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Abstract

In this thesis, a simpli�ed model of the MEG loop at the Snøhvit �eld is established
and implemented, together with an unscented Kalman �lter. The model is tested
with and without the Kalman �lter. The model is tested with test data, while the
model included the Kalman �lter is tested with both test data and real production
data.

It is found that the model is some part away from the real process. The most
signi�cant di�erence is the rate of rich MEG into the MEG-regenerator onshore,
which in the real process has severe oscillations relative to the rate of lean MEG
rate out of the MEG-regenerator. In the model the rich MEG is modeled primarily
to follow the lean MEG rate, and is therefore fairly constant.

For many data sets of real production data, the system is not able to predict the
formation water, because the error covariance matrix in the Kalman �lter becomes
negative semi de�nite. This can be caused by the Kalman �lter not being robust
enough or/and inconsistent data from Snøhvit. Still, when a data set is found
where the system is able to predict the formation water is found, the system does
predict a formation water rate that is located in the region that is expected at the
Snøhvit �eld.
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Sammendrag

I denne avhandlingen blir en forenklet model av MEG sløyfen på Snøhvit-feltet
utviklet og implementert sammen med et unscented Kalman�lter. Modellen er
testet med og uten Kalman�lteret. Modellen er testet med prøvedata, mens mod-
ellen, sammen med Kalman�lteret, er testet både med prøvedata og ekte produk-
sjonsdata.

Det er vist at modellen ikke er helt lik den ekte prosessen. Den største forskjellen
er at rik MEG raten in i MEG-regeneratoren har store oscillasjoner i den ekte
prosessen i forhold til lean MEG raten ut av MEG-regeneratoren. I modellen er rik
MEG raten hovedsaklig modellert til å følge lean MEG raten, og er derfor ganske
konstant.

For mange datasett av ekte produksjonsdata er ikke ikke mulig for systemet
å predikere produsert formasjonsvann, siden feilvarians-matrisen i Kalman�lteret
blir negativ semide�nitt. Dette kan være forårsaket av at Kalman�lteret ikke er
robus nok og/eller inkonsistente data fra Snøhvit. Men når et datasett hvor system
klarer å gjennomføre prediksjonene av formasjonsvannet er funnet, klarer systemet
å prediktere en formasjonsvann-rate som ligger i det området som er forventet av
produsert formasjonsvann fra Snøhvit-feltet.
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Chapter 1

Introduction

This master thesis, TTK4900, is a continuation of the project done in the course
TTK4550, Specialization project. In that project the main focus was to understand
the process and to understand the data reconciliation method used to solve the
process. A simpli�ed version of the data reconciliation was also implemented. For
more information about the Specialization project, see [8].

In this master thesis a new approach is used to solve the system, the data
reconciliation is replaced with an unscented Kalman �lter. In the project the
process where the estimating was conducted, was the process at the Vega �eld,
while in this master thesis the process in question is the Snøhvit �eld. These two
�elds are quite similar, but with some di�erences.

1.1 Snøhvit

The �rst well drilled to search for hydrocarbons in the North Sea was drilled on the
summer of 1966. The well was dry, but three years later, in 1969, it was found an
oil �eld in the North Sea. That �eld was the Eko�sk �eld, and the production was
started 15. June 1971. In the following years several large �ndings were discovered.
In 1972 the Norwegian state-owned company Statoil AS was founded to make sure
Norwegian participation in the north sea was ensured [11].

The following paragraph contains information about the Snøhvit �eld that is
obtained from [1]. The Snøhvit �eld is located in the Norwegian sea (often called
the Barents sea in relation to petroleum industry [10]) northwest of Hammerfest,
and is the �rst �eld that is developed in the Barents Sea. Snøhvit is also the
�rst �eld on the Norwegian continental shelf without any installations on the sea
surface. The production plant is located on the seabed between 250 and 345 meter
beneath the surface.

The �eld produces gas, and it is planned to be drilled twenty wells, distributed
between the three reservoirs Snøhvit, Albatross and Askeladd. The gas is trans-
ported in a 143 km long pipeline from the seabed to Melkøya, outside Hammer-
fest. The Snøhvit reservoir consists of eight wells in addition to one well for CO2-
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1.2. Problem objectives

injection. The Albatross reservoir contains four wells, while the Askeladd reservoir
consists of eight wells [10]. The CO2 content is separated at Melkøya and re-injected
into the �eld [12].

The Snøhvit �eld was proven in 1984 [10]. The start of the production on the
Snøhvit �eld took place on 21. August 2007, where both the Snøhvit and the
Albatross reservoirs were taken into use. The Askeladd reservoir is scheduled to
start it's production in the year 2014/2015.

Figure 1.1: The onshore process plant at Melkøya outside of Hammerfest.
The production from this process plant started 13. September 2007. The
picture is obtained from [1], and the photographer is Gjertrud Lindberg.

The Snøhvit �eld is operated by Statoil, which is the biggest partner with about
37 % of the ownership of the �eld. The second highest owner of the �eld is Petoro
with about 30 % of the ownership. The �eld is predicted, per 31. December 2012,
to contain 176.6 billion1 Sm3 gas, 6.4 million tons NGL (natural gas liquids) and
22.6 million Sm3 condensate. Per 31. December 2012 there is predicted to be 156.9
billion tons Sm3 remaining gas [12].

1.2 Problem objectives

The work description given for this master thesis consists of the following three
objectives:

1. Establish a dynamic model (simpli�ed) for the MEG loop.

11 billion = 1 000 000 000. In Norwegian: milliard.
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Chapter 1. Introduction

2. Perform response analysis using the dynamic model and compare the model
response with real production data.

3. Implement an unscented Kalman �lter to dynamically estimate the total rate
of produced formation water.

The �rst objective is to establish a dynamic model to describe the MEG loop
at the Snøhvit �eld. The model implemented will be a simpli�cation of the real
system, due to the complexity of the real system. A more complex model will also
lead to more complexity of making the Kalman �lter work. Therefore the main
focus when establishing the model is to include the most essential dynamics of the
real system.

The second objective is to perform response analysis using the dynamic model
and compare the model response with real production data. This objective will
be a bit more extensive than expressed in the description. The model will be
tested with sample data, to test if the model works as expected. Then the model
together with the Kalman �lter will be tested with sample data to see if the Kalman
�lter is working properly. Then the model with Kalman �lter will be tested with
production data, to see how the implemented system will function when production
data is applied.

The last objective is to implement the unscented Kalman �lter, with focus on
estimating the total rate of produced formation water. The implementation of the
Kalman �lter also includes some important aspects as tuning of the Kalman �lter
and introduction of constraints on the states.

1.3 Outline and scope

The main tasks that will be performed in this thesis are listed in the table below:

• Develop and implementation of a dynamic model of the system.

• Implementation of an unscented Kalman �lter.

• Stability analysis of the system.

• Testing of the dynamic model.

• Tuning of the unscented Kalman �lter.

• Testing of model with the unscented Kalman �lter.

• Testing of model with the unscented Kalman �lter with real production data.

This thesis will, after the introduction �rst contain a part that describe the
process more detailed than done in this chapter. This is done in Chapter 2, The
MEG process. Some parts of this chapter is re-used from the project [8]. Then
the model development of the process will be described in Chapter 3, Model de-
velopment, and the discretization of the model, with an analysis of the numerical
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1.4. Motivation

solver, will be done in the chapter after, Chapter 4, Numerical solver and model
discretization.

Then there will be a theory part, Chapter 5, Kalman �lter. In this part, the
Kalman �lter and the unscented Kalman �lter will be described.

Further the more practical part of this thesis will come. The �rst chapter in this
part is Chapter 6, Model implementation, that describes the model implementation
of the model. Further the tuning of the Kalman �lter will appear in Chapter 7,
Tuning.

In Chapter 8, Results, the results of the simulations done in this thesis will be
displayed.

The thesis will be concluded with a chapter, Chapter 9, Discussion, that will
discuss the results found in this thesis. Further some conclusions and proposals to
further work is given in Chapter 10, Conclusion and further work.

After the table of contents a list of �gures, a list of tables and the nomenclature
are listed. In the appendix, after the references, a list explaining the notation and
a list of symbols used in this thesis are displayed.

1.4 Motivation

At several of Statoils process plants there are implemented a software named
Megsim. Megsim is a software that is monitoring and predicting di�erent vari-
ables of the process. The software is quite similar for each of the �elds, but there
are some variations due to variations of the production process at the di�erent
�elds. Therefore Megsim is implemented individually for each �eld. At the Vega
�eld the software version is called Megsim Vega, while at the Snøhvit �eld the
software version will be called Megsim Snøhvit.

The method that is currently used in Megsim to monitor the process is data
reconciliation and gross error detection. Statoil has experienced some di�culties
with Megsim for the di�erent �elds, like the Vega �eld. This is because the software
has experienced periods when it has been unable to perform the data reconciliation.
As a result the measurements and the estimates have been unavailable for the user
of the software to obtain. In the beginning some form of Kalman �lter was tested
in Megsim, but the attempt was unsuccessful, probably due to the large amount of
variables that was taken into account and the amount of variables tried to predict.

At Snøhvit, Statoil is in the process of implementing a new addition of Megsim,
designed for the Snøhvit �eld. Statoil is mainly planning to use the same approach
as done earlier with data reconciliation and gross error detection, but they also
want to try another implementation of a Kalman �lter. The new approach of the
Kalman �lter, which will be performed in this master thesis, will not be as extensive
as Statoils earlier attempt. Therefore the main goal of the Kalman �lter will be
to just predict the most crucial state of the system, the formation water rate from
the reservoirs. If this is successful, the model can be expanded and be done more
extensive, with more parameters to predict.

If the prediction of the formation water rate, and other system parameters, is
successful, Statoil can optimize the use of inhibitors and pH-stabilizer. This will
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Chapter 1. Introduction

make the process more e�ective in hence of waste products and costs.
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Chapter 2

The MEG process

The process plant at Melkøya is a liquid natural gas (LNG) plant for producing
and distributing gas from the Snøhvit �eld. In this chapter it will be focused on
the part of the system that is important for this thesis, which includes the MEG
loop and the di�erent �uids that are part of that loop. That means it will not be
used any time on explaining the other parts of the LNG production at Melkøya.

2.1 The MEG loop

The MEG loop is the part of the process that is relevant for the transportation of
MEG. In this section the MEG loop will be divided into two parts when explained.
That is the part of the MEG loop which is o�shore and the part of the MEG loop
which is onshore at Melkøya. A simpli�ed illustration of the MEG loop is shown
in Figure 2.1. But �rst the MEG will be introduced.

2.1.1 Mono-ethylene glycol

Mono-ethylene glycol (MEG), or just ethylene glycol, is the liquid that has given
its name to the MEG loop. In processes of extracting natural gases MEG is used to
extract water. More importantly it prevents formation of hydrates and it also coun-
teracts against water freezing in the pipelines [8]. The largest area of application
for MEG is probably as a antifreeze �uid to vehicle engines [3].

The reservoir is a gas/condensate reservoir that is saturated with water. The
water which is in the gas is not desired, due to hydrate formation. Therefore the
water is extracted from the gas with MEG. This happens because the vapor pressure
of water is lowered by the MEG, and water drops out and forms MEG/water phase.

In this process, MEG is separated in two types, lean MEG and rich MEG. The
lean MEG is transported down to the wells by the injection lines, while the rich
MEG is a part of the contents in the production line. The lean MEG contains low
amounts of water, while the rich MEG contains higher amounts of water. Typical

7



2.1. The MEG loop

values for the rich MEG is about 50-60 wt% MEG and the lean MEG consists of
about 90 wt% MEG.

Figure 2.1: A simpli�ed �gure of the MEG loop at the Snøhvit �eld. The
�gure is used with permission from Statoil.

2.1.2 The MEG loop o�shore

The connection between the wells at the Snøhvit �eld and the process plant at
Melkøya is two 143 km long pipelines. The main pipeline, called the production
line, transports the gas from the wells together with the rich MEG and condensate
to Melkøya. The other pipeline is the injection line. The injection line transports
lean MEG down to the wells from Melkøya.

