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Abstract: A robust H∞ multiple-input multiple-output (MIMO) controller is designed and
implemented for the lateral stage of an Atomic Force Microscope (AFM). Such a model-based
controller can quickly become complex and may be difficult to run in real-time on hardware
with limited computational power. Handling this difficulty is the main topic of this paper.
The resulting controller can be considered to be stiff, which is characterized by a large spread
of eigenvalues. Continuous-time systems running in real-time are usually solved using explicit
Runge-Kutta (ERK) methods, which easily becomes unstable for stiff systems. We show how
small the time-step for a given controller needs to be for a selection of ERK methods. We also
consider model reduction on the controller and how this affects the required step-size and how
much it reduces the computational complexity. We have shown that the original 18th order
H∞ controller could be reduced to a 10th order controller without any significant reduction in
performance or stability, which resulted in a 46.7% reduction in execution time partly because
the order reduction enabled us to use a simpler solver type.

1. INTRODUCTION

Atomic Force Microscopy (AFM) is a tool capable of
studying matter down to the atomic scale. This has made
it one of the fundamental tools within the field of nan-
otechnology. Control of the lateral stage of an AFM has
been shown to be challenging because of several reasons,
including non-linearities such as (1) hysteresis and (2)
creep, (3) lightly-damped vibration dynamics, and (4)
large uncertainties. For high performance under such con-
ditions, model-based controllers has been widely employed
in the literature such as H∞ controllers (Schitter et al.,
2001; Salapaka et al., 2002; Salapaka and Sebastian, 2003;
Schitter and Stemmer, 2004; Ladjal et al., 2009; Yong
et al., 2010). Such controllers tends to become complex in
terms of computational complexity. Because of the high
uncertainties and the non-linearities it is important to
consider robustness in nanopositioning applications. This
topic has been studied in Salapaka et al. (2002); Sebastian
and Salapaka (2005); Ladjal et al. (2009).

The majority of the literature on nanopositioning seems
to perform control design in the continuous time domain
as opposed to the discrete-time z-domain. Such controllers
can be described using continuous-time state-space models
which we will base our discussion around. For a real-time
implementation however, the model is solved at discrete

time-steps using a fixed step-size. Many popular solver
types are based on the family of explicit Runge-Kutta
(ERK) methods. These solvers become unstable if the
step-size is too large. At the same time, the complex-
ity of the controller running on hardware with limited
computational power puts a lower limit on the step-size
the hardware needs to perform the necessary calculations.
Thus we have both a lower and an upper limit on the
step-size determined by various factors. For a controller to
be implementable we need the limits to intersect. We will
discuss some of these factors in this paper and what we
can do about them.

To control a system with a mechanically high bandwidth,
we need to have high bandwidth on the control loop as
well. Thus, the step-size needs to be sufficiently small.
On hardware with limited computational power, we often
need to simplify the model such that it becomes feasible.
The most widely used method to reduce the computational
complexity of a controller is to perform model reduction
on an already existing controller. Model reduction aims to
keep the input-output behavior as close as possible to the
original model while removing states from a state-space
representation of the controller. Model reduction has been
used extensively, some approaches performs reduction on
the plant model (Dong et al., 2007; Lee and Salapaka,
2009). Using a model-based approach, this results in a



controller with less complexity. Another approach is to
perform reduction after synthesis using a high-order model
plant (Schitter and Stemmer, 2004; Kuiper and Schitter,
2012). The discussion of whether to reduce the plant
model and then perform model reduction, or perform
reduction on the controller is treated in Anderson and Liu
(1989); Anderson (1992), where it is generally concluded
that reduction should be performed as a last step in
the control design process. Even if the system is already
implementable, there is an advantage of reducing the
complexity, because we can then run the system on a
smaller step-size which reduces the overall noise floor of
the system.

In this paper, we will base our discussion around a H∞
controller which is designed for the lateral positioning of a
commercial AFM. The controller is designed to be robustly
stable for a given description of plant uncertainty. We will
present equations for how to determine the solver stability
of a controller and the required maximum step-size for a
variety of ERK methods. Additionally, we will show the
effect of model reduction on the complex controller and
how this affects the solver stability and computational
complexity. This paper is based to a large extent on
Ragazzon (2013).

