
UN
CO

RR
EC

TE
D

PR
OO

F

Energy xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Energy
journal homepage: www.elsevier.com

Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for
improved fuel economy and performance
Debraj Bhattacharjee a, ∗, Tamal Ghosh b, Prabha Bhola a, Kristian Martinsen b, Pranab K. Dan a

a Department: Rajendra Mishra School of Engineering Entrepreneurship (RMSoEE), Institute: Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
b Department: Department of Manufacturing and Civil Engineering (IVB), Institute: Norwegian University of Science and Technology, Teknologivegen 22, 2815, Gjøvik, Norway

A R T I C L E I N F O

Article history:
Received 24 March 2019
Received in revised form 24 May 2019
Accepted 17 June 2019
Available online xxx

Keywords:
Component sizing
Hybrid electric vehicle
Energy efficiency
Many-objective optimization
NSGA III
Surrogate assisted evolutionary optimization

A B S T R A C T

This article presents an optimized series-parallel hybrid powertrain transformed from a conventional vehi-
cle using an analytical approach without changing the original chassis. The proposed approach is based on
a many-objective hybrid powertrain model, which aims to optimize the vehicle weight, fuel consumptions,
emissions, and performances. Three different Surrogate Assisted Evolutionary Algorithms (SAEAs) are intro-
duced based on the improved Non-dominated Sorting Genetic Algorithm (NSGA III), Multi-Objective Evo-
lutionary Algorithm Based on Decomposition (MOEA/D) and Multi-Objective Genetic Algorithm (MOGA)
for optimization of powertrain components. Initially, the powertrain optimization is performed for Urban Dy-
namometer Driving Schedule (UDDS) driving cycle with 20% road grade. Thereafter, all the obtained Pareto
solutions are combined, screened, and 78 best feasible design points are considered depending on the con-
straints imposed. Subsequently, 15 design points are randomly selected for validation in Federal Test Proce-
dure (FTP) driving cycle without road grade. It is observed that NSGA III reduces the vehicle weight and fuel
consumptions by 4.39% and 46.47% respectively. The powertrain energy efficiency is improved by 57.49%,
and the engine is downsized by 40%. The contribution of this article is twofold. First, the many-objective
simulation model for hybrid powertrain is developed. Second, SAEAs are implemented as optimization tech-
niques for optimal component sizing and promising results are obtained.

© 2019.

Abbreviations

IC Internal Combustion
FTP Federal Test Procedure
DT Decision Tree
FC Fuel Consumption
CO2 Carbon-di-oxide
CO Carbon Monoxide
HC Hydrocarbon
DOE Design of Experiment
DC Direct Current
SOC State of Charge
DE Differential Evolution
GP Gaussian Process
GA Genetic Algorithm
GP Genetic Programming
EA Evolutionary Algorithm
FFD Full Factorial Design
OED Drivetrain efficiency
MSE Mean Square Error
MOGA Multi-Objective Genetic Algorithm
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MOEA/D Multi-Objective Evolutionary Algorithm Based On
Decomposition

NSGA Non-dominated Sorting Genetic Algorithm
HWFET Highway Fuel Economy Test
SAEA Surrogate Assisted Evolutionary Algorithm
WLTP Worldwide Harmonised Light Vehicle Test Procedure
PSO Particle Swarm Optimization
NOX Nitrogen Oxide Component
UDDS Urban Dynamometer Driving Schedule
PMS Power management strategy
HEV Hybrid Electric Vehicle
SVM Support Vector Machine
ANN Artificial Neural Network
BNN Bayesian Neural Network
LHS Latin Hypercube Sampling
OAD Orthogonal Array Design
NREL National Renewable Energy Laboratory NREL
MOPs Multi-objective Optimization Problems

Symbols

mveh Vehicle mass (kg)
Peng Engine power (kW)
Pmaxeng Engine maximum power (kW)
ωeng Engine angular velocity(rps)
τeng Engine torque (Nm)
Pmaxmot Maximum Motor power (kW)
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Table 1
Initial vehicle parameters.

Parameters Conventional Vehicle
Toyota
Prius

Vehicle mass (mveh) 1195Kg 1404Kg
Engine maximum power

(Pmaxeng)
70kW 43kW

Motor maximum power
(Pmaxmot)

– 31 kw

Generator max power
(Pmaxgen)

– 15kW

Aerodynamic drag coefficient
(CD)

0.19 0.30

Front area (Af) 2.038m2 1.7460m2

Vehicle CG height (hcg) 0.4m 0.569m
Vehicle wheel radius (rw) 0.2820m 0.2870m
Transmission gear ratio/

Power-split
13.195; 7.3486; 4.9126; 3.4916;
2.5984

3.93

Pmot,loss Motor power loss (kW)
μmot Motor efficiency
Pmot Motor Power (kW)
ωmot Motor angular velocity (rps)
Pmot,in Motor power input (kW)
Pmot,o Motor power output (kW)
Seng,ω Engine speed scale
Seng,p Engine power scale
Seng,τ Engine torque scale
Seng,m Engine mass scale
Smot,p Motor power scale
Smot,ω Motor angular velocity scale
Smot,τ Motor torque scale
Jengine Engine inertia(kg-m2)
τmot Motor torque (Nm)
ωmot Motor speed (rps)
COeng Carbon monoxide emission (gm/km)
HCeng Hydrocarbon emission (gm/km)
NOXeng Nitrox emission (gm/km)
Pgen Generator power (kW)
ωgen Generator angular velocity (rps)
τgen Generator torque (Nm)
Pgen,out Generator useful power (kW)
μgen Generator efficiency

