
Copyright c© 201X Inderscience Enterprises Ltd.

2 D. Gligoroski et al.

Network Traffic Driven Storage Repair

Danilo Gligoroski

Dep. of Information Security and Communication Technology,
NTNU, Norwegian University of Science and Technology,
Trondheim, Norway
E-mail: danilog@ntnu.no

Katina Kralevska
Dep. of Information Security and Communication Technology,
NTNU, Norwegian University of Science and Technology,
Trondheim, Norway
E-mail: katinak@ntnu.no

Rune E. Jensen
Department of Computer Science,
NTNU, Norwegian University of Science and Technology,
Trondheim, Norway
E-mail: runeerle@idi.ntnu.no

Per Simonsen
MemoScale AS,
Norway
E-mail: per.simonsen@memoscale.com

Abstract: Recently we constructed an explicit family of locally repairable and locally
regenerating codes. Their existence was proven by Kamath et al. but no explicit
construction was given. Our design is based on HashTag codes that can have different
sub-packetization levels. In this work we emphasize the importance of having two ways
to repair a node: repair only with local parity nodes or repair with both local and global
parity nodes. We say that the repair strategy is network traffic driven since it is in
connection with the concrete system and code parameters: the repair bandwidth of the
code, the number of I/O operations, the access time for the contacted parts and the size
of the stored file. We show the benefits of having repair duality in one practical example
implemented in Hadoop. We also give algorithms for efficient repair of the global parity
nodes.

Keywords: Vector codes, Repair bandwidth, Repair locality, Exact repair, Parity-
splitting, Global parities, Hadoop.

Reference to this paper should be made as follows: Gligoroski, D., Kralevska, K., Jensen
R.E. and Simonsen, P. (xxxx) ‘Network Traffic Driven Storage Repair’, International
Journal of Big Data Intelligence, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Danilo Gligoroski received his PhD in Computer Science at the Ss
Cyril ad Methodius University in Skopje, Republic of Macedonia. He is a professor at the
Dep. of Information Security and Communication Technology, Norwegian University of
Science and Technology (NTNU). His research interests include .

Katina Kralevska received her PhD in Telematics at the Norwegian University of Science
and Technology (NTNU). She is an associate professor at the same university, at the Dep.
of Information Security and Communication Technology. Her research interest include

Rune E. Jensen is a PhD student at the Norwegian University of Science and Technology
(NTNU). His research interest is an optimization

Per Simonsen has MS degree in He is currently CEO of MemoScale AS company that
implements various erasure codes for Hadoop, CEPH, ...

Int. J. Signal and Imaging Systems Engineering, Vol. x, No. x, 201X 3

1 Introduction

The omnipresence of digitalization in the modern human
civilization resulted in exponential growth of the digital
universe. According to Cisco Global Cloud Index (CGI)
[1] the amount of all data stored by 2021 will be 7.2 ZB,
with a proportion: 1.3 ZB stored in data centers, and
5.9 ZB stored in local devices. As a result of this, the
importance of distributed storage systems rose to the
level of being a backbone and a critical component for
all existing infrastructures. Distributed storage systems
became the crucial component for delivering IT services,
providing storage services, enabling communications and
networking to the users, devices and business processes
[1].

In order to provide a reliable service, distributed
storage systems use a simple data replication (usually
triplication). Replication becomes very expensive in
terms of storage overhead due to the enormous amount
of data stored in these data centers (measured with
hundreds of petabytes). One alternative for providing
reliability in data storage systems with significantly
less overhead is to use erasure codes. Several big
providers of distributed storage such as Windows
Azure [2] and Facebook Analytics Hadoop cluster [3]
have implemented different erasure codes. Recently, the
official Apache distribution of Hadoop 3.0.0 [4] has
started to give an option to use several classical Reed-
Solomon erasure codes such as (5, 3), (9, 6) and (14, 10)
codes in its file system HDFS. Reed-Solomon codes [5]
are Maximum Distance Separable (MDS) codes, and
thus they are optimal from the storage overhead point of
view, but in practice they are expensive in the number of
computations and in the amount of network traffic used
in the recovery process. In 2010, Dimakis et al. [6] showed
the existence of another family of MDS codes - Minimum
Storage Regenerating codes that minimize the amount
of data transmitted over the network for repairing one
failed node with MDS codes.

While the benefits of using erasure codes instead of
simple replication are obvious in terms of the storage
overhead, there are other aspects that are not that
favorable for erasure codes. One of them is the so
called repair efficiency. In the case of a replication, the
repair process is just a simple read (or copy) from the
redundant data. On the other hand, the repair process
with erasure coding involves data access from the non-
failed nodes, transfer of the accessed data and decode
computations at the node being repaired. It is essential
to consider the concrete system and code parameters
such as the repair bandwidth of the code, the number
of I/O operations, the access time for the contacted
parts and the size of the stored file when choosing the
repair strategy with erasure codes. Arguably, we say the
repair strategy is network traffic driven. In particular,
there are two main metrics of the repair efficiency
with erasure codes in distributed storage systems: the
amount of transferred data during a repair process
(repair bandwidth) and the number of accessed nodes

in a repair process (repair locality). Regenerating Codes
(RCs) [6] and Locally Repairable Codes (LRCs) [7],[8],[9]
are optimized erasure codes for each of these two metrics,
respectively.

In our recent work [10], we combine the benefits of
RCs and LRCs together in one code construction. We
construct an explicit family of locally repairable and
locally regenerating codes whose existence was proven in
a recent work by Kamath et al. [11] about codes with
local regeneration. In that work, an existential proof
was given, but no explicit construction was given. Our
explicit family of codes is based on HashTag codes [12,
13]. HashTag codes are MDS vector codes with different
vector length α (also called a sub-packetization level)
that achieve the optimal repair bandwidth of MSR codes
or near-optimal repair bandwidth depending on the sub-
packetization level. We apply the technique of parity-
splitting of HashTag codes in order to construct codes
with locality in which the local codes are regenerating
codes and which hence, enjoy both advantages of locally
repairable codes as well as regenerating codes. It is
observed in [14] that 98.08% of the failures in Facebook’s
data-warehouse cluster that consists of thousands of
nodes are single failures. Thus, we optimize the repair
for single failures although HashTag codes provide repair
bandwidth savings for multiple failures as it is reported
in [13].

We also show (although just with a concrete example)
that the bound on the size of the finite field where these
codes are constructed, given in the work by Kamath
et al. [11] can be lower. The presented explicit code
construction has a practical significance in distributed
storage systems as it provides system designers with
greater flexibility in terms of selecting various system
and code parameters due to the flexibility of HashTag
code constructions.

We discuss the repair duality and its importance.
Repair duality is a situation of having two ways to repair
a node: to repair it only with local parity nodes or repair
it with both local and global parity nodes. To the best
of the authors’ knowledge, this is the first work that
discusses the repair duality and how it can be applied
based on concrete system and code parameters. Results
from a Hadoop implementation illustrate the benefits of
repair duality.

We further optimize the repair efficiency by giving
an algorithm for shuffling the data in the parity nodes
in order to reduce the repair bandwidth for the global
parities.