The paper is organized as follows. In Section 2, the
experimental set-up is explained and identified model of
the plant is found. In section 3, we present the control law
design. In Section 4 we present solver stability, specifically
for some ERK methods. Section 5 describes the model
reduction of the controller. Section 6 gives experimental
results of closed-loop characteristics and execution time.
The results are discussed in Section 7. Finally, some
conclusions are drawn in Section 8.

2. SYSTEM IDENTIFICATION

2.1 Device Description

All experiments are done using a commercial AFM of
the type Park Systems XE-70. In this device, the sam-
ple is placed on a parallel kinematic 2d flexure scanner
for motion in the horizontal xy-plane. Motion along the
vertical z-axis is completely decoupled and not regarded
for our purposes. The signals from the AFM are routed
to an electronic processing and controller box that comes
with the microscope. As well as having its own controller
circuits, it provides access to analogue measurements from
the sensors. It can also receive external signals for manual
control of the AFM’s actuators which we will use to control
the piezoelectric elements.

See a schematic overview of the setup in Fig. 1. The
controllers are implemented in a Simulink model, which
is compiled and transferred to a dedicated computer,
an xPC, which runs a real-time operating system. The
xPC performs the number crunching, and is externally
connected to a DAC and ADC. These input-output signals
are run through anti-aliasing and reconstruction filters,
which are constructed as low-pass filters with a bandwidth
of less than half the sample frequency.

For our purpose, we have overridden control of the piezo-
actuators in the x- and y-axes. This is connected to

a “PiezoDrive PDL200”, a linear voltage amplifier. The
input into this amplifier is considered as the input to the
system. The voltage output from the distance sensors in
the x- and y-axes located on the AFM is used as the output
of the system.

Fig. 1. Block diagram of the experimental setup for the
closed-loop system. For the plant frequency response
the SR780 device is connected directly to u.

2.2 Frequency Response and Model Fit

The lateral positioning stage of the AFM is considered
to be dominantly linear, therefore the system can be
described by its frequency response. The system has two
inputs u1, u2 and two outputs y1, y2, along the x- and
y-axis respectively. The frequency response of the plant
G(s) was gathered using a Stanford SR780 frequency
analyser using a white noise source signal. One of several
gathered frequency responses is plotted in Fig. 2 together
with the fitted models. The transfer functions were fitted
using the Matlab function tfest on the experimental
data. The diagonal elements of G(s) were approximated
by a third-degree transfer function, while the off-diagonal
elements were approximated by a second-degree function.
The nominal plant model was found as shown in (1) at the
top of the next page.

The exponential term represents the time delay between
input and output. A time delay will present itself as a
linear reduction of the phase as a function of frequency.
Thus, we may find the time delay of the system between
input and output by taking a look at the phase plot of the
elements of Ĝ. By assuming that the change in phase at
lower frequencies is dominated by the time delay, and other
sources of phase change is close to zero, we can deduce that
the time delay is proportional to the slope at the start of
the phase plot. This is how we identified the time delay
Td = 4.58× 10−4 s.

We can see that the phase starts at 180◦ which means that
the system has an inverse response, i.e. positive inputs
give negative outputs and vice versa. This is just the sign
convention of our raw data, and we decided not to change
it for simplicity.

We can observe that the off-diagonal elements of G(s)
are relatively small compared to the diagonal elements,
this indicates that the two axes are physically well de-
coupled. This indicates that the system is well suited for
independent control of the axes where the cross-coupling
is not considered. However, we will treat the system as a



G(s) = e−4.58e-04s

 −5924s2 − 1.709e07s− 9.878e10

s3 + 4703s2 + 1.82e07s+ 7.806e10

−0.04567s2 + 69.72s− 6.043e04

s2 + 104.5s+ 2.29e07
−0.04705s2 + 89.17s− 1.253e05

s2 + 134.1s+ 2.288e07

−8708s2 + 2.618e07s− 9.214e11

s3 + 3.865e04s2 + 4.379e07s+ 9.44e11

 (1)

single multiple-input multiple-output (MIMO) plant and
design a single more complex controller rather than two
independent slightly simpler controllers.

2.3 Robust Stability and Uncertainty Weighting

Since the system has large uncertainties and inaccuracies
in the model fits, we need to make sure it is robustly
stable for a specified set of perturbations of the plant. We
chose to model the uncertainties as multiplicative output
uncertainty. The perturbed plant is described as

Gp = (I + ∆W )G (2)

where ∆ is the uncertainty variable with ‖∆‖∞ ≤ 1 and
W is a specified weighting transfer function. The block-
diagram of the feedback system is plotted in Fig. 3.

