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Abstract This paper develops a tool kit for designing low-pass filters to ex-
hibit the smallest possible phase drop. Based solely on the stopband require-
ments, it is thus possible to find the best order for a filter to be employed in
a feedback loop. That is shown for two much-used filter families, Butterworth
and Bessel, in cases where the filter is specified to have a minimum attenuation
above a certain frequency. It is argued that the phase drop can be represented
by an equivalent filter delay. Design tools are then developed, which do not
depend on the precise dynamics of the application process. The tools comprise
not only the means for determining the optimal filter order and bandwidth,
but also formulae and tables useful for obtaining the resulting filter delay.
A simple approximation is subsequently developed, which links the minimum
obtainable delay directly to said requirements. The filter order needs not be
known to apply this expression, and the filter family is represented in it by no
more than a single constant. This rule of thumb is finally adapted to the area
of anti-aliasing filters, and there briefly compared to approximative formulae
found in existing literature.
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1 Introduction

A low-pass filter has the distinct purpose of letting the low-frequency compo-
nents of a signal pass undisturbed, while blocking high-frequency components.
Indeed, texts on the subject, such as [1,3,5,8,10], often start by describing an
ideal filter where signal components below a specified frequency are let through
undisturbed, whereas those above this frequency are completely blocked. As
a second, more realistic step, a model for the specification of an approxima-
tion is depicted. There, the filter attenuation in the stopband is constrained
to be larger than some Ds � 1, and at the same time the attenuation in the
passband to be smaller than some Dd & 1. In this context, the stopband is
defined as the set of frequencies above a specified value ωs, and the passband
as the set below some ωd < ωs. A comprehensive collection of design tools is
available for solving this problem, aiming at a best-possible approximation of
the ideal amplitude characteristics. These tools do not consider the phase shift
of the filter, however.

In a feedback loop, the preservation of the gain in the passband is of
secondary importance. Taking classical control theory as an example, serial
compensation is applied in order to maximize the loop gain in the effective
frequency range—not to keep it constant. At the same time, the stability
of the closed-loop system is secured by manipulating the open-loop transfer
function in the crossover region. This is the region encompassing the phase
crossover frequency ω180, where the phase drops below −180◦, as well as the
gain crossover frequency ωc, where the gain passes 0 dB. The latter also de-
fines the bandwidth of the loop. The insertion of a low-pass filter will reduce
ω180, and in turn prompt a reduction in ωc in order to uphold the stability
margin. The significance of phase in the design of low-pass filters for feedback
loops is acknowledged and treated e.g. in [2, 4, 11]. They do not provide clear
recommendations for what filter order to use in a specific situation, however.
Design procedures with this feature seem hard to come by.

This paper develops and presents a set of design tools for filters in feed-
back loops. Sec. 2 builds the case by reviewing the established design process
for the well-known and conceptually simple Butterworth low-pass filter, and
points out how this approach influences the phase. This hopefully clarifies re-
quirements, and supports the idea that, in the given context, the best filter
order can be found from nothing more than the specified stopband attenuation.
Sec. 3 puts forward that, in many cases, it can be sufficient to define optimality
in terms of an equivalent delay rather than a more general functional. Based
on this, tables of concrete and immediately usable optimal solutions for the
Butterworth filter are developed. The extension to a second filter family is
covered in Sec. 4. As is shown there, similar results are obtained for the Bessel
filter. The above suggestions and findings are discussed in Sec. 5. In the same
place, two approximative formulae for the preliminary assessment of filter per-
formance are presented—as well as a complete filter design procedure. Sec. 6
concludes the paper by formulating rules of thumb specifically for anti-aliasing
filters, and comparing them to the existing literature.
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For a specific frequency ωs,
For each attenuation Ds = 10 dB through 90 dB,

Start a separate diagram.
For filter orders n = 1 through 10,

Compute bandwidth ω0.
Add Bode plot of corresponding filter.

