª®¬ , 2x =
©­«
1
−1
−1

ª®¬ , 6̄z =
1
2
©­«
−1 −

√
3

√
3 −1

−2

ª®¬ .
Eq. (3) with R = 2x implies thatΛi j vanishes when x appears

an odd number of times in the indices i j. (That is,Λx j = Λix =

0 for i, j = y, z.) Similarly, R = my implies that Λi j vanishes
when y appears an even number of times in the indices i j. (That
is, Λi j = 0 for i, j = x, z and Λyy = 0.) Consequently, only

∗ oyvinjoh@ntnu.no
† vetle.k.risinggard@ntnu.no

Λyz and Λzy are invariant under the symmetry operations 2x

and my . The operation 6̄z gives

Λyz = −
1
2Λyz and Λzy = −

1
2Λzy

for these elements. These relations can only hold for Λi j = 0.
Thus we conclude that Λi j = 0 ∀ i, j.

Repeating the analysis for Γi jk with Eq. (4), R = 2x implies
that Γi jk vanishes when x appears an even number of times
in the indices i j k, and R = my implies that Γi jk vanishes
when y appears an odd number of times in the indices i j k.
Consequently, only Γyyx , Γxzz , Γxxx , and the four other ele-
ments generated by freely permuting the indices yyx and xzz
are invariant under the symmetry operations 2x and my . The
operation 6̄z gives

Γxzz = −
1
2Γxzz, Γzxz = −

1
2Γzxz, and Γzzx = −

1
2Γzzx,

which implies that Γxzz = Γzxz = Γzzx = 0. Furthermore,

Γyyx =
1
8 (− Γyyx + 3Γyxy + 3Γxyy − 3Γxxx),

Γyxy =
1
8 (+3Γyyx − Γyxy + 3Γxyy − 3Γxxx),

Γxyy =
1
8 (+3Γyyx + 3Γyxy − Γxyy − 3Γxxx),

and

Γxxx = −
1
8 [Γxxx + 3(Γyyx + Γyxy + Γxyy)].

Together these relations imply Γyyx = Γyxy = Γxyy = −Γxxx .
We conclude that Γi jk has four nonzero components, but only
one free parameter, Γxxx = Γ0. The effective field correspond-
ing to the spin–orbit torque in Fe3GeTe2 is thus

HSOT = Γ0[(mx Jx − my Jy)ex − (my Jx + mx Jy)ey]. (5)

II. MAGNON SPIN AND ENERGY SPECTRUM

Using the result that the spin-orbit torque leads to a set of
perpendicular in-plane easy and hard axes, as derived in the
manuscript, we can write a model Hamiltonian in zero-external
field,

H = −
εJ

2~2
∑
r

∑
δ

Sr · Sr+δ −
εz

2~2
∑
r

(
Sr ,z

)2

−
εx

2~2
∑
r

[ (
Sr ,x

)2
−

(
Sr ,y

)2
]
. (6)

Here we only consider nearest-neighbour exchange interaction
between sites separated by δ, and only consider a current in
the x-direction (εx ∝ Γ0Jx > 0), as the anisotropy behaves
similarly (just with different axes) if we have a y-component of
the current.
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A. Below the critical current

Below the critical current, the equilibrium configuration is
along the z axis. We do a Holstein–Primakoff transformation
of the spin operators, defined by

Si,ν,+ = ~
√

2sνa†i,ν

√
1 −

a†i,νai,ν
2sν

≈ ~
√

2sνa†i,ν , (7)

Si,ν,− = ~
√

2sν

√
1 −

a†i,νai,ν
2sν

ai,ν ≈ ~
√

2sνai,ν , (8)

Si,ν,z = ~
(
a†i,νai,ν − sν

)
, (9)

where S± = Sx ± iSy , i is the label of the unit cell, and ν = 2,3±
indicates the sublattice of the FeII and FeIII atoms, respectively,
where sublattice ν = 3+ (ν = 3−) consists of the FeIII atoms
located at z = +b (z = −b). We assume the nearest-neighbor
exchange interaction is only between sublattice ν = 2 and
ν = 3±, and that there is no exchange interaction between the
FeIII atoms. Rewriting the Hamiltonian to the S± basis, we get

H = −
εJ

2~2
∑
r ,δ

[
1
2

(
Sr ,+Sr+δ,− + Sr ,−Sr+δ,+

)
+ Sr ,zSr+δ,z

]
−

εz

2~2
∑
r

(
Sr ,z

)2
−
εx

4~2
∑
r

∑
m=±

(
Sr ,m

)2
. (10)

Inserting the Holstein–Primakoff transformation, keeping terms
to second order in the magnon operators, we get

H = − εJ
∑
i

∑
r j=ri+δ

∑
ν=3±

[√
s2sν

(
a†
i,2aj ,ν + a†j ,νai,2

)
− sνa†

i,2ai,2 − s2a†j ,νaj ,ν

]
+ εz

∑
i,ν

sνa†i,νai,ν

−
εx
2

∑
i,ν

sν(a
†

i,νa†i,ν + ai,νai,ν) , (11)

disregarding any constant terms, where r j is the position of
the nearest-neighbor atom of the atom located in unit cell i
and sublattice ν = 2. Next we perform a Fourier transform to
momentum space, defined by

ai,ν =
1
√

N

∑
k

ak ,νe−ik ·ri ,ν , a†i,ν =
1
√

N

∑
k

a†
k ,ν

eik ·ri ,ν ,

(12)

with N being the number of unit cells, and k the wave vector
running over the first Brillouin zone. The Hamiltonian then
becomes (disregarding any constant terms)

H =
∑
k

∑
z=±

εJ

[
3s3a†

k ,2ak ,2 + 3s2a†
k ,3z

ak ,3z

−
√

s2s3

(
γz
−k

a†
k ,2ak ,3z + γ

z
k

a†
k ,3z

ak ,2
) ]
+ εz

∑
k ,ν

sνa†
k ,ν

ak ,ν

−
εx
2

∑
k ,ν

sν
(
a†
k ,ν

a†
−k ,ν
+ ak ,νa−k ,ν

)
. (13)

az x

y

2b

y
x

z

FeIII FeII Ge Te

Figure 1. Crystal structure of monolayer Fe3GeTe2. All the drawn in-
plane bindings are at a 120◦ (in-plane) angle relative the neighboring
bindings. Dashed lines denote the unit cell. Left: view along ez ; right:
view along ey . FeIII and FeII represent the two inequivalent Fe sites
in oxidation states +3 and +2, respectively. Redrawn after Ref. [4].

Here we have introduced the structure factor

γk =
∑
δ

eik ·δ , (14)

which becomes

γ±k = e±ikzb
[
e−ikxa + 2eikxa/2 cos

(√
3

2
kya

)]
(15)

for Fe3GeTe2 between the ν = 2 and ν = 3± sublattices, as can
be seen from Fig. 1. Here a is the in-plane lattice constant
between the FeII and FeIII atoms, and 2b the separation between
two FeIII atoms in the z direction. We have also used that there
are three nearest neighbors in each sublattice. We can write
the Hamiltonian on the form

H =
∑
k

(
A
2

a†
k ,2ak ,2 +

B
2

a†
k ,3−

ak ,3− +
B
2

a†
k ,3+

ak ,3+

+ Cka†
k ,2ak ,3− + Dka†

k ,2ak ,3+ +
∑
ν

Eνak ,νa−k ,ν

)
+ H.c.

(16)

The coefficients A, B, Ck , Dk , and Eν are given in Table I.
We now have to diagonalize the Hamiltonian. This can be

done by a six-dimensional Bogoliubov transformation, defined
by the matrix B6

ακ =

©­­­­­­­­«

ακ,I
ακ,II
ακ,III
α†
−κ,I

α†
−κ,II

α†
−κ,III

ª®®®®®®®®¬
= B6

©­­­­­­­­«

aκ,2
aκ,3−
aκ,3+
a†
−κ,2

a†
−κ,3−

a†
−κ,3+

ª®®®®®®®®¬
≡ B6aκ

=
∑
ν

©­­­­­­­«

uI,ν vI,ν
uII,ν vII,ν
uIII,ν vIII,ν
ṽ∗I,ν ũ∗I,ν
ṽ∗II,ν ũ∗II,ν
ṽ∗III,ν ũ∗III,ν

ª®®®®®®®¬
(

aκ,ν
a†−κ,ν

)
, (17)
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Table I. The coefficients for the Fourier transformed Hamiltonian in
Eq. (16) below and above the critical current |Jc |.

Coefficient |J | < |Jc | |J | > |Jc |
A 6s3εJ + s2εz 6s3εJ +

1
2 s2(3εx − εz )

B 3s2εJ + s3εz 3s2εJ +
1
2 s3(3εx − εz )

Ck −
√

s2s3γ
−
−k
εJ −

√
s2s3γ

−
−k
εJ

Dk −
√

s2s3γ
+
−k
εJ −

√
s2s3γ

+
−k
εJ

Eν − 1
2 sνεx − 1

4 sν(εx + εz )

where κ now only runs over half the vector space of k , so that
the Hamiltonian can be written as

H =
∑
κ,µ

(
εκ,µα

†
κ,µακ,µ + ε−κ,µα

†
−κ,µα−κ,µ

)
. (18)

The Bogoliubov coefficients with a tilde, e.g. ṽI,2, are evaluated
at −κ while the coefficients without tilde are evaluated at κ. To
diagonalize the Hamiltonian we impose bosonic commutation
relations ([ακ,µ, α†κ′,µ′] = δκ,κ′δµ,µ′) as well as the relation[
ακ,µ,H

]
= εκ,µακ,µ. The bosonic commutation relation

leads to the constraint[
ακ,α

†
κ

]
= B6

[
aκ, a

†
κ

]
B†6 = B6Y B†6 = Y , (19)

where we have introduced the matrix

Y = diag(1,1,1,−1,−1,−1) . (20)

The relation in Eq. (19) requires the normalization∑
ν

(
|uµν |2 − |vµν |2

)
= 1 . (21)

The relation from the commutation with the Hamiltonian leads
to the eigenvalue problem

©­­­­­­«

A C∗κ D∗κ −2E2
Cκ B −2E3−
Dκ B −2E3+
2E2 −A −C−κ −D−κ

2E3− −C∗−κ −B
2E3+ −D∗−κ −B

ª®®®®®®¬
eµ = εκ,µeµ ,

(22)

where eµ = (uµ,2,uµ,3−,uµ,3+, vµ,2, vµ,3−, vµ,3+ )T. We note that
C−κ = C∗κ and D−κ = D∗κ , and all other elements in the matrix
are real and independent of κ. Consequently, we therefore
have that ũµ,ν = u∗µ,ν and ṽµ,ν = v∗µ,ν . We also have that
ε∗κ,µ = ε−κ,µ, and as εκ,µ is a real quantity, we therefore also
have ε−κ,µ = εκ,µ.
In addition to finding the energy of the eigenmagnons, we

also wish to determine their spin, as these are not integer due
to squeezing from the SOT-induced anisotropy [5]. Using
Eq. (17) and Eq. (19) we see that aκ = B−1

6 ακ = Y B†6Y
−1. This

can be written explicitly as

aκ,ν =
∑
µ

(
uµ,νακ,µ − vµ,να

†
−κ,µ

)
, (23)

a†κ,ν =
∑
µ

(
u∗µ,να

†
κ,µ − v

∗
µ,να−κ,µ

)
. (24)

Together with the fact that non-diagonal expectation values of
the product of two eigenmagnon operators vanish, we see from
Eq. (9) and Eq. (21) that∑

i,ν

〈Si,ν,z〉 =
∑
κ,µ

~
∑
ν

(
|uµ,ν |2 + |vµ,ν |2

) ∑
m=±

〈α†mκ,µαmκ,µ〉

=
∑
k ,µ

~

(
1 + 2

∑
ν

|vµ,ν |
2

)
〈α†

k ,µ
αk ,µ〉 , (25)

where we have disregarded all constant terms. We can then see
that the eigenmagnon spin contribution is

Sk ,µ = ~

(
1 + 2

∑
ν

|vµ,ν |
2

)
. (26)

B. Above the critical current

Above the critical current, the lowest energy configuration
of the spins is along the x axis. We therefore have to change
the Holstein–Primakoff transformation to reflect this, with the
following transformation:

S̃i,ν,+ = ~
√

2sνa†i,ν

√
1 −

a†i,νai,ν
2sν

≈ ~
√

2sνa†i,ν , (27)

S̃i,ν,− = ~
√

2sν

√
1 −

a†i,νai,ν
2sν

ai,ν ≈ ~
√

2sνai,ν , (28)

S̃i,ν,x = ~
(
a†i,νai,ν − sν

)
, (29)

with S̃± = −S̃z ± iS̃y . Using this transformation in the Hamilto-
nian in Eq. (6), we get

H = − εJ
∑
i

∑
r j=ri+δ

∑
ν=3±

[√
s2sν

(
a†
i,2aj ,ν + a†j ,νai,2

)
− sνa†

i,2ai,2 − s2a†j ,νaj ,ν

]
−
εz
4

∑
i,ν

sν
(
a†i,νa†i,ν + 2a†i,νai,ν + ai,νai,ν

)
+
εx
4

∑
i,ν

sν
(
6a†i,νai,ν − a†i,νa†i,ν − ai,νai,ν

)
. (30)

We again do a Fourier transformation as before, and find the
Hamiltonian to be on the form (again disregarding any constant
terms)

H = +
∑
k

∑
z=±

εJ

[
3s3a†

k ,2ak ,2 + 3s2a†
k ,3z

ak ,3z

−
√

s2s3

(
γz
−k

a†
k ,2ak ,3z + γ

z
k

a†
k ,3z

ak ,2
) ]

−
εz
4

∑
k ,ν

sν
(
2a†

k ,ν
ak ,ν + a†

k ,ν
a†
−k ,ν
+ ak ,νa−k ,ν

)
+
εx
4

∑
k ,ν

sν
(
6a†

k ,ν
ak ,ν − a†

k ,ν
a†
−k ,ν
− ak ,νa−k ,ν

)
. (31)



4

From this expression we can read off the coefficients in Eq. (16),
and use the results in the previous subsection for the case below

the critical current to determine the energy and spin of the
eigenmagnons. The coefficients in Eq. (16) are given in Table I
both above and below the critical current.
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Spin waves can induce domain wall motion in ferromagnets. We derive the equations of motion for a transverse
domain wall driven by spin waves. Our calculations show that the magnonic spin-transfer torque does not cause
rotation-induced Walker breakdown. The amplitude of spin waves that are excited by a localized microwave field
depends on the spatial profile of the field and the excitation frequency. By taking this frequency dependence
into account, we show that a simple one-dimensional model may reproduce much of the puzzling frequency
dependence observed in early numerical studies.

DOI: 10.1103/PhysRevB.96.174441

I. INTRODUCTION

Magnon-induced domain wall motion has recently been
studied analytically [1–4], numerically [5–13], and exper-
imentally [14,15]. The numerical analyses have uncovered
a wide range of domain wall behaviors. The domain wall
velocity depends on the frequency of the locally applied
magnetic field acting as the spin-wave source in a complicated
and nonmonotonic way. For some frequencies, it is even
possible to reverse the direction of the domain wall motion.
This complicated behavior can be explained as a competition
between angular and linear momentum transfer: Conservation
of angular momentum causes a domain wall to move towards
the spin-wave source via a magnonic torque [1,2]. On the other
hand, conservation of linear momentum causes a domain wall
to propagate away from the spin-wave source [3,4].

So far, experimental investigations of magnon-induced
domain wall motion have mainly focused on dynamics induced
by thermal magnons [14,15]. However, a domain wall in a
temperature gradient can experience additional torques besides
the purely magnonic ones, for instance, the exchange stiffness
can vary with temperature [5,16–21]. Characteristically, these
torques can induce a Walker breakdown, upon which the
domain wall is deformed as it moves [22].

In ferromagnets, previous studies of domain wall dynamics
due to magnonic torques have considered the response of
a static wall to first-order spin-wave excitations. In such
a scheme, global conservation laws determine the resulting
domain wall velocity [1–4]. However, understanding dynamic
phenomena, such as a Walker breakdown, requires knowledge
about the dynamics of the collective coordinates that represent
the domain wall [23]. Spin-wave-induced domain wall motion
is a result of the back action of the spin waves on the magnetic
texture [1]. Consequently, the soft modes of the domain
wall are quadratic in the spin-wave amplitude. Deriving the
equations of motion of the collective coordinates, therefore,
requires an expansion to second order in the spin-wave
amplitudes. This principle is the basis for understanding how
spin waves induce domain wall motion in antiferromagnets
[24].

*vetle.k.risinggard@ntnu.no

In this article, we apply the same method to ferromagnets.
We derive the collective coordinate equations of a spin-wave-
driven domain wall from the ferromagnetic Landau-Lifshitz-
Gilbert (LLG) equation. Our approach enables the inclusion of
dissipative torques into the dynamic equations of the domain
wall position X and the tilt angle φ.

In the perturbative regime, the absence of Walker break-
down amounts to requiring that the domain wall tilt is
stationary φ̇ = 0. We show that, in practice, the domain wall
rotation is always negligibly small in, e.g., yttrium iron garnet
(YIG). Thus, Walker breakdown is absent in domain wall
motion driven purely by magnonic spin transfer.

In our simulations, a localized magnetic field excites
the spin waves that in turn drive the domain wall motion.
Understanding the domain wall motion then requires knowing
both the frequency-dependent magnonic torques as well as
the generated spin-wave amplitude. The spatial profile of the
microwave source determines how the spin-wave amplitude
depends on the driving frequency [25–28]. We derive a
special case of Kalinikos’ general formula [25] and show that
the spin-wave amplitude is proportional to the Fourier sine
transform of the source profile. We then use the dependence of
the spin-wave amplitude on the microwave frequency to find
consistent results for how the domain wall velocity depends
on the driving frequency in the numerical and analytical
calculations.

Reference [29] has recently considered the linear-response
spin-wave emission from a stationary domain wall in a uniform
microwave field. We consider a different problem—spin-wave-
induced domain wall motion—which is a second-order effect.

II. EQUATIONS OF MOTION

We consider an effectively one-dimensional ferromagnet
as shown in Fig. 1. The LLG equation determines the
magnetization dynamics [30,31],

∂t m = γ m × H + α

m
m × ∂t m, (1)

where m(r,t) is the magnetization, m is its magnitude, γ < 0
is the gyromagnetic ratio, H(r,t) = −δF (r,t)/δm(r,t) is the
effective magnetic field, and α > 0 is the Gilbert damping
constant.

2469-9950/2017/96(17)/174441(7) 174441-1 ©2017 American Physical Society
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FIG. 1. Magnonic spin transfer induces a motion of the domain
wall. We consider transverse domain wall motion along the x axis. The
spatial profile of the applied magnetic field influences the amplitude
of the excited spin waves and subsequently the resulting domain wall
velocity.

The free energy F consists of the exchange, the dipole-
dipole interaction, and the magnetic anisotropy. In a magnetic
wire, the dipole-dipole interaction favors a magnetization
direction along the long axis. Taking this into account in
the simplest approximation, we model the dipole-dipole
interaction as an effective easy-axis anisotropy. The free
energy is then

F =
∫

d r
(

A(∂xm)2

m2
− Km2

x

m2

)
, (2)

where A is the exchange stiffness and K is the effective
uniaxial anisotropy constant. As shown numerically in the
Appendix, our results are unchanged by an additional hard
axis.

The LLG equation (1) conserves the magnitude of the
magnetization |m| = m, which makes it convenient to express
the magnetization in spherical coordinates (see Fig. 1),

m = m(cos θex + cos φ sin θey + sin φ sin θez) . (3)

In terms of the angles θ and φ a solution of the static
(∂t m = 0) LLG equation (1) is the Néel wall θ = 2 arctan
exp[Q(x − X)/λ], where X is the domain wall position,
λ = √

A/K is the domain wall width, and Q = ±1 is the topo-
logical charge [32]. In the absence of a hard axis, φ can take any
value.

We calculate the magnon-induced dynamics perturbatively.
The small parameter h parametrizes deviations from the
equilibrium magnetization in the spherical frame, see Fig. 1.
To second order in h, the magnetization is [24]

m =
(

m − h2

2m

[
m

(2)
θ + m

(2)
φ

])
er

+ (
hm

(1)
θ + h2m

(2)
θ

)
eθ + (

hm
(1)
φ + h2m

(2)
φ

)
eφ

=
(

m − h2

2m

[
m2

θ + m2
φ

])
er + hmθ eθ + hmφeφ. (4)

The second line follows from the normalization criterion
m · m = m2, and we have written mθ/φ = m

(1)
θ/φ for simplicity.

The second-order contributions to the transverse components
eθ and eφ have been dropped since it turns out that carrying
them through the following calculation does not change
Eqs. (14) and (15).

Substituting the expansion (4) into the LLG equation (1) and
equating like orders of h gives three equations that determine
the magnetization dynamics to zeroth, first, and second orders

in h. Because we are considering the dynamic reaction of
the magnetization texture, θ depends on position, and both
θ and φ depend on time. By assuming that the dynamics
of the domain wall collective coordinates is quadratic in
the spin-wave excitations, we obtain two equations to linear
order,

∂tmθ =
(

−2γA

m
∂2
x + 2γK

m
cos 2θ − α∂t

)
mφ , (5a)

and

∂tmφ =
(

+2γA

m
∂2
x − 2γK

m
cos 2θ + α∂t

)
mθ . (5b)

As pointed out in Ref. [33], the introduction of the auxiliary
function ψ = mθ − imφ simplifies Eqs. (5). Assuming that
ψ(x,t) = ψ(x) exp(−iωt) and using sin θ = sech ξ , we ob-
tain

q2ψ = ( − ∂2
ξ − 2 sech2 ξ

)
ψ, (6)

where we defined the dimensionless length ξ = Q(x − X)/λ
and the dimensionless wave number,

q2 = −mω(1 + iα)/2γK − 1. (7)

Equation (6) is a Schrödinger equation with a reflectionless
Pöschl-Teller potential [34]. It has two solutions, a bound state
ψ = ρ sech ξ for q = −i (implying ω = 0) and a traveling
wave [35,36],

ψ(ξ,t) = ρ

(
tanh ξ − iq

1 + iq

)
exp i(qξ − ωt) . (8)

The amplitude ρ is arbitrary, and, as is easily checked by
back substitution, the solution (8) holds for any complex
q. We need a second equation to determine mθ and mφ . A
reasonable condition is that they should both be real, which
in turn ensures that the magnetization (4) is real. Thus we
write

mθ = + Re ψ, (9a)

mφ = − Im ψ. (9b)

To calculate the real and imaginary parts of ψ , it is
useful to rewrite the wave number q in terms of a real part
κ and an imaginary part 1/�. In Eq. (7), we insert the
real and imaginary parts of q = κ + i/� and expand to the
lowest nonvanishing order in α. We then find the well-known
dispersion,

ω = −2γK(κ2 + 1)

m
, (10)

and damping length [37],

� = −4γKκ

mωα
. (11)

The dispersion relation and the damping length are both plotted
in Fig. 2. (We use a convention so that γ < 0 and α > 0.)

The solution (8) is well known and was used in Ref. [2]
to derive the domain wall velocity using conservation of
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FIG. 2. (a) Dispersion and (b) damping length of the spin waves
to lowest order in α. The solid curves are the analytical results of
Eqs. (10) and (11). The dotted lines are numerical solutions using
a square box (red) and a Gaussian (blue) source. The dimensionless
wave number κ is given in units of 1/λ, and the dimensionless damp-
ing length � is given in units of λ. The inset in (b) shows a zoom in on
ω < 1 GHz. Note that the damping length vanishes as the frequency
approaches the gap ω0 = −2γK/m = 0.14 GHz from above. We use
material parameters corresponding to YIG: γ = −26 GHz/T, A =
4 pJ/m, K = 0.4 kJ/m3, m = 150 kA/m, and α = 10−5.

angular momentum. It is implicit in the results of Ref. [2]
that the collective coordinates are quadratic in the spin-wave
excitations. Thus, to obtain the main result in this paper, which
is the equations of motion for Ẋ and φ̇, we consider the

equations that are obtained to second order in h by substituting
Eq. (4) into Eq. (1),

∫
dξ sech ξ

(
Ẋ

λ
− αφ̇

)

=
∫

dξ
4γK sech ξ

m3
(mφmθ tanh ξ + mφ∂ξmθ ), (12a)

∫
dξ sech ξ

(
αẊ

λ
+ φ̇

)

=
∫

dξ
4γK sech ξ

m3

(
m2

θ tanh ξ − mφ∂ξmφ

)
. (12b)

Since all terms except X(t) and φ(t) are known, Eqs. (12)
constitute a set of coupled ordinary temporal differential
equations that determine the dynamics of the collective
coordinates.

Equations (12) contain two different time scales. The fast
time scale is set by the period of the spin waves. The slow time
scale is associated with the dynamics of the domain wall. Our
focus is on the second and slower time scale. Therefore, we
substitute the spin-wave components into the right-hand side
of Eqs. (12) and average over one spin-wave period, giving

∫
dξ sech ξ

(
Ẋ

λ
− αφ̇

)
= 2γAρ2κ

m3λ2

∫
dξ exp

(
−2(ξ + ξ0)

�

)
[(κ2 + 1)�2 + 1] sech ξ + 2� tanh ξ sech ξ

[(κ2 + 1)�2 + 1 − 2�]
, (13a)

∫
dξ sech ξ

(
αẊ

λ
+ φ̇

)
= 2γAρ2

m3λ2�

∫
dξ exp

(
−2(ξ + ξ0)

�

)
[(κ2 − 1)�2 + 1] sech ξ − �[(κ2 + 1)�2 − 1] tanh ξ sech ξ

[(κ2 + 1)�2 + 1 − 2�]
.

