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Problem Description

In 2013 Revolve NTNU participates for the second year with a self-built
racing car, in Formula Student. Formula Student is a competition for
engineering students, where teams design and build a racing car. The cars
will be evaluated in a series of tests on performance and design.

To improve the performance of their car, Revolve’s R&D group wants
to develop a system for adaptive suspension. A control system shall be
implemented using embedded technology, and will be integrated with the
other electronic systems of the car.

The candidate has already compiled a prestudy on how such a system may
be designed. The candidate shall continue this work by:

� Revise solutions from this previous design

� Develop further requirements for the system

� Create hardware designs for the system modules

� Implement prototype devices for these system modules

� Develop the necessary software to achieve baseline system functional-
ity

� As far as time permits it, extend this functionality to increase per-
formance of the system

� Evaluate suitability, quality and performance of the final system

Supervisor: Amund Skavhaug, ITK
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Summary

Good road handling is one of the most important characteristics of a racing
car. To expand the capabilities of conventional suspension setups, the usage
of adaptive suspension has become increasingly popular in high performance
cars. Advancements in electronics and embedded technology has allowed
such systems to be implemented with little weight gain over conventional
suspension. The Formula Student team Revolve NTNU therefore wishes to
implement a system for adaptive suspension on their car – the KA Aquilo
R. A previous prestudy by the same author has evaluated the feasibility of
such a solution, and proposed a top level design for an embedded control
system.

This thesis will present the design, implementation and testing of a dis-
tributed embedded system to control a continuously controlled electronic
suspension(CES). Based on the top level design proposed in the prestudy,
a complete hardware design has been prepared for the system. The sys-
tem was distributed into a Central Controller Unit, and Wheel Controller
Units for each damper. A complete set of prototype system units has also
been implemented, by the help of electronics manufacturer SimPro. The
implemented hardware design has been tested and verified to be working.

Furthermore, a software implementation for the system’s units has been
implemented. For the Central Controller Unit a execution framework has
been implemented, to allow the development of controller algorithm to be
continued easily. The wheel controller units has implemented necessary
software to control damping parameters of each shock absorber, according
to supervisory control signals sent by the Central Controller. A common
communication protocol to interconnect the CES system with the other
electronic systems of Revolve’s car has also been implemented.

Some elementary tests has also been performed to verify the performance
of the system. The result is a a prototype system that may be used for
evaluation of concept and on-car performance.
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Sammendrag

Gode kjøreegenskaper er en av de viktigste egenskapene til en racerbil.
For å utvide ytelsen til konvensjonelle understell har bruken av adaptive
understell blitt stadig mer populært p̊a høyytelsesbiler. Fremskritt in-
nen elektronikk og embedded teknologi har ført til at slike systemer n̊a
kan implementeres med lav vektøkning, sammenliknet med konvensjonelle
understell. Formula Student-laget Revolve NTNU ønsker derfor å imple-
mentere et slikt system til bil – KA Aquilo R. En tidligere forstudie av
samme forfatter har evaluert mulighetene for en slik løsning, og foresl̊att
et mulig toppniv̊a design for et embedded styresystem.

Denne oppgaven vil presentere et design, implementasjon og evaluering av
et et embedded styresystem for elektronisk justerbar dempning, ogs̊a kalt
CES. Basert p̊a toppniv̊a designet foresl̊att i forstudien, har et fullstendig
hardwaredesign blitt utviklet for systemet. Systemet er delt mellom en
s̊akalt “Central Controller” enhet og “Wheel Controller” enheter som
monteres ved hver demper. Et fullstendig sett av enheter for systemet
har ogs̊a blitt implementert, ved hjelp av elektronikkprodusenten SimPro.
Hardwaredesignet ogs̊a har blitt testet, og funksjonene verifisert.

Videre har en programvare blitt implementert for systemets enheter. For
Central Controller enheten har et rammeverk blitt utviklet for kjøring
av kontrollalgoritmen, slik at arbeidet med denne enkelt kan videreføres.
Wheel Controller enhetene har implementert den nødvendige programvaren
for å styre parameterene p̊a de enkelte demperene, basert p̊a kontrollsignaler
fra Central Controller enheten. En felles kommunikasjonsprotokoll for
sammenkobling av CES systemet med andre enheter p̊a bilen har ogs̊a blitt
utviklet.

Noen elementære tester har til slitt blitt gjennomført for å vurdere systemets
ytelse. Resultatet er en systemprototype som egner seg til videre evaluering
av konsept og ytelse p̊a bilen.
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1
Introduction

”No one remembers who took second place,
and that will never be me.”

- Enzo Ferrari

Sections 1.1, 1.2 and 1.3 of this chapter have been obtained from the authors
earlier work in [1].

1.1 Motivation

The market for embedded computers is exploding. As we speak, billions of
devices using embedded technology are operating around us and predictions
indicate that within a decade, the numbers of such devices will surpass the
numbers of humans on the planet by a factor of 100.

The automotive industry has not been sitting on its hands. Solutions like
CAN bus[2] has allowed embedded systems to be interconnected efficiently,
and thus be distributed throughout cars. These days, everything from a
light cluster to a door handle may have a microcontroller built into it.

In modern passenger cars electronically adjustable suspension has become
increasingly popular. Volvo’s 4-C Chassis and Audi’s Magnetic Ride
adaptive damping systems are two of several variants. By employing
modern technology such systems may now be made less mechanically
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CHAPTER 1. INTRODUCTION

complex, and thus lighter. While it is mainly in the last few years that
electronically adjustable suspension has come into usage in passenger cars,
it has been used in racing cars for several decades. During the 1980’s
several teams in Formula 1 developed systems for active suspensions, up
until a comprehensive ban in 1993.

With modern technology available, it now makes more and more sense
to employ such systems also in lightweight racing cars like those used in
Formula Student. Systems such as those considered in this thesis may
improve handling and cornering abilities significantly, while still accounting
for just a small fraction of total suspension weight. A key focus for the
system presented in this thesis has therefore been weight and simplicity

1.2 Formula Student

Formula Student is an international engineering competition where the
students design, build and compete with a racing car. The competition
has been arranged annually for some 10 years, and has its roots in the
American Formula SAE competition that uses the same homologation rules.
A typical Formula Student car is shown in Figure 1.1.

Combined, these two competitions make up the worlds largest competition
for university students by a considerable margin. In the 2012 competition,
hosted at the Silverstone Formula 1 circuit, more that 134 teams partic-
ipated. A similar number of teams compete in the American Formula
SAE competition, and there are also derivatives in Germany and Australia
attracting a growing number of teams.

Formula Student cars may use combustion powertrains with a maximum
displacement of 610cm3, however a 20mm diameter air intake restrictor
must be fitted to limit the achievable power. Alternatively cars may
use electric powertrains, limited to a maximum power of 85kW . As of
the 2012 season, combustion and electric cars are competing head to
head, motivating students to opt for environmentally friendly solutions.
Additionally, there are also several rules concerning the construction of
body, suspension, etc. The interested reader may find the complete rules
in [3].
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1.3. REVOLVE NTNU

Event Maximum score

Engineering design 150
Cost 100
Skid pad 50
1 km sprint 150
75 m acceleration 75
22 km endurance 300
Fuel efficiency 100

Table 1.1: Score distribution of Formula Student events

The participating teams compete in a number of static and dynamic events,
each awarding a given number of points. These are distributed as in
Table 1.1. The mixture between static and dynamic events require the
team to both perform well on the track, as well as pay careful attention in
the design and manufacturing phases of their project. Innovative features
and designs are awarded, when the participating teams must justify their
solutions in front of the judges, during a design presentation.

1.3 Revolve NTNU

Revolve NTNU is one of the two Norwegian teams competing in the For-
mula Student 2013. As with all Formula Student teams, Revolve is an
ideal organization and relies on voluntary work from students. Financial
support is delivered through sponsorships from the industry and businesses.
The team is affiliated with the Norwegian University of Science and Tech-
nology(nor.: NTNU ) and consists of 46 students, representing more or
less all engineering programmes.

Revolve was first established in 2010, and entered the competition in the
2012 season with their KA Borealis R. At Silverstone, the team managed
to earn the title of “Best Newcomer”.

This year the team is entering the competition with an entirely new car
– the KA Aquilo R, shown in Figure 1.1. The team have set themselves
high ambitions, and is aiming for place among the top five teams in
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CHAPTER 1. INTRODUCTION

the competition.

Figure 1.1: The 2013 KA Aquilo R at its unveiling

1.4 Previous Work

During the fall of 2012, the author wrote a project thesis[1] on the subject
of electronically adjustable suspension for use in Formula Student cars.
The project thesis compiled a prestudy for how an embedded system may
be used to control electronically adjustable suspension in such a context.
This included an overview of specifications and requirements that such a
system would need to fulfil, as well as an evaluation of possible designs and
solutions for a top level system architecture. The prestudy also presented
a selection of appropriate hardware components that could be used to
implement such a system. The prestudy is available as a digital attachment
to this thesis.

1.5 Scope and Outline

This masters thesis will describe the development of an embedded control
system for adaptive suspension in a Formula Student racing car.
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1.5. SCOPE AND OUTLINE

The results from the prestudy have been used extensively as basis for this
masters thesis. Throughout this thesis, references will be made to the
prestudy whenever it has been used as basis for choices during implemen-
tation. The reader is encouraged to seek further documentation in this
document.

This thesis has been divided into four parts:

Part I will give an introduction to to the topic, and review the most
important background theory that was presented in the prestudy.
This should help the reader understand the motivation for the system,
and some of the external requirements that apply. The part will also
introduce the top level design that was chosen for the prestudy, and
some of the requirements to the overall system. These requirements
will form a basis for further design.

Part II will present the hardware design of the system. A set of hardware
prototypes for the system modules has been developed, to be used
for evaluation and software development. The recommendations for
design and selection of hardware components given by the prestudy
has been used where it was possible. This part will also give a
presentation of how production of the final prototypes has been
done. An overview of how the design has developed from an initial
prototype, to the current design is also given.

Part III will give a presentation of the software that has been developed
for the system. As the system presented uses a distributed architec-
ture the software part will start with a description of the protocol
that is used for communication between the units. Based on the
top level requirements identified in Part I, system requirements will
be presented for each module. A separate chapter has then been
assigned to present the software implementation for each module.

Part IV will present a discussion and review of the design and implemen-
tation of the system. Results from some elementary performance
tests has been included. The discussion will present a review of the
solutions chosen for the system design. Finally some concluding
remarks will be made to summarize the thesis.
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Part V includes appendices showing large size schematics, PCB layouts
and extracts of the program code for the developed software.

Complete program code has been included as a digital attachment for the
thesis. The prestudy for the system is also available as a digital attachment.
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2
Background Theory

”When I do retire, I know for a fact that I’ll never be able to
replace the incredible feeling I get when I’m driving a F1 car.”

- Jenson Button, Formula One driver

As mentioned in Section 1.5 this thesis is based on the authors own prestudy
on the same topic. This prestudy included an presentation of the relevant
background material such as vehicle dynamics, suspension modelling, as
well as the principles of active and semi-active suspension. This chapter will
not present these topics in full, but rather summarize the most important
parts of the contents that is directly relevant to the work presented in this
thesis. The interested reader is referred to the prestudy itself[1] for further
information. While these topics are not directly connected to the rest of
the thesis, basic knowledge is necessary to identify the motivation for the
CES system, as well as external requirements with respect to reliability ,
real-time properties and system functionality.

2.1 Suspension

Chapter 2 of the prestudy gave an introduction to the basic principles
for automotive suspension, suspension modelling and evaluated possible
control strategies for a CES system. This section will give a summary of
the content in that chapter to familiarize the reader with basic theory of
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automotive suspension.

2.1.1 Suspension Modelling

Mathematical models are widely used to understand and tune the behaviour
automotive suspensions. The simplest form such these popular models is
called a quarter car model. A conceptual illustration of such a model is
shown in Figure 2.1a.

This model isolates the suspension of one single wheel, and is limited to
modelling vertical behaviour, i.e. along the z-axis. As can be seen from
the figure, the mass of the vehicle is divided into the following two parts

� The wheel of the car(mu), which is suspended only by the tire

� The car body(ms), which is suspended on top of the wheel by a
spring and a damper.

Under the assumption that there are no external forces on the system, a
mass suspended by a spring and damper can usually be modelled as a
simple second order differential system

msz̈s + csżs + kszs = 0

In the above equation ms is the suspended and xs is its position. cs and
ks are respectively the damper and spring constants.

In the real world, however, important to notice that the deflection in the
tyre wall introduces a significant amount of damping into a suspension
system. For sufficient accuracy, this effect must be included into the model.
This gives the following system

msz̈s + csżs + kszs = csżu + kszu

muz̈u + csżu + (ks + kt)zu = csżs + kszs + ktzt
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This is no longer a simple second order system. If combined, these equa-
tions will yield a non-linear equation of motion. Consequently, tuning of
suspension is a task that require much effort.

The system implemented in this thesis will allow adjustment of the damper
cs, suspending the sprung mass ms. As we can see from the equations, the
behaviour of the system may be tuned be adjusting this parameter.

(a) Quarter car suspension model[4] (b) Full car suspension model

Figure 2.1: Suspension models

To study the kinematic effects on the vehicle as a whole, a common
procedure is to expand the quarter car model into a full car model . This
model combines four quarter car models with a rigid body with known
moments of inertia around the ~x and ~y axes. The rotation around ~x and ~y
axes, called correspondingly roll and pitch, may then be simulated.

This extension will allow modelling of behaviour when the body is subjected
to external force during e.g. acceleration, braking or cornering. As vehicle
dynamics is not a primary part of this thesis, the complete set of equations
will not be presented here. However, a conceptual illustration of the full
car model is shown in Figure 2.1b.
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2.1.2 Active and Semi-Active Suspension

This section is a summary of the authors previous work presented in the
prestudy[1, Ch. 2.3].

Popular jargon tends not to differentiate between active and semi-active
suspension. The terms Active- and Adaptive- suspension is often used
interchangeably. In the perspective of suspension theory, however, the
differences between these techniques are crucial.

The principle of semi-active suspensions is similar to that of conven-
tional i.e. passive suspensions. Section 2.1.1 describes the principle of the
quarter car model. In this context, a semi-active suspension will allow
suspension parameters such as

ks Spring stiffness

cs Damper coefficient

zs0 Ride height

to be adjusted dynamically, based on the state of the vehicle. Semi active
suspensions are therefore, strictly speaking, also passive systems as they
cannot add energy to the suspension. Different control strategies for this
type of suspension is described in Section 2.1.3.

Active suspensions may on the other hand add energy to the suspension.
This may be done by the means of an actuator driven by i.e. hydraulics or
electricity. This often allow elimination of traditional suspension compo-
nents, such as springs and dampers altogether, as suspension force may
be synthesised by the actuator. This type of suspension has not been con-
sidered in detail in this thesis. However, if the suspension is to synthesize
damper and spring forces it is imperative that a high bandwidth controller
is necessary.

2.1.3 Control Objectives

Chapter 2.5 of the prestudy presented several possible control strategies for
an adaptive suspension system. While the design of a control strategy for
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adaptive suspension is not part of this thesis, this section will repeat the
most important control strategies that are relevant for this system. Section
2.1.2 introduced the concepts of active and semi-active suspension. This
section will, however, focus on control objectives for semi-active suspension,
such as those considered for the system in this thesis.

The most basic form of adaptive suspension is one that will allow automated
manual adjustment of suspension parameters. This may be realized
through binary settings, or an adjustable range for parameters. The
suspension may be adjusted at the touch of a button, rather than performing
mechanical adjustment to the suspension itself. Such system are common in
many upmarket passenger vehicles. As no dynamic control is implemented,
the system may be implemented with few requirements to hardware and
software performance.

If a control system is implemented for the adaptive suspension system, the
suspension may change its parameters continuously according to the state
of the vehicle. Different types of vehicles may define different targets for
such control. For instance, a passenger car may employ such system to
increase comfort.

In motor racing, however, such systems are better suited for improving the
handling of a vehicle. When a car accelerate, brake or corner its inertia
shifts the weight of the vehicle away from its static centre of gravity. This
will cause the vehicle to roll or pitch so that some tyres are subjected to
more load than others. Thus, the suspension of the vehicle will have to be
tuned to a compromised setting that allow the suspension to handle all
these situations. In reality however, different setting for each state would
be optimal.

Different types of controller strategies may be implemented depending on
the bandwidth available from the control system. Simulations by other
team members have indicated that a bandwith of 10-50 Hz is sufficient
to correct slow movement in the vehicle body, i.e. pitch and roll . High
bandwidth control may be used to to eliminate the effect of road surface
anomalies. A widely employed control strategy for such corrections is
called ground-hook control . The interested reader is advised to seek
further information about suspension control strategies in Chapter 2 of the
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prestudy. A more comprehensive collection of information may be found
in [5]. Advanced controllers like ground-hook will require bandwidths that
are several orders of magnitude higher, i.e. 500 Hz and upwards.
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3
Top Level Design

”I remember my first test in F1. After five laps, I came back to
the pits and tried to play it cool - ’Oh yeah, I’m fine, I’m on top of
this’ - but I was completely lost.”

- Sebastian Vettel, Formula One driver

This chapter will present the top level design that has been used for imple-
mentation of the CES system. The top level design has to a large extent
been based on recommendations from the authors own work presented in
the prestudy[1]. However, as more detailed specifications is now available
for the rest of the system, the top level design has been reviewed to comply
with this information.

3.1 System Requirements

3.1.1 Damper Actuation

The prestudy performed an evaluation of the most popular physical princi-
ples for use in a semi-active suspension system for a formula student car.
The alternatives that were evaluated are listed below.

� Magneto-rheological dampers

� Pneumatic and hydraulic dampers
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� Valve actuated dampers

Of the above alternatives, a system using valve actuated dampers was
deemed to be the most reasonable choice. Such a system would require
little modification to the off-the-shelf dampers that were already used in
Revolve’s Formula Student car. As the adaptive suspension system is a
development project, it is important to have a working backup solution if
it should not produce the desired results.

The system considered in this thesis is therefore designed so that it may
be mounted onto a stock Öhlins TTX25 FSAE MKII damper with no
modifications. In this way, the system may be installed or removed from
the car in a matter of minutes.

Figure 3.1: Öhins TTX25 FSAE damper

As can be seen from the Figure 3.1, these dampers are equipped with two
externally adjustable valves. These valves adjust the damping coefficient
of the damper, when being either compressed or expanded(also referred to
as rebound). Two actuators are therefore needed to adjust each parameter
freely. Each knob may be rotated a total of 4.5 turns(≈ 1680deg.), to
change from a fully open to a fully closed valve.

For this purpose, two brushed DC motors have been chosen. The motors
that will be used in this system are of the type Maxon RE-max. A
comprehensive datasheet for the motor may be found in [6, p. 121]. The
DC motors will be combined with a planetary gear-head, with a ratio of
5.4 : 1. The datasheet of the gear-head may be found in [6, p. 217]. A
summary of specifications for the motor and gear is given in Table 3.1.
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3.1. SYSTEM REQUIREMENTS

Motor article nr. 216000
Gear article nr. 118184
Nominal voltage 12V
Nominal speed 8220 rpm
Stall torque 14.4 mNm
Stall current 1.45 A
Max continous current 0.415 A
Torque constant 9.93 mNm/A
Gear ratio 5.4:1
Stall torque w/gear 77.8 mNm
Nominal speed w/gear 1522 rpm

Table 3.1: Specifications of Maxon RE-max 17mm motor and gearhead

Under the assumption that acceleration time of the motors are negligible,
the geared nominal speed of 1522rpm gives us a maximal delay time of
4.5 · 600001522 = 177ms, from fully open to fully closed valve.

Simulations by the developers for the supervisory control algorithm con-
cluded that the controller frequency for a PID motor controllers should
exceed 500Hz.

3.1.2 CAN Interface

An important feature of the CES system is its ability to efficiently read
data from sensors placed on the car. The KA Aquilo R features a data
acquisition system, that is used for monitoring and gathering data while
the car is being driven. The data aquisition system of this years car is
based on CAN bus. A special CAN Sensor Unit has been developed for
the data acquisition system, that allows the connection of either a digital
or analogue sensor. Sensor values will be converted to a 16-bit value and
transmitted as a CAN message.

CAN messages are broadcast on the CAN bus, and may be read by any
unit connected to the bus. By utilizing this already installed CAN bus,
we may easily implement data acquisition for the CES system with little
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need for extra hardware. Means to connect the CES system to the data
acquisition CAN bus should therefore be implemented.

As will be described further in Section 3.2 the system will be implemented
using a distributed architecture. As a result, there will also be a need for the
units to communicate. As a CAN bus is already available throughout the
car, it should be used for system interconnection in further development.

3.1.3 Ingress and ESD Protection

A system that is mounted on a car is exposed to a harsh environment.
Rain, dust and high temperatures are some of the factors that the system
must be designed to handle. For the CES system, the two most important
factors are protection against water and dust. To check the encapsulation
electronics, cars are spray tested at the competition. Figure 3.2 shows a
Formula Student car being sprayed with water at the skid pad test. All
system units much therefore be mounted with sufficient ingress protection.

Another important factor for a system to be mounted in a car is protec-
tion against electrostatic discharge. Electronics mounted inside a non-
conductive enclosure will generally be well protected against ESD. It
is, however, important that the external interfaces of all units also are
protected against discharges and transients.

Figure 3.2: Formula Student car during water spray test
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3.1.4 Fail-Safe Mode

In motor racing, cars are pushed to their limits to find extra seconds out
on the track. The margin for error is consequently much smaller than in
a passenger car, as drivers has to rely heavily on their prediction of how
their car will behave. The system described in this thesis will have the
direct ability to change the handling parameters of the car. Any abrupt
changes in the cars handling may therefore have huge consequences. A
driver loosing control of the car may lead to damages to the car, as well as
injuries to both the driver and spectators.

To avoid such consequences it is important that any failures of the system
should not cause unpredictable behaviour. Any failures that may lead to
decreased system performance should also be identified, so that preventive
measures may be taken. It is also vital that the driver is made aware of
the error as quickly as possible.

To meet these requirements, the system needs to implement mechanisms for
error detection. The prestudy proposed to exploit the fact that the system
uses a distributed architecture to implement error detection. This require-
ment has been somewhat extended during the for safe implementation of
the system, giving error detection on two levels:

Internal error detection in each module: A watchdog timer should
monitor program execution internally in each module(both CCU
and WCUs). If the program execution stops, the watchdog timer
should reset the processor of the module, so that the program may
be restarted.

External monitoring between the units: The different units of the
system should mutually monitor each others states. Messages should
be sent periodically to indicate that there are no errors. All messages
should include error bits, that may explicitly signal the type of error
that has occurred.

19



CHAPTER 3. TOP LEVEL DESIGN

3.1.5 Control Panel & Configuration

It is necessary to implement a way for the driver to interact with the
system, when it is mounted in the car. Driver interaction may range from
elementary features, such as activation and disabling of the system and
changing operation mode, to more complex operations such as changing
system control parameters. The electronics group has developed a driver
interface in the steering wheel and dashboard so that the driver may
interact with the various electronic systems of the car. The driver interface
is connected with the electronic modules of the car using CAN bus.

A 3-way switch in the driver interface has been allocated to operate the
CES system. This switch should be used for elementary operation of the
system, such as the selection between two system modes and disabling the
system. As described in Section 3.1.4 it is also necessary to implement a
way to alert the driver in case of failure of the system. A warning led has
therefore also been allocated to the CES system.

For more complex configuration of the system, a OLED screen has been
implemented in the steering wheel of the car. Menus may be implemented
for this screen to alter system parameters. The dashboard and steering
wheel of the car is shown in Figure 3.3. The car is also equipped with a
bidirectional wireless data link, that may be operated using a computer at
the track-side. This telemetry system is also connected to the CAN bus,
and may also be used for configuration of the system.