For a given controllerK the robust stability (RS) condition
for the described set of perturbations is (Skogestad and
Postlethwaite, 2007)

RS ⇔ ‖WT‖∞ < 1 (3)

where T , (I + GK)−1GK is the complementary sensi-
tivity function. Similarly we have the sensitivity function
S , (I +GK)−1.

To find a suitable W that fits the uncertainties in our
system, we can record a set of plant frequency responses
Ĝ ∈ Π. Then we can guarantee robust stability for at
least all of these responses by finding a W such that
|W (jω)| > Ŵ (ω) where (Skogestad and Postlethwaite,
2007)

Ŵ (ω) , max
Ĝ∈Π

σ̄
((
Ĝ(ω)−G(jω)

)
G−1(jω)

)
(4)

and σ̄(·) is the maximum singular value. Other equations
exist for different perturbation descriptions such as input
multiplicative uncertainty or additive uncertainty.

We recorded three different frequency responses at dif-
ferent set-points and input amplitudes, and fitted the
calculated Ŵ by the transfer function

W (s) = 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)
(5)

which is plotted together with Ŵ in Fig. 4.

Fig. 3. Feedback system with a multiplicative output
uncertainty
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Fig. 4. Robustness fit, W (s) and Ŵ (ω)

3. CONTROL LAW DESIGN

This section will present the design of the H∞ controller.
We will explain the choice of weightings for the mixed-
sensitivity problem used to synthesize the controller based
on the identified model G.

The H∞ mixed sensitivity problem can be formulated as

min
K

N(K) =

∥∥∥∥∥ WSS
WTT

WKSKS

∥∥∥∥∥
∞

(6)

where WS , WT , and WKS are user-defined weightings.

The sensitivity function S is the closed-loop transfer
function from r to e , y− r. Therefore we want this to be
as small as possible, especially in the bandwidth we would
like to achieve effective control. Thus, within the desired
bandwidth we want WS to be large, so it was chosen as
a first-order filter with large gains at low frequencies and
low gains at high frequencies.

The complementary sensitivity function T is the closed-
loop transfer function from r to y. Thus, we would like
this to be close to one within the desired bandwidth for
good tracking behavior. For higher frequencies we would
like it to be as small as possible to attenuate measurement
noise. Thus WT is chosen to be small at low frequencies
and large at high frequencies. Since WT is a measurement
of the robust stability we have chosen WT = W to form
the system to become more easily robustly stable.

Finally, we have the weighting WKS . In fact KS is the
closed-loop transfer function from r to u, so it describes
the control effort for a given reference signal. We want to
punish high frequencies of u since this means a large energy
usage by the controller, and we know that the system won’t
respond to very high frequencies. Thus WKS is modeled
as a high-pass filter. The resulting weighting functions are
summarized in Table 1.

The problem was solved using the Matlab function mixsyn.
This resulted in a controller with 18 states. For the sake of
comparison later on, we also designed a similar controller
using independent axis design, i.e. one H∞ controller
for each axis, as well as a simple PID controller. The
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Fig. 2. Experimental frequency response for both axes including cross-terms, and the corresponding fitted models, i.e.
the elements of G(s) and Ĝ(jω).

bandwidth of all three controllers as well as the robustness
properties and model order is given in Table 2. The table
shows us that the closed-loop system is robustly stable
because ‖WT‖∞ < 1 for both of the H∞ controllers. This
is not the case for the PID-controller, so in fact we can not
guarantee that this controller is stable for all perturbations
of the system.

Table 1. Summary of weighting transfer functions

WS(s)
0.8333s+ 439.8

s+ 0.04398

WT (s) 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)

WKS(s) 0.8333
s

s+ 439.8

Table 2. Bandwidth and robustness comparison be-
tween the three controllers. TF = transfer function,

SS = state space.

