
System documentation CutWear v1.0 - Group 29

Davidsen, Mats Elias Lund, Kristian Nybakken Wiig, Knut

20th of May 2019

1

Innhold

1 Introduction 4

2 Architecture and Design Patterns 4
2.1 Technology Stack . 4
2.2 Architecture . 5
2.3 Model Route Controller . 5
2.4 Docker-Compose . 5
2.5 Client . 7

3 Projectstructure 8
3.1 Server . 8

3.1.1 npm scripts . 8
3.1.2 Docker commands . 9
3.1.3 Docker-Compose commands . 9

3.2 Client . 10
3.2.1 npm scripts . 12
3.2.2 Docker scripts . 12

4 Database Model 13

5 REST Services 14

6 Security 23
6.1 Server . 23

6.1.1 Hashing and storing passwords . 23
6.1.2 JSON Web Tokens . 23
6.1.3 Let’s Encrypt . 23
6.1.4 SQL security . 23
6.1.5 Protecting routes with middleware . 24
6.1.6 Heavy load scenarios . 25

6.2 Client . 25
6.2.1 Cross Site Scripting(XSS) . 25
6.2.2 Client-security . 25
6.2.3 Timestamps . 25

7 Installation and running the application 25
7.1 Server . 25

7.1.1 First time installation . 25
7.1.2 Running server outside Docker . 26
7.1.3 Running server with Docker . 26
7.1.4 Running server in production with Docker-Compose [1] 26
7.1.5 Handling updates when in production . 27
7.1.6 Libraries . 27

7.2 Client . 30
7.2.1 Creating a installer without Docker . 30
7.2.2 Creating a installer with Docker . 30
7.2.3 Installing on Windows x64 PC . 31
7.2.4 Uninstalling the desktop application . 31
7.2.5 Development environment . 31
7.2.6 Libraries . 31

7.3 Documentation of source code . 34
7.4 Continous Integration and testing . 35

7.4.1 Continous Integration . 35

2

7.4.2 Tests . 35

3

1 Introduction

Last updated 20th May 2019
This document is an attachement to a bachelor’s thesis at NTNU IDI, and functions as system documen-
tation for the CutWear-system (version 1), which consists of a client and a server (API). The purpose of
this document is to document all demands and dependencies to be able to install and maintain the system.
The document contains all relevant information for maintaining, and further developing the system, by do-
cumenting how the system works and how to use it. For documentation of why certain choices, regarding
technology, were made, please see the chapter 4 in the bachelor’s thesis. This document is written for people
with some knowledge of running applications and has some knowledge of programming with databases. If a
tutorial or article has been used for developing some of the solutions, a reference is provided. One does not
need knowledge of Node.js or npm to run the application for production, but some knowledge of Docker and
Docker-compose is needed to start or stop the application.

All diagrams and models were made using draw.io.

The client and server is separated in two private Github repositories:
Server: Github - cutWearServer
Client: Github - CutWearClient

Each repository contains a README.md file, where the latest information will be available. If there is a
reference to one of the README files in this document, the files are located on the repository root, see 3.
For access to repositories, please refer to the customer in the thesis.
For future reference, any mentions of ‘server’ or ‘client’ in this document, will be referencing CutWearServer
or CutWearClient, respectively.

The server in which the API is hosted (at the time this documentation is being written) and tested on, is a
virtual machine running Ubuntu 18.04, 127 GB storage, 2 GB RAM and dual-core CPU and is available at
https://cutware.ibm.ntnu.no (yes, there is a typo). Se chapter 5 for more information about how to use the
API.

2 Architecture and Design Patterns

2.1 Technology Stack

Figur 1: Overview of the technology stack of CutWear

Figure 1 shows a simple overview of the CutWear system. The client uses the JavaScript framework

4

https://draw.io
https://github.com/cutwear/cutWearServer
https://github.com/cutwear/CutWearClient
https://cutware.ibm.ntnu.no

ReactJS v16.8.1 and Electron v4.1.0 as platform. The server stack is bit more complicated, and uses Node.js
v10.15.1 and Express v4.16.4. CutWear uses Docker-compose to build, start and stop server using multiple
Dockerimages. The Docker images (represented by blue rectangles inside the golden rectangle) consists of
one Docker image to obtain and renew Let’s Encrypt (TLS) certificates, the second Docker image (nginx)
works as a load balancer/proxy (in case you want to run more instances of CutWear) and functions as the
gateway to the CutWear API, by receiving a (HTTPS) request and passing it through to CutWear. [1] The
third Docker image is the server application, which uses NodeJS with Express framework and connects to a
external MySQL-database. [2]

2.2 Architecture

Figur 2: Architecture of CutWear. (not shown in image, the response flow)

Figure 2 shows the architecture of CutWear, which is a REST-architecture. See 5 for REST-documentation.
The client sends a HTTPS reguests to the gateway, and the gateway processes the HTTPS the request and
forwards it to the application server as a HTTP-request, where the request will be processed. If the request
requires data, the application server makes a request to the database.
The certificate service provides the gateway with valid certificates from Let’s Encrypt. Upon renewal of
certificates the certificate service restarts the gateway. [1]
If the client is offline, it will store changes in a temporary local file until reconnected to internet, where it
will try to re-upload.