3.1.6 Bootloading

Given a distributed architecture, as will be presented in 3.2, the wheel
actuating units will be mounted inside an enclosure on each damper. Access
to these units may therefore be restricted. To easily be able to reprogram
the units of the system, a way to load a new program over the CAN bus
should be implemented.
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Figure 3.3: Dashboard and steering wheel of KA Aquilo R

3.2 System Architecture

Chapter 3 of the prestudy evaluated several possible system architectures
for the CES system. A distributed system architecture was recommended
for further development of the CES system. Such an architecture is suitable
for this system, as actuators will have to be mounted at the dampers. The
dampers are normally mounted at each corner of the car, and using a
distributed architecture would therefore reduce the need for cabling, as all
units may be connected to a common data-bus.

The distributed architecture suggested in the prestudy was thus adopted
for further system development. The chosen system architecture is shown
Figure 3.4. A short description of the two types of modules used in the
system is given below.

The Central Controller Unit, or CCU, should act as the main con-
troller unit for the system. This unit gathers sensor data, and
generates supervisory control signals for the units that are mounted
locally at each damper. The CCU will also communicate with control
panels and other electronic equipment of the car. It should also
monitor the state of the Wheel Controller Units.
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The Wheel Controller Unit, or WCUs, will be mounted locally at
each damper, and control the actuation of that particular damper.
The WCUs will implement two PID controllers for actuator control,
and receive new setpoints for these controllers periodically from the
CCU. The WCUs should also be able to operate independently in
case of failure in the CCU.

Wheel 
Controller 

Unit 

Wheel 
Controller 

Unit 

Wheel 
Controller 

Unit 

Wheel 
Controller 

Unit 

Central 
Controller 

Unit 

Figure 3.4: CES system distribution in a Formula Student car
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4
Introduction to Hardware Part

”Hardware: The part of a system that you can kick.”

- Anonymous

Development of hardware for the CES system has played a major role in
the work with this thesis. During early development stages, development
boards and breadboards were use to test compatibility and performance of
single components. However, to create a system that is efficient with respect
to size, cost, etc. it is necessary to develop custom designed hardware that
will fulfil the requirements for each module.

This part will give a description of the hardware that has been developed for
the CES system. Different chapters has been assigned to the description the
Central Control Unit and the Wheel Control Unit introduced in Section 3.2.
The design of each module has been broken down into four stages. First,
a set of specific requirements will be presented for each module. Once
these requirements was identified, a complete set of schematics has been
developed for all units. The prestudy[1, Ch. 5] presented a selection of
components that could be used for further hardware development of system
units. To a large extent, the components chosen for the final design has
been selected on the basis of these recommendations. The work presented
in this part has therefore primarily focused on how each component should
be integrated into the design.

Based on the developed schematics, complete PCBs has been designed and
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implemented for all modules. The finished modules has also undergone
elementary tests to verify the hardware design. All schematics and PCBs
has been developed using Altium Designer. This is a state-of-the-art
software package that may be used for simple prototyping, up to full scale
design of advanced electronic systems. For reference the exact version used
has been ver. 27009.

Furthermore, a chapter has been added for the description of the vehicle
network that will be used for communication between system units. The
part will also give a presentation of how the final prototypes has been
produced, as well as a description of how the system has been installed
in the car for testing. After the hardware design has been presented,
Chapter 9 will discuss the design of the system. Complete schematics and
PCB layouts for the system is available in appendices A and B.
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Vehicle Network

”Obstacles are things you see when you take your eyes of your
goal.”

- Henry Ford

5.1 Requirements

Given the system architecture presented in Section 3.2, it is clear that
the system need an efficient way to interconnect the Central Controller
Unit and the Wheel Controller Units. The top level design requirements
specified that CAN bus should be used to interconnect the CES systems
modules. This decision was made as a joint decision within the 2013
Revolve team, on the basis that CAN is a widely available and lightweight
standard for embedded networks. The interested reader should refer to
Chapter 4 of the prestudy for more information about this decision, and
details about the CAN bus standard.

Each unit using CAN communication need not be able to access the internal
communication of other systems of the car. A common decision was also
made within Revolve to separate the network into several buses. For the
following chapters the term CAN bus will be used to describe a single bus,
while the term CAN network will be used to describe all can buses that
are used together in a system.
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CHAPTER 5. VEHICLE NETWORK

The data acquisition system, with more than 20 sensor modules, is by far
the most comprehensive subsystem of the car. To not occupy a large amount
of capacity of the CAN bus with this communication, it was decided that
a separate bus should be made available for the data acquisition system.
As presented in Section 3.1.2 an important feature of the CES system
is to receive appropriate sensor data. It would therefore seem logical to
connect the CCU directly to the data acquisition CAN bus. Chapter 4
of the prestudy also evaluated the bandwidth and real time properties of
CAN. It concluded that the implementation of a CES system with control
frequency of 100 Hz, combined with a high frequency data acquisition
system, still only used a fraction of the total bus capacity.

The following two buses have been deployed on the car:

The Main CAN bus, also referred to as CAN0 , will act as the back-
bone of the electronic system of the car. All electronic systems such as
Engine Control Unit, Gear Control Unit, Datalogger and dashboard
will be connected to this bus. The activity on this bus will mostly be
driven by events such as e.g. status change from dashboard, or the
passing of commands between electronic modules. However, units
will also broadcast status messages on this CAN bus periodically.

The Sensor CAN bus, also referred to as CAN1 , is primarily used
for the data acquisition system of the car. As described in Section
3.1.2, all sensors will be connected to the data acquisition system
using a CAN Sensor Unit. Activity on this bus will to a large extent
be periodical, as each sensor module will broadcast its value with
a predefined interval. As sensors are mounted throughout the car,
this bus will also have to span through the entire length of the car,
to allow connection of all sensors. This bus will also be used for
interconnecion of the CES system.

5.2 Implementation

While the CAN 2.0 specification does not specify the properties of the
physical layer for CAN bus, the two wire connection defined by ISO11898
standard has become the de-facto standard for CAN physical layer. To
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allow as much bandwidth as possible, a data rate of 1Mb/s was defined for
the CAN network. This is the maximum data rate refined by ISO11898,
and also the maximum data rate supported by most CAN controllers and
transceivers. The real-time properties is, as for all shared mediums, tightly
connected to grade of utilization of a CAN bus. A higher data rate giving
a lower utilization, will thus contribute to stable real-time properties.

ISO11989 does not specify the physical properties for connectors and wires
used for a CAN bus, however it is common practice to use a twisted copper
pair cable. For applications where the data-rate approaches 1Mb/s it
may also be necessary to use a shielded cable to improve resistance to
electromagnetic noise.

In a car shielding of cables is particularly important, as there are typically
several sources of electromagnetic radiation, such as ignition coils, that
may disrupt communication of caution is not taken. The use of shielded
twisted pair cable was therefore chosen for all CAN buses in the wiring
harness. Further details on implementation of the CAN physical layer may
be found in [7].

The exact cable chosen for this application was of model 2401C by Alpha
Wire, as shown in 5.1. The 2401C has stranded wires as which allows a
cable with relatively low bending radius, which is necessary for installation
in a car. The cable is also equipped with foil shielding, which gives a low
outer diameter and high flexibility. The complete datasheet for the cable
is available in [8, p. 314]

Figure 5.1: Alpha Wire 2401C twisted pair cable
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6
Central Controller Unit

”There is nothing in machinery, there is nothing in embankments
and railways and iron bridges and engineering devices to oblige them
to be ugly. Ugliness is the measure of imperfection.”

- H.J. Wells

A hardware design for the Central Controller Unit has been designed and
implemented during the work with this assignment. This chapter will
present the hardware that has been developed for this unit. The chapter
will start by defining the requirements that apply to the hardware design
for this unit.

6.1 Requirements

6.1.1 Power Supply

The need for a stable power supply is imperative for the implementation
of a critical system like the CES system. In this case, the system will be
mounted on a car. When installed in the car, the system will be powered
through a common wiring harness delivering both CAN bus and 12 Volt
supply. The wiring harness will be fed by a battery and generator. A
power supply must be implemented to allow noiseless and stable voltage
to the system.
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CHAPTER 6. CENTRAL CONTROLLER UNIT

As will be discussed in Section 6.2.6 the Central Control Unit has imple-
mented a SD card interface to save system log files, store system settings,
etc. While all other components of the CCU have been selected to use a
5V power supply, SD cards are standardized to use a supply voltage of
3.3V[9]. A second power supply is thus needed for this purpose.

6.1.2 Microcontroller

As described in Section 3.2, the Central Controller Unit will execute the
main control algorithms for the adaptive suspension system. With respect
to further development of the system, it is important that this unit is
capable of handling computationally complex algorithms with relatively
high bandwidth. An example might be the ground-hook controller described
in Section 2.1.3.

It should also be made possible for other students specializing in other
fields of study to continue development without needing expertise within
embedded systems. Most microcontrollers do not have hardware support
for floating-point arithmetics. When implementing advanced mathematic
algorithms, this may be considered a significant drawback. The devel-
oper must choose between significantly reduced performance, or investing
extra time in converting controller algorithms to integer numbers. A
paper evaluating the performance of the AVR32 architecture for control
applications[10] suggests that the floating-point performance of an AVR32
microcontroller without an FPU was only 25% of the measured integer
performance for the same unit. This issue should therefore be addressed
when a microcontroller is selected

6.1.3 Communication

As described in Chapter 5, the CCU shall be connected to two CAN buses:
The Main CAN bus and the Sensor CAN bus. Hardware to connect to
these two CAN buses must therefore be implemented. Specifications of
this hardware must be according to those presented in Section 5.2.

When developing an embedded system like the one in this thesis, an easy
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way to debug the system is essential. As described in Section 6.2.1, the
microcontroller is paired with a JTAG debugging port. However, this type
of debugging is cumbersome to use when the system is deployed on the car.
Debugging with JTAG also requires normal program flow to be halted,
which will disrupt the normal operation of the system. Because of this, the
prestudy suggested to implement an RS-232 interface that may be used
for debugging and execution monitoring of the system.

6.1.4 Configuration

An SD card connector should be provided in the hardware design of the
CCU. As described in 3.1.5 a SD card may be used for storing configurations
and saving operation log-files for the CES system.

6.2 Implementation

6.2.1 Microcontroller

MCU

The prestudy concluded that an Atmel AVR32 UC3C 32-bit microcontroller
would be well suited for use in the Central Controller Unit. This series of
microcontrollers feature a built in floating-point unit with 32-bit precision.
This will simplify the implementation significantly, as algorithms can be
implemented in application code without significant alterations. Chapter 7
of the prestudy also evaluated the possibility of using Matlab Embedded
Coder for auto-generation of program code. Auto-generated code, like this
may benefit from hardware with floating-point support.

The AVR32 UC3C is available in several different packages, with combina-
tions of QFN or QFP design, and 64, 100 or 144-pin packages. For this
project, prototyping had to be done locally at the university. The types of
packages are shown in figure 6.2. As the QFP package has exposed legs,
it may be soldered on to the PCB using a regular soldering iron. The
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Figure 6.1: Microcontroller schematic

QFN package, on the other hand, requires hot air soldering equipment for
assembly. On this basis, a QFP package was chosen for the circuit design.

A list of the peripheral units connected to the microcontroller is found
in Table 6.1. Additionally, a surface mounted miniature LED, designated
LED_STAT, has also been connected to the MCU for debugging purposes.

As can be seen from the table, all peripheral units are connected to the
microcontroller using serial data-buses. Few parallel I/O are used. A
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(a) QFP Package (b) QFN Package

Figure 6.2: Comparison of microcontroller packages (Not to scale)

Unit Bus

SD Memory Card SPI

System basis chip SPI + INT + RST
CAN0 Transceiver CAN RX/TX
CAN1 Transceiver CAN RX/TX
RS-232 Transceiver UART RX/TX

Table 6.1: Peripheral units connected to CCU microcontroller

64-pin package was therefore deemed to be sufficient for this application.
As can be seen from Figure 6.1, there are still several spare pins. To not
limit space for future extensions, the model with most program memory,
of 512kB, was chosen for the application. The exact model number for the
microcontroller used is Atmel AVR32 UC3C2515.

Oscillator

To drive the clock of the microcontroller accurately an external oscillator
is needed. [11, p. 83] specifies a maximal frequency of 20 MHz for external
oscillators connected to ports OSC1 and OSC1. The AVR32 UC3 series
feature internal two internal PLL generators. These may be used to
achieve the maximal specified clock frequency for the UC3C of 66Mhz. To
achieve maximum performance, a clock as close as possible to 66 MHz is
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CHAPTER 6. CENTRAL CONTROLLER UNIT

desired.

A crystal oscillator of 16Mhz was chosen to drive the microcontroller. This
is a widely available value for crystal oscillators. A PLL multiplier of 4×
will be used in software to generate a system clock of 64Mhz – close to the
rated clock frequency of the UC3C.

Programming Port

The UC3C has implemented two programming interfaces; the open JTAG
standard, and the proprietary Atmel aWire. Both interfaces also allow
debugging of the microcontroller. While the aWire interface can be im-
plemented with only 3 wires, the JTAG interface requires a 10-pin header
for connection to a programming adapter. The pins used for aWire are,
however, a subset of the pins used for JTAG debugging.

As board space is not critical for the CCU, it was decided to implement
a full JTAG interface. The connection of the JTAG interface is shown in
Figure 6.3, while the corresponding connection to the microcontroller is
shown in Figure 6.1.

11

22

33

44

D
D

C
C

B
B

A
A

C
ES

 M
ai

n 
C

on
tro

lle
r U

ni
t, 

M
ic

ro
co

nt
ro

lle
r

Ti
tle

R
ev

is
io

n:

Si
ze

:
Fi

le
:

O
rg

an
iz

at
io

n:
R

ev
ol

ve
 N

TN
U

 2
01

3 
- R

&
D

0.
3a

A
4

Pr
oj

ec
t f

ile
:

Su
sp

_M
ai

nC
on

tro
lle

r_
Sc

he
m

.S
ch

D
oc

Ti
m

e:
D

at
e:

13
.0

5.
20

13
11

:5
2:

07
Su

sp
_M

ai
nC

on
tro

lle
r.P

rjP
cb

D
es

ig
ne

r:
H

åk
on

 D
ev

ol
d

Sh
ee

t
of

1
4

PA
00

1

PA
01

2

PA
02

3

PA
03

4

V
D

D
IO

1
5

G
N

D
IO

1
6

PA
04

7

PA
05

8

PA
06

9

PA
07

10

PA
08

11

PA
09

12

PA
16

13

A
D

C
V

R
EF

P
14

A
D

C
V

R
EF

N
15

PA
19

16

G
N

D
A

N
A

17

V
D

D
A

N
A

18

PA
20

19

PA
21

20

PA
22

21

PA
23

22

V
B

U
S

23

D
P

24

D
M

25

G
N

D
PL

L
26

V
D

D
IN

_5
27

V
D

D
IN

_3
3

28

V
D

D
C

O
R

E
29

G
N

D
C

O
R

E
30

PB
30

31

PB
31

32

PC
02

33
PC

03
34

V
D

D
IO

2
35

G
N

D
IO

2
36

PC
04

37
PC

05
38

PC
15

39
PC

16
40

PC
17

41
PC

18
42

PC
19

43
PC

20
44

PC
21

45
PC

22
46

PD
00

 / 
SP

I0
_M

O
SI

47
PD

01
 / 

SP
I0

_M
IS

O
48

PD
02

 / 
SP

I0
_S

C
K

49
PD

03
 / 

SP
I0

_N
PC

S0
50

V
D

D
IO

3
51

G
N

D
IO

3
52

PD
11

53
PD

12
54

PD
13

55
PD

14
56

PD
21

57
PD

27
58

PD
28

59
PD

29
60

PD
30

61

PB
00

62
PB

01
63

R
ES

ET
_N

64

U
1

A
tm

el
 A

T3
2U

C
3C

25
12

CAN0_RX

CAN0_TX

CAN1_RX

CAN1_TX

G
N

D

G
N

D

G
N

D

G
N

D
V

D
D

V
D

D
10

0n
F

C
8

G
N

D
V

D
D

G
N

D
V

D
D

V
D

D
2.

2u
F

C
9

47
0p

F
C

10

G
N

D

47
0p

F
C

12
2.

2u
F

C
11

G
N

D

G
N

D10
0n

F
C

13

10
K

R
5

V
D

D

22
pF

C
14

22
pF

C
15

G
N

D

G
N

D

JTAG_TCK

JTAG_TDI

JTAG_TDO

JTAG_TMS

1 2
3 4
5 6
7 8
9 10

P6 JT
A

G
 c

on
ne

ct
or

JT
A

G
_T

C
K

JT
A

G
_T

D
O

JT
A

G
_T

M
S

JT
A

G
_T

D
I

G
N

D

G
N

D

V
D

D

10
0n

F
C

16

JT
A

G
_R

ES
ET

JT
A

G
_R

ES
ET

U
A

R
T_

R
X

U
A

R
T_

TX

SP
I_

M
O

SI
SP

I_
M

IS
O

SP
I_

SC
K

SP
I_

C
S_

W
D

W
A

TC
H

D
O

G
_I

N
T

SP
I_

C
S_

M
C

D
2

LE
D

_S
TA

T

56
0

R
16

G
N

D

Y
1

W
A

TC
H

D
O

G
_R

ST

Figure 6.3: JTAG programming port
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6.2.2 System Basis Chip

The prestudy suggested to use a so-called System Basis Chip(hereafter
abbreviated SBC) for the Central Controller Unit. System Basis Chips
supplied by Freescale Semiconductor are ICs combining the following
functions into a single chip.

� Voltage Regulator

� CAN Transceiver

� External Watchdog

These units are targeted towards the automotive market, where embedded
units are often connected using CAN or LIN bus. The watchdog, as well
as other configurations, are managed by the microcontroller using a SPI
interface. A block diagram of the SBC is shown in Figure 6.4.
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CAN Transceiver 

Regulated Power External Power 
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CAN Interface 
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Figure 6.4: Block diagram of system basis chip

The Freescale MC33989 SBC recommended by the prestudy has, however,
been updated to a new second-generation model – MC33903. The func-
tionality of this second generation model is, for this purpose, identical to
the previous version. The upgrade has mainly been done to reduce chip
size, as the same SBC is used for the Wheel Controller Units.
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CHAPTER 6. CENTRAL CONTROLLER UNIT

5V regulator

When several units are connected to the same power supply, changes in
current load may cause undesirable noise and spikes in the supply voltage.
To prevent this from effecting the operation of the CCU, the unit is
equipped with an internal voltage regulator, as shown in Figure 6.5. As
can be seen from the figure, the voltage regulator is incorporated the SBC.

The MC33903 is available with 3.3V or 5V voltage regulators. The Atmel
AVR32 UC3C may also be powered using either 3.3 or 5V. Nevertheless, in
this application a 5V power supply was chosen. The signal-to-noise ratio
for a signal is defined as

SNR =
Pnoise

Psignal
=

(
Anoise

Asignal

)2

(6.1)

where P is the power of each component, and A is the corresponding
amplitude. From the formula we can easily see that the SNR increases
with the amplitude of the signal squared, when the amplitude of the noise
is kept constant. Increasing the system voltage from 3.3 to 5V increases
the SNR by a factor of 2.3. A 5V circuit should consequently be more
robust against noise. The internal voltage regulator of the MC33903 is
capable of delivering a current of maximally 300mA at 5 volts. This should
be sufficient for powering the components of the CCU.

As can be seen from the schematic a LED, designated LED_PWR, has also
been connected to the 5V supply of the CCU. This way, the user can easily
verify that the power supply is operative.

CAN Interface

The built in CAN transceiver in the SBC will be used for communication
on the Main CAN bus. The CAN transceiver of the MC33903 is rated for
bit rates up to 1Mb/s, such as specified in Section 5.2.

Termination of the CAN bus has been implemented at the CAN interface of
the SBC. This transceiver allows a so called split terminaction, implemented
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Figure 6.5: System Basis Chip with 5V main power supply

with resistors R1 and R2 in Figure 6.5. Instead of using a typical 120Ω
resistor, as is normal on CAN bus, two resistors in series has been used.
The middle point of this voltage divider is connected to the SPLIT pin of
the SBC. If termination should not be desired at this unit, the termination
circuit may be removed altogether.

Watchdog

As described in Section 3.1.4 each module should implement a mechanism
for internal error detection. For the CCU, this has been implemented by
using an external watchdog circuit built into the SBC. The watchdog may
halt the microcontroller in two ways:

Reset: The SBC is connected to the reset pin of the UC3C microcontroller.
If the microcontroller fails to refresh the watchdog timer, the reset
pin will be pulled low to reset the microcontroller. The watchdog
timer is reset using the SPI interface, as will be described in greater
detail in Chapter 12.

Power down: After power up the microcontroller has 10 seconds to reset
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the watchdog timer of the SBC. This initializes the watchdog, which
then will have to be reset periodically. If the watchdog is not ini-
tialized within the first 10 seconds, the SBC will disable its power
supply. The power of the circuit will have to be toggled to re-enable
the power supply.

Obviously, the microcontroller will be unable to reset the watchdog pe-
riodically during events such as programming and debugging. A special
debug mode is therefore implemented in the system basis chip. As can be
seen from Figure 6.5 a special debug pin, marked DBG, is available. If a
voltage between 8-10 volts is applied to this pin, the SBC will enter a so
called debug mode that disable its watchdog. The SBC may also be set in
a special flash mode that extends the refresh period of the watchdog timer
to approximately 30 seconds.

6.2.3 3.3V Regulator

The current consumed by a SD card may vary from a few milliamperes, to
up to 200mA during data writing[9]. A simple voltage divider is therefore
not sufficient for powering the SD card. Instead, a conventional linear
regulator has been used. The regulator chosen is a 3.3V LDO regulator
from Texas Instruments, with model number TLV1117. The datasheet of
the voltage regulator[12] specifies a maximal continuous current of 800mA.
This is sufficient for powering the SD card. As described in Section 6.2.2,
SBC is able to toggle the power supplied to the system. As can be seen
from Figure 6.6 the TLV1117 is connected with VDD(5V regulated voltage)
as its supply voltage. This allows the SBC to also toggle the power supply
to the SD-card.
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6.2.4 CAN Interface

As the CCU must connect to two CAN buses, the transceiver in the
MC33903 alone is not sufficient. The prestudy recommended that a
MCP2551 transceiver from Microchip should be used to interface the
Sensor CAN bus. For the actual implementation, an ADM3051 transceiver
from Analog Devices has been used. This transceiver is pin-compatible with
the MCP2551, as well as transceivers from Texas Instruments, Maxim and
other manufacturers. This ensures freedom to easily change this component
if the work is to be continued at a later point of time.

The CCU has not implemented any means for terminating the CAN bus
locally at the board. If desired, this may be done with a through-hole
resistor when the bus wires are attached to the PCB. The ADM3051 also
implements circuitry for slope control. This allows the maximal slew rate
of the input signal to be limited, for improved noise rejection. This is
particularly useful for applications in extremely noisy environments, or in
applications where the use of a shielded cable is not possible.

To adjust the maximal slope, a resistor should be applied between the
RS port of the ADM3051 and ground. For this particular application a
shielded cable has been used, and practical use has not indicated any issues
with noise. The slope control has therefore been disabled by grounding the
RS pin.
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Figure 6.7: Second CAN Transceiver
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6.2.5 RS-232 Interface

As can be seen from Figure 6.12 the RS-232 port is connected to a standard
DB-9 connector, mounted on the outside of the enclosure of the CCU. It
was therefore important to chose a transceiver with ESD protection, so
that internal circuits may not be damaged by electrostatic discharge when
external equipment is connected. For this application, an ADM202E
transceiver from Analog Devices has been selected. The datasheet of this
transceiver is available in [13].