At the wells the lean MEG from the injection line is injected into the produced
�uids from the reservoirs. The lean MEG is sent to the CDU (control distribution
unit) where the MEG is distributed to each of the wellheads. There are currently
two operating reservoirs at the Snøhvit �eld, that is the Albatross reservoir and
the Snøhvit reservoir, with a combined number of wells of twelve.

In every well the MEG is mixed with gas and sent up with the production line.
The production �uid is cooled down since the production pipeline is submerged
in seawater. The MEG extracts water from the gas in the production pipeline,
therefore the MEG consists of more water than it had in the production line, and
is called rich MEG.
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Chapter 2. The MEG process

2.1.3 The MEG loop at Melkøya

The onshore plant, which is located at Melkøya, consists of many elements. For
the MEG loop, the desalination plant and the MEG-regenerator plant is the most
essential parts. The �rst part of the extraction of the gas, called slug catcher,
separates the condensate, the gas and the MEG/water phase into three di�erent
mass �ows. The only essential �ow out of the slug catcher, for this thesis, is the
MEG/water phase. The MEG/water phase is the same as the rich MEG �ow.

Some of the MEG/water phase is sent through a desalination plant after the
slug catcher. The MEG/water phase �ow goes further to a separation column tank.
From the separation column it is extracted a mass �ow of water which contains
salts, and removed from the system. After the separation column the MEG/water
phase is sent to the MEG-regenerator.

The MEG-regeneration tank

The MEG-regeneration tank is also referred to as the MEG-recycler in this thesis.
The MEG-regeneration tank consists of many di�erent tanks. These tanks consist
of both lean MEG and rich MEG with di�erent degrees of purity with respect
of water. The reason of why there are tanks with di�erent purity is because the
operators should be able to adjust the purity of lean MEG sent into the injection
pipeline. Because of the bypass in the desalination plant, explained underneath,
the lean MEG is not completely cleansed for salts and consists of small amounts of
salts when it is sent into the injection pipeline. This phenomenon is called carry
over [8].

The desalination plant

Before the contents of the production line reach the MEG-regenerator, it is de-
salinated in the desalination plant. The desalination plant is a salt removal unit
where salts from the rich MEG are removed before it is injected into the MEG-
regenerator. The unit is needed to keep the salt level at an acceptable level. A
simpli�ed model of the desalination process is �gured in Figure 2.2.

Desalination

Mixer

ṁRM

ṁBY

ṁUP ṁDWN

ṁDES

Figure 2.2: A simple chart of the desalination process.

In the desalination plant it exist one bypass pipeline, which is a pipeline that
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2.2. Fluids in the MEG-loop

bypasses some of the rich MEG, so that �ow is not desalinated. The content that
is not injected to the bypass will go through the desalination block. The waste
of the desalination is solid, and all of the salts that exist in the �ow through the
desalination plant is removed. The mass �ow through the desalination plant and
the mass �ow through the bypass i mixed mixed before they are sent to the MEG-
regenerator.

2.2 Fluids in the MEG-loop

There are several di�erent �uids in the MEG-loop. The di�erent �uids is also
explained in [8].

2.2.1 Formation water

Formation water is water contained in the reservoirs together with oil and gas.
When extracting oil and gas, some of the formation water will be extracted as well.
The formation water consist of several di�erent minerals and salts, which makes it
possible to detect the formation water and distinguish it from other types of water,
like sea water, since the concentrations of ions of these waters di�er signi�cantly.

The formation water is, when produced and mixed with the pH-stabilizer, the
main reason scale inside the pipelines is produced [8]. It is expected to be small
amounts of formation water produced in the start of the �eld's lifetime, and it will
increase as the time goes on. At Snøhvit, which is a young �eld, it is expected to
bee almost zero formation water produced at this stage. The formation water at
Snøhvit is expected to be produced around year 2018. It varies from �eld to �eld
when in the �eld's lifetime the formation water is produced.

2.2.2 PH-stabilizer

PH-stabilizer is injected continuously to control the pH-values in the rich MEG.
This is needed because there are CO2 with the gas produced, that reduces the
pH-value. It is added to the lean MEG after it is sent from the process plant.
The pH-control is used to minimize the formation of corrosion products in the
pipelines. The pH-stabilizer consists of 30 wt% of NaOH. In Figure 2.3b the result
of corrosion in the pipelines is shown. Sometimes corrosion inhibitor is injected
together with the pH-stabilizer in order to control the corrosion rate.

2.2.3 Scale inhibitor

PH-stabilizer is incompatible with formation water leading to scale (solid particles)
formation. To prevent scale from forming, a chemical inhibitor, scale inhibitor, is
injected. The scale inhibitor is added to the lean MEG after it is sent from the
process plant. In Figure 2.3a the results of scale formation in the pipelines are
shown.
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Chapter 2. The MEG process

(a) (b)

Figure 2.3: Figure (a) shows scale inside the pipeline, while �gure (b)
shows the e�ect of corrosion on the pipeline. Pictures taken from [6].

2.2.4 Sea water

Before producing oil and gas from reservoirs, pipelines are submerged into the sea
water, and therefore �lled with sea water. After the pipelines were installed they
were �lled with MEG and pH-stabilizer to get rid of the sea water, but there is
usually some small amounts of sea water left in the pipelines. After some days of
production the amount of sea water left in the pipelines are approximately zero [8].
The sea water is also referred to as salt water.

2.2.5 Completion �uids

A completion �uid is a weight material that is used to �nalize the wells when they
are drilled. It will still be coming some remains of the completion �uid from the
startup [8]. Together with the salt water, there are almost nothing completion �uid
in the pipelines at Snøhvit.
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Chapter 3

Model development

In this chapter the simpli�ed dynamical model will be developed. This is done
with basis on the process description in Chapter 2, The MEG process. First in
this chapter the process is further simpli�ed before it later is modeled. Afterwards
each components of the process is described and explained more extensive.

In this chapter the model is just shown for one specie when the species are
modeled. This is done since it is not any di�erence between the species when it
comes to the modeling part. The model consists of three species.

3.1 Model simpli�cation

In this section the process is simpli�ed further, before the model is established in
the last part of this section.

3.1.1 Simpli�cation of the real process

The process, described in Chapter 2, is simpli�ed to the chart displayed in Figure
3.1. In the �gure, the MEG-recycler, the desalination block and the mixer rep-
resents the facilities that are onshore. The MEG-regenerator originally contains
several tanks containing both lean MEG and rich MEG. The well is represented
as a single well, despite the fact that the real process consists of several wells from
the two reservoirs, Albatross and Snøhvit.

The time delays in the system are represented with the white blocks contain-
ing the numerical equation for transport delay, e−τs. The desalination process is
simpli�ed to a desalination block that extracts salts and the mixer that mixes the
bypass mass �ow with the downwards mass �ow from the desalination. The mixer
also extracts water from the process.

The two mass �ows that are produced from the well are the formation water,
ṁFW , together with the condensate water that is removed from the gas, ṁWAT,1,
and becomes a part of the rich MEG. The salts out from the desalination plant is
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3.1. Model simpli�cation

denoted by ṁDES , and the water extracted from the rich MEG is denoted with
ṁWAT,2.

The �ow into the MEG-recycler, ṁIN , consists of the injected chemicals, which
includes the pH-stabilizer and the formation inhibitor. The re�lling of MEG is not
included in this �gure.

Well

Desalination

MEG-recycle

Mix

e−τs e−τs

ṁRM

ṁLM

ṁUP

ṁFW , ṁWAT,1

ṁIN

ṁWAT,2

ṁBY

ṁDWN

ṁDES

Figure 3.1: A simpli�ed chart of the real MEG loop. The chart is shown
with respect of total mass �ows.

3.1.2 Model simpli�cation

The system is modeled with respect of mass. This means the �ow rates are mea-
sured as mass �ows, [kg/h], and the content in tanks are modeled as mass, [kg].
This is chosen because most of the measurements taken at Snøhvit is mass �ow
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Chapter 3. Model development

rate and the amount of species in the di�erent �ows are given as concentration,
[kg/m3].

In Figure 3.2 the simpli�ed model is shown. The model, which is a further
simpli�cation of the process chart displayed in Figure 3.1, contains one tank, the
MEG-recycler, and one mixer, the well. That means that both the desalination
block and the mixer from Figure 3.1 is merged into the MEG-recycler.

The mixer mixes the production from the well with the lean MEG �ow, the
rich MEG is the output �ow of the mixer. From the reservoirs, the �ow rate that
is of interest is the formation water, ṁFW . In this model both the mass �ow of
sea water and completion �uid are simpli�ed to be zero. If this should not be the
case, they will be a part of the formation water mass �ow.

Well

MEG-recycle

e−τs e−τs

ṁRM

ṁLM

ṁFW

ṁIN

ṁWAT , ṁDES

Figure 3.2: The simpli�ed model of the Snøhvit �eld. The mass �ows are
with respect of the total mass.

The input to the MEG-recycler is the rich MEG and a �ow containing the pH-
stabilizer and both inhibitors, the scale inhibitor and the corrosion inhibitor, ṁIN .
The output of the tank is the lean MEG �ow, ṁLM , the mass �ow containing the
extraction of salts in the desalination plant, ṁDES , and the water extracted from
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3.2. The MEG-regeneration tank

the MEG-recycler, ṁWAT . The transport delay is unchanged from the simpli�ed
process chart.

In the model the species are seen upon as inert, that means they will not
react with any material, like the pH-stabilizer or the scale inhibitor. The scale
inhibitor does not react with any of the species, so that assumption is true, while
the pH-stabilizer may react with some of the species in the real process. Both
the pH-stabilizer and the inhibitors are assumed to not include any of the relevant
species.

The water extracted from the gas will not be considered as a part of the forma-
tion water, and will �rst be detected in the total mass �ow of the rich MEG into
the MEG-recycler.

3.2 The MEG-regeneration tank

The whole process from the rich MEG reach the onshore plant until it leaves the
plant as lean MEG is modeled as one unit. This unit is divided into a series of
many mass units to take into account the time delay that is onshore. This can also
be seen upon as many tanks in series and will therefore sometimes be referred to
as tanks. In Figure 3.3 an example of the MEG-recycler with four mass units is
pictured. The mass units will be denoted with Ml, where l denotes for which of
the mass units it yields. All external inputs and outputs to the MEG-regenerator
interfere with the �rst mass unit.

Tank 1 Tank 2 Tank 3 Tank 4

Figure 3.3: The model of the MEG-regenerator. Each tank represent each
of the mass units. In this �gure the MEG-recycler is modeled as four mass
units.

First the change of the mass,
dMi

l

dt , of each specie i in the mass units are derived.
In equations (3.3-3.5) is an example of three mass units in the MEG-recycler is
described. The mass �ow out of the �rst tank and into the second tank is denoted
with ṁ1. The same yields between the other tanks. The mass �ow of each specie
between the tanks, ṁi

j is set to be the same ratio with the total mass �ow between
the tanks, ṁj , as the ratio of the specie in the associated tank. This is shown in
equations (3.1-3.2).
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Chapter 3. Model development

ṁi
j

ṁj
=
M i
l

Ml
, where j = l (3.1)

ṁi
j =

M i
l

Ml
· ṁj (3.2)

The expression for the mass �ow of each specie between the mass units, Equa-
tion (3.2), is inserted into the expressions of the change of the mass in each of the
mass units, equations (3.3-3.5), below.

dM i
1

dt
= ṁi

IN −
M i

1

M1
ṁ1 (3.3)

dM i
2

dt
=
M i

1

M1
ṁ1 −

M i
2

M2
ṁ2 (3.4)

dM i
3

dt
=
M i

2

M2
ṁ2 −

M i
3

M3
ṁ3 (3.5)

For the real model, the mass �ow out of the rich MEG pipeline, ṁi
RM,out, will

be injected into the �rst mass unit, and therefore replacing ṁIN in Equation (3.3).
In the last mass unit the mass �ow into the lean MEG pipeline, ṁi

LM,in, will be

extracted and replacing
Mi

3

M3
ṁ3 in Equation (3.5).