2.3 Model Route Controller

CutWear server uses a Model View Controller(MVC) design pattern, but since the View is only accessible
through the desktop application, it has transformed into a Model Route Controller (MRC) pattern, whe-
re the Route has been included for easier understanding. Figure 3 shows the how a request is handled by
the server and how different components interact with eachother. The response is always in JSON format. [3]

2.4 Docker-Compose

Figure 4 shows the Docker-compose setup for CutWear. The gateway is running the latest nginx-image
from Dockerhub, and handles all incoming requests and passes them to cutwear. The gateway depends on
cutwear running for performings its tasks. The cutwear service uses the Dockerfile in the server repository.
Gateway and Cutwear uses a app-network, which is a virtual network, to communicate between each other.
Cutwear and gateway can only be stopped by using the ‘stop’ command, since ‘restart’ is configured to
‘unless-stopped’, meaning the services will be restarted only if you use the stop command. Certbot runs the
certbot image from Let’s Encrypt’s Dockerhub. Certbot sends a request to Let’s Encrypt to get or renew

5

Figur 3: Design pattern of the CutWear server application. Shows the flow of request and responses.

TLS/SSL certificates. Certbot should exit upon finishing its tasks. The ssl renew.sh is a executable and kills
the gateway and starts the certbot image and should be run in intervals using crontab. See chapter 7 for
more information. [2] [1]

Figur 4: Docker-Compose setup for CutWear

6

2.5 Client

The client for this project was bootstrapped with Create React App, this gave the development team a
starting point for developing the frontend. This is also explained in the README file of the project. If you
do not have access to the README file, the documentation for Create React App can be found by following
this link: Create React App Documentation

Figur 5: Overview of client in different environments

Figure 5 shows what files are being used by the client when running in different environments. To generate
the build files, the node package manager (npm) calls the build script in the package.json, and then crea-
tes the build files which is located in the build directory. When packaging the application for production
(NODE ENV=production), using the dependency (electron-builder) and the command ‘npm run electron-
pack’, it uses the build files to package and generate a installer for the application. [4] When running in a
development environment (NODE ENV=development), using ‘npm run dev’, it will start a local server, and
start electron which points to localhost:3000 and opens the developer tools. When running electron with
localhost instead of build files, you enable hot-reloading which means the application updates upon changes
to code.

7

https://facebook.github.io/create-react-app/docs/getting-started

3 Projectstructure

3.1 Server

Figur 6: File structure of the server (generated using tree command)

Figure 6 shows the file structure of the server. The source code is located under src/ folder, with app.js
being the entry file. The main route file is route.js which then passes the request to the correct route. Source
files are usually build up with *.role.js. The source code is organized in MCR, as shown in 2.3.
The resources directory contains configuration files,templates and logs. The Dockerfile, docker.compose.yml
and ssl renew.sh contains the scripts for building and running the server. See 2.4 for more information.
Coverage folder containts result of tests. See 7.4.2 for more details. The public folder only contains index.html,
which works as a API homepage. Package.json and package-lock.json contains information about the server,
such as dependencies, versions, name, and npm scripts.
Not shown in 6 is the tests (7.4.2) folder, out, pack with docker.sh (7.3) folder and node modules.

3.1.1 npm scripts

npm install

Installs all the dependencies. Needs to be run first time and upon changes to dependencies.

npm run test

Script for running the tests in the server. See 7.4.2 for more information.

8

npm start

Starts the server outside of Docker. The script points the ‘./src/app.js’ file and starts it using ‘node’. Usually
used in development environments.

npm run doc

Generates the code documentation. See 7.3 for more details.

3.1.2 Docker commands

Commands might require ‘sudo’.

docker build -t cutwear node .

Builds the image described in Dockerfile. The ‘-t’ is added to give a name to the containter, in this case
‘cutwear’. The ‘.’ describes the context of the build.

docker run -p 80:5000 -d cutwear

Starts the image ‘cutwear’. ‘-p’ forwards port 80 to port 5000 in the image. Use ‘-d’ to run image in the back-
ground. Port is hardcoded in app.js in server, so if you wish to use another port update the command and port
in app.js or set the PORT environment variable. The application is now available at http://localhost:5000

docker stop cutwear

Stops the image cutwear

docker stop

Stops all images running

docker ps

List of all running images.

3.1.3 Docker-Compose commands

docker-compose build

Builds all the images described in the docker.compose.yml file.

docker-compose build cutwear

Builds the image named cutwear.

docker-compose up -d

Start all the images. ‘-d’ for running in the background.

docker-compose stop

Stops all the images. Only valid way to stop gateway and cutwear image.

docker-compose stop cutwear

Stops one image. In this case, ‘cutwear’ is the image to stop.

9

docker-compose up -d –force-recreate –no-deps nodejs

If you have stopped one image, use this command to start the image you stopped without affecting other
images running.

docker-compose logs

Gets all the logs from the running images.

docker-compose logs cutwear

Gets the logs from cutwear.

3.2 Client

The Client has the following simplified structure, shown in figure 7. In addition to this there is also a node
modules folder, but there is not relevant to go into detail about this folder.

Figur 7: File structure of the client (generated using tree command)

The source code is located under src/ folder, with index.js being the entry file and index.css styling most of
the app. Each user group has a main file located in the Apps/ folder that handles the state and saves the
fundamental data throughout the session.

Figur 8: File structure of the Apps/ folder (generated using tree command)

10

Since the client is written in React the application is composed of Components, these components is
located in the Components/ folder. In the Components/ folder the components belonging to one specific
user group is located in a folder with the same name as the user group.

Figur 9: File structure of the Components/ folder (generated using tree command)

The last folder that contains source code is the Services/ folder, this contains files that handle the commu-
nication with the server.

Figur 10: File structure of the Services/ folder (generated using tree command)

11

3.2.1 npm scripts

npm install

Installs all the dependencies. Needs to be run first time and upon changes to dependencies.

npm run dev

Starts the client in development mode. If running app on Windows, remove ‘BROWSER=none’ from pack-
age.json. NODE ENV must be set to ‘development’.

npm run electron-pack

Builds and packages the application to .exe. NODE ENV must be set to ‘production’. Could take some time
and consume some memory.

npm test

Calls the test script from create-react-app.

npm run electron

Starts electron without running server.

npm run preelectron-pack

Calls the build script before electron-pack.

npm run doc

Generates the code documentation. See 7.3 for more details.