mgen Generator mass (Kg)
Sgen,m Generator mass scale
FC Vehicle fuel consumption per 100km (lit/100km)
fmax Vehicle maximum acceleration (m/s2)
Nr Teeth number of Ring gear
τw Wheel torque (Nm)
η0 Final drive efficiency
i0 Final drive ratio
ηg Power-split efficiency
ig Transmission ratio
τb Mechanical brake torque (Nm)
δ Mass correction factor
rw Tire radius (m)
hcg Vehicle CG height (m)
g Gravitational acceleration
T Temperature (oC)
ωout Output angular velocity to the tire (rps)
τout Output torque to the tire (Nm)
k Ratio between ring teeth number and sun teeth number
fr Rolling coefficient
θ Road grade angle
CD Aerodynamic drag coefficient
Af Front area of vehicle(m2)
ρair Air density (Kg/m3)
vveh Vehicle velocity(Km/hr)
Pbat Battery power(kW)
I Battery current (amp)
Vmax Vehicle maximum velocity (Km/hr)
Cmax Maximum battery charge (Ah)
Cused Used charge (Ah)
Nbat Number battery module
mbat Battery mass (Kg)
Sgen,τ Generator Torque scale
Sgen,ω Generator angular velocity scale
Sgen,p Generator power scale
Pmax,gen Generator maximum power(kW)
feng Fuel consumption (gm)
%accelearation dev Percentage acceleration deviation
Diff_SOC SOC difference
Ns Teeth number of Sun gear

Fig. 1. Proposed work-flow for multi-objective HEV powertrain optimization.
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Fig. 2. FTP and UDDS driving cycles.

1. Introduction

The HEV is considered as a significant add-on in the cluster of
the alternative vehicles, which is an energy efficient and cost-effec-
tive solution for the automotive industry [1]. Holistic efficiency of
the HEV depends on its powertrain performance, which further de-
pends on its electro-mechanical components. These components are
to be designed more optimally to tune the overall performance of the
powertrain. Accurate sizing of these components would also be es-
sential in order to optimize the hybrid powertrain. Recently the com-
ponent-sizing problem of HEV becomes popular in automotive re-
search, which is further divided into two broader categories (1) selec-
tion of influential powertrain components while converting a conven-
tional powertrain to a hybrid powertrain and (2) downsizing the pow-
ertrain components to obtain optimal fuel consumptions, emissions,
and vehicle performances. According to the automotive literature, the
solution methodologies for the component sizing problems are classi-
fied as, sequential, iterative, bi-level, and simultaneous optimization
problems [2]. The sequential methods could be found in the studies
recently proposed in Refs. [3,4]. In case of sequential method, the
control laws are defined based on the component sizes for the power
management system. On the other hand, iterative methods optimize

Fig. 3. Power-Split HEV architecture.

Fig. 4. Powertrain components descriptions using contour plots: (a) Power map of engine (b) Fuel consumption map (c) CO emission map (d) HC emission map (e) NOX emission
map (f) Motor efficiency map (g) Generator efficiency map.
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Table 2
Fuzzy rule based PMS.

SOC Grade Velocity Torque demand Engine Motor Generator

Less than lower threshold Greater than
lower threshold

Higher than
higher threshold

Less than lower threshold and greater
than higher threshold

ON GEN ON

Greater than lower threshold Less than higher
threshold

Greater than
higher threshold

Greater than lower threshold and
lower than higher threshold

ON but disengaged
from powertrain

ON ON

Greater than lower threshold and
lower than higher threshold

Less than higher
threshold

Less than higher
threshold

Any Value OFF ON OFF

Greater than higher threshold Lower than lower
threshold

Less than higher
threshold

Less than lower threshold OFF ON ON

Greater than higher threshold Greater than
higher threshold

Greater than
higher threshold

Greater than higher threshold ON ON OFF

Fig. 5. BNN schematic diagram.

Fig. 6. (a) MOEA/D flowchart (b) NSGA III flowchart.

the component sizes and control laws until the component sizes con-
verge without compromising the desired performance [5]. In simulta-
neous method, the component size and control laws are selected si-
multaneously for every cycle of computation [6]. The Bi-level method
utilizes two nested optimization loops in order to achieve the global
best objective values [7]. Component sizing is a multi-objective op-
timization problem, which could enhance the system efficiency by
minimizing the fuel usage of the engine and the loss of the

system in a hybrid powertrain. Based on the powertrain architecture,
the powertrain could be classified as series, parallel, and series-par-
allel architectures. Driving cycles might have an effect on the pow-
ertrain component sizing [8]. Therefore, some of the studies portray
the combined form of the different driving cycles, which minimizes
the variations in the fuel economy of a particular HEV powertrain ar-
chitecture [9,10]. However, a holistic optimization model is not yet
found in automotive literature. In a recent study [11], authors applied
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Fig. 7. Algorithm for MOGA