The mass �ow removed from the MEG-recycler, ṁi
out, contains both the amount

of specie that is removed by the desalination process and the species in the con-
densate water. This mass �ow is modeled to interfere with the �rst tank, Equation
(3.6). The total �ow rate between the tanks are modeled to be the same size as
the �ow out of the last tank, and into the lean MEG pipeline, ṁi

LM,in. Therefore
the model of each specie i in the MEG-recycler is expressed as shown in equations
(3.6-3.9).

dM i
1

dt
= ṁi

RM,out − ṁi
OUT −

M i
1

M1
ṁLM,in (3.6)

dM i
2

dt
=
M i

1

M1
ṁLM,in −

M i
2

M2
ṁLM,in (3.7)

...

dM i
l−1

dt
=
M i
l−2

Ml−2
ṁLM,in −

M i
l−1

Ml−1
ṁLM,in (3.8)

dM i
l

dt
=
M i
l−1

Ml−1
ṁLM,in − ṁi

LM,in (3.9)
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3.3. Pipelines

One also needs to model the total mass in each tank. Since the total mass �ow
between each mass unit is the same for all mass units, and the external input and
output mass �ows are only interfering with the �rst mass unit, each of the other
mass units, shown in equations (3.11-3.12), is modeled as a mass unit with constant
mass, hence the derivatives are zero. The �rst mass unit is modeled in Equation
(3.10). The mass unit is modeled the same way as it is for one specie, as shown in
Equation (3.6), but there are some changes in the output mass �ows.

For the total mass in the �rst tank, all the condensate water that is extracted
from the rich MEG, ṁi

WAT , is removed from the tank. All the salts that is removed
from the tank is modeled as only the amount of the three species in the model that is

removed,
∑

iM
i
1

M1
ṁDES . The MEG/water phase processed through the desalination

process are denoted with ṁDES . That means the mass �ow through the bypass is
not represented in the equation, because it do not interfere with the mass in the
mass unit. The mass into the �rst mass unit, ṁIN represent all the inhibitors and
the pH-stabilizer injected into the MEG-recycler.

dM1

dt
= ṁRM,out + ṁIN − ṁWAT − ṁLM,in −

∑
iM

i
1

M1
ṁDES (3.10)

dM2

dt
= 0 (3.11)

...

dMl

dt
= 0 (3.12)

The number of mass units, l, decides the length of the time delay. The level
of MEG in the MEG loop will after time drop, since some of the MEG will be
removed due to the desalination process. Therefore the tank will be supplied with
cleansed MEG on a batch basis. This is not taken account for in this model, to
simplify the model.

3.3 Pipelines

In this section the model for both the pipelines, the lean MEG and the rich MEG,
are expressed. The mass �ows in the pipelines are only modeled for the three
species, and not the total mass �ow, since the total mass �ow is seen upon as the
input to the system.

The total mass �ow into the lean MEG pipeline is used to model the mass
�ow of each specie into the lean MEG pipeline. The mass �ow into the lean MEG
pipeline, ṁi

LM,in, is modeled as the mass fraction of the specie in the last MEG-
recycle tank, with respect of the total mass of �uid in the tank, times the total
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Chapter 3. Model development

mass �ow into the lean MEG pipeline, ṁLM,in. This is shown in Equation (3.13).
The mass �ow for each specie, ṁi

LM,in, is denoted with a superscript that shows
which specie i it yields for.

The �ow rate out of the lean MEG pipeline is modeled as the �ow into the
pipeline, ṁi

LM,in, with a transport delay. τ1 is the transport delay. This is shown
in Equation (3.14).

ṁi
LM,in =

M i
l

Ml
· ṁLM,in (3.13)

ṁi
LM,out = e−τ1s · ṁi

LM,in (3.14)

In the rich MEG pipeline, the production line, the mass �ow for each specie into
the pipeline, ṁi

RM,in, is the sum of the mass �ow out of the lean MEG pipeline,

ṁi
LM,out, for each specie and the mass �ow of formation water, ṁi

FW , for each
specie. This is shown in Equation (3.15).

The mass �ow out of the production line and into the MEG-recycle tank,
ṁi
RM,out, is modeled as the mass �ow into the production line, ṁi

RM,in, with a
transport delay. τ2 is the transport delay. This is shown in Equation (3.16) below.

ṁi
RM,in = ṁi

LM,out + ṁi
FW (3.15)

ṁi
RM,out = e−τ2s · ṁi

RM,in (3.16)

3.4 Formation water

The model for the formation water for each of the three species is modeled as
a constant �ow. This because it is uncertain what the process can be expected
to produce of each specie. The produced formation water for each specie is also
expected to be fairly constant. This is shown in Equation (3.17).

ṁi
FW = const (3.17)

The total mass �ow of formation water is modeled from the amount of three
chosen species and the expected concentration these species have in the total for-
mation water �ow. This is shown in Equation (3.18).

ṁFW =
α1

3
ṁ1
FW +

α2

3
ṁ2
FW +

α3

3
ṁ3
FW (3.18)
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3.5. Desalination and water extraction

The variables which contain the expected value for each specie in the formation
water mass �ow are modeled as dynamical states because of the uncertainty of
these parameters. The expected values are di�cult to �nd and they will probably
vary with time. Therefore they will be more suited to have as states, where they
can adapt to their real value if they are initialized wrong and they can adapt if
their real value changes. The model for each of the states are shown in equations
(3.19-3.21).

α1 = const (3.19)

α2 = const (3.20)

α3 = const (3.21)

3.5 Desalination and water extraction

The mass �ow through the desalination process is divided into the bypass, which
is the �rst pipeline into the mixer, and the pipeline which is desalinated. The mass
�ow through the desalination will be cleansed for all salts that are contained in
the mass �ow. For the modeling of the desalination the bypass pipeline is ignored,
because it does not make any change for the mass unit or the amount of species in
the mass unit.

The species removed from the �rst mass unit is dependent on two mass �ows.
That is the species removed by the desalination plant and the species contained
with the condensate water extraction from the MEG-recycler. For both mass �ows,
all the species that are contained in them are modeled to be removed. Therefore
the species removed from the MEG-recycler depends on the fraction of specie in
the �rst mass unit and the two mass �ows. This is shown in Equation (3.22).

ṁi
OUT =

M i
1

M1
· (ṁWAT + ṁDES) (3.22)

The amount of removed species from the MEG-regenerator can also be removed
as a constant that is allowed to change value. This is shown in Equation (3.23).

ṁi
OUT = const (3.23)

The alternative expression for the mass �ow removed from the MEG-regenerator,
Equation (3.23), is made because there is some uncertainty in the expression above,
Equation (3.22).
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Chapter 4

Numerical solver and model

discretization

First in this chapter the numerical solvers used to solve the di�erential equations
of the model is described. In the next part the discretization of the model is done
with use of the numerical solver. In the last part the linear test function is applied
to test if the system, including the numerical solver, is stable.

4.1 Numerical solver for di�erential equations

The numerical solver used to solve the di�erential equations is the Euler method.
The method will be described in this section.

4.1.1 Euler method

The numerical solver used for the discretization of the model is chosen to be the
Euler method. This is done because the Euler method is easy to implement and
will not complicate the model any further. The Euler method is an explicit Runge-
Kutta method of order 1. In Equation (4.2) the Euler method is displayed, the
system is on the form as shown in Equation (4.1).

For each step the explicit Euler method makes an error, that is denoted with
O(h2). The error is caused by the rounding of the Taylor series that is used to
develop the numerical solver. More can be found of this in [4].

ẏ = f(yn) (4.1)

yn+1 = yn + ∆t · f(yn) +O(h2) (4.2)

The time step is represented with the letter ∆t.
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4.2. Model discretization

4.2 Model discretization

The discretization of the model is based upon the model derived in Chapter 3,
Model development. The method used to handle derivatives is the Euler method.
The stability of the numerical solver is examined in the next section. As in the
previous chapter, the discretization is just shown for one specie.

4.2.1 The MEG-regeneration tank

Since the explicit Euler method is used to solve the di�erential equations, the
amount of each specie in the mass units is the value it had at the former time steps
in addition to the input and output mass �ows. This yield for each specie, and the
output and input mass �ows has to be multiplied with the size of the time step.

As described in the previous chapter, the external input and output streams
are set to interfere with the �rst tank, this is shown in Equation (4.3). The values
the input and output mass �ow is using to �nd the mass of the mass unit is also
from the former time step, (tk−1).

M i
1(tk) = M i

1(tk−1) + ∆t[ṁi
RM,m(tk−1)− ṁi

OUT (tk−1)−
M i

1(tk−1)

M1(tk−1)
· ṁLM,1(tk−1)] (4.3)

M i
2(tk) = M i

2(tk−1) + ∆t[
M i

1(tk−1)

M1(tk−1)
· ṁLM,1(tk−1)−

M i
2(tk−1)

M2(tk−1)
· ṁLM,1(tk−1)] (4.4)

...

M i
l−1(tk) = M i

l−1(tk−1) + ∆t[
M i
l−2(tk−1)

Ml−2(tk−1)
· ṁLM,1(tk−1)−

M i
l−1(tk−1)

Ml−1(tk−1)
· ṁLM,1(tk−1)] (4.5)

M i
l (tk) = M i

l (tk−1) + ∆t[
M i
l−1(tk−1)

Ml−1(tk−1)
· ṁLM,1(tk−1)− ṁi

LM,1(tk−1)] (4.6)

The total mass in each tank is also discretized. Since all inputs and outputs is
modeled to interfere with the �rst tank, the �rst tank is modeled in the same way
as is in Equation (4.3) with one specie, but now with the total mass rates. This is
shown in Equation (4.7). The mass �ows of the input and outputs used to �nd the
new mass of the mass unit is from the former time step, (tk−1).

Since the mass in the remaining mass units is modeled to be constant, the mass
is set to the mass it had at the last time step, shown in equations (4.8-4.9).
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M1(tk) = M1(tk−1) + ∆t[ṁRM,m(tk−1) + ṁIN (tk−1)− ṁWAT (tk−1)

−
∑
M i

1(tk−1)

M1(tk−1)
· ṁDES − ṁLM,1(tk−1)] (4.7)

M2(tk) = M2(tk−1) (4.8)

...

Ml(tk) = Ml(tk−1) (4.9)

4.2.2 The pipelines

The �rst state in the lean MEG pipeline, the injection line, is on the same form as
in Chapter 3, Model development, Equation (3.13). The di�erence is that the �ow
rate of one specie into the pipeline, ṁi

LM,1(tk), is calculated from states one time
step behind. This is shown in Equation (4.10).

The rest of the states in the lean MEG pipeline is modeled as the former state
from last time step, shown in equations (4.11-4.12). This is done to get the e�ect
of a transport delay and these states represents the transport delay in Equation
(3.14). Each state is set to be the value the previous state had at the former
time step, therefore the mass in the pipeline will stay unchanged throughout the
pipeline. There will be no changes in composition in the pipelines, and the velocity
through the pipeline will always be the same.

The length of the transport delay can be changed by adjusting the number of
states in the lean MEG pipeline. The length will then be the number of states,
represented with k, times the size of the time step.

ṁi
LM,1(tk) =

M i
l (tk−1)

Ml(tk−1)
· ṁLM,1(tk−1) (4.10)

ṁi
LM,2(tk) = ṁi

LM,1(tk−1) (4.11)

...

ṁi
LM,k(tk) = ṁi

LM,k−1(tk−1) (4.12)

In the rich MEG pipeline, the production line, the �rst state is the sum of the
�nal state in the lean MEG pipeline, ṁi

LM,k, for each specie and the mass �ow for

each specie of the formation water, ṁi
FW . This is shown in Equation (4.13).

The rest of the states are modeled as the former state from last time step,
shown in equations (4.14-4.15) below. This is, like the lean MEG pipeline, done to
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4.2. Model discretization

represent the transport delay in the model, Equation (3.16). As for the lean MEG
pipeline, the transport delay in the production line is determined by the number
of states in the pipeline, m, times the size of the time step.