ωb,S ωb,T ‖WT‖∞ Implementation

[Hz] [Hz]

PID 58.0 93.1 1.073 4th order TF

H∞ SISO 75.6 96.4 0.9938 14th order SS

H∞ MIMO 69.8 98.6 0.6717 18th order SS

4. SOLVER STABILITY

We will consider the case where a controller is represented
by a continuous-time state-space model. A real-time im-
plementation of such a model will use a solver to perform

the necessary integration steps at fixed discrete time inter-
vals, denoted by the step-size h. A complex controller will
require a larger step-size because of limited computational
power in the hardware, while at the same time an increased
step-size can make the solver unstable. In this section we
will see that the solver stability depends on the eigenvalues
of the controller, the step-size, as well as the solver type.

Let us consider the scalar test system

ẏ = λy (7)

which is applied to a solver taking the discrete state yn to
the next time step yn+1 with step-size h,

yn+1 = Φ(hλ)yn (8)

= [Φ(hλ)]
n
y0 (9)

where Φ(hλ) is called the stability function. It is evident
that (9) is stable, i.e. |yn| ≤ c <∞ ∀n ≥ 0, if and only if

|Φ(hλ)| ≤ 1 (10)

All solvers we will consider have such a stability function,
and the region of stability, i.e. the region of the complex
plane where (10) is satisfied, varies between each solver
type.

Example 1 : Euler’s Method applied to (7) gives

yn+1 = yn + h(λyn)

= (1 + hλ) yn (11)

thus Φ(hλ) = 1 + hλ, which is stable in the region
{z ∈ C | |1 + z| < 1}, in other words the unit circle with
center -1. 4



4.1 Runge-Kutta Methods

The family of explicit Runge-Kutta (ERK) methods can
be written as

yn+1 = yn +

s∑
i=1

biki (12)

where s describes the number of stages of the Runge-Kutta
method and

k1 = hf(tn, yn)

k2 = hf(tn + c2h, yn + a21k1)

k3 = hf(tn + c3h, yn + a31k1 + a32k2)

...

ks = hf(tn + csh, yn + as1k1 + as2k2 + · · ·+ as,s−1ks−1)

where the coefficients aij , bi, and ci are elements of A, b,
and c respectively, which are specified by a given ERK
solver. Note that Euler’s method is a first order ERK
method.

4.2 Stability of Explicit Runge-Kutta Methods

The stability function of ERK methods are given by
(Egeland and Gravdahl, 2002)

Φ(z) = det(I − zA+ z1bT ) (13)

where 1 is a column vector of one-elements. It can be
shown that this can be simplified for an ERK method of
order p = s to (Hairer and Wanner, 1996)

Φ(z) = 1 + z + · · ·+ zp

p!
which is only possible for methods of order up to 4. Higher
order ERK methods need more stages s than the order
p. We have plotted the stability region of a selection of
ERK methods in Fig. 5. Specifically the region of erk1-
erk4 with p = s, Dormand-Prince 5 (erk5) and Dormand-
Prince 8 (erk8). The last two with coefficients taken from
Dormand and Prince (1980); Prince and Dormand (1981).
The stability functions of these methods are reckoned to
be the same as for the fixed-step solver methods available
in Simulink.

4.3 Linear System

We have given the stability methods for several ERK
methods for the scalar test system. In this section, we will
show that the stability of the solvers applied to a linear
system of ordinary differential equations (ODE) is given
by its eigenvalues.

Theorem 1. Consider the system

ẏ = Ay (14)

where A is an n × n diagonalizable matrix having eigen-
values λ1, . . . , λn. Let us apply an explicit Runge-Kutta
method to this system. Then the ERK method has a stable
point at the origin if and only if the same method has a
stable point for

ż = λiz ∀ i ∈ [1, . . . , n]

4

This is a standard result in numerical methods theory, see
e.g. Ascher and Petzold (1998). We have used a wording
similar to Frank (2008) which is also used for the next
corollary.
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Fig. 5. Stability region of a variety of ERK methods
of order 1-5 and 8. Magenta circles: Eigenvalues of
the full order controller K scaled by the maximum
step-size achieving stability for erk8. Yellow X’s:
Eigenvalues of the reduced tenth order controller K10

scaled by the same step-size. Note that K10 is stable
for erk5.

Corollary 2. Consider a Runge-Kutta method with stabil-
ity function Φ(z) applied to the system ẏ = Ay. Then the
origin is stable for the numerical method with step-size h
if and only if

|Φ(hλi)| ≤ 1, ∀ i ∈ [1, . . . , n]

where λi are the eigenvalues of A. 4

In other words, if all the eigenvalues of A are within the
region of stability for a given solver at a specific step-size
h, then the solver applied to (14) is stable. This gives us
a tool to check for the required maximum step-size for a
given controller and solver.