(13b)

Here, the factor exp(−2ξ0/�), where ξ0 is the distance
between the domain wall and the spin-wave source, takes into
account the damping of the spin waves. Because the dynamics
of the collective coordinates is quadratic in the spin-wave
components, their motion decays twice as fast as the spin
waves with increasing distance from the spin-wave source.
Carrying out the spatial integrals in Eqs. (13) then gives
the equations of motion. However, direct spatial integration
produces β functions [38] .To express the integrals over ξ in
terms of elementary functions, we assume that ξ/� is small
and expand the exponential damping factor exp(−2ξ/�) on
the right-hand side to first order in ξ/�. For moderate ξ ,
this assumption is valid for large �. This is the case for low
damping and frequencies comparable to the gap, see Fig. 2.
When ξ is large, the smallness of ξ/� is unimportant because
the error we introduce is suppressed by the hyperbolic secant.

To linear order in α, the resulting equations of motion are

Ẋ

λ
= 2γAκρ2 exp(−2ξ0/�)(κ2 + 1 + 2/�)

λ2m3(κ2 + 1)
, (14)

and

φ̇ = 2γAκρ2 exp(−2ξ0/�)(ακ2 + α − 3κ/� − 1/κ�)

λ2m3(κ2 + 1)
.

(15)
Equations (14) and (15) are our main analytical results. As
expected, in the limit of no damping α → 0 and � → ∞, we

recover the result of Ref. [2],

Ẋ

λ
= 2γAκρ2

λ2m3
. (16)

In addition, the equation of motion for φ gives

φ̇ = 0, (17)

in this limit.
We have calculated the spin-wave-induced magnetization

dynamics perturbatively, cf. Eq. (4). It is then reasonable
to assume that the transverse wall will not be transformed
into, for instance, a vortex wall [39]. Thus, the absence of
Walker breakdown amounts to requiring that the domain wall
tilt is stationary φ̇ = 0 [22]. Equation (17) shows that this is
always the case for purely magnonic torques. In the presence
of a finite damping, φ̇ = 0 does not hold identically [cf.
Eq. (15)], but when evaluating this expression with material
parameters typical of low-damping magnetic garnets (Fig. 3),
we discover that the rotation rate, although finite, is negligible.
Consequently, purely magnonic torques do not induce Walker
breakdown in realistic materials.

The dynamics of the domain wall collective coordinates
explicitly depends on the frequency of the spin waves through
κ and �. Assuming the spin-wave amplitude ρ is constant, the
domain wall velocity increases monotonically with increasing
frequencies as shown in Fig. 3. This is understood most easily
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FIG. 3. The dependence of (a) the domain wall velocity Ẋ/λ and
(b) the rotation rate φ̇ on the spin-wave frequency. Both plots are
normalized to the spin-wave amplitude s = ρ2 exp(−2ξ0/�). The
frequency dependence of the wall velocity is monotonic. Because of
the low damping, the wall rotation rate is five orders of magnitude
smaller than the wall velocity and almost vanishes throughout the
interval. We use the same parameters as in Fig. 2.

in the absence of magnetic damping. Domain wall motion
occurs in our model because angular momentum is transferred
from the spin waves to the magnetic texture. The group velocity
vg = dω/dκ = −4γAκ/mλ2 is a monotonically increasing
function of frequency. A higher group velocity implies that
more spin waves pass through the domain wall per unit time, so
the rate of angular momentum transfer from the spin waves to
the domain wall is higher. A higher rate of angular momentum
transfer gives a higher domain wall velocity. This is manifest
in Eq. (16), which can be written as Ẋ/λ = − 1

2vgρ
2/m2.

The monotonic increase in domain wall velocity with
increasing frequency contrasts with the nonmonotonic de-
pendence on the excitation frequency observed in numerical
simulations [6–13]. However, the dynamics of the collective
coordinates also depends strongly on the spin-wave amplitude
ρ. Since the spin-wave amplitude depends on the frequency of
the applied excitation field [25–28], it is the spatial profile
of the applied excitation field that plays the main role in
determining the frequency dependence of the domain wall
velocity in some of these studies.

III. FREQUENCY DEPENDENCE OF THE
SPIN-WAVE AMPLITUDE

We now consider the generation of the spin waves. The
microwave source is assumed to be far into the domain. It
is then sufficient to only consider the interaction between
the source and a homogenous magnetization. Furthermore,
we assume that the dominant effect of the damping is an
exponential decrease in the spin-wave amplitude as the spin
waves move away from the source. This allows us to neglect the
damping in the following analysis of the spin-wave generation.

We calculate the disturbance of the homogeneous magne-
tization caused by the source perturbatively. The small excita-
tion parameter h parametrizes a locally applied magnetic-field
H = hp(x) exp(−iωt)ey . Anticipating a propagating wave
solution, we substitute the ansatz,

m = mex + hmy(x,t)ey + hmz(x,t)ez, (18)

which is accurate to first order in h, into the LLG equation (1).
This gives two equations to first order in h,

∂tmy =
(

−2γA

m
∂2
x + 2γK

m

)
mz, (19)

∂tmz =
(

+2γA

m
∂2
x − 2γK

m

)
my + γmp(x) exp(−iωt). (20)

Again, introducing the auxiliary variable ψ = my − imz and
using ψ(x,t) = ψ(x) exp(−iωt), we obtain

−γmp(ξ ) =
(

2γK

m
∂2
ξ − 2γK

m
− ω

)
ψ(ξ ), (21)

where we introduced the dimensionless length ξ = x/λ. To
obtain the solution to the differential equation (21) for different
spatial profiles of the applied magnetic-field p(ξ ), we solve for
the Green function. The Green function G of Eq. (21) is defined
by [40]

−γmδ(ξ ) =
(

2γK

m
∂2
ξ − 2γK

m
− ω

)
G(ξ ). (22)

By spatial Fourier transformation, we obtain an algebraic
equation that can be solved to give

g(ξ ′) = γm2

2γK(ξ ′2 + 1) + mω
, (23)

where ξ ′ is the Fourier conjugate variable of ξ . The inverse
Fourier transform gives

G = −m2 sin κξ

4κK
(2�(ξ ) − 1) , (24)

where κ is the dimensionless wave number from Eq. (10) and
�(ξ ) is the Heaviside step function. The spin-wave ψ(ξ ) then
is given by the convolution of the Green function and the
source profile p,

ψ(ξ ) =
∫ +∞

−∞
dξ ′′G(ξ − ξ ′′)p(ξ ′′)

= 2
∫ +∞

0
dξ ′′G(ξ − ξ ′′)p(ξ ′′), (25)

where the last expression, valid only for symmetrical sources
p(−ξ ) = p(ξ ), is proportional to a Fourier sine transform.

Different source profiles can be obtained by tuning the
relative widths of the conducting stripes of a coplanar
waveguide [26,27]. In particular, we are interested in the square
box source p1 and a Gaussian source p2,

p1(ξ ) = H

2σ
[�(ξ − μ + σ ) − �(ξ − μ − σ )], (26a)

p2(ξ ) = H√
2πσ

exp

(
− (ξ − μ)2

2σ 2

)
, (26b)

where μ is the source position and σ is the source half-width.
Substituting p1 and p2 into Eq. (25), we obtain the spin-wave
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FIG. 4. Spin-wave amplitude as a function of the driving
frequency for different spatial profiles of the applied magnetic
field. (a) The amplitude due to the square box source dies off
as | sin κσ/(κ2σ )|, whereas (b) the Gaussian source dies off as
exp(−κ2σ 2/2)/κ . We use the same parameters as in Fig. 2 with H =
0.2 T and (a) σ = 1.02λ = 102 nm and (b) σ = λ/4 = 25 nm. The
wave number κ(ω) used to calculate the analytical curves is estimated
by performing a least-squares fit to the numerical dispersions in
Fig. 2.

amplitudes,

ρ1 = ±Hm2

4Kκ

sin κσ

κσ
, (27a)

ρ2 = ±Hm2

4Kκ
exp

(
−1

2
κ2σ 2

)
, (27b)

far away from the source (|μ| → ∞).
Equations (27) can be derived as special cases of Kalinikos’

general formula [25]. As illustrated in Fig. 4, the spin-wave
amplitudes depend strongly on the driving frequency and
the spatial profile of the applied magnetic field. The square
box source (26a) has sharply defined ends. Thus, at every
frequency where an integer number of wavelengths fits inside
the box, we excite standing waves within the box, and the
spin-wave amplitude far away from the box is practically zero.
The zeros of the amplitude at 5.63, 11.90, 21.25, 32.50, and
46.25 GHz, correspond to two to six wavelengths, respectively,
fitting inside the box width of 2σ . The intermittent peaks
in the amplitude correspond to a half-integer number of
wavelengths fitting inside the box, giving maximum emission
of spin waves. On the other hand, the Gaussian source
(26b) falls off exponentially, and spin waves will leak out
of the source region at every frequency. However, the width
of the box introduces a length scale in the problem, thus
determining the slope of the amplitude in the log plot found
in Fig. 4(b). Although our analytical calculation readily
reproduces the frequency dependence observed in the full
numerical solution, it overestimates the amplitude roughly by a
factor of 1.6.

As shown in Fig. 5, the substitution of the amplitudes (27a)
and (27b) into the equation of motion for X, Eq. (14), accounts
for the frequency dependence of the domain wall velocity

FIG. 5. Domain wall velocity as a function of the driving
frequency for different spatial profiles of the applied magnetic
field. We use the same parameters as in Fig. 2 with H =
0.2 T and (a) σ = 1.02λ = 102 nm and (b) σ = λ/4 = 25 nm.
The analytical curves are calculated by substituting Eqs. (27) into
Eq. (14), the wave number κ(ω) is estimated by performing a
least-squares fit to the numerical dispersions in Fig. 2, and the
overestimate of the amplitude has been corrected by a factor of
1.62 = 2.6.

in the corresponding one-dimensional numerical model. The
Appendix describes the numerical calculations.

Our results illustrate that a critical assessment of the
impact of the source is vital to extract information about
the frequency dependence of magnonic spin-transfer torques
from micromagnetic simulations, such as those presented
in Refs. [6–13]. For example, studies that use square box
sources need to take into account the well-known artifacts
[25] thus introduced in the frequency dependence of the
domain wall velocity. The results presented above should
serve to illustrate that the frequency dependence introduced
by the square box source may account for some of the effects
previously attributed to the internal modes of the domain wall
[6,8–11]. However, there are also clear indications that the
internal modes of the domain wall affect the magnon-induced
domain wall motion when the two-dimensional character of
the system is important [13]. Reference [41] reports the first
steps towards an analytical treatment of magnon-domain wall
interaction in two dimensions.

Figure 6 plots the spin-wave amplitude as a function of the
strength of the applied field magnitude H . As expected, for
small applied fields, there is a linear regime where perturbation
theory works well. We observe that a magnetic field of 0.2 T as
applied in Figs. 4 and 5 is well within this perturbative regime.
For applied magnetic fields above this regime, the amplitude
of the mode oscillating at the excitation frequency decreases
due to the appearance of higher-frequency modes [42,43].

IV. CONCLUSION

We have derived the equations of motion for the collective
coordinates of a transverse domain wall driven by spin waves.
We used this description to demonstrate that magnonic spin
transfer does not induce Walker breakdown. For spin waves
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FIG. 6. Spin-wave amplitude as a function of the magnitude of
the applied magnetic-field H at ω = 15 GHz. We use the square box
source (σ = 1.02λ = 102 nm) and the same parameters as in Fig. 2,
and the overestimate of the amplitude has been corrected by a factor
of 1.62 = 2.6.

excited by a localized microwave field the spatial profile of
the applied field strongly affects the frequency dependence of
the spin-wave amplitude. Taking this frequency dependence
into account, we have explained how pure spin transfer may
still result in a domain wall velocity with a nonmonotonic
dependence on the excitation frequency in a one-dimensional
model. In particular, the frequency dependence of the spin-
wave amplitude arising from a square box source can account
for some of the frequency dependence of the domain wall
velocity that has previously been attributed to internal modes
of the domain wall.
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APPENDIX: NUMERICS

We solve the Landau-Lifshitz-Gilbert equation (1) numer-
ically. To this end, we apply a spatiotemporal discretization

FIG. 7. Domain wall velocity as a function of hard-axis
anisotropy for H = 0.2 T and ω = 15 GHz. We use the square box
source (σ = 1.02λ = 102 nm) and the same parameters as in Fig. 2.

using a centered implicit scheme in Maple [44]. The effective
field is

H = 2A

m2
∂2
x m + 2

m2
(Kmxex − K⊥mzez), (A1)

as derived from the free-energy (2) with an additional hard-axis
anisotropy. The system is a 3-μm grid with grid points
spaced 4 nm apart. The initial magnetization profile is a
domain wall with positive topological charge (Q = +1) and
positive chirality (φ = 0) centered at the origin. An additional
magnetic-field p(x) exp(−iωt)ey , centered at x = 1 μm, ex-
cites the spin waves. We insert absorbing boundary conditions
at the sample ends to avoid interference phenomena due
to spin-wave reflections. In doing so, the Gilbert damping
parameter increases to α = 1 inside 0.3-μm-wide regions at
both ends of the sample [37].

The hard-axis anisotropy K⊥ in Eq. (A1) is set to zero in the
analytical treatment and in the numerical results in the main
text. However, we have verified numerically that the results
in Figs. 2 and 4–6 are essentially unchanged in the presence
of a hard-axis anisotropy of magnitude K⊥ = K/2. As shown
in Fig. 7 for one frequency and applied field magnitude, the
additional hard-axis anisotropy only leads to slight changes
in the domain wall velocity. (This should be expected—in the
absence of domain wall rotation, the hard axis will not affect
the domain wall dynamics.)

[1] A. V. Mikhailov and A. I. Yaremchuk, JETP Lett. 39, 354
(1984).

[2] P. Yan, X. S. Wang, and X. R. Wang, Phys. Rev. Lett. 107,
177207 (2011); X. R. Wang, P. Yan, and X. S. Wang, IEEE
Trans. Magn. 48, 4074 (2012).

[3] D. Wang, X.-G. Wang, and G.-H. Guo, Europhys. Lett. 101,
27007 (2013); X.-G. Wang, G.-H. Guo, G.-F. Zhang, Y.-Z. Nie,
and Q.-L. Xia, Appl. Phys. Lett. 102, 132401 (2013).

[4] P. Yan, A. Kamra, Y. Cao, and G. E. W. Bauer, Phys. Rev. B 88,
144413 (2013).

[5] D. Hinzke and U. Nowak, Phys. Rev. Lett. 107, 027205 (2011).
[6] D.-S. Han, S.-K. Kim, J.-Y. Lee, S. J. Hermsdoerfer, H.

Schultheiss, B. Leven, and B. Hillebrands, Appl. Phys. Lett.
94, 112502 (2009).

[7] M. Jamali, H. Yang, and K.-J. Lee, Appl. Phys. Lett. 96, 242501
(2010).

[8] S.-M. Seo, H.-W. Lee, H. Kohno, and K.-J. Lee, Appl. Phys.
Lett. 98, 012514 (2011).

[9] X.-G. Wang, G.-H. Guo, Y.-Z. Nie, G.-F. Zhang, and Z.-X. Li,
Phys. Rev. B 86, 054445 (2012).

[10] J.-S. Kim, M. Stärk, M. Kläui, J. Yoon, C.-Y. You, L. Lopez-
Diaz, and E. Martinez, Phys. Rev. B 85, 174428 (2012).

[11] X.-G. Wang, G.-H. Guo, G.-F. Zhang, Y.-Z. Nie, and Q.-L. Xia,
J. Appl. Phys. 113, 213904 (2013).

[12] K.-W. Moon, B. Sun Chun, W. Kim, and C. Hwang, J. Appl.
Phys. 114, 123908 (2013).

[13] H. Hata, T. Taniguchi, H.-W. Lee, T. Moriyama, and T. Ono,
Appl. Phys. Express 7, 033001 (2014).

174441-6



EQUATIONS OF MOTION AND FREQUENCY DEPENDENCE . . . PHYSICAL REVIEW B 96, 174441 (2017)

[14] J. Torrejon, G. Malinowski, M. Pelloux, R. Weil, A. Thiaville,
J. Curiale, D. Lacour, F. Montaigne, and M. Hehn, Phys. Rev.
Lett. 109, 106601 (2012).

[15] W. Jiang, P. Upadhyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang,
M. Lang, K. L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Cherepov,
X. Zhou, Y. Tserkovnyak, R. N. Schwartz, and K. L. Wang, Phys.
Rev. Lett. 110, 177202 (2013).

[16] A. A. Kovalev and Y. Tserkovnyak, Europhys. Lett. 97, 67002
(2012).

[17] A. A. Kovalev, Phys. Rev. B 89, 241101 (2014).
[18] X. S. Wang and X. R. Wang, Phys. Rev. B 90, 014414 (2014).
[19] F. Schlickeiser, U. Ritzmann, D. Hinzke, and U. Nowak, Phys.

Rev. Lett. 113, 097201 (2014).
[20] P. Yan, Y. Cao, and J. Sinova, Phys. Rev. B 92, 100408 (2015).
[21] S. Moretti, V. Raposo, E. Martinez, and L. Lopez-Diaz, Phys.

Rev. B 95, 064419 (2017).
[22] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
[23] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Bazaliy, and O.

Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008).
[24] E. G. Tveten, A. Qaiumzadeh, and A. Brataas, Phys. Rev. Lett.

112, 147204 (2014).
[25] B. A. Kalinikos, Sov. Phys. J. 24, 718 (1981).
[26] P. Gruszecki, M. Kasprzak, A. E. Serebryannikov, M. Krawczyk,

and W. Śmigaj, Sci. Rep. 6, 22367 (2016).
[27] H. S. Körner, J. Stigloher, and C. H. Back, Phys. Rev. B 96,

100401 (2017).
[28] M. Fazlali, M. Dvornik, E. Iacocca, P. Dürrenfeld, M. Haidar, J.
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Electric field control of magnon-
induced magnetization dynamics in 
multiferroics
Vetle Risinggård*, Iryna Kulagina* & Jacob Linder

We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-
induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the 
homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict 
a reorientation of the magnetization, controllable by the applied electric field, which is almost an 
order of magnitude larger than that observed in other physical systems via the same mechanism. The 
applied electric field can also be used to tune the domain wall speed and direction of motion in a linear 
fashion, producing domain wall velocities several times the zero field velocity. These results show that 
multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and 
domain wall motion by exciting spin-waves.

Multiferroic materials are materials that exhibit simultaneously two or more ferroic order parameters (ferroelec-
tric, (anti)ferromagnetic, ferroelastic and ferrotoroidic order)1. The term multiferroics has also been used more 
generally to refer to materials that exhibit a magnetoelectric coupling—that is, materials with a free energy func-
tional that contains terms dependent on both the magnetization and the polarization2–4.

If the cross-terms in the free energy only depend on the magnetization itself—and not its derivatives—the 
material is said to exhibit the homogeneous magnetoelectric effect. The first detailed investigation of this effect 
was made by Dzyaloshinskii5 for Cr2O3. An essential aspect of the homogeneous magnetoelectric effect is that 
an effect that is first order in both the polarization and the magnetization (linear magnetoelectric effect) cannot 
occur in materials where the free energy has time-reversal and spatial inversion symmetry6.

If the cross-terms in the free energy depend on the gradient of the magnetization, the material is said to 
exhibit the inhomogeneous magnetoelectric effect, or the flexoelectric effect. The existence of this effect was first 
pointed out by Bar’yakhtar et al.7. The inhomogeneous magnetoelectric effect can be present even in inversion 
symmetric systems. The study of the inhomogeneous magnetoelectric effect has seen a revival after the work of 
Mostovoy8 on the rare earth manganites. Several authors have contributed to an extension of these results to the 
dynamic regime9–16.

In this work, we determine how the magnetization dynamics of multiferroic materials are influenced by inject-
ing spin-waves. Magnon spintronics is an emerging subfield of the field of spintronics which applies spin-waves 
for information transport and processing17,18. By carrying spin currents using magnons rather than electrons, 
large scale charge transport and the associated Joule heating is avoided. Magnons can propagate over centim-
eter distances in low-damping magnetic insulators19, while spin-currents carried by electrons are limited by 
the spin-diffusion length, which is on the order of microns. Magnons also offer exciting possibilities exploiting 
wave-based and nonlinear phenomena, such as the majority gate20–22 and parallel computing23.

One of the principal advantages of magnon spintronics is the wide variety of available magnetic materials and 
interactions, and the large number of other magnetic excitations such as domain walls, vortices and skyrmions. 
For instance, there are obvious opportunities for creating nonvolatile memories based on magnons interacting 
with domain walls24,25 or skyrmions26,27. The properties of such systems can be tuned by exploiting higher order 
magnetic interactions such as the Dzyaloshinskii–Moriya interaction (DMI)28,29, not to mention magnon band 
structure engineering in magnonic crystals18.

We will first consider the effect of an inhomogeneous magnetoelectric coupling on magnetization dynamics 
induced by magnon injection. We demonstrate analytically and numerically that this term produces a reorien-
tation of the time-averaged magnetization, see Fig. 1. A similar reorientation has been identified previously by 
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Manchon et al.30 for a Dzyaloshinskii–Moriya ferromagnet and by Linder31 for a topological insulator–ferro-
magnet heterostructure. Unlike these previous results, the magnitude and direction of the reorientation of the 
magnetization that is due to the inhomogeneous magnetoelectric effect is controllable by the applied electric field; 
not fixed by the material constants. Moreover, the effect is quantitatively much larger than in the Dzyaloshinskii–
Moriya case.

Second, we determine how the inhomogeneous magnetoelectric effect alters magnetic domain wall motion. 
The case of magnetic field-driven domain wall motion has been considered previously by Chen et al.32, whereas 
Dzyaloshinskii33 and Logginov et al.34,35 have considered domain wall motion driven by an inhomogeneous elec-
tric field. Magnon-induced domain wall motion in ordinary ferromagnets was first considered by Mikhailov and 
Yaremchuk36, and more recently by Yan et al.24 who showed that conservation of angular momentum will drive 
the domain wall towards the spin-wave source. In response to puzzling numerical results showing domain wall 
motion away from the spin-wave source, Yan et al.37 have developed a theory of linear momentum transfer from 
spin-waves to domain walls. Linear momentum transfer has later been used to explain the dependence of the 
direction of domain wall motion in Dzyaloshinskii–Moriya ferromagnets on the sign of the material dependent 
DMI constant38. Interestingly, we find that for magnon-induced domain wall motion the inhomogeneous mag-
netoelectric effect enables electric field control of both the sign and magnitude of the domain wall velocity, see 
Fig. 2. The domain wall velocity scales linearly with the applied electric field.

Magnon-induced dynamics in homogeneously magnetized multiferroics
As shown in Fig. 1, we consider a ferromagnetic wire that exhibits the inhomogeneous magnetoelectric effect. In 
the continuum limit, the magnetization can be described by a vector field m(r, t). The free energy of this system 
can be written as

∫ ∫
∫

= 
 ∇ + ∇ + ∇ 

 − −

− ⋅ .

−
⊥m r r

E P r

F A
m

m m m m Km K m[ ] ( ) ( ) ( ) d ( ) d

( ) d (1)

x y z x z2
2 2 2 2 2 2

Here, A is the exchange stiffness, m is the saturation magnetization, K is the easy axis anisotropy constant and 
K⊥ is the hard axis anisotropy constant. The easy axis of magnetization is taken to be along the length of the wire 
and is dominated by shape anisotropy. If the wire cross-section is not circular, the shape anisotropy will also 
contribute a perpendicular hard axis anisotropy. The effective constant K⊥ can also contain contributions from 
magnetocrystalline anisotropy. The final term is the inhomogeneous magnetoelectric interaction. E is the applied 
electric field and P is the induced electric polarization8,

γ= ∇ ⋅ − ⋅ ∇ .P m m m m[ ( ) ( ) ] (2)0

Figure 1. Magnetization reorientation by the magnon-mediated magnetoelectric torque. When an 
electric field is applied to a homogeneously magnetized sample, nothing happens. When a magnetic 
inhomogeneity is introduced in the form of spin-waves, the interaction between the applied electric field 
and the induced electric polarization produces a shift in the time-averaged magnetization that is linear in the 
applied electric field.

Figure 2. Controlling the domain wall velocity by the magnon-mediated magnetoelectric torque. In 
the absence of an applied electric field, the magnetic domain wall travels towards the spin-wave source. The 
magnitude of the velocity is determined by the spin-wave excitation amplitude, the distance from the source 
and the spin-wave frequency. By application of an electric field the domain wall can be made to stop and change 
direction of motion. The velocity of the domain wall is linear in the electric field.
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γ0 is the inhomogeneous magnetoelectric coupling constant.
We describe the time dynamics of the magnetization using the Landau–Lifshitz–Gilbert (LLG) equation39–41,

γ α
∂ = × − × ∂m m H m m

m
, (3)t t

where H(r, t) is the effective magnetic field acting on the magnetization, γ is the gyromagnetic ratio and α is the 
Gilbert damping parameter. We assume that γ <  0 and α <  0. The effective magnetic field is given by the func-
tional derivative of the free energy with respect to the magnetization, H =  − δF/δm. This gives rise to the effective 
field

γ= ∇ + − + ∇ ⋅ − ∇ ⋅⊥H m e e m E E mA
m

K
m

m K
m

m2 2 2 2 [( ) ( )],
(4)x x z z2

2
2 2 0

where we have assumed that the electric field is independent of position.