Fig. 1 Procedure used to generate Bode plots of low-pass filters

2 Butterworth Filters

The Butterworth filter is often defined by its attenuation as a function of
frequency ω:

Un (ω) =

√
1 +

(
ω

ω0

)2n

. (1)

Here, natural number n denotes the filter order, and ω0 what is often called the
bandwidth—or the cut-off or corner frequency. It is easily seen that Un (ω0) =√

2, approximately 3 dB, for any filter order n. The Butterworth filter is popu-
lar because of its maximally flat amplitude characteristics in the passband, as
well as its conceptual simplicity. Both features serve well in this introductory
example.

Traditionally [1, 7, 10] the filter order and bandwidth are found by first
specifying a stopband in terms of the minimum attenuation Ds for frequencies
above ωs, and condensing this into requirement

Un (ωs) = Ds . (2)

The bandwidth is now found from (1) and (2) to be

ω0 = ωs
−2n
√
D2
s − 1 . (3)

Subsequently, n can be negotiated so that ω0 is arbitrarily close to ωs. A
closed-form expression for n is also available [7, 8, 10]:

n ≥
log

D2
s−1

D2
d−1

2 log ωs

ωd

. (4)

Here, the passband specification outlined in the introduction is used. Band-
width ω0 can still be found from (3).

A preliminary investigation for different stopband specifications, with ω0

found from (3), can be carried out according to the procedure shown in Fig. 1.
Amplitude and phase characteristics produced for a range of filter orders, all
having the same specified attenuation at the same specified frequency, are
shown in Fig. 2.

As can be seen from this representative sample, a specific order (in this
case n = 5) appears to cause the smallest phase drop in most of the passband.
Diagrams for the remaining values ofDs are shown in Online Resource 1. These
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Fig. 2 Bode plots of Butterworth filters of orders 1 through 10. Order 5 is highlighted,
since it features the smallest phase drop. All filters have the same attenuation of 40 dB at
ω = ωs
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Table 1 Optimal filter order

10 20 30 40 50 60 70 80 90
2 3 4 5 6 7 8 9 10

𝐷𝐷𝑠𝑠[dB]
𝑛𝑛

Best order n of Butterworth or Bessel filters for different stop band attenuations Ds, as determined by visual
inspection.

follow the same pattern, and the full range of plots reveals the remarkably clear
correspondence summarized in Table 1.

This first takeaway suggests that, if a Butterworth low-pass filter is spec-
ified to have a certain minimum attenuation Ds in the stopband, a specific
filter order n can be identified, which causes the smallest phase drop.

3 Filter Delay

The results in Table 1 rely on visual judgement. A properly posed minimization
problem, however, is specified in terms of a single functional.

In a well-designed control system, the phase lag at gain crossover should be
dominated by the process and the controller rather than the filter. According
to [11], a phase drop of 5◦ to 15◦ due to the filter can be acceptable. Thus,
when comparing phase lags caused by the filters themselves, it is probably
not necessary to consider much greater values. Since small lags in this context
imply low frequencies, it may be convenient to compare filters in terms of a
single scalar describing phase in that end of the spectrum.

The signal-processing community are comfortable with the terms group
delay and phase delay. Indeed, [4] for instance, in a section called Filter delay,
uses the low-frequency group delay to compare the phase contribution of several
filter types. In the same way; restricted to Bessel filters, however, [2] uses
the term approximate time delay synonymously with the zero-frequency delay
coined by Thomson in his paper [9]. The latter is adopted hereinafter, since,
at sufficiently low frequencies, the group delay and phase delay values for the
filters of interest turn out to be identical. The term will alternate with short
hands filter delay, or simply delay.

Introducing s, the differential operator of the Laplace transform, the notion
of a delay can be established by representing time shift −τ by transfer function

e−τs =
1

1 + τs+ 1
2 (τs)

2
+ · · ·

. (5)

Comparing this with the general, all-pole filter transfer function

Hn (s) =
1

An (s)
=

1

1 + a1,ns+ · · ·+ an,nsn
, (6)

it is seen that, for sufficiently small values of s,

Hn (s) ≈ e−a1,ns . (7)
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Alternatively, the zero-frequency delay can be depicted as the apparent
steady state time shift in the ramp response ofHn (s), which is readily obtained
for instance by applying the final value theorem.

