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Sammendrag

I denne masteroppgaven utvikles en simulator av en labrigg for
eksperimenter relatert til heave-problematikk i MPD (Managed Pressure
Drilling). Målet med laben er å utvikle kontrollmetoder for å undertrykke
trykkforstyrrelsen som genereres av bølger. Simulatoren er basert på
kvasilineære inkompressible 1D-rørstrømningslikninger, og implementeres
ved å dekoble systemet og skrive om ved hjelp av Riemann-invarianter.
Parametere knyttet til simulatoren diskuteres, og teoretiske resultater
sammenliknes med eksperimentelle fra laben. Simulatoren finjusteres
ved å tilpasse frekvensresponsen til nedhullstrykket. Det viser seg at
lydfarten i simulatoren må justeres ned for å få resonanstopper på
samme sted som på laben. Programmeringsspråket som brukes er C,
som kjøres som C-MEX-funksjoner, for raskere kjøretider enn en ren
MATLAB-implementasjon. Simulatoren oppfører seg tilfredsstillende for
frekvenser opp til rundt 0.25Hz. Etter dette viser det seg at forenklingen
ved å bruke sammenhengen for stasjonær strømning ikke holder. En
distribuert observator implementeres i samme rammeverk og blir testet
mot labdata. Her produserer den gode estimater for lav-frekvente
forstyrrelser, men med noe fase-etterslep.
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Abstract

This thesis looks at the development of a simulator for a lab setup related
to heave-related issues in MPD (Managed Pressure Drilling) The aim
of the lab is to create an environment for developing control methods
to attenuate the pressure fluctuations generated by heave motion. The
simulator is based on quasi-linear incompressible 1D pipe equations.
The equations are simulated by decoupling and rewriting in terms
of Riemann-invariants. The simulator parameters are discussed, and
theoretical results are compared to experimental ones from the lab. The
simulator is tuned by fitting the frequency response of the bottom hole
pressure to the lab’s. The wave speed of the simulator needs to be reduced
significantly to align the resonance peaks with the frequencies found in
experiments. Reasons for discrepancies between the lab and the model
are discussed. The programming language used is C, through C-MEX
functions for better runtimes. The simulator accuracy is satisfactory for
disturbance frequencies up to about 0.25 Hz. For higher frequencies, the
steady flow simplification used in the choke equation fails. A distributed
observer is implemented within the same framework and is tested on data
from the lab. The observer produces accurate estimates for low-frequency
disturbances, but with a small phase lag.
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Chapter 1 Problem Description

1. Collect all material that is relevant for modelling (project reports from IPT etc).
Summarize all aspects of the lab that are relevant for mathematical modelling. Suggest
how each component should be modelled, discussing assumptions and simplifications.
Write the final complete mathematical model.

2. Implement the model in SIMULINK, starting from the preliminary simulator made
last year.

3. List the parameters of the model and discuss their uncertainty. Devise algorithms/procedures
for tuning parameters based on lab experiments. Carry out the procedures and implement
them in the simulator.

4. Verify your simulator towards lab data.

5. Implement the distributed observer from [4] in the same framework as the simulator,
and test it on lab data.

6. Document the code.

7. Write a report.

1



Chapter 2 Introduction

The worldwide demand for energy is increasing as emerging markets get industrialized. At
the same time drilling operations are getting more and more challenging as reservoirs get
depleted, and we’re left with the seemingly undrillable prospects.

One of the main challenges that has to be met is drilling when the pressure window
between collapse and fracture pressures is narrow.

With conventional drilling techniques, the downhole pressure is controlled by varying the
pump rate and the density of the mud that is pumped down through the drill string, but this
method has limitations when it comes to precision and bandwidth. During static conditions,
such as connections and trips, we are relying on the hydrostatic pressure.

Deviations from the required wellbore pressure can cause big problems. If the pressure
is too high, the formation might fracture, and we get a loss of circulation in the well, and if
it’s too low, we risk getting an influx (kick). In either case the drill pipe might get stuck,
and even worse, a blowout may occur, potentially resulting in equipment damage and loss
of lives.

With conventional drilling, cement and various LCMs (loss of circulation material) have
typically been used to repair the well, but this does only last for a while, resulting in more
cement and delays. Examples where cement has been pumped in excess of 30 times on a
single well are common [26].

Managed pressure drilling (MPD) is a way of preventing these potentially hazardous
events from happening, by giving the driller the ability to control the downhole pressure
precisely.

MPD both leads to more predictable costs for the driller, and a safer, more environmentally
friendly world for everyone else.

In this thesis, we will firstly review MPD, and then look at the IPT Heave lab, a lab
designed to explore control methods for MPD use. The main part of this text will deal with
a mathematical model and a simulator of this lab.

2



Chapter 3 Managed Pressure Drilling

This chapter is based on an introduction to MPD from the fall 2012 report [27].
MPD is not just one technique, but rather a class of different drilling techniques with

some properties in common. MPD techniques usually differ from conventional ones in mainly
two ways [13]:

• Mud does not return to surface at atmospheric conditions (zero back pressure)

• Mud is circulated not just using energy supplied by drill pipe injection

To illustrate the convenience of the first property, look at the pressure profile in figure 3.0.1.
The dotted lines show the pressure in the well during static conditions. The conventional
well relies on just the hydrostatic pressure, and has to use a heavier mud to maintain the
same pressure as the MPD well, where a lighter mud is used accompanied by back pressure
from a choke manifold on the top of the well to give the pressure profile an offset.

Another feature MPD techniques have in common, is the use of a rotating control device
(RCD) to seal the top of the annulus. All MPD techniques also maintain the pressure in the
well balanced or overbalanced.

3.1 Different MPD Techniques
The various MPD techniques are categorized as either reactive MPD, or proactive MPD by
IADC.

Reactive MPD techniques are used in wells designed for conventional drilling to be able
to react to kicks and avoid unwanted discharges for HSE reasons. Reactive MPD techniques
also use an RCD, but the equipment is not brought into play unless unexpected changes in
the downhole pressure occur.

Proactive MPD is MPD used in wells planned especially for MPD drilling, where the
equipment is actively used to control the annular pressure profile. The reactive option has
been implemented for years, but the proactive ones have not been applied much until recently
[25].

The main focus of this project is the MPD method known as constant bottom hole
pressure.

3
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Figure 3.0.1: Pressure profile. The blue area depicts the drilling window
we have to stay within. During static conditions, the pressure gradient in
the conventional well is only the hydrostatic pressure, while in the MPD well
it consists of the hydrostatic pressure and a back pressure from a choke and
possibly a dedicated back pressure pump.

3.1.1 CBHP (Constant Bottomhole Pressure)
The goal in the constant bottom hole pressure variant of MPD is to maintain a constant
annulus pressure profile. This is important in wells with a narrow pressure window, to avoid
kick-loss cycles. When the main pumps are turned off in a conventional well, the equivalent
mud weight (EMW ) is reduced to the hydrostatic pressure of the mud. If the pressure
window is narrow, this drop might cause an influx (kick). When the pumps start again, the
EMW increases, which might cause fluid losses into formation [2].

The pressure profile is kept nearly constant by applying a back pressure with a choke.
The choke may also be supplemented by a back pressure pump at the top of the well. See
figure 3.0.1 for an illustration of the added degree of freedom supplied by this method.

Conventional drilling CBHP MPD drilling
BHP during drilling MW + ECD MW + ECD + BP
BHP when not drilling MW MW + BP

Table 3.1.1: Bottom hole pressure (BHP) comparison, conventional
drilling versus CBHP drilling. MW is the mud weight, ECD is the equivalent
circulation density which is a function of pump rate and mud rheology and
BP is the back pressure provided by the choke (and optionally a back pressure
pump).
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Figure 3.1.1: Schematics for a CBHP MPD rig with a dedicated
backpressure pump [18].

3.2 Automation of MPD
There are both automated and manually controlled versions of MPD. The manual version
requires a trained choke operator to adjust the back pressure manually. This works when the
pressure window is not too narrow. By manually controlling the choke opening, the MPD
operators at Gullfaks C managed to keep the pressure within ±5 bar for most operations in
the well C09A, but in the well C01A, the pressure windows were sometimes as narrow as
±2.5 bar, and automated MPD was necessary [17].

The control system adjusts the choke to maintain a desired BHP. The BHP can be
measured directly with a measurement while drilling (MWD) tool, which transmits measurements
to surface by a telemetry pipe or by mud pulse telemetry. Mud pulse telemetry is the most
common solution, but has a low bandwidth, typically 0.03Hz. This information is used to
monitor and predict the annular pressure, and calculate the setpoint to be sent to the choke’s
programmable logic controller (PLC).

Many major oil companies have developed automated MPD systems. Statoil has been
developing one the last 3-4 years. Their system consists of two main components: a downhole
pressure estimator, and a choke pressure controller. Both of the components are nonlinear,
and are based on a simple hydraulic model with 3 states (main pump pressure, upstream
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choke pressure, flow through the drilling bit). The control strategy is to use the desired
choke pressure, and the derivative of the desired choke pressure to calculate a desired flow
through the choke, which corresponds to a choke opening by using the choke characteristic.
The desired choke pressure is calculated by using the relation from 3.1.1, where the ECD
pressure contribution (friction) is estimated based on topside measurements. This control
system has been successfully tested on a full scale drilling rig [18].

The whole control system is sometimes called a dynamic annular pressure control (DAPC)
[12].

3.3 Challenges
This section covers some of the main challenges related to controlling the BHP stable in
offshore wells.

3.3.1 Surge and Swab Pressures
Vertical motion of the drill string is inevitable during drilling. The drill bit becomes worn
after a while, and has to be replaced. This requires the drill string to be pulled out, and
ran back in. Connections do also require the drill string to be lifted. Even though drilling
operators have to abide a maximum safe trip speed, all these motions create pressure changes
in the wellbore, and the piston effect may pose a problem if the pressure window is narrow.
This is especially a problem when the annular clearance is low and/or the mud volume is
low. [8]

3.3.2 Heave Motion on Floating Rigs
Floating rigs are used in the exploratory phase of drilling or when drilling in deep waters
(more than 500 m). Maintaining a constant BHP from a floating rig is even harder than
from a fixed platform, because of heave motion from the rig. In the North Sea, there is
especially rough sea during fall and winter, which can potentially put drilling operations on
hold for several days. The heave motion can be attenuated by the rig’s heave compensator
during drilling and tripping, but during connections, when new segments are added to the
drill string, the drill string moves up and down with the heave of the rig. An alternative
that reduces the BHP-control requirements is to use a heave-compensated drill floor. [8]

3.3.3 Time Delay
From a control point of view, the time delay imposed by the distance between the choke and
the bottom of the well makes the control of the BHP challenging. The length of the drill
string also poses problems when it comes to predicting the effect of the heave disturbance.
When the length of the drillstring is in the order of kilometers it acts more like a rubber
band than a stiff steel pipe. A good hydraulic model for the well, and a predictive algorithm
is crucial to be able to counteract heave motion before it is too late.
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3.4 Applications Today and in the Future
MPD has a long tradition in land applications. Based on a survey by Weatherford, more
than 60% of US land programs drill at least one section with some form of MPD. NPT is
significantly more costly offshore, MPD is thus thought to have an even bigger potential for
offshore drilling programs than for the land drilling programs that developed the technique
[19].