Perturbation theory. We calculate the magnon-induced dynamics perturbatively by considering devia-
tions from a homogeneous magnetization parametrized in the small excitation parameter h. For this purpose the 
magnetization is most conveniently written out in a spherical frame as shown in Fig. 3. To second order in h the 
magnetization is42
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θ φ rs t( , )/
(1)/(2)  is the first (second) order spin-wave excitations in the θ- (φ)-direction. For small h the linear terms 

dominate, reproducing the usual spin-wave expansion24. The second order excitations take into account the fact 
that the magnetization along the r-direction is reduced for stronger excitation30. Δ mθ/φ(r) correspond to a 
steady-state reorientation of the magnetization that might be induced by the spin-waves. Since spin-waves in an 
ordinary ferromagnet do not induce such deviations, these deviations must be of second order in h or higher30. 
The second equality follows from the micromagnetic normalization criterion m · m =  m2 and is accurate to second 
order in h. For ease of notation, we have written =θ φ θ φr rs t s t( , ) ( , )/

(1)
/ .

Static magnetization. For simplicity, we assume that our system is one-dimensional so that ∇ = ∂ ex x and 
∇ = ∂x

2 2. We consider now in turn the equations of our perturbation theory. By inserting the ansatz (5) into the 
LLG equation (3) using the effective field (4) we get two nontrivial equations to zeroth order,

γ θ φ φ

γ θ θ φ

=

+ = .
⊥

⊥

K
K K

2 sin cos sin 0,
2 cos sin ( sin ) 02

Figure 3. For the spin-wave perturbation theory the magnetization is most conveniently written out 
in a spherical coordinate system. When the magnetization is homogeneous, θ and φ are assumed to be 
independent of position and time. In the case of a domain wall our objective is to consider the dynamic 
response of a nonuniform magnetization texture. Consequently, θ and φ must be position- and time-
dependent.
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These are the θ- and the φ- component, respectively. The zeroth order equations give the static magnetization 
direction. We see that one solution is to set both angles to zero, θ =  0 and φ =  0. This solution is unchanged by 
adding an integer multiple of π to either angle.

Spin-wave amplitudes. As in any perturbation theory43, the first and higher order equations vanish identically 
when the excitation parameter h goes to zero. Thus, h →  0 leaves us with the static problem. For first and higher 
orders of the perturbation theory the excitation parameter h is merely a convenient accounting device and can 
be treated as h →  1. To first order in h we once more get two nontrivial equations corresponding to the θ- and 
φ-components,

γ α
γ

∂ = −




∂ − − − ∂




θ φ⊥s

m
A K K m s2

2
,

(6)
t x t

2

γ α
γ

∂ = +




∂ − − ∂





.φ θs

m
A K m s2

2 (7)
t x t

2

To solve these equations we make the assumption that the time-dependence is purely harmonic, sθ/φ(x, t) =  sθ/φ(x) 
×exp(− iωt). Equations (6) and (7) can be recast into one single equation by introducing the auxiliary variable 
ψ(x) =  sθ(x) +  icsφ(x). We multiply equation (6) by ic and subtract equation (7). By requiring that the coefficient of 
sφ is ic times that of sθ we get a second order equation in c. Solving this equation we find that 

γ γ ω ω= − ± +⊥ ⊥c K K m m[ ( ) ]/2 2 2 2 1/2 . Although both signs are allowed mathematically, we must choose the one 
that makes sense physically. By choosing the minus sign we get real wave numbers in the intermediate steps lead-
ing up to the dispersion relation in equation (10). Thus, keeping to this choice we find the equation

γ ψ γ γ γ ω αω γ ψ∂ =


 + − + −



⊥

−
⊥

A
m m

K K K m im2 2 /
(8)x

2 1 2 2 2 2

for ψ(x). This equation is solved by the ansatz that ψ(x) is a damped harmonic, ψ(x) =  ρ exp(ikx) exp(− ηx/Γ ). 
Here, ρ is the amplitude of the excited spin-waves at the spin-wave source; η =  sgn(x), and by choosing k >  0 
we ensure that ψ represents damped waves traveling away from a source at the origin. If we substitute our 
ansatz for ψ back into equation (8) and separate the real and imaginary part we find expressions for the 
damping length44

γ
αω

Γ =
Ak

m
4

(9)

and for the dispersion relation24

ω γ
= + + + .⊥m

Ak K K Ak K4 ( )( )
(10)

2
2

2
2 2

The dispersion relation we have obtained is the usual dispersion relation for an ordinary ferromagnet. We do 
not observe the linear shift reported by Mills and Dzyaloshinskii13 because the spin-wave propagation direc-
tion is parallel to the direction of the static magnetization. We make further comments on the case where the 
wave vector, the applied electric field and the static magnetization are mutually orthogonal at the end of this 
section.

Having obtained a solution for ψ we need a second condition to solve for the spin-wave components. A rea-
sonable condition is that they should be real, which gives

ρ ω η= + − − Γθs x t kx t x( , ) cos( ) exp( / ), (11)

ρ ω ω η

γ γ ω
= −

− − Γ

− +
.φ

⊥ ⊥

s x t m kx t x

K K m
( , ) sin( ) exp( / )

(12)2 2 2 2

Magnetization reorientation. Only the θ- and the φ-components contribute nontrivial equations to second order 
in h,

γ γγ





−




∆ = ∂ − ∂θ φ φ θ φm

A
x

K m E s s E s s2 d
d

2 ( )
(13)

y x z x

2

2 0

γ γγ





− −




∆ = ∂ − ∂φ θ θ φ θ⊥m

A
x

K K m E s s E s s2 d
d

2 ( )
(14)

z x y x

2

2 0

As we have already obtained expressions for the spin-wave components from the first order equations, these 
are ordinary differential equations on Δ mθ and Δ mφ. By assumption, these are time-independent and we remove 
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the time-dependence from the right-hand side by averaging over one spin-wave period 2π/ω. The fact that the 
spin-waves are exponentially damped provides us with the boundary conditions limx→±∞Δ mθ/φ(x) =  0. The 
resulting solutions are

ηρ ω γ ω γ η

γ ω γ
∆ = −

Γ 
 + Γ + 

 − Γ

− − − Γ⊥ ⊥

m x
m E Ak K k E m x

K m K Ak K A K
( )

( ) /2 exp( 2 / )

4 ( /4 )(4 )
,

(15)
y

z y
2 2

0
2

2 2 2 2 2

ηρ ω γ ω γ η
∆ = −

Γ 
 + − Γ 

 − Γ

+ − Γ + ⊥

m x
m E Ak K m E k x

Ak K A K K
( )

( )/ /2 exp( 2 / )

( )(4 ( ))
,

(16)
z

z y
2 2

0
2

2 2

where we have switched to Cartesian coordinates for clarity.
This demonstrates the existence of a magnon-mediated magnetoelectric torque acting on the homogeneous 

magnetization. Within the limits of validity of a perturbative theory, the magnitude of this torque scales linearly 
with the applied electric field. Its direction is controlled by the direction of the applied field. In the absence of a 
perpendicular anisotropy the relative magnitude of the two reorientation components is

∆

∆
= −

+ Γ

Γ −

m
m

E E k
E k E

y

z

y z

y z

For relevant damping lengths and wave numbers Δ mz dominates Δ my by a factor of ~106 when the electric field 
is applied in the y-direction and vice versa when the electric field is applied in the z-direction.

Induced polarization. The induced time-averaged electric polarization is directly proportional to the reorienta-
tion of the magnetization

η γ
=

Γ
∆ .P mm2

(17)
0

However, while the reorientation of the magnetization changes sign at the origin (position of the source), the 
polarization does not due to the extra factor of η =  sgn(x).

Although the polarization is directly proportional to the magnetization reorientation, their behavior in the 
limit α →  0 differs due to the extra factor of 1/Γ . In the limit where the damping is large (α →  ∞  and Γ  →  0) all 
dynamics is quenched, and both Δ m and P go to zero. However, in the limit where there is no damping (α →  0 
and Γ  →  ∞ ) the time-averaged polarization goes to zero, as pointed out by Mostovoy8, but we still observe a finite 
magnetization reorientation.

Simplified mechanism. The simplest possible system that exhibits a magnon-mediated magnetoelectric torque 
is a homogeneously magnetized sample. The spin-wave propagation in this system is illustrated by the damping-
less spin-chain in Fig. 4. Writing the magnetization of this chain as m(x, t) =  mex +  sy(x, t)ey +  sz(x, t)ez we get a 
contribution

γ γ= ∂ − ∂ = − ∂H e e eE m s E s2 ( ) 2x y x y x x y xme 0 0

Figure 4. A spin-wave in a homogeneously magnetized sample. In the inset (down left) the weight of the 
stroke in the circle indicates the average time spent in that part of the circle over one period.
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to the effective field from the inhomogeneous magnetoelectric effect when E =  Eey. If this contribution to the 
effective field had been constant on the time-scale of the spin-waves, it would only have changed the precession 
frequency. However, it is not. The torque exerted on the magnetization is

γ γγ× = ∂ − ∂ .m H e eE s s s s2 ( )y x y z z x y yme 0

When averaging over one oscillation period the z-component vanishes; thus, the magnetization experiences a net 
torque in the positive y-direction (γ <  0),

γ γγ× = − ∂ .m H eE s s2 (18)z x y yme 0

As illustrated in the inset of Fig. 4, this torque opposes the precession of the spin when it moves in the negative 
y-direction and boosts the precession of the spin when it moves in the positive y-direction. When the spins pre-
cess in the counterclockwise direction, sz >  0 in the half-period where the spins are slowed by the magnetoelectric 
torque and sz <  0 in the half-period where the spins are accelerated by the magnetoelectric torque. If we average 
over one period, the spins spend more time having sz >  0 than sz <  0, so the end result is that the system has 
acquired a net magnetic moment in the positive z-direction.

This mechanism can also be used to explain the results of Manchon et al.30 and Linder31, as is easily seen by 
repeating the calculation above using the effective fields employed in these papers. As such, it represents a uni-
fying framework for magnon-mediated torques on the homogeneous magnetization. In particular, it identifies 
the following criterion for a system to exhibit similar magnon-mediated torques: That the effective field should 
contain a gradient of one of the transverse magnetization components.

Upon introducing the expansion (5) of the magnetization in h, we stated that the reorientations of the mag-
netization Δ mθ/φ(r) are of second order in h or higher since spin-waves in an ordinary ferromagnet do not induce 
such deviations. The fact that equation (18) is second order in the spin-wave amplitudes provides justification that 
Δ mθ/φ(r) are in fact exactly of second order.

Full numerical solution. To get further insight into the properties of the magnon-mediated magnetoelectric 
torque we solve the LLG equation numerically using an adaptive centered implicit scheme for time and space 
discretization in Maple45. We use the effective field given in equation (4) and material constants corresponding to 
the iron garnets (BiR)3(FeGa)5O12 (R =  Lu, Tm) considered by Logginov et al.34,35, see Table 1. We solve the system 
on a grid that is 8 μ m long at grid-points spaced 4 nm apart. The system is initially homogeneously magnetized 
in the x-direction. Spin-waves are excited by applying a magnetic field H(t) =  H0 sin(2πf t)ey to 24 grid-points at 
either side of the origin. The excitation amplitude is H0 =  0.2 T and the excitation frequency is kept at 5 GHz. To 
avoid spin-wave reflection at the sample ends, we implement absorbing boundary conditions by increasing the 
Gilbert damping to |α| =  1 inside 1 μ m wide regions at either end of the sample44. The electric field is applied in 
the y-direction, E =  Eey, and we set the perpendicular anisotropy to zero.

Figure 5(a) illustrates the symmetry of the effect. These steady-state magnetization profiles have been obtained 
for an applied electric field of ± 1.5 V/cm. As can also be seen from equation (16) the sign of the torque is deter-
mined by the propagation direction of the spin-waves, thus the resulting magnetization is antisymmetric about 
the spin-wave source. The torque also scales linearly with the applied electric field, so switching the sign of the 
field switches the sign of the magnetization reorientation.

Figure 5(b) through Fig. 5(d) shows a plots of the time-averaged analytical expression (16) versus the cor-
responding numerical profile for three different field values. The perturbation theory successfully predicts the 
magnitude and spatial decay of the torque. As can be seen from equation (16), the decay length of the magnet-
ization reorientation is half that of the spin-waves as the reorientation is second order in h. The perturbative 
calculation predicts that the torque should scale linearly with the applied electric field. Plotting the magnetiza-
tion shift at a fixed position (x =  0.25 μ m) as a function of the applied electrical field we indeed observe a linear 
field-dependence, see Fig. 5(e).

Comment on the linear shift of the dispersion. Mills and Dzyaloshinskii13 have pointed out that the 
inhomogeneous magnetoelectric effect will produce a shift of the spin-wave frequency with respect to that of an 
ordinary ferromagnet on the form

ω∆ = − × ⋅ .E M kC ( ) (19)s

Parameter Value Unit

Gyromagnetic ratio, γ − 26 GHz/T

Magnetization, m 6 kA/m

Exchange stiffness, A 5 pJ/m

Easy axis anisotropy, K 0.5 kJ/m3

Gilbert damping parameter, α − 0.05 1

Inhomogeneous magnetoelectric coupling, γ0 0.1 psm/A

Table 1.  Material constants used in the numerical solution of the LLG equation. These values correspond to 
the iron garnets (BiR)3(FeGa)5O12 (R =  Lu, Tm) considered by Logginov et al.34,35.
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Here E is the applied electric field, Ms is the saturation magnetization, k is the spin-wave wave vector and C is 
some positive constant. Liu and Vignale14,15 have established in a microscopic calculation that yttrium iron garnet 
(YIG; Y3Fe5O12) hosts the inhomogeneous magnetoelectric effect and that the phase shift should be observable. 
This experiment was carried out by Zhang et al.16, showing good agreement between theory and experiment. In 
the notation of Liu and Vignale15 the constant C is written

γ
=C

eJ
E

,
so

where γ is the gyromagnetic ratio, e is the electron charge, J =  1.6 · 10−22 Jm/A2 is the YIG exchange coupling and 
the energy Eso =  4.8 · 10−19 J is inversely proportional to the strength of the YIG spin-orbit coupling.

In the notation of Mills and Dzyaloshinskii13, which is closer to our notation, the constant C can be writ-
ten C =  − |γ|b, where b is the inhomogeneous magnetoelectric coupling constant b =  b1 +  b2 used by Mills and 
Dzyaloshinskii. Thus, for YIG we can calculate γ0 =  b1 =  b2 to be

γ = = . ⋅ .−eJ
E2

2 7 10 sm/A0
so

23

While this value is large enough to produce a measurable spin-wave phase shift, it is far too small to produce a 
measurable reorientation of the time-averaged magnetization in YIG without exceeding the dielectric breakdown 
field. However, by turning this argument around, the difference of about ten orders of magnitude indicates that 
it should be possible to observe gigantic phase shifts if one were to redo the experiment of Zhang et al. using the 
iron garnets of Logginov et al.

Writing out the frequency shift as a triple product on the form of equation (19), as was done by Mills and 
Dzyaloshinskii13, emphasizes the importance of the experimental geometry in order to observe this effect. Such 
geometrical considerations will also be of importance for observing the magnetization reorientation, as is easily 
seen by repeating the perturbative calculation leading up to equations (15) and (16) for perpendicular m and k. 
In this geometry, which is the geometry of Liu and Vignale15 and of Zhang et al.16, no magnetization reorientation 
is observed.

Figure 5. Numerical results for magnon-mediated magnetoelectric torque. When the electric field is applied 
in the y-direction the magnetization reorientation takes place in the z-direction. (a) Symmetry of the effect. 
Steady-state magnetization profiles obtained for E =  ± 1.5 V/cm. The sign of the torque is determined by the 
propagation direction of the spin-waves, thus the resulting magnetization is antisymmetric about the spin-
wave source (x =  0). The torque also scales linearly with the applied electric field, so switching the sign of the 
field switches the sign of the magnetization reorientation. (b) through (d) Time-averaged analytical fit to the 
numerical profiles. The analytical theory successfully predicts the magnitude and spatial decay of the torque. 
The decay length of the spin-waves is twice that of the torque. (e) Linear dependence on applied field. Plotting 
the magnetization shift at a fixed position (x =  0.25 μ m) as a function of the applied electrical field we observe a 
linear field-dependence.
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Further insight can be gained by a closer inspection of the magnetization curves in Fig. 6(a). Here, an electric 
field-dependent phase shift can be observed which does not follow from the first order dispersion relation (10), 
but which is a higher order effect. This field-dependent difference in wavelength is easily recognized in the power 
spectrum shown in Fig. 6(b), which reveals an increase in wavenumber (decrease in wavelength) at E =  1.5 V/cm 
as compared to zero applied field.

Proposals for experiments. The effect we predict is dependent on a reasonable value for the inhomogene-
ous magnetoelectric coupling constant. One particular class of such materials are the rare earth manganites con-
sidered by Mostovoy8, which have a spiral magnetization. Another class of materials which potentially hosts the 
inhomogeneous magnetoelectric effect is the iron garnets studied by Logginov and co-workers34,35, which admit a 
homogeneous magnetization. We have used material values corresponding to these garnets in the numerical part 
of this work. The mechanism behind the experimental observations of Logginov et al. is currently debated35,46. 
Whether or not it turns out that these iron garnets host an inhomogeneous magnetoelectric effect is irrelevant to 
the main message in the present paper. We only use these compounds as an example.

In materials with the Dzyaloshinskii–Moriya interaction the crystal structure favors a canted spin structure28,29. 
Sergienko and Dagotto3,47 have suggested how the inverse mechanism, a form of exchange striction, can give rise 
to the inhomogeneous magnetoelectric effect. This model is usually applied to large magnetic structures such as 
magnetic spirals and domain walls, which are on the energy scale of the demagnetization field. To carry this—or 
any other ionic displacement mechanism48—over to weaker magnetic inhomogeneities such as spin-waves is not 
trivial. It is not obvious that a coupling constant measured using a domain wall34 should be applicable to spin-waves, 
although that is what we assume by using these values.

To detect the magnon-mediated magnetoelectric torque we propose to either measure the magnetization 
reorientation directly or to measure the induced polarization. As pointed out previously, the reorientation 
scales linearly as a function of the electric field and decays exponentially away from the source. Using the 
example values from Fig. 5(e), a reorientation on the order of 480 A/m should be unproblematic at a distance 
of 0.25 μ m away from the source for an applied electric field of 1.5 V/cm. Polar MOKE (magneto-optic Kerr 
effect) techniques have previously been successfully applied to measure magnetization reorientations on the 
order of 56 A/m by Fan et al.49 during their study of the spin-orbit torque. As pointed out in the previous 
section, the wave vector of the spin-waves must be parallel to the saturation magnetization to observe the 
magnetization reorientation due to the magnetoelectric torque. An experimental set-up must then use the less 
sensitive longitudinal MOKE50, as illustrated in Fig. 7. However, the effect should still be within the reach of 
current experimental techniques.

The second possibility is to measure the induced polarization. When averaging over the period of oscil-
lation of the spin-waves, we find that the time-averaged polarization is proportional to the induced mag-
netization shift, see equation (17). For the material values we have considered, a reorientation of 480 A/m 
corresponds to a time-averaged polarization on the order of 40 μ C/cm2. To measure the polarization, the 
MOKE laser in Fig. 7 would have to be replaced by localized electrodes on the top and on the bottom of the 
structure.

Magnon-induced domain wall motion in a multiferroic
As shown in Fig. 2, we consider the same ferromagnetic wire as in the previous section, but assume now that it 
contains a Néel domain wall. (Bloch domain walls induce no electric polarization and are immune to magne-
toelectric effects7,8).

Figure 6. Higher order phase shift due to the magnon-mediated magnetoelectric torque. (a) Visibility of 
phase shift in magnetization profiles. Steady-state magnetization profiles obtained for E =  1.5 V/cm and in 
the absence of an applied electric field. A higher order correction of the ordinary ferromagnetic dispersion 
relation induces a phase shift when the electric field is applied. (b) Power spectral density of the magnetization 
profiles in (a) computed from the data to the right (left) of the source. In the presence of an applied electric 
field the power spectrum exhibits two peaks. The peak to the left is an artifact introduced by the magnetization 
reorientation. The one to the right—which corresponds to the spin-wave—is slightly displaced towards higher 
wavenumbers (smaller wavelengths) as compared to the zero field case.
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Perturbation theory. We first perform analytical calculations for the magnon-induced domain wall dynam-
ics using a perturbation theory, completely analogous to what we did for the homogeneously magnetized ferro-
magnet. However, this time we let the angles θ and φ from Fig. 3 be time- and position-dependent.

Static magnetization. Just as before, we obtain the equations of our perturbation theory by inserting the ansatz 
(5) into the LLG equation (3) using the effective field (4). To zeroth order in h there is no time-dependence in the 
problem, and we obtain two nontrivial equations,

θ θ θ φ∂ = + ⊥A K Kcos sin ( sin ), (20)x
2 2

γ θ φ γ θ φ φ φ∂ − ∂ − = .⊥E E K
m

( ) sin ( ) cos 2 cos sin 0
(21)y x z x0 0 2

Equation (20) gives us the well known Walker domain wall profile51 for θ. Thus, the ground state of the system is a 
head-to-head or a tail-to-tail Néel wall. For φ =  nπ, n =  0, 1, 2, … , which minimizes the perpendicular anisotropy 
energy, equation (21) demands that Ez =  0, that is, no electric field component along the hard axis. For K⊥ =  0 
equation (21) can be solved to give φ =  nπ +  arctan(Ez/Ey), n =  0, 1, 2, … . We conclude that unless the electric 
field is applied perpendicular to the hard axis, the inhomogeneous magnetoelectric torque and the perpendicular 
anisotropy torque will compete. For simplicity, we set K⊥ ≡  0 and Ez ≡  0 in the remainder of this section.

Spin-wave amplitudes. Assuming that the domain wall position X(t) is second order in h42, we obtain two non-
trivial equations to first order in h,

γ
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We can get rid of the angle θ using the identities sin θ =  sech ξ and cos θ =  tanh ξ which are valid for a Walker 
domain wall52. Here, ξ =  [x −  X(t)]/λ and λ = A K/  is the domain wall width. Using the same trick as before, we 
can recast these two equations into one equation by introducing the auxiliary variable ψ(x) =  sθ(x) +  icsφ(x). 
However, this time we find that ξ γγ γ γ λ ω ξ λω= 

 − ± + 
c E m E msech ( 1) ( cosh ) /n

y y0
2

0
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This is a Schrödinger-like equation, but in the presence of an electric field the potential deviates from the reflec-
tionless potential of Yan et al.24. The equation is even in ξ, so there is no dependence on the topological charge 
of the wall. However, the factor (− 1)n (n =  0, 1, 2, … ) reveals that the potential is chirality-dependent. Chirality 
dependence was also observed for domain wall motion driven by a magnetic field by Chen et al.32.

Figure 7. Longitudinal MOKE measurement of the magnetization reorientation. Spin-waves are injected 
using a coplanar waveguide as used in PSWS (propagating spin-wave spectroscopy56,57) and the electric field 
is generated by a parallel plate capacitor. The magnetization reorientation decays exponentially away from the 
spin-wave source, but scales linearly with the applied electric field.
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Full numerical solution. The complicated potential in equation (24) makes it difficult to continue the analyt-
ical calculation. However, by solving the LLG equation numerically we can get further insight into the domain wall 
dynamics. We continue to use the iron garnet values from Table 1. We solve the system on an asymmetric grid that 
is 6.5 μ m long at grid-points spaced 4 nm apart. The initial profile is a domain wall with positive topological charge 
(∂ xθ >  0) and positive chirality (φ =  0) centered at the origin. Spin-waves are excited by applying a magnetic field 
H(t) =  H0 sin(2πf t)ey to 24 grid-points at either side of x =  1.2 μ m. The excitation amplitude is H0 =  0.2 T and the 
excitation frequency is kept at 5 GHz. To avoid spin-wave reflection at the sample ends, we implement absorbing 
boundary conditions by increasing the Gilbert damping to |α| =  1 inside 1 μ m wide regions at either end of the 
sample44. The electric field is applied in the y-direction, E =  Eey, and the perpendicular anisotropy is set to zero.

Figure 8(a) is a reproduction of the well-known results of Yan et al.24. In the absence of an applied electric 
field the domain wall moves towards the spin-wave source in order to conserve angular momentum. Figure 8(b) 
shows that the magnon-mediated magnetoelectric torque can be used to reverse the velocity of the domain wall 
and make it travel away from the spin-wave source. The domain wall velocity is a linear function of the applied 
electric field, as shown in Fig. 8(c). At a critical applied electric field the domain wall stops and its direction of 
motion is reversed.