The standard signalling levels of RS-232 use both positive and negative
voltages. A voltage level between +3V to +15V to ground represents a
high bit, while a voltage level of −3V to −15V represents a low bit. The
interval −3V to +3V is not valid. As only a single +5V power supply is
available in this application it was necessary to choose a transceiver with
a built in voltage converter, to eliminate the need for external components.
The ADM202E uses signalling levels of −15 and +15 volts by using an
internal voltage converter. External capacitors(C18, C19, C20, C21) are
required to drive its internal regulators, as seen in Figure 6.8.
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6.2.6 Memory Card Interface

As SD cards support a standard SPI interface, implemented in most
microcontrollers, such a connector may be implemented with little need
for extra circuitry. The pinout of a SD card is shown in Figure 6.10,
while table 6.2 shows the appropriate connection to a SD-card for using
SPI. As described in Section 6.2.3 this connection is, however, made more
difficult by the fact that the SD card requires 3.3V, as opposed to 5V in
the remaining circuit.
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For signals transmitted from the microcontroller to the SD card, a voltage
conversion from 5 to 3.3 volts is required. As the current drawn at the SD
card is negligible, a simple voltage divider has been used for this purpose.
As can be seen from Figure 6.9, voltage dividers has been implemented for
the signals MOSI, MISO, SCK and /CS. Values of 2.2kΩ and 3.3kΩ has been
chosen for the resistors. This gives a resulting voltage and active current
as shown below.
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Figure 6.10: SD Card pinout

Pin nr. SPI Function

1 CS
2 MOSI
3 GND
4 VCC (3.3V)
5 SCLK
6 GND
7 MISO
8 N/C
9 N/C

Table 6.2: SPI connections for SD Card

Vdiv = 5V · 3.3kΩ

2.2kΩ + 3.3kΩ
= 3V (6.2)

Ion =
5V

2.2kΩ + 3.3kΩ
= 0.91mA (6.3)

As we can see, the loss in the voltage divider is relatively high. There is,
however, a trade-off within the voltage divider between minimizing power
loss, and a quick slope of the output signal. For this particular circuit a
fast response of the output signal was prioritized.

The datasheet of the Atmel UC3C[11] specifies a minimum voltage of
0.7 · Vcc for a high signal. For a Vcc of 5V this gives a threshold voltage of
5V · 0.7 = 3.5V . This means that the microcontroller will not interpret the
3.3V signal from the SD-card as a high logical signal. A means to convert
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the voltage level of the MISO signal therefore had to be implemented. A
detailed view of this circuit is shown in Figure 6.11.

(a) Low input (b) High Input

Figure 6.11: Signal level conversion circuit for SD-card (Red: Logic low
Green: Logic high)

Figures 6.11a and 6.11b show the circuit for respectively low and high
input. Two NPN transistors have been used in this circuit. The first stage
generates an inverted 5V signal by using a pull-up resistor. This signal
may be pulled low by activating transistor Q1. To achieve the same logical
polarity for input and output, the signal will have to be inverted once more.
The second stage is identical to the first stage. The transistor Q2 is trigged
by the output of the first stage. Together these signals give a non-inverting
signal level conversion. Similarly to the 5 to 3 V signal conversion, low
values for the pull-up resistors has been chosen to achieve a fast response
for the output signal.

6.3 PCB Design

6.3.1 PCB Design Objectives

The CCU may be mounted freely on the car, according to the wish of the
developer. There are consequently no strict external requirements to the
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Figure 6.12: Assembled enclosure for Central Controller Unit

design of the CCU. On a racing car the minimization of weight and size is,
however, always general targets for any accessories. It has therefore been
in focus to keep the final circuit board simple and compact. To protect the
module after installation, it must be mounted inside an enclosure. This
must be taken into consideration when the PCB is designed.

6.3.2 PCB Design

The Central Controller Unit was the first PCB that was designed for this
project. The PCB design was developed with two main revisions that will
be shown below.

Initial Prototype Layout

The first prototype PCB for the CCU was designed mainly for the developer
to achieve familiarity with PCB design, as well as to achieve some profi-
ciency with the Altium PCB designer. Figure 6.13 compares the designs
of the first and the final prototypes. As can be seen the initial prototype
allowed a lot of space between components and tracks, for simple routing.
This also made it easy to debug the design, and correct the inevitable
errors to a first batch prototype.
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Figure 6.13: Comparison between initial and final prototype board

Final Prototype Layout

While the initial prototype was designed with ease of debugging in mind,
it’s design was deemed to inefficient to be acceptable for usage on the car.
The unit was therefore completely redesigned for the next prototyping
stages. The result was a board that occupied less than 30% of the area of
the initial prototype.

The PCB layers of this final prototype is shown in Figure 6.14. Full page
illustrations are also available in Appendix B.1. A close-up illustration of
the finished prototype is shown in Figure 8.7.

6.4 Testing of Central Controller Unit Hardware

Before the prototypes were taken into use, some elementary hardware tests
were performed to verify their functionality. This section will present the
tests that were performed, and highlight any errors that were discovered.

6.4.1 Test of Power Supply

The initial test of the power supply performed on the first prototype of the
CCU. The first time power was to be applied to the board, a digital power
supply with current limiting was used. The current limited was adjusted
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(a) Top layer (b) Bottom layer

Figure 6.14: Layers of the Central Controller Unit PCB

to a maximum of 100mA, to reduce the risk of damage if there were to be
any errors in the design. A voltage of 8V was applied to the input of the
voltage regulator; about 1.5V above the under voltage threshold defined in
the datasheet of the MC33903 [14, p. 19].

The voltage reading on the output of the voltage regulator was, however,
approximately 5.8V. After studying the schematic, the error was identified
to be a missing connection to the ground pad, on the underside of the
MC33903. The error can be seen in Figure 6.15a. This pad is the only
ground supply to the voltage regulator.

To work around this problem without having to produce a new PCB, a
hole was drilled from the opposite side of the PCB. A thin wire was then
soldered directly from the pad to the ground plane, as seen in Figure 6.15b.
This allowed the voltage regulator to work correctly, but was obviously not
a stable solution. The error was thus corrected for the following prototypes.

After the 5V regulator had been tested the 3.3V regulator was soldered to
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(a) Missing connection to ground pad (b) Fix of missing connection

Figure 6.15: Error in connection of PSU on initial prototype

the PCB, and tested in the same manner. No errors were found in this
test.

6.4.2 Test of CAN Transceivers

Due to a lack of time, the CAN channels of the CCU was not connected until
the final prototype PCB had been ordered. The CAN transceivers were
tested by connecting a PEAK System PCANUSB USB-to-CAN interface
to the transceivers and applying a test message. The USB-to-CAN adapter
is shown in Figure 6.17. An oscilloscope was then connected to the
CANIF-RXLINE pins of the microcontroller, to verify the propagation of the
signal. At first attempt there was no signal measured at this pin. After
studying the schematic of the CCU is became clear that the connections
to the TX and RX pins of the microcontroller had been swapped for both
CAN interfaces, as shown in Table 6.3.

To solve this error, the tracks between the microcontroller and the CAN
transceivers were cut using a scalpel. Thin strap wire was then used to
interchange the paths, as shown in Figure 6.16. A successful test was
performed of both CAN transceivers after these corrections. It should be
noted that the CAN transceiver of the MC33903 is disabled as default. It
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Pin Correct Function Anticipated Connection

PB00 CANIF-RXLINE[1] CANIF-TXLINE[1]

PB01 CANIF-TXLINE[1] CANIF-RXLINE[1]

PD27 CANIF-RXLINE[0] CANIF-TXLINE[0]

PD28 CANIF-TXLINE[0] CANIF-RXLINE[0]

Table 6.3: CAN controller connections of the Atmel UC3C2512

must be activated using SPI on power up, this transceiver could therefore
not be tested until a driver for the SBC had been developed.

Figure 6.16: Fix of wrong connection to CAN transceivers

6.4.3 Test of RS-232 Transceiver

The RS-232 transceiver was tested initially in the same way as the CAN
transceivers. The transceiver was connected to the RS-232 port of a
computer, and a terminal emulator was used to generate some test data.
An oscilloscope was used to verify the reception of data at USART0-RXD at
pin 39 of the microcontroller. No errors were discovered during this test.
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Figure 6.17: PEAK System CAN-to-USB interface[15]

6.4.4 Untested Hardware

As a consequence of limited time, the functionality of the memory card
interface and corresponding level conversion circuit has not been tested.
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7
Wheel Controller Unit

”There is a computer disease that anybody who works with com-
puters knows about. It’s a very serious disease and it interferes
completely with the work. The trouble with computers is that you
’play’ with them!”

- Richard Feynman

This chapter will present the hardware implementation of the Wheel Con-
troller Units. Initially, the chapter will start by identifying the requirements
that apply to this module. After these requirements has been identified,
the chapter will present the hardware design that has been prepared for
this unit. PCB design and implementation is also part of this chapter, and
are presented in the final sections.

7.1 Requirements

7.1.1 Power Supply

Requirements to the Power Supply of the Wheel Controllers are much the
same as for the Central Controller Unit. A 5V power supply to drive the
electronics should be supplied. For further details, the reader should refer
to the requirements identified for the power supply of the Central Controller
Unit in Section 6.1.1. The DC motors will be supplied with current directly

53



CHAPTER 7. WHEEL CONTROLLER UNIT

from the wiring harness. PWM control of the DC motors may generate
high frequency noise on the power supply. It is important that this does
create disturbances for the power supply to the unit’s electronics.

7.1.2 Microcontroller

The primary role of the WCUs microcontroller is to execute two PID
controllers that will control the position of the damper’s valves. Two PID
loops must be implemented for each damper. The computational perfor-
mance of the microcontroller must sufficiently high to execute these control
loops at a frequency exceeding 500 Hz, as specified by the requirements
top level requirements in Section 3.1.1.

The microcontroller must also be able to interface the rotary encoders
through SPI, and have the ability to generate 4 PWM control signals to
control the two H-bridges for the motors. As the available board space for
the WCU is very limited, a microcontroller with as little board area as
possible should be chosen.

7.1.3 Communication

The WCUs must respond to control signals from the Central Control Unit,
transmitted over the interconnecting CAN bus. A CAN channel must
therefore be implemented at each WCU according to the specifications
defined in Chapter 5.

An interface to perform hardware debugging for the unit should also be
implemented.

7.1.4 Motor Control

Each Wheel Controller Unit shall control the two valves of a damper. The
actuation of the valves are done by two DC motors. Circuitry to control
these DC motors must therefore be implemented. The control circuitry
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must be implemented according to the motor specifications given in the
top level requirements, Table 3.1.

7.2 Implementation

7.2.1 Microcontroller
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Figure 7.1: ATmega64M1 Microcontroller

MCU

The Wheel Controller Units are implemented with a different purpose than
the Central Controller Unit. The specifications of the Atmel UC3C chosen
for the CCU are therefore not strictly ideal for the WCUs. As described
in Section 6.2.1, the UC3C was chosen primarily because of its strength
with respect to computing power. The Wheel Controller Units will, on the
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Unit Connection

Angular Sensors SPI

System basis chip SPI + INT + RST
CAN1 Transceiver CAN RX/TX
Dual H-bridge Control Signal PWM
Dual H-bridge Enable/Disable Signal Digital

Table 7.1: Peripheral units connected to WCU microcontroller

other hand, implement PID control algorithms for position control of the
damper valves. PID controllers may be implemented easily in software, and
a standard 8-bit microcontroller is therefore sufficient for this application.

The prestudy recommended to use an Atmel ATmega64M1 for this purpose.
The primary strengths of this microcontroller is its small 32-pin package,
and an integrated CAN controller. Which will help reduce the limited board
size. The ATmega64M1 akso features a 6 output power stage controller
and a 16-bit counter, both suitable for generation of PWM control signals.

As described in Section 6.2.1 the WCU will also, as when possible use
components with QFP packages to simplify the assembly process for PCB
prototyping. The ATmega64M1 is available in a standard QFP package.

Table 7.1 shows the peripherals connected to the microcontroller. Compared
to the hardware design of the CCU, there are several units requiring
common digital I/O signals. Combined with the lesser number of pins
available, this has resulted in very few unused pins.

Oscillator

The datasheet of the ATmega64M1[16, p. 295] specifies a maximum clock
frequency of 16MHz for Vcc higher than 4.5V. The microcontroller features
an internal RC oscillator of 8MHz. To achieve a clock frequency of 16MHz,
an internal PLL may be used. The internal RC oscillator is however of
limited accuracy. As the Wheel Controller Units shall communicate with
peripherals over CAN and run a PID controller, a stable system clock is
highly important. As for the Central Controller Unit, an external oscillator

56



7.2. IMPLEMENTATION

is therefore required. Opposed to the UC3C does not allow external
oscillators to be used as a source for the PLL, a oscillator with the exact
desired clock frequency needs to be used.

In the interest of simplicity it was decided to use the same 16 MHz crystal
oscillator as for the CCU. The connection of the oscillator is designated as
X1 on Figure 7.1.

Programming Port

Because of the limited number of pins available, the ATmega64M1 has not
implemented a JTAG debugging interface. The controller does, however,
implement a standard ISP programming interface, and Atmels debugWire
interface for low-level debugging. The ISP interface requires a 6-wire header
to be available on the microcontroller, while debugWire requires only a
single wire to be connected to the reset pin of the microcontroller in addition
to Vcc and ground. Because of the limited PCB space available, it would
have been beneficial if the ISP interface could be omitted. The megaAVR
architecture does, however, require a ISP interface for programming of
the microcontrollers fuses. As the unit is in a prototype stadium, it was
decided to include a 6-pin header for connection of an ISP programmer.
The programming port is denoted P7 in Figure 7.1. As both the reset, Vcc

and ground pins are available in the ISP header, this header may also be
used for debugging using debugWire.

As can be seen from Figure 7.1 a LED, designated LED_DBG, has also been
implemented on the PCB for elementary debugging.

SPI Interface

The WCU uses three components that will be interfaced by SPI from the
ATmega64M1; the angular sensors and the system basis chip. As can be
seen from Figure 7.1, the number of free I/O pins on the microcontroller
was very limited. The ATmega64M1 may use two different pinouts for its
SPI interface. The two alternative pinouts are shown in Table 7.2. If the
table is compared with the microcontrollers schematic, it can be seen that
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Function
Pin

Regular Pinout Alternative Pinout

MOSI PB1 PD3

MISO PB0 PD2

SCK PB7 PD4

/SS PD3 PC1

Table 7.2: Pinout alternatives for SPI on ATmega64M1

the alternative SPI pinout is identical to the ISP programming interface.
To not occupy any unnecessary pins it was therefore chosen to use this
alternative pinout for the SPI.

7.2.2 System Basis Chip

In the interest of simplicity it was decided to reuse the same Freescale
MC33903 System Basis Chip for the Wheel Controller Units. For more
detailed information about this component, please refer to Section 6.2.2.
As can be seen from Figure 7.2 the connection schematic of the SBC is
highly similar to that implemented for the CCU.
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As described in Section 7.2.1, the SPI interface of the SBC had to be con-
nected to the alternative set of pins on the ATmega64M1. This connection
is shown in Figure 7.1. Because of limited board space, it was decided not
to implement a header for the DBG pin of the SBC. When needed, during
early development stages, a strap wire was soldered between this pin and
VSUP.

To easily be able to monitor the state of the power supply, a LED designated
LED_PWR, has been connected to the regulated output.

7.2.3 Motor Control

A MC33932 dual H-bridge has been implemented in the hardware imple-
mentation for controlling the DC motors. The basic principle of a H-bridge
is illustrated in Figure 7.3.

Analog Integrated Circuit Device Data
Freescale Semiconductor 15

33932

FUNCTIONAL DEVICE OPERATION
LOGIC COMMANDS

LOGIC COMMANDS

Table 5.  Truth Table

The tri-state conditions and the status flag are reset using D1 or D2. The truth table uses the following notations: L = LOW, H = 
HIGH, X = HIGH or LOW, and Z = High-impedance. All output power transistors are switched off.

Device State
Input Conditions Status Outputs

EN/D2 D1 IN1 IN2 SF OUT1 OUT2

Forward H L H L H H L

Reverse H L L H H L H

Freewheeling Low H L L L H L L

Freewheeling High H L H H H H H

Disable 1 (D1) H H X X L Z Z

IN1 Disconnected H L Z X H H X

IN2 Disconnected H L X Z H X H

D1 Disconnected H Z X X L Z Z

Under-voltage Lockout(30) H X X X L Z Z

Over-temperature(31) H X X X L Z Z

Short-circuit(31) H X X X L Z Z

Sleep mode EN/D2 L X X X H Z Z

EN/D2 disconnected Z X X X H Z Z

Notes
30. In the event of an under-voltage condition, the outputs tri-state and status flag is SET logic LOW. Upon under-voltage 

recovery, status flag is reset automatically or automatically cleared and the outputs are restored to their original operating 
condition.

31. When a short-circuit or over-temperature condition is detected, the power outputs are tri-state latched-OFF independent of 
the input signals and the status flag is latched to logic LOW. To reset from this condition requires the toggling of either D1, 
EN/D2, or VPWR.

OUT1 OUT2

PGND

VPWR
VPW R

PGND

LOAD

Load
Current

Forward

OFF

ON

ON

OFF

OUT1 OUT2

PGND

OFF

ON

ON

OFF

VPWR VPW R

PGND

LOAD

Load
Current

Reverse

OUT1 OUT2

PGND

VPWR
VPWR

PGND

LOAD

Load
Current

High-Side Recirculation
(Forward)

ON

OFF

ON

OFF

OUT1 OUT2

PGND

VPWR
VPWR

PGND

LOAD

Load
Current

Low-Side Recirculation
(Forward)

ON ON

OFF OFF

 Figure 12. 33932 Power Stage Operation
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Table 5.  Truth Table

The tri-state conditions and the status flag are reset using D1 or D2. The truth table uses the following notations: L = LOW, H = 
HIGH, X = HIGH or LOW, and Z = High-impedance. All output power transistors are switched off.

Device State
Input Conditions Status Outputs

EN/D2 D1 IN1 IN2 SF OUT1 OUT2

Forward H L H L H H L

Reverse H L L H H L H

Freewheeling Low H L L L H L L

Freewheeling High H L H H H H H

Disable 1 (D1) H H X X L Z Z

IN1 Disconnected H L Z X H H X

IN2 Disconnected H L X Z H X H

D1 Disconnected H Z X X L Z Z

Under-voltage Lockout(30) H X X X L Z Z

Over-temperature(31) H X X X L Z Z

Short-circuit(31) H X X X L Z Z

Sleep mode EN/D2 L X X X H Z Z

EN/D2 disconnected Z X X X H Z Z

Notes
30. In the event of an under-voltage condition, the outputs tri-state and status flag is SET logic LOW. Upon under-voltage 

recovery, status flag is reset automatically or automatically cleared and the outputs are restored to their original operating 
condition.

31. When a short-circuit or over-temperature condition is detected, the power outputs are tri-state latched-OFF independent of 
the input signals and the status flag is latched to logic LOW. To reset from this condition requires the toggling of either D1, 
EN/D2, or VPWR.
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 Figure 12. 33932 Power Stage Operation

(b) Reverse
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FUNCTIONAL DEVICE OPERATION
LOGIC COMMANDS
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Table 5.  Truth Table

The tri-state conditions and the status flag are reset using D1 or D2. The truth table uses the following notations: L = LOW, H = 
HIGH, X = HIGH or LOW, and Z = High-impedance. All output power transistors are switched off.

Device State
Input Conditions Status Outputs

EN/D2 D1 IN1 IN2 SF OUT1 OUT2

Forward H L H L H H L

Reverse H L L H H L H

Freewheeling Low H L L L H L L

Freewheeling High H L H H H H H

Disable 1 (D1) H H X X L Z Z

IN1 Disconnected H L Z X H H X

IN2 Disconnected H L X Z H X H

D1 Disconnected H Z X X L Z Z

Under-voltage Lockout(30) H X X X L Z Z

Over-temperature(31) H X X X L Z Z

Short-circuit(31) H X X X L Z Z

Sleep mode EN/D2 L X X X H Z Z

EN/D2 disconnected Z X X X H Z Z

Notes
30. In the event of an under-voltage condition, the outputs tri-state and status flag is SET logic LOW. Upon under-voltage 

recovery, status flag is reset automatically or automatically cleared and the outputs are restored to their original operating 
condition.

31. When a short-circuit or over-temperature condition is detected, the power outputs are tri-state latched-OFF independent of 
the input signals and the status flag is latched to logic LOW. To reset from this condition requires the toggling of either D1, 
EN/D2, or VPWR.
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 Figure 12. 33932 Power Stage Operation (c) Braking

Figure 7.3: Conceptual illustration of a H-Bridge [17]

By activating a pair of transistors, i.e. as in Figures 7.3a and 7.3b, the
motor may be controlled bi-directionally. The motor may be braked
by short-circuiting both its terminals to ground, as seen in Figure 7.3c.
Furthermore, the torque of the motor may also be controlled, by applying
a PWM signal to the transistors.
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Figure 7.4: Dual H-Bridge motor controller

Dual H-bridge

The schematic of the MC33932 is shown in Figure 7.4. A logic state table
extracted from the datasheet of the MC33932 has been presented in Table
7.3. The corresponding logic table for outputs OUT3 and OUT4 is identical.
As can be seen from the table, four inputs control the operation of each
H-bridge. IN1 and IN2 activate respectively reverse or forwards current,
while EN/D2 and D1 may be used to completely disable the operation
of the H-bridge. As can be seen from Figure 7.1 these inputs have been
connected to regular digital outputs of the microcontroller.

The datasheet of the H-bridge[17] specifies a maximal continuous output
current of 5A. This is above the required rating, given in the motor
specifications in Table 3.1.
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Device State
Input Conditions Outputs

EN/D2 D1 IN1 IN2 OUT1 OUT2

Forward H L H L H L
Reverse H L L H L H
Braking H L L L L L
Disable 1 (D1) H H X X Z Z
Sleep mode L X X X Z Z

Table 7.3: Table of logic states for the MC33932 (H: High, L: Low, Z: Float-
ing, X: Don’t-care)

Power Stage Controller

The ATmega64M1 has implemented a hardware module called a Power
Stage Controller(hereafter abbreviated PSC). The PSC is in many ways
similar to a regular counter with PWM output, however, it also supports
synchronization of the outputs for control of e.g. brushless motors.

To allow the internal 16-bit timer to be used for other purposes, it was
decided to use the PSC for control of the DC motors. As we are controlling
a brushed DC motor, only the most basic functionality of the PSC has
been used. The MC33932 has four PWM input ports, IN1 through IN4.
The PWM inputs has been connected to the outputs PSCOUT0A, PSCOUT0B,
PSCOUT2A and PSCOUT2B of the microcontroller, as seen in Figure 7.1.
Further operation of the PSC will be described in Section 13.3.2.

7.2.4 Wheel Encoder Board

As can be seen in Figure 7.10, the electronics of the Wheel Controller Unit
has been divided onto two PCBs. The main board, as seen on top in the
picture, includes all the electronics described so far. As position control of
the DC motors has been implemented, angular sensor were needed. For
this application a through-hole absolute rotational encoder, with PCB
mounting has been used. To eliminate the need for gears to connect the
sensor, a separate PCB has been designed to be mounted directly under
the motors.
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Connection Header

To connect the Wheel Encoder Board with the main board of the WCU,
traditional header connectors with 2.54mm spacing have been used. This
connector will also act as support for the main board, when mounted
inside the enclosure. The pinout for each side of the connector is shown
in Figure 7.5. The encoders are interfaced by the microcontroller using a
SPI interface. In addition to SPI, the header will also supply the Wheel
Encoder Board with +5V power, ground, and chip select signals for each
of the encoders.
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Figure 7.5: Wheel Encoder Board connection header

Angular Sensor

As recommended by the prestudy, a Piher MTS-360 has been used to
provide positional feedback for the motor controller. This encoder was
chosen on the basis of its small size, so that it could be mounted directly
under the shaft of each motor.