3.2.2 Docker scripts

pack with docker.sh

Starts up a Dockerimage and generates a Installer for platforms described in package.json. Results are stored
in dist folder.

12

4 Database Model

Figur 11: Database model of CutWear, foreign keys are included

13

5 REST Services

This section has been written alongside development in markdown and is meant for the README in the
repository. The file is therefore converted from markdown to pdf, which explains the inconsistent format of
this section.

14

AUTH

Authorization:	Bearer	TOKEN

400	BAD	REQUEST

{
				"status":false,
				"message":	"Invalid	Token"
}

POST	/api/v1/auth/login

{
				"username":	"String	of	valid	username",
				"password":	"String	of	valid	password"
}

200	OK

{
				"success":	true,
				"message":	"Authorization	successful",
				"token":	"eyJhbGciOiJIUzI1NiIsInwc3244fVCJ9.eyJ1c2VybmFtZSI6IkJpbGx5QXJuZSIs2edWDlhdCIwrwrwMzE2Mzr2r32ZXhwIjoxNTUzMjA2ODc0fQ.VEYWXtrwer3EFmwtR2sxefDej452-j5zPqEbXzalAyQ"
}

Authorization:	Bearer	token

422	UNPROCESSABLE	ENTITY

{
						"success":	false,
						"message":	"missing	username	or	password"
				}

400	BAD	REQUEST

{
						"success":	false,
						"message":	"Authorization	unsuccessful"
				}

500	Internal	Server	Error

{
						"success":	false,
						"message":	"Error	in	authenticating	user"
				}

POST	api/v1/users/register

15

{
				"username":"yourusernamehers",
				"password":	"yourpasswordhere",
				"user_role":	"role	of	user	(integer)",
				"project_id":"id	of	project(integer)"
}

200	OK

{
				"status":true,
				"message":	"User	created	successfully"
}

400	BAD	REQUEST

{			
				"status":	false,
				"message":	"Permission	Denied"
}

422	Unprocessable	Entity

{			
				"status":	false,
				"message":	"Missing	or	incorrect	parameters"
}

500	INTERNAL	SERVER	ERROR

{			
				"status":	false,
				"message":	"Internal	Server	Error,	user	not	created"
}

GET	api/v1/users/:name

:name

200	OK

{
				"status":	true,
				"message":	"success",
				"user":	{
								"username":	"UsyNamy",
								"user_role":	1,
								"project_id":	3,
								"ts_created":	"2019-03-21T09:14:49.000Z"
				}
}

500	Internal	Server	Error

{			
				"status":	false,

16

				"message":	"Internal	Server	Error"
}

POST	api/v1/project/create

{
				"name":"name	of	project",
				"location":	"location	of	the	project",
				"contractor":	"contractor	of	the	project",
				"ts_project_created":	"Unix	Timestamp	of	when	the	project	was	created"
}

200	OK

{
				"status":	true,
				"message":	"Project	Created",
				"project_id":	1034
}

400	BAD	REQUEST

{			
				"status":	false,
				"message":	"Could	not	create	project"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Internal	Server	Error"
}

GET	api/v1/project/:projectid

project_id :projectId

200	OK

{
				"status"	:true,
				"message":	"Returning	project	98",
				"project":	[
								{
												"project_name":	"ProjectsWIthTBM",
												"project_id":	98,
												"location":	"Korea",
												"contractor":	"Arnes	Entrepenarurrurur",
												"ts_project_started":	"2019-03-20T09:12:01.000Z",
												"ts_inserted_into_db":	"2019-03-20T14:46:51.000Z"
								}
]
}

400	Internal	Server	Error

17

{			
				"status":false,
				"message":	"Could	not	find	project"
}

GET	api/v1/project

200	OK

{
				"status":	true,
				"message":	"Returning	projects	",
				"projects":	[
								{
												"project_id":	1,
												"name":	"Arnes	Prosjekt",
												"location":	"Valhall",
												"contractor":	"LNS",
												"project_started":	"2019-03-20T09:15:01.000Z"
								},
								{
												"project_id":	2,
												"name":	"KÅshagen",
												"location":	"Ytre	Enebakk",
												"contractor":	"Arne",
												"project_started":	"2019-03-20T04:15:01.000Z"
								}
]
}

400	BAD	REQUEST

{			
				"status":	false,
				"message":	"Could	not	find	projects"
}

401	UNAUTORIZED

{			
				"status":	false,
				"message":	"Permission	Denied"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Internal	server	error"
}

GET	api/v1/project/:projectId/tbm/all

200	OK

{
				"success":true,
				"message":	"Retrieving	TBMs	successful",

18

				"tbm":	"tbms[]"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Fetching	TBM	unsuccesful"
}

POST	api/v1/project/:projectId/tbm/create

{
			"tbmId":"string",
			"ts_tbm_created":	"unix	timestamp",
			"housing":	[
							{
											"position":"int",
											"wear":	"int",
											"max_between_neighbours":	"int"
							}
]
}

200	OK

{
				"success":true,
				"message":"TBM	tbm203	created"
}

400	BAD	REQUEST

{			
				"status":	false,
				"message":	"One	or	more	missing	attributes"	||	"user	does	not	have	permission"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Internal	Server	Error"
}

GET	api/v1/project/:projectId/tbm/:tbmId/cutters/

200	OK

{
			"success":true,
			"message":	"Cutterdata	from	tbm	tbm203",
			"data":	"cutters[]"
}

19

404	NOT	FOUND

{			
				"status":	false,
				"message":	"Error	in	fetching	cutterdata	for	tbm	tbm203"	
}