A survey was done where offshore technology users and providers were asked what
percentage of all offshore wells they though would apply MPD 5 years from now (the survey
was conducted in 2011), given that steps were taken to accelerate the industry acceptance.
The respondents indicated that 40% of all offshore wells will use MPD in 2015. One service
provider predicted that the biggest potential for offshore MPD lies in the floating drilling
market [20].

MPD methods in use today largely focus on control of backpressure, but methods that
can manipulate other parameters like fluid density, rheology, annular fluid level, circulating
friction and hole geometry are being developed [14].



Chapter 4 The MPD Heave Rig

Figure 4.0.1: The Rig

The planning of the MPD heave rig started the fall of 2011, when three master’s students
from the Department of Petroleum Engineering & Applied Geophysics were working with a

8
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model for the lab. Two project reports were submitted; Gjengseth and Svenum (2011) and
Rashid (2011). These mainly address the physical design of the lab rig, and do not look at
control system designs. Later, two master’s theses by Svenum (2012) and Gjengseth (2012)
were submitted, with a larger focus on mathematical modeling of various pressure drops in
the system.

The MPD heave rig planning was based on data from a 4000 m deep vertical well where
a drill string with a diameter of 5” is in a 8.5” diameter hole with a BHA (Bottom Hole
Assembly) of 70 m, and is exposed to heave with an amplitude of 1.5 meters and a period
of 11 seconds. The drill string consists of a drill collar and a drill bit with a diameter of
6.5”. A choke opening on the surface, 4000 meters above the bottom, compensates pressure
variations downhole.

To include the time delay implied by having the choke opening 4000 meters above the
bottom, a 900 m long copper pipe is used.

4.1 Components

4.1.1 Backpressure
A backpressure loop continuously circulates water from a water tank at a rate of approximately
28 lpm. A pump provides the flow, and a choke is used to adjust the backpressure.

The pump is a C980A Hawk pump which theoretically can deliver 140 bar at a flow
rate 40 lpm (10,6 kW) at 1450 rpm and or 47.3 l/min (12.5 kW) at 1740 rpm. The pump
is controlled manually with a frequency converter where the rate can be set to 0-100%.
However, the pump turned out to only deliver about 30 lpm. To remedy this, a feed pump
was installed. This has as far as the author can tell not improved the flow rate significantly,
and the maximum flow rate is still about 30 lpm.

An unresolved problem with the back pressure pump is that noise (either vibrations
or electromagnetic) propagates to the pressure sensors on the copper pipe whenever it is
running. As of the spring 2013, the solution to this has been either using the pressurized
tank instead of the pump whenever this is a possibility, or low-pass filtering the pressure
data.

The choke valve is a tailored system consisting of a 90 degree 1/2” ball valve driven by
to a three-phase AC motor supplied by Lenze. A new valve was installed the spring 2013
due to a backlash problem discovered the fall of 2012.

4.1.2 Sensors
The differential pressure over the choke is measured by two pressure transmitters placed on
either side of the choke (C1 downstream, C2 upstream), and the flow rate is measured by
three flow meters (FT3 downstream the choke, FT2 on the pump outlet, FT1 on the copper
pipe outlet). A pressure transmitter is used to measure the water level in the tank.

There are also pressure transmitters every 100th meter of the copper piping (PT1-PT10),
where PT1 is on floor level, and two pressure transmitters are in the heave generator (P1
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Figure 4.1.1: A sketch of the MPD Heave Rig. Note that not all sensors
and valves are depicted. For example, there is a bypass line for the copper
pipe enabled by remotely controlled valves.
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Parker DFT990 Heinrichs EP/UMF2 UNIK 5000 PS PTX 1400

Turbine flow meter Magnetic flow meter Pressure transmitter Pressure transmitter
Accuracy: ±2% Accuracy: ±0.3% Accuracy: ±0.15% Accuracy: ±0.15%

Output: 4-20 mA Output: 4-20 mA Output: 4-20 mA Output: 4-20 mA
Range: 4-100 l/min Range: 0.5-10 m/s Range: 0-16 bar Range: 0-100 mbar

Table 4.1.1: The sensors used in the lab rig

on floor level, P2 on the top), and a flow meter is on the inlet of the copper piping (FT4) is
due to be installed within the fall of 2013.

Note that as of May 2013, FT1 is the only bidirectional flow meter in the lab.

4.1.3 DAQ Board
The 4-20 mA signals from the sensors are converted to 2-10 V signals by connecting the
current signals to resistors on an analog termination board. Flat cables with the voltage
signals are ran from the termination board to two National Instruments SCB-68 connector
blocks, and transmitted with two SCSI cables to a NI PCI-6289 DAQ-board.

Output signals to control the choke and heave generator are transmitted from the computer
to SCB-68 connector block A with one of the two SCSI cables, then via two wires to two
8400 Topline frequency inverters, which are connected to the motors.

4.1.4 Heave Generator/Piston
To generate the heave disturbance, a motor is connected to a wheel with a toothed belt,
which is attached to a BHA moving up and down in a closed compartment to simulate
the heave disturbance. During the modeling process, many different BHA diameters have
been considered, and the current one might be subject to change to achieve the wanted
disturbance. Work was done during the fall 2012 by Martin Standal Gleditsch [16] and
Robert Tafjord Drønnen [9] to enable use of more arbitrary reference signals, and improved
further the spring of 2013 by Robert Tafjord Drønnen and Anders Albert.

4.1.5 Pressurized Tube
A vertical tube with water and pressurized air was installed the spring of 2013 downstream
the choke (as an alternative to the open tank) to enable a stable pressure higher than
atmospheric pressure. This may be used as an alternative to the back pressure pump to
avoid making a vacuum in the system when the heave generator is active.
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4.1.6 Simulink I/O
The Real-Time Windows Target is used for all I/O handling. In the absence of information
about which sensors are connected to which channel on the PCI board, the input channels
were identified by looking at scopes in Simulink while disconnecting sensors. This was done in
collaboration with Martin Standahl Gleditsch [16]. The final channel list, and corresponding
sensor types can be seen in table C.0.1. The I/O channels may be found in appendix C.

4.2 Changes from Last Year

4.2.1 Bidirectional Flow Meters
The FT1 flow meter was replaced due to problems, and the fact that it did not transmit
any sign information to the computer, which is necessary since the flow in the copper pipe
is oscillating about zero flow. The new flow meter is a Heinrichs Magnetic Inductive Flow
Meter with an UMF2 transmitter. The sign information is given as the output signal on a
dedicated status output port. Notably, the signal is passive, transmitted via an optocoupler,
so an external voltage source was installed to get the readings. The sign bit is high (6V) for
reverse flow.

Figure 4.2.1: Simulink implementation of sign information.

4.2.2 Calibration of the New Flow Meter
An experiment was done to determine the scaling factor needed to get the FT1 data in
liters/minute. Water was ran from the pump with the choke valve closed (a manual valve
next to the choke installed this year to enable complete blockage of the choke flow), and
the valve under the piston open. The flow was measured by filling up a bucket and writing
down the weight of the bucket every 10 seconds. This experiment was done 3 times, with
different flows from the pump, and resulted in the scaling in table 1. The biases were found
by averaging the sensor readings before the pump was turned on. FT2 and FT3 had the
same scaling factors last year.
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Pump flow FT1 [lpm] FT2 [lpm]
30% 1.1897 · (FT1-2) 0.9653 · (FT2-2)
40% 1.1835· (FT1-2) 0.9196· (FT2-2)
50% 1.1895· (FT1-2) 0.9050· (FT2-2)
Mean 1.1875· (FT1-2) 0.9300· (FT2-2)

Table 4.2.1: Flow meter scaling factors



Chapter 5 Mathematical Modeling

5.1 Previous Modeling Work
Modeling work related to the IPT heave lab has previously been done by Svenum [29],
Boge [6] and Gjengseth [15] from the Department of Petroleum Engineering and Applied
Geophysics. This has mostly been static considerations not directly applicable to the
simulator, but nonetheless, a very brief summary follows.

5.1.1 Choke
The choke has been modeled with the steady choke equation, where the flow is the product of
the square of the differential pressure and a characteristic function, and the choke characteristic
has been determined in several reports, including [27]. In addition, a large backlash was
identified. However, the choke has been replaced, and a new identification is necessary.

5.1.2 Piston
The losses over the BHA have been theoretically calculated, as a sum of the following
contributions [6, 29]

• Friction

• Entrance loss

• Exit loss

• Acceleration of the lower rod

• Acceleration of the upper rod

• Hydrostatic pressure

The final mathematical expression is a function of the piston acceleration, piston position,
mean fluid velocity (which is modeled in terms of the piston velocity and a clinging factor
parameter) as well as the physical dimensions of the piston compartment. In addition, a
linear relation for the pressure drop as a function of the piston velocity has been showing
promising results.

14
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5.1.3 Pipe friction
The friction in the pipe has been calculated theoretically, using a steady, laminar flow
assumption and the Fanning friction factor. In addition,[29] has also accounted for the
curvature of the pipe, obtaining a ratio fcoiled/fstraightof 1.65 for a given Reynolds number.

5.1.4 Dynamics
[16] identified a larger time delay in the system than expected.

A simulator of the lab was made last year [3] in MATLAB/Simulink. This simulator,
however, has not been verified on lab data. This report will use that simulator as a basis.

5.2 Flow in the Copper Pipe
The flow in the copper pipe is modeled as inviscid one-dimensional flow with quadratic
friction. The relationship between pressure and density used is [28]

ρ(t, x) = ρref + p(t, x)− pref
c2 (5.2.1)

where c is the speed of sound, and ρref is the reference density at reference pressure pref .
This is the definition of the speed of sound linearized: c2 = (∂p

∂ρ
)s. The equation of continuity,

when radial and angular dynamics are neglected is

∂ρ

∂t
+ ∂

∂x
(ρu) = 0

and when (5.2.1) is inserted, this can be rewritten as:

∂p

∂t
+ (p+ k)∂u

∂x
+ ∂p

∂x
u = 0 (5.2.2)

Since the fluid velocity in the pipe is significantly lower than the speed of sound, we
will use the Navier-Stokes-equation for incompressible fluid, which when radial and angular
dynamics are neglected, and a lumped friction acceleration term is added, can be written:

∂u

∂t
+ u

∂u

∂x
+ 1
ρ

∂p

∂x
+ g sin(γ) + f(u) = 0

By defining

k = c2ρref − pref
we can write:

∂u

∂t
+ u

∂u

∂x
+ c2

k + p

∂p

∂x
+ g sin(γ) + f(u) = 0 (5.2.3)
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The boundary conditions chosen for the model are:

u(t, 0) = u0(t) (5.2.4)
p(t, l) = pl(t) (5.2.5)

5.3 Choke
The flow through the choke is assumed to be the sum of the flow from a back pressure pump
and from the pipe:

qc = qb + qw (5.3.1)

where qb is a constant parameter and qw = Au(l, t), where A is the cross-sectional area
of the pipe. We will assume that qc ≥ 0 at all times, and that the back pressure pump is
controlled so that this is assured. A formula that valve manufactureres often cite for liquid
volume rate through a valve is

qc = G(uc)
√

1
ρL

(pc − p0) (5.3.2)

Where G(uc) is the flow coefficient as a function of the choke opening, also known as the
choke characteristic, and pc and p0 are the pressures at the choke inlet and outlet respectively.
The outlet pressure is a constant parameter.