The paper is organized as follows. Section 2 presents
related work, and Section 3 presents mathematical
preliminaries. In Section 4, we describe a framework for
explicit constructions of locally repairable and locally
regenerating codes. The repair process is analyzed in
Section 5 where we explain the repair duality. In Section
6, we give an algorithm for efficient repair of the global
parity nodes. Experimental results of measurements
in Hadoop are given in Section 7. Conclusions are
summarized in Section 8.

Copyright c© 201X Inderscience Enterprises Ltd.

4 D. Gligoroski et al.

2 Related Work

Minimum Storage Regenerating (MSR) codes are an
important class of RCs that minimize the amount of
data stored per node, due to the MDS property, and the
repair bandwidth. The reduction in the repair bandwidth
is achieved on the cost of contacting n− 1 nodes, i.e.,
increasing the locality. There have been several research
directions for MDS storage codes. The tradeoff between
the sub-packetization level and the repair bandwidth of
MDS codes have been investigated in [12], [13], [15],
[16],[17]. In [18], Goparaju et al. presented a construction
of MSR codes for optimal repair of the systematic nodes
for any number of accessed nodes d ∈ {k + 1, . . . , n− 1}.
The reduced locality comes at the cost of increased sub-
packetization level. Another approach for constructing
MSR codes with low sub-packetization level for different
number of helper nodes is presented in [19]. Explicit
constructions of MDS codes, including the MSR point,
for optimal repair of the systematic nodes can be found
in [12, 13]. Itani et al. used fractional repetition codes
to minimize the total system recovery cost for single
and multiple failures under various dynamic scenarios
[20, 21].

On the other hand, LRCs relax the MDS requirement
in order to minimize the number of nodes accessed during
a repair. Studies on implementation and performance
evaluation of LRCs can be found in [22, 2, 3, 23].
Locally repairable codes with multiple repair alternatives
have been proposed in [24, 23], while codes with
unequal locality have been presented in [25]. Zhang et
al. presented local erasure recovery scheme by parity
splitting of Vandermonde matrices [26] where the regular
entries of a Vandermonde matrix enable low-complexity
software implementations. Another way of constructing
LRCs for distributed storage is based on low-density
parity-check (LDPC) codes [27]. LDPC codes have
an inherent local repair property as LRCs but their
reliability increases with the code length that on the
other hand has a negative impact on the computation
and the buffer requirements.

Combining the benefits of RCs and LRCs in one
storage system can bring huge savings in practical
implementations. For instance, repair bandwidth savings
by RCs are important when repairing huge amounts
of data, while a fast recovery and an access to small
number of nodes enabled by LRCs are desirable for
repair of frequently accessed data. Several works present
code constructions that combine the benefits of RCs and
LRCs [28, 11, 29]. Rawat et al. in [28] and Kamath
et al. in [11] have independently investigated codes
with locality in the context of vector codes, and they
call them locally repairable codes with local minimum
storage regeneration (MSR-LRCs) and codes with local
regeneration, respectively. Rawat et al. [28] provided
an explicit construction, based on Gabidulin maximum
rank-distance codes, of vector linear codes with all-
symbol locality for the case when the local codes are
MSR codes. However, the complexity of these codes

increases exponentially with the number of nodes due
to the two-stage encoding. In [11], Kamath et al.
gave an existential proof without presenting an explicit
construction. Another direction of combining RCs and
LRCs is to use repair locality for selecting the accessed
nodes in a RC [29], while an interpretation of LRCs as
exact RCs was presented in [30]. Two different erasure
codes, product and LRC codes, are used to dynamically
adapt to the workload changes in Hadoop Adaptively-
Coded Distributed File System (HACFS) [31]. Though
there are several proposals for combining two different
types of storage codes, they are lacking some of the
desired attributes (see Table 1). Readers interested in
an extended overview of erasure codes for distributed
storage are referred to [32].

3 Mathematical Preliminaries

Inspired by the work of Gopalan et al. about locally
repairable codes [7], Kamath et al. extended and
generalized the concept of locality in [11]. In this paper,
we use notation that is mostly influenced (and adapted)
from those two papers. Notations. For two integers
0 < i < j, we denote the set {i, i+ 1, . . . , j} by [i : j],
while the set {1, 2, . . . , j} is denoted by [j]. Vectors and
matrices are denoted with a bold font.

[11]: A Fq-linear vector code of block length n is a code
C ∈

(
Fαq
)n

having a symbol alphabet Fαq for some α ≥ 1,
i.e.,

C = {c = (c1, c2, . . . , cn), ci ∈ Fαq for all i ∈ [n]},

and satisfies the additional property that for given c, c′ ∈
C and a, b ∈ Fq,

ac + bc′ = (ac1 + bc′1, ac2 + bc′2, . . . , acn + bc′n)

also belongs to C where aci is a scalar multiplication of
the vector ci. �

Throughout the paper, we refer to the vectors ci as
vector symbols or nodes. Working with systematic codes,
it holds that for the systematic nodes ci = di for 1 ≤ i ≤
k and for the parity nodes ck+i = pi for 1 ≤ i ≤ r. For
every vector code C ∈

(
Fαq
)n

there is an associated scalar

linear code C(s) over Fq of length N = αn. Accordingly,
the dimension of the associated scalar code C(s) is K =
αk. For a convenient notation, the generator matrix G
of size K ×N of the scalar code C(s) is such that each
of the α consecutive columns corresponds to one code
symbol ci, i ∈ [n], and they are considered as n thick
columns Wi, i ∈ [n]. For a subset I ⊂ [n] we say that it
is an information set for C if the restriction G|I of G to
the set of thick columns with indexes lying in I has a
full rank, i.e., rank(G|I) = K.

The minimum cardinality of an information set is
referred as quasi-dimension κ of the vector code C. As
the vector code C is Fq-linear, the minimum distance

Network Traffic Driven Storage Repair 5

Table 1 Comparison of locally repairable and locally regenerating codes presented in this paper with other erasure codes for
storage.

Code Systematic
Construction
type Order of GF

Any sub-
packetization

Optimal repair of
global parities

MSR-LRCs
[28] Yes Explicit High

No (only MSR
point)

No

Codes
with local
regeneration
[11]

Yes Existence High
No (only MSR
point)

No

HACFS [31] Yes Explicit Low No
Product codes:
Yes, LRC: No

This paper Yes Explicit Low Yes Yes

dmin of C is equal to the minimum Hamming weight
of a non-zero codeword in C. Finally, a vector code of
block length n, scalar dimension K, minimum distance
dmin, vector-length parameter α and quasi-dimension
κ is shortly denoted with [n,K, dmin, α, κ]. While in
the general definition of vector codes in [11] the quasi-
dimension κ does not necessarily divide the dimension K
of the associated scalar, for much simpler and convenient
description of the codes in this paper we take that k = κ,
i.e., K = ακ. In that case the erasure and the Singleton
bounds are given by:

dmin ≤ n− κ+ 1. (1)

In [6], Dimakis et al. studied the repair problem in a
distributed storage system where a file of M symbols
from a finite field Fq is stored across n nodes, each node
stores M

k symbols. They introduced the metric repair
bandwidth γ, and proved that the repair bandwidth of
a MDS code is lower bounded by

γ ≥ M

k

d

d− k + 1
, (2)

where d is the number of accessed available nodes
(helpers).