ṁi
RM,1(tk) = ṁi

LM,k(tk−1) + ṁi
FW (tk−1) (4.13)

ṁi
RM,2(tk) = ṁi

RM,1(tk−1) (4.14)

...

ṁi
RM,m(tk) = ṁi

RM,m−1(tk−1) (4.15)

4.2.3 The formation water

The model for the formation water for each specie is modeled as a constant �ow,
which means the �ow is seen upon as unchanged from last time step. This is shown
in Equation (4.16).

ṁi
FW (tk) = ṁi

FW (tk−1) (4.16)

The total �ow rate of formation water is modeled from the amount of the three cho-
sen species and the expected concentration these specie have in the total formation
water �ow. This is shown in Equation (4.17).

ṁFW (tk) =
α1(tk−1)

3
ṁ1
FW (tk−1) +

α2(tk−1)

3
ṁ2
FW (tk−1)

+
α3(tk−1)

3
ṁ3
FW (tk−1) (4.17)

The states used to predict the amount of total formation water from the species
in the formation water is discretized as shown in equations (4.18-4.20). They are
all set to their value from the last time step.

α1(tk) = α1(tk − 1) (4.18)

α2(tk) = α2(tk − 1) (4.19)

α3(tk) = α3(tk − 1) (4.20)
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4.2.4 Desalination and water extraction

The removed species from the MEG-recycler is at the same form as shown is pre-
vious chapter, Chapter 3. The mass stream out for each specie, ṁi

OUT (tk), is the
same ratio of the total mass �ow out as the ratio between the specie and the total
amount of mass in the tank.

ṁi
OUT (tk) =

M i
1

M1
(tk − 1) · (ṁWAT (tk−1) + ṁDES(tk−1)) (4.21)

The alternative method to model the removed mass from the �rst mass unit
from Equation (3.23), is discretized to be the same mass �ow it had at the former
time step, since it was modeled as a constant. This is shown in Equation (4.22).

ṁi
OUT (tk) = ṁi

OUT (tk−1) (4.22)

4.3 Linear test function

The linear test function is a tool applied on the system, consisting of the model
and the numerical solver, to �nd out if the numerical integrator will be stable. The
linear test function is on the form shown in Equation (4.23) below. The theory in
this chapter is taken from [4].

ẋ = λx (4.23)

The system is on the form shown in Equation (4.24) and the linear test function
is ensured if Equation (4.25) is ful�lled.

xn+1 = R(hλ) · xn (4.24)

|R(hλ)| ≤ 1 (4.25)

|xn+1| ≤ |xn| (4.26)

When the linear test function is ensured it means that the system not violates
Equation (4.26). That will ensure that each step will reduce the absolute value of
the states, xn.

25



4.3. Linear test function

4.3.1 Linear test function on the Euler method

The linear test function is performed on the system with the Euler method. The
elements in the stability function,R(hλ), is shown in equations (4.27-4.31) beneath.

The elements in the stability function are the states in the system where the
Euler method has been taken in use. That means that all the states for the mass
for each specie in all the tanks, equations (4.3-4.6), are included. The total mass
in the �rst tank is also included, Equation (4.7). In total the stability function will
consist of l times three, plus one, elements. As can be seen in equations (4.27-4.29)
the elements are the same for each specie, since the equations are only dependent
on the total input lean MEG mass �ow and the total mass in each tank.

Ri1 = 1− ṁLM,1

M1
· h, ∀i (4.27)

Ri2 = 1− ṁLM,1

M2
· h, ∀i (4.28)

...

Ril−1 = 1− ṁLM,1

Ml−1
· h, ∀i (4.29)

Ril = 1− ṁi
LM,1 · h, ∀i (4.30)

Rl+1 = 1 (4.31)

Since the stability function have to ful�ll the Equation (4.25) above, the vari-
ables have to ful�ll the equations beneath, (4.32-4.35). In these equations only the
unique conditions are listed.

There are l+2 conditions that needs to be ful�lled. The condition from Equation
(4.31) is not included since it always will be ful�lled and the 3 ∗ l conditions from
equations (4.27-4.29) are reduced to l − 1 conditions because they are the same
for each specie. The Equation (4.35) represents the three conditions for the three
species.

0 <
ṁLM,1

M1
<

2

h
(4.32)

0 <
ṁLM,1

M2
<

2

h
(4.33)

...

0 <
ṁLM,1

Ml−1
<

2

h
(4.34)

0 < ṁi
LM,1 <

2

h
, ∀i (4.35)
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Chapter 4. Numerical solver and model discretization

It is assumed that all the variables, ṁLM,1, M1, M2, M3 and ṁi
LM,1, is all

nonnegative. This is mostly the case, but the three inputs to the lean MEG pipeline,
ṁi
LM,1, for each specie is near zero, and these states can therefore be in danger

to become negative. If they are assumed to be nonnegative one can see that the
fraction between the input lean MEG mass rate and the mass in the l − 1 �rst
tanks has to be less than two divided on the step length. The step length is for
this system most practically one, so the fraction has to be smaller than two.

4.3.2 Change of numerical solver

From the analysis done in the linear test function we have these eigenvalues, λ, that
are shown in equations (4.36-4.40). For equations (4.36-4.38) there is one equation
for each specie, but it is the same for all three species, so they are only listed as
one.

λ1 =
ṁLM,1

M1
(4.36)

λ2 =
ṁLM,1

M2
(4.37)

...

λl−1 =
ṁLM,1

Ml−1
(4.38)

λl = ṁi
LM,1, ∀i (4.39)

λl+1 = 0 (4.40)

The masses in the mass unit are unchanged for all the mass units except the
�rst mass unit, and the initial value for each tank can be set arbitrarily, therefore
it is no problem to control the corresponding eigenvalues. That will also yield on
the �rst eigenvalue since the mass in the �rst tank will ideally stay at the same
amount. The mass rate of the di�erent species into the lean MEG pipeline will be
fairly small amounts, and should therefore also be constrained by a small bound.

Table 4.1: Expected eigenvalues for the model.

λ Minimum eigenvalue Maximum eigenvalue
λ1 0 1
λ2 0 1
λl−1 0 1
λl 0 0.01
λl+1 0 0
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4.3. Linear test function

Since all the expected values of the eigenvalues listed in Table 4.1 ful�lls the
conditions of the Euler method there is no need to change the numerical solver.
The constraints for the Euler method are that the expected eigenvalues are between
zero and two.
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Chapter 5

Kalman �lter

For this system an unscented Kalman �lter is chosen at the expense of a regular
Kalman �lter or an extended Kalman �lter. With an extended Kalman �lter (or
regular Kalman �lter) one need to linearize the model around some initial points
to be able to propagate the mean and the covariance for the state. This means
the system has to be re-linearized if the system moves away from the initial points.
It makes the extended Kalman �lter (or regular Kalman �lter) more di�cult to
tune and can give unreliable estimates when there are severe nonlinearities [14].
With the unscented Kalman �lter, the model does not need to be linearized and
the system will be more robust if it drifts away from its initial states.

In this chapter the standard Kalman �lter will be explained before the unscented
Kalman �lter is explained. Both Kalman �lters are explained at discrete time.

5.1 The discrete Kalman �lter

The theory in this part is taken form [2]. The discrete Kalman �lter can be applied
on a system on the form displayed in equations (5.1-5.2) below. xk is the process
state vector at time tk, Φk is the relation between xk and xk+1 and wk is the
process noise matrix. The state vector consists of both the measured states and
the parameters of the system. yk is the measurement vector at time tk, Hk is the
relation between the states and the measurements, and vk is the observation noise.
Φk andHk can be time invariant and will then be denoted as the constants Φ and
constant H.

xk+1 = Φkxk +wk (5.1)

yk = Hkxk + vk (5.2)

The covariance matrices for the process error and the observation error are
given in equations (5.3-5.4). E[x] symbols the expected value of x.
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5.1. The discrete Kalman �lter

E[wkw
T
i ] = Qk, i = k (5.3)

E[vkv
T
i ] = Rk, i = k (5.4)

All other combinations of the covariance matrices gives the expected value of
zero. The same yields for all combinations between the process error and the
observation error. From equations (5.3-5.4) it can be seen that Qk expresses the
expected error in the system state update Φk, and that Rk expresses the expected
value of the error in the measurements, Hk.

The Kalman �lter has to be initialized before the simulation of the system
can start. The a priori estimate of the state vector and the corresponding error
covariance matrix is initialized as shown in equations (5.5-5.6) below. The error
covariance matrix is usually initialized as a diagonal matrix, with values only on
the diagonal.

x̂−
0 = E(x0) (5.5)

P−
0 = E[(x0 − x̂−

0 )(x0 − x̂−
0 )T ] (5.6)

The "hat" denotes that it is an estimate and the "super minus" denotes that
the estimate has not yet been adjusted with respect of the measurements. When a
vector or a matrix only has an "hat" and not a "super minus" it is the a posteriori

estimate. It means the measurements is taken into account, and for the state
vector this is called the assimilated state vector. Pk describes the error covariance
between the real states of the system and the a priori estimated states.

5.1.1 The Kalman �lter loop

The Kalman �lter can be seen upon as a loop that repeats itself for each time step.
In Figure 5.1 the loop of the Kalman �lter for each iteration is displayed.
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Chapter 5. Kalman �lter

Updates the states and the
error covariance matrix with
the assimilated states

Calculate the error
covariance matrix

Calculate the Kalman gain

Updating the state estimates

A priori state estimates
and error covariance

Figure 5.1: The Kalman �lter loop, inspired by the �gure on page 219
in [2]. The loop is repeated for each iteration.

When the Kalman �lter is initialized the �ltering can begin. The �rst step in
the Kalman �lter loop is to update the Kalman gain, Kk, as shown in Equation
(5.7).

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)−1 (5.7)

Kk represents the Kalman gain which describes the ratio between the certainty
of the measurements and the predicted measurements, given by the state estimate.
Kk is set to minimize the estimation error.

When the Kalman gain is computed the estimates can be updated with respect
of the measurements. It makes the a priori estimate to become an a posteriori

estimate. This is done as displayed in Equation (5.8).

x̂k = x̂−
k +Kk(yk −Hkx̂

−
h ) (5.8)

The calculated x̂k is the assimilated state estimate.
Further the a posteriori error covariance for the updated estimates can be cal-

culated as shown in Equation (5.10) below.

Pk = (I −KkHk)P−
k (5.9)
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5.2. The discrete unscented Kalman �lter

When the a posteriori estimates of the state vector and the error covariance
matrix is calculated, the last step of the Kalman �lter loop can be conducted. This
step updates the states and the error covariance in respect to the model.

x̂−
k+1 = Φx̂k (5.10)

P−
k+1 = ΦPkΦT

k +Qk (5.11)

Then the time step is changed from tk to tk+1 and the Kalman �lter loop will
again be executed.

5.2 The discrete unscented Kalman �lter

The unscented Kalman �lter is explained with a discrete model. The theory in this
section is taken from [14]. An unscented Kalman �lter is based upon an unscented
transformation. The problem with a linearization of a nonlinear system is that the
linearization only yields for one speci�c point of the system. The main principle of
the unscented transformation is to perform a nonlinear transformation for several
points of the state space. These points are called sigma points.

One start with the n-state nonlinear system on the form given in equations
(5.12-5.13). wk and vk is the process noise and measurement noise, respectively.
As opposed to the model used in the regular Kalman �lter, displayed in equations
(5.1-5.2), the model used in an unscented Kalman �lter can be a nonlinear model.

xk+1 = f(xk,uk, tk) +wk (5.12)

yk = h(xk, tk) + vk (5.13)

As for the Kalman �lter, Qk and Rk represents the expected error in the
systems state updates and the measurements, respectively.