Chaos-enhanced Accelerated PSO to find the feasible solution points
with an effective Pareto analysis, which shows that equal weights con-
sideration for the bi-objective problem could obtain improved solu-
tion. In Ref. [12] the objectives considered, were the minimization of
two different types of fuel consumptions. A plugin-type HEV with
power-split is considered for the design space exploration, and PSO
is used as main optimization algorithm. The gear ratios and the trac-
tion components are optimized based on the different driving modes.
Design space exploration recommends a set of Pareto solution points
instead of single optimal design point since the problem is multi-ob-
jective type [13,14]. In Ref. [15], the fuel consumption and carbon
emission have been considered as the primary objectives for convert-
ing a conventional vehicle to HEV. The conversion shows that the
CO2 emission could be minimized by 23% and operational cost by
26% through hybridization of a conventional vehicle. Ref. [16] de-
picts the best transmission configuration in a plug-in HEV by mini-
mizing the fossil fuel consumption and total energy consumption. The
number of gears and gear ratios are considered as variables. The re-
sult shows an improvement in the fuel economy by 7.79%, 9.74% and
4.41% for three driving cycle namely FTP, UDDS, and WLTP re-
spectively. The authors of ref. [17] successfully downsized the main
traction motor in a plugin hybrid vehicle from 120KW to 30KW for
the harmonised vehicle driving cycle. Not only the component sizing,

Table 3
Regression models with P Values and R2 Values.

Objective Models P value for Decision Variables R2

Pmaxeng Pmaxmot Pmaxgen i0 Nbat Nr Ns

mveh 0.000 0.000 0.000 – 0.000 – – 98%
FC 0.004 0.778 0.432 0.000 0.004 0.003 0.234 80.28%
%accelearation dev 0.000 0.426 0.480 0.000 0.200 0.009 0.000 87.18%
HC 0.033 0.792 0.478 0.000 0.004 0.001 0.022 78.69%
CO 0.019 0.790 0.488 0.000 0.004 0.001 0.031 79.37%
NOX 0.009 0.831 0.405 0.000 0.005 0.002 0.153 79.21%
Failed to travel 0.000 0.132 0.153 0.000 0.038 0.017 0.000 90.63%
Speed error 0.002 0.076 0.285 0.000 0.004 0.148 0.003 79.86%
diff _ SOC 0.004 0.367 0.052 0.006 0.223 0.557 0.002 68.45%
V_max 0.544 0.677 0.099 0.000 0.003 0.116 0.167 82.14%
f _max 0.38 0.000 0.229 0.000 0.183 0.205 0.785 86.98%

Fig. 8. SAEA framework for HEV Powertrain.
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Table 4
HEV powertrain Parameters and their levels for L27 Orthogonal Array.

Factors Level 1 Level 2 Level 3

Pmaxeng 30 40 50
Nbat 20 30 40
Pmaxmot 30 40 50
Pmaxgen 15 20 25
Nr 50 64 78
Ns 18 24 30
i0 2.5 3.0 3.93

but also the topology selection could be found in other studies [18],
which improves fuel economy by 14.4% and 44.9% in 2 different
driving cycles. The results show an 1.5% gross vehicle weight re-
duction, 11% traction motor efficiency improvement, and 21% fuel
economy improvement. Product cost based optimization for a series
plug-in HEV could be found in the ref. [19]. Three different meth-
ods are applied to obtain the solution points, namely Second Order
Cone Program, Linear Program, and Energy Based methods for a plu-
gin HEV. Another study presents a specialized model for determining
the powertrain component sizing, weight and product cost estimation
[20]. The authors have used this model for further component selec-
tion for powertrain of HEV. The study portrayed by Ref. [21] could
estimate the thermal and dynamic characteristics of a traction motor
operating in overcurrent region for HEV, where traction motor was
downsized and 6.97% improvement in energy consumption and 5.7%
efficiency in fuel consumption was achieved. The authors of ref. [22]
used the pontrayagin's minimum principle for sizing of battery pack.
The transmission ratios are searched for achieving the minimum fuel
consumption in Ref. [23]. A component sizing operation on a Toyota
Prius could be obtained from the ref. [24], which shows an improve-
ment in fuel economy by 6.56% in FTP driving cycle and 3.15% in
the HWFET with respect to original design. In Ref. [25] ride comfort,
power performance and energy consumption are considered as objec-
tives for the component resizing of a HEV powertrain.

In this article, an effort is made to formulate a novel many-objec-
tive HEV powertrain model that simultaneously optimizes eleven ob-
jectives for a series parallel HEV. Such type of complex many-objec-
tive optimization problem for HEV powertrain is not yet attempted
in past. The parameters for the HEV powertrain are considered from
a real vehicle. The initial modeling data are produced through com-
puter simulation for UDDS driving cycle with 20% grade. The for-
mulated many-objective problem has been solved with three latest
SAEAs, namely NSGA III, MOEA/D and MOGA, which utilize the
deep learning based BNN and regression models. The fuzzy power
management strategy is considered to control the powertrain. The ob-
jectives are based on minimization of vehicle weight, fuel consump-
tion, emission of the hydrocarbon and carbon monoxide and nitrox,
percentage acceleration deviation, failed to travel distance, speed de-
viation, and maximization of vehicle speed and acceleration. Total 78
Pareto solutions are selected from the combined list of all solutions
and 15 design points are picked and validated in FTP driving cycle
without any grade. The analyses conclude that the conversion of the
conventional vehicle to an optimized HEV enhances the fuel efficien-
cies and performances. The rest of this study proceeds in following
order, Section #2 introduces the HEV powertrain and its component
modeling. Section #3 demonstrates the proposed SAEAs. Section #4
presents the results and analyses and Section #5 concludes this re-
search.