As suggested by Yan et al.37, domain wall motion away from the spin-wave source is caused by linear momen-
tum transfer, with linear momentum formally defined as the generator of magnetic translations53,54. To identify 
the momentum of a magnetization texture is not trivial, and an essential first step is to realize that the linear 
momentum of a ferromagnetic soliton is not directly related to its velocity, but to its configuration. This gives the 
conserved momentum of a domain wall some counter-intuitive properties—for instance, the momentum of a 
stationary domain wall can be nonzero37,53. Following Tchernyshyov53 we calculate the conserved linear momenta 
of a magnetization texture consisting of circularly polarized spin-waves superposed on a Walker domain wall 
(axially symmetric system). The conserved linear momentum attributable to the domain wall and the spin-waves 
is, respectively

φ γ= +P C m2 / , (25)DW
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where C denotes the momentum of the reference magnetization profile. Conservation of momentum, 
0 =  dP/dt =  dPDW/dt +  dPSW/dt, allows us to solve for the rate of change of the azimuthal angle,

∫φ ρ
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m
k x

2( 2 )
d ,

2

2 2

where the dot denotes a time-derivative. Thus, a change in the linear momentum (wavenumber) of the spin-waves 
generates domain wall rotation. This suggests that an effective description of the induced dynamics can be made 
in terms of an applied magnetic field37,38. In an axially symmetric system (no perpendicular anisotropy) the col-
lective coordinate equations of a Walker domain wall subject to an applied magnetic field read55,

α φ γ+ = − H(1 ) , (27)2

α
λ

αγ+ = +
X H(1 ) ,

(28)
2

(γ <  0, α <  0). This gives

Figure 8. Numerical results for electric field-controlled domain wall motion in a multiferroic. The applied 
electric field can control both the direction and the velocity of the domain wall. (a) Zero applied field. In the 
absence of an applied electric field the domain wall moves towards the spin-wave source to conserve angular 
momentum. (b) Applied electric field. With an applied electric field the domain wall can be made to move away 
from the spin-wave source. (c) Linear dependence of the domain wall velocity on the applied electric field. The 
domain wall velocity is a linear function of the applied electric field. For some critical field the domain wall 
stops and its direction of motion is reversed.
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The resulting domain wall velocity, X , is small since it is proportional to the Gilbert damping. In the case of a 
domain wall driven by an applied magnetic field, the domain wall velocity can be increased drastically at small 
driving fields by breaking the axial symmetry of the system using a perpendicular anisotropy. Wang et al.38 argued 
that the above effective description of linear momentum transfer can be carried over to this case and that an equa-
tion similar to equation (29) is valid even in the presence of a perpendicular anisotropy. Using this description 
they were able to explain domain wall motion driven by linear momentum transfer from spin-waves in a 
Dzyaloshinskii–Moriya ferromagnet.

In the present case, the axial symmetry of the system is broken by the applied electric field. Since we have not 
been able to solve equation (24) for the spin-wave amplitudes, we are not able to repeat the analysis leading up to 
equation (29) in the presence of the inhomogeneous magnetoelectric effect. However, we argue that—just as for 
the Dzyaloshinskii–Moriya ferromagnet—the underlying physics is the same and that linear momentum transfer 
from the spin-waves leads to domain wall motion that can be described using an effective Zeeman field.

The mechanism of momentum transfer from the spin-waves to the domain wall is somewhat similar to the 
one suggested by Wang et al.38 for linear momentum transfer in the presence of the Dzyaloshinskii–Moriya inter-
action. As can be seen in Fig. 9(a) the application of an electric field does not cause significant spin-wave reflec-
tion off the domain wall. However, in the presence of an electric field the wavelength changes upon spin-wave 
transmission through the domain wall. This is captured by the power spectrum in Fig. 9(b). The reduction of the 
spin-wave wavenumber upon transmission implies that the transmitted spin-waves carry less linear momentum. 
This change in linear momentum is absorbed by the domain wall.

Since the effective Zeeman field is linear in the momentum transfer37,38 and the domain wall velocity is a linear 
function of the applied magnetic field below Walker breakdown32,51, the linear dependence of the domain wall 
velocity on the electric field in Fig. 8(c) must be taken as a sign that the momentum transfer is linear in the applied 
electric field, just as it is linear in the DMI constant38. This is not too surprising, given the linear dependence on 
the electric field found in equation (24). The dependence of the momentum transfer on the electric field can also 
be observed in a sequence of power spectrums like the one in Fig. 9(b) taken at increasing electric fields. As the 
electric field is increased, the wavenumber of the spin-waves to the right of the domain wall is shifted away from 
the zero field peak, which is just what we pointed out for the homogeneously magnetized case in Fig. 6(b).

Conclusion
To conclude, we have demonstrated analytically and numerically that the inhomogeneous magnetoelectric effect 
induces a magnon-mediated reorientation of a homogeneous magnetization, and we have provided an explana-
tion of the mechanism behind this effect. This reorientation is not fixed by material constants like the ones dis-
covered for Dzyaloshinskii–Moriya ferromagnets by Manchon et al.30 and for topological insulator–ferromagnet 
heterostructures by Linder31, but is tunable by the applied electric field. Its magnitude increases linearly with the 
electric field and an effect on the order of 8% of the saturation magnetization should not be problematic. This 
is almost an order of magnitude larger than the reorientation reported by Manchon et al. for Dzyaloshinskii–
Moriya ferromagnets.

Figure 9. Electric field-dependent linear momentum transfer to the domain wall. (a) Phase shift difference 
before and after domain wall transmission. Steady-state magnetization profiles obtained for E =  1.5 V/cm and 
in the absence of an applied electric field. To the right of the wall (before transmission through the domain 
wall) there is a pronounced phase shift between the spin-waves in the two magnetization profiles. To the left 
of the wall (after domain wall transmission) the wavelengths of the spin-waves are practically identical. (b) 
Power spectral density of the magnetization profiles in (a) computed from the data to the right (left) of the 
source. The spurious peak in the power spectrum is now absent as there is no reorientation of the y-component 
of the magnetization. Whereas the position of the peak in the power spectrum is unchanged upon spin-wave 
transmission through the domain wall in the zero field case, the peak is shifted towards smaller wavenumbers in 
the presence of an applied electric field. This corresponds to a transfer of linear momentum to the domain wall.
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We have also shown that the sign and magnitude of the velocity of a magnon-driven domain wall can be con-
trolled by the applied electric field in the presence of the inhomogeneous magnetoelectric interaction. Domain 
wall motion towards the spin-wave source is due to angular momentum conservation while domain wall motion 
away from the source is due to linear momentum transfer. The mechanism of linear momentum transfer is quite 
similar to the mechanism suggested by Wang et al.38 for Dzyaloshinskii–Moriya ferromagnets, and the domain 
wall velocity scales linearly with the electric field.
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The ν = 0 quantum Hall state in graphene has attracted experimental1-11 and theoretical12–18 interest. 

Graphene supports four zero-energy Landau levels which are described by spin and valley degeneracies. 

These lead to a number of approximately degenerate symmetry-broken states12,14. Electron-electron and 

electron-phonon interactions break valley-symmetry and determine the ground state of the ν = 0 state. The 

consensus emerging from theory16–18 and experiment3,8,9,11 is that these interactions favour an 

antiferromagnetic insulating state which supports long-range spin-polarized edge transport3,11. Here we 

report a competition between canted antiferromagnetic and ferromagnetic quantum Hall states in graphene 

placed on a ferrimagnetic insulator Y3Fe5O12 (YIG), which induces a uniform magnetic exchange field in 

graphene of the order 60 T. The magnetic order and energy gap of the edge modes in graphene are tunable 

with an 8 T out-of-plane magnetic field at 2.7 K.  

A magnetic field parallel (B∥) to the plane of graphene can promote a ferromagnetic (F-) state9. In 

general, however a competition between antiferromagnetic (AF-) and F-states leads to a canted 

antiferromagnetic (CAF-) state in which the spins are tilted parallel (as preferred by the Zeeman field) and 

perpendicular (as preferred by the interactions that favour AF order) to the magnetic field, pointing in 

opposite directions in the two sublattices as schematically illustrated in Fig. 1. The CAF-state 

continuously interpolates between the AF- (θ = π/2) and F-states (θ = 0), where θ is the angle between the 

spins and magnetic field. In the AF-state, charged edge excitations are gapped, but the F-state supports 

gapless counterpropagating edge modes15,17. Therefore, in the CAF-state the energy gap of the edge modes 

is tunable with a magnetic field with a gap at θ = π/2 which vanishes at θ = 0 (Ref. 17), and a competition 

between the CAF- and F-states can be detected by transport measurements9. Although a tunable energy 
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gap is interesting for applications, the magnetic field required to control the energy gap in graphene is of 

the order 15-30 T (Ref. 9). 

Here we induce an intrinsic magnetic exchange field in graphene on YIG of the order 60 T. The 

magnetic order and the energy gap of the edge modes in graphene can be tuned more efficiently than in 

the absence of YIG by varying the magnitude and direction of a magnetic field. In particular, out-of-plane 

magnetic fields (B⊥) excite transitions between different ν = 0 quantum Hall states in graphene. The 

tunability of the magnetic order and the energy gap of the edge modes in graphene are probed through 

nonlocal resistance (Rnl) vs. gate voltage (VTG) measurements as a function of B⊥ and temperature (T) in 

Hall bars. The functional form of Rnl(B⊥) is found to evolve from a single- to a double-peak structure, 

which is consistent with theory and demonstrates a competition between F- and CAF-states (Fig. 1) in 

magnetized graphene.  

Edge states in graphene lead to nonlocal transport and invalidate the concept of a local resistivity 

tensor19. For ballistic transport, Rnl is quantized to values which depend on device geometry19, but in 

graphene on YIG the edge modes are not fully protected against backscattering and device dimensions are 

larger than the mean free path for charge scatter meaning values of Rnl are non-universal. Nevertheless, 

they provide a robust signature for the presence of edge modes as we explain here. The edge spectrum for 

AF-, CAF- and F-states are different and distinguishable by measuring Rnl(VTG): the AF-state does not 

support edge modes and Rnl is zero; however, the CAF- and F-states do support edge modes meaning Rnl 

is nonzero. For the CAF-state (F-state), the edge mode is gapped (gapless) and Rnl(VTG) has a double-peak 

(single-peak) structure (Fig. 1). We demonstrate a transition from a single- to a double-peak in Rnl(VTG) 

with B⊥ from 8 T at 2.7 K. Although these results are consistent with theory17, values of B⊥ are lower than 

expected for isolated graphene (i.e. in the absence of a magnetic substrate) and T-transition is an order of 

magnitude higher9. From theory we estimate a magnetic exchange field in graphene due to YIG of the 

order 60 T (consistent with theory20–23), which acts to lower the magnetic field required to interpolate 

between F- and CAF-states. 

Recently, Wei et al. probed nonlocal transport in graphene/EuS Hall bars24 in which the EuS is a 

ferromagnetic semiconductor but the ν = 0 states were not reported. In our experiment, we chose YIG 

since it has a Curie temperature of 550 K (compared to 16.5 K for EuS), a wide bandgap of 2.84 eV 

(1.65 eV for EuS) and is chemically stable. Furthermore, YIG has an electrical resistivity of 1012 ⋅cm, 

which isolates electrical transport to graphene.  
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Atomically flat (110) YIG (84-nm-thick) is grown by pulsed laser deposition (see Fig. 2a and 

Methods) onto single crystal gadolinium gallium garnet with a volume magnetization of 144 emu cm-3 

(fig. S3), matching bulk YIG25. Magnetoelectric properties in graphene on YIG are investigated by 

fabricating Hall bars in several steps involving exfoliation of graphene from graphite and dry transfer onto 

YIG. Electron beam lithography is used to define Au/Cr electrodes (see Methods). The graphene is capped 

with thickness of 20-50 nm hexagonal boron nitride (hBN) and has a typical field-effect mobility of 

 ~ 10,000 cm2 V-1 s-1 at 9 K with a 40-nm-thick AlOx top-gate (Fig. 2a, left inset). We note that  is higher 

than previous reports for exfoliated23 or chemical vapour deposited26–28 graphene on YIG. Control Hall 

bars of hBN/graphene/AlOx/YIG ( ~ 15,000 cm2 V-1 s-1 at 9 K) and hBN/graphene/SiO2 ( ~ 

3,000 cm2 V-1 s-1 at 9 K) are investigated in which graphene is decoupled from YIG. The AlOx decoupling 

layer has a thickness of ~6 nm while the SiO2 is a thermally oxidized layer on silicon. Before Hall bar 

fabrication, Raman spectroscopy is performed on the graphene/SiO2 prior to and following transfer onto 

YIG or AlOx (Fig. 2b). Both before and following transfer onto YIG, we do not observe smearing of the 

2D-peak or an additional D-peak (Fig. 2b). The left inset of Figure 2a shows a representative 

hBN/graphene/YIG Hall bar (prior to top-gate deposition). Longitudinal resistance (Rxx) and Rnl are 

measured using lock-in amplifiers (see Methods). For local measurements, I9,10 indicates a current flowing 

between contacts 9 and 10 and a local voltage V3,5 is measured between contacts 3 and 5 giving Rxx = 

V3,5/I9,10. For Rnl, V is probed away from the current path, e.g. Rnl = R34,56 = V5,6/I3,4. 

We first focus on nonlocal measurements of hBN/graphene/YIG Hall bars in zero magnetic field. 

Figure 2c shows a peak in Rnl ~380 Ω at the Dirac point (VD). By normalizing Rxx and Rnl to their respective 

values at VD (Rxx,D or Rnl,D), we observe that Rnl/Rnl,D is an order of magnitude smaller than Rxx/Rxx,D and 

the peak in Rnl is sharper than Rxx. These indicate a contribution from the ordinary spin Hall effect29 and 

possibly the Zeeman spin Hall effect since YIG has a small remnant out-of-plane moment27. Ohmic, Joule 

heating and Ettingshausen contributions to Rnl are ruled out as shown in Supplementary Sections 2 and 4. 

Equivalent zero field measurements on hBN/graphene/SiO2 (fig. S7) and hBN/graphene/AlOx/YIG 

(fig. S8) reveal reduced Rnl values at VD (less than 65 Ω at 9 K in both cases) compared to 

hBN/graphene/YIG despite larger mobility. 

In Figures 3a,b we have plotted Rxx(B⊥) and Rnl(B⊥) for a hBN/graphene/YIG Hall bar. Shubnikov-

de Haas oscillations are clearly visible in Rxx and Rnl (Fig. 3a) where Rnl/Rnl,D falls two orders of magnitude 

below Rxx/Rxx,D, consistent with induced magnetism in graphene24. The Onsager relation R56,78 (B⊥) = R78,56 
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(–B⊥)  R78,56 (B⊥) holds for Rnl (Fig. 3b) indicating it includes a contribution from the Zeeman spin Hall 

effect24. With the help of magnetic exchange field and Zeeman field in graphene, a spin-polarized state 

with nonzero spin Hall conductivity is stabilized as a precursor of the ν = 0 F-state. Figure 3c shows a fan 

chart of VTG – VD as a function of B⊥ for Landau levels at filling factors –14 ≤ ν ≤ +14. The dashed lines 

are calculated voltages at different Landau level filling factors. The calculated values of VTG – VD agree 

with the experimental results indicating negligible orbital effects in hBN/graphene/YIG24. Figures 3d-f 

show Rxx vs. VTG – VD plots used for fan chart construction. B⊥ required to quantize the Landau levels is 

smaller than 1 T. 

The energy of a Landau level N is 2

F2nE N eB   , where e is the electron charge, ћ is the 

Planck constant divided by 2, νF is the Fermi velocity, and N = 0, ±1, ±2,…. More quantum Hall plateaus 

σxy = 4(N+1/2)e2/h will appear at filling factors v = 0, ±1,…. The v = 0 at the centre of zeroth Landau level 

is different, as it does not exhibit the deep minimum in Rxx which is a characteristic of the quantum Hall 

effect for other filling factors. 

Figure 4 shows evidence for a gapped v = 0 insulating state in hBN/graphene/YIG that appears in 

σxy vs. VTG – VD for B⊥ = 12 T, while hints of the zeroth Landau level lifting appear in magnetic fields of 

only 4 T in σxx. Figures 4e,f show σxy vs. VTG – VD where a standard integer family of plateaus is visible 

for B⊥ < 6 T , but for B⊥ > 6 T the ν = 0 plateau initiates along with a splitting in σxx (Figs. 4c,d). A ν = 0 

plateau forms by B⊥ = 12 T (Fig. 4h). Equivalent measurements on hBN/graphene/SiO2 and 

hBN/graphene/AlOx/YIG Hall bars show a transition from ν = –2 to 2 plateaus, but the ν = 0 plateau and 

a splitting in σxx do not appear30.  

The onset of the ν = 0 plateau in hBN/graphene/YIG coincides with a rapid rise in Rxx,D vs. B⊥ 

(Fig. 5a), consistent with a transition to an insulating state. Control Hall bars do not show this behavior 

(fig. S9a) meaning that the presence of YIG promotes the low field formation of the ν = 0 plateau. The 

v = 0 insulating state in hBN/graphene/YIG could arise due to various symmetry-broken states12-14,16-18. 

However, the important role of YIG in stabilizing this state indicates that the magnetically-induced 

exchange field in graphene lowers the energy of the symmetry-broken state, and the CAF-state is the most 

plausible candidate for the insulating v = 0 quantum Hall state appearing with B⊥ . 

The above interpretation is consistent with other observations - e.g. the ν = 0 plateau develops at 

a similar values of B⊥ where a double-peak appears in Rnl(VTG) (Figs. 5c,d) which is expected for the CAF-
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state (Fig. 1c). By increasing B⊥, Rnl,D at the Dirac point approaches zero meaning that the magnitude of 

the edge gap is increasing, consistent with our theoretical calculations that show the angle between 

magnetic field and the direction of the spins in graphene increases with increasing B⊥. The magnitude of 

B⊥ determines the Zeeman energy (Ez = gµBB⊥, where g is gyromagnetic ratio, µB is Bohr magneton) in 

graphene and the valley anisotropy energy related to electronic interactions which favor an AF-state, but 

the valley anisotropy energy increases faster with B⊥. This leads to the phase diagram schematically 

illustrated in Fig. 5g, where B⊥ causes a phase transition from F- to CAF-state30. 

To test the above hypothesis, we investigate the effect of rotating the magnetic field (B) from B∥ 

to B⊥ (Figs. 5e,f). B∥ favors the F-state and will reduce the magnitude of the edge gap, which shows up as 

an increase of Rnl,D. A maxima in Rnl,D will be reached at the phase transition from CAF- to F-state where 

the edge gap vanishes. As the magnitude of B is constant during magnetic field rotation, B⊥ decreases by 

rotating B in-plane and eventually the system is driven out of the quantum Hall regime with decreasing 

Rnl,D. Figures 5e,f confirm these predictions and they are well described by theory that focuses on a 

competition between CAF- and F-states assuming that YIG induces a 60 T magnetic exchange field in 

graphene30. The magnitude of B controlling the magnetic order and the energy gap of the edge modes in 

graphene is of the order of 5-10 T, which is smaller than the 20-30 T field required in the absence of YIG9.  

In conclusion, by placing graphene on YIG a magnetic exchange field in graphene of the order 

60 T is induced which enables low field (8 T) tunability of the magnetic order and energy gap of the edge 

modes in graphene. 
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Methods 

Growth of YIG. (110)-oriented epitaxial YIG is grown from a stoichiometric target by pulse laser 

deposition (KrF laser, wavelength λ = 248 nm) at 750°C in flowing O2 at 0.12 mbar with a pulse fluence 

of 2.2 J cm-2 for 40 minutes and 4 Hz repetition rate onto lattice-matched 5  5 mm2 (110) gadolinium 

gallium oxide. The films are annealed in situ at 850°C for 2 hours in 0.5 mbar of static O2 and subsequently 

cooled at a rate of 5°C min-1. Low angle reflectivity (Fig. 2a) confirms a typical roughness of ~0.14 nm 

and thickness 84 nm. 

Device fabrication. Graphene is prepared by mechanical cleavage from high purity graphite and is 

transferred onto SiO2/Si using pre-fabricated alignment markers. Few-layer hBN flakes (20-50 nm, 

confirmed by atomic force microscopy) are prepared by mechanical cleavage from hBN single crystal. An 

optical mask is prepared for the transfer process of graphene and hBN, which includes three layers: the 

first is a piece of thin transparent glass; the second, a transparent and flexible polydimethylsiloxane 

(PDMS) film, which has two adhesive sides; the third is a thin polycarbonate (PC) film. The selected hBN 

flake is picked up by a transfer system, which includes the optical mask, micromanipulator, hot plate (set 

to 50 °C) and optical microscope. The hBN flake on the optical mask is aligned to the selected graphene 

on SiO2/Si and transfers graphene from SiO2/Si to YIG. After the optical mask touches the YIG substrate, 

the hot plate is set to 180°C to melt the PC film and then the mask is lifted. hBN/graphene is released from 

the PDMS on the glass. Finally, the PC film on the hBN/graphene is dissolved by chloroform. The whole 

transfer process is illustrated in fig. S1. 

Hall bars are fabricated by electron beam lithography (EBL) as shown in fig. S2. A 30-nm-thick 

Al mask layer is patterned by EBL and deposited by electron beam evaporator. The hBN/graphene stack 

is shaped into Hall bar using reactive ion etching with Al mask. Then the sample is rinsed with AZ 326 

MIF developer to remove the Al mask. A double-layer PMMA resist (PMMA 495K A6 and 950K A2) is 

used to pattern the contacts on the hBN/graphene with EBL. 10-nm-thick Cr and 70-nm-thick Au films 

are deposited by electron beam evaporation to define contact layers. The dielectric layer for the top-gate 

is amorphous AlOx (40-nm-thick) prepared by atomic layer deposition with trimethylaluminum (TMA) 

and H2O as precursors at 120°C. The top-gate electrode (10 nm Cr/70 nm Au) is prepared by electron 

beam evaporator. 

Transport measurement setup. Transport measurements are performed using lock-in amplifiers at low 

frequency (7 Hz) using an excitation current of 50 nA at 2.7 K and 100 nA at 9 K as a function of magnetic 

field (0-12 T) and top-gate voltage at varying temperatures (T > 2.5 K). A series resistance of 10 MΩ or 
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100 MΩ is introduced to maintain a constant current condition that is confirmed by the signal from the 

lock-in amplifier which measures the current fed through a 10 kΩ series resistor. For local measurements 

(ig. S4h), a current source (e.g. I9,10 = V10kΩ/R10kΩ) is applied between the electrodes (e.g. contacts 9 and 

10), the measured voltage between the electrodes (1 and 2) is Hall voltage (V1,2) and between the electrodes 

(2 and 4) is longitudinal voltage (V2,4). The Hall resistance is calculated by Rxy = V1,2/I9,10, and longitudinal 

resistance Rxx = V2,4/I9,10. For the nonlocal measurement (fig. S4i), a current source (I3,4 = V10kΩ/R10kΩ) is 

applied between the electrodes (3 and 4), the measured voltage between the electrodes (1 and 2) is nonlocal 

voltage (V1,2) and is often converted to nonlocal resistance (Rnl) by dividing the injection current (Rnl = 

R34,12 = V1,2/I3,4). 
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Figure 1 The AF-, F- and CAF-states in graphene. (a) The AF-state is spin-unpolarized and both the bulk and edge 

are gapped, Δedge = Δbulk. Due to degeneracy, the net spin polarization is zero at the edge. (b) In the F-state the bulk 

is fully spin-polarized and the system supports gapless helical edge modes. (c) The CAF-state continuously 

interpolates between the AF-state (θ = π/2) and F-state (θ = 0), where θ is the angle between the spins and magnetic 

field B. The bulk state is partially spin-polarized and Δedge < Δbulk. At the edges there appears a spin-texture. The 

edge gap depends continuously on θ , so that Δedge = Δbulk for θ = π/2 and Δedge = 0 for θ = 0. The middle panels 

show the edge state spectrum for the different states and the spin-polarization direction relative to B. Color bar 

shows the spin direction relative to B, scales from 1 to -1 mean that the spin direction is from along with to opposite 

to B. The lower panels illustrate how the edge spectrum can be probed by measuring Rnl(VTG). The Fermi level (εF) 

can be controlled with VTG and the appearance of the edge states at the given energy gives rise to nonlocal signal. 

This leads to a single-peak (double-peak) structure of Rnl in the case of F-state (CAF-state). 
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Figure 2 Device and transport properties in zero magnetic field. (a) Low angle X-ray reflectometry of (110) YIG 

confirming a thickness of 84 nm and roughness ~0.14 nm. (Upper inset) High angle X-ray diffraction demonstrating 

single phase (110) YIG. (Lower inset) Optical micrograph (false color) of a representative hBN/graphene/YIG Hall 

bar where B⊥ indicates an out-of-plane magnetic field. (b) Raman spectra at 293 K for different structures (labelled) 

where G stands for “graphene”. The background Raman spectra from hBN and YIG/GGG are subtracted where 

GGG stands for “gadolinium gallium oxide”. (c) Rnl vs. VTG – VD at 9 K for hBN/graphene/YIG and control Hall 

bars (labelled) with insets showing Rxx/Rxx,D and Rnl/Rnl,D vs. VTG – VD for the same Hall bar. 
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Figure 3 Nonlocal resistance Rnl and Landau levels in hBN/graphene/YIG for B⊥ ≤ 2.5 T. (a) Rxx/Rxx,D and Rnl/Rnl,D 

vs. VTG – VD at B⊥ = 2.5 T. (b) Rnl,D vs. B⊥ for reverse nonlocal connections showing that the Onsager relation holds 

with the inset showing Rnl,D vs. B⊥ for control Hall bars (labelled) where G stands for “graphene”. (c) VTG – VD vs. 

B⊥ for different Landau level filling factors (numbered) with calculated fits (short dashed lines). (d)-(f) Rxx vs. VTG 

– VD for B⊥ of 1 T, 1.5 T and 2.5 T (labelled). 
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Figure 4 Lifting of the ν = 0 plateau. (a)-(d) σxx vs. VTG – VD for different values of B⊥ (labelled). (e)-(h) σxy vs. 

VTG – VD for matching values of B⊥ in (a) to (d).  
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Figure 5 Phase transition versus the magnitude and direction of magnetic field B. (a) Rxx,D vs. B⊥ showing a metal 

to insulator transition in hBN/graphene/YIG at 2.7 K. The dashed curve is a guide to the eye. (b)-(d) Rnl,D vs. 