3.1 Zero-frequency delay of the Butterworth filter

Equation (1) also determines the transfer function of the filter,

Hn (s) =
1

Bn( s
ω0

)
. (8)

Butterworth polynomials Bn (x) are readily available in tables, such as in
[3, 5, 10], usually in terms of constants 2ζk,n of expression

Bn(x) = (1 + x)(1 + 2ζ1,nx+ x2) · · · (1 + 2ζm,nx+ x2) . (9)

Here, n is odd and m , (n− 1)/2. If n is even,

Bn(x) = (1 + 2ζ1,nx+ x2) · · · (1 + 2ζm,nx+ x2) , (10)

and m , n/2. The relative damping constants ζk,n are found [7, 10] from

ζk,n = − cos
2k + n− 1

2n
π for all k≤m . (11)

The zero-frequency delay, by (7), is related to the first-degree coefficient of the
expanded form

Bn(x) = 1 + b1,nx+ · · ·+ b1,nx
n−1 + xn (12)

of (9) or (10). Inserting (11) into either, a compact, closed form for the first-
degree coefficient is found as

b1,n = −
n∑
k=1

cos
2k + n− 1

2n
π . (13)

The zero-frequency delay is now found from (7). Expanding shorthand x
into s/ω0 in (12), and then inserting (3), completes the sequence

τn = a1,n =
b1,n
ω0

=
b1,n

2n
√
D2
s − 1

ωs
. (14)

Sample values of the relative delay

ωsτn = b1,n
2n
√
D2
s − 1 , (15)

for different combinations of n and Ds, are shown in Table 2. As can be seen:
for each attenuation value Ds, a filter order n can be found, which exhibits
the smallest delay.
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Table 2 Butterworth filter delays

20 dB 4.4609 4.3017 4.6410 5.1237 5.6664 6.2399 6.8311 7.4336 8.0436 8.6589
30 dB 7.9507 6.3235 6.1959 6.4562 6.8702 7.3601 7.8929 8.4522 9.0291 9.6182
40 dB 14.1418 9.2830 8.2633 8.1286 8.3240 8.6764 9.1151 9.6062 10.1313 10.6799
50 dB 25.1486 13.6258 11.0194 10.2333 10.0849 10.2276 10.5260 10.9171 11.3676 11.8583
60 dB 44.7213 20.0000 14.6947 12.8830 12.2181 12.0559 12.1553 12.4069 12.7546 13.1667
70 dB 79.5271 29.3560 19.5957 16.2188 14.8026 14.2111 14.0367 14.1000 14.3109 14.6195
80 dB 141.421 43.0887 26.1313 20.4182 17.9337 16.7517 16.2093 16.0241 16.0571 16.2325
90 dB 251.487 63.2456 34.8466 25.7050 21.7272 19.7463 18.7182 18.2108 18.0164 18.0236

𝐷𝐷𝑠𝑠 𝑛𝑛 = 2 3 4 5 6 7 8 9 10 11

Relative delays ωsτn for filters of order n = 2 through 11 with Ds = 20 through 90 dB. The shortest delay
for each specific attenuation is given a grey background. Multiple values are marked where they differ by less
than 1%.

Table 3 Switching points for Butterworth filters

Order 61 2 3 4 5 7 8 9 10 11
55.1 64.0 72.8 81.6 90.4Attenuationa 7.0 18.1 27.9 37.1 46.2

a) Values [dB] of attenuations Ds,n,n+1 separating optimal filter orders n and n+ 1.