The dynamics of the choke are modeled as a first order filter with a saturated angle rate.
An alternative model to the static choke equation is the dynamic orifice equation [1]

b1
∂qc
∂t

+ b2q
2
c = pc − p0

ρ
(5.3.3)

where b1 and b2are functions of the choke opening. This equation reduces to 5.3.2 for
steady flows.

Regardless of the model choice, getting a perfect fit for all disturbance frequencies and
flows is unlikely, due to the different physical properties of different flow regimes, and our
1D simplification.

5.4 Piston
The piston is representing the bottom hole assembly moving vertically.
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Figure 5.4.1: Quantities in the piston model. The piston compartment
has cross-sectional area Aw and height h. The bottom hole assembly is
represented by a piston that moves vertically with velocity vd. The piston
has cross-sectional area Ad and height hb. At its upper side, the piston
is connected to the drill string, which has cross-sectional area Ad2. The
pressures in the control volumes above and below the piston are denoted by
pp and pb respectively. qd is the flow of displaced fluid between them and q0is
the flow into the copper pipe.

It is modeled by the following equations

q0 = −vd(Ad − Ad2) (5.4.1)
pb − pp = fd,1 · vd + fd,2 · vd · |vd|+ ρgh = ∆pf + ∆pg (5.4.2)

5.4.1 Previous Model
The piston was formerly modeled as two control volumes and three states, one for the pressure
in each of the control volumes, and one for the flow between them, as follows

ṗp = βp
Vp

(qd − q0 + vd(Ab − Ad)) (5.4.3)

ṗb = β

Vb
(−qd − vd(Ab − Ad2)) (5.4.4)

q̇d = 1
M

(pb − pp −∆pf − ρgh) (5.4.5)

Where ∆pf is the pressure drop due to friction. This model was abondoned for several
reasons. Mainly, because its contribution to the dynamics were practically exactly the same
as 5.4.1 (the resulting pipe inlet flow was identical), while slowing down the runtimes of the
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simulator (and even causing problems with some solvers). Secondly, because it was hard to
identify the parameters due to the lack of a flow meter (FT4). Source code for a version of
the simulator with this model implemented is enclosed.



Chapter 6 Implementation

6.1 Solution Method

6.1.1 Grid Types
To simulate a PDE, there are several discretization methods. Some use a collocated grid,
which means that the pressure and velocity information is stored in the same nodes. However,
since we do not know the direction of the flow in every point, we have to use a central-difference
approach to calculate the derivatives. This is known to cause an odd-even-decoupling of
the system. That is, the gradient in odd-numbered nodes only uses information from
even-numbered nodes, and vice-versa. A remedy for this is to use a staggered grid, where the
pressure values are stored in cell centers of the control volumes, while the velocity variables
are stored at the cell faces [11].

6.1.2 Upwind Scheme
A different approach is to decompose the system to separate the information moving in the
positive x-direction from that moving in the negative x-direction, and then use a forward-difference
approach for the forward moving part, and a backward-difference method for the backwards
moving part. This principle is known as the upwind scheme. (upwind scheme principle, [11].
This is the approach chosen for the MPD rig simulator. The decomposition of the system is
done by a diagonalizing change of variables. See B.2 for an outline of the method.

To decompose our system (5.2.3) and (5.2.2), we start by writing the system in matrix
notation zt + A(z)zx = 0 (indices denoting partial derivatives). We will ignore the friction
and gravity terms for now.

z =
[

p u
]T

A(z) =
[

u k + p
c2

k+p u

]
(6.1.1)

The matrix A(z) has the characteristic equation

λ2 − 2uλ+ (u2 − c2) = 0

Which results in the eigenvalues

λ(1,2) = u± c (6.1.2)

19
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And the corresponding left eigenvectors

l(1,2) =
[
±c
k+p 1

]
(6.1.3)

The Riemann invariants are defined by

α(p, u) =
ˆ
l
(1)
1 dp+

ˆ
l
(1)
2 du (6.1.4)

β(p, u) =
ˆ
l
(2)
1 dp+

ˆ
l
(2)
2 du (6.1.5)

When integrated, we get the two invariants

α(p, u) = c ln(k + p) + u+K1 (6.1.6)

β(p, u) = −c ln(k + p) + u+K2 (6.1.7)

The integration constants K1 and K2 are chosen such that when α = β = 0, we have
p = p and u = u, where p̄ and ū are arbitrary constants. This leads us to the new coordinates

α(p, u) = c ln(k + p

k + p̄
) + u− ū (6.1.8)

β(p, u) = −c ln(k + p

k + p̄
) + u− ū (6.1.9)

Differentiating (6.1.8) and (6.1.9) leads us to the differential equations

αt = c
pt

k + p
+ ut (6.1.10)

βt = −c pt
k + p

+ ut (6.1.11)

We can rewrite the equations in terms of α and β by using the inverse of (6.1.8) and
(6.1.9)

p(α, β) = (k + p̄) exp((α− β)/(2c))− k (6.1.12)

u(α, β) = ū+ (α + β)/2 (6.1.13)

Inserting pt and ut from (5.2.2)-(5.2.3) into (6.1.10)-(6.1.11) gives

αt = −cupx + (k + p)ux
k + p

− uux −
c2

k + p
px − g sin(γ)− f(u) (6.1.14)

βt = c
upx + (k + p)ux

k + p
− uux −

c2

k + p
px − g sin(γ)− f(u) (6.1.15)

Insering p and u from (6.1.12)-(6.1.13) gives
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αt = (−c− ū− α + β

2 )αx − g sin(γ)− f(ū+ α + β

2 ) (6.1.16)

βt = (c− ū− α + β

2 )βx − g sin(γ)− f(ū+ α + β

2 ) (6.1.17)

6.2 Programming Language
The preliminary simulator was implemented as a .m s-function prior to this project. However,
the run times were considered too high for the simulator to be useful for real-time purposes.
It was decided to translate the .m s-function into a C MEX s-function. This turned out to
make the simulator significantly faster, see 7.4 for the result of a comparison.

6.3 Data Structure
The MATLAB S-function keeps track of a state vector. The states of the lab simulator
are the values of the Riemann-invariants for every discretization element (the number of
elements, N, can be changed in the source code A.5). The state vector is shown in table
6.3.1.

State α(0) · · · α(N − 1) β(0) · · · β(N − 1) u
Variable x[0] · · · x[N-1] x[N] · · · x[2N-1] x[2N]

Table 6.3.1: State vector in the S-function

In table 6.3.2, the state variables corresponding to each spatial discretization element is
shown. Notice that the data for the α- and β-elements are shifted by one cell.

Spatial coordinate x = 0 x = L
N

x = 2 L
N
· · · x = (N − 1) L

N
x = L

C variable name alphaStart x[0] x[1] · · · x[N-2] x[N-1]
Contents αstart α(0) α(1) · · · α(N − 2) α(N − 1)

C variable name x[N] x[N+1] x[N+2] · · · x[2N-1] betaStart
Contents β(0) β(1) β(2) · · · β(N − 1) βstart

Table 6.3.2: Data structure

6.4 System Parameters
The parameters of the simulator and their C constant names are shown in table 6.4.1. The
constants are specified in the mask parameters dialog and may be changed by double-clicking
on the simulator block.
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6.5 Initialization
The initial condition of the model is given by the steady state solution resulting from zero
flow at the pipe inlet, and a pressure equal to pl at the outlet (given as a parameter). The
steady state solution p̄(x) calculated from 5.2.3 must then satisfy

c2

k + p̄

∂p̄

∂x
+ g sin(γ) = 0 (6.5.1)

Integrating with respect to x yields

ln(k + pl)− ln(k + pl) exp( g
c2

ˆ l

x

sin(γ) dz) = 0 (6.5.2)

As the inclination γ is constant in the copper pipe, this can be simplified to

p̄(x) = (k + pl) exp( g
c2 (l − x) sin(γ))− k (6.5.3)

The initial choke opening is set to match pl and the initial back pressure pump flow, that
is

uc = G−1


√√√√ ρLq2

b

pl − p0

 (6.5.4)

Note that in the code, the initialization of the choke opening is done in the output part,
since the inputs (the pump flow in this case) aren’t available in the initialization part.

6.6 Implementation of Choke Boundary
The choke provides the boundary condition for the system at x=l. The challenge is to solve
for the boundary condition of the downward moving invariant β(t, l). By adding 6.1.8 and
6.1.9, we get the topside boundary condition

β(t, l) = −α(t, l) + 2(u− ū) (6.6.1)

In early versions of the simulator, the assumption that the flow through the choke was
always positive (upwards) was made. However, this resulted in permanent pressure drops
in the system whenever the flow turned out to be otherwise, which happens when the back
pressure pump is shut off, or the piston velocity is really high. We will consider the two
cases separately here. First let’s assume the flow is positive.

6.6.1 Positive Flow
When the flow through the choke is positive pc > p0 and we have from (5.3.2) and (5.3.2)

qc = G(uc)
√

1
ρL

(pc − p0)
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qc = qb + qw

At the outlet pc = p(t, l) and qw = u(t, l)A. Thus,

(qb + u(t, l)A)2 ρL
G2(uc)

= pc − p0 (6.6.2)

α is the Riemann-invariant corresponding to the upward-moving characteristic. Given
α(t, l), we would like to solve for β(t, l). By inserting (6.1.12) and (6.1.13) into (6.6.2), we
get the nonlinear problem

ax2 + b = exp(−x
c

) (6.6.3)

Where

x = qb
A

+ ū+ α + β

2 (6.6.4)

a = A2ρL
G2(uc)(k + p̄) exp

(
−1
c

(
qb
A

+ ū+ α
))

(6.6.5)

b = k + p0

k + p̄
exp

(
−1
c

(qb
A

+ ū+ α)
)

(6.6.6)

x is the flow velocity at the boundary. Since we are assuming qc ≥ 0 we must seek a
solution x∗ ≥ 0.