VTG – VD for different values of B⊥ (labelled). (e) Schematic illustration of a device and the direction of B, where 

2 2=B B B   and  is the angle between B and the graphene surface. (f) Rnl,D vs.  for B spanning 2 to 12 T. (g) 

Phase diagram vs. B⊥ and the spin-splitting field (Bz+Mex), where Mex is the magnetic exchange field induced by 

YIG. For small B⊥, the quantum Hall (QH) state is not well-developed. By increasing B⊥ there exists competition 

between the F- and CAF-states. For reasonably small B⊥ and large (Bz+Mex), the F-state is realized, whereas for 

large B⊥ and small (Bz+Mex), the CAF-state is energetically favoured. The phase transition line (solid black) is 

estimated by the experimental data reported in Ref. (9). The magnetic order and the energy gap of the edge modes 

can be controlled by the magnitude of B⊥ [green dotted line and blue circles relate to the states of Figs. 5(b)-(d)] 

and the direction of the B (red dotted line from  = 0 to  = 90° for B = 12 T). Mex is estimated to be 60 T. 
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S1. Characterization of YIG and graphene/YIG 

The magnetic properties of YIG are assessed through magnetization (M) vs. magnetic field (B) 

measurements (Fig. S3). The in-plane M(B) loop is strongly anisotropic with an easy axis coercivity of 

~0.3 mT and we estimate a volume magnetization at saturation of 144 emu cm-3. The maximum in-plane 

(out-of-plane) field required to fully magnetize the YIG is 70 mT (300 mT). 

To investigate structural and electronic homogeneity of the graphene on YIG, Raman spectroscopy 

maps are measured at 293 K (Figs. S4a,b). The positions of the 2D peaks [Pos(2D)] are in the 2680 and 

2700 cm-1
 range, and the full width at half maximum (FWHM) of the 2D peaks are typically 20 cm-1 to 

30 cm-1. From the Raman images, the homogeneous area [2690 cm-1 ≤ Pos(2D) ≤ 2700 cm-1 and 20 cm-1 

≤ FWHM ≤ 25 cm-1] is selected and used to fabricate devices (Fig. S4c). 

The quality of the Hall bars is characterized through Hall-effect and field-effect mobilities. The 

Hall-effect mobility of hBN/graphene/YIG Hall bars can be tuned via the top-gate voltage (from -5 V to 

1 V with a leakage current of ~210-11 A) up to ~50,000 cm2 V-1 s-1 with 5×1010 cm-2 carrier density at 9 K 

(Fig. S4d) and the field-effect mobility in the 3,000-12,000 cm2 V-1 s-1 range at 9 K (Figs. S4e,f) and 4,000 

to 40,000 cm2 V-1 s-1 at 2.7 K (Fig. S4g) with carrier densities between 1011 and 1012 cm-2. 

 

S2. Ohmic contribution to Rnl 

Several sources may induce nonlocal voltages in the absence of an external magnetic field. One source is 

the Ohmic contribution1, which is given by 
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where L and W are the channel length and width as graphically defined in Fig. 2a of the main paper. In 

zero external magnetic field for the hBN/graphene/YIG, L/W = 2.75 and Rxx = 9.8 kΩ, and from Eq. (S1) 

we find Rnl,Ω ~1 Ω, which is two orders of magnitude smaller than the measured Rnl (Fig. S5a). 

Furthermore, Rnl from hBN/graphene/YIG is sharper than Rxx when top-gate voltage approaches the Dirac 

point (VD). We can therefore conclude that Rnl is not simply proportional to Rxx in zero magnetic field 

meaning that the nonlocal signal from hBN/graphene/YIG is dominated from other factors than the Ohmic 

contribution. 

 

S3. Magnetoresistance at low magnetic fields 

At low magnetic fields our device exhibits sharp negative magnetoresistance which is attributed to weak 

localization effect (Fig. S5b). The device shows high quality which is confirmed by Shubnikov-de 

HaasS oscillations appearing at magnetic fields as low as 0.5 T. As Rashba spin-orbit coupling in 

graphene should give rise to weak antilocalization effect, in our device there is no strong spin-orbit 

coupling. 

 

S4. Thermal contribution to Rnl 

In all transport measurements we use an alternating-current excitation of ~50 nA at 2.7 K and ~100 nA at 

9 K with a frequency ~7 Hz. These low current amplitudes are chosen to minimize thermal contributions 

to the nonlocal transport due to Joule heating and Ettingshausen effects whilst simultaneously maximizing 

the signal-to-noise ratio of the measured voltages.  

Joule heating can give rise to the second harmonic nonlocal signal R
2f 

nl,J, and Ettingshausen effect 

can lead to first harmonic nonlocal signal R
f 

nl,E (Ref. 2, 3). For all the Hall bars, we measure both the first 

and second harmonic nonlocal signal using lock-in amplifiers. At 2.5 T, R
2f 

nl,J is typically two orders of 

magnitude below the Rnl (Figs. S6a,b) and in the 8-10 Ω range when I = 100 nA. Figures S6c,d show that 

R
2f 

nl,J is directly proportional to the excitation current as expected and hence the excitation current is kept 

below 100 nA during the measurements to minimize the thermal contribution. In addition, when the 
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current and voltage probes are switched to reverse the current direction, R
2f 

nl,J changes sign due to heat flow 

reversal along the Hall bar (Figs. S6c,d). In zero magnetic field, R
2f 

nl,J is less than 1 Ω, which is negligible 

(Fig. S6e). 

Ettingshausen contributions to the first harmonic nonlocal signal are due to the heat flow generated 

by Ettingshausen effect, which can be described as R
f 

nl,E ∝ S
2 

yxT (Syx, transverse thermopower coefficient 

and T, temperature)3. The maximum R
f 

nl,E and Syx both occur at N = 0 Landau level, but Syx changes sign 

when the gate voltage locates between adjacent Landau levels or in the center of a Landau level2, in which 

R
f 

nl,E should have peaks. Figure S6f compares the Rnl and Rxx as a function of top-gate voltage, but Rnl does 

not show other peaks except for at the Landau level positions, which suggests the Ettingshausen effect 

contribution is negligible. 

 

S5. Nonlocal and local measurements on hBN/graphene/SiO2 control Hall bars 

We investigate Rnl and Rxx of hBN/graphene/SiO2 control Hall bars in which the graphene is not coupled 

to ferrimagnetic insulator YIG. The field-effect mobility is in the 1,500 to 3,500 cm2 V-1 s-1 range with a 

carrier density between 1011 and 1012 cm-2. At B⊥ = 12 T, both longitudinal conductivity (σxx) and Rnl show 

a single peak at the Dirac point (Fig. S7a), and the magnitude of the peak in the nonlocal signal is an order 

of magnitude smaller than in the presence of the coupling to YIG. The Hall conductivity σxy vs. top-gate 

voltage VTG − VD only shows plateaus corresponding to ν = ±2 (Fig. S7b). At 12 T and 0 T, R
2f 

nl,J is one 

order of magnitude below the Rnl (Figs. S7c,d). In zero external magnetic field for the hBN/graphene/SiO2 

Hall bar, L/W = 2.6 and Rxx = 5.8 kΩ, and from Eq. (S1) we find Rnl,Ω ~1 Ω, which is one order of 

magnitude smaller than the measured Rnl (Fig. S7e). 

 

S6. Nonlocal and local measurements on hBN/graphene/AlOx/YIG control Hall bars 

We investigate Rnl and Rxx of hBN/graphene/AlOx/YIG control Hall bars in which the graphene is 

decoupled from YIG by a thin layer of AlOx (~6 nm). The Hall-effect mobility is 15,752 cm2 V-1 s-1 with 

5×1011 cm-2 carrier density at 9 K, and the field-effect mobility is in the range of 12,000 to 

20,000 cm2 V-1 s-1 with a carrier density between 1011 and 1012 cm-2. At B⊥ = 12 T, both σxx and Rnl show 

a single peak at the Dirac point (Fig. S8a), and the Hall conductivity σxy vs. top-gate voltage only shows 

plateaus corresponding to ν = ±2 (Fig. S8b). At 12 T and 0 T, R
2f 

nl,J is around two orders of magnitude below 
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Rnl (Figs. S8c,d). In zero external magnetic field for the hBN/graphene/AlOx/YIG Hall bar, L/W = 2.3 and 

Rxx = 10 kΩ, and from Eq. (S1) we find Rnl,Ω ~4 Ω, which is one order of magnitude smaller than the 

measured Rnl (Fig. S8e). 

 

S7. Transition to an insulating quantum Hall state 

In the presence of the magnetic exchange field induced by YIG, graphene undergoes a metal to insulator 

transition with increasing magnetic field indicated by a sharp rise in Rxx. Such a rise is not observed in 

hBN/graphene/SiO2 and hBN/graphene/AlOx/YIG Hall bars (Fig. S9a). Since no traces of broken 

degeneracies that might provoke the appearance of the insulating state have been observed in our control 

samples where graphene is decoupled from YIG, we conclude that the appearance of the plateau at ν = 0 

in our experiments is intimately related to the graphene/YIG coupling. 

 

S8. Theoretical description of the competition between F- and CAF-states  

We discuss the phase transition between the fully spin-polarized ferromagnetic (F-) state and the canted 

antiferromagnetic (CAF-) state in the light of the theory4,5 and the previous experiments6. The dependence 

of the tilting angle in the CAF-state on the magnetic field B and the magnetic exchange field Mex induced 

by YIG is estimated. 

In the non-interacting limit (when Zeeman field and spin-orbit interactions are neglected), 

graphene supports four zero-energy Landau levels and has spin degeneracy as well as valley (K, K’) 

degeneracy. As in each valley the wave functions reside on one of the sublattices (A, B), the valley index 

is directly related to the degree of freedom of sublattice (K ↔ A, K’ ↔ B). The electron-electron and 

electron-phonon interactions break the valley symmetry on the lattice scale and the generated valley 

anisotropy determines the ground state of the ν = 0 quantum Hall state in graphene. In a systematic 

theoretical study of the possible anisotropies, there are a large number of different possible symmetry-

broken states4, but from the experiments of Refs. (6-8) it indicates that the interactions favour 

antiferromagnetic (AF) insulating state (both bulk and edge excitations are gapped) with opposite spin 

polarizations on the two sublattices. On the other hand, the external magnetic field and the proximity of 

YIG lead to a breaking SU(4) symmetry, 
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B exM

g
H M M B M        (S2) 

favouring the spins to be parallel to the spin-splitting field M which is the sum of the Zeeman field and 

Mex induced by the YIG. All fields M, B, and Mex are in units of Tesla. We have following assumptions: 

1) g = 2; 2) M is spatially constant, and Mex is considered as a spatial average of the magnetic exchange 

field induced by the YIG on graphene; 3) There is a disordered interface between graphene and YIG, so 

that the sublattice (valley) symmetry is not broken on average; 4) 
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B
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B
   (S3) 

In the absence of spin-orbit coupling effects, Mex is parallel or antiparallel to B, but due to the 

ferrimagnetic nature of YIG, the magnitude of Mex could depend on the direction of B. If the spatial 

locations of the oppositely polarized magnetic moments do not depend on the direction of B, this 

dependence is not expected to be very strong. Therefore the magnitude of the Mex is independent of the 

direction of B; 5) The magnitude of the Mex does not depend on |B|,when B is sufficiently large so that the 

magnetization of YIG is saturated. In addition, in-plane and out-of-plane anisotropies of YIG are not 

important here. 

The competition between the AF- and F-states leads to the CAF-state where the spins in the two 

different sublattices are tilted along the direction of the M (as preferred by HM), but also they have 

components perpendicular to M which are pointing in opposite directions in the two sublattices (as 

preferred by the electron-electron interactions favouring AF-order). The spin directions in the two 

sublattices can be calculated by minimizing the energy4,5 
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B
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l
   


      (S4) 

where E0 is a constant, L2 is the area of the sample and lB is the magnetic length. The anisotropy energy 

u(B⊥) depends not only on the microscopic interactions that break the valley symmetry on the lattice scale, 

but also on the Landau level wavefunctions, so that it can be controlled with the help of B⊥. Under the 

assumptions discussed above, M(B) = |M|, which only depends on the magnitude of the total magnetic 

field B = |B|. The spin directions are described by the polar angle θ of the spins relative to the direction of 

M, and the azimuthal angles φ, φ + π in the two sublattices. The energy does not depend on the azimuthal 
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angle, so φ describes spontaneously broken U(1)-symmetry in the CAF-state. The AF-state is reached 

when M = 0 and in this case θ = π/2, indicating that the spins in the two sublattices are pointing in opposite 

directions. As M = 0, we can define θ relative to any axis and AF-state is described by spontaneously 

broken SU(2)-symmetry. In the F-state, the magnitude of M is so large that spins are fully polarized along 

the direction of M, then there is no spontaneously broken symmetry in this case (paramagnetic phase). 

The angle θ is determined by equation, 
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 


  (S5) 

so that the transition from CAF- to F-state occurs at  

 2 ( )B cM u B    (S6) 

The anisotropy energy u(B⊥) is not known very well theoretically, therefore we determine it by 

utilizing earlier experiment results6. From experiment, the edge mode conductance is measured as a 

function of B for various values of B⊥. In the CAF-state, the edge is gapped giving a zero conductance. 

On the other hand, F-state supports counterpropagating helical edge modes. If they are ballistic (i.e. the 

length of the system is shorter than the mean free path), the conductance in a simple two-terminal geometry 

is given by G = 2e2/h. Indeed, experimentally the conductance G(B, B⊥) shows a sharp crossover from 

G = 0 to G ≈ 2e2/h as a function of B for different values of B⊥. Then the critical value of the total magnetic 

field Bc can be well estimated by requiring 

 
2( , ) /cG B B e h    (S7) 

As in this experiment the magnetic exchange field is zero, we get Mc = Bc and u(B⊥) can be determined 

from Eq. (S6). The phase transition lines in the (M, B⊥)-plane for two different samples reported in Ref. (6) 

are shown in Fig. S9b. By averaging the two lines, we have 

 ( ) 5 ( 0.5)Bu B B     (S8) 

It is a reasonable estimation in the light of Refs. (4, 5), but the shift of 0.5 T indicates that we are 

linearizing a nonlinear function. In the experiment of Ref. (9), the thermal activation gap increases 

approximately linearly with B⊥ up to magnetic field on the order of 30 T, so the assumption of linear 

dependence is reasonable. Accoring to the estimation for u(B⊥), we find that 2θ = 0.93π for large 

perpendicular magnetic fields. It means that the spins are practically pointing in the opposite directions, 
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leading to an AF-state, which is consistent with the experimental observations that ν = 0 state in graphene 

is (approximately) spin unpolarized9, charged excitations are gapped both in the bulk and at the edge9,10 

as well as with the observation of long-distance spin transport7,8. In the case of tilted magnetic field, it 

leads to a CAF-state and θ decreases with increasing B when B⊥ is kept constant. To achieve a transition 

from CAF- to F-state, it needs a very large magnetic field6 (~ 10B⊥). 

Our experiments indicate that the proximity from YIG does not lead to strong orbital effects in 

graphene, and therefore we expect that the estimation for the anisotropy energy [Eq. (S8)] is valid for our 

devices. In Fig. 5, the transition from CAF- to F-state occurs approximately at B⊥ ≈ 6 T. So Mex induced 

by YIG is estimated to be 60 T. Moreover we calculate how the angle θ depends on the magnitude of B⊥. 

Interestingly, θ can be changed over a large range with relatively small external magnetic fields on the 

order of 5-10 T (Fig. S9c). Such kind of control of the magnetic order is not possible in the absence of 

magnetic exchange field.  

The polar angle θ can be varied by rotating the direction of the magnetic field. Figures S10a,b plot 

the polar angle as a function of B and the α between magnetic field and sample surface (the perpendicular 

magnetic field B⊥ = Bsinα and the parallel magnetic field B∥  = Bcosα) and the phase-diagram. In the 

presence of magnetic exchange field induced by YIG, it is possible to control θ with the direction and 

magnitude of B and leading to a transition between CAF- and F-states. If B is kept constant, varying the 

angle α from π/2 to 0 first causes a transition from CAF- to F-state, and then by further decreasing α the 

system is driven away from the quantum Hall regime because B⊥ decreases. We expect that the quantum 

Hall state is not well-developed in our samples for magnetic fields below 3 T. In the absence of magnetic 

exchange field, it requires a very large value of B in order to access the regime where θ can be changed 

substantially. For external magnetic fields on the order of 5-10 T, the angle θ remains close to π/2 

(approximately AF-state) until α is so small that the system is driven out of the quantum Hall regime. 

It is worth pointing out that magnetic exchange field lowers the energy of both the CAF- and F-

states. In the CAF-state, magnetic exchange field decreases the energy as –δE ∝ M2/u(B⊥) and in the F-

state as -δE ∝ M. Therefore, magnetic exchange field can stabilize both CAF- and F-states in samples 

where the ν = 0 quantum Hall state would not be realized in the absence of magnetic exchange field. This 

could explain why the quantum Hall state is only observed in the sample where the coupling to YIG is 

present and not in our control samples where this coupling is absent.  
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S9. Energy gap of the edge modes  

The low-energy edge excitations in this type of quantum Hall systems are collective excitations11-13. While 

the properties of these collective excitations are different from the single-particle excitations, for our 

purpose, an adequate estimation of the energy gap of the edge modes can still be obtained using a 

simplified mean-field single-particle approach developed in Ref. (5). 

In the AF-state the charged bulk and edge excitations are gapped, whereas in the F-state the bulk 

excitations are gapped but gapless counterpropagating edge modes (protected by spin-rotation symmetry) 

appear at the edge. Because the CAF-state continuously interpolates between the AF (θ = π/2) and F 

(θ = 0) states, the edge gap has to gradually decrease when θ decreases from π/2 to 0. This behavior is 

captured by the mean-field Hamiltonian5 

 
0 0( ) ( )x x B z z x z xH k M              (S9) 

where the Pauli matrices τi and σi operate on the valley and spin degrees of freedom, respectively, and the 

spin quantization axis (z-direction in the spin space) has been chosen to be along the direction of the 

external magnetic field. Here M = |M| = B + Mex, ξ(kx) describes the dispersion of the Landau levels and 

kx is the momentum along the direction of the edge (x-direction), which is related to the position ykx
 = kxl

2 

B  perpendicular to the edge in Landau gauge. When ykx
 is deep inside the bulk, ξ(kx) = 0, and when ykx

 

approaches the edge, ξ(kx) increases. The exact functional form of ξ(kx) is not important here. Additionally, 

we have introduced the mean-field potentials obtained by performing decoupling of the interactions 

 2 ( )cos , 2 ( )sinz z x xV B V B        (S10) 

The potential Δz arises due to the spin component of the electrons parallel to the spin-splitting field M, 

and Δx is due to spin component perpendicular to M pointing in opposite directions. We have neglected 

the spatial dependence of the mean-field potentials Δz and Δx. The effective interaction strengths Vz(B⊥) 

and Vx(B⊥) to increase with increasing B⊥ and the related anisotropy energy is 

 ( ) ( ) ( )x zu B V B V B      (S11) 

Moreover, Vx(B⊥) is directly related to the bulk gap Δbulk in the AF- and CAF-states 

 
bulk 4 ( )xV B    (S12) 
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Therefore Vx(B⊥) could be estimated using the thermal activation gap measured in the experiments, and 

Vz(B⊥) could be determined using Eqs. (S8) and (S11). In the experiment of Ref. (9), the thermal activation 

gap increases approximately linearly with B⊥, so that all interaction strengths Vx(B⊥), Vz(B⊥) and u(B⊥) 

depend linearly on B⊥ in the range of magnetic fields we consider here. However, in the following we 

describe the edge gap Δedge in the units of Δbulk, so the exact values of the interaction strengths Vx(B⊥) and 

Vz(B⊥) are not essential. 

Acoording to the energy spectrum from the Hamiltonian [Eq. (S9)], the edge gap is given by 

 edge

bulk

0, 2 ( ) (F-state)

sin , 2 ( ) (CAF-state)

B

B

M B

M B

 

  






  

 
  (S13) 

and it immediately follows from this expression that Δedge = Δbulk in the AF-state (θ = π/2) and edge gap 

vanishes (Δedge → 0) when one approaches the F-state (θ → 0). Furthermore, Figures S10c,d show how 

the edge gap depends on B. In the presence of magnetic exchange field, it is possible to tune Δedge 

efficiently using relatively small external magnetic fields. But in the absence of magnetic exchange field, 

the edge gap satisfies Δedge ≈ Δbulk unless very large magnetic fields are applied. 
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Figure S1 Transfer procedures for hBN/graphene/YIG. (a) Exfoliation of hBN flakes on SiO2/Si. (b) Transfer hBN 

onto optical mask. (c) Transfer graphene onto hBN/optical mask. (d) Transfer PC/hBN/graphene onto YIG. (e) 

Remove PC film. 
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Figure S2 Contact fabrication procedures for hBN/graphene/YIG. (a) hBN/graphene/YIG structure. (b) Reactive 

ion etching of hBN/graphene on YIG with Al mask. (c) Al/hBN/graphene/YIG structure after etching. (d) 

hBN/graphene/YIG Hall bar structure. (e) Contacts deposition on hBN/graphene/YIG with PMMA mask. (f) 

hBN/graphene/YIG Hall bar device. 

 

 

 

Figure S3 Magnetic properties of (110) YIG at 293 K. (a) Schematic illustration showing in-plane easy and hard 

axis directions on (110) YIG, where GGG stands for “gadolinium gallium oxide”. (b) Magnetization (M) vs. in-

plane external magnetic field (B) hysteresis loops for different in-plane field directions. At 0°, B is parallel to the 

hard axis [110] , while for 90° along the easy axis [001]. The inset shows the low field M(B∥) along the in-plane 

easy axis. (c) Stoner plot shows constant saturation magnetization (Ms) and the variation of the remnant 

magnetization (Mr) on γ where γ = 0° is parallel to [110] . 



S13 

 

 

Figure S4 Raman and electrical properties of hBN/graphene/YIG device. Raman spectra maps of (a) positions 

(cm-1) and (b) FWHM (cm-1) of the 2D peaks at 293 K, where white solid lines show the position of the Hall bar. 

(c) Schematic illustration of the Hall bar device, where GGG stands for “gadolinium gallium oxide”. (d) Magnetic 

field (B⊥) dependence of Hall resistivity (ρxy) at different top-gate voltage VTG – VD at 9 K, inset shows the device 

structure of hBN/graphene/YIG. (e) VTG – VD dependence of longitudinal resistivity (ρxx) and conductivity (σxx) at 

0 T and 9 K. (f) and (g) Field-effect mobility vs. VTG – VD at 9 K and 2.7 K. (h) Rxx and Rxy measurement setup. (i) 

Rnl measurement setup. PLL is the phase-locked loop system. 
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Figure S5 Ohmic contribution to Rnl and weak localization effect in hBN/graphene/YIG Hall bar. (a) Scaled Rxx 

and Rnl in zero external magnetic field at 9 K. (b) Low field normalized magnetoresistance (Rxx − Rxx,0T)/Rxx,0T vs. 

B⊥ at 2.7 K. It shows sharp and symmetric peak about zero magnetic field arising due to weak localization effect.  
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Figure S6 Comparison of first and second harmonic signal of Rnl and Rxx at 2.5 T and 0 T in hBN/graphene/YIG 

Hall bar. R
2f 

nl,J (multiplied by 50) (a) and Rnl (b) vs. VTG at 2.5 T with reverse nonlocal connections. (c), (d) R
2f 

nl,J vs. 

VTG when inject current I = 0.1 μA and 0.5 μA with different reverse nonlocal connections. (e) Comparison of the 

R
2f 

nl,J and Rnl at 0 T, R
2f 

nl,J is less than 1 Ω. (f) Comparison of Rnl and Rxx with no additional oscillations in Rnl at N = ±1 

Landau levels, indicating that the Ettingshausen effect is negligible. 
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Figure S7 Nonlocal and local measurements in hBN/graphene/SiO2 control Hall bar. (a) σxx vs. VTG − VD at B⊥ = 12 

T. The inset shows Rnl vs. VTG − VD. (b) σxy vs. VTG − VD at B⊥ = 12 T, which only shows the plateaus of conductance 

corresponding to ν = ±2. (c) Comparison between R
2f 

nl,J (multiplied by 30) and Rnl at B⊥ = 12 T. (d) Comparison 

between R
2f 

nl,J and Rnl at B⊥ = 0 T. (e) Comparison between the scaled Rxx and Rnl in zero external magnetic field at 

2.7 K. 
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Figure S8 Nonlocal and local measurements in hBN/graphene/AlOx/YIG Hall bar. (a) σxx vs. VTG − VD at B⊥ = 12 T. 