GET	api/v1/project/:projectId/cutters/all

200	OK

{
			"success":true,
			"message":	"Cutterdata	from	project	3",
			"data":	"cutters[]"
}

404	NOT	FOUND

{			
				"status":	false,
				"message":	"Error	in	fetching	cutterdata	for	project	3"	
}

GET	api/v1/project/:projectId/cutter/:cutterId

200	OK

{
			"status":true,
			"message":	"returning	cutter	234",
			"data":	"{cutter}"
}

404	NOT	FOUND

{			
				"status":	false,
				"message":	"No	data	or	wrong	project"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Internal	Server	Error"
}

20

GET	/api/v1/project/cutters/categories

200	OK

{
				"success":true,
				"message":"found	categories",
				"categories":	"categories[]"
}

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Internal	Server	Error"
}

POST	api/v1/project/:projectId/tbm/:tbmId/inspection/post

{
				"ts_start":	"unix	timestamp",
				"ts_end":	"unix	timestamp",
				"boredhours":	"double",
				"boredmeters":	"double",
				"newCutters":	[
								{
												"cutterId":"string",
												"ts_cutter_created":"unix	timestamp",
												"position":	"int"
								}
],
				"wear":	[
								{
												"position":	"int",
												"cutter_id":	"string",
												"wear":	"int",
												"comment":	"string",
												"ts_cutter_wear":	"unix	timestamp",
								}
],
				"changes":	[
								{
												"position":	"int",
												"comment":	"string",
												"category":"string",
												"new_cutter_id":"string",
												"old_cutter_id":"string",
												"ts_cutter_change":"unix	timestamp"
								}
]
}

200	OK

{
				"status":true,
				"message":	"inspection	successful"
}

400	BAD	REQUEST

{			
				"status":	false,
				"message":	"Missing	one	or	more	inputs"
}

21

500	Internal	Server	Error

{			
				"status":	false,
				"message":	"Error	in	creating	a	inspection"
}

GET	api/v1/project/:projectId/tbm/:tbmId/inspection/all

200	OK

{
				"status":true,
				"message":	"inspectiondata	from	tbm	tbm203",
				"data":	"inspections[]"
}

404	NOT	FOUND

{			
				"status":	false,
				"message":	"error	in	fetching	inspectiondata	for	tbm203"
}

GET	api/v1/project/:projectId/tbm/:tbmId/inspection

200	OK

{
				"status":true,
				"message":	"inspectiondata	from	tbm	tbm203",
				"data":	"inspections[]"
}

404	NOT	FOUND

{			
				"status":	false,
				"message":	"error	in	fetching	inspectiondata	for	tbm203"
}

22

6 Security

6.1 Server

6.1.1 Hashing and storing passwords

The server uses bcrypt as hashing algorithm and all passwords are stored as hashes with the same length,
alongside a salt in the database.[5]
There are only two ways to create or change a hash using the API, and that is through the registerUser and
updatePassword methods in user.controller, which only a administrator or a project supervisor (of the same
project as the user to be created/updated) has permission to do.

Figur 12: A users credentials stored in the database

6.1.2 JSON Web Tokens

JSON Web Token (JWT) is a digital signed token. For more information about creating a secret and setting
expiry date for CutWear server, see 7
CutWear uses jwt for access to the system. Without a token in the request, the request will be denied. To
receive a token, see 5
To use the token in a request, put the token as a Bearer token in the request header under x-access-token
or authorization.
Example:

authorization : Bearer myToken1234

x− access− token : Bearer myToken1234

For more details about JWT: jwt.io or [6]

6.1.3 Let’s Encrypt

Communication between client and server uses HTTPS. Let’s Encrypt(LE) provides the CutWear server
application with free TLS/SSL certificates to ensure secure connections between client and server.[7] The
certificate is fetched using the certbot Docker-image. LE certificates expire after 90 days, but with a simple
script, the renewal process can be automated. Add the ssl.renew.sh to crontab or an equivalent program to
renew the certificates before expiry date. For more detailed information on how to setup auto renewal, see
chapter 7
For more details about Let’s Encrypt: letsencrypt.org

6.1.4 SQL security

For connecting to the database, the node.js mysql driver is used. Mysql provides a transaction method, which
is used for all queries. To prevent SQL-injections, all queries are escaped using parameters. For easier use
for developers, model.js has a method ”query”, which takes in a sql statement and parameters. ”query”is
transactional and rolls back the changes if the statement fails [8]. All *.model classes should inherit the
Model class, and by using the super method ”query”, making sure that all queries are executed correctly [9].
Example of usage from src/controllers/CutterModel.js:

23

https://jwt.io/introduction/
https://letsencrypt.org/

Figur 13: Example of SQL-seurity from CutterModel.js

6.1.5 Protecting routes with middleware

Express provides simple ways of integrating middleware in the code, by using the ‘use’ and ‘param’ method,
one can run security checks before executing the target code [10]. The ‘use’ method excecutes when a request
route matches the route in the ”use”method. This makes it possible to check everytime someone requests
data which requires special permissions [11]. Example from the route ‘/api/v1/users/:name’ which requires
a valid token to be able to request. Figure 14 shows the middleware used for checking tokens. If the token is

Figur 14: The middleware for checking valid token

invalid, it will return a 400, but if the token is valid, it calls the next method, which tells the ‘use’ method to
call the next method in the chain. If the next method is called in authUser, 15 shows that addPool (another

Figur 15: Middleware for all requests starting with urlRoot(”api/v1”)

middleware) is run, and the request is then sent through to the next handler, which in this case is the route.js,
which then again will forward the request to the user.route and then the user.controller.
The param”method is exceuted everytime a certain parameter is present in a route.