[6]: The repair bandwidth of a (n, k) MDS code is
minimized for d = n− 1. MSR codes achieve the lower
bound of the repair bandwidth equal to

γminMSR =
M

k

n− 1

n− k
. (3)

A (n, k) MSR code has the maximum possible
distance dmin = n− k + 1 in addition to minimizing the
repair bandwidth, but it has the worst possible locality.

Corollary 1: The locality of a (n, k) MSR code is equal
to n− 1.

Any [n,K, dmin, α, κ] vector code C is MDS if and only
if its generator matrix can be represented in the form
G = [I|P], where the K × (N −K) parity matrix

P =

G1,1 G1,2 . . . G1,κ

G2,1 G2,2 . . . G2,κ

...
...

. . .
...

Gκ,1 Gκ,2 . . .Gκ,n−κ

 , (4)

possesses the property that every square block submatrix
of P is invertible. The Gi,j entries are square sub-
matrices of size α× α, and a block submatrix is
composed by different entries of Gi,j .

In order to analyze codes with local regeneration,
Kamath et al. introduced a new family of vector codes
called uniform rank-accumulation (URA) codes in [11].
They showed that exact-repair MSR codes belong to the
class of URA codes.

Definition 3.2: [11, Def. 2] Let C be a [n,K, dmin, α, κ]
vector code with a generator matrix G. The code C is
said to have (l, δ) information locality if there exists a set
of punctured codes {Ci}i∈L of C with respective supports
{Si}i∈L such that

• |Si| ≤ l + δ − 1,

• dmin(Ci) ≥ δ, and

• rank(G|⋃
i∈L

) = K.

If we put δ = 2 in Def.3.2, then we get the definition
of information locality introduced by Gopalan et al. [7].
They derived the upper bound for the minimum distance
of a (n, k, d)q code with information locality l for δ = 2
as

dmin ≤ n− k −
⌈
k

l

⌉
+ 2. (5)

A general upper bound was derived in [11] as

dmin ≤ n− k + 1−
(⌈

k

l

⌉
− 1

)
(δ − 1). (6)

6 D. Gligoroski et al.

Huang et al. showed the existence of Pyramid codes
that achieve the minimum distance given in (5) when the
field size is big enough [22]. Finally, based on the work
by Gopalan et al. [7] and Pyramid codes by Huang et al.
[22], Kamath et al. proposed a construction of codes with
local regeneration based on a parity-splitting strategy in
[11].

4 Codes with Local Regeneration from
HashTag Codes by Parity-Splitting

In [12, 13], a new class of vector MDS codes called
HashTag codes is defined. HashTag codes achieve the
lower bound of the repair bandwidth given in (3) for α =

rd
k
r e, while they have near-optimal repair bandwidth

for small sub-packetization levels. HashTag codes are
of a great practical importance due to their properties:
flexible sub-packetization level, small repair bandwidth,
and optimized number of I/O operations. We briefly give
the basic definition of HashTag codes before we construct
codes with local regeneration from them by using the
framework of parity-splitting discussed in [11].

Definition 4.1: A (n, k, d)q HashTag linear code is
a vector systematic code defined over an alphabet
Fαq for some α ≥ 1. It encodes a vector x =

(x1, . . . ,xk), where xi = (x1,i, x2,i, . . . , xα,i)
T ∈ Fαq for

i ∈ [k], to a codeword C(x) = c = (c1, c2, . . . , cn) where
the systematic parts ci = xi for i ∈ [k] and the
parity parts ci = (c1,i, c2,i, . . . , cα,i)

T for i ∈ [k : n] are
computed by the linear expressions that have a general
form as follows:

cj,i =
∑

fν,j,ixj1,j2 , (7)

where fν,j,i ∈ Fq and the index pair (j1, j2) is defined in
the j-th row of the index array Pi−r where ν ∈ [r]. The
r index arrays P1, . . . ,Pr are defined as follows:

P1 =

(1, 1) (1, 2) . . . (1, k)
(2, 1) (2, 2) . . . (2, k)

...
...

. . .
...

(α, 1) (α, 2) . . . (α, k)

 ,
d kr e︷ ︸︸ ︷

Pi =

(1, 1) (1, 2) . . . (1, k) (?, ?) . . . (?, ?)
(2, 1) (2, 2) . . . (2, k) (?, ?) . . . (?, ?)

...
...

. . .
...

(α, 1) (α, 2) . . . (α, k) (?, ?) . . . (?, ?)

 .
where the values of the indexes (?, ?) are determined by
a scheduling algorithm that guarantees the code is MDS,
i.e., the entire information x can be recovered from any
k out of the n vectors ci. �

Algorithm 1 gives a high level description of one
scheduling algorithm for Def. 4.1. An interested reader
is referred to [12, 13] for more details.

Algorithm 1 High level description of an algorithm
for generating HTEC for an arbitrary sub-packetization
level
Input: n, k, α;
Output: Index arrays P1, . . . ,Pr.

1: Initialization: P1, . . . ,Pr are initialized as index arrays
P = ((i, j))α×k;

2: Append
⌈
k
r

⌉
columns to P2, . . . ,Pr all initialized to

(0, 0);
3: # Phase 1

4: Set the granulation level run←
⌈
α
r

⌉
and step← 0;

5: repeat
6: Replace (0, 0) pairs with indexes (i, j) such that both

Condition 1 and Condition 2 are satisfied;

7: Decrease the granulation level run by a factor r and

step←
⌈
α
r

⌉
− run;

8: until The granulation level run > 1
9: # Phase 2

10: If there are still (0, 0) and unscheduled elements from the
systematic nodes, choose (i, j) such that only Condition
2 is satisfied;

11: Return the index arrays P1, . . . ,Pr.

Example 1: The linear expressions for the parity
parts for a (9, 6) HashTag code with α = 9 are given here.
The way how we obtain them is explained in Section 4.1
in [13]. We give one set of coefficients fν,j,i for equation
(7) from the finite field F32 with irreducible polynomial
x5 + x3 + 1. This code achieves the lower bound of repair
bandwidth in (3), i.e., the repair bandwidth is γ = 8