6.6.2 Reverse Flow
When the water is flowing reversely through the choke, we must have pc < p0 . The choke
equation (5.3.2) becomes

qc = −G(uc)
√

1
ρL

(p0 − pc)

By doing the same derivation as for the positive flow, we get the nonlinear problem

− ax2 + b = exp(−x
c

) (6.6.7)

In this case, we are looking for a negative x, since the flow direction is negative.

6.6.3 Solution Algorithm
Bisection is chosen as the numerical method to find the roots. It is implemented as follows

1. If G(uc) = 0, let x∗ = 0 and go to step 4.

2. If b ≤ 1, there exists a solution for some x∗ ≥ 0, if not, we assume the flow is negative
and go to step 3.
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3. The search interval for the bisection is chosen to be [0,
√

(1− b)/a] (since the right
hand side of (6.6.3) is less than 1 in the right half plane).

4. The solution x∗ ≥ 0 is found by bisection of the equation (6.6.3).

5. b > 1, the flow is negative. There exists a solution of (6.6.7) for some x∗ < 0.

6. The search interval for the bisection is chosen to be [
√
b/a, 0] (since this is where the

parabola intersects with the negative x-axis).

7. The solution x∗ < 0 is found by bisection of the equation (6.6.7).

8. β(t, l) and pc are computed as follows

β(t, l) = −α(t, l) + 2
(
x∗ − qb

A
− ū

)
(6.6.8)

pc =


p0 + sgn(x∗)ρL

(
Ax∗

G(uc)

)2
G(uc) > 0

(k + p̄) exp
(
α(t,l)+ qb

A
+ū

c

)
−kG(uc) = 0

(6.6.9)

Where sgn is the signum function.

6.7 Implementation of the Piston Boundary
Adding 6.1.8 and 6.1.9 as follows, yields the boundary condition for x=0.

α(t, 0) = c ln(k + p(t, 0)
k + p̄

) + u(t, 0)− ū

= (α(t, 0)− β(t, 0))/2 + u(t, 0)− ū
= −β(t, 0) + 2(u0(t)− ū) (6.7.1)

The default setting in the simulator is using the piston model described in 5.4. An
experimental, dynamic model is also implemented, see the source code of the quasi-linear
simulator for details.

6.8 Outputs
To enable outputs from arbitrary points along the copper pipe, linear interpolation functions
were written for the simulator. The default setting is to match the outputs of the actual lab,
but this can be changed by specifying the “Desired pressure outputs” vector in the parameter
list.

The pump flow input is needed in the output part of the simulator, since the choke flow
(FT3) is not a state of the system. Therefore, the “ssSetInputPortDirectFeedThrough” is
set to 1 for these two inputs. The piston velocity is also used in the output to calculate the
pipe inlet flow.



Chapter 7 Linearized Simulator

In order to explore the properties of linear observers on this system, and to see how the
response of a linearized version of the system is in contrast to the quasi-linear version, a
linearized version of the simulator was made. It is very much derived in the same way as
the quasi-linear simulator, and is based on the same principle. The derivation follows.

Around p = p̄ and u = 0, the system model becomes

∂p

∂t
+ ρc2∂u

∂x
= 0 (7.0.1)

∂u

∂t
+ 1
ρ

∂p

∂x
+ f(u) + g sin(γ) = 0 (7.0.2)

In matrix notation zt + A(z)zx = 0, when the friction and gravity is ignored for now
(indices denoting partial derivatives)

z =
[

p u
]T

A(z) =
[

0 ρc2

1
ρ

0

]
(7.0.3)

The eigenvalues and corresponding left eigenvectors of A are

λ(1,2) = ±c (7.0.4)

l(1,2) =
[
±1
ρc

1
]

(7.0.5)

Proceeding like in (6.1.4) and (6.1.5), we get the two Riemann-invariants (7.0.6) and
(7.0.7) along the two characteristic lines dx

dt
= ±c

α(p, u) = 1
ρc

(p− p̄) + u− ū (7.0.6)

β(p, u) = − 1
ρc

(p− p̄) + u− ū (7.0.7)

Combining (7.0.6) and (7.0.7) results in the following relations

26
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u = α + β

2 + ū (7.0.8)

p = ρc

2 (α− β) + p̄ (7.0.9)

Differentiated with respect to x and t, and inserted into (7.0.1) and (7.0.2) yields:

∂α

∂t
= −cαx − f(u)− g sin(γ) (7.0.10)

∂β

∂t
= cβx − f(u)− g sin(γ) (7.0.11)

7.1 Piston Boundary
The piston boundary condition is handled in the same way as in 6.7.

7.2 Choke Boundary
The upper boundary, at the choke, is determined by the choke equation (5.3.2). We proceed
like in 6.6, and consider the positive and negative flows separately. Just like in the quasi-linear
case, we want to solve for the boundary value of the downward moving invariant. Once we
know the fluid velocity, we can use

β(t, l) = −α(t, l) + 2(u− ū) (7.2.1)

x is defined in the same way as for the quasi-linear boundary value problem, so we still
have

β(t, l) = −α(t, l) + 2
(
x∗ − qb

A
− ū

)
(7.2.2)

7.2.1 Positive Flow
When the flow through the choke is positive pc > p0 and we have from (5.3.2) and (5.3.2)

qc = G(uc)
√

1
ρL

(pc − p0)

qc = qb + qw

At the outlet pc = p(t, l) and qw = u(t, l)A. Thus,

(qb + u(t, l)A)2 ρL
G2(uc)

= pc − p0 (7.2.3)
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α is the Riemann-invariant corresponding to the upward-moving characteristic. Given
α(t, l), we would like to solve for β(t, l). By inserting (7.0.6) and (7.0.7) into (6.6.2), we get
the quadratic equation

K1x
2 +K2x+K3 = 0 (7.2.4)

Where

x = qb
A

+ ū+ α + β

2 (7.2.5)

K1 = − ρA2

G2(uc)
(7.2.6)

K2 = −ρc (7.2.7)
K3 = p̄− p0 + ρc(α(t, l) + u+ qb

a
) (7.2.8)

Only the positive solution of the problem has a physical meaning in the case of positive
flow.

7.2.2 Reverse Flow
It turns out that for reverse flow pc < p0 , the only thing changing in the quadratic problem
is the sign of K1. In other words, the problem to be solved when the equation for positive
flow doesn’t result in a positive x is

K1x
2 +K2x+K3 = 0 (7.2.9)

Where

x = qb
A

+ u+ α + β

2 (7.2.10)

K1 = ρA2

G2(uc)
(7.2.11)

K2 = −ρc (7.2.12)
K3 = p̄− p0 + ρc(α(t, l) + u+ qb

a
) (7.2.13)

And x has to be negative.

7.3 Comparison Between the Linear and the Quasi-Linear
Simulator

The linear and the quasi-linear simulator were excited by the same input signals; a sine
wave sweep over the frequencies 0Hz through 0.6Hz with a constant choke opening. The
relative error was increasing with the frequency, and decreasing as the back pressure pump
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flow was increased. The relative error of the bottom hole pressure estimate for the as
0.6Hz disturbance and no back pressure pump flow was about 1.5%. This suggests that
the linearization is justifiable for our system, and should be used whenever run times are
important.

7.4 Test of the Simulators
To get some numbers illustrating the benefits of writing the simulator in C-code, a test was
done. The 3 different simulators (the m-version, the quasi-linear C-version, and the linear
C-version) were excited with the same reference signal. They were ran for 20 seconds, and
the time was recorded using MATLAB’s tic/toc-function. The ode45 solver was used in all
the simulations. The runtimes can be seen in table 7.4.1.

Complexity (N) m-file Quasi-linear C-MEX Linear C-MEX
10 elements 361 s 0.15 s 0.1 s
100 elements 421 s 0.3 s 0.17 s
1000 elements 960 s 8 s 4.2 s

Table 7.4.1: Results from the tests

It is clear that the compiled C-code is advantageous for real-time performance compared
to the interpreted MATLAB code.



Chapter 8 Parameter Identification

In this section, the necessary parameters for the model discussed in the previous chapters
will be discussed, both theoretically and experimentally.

8.1 Numbers of Relevance
These are numbers that will be used in various derivations in this chapter.

Property Value
BHA length 350 mm

BHA diameter 40.9 mm
Upper rod diameter 25 mm
Lower rod diameter 22 mm
Compartment length 1.7 m

Compartment diameter 42.53 mm

Table 8.1.1: Dimensions of the piston with BHA1

Property Symbol Value
Copper pipe coil radius rc 1.07 m
Copper pipe coil height hc 2.3 m
Copper pipe coil pitch H 0.017 m
Copper pipe length L 900 m

Copper pipe inner radius rp 8 mm
Water density ρ 998 kg/m3

Water viscosity µ 1.00 · 10−3 kg/(m · s)

Table 8.1.2: Key numbers for friction

8.2 Piston friction
Boge [6] did experiments to determine both theoretical and empirical pressure drop models
for the piston part of the system. The resulting linear empirical equation for the pressure
drop over the BHA was

30
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∆P = −1.63 · v(t) + 0.15 [bar]
Where v is the piston velocity in meters per second. To verify this result, and see if

a linear model is sufficient, an experiment was conducted. The system was pressurized up
to approximately 5 bar, and the choke was set to a 28 degree opening. Then a sine sweep
was used as a reference signal for the piston. By differentiating the position reference, the
pressure drop as a function of the fluid velocity was plotted, and is shown in figure 8.2.1.
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Figure 8.2.1: The pressure drop over the BHA as a function of the piston
velocity. Boge’s linear pressure drop function is also shown.

The curve was approximated by a function on the form

∆P = fd,1 · vd + fd,2 · vd · |vd| (8.2.1)

where the constant parameters were found using the curve fitting tool in MATLAB.
The coefficients

fd,1 = −43840 [Pa · s/m]
fd,2 = −410400 [Pa · (s/m)2]

gave a good fit. There seems to be no significant time delays between the piston velocity
and the pressure drop.

Note: the dynamics have been ignored in this parameter identification for severeal
reasons. Firstly, due to problems with one of the flow meters needed for this (FT4), secondly,
fewer parameters make it easier to get results close to the ones in the lab.

The alternative piston model 5.4.1 was also tuned to fit the lab, resulting in the linear
piston friction 3000, and the quadratic friction 9000.
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8.2.1 Verification
The polynomial from the previous paragraph tested on data from a sine sweep with a 70
degree choke opening is shown in figure 8.2.2.
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Figure 8.2.2: The empirical pressure drop function compared to
measurements from the rig

8.3 Propagation Speed in the Copper Pipe
The speed of sound is the number determining how fast pressure waves propagate in the
pipe.The theoretical speed of sound in water in an infinite fluid medium is about 1484 m/s,
but this isn’t necessarily true for pipe flow.