24

6.1.6 Heavy load scenarios

All requests are initially received by the gateway (see 2.4), and therefore works as a load balancer if you
wish to run more instances of the server and configure it correctly. If the gateway crashes under heavy load,
the cutwear server will not be affected other than it will not receive the requests meant for it.

6.2 Client

6.2.1 Cross Site Scripting(XSS)

ReactJS handles Cross Site Scripting for you by escaping all user input [12].

6.2.2 Client-security

To have a minimal amount of time where the users password is stored as clear text (in variables etc), the
password is also hashed (and salted) in the client, before removed from variables. When the client sends a
login request it uses the fore mentioned hash to authenticate itself. The hashing adds no further security
other than that the password is not in clear text for others to see (backend or frontend).

6.2.3 Timestamps

Since the client has the possibilty of being used offline, there are some problems with knowing what is the
correct and newest data. This is handled by timestamping every event on the frontend at the time of the
event, and is then sent with the post-request to the database and stored. Then you can have uncommitted
events offline on a device, and still not have any conflicts when it is committed. To prevent other errors with
using timestamps over different timezones, the timestamp is a UNIX timestamp which is in milliseconds
since 1 jan 1970 UTC [13].

7 Installation and running the application

7.1 Server

To install and run the application, you need this software installed:

• node.js (needed for development and production)

• Docker (not necessary for development)

• Docker-compose (needed for production)

• mysql (needed for development and production, if you do not have external database)

• git (useful for easy version control)

• if the documentation is highlighted by %, then it means to replace the text with your own information.

7.1.1 First time installation

1. Clone or pull the latest version from Github

2. If you do not have a pre-configured cutwear database, you need to install the database.

• Create a database in mysql.

• Run the ./resources/db/insertFile.sql to setup the database structure.

3. Create the file ./resources/db/db.json.

4. Add the database settings to db.json, like figure 16

5. Create the file ./resources/jwt token/jwt token.json

6. Add the jwt secret and expiry date to jwt token.json, like figure 17

25

Figur 16: Example of database connections settings

Figur 17: JWT token settings

7.1.2 Running server outside Docker

1. run ‘npm install’

2. run ‘npm start’

3. Server is now available on http://localhost:5000

7.1.3 Running server with Docker

1. Build the image

2. Start the image

3. application is now available on http://localhost/

7.1.4 Running server in production with Docker-Compose [1]

1. This configuration is tested on Ubuntu 18.04.

2. Make sure the project is cloned to the ‘/home/%USERNAME%/’ directory, otherwise you need to
update the directories in the nginx-conf/nginx.conf file and docker-compose.yml.

3. Update the nginx-conf/nginx.conf with the correct domains. Replace %DOMAIN% with the actual
domain.
Example:
server name cutware.ibm.ntnu.no;
ssl certificate /etc/letsencrypt/live/cutware.ibm.ntnu.no/fullchain.pem;
ssl certificate key /etc/letsencrypt/live/cutware.ibm.ntnu.no/privkey.pem;
To add more domains: server name cutware.ibm.ntnu.no www.cutware.ntnu.no

4. Update docker-compose.yml. Replace the %EMAIL% with an email and replace %DOMAIN% with
the same domain from nginx.conf. If you have more than one domain, append -d other.domain.com at
the end of command.
Example:
command: certonly –webroot –webroot-path=/var/www/html –email krisnyb@stud.ntnu.no –agree-tos
–no-eff-email –force-renewal -d cutware.ibm.ntnu.no -d www.cutware.ibm.ntnu.no

5. Creating the keys.
On the project root: ‘mkdir dhparam’.
Run ‘sudo openssl dhparam -out /home/%USERNAME%/cutWearServer/dhparam/dhparam-2048.pem
2048’

26

6. Setting up auto-renewal of Let’s Encrypt certificate. Update the ssl renew.sh with the correct directory
(update %USERNAME%).

7. Open crontab using ‘sudo crontab -e’. Add:
‘0 12 * * * /home/%USERNAME%/cutWearServer/ssl renew.sh >> /var/log/cron.log 2>&1’
to the bottom of the file. This will try to renew every 12th hour. A certificate lasts 90 days, so the
interval could be bigger.

8. To see logs for certification renewal: ‘tail -f /var/log/cron.log’.

9. Build the images with ‘docker-compose build’

10. Starting the servers. Make sure Docker-Compose is installed. Run ‘docker-compose up -d’. The ‘-d’
tells it to run in the background. Check status of servers: ‘docker-compose ps’. Certbot should have
exited with 0, and cutwear and gateway should have state=UP.

NOTE: Even though server is running, it might not be possible to log on using tools like curl or postman with
the same user and password one uses to log in to the client, since the passwords are hashed on client-side.
The production environment setup(with Let’s Encrypt, Docker-compose) was created using this.

7.1.5 Handling updates when in production

1. Clone or pull the latest version of the image.

2. Stop the server in question:
sudo docker-compose stop %IMAGENAME%

3. Rebuild the image:
sudo docker-compose build %IMAGENAME%

4. Restart the server:
sudo docker-compose up -d –force-recreate –no-deps %IMAGENAME%.

5. Check the server status (state should be UP):
sudo docker-compose ps

7.1.6 Libraries

This section will contain libraries used in the server with where they are used and what version. Links or
other resources to the libraries will be documented here. If the resource is a guide or tutorial, then it has
been used in the project as guidance or been used as a learning resource.

bcrypt

• Version 3.0.4

• Usage

– user.controller.js - used to hash, and to compare two hashes

• Documentation

– bcrypt-npm

27

https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-node-js-application-with-nginx-let-s-encrypt-and-docker-compose
https://www.npmjs.com/package/bcrypt

crypto

• Version 1.0.1

• Usage

– user.controller.js - used to create a random salt of 16 bytes

• Documentation

– The site containing the algorithm to create salt

– Built-in to NodeJS

winston

• Version 3.2.1

• Usage

– ./resources/config/winston.js - configuration file

– Replaces console.log, and writes to file and console.