3.2 Switching Points

Imagine that order n is optimal for some value of Ds. Thence, Ds is increased
until a transition is made from order n being optimal to n+ 1 being optimal.
At that point, both choices result in the same delay value,

τn = τn+1 , (16)

and (14) can be inserted twice into (16), which becomes

b1,n
2n
√
D2
s − 1

ωs
=
b1,n+1

2(n+1)
√
D2
s − 1

ωs
. (17)

This can be rearranged into

b1,n
b1,n+1

=
2(n+1)
√
D2

s − 1
2n
√
D2

s − 1
= −2n(n+1)

√
D2

s − 1 , (18)

and finally solved for Ds:

Ds,n,n+1 =

√(
b1,n
b1,n+1

)−2n(n+1)

+ 1 . (19)

Here, the switching point is denoted by the more elaborate Ds,n,n+1 to em-
phasize that both n and n+ 1 are optimal. The expression depends on two b1
values, both of which can be computed from (13). Table 3 shows the results
obtained for a range of switching points, and is easily extended by continuing
to apply (19) for as long as desired. The optimal filter order is thus easily
found for any attenuation specified.
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4 Bessel Filters

The Bessel filter is credited [2] with being the superior choice for anti-aliasing
filters in high performance control systems, and is thus included herein. Its
phase characteristics is designed to be as linear as possible for each filter
order; consequently, the signal will pass with only a minimum of distortion.
Step responses for instance, are shown in [6] to exhibit very little overshoot.
Serving as a low-pass filter, however, its amplitude characteristics is rather
poor. It was argued above that the latter is of reduced importance in the
present context.

A Bessel filter of order n can be defined in terms of the all-pole transfer
function

Gn(s) =
1

Cn(τs)
. (20)

Starting with c0,n = c1,n = 1, the coefficients of polynomial Cn are found [7]
from the recursion

ck+1,n =
2(n− k)

(k + 1)(2n− k)
ck,n . (21)

Expanding the denominator into

Cn(τs) = 1 + τs+ c2,n(τs)
2

+ · · ·+ cn,n(τs)
n
, (22)

by (7), constant τ is immediately identified as the zero-frequency delay. How-
ever, finding the zero-frequency delay for a desired attenuation Ds at a speci-
fied frequency ωs implies solving

Ds = |Cn(τs)| (23)

for τ , with s set to jωs. As is evident from Fig. 3, |Cn(·)| is monotonic. Thus,
no complications should arise from solving (23), for instance by iteration.

The transfer function of the Bessel filter can be found using Matlab Sig-
nal Processing Toolbox function besself—or for instance, Python function
scipy.signal.bessel. These take a different filter constant than τ , however:
corner frequency ω0, which marks the intersection of the low-frequency and
high-frequency gain asymptotes. Thus, a conversion formula is needed. Ac-
cording to (22),

lim
ω→0
|Cn(jωτ)| = 1 , (24)

whereas for high frequencies, (21) and (22) imply

lim
ω→∞

|Cn(jωτ)| = cn,n(ωτ)n =
2nn!

(2n)!
(ωτ)n . (25)

Equating (24) and (25) and solving for ω yields corner frequency

ω0 =
1

τ

(
(2n)!

2nn!

)1/n

. (26)
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Table 4 Bessel filter delays

20 dB 5.3280 5.0771 5.3718 5.8301 6.3534 6.9039 7.4626 8.0183 8.5631 9.0915
30 dB 9.6609 7.6569 7.3901 7.5952 7.9897 8.4762 9.0123 9.5756 10.1532 10.7365
40 dB 17.2768 11.3556 9.9853 9.7059 9.8397 10.1704 10.6087 11.1110 11.6535 12.2216
50 dB 30.7763 16.7413 13.4007 12.3133 12.0242 12.1015 12.3749 12.7644 13.2277 13.7401
60 dB 54.7586 24.6212 17.9293 15.5683 14.6409 14.3444 14.3764 14.5997 14.9433 15.3670
70 dB 97.3927 36.1713 23.9517 19.6489 17.7928 16.9684 16.6658 16.6610 16.8407 17.1422
80 dB 173.201 53.1141 31.9714 24.7743 21.5992 20.0484 19.2957 18.9883 18.9528 19.0946
90 dB 308.005 77.9756 42.6577 31.2182 26.2018 23.6699 22.3228 21.6228 21.3115 21.2503

𝐷𝐷𝑠𝑠 𝑛𝑛 = 2 3 4 5 6 7 8 9 10 11

Relative delays ωsτn for filters of order n = 2 through 11 with Ds = 20 through 90 dB. The shortest delay
for each specific attenuation is given a grey background. Multiple values are marked where they differ by less
than 1%.