The initialization of the unscented Kalman �lter is done in the same form as the
regular Kalman �lter, and is initialized as shown below in equations (5.14-5.15).
As for the regular Kalman �lter, the error covariance matrix is usually initialized
as diagonal matrix, with values only on the diagonal.

x̂+
0 = E(x0) (5.14)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (5.15)
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Chapter 5. Kalman �lter

5.2.1 State update equations

The sigma points are used so the states can propagate from time step tk−1 to tk.
There are made 2n sigma points, x̃(i). This is shown in equations (5.16-5.18).

x̂
(i)
k−1 = x̂+

k−1 + x̃(i) i = 1, ..., 2n (5.16)

x̃(i) = (
√
nP+

k−1)Ti i = 1, ..., n (5.17)

x̃(n+i) = −(
√
nP+

k−1)Ti i = 1, ..., n (5.18)

(
√
nP+

k−1)Ti represent the ith row of (
√
nP+

k−1)T . The size of the model, rep-

resented with the number of states, n, is used to decide the spread of the sigma
points. This is done because a bigger model is likely to be more uncertain, and
therefore each state needs a bigger initial "area" when estimating.

Cholesky factorization

The Cholesky factorization can be used to �nd the square root of the error covari-

ance matrix times the number of state, (
√
nP+

k−1). The Cholesky factorization on

a matrix P produces a matrix C. this is shown in Equation (5.19).

CCT = P (5.19)

The matrix P has to be positive de�nite for the Cholesky factorization to be
able to succeed [9].

Further the system equations are used to calculate the new states based on
the sigma points. The system equations is the same as derived in Equation (5.12)
and propagates a vector of sigma points for each state estimate shown in Equation
(5.20).

x̂
(i)
k = f(x̂

(i)
k−1,uk, tk) (5.20)

Constraints on the state estimates can be introduced by applying an algorithm
on these equations. This will be described in Section 5.3 below.

To �nd an a priori state estimate the mean value for all the sigma points are
taken. This is displayed in Equation (5.21).
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5.2. The discrete unscented Kalman �lter

x̂−
k =

1

2n

2n∑
i=1

x̂
(i)
k (5.21)

The same approach is used when the a priori error covariance is estimated,
which is shown in Equation (5.22).

P−
k =

1

2n

2n∑
i=1

(x̂
(i)
k − x̂

−
k )(x̂

(i)
k − x̂

−
k )T +Qk−1 (5.22)

5.2.2 Measurement update equations

First the new sigma points, x
(i)
k , is calculated with the new a priori state esti-

mates and error covariance from the state update equations. The sigma points are
calculated the same way as equations (5.16-5.18) above. And is displayed below in
equations (5.23-5.25).

x̂
(i)
k = x̂−

k + x̃(i) i = 1, ..., 2n (5.23)

x̃(i) = (

√
nP−

k )Ti i = 1, ..., n (5.24)

x̃(n+i) = −(

√
nP−

k )Ti i = 1, ..., n (5.25)

Then the measurement equations, h(x̂
(i)
k , tk), are used to propagate the mea-

surements, ŷk, from the sigma points as showed in Equation (5.26).

ŷ
(i)
k = h(x̂

(i)
k , tk) (5.26)

Further the mean of the all the sigma points is taken to �nd a mean value of
the measurement vector. This is displayed in Equation (5.27).

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (5.27)

In Equation (5.28), the error covariance matrix for the predicted measurements
is calculated by using the sigma point for the measurements and the mean mea-
surements.
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Chapter 5. Kalman �lter

Py =
1

2n

2n∑
i=1

(ŷ
(i)
k − ŷk)(ŷ

(i)
k − ŷk)T +Rk (5.28)

The cross covariance between the states and the measurements is found as
shown below, Equation (5.29).

Pxy =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂

−
k )(ŷ

(i)
k − ŷk)T (5.29)

Then the results found in the state update and measurements update equations
can be used to calculate the Kalman gain, the a posteriori state vector and the a
posteriori error covariance matrix for the states. The calculations is displayed in
equations (5.30-5.32).

Kk = PxyP
−
y (5.30)

x̂+
k = x̂−

k +Kk(yk − ŷk) (5.31)

P+
k = P−

k −KkPyK
T
k (5.32)

When this is done the whole procedure must be done again to the simulation
is �nished.

5.3 Constraints on the states

In [13] R. Kandepu, L. Imsland and B. A. Foss develops an algorithm which makes
it possible to introduce constraints for the state estimates in the unscented Kalman
�lter. The method projects the states that violate the constraints into the boundary
of the feasible region. The method is in [13] shown to increase the accuracy of
the estimates in compared to an unscented Kalman �lter without the algorithm
implemented.

The algorithm start with the 2n sigma points calculated in Equation (5.16).
For each of the sigma points that lays outside the feasible region the sigma point
is projected into the boundary of the feasible region. This is shown in Equation
(5.33). P (x) means the projection of x.

x̂
(i),C
k−1 = P (x̂

(i)
k−1) (5.33)
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5.3. Constraints on the states

The new sigma points, which includes the projected sigma points, are denoted

with x̂
(i),C
k−1 .

Then the state update is done with the state model, it is displayed in Equation

(5.34) below. Instead of the old sigma points, x̂
(i)
k−1, the new projected sigma

points, x̂
(i),C
k−1 , is used to calculate the propagation of the state vector.

x̂
(i)
k = f(x̂

(i),C
k−1 ,uk, tk) (5.34)

After the propagation of the state vector is conducted, those propagated sigma
points that now lays outside the constraints are projected into the boundary of the
feasible region. This projection is shown in Equation (5.35).

x̂
(i),C
k = P (x̂

(i)
k ) (5.35)

After this is done the unscented Kalman �lter can be proceeded as normal.
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Chapter 6

System implementation

In this chapter the implementation of the system will be described. First the
environments used to implement the system and the preprocessing of the data is
explained. In the other part the implementation related to the unscented Kalman
�lter described in Chapter 5 and the discrete model from Chapter 4, is described.

6.1 Environments and preprocessing of data

The model with the associated Kalman �lter, is implemented in Matlab. Matlab is
a high-level language, and environment, made by Mathworks. It is a good tool for
numerical calculations, programming, plotting and simulations among others [7].
In Matlab the system can be simulated with both real production data from the
Snøhvit �eld and test data produced in Matlab.

The real data from the process is collected from Statoils system Aspen Process
Explorer (APE), developed by AspenTech. In Aspen Process Explorer one can pick
out the required data, the period of interest and choose the data sample frequency.
If the data sample frequency for retrieving data do not match with the measurement
frequency, Aspen Process Explorer has several functions to adjust the data. One
of them is to average the process data.

The real production data obtained from Aspen Process Explorer is displayed
in Table 6.1 below. The table shows which unit the data has in Aspen Process
Explorer and which of the units that are converted or scaled in Matlab.
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6.1. Environments and preprocessing of data

Table 6.1: The data imported from Aspen Process Explorer. The data
name and variable name is the same as used in Matlab.

Data Variable Unit in APE Unit in MATLAB
Rich MEG total mass �ow ṁRM ton/h kg/h
Lean MEG total mas �ow ṁLM ton/h kg/h
pH-stabilizer ṁIN kg/h kg/h
Scale inhibitor ṁIN kg/h kg/h
Removed water ṁWAT kg/h kg/h
Rate of Mg2+ in rich MEG ṁRM,Mg2+ mg/l kg/h
Rate of Mg2+ in lean MEG ṁLM,Mg2+ mg/l kg/h
Rate of Ca2+ in rich MEG ṁRM,Ca2+ mg/l kg/h
Rate of Ca2+ in lean MEG ṁLM,Ca2+ mg/l kg/h
Rate of Sr2+ in rich MEG ṁRM,Sr2+ mg/l kg/h
Rate of Sr2+ in lean MEG ṁLM,Sr2+ mg/l kg/h
Upstream desalination ṁUP kg/h
Downstream desalination ṁDWN kg/h
Bypass desalination ṁBY kg/h
wt% MEG in rich MEG wt%RM %
wt% MEG in lean MEG wt%LM %
Density in rich MEG ρRM g/cm3

Density in lean MEG ρLM g/cm3

The data in the �rst block is found both in Aspen Process Explorer and Matlab
and the only change is in some cases the scaling of the unit. The second block
consists of concentrations that needs data from the last block to be represented
with the right unit in Matlab. The last block is measurements from Aspen Process
Explorer that is not used directly, but used to make other variables in Matlab.

All the �ow rates are scaled to be at the form [kg/h], while all densities are
scaled to be at the form [kg/m3]. Both the rich MEG and lean MEG �ow rates
are given with water absorbed in the MEG.

All the mass �ows for the species are made of the density of the rich MEG
total �ows or the lean MEG total �ow combined with the total �ow rate itself. In
Equation (6.1) is an example of how the mass �ow of the specie i are calculated.
To calculate this mass �ow the density for the specie in the rich MEG, ρiRM , and
the density of the rich MEG, ρRM , is used. These two variables are variables from
Aspen Process Explorer that is not used in Matlab. The is the same approach to
calculate the mass �ow of the species in the lean MEG.

ṁi
RM =

ṁRM · ρiRM
ρRM

(6.1)

In Equation (6.2), the calculation of the mass �ow through the desalination
plant is calculated. Because of strange data from the desalination plant, the de-
salination is set to be the mean value of the upwards and downwards mass �ow,
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Chapter 6. System implementation

instead of only the upwards mass �ow. This is because sometimes the downwards
mass �ow is bigger than the upwards, which means that the desalination plant
increases the mass in the MEG-recycler. This is not the case in the real process.

ṁDES =
ṁUP + ṁDWN

2
(6.2)

The bypass mass �ow, ṁBY , is not used in calculating the desalination mass
�ow.

6.1.1 Real production data sets

Due to many periods where the measurements in Aspen Process Explorer were
incomplete, there was only obtained two data sets. But there was also some mea-
surements in these two data sets that were incomplete.

The �rst data set is from 12. December 2012 until 12. January 2013. In this
period there were some strange values in the measurements from the desalination
process, which can indicate that the desalination process was either disabled or the
data from it was corrupt.

The second data set is from 18. November 2012 until 17. December 2012. In
this period there were some periods where both the mass �ow of the rich MEG and
the mass �ow of the lean MEG, where about zero. This can be have forsaken by
fault in the real system or faults in the measuring of the two states.

6.1.2 Filtering rich MEG total rate

The measurements for the rich MEG mass �ow into the MEG-recycler is varying
much. To prevent these big variations in the MEG-recycler, the mass �ow of the
rich MEG is �ltered. This will lead to some errors in the amount of mass in the
MEG-recycler, but this is not crucial because it is not of big importance that the
state is very accurate, and it is not a physical real state.

The mass rate is �ltered by taking the mean of the eleven values surrounding
each value, the �ve on each side and the value itself. If the mean value is negative
it is set to be zero. In Figure 6.1 the mass rate of the rich MEG is displayed before
and after it is �ltered.
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Figure 6.1: In the upper plot the mass �ow of the rih MEG, before it is
�ltered, is shown. Below the result after the �ltering is shown.

The total mass �ow of rich MEG into the MEG-recycler still varies some, but
it is varying less than before it was �ltered. It was decided to not smooth it more,
so the rich MEG mass �ow should not lose too much of the variation in the signal.

6.2 Model and UKF implementation

In Table 6.2 the measurement, y, and the input, u, to the model is shown. The
inputs consists of the total lean MEG mass �ow, the total rich MEG mass �ow,
the input mass �ow to the MEG-regenerator, the mass �ow through the desalina-
tion plant and the mass �ow of water removed from the MEG-regenerator. The
measured states are all the mass �ows of the species into the injection pipeline and
out from the production line. The inputs to the model is not used as any states in
model, while all the measurements are states in the model.

The states are all the states that are expressed in Chapter 3, Model develop-
ment. The states that are measured are seen upon as the measured states of the
model, while the states that are not measured are seen upon as the parameters of
the system.
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Table 6.2: The data used in Matlab.