• Documentation

– Github

– winston-npm

– Tutorial used for setting winston up for server

jsonwebtoken

• Version 8.5.0

• Usage

– user.controller.js - Generates a token

– checkToken.controller.js - Verifies a token

• Documentation

– Guide for adding JWT to application

– jsonwebtoken-npm

morgan

• Version 1.9.1

• Usage

– ./src/app.js - Logs all incoming requests and responses

• Documentation

– Tutorial used for setting winston up for server

– morgan-npm

28

https://ciphertrick.com/2016/01/18/salt-hash-passwords-using-nodejs-crypto/
https://github.com/winstonjs/winston
https://www.npmjs.com/package/winston
https://www.digitalocean.com/community/tutorials/how-to-use-winston-to-log-node-js-applications
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-your-single-page-nodejs-applications-c403f7cf04f4
https://www.npmjs.com/package/jsonwebtoken
https://www.digitalocean.com/community/tutorials/how-to-use-winston-to-log-node-js-applications
https://www.npmjs.com/package/morgan

express

• Version 4.16.4

• Usage

– Web-framework for NodeJS

– ./src/app.js - Instanced to create a HTTP server

– ./src/routes/ - Forwards all routes from app.js to the correct routes in route folder.

• Documentation

– express-npm

– Express Tutorial Part 4: Routes and controllers

jsDoc

• Version 24.1.0

• Usage

– npm run doc - used for generating code documentation.

• Documentation

– jsDoc Dev Docs

– jsdoc-npm

– jsDoc cheatsheet

jest

• Version 24.1.0

• Usage

– npm test - used for running unittests

• Documentation

– Jest Docs

moment

• Version 2.24.0

• Usage

– Used to convert unix timestamps (milliseconds since 1 jan 1970) to YYYY-MM-DD H:mm:ss
(mysql format)

• Documentation

– MomentJS

29

https://www.npmjs.com/package/express
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://devdocs.io/jsdoc/
https://www.npmjs.com/package/jsdoc
https://devhints.io/jsdoc
https://jestjs.io/
https://momentjs.com/

mysql

• Version 2.16.0

• Usage

– model.js - Used to connect to mysql database using a pool.

– Uses transactions and roles back on error.

• Documentation

– mysql-npm

– Example of creating the model from TDAT3019

– Creating transactions in mysql-npm

7.2 Client

7.2.1 Creating a installer without Docker

1. Clone or pull the latest version of the client from Github.

2. Set ‘NODE ENV=development’

3. ‘electron-builder’ has dependencies who rely on python27. Easiest way to avoid the problem is to
download and install build essentials.
For Windows:

(a) Open CMD as administrator.

(b) run ‘npm install –global –production windows-build-tools’

For OSX: Python27 should come with OSX.
For Linux:

(a) run ‘sudo apt-get update’

(b) run ‘sudo apt-get install build-essential’

4. run ‘npm install’ to install dependencies.

5. Set ‘NODE ENV=production’

6. run ‘npm run electron-pack’. This might take a while.

7. The result of the build is located in the ‘dist’ directory. Run the CutWear Setup version.exe to install
on client-pc.

NOTE: if error under npm run electron-pack caused by fsevents, try downgrading the node version to 8.15.
This has shown to work if node 10 or 11 errors out. npm i –save-dev node@8.15.0. If error with .sh not finding
the build script, set ‘NODE ENV=development’ to make sure it downloads the electron-builder dependency,
as it is a devDependencie in package.json. To see if that worked, see if ‘./node modules/.bin/build’ exists

For further development, it would be wise to make a Docker image who builds and packages the application,
to prevent any error caused by different dependencies, and also make it a part of the continous integration
pipeline.

7.2.2 Creating a installer with Docker

1. Make sure Docker is installed, and bash is installed (check if able to run bash scripts)

2. Run ‘./pack with docker.sh’. Run with sudo if no permission.

3. The result of the build is located in the ‘dist’ directory. Run the CutWear Setup version.exe to install
on client-pc.

30

https://www.npmjs.com/package/mysql
https://gitlab.stud.iie.ntnu.no/nilstesd/DatabaseTest
https://www.codediesel.com/nodejs/mysql-transactions-in-nodejs/

7.2.3 Installing on Windows x64 PC

1. Download or get the installer.

2. Double click the installer and it will install automatically.

3. If there is warning about installing the program, press ‘More info’ or equivalent, and press ‘Run/install
anyway’.

4. The application opens upon finishing the installation.

5. A shortcut will be saved on the desktop, called ‘CutWear’.

7.2.4 Uninstalling the desktop application

1. Navigate to ‘C:/users/%username%/appdata/local/programs/cutwear’

2. Double click the uninstaller and it will uninstall automatically.

7.2.5 Development environment

1. Clone or pull the latest version of the client from Github.

2. run ‘npm install’

3. Set ‘NODE ENV=development’.

4. if developer machine is a Windows machine, remove ‘BROWSER=none’ from ‘package.json’.

5. Run ‘npm run dev’. A local server and electron starts up.

6. Ctrl+C to exit server and electron.

NOTE: If ‘npm run dev’ fails because of too many connections error, try setting ‘NODE ENV=production’.
This will make electron point to the build files instead of the server. This disables hot-reloading and ‘npm
run dev’ has to be run again. The error message is inconsistent, and does not show up everytime, so it might
work after a reboot.
References for all tutorials, guides or other resources used to help with electron and react: [4], [14], [15], [16],
[17] and [18].

7.2.6 Libraries

This section will contain libraries used in the client with where they are used and what version. Links or
other resources to the libraries will be documented here. If the resource is a guide or tutorial, then it has
been used in the project as guidance or been used as a learning resource.

onsen UI

• Version 2.10.6

• Usage

– Used for styling the app and providing components.