The inset shows Rnl vs. VTG − VD. (b) σxy vs. VTG − VD at B⊥ = 12 T, which only shows the plateaus of conductance 

corresponding to ν = ±2. (c) Comparison between R
2f 

nl,J (multiplied by 100) and Rnl at B⊥ = 12 T. (d) Comparison 

between R
2f 

nl,J and Rnl at B⊥ = 0 T. (e) Comparison between the scaled Rxx and Rnl in zero external magnetic field at 

2.7 K. 
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Figure S9 Phase transition diagrams. (a) ρxx,D at Dirac point vs. B⊥ in hBN/graphene/YIG and control Hall bars 

(labelled) at 2.7 K. Green dashed curves are guides to the eye. (b) CAF- to F-state transition field Mc as a function 

of B⊥, (blue line for Mc = 10.9B⊥ + 5.6, red line for Mc = 8.8B⊥ + 4.2 calculated from the previous experiment 

results6). The black line (Mc = 9.9B⊥ + 4.9) is an estimation for the phase transition, which is the average of the blue 

and red curves. (c) The polar angle θ of the spins relative to the direction of M as a function of B⊥. The solid blue 

(dashed red) line corresponds to Mex = 60 T (Mex = 0). In the presence of proximity induced magnetic exchange 

field, it is possible to control θ with B⊥. But in the absence of magnetic exchange field, θ ≈ π/2 for all values of B⊥ 

approximately corresponding to an AF-state. 
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Figure S10 Phase transition versus the magnitude and direction of magnetic field B. (a), (b) The polar angle θ of 

the spins relative to the direction of M as a function of B and the angle α between magnetic field and sample surface 

for (a) Mex = 60 T and (b) Mex = 0. In the presence of magnetic exchange field, it is possible to control θ with the 

direction and magnitude of B and leading to a transition between CAF- and F-states. In the absence of magnetic 

exchange field, it needs a very large B in order to access the regime where θ can be changed substantially. The 

dashed line shows B⊥ = 3 T. Below this line, the quantum Hall state is not well-developed in our samples. (c), (d) 

The energy gap of the edge modes Δedge as a function of B and the angle α between magnetic field and sample 

surface for (c) Mex = 60 T and (d) Mex = 0. In the presence of magnetic exchange field, it is possible to control Δedge 

with the direction and magnitude of B. In the absence of magnetic exchange field, it needs very large values of B to 

tune Δedge substantially. The dashed line shows B⊥ = 3 T. Below this line the quantum Hall state is not well-

developed in our samples. 
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We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction
containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no
accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the
effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor
arising due to the coexistence of p-wave and conventional s-wave superconducting correlations with a belonging
phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined
with strong ferromagnets and ordinary s-wave superconductors.
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I. INTRODUCTION

By combining materials with different properties at the
quantum-mechanical level into hybrid structures, new physics
emerges that often cannot be found in pure materials. The
field of superconducting spintronics [1] is a prime example
of this, where the synthesis of superconducting and magnetic
correlations has been shown [2–5] to yield physical effects
that are interesting both from a fundamental viewpoint and
from the viewpoint of potential cryogenic applications. One
actively pursued direction in this field has been the prospect
of producing dissipationless currents of spin carried by spin-
polarized Cooper pairs [6,7]. The conversion of charge currents
to spin currents is known to occur via the spin Hall effect
[8–10] in conventional spintronics, but it is accompanied by
the dissipation of energy due to the resistive nature of electric
currents in nonsuperconducting structures. Here, we show that
it is possible to achieve a dissipationless conversion from
charge to spin supercurrents, using conventional superconduct-
ing materials. We discover that an injected charge supercurrent
in a Josephson junction generates a pure transverse spin
supercurrent that is thus time-reversal invariant. Due to the
analogy with the conventional spin Hall current, we refer to
this as a superspin Hall current. The microscopic origin of
the superspin Hall current is a spin magnetization induced at
the interface that is antisymmetric in transverse momentum
ky . This magnetization is in turn caused by the induction
of p-wave superconductivity coexisting with conventional
spin-singlet pairing. Our predictions can be verified using
hybrid structures with thin heavy-metal layers combined with
strong ferromagnets and ordinary s-wave superconductors
(see Fig. 1) and open new vistas for making superconductors
compatible with spintronics functionality.

II. THEORY

To describe physics occurring at atomic length scales and
also incorporating strong spin-orbit coupling, we use the tight-
binding Bogoliubov–de Gennes (BdG) framework, which is
free from the limitations on length scales and self-energy
magnitudes present in, e.g., quasiclassical theory [11]. Our

Hamiltonian reads

H = −t
∑

〈i, j〉σ
c
†
iσ c jσ − i

2

∑
〈i, j〉αβ

λic
†
iαn · (σ × di j )αβc jβ

−
∑

iσ

μic
†
iσ ciσ −

∑
i

Uini↑ni↓ +
∑
iαβ

c
†
iα(hi · σ )αβciβ.

(1)

Here, t is the hopping integral, {ciσ ,c
†
iσ } are second-quantized

fermion operators for site i and spin σ , n is a unit vector normal
to the interface, λi is the site-dependent spin-orbit coupling
magnitude, di j = −d j i is the nearest-neighbor vector from
site i to site j , niσ = c

†
iσ ciσ , σ is the Pauli matrix vector, hi

is the local magnetic exchange field, μi is the local chemical
potential, and Ui is the on-site attractive interaction giving rise
to superconductivity. For concreteness, we consider a square
lattice of size Nx × Ny with lattice site indices i = (ix,iy).
To demonstrate the superspin Hall current, we consider Fig. 1
which may be experimentally achieved by creating a stack of
layers including one magnetic layer (e.g., Fe or Co) and two
thin heavy-metal layers (e.g., Pt or Au) sandwiched between
two conventional superconductors (e.g., Nb or Al). The various
terms in Eq. (1) exist in their respective regions in Fig. 1.
For instance, the spin-orbit coupling term λi is only finite for
lattice points inside the heavy-metal regions. For brevity of
notation, the lattice constant is set to a = 1 and all length
scales are measured relative to a whereas all energies are
measured relative to t . Since n is the interface normal (n = x̂),
the Hamiltonian above is Hermitian without any requirement
of symmetrization.

To simplify the calculations, we assume periodic bound-
ary conditions in the ŷ direction, as is common practice
[12–14]. While this represents an approximation to the geome-
try considered, it will still allow us to determine the presence of
transverse currents. Equation (1) may now be diagonalized by
Fourier transforming the fermion operators in the ŷ direction;

ciσ = 1/
√

Ny

∑
ky

cixkyσ eiky iy . (2)
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Performing a standard mean-field ansatz �i = −Ui 〈ci↓ci↑〉,
one arrives at the Hamiltonian

H = H0 + 1

2

∑
ijk

B
†
ikHijkBjk, (3)

where H0 contains the superconducting condensation energy
Ny

∑
i∈S |�i |2/Ui (which must be retained when evaluating

the free energy of the system). Let i ≡ ix and j ≡ jx from
now on for brevity of notation. The superconducting regions
are comprised of Nx,S lattice points each, whereas the heavy
metals generating interfacial Rashba spin-orbit coupling and
strong ferromagnets have spatial extensions Nx,HM and Nx,F ,
respectively. The total number of lattice sites is Nx = Ny .
Setting k ≡ ky , the basis above is

B
†
ik = [c†ik↑ c

†
ik↓ ci,−k↑ ci,−k↓] (4)

and we defined the 4 × 4 matrix:

Hijk = εijkσ̂0τ̂3 + [
h

y

i σ̂y + (λ sin k/2)σ̂z

]
τ̂0

+ (
hx

i σ̂x + hz
i σ̂z

)
τ̂3 + �iiσ̂y τ̂

+ − �∗
i iσ̂y τ̂

−, (5)

where

εijk ≡ −t cos(k)δij − t(δi,j+1 + δi,j−1)/2 − μiδij (6)

and 2τ̂± = τ̂1 ± iτ̂2. The matrices τ̂i that appear in Eq. (5)
are the usual Pauli matrices (i = 0,1,2,3, where τ̂0 is the
identity). By diagonalizing the above matrix, we end up with
the Hamiltonian

H = H0 + 1

2

∑
nk

Enkγ
†
nkγnk, (7)

where the new (quasiparticle) fermion operators are related to
the original ones via the relations

cik↑ =
∑

n

uinkγnk, cik↓ =
∑

n

vinkγnk,

c
†
i,−k,↑ =

∑
n

winkγnk, c
†
i,−k,↓ =

∑
n

xinkγnk. (8)

Here, {u,v,w,x} are elements of the matrix that diagonalize the
Hamiltonian and are numerically obtained. The diagonalized
form of the Hamiltonian makes it trivial to evaluate expectation
values of the type 〈γ †

nkγnk〉 = f (Enk/2), where f is the Fermi-
Dirac distribution function.

With the eigenvectors {u,v,w,x} and eigenvalues {Enk} at
hand, we can compute a number of physical quantities in the
system under consideration. For instance, the order parameter
takes the form

�i = − Ui

Ly

′∑
nk

vinkw
∗
ink[1 − f (Enk/2)], (9)

where the prime superscript on the sum indicates that only
energy eigenvalues |Enk| < ωD should be included, and ωD is
the BCS Debye cutoff frequency. The free energy reads

F = H0 − 1

β

∑
nk

ln(1 + e−βEnk/2), (10)

where β = 1/T and T is temperature. The evaluation of charge
and spin supercurrent j i and j i,S operators requires a consid-

S HM F SHM

jS
int

L R

M
Charge supercurrent

x

y

Transverse spin supercurrent

FIG. 1. Suggested experimental setup for demonstration of the
superspin Hall current in a Josephson junction. The exchange field in
the ferromagnetic region (gray arrows) is directed either along the x̂
or ŷ axis. In our calculations, we model the system as a 2D square
lattice with periodic boundary conditions in the ŷ direction.

eration of the combined continuity and Heisenberg equation:

−∇ · j i = i[H,ρi ], −∇ · jS
i = i[H,Si ]. (11)

Here,

ρi =
∑

σ

c
†
iσ ciσ (12)

is the charge-density operator at site i , while

Si =
∑
αβ

c
†
iασ αβciβ (13)

is the spin-density operator (we omitted constant prefactors
such as the electronic charge |e|). After a Fourier transforma-
tion, the spin-density expectation value at site i reads

Si =
∑
kαβ

Sik, Sik = 〈c†ikασ αβcikβ〉. (14)

Here, Sik is the momentum-resolved spin-density expectation
value at lattice point i, which will play a prominent role in
the discussion later.

A spin supercurrent flowing along the interface has three
polarization components and is most conveniently evaluated
in the superconducting region:

j int
i,S = 〈 jS

i · ŷ〉 = − 8t

Ny

∑
kαβ

sin(k)σ αβ〈c†ikαcikβ〉. (15)

For instance, the spin supercurrent polarized in the x̂ and
ŷ directions is

j
int,x
i,S = −16t

Ny

∑
nk

sin(k)Re{uinkv
∗
ink}f (Enk/2),

j
int,y
i,S = 16t

Ny

∑
nk

sin(k)Im{u∗
inkvink}f (Enk/2). (16)

III. RESULTS

A. Superspin Hall current

We first numerically diagonalize the Hamiltonian given
by Eqs. (1) and (5) for the Josephson junction shown in
Fig. 1 using the parameters μS = 0.9, μN = 0.85, μF =
0.8, ωD = 0.3, Nx,S = 35, Nx,HM = 4, Nx,F = 7, U = 2.1,
and T = 0.01. The order parameter phase is fixed at the
last five lattice points in the S regions in order to model
supercurrent injection via a phase difference, as is standard in
the BdG lattice treatment. Fixing �φ = 0.5π gives an effective
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FIG. 2. (a) Superspin Hall current manifested via a transverse spin supercurrent j
int,x
i,S in the superconducting (S) state. It vanishes in the

normal (N ) state: j
int,x
i,S = 0. (b) Spatial evolution of the superconducting order parameter. Inset: Sσ,i (τ ) with relative time set to τ = 5, (c) Px

σ,i ,
and (d) Py

σ,i . For the inset in panel (b) and in panel (c), the curves are identical for σ = ↑ and σ = ↓. We have used the parameter set specified
in the main text, considered the system in Fig. 1, and set hy = 0.5, λ = 0.2, and �φ = 0.5π .

phase difference between the superconducting interfaces of
�φ 
 0.47π due to the phase drop inside the superconductors.
The following results are not qualitatively sensitive to the
parameter choice above. For the above parameter set, and
all other sets presented in the figures of this paper, we have
checked that the superconducting state minimizes the free
energy of the system.

When �φ �= 0, a transverse spin supercurrent appears
in the superconducting region as shown in Fig. 2(a). This
demonstrates the intrinsic superspin Hall current. The effect
occurs even if one removes one of the heavy-metal layers. The
spin supercurrent predicted here does not exist in the absence
of superconductivity, as also shown in Fig. 2(a). Reversing
the phase difference, �φ → −�φ, and thus the charge
supercurrent, also reverses the transverse spin supercurrent.
Before explaining the microscopic origin of the superspin Hall
current, we note that there are both odd- and even-frequency
triplet correlations in the system, denoted odd-ω and even-ω
from now on. The on-site (s-wave) odd-ω anomalous triplet
amplitudes S are defined as

S0,i (τ ) = 〈ci↑(τ )ci↓(0)〉 + 〈ci↓(τ )ci↑(0)〉,
Sσ,i (τ ) = 〈ciσ (τ )ciσ (0)〉, (17)

where τ is the relative time coordinate, and the subscripts 0
and σ = ±1 = ↑,↓ denote the spin projection along the
quantization axis. All S vanish at τ = 0. The p-wave even-ω
anomalous triplet amplitudes P have both a px- and py-wave
component. They are defined as

Px(y)
0,i =

∑
±

±(〈ci↑ci±x̂( ŷ),↓〉 + 〈ci↓ci±x̂( ŷ),↑〉),

Px(y)
σ,i =

∑
±

±〈ciσ ci±x̂( ŷ),σ 〉. (18)

The existence of these correlations and their spatial distribution
throughout the system are shown in Figs. 2(b)–2(d), proving
how they arise precisely near the interfaces between the
superconductor and heavy metals where the transverse spin
supercurrent flows. The triplet components of the Cooper pairs
are generated from the broken spin rotational symmetry in our
system, whereas the p-wave orbital symmetry emerges as a
result of broken translational symmetry due to the presence
of interfaces [16,17] and due to the presence of spin-orbit
interactions. Note how the pairing amplitudes S and P are by
definition k-independent. The k-resolved anomalous Green
functions, which are odd under k → (−k) for, e.g., p-wave
pairing, will be examined in the following subsection as they
play an important role in understanding the appearance of a
transverse spin supercurrent.

The transverse spin-supercurrent in the present system
exists when the exchange field contribution h · σ to the Hamil-
tonian does not commute with the spin-orbit contribution
λ sin(k)σz. In effect, the superspin Hall current arises when

[h · σ ,λ sin(k)σz] �= 0. (19)

This means that the exchange field must be oriented in the xy

plane of the system shown in Fig. 1. If the exchange field is
oriented along the z axis, no superspin Hall current exists.

The polarization of the transverse spin-supercurrent is
also dictated by the orientation of the exchange field h.
A comparison of Figs. 2(a) and 3(h) shows that the spin-
supercurrent polarization is perpendicular to h.

B. Microscopic origin

To explain the physical origin of the superspin Hall current
in the system, we first note the close relation between the spin
magnetization and the spin supercurrent in the system. From
Eqs. (14) and (15), the only difference between them is a factor
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FIG. 3. Upper row: The panels show the induced singlet anomalous Green function f
singlet
ik , the triplet correlations f

triplet
ikσσ evaluated at lattice

point ix = NS − 1 (right at the S/N interface), the induced spin-magnetization density Sik evaluated at lattice point ix = NS − 1 (right at the
S/N interface), and the superspin Hall current j int

i,S from left to right. Here, the phase difference has been set to �φ = 0, while h = 0.3, λ = 0.3,
T = 0.005, NS = 25, NHM = 4, NF = 5, Ny = 200, and h = hx̂. Lower row: Same as the upper row except that �φ = π/2. In this case, the
coexistence of triplet and singlet correlations that are phase-mismatched produce an antisymmetric spin density Sik , which in turn gives rise
to a finite superspin Hall current. In the line labels of the second panels from the left, we have abbreviated f

triplet
ikσσ ≡ fσσ . In this figure, the

exchange field has been rotated to the x̂ direction to show that the superspin Hall current exists also in this case. In all other plots in this paper,
the exchange field points in the ŷ direction.

sin(ky) inside the summation. If the momentum-resolved spin
magnetization Sik is antisymmetric in momentum ky , it will
vanish when summed over the momentum index. However, due
to the extra factor sin(ky), an antisymmetric spin magnetization
gives a symmetric spin supercurrent, which is thus finite
upon summation over ky . The factor sin(ky) and the resulting
difference in symmetry are physically reasonable. If a spin
density is antisymmetric in momentum ky , there will exist a net
spin flow since the spin current requires an extra multiplication
with the group velocity

∂εk/∂ky ∝ sin(kya) (20)

for each transverse mode. On the other hand, a spin density
that is symmetric in ky does not induce any spin current.

An antisymmetric spin density in the momentum index ky

may emerge whenever conventional superconducting singlet
pairing and triplet pairing (such as a py wave) coexist,
for instance near interfaces, as we will explain below. A
general superconducting order parameter Fik accounting for
both singlet and triplet pairing (considering here the even-ω
symmetry contribution) can be written as

Fik = (fi,s + f i,k · σ )iσ2, (21)

where fi,s is the singlet component and f i,k = − f i,−k is a
vector containing the triplet components according to

f = 1
2 [f↓↓ − f↑↑,−i(f↓↓ + f↑↑),2f↑↓]. (22)

Above, we suppressed the (i,k) indices on the triplet anoma-
lous Green functions fikσσ ′ for brevity of notation, and we
also do so below when the index is not of importance for
the argument. A nonunitary superconducting state, where
the Cooper pairs have a finite spin expectation value, is
defined by FF † not being proportional to the unit matrix.

A straightforward calculation shows that

FF † = |fs |2 + | f k|2 + σ · [(fs f ∗
k + f ∗

s f k) + i( f k × f ∗
k)].

(23)

The term i( f k × f ∗
k) determines the spin expectation value of

pure triplet Cooper pairs, whereas (fs f ∗
k + f ∗

s f k) determines
the spin magnetization of a given mode ky resulting from
the coexistence of singlet and triplet pairing. The spin
magnetization arising due to the Cooper pairs in the system
thus takes, in general, the following form for a given mode ky :

SCooper
k ∝ (fs f ∗

k + f ∗
s f k) + i( f k × f ∗

k). (24)

Performing a summation over modes ky , one obtains the total
spin density. Therefore, it is clear that if (fs f ∗

k + f ∗
s f k) =

2 Re{fs f ∗
k} is nonzero, it will be antisymmetric in ky due to

the fundamental property of the triplet vector f k. It is crucial
to note that the existence of p-wave triplet pairing alone is not
sufficient to produce an antisymmetric spin density in ky space.
First of all, it has to coexist with singlet pairing. But even such
a scenario is not sufficient, as it is only the real part of the
product fs f ∗

k that contributes. Consider, for instance, the case
in which singlet pairing coexists with Sz = 0 triplet pairing,
such that f k ‖ ẑ. According to our above argumentation, this
should produce a magnetization in the ẑ direction. It is not
immediately obvious how a magnetization in the ẑ direction
can arise from singlet pairs (which are spinless) and triplet
pairs with zero spin projection along the ẑ axis. Therefore,
we provide a detailed exposition of the physical mechanism
behind this effect in the Appendix.

With this in mind, we can now explain why the superspin
Hall current appears. As argued above, this current will
exist when an antisymmetric spin density is induced near
the interface. The spin density, in turn, is determined by the
generation of p-wave superconducting correlations coexisting
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with conventional singlet ones when these have an appropriate
relative phase such that Re{fs f ∗

k} �= 0 (as explained in the
Appendix). The equal spin-pairing triplet anomalous Green
functions may be obtained as

f
triplet
ikσσ = 〈ci,k,σ ci,−k,σ 〉

=
{∑

n uinkw
∗
ink[1 − f (Enk/2)] for σ = ↑,∑

n vinkx
∗
ink[1 − f (Enk/2)] for σ = ↓,

(25)

where, as before, we have used the shorthand notation of
ky ≡ k. We now illustrate two instructive cases in Fig. 3.
In the upper row (a)–(d), the phase difference is �φ = 0
(no current injected) while in the lower row (e)–(h), the
phase difference is �φ = π/2 (finite current injected). In
both cases, we have set h = 0.3, λ = 0.3, and h = hx̂. We
also chose a different system size, exchange field orientation,
and number of transverse modes from those in the previous
figures in order to show that the effect does not depend on
these details: NS = 25, NHM = 4, NF = 5, and Ny = 200. As
expected, a finite net magnetization Sx exists in the upper row,
which comes from the inverse proximity effect caused by the
magnetic region. However, there exists no net or ky-resolved
magnetization Sy despite the fact that the anomalous triplet
correlations f

triplet
ikσσ ≡ fσσ are nonzero. The reason for this is

that they are purely real, as seen in the figure. Consequently,
Re{fs f ∗

k} = 0 since the singlet ones are purely real in the
absence of a phase gradient. Note how the figure shows
that f↑↑ = f↓↓, such that no antisymmetric contribution is
made to the x component according to Eq. (22). The finite
magnetization induced along the x direction is instead caused
by the odd-ω triplet component. In general, the triplet vector
f can have both a symmetric term in k (the odd-ω component)
and an antisymmetric term in k (the even-ω component). Only
the latter contributes to the spin supercurrent in the present
context, as explained above.

Consider now instead the lower row, where a finite
phase difference exists. The singlet and triplet correlations
are now complex because of �φ �= 0, and as a result the
y component of the spin-magnetization (which exists since
the term Re{fs f ∗

k} is nonzero) is finite and antisymmetric in
ky . Although no net magnetization exists in the y direction, a
net spin supercurrent now exists due to the relation between
Eqs. (14) and (15) explained above. A phase gradient is thus
physically required in order to render the singlet and triplet py-
wave correlations complex: otherwise, no antisymmetric spin
magnetization associated with a nonunitary superconducting
state exists, and the spin supercurrent is zero. This explains the
origin of the superspin Hall current predicted in this paper.

The above explanation is consistent irrespective of the
direction of the in-plane exchange field. For instance, if we
instead choose h = h ŷ, one finds that the triplet anomalous
function is purely imaginary at �φ = 0 and that f↑↑ = −f↓↓.
In this case, there is no contribution to the ŷ component
according to Eq. (22), and although f k · x̂ �= 0 there is still no
antisymmetric spin density since Re{fs f ∗

k} = 0. If �φ �= 0,
on the other hand, Re{fs f ∗

k} is finite in the x̂ direction and a
spin supercurrent polarized in this direction appears, as seen
in the figure.
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FIG. 4. The dependence of the superspin Hall current j
int,x
i,S on

physical parameters in the system (Fig. 1). (a) λ = 0.2 and hy = 0.5
for various values of the phase difference �φ. (b) �φ = π/2 and
hy = 0.4 for several spin-orbit magnitudes λ. (c) λ = 0.3 and �φ =
π/2 for various values of the exchange field hy . The values of the
remaining parameters are the same as in Fig. 2. The background color
indicates in which region the current has been evaluated (compare
with the left part of Fig. 1).

The spatial dependence of the superspin Hall current on
the phase difference, the Rashba spin-orbit interaction, and
exchange field is shown in Fig. 4. The effect vanishes both in
the absence of superconductivity (�φ = 0) and in the absence
of a charge supercurrent (�φ = 0), as follows from the above
explanation of the physical origin of the effect. We also find
that the magnitude of the transverse current j

int,x
i,S evaluated at

the superconducting interface (i = NS ≡ Nx,S) oscillates with
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FIG. 5. The dependence of the superspin Hall current j
int,x
i,S on

physical parameters in the system, evaluated at different lattice sites i.
We have set �φ = 0.5π and (a) λ = 0.3 and (b) hy = 0.4. The values
of the remaining parameters are the same as in Fig. 2. A scattering
potential Vint = 0.1 at each of the interfaces was also added here
to show that the effect is resilient toward interfacial scattering. The
current oscillates with both h and λ and eventually decays with both
as these quantities increase and suppress superconductivity.
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FIG. 6. Change in oscillation length of the superspin Hall current
as the magnitude of the Rashba spin-orbit parameter is altered. The
plots show the cases (a) λ = 0.1 and (b) λ = 2.1. The exchange field
is h = h ŷ with h = 0.3, T = 0.005, and the other parameters are the
same as in Fig. 2.

both the Rashba strength and the magnitude of the exchange
field for the parameter regimes we have investigated, as shown
in Fig. 5. The effect is also purely sinusoidal as a function
of the superconducting phase difference �φ (not shown).
The oscillations could stem from the change in k-space band
structure due to the inverse proximity effect near the interface
as one varies the magnitude of h and λ, as the detailed k
dependence of the spin magnetization (and thus in turn the
magnitude of the spin supercurrent after summation over k)
will be affected by the details of the band structure.

The atomic-scale superimposed oscillations are character-
istic for physical quantities in ballistic quantum-mechanical
systems and are also present in, e.g., the proximity-induced
magnetization in conventional superconductors [15] and he-
lical edge-mode currents in triplet superconductors [14]. It
should be noted, however, that the oscillation period of the
spin supercurrent depends here on the system parameters. This
is shown in Fig. 6, where it is clear that the oscillation period
is altered by changing the magnitude of the Rashba parameter.
The origin of the oscillations is likely to be similar to that
described in Ref. [14], namely due to an interplay between the
renormalized spectral weight in the superconductor due to the
inverse proximity effect and how the p-wave superconducting
correlations decay as a result.

IV. CONCLUDING REMARKS

Previous theoretical work has considered spin accumulation
from spin Hall effects in superconducting structures [18–23],
and a recent experimental work [24] demonstrated an enhance-
ment of the inverse spin Hall signal [10] in a superconductor by
three orders of magnitude. A similar edge spin magnetization
might occur from the superspin Hall current predicted in this
work. Although the interface between a superconductor and
a ferromagnet breaks inversion symmetry on its own, the
purpose of the HM layers is to enhance the magnitude of the
resulting Rashba interaction. A transverse spin current induced
by a charge supercurrent was also considered in Ref. [25],
albeit in a different setup where spin-orbit coupling was present
in the entirety of one superconducting region and where no
magnetism was present. Reference [26] considered spin Hall
effects in a Josephson setup both with and without an electric
bias voltage applied to the system.

It is worth remarking that in comparison to the typical
spin Hall phenomenology, where an injected current in the
x direction is deflected in the y direction and polarized in
the z direction, the spin supercurrent here is not polarized
perpendicularly to the plane defined by its injection and
deflection direction. However, similarly to the conventional
spin Hall phenomenology, the spin supercurrent arises as a
direct consequence of Cooper pairs that are polarized in the
z direction. The details regarding how Sz = ±1 Cooper pairs
give rise to a spin supercurrent polarized in the xy plane have
been covered in detail in the main body of this paper.