2. Powertrain of HEV

This article deals with two problems (1) conversion of a conven-
tional vehicle to a HEV and (2) optimization of powertrain using

component sizing. Table 1 portrays the description of a conventional
vehicle based on Toyota Prius powertrain model. The workflow of this
research is depicted in the Fig. 1.

The initial data are produced for powertrain using simulation study
based on a real vehicle for UDDS driving cycle with 20% grade. At
the end, the validation study is conducted using FTP driving cycle
without grade. The two driving cycles are portrayed in the Fig. 2. Any
driving cycle could directly affect the fuel consumption for the vehi-
cle. Therefore, the testing of the final design points needs to be carried
out in another different driving cycle for validation. The testing of the
initial vehicle model was conducted on the UDDS driving cycle (blue
line in Fig. 2). Hence, the improvement in the final design points is
verified in the FTP driving cycle (red line in Fig. 2). This way, the su-
periority of the design points is validated.

2.1. Powertrain modeling

The series parallel HEV architecture is depicted in Fig. 3. Whereas,
Fig. 4 presents the detailed characteristics of the powertrain compo-
nents of Toyota Prius system, which are engine power map, engine
fuel map, emission maps, Motor efficiency map, CO, HC, NOX emis-
sion maps, and generator efficiency map. The depicted powertrain has
been considered for optimization. The mathematical models of the
powertrain components are described next.

2.1.1. IC engine modeling
The IC engine model could be demonstrated using mathematical

expression, which is further decomposed into maximum power model,
fuel consumption model, CO2 emission model, HC emission model
and NOX emission model. The power of the engine (KW) could be
expressed using Eq. (1).

For component sizing, the scale factors are introduced in this work,
which could change other parameters with changes in engine maxi-
mum power. Eq. (2) depicts the engine maximum power as a function
of engine torque, speed, and scale factor for the maximum power of
the engine.

The mass of the engine meng could be defined using Eq. (4). The
Jengine (Eq. (5)) is presented as the function of engine power scale fac-
tor.

The feng (gram/KW) is portrayed in Eq. (6), which is the function
of speed and torque at a particular moment t (Eq. (7)).

(1)

(2)

(3)

(4)

(5)
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Table 5
HEV powertrain Parameters in Taguchi's L27 table.

Exp. # Pmaxeng Nbat Pmaxmot Pmaxgen Nr Ns i0 mveh FC % accelearation dev HC CO NOX EL Speed dev diff_SOC V_max f_max

1 50 40 50 25 78 30 3.93 1217 20.3 5.419 1.362 2.036 0.878 0 0.4054 0.2387 162.1 4.7
2 50 40 50 25 64 24 3 1217 28.3 7.2091 1.51 2.227 0.9 4.4 0.4733 0.2422 203.9 4.6
3 50 40 50 25 50 18 2.5 1217 37.1 11.3428 2.192 3.178 1.212 7 0.5720 0.2486 203.6 3.8
4 50 30 40 20 78 30 3.93 1176 25.6 3.6567 1.244 1.866 0.797 2.2 0.3172 0.2369 162.1 4.7
5 50 30 40 20 64 24 3 1176 32 9.2237 1.801 2.631 1.036 5.7 0.5559 0.2475 196.1 3.8
6 50 30 40 20 50 18 2.5 1176 44 12.9186 2.722 3.913 1.457 7.9 0.6443 0.2489 196.7 3.1
7 50 20 30 15 78 30 3.93 1134 26.9 5.4585 1.405 2.072 0.854 3.4 0.5471 0.2474 162.8 3.1
8 50 20 30 15 64 24 3 1134 33.6 10.144 2.013 2.898 1.107 6.2 0.7048 0.2483 194.9 2.6
9 50 20 30 15 50 18 2.5 1134 77.7 16.527 5.871 8.176 2.729 10.1 0.7743 0.2499 193.9 2.3
10 40 40 40 15 78 24 2.5 1148 55.7 15.8001 3.552 5.142 1.862 9.7 0.6479 0.2511 218.8 3.2
11 40 40 40 15 64 18 3.93 1148 24.9 8.6733 1.308 1.958 0.795 5.3 0.4901 0.2459 161.8 4.7
12 40 40 40 15 50 30 3 1148 35.4 10.1384 1.591 2.453 1.094 6.2 0.5449 0.2482 213.4 3.8
13 40 30 30 25 78 24 2.5 1140 75.2 16.8946 5.056 7.207 2.542 10.4 0.7341 0.2501 206.9 2.5
14 40 30 30 25 64 18 3.93 1140 29.1 11.0036 1.654 2.443 0.952 6.7 0.5676 0.2487 162.4 4
15 40 30 30 25 50 30 3 1140 25.1 4.4907 1.058 1.651 0.763 2.8 0.3952 0.2382 162.6 3.9
16 40 20 50 20 78 24 2.5 1155 103.5 17.7114 7.347 10.35 3.544 10.9 0.7546 0.2501 194.9 3.5
17 40 20 50 20 64 18 3.93 1155 27.7 10.6817 1.618 2.365 0.911 6.6 0.5829 0.2494 162.6 4.7
18 40 20 50 20 50 30 3 1155 25.1 4.9759 1.099 1.704 0.772 3.1 0.4543 0.2419 162.9 4.7
19 30 40 30 20 78 18 3 1112 51.1 16.8463 3.52 5.181 1.792 10.3 0.6735 0.2501 209.6 3
20 30 40 30 20 64 30 2.5 1112 58 16.0224 2.9 4.419 1.842 9.8 0.7049 0.25 203.3 2.5
21 30 40 30 20 50 24 3.93 1112 26.5 10.1842 1.16 1.819 0.818 6.2 0.5427 0.2475 162.8 3.9
22 30 30 50 15 78 18 3 1128 56.1 17.1482 3.908 5.603 1.917 10.5 0.6735 0.2512 194.7 4.7
23 30 30 50 15 64 30 2.5 1128 64.2 16.4661 3.307 5.028 2.062 10.1 0.6779 0.2495 194 3.9
24 30 30 50 15 50 24 3.93 1128 24.7 9.6562 1.102 1.722 0.768 5.9 0.5362 0.2481 162.8 4.7
25 30 20 40 25 78 18 3 1119 101.6 18.3215 7.687 10.749 3.515 11.2 0.7553 0.2506 178.9 3.6
26 30 20 40 25 64 30 2.5 1119 99.1 17.6469 5.401 8.101 3.228 10.8 0.7604 0.2509 180.9 3
27 30 20 40 25 50 24 3.93 1119 28.8 11.5256 1.364 2.104 0.91 7.1 0.6326 0.2481 163.2 4.7
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Fig. 9. Performance Curve for the BNN surrogate.