3 =
2.67 for repair of any systematic node. Due to the big
size 54× 81, the systematic generator matrix of the
associated scalar code is presented graphically in Fig. 1
instead of presenting it numerically.
c1,7 = 7x1,1 +10x1,2+18x1,3+11x1,4+17x1,5+ 6x1,6
c2,7 =26x2,1+17x2,2+25x2,3+27x2,4+31x2,5+ 4x2,6
c3,7 =22x3,1+12x3,2+27x3,3+31x3,4+31x3,5+23x3,6
c4,7 =17x4,1+ 9x4,2 +14x4,3+ 4x4,4 +21x4,5+25x4,6
c5,7 =20x5,1+ 5x5,2 + 5x5,3 +13x5,4+11x5,5+16x5,6
c6,7 =25x6,1+16x6,2+30x6,3+28x6,4+10x6,5+24x6,6
c7,7 =20x7,1+ 8x7,2 +21x7,3+ 9x7,4 + 3x7,5 +25x7,6
c8,7 =23x8,1+ 4x8,2 +12x8,3+16x8,4+ 8x8,5 +17x8,6
c9,7 = 2x9,1 +21x9,2+ 8x9,3 +16x9,4+ 7x9,5 +25x9,6

c1,8 = 8x1,1 +24x1,2+21x1,3+19x1,4+ 6x1,5 +20x1,6+ 8x4,1 + 6x2,4
c2,8 = 3x2,1 +12x2,2+ 6x2,3 + 3x2,4 +16x2,5+10x2,6+30x5,1+24x1,5
c3,8 =23x3,1+20x3,2+30x3,3+ 7x3,4 +16x3,5+10x3,6+21x6,1+27x1,6
c4,8 =14x4,1+ 7x4,2 +10x4,3+14x4,4+24x4,5+20x4,6+16x1,2+31x5,4
c5,8 =25x5,1+11x5,2+29x5,3+12x5,4+20x5,5+24x5,6+15x2,2+ 6x4,5
c6,8 =17x6,1+27x6,2+ 4x6,3 +21x6,4+15x6,5+11x6,6+19x3,2+21x4,6
c7,8 =19x7,1+23x7,2+16x7,3+ 4x7,4 +14x7,5+16x7,6+ 9x1,3 + 8x8,4
c8,8 = 5x8,1 +26x8,2+22x8,3+30x8,4+22x8,5+21x8,6+24x2,3+26x7,5
c9,8 =10x9,1+ 8x9,2 +10x9,3+27x9,4+28x9,5+20x9,6+16x3,3+ 4x7,6

c1,9 =20x1,1+20x1,2+30x1,3+17x1,4+12x1,5+27x1,6+28x7,1+ 9x3,4
c2,9 =18x2,1+10x2,2+20x2,3+21x2,4+13x2,5+ 7x2,6 + 2x8,1 + 6x3,5
c3,9 =31x3,1+25x3,2+12x3,3+18x3,4+15x3,5+24x3,6+31x9,1+28x2,6
c4,9 = 6x4,1 +16x4,2+26x4,3+ 4x4,4 +21x4,5+27x4,6+26x7,2+ 8x6,4
c5,9 = 7x5,1 + 6x5,2 +26x5,3+ 6x5,4 +15x5,5+16x5,6+28x8,2+ 4x6,5
c6,9 =20x6,1+20x6,2+12x6,3+20x6,4+18x6,5+26x6,6+19x9,2+30x5,6
c7,9 =26x7,1+ 2x7,2 + 6x7,3 +20x7,4+17x7,5+23x7,6+ 8x4,3 +31x9,4
c8,9 =20x8,1+15x8,2+13x8,3+20x8,4+10x8,5+24x8,6+31x5,3+ 9x9,5
c9,9 = 6x9,1 + 2x9,2 +31x9,3+12x9,4+16x9,5+30x9,6+20x6,3+13x8,6

We adapt the parity-splitting code construction for
designing codes with local regeneration described in [11]
for the specifics of HashTag codes. The construction
is described in Algorithm 2. For simplifying the
description, we take some of the parameters to have

Network Traffic Driven Storage Repair 7

Figure 1: A systematic generator matrix of the
associated scalar code. Here the black squares on the
main diagonal represent the value 1, but the black
squares in the parity parts represent the non-zero values
in F32. Note that if the parity matrix is partitioned in
9× 9 square submatrices, it has the same form as in
equation (4).

specific relations, although it is possible to define
a similar construction with general values of the
parameters. Namely, we take that r|k and r|α. We also
take that the parameters for the information locality
(l, δ) are such that l|k and δ ≤ r.

Algorithm 2 Locally Repairable HashTag Codes
Input: A (n, k) HashTag MDS code with a sub-
packetization level α with the associated linear parity
equations (7), i.e. with the associated systematic
generator matrix G. The MDS code can be, but it does
not necessarily have to be a MSR code.
Input: The information locality (l, δ)
Output: A generator matrix G′ with information
locality (l, δ)

1: Split k systematic nodes into l disjunctive
subsets Si, i ∈ [l], where every set has k

l nodes.
While this splitting can be arbitrary, take the
canonical splitting where S1 = {1, . . . , kl }, S2 =

{kl + 1, . . . , 2kl }, . . ., Sl = { (l−1)kl + 1, . . . , k}.
2: Split each of the α linear equations for the first δ − 1

parity expressions (7) into l sub-summands where
the variables in each equation correspond to the
elements from the disjunctive subsets.

3: Associate the obtained α× l × (δ − 1) sub-
summands to l × (δ − 1) new local parity nodes.

4: Rename the remaining r − δ + 1 parity nodes that
were not split in Step 1 - Step 3 as new global parity
nodes.

5: Obtain a new systematic generator matrix G′ from
the local and global parity nodes.

6: Return G′ as a generator matrix of a [n,K =
kα, dmin, α, k] vector code with information locality
(l, δ).

!!!
$
! !!!

,DE$

!!"
*),DE&! !!#

$
! !!#

-.,/$
!

!!!
,
$!!…! !!!

-
!!!…!

!!"
$
! !!"

*
!!!…! " !!…! !!…!!!…!!!…! "

!!…!

Figure 2: There are r parity nodes from a systematic
(n, k) MDS code with a sub-packetization level α.
The parity splitting technique generates l local parity
nodes from every parity node p1, . . . ,pδ−1 and renames
the parity nodes pδ, . . . ,pr as global parity nodes
g1, . . . ,gr−δ+1.

A graphical presentation of the parity-splitting
procedure is given in Fig. 2.

Theorem 2: If the used (n, k) MDS HashTag code
in Algorithm 2 is MSR, then the obtained [n,K =
kα, dmin, α, k] code with information locality (l, δ) is a
MSR-Local code, where

dmin = n− k + 1−
(
k

l
− 1

)
(δ − 1). (8)

Proof: Since in Algorithm 2 we take that r|k and r|α, it
means that the scalar dimension of the code is K = mlα
for some integer m. Then the proof continues basically
as a technical adaptation of the proof of Theorem 5.5
that Kamath et al. gave for the pyramid-like MSR-Local
codes constructed with the parity-splitting strategy in
[11]. �

Note that if α < r
k
r , then HashTag codes are sub-

optimal in terms of the repair bandwidth. Consequently,
the produced codes with Algorithm 2 are locally
repairable, but they are not MSR-Local codes.