The Piher MTS-360 encoders are available with wither analogue or SPI
interface. To eliminate any inaccuracy from the use of an ADC, and
simplify the interface from the microcontroller, it was chosen to use the
SPI version of the encoder. This encoder had to be ordered directly from
the manufacturer, as it was not stocked by any online electronics suppliers.
The available documentation from the manufacturers website was very
limited and, at the time the order was placed, outdated. Table 7.4 shows
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Figure 7.6: Angular Sensor

Pin
Function

Old New

1
+5V supply +5V supply

2

3 /SS /SS

4 CLK CLK

5 MOSI
MOSI

6 MISO

7
GND GND

8

Table 7.4: Comparison of old and new pinout for the MTS-360

the pinout available at the time of ordering, compared to the actual pinout
provided in the documentation that followed the sensors at delivery.

As can be seen from the table, the traditional MISO/MOSI SPI interface
had been replaced with a single-wire SPI interface with a combined MIS-
O/MOSI line. This line had to be connected as indicated in Figure 7.7. As
can be seen, a N-channel FET transistor, connected to the MOSI output
of the MCU, is used to pull the combined MOSI/MISO line to ground.
The line must also be connected to Vcc by a pull-up resistor of 1kΩ.

As the ATmega64M1 only has one SPI channel, that will be shared with
the SBC, this is likely to cause compatibility issues. While SPI is normally
a full duplex bus, the single-wire connection may only be used as half
duplex. A way to enable and disable the pull-down transistor thus had to
be implemented. This logic mechanism is described in the following section.
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MTS-360 Specifications for contactless position sensor
MTS360 SPECIFICATION NOV-2010 pag 1/1 

HTO: MTS360-1S-C0000-ERA360-5E
OUTPUT: SPI
TYPE: 1 SIMPLE
SWITCH: NO
OUTPUT FUNCTION: curve 0000 360º ERA 10 - 90% Vdd 5V E (-40  + 85ºC)

Sensor / Pinout: 

-In order to minimize the possibility of short circuits, we recommend to connect the power supply at the end

5
6

CLK

The MTS-360 features a digital Serial protocol mode. The MTS-360 is considered as a Slave node. 

8

/SS pin is a 5V tolerant digital input.

Pin Description

2
3

MOSI-MISO pin is a 5V tolerant open drain digital input/output. 

Power supply Vdd:
5 ± 10% Vdc

MOSI

Ground

1

SCLK pin is a 5V tolerant digital input.

7

The serial protocol of the MTS-360 is a three wires protocol (/SS, SCLK, MOSI-MISO):

/SS
4

8            7 6  5

1            2 3 4

Tel: +34 948 820 450
Fax: +34 948 824 050
www.piher.net
www.meggitt.com

Initial position (0º) & CW Rotating direction

Navarra de Componentes Electrónicos SA
Polίgono Industrial Municipal, Vial T2, No 22, 31500 Tudela, Navarra, Spain
Navarra de Componentes Electrónicos SA is a Meggitt company.
RM Navarra Tomo 551, Folio 7, Hoja 5.580
CIF/VAT ESA31169907

Information contained in and/or attached to this document may be subject to export control regulations of the European Community, USA, or other countries. Each recipient of this document is responsible to ensure that 
usage and/or transfer of any information contained in this document complies with all relevant export control regulations. If you are in any doubt about the export control restrictions that apply to this information, please 
contact the sender immediately. For any Piher International Corp. Exports, Note: All products / technologies are EAR99 Classified commodities. Exports from the United States are in accordance with the Export 
Administration Regulations. Diversion contrary to US law  is prohibited.

The MTS-360 sample has been programmed with an SPI output showed in next graph:

Signal output:

MTS-360

0º

CW

Figure 7.7: Connection diagram for angular sensor[18]

Logic Circuit

As explained in the above section, the MTS-360 requires a single-wire SPI
bus to be implemented. The regular transfer principle for a SPI bus is
shown in Figure 7.9. Data is shifted simultaneously from the Master to
the Slave, and vice versa. This will cause compatibility problems with
the communication with the System Basis Chip when the Wheel Encoder
Board is connected, as the transistor will pull the MISO line of the two-wire
SPI bus to ground whenever MOSI is high – thereby distorting this signal.
To solve this problem, the circuit shown in Figure 7.8 was implemented.

Q1 is a dual small signal N-channel MOSFET. The two internal MOSFETS
were connected in series, so that both transistors has to be active for
the MOSI/MISO line to be pulled to ground. The first of the transistors
were connected directly to MOSI as seen in Figure 7.7. As the pull down
mechanism only has to work during communication between the MCU and
the encoders, the second transistor may be enabled using the chip select
signal for the encoders. As the chip select signals are active low, a NAND
gate was used to generate the gate signal G2 for the second transistor.
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Figure 7.8: Logic circuit for connection of angular sensor

Figure 7.9: Circular data transfer on SPI[19]

7.3 PCB Design

This section will present the hardware design of the Wheel Controller Unit.
Two PCBs has been designed; The main Wheel Controller Board and the
Wheel Encoder Board. The first part of this section will present some of
the requirements that were used to design the PCBs. A description of the
PCBs, as well as some special considerations that had to be taken during
the design process will be given.
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7.3.1 PCB Design Objectives

The main requirements of the Wheel Controller Units, with respect to
PCB design, has been in terms of size. As described in the top level
requirements, is was recommended that the main Wheel Controller Board
of the WCUs should be placed inside the actuator enclosure mounted on
the damper. This enclosure protects the electronics from dust and water.
Because the lid of the enclosure is made of carbon fibre, the electronics are
also protected from external electromagnetic radiation. The suspension
placement on the car did, however, heavily limit the outer dimensions of
this enclosure. A space of 45×26×20mm was made available for the main
PCB of the WCU.

As can be seen from the figure the main PCB is mounted directly onto the
Wheel Encoder Board PCB using a 90◦ angled header connector.

Figure 7.10: Assembled Wheel Controller Unit
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7.3.2 PCB Design

Wheel Controller Board

The Wheel Controller Board is the main PCB of the Wheel Controller
Units. As described in Section 7.3.1 a space of 45× 26mm is the maximum
permissible area for this printed circuit board. The Wheel Controller Board
will supply the DC motors with current. According to Table 3.1 each motor
has a stall current of 1.45 amperes. Special considerations therefore has to
be taken when the PCB layout is designed to avoid noise and damages to
other electronics in the circuits on the same board

As far as possible, the design has tried to separate the high current elec-
tronics to a separate layer of the PCB. Because of the small size it was,
however, not possible to strictly enforce this rule. Where signal and high
current components have had to be placed on the same layer, separate
ground planes has been created to avoid undesirable ground currents and
noise. Further information about mixed current PCB design may be found
in [20]. The top layer has primarily been assigned to the small signal
electronics, while the bottom layer has been used for the H-bridge IC. This
can be seen in Figure 7.11, as well as in Appendix B.2, where full page
illustrations of the circuit design has been included.

Wheel Encoder Board

The Wheel Encoder Board has been designed to fit directly under the
mounting bracket of the DC motors. As described in Section 7.2.4, this
PCB will be used to mount the angular sensors and their accompanying
logic circuitry. As the board will be mounted under the motor mounting
bracket, there are fixed size constraints that apply to the PCB. These
measurements are shown in Figure 7.12. As can be seen from the Figure,
one side of the PCB is partially covered by the metal mounting bracket.
This area may therefore not be used for PCB tracks, and should be isolated
from the remaining circuit.

As can be seen from Figure 7.13, two holes has been drilled for the motor
shafts. Additionally, there are also two holes for the head of the bolt that
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(a) Top layer (b) Bottom layer

Figure 7.11: Layers of the Wheel Controller Unit PCB

fix the motor to its mounting bracket. To allow fitment inside the enclosure,
all motors must be mounted with the same angle to allow clearance between
the motor’s connection terminals and the carbon fibre lid. The placement
of the mounting holes relative to the terminals is, however, arbitrary. The
position of these holes therefore had to be entered manually for each of
the Wheel Encoder Boards.

7.4 Testing of Wheel Controller Unit Hardware

Before the wheel controller prototypes were taken into use, some elementary
hardware tests were performed to verify their functionality. This section
will present the tests that were performed, and highlight any errors that
were discovered.
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Figure 7.12: Outline of Wheel Encoder Board

7.4.1 Test of Power Supply

The power supply was tested using the same procedure as for the Central
Controller Unit. Please refer to Section 6.4.1, for further details. No errors
were found during the testing of the power supply for the wheel controller
units

7.4.2 Test of CAN Transceiver

The CAN transceiver was tested using the same test procedure as for the
CCU. Further details may be found in 6.4.2. Propagation of signals through
the transceiver was verified without any issues for the Wheel Controller
Units.
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Figure 7.13: Top layer of Wheel Encoder Board

7.4.3 Test of H-bridges

The H-bridges could not be tested sufficiently without an operating mi-
crocontroller. A simple test program therefore had to be implemented for
the WCU. This program manually applied the necessary signals to drive
enable the outputs for forwards and reverse, according to Table 7.3. An
8V input was applied to the circuit.

At the first test no output signal was detected at outputs OUT1 and OUT2,
while a correct output signal of successively +8V and −8V was measured
between outputs OUT3 and OUT4. Measurements on the H-bridge inputs IN1
and IN2 indicated that the enable signals from the microcontroller did not
propagate to these pins. A short circuit was also detected between these
inputs and ground. After studying the schematic, it was found that these
lines lie very close to the ground pad of the H-bridge. This is indicated in
Figure 7.14. The cause of the failure was suspected to be that too much
solder paste had been applied when the circuit was assembled. Testing
of this H-bridge was therefore halted, until a new prototype had been
assembled. The test of the second prototype showed no errors.
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Figure 7.14: Probable cause of malfunctioning H-bridge channel
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8
Production, Assembly and Installation

”Of course I do not look busy. I did it right the first time!”

- Anonymous

8.1 Production and Assembly of Units

The first prototypes of the units for the CES system has to be produced
and assembled locally at the university. An LPKF ProtoMat circuit board
plotter, as shown in Figure 8.1, was used for production of the PCBs. The
assembly of the units then had to be done manually, using a traditional
soldering iron.

When the final prototypes were to be produced a more professional result
was, however, desired. Through Revolve, a deal was arranged with elec-
tronics producer SimPro, at Løkken Verk to manufacture and assemble
the CES units. This section will give a brief introduction to how the units
were assembled.

8.1.1 The PCB Panel

The production of the CES units were done in cooperation with several
other units for the electronics group of Revolve. Multiple PCBs were
collected to create a so called panel, as shown in Figure 8.2. All units on
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Figure 8.1: LPKF ProtoMat circuit board plotter

the panel were assembled at once, before the panel was split in to individual
PCBs at the end of the assembly process. Notice that the PCB has been
painted wherever there are no pads for the components. This will prevents
short circuits and corrosion, that unpainted PCBs are prone to.

Figure 8.2: A professionally manufactured PCB panel

8.1.2 Application of Solder Paste

The huge majority of components used on the PCBs were surface mounted.
Only these components were assembled during this process. Before compo-
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nents could be placed on the PCB, solder paste had to be applied. The
solder paste also acts as a “glue” that hold the components to the PCB.

To only apply the solder paste where there are pads for components, a
stencil is used, as shown in Figure 8.3. A stencil is a metal sheet, where
holes have been etched at the exact places of the pads of the PCB.

Figure 8.3: Stencil for application of solder paste[21]

The stencil was aligned with the PCB panel using automated machinery,
before the solder paste was applied with high pressure by an automated
roller, as seen in Figure 8.4.

Figure 8.4: Solder paste was applied automatically to PCB panel
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8.1.3 Component Placement

For larger batches of PCBs it is common to use automated, so called
pick-and-place machinery, to place components on the panel. For smaller
batches, setup of these machines are, however, too costly. Components
were therefore placed with conventional tweezers, as shown in Figure 8.5.

Figure 8.5: Manual placement of components on circuit board

8.1.4 Baking

Correct temperature is critical when components are soldered to the PCB.
A too high temperature will damage the components, while a too low
temperature will not allow the solder paste to melt properly. This will
produce solder joints with bad contact. The panels were therefore baked
in a specialized oven. Figure 8.6 shows the baking oven used at SimPro.
The length of the oven is approximately 5 meters. Different zones inside
the oven apply different temperatures. A conveyor belt transported the
panels through the oven, allowing gradual heating and cooling.
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Figure 8.6: The PCBs were soldered in an automated soldering machine

After the soldering process the assembly was complete. The panel was
broken into several PCBs. Figure 8.7 shows a finished PCB for the Central
Controller Unit.

Figure 8.7: Finished Central Controller Unit PCB

8.2 Installation in Car

The system has been installed in the car, for further performance testing.
The electronics groups has provided the necessary wiring harness in the
car, to connect the various modules. The wiring harness will both provide
CAN bus and 12V power supply from the battery.
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Pin Connection

1 Ground
2 12V
3 CAN High
4 CAN Low

Table 8.1: Pinout for wiring harness connectors

Figure 8.8: Connectors used for connection to the harness

To connect the units to the wiring harness, a suitable connector was needed.
The connectors chosen were of the DTM series by Deutsch Connectors. A
picture of the connector is shown in Figure 8.8. A 4-pin version of this
connector was chosen for all units that would be connected to the wiring
harness. This would allow easy connection of all units. A common pinout
for the connectors was defined, as in Table 8.1.
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9
Discussion on the Hardware Design

”Never trust a computer you can’t throw out a window.”

- Steve Wozniak

9.1 Central Controller Unit

9.1.1 Evaluation of the Hardware Design

This part has presented the design of a Central Controller Unit, to be used
in the CES system. Based on recommendation from the prestudy, various
components were selected and a hardware design was implemented.

To a large degree it was possible to reuse the components that had been
chosen in the prestudy. Due to availability interchangeable components
were, nevertheless, used for come of the components. Most of the chosen
components were able to be integrated easily in the circuit. In addition to
the features recommended by the prestudy, it was chosen to implement a
memory card connector in the circuit. While the difference in signalling
levels did somewhat complicate this process, it has allowed a large amount
of flexibility for future use.

The first revision of the PCB design was laid out on a large PCB giving
good space for debugging, and any corrections needed, such as the missing
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connection to the system basis chip. This did, however, require a lot of
extra effort when the system had to be redesigned for the final prototype.
The effort for the redesign was, however, deemed to be worthwhile as the
board size was reduced with about 70%. A much more professional layout
was also achieved.

Thanks to invaluable help from SimPro, it was possible to implement a
final prototype with professionally manufactured PCB and assembly of
components. This made further development of software much easier, as
the early prototypes had minor defects and unstable tendencies.

The various modules of the circuit were tested after the PCBs had been
assembled. Inevitably, there were some errors that had to be corrected.
Due to limited time, it was necessary prioritize development of a circuit for
the Wheel Controller Units. All modules were therefore not tested before
after the final prototypes had been assembled. The error in connection of
the CAN transceivers were therefore not corrected on time. The memory
card circuit has nor been tested, as it was not necessary to achieve the
level of software functionality intended for this assignment.

9.1.2 Further Work

There are several improvements that could be done to the hardware design
of the CCU. Below follows a categorized list.

System Basis Chip

The system basis chip provided an easy way to integrate a power supply,
CAN transceiver and watchdog functionality into the circuit. As will
be remarked in the software discussion, development with the SBC has,
nevertheless, been rather cumbersome. While not tested, an internal
watchdog module is also available in the UC3C that may eliminate the
need for an external watchdog. Future revisions should consider replacing
the SBC for a conventional linear regulator and CAN transceiver. A
regulator with higher current rating should be considered. Future revisions
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should also include a diode to protect the circuit from polarity inversion
on the power connector.

3.3V Power Supply

The 3.3V power supply has been connected in cascade with the main power
supply of the circuit. This is strictly not necessary, and could be avoided
in later revisions. This would reduce the load on the main power supply.

CAN Transceiver

For any future hardware revisions the error in connection of the CAN
transceivers should be corrected.

SD Card Connector

This module has not been tested for this assignment. For further devel-
opment this module should be tested, and the implemented concept for
signal level conversion should be verified.

9.2 Wheel Controller Unit

9.2.1 Evaluation of the Hardware Design

This part has presented the design and implementation of a Wheel Con-
troller Unit to be used in the CES system. As with the Central Controller
Unit, the majority of parts recommended in the prestudy could be used
for development of a hardware design. Only one hardware design was
implemented for the Wheel Controller Units, however, this design was
gradually improved throughout the various prototype revisions. The design
of a PCB was made rather difficult because of the strict size constraints
that applied to the WCU.
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The final prototypes of the WCUs was also manufactured by SimPro. As
the first prototype of the WCU was designed after the initial prototype of
the CCU had been tested, some of the elementary errors and flaws had
already been addressed.

All modules of the of the WCU PCBs has been tested. As opposed to
the CCU, all modules were required to work for the unit to fulfil the
requirements defined in Section 7.1.

9.2.2 Further Work

As with the CCU there are several changes that could be done to improve
the hardware design of the CCU. A list is given below.

System Basis Chip

The system basis chip should be considered replaced with a conventional
linear regulator and CAN transceiver if allowed by the available board
space. See Section 9.1.2 for more details.

Motor Noise Filtering

Although it has not been registered as a problem it is common practice to
connect a ceramic capacitor across the terminal of DC motors to provide
noise filtering. This should be considered for future hardware revisions.

Programming Port

The current design uses a standard header with 2.54mm pitch for the
ISP programming port. Unfortunately, this header will not fit inside the
finished enclosure. It thus had to be removed from the final prototypes.
Future revisions should seek to implement an alternative connector for the
programmer.
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10
Software Introduction

”People who are really serious about software should make their
own hardware.”

- Alan Kay, Pioneer Computer Scientist

The development of software for the CES system has been a substantial
part of the work with this assignment. After a prototype hardware design
had been implemented, it was necessary to develop a baseline software
implementation for testing and evaluation of the system.

The development of software may be divided into several phases, the first of
which is the specification phase. This phase will identify the requirements
that apply to the software, so that these may be addressed during the
design phase of the project. As this masters thesis has used a prestudy[1]
by the same author as a basis, specifications from this document has been
used throughout this phase.

While the prestudy gave several suggestion for the hardware design of
the system, there were fewer suggestions in terms of software design. As
the CES system has been implemented using a distributed architecture,
over several modules, it has been an additional challenge to identify clear
interfaces between the modules, and to keep the design of the software
homogeneous. It has also been important to achieve a clear interface
towards the other modules of the vehicle, that have been implemented by
other team members. A common CAN message standard will therefore be
presented in Section 11.2.
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Based on the software design, a software implementation has been developed
for both the Central and Wheel Controller Units. The software may be
divided in a hierarchical structure, as shown in Figure 10.1.

 
 

LOW LEVEL DRIVERS 
SPI, USART, etc. 

APPLICATION 
E.g. Supervisory controller 

EXECUTION FRAMEWORK 
Big while / Operating system / Threading 

HIGH LEVEL DRIVERS 
IC and MCU HW module drivers 

Figure 10.1: Hierarcical structure of embedded software

The first part of the development phase was much targeted towards the two
bottom layers shown in the figure. Low level drivers had to be developed
to utilize the hardware modules of the units. Higher level drivers also had
to be implemented to interface external ICs, and internal modules such as
the CAN controller. During software development it has been important
to create an efficient framework for the system’s main control algorithm,
so that development may easily be continued at a later point of time.

The development of the supervisory control algorithm for the Central
Controller Unit, is itself not part of this thesis. Collaborative work with
other team members of Revolve has allowed implementation of a prototype
control algorithm that may be used for testing. The target of the design
has, however, been to allow execution of a more advanced algorithm. While
the prestudy evaluated the possibility of using Mathworks Embedded Coder
for implementation for controller development, this possibility has not been
pursued further in this thesis.

All software development has been done in the language C. The Atmel
Studio 6 IDE has been used throughout the project. Table 10.1 shows a list
of the exact versions of the development tools used for this project. This
should allow the reader to be able to accurately reproduce the findings
presented in this thesis. Complete program code for this assignment is
available in the digital attachments.

86



Component Version

Atmel Studio 6.1.2562
AVR 8-bit Toolchain 3.4.2.939
8-bit GCC 4.7.2
AVR32 Toolchain 3.4.2.435
32-bit GCC 4.4.7
Atmel Studio Framework 3.3

Table 10.1: Software versions for development tools
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11
Communication Protocol

”Design is not just what it looks like and feels like. Design is how
it works!”

- Steve Jobs

11.1 Requirements for the Communication Protocol

The CES system has been distributed into five units: One Central Controller
Unit, and four Wheel Controller Units – one for each wheel. The purpose
of the Wheel Controller Units is clearly different from the purpose of
the Wheel Controllers, and the software developed is also fundamentally
different, as will be explained in chapters 12 and 13. The operation of these
two units are, however, closely linked. The WCUs will continuously read
supervisory control signals and respond to system mode changes from the
CCU. As described in Section 3.1.4, the system should also error detection
mechanisms that will be based on communication between the units.

It was previously decided that CAN bus should be used as the physical
and transfer layer of this protocol. The CAN standard does, however,
not implement the higher protocol layers. This allowed a large degree of
freedom when the messaging protocol for the CES system was implemented.
Specific messages has therefore been implemented to best serve the purpose
of this system.
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Moreover, the CES system uses the same CAN bus as several other em-
bedded systems of the car. It is therefore important for all these systems
implement a common addressing protocol, that allows them to communi-
cate and address each other without collision. This will be further described
in Section 11.2.

11.2 Revolve CAN Addressing Protocol

On a CAN bus, all messages are transmitted by broadcasting. All units
may read the content of a message sent on the bus. To differentiate between
various messages, all messages must be assigned an identifier. Identifiers
may be allocated freely, according to the wishes of the developers. It
is, however, crucial that all units share a common definition of how the
identifiers should be used. In Revolve, there has been several developers
working on various electronic systems for the car. It was therefore apparent
that a common addressing protocol had to be agreed on.

CAN allows two types of identifiers to be used for messaging. A standard
11-bit identifier, or an extended 29-bit identifier. The 11-bit identifier will
allow a number of 211 = 2048 different message types to be sent. This was
deemed to be more than sufficient for the anticipated use on the car. The
11-bit address space has been divided as illustrated in Figure 11.1.

BIT 2…0 BIT 10…8 

MODULE NUMBER MESSAGE FUNCTION SYSTEM GROUP 

BIT 7…3 

Figure 11.1: Adressing protocol for CAN messages

11.2.1 Message Function

Embedded systems may have different requirements with respect to real
time properties and latencies. This does, of course, also apply to the
communication in-between such systems. CAN uses the message identifier
for arbitration on the bus. The assigned identifiers will therefore influence
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Adress [Bytes 10..8] Message Type

0x000 Engine and Control Unit Messages
0x200 Priority Message
0x400 Command Message
0x600 Data Message

Table 11.1: Table of message types

which message is given priority. A lower identifier gives higher priority
on the CAN bus. Given the many developers working on the various
embedded systems on the car, it was not practically possible to enforce a
rate-monotonic scheduling scheme for identifier allocation, such as proposed
in the prestudy.

The addressing scheme will use the three most significant bytes to indicate
what sort of function a message has. Table 11.1 shows a list of the message
types that has been defined.

As can be seen from the table, all priority messages will be given precedence
over command and data messages. Messages used for engine and gear
management has been assigned a separate category, as they are crucial to
the fundamental operation of the car.