Data Variable Type
Rich MEG total mass �ow ṁRM u
Lean MEG total mass �ow ṁLM u
Input mass �ow ṁIN u
Desalination mass �ow ṁDES u
Water removed ṁOUT u
Rate of Mg2+ in rich MEG ṁRM,Mg2+ y
Rate of Mg2+ in lean MEG ṁLM,Mg2+ y
Rate of Ca2+ in rich MEG ṁRM,Ca2+ y
Rate of Ca2+ in lean MEG ṁLM,Ca2+ y
Rate of Sr2+ in rich MEG ṁRM,Sr2+ y
Rate of Sr2+ in lean MEG ṁLM,Sr2+ y

6.2.1 Initial values to the model parameters

From [5] it can be calculated that the Snøhvit reservoir was predicted to produce
between 2.4 kg/h and 4.9 kg/h formation water, while the Albatross reservoir was
predicted to produce between 1.4 kg/h and 2.0 kg/h formation water. This is data
from 1999. For simplicity, and the fact that this is based on old and uncertain data,
the Snøhvit reservoir is said to produces twice the amount of formation water than
the Albatross reservoir.

The species used to identify the total formation water rate is shown in the table
below. The chosen species are shown in Table 6.3 together with their expected
concentrations. It is calculated with the density of formation water, ρFW , which
is 1100 kg/m3.

Table 6.3: The expected concentrations of each specie chosen to represent
the formation water in the Snøhvit reservoir and the Albatross reservoir.

Species Snøhvit Albatross α
Mg2+ 477 mg/l 2 369 mg/l 993
Ca2+ 4 628 mg/l 1 530 mg/l 306
Sr2+ 207 mg/l 321 mg/l 4490

The initial values for the mass rate of lean MEG and rich MEG for each species
are set to the �rst value gotten from the measurements. The initial value is set for
all the states for the rich MEG and lean MEG. The initial values for the species in
the mass units are calculated from the equation for lean MEG out of the last mass
unit. That means that the �rst calculated lean MEG mass rate for each specie into
to injection pipeline will be identical with the measured value. The mass rate out
of the �rst mass unit, with condensate water out and desalination, is set to be the
di�erence between lean MEG mass rate and rich mass rate for each specie. The
initial value set into the lean MEG pipeline for each specie, is also set as the initial
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6.2. Model and UKF implementation

value for all the states in that pipeline. The same yields for the rich MEG pipeline.
For the other states, initial values near what is expected is chosen.

Length of transport delays

The length of the transport delays in the production line and injection line is set to
12 hours and 72 hours respectively. This is done with respect to experiences that
Statoil has from the �eld. This is also con�rmed by measuring the transport delay
in Aspen Process Explorer. In APE it is found that the transport delay varies
around these proposed values.

The transport delay through the MEG-recycler is complicated to measure from
the real system, since the MEG-recycle modeled in this model is not like the real
MEG-recyler at Melkøya. Therefore the number of mass unit is set to between two
and �ve by experience gained by di�erent simulation. The number of mass units
can also be used as a tuning parameter of the system.

6.2.2 Calculations of sigma points

The sigma points are calculated as shown in equations (5.17-5.18) and (5.24-5.25)
in Section 5.2, the discrete unscented Kalman �lter. The error covariance matrix is
multiplied with the constant, n, to spread the sigma points in relation to the size
of the system.

n represents the number of states in the system, and is typical 270+ states for
this system. Many of the states are somehow similar to each other. Some of the
states are identical, except that they yields for di�erent species, and all the states
used to model the transport delays are very similar to each other. Therefore the
calculations of sigma points can be modi�ed by replacing n with a smaller constant.
This is done for several of the simulations of the system.

6.2.3 Constraints on states

The method described in Section 5.3, Constraints on the states, is implemented as
a part of the unscented Kalman �lter. This is done to prevent any of the states
to become negative, since all the states are supposed to have nonnegative values.
This has been done for some of the simulations of the system.

The method is set to check all the sigma points for negative values, and adjust
their value to zero if that is the case. Then the model update of the states is done
with the new sigma points. Further the sigma points that has been propagated
by the state update is checked for negative values, and if their now has a negative
value, the value is adjusted, as before, to zero.

6.2.4 Scaling of the states

To prevent large di�erences in the state values for the di�erent states, the states are
scaled to be "closer" to each other. Large di�erences in the states, and especially
the large states in general, can lead to large variations in the error covariance
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matrix. This can further make the error covariance matrix negative semi de�nite.
When the error covariance matrix is not positive de�nite the unscented Kalman
�lter is unable to create it's sigma points. Before the scaling took place, it was
especially the mass �ow for each specie into the lean MEG pipeline, ṁi

LM,1 that
caused the error covariance matrix to become negative semi de�nite.

The states are scaled to be in the range of approximately 0.01 to 5. That means
that the mass �ows for the species are scaled up. That is the mass rates in the
lean MEG, ṁi

LM,k, the rich MEG, ṁi
RM,m, the mass rate out of the �rst mass unit,

ṁi
OUT , the formation water, ṁi

FW , and the mass of each specie in the mass units,
M i
j . The total masses in the mass units, Mj , are scaled down.
The scaling has to take place when the initial values for the model is set before

the simulation. In addition it has to be taken account for when the state model
equation is updated and the measurement that consist of these scaled states has
also to be scaled. Since all the measurements of the system is the lean and rich
MEG mass rate out and into the MEG-recycler, respectively, all the measurement
needs to be scaled.

6.2.5 Di�erent frequency on measurement data

The measurements of the real process is taken with di�erent frequency. The con-
centrations of species in the pipelines are taken rarer than the other used measure-
ments, that are taken continuously. To take this into account the measurements
that are taken rarely can be weighted more when there is a new measurement avail-
able, and taken out of the Kalman gain in those calculations for iterations where
there are not any new measurements.

This is not implemented because there are small changes in the concentration
of the species during the chosen data sets. And the �ow rate of species in the
pipelines, which are used as measurements in the Kalman �lter, is also depending
on the total mass �ow of the lean or rich MEG.
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Chapter 7

Tuning

In this Chapter the unscented Kalman �lter will be tuned. The result of the
tuning will be used when the Kalman �lter is tested, which can be seen in Chapter
8, Results, later.

7.1 Tuning of the Kalman �lter

The Kalman �lter is mainly tuned by changing the noise matrices Q and R for
respectively states, x, and measurements, y. The values in the matrices represents
the expected deviation in the states/measurements, and also the uncertainty of
these measurements/states. Small values in the tuning matrix means that there
are small amount of noise, so the state or measurements are to be trusted. The
matrices have only values on the diagonal, all other values are set to be zero.

The unscented Kalman �lter can also be tuned by changing the initial value for
the error covariance matrix P+

k . The tuning of the error covariance matrix is not
prioritized since it is updated by the Kalman �lter at each iteration. The tuning is
performed with a real data series from 12. December 2012 until 12. January 2013.

The tuning was in some degree limited by the Kalman �lter. If the values in the
tuning matrices were too small or to large, the system was unable to perform the
simulation. This was because the error covariance matrix would become negative
semi de�nite, and the system would not be able to calculate the sigma points. This
was especially seen for the state update noise matrix, Q.

7.1.1 Tuning the measurements

The measurements are tuned by tweaking the measurements noise matrix R. Be-
cause of the large oscillations on the measurements on the species in the rich MEG
mass �ow, and the smoothness of the measurements on the species in the lean
MEG, the values associated to the lean MEG species are set smaller than for the
rich MEG. The values that represent the measurements of the species in the lean
MEG is set to be 0.1, while the values representing the measurements of the species
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in the rich MEG are set to be eight times bigger, 0.8. The tuning values are shown
in Table 7.1.

Table 7.1: Tuning parameters for the measurement noise matrix, R. The
shown values are the values on the diagonal of R. The other values in the
matrix are set to zero.

Measurement Tuning values
ṁi
LM 0.1

ṁi
RM 0.8

7.1.2 Tuning the model updates

The tuning matrix for the state updates of the model, Q, are tuned by a combina-
tion where two aspects are taken into account. The �rst aspect is how certain the
di�erent state updates are, the state updates are the equations that is contained
in Section 9, Model discretization. The second aspect is to �nd tuning parameters
that makes the system perform as expected. The last aspect is done by tweaking
the parameters when simulating with real data, so the system would perform as
wanted.

Initially all the tuning parameters were set to be 1. The parameters that was
changed was the parameters associated with the calculation of the mass �ow of each
specie into the injection pipeline, Equation (4.10), which was changed from 1 to 5.
The tuning parameters for calculating the mass �ow of each specie in the formation
water, Equation (4.16) were changed to 10. Further the parameters related to the
expected value for the three species in the formation water, equations (4.18-4.20),
were changed from 1 to 5. The last tuning parameters that were changed, were the
parameters associated with the removed species from the MEG-recycler, equations
(4.21-4.22). They were changed from 1 to 5. The tuning parameters for Q are
shown in Table 7.2.

Table 7.2: Tuning parameters for the state update noise matrix, Q. The
shown values are the values on the diagonal of Q. The other values in the
matrix are set to zero.

State Tuning values
Mi 1
M i
i 1

ṁFW 1
ṁi
FW 10

ṁi
LM,1 5

ṁi
LM,j , for j > 1 1

ṁi
RM 1

ṁi
OUT 5

αi 5
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As seen in this section and the section above, the tuning parameters of the R
matrix are smaller than the values in the Q matrix. That indicates that the system
relies, in general, more on the measurements than the state updates.
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Chapter 8

Results

In this chapter the system will be tested for di�erent scenarios. In the �rst section
the model will be tested with test data. In the next section the system, including
the model and the unscented Kalman �lter will be simulated with test data. In the
last section the system will be tested with real production data. In all sections it
is performed one to three simulations.

8.1 Testing the model

The purpose of testing the model is to con�rm that the essential dynamics of the
model responds as expected. That is the time delays found in both the pipelines
and in the MEG-recyler. In addition it is also important that the model will detect
when formation water is produced from the reservoirs. Other important aspects
are the desalination and the input and output mass �ows to the MEG-recycler.

The three species, Mg2+, Ca2+ and Sr2+, is set to have an expected value of
the total mass �ow of the formation water. This is shown in Table 8.1 and means
that specie 1 is expected to be 1/30 of the total formation water mass �ow. These
are quite high and unrealistic values, but are chosen to make the results clearer
and easier to comprehend. This yields for both the simulations of the model.

Table 8.1: The expected concentrations of each specie chosen to represent
the formation water.

Species Parameter Value
Mg2+ α1 30
Ca2+ α2 15
Sr2+ α3 60

In this section it will be performed three simulations. The �rst case is to test
the dynamics of the model when the well starts producing formation water. The
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second case is to test the dynamics of the transport delays in the pipelines. The
last case is to test the time delay in the MEG-regenerator.

8.1.1 Formation water

The formation water is added the system after a given period to see the response
of the model. The formation water is added by setting a step in the three species.
From the start there are a small amount of all three species in the MEG-recycler.
These amounts will decrease because the species are removed as a part of the mass
�ow of removed condensate water out of the MEG-recycler.

The initial values of the system is shown in Table 8.2 together with the steps
that are applied on the species in the formation water, ṁi

FW . The mass �ows of
the species in the pipelines are initially set to the value that the system would have
if the process was in an equilibrium with the values given in the table.

The desalination plant is not used in this simulation. So all the species that are
removed from the MEG-recycler, ṁi

OUT , is part of the mass �ow of the removed
condensate water out, ṁi

WAT .

Table 8.2: The initial values for the model together with the applied steps
during the simulation.

Variable Initial value Values after 500 h
Mi 300000 kg n/a
M i
i 10 kg n/a

ṁFW 0 kg/h n/a
ṁIN 0 kg/h 0 kg/h
ṁDES 0 kg/h 0 kg/h
ṁLM 5000 kg/h 5000 kg/h
ṁRM 7000 kg/h 7000 kg/h
ṁWAT 2000 kg/h 2000 kg/h
ṁ1
FW 0 kg/h 0.1 kg/h

ṁ2
FW 0 kg/h 0.2 kg/h

ṁ3
FW 0 kg/h 0.05 kg/h

The total mass rate of formation water is modeled by Equation (3.18) in Chapter
3. If the values for the species in the formation water are set to the values shown
in Table 8.2, the total formation water rate should become 3 kg/h.