Interesting future directions to explore include the precise
circulation pattern of the superspin Hall current predicted
herein in a finite-width sample, and the possible accompanying
edge spin accumulation due to triplet Cooper pairs.
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APPENDIX: MAGNETIZATION ARISING OUT
OF A NONUNITARY COEXISTENCE OF SINGLET

AND TRIPLET PAIRING

Consider for simplicity a bulk system in which singlet
pairing �s coexists with Sz = 0 triplet pairing �k = −�−k.
The Hamiltonian reads

H =
∑

k

φ
†
kMkφk, (A1)

where we used a basis φk = [ck↑ ck↓ c
†
−k↑ c

†
−k↓]T and defined

Mk =

⎛
⎜⎜⎜⎜⎜⎝

εk 0 0 �k + �s

0 εk �k − �s 0

0 �∗
k − �∗

s −εk 0

�∗
k + �∗

s 0 0 −εk

⎞
⎟⎟⎟⎟⎟⎠

.

(A2)

The four eigenvalues are given as {E+,E−,−E+,−E−}, where

E± =
√

ε2
k + |�s ± �k|2. (A3)

Performing a standard diagonalization of the Hamiltonian by
introducing a new quasiparticle basis

γk = [γ1k γ2k γ3k γ4k]T, (A4)

where γik are second-quantized fermion operators, one arrives
at

H =
∑

k

[Ek+(γ †
1kγ1k − γ

†
2kγ2k) + Ek−(γ †

3kγ3k − γ
†
4kγ4k)].

(A5)
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The relation between the original fermion operators c and the
new ones γ is

φk = Pkγk, (A6)

where Pk is the diagonalizing matrix containing the eigenvec-
tors of the original Hamiltonian,

Pk =

⎛
⎜⎜⎜⎝

g+(Ek+) g+(−Ek+) 0 0

0 0 g−(Ek−) g−(−Ek−)

0 0 1 1
1 1 0 0

⎞
⎟⎟⎟⎠,

(A7)

and we defined the auxiliary quantity

g±(E) = �k ± �s

E − εk
. (A8)

Now, the magnetization of the system in the ẑ direction is
computed according to Eq. (14):

Sz =
∑
kσ

σ 〈c†kσ ckσ 〉. (A9)

To see how this magnetization is directly influenced by the
coexistence of singlet and triplet pairs in the system, we replace
the original fermion operators in Eq. (A9) with the new ones
according to Eq. (A6). Considering for simplicity the T = 0
limit, one arrives at

Sz =
∑

k

[|g+(−Ek+)|2 − |g−(−Ek−)|2]. (A10)

At this point, we distinguish between unitary and nonunitary
states. In the unitary case, we have Re{�s�

∗
k} = 0 so that

Ek+ = Ek−: the magnitudes of both gaps �± = �k ± �s are
equal. Moreover, it follows from Eq. (A8) that in the unitary
case one has |g+(x)| = |g−(x)|. Combining these two facts, it
follows that the term inside the summation

∑
k in Eq. (A10)

is zero for any k value. In effect, there is no magnetization at
any k point and obviously no net magnetization either.

Consider now instead a nonunitary state where
Re{�s�

∗
k} �= 0. In this case, the magnitudes of the gaps �±

are different. Now, the term inside the summation of Eq. (A10)
is no longer zero for a given k point. In effect, there exists a
k-resolved magnetization. The total magnetization, obtained
after a summation over k, is nevertheless zero even in the
nonunitary case. This can be verified by splitting the sum in
Eq. (A10) into k > 0 and k < 0 (the contribution from k = 0
vanishes) and using the general relation Ek,+ = E−k,−.

The above derivation establishes mathematically why a
k-resolved, antisymmetric spin magnetization exists when
singlet and p-wave triplet pairing coexists in a nonunitary
state, precisely as in the system considered in the main
body of this paper. The physical picture can be understood
by going back to the fact that there exists two gaps with
a different magnitude in the system. It is well known that
the superconducting order parameter (gap) determines the
condensation energy and binding energy between the electrons
comprising the Cooper pairs. In particular, the Cooper pair
density is proportional to the square of the magnitude of
the gap. The point here is that Cooper pairing between two
electron states |k,↑〉 and |−k,↓〉 is associated with a gap
magnitude |�k + �s | ≡ |�+|, whereas pairing between two
electron states |k,↓〉 and |−k,↑〉 is associated with a different
gap magnitude |�k − �s | ≡ |�−|. This can be seen directly
from the Hamiltonian that contains the terms c

†
k↑c

†
−k↓�+ and

c
†
k↓c

†
−k↑�−. Now, if |�+| > |�−| for a given k value, it is

clear that the system will favor Cooper pairs where the ↑
electron of the pair sits at k whereas the ↓ electron sits at
−k, since the Cooper pair state where the ↑ electron sits at
−k and the ↓ electron sits at k has a smaller binding energy.
Therefore, a net spin magnetization arises at k since there
exists a surplus of ↑ spins there compared to ↓ spins due to the
difference in Cooper pair density stemming from the different
gap magnitudes. Simultaneously, the opposite magnetization
arises at −k since at that momentum the situation is reversed:
|�−| is larger than |�+| at −k.

In this way, the different magnitudes of the two gaps in
a system where singlet pairing coexists with Sz = 0 triplet
pairing in a nonunitary state cause the Cooper pairs to provide
a k-resolved magnetization in the ẑ direction despite the fact
that the net Cooper pair spin in the ẑ direction is zero.
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A useful experimental signature of the ordinary spin Hall effect is the spin accumulation it produces at the
sample edges. The superspin Hall current [Phys. Rev. B 96, 094512 (2017)] is a transverse equilibrium spin
current which is induced by a charge supercurrent. We study the superspin Hall current numerically, and find that
it does not give rise to a similar edge magnetization. We also predict and numerically confirm the existence of the
inverse superspin Hall effect, which produces a transverse charge supercurrent in response to an equilibrium spin
current. We verify the existence of the inverse superspin Hall effect both for a spin-polarized charge supercurrent
and an exchange spin current, and propose that a φ0 junction produced by the inverse superspin Hall effect can be
used to directly and electrically measure the spin polarization of a charge supercurrent. This provides a possible
way to solve the long-standing problem of how to directly detect the spin polarization of supercurrents carried
by triplet Cooper pairs.

DOI: 10.1103/PhysRevB.99.174505

I. INTRODUCTION

Spin-polarized supercurrents are a central theme in su-
perconducting spintronics [1]. Cooper pairs in conventional
Bardeen–Cooper–Schrieffer superconductors are in the spin-
singlet state [2–4]. Consequently, supercurrents in conven-
tional superconductors are not spin polarized. To spin polarize
such a supercurrent, the spin-singlet pairs must be converted
to equal-spin triplet pairs. This can be accomplished by com-
bining the processes known as spin mixing and spin rotation
[1,5–7]. Because of the exchange splitting, proximity-induced
Cooper pairs in a ferromagnet will oscillate between the spin-
singlet and the spin-0 triplet state [8,9]. This is known as spin
mixing. A magnetic inhomogeneity or spin-orbit coupling
can rotate the resulting spin-0 triplets into equal-spin triplets
[10–14]. This is known as spin rotation. So far, such a spin
polarization of the supercurrent carried by triplet Cooper pairs
has not been detected directly, but is only inferred from oth-
erwise inexplicably long-ranged supercurrents in proximity
structures [7].

Long-ranged spin-polarized supercurrents in phase-biased
Josephson junctions are equilibrium currents. Various authors
have suggested that spin supercurrents have observable conse-
quences that can be detected via electrical [15–17] or mechan-
ical [18] means, or through the magnetization dynamics they
induce [19,20]. Nonetheless, experimental detection schemes
based on these signatures have yet to be implemented. One
particular difficulty with these suggestions is that an equilib-
rium spin current by definition cannot perform work without
dissipating. Consequently, any attempt to extract useful work
from, say, a voltage induced by an equilibrium spin current in
order to detect that current will dissipate the spin current itself.

*vetle.k.risinggard@ntnu.no

The spin Hall effect [21] and its Onsager reciprocal
[22–24] have found many applications in nonsuperconducting
spintronics. Among others, these include electrical detection
of spin currents induced by spin pumping [25] or the spin
Seebeck effect [26], spin Hall magnetoresistance [27,28], and
spin Hall spin-transfer torques [29]. It is only natural to in-
quire whether a superconducting analog of the spin Hall effect
can be used to detect the spin-polarization of a supercurrent.

Spin Hall effects in superconducting structures have been
considered previously in several theoretical and experimen-
tal works. References [30–35] considered out-of-equilibrium
situations, in which quasiparticle effects give rise to spin
(charge) currents as a result of charge (spin) injection. In
particular, Ref. [35] measured an enhancement of the inverse
spin Hall signal by three orders of magnitude when the NbN
is cooled below the superconducting transition temperature.
References [36–40] considered equilibrium situations and it
was shown that the combination of spin-orbit coupling and an
exchange field could induce a phase difference between two
superconductors to obtain a φ0 junction [37,38].

In Ref. [41], we considered an equilibrium transverse spin
current generated by a longitudinal charge supercurrent in a
Josephson junction, which we will refer to here as the super-
spin Hall current. Whereas most studies of spin Hall effects
in superconductors consider purely s-wave or quasiparticle
effects [30–39], the superspin Hall current is the result of an
interplay between the s-wave condensate of a conventional su-
perconductor and a proximity-induced p-wave condensate. As
opposed to the interfacial spin current considered in Ref. [40],
the superspin Hall current considered in Ref. [41] arises in a
magnetic Josephson junction. In Ref. [41], we also consider
the ballistic limit, rather than the diffusive limit considered in
Refs. [31,37–39].

An open question regarding the superspin Hall current is
whether or not it induces an edge spin magnetization which

2469-9950/2019/99(17)/174505(12) 174505-1 ©2019 American Physical Society



VETLE RISINGGÅRD AND JACOB LINDER PHYSICAL REVIEW B 99, 174505 (2019)

could serve as an experimental signature of its existence. This
question was not addressed in Ref. [41], which considered
periodic boundary conditions and thus in practice a cylindrical
geometry.

In this paper, we present two main results. The first result
is a full two-dimensional analysis of the superspin Hall effect
where we are able to address the issue of what happens to the
spin supercurrent at the edges of the system. This issue is of
interest with respect to possible experimental probes of the
effect.

The second result is the prediction of a corresponding
inverse effect, namely the inverse superspin Hall effect. In
this case, an equilibrium spin current produces a transverse
charge supercurrent, which gives rise to a φ0 shift in the
Josephson junction. The φ0 shift is—as opposed to previous
predictions of φ0 junctions incorporating spin-orbit coupling
and ferromagnets [19,37,38,42]—induced by a pure equilib-
rium spin current. We propose that the φ0 shift can be used
to detect the spin polarization of a supercurrent carried by
Cooper pairs. Being an equilibrium property of the junction
we consider, this detection scheme will not dissipate the
equilibrium spin current. This offers a way to electrically and
directly verify the spin polarization of previously detected
long-ranged supercurrents [43–48].

The superspin Hall effect can not only be used to detect
spin-polarized supercurrents, but also other equilibrium spin
currents. To illustrate this we also calculate the φ0 shift
induced by the exchange spin current between two misaligned
ferromagnets [49,50].

II. INTRODUCTION TO THE SUPERSPIN HALL EFFECT

The intrinsic superspin Hall effect, which we considered in
Ref. [41], arises in a magnetic Josephson junction with Rashba
spin-orbit interlayers, see Fig. 1. When a phase difference
φ is applied over the junction, so that a longitudinal charge
current flows between the two superconductors, a transverse
spin current is induced near the superconductor–Rashba-metal
interface. Being transverse, it flows parallel to the interface
(y direction). Its spin polarization is perpendicular to the
exchange field h in the ferromagnet—along the y direction
for h = hex, and along the x direction for h = hey.

As we explain in Ref. [41], this spin supercurrent is the
result of a delicate interplay between the different condensates
in the junction. Consider for instance h = hey and, for the
sake of the argument, even-frequency superconducting cor-
relations. In addition to the s-wave spin-singlet condensate
emanating from the proximitized superconductors, there are

FIG. 1. Suggested experimental setup for the superspin Hall
effect. A magnetic Josephson junction in the clean limit with Rashba
spin-orbit interlayers. The in-plane exchange field h in the ferromag-
net makes an angle χ with the x axis.

also p-wave correlations in the junction due to the broken
translation symmetry at the material interfaces [51,52] and
due to the presence of spin-orbit coupling [53]. Due to the
overall antisymmetry of the Cooper-pair wave function, the
spin state of these even-frequency p-wave correlations must
be one (or several) of the triplet states. The generation of
both short- and long-range triplets is possible because of the
simultaneous presence of both ferromagnetism and spin-orbit
coupling [13,14]. As explained in Ref. [41], the interaction
of the s- and p-wave condensates can be described via two
different superconducting order parameters in the junction,
which quantify the superconducting correlations present in the
system. These are, respectively, the sum �+ and the difference
�− of the original s-wave and p-wave order parameters, �s

and �k , where k refers to the momentum in the y direction.
The momentum index k is a good quantum number for a
system with periodic boundary conditions in the y direction,
as the one considered in Ref. [41]. The relative magnitude of
these order parameters is determined by the relative phase of
the original s-wave and p-wave order parameters,

|�±|2 = |�s|2 + |�k|2 ± 2 Re(�s�
∗
k ). (1)

When no phase difference is applied over the junction, the
s-wave order parameter is purely real, whereas the p-wave
order parameter is purely imaginary. Consequently, their sum
and difference have equal magnitude, |�+| = |�−|, and as
many Cooper pairs condense in the |k ↑,−k ↓〉 state as in
the |k ↓,−k ↑〉 state. However, when a phase difference is
applied, the s-wave order parameter acquires an imaginary
component and the p-wave order parameter acquires a real
component. In turn, their sum and difference are no longer
equal, |�+| �= |�−|, and Cooper pairs condense preferentially
at either |k ↑,−k ↓〉 or |k ↓,−k ↑〉 because of the difference
in condensation energies. Such a selective condensation gives
rise to a nonzero k-resolved spin magnetization Sk that is anti-
symmetric in k. Subsequently, this antisymmetric momentum-
resolved spin magnetization produces a spin current polarized
along the spin magnetization direction. For an exchange field
h = hey, the momentum-resolved spin magnetization points
in the x direction; thus the application of a longitudinal phase
difference (charge current) has given rise to a transverse spin
current polarized along ex.

III. THEORY

We consider a superconducting heterostructure in two di-
mensions in the clean limit, incorporating strong spin-orbit
coupling. For this, we use the tight-binding Bogoliubov–de
Gennes framework [3]. Our heterostructure consists of super-
conductors, normal metals with Rashba spin-orbit coupling,
and ferromagnets. Our Hamiltonian is

H = − t
∑

〈i, j〉,σ
c†

i,σ c j,σ −
∑
i,σ

μic
†
i,σ ci,σ −

∑
i

Uini,↑ni,↓

− (i/2)
∑

〈i, j〉,α,β

λi[n · (σ × d i j )]αβc†
i,αc j,β

+
∑
i,α,β

(hi · σ )αβc†
i,αci,β , (2)
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where i and j are position indices (i, j = 1, . . . , NxNy, where
Nx and Ny are the dimensions of the lattice); 〈i, j〉 indicates
that i and j are nearest neighbors; t is the hopping integral; c†

i,σ

and ci,σ are electron creation and annihilation operators at site
i for spin σ ; μi is the local chemical potential; Ui is the local
on-site attraction that gives rise to superconductivity (Ui =
0 outside the superconductors and Ui = U > 0 inside the
superconductors); ni,σ = c†

i,σ ci,σ is the number operator at site
i for spin σ ; λi is the local Rashba parameter (λi = 0 outside
the normal metals and λi = ±λ inside the normal metals);
n is the unit vector normal to the Rashba-metal/ferromagnet
interface; σ is the vector of Pauli matrices; d i j = −d ji is the
vector pointing from site i to site j; and hi is the local magnetic
exchange field (hi = 0 outside the ferromagnet and hi = h
inside the ferromagnet).

The two-particle Hubbard-U term can be recast as

−
∑

i

Uini,↑ni,↓ =
∑

i

(�i c†
i,↓c†

i,↓ + �
†
i ci,↓ci,↑

+|�i|2/Ui ) (3)

using the standard mean-field ansatz �i = −Ui〈ci,↓ci,↑〉. We
symmetrize the Hamiltonian using the fundamental fermionic
anticommutator to write∑

λ,κ

Aλ,κc†
λcκ = 1

2

∑
λ

Aλ,λ + 1

2

∑
λ,κ

Aλ,κ (c†
λcκ − cκc†

λ). (4)

Introducing the basis

B†
i = (c†

i,↑ c†
i,↓ ci,↑ ci,↓), (5)

we may then write the Hamiltonian on the form

H = H0 + 1

2

∑
i, j

B†
i Hi jB j . (6)

Here, we have identified the constant term H0,

H0 =
∑

i

|�i|2/Ui −
∑

i

μi, (7)

where the first sum runs only over the superconductors, and
the 4 × 4 matrix Hi j ,

Hi j = 1
2 tτzσ0δ j,i+δ − μiτzσ0δi, j + i

2�i τ+σyδi, j

− i
2�

†
i τ−σyδi, j − i

4λiτ0σz(δ j,i+δy − δ j,i−δy )

+ hx
i τzσxδi, j + hy

i τ0σyδi, j + hz
i τzσzδi, j , (8)

where δi, j is the Kronecker delta, we used n = ex, we intro-
duced the set of nearest-neighbor vectors δ = (δx, δy), and
τn and σn are the Pauli matrices for n = x, y, z and n = 0
refers to the identity. Moreover, τ± = τx ± iτy, and products
of Pauli matrices are interpreted as Kronecker products. As
is the usual definition, τzσ0, for instance, evaluates to τzσ0 =
diag(+1,+1,−1,−1) [54].

The index structure in Eq. (6) is that of a matrix product,
in which the matrix M is multiplied from the left with the row
vector B†, and the resulting row vector is multiplied with the
column vector B. Each element in M is a 4 × 4 matrix Hi j ,
and each element in B (or B†) is a 4 × 1 (or 1 × 4) column (or
row).

FIG. 2. Enumeration scheme for the Nx × Ny square lattice. The
site index i is incremented site by site along the rows, starting in the
upper left corner.

The structure of the matrix M is determined by how we
combine the elements of B and B† into vectors. We consider a
square lattice. The position indices i and j run over the entire
system (Nx × Ny sites). Since each pair (i, j) corresponds to a
4 × 4 block Hi j , we expect M to be a 4NxNy × 4NxNy matrix.

By choosing some enumeration scheme for the sites i (such
as the one in Fig. 2), we can thus write

H = H0 + 1
2 B†MB, (9)

and diagonalize M by the techniques that are familiar from
linear algebra. Since H is Hermitian, so is M, and M can thus
be diagonalized as M = PEP−1, where E is diagonal and real,
and P is unitary, P−1 = P† [55]. Substituting M = PEP−1

into Eq. (9) we obtain

H = H0 + 1

2

∑
n

Enγ
†
n γn , (10)

where we defined the new quasiparticle operators γ † = B†P
and γ = P−1B, γn is the nth element of γ , En is the nth
eigenenergy, and n = 1, . . . , 4NxNy. The original electron op-
erators can be related to the quasiparticle operators by

ci,↑ =
∑

n

ui,nγn , ci,↓ =
∑

n

vi,nγn , (11a)

c†
i,↑ =

∑
n

wi,nγn , c†
i,↓ =

∑
n

xi,nγn , (11b)

where ui,n with i = 1, . . . , NxNy is, respectively, Pln with l =
1, 5, 9, . . . Likewise, vi,n with i = 1, . . . , NxNy is Pln with
l = 2, 6, 10, . . . ; wi,n with i = 1, . . . , NxNy is Pln with l =
3, 7, 11, . . . ; and xi,n with i = 1, . . . , NxNy is Pln with l =
4, 8, 12, . . . .

We can now derive expressions for any of the observ-
ables in the system in terms of the eigenenergies En and
the eigenvectors ui,n, vi,n, wi,n, and xi,n. For instance, the
superconducting gap takes the form

�i = Ui

∑
n

vi,nw
∗
i,n f (En/2), (12)

and the spin magnetization takes the form

〈
Sx

i

〉 = 2
∑

n

Re(u∗
i,nvi,n) f (En/2), (13a)

〈
Sy

i

〉 = 2
∑

n

Im(i∗i,nvi,n) f (En/2), (13b)

〈
Sz

i

〉 =
∑

n

(|ui,n|2 − |vi,n|2) f (En/2). (13c)
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The free energy reads

F = H0 − 1

β

∑
n

ln[1 + exp(−βEn/2)], (14)

where 1/β = T and T is temperature.
Expressions for the charge and spin currents can be ob-

tained from their respective continuity equations,

∂tρi = −∇ · ji (15)

and

∂t si = −∇ · Ji , (16)

where ρi is the charge density at i, ji is the current density
at i, si is the spin density at i, Ji is the spin-current-density
tensor at i, and the gradient of the spin-current-density tensor
is taken with respect to the position variables. Note that the
spin current defined by the spin continuity equation is only
conserved in regions without ferromagnetism or spin-orbit
coupling because these terms are spin nonconserving [56]. For
each of the two continuity equations, we find expressions for
the currents by integrating the equations over space to obtain
(for the case of the charge current)

∂t Qi = −
∫

�

dr (∇ · ji ),

where Qi = ∑
σ c†

i,σ ci,σ is the charge at i and � is the unit-cell
volume. The integral on the right-hand side can be evaluated
using Green’s theorem,∫

�

dr (∇ · ji ) =
∫

∂�

dS ( ji · en) =
∑

l

ji,l a =
∑

l

Ii,l ,

where ∂� is the unit-cell boundary, en is the outward-pointing
boundary normal, and a is the unit-cell side length. Since we
consider a square lattice, Ii,l is the current through the lth face
of the square unit cell. The left-hand side of the continuity
equation can be evaluated using Heisenberg’s equation of
motion. Thus the sum of currents out of the unit cell is∑

l

Ii,l = −i[H, Qi]. (17)

Evaluating the commutator and taking a combined thermal
and quantum-mechanical average gives the charge current in
the x direction〈

Ix
i

〉 = t
∑

n

Im(u∗
i+1,nui,n − u∗

i−1,nui,n

+ v∗
i+1,nvi,n − v∗

i−1,nvi,n) f (En/2) (18)

and in the y direction,
〈
Iy
i

〉 =
∑

n

Im
(
u∗

i−Nx,nui,n − u∗
i+Nx,nui,n

+ v∗
i−Nx,nvi,n − v∗

i+Nx,nvi,n
)

f (En/2)

− 1

2

∑
n

λi Re
(
u∗

i−Nx,nui,n + u∗
i+Nx,nui,n

− v∗
i−Nx,nvi,n − v∗

i+Nx
vi,n

)
f (En/2). (19)

A similar procedure for the spin currents gives the three spin
components of the spin current in the x direction

〈
Ixx
i

〉 = t
∑

n

Im(u∗
i+1,nvi,n + v∗

i+1,nui,n

− u∗
i−1,nvi,n − v∗

i−1,nui,n) f (En/2), (20)

〈
Ixy
i

〉 = t
∑

n

Re(u∗
i+1,nvi,n − v∗

i+1,nui,n

− u∗
i−1,nvi,n + v∗

i−1,nui,n) f (En/2), (21)

〈
Ixz
i

〉 = t
∑

n

Im(u∗
i+1,nui,n − v∗

i+1,nvi,n

− u∗
i−1,nui,n + v∗

i−1,nvi,n) f (En/2), (22)

and likewise the three spin components of the spin current in
the y direction

〈
Iyx
i

〉 = t
∑

n

Im
(
u∗

i−Nx,nvi,n + v∗
i−Nx,nui,n

− u∗
i+Nx,nvi,n − v∗

i+Nx,nui,n
)

f (En/2), (23)

〈
Iyy
i

〉 = t
∑

n

Re
(
u∗

i−Nx,nvi,n − v∗
i−Nx,nui,n

− u∗
i+Nx,nvi,n + v∗

i+Nx,nui,n
)

f (En/2), (24)

〈
Iyz
i

〉 = t
∑

n

Im
(
u∗

i−Nx,nui,n − v∗
i−Nx,nvi,n

− u∗
i+Nx,nui,n + v∗

i+Nx,nvi,n
)

f (En/2). (25)

A general superconducting order parameter F can be de-
composed into a spin-singlet and a spin-triplet contribution
[57],

F = (ψ + d · σ)iσy , (26)

where ψ is the singlet amplitude and the d vector is the vector
of triplet amplitudes along the x, y, and z axes,

d = 1
2 [�↓↓ − �↑↑, −i(�↓↓ + �↑↑), 2�↑↓]. (27)

The spin structure of the singlet amplitude is already familiar
from Eq. (8), where the same factor iσy appears. In a unitary
superconducting state, the identity F † = F−1 holds, and FF †

is proportional to the identity. A general superconducting sys-
tem is, however, not unitary, and straightforward calculation
shows that

FF † = |ψ |2 + |d|2 + σ · [(ψd∗ + ψ∗d ) + i(d × d∗)]. (28)

The term i(d × d∗) is proportional to the spin expectation
value of the pure triplet Cooper pairs [57], whereas the term
(ψd∗ + ψ∗d ) is proportional to the spin magnetization arising
due to coexistence of singlet and triplet pairing [41],

SCooper ∝ (ψd∗ + ψ∗d ) + i(d × d∗). (29)

In order to calculate the Cooper-pair spin magnetization, we
need expressions for the superconducting amplitudes. The
s-wave singlet amplitude Si,0 at i is identical to the gap we
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calculated in Eq. (12), except for the factor Ui,

S0 = 1

2
[〈ci,↑ci,↓〉 − 〈ci,↓ci,↑〉] =

∑
n

vi,nw
∗
i,n f (En/2). (30)

The direct and inverse superspin Hall effects depend on the
existence of even-frequency, py-wave, spin-triplet amplitudes,

Py
i,↑↓ = 1

2

∑
±

±[〈
ci,↑ci±δy,↓

〉 + 〈
ci,↓ci±δy,↑

〉]

= 1

2

∑
n,±

±(
w∗

i,nvi∓Nx,n − vi,nw
∗
i∓Nx,n

)
f (En/2), (31a)

Py
i,↑↑ =

∑
±

±〈
ci,↑ci±δy,↑

〉 =
∑
n,±

±w∗
i,nui∓Nx,n f (En/2), (31b)

Py
i,↓↓ =

∑
±

±〈
ci,↓ci±δy,↓

〉 =
∑
n,±

±x∗
i,nvi∓Nx,n f (En/2). (31c)

In Sec. V, we will need the odd-frequency, s-wave, spin-
triplet amplitudes,

Si,↑↓(t ) = 1

2
[〈ci,↑(t )ci,↓(0)〉 + 〈ci,↓(t )ci,↑(0)〉]

= 1

2

∑
n

(w∗
i,nvi,n − x∗

i,nui,n) f (En/2)eiEnt/2, (32a)

Si,↑↑(t ) = 〈ci,↑(t )ci,↑(0)〉=
∑

n

w∗
i,nui,n f (En/2)eiEnt/2, (32b)

Si,↓↓(t ) = 〈ci,↓(t )ci,↓(0)〉=
∑

n

x∗
i,nvi,n f (En/2)eiEnt/2. (32c)

IV. NUMERICAL CALCULATIONS

In this paper, we consider the three setups in Figs. 1, 7,
and 9. In each case, we construct the matrix M from Eq. (9)
and diagonalize it to find the eigenvalues and eigenvectors.
Using these, we may calculate physical quantities such as
the superconducting gap �i or the spin magnetization 〈Si〉.
Because the matrix M depends on the superconducting gap,
the equations must be solved self-consistently by substi-
tuting the gap calculated using Eq. (12) back into M and
iterating.