11.2.2 Group Identifiers

To distinguish messages originating from various systems, each subsystem
has been assigned its own group identifier. These group IDs determine the
5 middle bytes of the message identifier. Most CAN controllers allow so-
called masking of identifiers. This means that messages may be filtered on
reception by a subset of bytes in their identifier. If a unit is interested in a
message from a particular subsystem, it may apply a filter that allows only
those messages. A complete list of group identifiers is given in Table 11.2.
The allocation of identifiers has been ordered according to the anticipated
real-time requirements of the various systems.
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Adress [Bytes 7..3] Group

0x08 Gear Control
0x10 Engine Auxiliary
0x18 CES Suspension
0x20 Dashboard
0x28 Steering Wheel
0x30 Variable Intake
0x38 Engine Control Unit IO
0x40 Inertial Navigation System Sensors
0x48 Brake Pressure Sensors
0x50 Exhaust Gas Temperature Sensors
0x58 Steering Angle Sensors
0x60 Suspension Damper Displacement Sensors
0x68 Lab Beacon Sensors
0x70 Telemetry System

Table 11.2: Table of module groups (Applicable groups in bold)

11.2.3 Module Numbers

Several of the systems on the car consist of more than one unit. An example
is the CES system described in this thesis. A way to distinguish between
these units is therefore needed. The addressing protocol has allocated the
three least significant bytes for this purpose. This allows a total of 8 units
per subsystem.

As can be seen from Table 11.3, one module number has been assigned
to each of the physical units. There are, however, also messages that
has been assigned special identifiers. The Setpoint Control messages are
broadcasted at a high frequency. To allow other units to distinguish these
messages from the remaining messages from the CCU, they have been
assigned special identifiers.
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Adress [Bytes 2..0] Module Number

0x0 Central Controller Unit
0x1 Front Setpoint Control Message
0x2 Rear Setpoint Control Message
0x3 N/A
0x4 Front Left Wheel Controller Unit
0x5 Front Right Wheel Controller Unit
0x6 Rear Left Wheel Controller Unit
0x7 Rear Right Wheel Controller Unit

Table 11.3: List of module codes for CES system

11.3 Reception of Sensor Data

The ability to receive current sensor data is one of the most important
properties of the CES system. As indicated in Section 3.1.2, all sensor
data will be sent digitally over the Sensor CAN Bus. Most sensor data,
e.g. steering wheel position and brake pressure, will be transmitted by
dedicated sensor CAN-modules, that transmit data on the form indicated in
Figure 11.2. Values are transmitted as a singed 16-bit value. Additionally,
a status byte is also included in the message. The coding of unit states are
common for all modules, and is shown in Table 11.5. If an error should
occur within a sensor CAN module, any listening units may be notified by
reading this byte.

BYTE 0 

UNIT STATE 

BYTE 1...2 

SENSOR VALUE 

Figure 11.2: Structure of WCU State Message
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11.4 Controlling the System

11.4.1 Dashboard Control

As described in Section 3.1.5, the CES system may be controlled by using
both the steering wheel, and the dashboard of the car. Primary mode
changes, such as activation and deactivation, are controllable by a three
position switch on the dashboard. Switch positions will be transmitted
as a single message from the dashboard. The structure of this message is
shown in Figure 11.3. The dashboard state message will be broadcasted
periodically, as well as on any changes, on the Main CAN Bus.

BIT 7 

AUTO 
GEAR 

BIT 1..0 

SUSPENSION 
MODE 

BIT 6 

IGNITION 

BIT 5 

TRACTION 
MODE 

BIT 4 

DATALOG 
MODE 

BIT 3 

START 
BUTTON 

BIT 2 

CLUTCH 
MODE 

Figure 11.3: Structure Dashboard State Message

11.4.2 System Command Messages

For changing more advanced parameters of the system, e.g. using the
OLED interface in the steering wheel, a command message structure has
been implemented. The structure of this message is shown in Figure 11.4.
As can be seen, the first byte is used to specify a command ID, while
remaining bytes are used freely depending on the command type. Table
11.4 shows a list of commands that has been implemented for the CES
system. All commands in the list use a command content of 16 bits, i.e. 2
bytes, to represent a damping coefficient.

BYTE 0 

COMMAND ID COMMAND CONTENT 

BYTE 1…7 

Figure 11.4: System Command Message
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ID Action

0x21 Change manual mode front left compression coefficient
0x22 Change manual mode front left rebound coefficient
0x23 Change manual mode front right compression coefficient
0x24 Change manual mode front right rebound coefficient
0x25 Change manual mode rear left compression coefficient
0x26 Change manual mode rear left rebound coefficient
0x27 Change manual mode rear right compression coefficient
0x28 Change manual mode rear right rebound coefficient

Table 11.4: System Command IDs implemented for the CES system

State byte State name

0x00 Error
0x01 Operative
0x02 Standby
0x03 Fault
0x04 Manual

Table 11.5: Table of system states (Applicable states in bold)

11.5 Unit State Messages

Error detection and fail-safe functionality will to a large degree rely on the
CCU and WCUs ability to monitor each other. The Central Controller
Unit must also be able to broadcast the current state of the system to the
wheel controllers, so that they may respond to any state changes.

For these purposes, state messages has been implemented for each unit,
as will be described in sections 11.5.1 and 11.5.2. To achieve a unified
representation of states across all units, a common coding for states has
been implemented. This coding is shown in Table 11.5.
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11.5.1 Central Controller State Message

The Central Control Unit will broadcast a state message on both CAN
buses. On the Sensor CAN Bus, this message will be used by the Wheel
Controller Units to determine the state of the system. On the Main CAN
Bus, this message will be used by the dashboard to indicate failure if the
system is in an erroneous state. The structure of the message is shown
in Figure 11.5. The State Message will be transmitted as a data message
with the ID of the CCU.

BYTE 0 

BUS NUMBER 

BYTE 1 

SYSTEM STATE 

BYTE 2 

WCU 
ERRORS 

F
R 

F
L 

R
R 

R
L 

Figure 11.5: Structure of CCU State Message

As this message is transmitted on both buses, the first field will be used to
indicate which bus the message has originated from. The second field of
the message will indicate the current state of the system. This field will be
used by the WCUs to determine the state of the system. The CCU state
message has also implemented error flags for each of the WCUs. This field
may be used when debugging the system.

It is also important to be able to externally monitor the behaviour of the
system. The state and any error flags will therefore be logged continuously
by the data acquisition system of the car.

11.5.2 Wheel Controller State Message

The Wheel Controller Units will also transmit a state message on the
Sensor CAN Bus. The ID of these status messages will be the identifier
allocated to each WCU in Table 11.3. The structure of this message is
shown in Figure 11.6. As can be seen from the figure, the first field of the
message will indicate the state of the originating WCU. This value will be
used by the CCU for error detection.

Additionally, representations of the valve positions has been included for
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debugging purposes. These values has been coded as signed 8-bit integers.

BYTE 0 

UNIT STATE 

BYTE 1 

COMPRESSION 
VALVE POSITION 

BYTE 2 

REBOUND 
VALVE POSITION 

Figure 11.6: Structure of WCU State Message

11.6 Setpoint Control Messages

Perhaps the most important of all the messages used in the CES system is
the Setpoint Control Messages. These messages will transmit supervisory
control signals to each Wheel Controller Unit, in the form of setpoints for
the valve PID controllers. As will be described in Chapter 12, no closed
loop control of the suspension has yet been implemented for the system.
It has, however, been the target to design a system that will allow a high
bandwidth closed loop controller to be implemented at a later stage.

There will always be a certain overhead associated with transmission of
data over CAN. The meta-data transmitted in a CAN frame is however
of fixed length. More data per frame will thus lead to a lower overhead
during transmission. As indicated in Section 2.1.3, a high bandwidth
controller may require a frequency of up to 500 Hz. It is therefore desirable
to minimize the overhead of each message.

Each of the setpoint values transmitted to the WCUs will be of 16-bit length,
i.e. two bytes. A total of four setpoints may therefore be transmitted
in a single message. As can be seen from Table 11.3, two messages has
been implemented for the front, and rear axle setpoints. This will allow
all 8 bytes of a CAN message to be utilized, thus giving the least possible
overhead for messages. The structure of the Setpoint Control Messages
has been shown in Figure 11.7.
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BYTE 0…1 

LEFT COMPRESSION 
SETPOINT 

BYTE 2…3 

LEFT REB OUND 
SETPOINT 

BYTE 4…5 

RIGHT COMPRESSION 
SETPOINT 

BYTE 6…7 

RIGHT REB OUND 
SETPOINT 

Figure 11.7: Structure of Setpoint Control Messages
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12
Central Controller Software

”If your culture doesn’t like geeks, you are in real trouble.”

- Bill Gates

12.1 Requirements

12.1.1 Execution of Controller Algorithm

An important role of the Central Controller Unit is to execute the main
control algorithm of the CES system. The software of the CCU must
therefore implement a framework, that allows the execution of a controller
algorithm with accurate period. It must also be possible to work on this
algorithm without in-depth knowledge of the remaining system.

The software of the system must be designed in such a way that it will allow
the implementation of complex controller algorithms, such as described in
Section 2.1.3.

12.1.2 Control of Wheel Controller Units

For the CES system to work, the CCU must obviously be able to send
supervisory control signals to the Wheel Controller Units. This should
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be done according to the message standard defined in Section 11.6. The
software must be able to send these setpoints with a frequency equal to
the execution of the main controller algorithm.

12.1.3 State Control

The Central Controller Unit will be responsible for managing the state of
the CES system. This state will be determined by a switch located on the
dashboard of the car. The Wheel Controller Units will in turn determine
their state by messages sent from the CCU. These message must therefore
be sent periodically. State messages should be sent on the form specified in
Section 11.5. This section also specifies a common representation of states
for all systems on the car. The CCU should manage its states according
to this representation.

12.1.4 Gathering of Sensor Data

The CCU will read the necessary sensor data from the CAN bus of the
data acquisition system. To allow implementation of high bandwidth
control algorithms, the CCU must be able to read sensor data sent at a
high frequency, typically above 200 Hz per message. Reception of these
messages must be done without disturbing the flow of the remaining
program.

12.1.5 Run-time Debugging

An RS-232 interface has been implemented for the CCU, to allow run-time
debugging. A driver must be implemented for this interface, allowing
flexible use in the program code.

12.1.6 Error Detection

As described in Section 3.1.4, a method for error detection must be imple-
mented in the CES system. The Central Controller Unit will be responsible
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Figure 12.1: State diagram for Central Controller Unit

for monitoring the state of the Wheel Controller Units. This should be
done by monitoring the reception of unit state messages. If any errors
should be indicated, or the reception of messages ceases, the system must
be put in a fail-state. The system must also be able to interface the external
watchdog, as described in Section 6.2.2. The watchdog must be reset with
a period of maximally 256ms.

12.2 Software Architecture

This section will give a description of the software architecture chosen for
the Central Controller Unit.

12.2.1 State Management

As described in Section 12.1.3 the CCU is responsible for managing the
state of the CES system. A list of applicable states for the system is found
in Table 11.5. The state of the unit will determine the operating mode of
the system. Figure 12.1 shows a state diagram for the CCU. A description
of the various system states follows below.
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Standby

Once the system is powered up it will enter a default mode where all control
is suspended, until the Central Controller Unit initializes the mode of the
system. In the standby mode all units operate independently, and the
wheel controller units will assume a locally defined position. If the driver
wishes to disable the system, this state should suspend all supervisory
control of the wheel controller units.

Manual

As discussed in 2.1.3 there are several control strategies that could be
applied to an adaptive suspension system. The simplest way a such a
system may be controlled is, however, by manual adjustment of the control
parameters. Such a mode has also be implemented for the system in this
mode. When in the manual mode, the driver may change the static settings
for the suspension system. No dynamic adjustment of the suspension will
be enabled. The CCU will instead send a static control signal to the Wheel
Controller Units. Error detection will be enabled to monitor the state of
the system.

Operative

In operative mode, the dynamic controller algorithm implemented in the
CCU is activated. Further details about this algorithm may be found in
Section 12.6.1. Based on input from sensor data the CCU will continuously
send control signals to the wheel controller units, with a predefined fre-
quency. As in manual mode, error detection the system will be activated
so that the system may fail safely.

Error

To achieve the desired level of fail-safe functionality for the system, the
units need to be able to detect internal and external errors. Once an error
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is detected, the system will suspend active control to isolate any failures
and give predictable behaviour. This will be triggered by the system going
into the error state. The state of the CCU will be continuously broadcasted
in the unit state message described in Section11.5. The Wheel Controller
Units will, thus, be alerted of the error.

Once in an error state, it is not possible to exit this state until the error
condition has been reset. Error must be reset by putting the system into
standby mode before a new mode is selected.

12.2.2 Operating System

As was seen from Section 12.1, the CCU is responsible for executing
several functions that are more or less independent of each other. The
responsibilities of the CCU may be divided into three primary groups:

� Controller execution

� System management and monitoring

� Data acquisition

For the system to function as intended, it is important that all these tasks
are executed periodically. It was therefore decided to base the software
architecture for the Central Controller Unit around an operating system.
The use of an OS was also recommended by the prestudy, for similar reasons.
As the author was already familiar with the FreeRTOS embedded real-time
OS from the experiments performed in the prestudy it was decided to use
this OS for implementation of the CCU. The rest of this section will give
an introduction to FreeRTOS and present some of its main features.

FreeRTOS

FreeRTOS is an embedded real-time operating system that may be easily
deployed on embedded systems. The base implementation of FreeRTOS
features some of the most elementary, nevertheless effective, mechanisms of
an operating system. FreeRTOS is distributed as several libraries, written
in C, and may easily be included in a software project.
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Scheduler/Kernel 236 bytes
Each queue 76 bytes + storage of elements
Each task 64 bytes + task stack size

Table 12.1: RAM usage by applicable freeRTOS features

As the CCU will have to perform several concurrent processes, a division
into tasks can be used to control the execution of the program. Chapter
7 of the prestudy also performed a simple evaluation of the real-time
performance of freeRTOS, and found them to be satisfactory. For this
application, elementary features such as scheduling of tasks and inter-
task communication has been the most important. Table 12.1 shows a
the required RAM for the freeRTOS features that has been used in this
application. Within reasonable usage, this should be negligible compared
to the total size of a program.

Kernel

freeRTOS is a micro-kernel operating system, meaning that the kernel only
includes the very basic features of the OS. All other services are added as
modules. Since the UC3C devices does not implement a memory manager,
the role of the kernel is limited to the execution of the scheduler. freeRTOS
features a real-time task scheduler with support for preemption. The
scheduler itself is started by calling the function vTaskStartScheduler().

Tasks

One of the primary strengths of FreeRTOS is its ability to run several
concurrent tasks. A task is created by the implementation of a task
function, as shown in Listing 12.1. There are few restrictions to the form of
a task function, however, it is important to notice that a task will terminate
once its function is finished.

The listing also shows how a task is created by using the function xTaskCreate().
This function will add the task function, referenced by the function pointer
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in its first argument, to the scheduler. The remaining parameters define
respectively the task’s name, maximal stack size, parameters passed to the
task, scheduler priority and a handle pointing to the task.

Listing 12.1: Example definition and dispatch of a FreeRTOS task

1 void vATask( void *pvParameters ){

2 // Task content

3 }

4

5 int main(void){

6 ...

7 // Send task to the scheduler

8 xTaskCreate(vATask , (signed char*)"TASKNAME", STACK_SIZE , &

taskParameters , tskPRIORITY , NULL);

9 // Start scheduler. All tasks are dispatched

10 // Execution of main function will stop here

11 vTaskStartScheduler ();

12 ...

13 }

Another important property of a real-time system is its ability to execute
tasks periodically. FreeRTOS implements two mechanisms to suspend a
task for a specified period of time:

� vTaskDelay(portTickType xTicksToDelay) may be called from in-
side a task to suspend the task for a specified number of ticks

� vTaskDelayUntil(portTickType *pxPrevWakeTime, portTickType xTime)

may be called from inside a task to suspend the number task for a
number of ticks relative to a specified time specified in the parame-
ter pxPreviousWakeTime. This function is very useful for creating
periodic execution of tasks.

Queues

Another important feature of freeRTOS is its implementation of queues.
Queues may, for instance, be used for safe communication between tasks.
For the software of the CCU, queues has been particularly useful to store
incoming CAN messages before they are processed by the application.

Listing 12.2: Example initialization and usage of a FreeRTOS queue
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1 // Global declaration of queue handle

2 xQueueHandle xQueue;

3

4 // Task initializes and posts to queue

5 void vATask( void *pvParameters ){

6 ...

7 xQueue = xQueueCreate( 16, sizeof( uint8_t ) );

8 uint8_t valueToSend = 42;

9 ...

10 while (1){

11 ...

12 // Post variable to queue

13 // Wait for 10 ticks if queue is full

14 xQueueSend( xQueue , ( void * ) &valueToPost , ( portTickType )

10 );

15 }

16 }

17

18 // Task receives values from queue

19 void vATask( void *pvParameters ){

20 ...

21 // Initialize buffer for read messages

22 uint8_t rxedMessage;

23 ...

24 while (1){

25 // Read variable from queue to buffer

26 // Wait for 10 ticks if no message on queue

27 xQueueReceive( xQueue , &( rxedMessage ), ( portTickType ) 10

)

28 ...

29 }

30 }

Listing 12.2 shows an elementary example of how a queue may be initialized
and used to send data from one task to another. Once a queue has been
initialized, data is sent and read from the queue simply by using respectively
the xQueueSend() and xQueueReceive() functions.

12.2.3 ASF

The Atmel Studio Framework, abbreviated ASF, is a software library pro-
viding drivers and software libraries for several of Atmel’s Microcontrollers.
This framework is particularly useful for the AVR32 UC3 architecture,
which in general require somewhat more complicated drivers than the tra-
ditional 8-bit architecture. The structure of ASF is shown in Figure 12.2.
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Figure 12.2: Atmel Software Framework modules structure [22]
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To shorten the development time of the CCU, libraries has been used from
ASF where available. Below is a list of drivers and libraries that has been
used for the development of the software for the Central Controller Unit.

SPI Master API This is an abstractive library for SPI communication.
The API may be used for several of Atmel’s devices, allowing the
same program code to be used across devices. The API links further
to an ASF driver for SPI on the particular unit.

System Clock Control This library allows the programmer to easily
control the system clocks of the microcontroller, from within the
application. Clock sources, PLL multipliers, etc. may be altered
directly from the application code. This is a common library that
links directly to the a particular driver for the microcontroller used.

GPIO Driver This library allows the microcontroller to interface GPIO
resources of the microcontroller.

CAN Software Stack This library implements a complete software stack
for CAN communication. Messaging on the CAN interfaces may be
done with simple software calls. The library interfaces a driver for
the CAN controller of the microcontroller.

FreeRTOS A preconfigured version of the embedded real-time OS is
available in the ASF. Further description of FreeRTOS is available
in 12.2.2.

USART Driver This library implements a driver for the USART inter-
face of the microcontroller. Commands are provided for initializing
the interface, as well as basic transmission and reception of characters.

Stdio Redirection This library supports redirection of the stdio library
to the buffers of the USART channel of the microcontroller. This
library also links to the particular USART driver for the microcon-
troller used.
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12.3 CCU Drivers

Although the libraries of the Atmel Software Framework has been used
extensively for this application, it has also been necessary to implement
drivers for the external components of the unit. Some high level abstraction
libraries has also been implemented to simplify the code. This section will
present each of these drivers.

12.3.1 CAN Driver

The CAN software stack available in ASF has been used to implement CAN
communication for the Central Controller Unit. This software stack allows
sending and receiving of messages by simple function calls. It also defines
the necessary structures for CAN messages and so-called mailboxes(MOBs).
Listing 12.3 shows the definition of the MOB and message structures used
by the CAN software stack.

Listing 12.3: Declaration of data structures for CAN MOB and message

1 typedef struct

2 {

3 union{

4 struct{

5 U32 id : 32;

6 U32 id_mask : 32;

7 };

8 struct{

9 // Details of content omitted

10 };

11 };

12 Union64 data;

13 } can_msg_t;

14

15 typedef struct{

16 U8 handle;

17 can_msg_t *can_msg;

18 U8 dlc;

19 U8 req_type;

20 U8 status;

21 }can_mob_t;
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The can_msg_t structure is used to save the content of a single message.
It also specifies a message identifier, and in case of reception an ID filtering
mask. The can_mob_t structure is used to control the transmission of
reception of a CAN message. This structure is passed to the can_rx()

and can_tx() functions of the software stack, to register the message for
respectively reception or transmission. A handle is used to identify the
message type upon reception, or when the message has been sent.

As explained in Chapter 11, the CCU will have to process several types of
CAN messages. MOB and message structures has therefore been defined
for all these types of messages. A separate library has been defined for
this purpose, named ccu_can.c. This library also includes a necessary
function to initialize the CAN controllers of the CCU. The initialization of
the CAN controllers is shown in Listing 12.4 and 12.5. Program code for
the declaration of the applicable message structures has been included in
the appendices, in Listing C.1.

Listing 12.4: Initialization sequence for CAN interfaces - main.c

1 // Initialize CAN channels

2 ccu_can_init ();

3 // Initialize CAN controllers with ASF library

4 can_init(0, ((U32)&mob_ram_ch0 [0]), CANIF_CHANNEL_MODE_NORMAL ,

can_out_callback_channel0);

5 can_init(1, ((U32)&mob_ram_ch1 [0]), CANIF_CHANNEL_MODE_NORMAL ,

can_out_callback_channel1);

Listing 12.5: Initialization of CAN interfaces - ccu can.c

1 void ccu_can_init(void){

2 // Assigns a clock source to the CAN controllers.

3 init_sys_clocks ();

4

5 // Assign GPIO to CAN.

6 gpio_enable_module(CAN0_GPIO_MAP , sizeof(CAN0_GPIO_MAP) / sizeof(

CAN0_GPIO_MAP [0]));

7 gpio_enable_module(CAN1_GPIO_MAP , sizeof(CAN1_GPIO_MAP) / sizeof(

CAN1_GPIO_MAP [0]));

8

9 // Create queues for handling received messages

10 // Reception of WCU state message

11 ch1_wcustate_rx_receivequeue = xQueueCreate (8,sizeof(can_msg_t));

12 // Reception of dashboard messages

13 ch0_dashboard_rx_receivequeue = xQueueCreate (8,sizeof(can_msg_t))

;
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14 // Reception of system command messages

15 ch0_extcmd_rx_receivequeue = xQueueCreate (8,sizeof(can_msg_t));

16 // Reception of ECU data messages

17 ch0_ecu_rx_receivequeue = xQueueCreate (16, sizeof(can_msg_t));

18 // Reception of sensor data messages

19 ch1_sensor_rx_receivequeue = xQueueCreate (16, sizeof(can_msg_t));

20 }

12.3.2 SPI Driver

As described in Section 12.2.3, a library from ASF has been used for im-
plementing SPI communication. However, as this driver is used repeatedly
throughout the code, another layer of abstraction has been implemented
by a simple library. An identical library has been implemented for the
Wheel Controller Unit(refer to Section 13.3.1), so that drivers for SPI
components may be reused. Function declarations for this library is shown
in Listing 12.6. spi_init() – a function to initialize the SPI interface
with predefined settings has also been implemented.

Listing 12.6: Function Prototypes - ccu spi.h

1 // --- FUNCTION PROTOTYPES

2 void spi_init(void); // Init SPI with predef. settings

3 void spi_sbc_select(void); // Select SBC chip on SPI

4 void spi_sbc_deselect(void); // Deselect SBC chip on SPI

5 uint8_t spi_txrx_byte(uint8_t sendbyte); // SPI TX and RX byte

6 void spi_tx_byte(uint8_t sendbyte); // SPI transmit byte

12.3.3 System Basis Chip Driver

As described in Section 6.2.2, a System Basis Chip including a 5V power
supply, a CAN transceiver and an external watchdog, has been used in
the hardware design. Drivers had to be developed for SBC to perform as
expected.