8.3.1 Theory
Pipe walls are known to slow down pressure waves, and especially when the fluid being
carried is a liquid. A correction formula [30] is:

cpipe = c√
1 + κ β

E
2d
d0−d

(8.3.1)

where c is the speed of sound in an infinite fluid medium (m/s), β is the bulk modulus
of the fluid (Pa), E is the Young’s modulus of elasticity of the wall material (Pa), d is the
internal diameter of the pipe (m), d0 is the external diameter of the pipe (m), and κ is a
coefficient in the range 0 ≤ κ ≤ 1, which is zero when wall effects are negligible, but is unity
when the pipeline contains expansion joints. This formula predicts a speed of sound at 1353
m/s for the case with κ = 1 and E = 117 GPa.
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8.3.2 Experiment
Different approaches to determining the wave speed in the system were considered. Among
them, measuring the compressibility by pressurizing the system, and measuring the volume
change, and measuring the transient propagation speed in the system. The last one was
chosen, since this was considered the easiest, and the most accurate.

Data from 12 earlier experiments were used. The time lag between the transients of the
pressure disturbance at x=0 and x=900m were measured by hand (from PT10 to PT1). This
yielded the numbers in table 8.3.1.

Propagation time from P1 to C2 Speed of sound
0.70 s 1286 m/s
0.91 s 989 m/s
0.76 s 1184 m/s
0.83 s 1084 m/s
0.74 s 1216 m/s
0.74 s 1216 m/s
0.76 s 1184 m/s
0.75 s 1200 m/s
0.75 s 1200 m/s
0.77 s 1169 m/s
0.78 s 1154 m/s
0.75 s 1200 m/s

Table 8.3.1: Speed of sound measurements

Which results in an mean value of c = 1173 [m/s] with a standard deviation of 74.5.
This value is certainly lower than the theoretical value (1353 m/s). This may be caused by
entrained air in the water [31]. If there is a mix of water and air in the system, where the
volume of each component is denoted by Vair and Vwater respectively, such that

∆V = ∆Vair + ∆Vwater (8.3.2)

and

ρ = ρair
Vair
V

+ ρwater
Vwater
V

(8.3.3)

the bulk modulus of the mixture, defined as

β = ∆p
∆V/V (8.3.4)

becomes

β = βwater
1 + (Vair/V )(βwater/βair − 1) (8.3.5)
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Using the definition of the speed of sound

c =
√
β

ρ
(8.3.6)

we can show the relation in a plot:
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Figure 8.3.1: Speed of sound as a function of fractional amount of
entrained air

This indicates that even a small amount of air may cause the speed of sound to differ
significantly from the tabular value. Another option is that the rubber sections of the tubing
may cause a decrease of the wave speed due to their elasticity, but this was considered
unlikely to cause the discrepancy, since the propagation time within the copper pipe (from
PT1 to PT10) is exactly the same as the propagation time with the additional rubber pipes
(from P1 to C2).

To consider the theoretical effect of elasticity in the pipes, we have to make an assumption.
Young’s modulus is not really applicable to nonlinear materials, such as rubber, unless the
strains are small. We will assume linearity so we can calculate a ball-park estimate on the
effect they have on the overall wave propagation speed in the system.

The system has about 6.6 meters of rubber pipe (2.6 meters before the copper pipe inlet,
and several portions, totally 4 meters after the copper pipe outlet), and about 2.5 meters of
PVC pipes between the copper pipe outlet and the choke. The Young’s modulus for rubber
is somewhere around 0.01-0.1 GPa (we will use the mean value) and for PVC it is about
1.5 GPa. The inner and outer diameter of the rubber and PVC pipes are (19x29mm) and
(19x25mm) respectively, yielding the velocities



CHAPTER 8. PARAMETER IDENTIFICATION 35

crubber = 120 [m/s]
cPV C = 462 [m/s]

Since the portions of the pipe are only a few meters long, this velocity change is not
very noticeable by measuring the propagation speed of a wave (the additional time delay the
elastic tubes imply, is about 0.02-0.025s).

The bulk modulus of the system (including the rubber tubes) was determined experimentally
by Boge [7], resulting in a value around 1.5E9 Pa−1,which implies a propagation speed of 1225
m/s, which is within one standard deviation from the value found by measuring propagation
speed. However, it was also found indications that the bulk modulus was a function of the
pressure in the system, this may be caused by the nonlinear nature of the rubber pipes.

8.4 Choke Characteristic
To determine the choke characteristic G(u), a series of steps in the choke opening reference
was applied, and G(u) was plotted against u in MATLAB

G(u) = qc/

√
1
ρL

(pc − p0) = FT3/
√

1
ρL

(C2− C1)

resulting in the functions seen in figure 8.4.2. As can be seen, there is almost no difference
between the opening and the closing characteristic. This clearly shows that the deadband
discovered last fall is practically eliminated.
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Figure 8.4.1: Choke reference signal
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Figure 8.4.2: Choke characteristics for opening and closing

The mean of the two characteristics was calculated, and the values were interpolated by
a cubic spline on an even grid, resulting in a vector to be used in the simulator.

The time delay associated with opening and closing the choke (from 0 to 90 degrees and
vice versa) was measured to about 1 second, as shown in figure 8.4.3.
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Figure 8.4.3: Choke time response

Some selected value from the resulting characteristic are shown in table 8.4.1.
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0 15 20 25 28 31 40 50 60 70 80 90
0 0 2.2E-7 8E-7 2.5E-6 4.5E-6 1.19E-5 2.3E-5 3.69E-5 5.76E-5 8.66E-5 1.03E-4

Table 8.4.1: A selection of values from the choke characteristic. The entire
characteristic is found in the parameter list in the simulator.

8.4.1 The Use of the Choke Characteristic for Unsteady Flows
The choke equation (5.3.2) (also known as the orifice equation) can be derived from Bernoulli’s
equation. However, Bernoulli’s equation strictly requires the flow to be steady, which is not
the case for our simulations.

In figure 8.4.4, the flow through the choke is calculated for two different experiments,
with the same choke opening and disturbance frequency, but with the pump enabled only in
the upper one.
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Figure 8.4.4: Choke characteristics verification. Both the experiments
were with a 40 degree choke opening and a 0.5 Hz disturbance.

As can be seen, the steady flow-part of the flow is accurately calculated using the
choke characteristic. When the back pressure pump is disabled, there is no steady-state
differential pressure, which makes the flow calculations very inaccurate. This suggests that
the simulator is best suited for experiments with the pump enabled. The main reason behind
the discrepancy in the lower plot might be the lower flow limit for the flow meter. In any
case, the actual flow seems to be phase-shifted from the pressure difference. This behavior
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is not captured using the choke characteristic. This experiment, however, was done with a
higher disturbance frequency than the lab is intended for.

8.5 Back Pressure Pump Flow
The pump flow measurements from the choke characteristics identification were used to
identify the flow supplied by the back pressure pump, and see how it varies with the choke
pressure. The graph in 8.5.1 is for the pump at 100%.
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Figure 8.5.1: The pump flow (FT2) vs the choke pressure (C2)

As can be seen, the pump flow is falling as the pressure increases. This effect, however, was
reduced greatly by removing the pump accumulator. If this effect turns out to be important
to get accurate simulations, there is a simulink subsystem prepared for this purpose. The
flow with the accumulator removed was fitted by the function

qb = a exp(−bpc) + c; (8.5.1)

With

a = −2.4050e− 06
b = −2.5070e− 06
c = 4.7967e− 04

The flow for different pump settings with an open choke was measured
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Pump power [%] 0 10 20 30 40 50 60 70 80 90 100
FT2 flow [lpm] 11.7 11.7 11.7 11.8 11.9 12 17.3 20 22.7 25.8 28.4

Table 8.5.1: Pump flow with open choke

For low pump settings, the only flow is that supplied by the feeding pump (when the
choke is open). The back-pressure pump flow starts at about 40% power.

8.6 Pipe friction
In this section, some theory will be presented first, and an estimated friction factor will be
calculated, using a steady flow approximation. The approximation will then be tested on
lab data.

8.6.1 Reynolds Number
The Reynolds number is given by

Re = ρud

µ
(8.6.1)

First, we have to find out what the highest fluid velocity in the copper pipe is. The
maximum speed of the piston, with a sinusoidal reference signal, is given by vmax = 2πAf
where A is the amplitude and f is the frequency in Hz. The fastest reference frequency during
this project was 0.650 Hz, with a 0.1 m amplitude, resulting in a maximum piston velocity
at 0.41 m/s, and a maximum fluid velocity 0.2249 m/s. This will generate a volumetric flow
of about qpmax = vmax(Ad − Ad2) (see 5.4.1), in this case qpmax = 4.5 · 10−5 [m3/s] which
results in the maximum fluid velocity in the pipe umax = qpmax/Apipe, here, since the inner
pipe diameter is 16 mm, umax = 0.22 [m/s]. Thus, the maximum Reynolds number in the
copper pipe is about 3600, meaning the flow in the copper pipe is laminar for low frequency
disturbances, and in the transition for the highest frequencies (2300<Re<4000).

This, however, is true around the piston. Compressibility effects in the copper pipe seem
to slow down the flow. We will therefore only consider the laminar case in the rest of this
section.

8.6.2 Friction Considerations
Results from literature show that when the flow is laminar (Re<2300), the friction factor is
independent of the roughness of the pipe. The shear stress at the walls of the pipe is

τ = fρu2

2 (8.6.2)

and f (Fanning friction factor) for laminar flow in round tubes is taken to be

f = 16
Re

(8.6.3)
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However, the copper pipe is helical, and the friction factor in helical coils is also dependent
upon the curvature ratio, λ and the Dean number [23], Dn given by

λ =
rc
rp

( rc
rp

)2 + ( H
2πrp )2 (8.6.4)

Dn = Re
√
λ (8.6.5)

Where H is the pitch of the helix.
A widely used correlation due to Hasson (1955) for pipes of small curvature and negligible

torsion is

f = 16
Re

(0.556 + 0.0969
√
Dn) (8.6.6)

for 22 < Dn < 2000
This makes our friction factor a nonlinear function of velocity. In terms of the pressure

drop due to friction, we multiply the shear stress by wall area of the pipe, and divide by the
cross-sectional area

f(u) = 1
ρ

2πr
πr2 τ

then we insert 8.6.6 and the definition of the Reynolds number, and simplify.