The transport delay was set to be three days, 72 hours, for the injection line
and 12 hours for the production line. The MEG-recycler was modeled as four mass
units. The time step were set to one hour and the duration of the simulation was
1500 hours.

The step is set to appear after 500 hours of simulation. This can be seen in the
upper plot of Figure 8.1, the steps appear some hours after 500 hours because of
the 12 hours transport delay in the production line. After the step the mass �ow of
specie 1 is still decreasing because of the removed water out of the MEG-recycler,
that is because of the time delay in pipelines.
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Figure 8.1: The response of mass �ow into the MEG-recyler from the
production line is shown in the upper plot. The response of the mass �ow
out of the MEG-recycler into the injection line is displayed in the middle
plot. The bottom plot shows the mass �ow of removed condensate water
out from the MEG-recycler. All plots are for specie one, Mg2+.

The transport delay in the pipelines leads to that the increased mass �ows of
the species out of the MEG-recycler takes a while before it reach the MEG-recycler
again. When the extra species, caused by the production of formation water, reach
the MEG-recycler after it has traveled through the whole MEG loop, the mass �ow
of the species in the rich MEG will start to increase. This can be seen in the upper
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plot of Figure 8.1 after about 600 hours.

Since the water out mass �ow is modeled to interfere with the �rst mass unit
of the MEG-recycler, the response after the step is much more responsive in the
bottom plot, displaying ṁ1

OUT , than the middle plot, displaying ṁ1
LM,1. It leads

to that the mass �ow out of the MEG-recycler is smoother than the mass �ow into
the MEG-recycler, ṁ1

RM,m, displayed in the upper plot.

In the two upper plots it can be seen that the mass �ows is constant at the
beginning of the simulation. That is because the initial values of mass �ow in the
pipelines, and the initial mass in the mass units, are set as the same value in the
whole pipeline and all the mass units respectively. Therefore it will take some time
before the values are changed.

In Figure 8.2 the mass �ow of the total formation water and the mass �ow for
specie one, Mg2+, in the formation water is displayed at the top and bottom plot
respectively. The step in value is seen at 500 hours for specie one. The change is
also visible for the total formation water immediately. This is because it is modeled
as a sum of the three species. This is shown in Equation 3.18 in chapter 3.
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Figure 8.2: The upper plot shows the total mass �ow of the formation
water from the reservoir into the production line. The bottom plot displays
the mass �ow of specie one, Mg2+, from the reservoirs into the production
line. The bottom value is a part of the total formation water �ow rate.
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In Figure 8.3 the amount of the �rst specie is displayed for the �rst mass
unit and the last mass unit of the MEG-recycler at the top plot and bottom plot
respectively. The �rst mass unit is clearly more responsive than the last mass unit.
This is mainly because the mass �ow between the mass units are modeled as a
stream with the same mass �ow as the mass �ow into the injection line, and the
composition of the mass �ow is equal with the composition of the mass unit as
the mass �ow is coming from. The mass �ow rate of each specie between the mass
units is therefore relatively small compared to the total amount of mass in the mass
units.
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Figure 8.3: The mass of specie one, Mg2+, in the �rst mass unit of the
MEG-recycler,M1

1 , and in the last mass unit,M1
4 , is displayed in the upper

and bottom plot respectively. The system is modeled with four mass units
in this simulation.

It is desired that the last mass unit is as smooth as possible, since the mass
rate of species out of the mass unit, ṁi

LM,1, is smooth. But it also has to respond
at changes in the MEG-recycler.
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8.1.2 Transport delay in the pipelines

The purpose of this simulation is to verify that the model takes into account the
transport delays in the pipelines, and that the transport delays is at the correct
size.

For this simulation the amount of each of the three species are increased with
500 kg in the �rst mass unit of the MEG-recycler. The values of the total amount
of mass in the �rst tank is increased with 1500 kg. This is done after 500 hours of
simulating and is done in the �rst mass unit of the MEG-recycler.

The initial values and the values applied after the step is shown in Table 8.3.

Table 8.3: The initial values for the model together with the applied steps
during the simulation.

Variable Initial value Values after 100 h
M1 300000 kg + 1500 kg
M i

1 10 kg + 500 kg
ṁFW 0 kg/h 0 kg/h
ṁIN 0 kg/h 0 kg/h
ṁDES 0 kg/h 0 kg/h
ṁLM 5000 kg/h 5000 kg/h
ṁRM 7000 kg/h 7000 kg/h
ṁWAT 2000 kg/h 2000 kg/h

The transport delays are the same as the last simulation, 72 hours for the
injection line and 12 hours for the production line. The number of mass units in
the MEG-recycler is set to four during this simulation. The mass �ow through
the desalination is not active, and is therefore set to 0 kg/h. The simulation has
a duration of 600 hours. In this simulation the mass �ow of produced formation
water is set to be zero.

In the upper plot the mass �ow out of the MEG-recycler, ṁ1
LM,1 and into the

MEG-recycler, ṁ1
RM,m, is plotted together. The transport delay is the combined

transport delay for both pipeline, and is supposed to be 84 hours. This is veri�ed,
and can be seen on the plot.

In the bottom plot the mass �ow of the �rst specie removed from the MEG-
recycler is displayed. Since the desalination process is not in use during this simu-
lation, the amount of removed mass is from the condensate water removed from the
MEG-recycler. The rate which the specie is removed from the mass unit decrease
rapidly and has a small upswing when the species have traveled around the whole
MEG loop.
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Figure 8.4: The response of mass �ow into the MEG-recyler, together
with the response of the mass �ow out of the MEG-recycler, is shown in
the upper plot. The bottom plot shows the mass �ow removed from the
MEG-recycler. All plots are for specie one, Mg2+.

From Figure 8.4 it can be seen that the transport delay in the injection pipeline
and the production pipeline works as expected and modeled. If the modeled trans-
port delay in the pipelines is false, the transport delay can easily be adjusted by
changing the number of states that represents the two pipelines.

8.1.3 Time delay in the MEG-recycler

The purpose of this simulation is to see the response on the last mass unit when
there is a step in the �rst mass unit. The step is set to be an increase of 100 kg
of the species in the �rst mass unit after 100 hours. The response is only shown
for the �rst species, but the amount of the other species in the mass units behave
in the same manner as the �rst specie. The values before and after the step is
introduced, used in this simulation is the same as used in the section above. This
is shown in Table 8.3.

Figure 8.5 displays the tank level for the �rst and last mass unit in the MEG-
recycler. The MEG-recycler is modeled twice, �rst with three mass units and then
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with four mass units. The results are combined together in the plot. The amount
of specie 1 in the last mass units are clearly more smooth than the �rst mass unit.
When the MEG-recycler consists of three mass units, the peak appears about 100
hours after the step. For the MEG-recycler the peak appear about 150 hours after
the step, but the peak is smaller and smoother than the case is for the MEG-recycler
with four mass units.
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Figure 8.5: The mass of specie one, Mg2+, in the �rst mass unit of the
MEG-recycler, M1

1 , is shown with a blue line. The last mass unit, M1
3 for

the �rst simulation and M1
4 for the second simulation, is displayed in the

plot with a green and red line, respectively.

The most important property of the MEG-recycler is that the mass �ow out
from it is quite constant, and are not varying much. For three or four mass unit
the value peaks at about 20 kg in the last mass unit. The change in the �rst mass
unit is quite large step in mass, and therefore the response in the last mass unit
maintains the expected response of the MEG-recycler. This yields for the mass
unit modeled with both three and four mass units.

8.2 Testing the model with the unscented Kalman

�lter

The purpose of testing the system with both the unscented Kalman �lter and the
model together is to check if the Kalman �lter will be able to predict incidents that
the model itself is not able to detect.
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Table 8.4: The expected concentrations of each specie chosen to represent
the formation water.

Species Parameter Value
Mg2+ α1 3000
Ca2+ α2 1500
Sr2+ α3 6000

8.2.1 Detection of formation water

When the unscented Kalman �lter is included in the simulation it can be tested if
the system, the model and the Kalman �lter, will detect the formation water. In
this simulation the system starts in a steady state with none of the species in the
system, not in the pipelines or in the MEG-recycler. When the formation water is
extracted from the well, the result of it will be �rst be seen in the measurements
taken of the content out of the production line, ṁi

RM,m. Therefore the increase of
formation water will be simulated by changing the mass �ow for the species into
the MEG-recycler.

The tuning matrix for the state update, Q, of the Kalman �lter is not tuned
for this simulation. The weight matrix is set to be the unit matrix, and the error
covariance matrix is initial set to be the unit matrix. The measurement noise
matrix is tuned as described in Chapter 7, Tuning. It is also proposed an alternative
tuning, and the result is displayed in Figure 8.7.

The simulation is performed with constraints on the states and the spread of
the sigma points are calculated with n adjusted to 100. These two methods are
described in Chapter 6. The alternative method to calculate the removed specie
from the MEG-recycler, the expression is expressed in Chapter 4.

After 200 hours a step is introduced in the measurements. The step will occur
in the three species into the MEG-recycler and will simulate an increase in the
production of formation water. The initial values and values after the step is
displayed in Table 8.5. The measurement of the mass �ows of the species into the
lean MEG is increased as a ramp from 200 hours until 300 hours. The �nal value
for all three specie is 6.25 · 10−5 kg/h.
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Table 8.5: The initial values for the model together with the applied steps
during the simulation.

Variable Initial value Step values after 200 h
Mi 300000 kg n/a
M i
i 0 kg n/a

ṁFW 0 kg/h n/a
ṁIN 0 kg/h 0 kg/h
ṁDES 0 kg/h 0 kg/h
ṁLM 5000 kg/h 5000 kg/h
ṁRM 7000 kg/h 7000 kg/h
ṁOUT 2000 kg/h 2000 kg/h
ṁ1
RM,m 0 kg/h 6.35 · 10−5 kg/h

ṁ2
RM,m 0 kg/h 6.3 · 10−5 kg/h

ṁ3
RM,m 0 kg/h 6.45 · 10−5 kg/h

The result of the simulation is shown for the �rst specie, Mg2+. The response is
the same for each of the two other species. In Figure 8.6 The response of the time
step for mass �ow into the MEG-recycler, the mass �ow out of the MEG-recycler
and the mass �ow out of the desalination is displayed.

Before the lean MEG rate reach its �nal value, the rich MEG rate only reach
about 2.5 · 10−5 kg/h. When the lean MEG rate starts to increase, the rich MEG
rate is able to reach its expected value. The estimated lean MEG rate follows the
measured lean MEG rate very accurately.

The �gure shows that the mass �ow into the MEG-recycler, ṁ1
RM,m, stabilizes

at 6.35·10−5 kg/h after the step. Further the �ow out of the MEG-reycler stabilizes
at about 6.25 · 10−5 kg/h for the �rst specie. These are the expected values.
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Figure 8.6: The response of mass �ow into the MEG-recyler from the
production line is shown in the upper plot. The response of the mass �ow
out of the MEG-recycler into the transportation line is displayed in the
middle plot. The bottom plot shows the mass �ow that is desalinated from
the MEG-recycler. All plots are for specie one, Mg2+.

From the Table 8.5 and 8.4 together with the calculation of the mass �ow of
formation water from Equation (4.17) it is expected that the produced formation
water of this simulation will be 0.03 kg/h. For the First specie it is expected that
the mass �ow is 1 · 10−5 kg/h.

In Figure 8.7 the mass �ow of the produced formation water and for the �rst
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specie is displayed. The response is shown for both the regular tuning of the
measurement noise matrix,R, and for an alternative tuning. The alternative tuning
weights the measurements more than the regular tuning. The tuning matrix for
the alternative is one tenth of the regular R.

For both the tuning methods both the mass �ows reach the expected value after
the 3000 hours simulated. The predicted states use long time to reach their desired
value. The alternative tuning reach the expected values before the regular tuning,
but it has an over-swing that is more signi�cant than for the regular tuning.