The emission of CO, HC, and NOX could be depicted using Eq.
(8)-(10).

2.1.2. Electric motor modeling
The mathematical expressions of the electric motor could be exhib-

ited using Eq. (11) – (16).

Here the efficiency of the motor is the function of the angular ve-
locity and torque of the motor. The Pmot, max is function of Pmot, in and
Pmot,o,

The maximum value of the motor power is related to other motor
parameters with the scale factor.

The mass of the motor is also related to maximum motor power
with a mass scale factor. The relation could be expressed as,

Fig. 10. Original and predictive data plotted for eleven responses of HEV powertrain using BNN.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Fig. 11. Probability distributions for (a) MOGA Results, (b) NSGA III Results and (c) MOEA/D Results, and (d) 78 design point (parametric combinations).

Table 6
Objective mean and standard deviations (SD).

objectives MOGA NSGA III MOEA/D

Mean SD Mean SD Mean SD

mveh 1056.00 56.27 1135.00 9.86 1113.00 25.46
FC 72.74 38.07 50.24 17.31 53.69 28.49
% acceleration dev 17.77 6.98 12.76 3.16 15.25 5.78
HC 4.67 2.89 3.07 1.22 3.57 2.32
CO 6.73 4.04 4.44 1.73 5.09 3.19
NOX 2.41 1.30 1.69 0.60 1.83 0.98
EL 11.32 4.97 7.29 1.69 8.27 3.04
Speed dev 0.7596 0.2096 0.7175 0.0321 0.5875 0.1023
Diff_SOC 0.2515 0.0067 0.2499 0.0009 0.2402 0.0012
Vmax 196.30 24.96 216.40 11.83 209.90 18.10
fmax 2.689 1.071 2.629 0.216 2.571 0.843

2.1.3. Generator modeling
The mathematical model for generator could be expressed using

Eq. (17) and Eq. (18)

The mass of the vehicle and power is related with other factors with
scale factors. The other relations are provided in the Eq. (19) - (20).

2.1.4. Battery modeling
The battery could be modelled using Eq. (21)-(23). The consid-

ered battery model is based on a lithium ion battery. The single battery
module charge capacity is 6Ah. The mass of the battery module mbat
is the function of number of battery module Nbat.

The SOC has been defined as the ratio of remaining charge and
maximum charge Cmax. The model uses the charge used (Cused) with
current (I), and temperature (T).

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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Fig. 12. 2D plots to show the correlations among objectives based on dominated solutions.

Table 7
Simulation results of 15 selected design points in FTP driving cycle.

# Pmaxeng Nbat Pmaxmot Pmaxgen Nr Ns i0 mveh FC Diff_SOC HC CO NOX Vmax fmax OED

1 48 50 32 12 58 32 2.741 1180 4.2 0.164 0.563 0.625 0.121 216.1 2.9 0.112 MOGA
2 28 43 50 30 58 26 3.999 1188 3.4 0.175 0.351 0.446 0.112 159.7 3.4 0.139
3 46 50 38 9 64 26 2.776 1182 4.1 0.167 0.543 0.605 0.118 210.9 3.4 0.113
4 46 32 27 22 59 19 3.653 1166 4.3 0.171 0.569 0.611 0.114 174.7 3.4 0.11
5 49 50 35 9 57 29 2.169 1184 4.5 0.177 0.582 0.639 0.122 204.8 2.5 0.104
6 47 18 40 8 57 39 3.91 1148 4.8 0.202 0.632 0.655 0.118 163.7 4.6 0.102 MOEA/D
7 48 30 41 6 58 36 3.977 1160 4.4 0.188 0.585 0.621 0.115 160.4 4.7 0.106
8 43 16 45 6 60 35 3.865 1139 4.7 0.2064 0.579 0.608 0.116 166.3 4.7 0.102
9 45 37 39 10 54 33 3.885 1169 4.1 0.1696 0.537 0.586 0.112 164.1 4.7 0.116
10 41 21 43 7 55 35 3.975 1137 4.3 0.1961 0.541 0.595 0.118 161 4.7 0.114
11 43 27 44 5 63 36 3.893 1148 4.3 0.1956 0.547 0.598 0.117 164.2 4.7 0.108
12 47 21 38 6 52 32 3.501 1144 4.6 0.2012 0.566 0.563 0.103 183.7 4 0.099
13 50 21 30 8 73 31 3.519 1139 4.6 0.1955 0.644 0.67 0.117 182.5 3.6 0.103
14 48 29 35 9 54 27 3.052 1157 4.4 0.1833 0.609 0.65 0.119 192 3.6 0.108 NSGA III
15 48 13 33 6 89 26 3.473 1128 5.1 0.213 0.658 0.655 0.112 185.5 3.5 0.094
CV 70 – – – – – 1 1195 7.4 – 0.429 1.494 0.24 211 4.1 0.069 BMa