Figure 12.3 shows a simplified version of the state diagram from the
datasheet[14, p. 41]. As can be seen from the figure, the SBC will go into
a initialization-mode at power up. If the watchdog is not initialized within
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Figure 12.3: Simplified state diagram for the MC33903

the first 10 seconds, the power supply to the circuit will be turned off. To
initialize the watchdog, a WDT Refresh command must be sent over SPI.
After the watchdog has been initialized these messages must be sent every
256ms at a minimum. If a message fails to arrive, the microcontroller will
be reset.

While the SBC is in init-mode, its internal settings may be configured.
For this application, it was necessary both to enable power to the CAN
transceiver, and to enable the transceiver itself. The watchdog was also
reconfigured to operate in it’s simplest mode, so that it may be reset with
a single command.

Listing 12.7 shows the content of the driver that has been implemented
for the SBC. Comments in the listing indicate the purpose of each SPI
command. At the end of the initialization sequence, messages are printed
to the console for debugging.

Listing 12.7: Function Prototypes and Variables - sbc mc33903.c

1 volatile void sbc_init(void){

2 volatile uint8_t readbyte [10] = { 0 };

3

4 //SET WATCHDOG CONFIGURATION

5 spi_sbc_select (); // Set CS for SBC low(active)
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6 spi_txrx_byte (0 b01001100);

7 spi_txrx_byte (0 b00000001);

8 spi_sbc_deselect (); // Set CS for SBC high(deactive)

9

10 delay_ms (1);

11

12 // ENABLE INTERNAL 5V SUPPLY TO CAN TRANSCEIVER

13 spi_sbc_select (); // Set CS for SBC low(active)

14 readbyte [0] = spi_txrx_byte (0 b01011110);

15 readbyte [1] = spi_txrx_byte (0 b00001000);

16 spi_sbc_deselect (); // Set CS for SBC high(deactive)

17

18 delay_ms (1);

19

20 // SET CAN TRANSCEIVER TO ON

21 spi_sbc_select (); // Set CS for SBC low(active)

22 readbyte [2] = spi_txrx_byte (0 b01100000);

23 readbyte [3] = spi_txrx_byte (0 b11000000);

24 spi_sbc_deselect (); // Set CS for SBC high(deactive)

25

26 delay_ms (1);

27

28 // READ CAN STATUS

29 spi_sbc_select (); // Set CS for SBC low(active)

30 readbyte [4] = spi_txrx_byte (0 b00100001);

31 readbyte [5] = spi_txrx_byte (0 b00000000);

32 spi_sbc_deselect (); // Set CS for SBC high(deactive)

33

34 delay_ms (1);

35

36 //EXIT INIT MODE

37 spi_sbc_select (); // Set CS for SBC low(active)

38 readbyte [6] = spi_txrx_byte (0 b01011010);

39 readbyte [7] = spi_txrx_byte (0 b00000000);

40 spi_sbc_deselect (); // Set CS for SBC high(deactive)

41

42 delay_ms (1);

43

44 // READ MODE

45 spi_sbc_select (); // Set CS for SBC low(active)

46 readbyte [8] = spi_txrx_byte (0 b11011101);

47 readbyte [9] = spi_txrx_byte (0 b10000000);

48 spi_sbc_deselect (); // Set CS for SBC high(deactive)

49

50 // PRINT CONTENT OF MESSAGES

51 debugPrintf (4, "\r\nSBC Initialized. Printing SPI data:\r\n");

52 debugPrintf (4, "MSG1: %x\r\n" ,((readbyte [0]<<8)+readbyte [1]));

53 debugPrintf (4, "MSG2: %x\r\n" ,((readbyte [2]<<8)+readbyte [3]));

54 debugPrintf (4, "MSG3: %x\r\n" ,((readbyte [4]<<8)+readbyte [5]));

55 debugPrintf (4, "MSG4: %x\r\n" ,((readbyte [6]<<8)+readbyte [7]));

56 debugPrintf (4, "MSG5: %x\r\n\r\n",(readbyte [8]<<8)+readbyte [9]);

57 }
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58

59 // Send Refresh Command to SBC Watchdog. Must be sent every 256 ms

60 volatile void sbc_wdt_refresh(void){

61 // REFRESH WDT

62 spi_sbc_select (); // Set CS for SBC low(active)

63 spi_txrx_byte (0 b01011010);

64 spi_txrx_byte (0 b00000000);

65 spi_sbc_deselect (); // Set CS for SBC high(deactive)

66 }

12.3.4 USART Driver

As defined in Section 12.1, a simple way to allow debugging of the software
must be implemented. The hardware implementation addressed this re-
quirement in Section 6.2.5 by implementing an RS-232 interface that may
be used as a debug console for the unit. A driver is, however, required to
utilize the potential of this console.

ASF also provides a library to redirect input and output from the standard
stdio library, to the buffers USART controller. In this way functions,
such as printf() and scanf(), may be used to correspondingly write or
read strings of data from the interface. A specific library for the CCU
has however been implemented with some useful functions. This library is
shown in Listing 12.8.

The debugPrintf() function is a wrapper function for the regular printf()
function of the stdio library. This function allows the programmer to define
a debug level for each print command. Only commands with a debug level
higher or equal to the DEBUG_LEVEL constant will be printed.

Listing 12.8: Function Prototypes and Variables - ccu usart.h

1 #define DEBUG_LEVEL 4

2

3 // Initialize USART with predef. properties and redirect stdio

4 void ccu_usart_init(void);

5

6 // Calls ’printf ()’ if define DEBUG_LEVEL > argument debugLevel

7 void debugPrintf(uint8_t debuglevel , const char* format , ...);
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Figure 12.4: Overview of can messages used by the CES system

12.4 CAN Message Handling

As described in Section 12.2.2, freeRTOS supports the implementation of
message queues. This feature has been particularly useful for handling
reception of messages in the CCU. Figure 12.4 shows an overview of the
messages that are used by the CES system. As CAN be seen from the
figure, several different types of messages will have to be handled by the
CCU.

A message queue has been implemented for each message type. Once
a message is received, the implemented callback for the CAN controller
function adds the message to the corresponding message queue. Figure 12.6
shows gives a graphical illustration of the message queues implemented.
An extract of the callback function, showing the handling of a sensor data
message, is shown in Listing 12.9.

Listing 12.9: Excerpt of CAN1 callback function - main.c

1 // CALLBACK FUNCTION FOR CAN1 CONTROLLER

2 volatile void can_out_callback_channel1(U8 handle , U8 event){

3

4 // Check if message is sensor data message

5 if (handle == ch1_sensor_rx_msg.handle){

6 // Read message to buffer
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7 ch1_sensor_rx_msg.can_msg ->data.u64 = can_get_mob_data (1,handle

).u64;

8 ch1_sensor_rx_msg.can_msg ->id = can_get_mob_id (1,handle);

9 ch1_sensor_rx_msg.dlc = can_get_mob_dlc (1,handle);

10 ch1_sensor_rx_msg.status = event;

11

12 // If message has correct length , add to queue

13 if(ch1_sensor_rx_msg.dlc == 3){

14 xQueueSendToBackFromISR(ch1_sensor_rx_receivequeue ,

ch1_sensor_rx_msg.can_msg , NULL);

15 }

16

17 // Prepare for receiving new message

18 can_rx(1,

19 ch1_sensor_rx_msg.handle ,

20 ch1_sensor_rx_msg.req_type ,

21 ch1_sensor_rx_msg.can_msg);

22 }

23 // REST OF FUNCTION OMMITTED FROM EXAMPLE!

24 }

12.5 CCU Tasks

To utilize the potential of freeRTOS, the system has been divided into
multiple tasks. This way, the various functions of the CCU may be executed
independently of each other. Figure 12.5 shows an overview of the tasks
that have been implemented. Below follows a description of each of the
tasks.

12.5.1 Management Task

The Management Task does, as the name indicates, manage the operation of
the Central Controller Unit, and the CES system as a whole. This includes
the processing of commands and messages from the dashboard. Monitoring
of the state messages from the WCUs has also been implemented in this
task. Figure 12.6a the message queues implemented for reception of CAN
messages in this task.

A timer has been implemented for monitoring each WCU. Status messages
from the WCUs are registred continously. Every time a message is received,
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Figure 12.5: Overview of tasks on the CCU

the timer is reset. If a timer expires, the system is put into an error state,
according to the description in Section 12.2.1. The management task also
transmits the status messages of from the CCU. The state of the system,
as well as any error flags from the WCUs, will be sent in these messages.

12.5.2 Controller Task

The Controller Task implements a framework for execution of the main
controller algorithm of the CES system. The controller algorithm is
executed with a fixed period, which for testing purposes has been set to
10ms. After each iteration of the control algorithm, the task will transmit
CAN Setpoint Control Messages to the Wheel Controller Units, as defined
in Section 11.6. Program code for the task function vControllerTask()

is shown in Appendix C.1.2. Furthermore, the controller loop function will
be studied in Section 12.6.1.

12.5.3 Sensor Receive Task

As defined in the requirements for the CCU, the unit must be capable of
efficiently processing sensor data that is received on the Sensor Can Bus.
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Figure 12.6: Reception of CAN messages for system threads

A separate task has therefore been defined for this purpose. As opposed to
the controller task and the management task, that should be executed with
a fixed period, the sensor receive task should process incoming messages
as quickly as possible. For testing purposes, the period of this function has
nevertheless been limited to 1ms. Figure 12.6b shows the flow of sensor
data messages received from the ECU and the CAN sensor modules. Two
queues have been implemented to handle the reception of these messages.

Each queue is read once for every time the task is executed, to achieve a
predictable execution time. Assuming that the sensor data messages are
sent periodically, the rate of these messages for each message type assigned
to a queue is limited by equation 12.1.

fmaxmsg =
1

Ptask ·Nmsg
=

1

Nmsg
Khz (12.1)

Where Ptask and Nmsg is respectively the period of the task, and the number
of messages assigned to the queue. As was seen in Figure 12.6b, each queue
was assigned with two message types, giving a threshold of 500Hz each.
This should be sufficient given the requirements in Section 12.1.

118



12.6. CCU APPLICATION

12.6 CCU Application

The previous sections of this chapter has presented the drivers and frame-
work necessary to execute the main controller algorithm for the CES
system. The development of a supervisory control algorithm has not been
part of this assignment. However, work done by other team members of
Revolve has given a prototype algorithm that can be used for evaluating
the performance of the system. This section will give a brief introduction
to the control algorithm that has been implemented.

12.6.1 Supervisory Controller

A library with several functions has been implemented for managing
the Main Controller of the CES system. Prototypes of the applicable
functions are shown in Listing 12.10. Two of these functions are of par-
ticular importance. The function ccu_controller_loop() is executed
periodically to generate new setpoints for the wheel controller units. The
ccu_controller_init() is used to initialize the controller with a particu-
lar mode.

Listing 12.10: Function prototypes for CES main controller -
ccu controller.h

1 // Get the current mode of the controller

2 int8_t ccu_controller_getControlMode(void);

3 // Initialize the controller , or change mode

4 void ccu_controller_init(uint8_t controllerMode);

5 // Update static settings for MANUAL mode

6 void ccu_controller_changeStaticParam(uint8_t position , uint16_t

damperParameter);

7 // Execute controller loop

8 void ccu_controller_loop(void);

The prototype controller algorithm implemented for the CES system does
not implement a closed loop controller. Instead, fuzzy logic has been used
to determine certain known states of the vehicle. This has been done to
achieve a system that may be easily tuned, and tested. The implemented
vehicle-states are shown in Listing 12.11.
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Optimal values for all damping parameters within a state have been calcu-
lated using suspension simulations. These predefined damping coefficients
have been implemented in the array ccu_damper_coeff_setpoints. Once
a coefficient has been determined from the vehicle-state array, it must be
converted to a position reference for the wheel controller. This is done
using the function damper_compression_coeff_to_position(). The out-
put variables are stored in a data structure that is read by the Controller
Task. The conversion function uses a conventional lookup table to convert
between the ranges of values.

Listing 12.11: Fuzzy logic evaluation of vehicle state - ccu controller.c

1 // Begin with default state STRAIGHT

2 VehicleState_t currentVehicleState = STRAIGHT;

3

4 if (ccu_sensorValues.gearSignal){

5 currentVehicleState = GEAR_SHIFT;

6 }

7 if(ccu_sensorValues.brakePressure > BRAKE_PRESSURE_THRESHOLD){

8 currentVehicleState = BRAKING;

9 }

10 if(ccu_sensorValues.throttlePosition > THROTTLE_THRESHOLD){

11 currentVehicleState = ACCELERATING;

12 }

13 if(ccu_sensorValues.steeringPosition < RIGHT_TURN_THRESHOLD){

14 currentVehicleState = RIGHT_TURN;

15 }

16 if(ccu_sensorValues.steeringPosition > LEFT_TURN_THRESHOLD){

17 currentVehicleState = LEFT_TURN;

18 }

19

20 // Set damping coefficients to output struct

21 ccu_controlVariable_output.flCompression =

damper_compression_coeff_to_position(ccu_damper_coeff_setpoints

[currentVehicleState ][0]);

22 // Following lines omitted ...
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13
Wheel Controller Software

”Computers are like Old Testament gods; lots of rules and no
mercy.”

- Joseph Campbell

13.1 Requirements

13.1.1 Valve Control

The Wheel Controllers are responsible for actuation of the damper valves.
A PID controller must be implemented to allow adjustment of these
valves. Simulations by the team members responsible for the main control
algorithm has verified that the cycle time of the PID controller must be
2ms at a minimum, to achieve required bandwidth and response time for
the main control algorithm to perform correctly.

To implement a PID controller, the Wheel Controller Unit must also be
able to read values from the angular sensors. Generation of PWM signals
is also required to drive the H-bridge implemented in the circuit. As the
angular sensor is only absolute within one rotation, the WCU must be able
to calibrate the position of the valve once it is powered up.
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13.1.2 Reception of Control Signals

The WCUs do not implement a controller for the adaptive suspension
themselves, but are dependant on receiving setpoints from the Central
Controller Unit. The WCUs are also dependant on monitoring the state
of the CCU, to determine which state they should be in. The reception
of messages must be implemented according to the definitions given in
Chapter 11.

13.1.3 Error Detection

Like the CCU, the Wheel Controller Units must also participate in error
detection for the system. If a WCU fails to receive the unit state messages
sent from the CCU, it should enter an error state. The WCUs must also
send periodical unit state messages to the CCU.

13.1.4 Fail-Safe

As described in the top level requirements, the CES system must imple-
ment fail-safe functionality. The Section 13.1.3 describes how the Wheel
Controller Unit may detect an error in the system. If the unit goes into
an error state, it is important that the car will behave in a predictable
manner. All damper control must be suspended. To exit the error state,
the system should first have to be disabled.

13.1.5 Bootloading from CAN

The wheel controller units should be placed inside a sealed enclosure
mounted on each damper. It may therefore be cumbersome to access the
normal programming port of the unit. To avoid this issue, a boot loader
should be implemented. While the prestudy suggested that the WCUs
should download their firmware from the CCU, this is deemed to require
too much effort. The bootloader should therefore implement a bootloader
supporting Atmel Flip, as descibed in [23].
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13.2 Software architecture

13.2.1 Big-While

The software of the Wheel Controller Unit is significantly less complex than
for the Central Controller Unit. Its main task is to run a PID controller for
each valve of the damper. Execution of the controllers should happen with
a fixed period. Reading of valve position and application of new control
output to the motors is done every time the controller loop is executed.

In addition to the valve controller, the WCU must respond to and send
CAN messages which should be handled as quickly as possible. Given these
requirements, it was not found the usage of an operating system could
not be justified. The prestudy therefore suggested a traditional big-while
architecture, which have been adopted for this system.

The big-while structure has been centred around the main.c file of the
system. Figure 13.1 shows the top level structure of the WCU software.

Wheel Controller Main 
wheel_controller_main.c 

State Manager 
statemanager.c 

SPI Driver 
wcu_spi.c 

CAN Driver 
wcu_can.c 

Motor Controller Driver 
motorcontroller_mc33932.c 

PID Controller 
pid_controller.c 

Piher Encoder Driver 
piher_encoder.c 

System Basis Chip Driver 
statemanager.c 

getUnitState() 
updateUnitState() 

spi_init() 

spi_rxtx_byte() spi_rxtx_byte() 

motor_init() 
motor_A_setspeed() 
motor_B_setspeed() 
motor_enablePSC() 
motor_disablePSC() 

wcu_can_init() 

PIDController_Init() 
PIDController_GetPosition() 
PIDController_InitAngle() 
PIDController_TimerEnable() 
PIDController_TimerDisable() 
PIDController_SetTimerInterval 

encoder_spi_init() 

encoder_read_value() sbc_spi_init() 
sbc_init() 
sbc_wdt_refresh() 

CAN Library 
can_lib.c 

can_get_status() 
can_cmd() 

Figure 13.1: Top level structure of WCU software
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13.2.2 State Management

The Wheel Controller Units will adopt the same states as was described in
Section 12.2.1 for the Central Controller Unit. Please refer to this section
for further details. Unit State Messages will be transmitted from the CCU
to the WCUs as indicated in Section 11.5.

13.3 WCU Drivers

13.3.1 SPI Driver

SPI communication on the 8-bit AVR architecture is done simply by writing
and reading the SPDR register of the microcontroller. Before the interface
can be used there is, however, a need to configure the interface with the
desired configuration. Te be able to reuse drivers for SPI components from
the Central Controller Unit, it was also desirable to implement a simple
driver for the SPI interface. Listing 13.1 shows the function prototypes for
this driver. As can be seen, the receive and transmit functions are identical
to those shown in Section 12.3.2.

Listing 13.1: Function Prototypes and Variables - wcu spi.h

1 // Initialize SPI channel with predefined configuration.

2 void spi_init ();

3

4 // Transmit single byte on SPI

5 volatile uint8_t spi_txrx_byte(uint8_t sendbyte);

6

7 // Transmit AND read single byte on SPI

8 volatile void spi_tx_byte(uint8_t sendbyte);

13.3.2 Motor Driver

A dual H-bridge chip was chosen to drive the DC motors used for valve
actuation in the Wheel Controller Unit. The H-bridge was paired with the
so-called power stage controller of the ATmega64M1 microcontroller. The
PSC is in many ways identical to a conventional counter, so the output
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of the PSC may be used to generate a PWM signal. To allow simple
usage of the motor driver circuitry, a library has been implemented. Two
PSCs, one for each motor, has been used. Each PSC has implemented two
outputs that has been assigned to forwards and reverse operation of one
motor. Figure 13.2 shows the operation cycle of a PSC in centred mode.
This implies that the counter is alternating between incrementation and
decrementation.

132ATmega16M1/32M1/64M1 [DATASHEET]
8209E–AVR–11/2012

17.5.3.2 Center Aligned mode
In center aligned mode, the center of PSCOUTnA and PSCOUTnB signals are centered.

Figure 17-6. PSCOUTnA & PSCOUTnB basic waveforms in Center Aligned mode.

On-Time 0 = 2 × POCRnSAH/L × 1/Fclkpsc

On-Time 1 = 2 × (POCRnRBH/L - POCRnSBH/L + 1) × 1/Fclkpsc

Dead-Time = (POCRnSBH/L - POCRnSAH/L) × 1/Fclkpsc

PSC Cycle = 2 × (POCRnRBH/L + 1) × 1/Fclkpsc

Note: Minimal value for PSC Cycle = 2 × 1/Fclkpsc.

Note that in center aligned mode, POCRnRAH/L is not required (as it is in one-ramp mode) to control PSC Output
waveform timing. This allows POCRnRAH/L to be freely used to adjust ADC synchronization. See “Analog syn-
chronization” on page 138.

On-time 1

On-time 0

PSCOUTnA

PSCOUTnB

PSC cycle

Dead-time

On-time 1

Dead-time

PSC counter
POCRnRB

POCRnSA

POCRnSB

0

Figure 13.2: Cycle of Power Stage Controller [16]

The register POCRnRB adjusts the compare value at which the counter will
start decrementing. Registers POCRnSA and POCRnSB adjust the compare
value at which the outputs will be toggled. This gives the following formulas
for computing the PSC duty cycle.
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Duty cycle PSCOUTnA =
2 · POCRnSA

2 · (POCRnRB + 1)
(13.1)

Duty cycle PSCOUTnB =
POCRnRB− POCRnSB + 1)

2 · (POCRnRB + 1)
(13.2)

Cycle time PSCn =
2 · (POCRnRB + 1)

fpscclk
(13.3)

The datasheet of the H-bridge[17] has a specified maximal PWM frequency
of 11KHz. A value of 8KHz was chosen for the PWM frequency for
the motors. This could conveniently be achieved using the CPU clock
with no scaling and POCRnRB = 1000. Given the above equations, range
of the values PSCOUTnA and PSCOUTnB will be (−1000→ +1000). Listing
13.2 shows the program code the the H-bridge library. The functions
motor_(A/B)_setspeed() are used to set speeds for the motors. Functions
to enable, disable, and initialize the motor controller circuitry has also
been implemented.

Listing 13.2: Motor control library - hbridge mc33932.c

1 // Set speed for motor A

2 void motor_A_setspeed(int16_t speed){

3 if(speed >1000){

4 speed = 1000;

5 } else if(speed < -1000){

6 speed = -1000;

7 }

8 POCR0SA = fmax(0,speed);

9 POCR0SB = 1001+ fmin(0,speed);

10 }

11

12 // Set speed for motor B

13 void motor_B_setspeed(int16_t speed){

14 if(speed >1000){

15 speed = 1000;

16 } else if(speed < -1000){

17 speed = -1000;

18 }

19 POCR2SA = fmax(0,-speed);

20 POCR2SB = 1001+ fmin(0,-speed);

21 }

22

23 // Initialize PSC with predefined settings

24 void motor_init(char en_a , char en_b){
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25 // Activate PSC0

26 DDRB |= (1 << PORTB7); // Set PWM ports to output PSCOUT0B

27 DDRD |= (1 << PORTD0); // Set PWM ports to output PSCOUT0A

28 DDRB |= (1 << PORTB2); // Set ENABLE ports to output

29 DDRC |= (1 << PORTC4); // Set DISABLE ports to output

30 PORTC &= ~(1 << PORTC4); // Set DISABLE signal low

31

32 // Activate PSC2

33 DDRB |= (1 << PORTB0); // Set PWM ports to output PSCOUT2A

34 DDRB |= (1 << PORTB1); // Set PWM ports to output PSCOUT2B

35 DDRC |= (1 << PORTC7); // Set ENABLE ports to output

36 DDRB |= (1 << PORTB4); // Set DISABLE ports to output

37 PORTB &= ~(1 << PORTB4); // Set DISABLE signal low

38

39 // Disable both outputs

40 POC = 0b00000000;

41 if(en_a){

42 PORTB |= (1 << PORTB2); // Set ENABLE signal to H-bridge

43 POC |= 0b00000011; // Enable PSC outputs 0A & 0B

44 }

45 if(en_b){

46 PORTC |= (1 << PORTC7); // Set ENABLE signal to H-bridge

47 POC |= 0b00110000; // Enable PSC outputs 2A & 2B

48 }

49

50 PSYNC = 0b00000000; // Set no sych. for ALL outputs

51 POCR0RA = 0;

52 POCR2RA = 0;

53 POCR_RB = 1000;

54

55 PCNF = 0b00011100; // No update lock , select centered -mode , and

outputs active high

56 PMIC0 = 0b10100000; // Disable all inputs to PSC

57 PMIC1 = 0b10100000;

58 PMIC2 = 0b10100000;

59 PCTL = 0b00000000; // CLK is FCPU , no scaling

60 }

61

62 // Enable motor outputs

63 void motor_enablePSC(void){

64 PCTL |= 0b00000001; // Enable PSC

65 motor_A_setspeed (0);

66 motor_B_setspeed (0);

67 }

68

69 // Disable motor outputs

70 void motor_disablePSC(void){

71 PCTL &= ~0 b00000001; // Disable PSC

72 }
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13.3.3 System Basis Chip Driver

As described in Section 13.3.1, identical libraries for SPI communication
has been implemented for the Wheel Controller Units as for the Central
Controller Unit. The usage of the SBC in the WCUs is also equal to that
in the CCU. The SBC driver for the CCU, shown in Listing 12.7, could
therefore be reused for the WCUs by only removing the printout to console.