Table 5 Switching points for Bessel filters

Order 61 2 3 4 5 7 8 9 10 11
43.7Attenuationa 8.5 17.4 26.2 34.9 52.4 61.1 69.8 78.5 87.2

a) Values [dB] of attenuations Ds,n,n+1 separating optimal filter orders n and n+ 1.

A new investigation can now be carried out according to the procedure in
Fig. 1: this time with ω0 found by first solving (23) for τ and then applying
(26). Fig. 3 shows Bode plots that are directly comparable to those in Fig. 2. A
visual inspection of the phase plots indicates that, with Ds at 40 dB, the best
phase is again found for n = 5. Diagrams for the remaining values of Ds are
found in Online Resource 2. These follow the same pattern, and the full range
of plots suggests that Table 1 is valid for Bessel as well as for Butterworth
filters. The zero-frequency delays are found in the process, and the new set of
relative delays are shown in Table 4.

Switching points are found using the same argumentation as with the But-
terworth filter. Defining shorthand x , ωτ , (23) can be squared and written

D2
s = (1− c2,nx2 + c4,nx

4− c6,nx6 + · · · )2 +(x− c3,nx3 + c5,nx
5−· · · )2 , (27)

but also, for the next filter order,

D2
s = (1−c2,n+1x

2 +c4,n+1x
4−· · · )2 +(x−c3,n+1x

3 +c5,n+1x
5−· · · )2 . (28)

Following the reasoning leading to (16), for any natural number n, (27) and
(28) can be combined and solved for x. The insertion of x back into either,
produces Table 5, which settles the best order for a Bessel filter the same way
as Table 3 does for a Butterworth filter.

5 Discussion

This paper describes principles for determining the filter constant and order
of a low-pass filter, in situations where the minimum attenuation Ds above
a certain frequency ωs is specified. It argues that the traditional approach,
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Fig. 3 Bode plots of Bessel filters of orders 1 through 10. Order 5 is highlighted, since it
features the smallest phase drop. All filters have the same attenuation of 40 dB at ω = ωs
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represented by (4), for finding the best order of a low-pass filter is of limited
value in cases where the filter lag needs to be minimized. It proceeds by de-
veloping better, still equally simple, rules for that scenario. Inspecting Bode
plots of Butterworth and Bessel filters over a range of orders leads to the easily
memorized Table 1.

5.1 Investigating the tables

The zero-frequency delay is proposed as a scalar measure for comparing filters,
and is displayed in Table 2 for the Butterworth filter. The results are in full
agreement with Table 1. Table 4 as well is in good agreement with Table 1,
except that the best order is elevated by one for Ds values of 60 dB and above.
However, a closer look shows that the delay values corresponding to the filter
orders of Table 1 are no more than 0.3% larger than the minimum values.
Understandably, this difference is difficult to resolve by eyesight.

Tables 2 and 4 can be compared directly. In each table row, the shortest
delay has been highlighted together with any entry deviating by less than 1%
from it. As can be seen, the lowest order in each group is the same for both
families. Thus, the difference between the results obtained by visual inspection,
and those obtained by minimizing the zero-frequency delay, can probably be
explained by taking into account the author’s understandable bias towards
lower filter orders. It can be concluded that the zero-frequency delay can be
used with both filter families, and yields approximately the same results as a
visual inspection.

It was argued above, that the zero-frequency delay only needs to represent
the filter accurately for lags smaller than 15◦. Nevertheless, for either filter
family, the inspection of the Bode plots indicate that the validity range can be
extended to include lags approaching 90◦. This further corroborates the use
of the zero-frequency delay in the present context.

With this established, Tables 3 and 5 can be said to form reliable, pre-
computed maps indicating which filter order to recommend for each specific
situation. As can be seen, the switching points differ between the Butterworth
and Bessel filters, but by no more than 3.2 dB. This difference hardly matters
in practice. Nevertheless, now that both tables exist, there is little reason not
accept them as they are.