5. CONTROL ORDER REDUCTION

5.1 Model Reduction Theory

There exist several methods to perform model reduction
Obinata and Anderson (2001), most widely used is possi-
bly balanced residualization. Here the controller is first
transformed to a balanced realization. A realization is
said to be balanced if the controllability and observability
Gramians are equal, thus a balanced model can be said
to be as observable as it is controllable. The model states
are ordered by decreasing Hankel singular values to form
a state-space model (A,B,C,D). The last states are re-
moved and the system is transformed such thatA11 A12 B1

A21 A22 B2

C1 C2 D

⇒ [
A11 −A12A

−1
22 A21 B1 −A21A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]
The DC-gain of the system is maintained using this
method, at some cost to the accuracy in the faster modes.



If we instead of a balanced realization used a canonical
modal realization where the A-matrix is diagonal with
elements equal to the eigenvalues, and performed the same
reduction technique we can essentially remove the system
eigenvalues of choice. This may be useful if some of the
eigenvalues are larger than wanted, but can also result
in large errors and possibly instability. Other methods
include the truncation method which is more accurate
at high frequencies at the cost of low frequencies, the
optimal Hankel norm method, and using Linear Matrix
Inequalities.

5.2 Results of Control Reduction

The designed controller K was first transformed to a
balanced realization using the Matlab command balreal.
The Hankel singular values for K are given in Table 3
which gives an idea of the error to be expected from
removing each state.

We performed model reduction on K by model residual-
ization to several new controllers Kr of order 2 to order
17. This was done in Matlab with the command modred.
The closed-loop H∞ error norm on T − Tr, where Tr is
the complementary sensitivity of the reduced controller,
for each reduced controller is shown in Fig. 6a. We can see
that there are significant drops specifically between order
4-5, 9-10, and 16-17. The error changes relatively little in-
between these drops. Since we would like a controller with
as low order as possible while maintaining the performance
characteristics, we are inclined to select one of the orders
after such a drop, i.e. 5, 10, or 17. The robustness norm
is shown in Fig. 6b where we can see that only controller
order 10 and higher are robustly stable with ‖WTr‖∞ < 1.
The previous discussion clearly favors choosing the 10th
order controller as it provides robust stability with little
error. This choice is further reinforced by considering the
simulated step responses as shown in Fig. 7. The 10th or-
der controller gives nearly indistinguishable results to the
original controller, while the 8th and 9th order controllers
shows some oscillatory behavior. The 7th order model is
unstable, so we clearly want to avoid it.

Table 3. Hankel singular values of the balanced
realization of the controller, σi

1) 5.436e+03 7) 6.799e-02 13) 1.324e-02

2) 4.227e+03 8) 6.049e-02 14) 4.091e-03

3) 3.307e-01 9) 3.885e-02 15) 4.073e-03

4) 2.775e-01 10) 1.977e-02 16) 1.400e-03

5) 1.246e-01 11) 1.514e-02 17) 1.044e-03

6) 7.628e-02 12) 1.430e-02 18) 5.722e-05

5.3 Eigenvalues and Maximum Step-Size

We have previously shown that the stability of an explicit
Runge-Kutta method applied to a state-space model de-
pends on the eigenvalues of the A-matrix and the step-
size. Thus, for a given controller we can find the maximum
step-size needed for stability. The maximum step-size for
controller K was found to be 54.62µs using the erk8 solver.
The eigenvalues scaled by step-size can be seen in Fig. 5
(magenta circles) which are seen to lie within the stability
region of erk8. It is not stable for erk5 as the eigenvalues
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Fig. 7. Simulated step-response in reference signal on the
x -axis, reduced vs original controller. Shows output
from both x-axis and y-axis.

are outside the stability region for this solver. The eigen-
values of the reduced controller K10 has also been plotted
(yellow x’s) for the same step-size and we can see how the
controller reduction has affected the eigenvalues. We can
see that they have become smaller which has resulted in
the controller becoming stable even for the erk5 solver. So
not only does model reduction reduce the computational
complexity of the controller, but it can also enable us to
use a simpler solver type or alternatively a larger step-size.