• Documentation

– https://onsen.io/v2/guide/react/

• Parts of the following examples have been used in the application

– Toolbar: https://onsen.io/playground/?framework=react&category=reference&module=splitter

– Login: https://onsen.io/playground/?framework=react&category=reference&module=input

31

https://onsen.io/v2/guide/react/
https://onsen.io/playground/?framework=react&category=reference&module=splitter
https://onsen.io/playground/?framework=react&category=reference&module=input

react-router

• Version 4.3.1

• Usage

– Used for routing between Login and the different Apps

• Documentation

– https://www.npmjs.com/package/react-router

– Guide: https://reacttraining.com/react-router/

react-numpad

• Version 4.1.2

• Usage

– Used for displaying a numpad for input in the application

• Documentation

– https://www.npmjs.com/package/react-numpad

create-react-app

•

bcrypt

• Version 3.0.5

• Usage

– src/Services/User.js - used to hash, and to compare two hashes

• Documentation

– bcrypt-npm

electron

• Version 4.1.0

• Usage

– Cross-platform desktop app to be used with JavaScript, HTML and CSS.

– Client is running in a electron application

• Documentation

– Homepage of electron

32

https://www.npmjs.com/package/react-router
https://reacttraining.com/react-router/
https://www.npmjs.com/package/react-numpad
https://www.npmjs.com/package/bcrypt
https://electronjs.org/

electron-builder

• Version 20.39.0

• Usage

– Node library for building and packaging electron apps.

– Creates a .exe installer for the client.

• Documentation

– Github of electron-builder

– Electron-builder documentation

– How to build an Electron app using create-react-app. No webpack configuration or ‘ejecting’
necessary.

– Using Electron with React: The Basics

– Turn The Famous React Boilerplate Into Electron Desktop Application

– Build Electron App using Docker on a Local Machine

33

https://github.com/electron-userland/electron-builder
https://www.electron.build/
https://medium.freecodecamp.org/building-an-electron-application-with-create-react-app-97945861647c
https://medium.freecodecamp.org/building-an-electron-application-with-create-react-app-97945861647c
https://medium.com/@brockhoff/using-electron-with-react-the-basics-e93f9761f86f
https://medium.com/@mjangir70/turn-the-famous-react-boilerplate-into-electron-desktop-application-68d91dce8d3a
https://www.electron.build/multi-platform-build#docker

7.3 Documentation of source code

For code documentation, jsCode has been used. To generate the docs, first ‘npm install’, then ‘npm run doc’.
This will generate a directory called ‘./out’, and in the directory, open ‘index.html’ in a browser of your own
choosing.

34

https://github.com/jsdoc/jsdoc

7.4 Continous Integration and testing

7.4.1 Continous Integration

The continous integration (CI) of CutWear uses TravisCI for running the tests in an Linux Ubuntu Trusty
environment and Codecov.io for publishing test results.
The server’s continous integration pipeline works as following:

Push to Github –> TravisCI: Run tests –> Codecov.io: Test results and statistics on code coverage is pub-
lished on codecov.

The configuration is described in ‘travis.yml’. The configuration file is a boilerplate travis-node js configu-
ration [19] with added functionality to push test results to codecov.io after success. [20]

NOTE: as of 15th of May, the project has reached it’s maximum builds for private Github repositories in
TravisCI. The replacement for TravisCI could be CircleCi, but is not implemented at this time. Running the
test locally (see under) will produce the same results.

7.4.2 Tests

The server uses jest for unit testing. To run(‘npm install’ first) the tests, use the script ‘npm test’ or
‘npm test file.js’ to test a spesific file. The results of the testing, can be seen in the file ‘./coverage/lcov-
report/index.html’. Here one can see the code coverage, which is also available on codecov.io.
The controller methods have been tested for logic, using stubs and mocks for all I/O from the models. The
models are not unit tested since they mainly only returns the result from the sql queries, but the main query
from Model class has been tested (used by all child models to query database). The controllers have a code
coverage of about 97%.
Each SQL-query is tested manually using NTNU Php Myadmin. For testing each REST-endpoint (rou-
tes+controllers+models), Postman has been used, but is a manual job, and hard to document in a reusable
way.

35

https://jestjs.io/en/
https://codecov.io/
https://mysqladmin.it.ntnu.no/index.php

Referanser

[1] How To Secure a Containerized Node.js Application with Nginx, Let’s Encrypt, and Docker Compose.
side: https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-
node-js-application-with-nginx-let-s-encrypt-and-docker-compose.

[2] �How To Build a Node.js Application with Docker�, side: https://www.digitalocean.com/commun
ity/tutorials/how-to-build-a-node-js-application-with-docker.

[3] �Express Tutorial Part 4: Routes and controllers�, side: https://developer.mozilla.org/en-
US/docs/Learn/Server-side/Express_Nodejs/routes.

[4] �Using Electron with React: The Basics�, side: https://medium.com/@brockhoff/using-electron-
with-react-the-basics-e93f9761f86f.

[5] �Hashing in Action: Understanding bcrypt�, side: https://auth0.com/blog/hashing-in-action-
understanding-bcrypt/.

[6] �A guide for adding JWT token-based authentication to your single page Node.js applications�, side:
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-

your-single-page-nodejs-applications-c403f7cf04f4.

[7] �How to Use SSL/TLS with Node.js�, side: https://www.sitepoint.com/how-to-use-ssltls-
with-node-js/.

[8] �MySQL transactions in NodeJS�, side: https://www.codediesel.com/nodejs/mysql-transactio
ns-in-nodejs/.

[9] �TDAT3019�, side: https://gitlab.stud.iie.ntnu.no/nilstesd/DatabaseTest.