For each of the systems we consider, we make sure
that the superconducting state minimizes the free energy in
Eq. (14). In all the systems, we take the exchange field hi

of the ferromagnets to be an external parameter, that is, we
do not calculate the exchange field self-consistently. This is
consistent with an s−d-type model in which the localized d
electrons are responsible for the magnetic behavior [58,59].
The spin magnetization 〈Si〉 that we calculate is thus the spin
polarization of the itinerant s electrons.

In the setup in Fig. 1, we consider the injection of a charge
current into the junction by an applied phase difference. This
is accomplished by fixing the phase of the superconducting
gap �i at the leftmost lattice points in the left superconductor
and at the rightmost lattice points in the right superconductor.
The applied phase difference between these points can be
used as a proxy for the applied phase difference over the
junction (N/F/N spacer) because the phase drop inside the

superconductors is typically small. (Fixing the phase differ-
ence at �φ = 0.5π gives an effective phase difference over
the N/F/N spacer of �φ ≈ 0.47–0.48π .)

In the setup in Fig. 7, we consider the injection of a
charge current across the injection junction by an applied
phase difference. We fix the phase of the left superconduc-
tor in the detector at φ = 0 (this choice is arbitrary—only
phase differences matter). By varying the phase of the right
superconductor from 0 to 2π we calculate the current-phase
and free-energy–phase relations of the detector junction. We
take the induced anomalous phase φ0 to be the phase over
the detector that minimizes the free energy and gives 〈Ix〉 =
I (−φ0) = 0.

In the setup in Fig. 9, we consider the injection of an ex-
change spin current from two misaligned ferromagnets. We fix
the phase of both superconductors at φ = 0 and calculate the
anomalous charge current I (0) = 〈Ix〉. In its simplest form,
a φ0 junction [60–63] has the current-phase relation I (φ) =
Ic sin(φ + φ0). For small φ0 shifts, the anomalous phase φ0

and the anomalous current I (0) = Ic sin φ0 are proportional,
I (0) ≈ Icφ0. Therefore, we can use the anomalous current as
a proxy for the anomalous phase.

The advantage of tight-binding Bogoliubov–de Gennes
framework [3] that we use is that it is not subject to the
limitations on length and energy scales that are inherent to for
instance quasiclassical theory [64]. However, using this tight-
binding framework, only comparatively small lattice sizes are
computationally manageable, especially in two-dimensional
finite-size calculations. For superconducting structures, the
relevant length scale is the superconducting coherence length
ξ = h̄vF/π� [2,3]. If the coherence length is to be smaller
than the thickness of the superconducting layers, this re-
quires relatively large values of the superconducting gap
and large critical temperatures. Nonetheless, the tight-binding
framework can still be used to make qualitative and quan-
titative predictions for experimentally relevant systems. To
do this requires that the spatial dimensions are scaled by
the superconductive coherence length. One example of a
successful application of this method is Ref. [65], whose
predictions correspond very well to the experimental results
of Ref. [66].

We take a similar approach. With the parameters chosen
in Secs. V–VIII the thickness of the superconducting layers
is about one coherence length, and the normal-metal and
ferromagnetic layers vary from about ξ/4 to 2ξ . As long as
the weak links are not orders of magnitude larger than the
coherence length, the qualitative features of our results are
robust towards variations of the system size. In particular, the
φ0 shift that we calculate in Sec. VII is nearly independent of
the length of the detector junction.

V. SUPERSPIN HALL EFFECT IN TWO DIMENSIONS:
SPIN CURRENT AND EDGE MAGNETIZATION

Our analysis of the superspin Hall effect in Ref. [41]
was an effective one-dimensional analysis in the sense that
we assumed periodic boundary conditions in the y direc-
tion and thus could get rid of the y coordinate by Fourier
transformation. Whereas we were still able to calculate the
transverse spin current, this left open the question of the

174505-5



VETLE RISINGGÅRD AND JACOB LINDER PHYSICAL REVIEW B 99, 174505 (2019)

exact spin current circulation pattern and whether any spin
magnetization arises at the edges of the sample. The latter
would be a useful experimental signature of the superspin Hall
effect, as it has been previously for the (nonequilibrium) spin
Hall effect [67,68].

In the usual nonsuperconducting, nonequilibrium spin Hall
effect, spin accumulates at the edges of the sample because
the transverse spin current has nowhere to go upon reach-
ing the sample boundary [21]. A steady state is achieved
because the spin Hall effect is found in materials with strong
spin-orbit coupling where spin is not conserved. The accu-
mulated spin at the edge at any time is thus the result of a
balance between influx of spin from the bulk and spin loss
due to spin-orbit coupling.

We find that the superspin Hall current does not give rise
to a spin magnetization at the sample edges by this familiar
mechanism. The simple reason is that the superspin Hall
current in our system does have somewhere to go—it can be
drained from the superconductor, where in our model spin is
conserved, into the Rashba-metal/ferromagnet spacer, where
spin is not conserved. This circulation of the superspin Hall
current from the spacer, into the superconductor, and back into
the spacer, is shown in Fig. 3(a).

Note that, although the net flow of spin is from the bottom
of the sample to the top, the direction of the spin current
(up/down) oscillates as a function of the distance into the
superconductor [Fig. 3(b)]. As explained in Ref. [41], the
oscillation period is a function of the system parameters, such
as the strength of the spin-orbit coupling in the normal layer
and the strength of the exchange field in the ferromagnet.
The period varies from atomic-scale oscillations to roughly
a fourth of the coherence length. Such rapid oscillations are
characteristic for physical quantities in ballistic quantum-
mechanical systems. For instance, they can also be found
in the proximity-induced magnetization in conventional su-
perconductors [69] and helical edge-mode currents in triplet
superconductors [70].

Although the superspin Hall current does not give rise to
a spin magnetization at the edges of the sample, there is an
x-polarized spin magnetization at the edges of the system
[Fig. 4(a)]. However, contrary to what we would expect from
a spin magnetization arising due to accumulation of spins
deposited by the superspin Hall current, the spin magneti-
zation sign pattern that we observe is ±∓, not ±±, where
the signs refer to the left upper/lower and right upper/lower
edges, respectively. Furthermore, its amplitude varies as
cos φ, where φ is the phase difference applied between the
two superconductors [Fig. 5(a)]. We would expect a spin
magnetization induced by the superspin Hall current—which
is again induced by the longitudinal charge current—to have
an amplitude that varied as sin φ [compare with Figs. 5(c)
and 5(d)].

The momentum-resolved spin magnetization that gives rise
to the superspin Hall current is the result of the interaction of
the s-wave spin-singlet and a p-wave spin-triplet condensate,
both even in frequency. The edge spin magnetization we
observe in Fig. 4, on the other hand, is the result of the inter-
action of the even-frequency, s-wave, spin singlet condensate
and an odd-frequency, s-wave, spin-triplet condensate. In
Fig. 4(a), we have plotted the x component of the total spin

FIG. 3. Superspin Hall current in two dimensions at phase dif-
ference φ = π/2. (a) Circulation pattern of the x component of the
spin current. The spin current is only plotted in the superconductors,
where spin is conserved. (b) Cut along the x direction at y = 15
inside the superconductors. The spin current oscillates as a function
of the distance from the N/F/N weak link into the superconductors.
We use the following parameter values: the system size is Nx = 40
times Ny = 30; the layer thicknesses are NS = 15, NN = 3, and NF =
4. the chemical potentials are μS = 0.9, μN = 0.85, and μF = 0.8;
the Rashba spin-orbit coupling in the normal metal is λ = 0.3, the
exchange field in the ferromagnet is hy = 0.15 (hx = hz = 0), the on-
site attraction in the superconductor is U = 1.1, and the temperature
is T = 0.01. All energies are normalized with respect to the hopping
parameter (t = 1).

FIG. 4. x component of the spin magnetization at phase differ-
ence φ = 0. (a) The total spin magnetization. (b) The spin magneti-
zation induced by interaction of s-wave singlets and odd-frequency,
s-wave triplets (arbitrary units). Except for the applied phase between
the superconductors, all parameters are identical to Fig. 3.
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FIG. 5. Phase dependence of the superspin Hall effect. (a) Total
spin magnetization 〈Sx〉 summed over the lower half of the right
superconductor. (b) Cooper-pair spin magnetization Sx

Cooper summed
over the lower half of the right superconductor (arbitrary units).
(c) Longitudinal charge current 〈Ix〉 summed over the y cross section.
(d) Transverse spin current 〈Iyx〉 summed over the x cross section. All
parameters are identical to Fig. 3.

magnetization calculated using Eq. (13a). In Fig. 4(b), we
have plotted the x component of the spin magnetization
calculated using Eq. (29), where we have used the super-
conducting amplitudes in Eqs. (30) and (32). Apart from
a constant prefactor, the plots are essentially identical. The
spin magnetization due to the odd-frequency, s-wave spin
triplets also reproduce the phase dependence of the total spin
magnetization [compare Figs. 5(a) and 5(b)].

The fact that the edge spin magnetization is due to the
odd-frequency triplets (s wave) whereas the superspin Hall
effect is due to the even-frequency triplets (p wave) makes
it clear that the spin magnetization is not a consequence of
the superspin Hall current. Further evidence to this effect
is that this particular spin magnetization is also predicted
in the diffusive limit [71], where the superspin Hall effect
is precluded because of the absence of p-wave correlations.
Consequently, one can exist independently of the other—they
are independent effects.

Nonetheless, the symmetries of the spin magnetization
with respect to sign change of the Rashba spin-orbit coupling
and the direction of the exchange field is the same as those of
the superspin Hall current. In particular, rotating the exchange
field by 90◦ from h = hey to h = hex also rotates the spin-
triplet spin magnetization by 90◦ from x to y.

The temperature T = 0.01 (in units of t), which we chose
for the simulations above, is well below the superconducting
transition temperature, T = 0.01 � Tc/2. However, at still
lower temperatures, Andreev bound states [72,73] with a
more dispersive energy-phase relation appear in the junc-
tion. The appearance of such states is common in ballistic
systems with high interface transparencies and low temper-
atures. Because these states bounce multiple times between
the two superconductors, they produce higher-harmonic con-
tributions to the current-phase relation. The higher harmonics
will distort the pure sinusoidal shape of the current-phase
relation and may even introduce discontinuities [74,75]. This,

FIG. 6. Phase dependence of the superspin Hall effect at low
temperatures. (a) Longitudinal charge current 〈Ix〉 at T = 0.005
summed over the y cross section. (b) Longitudinal charge current
〈Ix〉 at T = 0.003 summed over the y cross section. (c) Transverse
spin current 〈Iyx〉 at T = 0.005 summed over the x cross section.
(d) Transverse spin current 〈Iyx〉 at T = 0.003 summed over the x
cross section. All parameters except the temperature are identical to
Fig. 3.

of course, also affects the superspin Hall current, as shown
in Fig. 6.

The presence of Andreev bound states in the junction also
affects the spin magnetization, which deviates from a pure
cosine as a function of the applied phase difference φ. Inter-
estingly, there is also a discernible difference between the total
spin magnetization and the Cooper-pair spin magnetization
computed via Eq. (29) at low temperatures.

VI. INVERSE SUPERSPIN HALL EFFECT

The Onsager reciprocal of the usual nonsuperconduct-
ing, nonequilibrium spin Hall effect is the inverse spin Hall
effect—that is, injection of a transverse spin current generates
a longitudinal charge current. In a steady state, the charge
current must either be drained into external leads or a volt-
age accumulates which exactly cancels the inverse spin Hall
current. Analogously, one might expect that there should exist
an inverse of the superspin Hall effect discussed in Sec. V—
injecting an equilibrium transverse spin current should give
rise to a longitudinal charge supercurrent.1 However, in the
absence of external leads, the steady state will be one with
zero charge current. Instead, a phase difference φ0 accumu-
lates over the junction. This phase difference gives rise to
a supercurrent that exactly cancels the one induced by the
inverse superspin Hall effect. In this work, we confirm this
expectation and find that the experimental signature of the
inverse superspin Hall effect is a φ0 junction.

1Note that the term inverse effect cannot here be understood as
the Onsager reciprocal proper, as our calculations are carried out is
equilibrium.
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VII. ELECTRICAL DETECTION OF THE
SUPERCURRENT SPIN POLARIZATION

We propose to use the setup in Fig. 7 to detect the spin po-
larization of a supercurrent. This four-terminal setup consists
of two perpendicular Josephson junctions. We will refer to the
S/F(y/F(x/F(y)/S junction as the injection junction and the
S/N/F(x)/N/S junction as the detector or detection junction.

By applying a phase bias over the injection junction, a spin-
polarized supercurrent is produced by the combined processes
of spin mixing in the S/F(y) bilayer and spin rotation [rotation
of spin quantization axis between the F(y) and F(x) layers].
The current is spin-polarized in the x direction. The proximity
to the F(y) layers provides the necessary conditions for the
superspin Hall mechanism. Thus, the inverse superspin Hall
effect converts this transverse spin current into a longitudinal
charge supercurrent in the detector that flows from the left
to the right superconductor. Consequently, in the steady state,
the detection junction is a φ0 junction. If the two terminals
of the detection junction are connected to form a supercon-
ducting loop, the current-phase relation of the detector can be
measured by threading a magnetic flux through the loop [76].
The anomalous current I (0) = Ic sin φ0 can also be measured
directly using a SQUID in zero applied flux.

Figures 8(a) and 8(b) show the current-phase and the
free-energy–phase relations of the detector junction. At an
applied phase difference of φ = 0 over the injector junction
[Fig. 8(a)], no spin current is injected across the detector. Con-
sequently, the current-phase relation of the detector junction is
that of an ordinary 0 junction. At an applied phase difference
of φ = π/2 over the injector junction [Fig. 8(b)], a large
spin current is injected across the detector. Consequently, the
current-phase relation is shifted by an amount φ0 = −0.2π .

Figure 8(c) shows the complete φ0-phase relation. The
abscissa corresponds to the applied phase difference of the
injection junction. On the right ordinate we have plotted the
charge and spin currents injected across the detector, that is,
〈Iy〉 and 〈Iyx〉. The 〈Iy〉-phase and the 〈Iyx〉-phase relations are
both almost sinusoidal, and we interpret the spin current as
the spin polarization of the charge current. On the left ordinate
we have plotted the induced φ0 shift, i.e., the phase φ over the
detector that corresponds to 〈Ix〉 = 0 and F = Fmin. Clearly,
the φ0 shift is zero when the transverse spin current is zero.
Moreover, the sign of the φ0 shift is a good predictor for the
sign of the spin current. We have not been able to find a simple

FIG. 7. Proposed experimental setup for detecting a spin-
polarized supercurrent consisting of two crossed Josephson junc-
tions. The charge supercurrent in the y direction injected into the
S/F(y/F(x/F(y)/S junction is spin polarized in the x direction by the
magnetic inhomogeneity provided by the F(y) layers. The transverse
spin current thus injected into the S/N/F(x)/N/S junction induces a
phase difference φ0 between the left and right superconductors.

FIG. 8. φ0 effect for the setup in Fig. 7. [(a) and (b)] Current-
phase and free-energy–phase relations of the detector junction as a
function of the phase difference applied over the detector junction
at applied phase differences of (a) φ = 0 (no injected charge current)
and (b) φ = π/2 (maximal injected charge current) over the injection
junction. In (b), a φ0 shift of φ0 = −0.2π is clearly visible. (c) Right
ordinate: the injected charge current and the resulting spin current
through the injection junction as a function of the phase difference
applied over the injection junction. Left ordinate: the induced φ0 shift
in the detection junction as a function of the phase difference applied
over the injection junction. The system size is Nx = 35 times Ny =
21. The layer thicknesses of the detector are NS = 5, NN = 10, and
NF = 5, and the layer thicknesses of the injector are NS = 5, NF(x) =
3, and NF(y) = 5. All material parameters are identical to Fig. 3.

explanation for the deviation of the φ0 shift from a pure sine,
but the fact that both the sign and zeros of the anomalous
phase φ0 follow the spin supercurrent is consistent with the
latter being the origin of the anomalous phase shift.

In addition to serving as a measurement of the spin polar-
ization of the supercurrent, the setup we propose in Fig. 7 can
also serve as a current-controlled phase battery. Such func-
tionality has recently been proposed for a voltage-controlled
φ0 junction [77], and recent experiments have made progress
towards both magnetic and electric phase control [62,78].

VIII. ELECTRICAL DETECTION
OF AN EXCHANGE SPIN CURRENT

The inverse superspin Hall effect is not only induced by
a spin-polarized charge supercurrent, but also by other equi-
librium spin currents. To demonstrate this, we consider the
setup in Fig. 9. Here, the injection junction has been replaced
by an F/N/F spin valve (no spin-orbit coupling in N). By
misaligning the ferromagnets, we can inject an exchange spin
current [49,50]. The spin current is proportional to the sine of
the misalignment angle θ , Is ∼ sin θ .

In Fig. 10(a), we plot the resulting spin current 〈Iyx〉 in
the central normal metal (where spin is conserved) and the
anomalous current I (0) = 〈Ix〉 as a function of the misalign-
ment angle θ . The spin current is sinusoidal as a function
of θ , consistent with the prediction of Refs. [49,50]. The
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FIG. 9. Suggested experimental setup for the inverse superspin
Hall effect. The misalignment of the two ferromagnets (misalign-
ment angle θ ) produces a transverse exchange spin current that gives
rise to an anomalous current between the two superconductors.

sinusoidal response of the anomalous current is consistent
with our interpretation that it is induced by the exchange spin
current (and not directly induced by the transverse variation
in the exchange field as in Ref. [37]).

In Figs. 10(b) and 10(c), we plot the current-phase relation
at a misalignment angle θ = 0 and π/2. The anomalous cur-
rent I (0) shows up as a φ0 shift of the current-phase relation.

In Fig. 11, we have plotted the magnitude and phase of
the resulting superconducting gap. The oscillations in the
gap magnitude |�i| at the sample edges are due to Fridel
oscillations that create an oscillating change density [79]. A
φ0 shift of φ0 ≈ −0.04π is clearly visible.

Figure 12 shows the dependence of the anomalous current
I (0) on the spin-orbit coupling strength λ in the Rashba metals
and the exchange-field strength h in the ferromagnets. There
is a pronounced peak (or dip) at h ≈ 0.8 and λ ≈ 1.9. This pa-
rameter dependence can be understood as follows: We expect
the inverse superspin Hall effect to disappear when the ex-
change field vanishes because h = 0 means that no transverse

FIG. 10. (a) Injected spin current 〈Iyx〉 in the central normal
metal (no spin-orbit coupling) and anomalous current I (0) = 〈Ix〉
as a function of the misalignment angle θ . [(b) and (c)] Current-
phase and free-energy–phase relations at a misalignment angle of,
respectively, θ = 0 (no injected spin current) and θ = π/2 (maximal
injected spin current). A φ0 shift of φ0 ≈ −0.04π is clearly visible.
We use the following parameter values: the system size is Nx = 38
times Ny = 12; the layer thicknesses of the detector are NS = 15,
NN = 2, and NN′ = 4 and the layer thicknesses of the injector are
NF = 1 and NN′ = 10; the Rashba spin-orbit coupling is λ = 1.87;
and the exchange field is h = 0.8. The remaining parameter values
are identical to Fig. 3.

FIG. 11. φ0 signature of the inverse superspin Hall effect.
[(a) and (c)] Magnitude of the superconducting gap |�i|. The gap
vanishes in the N/F/N spacer and the inverse proximity effect is
clearly visible. The oscillations of the gap at the edges of the sample
are due to Fridel oscillations. [(b) and (d)] Phase of the s-wave singlet
amplitude Si,0. A φ0 shift of φ0 ≈ −0.04π is clearly visible. The
plots in (c) and (d) are for y = 5. We use parameter values that are
identical to Fig. 10.

spin current is injected. (Also, magnetism is a prerequisite for
the superspin Hall effect.) For small values of h, we expect
the anomalous current to increase with the exchange field
because an increase in h leads to an increase in the transverse
spin current. However, for large values of h, we expect the
superspin Hall effect to disappear because the exchange field
suppresses the superconducting proximity effect.

We also expect the anomalous current to vanish for van-
ishing spin-orbit coupling because spin-orbit coupling is a
prerequisite for the superspin Hall effect. For finite λ, there
is a finite anomalous current because of the superspin Hall
effect, but we expect the superspin Hall effect to disappear
for very large spin-orbit coupling because it suppresses the
necessary py-wave spin-0 triplets [41] (d not parallel to gk in
the notation of Ref. [80]).

IX. DISCUSSION

The superspin Hall effect and its inverse depend on the
existence of p-wave correlations in the junction. These cor-
relations are sensitive to disorder and will, in the face of too
large amounts of disorder, be entirely suppressed.

The suppression of superconductivity by disorder has been
studied in many systems, including heavy-fermion systems
[81,82], iron pnictides [83,84], and Sr2RuO4 [85]. Strontium

FIG. 12. Dependence of the anomalous current I (0) = 〈Ix〉 on
the ferromagnet exchange field h and the Rashba metal spin-orbit
coupling λ. Except for h and λ, the parameter values are identical to
Fig. 10.
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ruthenate is arguably the most relevant system for the p-wave
correlations that the superspin Hall effect depends on. In
strontium ruthenate, the disorder dependence of the critical
temperature can be described using Abrikosov–Gor’kov pair-
breaking theory [3,86]. Superconductivity vanishes in this
compound when the mean free path � is on the order of
or smaller than the superconducting coherence length ξ of
the p-wave order parameter. Experiments indicate that this
corresponds to a residual resistivity of about 1 μ�cm [85].
Results from the iron pnictides indicates that s±-wave pair-
ing is suppressed at a similar residual resistivity of about
10 μ�cm [84], corresponding to an impurity concentration
of only about 1% [83].

We expect that a similar strong suppression of the p-wave
correlations will take place in the junctions we consider. To re-
alize the effects we predict experimentally would thus require
samples with good crystallinity and impurity concentrations
below about 1%.

In the weakly disordered case—that is, for impurity con-
centrations below this level—we expect that the amount of
p-wave correlations will be reduced, but not have vanished
completely. This will lead to a reduction in the induced
transverse spin current (superspin Hall effect) or the induced
anomalous current (inverse superspin Hall effect) compared
to the clean limit. For comparison, it is instructive to compare
the behavior in this case to Fig. 12. Here, the py-wave spin-0
triplets are suppressed at large spin-orbit coupling, and the
anomalous current vanishes. Similar behavior can be expected
as a function of impurity concentration.

X. CONCLUSION

We have considered the superspin Hall and the
inverse superspin Hall effects in a two-dimensional

S/N/F/N/S Josephson junction. We present two main
results.

Firstly, the transverse spin supercurrent induced by the
superspin Hall effect circulates from the N/F/N spacer, into
the superconductors, and back into the N/F/N spacer. Con-
sequently, it does not give rise to a spin magnetization at
the sample edges, contrary to the usual spin Hall effect. The
spin magnetization that does arise at the sample edges can be
attributed to interaction between the proximity-induced even-
frequency s-wave spin-singlet condensate and odd-frequency
s-wave spin-triplet correlations.

Secondly, we predict and numerically confirm the exis-
tence of the inverse superspin Hall effect, which can be de-
tected experimentally as a φ0 shift in the Josephson junction.
We have shown that both exchange spin currents and spin-
polarized charge supercurrents produce a transverse charge
supercurrent by the inverse superspin Hall effect. In particular,
we propose that a φ0 junction produced by the inverse super-
spin Hall effect can be used to—for the first time—measure
directly the spin polarization of a charge supercurrent carried
by triplet Cooper pairs.
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