The maximum step-size for a variety of controllers and
solver types are shown in Table 4. Note that the maximum
step-size does not strictly increase with lower model-
orders, since the model residualization method used does
not necessarily reduce the eigenvalues. Other reduction
methods could be considered if this is critical, such as
methods directly removing states with large eigenvalues.

6. EXPERIMENTAL RESULTS

Experiments were performed for two reasons. The first was
to see how well the reduced order controllers performed



Table 4. Maximum step-size for a given explicit
Runge-Kutta (ERK) method for the various reduced
controllers as well as some simpler controllers and
the nominal plant model. Larger values are generally
better because they are stable at higher step-sizes.

Order
hmax [µs]

erk1 erk2 erk3 erk4 erk5 erk8

7 (unst.) 32.18 71.33 95.74 100.8 127.2 203.6

8 58.37 58.37 73.34 81.29 96.51 150.8

9 37.54 37.54 47.17 52.28 62.07 96.99

10 33.61 33.61 42.22 46.8 55.56 86.82

11 39.70 39.7 49.87 55.28 65.63 102.5

12 24.96 32.66 41.03 45.48 54.00 84.37

13 2.821 21.55 27.07 30.01 35.63 55.67

14 2.818 19.11 24.01 26.62 31.60 49.38

15 2.843 21.73 27.30 30.26 35.92 56.13

16 2.948 22.64 28.44 31.53 37.43 58.48

17 2.918 21.18 26.61 29.49 35.01 54.71

18 (full) 2.910 21.14 26.56 29.45 34.96 54.62

PID 80.00 80.00 100.5 111.4 132.3 206.7

H∞SISO 21.45 21.45 26.95 29.87 35.46 55.41

G(s) 4.564 52.42 65.85 73.00 86.66 135.4

compared to our simulations. The second was to record
the average task execution time (TET), the time it takes
the hardware to perform calculations from one time-step
to the next. This can be considered a measurement of
the computational complexity of the controller, and is a
lower limit on the step-size. Any lower than this and the
hardware will not be able to meet its deadline and exit
with a “CPU overload” error.

The experiments were performed in the setup shown in
Fig. 1. The closed loop frequency response of the original
controller K compared to the reduced controllers K10 and
K8 is given in Fig. 8. The average TET for the various
controllers and solver types are given in Table 5. The
system was run with step-size h = 40µs, and only the
modes that are stable at this step-size as can be seen from
Table 4 was tested, i.e. hmax ≥ 40µs.

7. DISCUSSION

7.1 Model Reduction and Performance

The model reduction showed us that the original 18th or-
der controller could be reduced to a 10th order model with
no noticeable difference in the simulated step-response or
the experimental closed-loop frequency response. Addi-
tionally, it was shown to maintain robust stability, thus
it is a very viable controller choice. In terms of the impact
on computational complexity, we can see that we have
reduction of 25.5%, from 20.11 to 14.99µs if we use the
erk8 solver for both controllers.

From Table 4 we can see that the 10th order controller
can run using the erk3 solver at a step-size of h = 40µs,
while the fullH∞ MIMO controller needs erk8 for stability
at this step-size. By choosing erk3 for the 10th order
controller we can see from Table 5 that this reduces the
execution time to 10.71µs, or a 46.7% reduction from the
original controller.

Table 5. Average Task Execution Time (TET) with
different controller model order and solver types
which gives an indication on the computational com-
plexity. Step-size h = 40µs. Dash (-) unstable, not

tested. (x) CPU overload.

Order
Average TET [µs]

erk1 erk2 erk3 erk5 erk8 ode14x

≤7 - - - - - -

8 - 10.25 10.43 11.10 13.64 26.72

9 - - 10.55 11.43 14.26 x

10 - - 10.71 11.64 14.99 x

11 - - 10.89 11.91 15.79 x

12 - - 11.07 12.36 16.79 x

13 - - - - 17.68 x

14 - - - - 18.82 x

15 - - - - 19.61 x

16 - - - - 20.91 x

17 - - - - 22.61 x

18 - - - - 20.11 x

PID - 9.95 9.98 10.13 11.12 14.91

H∞SISO - - - - 14.58 x

We tried to run the controller with the implicit solver
ode14x (Extrapolation) supplied with Simulink, but it was
found to be such computationally demanding that we
were only able to run it with the 8th order controller in
addition to the PID controller. Additionally, the solutions
was found to explode at times in our simulations so this
solver was not further considered.