13.3.4 Piher Encoder Driver

The angular sensors are one of the most important parts of the Wheel
Controller Units. Although there were several difficulties with the hard-
ware implementation of the sensors, their implementation in software was
relatively easy. Figure 13.3 shows the frame for reading an angle over SPI.
As an inverting transistor has been used in the logic circuit described in
Section 7.2.4, the data bits sent on MOSI had to be be inverted. The angle
of the sensor is transmitted in the third and fourth byte of the frame. The
fifth and sixth bytes transmit the same data with bitwise inversion. It
is, however, not necessary to transmit bytes 5 to 10 of the frame. The
implemented driver therefore stops transmission after the angle data has
been received, to reduce utilization of the SPI bus. The angle value is
encoded as a 12-bit unsigned value, however, only the range from 10% to
90% is used. The function encoder_read_value() will therefore scale the
value to the range of a 16-bit unsigned integer to simplify further use.

Listing 13.3: Function Prototypes - piher encoder.h

1 // Initialize SPI Channel for Using Piher Encoder.

2 void encoder_spi_init(void);

3 // Read Encoder Value by SPI. Value is scaled from 0-2^16

4 volatile int16_t encoder_read_value(uint8_t chan);

13.3.5 CAN Communication

The built in CAN controller of the ATmega64M1 is by far its most advanced
hardware module. A library was therefore needed to use this controller
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Figure 13.3: SPI frame for Piher MTS-360 encoder

efficiently. As will be described in Section 13.6, Atmel has published a
CAN bootloader compatible with the ATmega64M1. The source code for
the bootloader also includes a simple CAN driver, that has been adapted
for several earlier projects in Revolve. To minimize the development time,
this driver has been adopted for this project. A detailed description of this
library will not be given, as it has not been developed for this thesis. A
top level introduction will, however, be given to familiarize the reader with
it’s usage.

Atmel CAN Library

The Atmel CAN library has a similar structure to that provided by the
ASF for the UC3C. A so called command structure is used to control
the transmission or reception of a message. The st_cmd_t structure is
shown in Listing 13.4. Different command types are defined in can_cmd_t,
such as CMD_TX_DATA for sending a can message with data payload, and
CMD_RX_DATA_MASKED for receiving a data CAN message with a defined
identifier mask. The command structure also includes a pointer to a data
array where the data content is stored.

The function can_cmd (st_cmd_t *) is used to execute the command
defined in the structure. No interrupts have been implemented for this
simple library.
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Listing 13.4: Function Prototypes and Variables - can lib.h

1 // Return values for can_cmd () function.

2 #define CAN_CMD_REFUSED 0xFF

3 #define CAN_CMD_ACCEPTED 0x00

4

5 // Return values for can_get_status function.

6 #define CAN_STATUS_COMPLETED 0x00

7 #define CAN_STATUS_NOT_COMPLETED 0x01

8 #define CAN_STATUS_ERROR 0x02

9

10 // This enumeration is used to select an action for a specific

message

11 typedef enum {

12 CMD_NONE ,

13 CMD_TX ,

14 CMD_TX_DATA ,

15 CMD_TX_REMOTE ,

16 CMD_RX ,

17 CMD_RX_DATA ,

18 CMD_RX_REMOTE ,

19 CMD_RX_MASKED ,

20 CMD_RX_DATA_MASKED ,

21 CMD_RX_REMOTE_MASKED ,

22 CMD_REPLY ,

23 CMD_REPLY_MASKED ,

24 CMD_ABORT

25 } can_cmd_t;

26

27 // This union defines a CAN identifier

28 typedef union{

29 U32 ext;

30 U16 std;

31 U8 tab [4];

32 } can_id_t;

33

34 // This structure allows to define a specific action on CAN network

.

35 typedef struct{

36 U8 handle; // Handle to slot in MOB/Mailbox

37 can_cmd_t cmd; // Command type

38 can_id_t id; // ID of CAN message in pt_data

39 U8 dlc; // DLC of CAN message in pt_data

40 U8* pt_data; // Pointer to array of message data bytes

41 U8 status; // Message status

42 can_ctrl_t ctrl; // Message control variables

43 } st_cmd_t;

44

45 // --- Function declarations

46

47 // Initialize can controller in given mode.

48 extern U8 can_init(U8 mode);
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49

50 // Issue a command to the CAN controller. Returns state.

51 extern U8 can_cmd (st_cmd_t *);

52

53 // Get status for previous command from the CAN controller.

54 extern U8 can_get_status (st_cmd_t *);

WCU CAN Driver

To allow reception of the various CAN messages defined in Chapter 11,
several command structures has been defined. These are shown in Listing
13.5. As we can see, the required number of message handlers has been
drastically reduced from the CAN driver of the Central Controller Unit. A
function for simply initializing the CAN interface has also been implemented
in this library.

Listing 13.5: Function Prototypes and Variables - wcu can.h

1 // --- VARIABLE DEFINITIONS

2 U8 cmd_msg_rx_data [8];

3 U8 ccustate_msg_rx_data [8];

4 U8 wcu_msg_data [8];

5

6 st_cmd_t cmd_msg_rx;

7 st_cmd_t ccustate_msg_rx;

8 st_cmd_t wcu_msg_tx;

9

10 // --- FUNCTION PROTOTYPES

11 // Initialize CAN controller with predefined settings

12 void wcu_can_init(uint8_t thisunit);

13.3.6 Timer Driver

To achieve accurate periodic execution of the controller algorithm, a hard-
ware timer may be used. The ATmega64M1 has features a 16-bit hardware
timer that has been used for this application. The timer has been run in
a so called CTC mode – Clear Timer on Compare. This means that the
counter is reset every time the timer reaches its compare value. A simple
library has been implemented to control the timer. Function prototypes
are shown in Listing 13.6.
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Listing 13.6: Function Prototypes and Variables - wcu timer.h

1 void WCUTimer_Enable(void); // Enable timer operation

2 void WCUTimer_Disable(void); // Disable timer operation

3 // Set given interval(ms) for timer

4 void WCUTimer_SetInterval(uint16_t interval);

13.4 WCU Application

13.4.1 State Manager

A library has been implemented to manage the state of each Wheel Con-
troller Unit. The library includes functions to set and read the state if the
WCU. The states of the WCU has been defined according to Table 11.5.
The library will also handle enabling and disabling of PWM signals to the
DC-motors, depending on the chosen mode. Program code for the library
is shown in Listing 13.7.

Listing 13.7: Function Prototypes and Variables - statemanager.c

1 // Local variable to store current state

2 static int8_t unitState = -1;

3

4 // Set new state for unit

5 void updateUnitState(int8_t newState){

6 if(newState != unitState){

7 pid_Reset_Integrator (& pidData [0]);

8 pid_Reset_Integrator (& pidData [1]);

9 // Update with new state. If system is in ERROR , only allow

change to DISABLED

10 if ( (unitState != CONTROLMODE_ERROR) || (unitState ==

CONTROLMODE_ERROR && newState == CONTROLMODE_STANDBY) ){

11 unitState = newState;

12 }

13 // System is changing to a normal state

14 //(DISABLED enables PSC temporarily: will be disabled in MAIN

LOOP once position is reached)

15 if( (unitState == CONTROLMODE_STANDBY) || (unitState ==

CONTROLMODE_MANUAL) || (unitState == CONTROLMODE_OPERATIVE) )

{

16 motor_enablePSC ();

17 }

18 // If the system is in ERROR , disable motors immediately

19 else if(unitState == CONTROLMODE_ERROR){
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20 motor_disablePSC ();

21 }

22 }

23 }

24

25 // Read current unit state

26 int8_t getUnitState(void){

27 return unitState;

28 }

13.4.2 PID Controller

The PID controllers are arguably the most important feature of the Wheel
Controller Software. This section will cover how these PID controllers have
been implemented in software, as well as any supporting libraries.

The implementation of the PID controller itself has been done using a library
published by Atmel, for their 8-bit microcontrollers[24]. This has been
done to reduce development time for the system. Some modifications to the
code has, however, been necessary. As this library has not been developed
for this thesis, the focus of this section will lie on the modifications done
to the library, and the challenges of implementing a PID controller on a
8-bit architecture.

Atmel PID Library

One of the main challenges of implementing a PID controller on the AVR
architecture is its limitation in variable resolution. Floating point perfor-
mance on 8-bit microcontrollers is very limited, and the implementation
must consequently be limited to integers. The Atmel PID library is imple-
mented using mainly 16-bit singed integer values. This was deemed to be
sufficient angular resolution for the WCU.

Listing 13.8 shows declaration of necessary structures and function proto-
types for the Atmel PID library. The structure pidData_t is used to store
all parameters for one PID controller. This includes tuning constants as
well as previous system states for computation of integral and derivative
terms.
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The operation of the controller is managed by the use of only three func-
tions. The function pid_Init() is used to initialize the values of the
pidData_t structure for the applicable controller. New output variables
are generated by running the PID loop function pid_Controller(). The
function pid_Reset_Integrator() may be used to zero the error sum, if
an integral term is used.

The damper valves have proven themselves to require more force to be
turned in the closing direction, than in opening direction. This made
tuning of the standard Atmel PID controller difficult. A logic case was
therefore implemented to allow different proportional gains to be applied
for positive and negative errors.

Listing 13.8: Function Prototypes and Variables - pid.h

1 // --- CONSTANT DEFINTIONS

2 // Scaling factor for PID variables

3 #define SCALING_FACTOR 10

4

5 // Treshold to neglige small output values

6 #define CONTROLTRESHOLD_DISABLE 0xF0

7

8 // Maximum value of variables

9 #define MAX_INT INT16_MAX

10 #define MAX_LONG INT32_MAX

11 #define MAX_I_TERM (MAX_LONG / 2)

12

13 // --- VARIABLE DEFINITIONS

14 // Setpoints and data used by the PID control algorithm

15 typedef struct{

16 int16_t lastProcessValue; //! Last process value(for D-term)

17 int32_t sumError; // Summation of errors(for I-term)

18 int16_t P_Factor_Pos; // The Proportional tuning constant (/

SCALING_FACTOR)

19 int16_t P_Factor_Neg; // The Proportional tuning constant (/

SCALING_FACTOR)

20 int16_t I_Factor; // The Integral tuning constant (/

SCALING_FACTOR)

21 int16_t D_Factor; // The Derivative tuning constant (/

SCALING_FACTOR)

22 int16_t maxError; // Maximum allowed error (overflow

protection)

23 int32_t maxSumError; // Maximum allowed sumError

24 } pidData_t;

25

26 // --- FUNCTION PROTOTYPES

27 void pid_Init(int16_t p_factor_pos , int16_t p_factor_neg , int16_t

i_factor , int16_t d_factor , pidData_t *pid);
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28 int16_t pid_Controller(int16_t setPoint , int16_t processValue ,

pidData_t *pid_st);

29 void pid_Reset_Integrator(pidData_t *pid_st);

WCU PID Library

The WCU PID library has been implemented to define the necessary data
structures and abstractive functions for usage of the Atmel PID library.

Listing 13.9 shows the header file for this library. As can be seen, this file
defines the tuning parameters that are applied when the PID controller
is initialized. Furthermore, the array pidDefaultPosition is used to
define the static position that unit will assume when it is in standby mode.
Finally, a function void PIDController_Init() has been implemented
to initialize both PID controllers with the defined settings.

Listing 13.9: Function Prototypes and Variables - pid controller.h

1 // --- CONSTANT DEFINITIONS

2 // P, I and D parameter values (Different K_P for positive and

negative error)

3 // Right controller parameter values

4 #define R_K_P_POS 8

5 #define R_K_P_NEG 12

6 #define R_K_I 0 // Only P-Controller

7 #define R_K_D 0

8 // Right controller parameter values

9 #define L_K_P_POS 8

10 #define L_K_P_NEG 12

11 #define L_K_I 0 // Only P-Controller

12 #define L_K_D 0

13

14 // --- VARIABLE DEFINITIONS

15 static const uint16_t pidDefaultPosition [4][2] = { {21417 , 19179} ,

{21417 , 19179} , {21417 , 19179} , {21417 , 19179} };

16

17 // Struct for controller variables

18 typedef struct{

19 int16_t referenceValue;

20 int16_t measurementValue;

21 int16_t controlInput;

22 } pidControlVariables_t;

23

24 // Variables for WCU PID controllers

25 extern pidControlVariables_t controlVariables [2];
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26

27 // Parameters for regulator

28 extern pidData_t pidData [2];

29

30 // Global flags to indicate PID timeout

31 extern char timerflag;

32 extern uint8_t controllerloop_cnt;

33

34 // --- FUNCTION PROTOTYPES

35 void PIDController_Init(void);

36 int16_t PIDController_GetPosition(uint8_t chan);

37 int16_t PIDController_ValveGotoMax(uint8_t chan);

38 void PIDController_InitAngle(uint8_t chan);

Angle Calculation

As described in Section 3.1.1 the valves of the Öhlins TTX25 damper
require 4.5 turns rotation to be adjusted from fully closed, to fully open.
The Piher MTS-360 angular sensor is only absolute within one rotation. A
mechanism to calibrate and calculate the total angle has therefore been
implemented in the WCU PID library.

Listing 13.10 shows the function to read the angle of the valve. As can
be seen, the encoder_read_value() function from the encoder driver is
used to get the angular value from the sensor. To keep track of the actual
angle of the valve, a turn counter has been implemented. If the angular
value of the sensor wraps around between two samples, a turn detected.
This is done using the principle shown in Figure 13.4. If a transition is
detected from the red to the green area, or vice versa, the turn counter is
respectively incremented or decremented.

The expression evaluated for calculating the position of the valve is at the
bottom of Listing 13.10. As the the angular sensor driver uses the range
of a unsigned 16-bit integer, and the PID controller uses singed 16-bit
integers, the value must be scaled. For simplicity, the value range of the
PID controller is scaled to 5 rounds in both positive and negative direction.

Listing 13.10: Reading of valve position - pid controller.c

1 int16_t PIDController_GetPosition(uint8_t chan)

2 {
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0° 
 

Figure 13.4: Wraparound areas for valve turn counter
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FOUND END 

Figure 13.5: Calibration routine for Wheel Controller Unit valves

3 // Read encoder value with calibration parameters

4 uint16_t temp = 2*( uint16_t)encoder_read_value(chan) - 2*(

uint16_t)angleData[chan]. calibrationAngle;

5

6 //... OMITTED LOGIC FOR VALVE COUNTER ...

7

8 return (UINT16_MAX /10)*angleData[chan]. turnCounter + (temp /10);

// Divide by two , and scale for 5 rounds

9 }

Every time power is applied to the WCU, the position of the valve will be cal-
ibrated. The calibration routine for function PIDController_ValveGotoMax()

is shown in Figure 13.5. The calibration is done by running the motor until
the valve is fully closed. The end position is determined by monitoring the
change in angle between each sample. If little change is detected, an end
stop is indicated.

Once the calibration is finished, the function PIDController_InitAngle()
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READ ENCODER VALUE SET ENGINE SPEED CONTROLLER LOOP INIT 

Figure 13.6: Execution sequence for valve controller

may be called to zero the turn counter, and register a turn offset.

13.5 Big-While Loop

As described in Section 13.2.1, a big-while architecture has been adopted
for the Wheel Controller Unit. Figure 13.6 shows the execution sequence
for the valve controller. The controller sequence is executed periodically,
using a hardware timer, as defined in Section 13.3.6.

A heavily reduced version of the main execution loop is shown in Listing
13.11. The structure of execution has, however, been withheld to shown
the overall principle of this function. The big-while loop can be studied in
it’s in its entirety in Appendix C.2.1.

Listing 13.11: Heavily reduced big-while loop - wheel controller main.c

1 // Timer interrupt to signal the execution interval

2 ISR(TIMER1_COMPA_vect){

3 timerflag = 1;

4 TIFR1 = (1 << OCF1A); // clear the CTC flag

5 }

6

7 //...

8

9 int main(void){

10 // System is initialized

11 //...

12 while (1){

13 //Check for CAN messages

14 //...

15 if(timerflag){

16

17 // --- RESET TIMER FLAG ---

18 timerflag = 0;

19

20 // --- GET VALVE POSITION ---
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21 controlVariables [0]. measurementValue =

PIDController_GetPosition(ENC1);

22 controlVariables [1]. measurementValue =

PIDController_GetPosition(ENC2);

23

24 // Actions of other states omitted

25 //...

26 if( (getUnitState () == CONTROLMODE_MANUAL) || (getUnitState ()

== CONTROLMODE_OPERATIVE) ){

27 // --- RUN PID LOOP ---

28 controlVariables [0]. controlInput =

29 pid_Controller(controlVariables [0]. referenceValue ,

controlVariables [0]. measurementValue , &pidData [0]);

30 controlVariables [1]. controlInput =

31 pid_Controller(controlVariables [1]. referenceValue ,

controlVariables [1]. measurementValue , &pidData [1]);

32 }

33

34 // Broadcast unit state message

35 //...

36 }

37

38 // --- CHECK IF PWM PERIOD IS FINISHED

39 if ( (PIFR &(1 << PEOP))==1 ){

40 PIFR |= (1 << PEOP);

41

42 // --- SET NEW MOTOR SPEED ---

43 motor_A_setspeed(controlVariables [0]. controlInput /33);

44 motor_B_setspeed(controlVariables [1]. controlInput /33);

45 }

46 }

47 }

13.6 CAN Bootloader

Section 13.1.5 defined a requirement that a CAN bootloader should be
deployed on the Wheel Controller Units. Atmel has published a finished
solution in [23] that may be used for this purpose. This bootloader has
been customized for use in several previous development in Revolve, and
could therefore be deployed with only minor modifications to the WCUs.
This section will give an introduction to the Atmel CAN Bootloader and
present how it has been deployed on this system.
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13.6.1 Atmel CAN Bootloader

The Atmel CAN Bootloader allows the program of 8-bit AVR microcon-
trollers to be reprogrammed using CAN bus. This is particularly useful for
units that are mounted in areas with poor accessibility. All units connected
to the CAN bus may be programmed individually. The Atmel CAN Boot-
loader imitates the ISP protocol normally used by regular programming
adapters.

Once device is powered up, the processor starts execution of the bootloader.
The bootloader will wait for a defined time for a CAN command to indicate
the start of a flash session. If no flash session is initiated the CPU will
jump to execution of the stored application.

13.6.2 System Basis Chip Flash Mode

The watchdog of the System Basis Chip used in this unit must be reset every
256ms during execution. This may not be possible during programming
and debugging of the unit. To get around this problem, the SBC may be
put into a so called flash mode. This extends the period of the watchdog
up to 30 seconds.

As no previous devices had required this functionality from the bootloader,
it had to be implemented for the WCUs. The selection of flash mode is
done with an SPI command, such as the remaining configuration of the
System Basis Chip. The driver implemented for configuration of the CCU
and WCU applications,as shown in 12.3.3, could therefore be reused with
minor modifications.

13.6.3 Atmel FLIP

Obviously, some computer software is required to communicate with the
bootloader. This assignment has used the FLIP tool that is available freely
from Atmel. FLIP allows tunnelling of the ISP programming protocol
through both CAN, USB and RS-232. To connect the computer to the
CAN bus an interface, typically a USB to CAN interface, is needed. FLIP
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has implemented support for several of the most popular interfaces on the
market. For this application a PCAN-USB adapter from PEAK-System
has been used. A picture of the adapter is Shown in Figure 6.17. More
details on how the bootloader is configured and used is available in [23].
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14
Discussion on the Software Design

”To err is human - and to blame it on a computer is even more
so.”

- Robert Orben

This part has described the implementation of software for the CES system.
The primary goal for this assignment has been to implement a system
with baseline functionality. It has been important to create a software
framework for the system that may be used for further development of
software on both units.

14.1 Communication Protocol

Chapter 11 presented the design of a communication protocol that could
be used for the system. The requirements that were identified for the
communication protocol has to a large extent been addressed by the
current implementation. Furthermore, the communication protocol that
has been implemented has proven itself to work as intended during testing.

The common addressing protocol that was developed for the system has
undoubtedly simplified the integration of all the systems on the car. Com-
munication between the various systems has been possible without difficulty
as all units has used the same coding of addresses.
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14.2 Central Controller Unit

14.2.1 Evaluation of the Software Implementation

Chapter 12 gave a presentation of the design and implementation of software
on the CCU. This unit has, by far, required the most effort for software
development in the system.

Given the requirements that were identified for this unit it was decided to
use a operating system with support for multiple tasks. While a simpler
and more basic implementation could have been possible, it has been a goal
to use a software design that may easily support additions. The current
program structure also allows the user to modify the controller algorithm
without in-depth knowledge of the remaining system.

Because of the limited time frame for this assignment, functions to im-
plement baseline functionality and testing of these has been prioritized.
Convenience functions such as memory card for storage of log files and
bootloading of software has not been addressed.

Ready-made libraries from the Atmel Software Framework was used exten-
sively throughout the development. This eliminated the need for imple-
mentation of most drivers and abstraction libraries. The documentation
for the ASF libraries are, however, in many cases very limited, and a lot
of time has been lost in the process of trying to understand how libraries
should be used.

As mentioned in the hardware discussion, development using the SBC
has also been somewhat cumbersome. In early development stages the
watchdog had to be disabled, as no driver was yet available. The watchdog
may only be disabled using a hardware connection, which require 8-10V.
Testing with the power supply of the car was therefore not possible with
this connection.
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14.2.2 Further work

There are several issues that may be addressed for future development of
the CCU software. A list follows below.

System Basis Chip

As described in Section 9.1.2, the SBC does add unnecessary complexity of
the system. It should therefore be considered replaced in future hardware
revisions. The UC3C has implemented an internal watchdog timer that
may be used as a substitute.

SD Card

Because of a limited time frame, no software has been implemented for
the SD card. Future developers should consider implementing support for
storing configuration parameters, system logs and loading programs from
the SD card.

CAN Bootloader

Bootloading from CAN bus has proven to be a very valuable tool, during
development of the Wheel Controller Units. A similar bootloader should be
considered for implementation for the CCU, as an alternative to bootloading
from the SD card.

14.3 Wheel Controller Unit

14.3.1 Evaluation of the Software Implementation

In Chapter 13 the implementation of software for the Wheel Controller
Units were presented. The software implemented for these units is signifi-
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cantly simpler, compared to the CCU, and a traditional big-while software
architecture was therefore sufficient for this unit.

Libraries to implement CAN communication and PID control were available
from Atmel. Both libraries has been used with success, and were found to
be easy to use. As the valve of the dampers required more force to be closed,
rather than opened, modifications were done to the standard PID controller.
This allowed different proportional constants to be used for negative and
positive errors. Due to the friction in the valves, a rather large duty cycle
was required for the motors to turn the valve at all. A large proportional
constant therefore had to be used. With such a large P-constant, the
controller was found to work satisfactory as a pure proportional controller.
However, some stationary deviation have had to be tolerated.

Access to program the units on the car was rather poor. The usage of
a bootloader has therefore been invaluable during the late development
phases.