TP 43 25 31 15 78 30 3.93 1404 4.9 0.1726 0.542 0.617 0.134 163 3.3 0.126

a BM-Base Model.
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Table 8
Validation results with respect to FTP driving cycle.

SAEAs mveh FC Diff_SOC HC CO NOX Vmax fmax

Conventional Powertrain MOGA 1.255% 46.47% – −21.585% 60.83% 51.08% −8.42% −23.90%
MOEAD 3.933% 39.53% – −25.889% 59.04% 52.29% −20.27% 8.84%
NSGA III 4.393% 35.81% – −47.668% 56.33% 51.88% −10.55% −13.41%

Toyota Prius Powertrain MOGA 15.954% 16.32% 1.04% 3.764% 6.67% 12.39% 18.55% −5.45%
MOEAD 18.234% 8.67% −12.57% −6.803% 0.81% 14.55% 3.21% 35.23%
NSGA III 18.625% 3.06% −14.83% −16.881% −5.754% 13.81% 15.79% −7.58%

‘+’ indicates gain; ‘-’ indicates loss.

2.1.5. Transmission modeling
Eq. (24)-(26) demonstrate the vehicle transmission model. The an-

gular velocity and torque distributions are portrayed in Eq. (24) and
Eq. (25) respectively.

where k is the ratio of the Nr and sun gear Ns,

2.1.6. Vehicle dynamics
Based on these components of powertrain the vehicle dynamics

can be represented using Eq. (27) [26].

The acceleration is expressed using Eq. (28).

The battery power is expressed as Pbat in Eq. (29).

The overall efficiency of the powertrain could be defined using Eq.
(30).

The percentage grade could be defined using Eq. (31),

Interested readers could also consult ref. [27] for more details of
powertrain components modeling.

2.1.7. PMS
The component sizing phenomenon and power management strat-

egy are mutually related. The PMS strategies of ref. [28] is adopted in
this study, which is elaborated in Table 2.

3. Research methodology

HEV powertrain optimization problem considered as one of the
popular problems in non-conventional vehicle research. In this paper,
NSGA III and MOEA/D are implemented with surrogate fitness func-
tion based on the BNN. To improve solution variations, regression as-
sisted MOGA is used. The proposed methods are not compared mutu-
ally, but all the Pareto solutions are combined, which defines the fea-
sible region of the best design points.

3.1. Surrogate assisted optimization

The SAEA is one of the latest trends being followed in Evo-
lutionary Computing research, which is useful for computationally
expensive problems. The ANN, DT, GP, SVM, etc. are popular as
surrogates fitness functions [29]. When SAEA is implemented for
multi-objective hybrid powertrain, the best practice is to utilize the
data-driven functional approximation for fitness evaluation. SAEA of-
ten facilitates the use of the existing optimization algorithms, such
as, EA, GA, DE, GP, etc. SAEA is capable of approximating func-
tional relationships among process parameters based on sampled data
obtained using DOE techniques [30]. Once the surrogate model is
trained, an appropriate EA could be employed to find the optimal set
of parameters [31]. Data-driven SAEA is substantially prompt and
efficient; therefore, this is computationally inexpensive. DOE based
tools, such as the LHS, FFD, and OAD etc. are generally used to de-
fine the experimental plan as initial population and input data to the
surrogate models. SAEAs are being practiced in various engineering
and technological research currently. Ref. [32] developed a two stage
surrogate-assisted PSO algorithm by incorporating a global and some
local surrogate functions. The proposed technique is tested with some
popular unimodal and multimodal problems. Ref. [33] demonstrated
online and off-line based classification of the surrogate assisted op-
timization techniques and developed an EA to optimize the offline
data-driven trauma system. Ref. [34] performed a survey based on
a surrogate based global optimization. Authors put focus on the bal-
ance between exploration and exploitation search. Gaussian Process
or Kriging based surrogate models are reviewed primarily. Ref. [35]
studied combined effect of surrogate-assisted PSO and a surrogate-as-
sisted social learning algorithm, which worked on exploration and
PSO worked on exploitation and tested on benchmark problems. Ref.
[36] discussed five real-world cases of Blast Furnace Optimization,
Trauma System Design Optimization, Optimization of Fused Magne

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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sium Furnaces, Optimization of Airfoil Design, and Air Intake Venti-
lation System where SAEAs have shown promising solutions.