It is also interesting to note that the execution time does
not strictly decrease with increased controller order, e.g.
the 17th to 18th order controller. By inspecting the state-
space model of each of these controllers, we notice that the
18th order controller has a lot more zero-valued elements.
We speculate that the compiler simplifies the arithmetic
on these elements.

7.2 Eigenvalues and Stability

As we have seen, the eigenvalues of the controller are one
of the decisive factors for stability of an applied ERK
method. Hence, it is important to consider how controller
reduction changes the eigenvalues, especially for a fast
and stiff system such as our lateral positioning platform
of an AFM. The eigenvalues of our controller tended to
become smaller with reduced orders, but this need not be
the case. One should be careful when performing model
reduction and possibly verify that the eigenvalues are
within the stable region of the solver considered. If the
solver stability becomes a problem, one should consider a
different model reduction method, such as removing the
eigenvalues directly from a canonical modal realization of
the controller.

We have also seen how increased solver order increases
the stability region, but at the same time it increases
the execution time. This will ultimately be a trade-off
between moving the lower limit (due to computation time)
and the upper limit (for stability) of the step-size, as
illustrated in Fig. 9. Halving the step-size usually doubles
the computational complexity (per unit of time), while
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Fig. 8. Singular values of the closed-loop σ(T̂ ) for the 8th and 10th order reduced controller versus the original controller.

increasing the solver complexity is harder to predict, but
will generally depend on the controller order.

Note that we have not considered the accuracy of the
solver methods. This is because we have assumed that the
system is stiff, and stiff systems are characterized such that
instability comes before any accuracy problems.

Feasible step-size region UnstableHardware overload

Minimum step-size Maximum step-size

Simpler controller (lower order)
Less complex solver method

More powerful hardware

Smaller eigenvalues
More complex solver method

Fig. 9. Illustration of the trade-off between step-size,
controller complexity, solver complexity, eigenvalues
of the controller, and hardware performance for a real-
time controller implementation.

8. CONCLUSION

This paper concerns itself with some practical issues for
a controller running in real-time. Since the capability of
hardware is limited in terms of computational perfor-
mance, a complex controller can become difficult to imple-
ment with a step-size small enough for stability. This paper
tries to achieve two goals, (1) to show how to determine
the maximum step-size a controller requires for numerical
stability, and (2) to show what can be done to reduce the
computational complexity of an already existing controller
with a focus on model reduction.

To show how this can be done, a robustly stable H∞
controller was designed for a nanopositioning device. We
showed that the numerical stability of an explicit Runge-
Kutta method is determined by the eigenvalues of the con-
troller. Model reduction was performed on the controller
and the reduced controllers were compared in terms of
performance and stability both in simulations and exper-
iments which showed that the 18th order controller could
be reduced to a 10th order model without any significant

reduction in performance or stability. After the reduction
process, the largest eigenvalues were reduced in size so the
system also became numerically stable for even simpler
solver types which allow further reduction of the compu-
tational requirement.

An experiment was run to determine the change in compu-
tational complexity by recording the execution time of the
various controllers. The reduction to a 10th order model,
as well as the possibility of using a simpler solver type
resulted in a 46.7% reduction in task execution time.
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Stemmer, A. (2001). High performance feedback for fast
scanning atomic force microscopes. Review of Scientific
Instruments, 72(8), 3320.

Schitter, G. and Stemmer, a. (2004). Identification and
Open-Loop Tracking Control of a Piezoelectric Tube
Scanner for High-Speed Scanning-Probe Microscopy.
IEEE Transactions on Control Systems Technology,
12(3), 449–454.

Sebastian, A. and Salapaka, S.M. (2005). Design method-
ologies for robust nano-positioning. IEEE Transactions
on Control Systems Technology, 13(6), 868–876.

Skogestad, S. and Postlethwaite, I. (2007). Multivari-
able feedback control: analysis and design. Wiley-
Interscience, 2 edition edition.

Yong, Y., Liu, K., and Moheimani, S. (2010). Reducing
cross-coupling in a compliant XY nanopositioner for
fast and accurate raster scanning. Control Systems
Technology, IEEE Transactions on, 18(5), 1172–1179.