Example 2: Let us split the MSR code given in
Example 1 into a code with local regeneration and
with information locality (l = 2, δ = 2). In Step 1
we split 6 systematic nodes {c1, . . . , c6} into l =
2 disjunctive subsets S1 = {c1, c2, c3} and S2 =
{c4, c5, c6}. According to Step 2 of Algorithm 2, the
first global parity c7 in Example 1 is split into two local
parities l1 = (l1,1, . . . , l9,1)T and l2 = (l1,2, . . . , l9,2)T as
follows:

l1,1 = 7x1,1 +10x1,2+18x1,3

l2,1 =26x2,1+17x2,2+25x2,3

l3,1 =22x3,1+12x3,2+27x3,3

l4,1 =17x4,1+ 9x4,2 +14x4,3

l5,1 =20x5,1+ 5x5,2 + 5x5,3

l6,1 =25x6,1+16x6,2+30x6,3

l7,1 =20x7,1+ 8x7,2 +21x7,3

l8,1 =23x8,1+ 4x8,2 +12x8,3

l9,1 = 2x9,1 +21x9,2+ 8x9,3

l1,2 =11x1,4+17x1,5+ 6x1,6

l2,2 =27x2,4+31x2,5+ 4x2,6

l3,2 =31x3,4+31x3,5+23x3,6

l4,2 = 4x4,4 +21x4,5+25x4,6

l5,2 =13x5,4+11x5,5+16x5,6

l6,2 =28x6,4+10x6,5+24x6,6

l7,2 = 9x7,4 + 3x7,5 +25x7,6

l8,2 =16x8,4+ 8x8,5 +17x8,6

l9,2 =16x9,4+ 7x9,5 +25x9,6

The remaining two global parities are kept as they are
given in Example 1, they are only renamed as g1 =
(c1,8, c2,8, . . . , c9,8)T and g2 = (c1,9, c2,9, . . . , c9,9)T . The

8 D. Gligoroski et al.

overall code is a (10, 6) code or with the terminology
from [2] it is a (6, 2, 2) code. �

Example 3: Let us split the same MSR code now
with parameters (l = 3, δ = 2). In Step 1 we split 6
systematic nodes {c1, . . . , c6} into l = 3 disjunctive
subsets S1 = {c1, c2}, S2 = {c3, c4} and S3 = {c5, c6}.
In Step 2 of Algorithm 2, the first global parity c7
is split into three local parities: l1 = (l1,1, . . . , l9,1)T ,
l2 = (l1,2, . . . , l9,2)T and l3 = (l1,3, . . . , l9,3)T as follows:

l1,1 = 7x1,1 +10x1,2
l2,1 =26x2,1+17x2,2
l3,1 =22x3,1+12x3,2
l4,1 =17x4,1+ 9x4,2
l5,1 =20x5,1+ 5x5,2
l6,1 =25x6,1+16x6,2
l7,1 =20x7,1+ 8x7,2
l8,1 =23x8,1+ 4x8,2
l9,1 = 2x9,1 +21x9,2

l1,2 =18x1,3+11x1,4
l2,2 =25x2,3+27x2,4
l3,2 =27x3,3+31x3,4
l4,2 =14x4,3+ 4x4,4
l5,2 = 5x5,3 +13x5,4
l6,2 =30x6,3+28x6,4
l7,2 =21x7,3+ 9x7,4
l8,2 =12x8,3+16x8,4
l9,2 = 8x9,3 +16x9,4

l1,3 =17x1,5+ 6x1,6
l2,3 =31x2,5+ 4x2,6
l3,3 =31x3,5+23x3,6
l4,3 =21x4,5+25x4,6
l5,3 =11x5,5+16x5,6
l6,3 =10x6,5+24x6,6
l7,3 = 3x7,5 +25x7,6
l8,3 = 8x8,5 +17x8,6
l9,3 = 7x9,5 +25x9,6

The remaining two global parities are kept as they
are given in Example 1, but they are just renamed as
g1 = (c1,8, c2,8, . . . , c9,8)T and g2 = (c1,9, c2,9, . . . , c9,9)T .
The overall code is a (11, 6) code or with the terminology
from [2] it is a (6, 3, 2) code. �

There are two interesting aspects of Theorem 2
that should be emphasized: 1. We give an explicit
construction of an MSR-Local code (note that in [11]
the construction is existential), and 2. Examples 2 and
3 show that the size of the finite field can be slightly
lower than the size proposed in [11]. Namely, the MSR
HashTag code used in our example is defined over F32,
while the lower bound in [11] suggests the field size to
be bigger than

(
9
6

)
= 84. We consider this as a minor

contribution and an indication that a deeper theoretical
analysis can further lower the field size bound given in
[11].

5 Repair Duality

Theorem 3: Let C be a (n, k) MSR HashTag code
with γminMSR = M

k
n−1
n−k . Further, let C′ be a [n,K =

kα, dmin, α, k] code with local regeneration and with
information locality (l, δ) obtained by Algorithm 2. If we
denote with γminLocal the minimum repair bandwidth for
single systematic node repair with C′, then

γminLocal = min(
M

k

k
l + δ − 2

δ − 1
,
M

k

n− 1

n− k
). (9)

Proof: When repairing one systematic node, we can
always treat local nodes as virtual global nodes from
which they have been constructed by splitting. Then
with the use of other global nodes we have a situation of
repairing one systematic node in the original MSR code
for which the repair bandwidth is M

k
n−1
n−k . On the other

hand, if we use the MSR-Local code, then we have the
following situation. There are k

l systematic nodes in the
MSR-Local code, and the total length of the MSR-Local
code is k

l + δ − 1. The file size for the MSR-Local code

is decreased by a factor l, i.e., it is M
l . If we apply the

MSR repair bandwidth for these values we get:

M
l
k
l

·
k
l + (δ − 1)− 1

δ − 1
=
M

k

k
l + δ − 2

δ − 1
.

�
Theorem 3 is one of the main contributions of this

work: It emphasizes the repair duality for repairing one
systematic node: by the local and global parity nodes or
only by the local parity nodes. We want to emphasize
the practical importance of Theorem 3. Namely, in
practical implementations regardless of the theoretical
value of γminLocal, the number of I/O operations and the
access time for the contacted parts can be either crucial
or insignificant. In those cases an intelligent repair
strategy implemented in the distributed storage system
can decide which repair procedure should be used: the
one with global parity nodes or the one with the local
parity nodes.

While the repair bandwidth in equation (9) decreases
by increasing the values of δ and l, it comes at the cost of
decreasing the rate of the code for introducing the repair
locality. We formalize this by the following Proposition.

Proposition 4: If the input code in Algorithm 2 is
(n, k), then the output locally repairable code is

(n+ l × (δ − 1)− δ + 1, k). (10)

Proof: For a given initial code (n, k) the total number of
parity nodes in the produced locally repairable codes is
a sum of the parity nodes counted in Step 3 and Step 4
in Algorithm 2. The sum is

l × (δ − 1) + r − δ + 1.

Thus the total number of nodes in the output locally
repairable codes is

k + l × (δ − 1) + r − δ + 1 = n+ l × (δ − 1)− δ + 1.

�
The penalty paid by the decremented rate of the final

locally repairable code as described in the expression (10)
stays linear in l if δ = 2, but increases by a multiplicative
factor l × (δ − 1) if δ ≥ 3. That explains the reasons
why in practical implementations of locally repairable
codes such as those in Windows Azure [2] and the initial
definition of locally repairable codes introduced in [7],
the value of δ is kept low, i.e., δ = 2.