Interestingly, in addition to the almost linear correspondence between the
optimal order n and the decibel value of Ds, Tables 2 and 4 also reveal a nearly
linear relationship with the minimum delay, which can be expressed as

R · ωsτmin ≈ 20 logDs . (29)

The tables indicate that constant R is approximately 5 for a Butterworth and
4 for a Bessel filter. This makes it easy, quite early in a design process—and
without caring about the exact filter order—to provide a direct relationship
between the stopband requirements and the shortest obtainable delay.
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Start with a specification of the stopband in terms of ωs and Ds, considering for instance (29) and (30).
With a Butterworth filter, the remaining steps are:

1. Use Table 3 to find the optimal filter order n for the specified attenuation Ds.
2. Obtain filter parameter ω0 from (3). Optionally, apply (13) and (14) to find the exact zero-frequency

delay τ .

The order of a Bessel filter is equally easy to obtain. Finding the filter constant is slightly more laborious,
however:

1. Use Table 5 to find the optimal filter order n for the specified attenuation Ds.
2. Solve (23) for the exact filter delay τ , and apply (26) to find ω0 if desired.

One way to solve (23) is by interpolation in the relevant column of Table 4. On top of this, if needed, the
result can be further improved by iteration.

Fig. 4 Design procedure for low-pass filter in feedback loop

Studying Tables 2 and 4, it is also noted that each column therein repre-
sents a tabulated version of the relationship between stopband attenuation Ds

and relative delay ωsτn for a specific filter order and family. Hence, solving
(23) for τ can be reduced to the interpolation of the corresponding column of
Table 4. This option is incorporated in the final design procedure.

5.2 Matching the application

Up to this point, considerations have remained comfortably detached from the
application process. In the introduction, and with classical control theory as
the example, it was pointed out that stability is linked to the gain and phase
characteristics in the crossover region. A simple link to the dynamics in this
region can thus be made through the approximation

φc ≈ τminωc , (30)

which simply expresses the phase drop φc corresponding to delay τmin at
frequency ωc. In principle, the latter can represent any frequency deemed
significant by the engineer, but notably the gain crossover frequency of the
loop transfer function. That way, (30) can for instance be considered together
with the recommendation implied in [11] that the phase drop due to the filter
should not exceed 15◦ at gain crossover. This, together with (29), can be used
to negotiate a stopband specification.

The tools developed in this paper are brought together to form the design
procedure outlined in Fig. 4. As can be seen, both filter families are incorpo-
rated. The emphasis on delay mitigation, and the fact that the Butterworth
filter offers a 20% shorter delay than the Bessel filter, brings the former for-
ward as the primary choice. On the other hand, the Bessel filter offers the
most well behaved step response of the two, and is thus favored in [2, 11].

Though no claims are made regarding how well the filters serve as delay
approximations, it has been demonstrated that any transfer function with the
structure shown in (6) can be said to approximate a delay to some extent. In
a Bode plot, the two hallmarks of a delay are unity gain and linear phase,
and each of the two filter families investigated excel in one of these areas: the
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Butterworth filter in the first, and the Bessel filter in the second [1, 10]. In a
specific situation, if it matters that the filter is an accurate approximation of
a delay, the system designer will still have to determine whether a maximally
flat gain or a linear phase best serves its purpose. In the introduction to this
paper, it is argued that the gain in the passband is of secondary importance.
It needs to be pointed out, however, that a maximally flat gain can still be of
value in some situations. There is even a chance that the designer will have to
revisit (4) while negotiating the best solution for the problem at hand.

6 Anti-aliasing filters

Reasons for employing low-pass filters vary. One specific usage, that fits well
in the present context, is the anti-aliasing filter. Its purpose is to prevent
frequency content near or above the Nyquist frequency from entering a down-
stream, discrete-time processing unit. These filters comprise analog electronic
circuitry; hence, they are kept reasonably simple. Their design procedure can
also be held simple, since the downstream system usually does not need to be
considered in any detail. Their employment in digital feedback systems comes
highly recommended in [2, 4, 11], and defines a context in which comparisons
to some degree can be made.