= 1
ρ

2πr
πr2

ρu2

2
16µ
ρud

(0.556 + 0.0969
√
Dn)

= 8µu
ρr2 (0.556 + 0.0969

√
Dn)

= 0.0695u+ 0.4512u3/2 (8.6.7)

Which is a nonlinear function of the fluid velocity. The flow speeds in the copper pipe
are always less than about 0.2 m/s. In this area, the calculated friction can be approximated
by the quadratic function

f(u) = 0.15u+ 0.63u|u| (8.6.8)

Or by the linear function

f(u) = 0.2446u (8.6.9)

The three functions are shown in figure
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Figure 8.6.1: Friction functions

8.6.3 Friction from Experiments
An experiment was conducted to determine the actual steady-state friction in the lab. The
choke was shut off to pressurize the system, and the valve in the bottom of the piston
compartment was opened slightly (about 10 degrees). Then, the flow rate was adjusted by
changing the pump power. This was done a few times to get a rich data set. The pressure
drops for each sensor was calculated by subtracting the hydrostatics and sensor bias from
previous experiments with the system filled with water

Then the steady-state portions of the resulting data were averaged. Equation (5.2.3) for
a constant flow yields

c2

k + p

∂p

∂x
+ f(u) = 0 (8.6.10)

By using ∂p
∂x

= P (900)−P (0)
900 and p = P (900)+P (0)

2 , an approximate of the friction term was
calculated. The best line fit in the least squares sense, intersecting the origin was

f1u = 0.2412u (8.6.11)

(compare to (8.6.7))
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Figure 8.6.2: Pipe friction plotted against the fluid velocity in the pipe

This frequency function fits the data in the steady portions of the data set shown in
figure 8.6.3.
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Figure 8.6.3: Verification of the friction result . Here all the terms of
(5.2.3), except the friction are calculated by approximating the derivatives,
and are plotted against -f1u. The flow was assumed homogeneous throughout
the pipe in the calculations. The black graph is an ensemble average based
on data from all the pressure sensors.
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However, this friction term is based on the assumption of constant flow. We will look
into what effects unsteady flow may have on the flow in the next section.

8.6.4 Transient Effects
During acceleration and deceleration of the water, there are likely to be transient friction
effects not modeled so far.

Several papers describe algorithms to determine the unsteady friction. They are either
dependent upon [5]

• The instantaneous mean flow velocity u

• The instantaneous mean flow velocity u and the instantaneous local acceleration ∂u/dt

• The instantaneous mean flow velocity u, the instantaneous local acceleration ∂u/dt
and the instantaneous convective acceleration ∂u/dx

• The instantaneous mean flow velocity u and diffusion∂2u/dx2

• A cross-sectional distribution of instantaneous flow velocity.

• The instantaneous mean flow velocity u, and a weighted sum for the past velocity
changes

[10] investigates the relative importance of unsteady friction on the damping as a function of
the dimensions of the system. The article shows that the importance of unsteady damping
is decreasing when the length/diameter ratio increases. This might indicate that unsteady
friction is not that important in our setup, due to the large ratio. However, since the results
are not based on pure oscillatory flow conditions, they are not directly applicable to the lab.

A frequency model worth considering for the simulator if an unsteady friction function
is going to be implemented in the future, is the Brunone et al (1991) model

fu = k(∂u
∂t

+ sgn(u)c
∣∣∣∣∣∂u∂x

∣∣∣∣∣) (8.6.12)

which can be implemented with the method of characteristics, the interested reader may
read [22] for a derivation. It is interesting to notice that the unsteady friction contributes to
the phase of the pipe system.



Chapter 9 Tuning

This section is dedicated to tuning the simulator to get the frequency response as similar to
the lab’s as possible.

9.1 Tuning Choices
In a series of experiments conducted in collaboration with Martin Standahl Gleditsch, the
lab rig was excited by sine sweeps, one for each choke opening, resulting in the surface seen
in figure 9.1.1. In addition, an experiment was done where the pipe was terminated at the
end of the copper pipe (avoiding rubber tubes). Data from this experiment is included in
figure 9.1.2. Our goal will be to get the frequency response of the bottom hole pressure
as similar to the lab’s as possible, since this is considered the most important state of the
system. The frequency responses shown are depicting the ratio BHP/piston position.
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Figure 9.1.1: Frequency response of the lab rig (courtesy of Martin
Standahl Gleditsch)

The reason why the piston position was chosen, and not the piston velocity, as one would
expect, is first of all, that in the lab, only the position data is available for the piston, so it is

44
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easier to just use the measurement instead of differentiating the noisy signal. But secondly,
the transfer function from velocity to bottom hole pressure amplitude starts off with an
infintely high magnitude. This can be understood by considering what happens when the
piston is moved with a constant velocity (zero frequency). This will pressurize the system
infintely. When the transfer function from position is used, we get a step instead of an
impulse.
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Figure 9.1.2: Frequency response for open and closed chokes, and with
different terminators in the closed case.

The choke-terminated experiment resulted in resonance peaks at about 0.44 Hz and 0.25
Hz, for closed and open choke respectively. When the line is terminated by the valve after
the copper pipe, the resonance moves up to about 0.49 Hz.

These resonance peaks correspond to a lower wave speed than the one identified. This
will be looked more into in the next subsections.

9.2 Frequency Response of the System
To ease analysis of the system, an analytic expression for the frequency response of the
system was derived, with the linear dynamics in 7.0.1 and 7.0.2 as basis.

In addition, a friction term (f2ut) dependent upon the temporal fluid acceleration was
added to see how this affects the frequency response (a more realistic model would be
dependent upon the sign of the flow). The gravity bias was removed by defining

p̄(x, t) = p(x, t) + ρg sin(γ)x (9.2.1)
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Then the model was restated as

∂p̄(x, t)
∂x

= −ρ∂u(x, t)
∂t

− f1u(x, t) (9.2.2)

∂u(x, t)
∂x

= − 1
ρc2

∂p̄(x, t)
∂t

(9.2.3)

with the linearized boundary conditions

p(l, t) + ku(l, t) = 0 (9.2.4)

u(0, t) = −vd(t)
Ad − Ad2

A
= −vd(t)A2 (9.2.5)

By interchanging integration and derivation, we can obtain the Laplace transformed
system equations

∂P̄ (x, s)
∂x

= −ρ(f1 + s)U(x, s) (9.2.6)

∂U(x, s)
∂x

= − s

ρc2 P̄ (x, s) (9.2.7)

This is a system on the form

∂Z(x, s)
∂x

= A(s)Z(x, s) (9.2.8)

which has the general solution

Z(x, s) = exp(A(s)x)Λ(s) (9.2.9)

Using MATLAB’s symbolic toolbox, and rewriting in terms of hyperbolic functions, the
matrix exponential can be found

exp(A(s)x) =
 cosh (κx) − c2κρ sinh(κx)

s

− s sinh(κx)
c2κρ

cosh (κx)

 (9.2.10)

Where

κ =

√
s(f1 + s)
c

(9.2.11)

By applying the boundary conditions, we can solve for Λ.

Λ(s) = −AdVd(s)
[

ρc2κ sinh(κl)+k cosh(κl)s
ρc2 cosh(κl)s+k sinh(κl)s2

1

]
(9.2.12)

And finally, the transfer function from Vd(s) to the bottom hole pressureP (0, s)
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P (0, s)
Vd(s)

= −A2κρc
2 (κρc2 sinh (κl) + k cosh (κl) s)

κρc2 cosh (κl) s+ k sinh (κl) s2 (9.2.13)

This is an irrational transfer function, and to be of any use in simulations, it needs to be
approximated by a rational model. This may be done by e.g writing the irrational terms as
infinite series, and truncate. This transfer function is derived in terms of impedances in [11].

9.3 Parametric analysis

9.3.1 Variation of the Speed of Sound
The speed of sound is related to the frequencies of the resonance peaks. We may calculate
the poles of the transfer function 9.2.13 in the two cases k=0 (choke closed) and k=inf (choke
open). If we neglect friction for a second, the resonances for the open choke case occur when

cosh(κl) = 0 (9.3.1)

which is true whenever

f = n
1
4
c

l
, n = 0, 1, 2 . . . (9.3.2)

And when the choke is closed, whenever

sinh(κl) = 0 (9.3.3)

which happens when

f = n
1
2
c

l
, n = 0, 1, 2 . . . (9.3.4)

The resonance peaks of the lab happens when f = 0.24 when the choke is open, and at
f = 0.43 when the choke is closed. This indicates a speed of sound at 782 m/s in the closed
choke case and 873 m/s in the open choke case. In figure 9.3.1, it is shown how adjustment
of the speed of sound affects the frequency response of the system.
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Figure 9.3.1: Adjustment of the speed of sound.

9.3.2 Variation of the Pipe Friction
The linear pipe friction’s contribution is damping, that is, lowering the resonance peaks. As
can be seen in the figure below, the friction as a function of the flow velocity does not move
the resonance peaks at all.
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Figure 9.3.2: The resonance peaks are higher for lower linear pipe friction
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9.3.3 Variation of the Choke Leakage
Using the quasi-steady simulator, the flow coefficient for the smallest choke opening was
adjusted to see how this affects the frequency response. Note that this simulation was not
done with the same parameters as the previous plots. The frequency response looks slightly
different from the theoretical one since it is generated by applying a sine sweep which does
not necessarily produce the exact frequency response.
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Figure 9.3.3: Increasing the minimum flow coefficient (“leak”-flow) lowers
the resonance peaks for the closed choke case. Closed choke to the left, open
choke to the right.

The resonance peaks for the closed choke case are not surprisingly lowered. The phase
response is also flattened as the leakage gets bigger.

9.4 Fine tuning
The goal of the tuning was to get the frequency response from the piston disturbance to
the bottom hole pressure as similar as possible. First of all, to get a lower resonance peak
when the choke is closed, a small offset was added to the choke characteristic for the zero
values. This can be justified by observing a slow gradual pressure drop when the system is
pressurized and the choke is closed. Secondly, to get the resonance peaks moved towards
lower frequencies, the speed of sound was lowered.

A comparison of the actual frequency response, and that of the simulator is shown in
figure 9.4.1.
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Figure 9.4.1: Comparison of the simulator frequency resonse and the real
response. Closed choke to the left, open choke to the right.

As can be seen, the simulator gives a pretty good estimate for the behavior of the system
for low frequencies. The modeling errors get worse for higher frequencies in both cases.

9.4.1 Parameter values
These are the final simulator parameters after tuning to get the best fitting frequency
response in experiments without the back pressure pump.

Parameter name Identified value Calculated value After tuning
Speed of sound 1173 [m/s] 1353 [m/s] 850 [m/s]

Piston linear friction -43840 [Pa · s/m] - -43840 [Pa · s/m]
Piston quadratic friction -410400 [Pa · (s/m)2] - -410400 [Pa · (s/m)2]

Linear pipe friction 0.2412 [1/s] 0.15 [1/s] 0.15[1/s]
Quadratic pipe friction - 0.63 0.63

Leak adjustment Not measureable - 6E-7

Table 9.4.1: Identified parameters and parameters after tuning

9.5 Time responses
The simulator was excited with the same data as the lab, and comparative plots of the time
response follow.
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Figure 9.5.1: Simulator response. The disturbance frequency is 0.1 Hz
and the choke opening is 50 degrees.
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Figure 9.5.2: Simulator response. The disturbance frequency is 0.2 Hz
and the choke opening is 31 degrees.
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Figure 9.5.3: Simulator response. The disturbance frequency is 0.3 Hz
and the choke opening is 45 degrees.

From these time responses, a few things are clear. Firstly: there is a phase error, which
seems to be largest in the simulated choke flow (FT3). This is likely to be caused by the
steady-flow simplification used (see 8.4.1). There is also an error in the amplitudes of the
time responses, which again seems to be most significant for the choke flow. Notably, the
bottom hole pressure is consistently the least erroneous signal. This is of course because the
simulator was tuned to get this estimate right.