[10] �A Simple Explanation Of Express Middleware�, side: https://medium.com/@agoiabeladeyemi/a-
simple-explanation-of-express-middleware-c68ea839f498.

[11] �Learn how to handle authentication with Node using Passport.js�, side: https://medium.freecodec
amp.org/learn-how-to-handle-authentication-with-node-using-passport-js-4a56ed18e81e.

[12] �JSX Prevents Injection Attacks�, side: https://reactjs.org/docs/introducing-jsx.html#jsx-
prevents-injection-attacks.

[13] �What is the unix time stamp?�, side: https://www.unixtimestamp.com/.

[14] �How to build an Electron app using create-react-app. No webpack configuration or “ejecting” ne-
cessary.�, side: https://medium.freecodecamp.org/building-an-electron-application-with-
create-react-app-97945861647c.

[15] �Build a File Metadata App in Electron�, side: https://codeburst.io/build-a-file-metadata-
app-in-electron-a0fe8d32410e.

[16] �How to make an electron app using Create-React-App and Electron with Electron-Builder.�, side:
https://gist.github.com/matthewjberger/6f42452cb1a2253667942d333ff53404.

[17] �Turn The Famous React Boilerplate Into Electron Desktop Application�, side: https://medium.
com/@mjangir70/turn-the-famous-react-boilerplate-into-electron-desktop-application-

68d91dce8d3a.

[18] �A complete guide to packaging your Electron app�, side: https://medium.com/how-to-electron/
a-complete-guide-to-packaging-your-electron-app-1bdc717d739f.

[19] �Building a JavaScript and Node.js project�, side: https://docs.travis-ci.com/user/languages/
javascript-with-nodejs/.

[20] �Build Environment Overview�, side: https://docs.travis-ci.com/user/reference/overview/.

36

https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-node-js-application-with-nginx-let-s-encrypt-and-docker-compose
https://www.digitalocean.com/community/tutorials/how-to-secure-a-containerized-node-js-application-with-nginx-let-s-encrypt-and-docker-compose
https://www.digitalocean.com/community/tutorials/how-to-build-a-node-js-application-with-docker
https://www.digitalocean.com/community/tutorials/how-to-build-a-node-js-application-with-docker
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://medium.com/@brockhoff/using-electron-with-react-the-basics-e93f9761f86f
https://medium.com/@brockhoff/using-electron-with-react-the-basics-e93f9761f86f
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-your-single-page-nodejs-applications-c403f7cf04f4
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-your-single-page-nodejs-applications-c403f7cf04f4
https://www.sitepoint.com/how-to-use-ssltls-with-node-js/
https://www.sitepoint.com/how-to-use-ssltls-with-node-js/
https://www.codediesel.com/nodejs/mysql-transactions-in-nodejs/
https://www.codediesel.com/nodejs/mysql-transactions-in-nodejs/
https://gitlab.stud.iie.ntnu.no/nilstesd/DatabaseTest
https://medium.com/@agoiabeladeyemi/a-simple-explanation-of-express-middleware-c68ea839f498
https://medium.com/@agoiabeladeyemi/a-simple-explanation-of-express-middleware-c68ea839f498
https://medium.freecodecamp.org/learn-how-to-handle-authentication-with-node-using-passport-js-4a56ed18e81e
https://medium.freecodecamp.org/learn-how-to-handle-authentication-with-node-using-passport-js-4a56ed18e81e
https://reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks
https://reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks
https://www.unixtimestamp.com/
https://medium.freecodecamp.org/building-an-electron-application-with-create-react-app-97945861647c
https://medium.freecodecamp.org/building-an-electron-application-with-create-react-app-97945861647c
https://codeburst.io/build-a-file-metadata-app-in-electron-a0fe8d32410e
https://codeburst.io/build-a-file-metadata-app-in-electron-a0fe8d32410e
https://gist.github.com/matthewjberger/6f42452cb1a2253667942d333ff53404
https://medium.com/@mjangir70/turn-the-famous-react-boilerplate-into-electron-desktop-application-68d91dce8d3a
https://medium.com/@mjangir70/turn-the-famous-react-boilerplate-into-electron-desktop-application-68d91dce8d3a
https://medium.com/@mjangir70/turn-the-famous-react-boilerplate-into-electron-desktop-application-68d91dce8d3a
https://medium.com/how-to-electron/a-complete-guide-to-packaging-your-electron-app-1bdc717d739f
https://medium.com/how-to-electron/a-complete-guide-to-packaging-your-electron-app-1bdc717d739f
https://docs.travis-ci.com/user/languages/javascript-with-nodejs/
https://docs.travis-ci.com/user/languages/javascript-with-nodejs/
https://docs.travis-ci.com/user/reference/overview/

	Introduction
	Architecture and Design Patterns
	Technology Stack
	Architecture
	Model Route Controller
	Docker-Compose
	Client

	Projectstructure
	Server
	npm scripts
	Docker commands
	Docker-Compose commands

	Client
	npm scripts
	Docker scripts

	Database Model
	REST Services
	Security
	Server
	Hashing and storing passwords
	JSON Web Tokens
	Let's Encrypt
	SQL security
	Protecting routes with middleware
	Heavy load scenarios

	Client
	Cross Site Scripting(XSS)
	Client-security
	Timestamps

	Installation and running the application
	Server
	First time installation
	Running server outside Docker
	Running server with Docker
	Running server in production with Docker-Compose dockercompose
	Handling updates when in production
	Libraries

	Client
	Creating a installer without Docker
	Creating a installer with Docker
	Installing on Windows x64 PC
	Uninstalling the desktop application
	Development environment
	Libraries

	Documentation of source code
	Continous Integration and testing
	Continous Integration
	Tests