To further illustrate different choices for introducing
locality and the existence of repair duality for those
codes, in Fig. 3 and Fig. 4 we plot the values for γminLocal

from the expression (9) for two families of codes with k =
8 and k = 12. We took a normalized value M = 1. For
comparative reasons, on the left sub-figure we plot the
values for δ = 2 and on the right sub-figure we plot the
values for δ = 3. While in principle, the values of l do not
necessarily need to divide the value of k, in Algorithm 2

Network Traffic Driven Storage Repair 9

(a) (b)

Figure 3: Repair bandwidth for one node for different codes where k = 8. The initial HashTag codes that are input
in Algorithm 2 are (n, 8) for different values of n. The left sub-figure (a) is for δ = 2 and the right sub-figure (b) is
for δ = 3.

(a) (b)

Figure 4: Repair bandwidth for one node for different codes where k = 12. The initial HashTag codes that are input
in Algorithm 2 are (n, 12) for different values of n. The left sub-figure (a) is for δ = 2 and the right sub-figure (b) is
for δ = 3.

it is very convenient if actually l divides k. That is the
reason why in Fig. 3 that is produced for (n, k) codes
where k = 8 we plot the values for codes obtained for
l = 2 and l = 4. Similarly, the values for l are l = 2, 3, 4
and 6 for the codes (n, 12) in Fig. 4.

The flat lines in Fig. 3 and Fig. 4 mean that the
repair bandwidth in expression (9) is achieved by using

the local parity nodes, i.e., the value is M
k

k
l +δ−2
δ−1 . Since

this expression does not depend on n, its value is a
constant for different values of n. However, in cases when
the minimum in expression (9) is achieved by using the
global parity nodes, the repair bandwidth is M

k
n−1
n−k and

the plot of the values γminLocal has a decreasing shape for
increasing values of n.

Another important aspect that is illustrated by Fig.
3 and Fig. 4 is the price that is paid for achieving a
low repair bandwidth with locally repairable codes. For
example let us take an initial HashTag code (n, k) =
(10, 8). A LRC code produced with information locality
(l = 2, δ = 2) is a (n+ 1, 8) = (11, 8) code and has a
repair bandwidth of 0.5. By using information locality
(l = 4, δ = 2), the LRC code is a (n+ 3, 8) = (13, 8)
code, but the repair bandwidth drops down to 0.25.
The situation with δ = 3 decreases the repair bandwidth
further, but worsens the code rate as well. In Fig.
3(b) an initial HashTag code (n, k) = (10, 8) produces a
LRC code (n+ 2, 8) = (12, 8) with a repair bandwidth of
0.3125 for l = 2, and produces a LRC code (n+ 6, 8) =
(16, 8) with a repair bandwidth of just 0.1875 for l = 4.

10 D. Gligoroski et al.

We illustrate the benefits of having a choice how the
repair is done (either by the local nodes or by the global
nodes) by the following practical example.

Example 4: Let us consider the (9, 6) MSR HashTag
code given in Example 1 and its corresponding local
variant from Algorithm 2 with information locality (l =
2, δ = 2) given in Example 2. That means that the code
with local regeneration has 6 systematic nodes, 2 local
and 2 global parity nodes.

Let us analyze the number of reads when we recover
one unavailable systematic node. If we recover with the
local nodes, then we have to perform 3 sequential reads,
reading the whole data in a contiguous manner from 3
nodes. If we repair the unavailable data with the help
of both local and global parity nodes, it reduces to the
case of recovery with a MSR code, where the number of
sequential reads is between 8 and 24 (average 16 reads)
but the amount of transferred data is equivalent to 2.67
nodes.

More concretely, let us assume that we want to
recover the node x1 = (x1,1, x2,1, . . . , x9,1)T .

1. For a recovery only with the local parity l1, 3
sequential reads of l1, x2 and x3 are performed.

2. For a recovery with the local and global parities:

(a) First, read l1,1, l2,1 and l3,1 from l1, and x1,2,
x2,2 and x3,2 from x2 and x1,3, x2,3 and x3,3
from x3 to recover x1,1, x2,1 and x3,1.

(b) Additionally, read x1,4, x2,4 and x3,4 from x4

and x1,5, x2,5 and x3,5 from x5 and x1,6, x2,6
and x3,6 from x6.

(c) Then, read c1,8, c2,8 and c3,8 from the global
parity g1 to recover x4,1, x5,1 and x6,1.

(d) Finally, read c1,9, c2,9 and c3,9 from the global
parity g2 to recover x7,1, x8,1 and x9,1.

Now, let a small file of 54 KB be stored across 6
systematic, 2 local and 2 global parity nodes. The sub-
packetization level is α = 9, thus every node stores 9
KB, sub-packetized in 9 parts, each of size 1 KB. If the
access time for starting a read operation is approximately
the same as transferring 9 KB, then repairing with local
and global parity nodes is more expensive since we have
to perform in average 12 reads, although the amount of
transferred data is equivalent to 2.67 nodes.

On the other hand, let us have a big file of 540 MB
stored across 6 systematic nodes and 2 local and 2 global
parity nodes. The sub-packetization level is again α =
9, thus every node stores 90 MB, sub-packetized in 9
parts, each of size 10 MB. The access time for starting
a read operation is again approximately the same as
transferring 9 KB, which is insignificant in comparison
with the total amount of transferred data in the process
of repairing of a node. In this case, it is better to repair
a failed node with local and global parity nodes since it
requires a transfer of 240 MB versus the repair just with
local nodes that requires a transfer of 270 MB.

6 HashTag LRC Codes With Efficient
Recovery of a Global Parity Node

HashTag codes as well as different MSR codes [18] and
LRC codes [7, 8, 9] have the property that the bandwidth
for a recovery of a failed parity node (global parity nodes
in the case of LRC) is equal as in Reed-Solomon codes.
That means the recovery of a failed parity node is not
optimal and requires a bandwidth of k nodes.

Algorithm 3 Locally Reparable HashTag Codes with
Efficient Recovery of a Global Parity Node
Input: Number of data nodes k, information locality
(l, 2) and number of global nodes g.
Output: A generator matrix G′ with information
locality (l, 2), and sub-packetization level α = g.

1: With Algorithm 1 produce a MDS HashTag code
with k data nodes, r = g + l − 1 parity nodes and
α = g substripes.

2: Get the corresponding index arrays P1, . . . , Pr.
3: Set global parity nodes {g1, . . . ,gα} = {p2, . . . ,pr}.
4: Set the substripes of the node gi as gi =

(g1,i, . . . , gα,i)
T .

5: Set the matrix of all global substripes

Gα×α[gi,j] =

g1,1 g1,2 . . . g1,α
g2,1 g2,2 . . . g2,α

...
...

. . .
...

gα,1 gα,2 . . . gα,α

6: Split k systematic nodes into l disjunctive

subsets Si, i ∈ [l], where every set has k
l nodes.