The slow response of the predicted mass �ow rate of the produced formation
water can be tolerated since the prediction of formation water has some uncer-
tainties. The formation water is not expected to vary very much when produced
either. Therefore the regular tuning is the preferred tuning of the measurement
noise matrix.
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Figure 8.7: The upper plot shows the total mass �ow of the formation
water from the reservoir into the production line. The bottom plot displays
the mass �ow of specie one, Mg2+, from the reservoirs into the production
line. The bottom value is a part of the total formation water �ow rate. The
blue line shows the response with the regular tuning Rreg, while the green
line shows the response for the alternative tuning, Ralt = 0.1 ·Rreg.

Figure 8.8 displays the tank level for the �rst and second mass unit in the MEG-
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recycler. In this simulation the MEG-recycler is modeled with two mass units. The
last tank is less responsive than the �rst tank. The mass of specie out in the last
tank continues to increase after the step has appeared. This is caused by the fact
that the formation water uses long time before it is down at the right level.
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Figure 8.8: The mass of specie one, Mg2+, in the �rst mass unit of the
MEG-recycler,M1

1 , and in the last mass unit,M1
4 , is displayed in the upper

and bottom plot respectively. The system is modeled with four mass units
in this simulation.

8.3 Testing with real data

In this section the system, containing the model and the unscented Kalman �lter,
will be tested. The simulation is performed with real production data maintained
from the Snøhvit �eld.

8.3.1 Testing the tuned Kalman �lter

The purpose of this simulation is to test if the system, with the unscented Kalman
�lter, will work when real data is applied. It is also important to see how the
system responds with the tuning parameters found in Chapter 7.
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The system was tested without constraints on the states, since none of the
states was in danger to become negative. The sigma points is made by replacing
n with 100. This is done to make the system able to simulate. This was further
discussed in Chapter 6, Model implementation. The contributions made from the
expected formation water values, αi, are set to zero. This is done in the Kalman
gain, Kk, for each iteration. It leads to that the expected formation water values
are constant. They are set to the values found in Chapter 6.

In Figure 8.9 the mass �ows in and out of the MEG-recycler is displayed. In
the upper plot the the mass �ow into the MEG-recycler are shown for the �rst
specie in the rich MEG. The blue line is the state estimate, while the green line is
measured value. The estimate follows the trend of the real value with a small time
delay, but it do not varies as much as the real value. This is as expected because
the model does not take into account the oscillations that exist on the rich MEG
mass �ow.

In the middle plot, the state estimate and the real measured value for the �rst
specie in the lean MEG is displayed. The state estimate, in blue, almost follows
the measurements, in green, perfect. This is the most important measurement to
follow, since the rich MEG is also dependent on this mass �ow. Since it follows
that easy it means that there is enough slack in the model updates to be able to
follow that measurement.

The last plot in Figure 8.11 is the removed mass rate of specie one from the
MEG-recycler. The plot shows that this mass �ow is almost unchanged. This is
because the �rst method to predict the removed mass rate, Equation (4.21) is used.
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RM,m

[k
g
/
h
]

 

 

ˆ̇m
1

RM,m

ṁ1
RM,m

0 100 200 300 400 500 600 700 800
2

4

6

8

10

12

14

16
x 10

−5 Mass flow of specie 1 out from the MEG-recycler, ṁ1
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Figure 8.9: In the upper plot the mass �ow of the �rst specie from the
rich MEG pipeline is displayed. The middle plot shows the mass �ow of
specie one out of the MEG-recycler. The predicted value is shown with the
blue line, while the measured value is shown with a green line. The bottom
plot shows the removed mass rate of specie one out of the MEG-recycler.

In Figure 8.10 the total mass �ow for formation water together with the mass
�ow of the �rst specie in the formation water is plotted. It can be seen that the
total mass �ow of formation water produced from the reservoirs is in the range 0.5
- 2.5 kg/h. As seen the total formation water do not solely follow the �rst specie,
so the other species also in�uences the total mass �ow. It is some variations in the
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predicting of the produced formation water, which can indicate that the predicted
value may vary a bit from the real value.
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[k
g
/
h
]

0 100 200 300 400 500 600 700 800
1.8

2

2.2

2.4

2.6

2.8

3
x 10

−4 Mass flow of specie 1 in the formation water, ṁ1
FW

[k
g
/
h
]

Time, [h]

Figure 8.10: The upper plot displays the total mass �ow of the produced
formation water. And the bottom plot shows the mass �ow of specie one in
the produced formation water.

In Figure 8.11 the mass of specie one is displayed for the �rst (upper plot) and
the last (bottom plot) mass unit. The amount of specie one in the last mass unit is
very stable until the end of the simulation. In the last part, the amount of specie
one in the last mass unit increases rapidly, this is to be able to send the rate of
lean MEG that is shown in the middle plot of Figure 8.9. This shows that the
Kalman is adapting the states, and not necessarily follows all the state updates
given by the model. For this case it is not critical, since the amount of the species
is not of interest. But it indicates that the model does not match the real system
completely.

For the �rst tank there are quite large variations. This can indicate that the
model is a part away from the real process.
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Figure 8.11: The upper plot shows the mass of the �rst specie in the �rst
mas unit and the bottom plot shows the mass of the �rst specie in the last
mass unit. The MEG-recycler is modeled as four mass units.

8.3.2 Unsuccessful simulations

When simulating the system with the other data set, the system is unable to sim-
ulate. That is caused by the error covariance matrix in the Kalman �lter becomes
negative semide�nite and the Kalman �lter is unable to predict it's sigma points.

The data set is in some degree inconsistent, since the mass �ow of the lean
and rich MEG does not match the other data from the dataset. That indicates
that the Kalman �lter is not robust enough to handle data sets where there some
inconsistence.
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Chapter 9

Discussions

The simpli�ed model of the process is proven to be a bit apart from the real process,
but is somewhat adjusted by the unscented Kalman �lter. Most of the di�erence
is probably the oscillating mass �ow of rich MEG into the MEG-generator, which
is not taken into account in the model. The mass �ow of removed species from the
MEG-generator is also an element of uncertainty, because the mass �ow through
the desalination plant is not unambiguously from the production data. There are
also done multiple simpli�cations with the MEG-regenerator.

When the system is able to simulate the system it is able to �nd a rate of
produced formation water which is in the region of what is expected to be produced
of formation water from Snøhvit. The spread of the sigma points in the Kalman
�lter has to be narrowed to be able to simulate, and the real process data can't
be too inconsistent before the simulation fails. The data sets that the system is
not able to simulate are data sets that are in some degree incomplete and has
inconsistent data.

The system as it is now would probably have some periods when it is unable
to operate it was to be used in real-time at the Snøhvit �eld. This is the same
situation that Megsim experience at other location, where it is implemented, for
Statoil. Since this system is solely focused on predict the produced formation
water rate, the other system parameters are not as accurate as the current system,
Megsim, is. The system established and implemented in this thesis should therefore
be improved before it can be considered used by Statoil.
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Chapter 10

Conclusion and further work

10.1 Conclusions

The simpli�ed model is somewhat di�erent from the real process at Snøhvit. The
system is not robust enough to handle data from Snøhvit that are in some degree
inconsistent or incomplete. When the system is able to perform it's predictions of
the produced formation water, the rate of produced formation water predicted is
in the region of what is expected at Snøhvit.

10.2 Further work

The further work is divided into proposals to improvements for the model and
proposals of improvement of the Kalman �lter.

10.2.1 The model

To make the model more like the real process at Snøhvit, there are some aspects
that could be conducted. First of all the oscillations in the rich MEG rate into the
MEG-regenerator can be taken into account in the model. This can be somewhat
di�cult to model, since the oscillations do not seem to be related to any of the
other parts of the model.

Further the MEG-regenerator is modeled very simplistic in this model, and
maybe a more advanced model of the MEG-regenerator will increase the model
performance. The lean MEG rate out of the model can be considered to be modeled
as a constant, instead of being dependent of the MEG-regenerator. It can lead to
that the MEG-regenerator not being manipulated by the Kalman �lter to ful�ll
the requirements of the lean MEG rate.

The modeled rate of species removed from the MEG-regenerator can possibly
be modeled di�erent. It was some uncertainties in the modeling of this parameter
in this model.
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10.2. Further work

The number of mass units in the MEG-regenerator, number of states in the
lean MEG pipeline and number of states in the rich MEG pipeline can be further
tuned if it found that the current numbers do not represent the real process ideal.

10.2.2 The Kalman �lter

The Kalman �lter can probably become more robust if the states are scaled even
more equal each other than it is done in this thesis. It will lead to that the error
covariance matrix is more probable to stay positive de�nite.

The frequency which the measurements are taken can be taken into account.
This is explained in this thesis, but not taken into account in the simulations. In
addition the system would become more robust it the measurements were taken
more often than what is the case at Snøhvit.

70



Bibliography

[1] Statoil AS. Snøhvit, feb 2013. Availeble at http://www.statoil.com/en/Our
Operations/ExplorationProd/ncs/snoehvit/Pages/default.aspx.

[2] R.G. Brown and P.Y.C. Hwang. Introduction to random signals and applied

Kalman �ltering: with MATLAB exercises and solutions. Number v. 1 in In-
troduction to Random Signals and Applied Kalman Filtering: With MATLAB
Exercises and Solutions. Wiley, 1997.

[3] Water Population Department of Sustainability, Environment and Aus-
tralien Government Communities. Ethylene glycol (1,2-ethanediol): Overview.
Availeble at http://www.npi.gov.au/substances/ethylene-glycol/index.html.

[4] O. Egeland and J.T. Gravdahl. Modeling and Simulation for Automatic Con-

trol. Marine Cybernetics, 2002.

[5] L.A. Høyland, E. Herløe, O. Granli, and M. Hvidsten. Snøhvit - lng, technical
design basis. 1999. Internal paper Statoil AS.

[6] G.P. Kojen. Megsim course_workshop sept 2011. 2011. Internal paper Statoil
AS.

[7] MathWorks. Matlab overview. Availeble at http://www.mathworks.se/prod-
ucts/matlab/?s_cid=wiki_matlab_15.

[8] A.J. Mørk. Megsim vega - data reconciliation of ionic analysis data applied
on the vega �eld, 2012.

[9] J. Nocedal and S.J. Wright. Numerical optimization. Springer series in oper-
ations research and �nancial engineering. Springer Science+Business Media,
LLC., 2006.

[10] Store norske leksikon. Snøhvit, jun 2011. Availeble at http://snl.no/Sn%C3
%B8hvit.

[11] Ministry of petroleum and energy. Norway's oil history in 5 minutes, june
2013. Availeble at http://www.regjeringen.no/en/dep/oed/Subject/oil-and-
gas/norways-oil-history-in-5-minutes.html?id=440538.

71



Bibliography

[12] Oljedirektoratet. Snøhvit, may 2013. Availeble at http://factpages.npd.no
/FactPages/default.aspx?nav1=�eld&nav2=PageView|All&nav3=2053062.

[13] L. Imsland R. Kandepu and B. A. Foss. Constrained state estimation using
the unscented kalman �lter. 16th Mediterranean Conference on Control and

Automation, 2008.

[14] D. Simon. Optimal State Estimation: Kalman, H In�nity, and Nonlinear

Approaches. Wiley, 2006.

72



Appendix A

Notation and symbols

A.1 Notation

All matrices,M , and vectors, v, in this thesis is symboled with a bold font. Other
parameters that are scalar, s, are written without any fonts. Matrices are written
with capital letters, while scalars and vectors are mainly written with lower case
letters. This is not the case for the mass in the MEG-regenerator, M , which is
written with capital letters to easier distinguish them from the mass �ows, ṁ.

A.2 Symbols

In Table A.1 the symbols used in this thesis are shown.

Table A.1: This table contains the di�erent symbols used in this thesis.

Symbol Description Unit
ṁ Mass �ow [kg/h]
M Mass [kg]
wt% Weight percent [%]
ρ Density [kg/m3]

73