Approximations of phase as a function of stopband requirements are briefly
presented in [2,11]. These are useful for estimating the impact of specific filter
parameters on the phase. Notably, the expressions therein are developed for
specific filter orders. In contrast, the combination of (29) and (30) herein
produces the alternative approximation

φc ≈
20 logDs

R
· ωc
ωs

, (31)

which for instance can be used to estimate the phase contribution from the
filter at an anticipated gain crossover frequency ωc. A similar relationship is
formed by

φc ≈
20 logDs

RS
hωc , (32)

with constant S , hωs imposing an inversely proportional relationship be-
tween sample period h and stop band limit ωs. In line with the sampling
theorem, it is recommended that S . π. Clearly, neither (31) nor (32) depend
on the filter order. Instead, both implicitly assume the best choice.

In [2, Table 7.3], delays for Bessel filters of order 4 and 6 are presented for
different stopband attenuations. The columns therein tabulate values of τn/h,
which can be compared to corresponding values of τnωs in Table 4 herein,
simply by dividing the latter by S = π. The tables match, albeit with reduced
accuracy at high attenuation values, consistent with the fact that the entries
in the reference are admittedly approximations. The switching point between
n = 4 and 6 being the best choice, appears to lie somewhere between Ds = 34
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dB and 40 dB. This in no way contradicts Tables 4 and 5 herein. Nevertheless,
the notion of an optimal filter order seems to go unnoticed in [2].

It is straightforward to extend (29) to establish a proportional approxima-
tive relationship between the smallest obtainable delay τmin and the sample
interval h of the controller:

τmin ≈
20 logDs

RS
h . (33)

This delay can be compared with, and of course added to, the average pro-
cessing delay τcon of a controller with a zero-order hold element on its output.
The relationship usually presented in the literature is

τcon ≈ Eh , (34)

with E typically being assigned the value 0.5 as in [11], or 1.5 as in [4], de-
pending on the assumptions made regarding the digital controller.

A rule of thumb for the two delays is presented in [4, Eq. 10.4.2]. In agree-
ment with (33) and (34), both are proportional to the sampling period. No-
tably, the filter delay therein is a linear function of its order. Consequently,
that expression cannot capture the major point made herein: that the smallest
delay will be found at some optimal filter order n. This, on the other hand, is
implicit in (33).

A similar expression, this time in terms of phase lag at the crossover fre-
quency, appears in the deliberations leading to [11, Eq. 36]. As should be,
the result depends on stopband requirements through Ds. On the other hand,
again, the expression is developed for a specific filter order, and is thus of
limited use. In the present context, a similar approximation of the total phase
lag can be obtained as an extension of (32) involving (34):

φtot ≈ (τmin + τcon)ωc ≈ (E +
20 logDs

RS
)hωc . (35)

Focus remains on the basic requirement: the stopband specification. Since the
optimal filter order too is a function of Ds, it does not appear in (35).

7 Conclusion

It is tempting to round off by citing Elliot, who dedicates [4] to all those whose
theories become glaringly obvious in retrospect : I just might qualify.

Still, the procedure outlined in Sec. 5.2, and summarized in Fig. 4, repre-
sents a practical and simple approach to filter design. As a supplement, (31)
through (35) can be useful in the preliminary assessment of anti-aliasing fil-
ters, as well as in negotiating the sampling rate, or the closed-loop bandwidth,
of the system. These tools can be of use even before finding the optimal filter
order.

A foundation for the above is that the phase lag can be represented ade-
quately through the zero-frequency delay. The discussion in Sec. 5.1 indicates
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that this is a reasonably sound assumption. A second footing is the need for
minimizing the delay, subject to the basic stopband requirements presented in
the introduction. Of course, the validity of this premise needs to be considered
in each individual case.

From my perspective, giving undergraduate courses in control and instru-
mentation, there is an additional boon. The above framework provides clear
rules for determining the filter parameters based directly on what matters: the
stopband requirements. Table 1, in combination with (3), might be all that
is needed, even by sensor manufacturers, in order to provide output filtering
with the smallest phase drop possible.
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