The hybrid powertrain optimization problem could be categorised
as a many-objective optimization problem. The problem dimension is
complex as 7 decision variables and 11 objectives are considered. This
article attempts to solve such a complex problem, which is not yet
available in literature. The main objectives are to improve the perfor-
mances, emissions and fuel consumptions of the HEV. Fuel consump-
tion is defined using FC and diff_SOC. The emission expressions are
derived from HC, CO, NOX. The other performance indicators are
considered as mveh, % acceleration dev, EL, speed dev, V_max, and f_-
max. These accomplish the 11 objectives. The decision variables con-
sidered are Pmaxeng, Pmaxmot, Nbat, Pmaxgen, Nr, Ns, and i0. The major
constraints of the problem are used as the viable ranges for each of the
variables and the vehicle weights (pre-defined upper bound).

3.2. SAEAs

In this work, NSGA III and MOEA/D assisted by BNN, and Re-
gression model assisted MOGA are used as SAEAs.

3.2.1. BNN
BNN is conceptualized on Bayes’ rule, which considers the rela-

tionship between the probability of any process and prior knowledge
of it. The output responses (posterior) are generated using this rela-
tionship. Ref. [37] has expressed the probability density function of
weights as,

where D is data, M is the type of neural network (Multi-Layer Per-
ceptron), w is the vector of network weights. P(w|α, M) denotes prior
knowledge of the weights. P(D|w, β, M) is likelihood and P(D|α, β, M)
is normalization factor. When noise in D and P(w|α, M) are Gaussian,
then likelihood and normalization factor are expressed as,

where . ED is the sum of
squared errors for data and EW is the sum of squares for weights.
Hence, Eq. (32) becomes,

Optimal weights maximize the posterior probability density func-
tion P(w|D, α, β, M), which is equivalent to minimization of regu-
larized objective function f = (β.ED+α.Ew). α and β are governed by

Bayesian Regularization. BNN is a probabilistic network. The input
variables are generally treated as probability density function to the
hidden layer [38]. The output obtained is spanned over a new distrib-
ution, which improves the prediction accuracy. Fig. 5 shows the BNN
schematic.

3.2.2. MOEA/D
MOEA/D [39] is initially developed for multi-objective optimiza-

tion problems, which decomposes the main problem into small
sub-problems. In the MOEA/D optimization process, the neighbour-
hood relationships among the objectives are used in genetic opera-
tion. The MOEA/D could be fused with other methods for its general
framework. The different hybrid model of MOEA/D can be found in
the articles [40,41]. The flowchart of MOEA/D is presented in Fig.
6(a).

3.2.3. NSGA III
NSGA III is an improved version of NSGA II for many-objec-

tive optimization, which is proposed recently [42]. Unlike NSGA II,
a number of reference points with good distribution are employed to
guide the selection of non-dominated solutions for next generation in-
stead of using crowding distance for diversity control in NSGA III.
In fact, the use of multiple reference points in NSGA III plays an
important role for guiding the population to converge towards the
Pareto front along different search directions. Over the past couple
of years, NSGA III has become the baseline multi-objective EA for
performance measurement for many-objective optimization. The basic
NSGA III algorithm is depicted in Fig. 6(b).

3.2.4. MOGA
MOGA is a heavily explored method for solving the MOPs

[43–45]. MOPs are popularly solved using weighted sum approach.
MOGA follows the simple GA structure with all the genetic operators,
namely selection, crossover, and mutation. The MOGA flowchart has
been provided in Fig. 7.

3.2.5. Regression models
For the MOGA, regression models for the HEV powertrain opti-

mization are used as fitness functions, which are developed for all the
11 objectives at 95% confidence level considering seven input para-
meters. Eq. (37) to Eq. (47) portray the regression models.

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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The model competencies are determined using the determination
coefficients (R2) values. Higher the R2 values, better is the model fit-
ting (Table 3). For NSGA III and MOEA/D, the BNN surrogate (in
#3.2.1) is opted as the fitness function. The basic SAEA framework is
portrayed in Fig. 8, which is the generalized form of SAEAs for HEV
powertrain optimization.

4. Results and discussions

The initial modeling data for powertrain are generated with ADVI-
SOR software of NREL [27] and MATLAB. The proposed SAEAs are
also developed in MATLAB on an Intel i7 8650U Laptop. Taguchi's
OAD is employed to present the experimental plan, where the levels
of each factor are defined with three levels (Table 4) and L27 table is
shown in Table 5 with the input variables and target responses.

It is important to initialize the BNN before training. Incorrect ini-
tialization could lead to the premature convergence. It also affect the
convergence speed or computing time. BNN parameters are set as,
learning rate = 0.01, error goal = 1e-10, and number of epochs = 3500.
Data from Table 5 are used as the training and validation data

(70:30). The cross validation is not considered since very low MSE
value is obtained during the training and accurate responses are pre-
dicted. The BNN stops when the MSE score converges or the maxi-
mum number of epochs is reached. The BNN stops at 2492nd epoch
with very low MSE value of 2.8701e-06 since there is no further im-
provement noticed. The performance of the BNN surrogate could be
observed in Figs. 9 and 10. It could be observed from Fig. 9 that the
BNN training yields high accuracy with low MSE score. That is fur-
ther validated using Fig. 10, which demonstrates accurate data fitting
for all the responses. For all the SAEAs, parameters are set as, Max-
imum number of generations = 500, Population Size = 200; Crossing
over probability = 0.6, and Mutation rate = 0.05.