While this splitting can be arbitrary, take the
canonical splitting where S1 = {1, . . . , kl }, S2 =

{kl + 1, . . . , 2kl }, . . ., Sl = { (l−1)kl + 1, . . . , k}.
7: Split each of the α linear equations for the first parity

expression in (7) into l sub-summands where the
variables in each equation correspond to the elements
from the disjunctive subsets.

8: Associate the obtained α× l sub-summands to l new
local parity nodes.

9: From Gα×α[gi,j] obtain a new systematic generator
matrix G′α×α[g′i,j] as follows:

g′i,j =

 gi,j if i = j,
fi,j,1gi,j + fi,j,2gj,i if i < j,
fi,j,3gi,j + fi,j,4gj,i if i > j,

(11)

where the coefficients fi,j,1, . . . , fi,j,4 ∈ Fq form 2× 2

non-singular matrices

[
fi,j,1 fi,j,2
fi,j,3 fi,j,4

]
.

10: Return G′ as a generator matrix of a [k + l + g,K =
kg, dmin, g, k] vector code with information locality
(l, 2).

The problem of recovery of a parity node that is
optimal and achieves the MSR bound was recently solved
by Tian et al. in [33]. Their approach is to take any (n, k)
MDS code, where r = n− k, and then to increase the

Network Traffic Driven Storage Repair 11

sub-packetization level by a factor r. Thus, by producing
a HashTag code with Algorithm 1, and applying first
the technique from [33], and then the parity-splitting
technique defined in Algorithm 2 we can construct
HashTag LRC codes that can efficiently recover a global
parity node. However, it comes at the cost of an increased
sub-packetization level from α to rα.

Here, for δ = 2, i.e., for codes with information
locality (l, 2) we present another approach in Algorithm
3 that does not increase the sub-packetization level α of
the initial HashTag code.

Theorem 5: The bandwidth for repair of one global
node produced by Algorithm 3 is equal to the bandwidth
for repair of one data node of a MDS HashTag produced
by Algorithm 1.

Proof: Without a loss of generality let us assume that
the lost global parity node is g1 = (g′1,1, . . . , g

′
α,1)T . From

the relations (11) it follows that we can reconstruct g′1,1
by reading the first k substripes from all k data nodes
x1,1, . . . , xα,1 plus one element xµ,ν where the concrete
values for µ and ν are obtained from the output of
Algorithm 1. That is the same amount of bandwidth as
with the recovery of the first substripe of a data node in
the original HashTag.

For recovery of the substripe g′2,1 we use equation
(11) and we read the substripe g′1,2 from the second
global node. Since we already have read the values
x1,1, . . . , xα,1, by using the coefficients f1,2,1, f1,2,2, f1,2,3
and f1,2,4 and possibly reading one extra stripe element
xµ,ν where the concrete values for µ and ν are obtained
from the output of Algorithm 1 we can compute the
values gi,j and gj,i, i.e., we compute the value g′2,1 =
f1,2,3g1,2 + f1,2,4g2,1. Total number of substripes read
in this step is 2 (the same as in the original HashTag
algorithm when recovering the second substripe of a data
node).

The procedure then continues until the last substripe
g′α,1. In every step the amount of substripes read is the
same as in the original HashTag code when recovering a
data node. �

7 Experiments in Hadoop

The repair duality discussed in Example 4 of
previous section was mainly influenced by one system
characteristic: the access time for starting a read
operation. In different environments of distributed
storage systems there are several similar system
characteristics that can affect the repair duality and its
final optimal procedure. We next discuss this matter for
Hadoop.

Hadoop is an open-source software framework used
for distributed storage and processing of big data sets
[34]. From release 3.0.0-alpha2 Hadoop offers several
erasure codes such as (5, 3), (9, 6) and (14, 10) Reed-
Solomon (RS) codes. Hadoop Distributed File System

(HDFS) has the concepts of Splits and Blocks. A Split is a
logical representation of the data while a Block describes
the physical alignment of data. Splits and Blocks in
Hadoop are user defined: a logical split can be composed
of multiple blocks and one block can have multiple splits.
All these choices determine in a more complex way the
access time for I/O operations.

To verify the performance of HashTag codes and their
locally repairable and locally regenerating variants we
implemented them in C/C++ and used them in HDFS.

For the code (9, 6) we used one NameNode, nine
DataNodes, and one client node. All nodes had a size
of 50 GB and were connected with a local network of
10 Gbps. The nodes were running on Linux machines
equipped with Intel Xeon E5-2676 v3 running on 2.4
GHz. We have experimented with different block sizes
(90 MB and 360 MB), different split sizes (512 KB, 1 MB
and 4 MB) and different sub-packetization levels (α =
1, 3, 6, and 9) in order to check how they affect the repair
time of one lost node. The measured times to recover
one node are presented in Fig. 5. Note that the sub-
packetization level α = 1 represents the RS code that is
available in HDFS, while for every other α = 3, 6, 9 the
codes are HashTag codes. In all measurements HashTag
codes outperform RS. The cost of having significant
number of I/O operations for the sub-packetization level
α = 9 is the highest for the smallest block and split
size (Block size of 90 MB and Split size of 512 KB).
This is shown by yellow bars. As the split sizes increase,
the disadvantage of bigger number of I/Os due to the
increased sub-packetization diminishes, and the repair
time decreases further (red and blue bars).

Figure 5: Experiments in HDFS. Time to repair one
lost node of 50 GB with a (9, 6) code for different sub-
packetization levels α. Note that the RS code for α = 1
is available in the latest release 3.0.0-alpha2 of Apache
Hadoop.

In Fig. 6, we compare the repair times for one lost
node of 50 GB with the codes from Examples 2 and 3.
The cost of bigger redundancy with the locally repairable
code (10, 6) (which is also a locally regenerative code
since the sub-packetization level is α = 9) with (l =
2, δ = 2) (the red bar) is still not enough to outperform

12 D. Gligoroski et al.

the ordinary (9, 6) HashTag MSR code (the blue bar).
However, paying even higher cost by increasing the
redundancy for the other locally regenerative code (11, 6)
with (l = 3, δ = 2) (the yellow bar) finally manages to
outperform the repairing time for the ordinary (9, 6)
HashTag MSR code.

Figure 6: Comparison of repair times for one lost node
of 50 GB for an ordinary (9, 6) HashTag MSR code (α =
9), and its locally regenerative variants with (l = 2, δ =
2) and (l = 3, δ = 2).

The situation of comparing the slightly less optimal
(9, 6) HashTag code with α = 6 with its locally
repairable variants with (l = 2, δ = 2) and (l = 3, δ = 2)
is different, and this is presented in Fig. 7. In this case,
all variants of locally repairable codes outperform the
original HashTag code, i.e., they repair a failed node in
shorter time than the original HashTag code from which
they were constructed.

Figure 7: Comparison of repair times for one lost node
of 50 GB for a (9, 6) HashTag code with α = 6, and its
locally repairable variants with (l = 2, δ = 2) and (l =
3, δ = 2).