14.3.2 Further Work

There are several issues that may be addressed for future development of
the WCU software. A list is given below.

System Basis Chip

As for the Central Controller Unit, development with the SBC has been
rather cumbersome. Refer to Section 14.2.2 for more information. The
ATmega64M1 also features an internal watchdog timer that may be used
as a substitute.

PID Controller

Due to the limited time frame for this assignment, only basic tuning of the
PID controller done. As presented in the results, the current response of
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the controller is acceptable. However, further tuning of the PID controller
should be able to increase the performance of the system.
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15
Test Results

”The first rule of any technology used in a business is that au-
tomation applied to an efficient operation will magnify the efficiency.
The second is that automation applied to an inefficient operation will
magnify the inefficiency.”

- Bill gates

This section will present procedures and tests that have been conducted
to evaluate the performance of the system. Because of the limited time
frame for the assignment, there has been little time available for testing.
An elementary test of the step response of the Wheel Controller Units is
nevertheless presented below.

15.1 Unit Tests

15.1.1 WCU Setpoint Response Test

To study the response time of an assembled Wheel Controller Unit, a
conventional step response test has been performed. A PEAK System
PCAN-USB interface was used to imitate the Unit State and Setpoint
Control Messages from the CCU. The Wheel Controller Unit was set in
the Operative state while the test was performed. The setpoint values
for rebound and compression were kept constant, before a step response

151



CHAPTER 15. TEST RESULTS

was applied. Figures 15.1a and 15.1b shows plots of the step response, for
respectively an opening and closing valve.
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Figure 15.1: Step responses of WCU PID controller

As can be seen from the plots, both responses show little oscillations,
with the opening valve beeing slightly underdamped. The position values
were scaled to the range of an 8-bit signed integer. The range of the PID
controller set to 5 turns in both positive and negative direction for the
WCU. The step thus represented a change of 5 Turns ∗ 80

128 = 3.125 Turns.
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Opening valve speed 11.2◦/ms
Closing valve speed 5.45◦/ms

Table 15.1: Measured angular speeds for valve adjustment

It is clearly visible from the figures that the response of the opening valve is
significantly faster than for the closing valve. Furthermore, the acceleration
time can be seen as negligible compared to the total adjustment time. The
motors reach a stationary speed in both directions. Stationary angular
speeds, calculated from measurements on the plots, are shown in Table
15.1.

15.2 Evaluation of Test Results

The time frame of the assignment has unfortunately not allowed a lot of
testing to be done. The tests that have been conducted has, however,
shown very positive results so far. The WCUs have been tested in assembly
with the dampers. As was presented in Section 16 the current proportional
controller implemented for the damper has allowed efficient position control
of the valves. The measurements from the WCU setpoint response test
showed that a slightly under-damped response was achieved. An angular
speed of between 5.45◦/ms and 11.2◦/ms was on par with what could be
expected from the motor, given the following nominal motor speed of

1522rpm = 0.254r/ms = 9.132◦/ms
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16
Overall Discussion

”I don’t aspire to be like other drivers - I aspire to be unique in
my own way.”

- Lewis Hamilton, Formula One Driver

16.1 Evaluation of Solutions

Throughout this project, a distributed embedded system for control of an
adaptive suspension system has been designed. The previous prestudy by
the same author had given recommendations for a top level architecture
for the system. The proposed architecture was evaluated to be suitable for
further development.

Perhaps the most important design choice carried over from the prestudy
was the decision to implement a distributed system. The division of the
system into a Central Controller Unit and Wheel Controller Units has
allowed the functionality of the system to be placed throughout the car
– where it is most appropriate. By implementing PID controllers locally
at each wheel, a stable and robust solution has been implemented. It has
also been possible to interconnect the system using a single bus cable, that
could be shared with other systems.

A complete set of prototype hardware has been implemented. The prestudy
had already prepared several suggestions for components that could be
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used for the hardware design. These were to a large degree found to be
appropriate, and used for further development. There was, inevitably,
several modifications necessary to the initial prototypes for them to work
as intended. An updated hardware design was therefore implemented with
modifications that were possible within the time frame of the project. This
design was assembled at SimPro at Løkken Verk, giving a very professional
result. While the quality of the PCBs made locally at the university were
of somewhat varying quality, there has been no fault on the units that
were assembled at SimPro.

The final prototypes of the Wheel Controller Units were able to meet
the external size requirements that applied to the unit. It did, however,
require a lot of work to get a satisfactory hardware design within these
measurements. This difficulty has to a large degree come as a consequence
of the current drawn by the DC motors. This posed additional requirements
for the design, to separate signal and power parts of the circuit. The final
design of the Central Controller Unit was also within the expectations to
size. An enclosure has been purpose designed with help from other team
members of Revolve, and manufactured using 3D printing technology at
the Department of Engineering Cybernetics.

Because of the limited time frame for this assignment it has been necessary
to limit the software implementation to a baseline system. Functions that
have been essential for the system to be working as a whole has been
prioritized, while several more advanced features have been left to future
developers. For the Central Controller Unit this implied that features such
as the SD card interface has not been tested. Requirements to the Central
Controller Unit yielded a decision to use an embedded operating system
to achieve the desired system performance. The program was divided into
several tasks that may be executed concurrently.

To shorten the development time it was chosen to use drivers and libraries
from the Atmel Software Framework when possible. Because of lack in
documentation the provided software did, however, require a lot of work
before intended functionality could be achieved.

For the CCU it has also been of particular interest to develop a framework
that allowed further implementation of the main controller algorithm to be
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done by developers without extensive knowledge of the remaining software.
The division of the program into several tasks has made it possible to
develop this functionality separately from the rest of the system.

As the Wheel Controller Units required significantly simpler software than
the CCU, a traditional big-while architecture was chosen for these units.
Several drivers had to be implemented to create the necessary level of
abstraction from the hardware components. A library provided by Atmel
has been used to implement PID controllers for the wheel controller units.
Some modifications were, however, required to achieve the desired level of
performance.

The restricted access to the dampers was also much helped by the im-
plementation of a bootloader, that allowed the units to be programmed
through CAN bus.

16.2 Further Work

The implemented system has provided Revolve with a prototype system
that may be used for evaluation of on-car performance and concept. As was
discussed in Section 9 there are no critical need for further improvements
of the hardware design, nevertheless there are several details where the
system could benefit from improvement.

The software implementation of this assignment has, as previously indicated,
focused on implementing a baseline functionality for the whole system.
Due to a limited time frame, the performance of the system has, however,
not been studied sufficiently. Further testing of the implemented system to
reveal any potential weaknesses should be assigned top priority for further
development.

There are also several convenient functions such as saving of log data,
bootsloading and unit configuration via the SD card could definitively
simplify the operation of the system. Further enhancements of the system’s
performance should also be simple, given the execution framework and
communication protocol available for both units.
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Conclusion

”Experience: that most brutal of teachers. But you learn, my God
do you learn.”

- C.S. Lewis

This assignment has included the design, implementation and testing of
an embedded system for electronically adjustable suspension system on
a Formula Student racing car. The system has been implemented so
that it may be deployed for testing on Revolve NTNU’s 2013 car – the
KA Aquilo R.

The project started by evaluating the top level system architecture and
corresponding requirements, that had previously been during the prestudy
for the project. A distributed architecture was found to be appropriate for
further development. The decision to use a distributed architecture has
allowed the implementation of a robust solution, with error detection. It
has also been possible to interconnect the system using a single bus cable,
that could be shared with other systems, thus saving weight.

A complete set of prototype hardware has been implemented. The final
prototype designs were produced and assembled at electronics producer
SimPro. These units have proven to be stable hardware prototypes, that
could be used for software development, and installed on the car for
evaluation of performance. Possible improvements in the hardware design
has been noted, for further development.
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Figure 17.1: The 2013 KA Aquilo R

A working software implementation has been implemented for all units,
as well as a messaging protocol that allows all systems of the car to be
communicate.

Requirements to the Central Controller Unit yielded a decision to use an
embedded operating system, to achieve the desired system performance.
The program was divided into several tasks that may be executed concur-
rently. The implemented design has also been designed to accommodate
a more advanced control algorithm for future development. Overall, the
program design of the CCU has given a system that allows work on the
control algorithm to be continued, without extensive knowledge of the
remaining software design.

The requirements to the software of the WCU did not justify the imple-
mentation of an operating system. A traditional big-while architecture
was therefore adopted for the software design of this unit. This allowed a
simple software structure, with stable execution pattern. The performance
of this software has shown itself to allow efficient position control of the
damper valves.

Some elementary testing of the modules has also been done, to verify
the functionality of the system. Although the time frame has limited the
amount of available time for testing, the current results has given promising
indications. Furthermore, experience with the system during development
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has indicated a stable system.

Overall, the implemented system has provided Revolve with a prototype
system, that may be used for evaluation of on-car performance and concept.
Further enhancements of the system’s performance should also be simple,
given the execution framework and communication protocol available for
both units.

Based on these findings it is therefore recommended that the work is
continued by next years team members, by implementing the suggestions
given for further development.
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Appendices
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A
Schematics

A.1 Central Controller Unit Schematics

1. Central Controller Unit - Microcontroller

2. Central Controller Unit - Power Supply

3. Central Controller Unit - Peripherals

4. Central Controller Unit - SD Card Connector
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A.2. WHEEL CONTROLLER UNIT SCHEMATICS

A.2 Wheel Controller Unit Schematics

1. Wheel Controller Unit - Microcontroller

2. Wheel Controller Unit - Power Supply

3. Wheel Controller Unit - H-Bridge
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A.3. WHEEL ENCODER BOARD SCHEMATICS

A.3 Wheel Encoder Board Schematics

1. Wheel Controller Unit - Encoder Board
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B
PCB Layouts

B.1 Central Controller Unit PCB

1. Central Controller Unit - Top Layer

2. Central Controller Unit - Bottom Layer
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B.2 Wheel Controller Unit PCB

1. Wheel Controller Unit - Top Layer

2. Wheel Controller Unit - Bottom Layer
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B.3. WHEEL ENCODER BOARD PCB

B.3 Wheel Encoder Board PCB

1. Wheel Encoder Board - Top Layer

2. Wheel Encoder Board - Bottom Layer
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C
Program code

Complete program code for all software is available in the digital attach-
ments

C.1 Central Controller Unit

C.1.1 ccu can.h

Listing C.1: Function Prototypes and Variables - ccu can.h

1 // Local allocation for MOB buffer in HSB_RAM

2 extern can_msg_t mob_ram_ch0[NB_MOB_CHANNEL] __attribute__ ((

section (".hsb_ram_loc")));

3 extern can_msg_t mob_ram_ch1[NB_MOB_CHANNEL] __attribute__ ((

section (".hsb_ram_loc")));

4

5 // ---------------------------------------------------

6 // CAN Message Definition: Tx Messages

7

8 // CCU periodic status broadcast messages with own ID

9 extern can_msg_t msg_ch0_tx_statusdata_sot;

10 extern can_mob_t ch0_tx_statusdata_msg;

11

12 extern can_msg_t msg_ch1_tx_statusdata_sot;

13 extern can_mob_t ch1_tx_statusdata_msg;

14

15 // Define message to send front damper set points

16 extern can_msg_t msg_ch1_tx_frw_sot;

17 extern can_mob_t ch1_tx_frw_msg;

18
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19 // Define message to send rear damper set points

20 extern can_msg_t msg_ch1_tx_rrw_sot;

21 extern can_mob_t ch1_tx_rrw_msg;

22

23

24 // ---------------------------------------------------

25 // CAN Message Definition: Rx Messages

26

27 // Event RX messages

28

29 // Message to check for steering wheel updates

30 extern can_msg_t msg_rx_ch0_dashboard_listening;

31 extern can_mob_t ch0_dashboard_rx_msg;

32 extern xQueueHandle ch0_dashboard_rx_receivequeue;

33

34 // Message to check for ext. commands sent to CCU ID

35 extern can_msg_t msg_rx_ch0_extcmd_listening;

36 extern can_mob_t ch0_extcmd_rx_msg;

37 extern xQueueHandle ch0_extcmd_rx_receivequeue;

38

39 // WCU state RX messages

40

41 // Message to check state messages from WCUs

42 extern can_msg_t msg_rx_ch1_wcustate_listening;

43 extern can_mob_t ch1_wcustate_rx_msg;

44 extern xQueueHandle ch1_wcustate_rx_receivequeue;

45

46 // Sensor RX messages

47

48 // Msg. to check for sensor data from the ECU (Ext.ID)

49 extern can_msg_t msg_rx_ch0_ecu_listening;

50 extern can_mob_t ch0_ecu_rx_msg;

51 extern xQueueHandle ch0_ecu_rx_receivequeue;

52

53 // Message to check for sensor data(0x600)

54 //from brake pressure sensor (0x48) and st. angle(0x58)

55 extern can_msg_t msg_rx_ch1_sensor_listening;

56 extern can_mob_t ch1_sensor_rx_msg;

57 extern xQueueHandle ch1_sensor_rx_receivequeue;

58

59 // ---------------------------------------------------

60 // Function Prototypes

61

62 void ccu_can_init(void);
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C.1.2 controllertask.c

Listing C.2: Controller Task Function - controllertask.c

1 void vControllerTask(void *pvParameters){

2

3 // Define period for task execution as 10 ms

4 portTickType vCh1SendTask_Delay = (portTickType)(10) /

portTICK_RATE_MS;

5 portTickType vCh1SendTask_LastWakeTime = xTaskGetTickCount ();

6

7 // Allocate mailbox for CAN messages

8 ch1_tx_frw_msg.handle = can_mob_alloc (1);

9 ch1_tx_rrw_msg.handle = can_mob_alloc (1);

10 int8_t controller_currentmode = 0;

11

12 while (1){

13

14 // Generate WCU setpoints

15 ccu_controller_loop ();

16

17 // Check current system mode

18 controller_currentmode = ccu_controller_getControlMode ();

19

20 // If control is suspended , send static value

21 if( (controller_currentmode == CONTROLMODE_DISABLED) | (

controller_currentmode == CONTROLMODE_FAILURE) ){

22

23 ch1_tx_frw_msg.can_msg ->data.u64 = 0x00;

24 ch1_tx_rrw_msg.can_msg ->data.u64 = 0x00;

25 }

26 // If system control is active , send control variables

27 else if(( controller_currentmode == CONTROLMODE_MANUAL)||(

controller_currentmode == CONTROLMODE_CONTINOUS)){

28

29 // Set content of front wheel setpoint message

30 ch1_tx_frw_msg.can_msg ->data.u16[0] =

ccu_controlVariable_output.flCompression;

31 ch1_tx_frw_msg.can_msg ->data.u16[1] =

ccu_controlVariable_output.flRebound;

32 ch1_tx_frw_msg.can_msg ->data.u16[2] =

ccu_controlVariable_output.frCompression;

33 ch1_tx_frw_msg.can_msg ->data.u16[3] =

ccu_controlVariable_output.frRebound;

34

35 // Set content of rear wheel setpoint message

36 ch1_tx_rrw_msg.can_msg ->data.u16[0] =

ccu_controlVariable_output.rlCompression;

37 ch1_tx_rrw_msg.can_msg ->data.u16[1] =

ccu_controlVariable_output.rlRebound;
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38 ch1_tx_rrw_msg.can_msg ->data.u16[2] =

ccu_controlVariable_output.rrCompression;

39 ch1_tx_rrw_msg.can_msg ->data.u16[3] =

ccu_controlVariable_output.rrRebound;

40 }

41

42 // Post messages for transmission

43 can_tx(1,

44 ch1_tx_frw_msg.handle ,

45 ch1_tx_frw_msg.dlc ,

46 ch1_tx_frw_msg.req_type ,

47 ch1_tx_frw_msg.can_msg);

48

49 can_tx(1,

50 ch1_tx_rrw_msg.handle ,

51 ch1_tx_rrw_msg.dlc ,

52 ch1_tx_rrw_msg.req_type ,

53 ch1_tx_rrw_msg.can_msg);

54

55 // Execute task with fixed period

56 vTaskDelayUntil( &vCh1SendTask_LastWakeTime , vCh1SendTask_Delay

);

57 }

58 }
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C.2 Wheel Controller Unit

C.2.1 Big-while Loop

Listing C.3: Main execution loop - wheel controller main.c

1 // INITIALIZATION FINISHED. ENTERING WHILE LOOP.

2 while (1)

3 {

4 // --- LOOK FOR NEW CAN SETPOINT MESSAGE

5 if(can_get_status (& cmd_msg_rx) == CAN_STATUS_COMPLETED){

6

7 // --- READ CAN MESSAGE TO BUFFER ---

8 if (( cmd_msg_rx.id.std==0 x419 || cmd_msg_rx.id.std==0 x41A

) && cmd_msg_rx.dlc == 8)

9 {

10 // --- RECEIVE NEW SETPOINT MESSAGES ---

11 if( (( wcu_hwdef_thisUnit == CANR_GRP_SUS_ID+

CANR_MODULE_SUSP_WCUFL)&&( cmd_msg_rx.id.std==0 x419)

) || (( wcu_hwdef_thisUnit == CANR_GRP_SUS_ID+

CANR_MODULE_SUSP_WCURL)&&( cmd_msg_rx.id.std==0 x41A)

) ){

12 controlVariables [0]. referenceValue = ( (int16_t)(

cmd_msg_rx_data [0] << 8) + (int16_t)

cmd_msg_rx_data [1] );

13 controlVariables [1]. referenceValue = ( (int16_t)(

cmd_msg_rx_data [2] << 8) + (int16_t)

cmd_msg_rx_data [3] );

14 }

15 if( (( wcu_hwdef_thisUnit == CANR_GRP_SUS_ID+

CANR_MODULE_SUSP_WCUFR)&&( cmd_msg_rx.id.std==0 x419)

) || (( wcu_hwdef_thisUnit == CANR_GRP_SUS_ID+

CANR_MODULE_SUSP_WCURR)&&( cmd_msg_rx.id.std==0 x41A)

) ){

16 controlVariables [0]. referenceValue = ( (int16_t)(

cmd_msg_rx_data [4] << 7) + (int16_t)

cmd_msg_rx_data [5] );

17 controlVariables [1]. referenceValue = ( (int16_t)(

cmd_msg_rx_data [6] << 7) + (int16_t)

cmd_msg_rx_data [7] );

18 }

19 }

20 can_cmd (& cmd_msg_rx); // Receive new message

21 }

22 // --- LOOK FOR NEW CAN UNIT STATE MESSAGE

23 if(can_get_status (& ccustate_msg_rx) == CAN_STATUS_COMPLETED){

24

25 // --- READ CAN MESSAGE TO BUFFER ---
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26 if ( ccustate_msg_rx.id.std== (CANR_FCN_DATA_ID|

CANR_GRP_SUS_ID|CANR_MODULE_SUSP_CCU) &&

ccustate_msg_rx.dlc == 3 && ccustate_msg_rx_data [0]

== 1 )

27 {

28

29 // Update system state from message if not equal to

current state

30 updateUnitState( ccustate_msg_rx_data [1] );

31

32 // Reset CCU watchdog timer

33 ccuWatchdogTimeoutCounter = 0;

34 }

35

36 can_cmd (& ccustate_msg_rx);

37 }

38

39 // --- IF HARDWARE TIMER HAS EXPIRED , RUN CONTROLLER LOOP

40 if(timerflag){

41

42 // --- RESET TIMER FLAG ---

43 timerflag = 0;

44

45 // --- GET VALVE POSITION ---

46 controlVariables [0]. measurementValue =

PIDController_GetPosition(ENC1);

47 controlVariables [1]. measurementValue =

PIDController_GetPosition(ENC2);

48

49

50 if( (getUnitState () == CONTROLMODE_MANUAL) || (

getUnitState () == CONTROLMODE_OPERATIVE) ){

51 // --- RUN PID LOOP ---

52 controlVariables [0]. controlInput = pid_Controller(

controlVariables [0]. referenceValue ,

controlVariables [0]. measurementValue , &pidData [0]);

53 controlVariables [1]. controlInput = pid_Controller(

controlVariables [1]. referenceValue ,

controlVariables [1]. measurementValue , &pidData [1]);

54 }

55 else if( getUnitState () == CONTROLMODE_STANDBY ){

56 // --- SET IN PRECONFIGURED POSITION

57 controlVariables [0]. controlInput = pid_Controller(

pidDefaultPosition[wcu_hwdef_thisUnit -

CANR_GRP_SUS_ID -CANR_MODULE_SUSP_WCUFL ][0],

controlVariables [0]. measurementValue , &pidData [0]);

58 controlVariables [1]. controlInput = pid_Controller(

pidDefaultPosition[wcu_hwdef_thisUnit -

CANR_GRP_SUS_ID -CANR_MODULE_SUSP_WCUFL ][1],

controlVariables [1]. measurementValue , &pidData [1]);

59

60 // --- IF RETURNED TO PREDEF POSITION DISABLE
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61 if ( abs(pidDefaultPosition[wcu_hwdef_thisUnit -

CANR_GRP_SUS_ID -CANR_MODULE_SUSP_WCUFL ][0]-

controlVariables [0]. measurementValue)<

CONTROLTRESHOLD_DISABLE

62 && abs(pidDefaultPosition[wcu_hwdef_thisUnit -

CANR_GRP_SUS_ID -CANR_MODULE_SUSP_WCUFL ][1]-

controlVariables [1]. measurementValue)<

CONTROLTRESHOLD_DISABLE ){

63 motor_disablePSC ();

64 }

65 }

66 else{

67 // --- IF IN OTHER STATE GENERATE NO OUTPUT

68 controlVariables [0]. controlInput = 0;

69 controlVariables [1]. controlInput = 0;

70 }

71

72 // --- RETURN CAN MESSAGE ---

73 if(controllerloop_cnt %10 == 0){

74 led_toggle ();

75 wcu_msg_tx.dlc = 5;

76 wcu_msg_data [0] = getUnitState (); // SEND

STATE VALUE

77 wcu_msg_data [1] = (controlVariables [0]. measurementValue

>>8); // SEND ENCODER 0 MEASUREMENT VALUE

78 wcu_msg_data [2] = (controlVariables [1]. measurementValue

>>8); // SEND ENCODER 0 MEASUREMENT VALUE

79 wcu_msg_data [3] = (controlVariables [0]. controlInput >>8)

; // SEND ENCODER 1 MEASUREMENT VALUE

80 wcu_msg_data [4] = (controlVariables [1]. controlInput >>8)

; // SEND ENCODER 1 MEASUREMENT VALUE

81

82 while(can_cmd (& wcu_msg_tx) != CAN_CMD_ACCEPTED);

83 while(can_get_status (& wcu_msg_tx) ==

CAN_STATUS_NOT_COMPLETED);

84

85 if (controllerloop_cnt >=100)

86 {

87 sbc_wdt_refresh ();

88 controllerloop_cnt = 0;

89 }

90

91 if (getUnitState () == CONTROLMODE_MANUAL ||

getUnitState () == CONTROLMODE_OPERATIVE){

92 ccuWatchdogTimeoutCounter ++;

93 }

94

95 if (ccuWatchdogTimeoutCounter >

CCUWATCHDOG_TIMEOUTTRESHOLD)

96 {

97 updateUnitState(CONTROLMODE_ERROR);

98 }
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99

100 }

101

102 // --- INCREMENT LOOP COUNTER

103 controllerloop_cnt ++;

104 }

105

106 // --- CHECK IF PWM PERIOD IS FINISHED

107 if ( (PIFR &(1 << PEOP))==1 ){

108 PIFR |= (1 << PEOP);

109

110 // --- SET NEW MOTOR SPEED ---

111 motor_A_setspeed(controlVariables [0]. controlInput /33);

112 motor_B_setspeed(controlVariables [1]. controlInput /33);

113 }

114 }

115 }
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