The initial results for all the SAEA methods are depicted as the
probability distributions for all the eleven objectives in Fig. 11(a)–(c).
A summary of the comparison study is portrayed in Table 6. It could
be observed that NSGA III produces better results for major number of
objectives, such as FC, % accelearation_dev, HC, CO, NOX, Failed to
travel distance, Vmax and fmax. In case of speed deviation and diffSOC,
MOEA/D produces better results; on the other hand, MOGA reduces
the vehicle weight significantly. Out of the 475 solution samples, only
78 feasible solutions are selected based on (a) the peak power of the
generator, which is believed to be less than the primary motor and (b)
the speed deviation, which should be within the length of the driving
cycle for 20% road grade. Fig. 11(d) shows the 78 design points as
probability density distribution and the average downsizing of engine
from 70kW to 41.94kW which is approximately 42kW. So 40.1% or
40% approximate downsizing can be achieved.

Whereas, Fig. 12 depicts the objective trade-offs in duos for the 78
design points. Not every combination of objectives are pertinent to this
study (e.g. emissions vs. weight, fuel efficiency vs. emission, fuel ef-
ficiency vs. torque or acceleration etc.). Most relevant objective com-
binations are displayed such as the fuel efficiencies, emissions, accel-
eration vs. torque, speed vs. vehicle weight, and acceleration error vs.
distance failed to travel. Fig. 12(a) considers two types of fuel con-
sumptions, SOC change vs. fossil fuel usage. It could be observed that
the MOEA/D results do not change with consumed SOC but change
uniformly with fossil fuel consumption, and the MOGA and NSGA
III results are distributed evenly in for both the objectives. Fig. 12(b)
and (c) show the trade-offs among emission related objectives, which
are correlated and proportional in nature. Fig. 12(d) presents the re-
lationships between the maximum speed and maximum acceleration.
It could be noted that maximum acceleration produces low velocity;
whereas maximum velocity could be reached with medium acceler-
ation. The other two objectives, vehicle weight and speed error are
portrayed in Fig. 12(e), which confirms that the extreme reduction in
weight could produce higher speed errors. Finally, the distance failed
to travel and percentage acceleration deviation are shown in Fig. 12(f),
which are proportionally correlated.

4.1. Validation test

Total 15 solution points (Table 7) are selected for validation test
through the simulation and the different responses are recorded. Per-
cent acceleration deviation, speed error and failed to travel distance
are excluded as these responses obtain zero values. OED has been
incorporated to show further efficiency improvements. Based on the
measured responses and predicted responses, the summary of the im-
provements is presented in the Table 8, which presents eight objec-
tives (excluding percent acceleration deviation, speed error and failed
to travel distance). It could be noted that the top 15 selected feasi-
ble solutions consist of 5, 8, and 2 solutions obtained by MOGA,
MOEA/D, and NSGA III respectively. The NSGA III and MOEA/D

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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downgrade the average weight of vehicle by 4.39%, 3.93% respec-
tively.

MOGA and MOEA/D reduce the fuel consumption by 46.47% and
39.53% respectively. On the other hand, the CO emission is 60.83%
reduced by MOGA. In case of NOX emission, the MOEA/D produces
better solutions by 52.29%. In case of maximum velocity, the MOGA
obtains inferior solution by at least 8.42% and MOEA/D gains ac-
celeration by 8.84%. In case of HC and maximum speed, none of
the SAEAs shows improvement. While comparing with Toyota Prius
model, maximum weight reduction is achieved the NSGA III. For fos-
sil fuel consumption, MOGA produces 16.32% improvement. In case
of SOC change, MOGA produces improvement of 1.04%. MOGA
produces better result for HC and CO emission. For NOX, MOEA/D
produces better result. In case of maximum speed, MOGA and NSGA
III produce improvement of 18.55% and 15.79% respectively. In case
of acceleration, MOEA/D produces enhancement of 35.23%. For en-
ergy efficiency, the MOGA produces better energy efficient power-
trains. In case of 15 selected points, MOGA produces better results in
FTP driving cycle but NSGA III produces improved results for UDDS
driving cycle. The overall average powertrain efficiency has been im-
proved by 57.49%.

5. Conclusion

In this study, an effort is made to solve the many-objective hybrid
powertrain model, which considered 7 decision variables and 11 re-
sponses. The problem model is substantially complex and computa-
tionally expensive. Initially, the simulation model is utilized to obtain
the responses. Thereafter state-of-the-art SAEAs are introduced based
on NSGA III, MOEA/D and MOGA. BNN and regression models are
used as surrogates. The proposed SAEAs are shown to obtain interest-
ing results. Following conclusions are drawn from this study.

• Considering a large number of objectives could improve the re-
sponses for HEV powertrain optimization. This approach obtains a
lighter vehicle with reduced weight and engine size by 4.39% and
40.1% respectively.

• The overall energy efficiency is improved for the solutions while
compared with the conventional vehicle model.

• Since the global optimal solutions are not guaranteed by heuristic
SAEAs, the Pareto fronts define the best feasible design points in
the bounded design space.

• Design points are obtained for the UDDS driving cycle for 20%
grade; therefore, the solutions are more efficient in the higher grade
and the average engine size is more than the motor size.

• In overall analysis for UDDS driving cycle, the NSGA III portrays
improvements for most of the objectives and MOGA and MOEA/D
both produce competitive results for FTP driving cycle.
This work could be extended further to obtain (1) the global best

solutions for HEV powertrain optimization and (2) Finite Element
Method model for power-split device to improve the fuel consump-
tions and performances further.
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