Chapter 10 Observer Implementation

10.1 Backstepping Observer
The ultimate goal for the observer design is to be able to determine the bottom hole
conditions solely based on topside measurements. The first observer implemented is [4].
This is already derived for the system 7.0.1, but has not been tested in the lab or with a
quasi-linear model. A short summary of the observer design follows.

Consider an observer on the form

ût = −ε1(x)ûx + c1(x)v̂ + p1(x)(u(1, t)− û(1, t)) (10.1.1)
v̂t = ε2(x)v̂x + c2(x)û+ p2(x)(u(1, t)− û(1, t)) (10.1.2)

û(0, t) = qv̂(0, t) + CX̂(t) (10.1.3)
v̂(1, t) = U(t) (10.1.4)

˙̂
X = AX̂ + eAdaL(u(1, t)− û(1, t)) (10.1.5)

Where x ∈ [0, 1], and the functions p1(x), p2(x) and the matrix L are output injection
gains. The basic idea of the design is to write out the error dynamics of the system, and
later transform the system using a backstepping approach into a stable system. The following
transformation is used

ũ(x, t) = α̃(x, t)−
ˆ 1

x

P uu(x, ξ)α̃(ξ, t)dξ −
ˆ 1

x

P uv(x, ξ)β̃(ξ, t)dξ (10.1.6)

ṽ(x, t) = β(x, t)−
ˆ 1

x

P vu(x, ξ)α̃(ξ, t)dξ −
ˆ 1

x

P vv(x, ξ)β̃(ξ, t)dξ (10.1.7)

Where the tildes denote the errors of their respective variables, and the P variables are
the kernels of the transformation. Note that the α and β is not the same as the Riemann
invariants used in the simulations. It can be shown that the kernels must satisfy the system
of equations

ε1(x)P uu
x (x, ξ) + ε1(ξ)P uu

ξ (x, ξ) = −ε′1(ξ)P uu(x, ξ) + c1(x)P vu(x, ξ) (10.1.8)
ε1(x)P uv

x (x, ξ)− ε2(ξ)P uv
ξ (x, ξ) = ε

′

2(ξ)P uv(x, ξ) + c1(x)P vv(x, ξ) (10.1.9)
ε2(x)P vu

x (x, ξ)− ε1(ξ)P vu
ξ (x, ξ) = ε

′

1(ξ)P vu(x, ξ)− c2(x)P uu(x, ξ) (10.1.10)
ε2(x)P vv

x (x, ξ) + ε2(ξ)P vv
ξ (x, ξ) = −ε′2(ξ)P vv(x, ξ)− c2(x)P uv(x, ξ) (10.1.11)
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on τo =
{

(x, ξ) : 0 ≤ x ≤ ξ ≤ 1
}
, with the boundary conditions

P uu(0, ξ) = qP vu(0, ξ) (10.1.12)

P uv(x, x) = c1(x)
ε1(x) + ε2(x) (10.1.13)

P vu(x, x) = − c2(x)
ε1(x) + ε2(x) (10.1.14)

P vv(0, ξ) = 1
q
P uv(0, ξ) (10.1.15)

And that we have

p1(x) = CeAhα(x)L− ε1(1)P uu(x, 1)−
ˆ 1

x

P uu(x, ξ)CeAhα(ξ)Ldξ (10.1.16)

p2(x) = −ε1(1)P vu(x, 1)−
ˆ 1

x

P vu(x, ξ)CeAhα(ξ)Ldξ (10.1.17)

where hα(z) =
´ 1
z

dγ
ε1(γ) , and that we must choose L such that (A-LC) is Hurwitz.

10.2 Implementation
It is shown in[4] that the linear model for the MPD rig can be transformed to a system on
the form (10.1.1-10.1.5) by the change of coordinates

u(x, t) = 1
2

(
q(xl, t) + A

ρc
(p(xl, t)− psp + ρglx)

)
exp(σx) (10.2.1)

v(x, t) = 1
2

(
q(xl, t)− A

ρc
(p(xl, t)− psp + ρglx)

)
exp(−σx) (10.2.2)

with

ε1(x) = ε2(x) = c

l
(10.2.3)

c1(x) = −1
2
F

ρ
exp(2σx) (10.2.4)

c2(x) = −1
2
F

ρ
exp(−2σx) (10.2.5)

q = −1, A = Ā,C = −A2C̄ (10.2.6)

σ = 1
2
F

ρ

l

c
(10.2.7)
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Note that this model requires knowledge about the frequency of the disturbance, but not
the phase and amplitude. For example, a sinusoidal piston disturbance with frequency ω
can be modeled as

Ẋ = AX (10.2.8)
vd(t) = C̄X (10.2.9)

A =
[

0 −ω
ω 0

]
(10.2.10)

C̄ =
[

0 1
]

(10.2.11)

Inserting the parameters into the kernel equations, yields the hyperbolic set of PDEs

P uu
x (x, ξ) + P uu

ξ (x, ξ) = −σe2σxP vu(x, ξ) (10.2.12)
P uv
x (x, ξ)− P uv

ξ (x, ξ) = −σe−2σxP vv(x, ξ) (10.2.13)
P vu
x (x, ξ)− P vu

ξ (x, ξ) = σe2σxP uu(x, ξ) (10.2.14)
P vv
x (x, ξ) + P vv

ξ (x, ξ) = σe−2σxP uv(x, ξ) (10.2.15)

on τo =
{

(x, ξ) : 0 ≤ x ≤ ξ ≤ 1
}
, with the boundary conditions

P uu(0, ξ) = −P vu(0, ξ) (10.2.16)

P uv(x, x) = −1
2σe

2σx (10.2.17)

P vu(x, x) = 1
2σe

−2σx (10.2.18)

P vv(0, ξ) = −P uv(0, ξ) (10.2.19)

We only need to solve for P uu and P vu, since the others don’t appear in the observer
gains. The coupled PDEs 10.2.12 and 10.2.14 are solved using the method of characteristics
B.1, an outline of the solution algorithm follows.

10.2.1 Solving the Kernel Equations
The set of PDEs 10.2.12 and 10.2.14 have the two characteristic curves B.2

dx

dξ
= 1 (10.2.20)

dx

dξ
= −1 (10.2.21)

Corresponding to equation 10.2.12 and 10.2.14 respectively. The algorithm proceeds as
follows:
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1. The values of P vu on the antidiagonal are calculated using the boundary condition
10.2.18.

2. The first value of P uu on the antidiagonal is calculated by using 10.2.16. The rest
of P uu on the diagonal is calculated by utilizing that it is a characteristic curve for
10.2.12 (Along the antidiagonal, we have P uu

x (x, ξ) = −σe2σxP vu(x, ξ), and only need
to integrate (using Euler’s method).

3. The diagonal is a characteristic curve for 10.2.14. Along the diagonal we have P vu
x (x, ξ) =

σe2σxP uu(x, ξ). We use Euler’s method to calculate the next antidiagonal of values of
P vu.

4. We go back to point 2, and repeat until the whole grid is calculated. See figure 10.2.1.
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Figure 10.2.1: The boundary of the kernel equations, and the direction in
which we integrate. P vu is first calculated on the antidiagonal. Then the
P uu values on the diagonals are calculated.

After the kernels are calculated, the observer gains are obtained using 10.1.16 and 10.1.17.
Notice that the observer gains are functions of the disturbance frequency.

10.2.2 Integration
To implement the observer on the simulator, a few changes had to made since the coordinate
system in the simulator (10.2.1, 10.2.2) is slightly different from the Riemann-invariants used
in the linear simulator (7.0.6, 7.0.7). Differentiating 10.2.1 and 10.2.2 yields
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ut = 1
2(qt + A

ρc
pt) exp(σx) (10.2.22)

vt = 1
2(qt −

A

ρc
pt) exp(−σx) (10.2.23)

Combined with the derivatives of 7.0.6 and 7.0.7, we get the relations

αt = 2
A

exp(−σx)ut (10.2.24)

βt = 2
A

exp(σx)vt (10.2.25)

Thus, the corrective terms to be implemented in the simulator are

αt,corr = 2
A

exp(−σx)ut,corr = 2
A

exp(−σx)p1(x)(u(1, t)− û(1, t)) (10.2.26)

βt,corr = 2
A

exp(σx)vt,corr = 2
A

exp(σx)p2(x)(u(1, t)− û(1, t)) (10.2.27)

In addition, the corrective term in the disturbance model (10.1.5).

10.2.3 State Vector
The state vector used for the observer contains the same α− and β−information as the
simulator state vector, and two additional states for the disturbance.

10.3 Simulation
Using a disturbance frequency ω = π/2, and placing the poles of (A-LC) at [−40+20i,−40−
20i] yielded the gain functions p1(x) and p2(x) in figure 10.3.1.
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Figure 10.3.1: Observer gains

In our case, it turns out that p2(x) ≈ 0∀x and p1(x) ≈ CeAhα(x)L (the error of this
assumption is in the order 10−4). This is true for all parameters, as long as the friction is
small.

A simulation was done, where the topside measurements were fed from the quasi-linear
simulator into the linear observer. The simulation time response is shown in figure 10.3.2.
As can be seen, the observer converges to the right disturbance and bottom hole pressure
(the small discrepancies are thought to be due to the linearization).
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Figure 10.3.2: Observer time response. Simulated with an initial choke
pressure at 4 bar, and the choke varied sinusoidally with a 0.2 Hz frequency
and a 0.25 Hz piston disturbance.

10.4 Lab Test
These are the simulation results from the observer when lab data has been used as the input.
First the output when the lab is excited by two sine waves, and the choke opening is kept
constant. The data from the lab was gathered with the back pressure pump enabled.
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Figure 10.4.1: Test 1: Observer response with disturbance frequency 0.2
Hz and a choke opening of 45 degrees
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Figure 10.4.2: Test 2: Observer response with disturbance frequency 0.3
Hz and a choke opening of 50 degrees

Then a test where both the choke opening and the piston are varied sinusoidally
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Figure 10.4.3: Test 3: Observer response with disturbance frequency 0.25
Hz and a choke varying sinusoidally around 53 degrees with a frequency
0.33Hz and a 5 degree amplitude

0 5 10 15 20 25 30 35 40
0

5

10
x 10

5

Time [s]

P
re

ss
ur

e 
[P

a]

Pipe inlet pressure

 

 

Estimate Actual

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

Time [s]

V
el

oc
ity

 [
m

/s
]

Disturbance

 

 

Estimate Actual

Figure 10.4.4: Test 4: Observer response with disturbance frequency 0.2
Hz and a choke varying sinusoidally around 40 degrees with a frequency
0.3Hz and a 10 degree amplitude

As can be seen in the figures, the tracking of the pipe inlet pressure is satisfactory for the
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first 3 tests, except that that the estimate is lagging behind the plant by somewhere around
0.3-0.5 seconds. A first thought would be that the wave speed in the observer is wrong,
but increasing it made the response worse. A phase shift was also observed in the testing
of the simulator, but with the opposite sign. Unlike the simulator, the choke equation is
not a part of the observer, which points towards the modeling of the transfer function from
the piston disturbance to the system as a contributing cause. Since measurements from the
actual piston disturbance flow (FT4) weren’t available at the time of this project, it was not
possible to verify its dynamics.