8 Conclusions

We constructed an explicit family of locally repairable
and locally regenerating codes. We applied the technique
of parity-splitting on HashTag codes and constructed
codes with locality. For these codes we showed that there
are two ways to repair a node (repair duality), and in
practice which way is applied depends on optimization
metrics such as the repair bandwidth, the number of I/O

operations, the access time for the contacted parts and
the size of the stored file. Additionally, we showed that
the size of the finite field can be slightly lower than the
theoretically obtained lower bound on the size in the
literature. We solved the problem of efficient repair of
the global parities when the number of global parities is
equal to the sub-packetization level.

References

[1] Cisco. Cisco global cloud index: Forecast and
methodology, 2016-2021. white paper, updated
february 1, 2018. Cisco Global Cloud Index (CGI),
2018.

[2] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure Coding
in Windows Azure Storage. In USENIX Annual
Technical Conference, pages 15–26, 2012.

[3] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos,
A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur. XORing elephants: Novel erasure
codes for big data. Proc. VLDB Endow., 6(5):325–
336, 2013.

[4] The Apache Software Foundation. Welcome to
Apache Hadoop! The Apache Software Foundation,
2018.

[5] I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 8(2):300–304,
June 1960.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J.
Wainwright, and K. Ramchandran. Network coding
for distributed storage systems. IEEE Trans. Inf.
Theory, 56(9):4539–4551, Sept. 2010.

[7] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin.
On the locality of codeword symbols. IEEE Trans.
on Inf. Theory, 58(11):6925–6934, 2012.

[8] F. E. Oggier and A. Datta. Self-repairing
homomorphic codes for distributed storage systems.
In INFOCOM, pages 1215–1223, 2011.

[9] D.S. Papailiopoulos, J. Luo, A.G. Dimakis,
C. Huang, and J. Li. Simple regenerating codes:
Network coding for cloud storage. In IEEE
INFOCOM, pages 2801–2805, 2012.

[10] D. Gligoroski, K. Kralevska, R. E. Jensen, and
P. Simonsen. Repair duality with locally repairable
and locally regenerating codes. In 3rd Intl Conf
on Big Data Intelligence and Computing and Cyber
Science and Technology Congress, pages 979–984,
Nov 2017.

Network Traffic Driven Storage Repair 13

[11] G. M. Kamath, N. Prakash, V. Lalitha, and
P. V. Kumar. Codes with local regeneration and
erasure correction. IEEE Trans. on Inf. Theory,
60(8):4637–4660, Aug 2014.

[12] K. Kralevska, D. Gligoroski, and H. Øverby.
General sub-packetized access-optimal regenerating
codes. IEEE Communications Letters, 20(7):1281–
1284, July 2016.

[13] K. Kralevska, D. Gligoroski, R. E. Jensen, and
H. Overby. Hashtag erasure codes: From theory
to practice. IEEE Transactions on Big Data,
PP(99):1–1, 2017.

[14] K.V. Rashmi, Nihar B. Shah, Dikang Gu,
Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A ”hitchhiker’s” guide to fast and
efficient data reconstruction in erasure-coded data
centers. In Proceedings of the 2014 ACM Conference
on SIGCOMM, pages 331–342, 2014.

[15] A. Singh Rawat, I. Tamo, V. Guruswami, and
K. Efremenko. MDS Code Constructions with
Small Sub-packetization and Near-optimal Repair
Bandwidth. ArXiv e-prints, September 2017.

[16] A. Chowdhury and A. Vardy. Improved schemes for
asymptotically optimal repair of mds codes. In 55th
Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 950–957,
2017.

[17] K. Kralevska and D. Gligoroski. An Explicit
Construction of Systematic MDS Codes with Small
Sub-packetization for All-Node Repair. ArXiv e-
prints, June 2018.

[18] S. Goparaju, A. Fazeli, and A. Vardy. Minimum
storage regenerating codes for all parameters. IEEE
Transactions on Information Theory, 63(10):6318–
6328, Oct 2017.

[19] K. Mahdaviani, S. Mohajer, and A. Khisti. Product
matrix msr codes with bandwidth adaptive exact
repair. IEEE Transactions on Information Theory,
PP(99):1–1, 2018.

[20] M. Itani, S. Sharafeddine, and I. Elkabani. Dynamic
single node failure recovery in distributed storage
systems. Computer Networks, 113:84 – 93, 2017.

[21] May Itani, Sanaa Sharafeddine, and Islam
ElKabani. Dynamic multiple node failure recovery
in distributed storage systems. Ad Hoc Networks,
72:1 – 13, 2018.

[22] Cheng Huang, Minghua Chen, and Jin Li. Pyramid
codes: Flexible schemes to trade space for access
efficiency in reliable data storage systems. Trans.
Storage, 9(1):3:1–3:28, March 2013.

[23] K. Kralevska, D. Gligoroski, and H. Øverby.
Balanced locally repairable codes. In Int. Sym. on
Turbo Codes and Iterative Inf. Processing (ISTC),
pages 280–284, Sept 2016.

[24] L. Pamies-Juarez, H. D. L. Hollmann, and
F. Oggier. Locally repairable codes with multiple
repair alternatives. In Information Theory
Proceedings (ISIT), 2013 IEEE International
Symposium on, pages 892–896, July 2013.

[25] S. Kadhe and A. Sprintson. Codes with unequal
locality. In IEEE Int. Symp. on Inf. Theory (ISIT),
pages 435–439, July 2016.

[26] X. Zhang, S. Sprouse, and I. Ilani. A flexible
and low-complexity local erasure recovery scheme.
IEEE Communications Letters, 20(11):2129–2132,
Nov 2016.

[27] H. Park, D. Lee, and J. Moon. Ldpc code
design for distributed storage: Balancing repair
bandwidth, reliability, and storage overhead. IEEE
Transactions on Communications, 66(2):507–520,
Feb 2018.

[28] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and
S. Vishwanath. Optimal locally repairable and
secure codes for distributed storage systems. IEEE
Trans. on Inf. Theory, 60(1):212–236, 2014.

[29] I. Ahmad and C. C. Wang. When locally repairable
codes meet regenerating codes - what if some
helpers are unavailable. In IEEE Int. Symp. on Inf.
Theory (ISIT), pages 849–853, June 2015.

[30] T. Ernvall, T. Westerbck, R. Freij-Hollanti, and
C. Hollanti. A connection between locally repairable
codes and exact regenerating codes. In IEEE Int.
Symp. on Inf. Theory (ISIT), pages 650–654, July
2016.

[31] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in
HDFS. In 13th USENIX Conference on File and
Storage Technologies (FAST), pages 213–226, 2015.

[32] S. B. Balaji, M. Nikhil Krishnan, M. Vajha,
V. Ramkumar, B. Sasidharan, and P. Vijay
Kumar. Erasure Coding for Distributed Storage:
An Overview. ArXiv e-prints, June 2018.

[33] C. Tian, J. Li, and X. Tang. A generic
transformation for optimal repair bandwidth and
rebuilding access in mds codes. In IEEE Int.
Symposium on Inf. Theory (ISIT), pages 1623–
1627, June 2017.

[34] Tom White. Hadoop: The definitive guide. O’Reilly
Media, Inc., 2012.