Chapter 11 Concluding Discussion and
Future Work

When tuning the simulator, some parameters had to be changed significantly from the
experimental values. This section summarizes the modeling and the results discovered, and
suggestions on future changes in the modeling.

11.1 Copper Pipe
The copper pipe was modeled using the incompressible Navier-Stokes equation with linearized
compressibilty. It later turned out that a linear model gave almost exactly the same output,
with lower run times.

An interesting phenomenon discovered, was that the speed of sound identified by measuring
the transient propagation delay (1173 m/s), did not match the speed of sound corresponding
to the resonance frequencies of the system (850 m/s) . This was later confirmed by [7]
by experimentally determining the bulk modulus in the system. These observations may
indicate that some of the dynamics of the system have been overlooked. Not to mention,
the experimentally determined propagation speed corresponds badly to the theoretical value.
This may be caused by entrained air or unmodeled elasticity in the system.

When the “topside” rubber tubes are omitted, the resonance peak is moving slightly
towards higher frequencies, but not nearly enough to account for the wave speed reduction.

Because of the oscillating nature of the flow in the system, a suggestion is to implement
an unsteady friction function and see how this affects the response.

11.2 Choke
The choke was modeled with the steady flow orifice equation. The steady flow assumption
proved to be bad at simulating high frequency oscillating flow through the choke, as seen
in section 8.4.1. An improvement of the simulator, allowing for faster disturbances, would
be including a frequency dependent model for the flow around the choke. Nonetheless, for
lower frequencies, the orifice equation seems like a good approximate.
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11.3 Piston
The pressure drop over the piston was accuratly modeled by a quadratic polynomial. Yet, the
flow from the piston compartment into the copper pipe is not dependent upon the pressure
drop at the present moment, which is only used to calculate the additional pressure difference
from the pipe inlet to the bottom. The flow generated using this assumption is identical to
the flow from a model accounting for compressibility (the compressibility effects don’t seem
to affect the response much in such a small volume). As future work, the dynamics around
the piston should be looked into as soon as the pipe inlet flow meter is in place. There might
be some additional compressibility due to the elasticity of the compartment itself and the
rubber hose going from the piston compartment and into the copper pipe that may add a
time delay.

11.4 Pump
The pump is currently modeled as a static relation between the setpoint and the outlet
pressure, based on data obtained by pressurizing the system. Results from [24] indicate that
the frequency response of the system is significantly different when the back pressure pump
is enabled, with lower resonance peaks for lower frequencies.

11.5 Range of Validity
The frequency response of the simulator indicates that roughly, the prediction of the bottom
hole pressure, given a choke opening, a pump setting and a disturbance, is approximated well
for all disturbance frequencies up to the first resonance peak (0.44Hz for closed choke, 0.25Hz
for open choke). The prediction of the states around the choke seem to be deteriorating a
little earlier.

A limitation of the model is that it may produce negative pressures in the system. If this
poses a problem, it may be avoided by increasing the choke outlet pressure.

The observer seems to produce good estimates of the bottom hole pressure in approximately
the same range as the simulator. The response is slightly lagging, which may indicate
unmodelled dynamics in the copper pipe. But the results overall are promising for future
model-based control of the lab rig. First, the robustness of the observer should be further
examined and improved.



Chapter A User Guide - Getting Started

A.1 Package Contents
The files enclosed with this report includes a linear simulator, a quasi-linear simulator and
an observer, organized in a Simulink library. In addition, scripts for calculating the observer
gains and the frequency response of the system are enclosed, as well as a logging and plotting
tool that produces an animated version of the pressure data. The source code for the version
of the simulator with the piston model 5.4.1 is also included. Remember that this model uses
different friction parameters for the choke (about 3000 and 9000 for the linear and quadratic
term respectively)
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Figure A.1.1: Library contents

A.2 Get Started with the Simulator
MATLAB R2012 or newer is required to run the simulator.

Start by creating a new Simulink file. Open the library (MPDHeaveLib.slx) and drag
one of the simulator blocks into your new Simulink file.

There are basically 3 things that should be configured before running the simulator.

1. The choke opening needs to be set to a number between 0 and 1.

2. The piston reference in m/s

3. The pump flow in m3/s

In addition, the initial outlet pressure and the initial choke pressure can be adjusted in the
parameter list in the Simulator block. The initial choke pressure needs to be larger than the
outlet pressure, otherwise the simulator will crash.

The block “Logging and plotting” takes care of all the logging. Double click to see
the MATLAB workspace variable names corresponding to the different measurements. An
animated pressure plot may be enabled by uncommenting the subsystem “Pressure plot”.
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Note that the pressures in the simulator are absolute pressures. The pressure values from
the lab are gauge pressures.

A.3 Adjusting Default Parameter Values
To adjust the default values, the library has to be unlocked (Diagram->Unlock Library).

A.4 Get Started with the Observer
Start by creating a new Simulink file. Drag an observer block from the library into the new
file. Make sure the working directory of MATLAB is the library root folder. Double click on
the observer to specify the outlet pressure and the disturbance frequency. Go to the library
and double click on “Calculate Observer Gains”, or open the file obsgains.m. Specify the
disturbance frequency and run the file. You are now good to go. Remember, the pressures
from the lab are gauge pressures, and in different units.

A.5 How to...

A.5.1 Customize Pressure Outputs
Change the vector “Desired pressure outputs (m)” in the parameter list to automatically
change the pressure outputs. This can be done for the simulators as well as the observer.

A.5.2 Recompile the Code
If changes are made to the source code, it needs to be recompiled using the command “mex
FILENAME”. This requires a supported compiler. See the MATLAB manual for details.
When the source code is compiled, replace the old .mexw64-file with the new one.

A.5.3 Change the Number of Discretization Elements
Change the constant C_N in the source code and recompile. This was implemented as a
constant since the number of states in the system needs to be known before the simulation
starts.

A.5.4 Obtain the Frequency Response
Double-click on the box named “Obtain frequency response” to simulate and get the frequency
response from the piston position to the bottomhole pressure.
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A.6 On Solvers
Recommended solvers to be used on simulations include ode8 (Dormand-Prince) with a fixed
step length 0.01 and ode45. Some of the lower-order fixed-step solvers require shorter step
lengths to be stable.



Chapter B Mathematical background

B.1 Method of Characteristics
The method of characteristics is a technique for solving hyperbolic partial differential equations.
Consider the first order equation

zt + azx = 0 (B.1.1)

The solution along the curve x(t) = x0 + at can be investigated by differentiating z along
this line

d

dt
z(x(t), t) = ∂

∂t
z(x(t), t) + ∂

∂x
z(x(t), t)x′(t) = zt + azx = 0 (B.1.2)

Thus, the value of z does not change along this line. The same can be shown along the
other characteristic curve of B.1.1. Consider now the system

zt + azx = f(z, x, t) (B.1.3)

Again, the solution along the curve x(t) = x0 + at can be investigated:

d

dt
z(x(t), t) = ∂

∂t
z(x(t), t) + ∂

∂x
z(x(t), t)x′(t) = zt + azx = f(z, x, t) (B.1.4)

So along the characteristic curves, we get the ordinary differential equation

dz

dt
= f(z, x, t) (B.1.5)

If an initial solution z0 is known, we only need to integrate the right hand side with
respect to time to get the solutions along the characterstic curve. If this is done for several
initial values, we can make a grid of characteristic curves, and get the solutions for a grid of
(x,t)-values. This method is also generalizable to higher order systems.
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B.2 Riemann Invariants
We can gain insight and possibly explicit solutions of systems of first order PDEs on the
form zt + A(z)zx = 0 by using the concept of Riemann invariants ([21] p. 336). A system
on this form is considered strictly hyperbolic if the eigenvalues λ(i) of the matrix A(z) are
distinct and real. Consider the definition of the left eigenvectors l(i) for a system of 2 PDEs

l(i)(Iλ(i) −A) = 0, for i=1,2 (B.2.1)

If we premultiply the PDE by its generalized left eigenvector (l(i)) and insert (B.2.1), we
obtain

l(i)(zt + λ(i)zx) = 0, for i=1,2 (B.2.2)

The bracketed term in (B.2.2) is the directional derivative of z with respect to time along
the family of characteristic curves C(i) defined by

C(i) : dx
dt

= λ(i), for i=1,2 (B.2.3)

If we denote differentiation with respect to time along the C(1) family of characteristics
by d/dσ1 and along the C(2) family of characteristics by d/dσ2 (B.2.2 ) becomes

l(1) dz
dσ1

= 0 (B.2.4)

and along the C(2) family of characteristics

l(2) dz
dσ2

= 0 (B.2.5)

By multiplying the equations (B.2.4) and (B.2.5) by appropriate integrating factors µ1
and µ2 we obtain along the C(1) and C(2) characteristics respectively

α(z1, z2) =
ˆ
µ1l

(1)
1 dz1 +

ˆ
µ1l

(1)
2 dz2 (B.2.6)

β(z1, z2) =
ˆ
µ2l

(2)
1 dz1 +

ˆ
µ2l

(2)
2 dz2 (B.2.7)

where α and β are called Riemann invariants of the system, and l(i) =
[
l
(i)
1 l

(i)
2

]
. The

Riemann invariants are constant along the C(1) and C(2) characteristics. Each Riemann
invariant can be looked at as the “information” that travels along the characteristic line in
x-t-space. We will use this to ease implementation of the PDE governing the pipe flow.
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Channel Unit Sensor
2 P2 Druck PTX 1400
3 P1 Druck PTX 1400
4 C2 Druck UNIK 5000 PS
5 C1 Druck UNIK 5000 PS
6 PT1 Druck UNIK 5000 PS
7 Tank water level Druck PTX 1400
8 PT8 Druck UNIK 5000 PS
9 PT6 Druck UNIK 5000 PS
10 PT9 Druck UNIK 5000 PS
11 PT2 Druck UNIK 5000 PS
12 PT3 Druck UNIK 5000 PS
13 PT7 Druck UNIK 5000 PS
14 PT4 Druck UNIK 5000 PS
15 PT10 Druck UNIK 5000 PS
16 PT5 Druck UNIK 5000 PS
18 FT1 Heinrichs EP/UMF2
19 FT3 Parker DFT990
20 FT2 Parker DFT990
21 FT4 Not delivered yet
27 FT1 sign bit
31 Pulse generator position feedback
32 Choke position feedback

Table C.0.1: Analog input channels in Simulink

Channel Unit Range
1 Choke angle 0-10 V
2 Heave generator/piston position 0-10 V

Table C.0.2: Analog output channels
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